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Thesis Abstract 

Chapter 1: Theoretical Background of Hyperpolarised Gas Magnetic 

Resonance Imaging  

Nuclear Magnetic Resonance (NMR) forms the basis of many scientific applications from 

studying protein structures in biochemistry to imaging just about every body part possible 

using magnetic resonance imaging (MRI).  This chapter provides the background to the 

physics and theory in this thesis.  In Section 1.1, the physics of MRI is briefly explained.  In 

Section 1.2, an overview and introduction to basic MRI hardware and radio-frequency (RF) 

engineering construction will be discussed.  Lastly, a brief summary of hyperpolarisation is 

summarised in Section 1.3. 

 

Chapter 2: Advances in Diagnostic Methods for Respiratory Diseases Using 

Hyperpolarised Gas Magnetic Resonance Imaging 

In this chapter, imaging techniques for respiratory diseases using hyperpolarised 3He and 

129Xe will be reviewed.  Respiratory disease is the fourth leading cause of death in the 

world.  The incidence is increasing annually and it is predicted to become the third leading 

cause of death in a decade.  Chronic obstructive pulmonary disease (COPD) is the most 

common respiratory disease, and displays one or a mix of symptoms including chronic 

bronchitis and asthma in the larger airways, as well as terminal airways and alveolar 

diseases like emphysema.  There are other types of respiratory diseases such as restricted 

lung disease that manifest mostly in pulmonary cystic fibrosis (CF), respiratory tract 

infection, as well as cancer and tumours in the lungs.  Scientists have been searching for 

early detection and diagnostic methods that have regional sensitivity to early signs of lung 

disease to help diagnose and treat the significant increase in patients with respiratory 

disease, as well as lowering the financial burden to the health system. 
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Chapter 3: Imaging of Hyperpolarised gas phase 129Xe in lung MRI – B0 field 

strength comparisons at 1.5 T and 3 T 

For hyperpolarised gas MRI to be a viable imaging modality for lung diseases, it needs to 

be readily implemented on clinical MRI systems.  In Chapter 3, the signal-to-noise ratio of 

hyperpolarised 129Xe gas human lung magnetic resonance imaging was compared at 1.5 T 

and 3 T, the two standard clinical MRI field strengths. Experiments were performed at 

both B0 fields with quadrature double Helmholtz transmit–receive chest coils of the same 

geometry with the same subject loads. Differences in sensitivity between the two field 

strengths were assessed from the signal-to-noise ratio of multi-slice 2D 129Xe ventilation 

lung images obtained at the two field strengths with a spatial resolution of 15 mm × 4 mm 

× 4 mm. There was a systematically higher signal-to-noise ratio observed at 3 T than at 1.5 

T by a factor of 1.25. Mean image signal-to-noise ratio was in the range 27–44 at 1.5 T and 

36–51 at 3 T.  T2
* of 129Xe gas in the partially inflated lungs was measured to be 25 ms and 

18 ms at 1.5 T and 3 T, respectively. T2
* of gas in fully inflated lungs was measured to be 

52 ms and 24 ms at 1.5 T and 3 T, respectively.  We conclude that HP 129Xe MRI is equally 

feasible at 1.5 T and 3 T, with slightly better signal-to-noise ratio at 3 T. 

 

Chapter 4: An Unshielded Asymmetric Split Insert Quadrature Birdcage Coil 

for Hyperpolarised 129Xe Lung MRI at 1.5 T   

In Chapter 4, the design, construction and testing of an un-shielded asymmetric 

quadrature insert birdcage body coil for hyperpolarised 129Xe lung imaging on a 1.5 T MR 

system is presented.  For patient comfort, the coil inner space was maximised to fill the 

magnet bore and the coil detaches into two parts to allow easy access for the subject.  The 

quadrature design creates a circularly polarised B1 field to maximise the efficiency of the 

radio-frequency power at the xenon frequency of 17.7 MHz.  A conformal mapping 
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method was used for the birdcage geometry, and the initial capacitor values were 

calculated using an algebraic method based on the inductance matrix of the coil network.  

Further empirical iterations in the testing process were needed to compensate for the 

coupling of the xenon body coil with the proton body coil of the magnet.  Two major 

iterations of a working coil are presented side by side in this Chapter to show 

improvements made, and the functionality of the coil is demonstrated.  The function of 

the coil is demonstrated with in-vivo 129Xe images and B1 maps.  The transparency of the 

coil to 1H radio-frequency pulses is demonstrated in this Chapter with 1H images acquired 

with the 129Xe coil in-situ. 

 

Chapter 5: Apparent T2
* Measurements of Dissolved-Phase 129Xe in the 

Human Lungs at 1.5 T and 3 T 

129Xe gas is soluble in blood and tissue with a large observable chemical shift that can be 

utilised to image and quantify gas exchange in the lungs.  Knowing the in vivo relaxation 

constants is important in determining sequence parameters for optimal dissolved phase 

129Xe imaging.  Imaging measurements of the apparent T2
* of dissolved phase 129Xe in 

human lungs at 1.5 T and 3 T are presented. T2
* measurements were made from whole 

lung coronal slices with a 2D interleaved gradient echo imaging sequence with 2 echo 

times.  The echo times were chosen with consideration of the phase evolution of the 

signal due to the chemical shift difference between 129Xe dissolved in red blood cells (RBCs) 

with respect to 129Xe dissolved in plasma.  The apparent T2
* of dissolved 129Xe as measured 

from the imaging experiments were 1.6 ms and 1.0 ms at 1.5 T and 3 T, respectively. 

Measurements of the T2
* made from whole lung spectroscopy gave values of  1.65 ms/ 1.3 

ms for RBC/Plasma at 1.5 T in vitro and 1.26 ± 0.03 ms / 0.94 ± 0.04 ms for RBC/Plasma 

respectively at 3 T in vivo.  Whereas the transverse relaxation time is long for gas phase 

xenon (see Chapter 3), dissolved-phase 129Xe T2
* is on the order of 1 ms, which is 
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extremely short and as such faster imaging techniques utilising short echo times must be 

adopted to effectively image dissolve 129Xe in vivo. 

 

Chapter 6: Summary and Future Work  

The final Chapter of this thesis consists of the following sections:  in Sections 6.1 to 6.3, 

ongoing projects will be described and discussed, and section 6.4 of this Chapter serves as 

a summary of this thesis.  Section 6.1 is an extension of Chapter 4, as a clinical 8 channel 

array proton chest coil was retuned to perform as a receive array in combination with the 

asymmetrical birdcage body coil.  In Section 6.2, a methodology is under investigation as 

we imaged simultaenously both the gas-phase 129Xe as well as 129Xe in the dissolved 

phase, providing insights into ventilation and perfusion information that could be useful 

for clinical applications.  Section 6.3 describes the limitation and difficulties when 

measuring the dissolved 129Xe in the chemical shift satuation recovery (CSSR) type 

experiments.  Lastly, a summary of the thesis is presented in Section 6.4. 
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CHAPTER 1: Theoretical Background of 

Hyperpolarised Gas Magnetic Resonance 

Imaging 

 

1.1 Nuclear Magnetic Resonance and Magnetic Resonance 

Imaging 

 

1.1.1 Nuclear spin, magnetic moment and magnetisation 

Classically, a particle’s angular momentum is associated with its rotation around its own 

centre of mass.  Spin, however, is quantum mechanical in nature and is an intrinsic 

physical property of elementary particles.  It is associated with only the magnitude of the 

intrinsic angular momentum of a particle and elementary particles simply possess spin, 

even at a temperature of absolute zero. 

The nuclear magnetic moment    of a nuclear spin is a measure of its nuclear magnetism 

associated with its nuclear angular momentum,   , by 

                                       (1.1)  

where the proportionality constant   is called the gyromagnetic ratio given by 

        
 

  
                           (1.2) 

Its magnitude can be approximated for a point particle with charge q and mass m in 

circular motion, specific to a given nucleus.   The corresponding angular momentum is 

given by 

                                         (1.3) 
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where ħ is the reduced Planck’s constant and      is the total angular momentum quantum 

number of a nuclear spin in its ground state that can take on an integer or half-integer 

value depending on spin pairing of protons and neutrons.  For a nucleus of spin I, there are 

a total of (2I+1) degenerate energy states from –I to I, denoted by the quantum number Iz 

(The projection of the total angular moment along an arbitrary axis of quantisation).  

When there is no external magnetic field present, the values of the spin angular 

momentum along an arbitrary axis for each state of Iz are the same.  In the presence of an 

external magnetic field ( 0B ), however, a magnetic moment can adopt one of the two 

energy levels for spin ½ nucleus, with a potential energy difference of               and 

the degeneracy is lifted.  The quantum Hamiltonian along the direction of the magnetic 

field thus becomes: 

                                                            (1.4) 

The potential energy depends on the orientation of the spin with respect to the direction 

of the external magnetic field.  This is known as the Zeeman resonance effect  (2) (Fig. 1.1).   

 

Figure 1.1.  The Zeeman energy levels of a spin ½ ensembles in an applied magnetic 

field under thermal equilibrium (a), the population difference is very small 

compared to the non-equilibrium state found with a hyperpolarised sample 

(b). 
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All nuclei considered and used in this thesis (1H, 3He, and 129Xe) have a spin quantum 

number I of ½, hence Iz can take the values of - ½ and + ½, and the Hamiltonian given by 

equation 1.4 has two energy levels which differ by 0γ B .   

The bulk magnetisation, M0, of a total number of N spins in a sample at thermal 

equilibrium is determined by the number of n↑ (Iz = + ½ ) spins in excess of n↓ (Iz = - ½ ) 

spins which follows from Boltzmann statistical mechanics(2), 

   
kT

Nnn
2

0



            when 10 

kT


     (1.5) 

where 0ω

kT
 is typically on the order of 10-11 at room temperature, and k is the Boltzmann 

constant.  The magnitude of the equilibrium magnetisation is given by 

    
 

 
                 (1.6) 

where P is the polarisation which can take any value between 0 and 1, and is usually 

expressed in percentage between 0 and 100%.  It is expressed as the fraction of total spins 

aligned in the Zeeman ground state: 

   
       

     
         (1.7) 

The nuclear magnetic moment    will tend to align with the magnetic field to minimise the 

energy through T1 relaxation (to be discussed later) in an external magnetic field        . 

Since the magnetic moments of aligned and anti-aligned spins largely cancel out, the total 

magnetisation measured is proportional to the “spin excess” or net polarisation, which is 

very small at thermal equilibrium.   The polarisation in thermal equilibrium can be 

approximated by: 

                                                                   
  

   
 

    

   
           (1.8) 

where ΔE is the energy difference between the two spin states (Fig. 1.1 (a)), and T is 

temperature in Kelvin.  The polarisation is typically of the order of 10-6 at room 

temperature for nuclear spins in thermal equilibrium.  In the case of hyperpolarised media 
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(Fig. 1.1 (b)), the polarisation is greatly increased (see Section 1.3) with a highly populated 

spin state, giving a net spin excess in the order of 10 – 50%. 

Combining eqns. 1.6 and 1.8, Curie’s Law gives the net magnetisation for nucleus’ spin I = 

½: 

                                                                       
       

   
      (1.9) 

Equations 1.5 through 1.9 only apply to I = ½ spin nuclei.  For nuclei with I >1/2, such as 

83Kr, the polarisation can be calculated by: 

     
 

  
                                                        (1.10) 

where Z in equation 1.10 is the partition function and   is the density matrix operator. 

 

1.1.2. Alternating magnetic fields  

Even though spin is a quantum phenomenon, with the understanding of classical 

electrodynamics, a particle can be treated as a magnetic moment and its associated 

rotation around its own centre of mass.  A magnetic moment    of a nucleus inside a 

magnetic field         experiences a torque given by 

                                                                                                     (1.11) 

which can be equated to the rate of change of the angular momentum 

                
   

  
               (1.12) 

By differentiating eqn. 1.1 with respect to time and substitution of eqns. 1.11 and 1.12, 

the equation of motion of a single spin can be expressed as 

      
     

  
  

   

  
                            (1.13) 

Eqn. 1.13 can be solved with the solution for the magnitude of the magnetic moment as 

                   
                                    (1.14) 

where the expression for the well-known Larmor angular frequency ω0, assuming the 

magnetic moment is perpendicular to the magnetic field is: 
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     (1.15) 

The equation of motion predicts the precessing motion of the magnetic moments of the 

nuclei around the axis pointing in the direction of the magnetic field.  The frequency of the 

precession is determined by the Larmor frequency, related to the angular frequency as: 

                                                  
  

  
  

 

  
                   (1.16)  

Values of the gyromagnetic ratios for nuclei of interest in hyperpolarised gas lung imaging 

can be found in Table 1.1. 

Table 1.1.  Gyromagnetic ratio for nuclei of interest and the resonant frequencies at 

1.5 T and 3.0 T. 

 

The sum of all the magnetic moments per unit volume is called the magnetisation and is 

given by 

                                                                   
        

  
       (1.17) 

From equation 1.13 and 1.17, the equation of motion for the bulk magnetisation in the 

applied magnetic field     is then given by 

     
     

  
               (1.18) 

Equation 1.18 describes the motion of      in the laboratory frame (denoted by lab).  In MR 

physics, a more convenient and simplified coordinate system called the rotating frame 

(denoted by rot) is usually adopted.  Given the laboratory frame unit vectors              for 

the Cartesian x-, y-, and z- axis respectively, the rotating frame has the corresponding 

vectors                .  By convention,         is the direction of the static magnetic field B0 

along the z-axis, and their orthogonal counterparts make up the transverse plane, which 

rotates at an angular frequency of ω in the rotating frame of reference.  A useful relation 

Nucleus Gyromagnetic ratio: 
 

  
 [MHz/T]   at 1.5 T   at 3 T 

1H + 42.576 + 81.86 + 127.73 
3He + 32.434 + 48.65 + 97.30 
13C + 10.705 + 16.06 + 32.11 

129Xe - 11.777 - 17.67 - 35.33 
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between the two frames was derived by Slichter (1989), and the equation of motion in the 

rotating frame is given by: 

 
     

  
 
   

  
     

  
 
   

           

                                      

             
     

 
                           (1.19) 

Now assuming a total magnetic field strength is a combination of a static magnetic field         

along the z-axis, as well as a rotating magnetic field B1 at an angular frequency of ω with 

the nuclear spin, the combined magnetic field in the laboratory frame of reference is then 

given by: 

                                                               (1.20) 

By substituting equation 1.20 into equation 1.19, and again applying the relationship 

between the two reference frames, 

 
     

  
 
   

  
     

  
 
   

           

                                                       

                                           
     

 
          

            
     

 
                     

 
     

  
 
   

            
 

 
                              (1.21) 

where            and B1 is static along      .  This gives an effective magnetic field,              , in 

the presence of a static magnetic field B0 and a rotating magnetic field B1 of: 

                    
 

 
                  (1.22) 
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If in equation above, ω = ω0, B1 is said to be on-resonance and equation 1.22 simplifies to 

                     . 

 
Figure 1.2.  (a): Total magnetisation in a constant external magnetic field B0.  After 

applying an alternating magnetic field, B1(t), orthogonal to the main 

magnetic field by a voltage oscillating at the Larmor frequency for a time  , 

the net magnetisation is nutated by a flip angle,  , defined by equation 

1.23.  The net magnetisation is illustrated for the laboratory frame (b) as 

well as the rotating frame of reference (c).  

 

The B1 field is usually generated by a sinusoidal voltage applied to a resonator or coil, 

generating a radio frequency (RF) pulse orthogonal to the main magnetic field.  When the 

voltage is pulsed over time τ, the angle at which the magnetisation nutates about the 

direction of the main magnetic field is then called the flip angle (Fig. 1.2), and is 

determined by the duration and magnitude of the B1 field by 

           
 

 
        (1.23) 
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Note that, if only one B1 field is applied oscillating as described above, B1 does not rotate 

around the z-axis, but linearly along an axis.  It can be separated into two RF fields, one in 

the direction of precession of the magnetisation, the other in the counter direction, thus 

only half of peak amplitude of the B1 field is effective with a linear RF field (3). 

 

1.1.3 The Bloch Equation 

So far, the net magnetisation has been treated in simplified expressions as the summation 

of all non-interacting spins in the bulk medium.  The spins, however, do interact with their 

environment (lattice) as well as each other characterised by relaxation constants T1 and T2.    

The Bloch equation (4) describes the behaviour of the total magnetisation, M .  It is a 

phenomenological expression for the time dependence of the net magnetisation within a 

sample.  By convention, the external magnetic field, B , points in the positive z direction.  

The general form of the Bloch equation within a general magnetic field B  is 

   
  

  
                    

            (1.24) 

where R is the relaxation matrix described by T1 and T2 relaxation (see the next section). 

                                               

 
 
 
 
 
 

  
  

 
 

  
 

  
 

   
 
 
 
 

    (1.25) 

In component form,                 
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where   

                       

                                          (1.27) 
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In the rotating frame where B1 is on resonance, ω = ω0, as described earlier.  With a 

second perturbating field B1(t), the Bloch equation becomes 

     
  

  

  
 
   

  
 

  
                     

                                    
  

  

  
 
   

       
 

  
                             (1.28)          

                   
   

  
 
   

         
 

  
                          

Where                                   (1.29) 

and           is the perturbing RF pulse.  Solving eqn. 1.28, the magnetisation in the 

direction of the magnetic field (Mz) and its associated transverse magnetisation resolved 

in the xy-plane (Mxy) can be expressed as 

                                                                     
 

  
     (1.30) 

                                                          
 

  
                 (1.31) 

 

1.1.4. Spin-lattice relaxation (T1) 

After the magnetisation has been tipped by the B1 magnetic field into the transverse plane, 

the magnetisation regrowth is characterised by the constant T1, the spin-lattice relaxation 

constant.  It is also referred to as the longitudinal relaxation time constant, characterising 

the rate at which the longitudinal magnetisation recovers back to thermal equilibrium in a 

magnetic field 0B  by convention in the z-direction.  Some typical in vivo values of T1 for 1H 

at 1.5 T are shown in Table 1.2. 

Tissue T1 [ms] 

muscle 900 

fat 250 

blood 1200 

Table 1.2   Representative T1 values in ms for 1H in different tissues at 1.5 T and body 

temperature (1). 
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Unlike conventional 1H MRI, for hyperpolarised gases, in the case of Fig. 1.1 (b), where the 

spins are in a non-thermal equilibrium state, relaxing back towards thermal equilibrium 

means a decrease in magnetisation.  There are a few factors that contribute to T1 

relaxation including surface relaxation, oxygen-induced relaxation, gradient-induced 

relaxation and dipolar self-relaxation. 

The surface relaxation mechanism of hyperpolarised 3He and 129Xe were described by 

Fitzsimmons et al. and Driehuys et al. (5,6) given by: 

 

          
 

 

 

 

 
     (1.32) 

where η is a coefficient depending on the surface material, temperature and the magnetic 

field strength and S/V is the surface-to-volume ratio of the gas container.  T1, surface of 3He 

is about 100 h in an iron-free glass cell.  T1,surface of 129Xe on the other hand is shorter.  

T1,surface of 3 h was measured for gas contained in a 7.5 cm diameter quartz cell (7). 

Oxygen-induced relaxation cause by the oxygen paramagnetic electron spin to nuclear 

spin dipole-dipole interaction is a very large contributor to T1 relaxation of hyperpolarised 

gases.  It can be empirically determined for 3He (8) and 129Xe (9) in the temperature range 

from 200 – 400 K by: 

 

       
 

       

     

   

 
 
   

 
 
    

       (1.33) 

 

       
 

        

     

   

 
 
   

 
 
    

       (1.34) 

T here is temperature in degrees Kelvin and pO2 is the oxygen partial pressure in units of 

bar. 

Field gradient-induced relaxation is another contributor to T1 relaxation of the 

hyperpolarised gases by (10-12): 
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where D is the diffusion constant, and             are spatial gradients in the x and y 

directions respectively. 

The dipolar self-relaxation contribution comes from atomic collisions via nuclear spin to 

nuclear spin dipole interaction.  The relaxation rates at room temperature were derived 

by Newbury et al. for 3He (13) and Hunt and Carr for 129Xe (14,15), with gas pressure p in 

units of bar: 

 

           
 

 

   
       (1.36) 

 

           
 

 

  
       (1.37) 

Dipolar relaxation is thus insignificant except at very high gas pressure.   

Lastly, 129Xe has a special case of spin-rotation coupling in Xe-Xe van der Waals molecules 

which is constant under most circumstances (7) given by: 

 

        
             (1.38) 

Finally, the total T1 relaxation constant for i denoting surface relaxation, oxygen-induced 

relaxation, etc. of hyperpolarised gases is given by: 

 

  
  

 

    
          (1.39) 

1.1.5 Spin-spin relaxation (T2) 

Spin-spin interactions of individual nuclei determine the rate of magnetisation decay in 

the xy-plane due to dephasing and loss of phase coherence between the individual spins 

as a function of local differences in magnetic field.  Dephasing causes each spin to precess 

at a slightly different rate, causing an increase rate of intrinsic spin dispersion (T2).  In 

addition to spin-spin interaction, there are also other causes for dephasing of the spins 

and transverse decay caused by field inhomogeneities in the magnetic field, such as 

magnet imperfections and localised differences in magnetic susceptibility of the sample.  

Since the observed transverse relaxation is larger than 1/T2, which is the decay constant 



 

 

 

 

16 

associated with static and dynamic field changes, an apparent transverse relaxation 

constant, T2
*,  is usually used and has been defined as 

 

  
  

 

  
 

 

  
         (1.40) 

where T2
’ is the component due to static field inhomogeneities.  The equation above is 

generally applied in the static dephasing regime, where diffusion is neglected, which is not 

the accurate case for 129Xe and 3He as they are very highly diffusive and would lead to 

additional time dependent relaxation.  More details of the transverse relaxation decay 

constants of both gas phase (Chapter 3) and dissolved phase (Chapter 5) xenon will be 

discussed and measured in later Chapters. 

In the presence of spin-spin relaxation, transverse relaxation is generally faster than that 

of the longitudinal relaxation, i.e.: 

        
      (1.41) 

 

1.1.6 Signal Detection 

MR signals are generated by transverse magnetisation, thus a component of the magnetic 

field must be in the transverse plane in order for a MR signal to be detected.   

In the laboratory frame of reference, the precession of the transverse magnetisation 

causes varying magnetic flux φ, which generates an electromotive force (EMF), detectable 

in the coil according to Faraday’s law: 

        
  

  
  

 

  
                          

    (1.42) 

where receiveB  is the induced magnetic field defined as the magnetic field per unit volume.  

This time varying emf signal is also known as the free induction decay (FID).  The total 

signal can be simplified by introducing spin density       and is given by: 

       
 

 

                                  (1.43) 
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The spin density       can be calculated using equation 1.43 from the measured signal, s(t), 

obtained from a MRI scanner.  It consists of a large cryogenically cooled superconductive 

magnet with the hardware components illustrated in Figure 1.3.  The two systems used for 

this thesis are 1.5 T Signa HDx (GE, Milwaukee, WI, USA) with maximum axis continuous 

gradient of 33 mT/m and a slewrate of 120 T/m/s and a 3 T Philips Achieva (Best, 

Netherlands) with maximum axis continuous gradient of 40 mT/m and a slewrate of 200 

mT/m/ms.  There is hardware limitation of gradient and slewrate (change in gradient / 

time) set on clinical systems to avoid peripheral nerve stimulation (16).   

 

Figure 1.3.   Hardware components of a clinical MRI system. Different types of transmit-

receive coils can be used including an elliptical birdcage coil (red) as used in 

Chapter 4.  Field gradient coils are illustrated in more detail on the right in x 

(blue), y (yellow), and z (green) - directions. 
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1.1.7 Spatial Encoding 

The magnet bore inside an MR imaging system provides a uniform external magnetic field 

for the sample, B0.  Signals are generated by induced magnetic field flux in response to an 

orthogonal B1 pulse of RF radiation through Faraday’s law (eqn. 1.42).  To obtain spatial 

information, we need to artificially change the resonant frequency or phase of the nuclear 

spin resonance by applying spatially dependent magnetic field gradients along x, y, z or a 

combination of all three directions. 

Slice selection 

 

Figure 1.4.  Slice selection in the z – direction 

 

To select a slice, a linear gradient is first applied to the static magnetic field in the 

direction of the slices (let us assume in the z-direction of axial images with the patient feet 

in first).  This implies that the resonant frequency is unchanged at the iso-centre, higher 

towards the feet and lower towards the head.  Since an RF pulse has a finite bandwidth of 

transmitted frequencies depending on its pulse width (τ) and shape (BW  
 

 
 , the spins 

will only be excited in the isolated plane that resonates in the frequency range of the RF 

pulse window (Fig. 1.4). By this method, a selective slice of excitation can be determined 
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where the slice thickness, Δz, or position is determined by the gradient strength, Gz = 
  

  
 

and the RF pulse bandwidth (BWRF) by 

      
    

   
       (1.44) 

Figure 1.5 shows how the slice thickness changes with the slice select gradient strength; 

one can also use the same diagram to see how the transmitting RF bandwidth would 

affect the slice thickness.  

During the spatially dependent selective excitation of an isolated slice, dephasing of the 

spins occur dependent on their positions along the gradient.  This leads to signal loss that 

can be recovered by a rewinding/rephasing gradient with a negative gradient amplitude 

whose area is half the area of the initial slice selective gradient for simple, low flip angle 

RF pulses. 

 

Figure 1.5.    Schematics of the influence of gradient strength on slice thickness denoted 

by Δz, colour matched to the applied gradient, with the same transmit RF 

pulse bandwidth. 
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Frequency encoding  

After an isolated plane is selected, we now need to encode in the other two dimensions.  

By applying a magnetic field gradient, Gx, linearly in the direction of x, the effective 

magnetic field strength, Bx, is: 

                                                 (1.45) 

which leads to a dispersion of the resonance and spatially different Larmor frequency: 

                                                (1.46) 

Again, if the same patient position (supine, feet first) is used, the resonating frequency 

would be unchanged at the iso-centre, faster towards the right arm, and slower towards 

the left arm (Fig. 1.6).  The inverse Fourier Transform of a frequency-encoded free 

induction decay (FID) is a one dimensional projection image (Fig. 1.6).  

   

Figure 1.6.   Frequency encoding in the x-direction, the Fourier Transform of the 

dispersed FID signal produces a 1D profile of the object (blue). 
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This is often referred to as the read direction as it is present during data acquisition.  The 

receiver bandwidth (rBW) during readout is dependent on how steep the readout gradient 

strength is.  A higher gradient strength would enable faster rephasing of the spins, which 

in turn shortens the TE.  This is especially beneficial for a nucleus with a very short T2
* 

constant (i.e. dissolved 129Xe, see Chapter 5).   

The constraint of using a larger gradient strength is its effect on the signal to noise ratio 

(SNR, discussed more in Chapter 3) of the image by: 

      
 

    
     (1.47) 

Lastly, the field of view (FOV) of the image in the readout direction cannot be decreased 

infinitely because it is affected by the receiver bandwidth, rBW, and the maximum Gx, by 

the following relationship: 

      
   

   
     (1.48) 

In practice, frequency encoding is not directly applied for measurement of FIDs; instead, it 

is a part of a gradient echo formation in a pulse sequence (see Section 1.1.8). 

 

Phase encoding 

Phase encoding, also known as spin warping (17), is the third spatial encoding process.  

Much like frequency encoding, a gradient is applied perpendicular to the slice, continuing 

the case with the patient in the scanner bore (Fig. 1.4 – 1.6), phase encode direction 

would be in the y -direction, producing an effective magnetic field, By, for a time of Δt.  

The cumulative gradient in the y-direction for phase encoding is an applied gradient prior 

to read out.  It is turned off before the readout gradient in the frequency encoding 

direction, thus the spins would now have the same frequency again in the phase encoding 

direction, but a different phase depending on their location (Fig 1.7) with a 2π phase 

difference between spins at the opposite edges of the FOV in the phase direction.  Phase 

encoding can be applied in two orthogonal directions and is routinely used for 3D 

Cartesian imaging. 
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Frequency encoding direction 

 

         

        

           

Figure 1.7.  2D spatial encoding. 

 

The resolution in the phase encoding direction is given by equation 1.49 where the 

variables are illustrated in Fig. 1.8: 

     
 

 

  
     

    (1.49) 

 

Figure 1.8. Phase – encoding gradient. 

 
 
Now, by using all three spatial encoding gradients together with synchronised timing with 

RF excitation pulses and sampling of the echo or FID, one can spatially resolve and 

produce an image using a pulse sequence.  There are many pulse sequences used for MRI, 
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one specific sequence that is used consistently throughout this thesis is a gradient echo 

sequence. 

 

1.1.8 Pulse sequence 

Gradient echo sequence 

 

Figure 1.9.  Gradient-echo pulse sequence timing diagram, where TR is the repetition 

time between RF pulses, and TE is the echo time between the RF pulse and 

the formation of a gradient recalled echo. 

 

Fig. 1.9 shows a timing diagram of a basic 2D gradient echo pulse sequence, which is used 

throughout this thesis for 129Xe MRI.  Here we can see the spatial encoding gradients 

discussed earlier, where a slice selective gradient Gz is applied at the time of the RF pulse 

followed by a rewinder, the gradient Gy is the phase encoding gradient, and Gx is used for 

a gradient echo formation, which also serves as the readout gradient in the frequency 

direction. 
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To demonstrate this sequence, it can be shown in the form of individual isochromats (sum 

of a group of spins with the same frequency as a single vector).  A spatial gradient (Gx) is 

first applied to dephase the isochromats from t1 to t2, also refers to as a pre-

compensation gradient.  The inversion of the magnitude of the gradient in the second half 

of this sequence (t2 to t3) ensures the highest frequency isochromats are now the lowest.  

Therefore, after the same duration of time, the spins re-phase and a gradient echo is 

formed at t3 (Fig. 1.9 and 1.10), the remaining gradient in the x direction is the readout 

gradient when the data acquisition takes place. 

 

Figure 1.10.  Schematic of a gradient echo sequence.  The four representative 
isochromats are presented in their relative spatial coordinates, and the 
dotted line is where the gradient is zero. t1, t2, and t3=TE correspond to Fig. 
1.9. 

 

When imaging thermally polarised spins with a gradient echo sequence, the repetition 

time, TR, is usually small compared to the T1 relaxation constant of the sample, thus a 

complete relaxation of Mz to thermal equilibrium cannot be achieved between 

acquisitions, but reaches a steady-state magnetisation, Mss, given by 

    
          

  

  
  

            
  

  
 
     (1.50) 

where   is the flip angle.  Knowing that the transverse magnetisation between pulses is 

related to the steady-state magnetisation,    , by            , the steady-state 

magnetisation can be maximised for a value of  , known as the Ernst angle (1) given by: 
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          (1.51) 

When imaging hyperpolarised spins with such a sequence, there is no thermal recovery of 

the signal so the optimal flip angle depends on the size of the image acquisition in the RF 

encoding dimension.  Since Mz is not recovered between RF pulses, each RF pulse of flip 

angle   will decrease the total magnetisation by (1-cos  ).  Assuming negligible T1 decay, 

the transvers magnetisation, Mxy, after n RF pulses is given by: 

                
          (1.52) 

The optimal flip angle for maximising the signal at the centre of k-space in an N phase 

encoding sequential  image,  opt, can be calculated from equation 1.52 (18) : 

             
 

      
              (1.53) 

 

1.1.9 k-space 

By means of spatial encoding with a pulse sequence, MR signals containing frequency and 

phase information are spatially recorded in the time domain (Fig. 1.11).  Fig. 1.11 (a) is 

taken from the pulse sequence in Fig. 1.9 to show how a single k-space line is acquired, 

the phase encoding gradient then changes incrementally to cover the entire k-space.  

This data is referred to as k-space or inverse space, with low-frequency information in the 

centre and high-frequency at the edges.  The beauty of k-space is that linear shifts in 

gradient amplitude translate to linear shifts in k-space.  Inverse Fourier transformation 

(IFT) can then convert the signals back into the spatial domain, so that an image can be 

produced (Fig. 1.12).  The resolution (Δx) along direction x in the spatial domain is related 

to the sampling number, Nx, acquired in k-space along kx, at a frequency step of Δk by: 

   
 

     
     (1.54) 
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Figure 1.11.  Schematics of k-space data acquisition of a single k-space line (b), which 

corresponds to phase and frequency encoding gradients illustrated in (a), 

where the pulse sequence (Fig. 1.9) acquires a single line in k-space, and is 

then repeated with a different incrementing Gy phase encoding gradient 

each time to fill up the rest of the k-space.  The k-space trajectories are 

colour coded in (b) to match the gradients in (a). 

 

Figure 1.12.   k – space raw data post data acquisition of a MRI experiment, and the 

resulting image after inverse Fourier transform with homodyne 

reconstruction (19). 

 

1.1.10 Partial Fourier Imaging and Reconstruction 
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In cases where imaging time is essential, k-space can be obtained in an asymmetric 

fashion to shorten the total imaging time.  The amount of time saved is called the degree 

of asymmetry, asym, for a k-space coverage region of [-n- Δk, n+ Δk] is defined as 

     
     

     
      (1.55) 

and can take on all values between 1 (completely asymmetric) to 0 (completely 

symmetric).  One of the most popular ways to achieve partial Fourier imaging is to use 

asymmetric echoes (partial echoes) in the readout direction where the dephasing gradient 

is reduced and the duration of the readout gradient is shortened (see Figure 1.13).  

Asymmetric echoes are useful for hyperpolarised gas MRI as they serve to (i) reduce T2
* 

dephasing with shorter TE, (ii), reduce diffusion dephasing of the readout gradient and (iii) 

reduce sequence TR and hence imaging acquisition time.  Some of the missing negative k-

space data can be compensated for by the process of homodyne reconstruction (20).  In a 

similar fashion, the number of k-space lines can also be reduced in the imaging acquisition.  

Unlike asymmetric echo, the reduction of phase encoding lines does not shorten the echo 

time, but shortens the total imaging time by reducing the number of acquisitions. 

 

Figure 1.13.   Partial echo data acquisition of a single k-space line.  Notice the dephasing 

gradient in blue in (a) is shortened compared to the one in Fig.1.11, and k-

space raw data is in this case acquired only partially (b). 
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Depending on the order in which k-space line acquisitions are taken, images can be 

obtained either centrically encoded (Fig. 1.14 (a)) or sequentially encoded (Fig. 1.14 (b)).  

In hyperpolarised gas MRI, the lack of polarisation recovery means the order of data 

acquisition is very important as the signal decays after each RF pulse.  If an image is 

obtained using centric encoding, the SNR is higher since most of the signal comes from the 

centre of k-space, however, a sequentially encoded imaging sequence would provide finer 

details and less blurring as the highest weighted signals are on the edge of k-space. 

 

Figure 1.14.   Cartesian k-space acquisitions:  (a) centric encoding: when the centre of k-

space is acquired first; (b) sequential encoding: when the k-space is 

acquired for the first line to the last in order.  The numbers on the left 

indicate the order of RF phase encoded acquisitions. 

 

1.1.11 Discrete sampling and the Nyquist criterion 

The inverse Fourier Transform (FT) is defined for continuous variables, i.e. the integral of 

the full infinite k-space is required, which is impossible and impractical for finite scanning 

times.  In reality, discrete data points are acquired in a finite k-space.  The convolution 

theorem for Fourier Transforms states that the product of two functions is equivalent to 
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the convolution of the functions’ Fourier transforms individually.  Figure 1.15 shows the 

effect of discrete sampling using a 1D example of a rectangular object, whose FT is given 

by a Sinc function.  If the sampling spacing in k-space is Δk, as shown in Figure 1.15 (e), 

then the spacing in imaging space is given by L, which is 1/ Δk (Figure 1.15 (b)).  If the 

object is larger than L, the original image would alias in the final image reconstruction as 

the images of the adjacent periodic images overlap.  This aliasing artefact can be avoided 

as long as the object size, A, is smaller than L.  This is known as the Nyquist criterion 

(expression (1.56)), where L is the FOV of the acquisition (1). 

   
 

 
          (1.56) 

 

Figure 1.15.   Discrete sampling in imaging space (top row) and their FT in k-space 

(bottom row) related by the convolution theorem of Fourier Transforms.  

1.2 Radiofrequency engineering 

Transmission of radio-frequency (RF) pulses into the sample at the Larmor frequency and 

reception of the received spatially encoded signal is accomplished by the use of tuned RF 

coils.  A coil can excite via a generated B1 field, and receive via the principle of reciprocity, 
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which states that if we were to apply direct current to a receive coil and then measure the 

field created at the sample, the induced signal in the coil by the sample would be 

proportional to the strength of this hypothetical field.  An MRI–RF coil is made of a single 

loop or more of conducting elements that transmits an RF pulse and/or receives signal as 

current is induced by magnetic flux during the precession of the nuclei in MRI.  It is built to 

produce a homogeneous imaging field (more important for transmit coils) resonating at 

the Larmor frequency. 

 

1.2.1 Oscillating circuit 

LCR circuit 

An LCR circuit is the simplest resonant RF circuit; it consists of one resistor, an inductor 

and a capacitor, and resonates as a harmonic oscillator.   

 

Figure 1.16. An LCR circuit, named after the components of the circuit. 

 

In this oscillating circuit, the complex resistances, or impedances, ZC and ZL, of the 

capacitor C and inductor L are given by:                                                                                                                                                                
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                 (1.57) 

                    (1.58) 

The total impedance is equal to zero at the resonating frequency, i.e., ZC = ZL, the 

frequency can be calculated from equations 1.57 and 1.58 as: 

   
 

   
     (1.59) 

where ω0 is the resonating frequency of the resonator.  The resistor and resistance in the 

circuit serve as a damping factor of the oscillating resonating frequency ω0, much like 

friction in an oscillating weight on a spring.  The quality factor (Q) of an oscillating circuit is 

defined as the fractional loss of energy per one cycle and is given by: 

  
  

 
      (1.60) 

1.2.2 Common coil designs 

Surface coil 

The simplest design of a RF coil is a surface coil, which is sensitive when placed very close 

to the sample.  It offers a high sensitivity, however, a very poor B1 homogeneity, especially 

in the direction perpendicular to the coil surface with a depth of penetration comparable 

to the coil radius. 

 

 

Figure 1.17 A surface coil in circular shape. 

 

Helmholtz pair  
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A Helmholtz coil pair (21) (22) consists of two identical coils symmetrically placed on 

either side of the sample of interest separated on a common axis. An equal current flows 

in the same direction in each coil.  The optimal distance between the two coils is equal to 

the radius of the coil, and the field map summation of the two coils is shown in Fig. 1.18.  

The coils used in Chapter 3 and Chapter 5 of this thesis are of the design of double 

Helmholtz coil pairs. 

 

Figure 1.18.  A simple a Helmholtz pair as well as its field map along the z - axis. 

 

A slight variation of the Helmholtz pair coil is the saddle coil.  Figure 1.19 shows the design 

of a one turn saddle coil, which produces a very homogeneous magnetic field in the area 

of interest in the direction of its cylindrical axis compared to that of a Helmholtz pair. 

 

 

Figure 1.19 A saddle RF coil. 
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Volume transmit-receive coils 

A solenoid coil (Fig. 1.20) is a volume transmit coil that produces a homogeneous 

magnetic field and produces higher signal-to-noise ratio compared to the surface coils 

above.  However, a solenoid coil cannot detect signal if its axis is parallel to that of the 

static magnetic field (i.e. B1//B0).  Thus it is only useful for small coils and samples, if the 

sample can sit orthogonal to the principal field.  Also the high inductance, L, of the 

solenoid coil makes it impractical for large volume coils at high frequency. 

 

Figure 1.20. A 5 loop multi-turn solenoid coil. 

A very common volumetric coil design is a birdcage coil (22) which has a number of 

conducting elements (rungs) running in the direction of its cylindrical axis (Fig. 1.20), and 

provides the best field homogeneity over most of the coil’s volume compared to all the 

above coil designs described.  Since most of the energy is stored near the conductors, the 

sensitivity of the birdcage coil near the centre is inherently lower.  The coil will resonate at 

a number of modes depending on the number of legs and configuration (low/high/band –

pass) with only one mode that produces a homogeneous B1 field.  For a low-pass 

configured birdcage coil, the lowest mode is the NMR mode, whereas the third highest is 

the NMR mode for a high-pass configured birdcage coil since the two highest modes are 

produced by the currents in the end rings (23) (Fig. 1.21).  The major advantage of this coil 

design is that it acts as a transmission line with one complete cycle of standing wave 

around the end rings.  By driving this coil at two points on the end rings 90° out of phase 
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in a quadrature fashion, the two orthogonal B1 fields results in a circularly polarised B1 

field, rotating with the same frequency and direction as the nuclei’s Larmor frequency, 

resulting in a more efficient use of input power, a factor of √2 higher than a linear B1 field 

described earlier in Section 1.2.2.  Detection in quadrature demodulates the complex 

signal into real and imaginary components, and combines the signals with their phase 

difference of 90° and increase in sensitivity by the same factor of √2.  A quadrature hybrid 

circuit is a symmetric circuit required to drive a coil in quadrature (Figure 1.23), where any 

port can be used as an input port (i.e. port (a)), and signal outputs from the opposite two 

ports (in this case port (b) and (c)) are 90° out of phase when all ports are matched to the 

intrinsic impedance of the transmission line of Z0.  The design and application of an 

asymmetrical birdcage coil will be discussion in more details in Chapter 4 of this thesis. 

 

 

Figure 1.21.  A symmetric birdcage coil of 8-legs of a low pass (a), high pass (b) and band 

pass (c) design coil. 
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Figure 1.22. Network analyser tracers of (a) a low pass 129Xe birdcage coil at 1.5 T 

resonates at 17.7 MHz and (b) a high pass 3He birdcage coil (Fig. 1.24 (d)) at 

3 T resonates at 97.3 MHz. 

 

All the above coils can be used for transmission of the B1 RF pulse as well as receiving 

NMR signals as transmit-receive coils.  To protect the receiver pre-amplifier from the high 

RF power during transmission, diodes and blocking circuits are put between transmit port 

and pre-amplifier in a transmit-receive (T/R) switch circuit, which differ for linear and 

quadrature driven coils. 

 

Figure 1.23. a quadrature hybrid used to drive a coil in quadrature mode. 
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Figure 1.24.  Examples of the RF coils from (a) surface coil, (b) saddle coil, (c) solenoid 

coil, (d) high-pass symmetric birdcage coil, (e) band-pass asymmetric 

birdcage coil, and (f) half of a 32 element array coil (24). 

Array Coils 

Phased arrays consist of several receive-only surface coils (Fig. 1.24 (f)).  Unlike with 

transmit-receive coils, a separate coil is used to excite and a set of smaller, automatically 

well coupled to the decoupled array coils are used to receive signals simultaneously.  The 

data from the separate receive coils are then combined and yield a final image with higher 

SNR over a large FOV because smaller coils produce higher SNR due to the principle of 

reciprocity.  The most straightforward approach to reconstruction is called the root sum-

of-squares (RSS) given by: 

              (1.61) 

where p is the vector of pixel values from an individual image, R is the noise correlation 

matrix, resulting in a combination pixel value of P (25).  It was soon realised after the 

initial introduction of phased array to cover large FOV that it can also be used to 

accelerate imaging speed; parallel imaging utilises the fact that multiple receive array coils 
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hold different spatial sensitivities, thus by combining multiple k-space data sets, only a 

subset of k-space is necessary from each receive coil for reconstruction, speeding up 

imaging acquisition times.  There are many methods in k-space sampling in parallel 

imaging with sensitivity encoding (SENSE) (26) and generalised auto-calibrating partially 

parallel acquisitions (GRAPPA) (27) being widespread.  Figure 1.24 shows some examples 

of the coils described in this section of the chapter.   

 

Matching 

After the completion of a coil resonating at the target frequency, it must be connected to 

a transmission line for NMR detection.  The impedance of a transmission line depends on 

the dielectric properties of the insulator separating the two conductors and is 

conventionally equal to 50 Ω in the MRI community.  The coil impedance must be 

matched to the transmission line to avoid signal losses by using a matching capacitor (Fig. 

1.25).  This process adjusts the impedance so that they are equal to be joined at an 

interface, but does not alter the resonating frequency of the RF coil.  Lastly, since a coaxial 

cable is by definition unbalanced (the two conductors are not geometrically identical), 

balanced-unbalanced (baluns) transformers, also known as the LC or lattice baluns (Fig. 

1.26) are introduced to avoid common mode currents, which are currents on the outer 

shield of an unbalanced coaxial cable when connected to a balanced coil. 

 

Figure 1.25.   The matching capacitor Cm, which matches the impedance of the coil to the 

transmission coaxial cable, which is usually a variable capacitor. 
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Figure 1.26.  A common balanced – unbalanced transformer, also known as the LC or 

lattice balun. 

 

 

1.3 Hyperpolarisation 

By introducing a gaseous atom, MR imaging of the gas can reveal anatomical and 

functional information about the lung.  Gases, however, have low spin density due to their 

physical density.  A typical dose used in hyperpolarised 129Xe imaging is about 500 - 1000 

ml of gas in 5 – 6 l total lung volume (0.0037 moles of atoms in 1 l) in comparison to 

protons in water (110 moles of 1H in 1 l).  Considering that thermal nuclear polarisation is 

only about 1 in 100 000, the signal from thermally polarised gas is therefore very weak. By 

increasing the polarisation of 129Xe with spin exchange optical pumping (SEOP), this 

density disadvantage can be counter balanced (Figure 1.27), and we can obtain a 

polarisation P in the order of 10% (equation 1.7).  

 

1.3.1 Spin Exchange Optical Pumping (SEOP)  

One method by which the polarisation of the noble gas atoms can be increased is by spin 

exchange optical pumping (28) in a glass cell containing an alkali metal, a noble gas, and 

buffer gases.  The cell is heated with an oven that ensures saturated vapour pressure of 

alkali metal, where the following two steps occur: 
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Optical pumping is the excitation of an electron of an intermediate alkali metal into a 

higher excited state with a circularly polarised laser light of a specific wavelength 

determined by the difference in the energy levels between excitation states (Fig. 1.28 (A)).  

Even though any alkali metal can be used as the intermediate nucleus, rubidium (Rb) is 

usually used.  It allows a reasonable temperature due to its high vapour pressure, and its 

excitation resonating frequency to excite valence electron falls within a region of 

spectrum where many tuneable lasers readily exist.  A 794.77 nm polarised laser light is 

used to spin-polarise both the electron spin as well as the nuclear spin of Rb, resonant 

with the transition of 2S½ ground state electron to the lowest excited state of 2P½.  The 

populations of the excited electrons in the 2P½ state are evenly distributed in the spin -½ 

and ½ states through collisional mixing; therefore, the relaxation back to the ground state 

is of the same probability.  Due to continued depletion of only the spin -½ state in the 

ground state, a net polarisation results in excess of the spin ½ state.  The Pressure 

broadening gives the laser absorption linewidths of 30 GHz or more, well over that of Rb, 

to ensure adequate polarisation of Rb atoms.   

Photons radiated by Rb are nearly un-polarised, thus can be reabsorbed by the Rb atoms, 

de-polarising the Rb atoms several times in a long cell.  Nitrogen serves as a buffer gas 

removes this damaging mechanism and prevents radiation trapping from polarised 

photons, thus a N2 gas density of 0.1 amagat or more is usually required in a SEOP system. 

The energy emitted from Rb is transferred to N2 gas into vibrational and rotational motion 

with nitrogen moledules’ large quenching absorption cross section.  The nuclear spin of 

the alkali atom is conserved between excitation by a pumping photon and de-excited by a 

quenching collision with nitrogen, ready for another cycle.  Through this method within a 

static magnetic field, the excited rubidium electron  populates in the electron spin Zeeman 

ground state (see Sec. 1.1.1 for Zeeman splitting) .  This is where the second part of SEOP 

(i.e. spin exchange) occurs.   
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Figure 1.27.  Left: hyperpolarised signal: 10 ml Xe (86% 129Xe) with a 10 degree flip angle, 

single acquisition, Right: thermal signal: 5 ml Xe (86% 129Xe, 5 ml O2) with a 

90 degree flip angle, averaged over 64 pulses. 

 

The transfer of spin polarisation occurs when the two atoms are bound in van der Waals 

molecules or simple binary collision.  The time for a binary collision is on the order of 10-12 

s.  Whereas binary collisions between Rb atom and helium atom are essential to the 

transfer of polarisation, the occurrence of van der Waals is also dominant with 129Xe.  The 

spin exchange cross-sections are quite large, typically 2 x 10-14 cm2 , making this process 

efficient as the electron spins rotate about each other many times during a single collision.  

The electron spin of the Rb atoms can then exchange its polarisation with the nucleus of 

129Xe, populating positive ½ nuclear spin states in the gas atoms (Fig. 1.28 (B)).  The rate of 

collisions is between 104 and 106 every second. 

 

To increase the efficiency, N2 and He are used in the cell as buffer gases.  While the 

nitrogen prevents radiative emissions of circularly or linearly polarised photons, He, with a 

smaller Rb spin-destruction rate increases the linewidth of the laser absorption line by 
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collisional broadening.  A magnetic field of a few hundred Gauss is also needed during this 

process to sufficiently suppress the relaxation due to van der Waals molecules at these 

low pressures. 

 

(A)                                                           (B) 

Figure 1.28.  (A) Excitation of an electron from a rubidium atom to an excited state.  

When the electron relaxes back to its original orbital, it stays in the positive 

½ spin state.  (B)  the exchange of spin with the 129Xe with N2 as a buffer gas. 

 

The process of spin exchange optical pumping increases the polarisation of 129Xe to an 

excess of 10%, which is an increase of approximately five orders of magnitude higher 

compared to the thermal polarisation via Boltzmann distribution.  This process provides a 

hyperpolarised 3He/129Xe signal comparable to that obtainable to that of water thermally 

polarised NMR and is thus detectable in physiologically feasible concentrations when 

inhaled. 
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Even though both 3He and 129Xe can be polarised via SEOP, the practical implementations 

are different.  3He hyperpolarisation can take place at high pressure (> 5 Bar), which 

increases laser absorption by broadening the rubidium absorption line, while not effecting 

polarisation.  A batch of 3He can typically be polarised to ~30% polarisation in 18 h via 

rubidium SEOP.  Recent improvement of hybrid SEOP involves using a mixture of 

potassium and rubidium as the alkali metals, which show significant improvement on 

efficiency (29,30).  129Xe, optical pumping by spin exchange on the other hand, has a few 

more considerations.  Since the electron cloud of 129Xe is distorted easily upon collision 

with the cell wall and other atoms, the T1 relaxation time of 129Xe is very short, in order of 

minutes. Also, the chance of collision of 129Xe with the cross-section of an optically 

pumped alkali vapour is very large and thus also lowers the achievable polarisation.  

Xenon requires lower partial pressures in the optical pumping mixture as spin-relaxation 

mechanism with the rubidium atom valence electron is more potent than for 3He, 

therefore xenon is typically polarised in lower concentration under flow with cryogenic 

freeze out.  The method of hyperpolarising 129Xe in “continuous flow” was first introduced 

by Driehuys (31) operating with a high gas density with buffer gases N2 and 4He, collected 

cryogenically.  Another method more recently by Hersman et al (32) was developed 

operating at low gas density and has proven to be a very efficient xenon polariser suitable 

for clinical use.  

 

1.3.2 Sheffield polariser 

Our group has developed an in-home “continuous flow” polariser which is described in full 

by Norquay et al(33).  The system operates at a total gas pressure inside the cell of 2 bar 

at the iso-centre of Helmholtz pair coils of diameter 80 cm, with a B0 ~2.7 mT.  The Pyrex 

optical cell (25 cm in length and 5 cm in diameter) is filled with <1 g of molten rubidium 

inside a non-magnetic ceramic hot-air oven operating at 373 K.  Optical pumping is 

achieved by the use of an external cavity diode laser with laser emission centred on 
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794.77 nm with a full width at half max of 0.09 ± 0.01 nm. The gas mixture consist of 3% 

isotopically enriched Xe (86% 129Xe), 10% N2, and 87% He (Spectra Gases, UK), and is 

collected cryogenically within a glassware (Fig. 1.29 (b)) at a magnetic holding field with a 

field strength of ~0.3 T using liquid nitrogen and collected in the solid state.  The high 

freezing point of xenon make it possible to separate xenon from the other gases as they 

exit collection as gases and the magnetic field is used to achieve a long solid xenon 

relaxation time during the accumulation process, which limits the loss of polarisation in 

the freezing process. 

After 30-40 minutes accumulation, the frozen xenon was then melted and collected in a 1 

l Tedlar bag and filled up with medical grade N2 gas. This system has been in use with 

consistently over 10% polarisation for the past year at a production rate of 10 ml of 

hyperpolarised 129Xe / min (Fig. 1.29).  For polarisation level estimates, the signals from 10 

ml HP Xe samples were compared to a reference signal (100 acquisition-average) from a 

10 ml thermal xenon sample containing 50 % O2 (T1 ~ 6 s) using a small saddle coil.   

This system has been optimised with the following parameters: (a)temperature, (b) flow 

rate, (c) frozen xenon decay, (d) accumulation time, and is described fully in details by 

Norquay et al (33) to a polarisation level excess of 13% 

Imaging using the home polariser have shown consistency over the past year in over 100 

in vivo lung imaging studies in small doses (<400 ml) and can provide high quality images 

of the lungs (SNR range 21–53 with a spatial resolution of 15 mm × 4 mm × 4 mm voxel). 

Also note that all xenon polarised in this study was done under a special UK MHRA 

regulating license. 
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Figure 1.29.  Apparatus of a homebuilt regulatory-approved polariser system for 129Xe, 

where gas is accumulated within the spiral glassware (b) cryogenically at a 

holding magnetic field of ~0.3 T (33). 
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CHAPTER 2: Hyperpolarised Gas Magnetic 
Resonance Imaging in Human Lungs – A 
Brief Overview 
 

2.1 Introduction 

 

Figure 2.1.   Left: cast of the airways of a human lung less alveoli, showing conducting 

airways from trachea to terminal bronchioles.  Right:  Model of the human 

airways proposed by Weibel into conducting zone (16 generations) and 

transitional and respiratory zones (Taken from  (34), Fig 1-3 and Fig 1-4). 

 

The lungs make up an essential organ primarily used for gas exchange to allow oxygen into 

the venous blood and remove carbon dioxide.  The lungs branch off from the trachea into 

narrower and shorter branches of bronchi (also known as the conducting airways (Fig. 2.1 
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(right)) where no gas exchange takes place and they constitute the anatomic dead space 

of about 150 ml.  The airways continue to divide until reaching terminal bronchioles, and 

eventually terminate at the alveoli after 25 generations of tree-like branching (Fig 2.1 after 

Weibel).  The lungs have a large surface area between 50 to 100 m2, made possible by 

~500 million terminal alveoli, each about 0.33 mm in diameter and 0.2 – 0.3 μm in wall 

thickness (34). 

 

Figure 2.2.  Lung volumes of interest for adult men (red) and women (green) in litres.  

Some of the key lung volumes that are used in this thesis are TLC (the 

volume of the lungs at maximum inflation, RV + VC), RV (the volume of the 

lungs at maximum exhalation) and FRC (the volume of the lungs after 

normal exhalation). 

 

The most common technique currently used for diagnosing abnormalities in lung function 

is spirometry (35,36), a global whole lung pulmonary function test using a spirometer to 

measure the volume and flow of inhalation and exhalation at the mouth.  The basic form 

of the test is performed using a flow sensor with a filter mouthpiece and a nose clip to 
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prevent breathing through the nose.  The patient is asked to inhale as much in as possible 

and exhale as hard as possible into the detector for as long as possible.  The most 

important measured parameters in spirometry are: 

(a) Forced vital capacity (equivalent to VC in Figure 2.2):  Volume of air, measured 

in litres that can be forcefully blown out after a full inspiration. 

(b) Forced expiratory volume in one second (FEV1):  Volume of air, measured in 

litres that can be forcefully blown out in one second after a full inspiration.  

Healthy adult male/female has a normal value decreases almost linearly with 

age from 4.5 l/3.25 l at age of 20.  A value that falls 80 – 120 % of that value is 

diagnosed as normal. (37) 

(c) Forced expiratory flow (FEF) 25-75%:  The mean flow/speed of air coming out 

of the lung from 25% of FVC expired to 75% of the FVC expired. 

(d) Diffusion capacity (DLCO): Carbon dioxide uptake in a single inspiration of ~10 s.  

A measurement of the trace quantities of CO at the end of a breathing cycle 

determines how much is absorbed by the lung during breathing, which can pick 

up diseases that lead to diffusion obstruction, like ones in pulmonary 

fibrosis.(38) 

Since spirometry measures the whole lung function (39,40), it lacks regional information 

and can have a large range of variation based on patient co-operation, effort and 

techniques (35,41).  Spirometry can therefore miss subtle changes in lung patho-

physiology.  Figure 2.2 shows some of the normal lung volumes of interest in healthy 

adults (42).  Note that these values are highly variable depending on many co-founding 

factors; a few examples are subject height, weight, and elevation.  These factors can be 

normalised for by expressing the spirometry measurements in percentage of predicted 

values. 
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Spirometry thus has no sensitivity to regional lung function. Medical imaging can help 

provide regional and structural information; Computed Tomography (CT) has been used to 

obtain structural information of the lungs with high resolution (43-47) (Fig. 2.3).  This 

modality provides soft tissue contrast for the lungs, as well as the surrounding tissues 

based on different tissue density relative to air and water.  Significant correlations have 

been found between emphysema morphology of the lungs and CT emphysema score in 

determining severity of the disease (48-51).  CT is also the modality of choice for structural 

imaging of the lungs in lung cancer although the poor soft tissue contrast of CT makes 

structural delineation of tumours and mediastinal abnormality difficult. The radiation 

dosage required for CT imaging, however, is not ideal for longitudinal studies at the 

moment or assessment of short term changes in response to respiratory therapy 

evaluation.  This is a particular concern in children. The health risk of a 10 mSv whole body 

CT  scans was estimated to increase the risk of death from radiation-related cancer to 1 in 

1250 (52).  Many studies in recent years have been focused on lowering the radiation 

dosage substantially (53,54), with volume CT chest studies now possible with doses of 3-4 

mSv (comparable with the annual background radiation dose) so future use for 

longitudinal imaging is still under investigation.  Previous studies showed good 

concordance between CT and emphysema physiology, however, there are still variations 

that underestimate mild emphysema and overestimate severe emphysema (51).  Nuclear 

medicine uses injected or inhaled radiopharmaceuticals to externally detect emitted 

radiation to form images.  99mTc is used in lung scintigraphy (Fig. 2.4) and the emitted 

gamma ray radiation provides functional information (i.e. ventilation, perfusion).  In the 

ventilation phase of the procedure, the patient is asked to inhale through a mouthpiece a 

gaseous technetium pentetic acid in an aerosol form, which remains in place for sufficient 

time to allow imaging of the distribution of the aerated lung volume.  The perfusion phase 

of the procedure is done by intravenous injection of the radioactive technetium (99mTc) 

macroaggregated albumin (MAA), which localises by the mechanism of capillary blockade.  

In healthy subject, less than 1 in 1000 of the capillaries is blocked, thus a large number of 
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particles must be injected for a meaningful statistical distribution of functional blood 

vessels (55). Images are obtained from the emitted gamma rays in both cases. Nuclear 

medicine imaging suffers from poor spatial resolution (56), cannot reveal small airway 

changes, and is also associated with radiation deposition (dose ~1mSv).   

 

 

Figure 2.3.  (a) High resolution Computer Tomography (CT) image of an emphysema 

patient where lung tissues appears darker (white arrow)(57) ; (b) CT image 

of a cancer patient showing a solid nodule in the lungs (white arrow) (58) . 

 

 

Figure 2.4.   Anterior and posterior view of perfusion scintigraphy of: (A) a patient with 

normal lung perfusion;  (B) a patient with chronic thromboembolic 

pulmonary hypertension with bilateral segmental perfusion defects (59). 

 

Proton magnetic resonance (MR) imaging (60) and variants such as oxygen-enhanced 

proton MRI (61) have also been used to image the lungs.  Although motion artefacts 
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caused by cardiac and respiratory systems can degrade MR images, this can be corrected 

by cardiac (62) and respiratory (63) gating.  Therefore, the biggest challenge of proton MR 

imaging of the lungs comes from the magnetic susceptibility due to the large number of 

air-tissue interfaces (64), as well as the low density of protons (~0.2 g/cm3) in the lung, 

producing limited imaging signal and resolution. Nevertheless with the use of short echo 

times and parallel imaging methods (65), proton lung MRI is starting to make an impact as 

a functionally sensitive (66-68) alternative to CT (69) (Fig. 2.5 (a)), particularly in the 

detection of mucus, consolidated masses and tumours where elevated proton density and 

T1 and T2 contrast can provide pathological insight, examples of proton MRI in diseased 

lungs are shown in Figure 2.5 (b) and (c) (70). 

 
Figure 2.5.   1.5 T proton anatomical images from SSFSE (single shot fast spin echo), 

bSSFP (balanced steady-state free precession, and SPGR (spoiled gradient 
echo) sequences of a healthy volunteer (a), as well as bSSFP MR images of: 
(b) a patient with fibrosis in the lung bases and (c) a patient with a 

peripheral 12-mm lung nodule, indicated by white arrows (70). 

2.2 Clinical Hyperpolarised Gas MR Imaging  
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In the relatively new imaging modality of hyperpolarised (HP) gas imaging (71-73), noble 

gases such as 3He and 129Xe can be inhaled to visualise air spaces within the lungs 

regionally.  After first demonstration of the potential of the method for imaging the 

airspaces with 129Xe in rodent lungs (74),  3He soon became the preferred noble gas used 

in clinical lung imaging research due to its large gyromagnetic ratio offering higher imaging 

SNR.  A comparison of a 3He ventilation image with a CT image of the same patient with 

COPD-emphysema is shown side by side in Fig. 2.6.   

3He and 129Xe can be both hyperpolarised via spin exchange optical pumping (SEOP) (28) 

which significantly increases the signal strength (typically five orders of magnitude lager 

than that of thermal magnetisation at 3T).  Correlations have been shown between the 

two noble gases with apparent diffusion coefficient (ADC) values (75) , ventilation defects, 

as well as changes after treatment (76).   

Figure 2.6   3He ventilation image and CT image of the same slice of the same volunteer.  

Ventilation defects are seen in the upper and lower right lung with 

evidence of reduced parenchymal density (emphysema) in the CT in the 

same regions (77) 

 

MRI of HP 3He gas has been evaluated in pre-clinical studies for different lung diseases 

(78,79) and has been shown to have high sensitivity to early stage lung disease such as 

CT 
3

He 
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early presymptomatic smoking related emphysema (80) and early obstruction of the 

airways in paediatric cystic fibrosis patients (81) who have normal spirometry test results.  

The safety of the technique (82) and its inherent sensitivity to regional lung ventilation 

and function make it an ideal imaging tool for the assessment of novel lung therapies (83-

85).  

There are a number of limitations associated with hyperpolarised gas MRI.  The foremost 

limitation is the nature of hyperpolarisation prior to imaging, opposed to relying on 

thermal polarisation in proton imaging.  The RF excitation pulses and T1 decay will 

continue to deplete signal intensity until it is exhausted, therefore each RF pulse used 

must be considered and the k-space trajectory optimised.  Secondly, most of the studies 

done using hyperpolarised MRI are acquired in a static single breath hold, thus limiting the 

imaging time to under 20 s, especially for patients with lung diseases.  Experiment setup 

will be shown in Section 3.2.  Next, commercially built RF coils are made for proton 

imaging, thus many modifications are needed such as the receiver bandwidth, pulse 

sequence development, as well as custom made coils needed for hyperpolarised nuclei of 

different resonating frequencies.  When it comes to the cost of hyperpolarised gas MRI, 

both 3He (~$850 per litre (86)) and isotopically enriched 129Xe (~$100 per litre for >80% 

(87)) to this day are still very expensive to purchase.  There is only 5.2 ppm helium by 

volume in the Earth’s atmosphere, of which the natural abundance for 3He in helium gas 

as an isotope is 1.38 ppm, thus 7.2 parts per trillion of the atmosphere (88), so it remains 

expensive as its source is through tritium decay as the by-product of nuclear industry.  

Currently all 3He in use for clinical lung imaging research is administered and released 

from the USA Department of Energy via the National Institute for Health.  This release is 

allowing 3He MRI to be used for well-defined clinical research questions but being used as 

a routine clinical diagnostic lung-imaging agent is not realistic.   

Recent studies (89) have shown that similar qualitative ventilation images can be achieved 

using the more readily available inert gas 129Xe (90). Xenon has the added functionality of 



 

 

 

 

53 

being soluble in blood and thus can be used to image lung ventilation perfusion (91) and 

alveolar-capillary gas exchange (92). 

129Xe is 26.44% naturally abundant as an isotope of xenon and can be extracted from the 

Earth’s atmosphere (87 ppm) (93), but the cost is currently also high for enriched (86% 

129Xe) xenon ( ~$170 per litre) compared to natural abundance xenon (~$30 per litre) (86).  

Enriched 129Xe is what has been used for the in vivo imaging in this thesis.   

 

2.3 Ventilation Weighted Imaging (static breath-hold imaging) 

2.3.1 3He 

For the most basic evaluation and diagnosis of obstructive airway diseases, patients are 

asked to inhale a fixed volume of hyperpolarised gas after a full exhalation and hold their 

breath for a few seconds while ventilation images can be obtained.  The images show 

polarised gas density and position of ventilation defects as dark void areas where gas 

cannot penetrate (78,94,95), providing regional insight into lung ventilation in obstructive 

respiratory diseases such as cystic fibrosis (85) and asthma (96).  Image SNR is directly 

proportional to gas spin density, which in turn is proportional to lung ventilation. 

If 3D pulse sequences are used, the whole lung volume can be imaged allowing direct 

calculation of the ventilated lung volume (97) (Fig.2.7). 

Disease diagnosis from the 3D information can still be very difficult, especially at the 

borders and edges of the lungs where susceptibility artefacts and B1 coil inhomogeneity 

can cause non-uniformity in image SNR and lead to mis-diagnosis of ventilation defects 

(98,99).  Efforts can be made to counter the lung border artefacts by using registration of 

Helium images to that of proton MRI (81) or CT images (100).  The visual impact of these 
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ventilation images in lung disease is striking when compared to alternative methods such 

as the nuclear medicine ventilation scan.   

 
Figure 2.7.   Surface-rendered 3D lung volume data set obtained from a 3D in vivo 

imaging experiment (taken from (97) Fig. 4). 

 

                                                                                         

 

 

 

 

Figure 2.8.   Left: a proton image of a healthy volunteer, the pulmonary vessels are 

prominent due to their higher density but the airspaces are predominantly 

dark due to the low proton tissue density and magnetic field 

inhomogeneity. Right:  3He HP gas image of the same healthy volunteer 

acquired from the same slice in the same breath-hold, notice the 

homogeneous distribution of the gas density in the airspace.   

 

Figure 2.9 shows the proton and 3He images of a healthy volunteer.  One of the useful 

parameters we can obtain from the two images is percentage ventilation volume or %vV, 

calculated by using ventilated volume from segmented 3He images divided by the total 
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lung capacity from the proton scan (Fig. 2.9 (c)).  The immediate problem rises as the lung 

inflation level is not constant between scans, thus co-registered images obtained within a 

single breath-hold is preferable, and has been implemented and used with success (101).   

 

Figure 2.9.    (a)3He ventilation image, (b) registered proton image, (c) overlapping 

proton and 3He images (102). Image courtesy Sam Janoff BMedSci Thesis 

University of Sheffield 2012. 

 

2.3.2 129Xe 

3He is not the only gaseous noble gas used in HP gas MR imaging.  The techniques and 

methods may also be applied to other gases, such as 129Xe (103,104).  The disadvantage of 

using 129Xe is that its gyromagnetic ratio is only one third of that of 3He (Table 1.1), and 

since SNR is roughly proportional to gyromagnetic ratio in hyperpolarised gas MRI (see 

Chapter 3 for proof), 129Xe would have around a 3 fold lower SNR than 3He if the amount 

of gas used and polarisation were identical.  The smaller gyromagnetic ratio, however, 

does decrease dephasing due to off-resonance effects from magnetic-susceptibility 

interfaces.  To maximise the image SNR of 129Xe, we must maximise polarisation, use 

enriched 129Xe mixtures, and optimised RF-coil technology and pulse sequence design.  It 

is also important to note the physical differences between the two nuclei, as 3He is a 

lighter, smaller atom compared to air whereas 129Xe is heavier and denser which in turn 
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would affect the flow and distribution of the gases upon inhalation.  The quality of 129Xe 

imaging has improved as the polarisation levels possible with 129Xe improved in the last 

fifteen years (105), giving results comparable to those with 3He.  The first MR image of the 

lungs using hyperpolarised 129Xe was obtained in 1997 with a polarisation of 2% with voxel 

size of 0.9 cm2, and had a SNR of 28 using 1 l of gas (Fig 2.10, top).  Today, with improved 

polarisation of the gas, MR images can be obtained for 0.25 cm2 voxel size using 300 ml of 

129Xe with SNR of ~50 (Fig 2.10, bottom, see Chapter 3 – 4 for more images).  The 

significant increase in SNR is due to the increase of polarisation and optimisation of image 

acquisition methods.  These images show homogenous signal distribution same as those 

from 3He in healthy volunteers.  

 
Figure 2.10.  Coronal ventilation images of healthy human lungs using hyperpolarised 

129Xe.  Top: the first MR images of the lungs using hyperpolarised 129Xe in 

voxel size of 0.9 cm2 ( SNR of 28 ) in 1997 using 1 l of gas taken from (105); 

bottom: MR images obtained in this thesis from 0.25 cm2 voxel size using 

300 ml of 129Xe (SNR of 50 )(90). 

Ventilation defects and functional abnormalities can also been seen using hyperpolarised 

129Xe.  The images show qualitatively similar results to defects seen in 3He images.  129Xe, 
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however, is a much larger atom, therefore, direct comparisons between the two noble 

gases have shown that the signal distribution may be more sensitive to detection of mild 

disease using 129Xe than that of 3He (87,106) as it is less diffusive (see Section 2.4).  There 

are partial obstructions observed in 129Xe images that appear better ventilated in 3He 

images of the same volunteers, indicating the more diffusive nature of 3He (107) (Fig 2.11).   

Despite its known anaesthetic effect, 129Xe is well tolerated (108,109) in doses of 500 ml – 

1 l in healthy subjects and in those with mild or moderate COPD with symptoms consistent 

with its anaesthetic properties such as dizziness, euphoria and hypoesthesia.  All 

symptoms typically resolve within 2 minutes with no clinical intervention. Functional 

defects through ventilation imaging using 129Xe have shown sensitivity to subjects with 

asthma, COPD and cystic fibrosis (91). 

 

Figure 2.11.   3He and 129Xe ventilation images of the same subject pre and post 

salbutamol (taken from (107) Fig. 1).  Note the more heterogeneous 

ventilation seen with 129Xe in the same subject. 

 

 

2.4 Diffusion Studies 

2.4.1 Free Diffusion 

The measurement of the Brownian diffusion of hyperpolarised gases in the lungs with 

magnetic resonance imaging can reveal information on lung micro-structure. The root 

mean square distance, l0, travelled by particles by diffusion in free space over a time,  , 

can be calculated from the Einstein diffusion equation: 
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     00 2Dl       (2.1) 

where D0 is the free diffusion coefficient at a specific temperature and δ is the diffusion 

time.  3He, for example, has a D0 value of ~ 0.88 cm2/s at body temperature of 37 oC within 

a mixture of typical of the concentration found when inhaled in the lungs (110).  Protons 

(1H), in water, have a D0 value of 1.1 x 10-5 cm2/s in comparison (111).  

 

2.4.2 Restricted Diffusion 

When diffusion becomes restricted in a porous medium due to collisions with the walls, 

movement of the atoms becomes limited and the root mean square distance shortens.  

The airways, walls, and alveoli in the lungs serve as obstacles to restrict the movement of 

gas atoms.   

With such restrictions, diffusion is now characterised by an apparent diffusion coefficient 

(ADC), which is always less than the free diffusion coefficient (which is limited by the 

mean free path from kinetic theory) and highly dependent on the geometry of the 

medium (Fig. 2.12).  Restricted diffusion for equation 2.1 can be expressed as: 

 ADCl 20     (2.2) 

 
 Figure 2.12.  Schematics of restricted diffusion in healthy lung tissue (left) and 

emphysematous lung airspace (right). Image from Xiaojun Xu, MSc Thesis, 

University of Western Ontario 2009. 
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The ADC of 3He in healthy, human lungs is 0.20 cm2/s at a 1.8 ms of diffusion time (30), 

and 3He nucleus may travel across the alveoli of 300 µm in diameter in a short period of 1 

ms.   

Diffusion leads to enhanced transverse relaxation (dephasing) of the MR gradient echo 

signal (Eq. 1.28).  Signal decay due to diffusion in MR imaging is related to the diffusion 

coefficient and the b-value by: 

   ADCbT

TR

T

TE

eeeSS 


 1
*
2

0    (2.3) 

where TE and TR are echo time and repetition time respectively, and b-value is a 

parametric representation of diffusion dephasing in MR to incorporate the effects of both 

gradient strength and diffusion time of the pulse sequence.  S0 is the initial signal, and ADC 

is the apparent diffusion coefficient.  For a bipolar gradient echo sequence, the b-value is 

given by (29): 

     (2.4) 

 

with a corresponding gradient shape shown in Fig. 2.13, where γ is the gyromagnetic ratio. 

 

Figure 2.13.  A bipolar gradient waveform  

 

In a simplified bipolar gradient where there is no delay between the two lobes, δ = Δ, then 

equation 2.4 can be simplified to: 
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Figure 2.14.   Apparent diffusion coefficients (ADC) with the 3He are mapped out pixel-

by-pixel in the second column, and an increase of ADC is visible. Lastly, the 

ADCs are plotted in histograms in the third column, clearly show the 

broadening and increase of ADCs in the smoker and emphysema patient.  A: 

48-year-old, female, healthy, non-smoker; B: 51-year-old, female, healthy, 

smoker with normal spirometry; C: 62-year-old, male, emphysema/COPD 

patient.  

 

A 

B 
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Clinically, diffusion mapping in the lungs is usually computed assuming a mono-

exponential decay from two images with either variable gradient (Gmax) or variable 

diffusion time (δ), which generates two signals 
ADCb

norm AeS


 1

1 , and 
ADCb

norm AeS


 2

2 .  

A is a common factor in both images due to electronic factors, flip angle and relaxation.  

The ADC can then be calculated by subtracting the logarithms of the two normalised 

signals and divide by the change in b-value: 

    

b

SS
ADC

eSS

normnorm
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/

   (2.6) 

Diffusion is always a factor for consideration in hyperpolarised gas MR imaging due to the 

high diffusivity of gas atoms, thus it is important to have a thorough understanding of the 

physics behind it to know when its effect is negligible, and when the effect has to be taken 

into consideration.  The experiments of this thesis will not be directly linked to diffusion 

measurements, but it is appropriate to discuss it here in detail for discussions in later 

chapters around transverse relaxation as it plays a role in these mechanisms. 

 

2.4.3 3He 

Diffusion of 3He is so sensitive to the lung alveolar geometry that it can detect changes 

from aging (112,113) and has been shown to correlate well with alveolar surface area to 

volume ratios from histology (114). Although diffusion-weighted images (Fig. 2.14) do 

show significant correlation with FEV1 (forced expiratory volume in 1 second) for 

diagnosing emphysema (115), more interesting in terms of early diagnostic potential is the 

ability of the 3He ADC to detect early alveolar destruction in smokers with normal 

spirometry and individual FEV1% predicted (116).  ADC gradients in the anterior and 

posterior direction show differences between healthy volunteers and severe COPD 

subjects with FEV1 predicted between 30% and 50% (117,118).  Such regional differences 

were also observed in another study (116) that suggested less homogeneity in diffusion 



 

 

 

 

62 

coefficient in emphysema patients, especially in the distal regions of the lungs.  Since 

diffusion behaviour is also highly sensitive to diffusion times, various studies have focused 

on a specific time scale, from sub-millisecond for the study of small airway and alveolar 

abnormality, such as emphysema (119), to the diagnosis of large airway and branching 

changes, such as bronchitis and asthma, in long range diffusion studies of the order of 

seconds (120,121).   

 

2.4.4 129Xe 

Since 129Xe atoms are larger and heavier than 3He atoms, its diffusion coefficient is about 6 

times less than 3He in air, thus ADC measurements with 129Xe would be expected to be 

sensitive to different length scales.  Studies have been done to examine its sensitivity 

toward lung morphology changes in a similar fashion as has been done for 3He. The first 

diffusion comparison study has shown that 129Xe is sensitive enough to distinguish healthy 

volunteers from subjects with emphysema, and can detect age- and posture-dependent 

changes (89).  Much like preliminary ventilation images, preliminary diffusion 

measurements using 129Xe have yielded similar clinical information to that from 3He 

(122,123) where uniform and lower ADCs are calculated in healthy subjects, whilst 

subjects with COPD demonstrate inhomogeneous distribution and significantly elevated 

ADCs.  A mean parenchymal ADC of 0.036 ± 0.003 cm2/s for healthy volunteers compared 

to the elevated 0.056 ± 0.008 cm2/s for COPD subjects with emphysematous 

condition(122).  As previous studies have shown with 3He, long-range diffusion studies can 

provide sensitivity to certain micro-structural changes.  Preliminary studies show similar 

methods are feasible using 129Xe in long range diffusion measurements in the order of ~1 s 

(124).   

2.4.5 Mixed gas studies 
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Mixed gases can also be used for experiments as another alternative for further diffusion 

weighted studies, where 3He is mixed with heavier gases like 129Xe.  This procedure would 

slow down 3He (decrease the apparent diffusion coefficient), without substantial loss of 

signal to noise ratio (SNR) (125). 

2.5 Other imaging techniques with 3He and 129Xe 

2.5.1 pO2 mapping 

As described in Chapter 1, T1 relaxation constants of pure 3He and 129Xe can be hours, but 

this relaxation is greatly enhanced upon mixing with paramagnetic oxygen, reducing T1 to 

seconds - minutes in the healthy human lung, and is inversely proportional to oxygen 

concentration (see equations 1.33 and 1.34). PA,O2 measurements using 3He provide 

functional information of the oxygen concentration within the lung space (126) where 

regions of abnormal oxygen pressure were observed in lung transplant patients (127). 

Regional ventilation-to-perfusion ratios can also be calculated from the PA,O2 data (128).  

This can also be adapted into 3D mapping (97), to measure partial pressure of oxygen (129) 

(Fig. 2.15).  This method has been challenging due to the combined effect of T1 relaxation 

with RF pulse depletion in signal decay, thus technical development has been aimed to 

produce reproducible approaches for measuring pO2 (126,127,129,130).  This method has 

also been preliminarily applied to 129Xe (103,131) and yields similar information.  129Xe, 

however, differs fundamentally from 3He as gas exchange and dissolution into the blood 

and tissue plays a part in polarisation decay, which produces an over-estimation of pO2 

unless it is corrected for (103,131).  
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 Figure 2.15.  pO2 mapping from a 3D image slice of a healthy volunteer. The imaging 

sequence was performed after inhalation of 1 l of gas (400 ml / 600 ml of 
3He/N2) followed by tidal breathing of room air.(132) 
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Figure 2.16.  Dynamic imaging of a healthy volunteer on selected time intervals using 

300ml  40% polarised 3He HP gas (133).   

 

2.5.2 Dynamic Imaging 

Dynamic imaging is possible when images are taken temporally while the 

volunteer/patient is in the process of inhalation or exhalation (73) (Fig. 2.16); this 

technique shows the air flow within the lungs and can be used to diagnose air trapping in 

asthma (134) and also lung recoil dynamics that manifest in emphysema (115).  Cystic 

fibrosis (CF) is another disease sensitive to dynamic 3He MR imaging according to a study 

of children who were in the early stages of CF (135) with no permanent lung obstruction , 

showing animation of ventilation oppose to static ventilation images (136).  By measuring 

the speed of the airflow (signal rise over time) in the peripheral lung region, dynamic 

ventilation can provide quantitative parametric maps of gas flow in the lungs (137) and 

these quantitative parametric mapping approaches have been applied in early stages of CF 

patients (138) with more homogeneously ventilated lungs.  

 

2.6 Clinical Imaging Studies with HP gas MRI 
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Figure 2.17  Example ventilation images of healthy as well as diseased lungs using 

hyperpolarised 3He. 

 

2.6.1 Cystic Fibrosis 

HP gas imaging has been used to clearly diagnose cystic fibrosis with ventilation mapping 

(139,140) by scoring the percentage of ventilation as CF patients experience obstruction 

thus less ventilated volume.  These clinical experiments correlate with HRCT results very 

well without concerns for radiation deposition in tissues(139).  This method also agrees 

well with standard clinical diagnostic parameters and scores from both spirometry and 

chest radiograph in children with CF.  A significant correlation was found between MRI 

score and spirometry (FEV1% predicted and FVC%), as well as trends of correlation 

between MRI score and chest radiograph (Shwachman score) (141).  It also has a great 

advantage for respiratory disease diagnosis in children, where ionising radiation should be 



 

 

 

 

67 

minimised (136) The technique has also been used to assess the efficacy of chest 

physiotherapy for regional mucus clearance and airways opening in paediatric CF (83,85).  

 

2.6.2 Chronic Obstructive Pulmonary Disease (COPD) 

For diagnosis of COPD, ventilation mapping is used to visualise ventilation defects as dark 

voids from obstruction. Hyperpolarised 3He MRI has been used clinically for the 

investigation and diagnosis of COPD longitudinally (142) in an age-matched group and is 

well tolerated by stage II and III COPD subjects with a high 7- day rescan reproducibility for 

ADC measurements (143).   

Recently, clinical trials showed that 129Xe is well tolerated (108,109) in mild or moderate 

COPD patients, and ventilation imaging has shown functional defect sensitivity to COPD 

subjects (91).  Preliminary diffusion studies have yielded similar clinical information to that 

from 3He (122,123), where subjects with COPD demonstrated less homogeneous 

distributed and significantly elevated ADCs compared to that of healthy volunteers.   

 

2.6.3 Asthma 

Using hyperpolarised 3He, ventilation defects per slice (VDS) for asthmatics showed 

significant increase when compared to control subjects and correlated to FEV1/FVC.  Many 

asthmatics, however, with normal spirometric indexes, had elevated VDS, indicating the 

sensitivity of the imaging modality (95).  Fain et al., shown overlapping results of multi-

detector CT images to ventilation defects measured using hyperpolarised 3He (134).  

Recently, both hyperpolarised 3He and 129Xe were used to study the effect of 

bronchodilator in asthmatics.  Pre-salbutamol inhalation, 129Xe ventilation images show 

significantly greater VDS than 3He.  Even though images post-salbutamol inhalation for 
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both gases improved, the improvement (i.e. greater percentage decrease in VDS) using 

129Xe is significantly higher, making 129Xe the more sensitive detector (107).  Using 

dissolved 129Xe, MXTC (see Section 2.7.2) mapping after saturation of dissolved xenon 

showed elevation of depolarisation in all delay times compared to that of the healthy 

volunteers (144). 

2.6.4 Post-Surgery Complications 

In lung transplant patients, the current longitudinal monitoring using spirometry is not 

sensitive enough to detect bronchiolitis obliterans syndrome (BOS), the deterioration of 

graft function and obstructive airflow, at an early stage (145), which effects 60% of the 

recipients post-surgery within five years (146).  Preliminary results show a sensitivity to 

lung function decline noticeable via 3He imaging that is not detectable even with thin-slice 

CT images, as well as a correlation between the severity of the BOS and HP helium 

ventilation defects (147).   

Even though 3He MR and CT diagnosis of fibrosis post transplantation were comparable 

with little differences, the sensitivity towards emphysema and airways obstruction is quite 

significant as MR images show more ventilation defects (148).  This suggests MR to be a 

better modality to demonstrate the decline in ventilated lung volume (149).  Lung volume 

can also be obtained and is found to be a useful method in determining areas of the lungs 

being hyperventilated post-surgery (150).  Regional studies with lung transplant patients 

in an anterior/posterior fashion also shows HP gas imaging useful in detecting abnormal 

ventilation (151). 

2.6.5 Other Potential Applications 

There are many other potential applications for HP gas imaging.  It is anticipated to be 

useful in pulmonary embolism and chronic thromboembolic pulmonary hypertension, to 

investigate the physiological knock on effect on gas exchange from pulmonary vessel 
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blockage, for initial diagnosis (152).  It has also been demonstrated as a feasible method 

for radiotherapy planning (81) as a mean of sparing radiation damage to viable and 

healthy lung tissue and more focused irradiation of tumours.   

 
 Figure 2.18.   129Xe spectroscopy in healthy human lungs where RF pulse is a sinc-

gaussian pulse shape centred on dissolved phase xenon.  Notice the two 

distinct dissolved peaks from both RBC and plasma/tissue compartments. 

 

2.7 Dissolved 129Xe studies 

Unlike 3He, 129Xe dissolves as it diffuses into the blood stream and undergoes constant 

exchange with the gas phase driven by diffusion across the alveolar wall.  With a chemical 

shift of ~200 ppm in resonating frequency from the gas phase 129Xe (~60 times larger than 

water-fat shift), information on the chemical composition of the gas exchange 

compartments can be obtained (Fig. 2.18).  It has additional chemical shift sensitisation by 

virtue of its solubility in the blood, allowing direct access to the lung gas exchange 

pathways (153).  
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Upon inhalation, ~2% of the 129Xe dissolved into tissue and blood, where dissolved 129Xe 

NMR results in multiple peaks associated with distinct compartments are observed in 

spectroscopy (105,154-156) (Fig. 2.18) from gas, blood, and tissue depending on the 

interactions within the compartments. Spectroscopic scans in vivo have shown success in 

characterising gas uptake, exchange and transport by Patz et al. (103,157,158).  One of the 

spectroscopic experimental methods is the study of xenon uptake rate by varying the 

repetition time between RF pulses through chemical shift saturation recovery (CSSR) type 

experiment, more details can be found in Chapter 6.  

Due to the limited amount of 129Xe in the dissolved phase, imaging directly is challenging 

in producing high spatially resolved images.  A few imaging techniques have been adopted 

to overcome this limitation in the following section. 

 

2.7.1 Xenon polarisation transfer contrast technique (XTC) 

This method proposed by Ruppert et al (159) uses a low-flip-angle gradient echo pulse 

sequence twice with RF excitation centred at gas-phase xenon frequency to obtain two 

ventilation images of the gas-phase 129Xe. A series of saturation high degree flip angles 

(ideally, 90 degrees) are applied in between the two imaging acquisitions to deplete xenon 

polarisation from gas exchange.  During this intermediate step, longitudinal magnetisation 

of the gas will decrease in proportion to the amount of xenon exchange between the 

airspaces and tissue/plasma.  The saturation RF pulses are centred at either 202 ppm (XTC, 

between the XeRBC and Xeplasma peaks) or -202 ppm as a means of obtaining a controlled 

image.  The controlled experiment pulses 404 ppm away from the dissolved frequency, 

thus not disturbing the dissolved phase xenon signal.  This can then be used to correct for 

any other changes during the experiment (i.e. T1 relaxation, blood transport, residual RF).  

Using the data from both XTC and Control experiments, a parameter called fractional 

depolarisation, fDepol, can be calculated from (159): 
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   (2.7) 

where N is the number saturation RF pulses, and S is the signal intensity.  By computing 

the equation above on a pixel-by-pixel basis, a XTC map is produced, proving a regional 

map which reflects the degree of exchange between gas and dissolved xenon.   

This method was first introduced in small animal experiments in multiple breath-holds. 

From the high sensitivity of this polarisation-transfer pulse sequence technique, gas 

exchange and diffusion were measured in animal models indicating that gas exchange 

time is within milliseconds with an effective diffusion coefficient of 3.3 × 10-6 cm2/s in the 

lung parenchyma.  Patz et al. first demonstrated single breath-hold XTC for application in 

human lung imaging, where the fractional gas exchange appears homogeneous and 

uniform in healthy volunteers, and is sensitive to detect small changes in lung volume 

(160).   

 

2.7.2 Multiple-exchange time XTC (MXTC) 

Since the fractional depolarisation of xenon is highly dependent on the delay time 

between saturation pulses, a method of multiple delay time XTC is then used to study the 

xenon transfer behaviour.  The experimental setup is similar to that of XTC, where the first 

set of RF pulses is the controlled data set (RF pulse centred at ~-200ppm), applied 

between Image1 and Image2, followed by the first set of saturation pulses on dissolved 

phase Xe (~200ppm) of a single delay time, τ1, between Image2 and Image3, this is then 

followed by a second set of saturation pulses on dissolved phase Xe (~200ppm) of a 

second delay time, τ2, between Image3 and Image4. 
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The gas depolarisation as a function of delay time τ can then be estimated by the curve 

defined by (161): 

         
 

  
     

 

  
     (2.8) 

Where F is the parameter MXTC-F, the maximum depolarisation value i.e.             

and    is the xenon exchange time constant.  The maximum depolarisation value map 

(MXTC-F map) can be obtained by fitting the two delay times, τi, through the origin using 

equation 2.8, after normalisation using the controlled set of images obtained initially. 

From the parameter F, one can extract tissue-to-alveolar-volume of the lungs using the 

xenon blood-gas partition coefficient, λ (161). 

Now from equation 2.1, diffusion length, in this case alveolar wall thickness, can be 

calculated by: 

                                    (2.9) 

where Dm is the diffusion coefficient of xenon in the alveolar membranes (3.33 x 10-6 

cm2/s) (153).  The factor   , is then another measureable parameter in MXTC,  which 

describes the thickness and composition of the alveolar septa (MXTC-S) (161) (Fig. 2.19).   

MXTC-F is generally uniform within each coronal slice in healthy volunteers, and increases 

towards the posterior slices in supine position, consistent with the gravitational effect 

which reflects the higher tissue density towards posterior lung tissues.  In COPD patients, 

MXTC-F maps show much more variation within each coronal slice, with lower values in 

the apices, but no significant gravitational effect can be observed in the anterior to 

posterior direction. 

MXTC-S also shows homogeneous signal intensity within each coronal slice with a 

significant increase towards posterior lung tissue in healthy volunteers.  In COPD patients, 
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gravitational effect is again not observed, with an overall increase in MXTC-S values, 

indicating the thickening of the septal walls. 

 

Figure 2.19  MXTC-F (a) & (c) and MXTC-S (b) & (d) maps obtained from curve fitting to 

equation 2.6 at low lung inflation (a) & (b) where tissue density is greater in 

the posterior regions of the lungs, producing a gravitation effect; as well as 

high lung inflation level (TLC) in (c) & (d) where parameter values appear 

more homogeneous (taken from (161) Fig. 3). 

 

2.7.3 Direct dissolved phase 129Xe imaging 

Direct imaging of the dissolved-phase 129Xe has been difficult until the improvement of 

polarisation where litres at polarisation levels of 10 % and above 129Xe can be produced.  

Cleveland et al and Mugler et al showed in vivo images of dissolved phase 129Xe in the 

human lungs in 2010 (162,163).  Because the dissolved xenon undergoes constant 

exchange and replenishment from the airspace, high flip angles can be used to maximise 

signal intensity taken into consideration of the large chemical shift.  Signal intensity from 

the direct imaging of dissolved phase xenon is uniform within a single coronal slice in 

healthy volunteers and show gravitational effect due to tissue density change much like 

ones observed in XTC maps, and increases in posterior regions of the lungs.  More images 

of dissolved phase xenon are shown in Chapter 5 and 6. 
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2.7.4 Simultaneous dissolved and gas phase 129Xe imaging 

Mugler et al (163) had shown that by carefully selecting the readout bandwidth, one can 

image dissolved and gas - phase 129Xe simultaneously (Fig. 2.20).   

 

Figure 2.20.   Simultaneous gas- and dissolved-phase 129Xe imaging of the lungs of a 

healthy volunteer ((163) Fig. 2).  Notice the gravitational effect of the 

dissolved-phase xenon, which is insignificant in the ventilation images. 

 

With matched spatial resolution, one can quantify regional diffusion/ventilation 

information by normalising the dissolved signals by the gas signals.  Here, a distinction 

between perfusion and diffusion should be made.  The physiological definition of 

ventilation/perfusion ratio (V/Q ratio) is a measurement used to assess the efficiency of 

respiratory function defined by the ratio of the amount of air reaching the alveoli to the 

amount of blood reaching the alveoli.  In nuclear medicine (discussed earlier in section 

2.1), perfusion provides information on the whereabouts of blood capillary beds in the 

lungs as the radioactive tracer is injected intravenously and is trapped in the capillaries in 

the lungs.  Dissolved xenon MR, however, shows the direct alveolar-capillary gas exchange 

in the ventilated area of the lungs.  This information cannot indicate the lack of functional 

capillaries around those ventilation defects, thus dissolved phase xenon has similar 

sensitivity to the DLCO measurement in pulmonary function tests in that it is sensitive to 

the gas exchange surface (see Section 2.1), with the additional benefit of regional 

information.  When using the same imaging parameters, much lower dissolved signal 

intensity is observed in COPD subjects in the anterior slices compared to the gas signal, 



 

 

 

 

75 

which is not observed in healthy volunteers, suggesting a poorer lung perfusion function 

or low tissue density.  Signal intensity/ventilation defects also occur differently regionally, 

indicating regions of the lungs that can be ventilated but are not viable for gas exchange.  

Also, by comparing the normalised dissolved phase image to ADC maps, one can see a 

correlation between reduced dissolved phase signals to elevated ADC values indicating a 

loss of gas exchange surface in emphysema.  A closer look at this technique of 

simultaneous imaging is demonstrated experimentally in Chapter 6.   

Most recently, multi-echo 3D radial imaging within one breath hold enabled the imaging 

of not only gas and dissolved 129Xe, but is able to separate dissolved 129Xe in blood and 

tissue/plasma in both healthy subjects and subjects with asthma and COPD(164).  Even 

though these preliminary works with dissolved 129Xe imaging provide relatively low spatial 

resolution, we can anticipate improvement with better sequence optimisation and 

polarisation in the future.   

This thesis now focuses on the development of xenon imaging methods for human lung 

imaging on 1.5 T and 3 T whole body scanners in the upcoming Chapters. 

 

2.8 Conclusions  

Hyperpolarised noble gas in magnetic resonance imaging has been shown to be sensitive 

for diagnosing pulmonary diseases with zero ionising radiation dosage and no known 

adverse effects.  It is a structural and functional imaging modality that can be used in 

numerous applications with high resolution with added physiological sensitivity that is not 

provided by other lung imaging modalities. This makes it a powerful tool for assessment of 

earlier stages of lung diseases such as CF (139,141) and COPD (41) that cannot be detected 

by standard means of spirometry and as a marker of response to therapy for these lung 

diseases.  To date, hyperpolarised gas imaging is still only used in a handful of academic 
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centres  (Table 2.1) due to the business policies of US companies whom held very broad 

patents in the field in the mid-1990s, therefore, polarisers were limited either home-built 

or on loan.  In 2011, however, Polarean (Research Triangle Park, NC) re-obtained the 

patents and for the first time, offered polarisation systems for sale, which provides 

opportunities for new research groups and academic centres to become involved in this 

field to ensure a faster development in the field of hyperpolarised noble gas MRI. 

Known clinical hyperpolarised noble gas MRI sites worldwide 
3He University of Sheffield, Sheffield, UK 

University of Virginia, Charlottesville, US 

University of Washington, Seattle, US 

Duke University, South Carolina, US 

University of Western Ontario, London, CA 

University of Wisconsin, Madison, US 

University of Iowa, Iowa, US 

University of Pennsylvania, Philadelphia, US 

Lakehead University, Thunder Bay, CA 

Mainz University, Mainz, Germany 

University of Lyon, France 

University Paris Sud, Orsay, France 

University of Copenhagen, Denmark 
129Xe University of Sheffield, Sheffield, UK 

Univerisity of Virginia, Charlottesville, US 

Duke University, South Carolina, US 

University of Cincinnati, Cincinnati, US 

University of Western Ontario, London, CA 

University of Oxford, Oxford, UK 

University of Pennsylvania, Philadelphia, US 

Lakehead University, Thunder Bay, CA 

Table 2.1. Hyperpolarised noble gas MRI sites around the world. 
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CHAPTER 3: Imaging of Hyperpolarised gas 

phase 129Xe in lung MRI – B0 field strength 

comparisons at 1.5 T and 3 T 

 

3.1 Introduction 

Hyperpolarised 129Xe lung MRI (103) provides a potentially cheaper and more abundant 

alternative to 3He.  Preliminary clinical studies (89,104) with gas phase 129Xe lung MRI 

suggest the gas could have comparable functional sensitivity for imaging lung ventilation 

in lung diseases as 3He MRI. From an experimental and clinical perspective, it is important 

to know what magnetic field strengths are feasible and optimal for 129Xe lung MRI.   

Signal-to-noise ratio (SNR) in MRI is affected by many factors including pulse sequence 

parameters, sample noise, magnetic field strength, and coil noise.  If the coils are large 

with large samples such as the human thorax, the SNR is typically dictated by the sample 

noise dominant regime at frequencies typical for standard clinical MRI (60 – 130 MHz), 

whereas experiments with small coils with a higher resistance from the coil rather than 

the sample tend to fall under the coil noise dominant regime (165), especially at lower 

frequencies typical of 129Xe MRI at 17.7 MHz and 35.5 MHz at 1.5 and 3 T respectively . 

Thermal noise, also termed Johnson-Nyquist noise, is the electronic noise inside an 

electrical conductor and the sample from thermal agitation of the charge carriers at 

equilibrium regardless of the voltage input as the charge carriers are vibrating due to 

temperature and resistance alone. Thermal noise is associated with the tuned circuit 

losses and sample dissipation,    and    respectively, are given by the Johnson noise 

formula where the units are 
  

  
 (166): 

  
            (3.1) 
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            (3.2) 

where k is Boltzmann’s constant, T is temperature in degrees Kelvin, and Rt and Rs are 

resistive losses in the tuned circuit and sample respectively, and the noise is proportional 

to the frequency bandwidth in Hz.  Since thermal noise extends over a very wide spectrum, 

it is usually treated as a white noise source, and we can then simplify eq. 3.1 and 3.2 to: 

                (3.3) 

                (3.4) 

where BW is the bandwidth in Hz and the units are now in V. 

In NMR, the signal, S, from the total transverse magnetisation, M, from the sample, 

precessing at a frequency,  , satisfies: 

  
  

  
        (3.5) 

In conventional thermally polarised 1H MRI, both   (Eq. 1.15) and M (Eq. 1.9) are 

proportional to the static magnetic field B0, such that: 

    
              (3.6) 

Coil resistance, Rt, from the conductor generally scales with      because of the RF skin 

depth effect of the conductor.  Sample resistance, Rs, comes from eddy currents 

generated in the lossy sample, and much like the induced emf of the signal, scales with B0
2 

(equation 3.6).  Therefore, the noises associated with tuned circuit loss (vt) and sample (vs) 

are related to the magnetic field strength by: 

     
   

            (3.7)  

                   (3.8) 

and a general expression of SNR can be written as (165) 

      
 

   
    

 
 

  
 

    
      

              (3.9) 

where α and β are sample and coil contributions respectively.  A simplified expression 

assuming a high enough frequency where sample noise dominates (β   ) is given by: 

            (3.10) 
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Now at low frequency, coil resistance generally becomes more significant, so under the 

coil dominant noise regime (α = 0), SNR is given by: 

     

 

     (3.11)  

Now if we consider the case for a hyperpolarised gas MR experiment where the 

polarisation and longitudinal magnetisation is independent of B0, then signal is now 

linearly proportional to B0 since the longitudinal magnetisation is a function of the 

polarisation (equation 1.6) alone, which is determined by the SEOP process.  So expression 

(3.6) for hyperpolarised gas MR becomes: 

  
  

  
          (3.12) 

And equations 3.10 and 3.11 for the hyperpolarised sample can thus be expressed as: 

 
                                                                          

    

 

                                                                             
   (3.13) 

Signal to noise ratio (SNR) is also affected by the imaging pixel size as (1): 

         
    

  
 
    

  
            

   

   
   (3.14) 

where K is a constant from hardware dependent factors and sequence parameters, Nx and 

Ny are number of frequency and phase encoding steps, NEX is the number of averages, 

rBW is the receiver bandwidth, and FOVx and FOVy are field of view in x and y direction 

respectively.   

So far, we have an indication that SNR in hyperpolarised magnetic resonance imaging (MRI) 

is less dependent upon static magnetic field strength, B0, due to the B0-independent 

polarisation (167) (eqn. 3.13).  Indeed, low field imaging of hyperpolarised gases has been 

realised in multiple research centres (168-170). The apparent transverse relaxation time, 

T2
* is however field dependent and is largely affected by magnetic susceptibility at 

tissue/gas interfaces with a bulk susceptibility difference between the airspace and tissue 
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(1H) of Δχ ≈ 9 ppm (171).   Experimental results have shown that the T2
* of 3He is about 

twice as long at 1.5 T (27.8 ± 1.2 ms) when compared to at 3 T (14.4 ± 2.6 ms). (172), 

which suggests a static dephasing regime (173), opposed to a motional averaging / 

narrowing dominated relaxation, where diffusion is so fast compared to TE that all spins 

undergo similar averaged accumulative phase, thus little signal attenuation.  In the static 

dephasing regime, the phase accumulation is mainly induced by the static magnetic field 

inhomogeneity, which is much greater than through diffusion in the presence of field 

gradients in the time course of the experiment (i.e. slow diffusion where spins can be 

treated as stationary and accumulation of phase comes from localised field 

inhomogeneity mainly).  The static dephasing regime criterion is as followed defined in 

Yablonskiy and Haacke (173):  

         
 
  

 
 
 

     
                      (3.15) 

where   is the relative fraction volume of the dephasing sources from air-tissue interfaces 

in the case of the lungs,    is the frequency shift,    is the characteristic distance of 

magnetic field change, D is the diffusion coefficient, and d = 1, 2, 3 for 1-, 2- , and 3-

dimensional diffusion respectively.    This was first proposed by Yablonskiy et al, for a two-

compartment model where magnetised objects such as blood vessels and red blood cells 

are embedded in an isotropic medium of tissue in which water molecules are diffusing.  

The application of such criterion for the static dephasing regime has not been extended to 

hyperpolarised noble gases in the lungs due to the complexity in structure of the acinar 

space.  The limited experimental data suggests a static dephasing regime with 3He from 

two clinical MR field strengths (172).  However, theoretical simulations (167,174) 

suggested a non-linear dependence of T2
* for xenon closer to 3 T magnetic field strength.  

Further modelling and experiments are needed to understand in more depth of the key 

contributors, including susceptibility, lung micro-geometry and diffusion. 
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It has also been predicted for hyperpolarised gas lung imaging that a higher SNR could be 

achieved at low B0 due to the longer T2
* by the use of a low readout bandwidth (167), thus 

enabling imaging with hyperpolarised gases at field strengths as low as 3 mT (175).  This 

benefit has limited scope with 3He gas due to its highly diffusive nature introducing 

significant diffusion dephasing in the presence of a long readout gradient associated with 

the low bandwidth readout gradient (176), but has potential advantages for 129Xe. 

Despite the possibilities at low B0, for HP gas lung MRI to translate to clinical practice, it 

really needs to be feasible at the B0 field strengths currently used for routine clinical 1H 

MRI, namely 1.5 T and 3 T. Three previous experimental studies with hyperpolarised 3He 

have shown comparable SNR observed at various field strengths.  Deppe et al. (172) 

reported comparable SNR at 3 T and 1.5 T, although different RF coil designs were used.  

Dominguez et al., in a later study also concluded that SNR is independent of field strength 

for human lung 3He imaging at 1.5 T and 3 T using RF coils of the same design (16 rungs, 

rigid transmit-receive elliptical chest coil).  They also proposed a thermal phantom 

normalisation procedure to account for the non-field-strength dependent contribution to 

the SNR (177). Salerno et al. in a study where a 1.5 T system was ramped down to 0.5 T, 

compared 3He lung MRI SNR at the two field strengths using flexible chest RF coils where 

they found the SNR values at 0.54 T were similar to, but generally lower than that at 1.5 T 

(168).  No systematic evaluation of the coil performance was done in that empirical study. 

The aim of this study was to perform systematic experiments at the clinically relevant field 

strengths of 1.5 T and 3 T to compare the SNR of inhaled hyperpolarised 129Xe lung MRI 

using radiofrequency (RF) coils of the same geometrical design.  Image SNR and gas T2
* 

were measured using ventilation images from healthy volunteers at both field strengths.  

In addition, the assessment of the non-B0 dependent hardware dependent contribution 

was also assessed using thermally polarised 129Xe and hyperpolarised gas phantoms. 

3.2 Materials and Methods 
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Experiments were performed on whole-body clinical MR systems: (i) a 1.5 T Signa HDx (GE, 

Milwaukee, WI, USA, Fig. 3.1(b)) equipped with a 2kW broadband RF amplifier and (ii) a 3 

T Philips Achieva equipped with a 4kW broadband RF amplifier. A flexible twin Helmholtz  
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Figure 3.1    Experimental set up for in vivo 129Xe experiments using a custom vest coil (a) 

subject in a 1.5 T GE scanner constantly being monitored for vital signs with 

blood oxygen saturation monitor attached via a finger probe (b) and the 

subject inhales 1 l of mixed 129Xe and N2 from a 1l Tedlar bag (c). 

 

Figure 3.2   Schematic of the geometry of the double Helmholtz transmit-receive vest 

coil (a) and how it is wrapped around the subject during experiments 

ideally with B1 fields 90˚ out of phase (b). 

 

quadrature transmit-receive coil (CMRS, USA, Fig. 3.1(a), Fig. 3.2) was used at both field 

strengths, resonating at 17.7 MHz and 35.4 MHz for 1.5 T and 3 T, respectively.  The coils 

had exactly the same geometrical form and were fitted with passive trap circuits tuned to 

the 1H frequency for blocking induced currents during 1H body coil transmission. In 

addition, tuned transmit-receive switches with custom tuned pre-amplifiers were used for 

both experiments.  Measurements of both of the coils’ impedances were made with a 

network analyser (Agilent Technologies E5061A, CA, US) from the S11 Smith chart when 

unloaded (but geometrically formed, Fig 3.3 (a)) and loaded with volunteers of 50 kg (b) 
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and 88 kg (c) in the bore of the magnets (Fig. 3.3).  The fact the locus of the Smith chart 

and the measured impedances change very little even at 3 T indicates that the sample 

coupling is not the dominant source of noise in these experiments. 

Three volunteers participated in the in vivo imaging study at 1.5 T and 3 T, (female 25 

years old, 50 kg; male, 40 years old, 88 kg; male, 41 years old, 88 kg).  Written consent was 

acquired from all volunteers and approval was obtained from the national research ethics 

committee.  

 

As a parallel means to assess the contribution to the SNR measurements from factors that 

are not directly related to the polarisation (e.g. the rate of precession of the transverse 

magnetisation, the coil’s intrinsic sensitivity and resistive noise at the different radio 

frequencies, the T-R switch insertion loss, cable losses and preamplifier noise), 

experiments were performed using both a thermally-polarised and a hyperpolarised 129Xe 

phantom with the same loading as experiments with the same volunteer following the 

method of Dominguez et al (177). The thermally polarised phantom was a 1 l glass cell 

containing 2 l of natural abundance xenon (26% 129Xe) mixed with 1 l of oxygen at a total 

pressure of around 3 bar with a measured T1 of 1.6 s. The hyperpolarised phantom was a 1 

l Tedlar bag containing 3% of isotopically-enriched xenon (86% 129Xe), 10% N2, and 87% 

4He.  The 129Xe was polarised to around 10% as described in Section 1.3. 
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Figure 3.3.   S11 measurement on smith charts of the quadrature transmit-receive coil at 

3 T when unloaded (a), loaded with (b) a 50 kg volunteer, and (c) loaded 

with an 88 kg volunteer. Notice the locus of the Smith chart changes very 

little between the volunteers. 

 

3.2.1 MR measurements 

3.2.1.1 Phantom SNR assessment 

For the phantom SNR assessment calculations, the female volunteer (50kg) was 

positioned supine in the chest coil at both field strengths.  The hyperpolarised gas 

phantom was then placed on top of the volunteer’s chest above the lungs inside the coil.  

Flip-angle calibration was performed on the phantom using a non-slice-selective pulse-

acquire sequence of 20 free-induction decay (FID) acquisitions with spoiler gradient 
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applied between repetitions at 500 ms TR. The mean flip angle from that volume of the 

coil was calculated using: 

                         (3.16) 

where S(n) is measured signal after n RF pulses, S(0) is the initial signal, and α is the flip 

angle.  The thermally polarised phantom was then placed in the same position on the 

volunteers chest above the lungs inside the coil (Fig 3.4), and the SNR of the signal was 

calculated from the average of 100 pulse-acquire FID acquisitions with a 50° flip angle, TR 

of 6 s, receiver bandwidth 2 kHz and 512 samples.  

 

Figure 3.4.   Coil geometry is dependent on patient and experimental setup in (a) a 

small volunteer, (b) a larger volunteer, and (c) a small volunteer with a 

thermally polarised 129Xe phantom (purple) on top of the chest during the 

thermal phantom assessment. 

 

3.2.1.2 Ventilation imaging  

A global (whole lung) flip-angle calibration was calculated for each volunteer in the RF coil 

at both field strengths with data acquired from the same 2D spoiled gradient echo imaging 

sequence as detailed below, but with the phase-encoding gradient and slice select 

gradient turned off. Each volunteer inhaled a 50 ml dose of hyperpolarised 129Xe and the 

flip angle was calculated using Eq. 3.12. 129Xe ventilation images were then obtained at 

both field strengths using a multi-slice 2D spoiled gradient echo sequence. Images were 

acquired following inhalation of a 1 l Tedlar bag filled with 700 ml N2 and 300 ml 

isotopically enriched Xe (86% 129Xe) from a position of relaxed expiration. Gas was 

polarised as described in Chapter 1, Section 1.4. 
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(a) 

 
Figure 3.5   (a) Pulse sequence of a 2D spoiled gradient echo from 1.5 T EPIC psd plotter 

and (b, next page) 3 T Philips pulse sequence simulator. 

 

(a) 
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Pulse-sequence parameters were kept consistent between the two MR systems: 9 coronal 

slices of 15 mm thickness acquired from anterior to posterior covering the whole lung, 

field of view (FOV) of 38.4 cm x 38.4 cm, resolution of 96 x 96 matrix, receiver bandwidth 

(BW) of 4 kHz, echo time / repetition time (TE / TR) of 4.15 / 18 ms for volunteer one and 

3.0 / 6.2 ms for volunteer two.  The parameters were kept constant for each volunteer on 

both scanners, but not identical to each other because a larger bandwidth was adopted 

for the larger volunteer for a smaller echo time, which should not affect the systematic 

comparison between the two scanners.  Centric phase encoding was used to maximise the 

(b) 
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SNR, and a constant flip angle of 9° was used, the pulse sequence diagrams from the GE 

EPIC and Philips PARADISE pulse sequence programming interfaces are shown in Fig. 3.5.   

The B1 field homogeneity of the coil is dependent on coil geometry; as shown in Fig 3.4, 

the coil geometry changes from a small healthy volunteer (a), a larger volunteer (b), as 

well as (c) the same smaller volunteer with a thermally polarised 129Xe phantom, which 

was used for thermal phantom SNR assessment. 

3.2.1.3 Pulse sequence for T2* measurement 

 

Figure 3.6.   Sequence diagram of an interleaved dual echo time 2D spoiled gradient 

echo pulse-sequence used for T2
* measurement at 1.5 T on the GE system. 
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An interleaved dual echo time 2D spoiled gradient echo pulse-sequence (Fig. 3.6) was 

used for T2
* calculation as detailed in (172), fitting to a mono-exponential T2

* relaxation 

decay.  Since the T2
* in the lungs is highly dependent on the lung volume (see discussion 

on effect of lung inflation level in Section 3.3.3), and breath-hold time limits our capability 

to acquire many TE values, a mono-exponential decay of the signal is assumed and we did 

not adopt a bi-exponential/multi-exponential fit for T2
* measurements in this experiment.  

In reality, however, it is more likely that the transverse decay of xenon within the lungs is 

may not be mono-exponential due to factors related to the existence of different 

compartments like e.g. one undergoing a long slow decay (free diffusion and motional 

narrowing away from the walls), and one undergoing a faster short decay (restricted 

diffusion proximal to by the air/tissue micro-structural interface), as well as a possible 

decay component associated to with dissolved phase xenon exchange.  Note that this 

chapter focuses on the first attempt to our understanding of T2
* relaxation of gas xenon 

for imaging purposes, thus an assumption of mono-exponential decay is suffice, which will 

further enable the development of sequences and measurements. 

Sequence parameters were: 6 coronal slices of 30 mm thickness covering the whole lung, 

FOV of 38.4 cm x 38.4 cm, resolution of 64 x 64 matrix, BW of 16 kHz, centric encoding, 

and a flip angle of 7°.  TE1/TE2 values used at 1.5 T were 2.9 ms / 18 ms, and the TE1/TE2 

values used at 3 T were 4.4 ms/ 11 ms.  TE1 values were chosen as the minimum 

attainable for the given RF pulse and bandwidth, whereas TE2 values were chosen based 

more on the expected smaller T2
* values at 3 T.  Each volunteer was asked to breathe 

either to Residual Volume (RV) + 1 l from the Tedlar bag or to the Total Lung Capacity (TLC) 

after inhaling 1 l from the Tedlar bag.  The sequence diagram for the 1.5 T interleaved 

sequence is shown in Fig. 3.6. 

 

3.3 Results and Discussion  
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3.3.1 SNR Assessment 

Since the comparisons made in this chapter were between two completely different 

system, we debated a more systematic assessment in hope to reduce the effect.  This SNR 

assessment procedure was suggested in (177) for normalisation of all signals based on the 

fact that the phantom is fixed and should produce signal intensities proportional to field 

strength differences on thermally polarised xenon.  After averaging 100 FID acquisitions 

from the thermally polarised phantom loaded with the volunteer (Fig.3.4 (c)), the SNRs at 

3 T and 1.5 T were 105 and 42, respectively. This gives a relative sensitivity factor k of 1.25, 

from the calculation described in full detail in (177) using equation 3.10.    
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     (3.17) 

This k-factor also makes the assumption that the scanner/coil combination from both 

scanners would pick up all of the gas with a homogenous flip angle spatially.  This, 

however, is hard to manipulate due to the changes in the exact position of the phantom 

with respect to loading/coil as well as coil geometry consistency. 

 

3.3.2 Ventilation imaging comparisons 

Fig. 3.7 shows typical ventilation images from the female volunteer acquired following 

inhalation of 300 ml of 129Xe at both 3 T and 1.5 T.  Images were reconstructed from raw k-

space data in MATLAB (MA, USA) with no additional k-space or image domain filtering to 

exclude differences between the image processing algorithms of the respective scanners.   
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Figure 3.7.   Slice-by-slice comparison of images from the lungs of volunteer 1 obtained 

with 129Xe ventilation sequences at 3 T and 1.5 T. Spatial resolution in the 

images is 15 mm × 4 mm × 4 mm. Note the increased texture in the images 

due to increased susceptibility dephasing at 3 T around the blood vessels 

(arrows).  

For each slice, two regions of interest (ROIs), consisting of the whole lung less major 

airways, were selected from the left and right lungs; a ROI containing background noise 

was also selected. The mean SNRs were then calculated using the average of the signal 

divided by the standard deviation of the noise, and are plotted in Fig. 3.8 slice by slice at 

both field strengths.  The general trend of decreasing SNR from anterior to posterior is 
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likely to be partly due to T1 decay during the breath-hold (105) as the multi-slice imaging 

order is anterior to posterior and the posterior slices are thus more exposed to T1 

relaxation. Previous studies with 3D 3He MRI (97) and 129Xe MRI (162,163) have shown 

higher SNR in posterior slices which is consistent with the physiology of preferential 

ventilation of the posterior lungs. These trends were not obvious in this work although the 

slight rise in SNR in the most posterior slices may be partially due to this effect in 

combination with the higher B1 transmit and receive sensitivity of the close fitting vest coil 

at the back (see Chapter 4 . Fig. 4.18). 

 

Figure 3.8.   Comparison of the mean SNR from the images of the left and right lung as a 

function of slice number for regions of interest at 1.5 T and 3 T. Note the 

higher SNR in anterior slices, which is probably indicative of T1 decay 

resulting from the anterior to posterior imaging order. The slight rise in 

signal in the posterior slices is likely a result of higher B1 transmit–receive 

sensitivity close to the coil. 
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The mean SNR values from two volunteers are summarised in Table 3.1.  These results, 

obtained using these RF coil designs of the same geometry, suggest that the SNR of 

hyperpolarised 129Xe MRI is slightly higher at 3 T by factors of 1.16 and 1.31 for the two 

subject-loads of 50 kg and 88 kg, respectively.  However, the B1 homogeneity of the coil 

could be different from patient loading differences and coil geometry can change from 

subject to subject as shown in Fig. 3.4.  This is the same trend in increased SNR with B0 as 

is seen with thermal phantom experiments following normalisation for the B0 dependent 

longitudinal magnetisation (k = 1.25). Going back to the SNR calculations at the beginning 

of this chapter, equation 3.13 predicts that SNR should be independent of the field 

strengths if the noise is dominated by the sample, and would increase by a factor of 

33/4/1.53/4 =1.68 at 3 T if the system is in a coil noise dominated regime.  From this result, it 

appears that due to the relatively low resonant frequency of xenon, there is some 

contribution of coil noise, and both contributions (coil and sample) affect the SNR 

outcome.  Following experiments with 3He SNR 1.5 T and 3 T using bird-cage body coils of 

the same geometry, Dominguez et al. (177) proposed a normalisation process using the 

thermal phantom signal ratio, k from Eq. 3.10. They used this factor to normalise the 3He 

lung image SNR for system hardware-dependent SNR effects. This factor, however, still 

contains an intrinsic weighting from the B0, in that firstly the induced EMF is proportional 

to the precessional frequency of the transverse magnetisation (which is proportional to 

B0), and secondly, that frequency-dependent noise characteristics of the RF coil and 

sample load are removed by this process of normalisation. It is debatable that this 

procedure can in fact be used to separate system noise not originating from the RF coil 

and sample from frequency-dependent signal and noise factors related to the higher 

precessional frequency and different coil electromagnetic sensitivities at 3 T and 1.5 T. As 

such, this normalisation process was not used in the work here with 129Xe.  Instead the 

thermal phantom procedure was used to evaluate the relative spectroscopic SNR of the 

two systems in parallel to the lung imaging experiments.   
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The higher SNR observed at 3 T could be attributed to the collective contribution to the 

SNR from several different factors including:  

(i) the transverse magnetisation (precessing at 17.65 MHz and 35.35 MHz, 

respectively) which is directly linked to measured current. 

(ii) the noise is a combination of coil and sample resistance noise with both of 

these coils with possibly more coil noise dominated regime environment at 1.5 

T since the frequency is less at 17.65 MHz. 

(iii) the ‘‘back-end’’ system noise (preamplifier, T–R switch and hybrid insertion 

loss, receiver chain, etc). These factors are difficult to accurately quantify for 

in-vivo RF coil comparisons with these kind of coils which are fitted with cables 

and have additional losses from the resistance of the 1H trap blocking circuits, 

where measurements of coil Q when loaded and unloaded are not really a 

meaningful assessment of the working coils sensitivity with respect to factor (ii). 

(iv) Small variation in controlled parameters such as gas polarisation/amount, 

volunteers’ lung inflation consistency. 

Table 3.1.   Mean SNRs from slice-by-slice ROI calculations of the whole lung of two 

volunteers.  The differences between volunteers are due to differences in 

sequence parameters, which were kept constant for each volunteer across 

both scanners. 

The central message from this comparison is both field strengths provide a near equally 

sensitive environment for lung MRI studies with 129Xe with this coil design with 3 T 

providing slightly higher SNR.  The fact that SNR did not scale with B0
3/4

  (predicted higher 

SNR in the sample dominated noise regime from equation (3.13)) indicates the imaging 

Gender, 
age,[weight] 

Sequence parameters 
(TR/TE) 

SNR at 1.5 T SNR at 3 T 

F, 25,  [50 kg] 18 ms / 4.2 ms 44.1 51.3 

M, 40, [88 kg] 6.2 ms / 3.0 ms 27.1 35.7 
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regime for human 129Xe lung MRI with this coil design at 1.5 T and 3 T lies somewhere in 

between the coil noise dominated and sample noise dominated regimes. 

The SNRs achieved in practice at these two field strengths within the time course of a 

breath-hold are likely to match or exceed those at lower field strengths. An additional 

factor worth consideration when deciding upon B0 is the power available from the RF 

amplifier to deliver a given flip angle with a short duration pulse. This could become an 

issue when imaging with sequences such as balanced steady-state free precession, which 

require short duration high flip angle pulses. As required RF power and deposited SAR 

scale quadratically with Larmor frequency, imaging at 1.5 T is less constrained by this 

factor than at 3 T. 

 

3.3.3 T2
* measurements  

Example T2
* histograms from all slices from the two male volunteers acquired at 

functional residual capacity (FRC) + 1 l are shown in Fig. 3.9 (a) & (c), with median values 

of 25 ± 13 ms and 18 ± 6 ms at 1.5 T and 3 T, respectively. The uncertainty was measured 

as the full-width at half maximum of the T2
* histogram. These values are shorter than the 

only other previously reported values in the conference literature (178) of 50.4 ms and 

27.4 ms at 1.5 T and 3 T respectively.  However, repeated measurements with the lungs 

filled up with room air to total lung capacity (TLC) instead of FRC + 1 l show T2
* with 

median values of 52 ± 20 ms and 24 ± 11 ms at 1.5 T and 3 T, respectively, which are 

consistent with (178) to within limits of agreement.  This is shown in Fig. 3.9 (b) & (d), and 

indicates a dependence of the transverse relaxation constant T2
* on lung inflation level 

that was previously seen with 3He (179).   
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1.5T 

 

 

 

 

3 T 

  
Figure 3.9.  The distribution of T2

* of two healthy volunteers (40 years old , 88 kg; 41 

years old, 88 kg)  as measured from all coronal lung slices with 

hyperpolarised 129Xe at B0 field strengths of 1.5 T (a) and 3 T (c) showing 

healthy subject consistency at FRV + 1 l;  as well as the distribution of  T2
* 

while imaging at forced residual volume (FRV) +1 l and total lung capacity 

(TLC) as measured from all coronal slices at B0 field strengths of 1.5 T (b) 

and 3 T (d) from one healthy volunteer (41 years old, 88 kg). 

 

Example ventilation images of the lungs of a healthy volunteer at lung inflation levels of 

TLC as well as RV +1 l are shown in Fig. 3.9 at both TEs.  It is observed that, the SNR is 

lowered at TLC at TE1 due to the larger lung volume at TLC as to be expected.  From these 

interleaved sequences, the two images obtained can be used to map out T2
* of each 

individual slice, slice-by-slice maps are shown in Fig. 3.11. 
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Figure 3.10.  Typical slice-by-slice comparison of the lungs of a volunteer (40 year old 

male, 88 kg) obtained with 129Xe at RV + 1 l and TLC at 3 T at TE1 = 4.4 ms 

and TE2 = 11 ms.  

 

 
Figure 3.11.   Slice by slice T2

* maps generated by two point exponential fits from the 

images in Figure 3.10 at 3 T 
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Figure 3.12.  Mean T2
* of the 129Xe in the lungs of the two healthy volunteers averaged 

from all coronal slices against measured ventilation volume of the lung 

since the two volunteers (blue and red) are age, sex, and weight matched 

(the four data points corresponds to two volunteers at two lung inflation 

level, or four lung volumes). 

 

Gender, age,[weight] Lung inflation level T2
* at 1.5 T [ms] T2

* at 3 T [ms] 

M, 41, [88 kg] 
FRV + 1 ℓ 

TLC 
36 ± 19 
41 ± 21 

16 ± 8 
26 ± 10 

M, 40, [88 kg] 
FRV + 1 ℓ 

TLC 
29 ± 12 
35 ± 18 

15 ± 6 
19 ± 9 

Table 3.2.   Mean T2
* of the two healthy volunteers from all coronal slices at two 

different lung inflation levels at two B0 field strengths. The uncertainty was 

measured as the full-width at half maximum of the histogram. 

 

The mean T2
* values were then plotted against the measured ventilated volume by 

multiplying the number of all ventilated voxels from all slices by the voxel size of 6 × 6 × 30 

mm3 in Fig. 3.12, and summarised in Table 3.2.   
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The trend of these total lung capacity values of T2
* being inversely proportional to B0 

suggests a pseudo-static dephasing regime (see Section 3.1 above).  This was previously 

observed for inhaled 3He T2
* of 27.8 ± 1.2 ms at 1.5T compared to 14.4 ms ± 2.6 ms at 3T. 

(169). The dependence of T2
* on lung inflation volume has also previously been observed 

with 3He (180).  Whereas T2
* is inversely proportional to the magnetic field strength in the 

static dephasing regime, xenon is theoretically in that regime at 1.5 T but not at 3 T.  This 

is however, hard to verify with only two clinical field strengths available.  All the T2
* values 

appear to scale inversely with B0 at both lung inflations of FRC + l l and TLC as predicted in 

static-dephasing regime.   Another effect in xenon measurements that needs to be 

considered is the dissolution of xenon into blood/tissue.  It is thought possible that the 

increased alveolar SA/V ratio for gas exchange at lower lung inflation level may mean that 

a higher fraction of the gas in the alveolus samples the dissolved septal/blood 

compartment (162,163). However, exchange time of 100 – 150 ms (161) is much longer 

than that of T2
* values,  which would suggest a slow exchange during T2

* decay, thus 

should have negligible effects. 

As a result of the longer T2
* values of 129Xe at 1.5 T, it is likely to be more useful for 

experiments involving longer TE, e.g., diffusion studies (89) and EPI (181).  A longer T2
* can 

enable a narrower readout bandwidth that requires a longer TE due to the decrease of 

gradient strength (frequency encoding in Section 1.1.7).  This leads to an improvement in 

SNR by equation 1.47, as predicted by theory (167) (Fig. 3.13).  In Figure 3.13, an expected 

increase in SNR of less than √2 is expected from equation 1.47 as the receiver bandwidth 

is halved.  The slight discrepancy in the measured SNR may be due to experimental 

precision and variability in gas polarisation/volume.  How advantageous this is in practice 

is debatable as very low imaging bandwidths incur longer acquisition times, which 

prevents complete volume coverage at higher resolution within a breath-hold. 

Furthermore, the associated need for weak readout gradients means that the background 

B0 inhomogeneity in the lungs may become significant  in comparison.  Lastly, the longer 
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echo time results in more dephasing due to diffusion action of the readout gradients, and 

should be taken into consideration. 

 
Figure 3.13.  15 mm central slice of a healthy volunteer at 1.5 T.  Left: receiver 

bandwidth of 8 kHz with TE of 2.4 ms (SNR of 11.4/13.3 for the left/right 

lungs)  .  Right: receiver bandwidth of 4 KHz with TE of 3.6 ms (SNR of 

27.6/28.6 for the left/right lungs).   

 

3.4 Conclusion 

In this study, the feasibility of high quality hyperpolarised 129Xe gas ventilation imaging has 

been demonstrated at both of the clinically relevant field strengths of 1.5 T and 3 T, using 

small (300 ml) volumes of inhaled Xe gas (isotopically enriched to 86% 129Xe). The high 

quality images obtained (SNR range 21–53) with a spatial resolution of 15 mm × 4 mm × 4 

mm voxel, bode well for future clinical studies of lung ventilation at either clinical scanner 

field strength using modest volumes of 129Xe gas.  This is demonstrated below with 

comparable results from 3He (Fig. 3.14) in healthy volunteers as well as sensitivity to lung 

regional functions as seen in Fig. 3.15 in a healthy smoker. 
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Figure 3.14.  Comparable slice of the same volunteer (F, 26) with 300 ml 129Xe (left, 

centric, 96 x 96 x15 mm) and 3He (right, sequential, 192 x 192 x 10  mm) at 

1.5 T. 

 

 

Figure 3.15. Central slice-by-slice comparison of the lungs of a healthy smoker with 
129Xe ventilation sequences at 1.5 T. Spatial resolution 15 mm × 4 mm × 4 

mm.  
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CHAPTER 4:  An Unshielded Asymmetric 

Split Insert Quadrature Birdcage Coil for 

Hyperpolarised 129Xe Lung MRI at 1.5 T 

(to be submitted to Magnetic Resonance in Medicine) 

 

4.1 Introduction 
Hyperpolarised gas MRI requires special RF hardware that can transmit and/or receive at 

the resonant frequencies of at the respective nucleus;  17.67 MHz and 48.65 MHz for 129Xe 

and 3He respectively (Table 1.1) at 1.5 T.  In Chapter 3, work was carried out with flexible 

RF transmit-receive coils of double Helmholtz design.  Whilst providing good sensitivity, 

the B1 field homogeneity of such a coil design is not optimum and can change from subject 

to subject due to geometrical distortion and subject-dependent loading.  Birdcage coils in 

comparison provide the best spatial homogeneity in B1 fields.  The objective of the work in 

this Chapter was to develop and demonstrate an insert body transmit-receive birdcage RF 

coil tuned to 17.7 MHz for imaging of hyperpolarised 129Xe in the human lungs.  The coil 

was designed for use on a whole body GE Signa HDx 1.5 T (GE, Milwaukee, WI, USA) 

system, and the field strength was chosen because the skeleton of the coil was made 

identical to the 1.5 T home built 3He coil to fit the MR system.  The design considerations 

and criteria include the following:  

(i) Since the coil is designed for imaging the lungs, the size of the coil must be 

large enough to provide a uniform excitation across the FOV of the upper torso. 

(ii) In addition, there must be enough room for future accommodation of either a 

129Xe and/or 1H multiple receiver array.   
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(iii) In light of the above, the coil diameter was maximised, making full use of the 

magnet bore (60 cm in diameter).  

(iv) The rigid body of the coil ensures a consistent homogeneous magnetic field 

with less potential variation due to differences in subject size than when using 

flexible transmit-receive vest coil designs (Fig. 3.4) which are closely coupled to 

the torso.   

(v) Coupling with the MRI scanner’s built-in proton body coil was to be taken into 

account in the design process by making all possible measurements inside the 

magnet bore.  This was to enable anatomical 1H imaging of the chest with the 

129Xe coil in-situ which allows acquisition of co-registered 1H and 129Xe images 

in the same breath hold (182).   

(vi) Due to the non-recoverable 129Xe polarisation, small flip angles are typically 

used in a spoiled gradient echo (SPGR) sequence in gas phase 129Xe lung MRI.  

129Xe, however, can also be imaged in its dissolved phase in the blood using the 

gas in the lungs as a polarisation reservoir, in which case a much larger flip 

angle is typically used to image the dissolved 129Xe signal. Thus, this coil must 

be able to deliver a wide range of flip angles in a homogeneous and linear 

fashion with delivered RF pulse power.  

4.2 Materials and Methods 

4.2.1 Coil design:   

To satisfy all requirements mentioned above, an asymmetrical elliptical design was 

adopted based upon a geometrical mesh of copper conductors with an asymmetric oval 

cross-section (Fig 4.1) developed previously for 3He lung MRI by the Sheffield group (183), 

which fits onto the patient table 16 cm below the 1.5 T magnet bore’s centre line.  A 

conformal mapping approach transforms evenly-distributed positions from the 

circumference of a circle onto a cylinder of arbitrary cross-section to produce a uniform 
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magnetic field by means of continuous current density on the surface of the cylinder, in 

this case, an elliptical cross-section.  Assume that f(w) is an analytical function of the 

transform,  the transformation must include regions outside of the cylinder with known 

optimal current distribution  (i.e. distortion approaches zero at infinity so the field’s 

amplitude is the same) to satisfy        
    

 
     The conformal transformation f(w) 

can be solved using power series expansion and is given by:  

        
  

  
 
        (4.1) 

where ck are transformation complex coefficients and w is the coordinate in the circle 

plane.  This calculation was performed by Nick deZanche using software developed 

previously (184).   

  
 

(a)          (b) 

Figure 4.1  129Xe body coil mesh with copper conductors with 12 rungs (a) which 

separate into two parts at the red line indicators. Schematics of the 

conducting mesh (b) with its corresponding mesh numbers, the thick solid 

black lines indicate the placement of the copper conducting bars of the 

mesh and the red sections indicates the placement of capacitors, and the 

annotation for bottom half capacitors are labelled in green.   

 

 

The mechanical support of the coil’s conducting elements is designed to be separable into 

two parts, following the pattern of the coil previously developed for 3He (183), to allow a 



 

 

 

 

107 

subject to enter conveniently by lying down after removal of the anterior portion with 

patient-accessible space 50 cm wide and 36 cm high.  The ribs and spars of the coil are 

made of machined fibre-glass epoxy (FR4), which offers high mechanical and dielectric 

strength, while being flame-retardant.  The copper bars that make up the network are 3 

mm × 20 mm.  Reliable, nonmagnetic beryllium copper lug connectors join the upper and 

lower half of the coil.  The coil is connected to coaxial cables by non-magnetic BNC 

bulkhead connectors at meshes 6 and 9 (Fig 4.1 (a)) 90 degrees to one another for a 

quadrature coil design (Section 1.2.2).  The outside of the coil is covered with a 3–mm-

thick Acrylonitrile butadiene styrene (ABS) cover sheet for protection of the coil.  Details 

of the materials, geometrical design, as well as technique for the capacitance estimation 

are described in full in (183).  

The key differences of this coil are: firstly, it is not shielded therefore it is designed to be 

transparent to 1H RF transmit-receive with the scanner body coil, and secondly the coil has 

a band-pass design, with capacitors located on both the rungs and the end rings, in order 

to have maximal control of coil tuning at this lower frequency of 17.7 MHz compared to 

48.6 MHz for the previous 3He design.  

 

4.2.2 Inductance measurements 

First, to determine the approximate capacitor starting values, an algebraic method was 

used.  This method first requires knowledge of the ladder network’s complete matrix of 

self and mutual inductances of the 12 meshes.  These were obtained by measuring the 

resonant frequency or frequencies when single or pairs of meshes were populated with 

known capacitance values.  The inductance measurements were performed inside the 

bore of the magnet to account for mutual inductance and coupling of the mesh with the 

1H body coil and other cables in the bore.  In making these measurements, all other mesh 

elements were left open (183) (see Fig. 4.2) except the meshes being probed.  By using a 
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known, fixed capacitor (5 pF), inductances were calculated based on the measured S21 

network analyser frequency using equation (1.59) for an LCR network.  This process 

requires the removal of copper tapes for shorting/capacitors and the re-soldering of them 

onto the next mesh in between each measurement.  The soldering in between takes 

approximately 15 – 20 min, and the copper was allowed 5 – 10 min to cool down before 

taking any measurement since it affects the measured impedance values.  This initial 

process of measuring inductances therefore took 2-3 weeks to complete in the magnet 

bore.  The calculated inductances are summarised in table 4.1 in units of μH.  By inversion 

of Leifer’s expression (23) for the eigenmodes of the coil, the resulting calculated 

capacitance values for each of the elements provided the first iteration.  The theoretical 

field maps were then generated in MATLAB using the capacitance values, shown in Fig. 4.3.  

Upon completing the second iteration of the coil, the field maps were plotted (Fig. 4.4 (b)) 

and a uniform, optimal magnetic field can be observed.  Then it was noted that the centre 

frequency of each linear mode differed from the first iteration.  Upon revisiting the initial 

capacitance values with the new resonating frequencies, the theoretical field maps of the 

first iteration were plotted (Fig. 4.4 (a)) and the result confirmed the field inhomogeneity 

of the first iteration observed experimentally.  These simulations were performed using 

code written by Nicola deZanche at the University of Alberta using MATLAB code 

developed previously (183).   
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Figure 4.2.   Schematics showing the technique for measurement of inductances 

between two elements of the coil with known capacitors and open circuits 

on all other meshes.  Both search loops are connected to a network 

analyser for an isolation measurement (S21) where one serves to transmit, 

and the other search loop receives. 

 

4.2.3 Coil Tuning: 

Since this is an un-shielded coil, coupling with the proton body coil must be carefully 

controlled and taken into consideration when tuning and matching the coil; imperfections 

including geometrical positioning, subject loading, finite capacitor tolerances, and mutual 

inductances between non-adjacent meshes, must be considered. Thus, all of the empirical 

iterative capacitance determination and coil tuning measurements were made inside the 

magnet bore.    
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Figure 4.3.  (a) Initial capacitors used in the building process with regular capacitors, 

which were then replaced by ATC capacitors (b), and completed with a 

BALUN cabled at meshes 6 and 9 (c). 

With the first iteration of calculated capacitance values for the coil, it was first tested 

using low-tolerance, non-heat-resistant electrolytic capacitors (Fig. 4.3 (a)) just for the 

frequency measurements since no power was transmitted into the coil.  Once the desired 

frequency has been achieved, high power RF tolerated capacitors were ordered from 

American Technical Ceramics (ATC).  Once the ATC capacitors were received, they were 

soldered onto the coil (Fig. 4.3 (b)).  This resulted in a change in the resonant frequency 

perhaps due to the extra capacitance in the capacitor legs, and differences in tolerances, 

etc.  This step was omitted for the second iteration as it did not provide an accurate 

enough values.  All capacitors were then iteratively adjusted to achieve the desired 

frequency of 17.7 MHz for both linear modes to allow quadrature operation.  Due to the 
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effect of additional inductance from coupling between the 129Xe coil mesh and 1H body 

coil and cables, a systematic decrease in all of the capacitor values from the values 

simulated, was needed.  The final values were approximately 91 ± 30 pF (10 – 13% 

difference) less than the calculated values after the first major iteration of a working coil, 

and are summarised in table 4.2 (top).  The values after the second major iteration of a 

working coil are summarised in table 4.2 (bottom).  There are between 0.4 and 29 % 

differences between simulated and empirically optimised capacitor values. 

 

Table 4.1     Primary and secondary inductance values (in units of μH) of the xenon body 

coil calculated from the frequency of the S21 reading from a network 

analyser (in units of MHz) and the known capacitor value (5 pF) by equation 

1.59.  These table values were then used to calculate for all the capacitor 

values for all 12 meshes. 

 

Note that some of the secondary simulated capacitance values on the coil rungs (the 

longest length conductors that connect the two end rings) are all very large and in practice 

were shorted with copper strips (e.g. C4,5, C5,6, C6,7).   
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Figure 4.4.   Transmit field contour maps through the transverse plane through centre 

of the coil of the first initial iteration of capacitor values from simulation (a) 

and second initial iteration values (b), which shows improved homogeneity 

and uniformity.  The black dots in each individual graph correspond to the 

12 legs of the coil, the blue circle is the proton body coil inside the scanner, 

and the red line is the scanner table where the body coil is positioned. 

Lastly, after the final iteration of the tuning, the quadrature coupling to the ladder 

network was achieved through standard lattice baluns (Fig. 4.5) across one of the end 

(a) 

 

(b) 
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rings at elements 6 and 9.  This process was performed on the bench top prior to 

connecting to the coil with a network analyser to ensure the lattice balun resonates at the 

Larmor frequency of 129Xe at 17.7 MHz. 

Mesh Position C1 C2 C3 C4 C5 C6 C7 C1,2 C2,3 C3,4 C4,5 C5,6 C6,7 

First major iteration 

Calculated 

capacitor values 

[pF] 

681 624 807 873 779 570 555 2815 8018 1981 ∞ 2189 1028 

Final capacitor 

value [pF] 
620 640 790 820 979 640 550 1700 8820 2220 ∞ 1860 840 

Second major iteration 

Calculated 

capacitor values 

[pF] 

725 665 873 986 851 602 502 2625 3931 1419 ∞ ∞ ∞ 

Final capacitor 

value [pF] 
880 510 620 820 680 575 500 2610 4400 1440 ∞ ∞ ∞ 

Table 4.2.     Capacitor values at their corresponding mesh positions in the xenon body 

coil after the first and second major iterations, where a single subscript 

denotes one of the primary capacitors of its corresponding mesh number 

on the end rings, and the double subscript denotes one of the capacitors on 

the rungs of the coil (Fig. 4.1 (b)).  Due to symmetry about the y-z plane, 

only half of the values are shown (i.e. C1 = C12 , C6 = C9, and C1,2=C1,12).  

 

 
Figure 4.5.  Lattice balun design connected at mesh 6 and 9 (680 pF, see Table 4.2).  The 

lattice balun was tuned on the bench top, wire wound solenoid inductors 

were manually adjusted so the circuit resonates at 129Xe frequency of 17.7 

MHz. 
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4.3 Coil testing 

 

4.3.1 Network Analyser measurements 

 

Fig. 4.6 (a) & (b) shows the S11 measurements of the coils’ two resonant linear modes of 

17.45 MHz and 17.71 MHz when loaded with the same healthy volunteer after the first 

major iteration.  The plots are centred at a frequency of 17.7 MHz with a 3 MHz span. 

 

Figure 4.6.   S11 measurements of the coil’s resonating frequency inside the proton body 

coil for the two ports (meshes 6 (a) and 9 (b)) centred at 17.7 MHz with a 3 

MHz span after the first major iteration. 

 

Despite a high degree of spatial homogeneity seen at the centre of the imaging field, 

spatial inhomogeneity was found in the left distal lung of the first round of test images 

(white arrows in Fig. 4.12) as well as in the anterior to posterior direction of the coil.  It 

was then retuned and the S11 measurements from the second major iteration are shown 

in Fig. 4.7 (a) & (b).  The plots are centred at a frequency of 17.65 MHz with a 3 MHz span.  

(a) (b) 
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Figure 4.7.   S11 measurements of the coil’s resonating frequency inside the proton body 

coil for the two ports (meshes 6 (a) and 9 (b)) centred at 17.6 MHz with a 3 

MHz span after the second major iteration.  Note the slight splitting in the 

second port measurement has now been resolved. 

 

To investigate the matching of the coil, Fig. 4.8 shows the return loss (S11) measurements 

(Agilent Technologies E5061A, CA, US) of the unloaded (a) and loaded (b) coil, notice the 

quality factor Q (as discussed in Chapter 1) is greatly improved with loading from Qunloaded 

= 44 to Qloaded = 121.  Note also that the centre frequency changes very little with loading.  

Note that for accurate Q measurement, a two-port isolation S21 measurement is needed. 

 
Figure 4.8.    S11 measurement of unloaded (a) and loaded (b) coil with a healthy 

volunteer with a quality factor of 44 and 121 respectively. 

 

(a) (b) 

(a) (b) 
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Figure 4.9.    Left: S11 measurements of 1H body coil without xenon body coil (memory 

trace in thinner blue) and with xenon body coil (brighter blue) inside the 

magnet bore. 

Right: S21 isolation measurement between the proton body coil and the 

xenon body coil with < -20 dB isolation at both frequencies. 

 

Lastly, to ensure the compatibility of the xenon body coil with the proton body coil of the 

clinical scanner, coupling between the two coils was determined by the isolation 

measurement (S21) from the network analyser.  Coupling is the electromagnetic 

interaction of two RF resonators that can cause change in coil resonant frequency (Fig. 4.9 

left), and affect the performance of one or both of the coils.  The coupling for the xenon 

body coil was taken into consideration and the coil was tuned in the coupled state.  The 

proton coils, however, cannot be re-tuned, thus this measurement is important to see if 

proton imaging is achievable while coupled to the xenon body coil.  The measurement was 

done with two cables directly connected to the proton coil and the xenon body coil, where 

one transmits signal and the other receives, outputting isolation, S21 measurement (Fig. 

4.9 right).  This is a more important issue in transmit/receive coils of the same resonating 

frequency.  Fig. 4.9 shows the S21 of the xenon coil and the proton body coil as measured 

as the RF amplifier output cable and port on element 6 on the xenon birdcage. S21 < -20 dB 

was measured at both resonating frequencies (17.7 MHz for 129Xe and 63.87 MHz for 1H), 

indicating only a weak coupling.  Using the S21 measurement of -31 dB at the proton 
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resonating frequency, a 0.08% attenuation (10-3.1), which means 1kW x 0.08 % = 0.8 W is 

deposited for every kW.  It was concluded that the unshielded xenon coil can safely be 

used inside the 1H body coil while imaging low-flip-angle proton localiser scans without 

fear of significant induced currents in the xenon coil.   

The final assembled birdcage coil with the covers on is shown in a photograph in Fig. 4.10, 

operating in the 1.5 T GE clinical scanner with a subject inside. 

Figure 4.10.  The coil setup on the clinical 1.5 T system with subject in position ready to 

be located at the bore centre. 

 

4.3.2 MRI tests: 

MRI was performed on three healthy volunteers (26 years old, female, 50 kg; 30 years old, 

female, 60 kg; 42 years old, male, 88 kg).  Written consent was acquired from the 

volunteers and approval was obtained from the local ethics committee. The process of 

hyperpolarising 129Xe was described in full in Chapter 1. 

1H MRI tests 

Flip-angle calibration for proton imaging was performed with the 129Xe coil in-situ since 

the 129Xe and 1H body coils do couple slightly to each other (S21 < -20 dB), and some 1H 

body coil detuning was also induced (Fig.4.9 left).  The flip angle for proton scans without 

the 129Xe coil in-situ was first determined prior to imaging using a water phantom.  Scout 

images were obtained using a fast GRE sequence with a resolution of 128 × 128 matrix, 
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BW of ± 62.5 kHz, FOV of 40 cm × 40 cm.  The 129Xe coil was then placed inside the bore 

with the same phantom using the same auto prescan transmit gain (TG) value of 116 that 

was returned from the auto prescan without the coil in-situ.  The same sequence was 

performed and the SNRs of both images with and without xenon coil in situ were recorded.  

We can estimate the flip angle while the xenon body coil is inside the proton body coil 

from: 

             
                      

           

              
   (4.2) 

Using this method, we can determine the nominal flip angle (transit gain setting) needed 

in order to achieve comparable SNR with the xenon body coil inside the bore of the 

magnet. The relative image quality was then tested with a 2D spoiled gradient echo pulse 

sequence with a resolution of 128 × 128 matrix, BW of ± 62.50 kHz, FOV of 40 cm × 40 cm, 

flip angle of 5° calculated using equation (4.2), and 10 mm slices. Negligible change is seen 

in the quality and SNR of proton imaging, as seen in Fig. 4.11.   

 
Figure 4.11.   Image of the same aqueous phantom using the system’s 1H body coil (a) 

with the insert xenon body coil in place and (b) without the xenon coil 

following flip angle calibration from equation (4.2). 
 

129Xe MRI tests 
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Two-dimensional (2 D) 129Xe coil B1 maps were first obtained using ventilation images 

obtained during a breathhold with four-image acquisitions per slice. The sequence was a 

2D spoiled gradient echo with parameters: 20 mm coronal slices, field of view (FOV) of 40 

cm × 40 cm, resolution of 64 × 64 matrix, receiver bandwidth (BW) of 8 kHz, TE/TR of 

4/10.2 ms, Cartesian centric phase encoding, with TG of 120 (corresponding to an 

approximate flip angle of 5, was used for SNR purposes (176). 

Xenon ventilation imaging was also performed using the same 2D spoiled gradient echo 

sequence as used in Chapter 3 with the CMRS vest coil as used in Chapter 3, with 

parameters: 96 × 96 matrix size resolution, BW of ± 2 kHz, FOV of 40 cm × 40 cm, TE/TR of 

3.6 / 18.9 ms, flip angle of 9°, 15 mm slices, TG of 120, and Cartesian centric encoding.  

4.4 Results and Discussion 

4.4.1 Imaging with the xenon body coil 

 
Figure 4.12.  Central slices of 2D coronal ventilation images obtained after the first 

iteration of coil tuning from a healthy volunteer (F, 26 years old, 50 kg) with 

the corresponding localiser proton images.  Note the shading 

inhomogeneity in the left lung. 

Typical ventilation images from a healthy volunteer are shown in Fig. 4.12 along with the 

proton localiser performed prior to 129Xe imaging follows the first iteration of the coil 
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tuning.  A high degree of spatial homogeneity is seen at the centre of the imaging field 

with a small but consistent inhomogeneity distal from the centre in the lung (arrows) is 

seen in the ventilation images after the first major iteration.  After the second major 

iteration, ventilation images are much more homogeneous (Fig. 4.13), and the signal 

intensity profiles of the ROIs selected in these images are shown in Figure 4.14, note the 

signal intensity uniformity within each lungs after the second iteration (Fig. 4.14 (b)).  

These ventilation images are comparable in terms of SNR to those obtained in Chapter 3 

with the flexible vest coil (see Section 3.4.2). 

 
Figure 4.13  2D coronal ventilation images of a healthy volunteer (41 years old, 88 kg) 

after second iteration of the coil.  Notice the improved homogeneity in 

both left right, anterior to posterior direction compared to those in Fig. 

4.11. 
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Figure 4.14.  Signal intensity profiles of the ROIs selected in Fig. 4.12 (slice 1 top, slice 3 

bottom) and Fig. 4.13 (slice 4 top, slice 6 bottom) in comparison of similar 

slices.  Note the lack of homogeneity of imaging signal intensity within the 

lung regions after the first iteration (a) with signal drop offs on both distal 

regions of the lungs especially in the more posterior slice (bottom (a)).  In 

contrast, signal intensity profiles after the second iteration produce almost 

uniform signal intensity across each lung in forms of plateaus (b), indicating 

a higher imaging uniformity. 

4.4.2 B1 maps 

Flip angle maps of the xenon body coil can better quantitatively demonstrate field 

homogeneity.  B1 maps were calculated from the four images obtained per slice, each 

pixel has four decaying signal intensities governed by the flip angle,  , of the RF pulses by 

          
  .  B1 maps of each slice were obtained by fitting for the flip angles from 

the four data points on a pixel-by-pixel basis. 

Corresponding B1 maps are shown with their ventilation images in Fig. 4.13 for the first (a) 

and second (b) major iteration.  Again, note the inhomogeneity associated to the edge of 
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the lungs after the first iteration, and improvement of homogeneity post second major 

iteration. 

 

Figure 4.15.  First of four consecutive 20 mm coronal ventilation image slices of a 

healthy volunteer (F, 30 years old, 60 kg) used for B1 flip angle mapping 

(top) and the corresponding B1 maps (bottom) with the corresponding 

mean and one standard deviation values (in degrees) after the first (a) and 

second (b) major iterations. 

4.4.3 Comparison with CMRS quadrature flex coil (as used in Chapter 3). 

To further test the imaging quality, as well as field homogeneity produced by the new 

asymmetrical 129Xe birdcage body coil, the ventilation image SNR and B1 flip angle maps 

were compared to the performance of the CMRS quadrature double Helmholtz flex coil as 

used in Chapter 3. 

Ventilation images 

(b) 

(a) 
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By calculating the signal-to-noise ratio using the average of the ROI of the signal divided 

by the standard deviation of the ROI of the background (Fig. 4.14) on a slice-by-slice basis, 

a comparison of the SNRs of the two coils are shown in Fig. 4.15.  The SNRs of the vest coil 

and the birdcage coil are 43.2 ± 5.3 and 29.8 ± 2.6 (mean ± standard deviation) 

respectively, showing a slightly lower, yet more uniform SNR from the whole body rigid 

birdcage coil when used as a transmit-receive coil.  This is consistent with the concept of 

filling factor since a coil that is “filled” by the imaging target as close to the coil as possible 

produces the ideal SNR.  Using the average female’s lung residual volume + 1 l under 

experimental condition (See Fig 2.2), the birdcage coil inevitably has a lower filling factor 

(2.8 l / Vxbc >1/2, see Fig.4.16 (a)) compared to that of the CMRS vest coil (2.8 l / VCMRS <1/4, 

see Fig. 4.16 (b)), thus lower SNR.   

 

Figure 4.16.  Schematics of the same volunteer in the CMRS vest coil (a) compared to the 

birdcage body coil (b).  Notice the considerable differences in the coil 

volume, denoted by VCMRS (volume of the CMRS vest coil) (a) and Vxbc 

(volume of the xenon body coil) (b). 

 
Figure 4.17.  Slice-by-slice comparison of the lungs of a healthy volunteer (26 years old, 

50 kg) obtained with 129Xe ventilation sequences using a vest coil (a) and 

the asymmetrical home-built birdcage coil (b). Spatial resolution in both 

sets of images is 15 mm × 4 mm × 4 mm.  

(b) 

(a) 
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Figure 4.18 Slice-by-slice SNR comparison between asymmetrical birdcage coil (a) and 

CMRS vest coil (b) used in Chapter 3 with the same imaging sequence, same 

volunteer, as well as comparable inhaled 129Xe volume and polarisation 

(300 ml @ ~10%).  The bottom graph shows the histogram of all imaging 

pixels from all slices from figure 4.17, showing a narrower distribution with 

a FWHM of 75 using the birdcage coil compared to that of the vest coil with 

a FWHM of 100 as suggested theoretically. 

 

(a) 

(b) 
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B1 maps 

After comparing the SNR of the two coils, B1 maps were also compared between the two 

coils with the same volunteer and imaging sequence, shown in Fig. 4.19. 

 

 

Figure 4.19.  B1 map comparison between the asymmetric birdcage coil (a) and the vest 

coil (CMRS, USA) (b) and their mean flip angle and its associated standard 

deviation.  In (c), all flip angle calculated from all pixels from all slices are 

displayed in a histogram fashion comparing the two coils.  Note again the 

narrower distribution from the birdcage coil with a FWHM of 0.91 from 

1.26 of the vest coil.  Again, this suggests a higher degree of homogeneity 

of the rigid coil. 

 (c) 



 

 

 

 

126 

4.4.4 Co-registered 1H/129Xe imaging 

The ability to image protons in the thorax with minimal interaction with the xenon coil 

enables co-registered 1H/129Xe imaging in the same breath-hold (182).  This is shown in Fig. 

4.20 with in vivo 1H and 129Xe images obtained back to back from a healthy volunteer in 

the same breath-hold. 

 
Figure 4.20.   129Xe image (blue) superimposed on the coregistered 1H image that was  

acquired in the same breath with the 129Xe coil in-situ in the 1H body coil. 

 

4.5 Conclusion 

We have described the design, construction and demonstrated the in vivo uses of a whole-

body insert asymmetric birdcage transmit-receive coil for hyperpolarised 129Xe MR lung 

imaging.  Due to the initial calculation estimation errors, the first iteration of the coil led 

to noticeable inhomogeneity in B1 magnetic field.  After the second major iteration of the 

coil, the coil can now provide a homogeneous magnetic field and its feasibility for high 

quality hyperpolarised 129Xe ventilation imaging as a transmit-receive coil has been 

demonstrated through ventilation images and B1 maps.   

Some of the drawbacks of this design of coil include: 
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(i) Band-pass design of the coil introduces more variables into tuning of the coil.  

This introduced more changes during the building process to preserve the field 

homogeneity (i.e. symmetry has to be preserved and usually all capacitors 

must be decreased/increased to preserve the field homogeneity).  Perhaps a 

low-pass design would have been a simpler solution for a coil resonating at 

17.7 MHz. 

(ii) Un-shielding the coil also made the construction process harder.  By 

introducing this large amount of copper into the clinical scanner bore, an 

unshielded coil will couple to the proton coil, thus impossible to tune on a 

bench top, perhaps a simpler way to enable proton imaging is to construct a 

proton transmit/receive vest coil to be used inside a shielded xenon body coil. 

The initial motivation of this design was governed by the previous coil design of a 3He coil 

using the same body constructed of a band-pass design, which resonates at 48 MHz.  

Xenon, however, has a lower gyromagnetic ratio and resonates at a much lower frequency 

of 17.7 MHz.  This influenced an initial decision to opt for a low-pass configuration since a 

low-pass configuration typically yields a higher performance, whereas a band-pass design 

is usually adopted at higher frequency as it minimises the electrical field loss and 

maximises the loading factor.  Most published birdcage designs, however, are smaller in 

size where inductance distribution is much less of an issue, thus being able to distribute 

among considerably more points on the coil in a band-pass design might be the better 

choice for this torso coil.  Taken into consideration of the above, a birdcage coil design 

would still be suggested to someone who is aiming to build a xenon whole body birdcage 

coil for 1.5 T.  The empirical tuning of the coil took a considerable amount of time due to 

coupling to the proton coil, but this allowed the coil to be transparent to the scanner’s 

proton body coil, enabling proton localiser imaging prior to xenon lung imaging as well as 

co-registered 1H/129Xe images in a single breath hold.  The band-pass coil design also made 

the process more complicated, however, enabled more precise tuning and the design is 
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also more optimal for proton RF transmission through the coil during localising/co-

registered proton imaging as the capacitors are more evenly distributed throughout the 

coil.   In the process of tuning this xenon body coil, step-by-step of RF engineering from 

ground up gave me the right learning experience to understand the basics of practical RF 

engineering, as well as producing a functional coil that can be used for future experiments.  

The entire process of building this coil took a year to complete and was a worthwhile 

experience.  Even though the filling factor of such a large coil is small, the asymmetric coil 

has enough space to accommodate a receive array and can be used as a transmit-only coil 

in conjunction, hopefully providing higher SNR and parallel imaging capability in future 

work (See Chapter 6).    
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CHAPTER 5: Apparent dissolved-Phase 129Xe 

T2
* in the Human Lungs at 1.5 T and 3 T 

(to be submitted as a Note to Magnetic Resonance in Medicine) 

 

5.1 Introduction 

One of the potential attractions of using hyperpolarised 129Xe in pulmonary imaging is its 

solubility in blood, producing two distinct peaks attributed to xenon dissolved in red blood 

cells and in tissue/plasma in the lungs. Imaging dissolved 129Xe in blood and tissue, thus 

has the potential for studying gas exchange pathways (92,103,153), whilst simultaneous 

gas/dissolved 129Xe imaging allows exploration of lung ventilation and perfusion (163).  

Both dissolved peaks (about 20 ppm apart from one another) are found at a chemical shift 

200/220 ppm from the gas resonance (105,185) and both are small (about 2%) when 

compared to the gas peak, due to the low solubility and chemical exchange effects 

between these two compartments (186). The Ostwald solubility coefficients of xenon in 

plasma and red blood cells at body temperature of 37 °C are 0.0939 ± 0.0009 and 0.2710 ± 

0.0094 ml / ml respectively (187). Thus the small signal from 129Xe that is dissolved in the 

lungs at any given time (188), necessitates careful choice of pulse sequence and 

parameters must be considered carefully for optimum imaging quality.  The T2
* of the gas 

phase of 129Xe in the human lungs was recently measured in fully inflated human lungs to 

be 52 ms and 24 ms at 1.5 T and 3 T, respectively (90), which suggested a smaller 

bandwidth is more beneficial than a shorter TE for higher signal to noise ratio (SNR) 129Xe 

ventilation MRI.  An accurate measurement of the apparent T2
* of the dissolved signal of 

129Xe at these field strengths would provide similar insight into optimal pulse sequence 

parameters for imaging dissolved phase xenon. 
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The aim of this Chapter was to measure the apparent T2
* of 129Xe dissolved in human lungs 

at both 1.5 T and 3 T.  Since the signal decay measured for the dissolved-phase T2
* comes 

from both 129XeRBC and 129Xeplasma, which have different T2
* of their own, the T2

* derived in 

this Chapter from imaging experiments is thus a combination of both dissolved peaks, 

producing an apparent T2
* in the imaging sequence. 

 

5.2 Materials and Methods  

Experiments were performed on two whole-body clinical MR systems; a 1.5 T Signa HDx 

(GE, Milwaukee, WI, USA) and a 3 T Philips Achieva (Best, Netherlands). Flexible twin 

Helmholtz quadrature transmit-receive coils (CMRS, USA) of the same geometry were 

used at both field strength (90) as described in full in Chapter 3. 129Xe was polarised using 

the method described in Chapter 1.  

Three healthy (never smoked) volunteers participated in this study at both 1.5 T and 3 T, 

(female, 26 years old, 50 kg; female, 31 years old, 60 kg; male, 26 years old, 80 kg).  

Written consent was obtained from all volunteers and approval was obtained from the 

national research ethics committee.  An interleaved dual echo time 2D spoiled gradient 

echo pulse-sequence was used for apparent T2
* measurements (Fig. 5.1). Sequence 

parameters were: 1 coronal whole lung projection interleaved with two TEs at a TR of 200 

ms, FOV of 40 cm2, resolution of 32 × 32 matrix, centric k-space encoding, and bandwidth 

of 8 kHz.  The RF pulse waveform used was a Sinc pulse at 1.5 T and a Sinc-Gaussian pulse 

at 3 T with durations of 3.6 ms and 1.8 ms respectively. 
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Figure 5.1  Pulse sequence used to image dissolved T2

* of 129Xe.  Note the TR is 

shortened from 400 ms to 50 ms to show the sequence clearly. 

The flip angle was set up to 33°/45° at 1.5 T / 3 T respectively due to hardware limitations 

on the respective RF amplifiers (2 kW and 4 kW maximum powers respectively). The 

TE1/TE2 used at 1.5 T were 2.9 ms / 5.2 ms, and the TE1/ TE2 used at 3 T were 1.7 ms / 2.9 

ms (see Section 5.2.1 for determination of choice of echo times).  Total imaging time was 

15 s. 

 

5.2.1 Determination of Echo Times 

Much like the chemical shift phase evolution that results in the water-fat shift in 1H MRI 

(189), dissolved phase 129Xe imaging is sensitive to the same effects due to the two 
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distinct peaks from xenon dissolved in red blood cells (RBCs) and plasma (Fig. 5.2).  To 

accurately measure the chemical shift difference, whole lung spectroscopy measurements 

were performed on the same healthy volunteers with the following parameters: sinc-

windowed Gaussian RF pulse of flip angle of 45°, the delay time between excitation and 

readout was 100 µs, a readout bandwidth of 4 kHz was used and the RF pulse was centred 

on the RBC resonance at 17.66 MHz, TR of 3 s. 

An initial chemical shift of 23.5 ppm between the two peaks was observed in all 

volunteers.  This is important to note since this chemical shift between 129XeRBC and 

129Xeplasma can depend upon oxygenation (190,191) due to the paramagnetic state of the 

haemoglobin in the RBC.   With knowledge of the frequency separation between the two 

peaks, the time for the signals to re-phase after a complete phase cycle can be calculated: 

         
 

       
   
 

       

   

   (5.1) 

Now, by taken into consideration of chemical shift due to de-oxygenation during 

experiment breath-hold, an extreme case of a 2 ppm shift would change the optimal ΔTE  

from 2.4 ms to 2.3 ms at 1.5 T and 1.2 ms to 1.1 ms at 3 T, which translate to changes in 

the apparent T2
* of approximately less than 5 %.  We, of course minimised this effect 

already by minimising the breath-hold to that of the spectroscopic breath-hold, having an 

accurate chemical shift to begin with, thus oxygenation effect is not taken into 

consideration for the remaining of this chapter. 
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Figure 5.2.  Spectrum of dissolved 129Xe in RBC (left peak) and plasma/tissue (right peak) 

from the lungs of a healthy volunteer 15 s post inhalation with the RF pulse 

centred at the 129Xeplasma frequency. 

 

 

Fig. 5.3 shows the simulated signal decay of the 129XeRBC signal and the signal of 129Xeplasma 

with a phase shift based on their chemical shift separation.  T2
* values of 1.26 ms and 0.94 

ms of the respective compartments was assumed in these simulations from Lorentzian 

fitting of the whole lung spectra acquired at 3 T.   

Another factor for consideration when imaging these resonances is relaxation and phase 

coherence evolution during the RF pulse.  To minimise excitation of the gas phase signal of 

129Xe in the lungs, (which acts in these experiments as a reservoir of longitudinal 

magnetisation via gas exchange across the alveolar-capillary interface), a narrow 



 

 

 

 

134 

bandwidth, long RF pulse was used (3.6 ms pulse width and 1.8 ms pulse width for 1.5 T 

and 3 T respectively). The pulse duration affects the initial phase difference between the 

129Xeplasma signal and the 129XeRBC signal.  From the simulation results, it is safe to assume 

that even though the optimum TEs from the simulation (Fig. 5.3 (a)) are at 1.15 ms/ 2.3 ms 

for 1.5 T and 2.3 ms / 4.6 ms for 3 T, as long as the two signals are in-phase with each 

other at the echo times used, the resulting envelope of the FID (and hence the measured 

apparent T2
*) should not depend critically upon RF pulse duration (Fig. 5.3 (b)).  

5.2.2 Chemical Exchange 

In a two-site exchange between sites A and B defined by: 

 

  
 

  
 
            (5.2) 

The modified Bloch equation, also known as the Bloch-McConnell equation is given by 

(192,193): 

 

  
                    (5.3) 

Where          
       

      , and     are given by: 

   
   
   

     (5.4) 

   
     
     

     (5.5) 

                         (5.6) 

                        (5.7) 

The chemical exchange simulations are shown in Figure 5.3. 
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Figure 5.3.   Chemical exchange regimes for two site exchange using linewidth and 

frequency separation of the two Lorentzian fitted dissolved xenon peaks at 

1.5 T with exchange rate kex of 50, 500, and 5000 Hz in the slow (top), 

intermediate (middle) and fast (bottom) regimes.  The green lines are the 

initial baseline of the two sites. 

5.2.3 Assessment of the role of the gas signal on dissolved phase 129Xe 

apparent T2
*
  

To further examine the effect of gas depletion on dissolved phase xenon T2
* measurement, 

the imaging sequence was used again but without the spatial gradients to observe the 

signal decay from pulse to pulse. 
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5.3 Results and Discussion:  

5.3.1 Simulations of the effect of echo time on apparent T2
* 

Reproducible dissolved phase 129Xe spectroscopy measurements at both 1.5 T and 3 T 

confirm that the initial chemical shift between 129Xeplasma and 129XeRBC is 23.5 ppm.  Fig. 5.2 

shows a single spectrum acquired at B0 = 1.5 T, from the lungs of volunteer 1 with the RF 

pulse centred at the dissolved 129Xeplasma frequency. Fig. 5.4 (a) shows the simulated 

beating FID as a result of the slight frequency shift between the 129Xe dissolved in 

plasma/tissue and red blood cells.  The phase difference between the 129Xeplasma and 

129XeRBC evolves as soon as the RF pulse tips magnetisation into the transverse plane; 

however, it can be seen in Fig. 5.4 (b) that the overall envelope of the beating FID follows 

T2
*, thus the measured apparent T2

* should not be affected if the TE’s are chosen with the 

knowledge of this phase evolution.  
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Figure 5.4.    Simulations of  (a) the beating signal decay caused by difference in phase of 

129Xe dissolved in RBC and tissue/plasma  due to their different resonant 

frequencies 23.5 ppm apart; (b) signal decay with different RF pulse 

durations assuming the original RF pulse produces a completely in-phase 
129XeRBC and 129Xeplasma post RF pulse at 3 T. 

5.3.2 In vivo apparent T2
* measurements 

The apparent T2
* values derived from the imaging experiments from all three volunteers 

are summarised in Table 5.1 with median values of 1.6 ms and 1.0 ms at 1.5 T and 3 T, 

respectively.  Examples of the images obtained at 3 T at both TEs are shown in Fig. 5.5.  

Notice that aliasing of the images at the bottom of the lungs from the apex of the lungs of 

the gas phase 129Xe due to the superior-inferior readout gradient fold-over of the gas 

signal.  Some off-resonance excitation of the gas signal is inevitable with the RF pulse used 

(1200 Hz and 2500 Hz RF pulse width for 1.5 T and 3 T respectively).  The two 

compartments are separated in the frequency encoding direction, much like an 

exaggerated water-fat chemical shift in 1H MRI.  Indeed this separation has been proposed 

for simultaneous imaging by Mugler et al (163) to obtain ventilation/perfusion 
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information.  This is an artefact due to the bandwidth selection which ensured shorter TEs 

(8 kHz) but is more than the chemical shift between gas and dissolved phase 129Xe (7 kHz).  

The effect is much more visible at TE2 because the gas phase 129Xe has a much longer T2
* 

of 24 ms compared to the dissolved compartment so the off-resonance signal appears 

more prominent.  

The results were reproducible, when experiments were repeated with volunteer 1, an 

average apparent T2
* from the left and right lung region of interest were 1.6 ms and 1.0 

ms at 1.5 T and 3 T respectively. However, due to flip angle limitations due to the RF 

hardware power limitations at these pulse widths (maximum 45° F.A. in smaller subject 

down to 30° F.A. in larger subjects) and the longer time period required for rephasing at 

1.5 T, the signal of the second interleave images (TE = 5.2 ms), which is about 3 times the 

T2
* value, were at the noise level in the lungs of the larger volunteers at 1.5 T, and thus are 

not shown in the table. 

 
Figure 5.5.  An example of ventilation images at 2 TEs collected in an interleaved 

fashion with of a healthy volunteer at 3 T. Notice the simultaneous imaging 

of the gas phase 129Xe (163) at the bottom of the lungs (arrows) which is 

most visible at TE2 as a result of a much longer T2
* of the gas phase 129Xe. 
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Gender, 

age,[weight] 

Region of 

Interest 

T2
* at 1.5 T 

[ms] 

SNR of TE1 

SNR of TE2 

T2
* at 3 T 

[ms] 

SNR of TE1 

SNR of TE2 

F , 26 , [50 kg]      

Repeat 1 Left lung 1.65 ± 0.06 22 

7 

0.9 ± 0.03 37 

12  Right lung 1.61 ± 0.12 1.0 ± 0.05 

Repeat 2 Left lung 1.62 ± 0.12 25 

7 

--  

 Right lung 1.58 ± 0.12 --  

F, 31, [60 kg]      

 Left lung --  1.0 ± 0.03 35 

8  Right lung --  1.0 ± 0.03 

M, 26, [80 kg]      

 Left lung --  1.1 ± 0.05 33 

7  Right lung --  1.0 ± 0.03 

Spectroscopic measurements 

 129XeRBC 1.76  1.65  

 129Xeplasma
 1.22  1.3  

Table 5.1.  Mean T2
* values measured from the left and the right lung region of 

interest (whole lung from either side with its standard deviation) as well as 

T2
* measured from linewidth of spectroscopic experiments. 

 

To our knowledge, these are the first reports of dissolved xenon apparent T2
* in human 

lungs. Previously, T2
* of dissolved xenon has been measured in animal lungs through NMR 

spectroscopy to be 2 ms at 2 T (194), 0.67 ± 0.30 ms at 9.4 T using slice selective 

spectroscopy in rat lungs (195) and 0.7 ± 0.1 ms at 9.4 T in mouse lungs with imaging (196).  

These results are within reasonable agreement with our data, and suggest that static 

dephasing (197,198) is not the sole mechanism influencing the transverse relaxation 

constant since T2
* is not inversely proportional to the magnetic field strength B0 as one 

would expect in a static dephasing regime. 
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The other significant contribution towards the transverse relaxation constant of the 

dissolved 129Xe is chemical exchange between the 129XeRBC and 129Xeplasma peaks (with an 

exchange time of 12 ms (199), much longer than the apparent T2
* of dissolved xenon).  

Millet et al (200) showed that Rex, the exchange contribution to relaxation, whose 

dependence on static magnetic field was assumed to be proportional to 0

αB , is given by: 

0

0

 
  

 

ex

ex

δR δB
α

R B
                                                     (5.8)                                                        

where  is a constant between 0 and 2, and δB0 is the change in static magnetic field 

strength. If kex is the exchange rate constant calculated by taking the rate exchange time 

constants of hyperpolarised 129Xe measured by Bifone et, al. in RBC (τRBC) and plasma 

(τplasma) solutions in-vitro (188).  Then the three regimes can be defined according to: 

 
     
   

     
                                     

   

  
  

   

  
  

   

  
  

   (5.9) 

where  
1 1 1 1

83Hz
20.4 ms 29.1ms

       
 

ex RBC plasma

RBC plasma

k k k
τ τ

.             

 

Since Δ 2720 rad/sω   and 5440 rad/s  at 1.5 T and 3 T respectively, both of our 

experiments would then take place in the slow exchange regime where 
   

  
   .   

 is in this case much less than 1, which suggests no exchange contribution of chemical 

exchange to T2
* relaxation constant upon B0, and this is confirmed by our spectroscopy 

measurements, as the linewidth of both 129XeRBC (1.76 ms / 1.65 ms) and 129Xeplasma (1.22 

ms / 1.3 ms) peaks are not significantly different at 1.5 T and 3 T respectively (see Table 

5.1). 

The  key contribution, therefore,  to dissolved xenon apparent T2
* in the lungs that has a 

dependence upon B0 field strength is static dephasing, with little effect from chemical 
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exchange.  This suggests a direct and linear dependence of the transverse relaxation 

constant upon B0.  We, however, only observed a decrease of only 60% in the imaging 

apparent T2
* values from 1.5 T to 3 T in B0 strengths. 

This discrepancy between the spectroscopy and the imaging T2
* could be due to the 

following: (i) the imaging T2
* is an apparent T2

* with a combination of both 129XeRBC and 

129Xeplasma signals, opposed to the linewidth measurement for spectroscopy T2
* for 

individual dissolved peaks.  This might affect the T2
* measured value through imaging due 

to the faster dephasing of spins with larger frequency difference (more inhomogeneous 

spins) between the two peaks at 3 T oppose to 1.5 T.  (ii) Signal-to-noise-ratio at the 

second TE, due to the small T2
*, is very low, for both 1.5 T and 3 T (Table 5.1), which can 

lead to inaccuracy of the measurements.  To account for this problem, a pulse sequence 

with smaller first TE is needed to ensure accurate signal measurements from both TEs.  (iii) 

We observed more gas signals from 3 T imaging measurements, which might indicate a 

higher rate of depletion of polarised signals in the gas reservoir, which can lead to parallel 

decrease of the dissolved signals that is independent of T2
*, a more detailed analysis of 

this effect will be looked at in the following section.  (iv) Lastly, the imaging T2
* values 

from a given pixel represent magnetic field inhomogeneity over a pixel length scale 

whereas the spectroscopic linewidth tells us something about the field inhomogeneity 

over the whole lungs. 

 

5.3.3 Assessment of the role of the gas signal on dissolved phase 129Xe 

apparent T2
*
  

Even though the RF excitation pulse width (1200 Hz and 2500 Hz RF pulse width for 1.5 T 

and 3 T respectively) is much less than the chemical shift difference between dissolved 

and gas peaks (3500 Hz and 7000 Hz for 1.5 T and 3 T respectively), the gas phase 129Xe 

still makes up 98% of the total xenon inhaled; thus even a small off-resonance gas 
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excitation can result in a measureable signal.  The effect of which can be seen in the 

images in Figure 5.5 (white arrows).   

The envelope of the RF excitation is shown in Fig. 5.6 from the Fourier Transform of the 

truncated Sinc pulse enveloped used at 1.5 T, where the RF pulse was centred to excite 

the dissolved phase 129Xe at the dissolved frequency with a large flip angle.  Nevertheless, 

the tail of the RF pulse excites the gas phase frequency with a small flip angle, and needs 

to be taken into consideration. 

 

Figure 5.6.   RF pulse excitation envelope of a truncated Sinc pulse used at 1.5 T and its 

effect on both gas and dissolved 129Xe.  The simulated flip angle at the gas 

frequency is 0.44 degrees.  Superposed spectrum in black show the 

dissolved and gas peaks acquired with such RF pulse centred on dissolved 

frequency.  



 

 

 

 

143 

At the beginning of an experiment, the volunteers are asked to breath in the 129Xe gas 

prior to holding their breath.  This process of inhalation takes approximately 3-5 s to 

complete, which gives xenon enough time to saturate into the dissolved phase from the 

inhaled gas phase.  During this time, the dissolved phase 129Xe has a comparable 

polarisation to the xenon gas reservoir neglecting dissolved T1 decay.  Thus, for the initial 

3 RF pulses (Fig. 5.7), a rapid decay is observed as xenon does not fully saturate prior to 

the next RF pulse with a TR of 200 ms (time for about 70% of dissolved signal to recover 

(157)), and the initially fully saturated dissolved xenon signal is being depleted.  The 

constant chemical exchange between the xenon compartments leads to a steady state 

effect during the latter part of imaging which can been seen in Fig. 5.7.  For the remaining 

RF pulses used to build up the image, the dissolved phase 129Xe does not completely re-

saturate and equilibrate with the gas phase 129Xe polarisation (i.e., the exchange time Tex 

<TR).  It does, however, reach a steady state between RF depletion and replenishment by 

chemical exchange. 

During the first five RF pulses, the dissolved phase 129Xe signal shows a rapid drop towards 

a more steady subsequent decay, which results from the dissolved signal tracking the RF 

depletion of the gas due to off-resonance excitation and some gas T1 decay.  Assuming 

negligible decay from the 2% dissolved phase xenon signal during the 15 s (with a T1 of 10 

ms (199)), the signal decay of the gas phase xenon would decay in the same fashion as 

dissolved xenon in a pseudo steady state due to RF depletion and T1 decay.  This effect can 

be quantified from equation (5.4) with an off-resonance flip angle at the gas xenon 

frequency (    = 3.2 ) calculated by solving equation (5.4) for the steadily decaying 

portion of the curve starting from the 6th data point where TR = 200 ms and T1 = 20 s 

(dotted line, only one of the two interleaves is shown, thus the 3rd point corresponds to 

the 6th RF pulse): 

                     
   

     
    

  
     (5.10) 

The residual dissolved signal after the application of a 45° flip angle on the dissolved 

resonance would leave only 29% (1-cos45°) of the initial magnetisation remaining in the 
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longitudinal plane which would then undergo T1 decay.  Now the T1 of the dissolved 

compartment is measured at ~10 ms (199), so with an inter-pulse TR of 200 ms, this 

residual longitudinal magnetisation from the previous RF excitation can be neglected and 

we assume the only factors effecting the signal between TRs come from the RF depletion 

of the gas polarisation and its associated T1 decay and T2
* related to the echo time.  The 

actual flip angle delivered at the gas frequency is going to be lower without the above 

assumption, which is the case in the RF envelope simulated earlier (Fig. 5.6). 

 
Figure 5.7.   Signal decay of dissolved 129Xe using the T2

* imaging sequence with the 

same imaging TR of 200 ms without spatial encoding gradients.  Notice that 

a steady decay is achieved by the 3rd RF pulse, thus will show minimal 

effect if the image was obtained with a sequential phase ordering, because 

the k-space filler has no discontinuities (results at 1.5 T). 

To obtain the highest SNR possible, centric encoding during acquisition was used 

whenever possible.  This would mean a change in the weighting of k-space from the 

centre to edge following the k-space filter of Fig 5.7, which is defined by the off-resonant 
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RF excitation of the gas peak and the xenon gas T1.  Taking these factors into account, k-

space raw data from one of the volunteers was normalised on a RF view-view basis 

accordingly and T2
* was re-calculated which resulted in a difference of 0.1 ms.  This 

difference, however, is less than the standard deviation of the distribution of the imaging 

T2
* values (Fig. 5.8) (between 0.03 and 0.12 ms), and as such we consider it negligible.  

This is especially the case when we consider the increase of noise in the post 

normalisation images, which results from amplification of the noise in the edges of k-

space.   This effect would be even less insignificant when sequential encoding is used 

(which is the case at 1.5 T).  Centric encoding was only used at 3 T and this normalisation 

process was not taken into consideration in the final results due to the small differences 

considered. 

 

Figure 5.8   Dissolved xenon images from a healthy volunteer at 3 T acquired centrically 

prior and post normalisation procedure using the signal decay curve from 

Fig. 5.7.  Note the bright spot in the middle of the lungs, where the heart is 

situated (presumably the left atrium and ventricle where oxygenated blood 

is received and pumped out).  This can also be seen in Fig. 5.4, which is only 

observed in dissolved xenon images. 
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5.4 Conclusion 

In this Chapter, the transverse relaxation times, apparent T2
*, of dissolved 129Xe gas in the 

human lungs at both 1.5 T and 3 T were measured at 1.6 ms and 1.0 ms respectively in 

three healthy volunteers.  This is in rough agreement with whole lung spectroscopy results 

reported previously at 1.5 T of 1.5 – 2.4 ms (162) as well as our spectroscopic results from 

a healthy volunteer.   Since the dissolved 129Xe has two distinct peaks 23.5 ppm apart, the 

signal cannot be treated as one , but two signals precessing in and out of phase with each 

other, thus specifically calculated TEs were used for a more accurate T2
* measurement to 

account for this in-out of phase signal.  The effects from both chemical exchange and RF 

excitation of the gas reservoir were also taken into consideration and described.   

Even though dissolved xenon imaging does not provide the same resolution and details 

compared to that of gas phase xenon, it provides very interesting functional information 

about gas exchange.  This technique can be used to quantify the amount of gas exchange 

in relationship to a given time by acquiring at different TRs (157).  This provides a regional 

mapping and spatial information of pulmonary function sensitive to gas exchange (160), 

similar to the respiratory physiological test parameter of DLCO mentioned in Chapter 2.  

This sensitivity could be used to investigate pulmonary diseases associated with 

membrane thickening such as pulmonary fibrosis and prolonged interstitial lung disease 

where excess connective tissues are formed in the lungs that impair gas exchange. 

These short T2
* values demonstrate that one of the most important parameters needed to 

achieve better dissolved-phase 129Xe images is the minimisation of echo time (TE).  Partial 

echo should be used and imaging sequences that minimise TE such as spiral (73), UTE 

(201), or radial (133,162) are of obvious choice for the direct imaging of dissolved 129Xe. 

Improvement in RF excitation pulses could be another way to optimise the pulse 

sequences for dissolved phase xenon imaging.  As pointed out previously, the two main 

problems with imaging dissolved xenon is the disturbance of the gas phase reservoir and 
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the hardware limitation on dissolved RF pulse magnitude.  For example, one can design a 

hard pulse on dissolved frequency with 1st zero crossing at gas frequency to ensure the 

Fourier transformed RF envelope of a Sinc function has a zero amplitude at gas frequency.  

To achieve a higher flip angle (up to 90˚) for dissolved xenon RF pulses, one can consider 

using composite or adiabatic pulses, with the careful consideration of pulse duration (202). 

 

In future work, it would be beneficial to use such methods combined with more inhaled 

129Xe to measure regional T2
* with a higher degree of accuracy. 
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Chapter 6: Ongoing and Future Works 

Introduction 

In this final Chapter of my thesis, I will describe a few ongoing projects on which I worked 

in addition to the projects described in Chapter 3 to 5 linked to the advances made in 

hyperpolarised 129Xe imaging by the rest of my colleagues in the group.  The results of the 

thesis will be briefly summarised in Section 6.4.  

6.1 Retuning an 8 Channel Cardiac Array Coil 

6.1.1 Motivation 

One of the many methods to accelerate imaging time in hyperpolarised gas magnetic 

resonance lung imaging is the use of parallel imaging (26,65,203), which was first 

introduced in the late 1980s for conventional MRI.   There are two major benefits for 

parallel imaging in the field of hyperpolarised gas lung MRI (204): (1) imaging is usually 

done within one single breathhold, thus any imaging acceleration that reduces the 

breathhold requirement is useful for patients with lung diseases, whom might have 

difficulties holding their breath.  (2) The disadvantage of using parallel imaging in proton 

MRI is not present with the hyperpolarised media in the fashion of √N with respect to SNR 

of the image, and it has been shown that the drop in SNR due to less RF pulses can be 

compensated simply by increasing the flip angle (204).  This is the key motivation for 

tuning a receive array after the completion of the asymmetric xenon body coil (Chapter 4).  

The idea is to use it as a transmit coil in conjunction with a multi-array chest coil as the 

receive coil. 

6.1.2 Methods and preliminary results 

The array coil consists of two flexible halves, each containing 4 receive channels (Fig. 6.1 

(a)).  It is placed on the subject one half on the anterior and one half on the posterior side 
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(Fig 6.1 (c)), and fits inside the xenon body coil inside a clinical 1.5 T GE scanner (Fig. 6.1 

(b)).  Since it was retuned from a GE commercially built 8 channel cardiac 1H coil, the 

design was enclosed in semi-flexible and comfortable.  With the help of GE engineers in 

Cleveland Ohio, the coil was taken apart and retuned for each element as well as each 

pre-amplifier to resonate at 129Xe frequency of 17.7 MHz for a 1.5 T clinical GE MR system.  

This RF engineering work was conducted by myself, Martin Deppe and my supervisor Jim 

Wild and has subsequently been completed and tested by Madwesha Rao. 

 

Figure 6.1.  (a) Photo of the inside of the array coil. (b) Photo of one half of the 8 

channel arrays of a GE custom build proton chest coil.  (c)  Array coil inside 

the transimit 129Xe body coil inside a clinical 1.5 T MR scanner.  (d)  Close up 

of the assembly of the array coil inside the transmit body coil with a hollow 

cylindrical proton phatom inside. 
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Preliminary experiments have been carried out in the magnet bore using a network 

analyser.  Figure 6.2 shows two S11 traces measured inside the magnet bore attached to 

the asymmetrical xenon body coil from Chapter 4.  The thick, brighter yellow trace shows 

the detuned body coil when the array is tuned to xenon frequency which then couples 

strongly to the nearby xenon body coil. The light yellow trace on the other hand is 

acquired after transmitting a signal (when the array coil is detuned), and the trace shows a 

single resonate peak at the 129Xe Larmor frequency at 1.5 T from the xenon body coil, 

indicating no coupling with the receive array.  

The next step in this project was to edit software compatibility to the GE system through 

its coil configuration file and add necessary control parameters as well as an ID 

recognisable by the GE clinical MR scanner. 

 

Figure 6.2.  Tuned (un-coupled, light yellow) and detuned (coupled, bright yellow) S11 

tracer on a network analyser of the xenon body coil when the array coil is 

inside the xenon body coil. 

The SNR from the 8-channel array is comparable to that of transmit/receive from the 

whole body coil (Chapter 4) and vest coil (Chapter 3).  A systematic comparison is however 

not included in this thesis because the coil was completed after my thesis write up.  The 
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images from 6.4 are obtained one/two years post imaging from Chapter 3 – 4, thus there 

would be systematic differences such as polarisation,  volunteer differences as well as 

hardware differences. 

 

Figure 6.3.  Reconstructed 129Xe image (c) using individual images of the anterior (a) 

and posterior (b) elements of the 8-channel array coil.  Imaging is 

performed on a healthy volunteer (27 years old, 50 kg) with 400 ml of ~10% 

polarised 129Xe gas with a resolution of 4 mm x 4 mm x 15 mm voxel size.  

(Courtesy of Madhwesha Rao, PhD student at University of Sheffield). 
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6.1.3 Discussion 

During the initial testing phase, a signal was not acquired from the thermal phantom.  To 

study the nature of the behaviour being an indication of coil malfunction or tuning 

inaccuracy, an RF synthesiser was used (which produces a much larger signal than the 

thermal phantom), where a measurable signal was acquired, indicating a working coil. This 

also led us to believe there was something wrong with the connections to the pre-

amplifiers, which proved to be correct.  Upon carefully examining the coil hardware, it has 

come to our attention that the supply power for the pre-amplifiers were not connected to 

the coil feedboard.  My colleague Madhwesha Rao has suggested to do one of the 

following :  (1) Using RF chokes to hard-wire the 10 V to the RF line coming from the pre-

amplifier after shorting all capacitors if any.  (2)  Use a multi-strand DC wire from the 

feedboard to every pre-amplifier.  Any changes, however, could come with risks of pre-

amplifier becoming unstable.  The next step in this project of using an array coil as a 

receive coil for the xenon body coil will be carried out by my colleague Madhwesha Rao. 

Recently, it has been used successfully to image the human lungs (Fig. 6.3).  In recent 

years, many efforts has been made to better register hyperpolarised images onto proton 

images to acquire the border of the lungs, especially in diseased lungs, where borders are 

usually associated with ventilation defects.  It has been possible to image both 3He and 1H 

in a single breath hold (182) using a whole body transmit/receive coil.  This, however, is 

not possible yet using a 2D SPGR sequence for xenon imaging since the imaging time for 

xenon is longer for an optimised sequence.  Parallel imaging can be the solution to shorten 

the imaging time without losing SNR , thus enabling coregistering for 129Xe and 1H imaging 

within a single breathhold. 

6.2 Ventilation/Perfusion Measurements using Simultaneous Gas- 

/Dissolved- 129Xe Imaging Technique 
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6.2.1 Motivation 

Following Chapter 5, where dissolved 129Xe T2 * was imaged and measured, we explored 

the possibility of simultaneously imaging both ventilation of 129Xe in gas phase as well as 

perfusion of 129Xe in dissolved phase in a single acquisition.  This method was proposed by 

Mugler et al (163), and we are aiming to work towards a quatifiable measurement of the 

ventilation/perfusion of the lungs using this method. 

6.2.2 Methods and preliminary results 

Experiments were performed on whole-body clinical MR systems, a 1.5 T Signa HDx (GE, 

Milwaukee, WI, USA) and a 3 T Philips Achieva (Best, Netherlands). Flexible twin Helmholtz 

quadrature transmit-receive coils (CMRS, USA, described in Chapter 3) were used at both 

field strengths. 129Xe was polarised by means described in Chapter 1.   

A 2D spoiled gradient echo pulse-sequence (described in Chapter 3) was used for the 

simultaneous imaging of two healthy volunteers (female, 27 years old, 50 kg; female, 31 

years old, 60 kg).  Sequence parameters were: 1 coronal slice covering the whole lung, 

FOV of 48 cm × 48 cm, resolution of 64 × 32 matrix, centric encoding, TR of 200 ms, RF 

pulse width of 800 µs / 1600 µs, maximum flip angle allowed by the scanners of 33° / 45°, 

minimum TE of 2 ms /1.34 ms for 1.5 T and 3 T respectively.  The readout direction and 

bandwidth is very important in this imaging sequence since the frequency shift of the 

dissovled phase 129Xe is ultilised to separate the two phases, which are 200 ppm apart.  To 

make sure full coverage is achieved as well as no overlapping between the two images, 

one must ensure the readout bandwidth is twice the frequency shift between the two 

compartments.  Bandwidth is 7 kHz and 14 kHz for 1.5 T and 3 T respectively, and RF 

pulses are centred on the dissolved 129Xe frequency.  Readout direction was not kept 

constant because lung shapes are different.  To satisfy the bandwidth requirement 

mentioned above, the readout direction is chosen such that the length of the lungs in that 

direction only occupies half of the FOV on the localising scan.  For example, when imaging 



 

 

 

 

154 

narrower, longer lungs (Fig. 6.4), the readout direction is left to right, where overlapping 

may occur if the readout direction is top to bottom.  Same applies to wider, short lungs 

(Fig. 6.5), an overlapping would occur here if the readout/frequency direction is left to 

right.   

 
Figure 6.4   Simultaneous dissolved- /gas- phase 129Xe at 3 T of a healthy volunteer 

(female, 27 years old, 50 kg), readout direction is left to right. 
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Figure 6.5.   Simultaneous dissolved- /gas- phase 129Xe at 1.5 T of a healthy volunteer 

(female, 32 years old, 60 kg), readout direction is superior to inferior. 

 

Figure 6.4 and Figure 6.5 show preliminary results from the simultaneous imaging of both 

dissolved and gas – phase 129Xe at 3 T and 1.5 T respectively.  Notice the brighter signal in 

lower left lung area of the dissolved phase images, suggesting a higher uptake around the 

heart region in perfusion signals, which was also observed in Chapter 5 dissolved images 

(Fig. 5.5 and Fig. 5.8).   

Lastly, in an attempt to quantify the ventilation/perfusion ratio, the gas signal was divided 

by the dissolved signal on a pixel by pixel basis, shown in Figure 6.6.  There is a fairly 

homogeneous distribution between values of 1 to 2.  There were regions of little 

ventilation but high perfusion (dark blue) as well as high ventilation with little perfusion 

(dark red, near the bottom diaphragm of the right side of the lungs). 
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Note here that the control experiment portion in an XTC experiment is used to normalise 

for T1 relaxation, blood transport, residual RF when mapping the gas image at a later time 

(see section 2.7.1).  Simultaneous imaging here, however, only is concerned with the 

visualisation of both gas and dissolved states of 129Xe, which is only acquired once (not 

twice or more like in XTC type experiments for mapping purposes), thus a control image 

here was not acquired but may be needed if absolute quantification of lung V/Q were to 

be sought in the future with this method.  As for the realness of these dissolved images, 

they were acquired on both scanners with the FOV prescribed in the wrong direction 

(frequency encoding from dissolved frequency to +200 ppm as well as from dissolved 

frequency to - 200ppm), and in the wrong direction, only the dissolved phase image was 

observed and no gas phase xenon image. 

 

Figure 6.6  First attempt to quantify ventilation/perfusion using images from Figure 6.4. 
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6.2.3 Discussion 

There are a few problems in the attempt to quantify V/Q from the images: (1) there is a 

blurring effect on both set of images in the dissolved phase image in the phase encoding 

direction.  This is caused by the initial RF pulses when the dissolved 129Xe is fully saturated.  

After a few RF pulses, it then reaches a steady state signal attenuation guided mostly by 

the depletion of the gas magnetisation (see Fig.5.7).  There are two solutions to lessen this 

effect, one of which suggests a longer TR to ensure 129Xe saturation between all RF pulses, 

which would increase the scan time.  The other one is to disregard the initial data points, 

in which case sequential encoding must be used, which would then lower the measured 

SNR.  (2)  Because V/Q is measure on a pixel by pixel basis, the pixels of the dissolved 

signals must match the gas signals exactly.  This problem can be avoided by using a more 

precise frequency shift between the two signals at each scanner when defining the 

receiver bandwidth.  Still, this is very difficult since the dissolved signal comes from both 

RBC and plasma/tissue, which has a slight chemical shift of their own.  My colleague Neil 

Stewart has taken over this project for further investigation. (3) Lastly, the most important 

problem associated with quantifying V/Q from dissolved xenon images lies with the 

fundamental definition of ventilation/perfusion measurement.  From nuclear medicine 

V/Q measurement, the perfusion phase of the procedure is done by intravenous injection 

of the radioactive technetium (99mTc) macroaggregated albumin (MAA).  As mentioned in 

Chapter 2, MAA is localises by the mechanism of capillary blockade.  A minimum of 

100,000 particles are injected in general, but optimally anywhere between 200,000 and 

600,000. In a healthy subject, less than 1 in 1000 of the capillaries is blocked, which 

increases significantly in pulmonary hypertension, thus less MAA would be injected in 

those cases. Images are obtained from the emitted gamma rays of the 99mTc, thus this is a 

measurement of functional blood vessels around the lungs, which is different from 

dissolved xenon measurement.  The dissolved xenon indicates functional tissue in well 

ventilated lung regions, which does not indicate functional blood vessels.  In comparison 



 

 

 

 

158 

to other pulmonary measurements such as V/Q in nuclear medicine, dissolved xenon 

signal is more similar to DLCO measurement in functional lung tests (See section 2.1).   Thus, 

when V/Q values are quoted in hyperpolarised xenon imaging, one should note its 

difference to V/Q measurements in nuclear medicine. 

 

6.3 Chemical shift saturation recovery (CSSR) type experiments. 

6.3.1 Motivation  

The dissolved and gas phase 129Xe are constantly exchanging, providing replenishment for 

the dissolved phase 129Xe during the imaging process.  Chemical shift saturation recovery 

(CSSR) type experiment uses the saturation of 129Xe magnetisation in the dissolved phase 

followed by the measurement of its recovery from the gas in the lungs (Fig. 6.7).  Figure 

6.8 shows an example of the saturation recovery of both 129Xeplasma and 129XeRBC with 

changing TR in a spectroscopic sequence.  This type of experiment has demonstrated to be 

able to provide surface area per unit gas volume in humans at 0.2 T (157), quantitative 

values of the parenchymal and blood compartment thickness and perfusion information 

(205), as well as the thickness of the parenchymal layer that separates gas and blood 

compartment (92).  The purpose of this project was to try and repeat such experiments in 

a clinical imaging setting with the 3 T Philips Achieva hardware.  This project was cut short 

due to the removal and upgrade of the 3 T MR scanner in Autumn 2011. 
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Figure 6.7.   Chemical shift saturation recovery (CSSR) of xenon in red blood cells (red) 

and plasma / tissue (green) with respect to repetition time (TR) in a 

spectroscopic sequence (thanks to Neil Stewart, PhD student at University 

of Sheffield). 

 

6.3.2 Methods and preliminary results 

A systematic sweep through of RF power was performed using a thermally polarised 

pressured 129Xe phantom (described in Chapter 3) on a 3 T Philips Achieva (Best, 

Netherlands) scanner. Flexible twin Helmholtz quadrature transmit-receive coil (CMRS, 

USA, described in Chapter 3) was used. The phantom was loaded and averaged with the 

following sequence parameters: TR of 6 s, 30 averages from on screen flipangle of 25 to 

270 (maximum) with a spectroscopy sequency (Fig. 6.8).   
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Figure 6.8.  Flip angle sweep on a 3 T Philips scanner with a loaded thermal phantom 

using a spectroscopy sequence. 

 

The maximum on screen flip angle of 270, however, is not valid for imaging sequences as 

the 3 T MR scanner has a maximum on screen flip angle of 150 for imaging sequences.  

Thus the maximum flip angle achievable is around 65 ˚ (Fig. 6.8) depending on the loading 

of the subject.   
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Figure 6.9.   Interleaved CSSR imaging sequence, which was programmed on the Philips 

PARADISE pulse sequence programming environment at 3 T.  

 

Experiments were performed on the same clinical MR system, 129Xe was polarised by 

means described in Chapter 1.  A four interleaved 2D spoiled gradient echo pulse-

sequence (Fig. 6.9) was used on one healthy volunteer (female, 26 years old, 50 kg).  

Sequence parameters were: TR1 = 70 ms, TR2 = 100 ms, TR3 = 130 ms, TR4 = 200 ms, TE = 

minimum = 1.33 ms. On screen maximum flip angle of 150, FOV of 48 cm × 48 cm, 

resolution of 32 × 32, centric encoding. 

Figure 6.10 shows the images obtained from the healthy volunteer.  The images are 

organised in such a way that the recovery time is increasing. 
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Figure 6.10. Images obtained from the CSSR sequence described in Fig. 6.9. 

 

6.3.3 Discussion 

Ideally, a 90° flip angle should be applied for the dissolved phase 129Xe to kill all 

magnetisation before replenishment from exchange to ensure the signal from the next RF 

pulse comes from only the recovery process.  One of the major limitations we ran into 

while scanning dissolved 129Xe is the RF amplifier power limitation of 4 kW, as a 90° RF 

pulse is hard to achieve in a short duration (taken into consideration that dissolved 129Xe 

T2
* is very short from Chapter 5) on the clinical scanners.  This leads to a numerical 

problem where the measured signal each time is a combination of saturation recovery as 

well as the remaining magnetisation prior and is hard to be separated.  For example, in 

Figure 6.10, one would expect an increase of signal in each interleave shown, however, 

the signal from TR4 (130 ms recovery time) is less than that of TR3 (100 ms recovery time).  

One of the solutions is to achieve a complete saturation by other means, such as multiple 

RF pulses post readout to kill the remaining transverse magnetisation.  This is still difficult 

due to the finite pulse width of the RF and the constant exchange of gas and dissolved 
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xenon signal.  Thus during the RF excitations, the exchange is still happening between the 

multiple RF excitations, making complete saturation difficult.   So the optimal way is still 

finding a way to achieve the 90° RF excitation through different RF pulses.  My colleague 

Neil Stewart, with the help of another colleague General Leung has been trying to use 

composite RF pulses to achieve a 90° flip angle for further exploration of the CSSR 

experiment.  Once again, this project was cut short due to the scanner upgrade in 2011    

This type of experiment can be very useful for clinical purposes as the functional 

information are associated to specific diseases.  It has been demonstrated that at 0.2 T, 

the recovery magnetisation can provide surface area per unit gas volume in humans (157), 

which can be a very helpful indicator for emphysema as the surface area to volume ratio 

in those patients can decrease by up to six folds in severe emphysema(206). Another very 

useful, quantitative value one can obtain from a CSSR type experiment is information of 

the parenchymal and blood compartment thickness.(205), as well as the thickness of the 

parenchymal layer that separates gas and blood compartment (92).  Both of these sets of 

information are of interest for diseases associated to  associated to membrane thickness 

change in conditions such as pulmonary fibrosis and prolonged interstitial lung disease 

where excess connective tissue are formed in the lungs.  Further separation of 129XeRBC 

and 129Xeplasma even shows that for fibrotic lung tissues, only dissolved signal from barrier 

is observed and not in the RBCs(207).  As we can see, even with only 2% of the gas 

dissolved, which is 3000 fold less dense than tissue, useful and functional structural 

information can be obtain without radiation using hyperpolarised xenon MRI of the lungs. 
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6.4 Thesis Summary 

This thesis has mainly focused on methods for 129Xe imaging in human lungs at both 1.5 T 

and 3 T clinical scanners.  The results can be summarised briefly as followed: 

 129Xe human lung imaging is feasible on both 1.5 T and 3T clinical scanners and the 

ventilation images obtained show comparable SNR and qualitative images (Chapter 

3) with slightly higher SNR observed at 3 T.  The susceptibility effect, however, 

does increase at a higher field strength of 3 T, resulting in smaller T2
* values in the 

gas phase 129Xe in a static dephasing regime, and are highly dependent on lung 

inflation level. 

 A whole body, unshielded, asymmetric, insert birdcage transmit receive xenon coil 

was developed for the in-vivo imaging of the human lungs for hyperpolarised 129Xe 

MRI at 1.5 T.  It provides a homogeneous magnetic field and high quality 

hyperpolarised 129Xe ventilation images.  The transparency of the coil to the proton 

body coil is utilised for localiser imaging prior to xenon lung imaging as well as co-

registered 1H/129Xe images in a single breath hold.  This coil has also been shown to 

work with an 8 Channel array coil. 

 T2
* of dissolved 129Xe gas in the human lungs at both 1.5 T and 3 T are very short, 

were measured at 1.6 ms and 1.0 ms respectively.  To achieve better dissolved-

phase 129Xe images, one must ensure the minimisation of echo time (TE), and 

taken into consideration of the chemical shift between 129XeRBC and 129Xeplasma. 

In conclusion, all findings of this thesis resulted in development and more understanding 

into the relatively new field of hyperpolarised 129Xe lung imaging.  The work built the 

groundwork towards improvement of 129Xe MRI as a useful and reliable imaging modality. 
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List of Figures 
 

Figure 1.1.  The Zeeman energy levels of a spin ½ ensembles in an applied 

magnetic field under thermal equilibrium (a), the population 

difference is very small compared to the non-equilibrium state 

hyperpolarised media is in (b). 

Figure 1.2.  (a): Total magnetisation in a constant external magnetic field B0.  

After applying an alternating magnetic field, B1(t), orthogonal to 

the main magnetic field by a voltage oscillating at the Larmor 

frequency for a time  , the net magnetisation is nutated by a flip 

angle,  , defined by equation 1.23.  The net magnetisation is 

illustrated for the laboratory frame (b) as well as the rotating frame 

of reference (c).  

Figure 1.3.   Hardware components of a clinical MRI system. Different types of 

transmit-receive coils can be used including (an elliptical birdcage 

coil (red) as used in Chapter 4).  Field gradient coils are illustrated 

in more detail on the right in x (blue), y (yellow), and z (green) - 

directions. 

Figure 1.4.    Slice selection in the z – direction 

Figure 1.5.   Schematics of the influence of gradient strength on slice thickness 

denoted by Δz, colour matched to the applied gradient, with the 

same transmit RF pulse bandwidth. 

Figure 1.6.   Frequency encoding in the x-direction, the Fourier Transform of the 

dispersed FID signal produces a 1D profile of the object (blue). 

Figure 1.7.    2D spatial encoding. 

Figure 1.8.    Phase – encoding gradient. 

Figure 1.9.   Gradient-echo pulse sequence timing diagram, where TR is the 

repetition time between RF pulses, and TE is the echo time 

between the RF pulse and the formation of a gradient recalled echo. 

Figure 1.10. Schematic of a gradient echo sequence.  The four representative 

isochromats are presented in their relative spatial coordinates, and 

the dotted line is where the gradient is zero. t1, t2, and t3=TE 

correspond to Fig. 1.9. 
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Figure 1.11.  a schematics of k-space data acquisition of a single k-space line (b), 

which corresponds to phase and frequency encoding gradient by 

(a), where the pulse sequence (Fig. 1.9) acquires a single line in k-

space, and then repeated with a different incrementing Gy phase 

encoding gradient each time to fill up the rest of the k-space.  The 

k-space trajectories are colour coded in (b) to match the gradients 

in (a) . 

Figure 1.12.   k – space raw data post data acquisition of a MRI experiment, and 

the resulting image after inverse Fourier transform with homodyne 

reconstruction. 

Figure 1.13.   Partial echo data acquisition of a single k-space line.  Notice the 

dephasing gradient in blue in (a) is shortened compared to the one 

in Fig.1.11, and k-space raw data is in this case acquired only 

partially (b). 

Figure 1.14.   Cartesian k-space acquisitions:  (a) centric encoding: when the 

centre of k-space is acquired first; (b) sequential encoding: when 

the k-space is acquired for the first line to the last in order.  The 

numbers on the left indicate the order of RF phase encoded 

acquisitions. 

Figure 1.15.   Discrete sampling in imaging space (top row) and their FT in k-

space (bottom row) related by the convolution theorem of Fourier 

Transforms.  

Figure 1.16.   An LCR circuit, named after the components of the circuit. 

Figure 1.17    A surface coil in circular shape. 

Figure 1.18.   A simple a Helmholtz pair as well as its field map along the z - axis. 

Figure 1.19    A saddle RF coil. 

Figure 1.20.   A 5 loop multi-turn solenoid coil. 

Figure 1.21.  A symmetric birdcage coil of 8-legs of a low pass (a), high pass (b) 

and band pass (c) design coil. 

Figure 1.22. Network analyser tracers of (a) a low pass 129Xe birdcage coil at 1.5 

T resonates at 17.7 MHz and (b) a high pass 3He birdcage coil (Fig. 

1.24 (d)) at 3 T resonates at 97.3 MHz. 

Figure 1.23.  a quadrature hybrid used to drive a coil in quadrature mode. 
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Figure 1.24.  Examples of the RF coils from (a) surface coil, (b) saddle coil, (c) 

solenoid coil, (d) high-pass symmetric birdcage coil, (e) band-pass 

asymmetric birdcage coil, and (f) half of a 32 element array coil 

(24). 

Figure 1.25.  The matching capacitor Cm, which matches the impedance of the 

coil to the transmission coaxial cable, which is usually a variable 

capacitor. 

Figure 1.26. A common balanced – unbalanced transformer, also known as the 

LC or lattice balun. 

Figure 1.27. Left: hyperpolarised signal: 10 ml Xe (86% 129Xe) with a 10 degree 

flip angle, single acquisition, Right: thermal signal: 5 ml Xe (86% 
129Xe, 5 ml O2) with a 90 degree flip angle, averaged over 64 pulses. 

Figure 1.28. (A) Excitation of an electron from a rubidium atom to an excited 

state.  When the electron relaxes back to its original orbital, it stays 

in the positive ½ spin state.  (B)  the exchange of spin with the 129Xe 

with N2 as a buffer gas. 

Figure 1.29.  Apparatus of a homebuilt regulatory-approved polariser system for 
129Xe, where gas is accumulated within the spiral glassware (b) 

cryogenically at a holding magnetic field of ~0.3 T (33). 

Figure 2.1.   Left: cast of the airways of a human lung less alveoli, showing 

conducting airways from trachea to terminal bronchioles.  Right:  

Model of the human airways proposed by Weibel into conducting 

zone (16 generations) and transitional and respiratory zones (Taken 

from  (34), Fig 1-3 and Fig 1-4). 

Figure 2.2.  Lung volumes of interest for adult men (red) and women (green) in 

litres.  Some of the key lung volumes that are used in this thesis are 

TLC (the volume of the lungs at maximum inflation, RV + VC), RV 

(the volume of the lungs at maximum exhalation) and FRC (the 

volume of the lungs after normal exhalation). 

Figure 2.3.  (a) High resolution Computer Tomography (CT) image of an 

emphysema patient where lung tissues appears darker (white 

arrow)(57) ; (b) CT image of a cancer patient showing a solid nodule 

in the lungs (white arrow) (58) . 
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Figure 2.4.  Anterior and posterior view of perfusion scintigraphy of: (A) a 

patient with normal lung perfusion;  (B) a patient with chronic 

thromboembolic pulmonary hypertension with bilateral segmental 

perfusion defects (59) 

Figure 2.5.   1.5 T proton anatomical images from SSFSE (single shot fast spin 

echo), bSSFP (balanced steady-state free precession, and SPGR 

(spoiled gradient echo) sequences of a healthy volunteer (a), as 

well as bSSFP MR images of: (b) a patient with fibrosis in the lung 

bases and (c) a patient with a peripheral 12-mm lung nodule, 

indicated by white arrows (70). 

Figure 2.6   3He ventilation image and CT image of the same slice of the same 

volunteer.  Ventilation defects are seen in the upper and lower 

right lung with evidence of reduced parenchymal density 

(emphysema) in the CT in the same regions (77) 

Figure 2.7.   Surface-rendered 3D lung volume data set obtained from a 3D in 

vivo imaging experiment (taken from (97) Fig. 4). 

Figure 2.8.   Left: a proton image of a healthy volunteer, the pulmonary vessels 

are prominent due to their higher density but the airspaces are 

predominantly dark due to the low proton tissue density and 

magnetic field inhomogeneity. Right:  3He HP gas image of the 

same healthy volunteer acquired from the same slice in the same 

breath-hold, notice the homogeneous distribution of the gas 

density in the airspace.   

Figure 2.9.    (a)3He ventilation image, (b) registered proton image, (c) 

overlapping proton and 3He images (102). Image courtesy Sam 

Janoff BMedSci Thesis University of Sheffield 2012. 

Figure 2.10.  Coronal ventilation images of healthy human lungs using 

hyperpolarised 129Xe.  Top: the first MR images of the lungs using 

hyperpolarised 129Xe in voxel size of 0.9 cm2 ( SNR of 28 ) in 1997 

using 1 l of gas taken from (105); bottom: MR images obtained in 

this thesis from 0.25 cm2 voxel size using 300 ml of 129Xe (SNR of 

50 )(90). 

Figure 2.11.   3He and 129Xe ventilation images of the same subject pre and post 

salbutamol (taken from (107) Fig. 1).  Note the more 

heterogeneous ventilation seen with 129Xe in the same subject. 
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Figure 2.12.  Schematics of restricted diffusion in healthy lung tissue (left) and 

emphysematous lung airspace (right). Image from Xiaojun Xu, MSc 

Thesis, University of Western Ontario 2009. 

Figure 2.13.  A bipolar gradient waveform  

Figure 2.14.   Apparent diffusion coefficients (ADC) with 3He are mapped out 

pixel-by-pixel in the second column, and an increase of ADC is 

visible. Lastly, the ADCs are plotted in histograms in the third 

column, clearly show the broadening and increase of ADCs in the 

smoker and emphysema patient.  A: 48-year-old, female, healthy, 

non-smoker; B: 51-year-old, female, healthy, smoker with normal 

spirometry; C: 62-year-old, male, emphysema/COPD patient.  

Figure 2.15. pO2 mapping from a 3D image slice of a healthy volunteer. The 

imaging sequence was performed after inhalation of 1 l of gas (400 

ml / 600 ml of 3He/N2) followed by tidal breathing of room air.(132) 

Figure 2.16.  Dynamic imaging of a healthy volunteer on selected time intervals 

using 300ml  40% polarised 3He HP gas (133).   

Figure 2.17  Example ventilation images of healthy as well as diseased lungs 

using hyperpolarised 3He. 

Figure 2.18.   129Xe spectroscopy in healthy human lungs where RF pulse is a sinc-

gaussian pulse shape centred on dissolved phase xenon.  Notice the 

two distinct dissolved peaks from both RBC and plasma/tissue 

compartments. 

Figure 2.19 MXTC-F (a) & (c) and MXTC-S (b) & (d) maps obtained from curve 

fitting to equation 2.6 at low lung inflation (a) & (b) where tissue 

density is greater in the posterior regions of the lungs, producing a 

gravitation effect; as well as high lung inflation level (TLC) in (c) & 

(d) where parameter values appear more homogeneous (taken 

from (161) Fig. 3). 

Figure 2.20 Simultaneous gas- and dissolved-phase 129Xe imaging of the lungs of 

a healthy volunteer ((163) Fig. 2).  Notice the gravitational effect of 

the dissolved-phase xenon, which is insignificant in the ventilation 

images. 
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Figure 3.1    Experimental set up for in vivo 129Xe experiments using a custom 

vest coil (a) subject in a 1.5 T GE scanner constantly being 

monitored for vital signs with blood oxygen saturation monitor 

attached via a finger probe (b) and the subject inhales 1 l of mixed 
129Xe and N2 from a 1l Tedlar bag (c). 

Figure 3.2  Schematic of the geometry of the double Helmholtz transmit-

receive vest coil (a) and how it is wrapped around the subject 

during experiments ideally with B1 fields 90˚ out of phase (b). 

Figure 3.3.   S11 measurement on smith charts of the quadrature transmit-

receive coil at 3 T when unloaded (a), loaded with (b) a 50 kg 

volunteer, and (c) loaded with an 88 kg volunteer. Notice the locus 

of the Smith chart changes very little between the volunteers. 

Figure 3.4.   Coil geometry is dependent on patient and experimental setup in (a) 

a small volunteer, (b) a larger volunteer, and (c) a small volunteer 

with a thermally polarised 129Xe phantom (purple) on top of the 

chest during the thermal phantom assessment. 

Figure 3.5    (a) Pulse sequence of a 2D spoiled gradient echo from 1.5 T EPIC 

psd plotter and (b, next page) 3 T Philips pulse sequence simulator. 

Figure 3.6.   Sequence diagram of an interleaved dual echo time 2D spoiled 

gradient echo pulse-sequence used for T2
* measurement at 1.5 T 

on the GE system. 

Figure 3.7.   (a) Slice-by-slice comparison of the lungs of volunteer 1 obtained 

with 129Xe ventilation sequences at 3 T and 1.5 T. Spatial resolution 

in the images is 15 mm × 4 mm × 4 mm. Note the increased texture 

in the images due to susceptibility dephasing at 3 T around the 

blood vessels (arrows).  

Figure 3.8.   Comparison of the mean SNR from the images of the left and right 

lung as a function of slice number for regions of interest at 1.5 T 

and 3 T. Note the higher SNR in anterior slices, which is probably 

indicative of T1 decay resulting from the anterior to posterior 

imaging order. The slight rise in signal in the posterior slices is likely 

a result of higher B1 transmit–receive sensitivity close to the coil. 
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Figure 3.9.  The distribution of T2
* of two healthy volunteers (40 years old , 88 

kg; 41 years old, 88 kg)  as measured from all coronal lung slices 

with hyperpolarised 129Xe at B0 field strengths of 1.5 T (a) and 3 T (c) 

showing healthy subject consistency at FRV + 1 l;  as well as the 

distribution of  T2
* while imaging at forced residual volume (FRV) +1 

l and total lung capacity (TLC) as measured from all coronal slices at 

B0 field strengths of 1.5 T (b) and 3 T (d) from one healthy 

volunteer (41 years old, 88 kg). 

Figure 3.10.  Typical slice-by-slice comparison of the lungs of a volunteer (40 

year old male, 88 kg) obtained with 129Xe at RV + 1 l and TLC at 3 T 

at TE1 = 4.4 ms and TE2 = 11 ms.  

Figure 3.11.   Slice by slice T2
* maps generated by two point exponential fits from 

the images in Figure 3.10. 

Figure 3.12.  Mean T2
* of the 129Xe in the lungs of the two healthy volunteers 

averaged from all coronal slices against measured ventilation 

volume of the lung since the two volunteers (blue and red) are age, 

sex, and weight matched (the four data points corresponds to two 

volunteers at two lung inflation level, or four lung volumes). 

Figure 3.13.  15 mm central slice of a healthy volunteer.  Left: receiver 

bandwidth of 8 kHz with TE of 2.4 ms (SNR of 11.4/13.3 for the 

left/right lungs)  .  Right: receiver bandwidth of 4 KHz with TE of 3.6 

ms (SNR of 27.6/28.6 for the left/right lungs).  SNR approximately 

scales with squareroot of the bandwidth. 

Figure 3.14.  Comparable slice of the same volunteer (F, 26) with 300 ml 129Xe 

(left, centric, 96 x 96 x15 mm) and 3He (right, sequential, 192 x 192 

x 10  mm) at 1.5 T. 

Figure 3.15. Central slice-by-slice comparison of the lungs of a healthy smoker 

with 129Xe ventilation sequences at 1.5 T. Spatial resolution 15 mm 

× 4 mm × 4 mm.  

Figure 4.1  129Xe body coil mesh with copper conductors with 12 rungs (a). 

Schematics of the conducting mesh (b) with its corresponding mesh 

numbers, the thick solid black lines indicate the placement of the 

copper conducting bars of the mesh and the red sections indicates 

the placement of capacitors.   
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Figure 4.2.   Schematics showing the technique for measurement of 

inductances between two elements of the coil with known 

capacitors and open circuits on all other meshes. 

Figure 4.3.  (a) Initial capacitors used in the building process with regular 

capacitors 

Figure 4.4.   Transmit field contour maps of the first initial iteration of capacitor 

values from simulation (a) and second initial iteration values (b), 

which shows improved homogeneity and uniformity. 

Figure 4.5.  Lattice balun design connected at mesh 6 and 9 (680 pF, see Table 

4.2).  Lattice balun was tuned on bench top, wire wound solenoid 

inductors were manually adjusted so the circuit resonates at 129Xe 

frequency. 

Figure 4.6.   S11 measurements of the coil’s resonating frequency inside the 

proton body coil for the two ports (meshes 6 (a) and 9 (b)) centred 

at 17.7 MHz with a 3 MHz span after the first major iteration. 

Figure 4.7.   S11 measurements of the coil’s resonating frequency inside the 

proton body coil for the two ports (meshes 6 (a) and 9 (b) ) centred 

at 17.6 MHz with a 3 MHz span after the second major iteration.  

Note the slight splitting in the second port measurement has 

resolved. 

Figure 4.8.    S11 measurement of unloaded (a) and loaded (b) coil with a healthy 

volunteer with a quality factor of 44 and 121 respectively. 

Figure 4.9.    S21 isolation measurement between the proton body coil and the 

xenon body coil with < -20 dB isolation at both frequencies. 

Figure 4.10.  The coil setup on the clinical 1.5 T system with subject in position. 

Figure 4.11.  Image of the same aqueous phantom using the system’s 1H body 

coil (a) with the insert xenon body coil in place and (b) without the 

xenon coil following flip angle calibration from equation (4.2). 

Figure 4.12.  Central slices of 2D coronal ventilation images obtained after the 

first iteration of coil tuning from a healthy volunteer (F, 26 years 

old, 50 kg) with the corresponding localiser proton images.  Note 

the shading inhomogeneity in the left lung.  

Figure 4.13  2D coronal ventilation images of a healthy volunteer (41 years old, 

88 kg) after second iteration of the coil.  Notice the improved 

homogeneity in both left right, anterior to posterior direction 

compared to those in Fig. 4.11. 
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Figure 4.14.  Signal intensity profiles of the ROIs selected in Fig. 4.12 (left) and 

Fig. 4.13 (right) in comparison for similar slices.  Note the lack of 

plateau of imaging signal intensity within the lung regions after the 

first iteration (a) with signal drop offs on both distal regions of the 

lungs especially in the more posterior slice (bottom (a)).  In contrast, 

signal intensity profiles of the second iteration produces almost 

uniform signal intensity across each lung in forms of plateaus (b), 

indicating a higher imaging uniformity. 

Figure 4.15.  First of four consecutive 20 mm coronal ventilation image slices of 

a healthy volunteer (F, 30 years old, 60 kg) used for B1 flip angle 

mapping (top) and the corresponding B1 maps (bottom) with the 

corresponding mean and one standard deviation values (in degrees) 

after the first (a) and second (b) major iterations.  

Figure 4.16. Schematics of the same volunteer in the CMRS vest coil (a) 

compared to the birdcage body coil (b).  Notice the considerable 

differences in the coil volume, denoted by VCMRS (volume of the 

CMRS vest coil) (a) and Vxbc (volume of the xenon body coil) (b). 

Figure 4.17.  Slice-by-slice comparison of the lungs of a healthy volunteer (26 

years old, 50 kg) obtained with 129Xe ventilation sequences using a 

vest coil (a) and the asymmetrical home-built birdcage coil (b). 

Spatial resolution in both sets of images is 15 mm × 4 mm × 4 mm. 

Figure 4.18.   Slice-by-slice SNR comparison between asymmetrical birdcage coil 

(a) and CMRS vest coil (b) used in Chapter 3 with the same imaging 

sequence, same volunteer, as well as comparable inhaled 129Xe 

volume and polarisation (300 ml @ ~10%).  The bottom graph 

shows the histogram of all imaging pixels from all slices from figure 

4.14, showing a narrower distribution using the xenon body coil 

compared to that of the vest coil as suggested theoretically. 

Figure 4.19.  B1 map comparison between the asymmetric birdcage coil (a) and 

the vest coil (CMRS, USA) (b) and their mean flip angle and  its 

associated standard deviation.  In (c), all flip angle calculated from 

all pixels from all slices are displayed in a histogram fashion 

comparing the two coils.  Note again the narrower distribution 

from the xenon body coil, again, suggesting a higher degree of 

homogeneity of the rigid coil. 
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Figure 4.20.   129Xe image (blue) superimposed on the coregistered 1H image that 

was  acquired in the same breath with the 129Xe coil in-situ in the 1H 

body coil. 

Figure 5.1  Pulse sequence used to imaging dissolved T2
* of 129Xe.  Note the TR 

is shortened from 400 ms to 50 ms to show the sequence clearly. 

Figure 5.2.  Spectrum of dissolved 129Xe in RBC (left peak) and plasma/tissue 

(right peak) from the lungs of a healthy volunteer 15 s post 

inhalation with the RF pulse centred at the 129Xeplasma frequency. 

Figure 5.3.    Chemical exchange regimes for two site exchange using linewidth 

and frequency separation of the two Lorentzian fitted dissolved 

xenon peaks at 1.5 T with exchange rate kex of 50, 500, and 5000 Hz 

in the slow (top), intermediate (middle) and fast (bottom) regimes.  

The green lines are the initial baseline of the two sites. 

Figure 5.4.  Simulations of  (a) the beating signal decay caused by difference in 

phase of 129Xe dissolved in RBC and tissue/plasma  due to their 

different resonant frequencies 23.5 ppm apart; (b) signal decay 

with different RF pulse durations assuming the original RF pulse 

produces a completely in-phase 129XeRBC and 129Xeplasma post RF 

pulse at 3 T. 

Figure 5.5.   An example of ventilation images at 2 TEs collected in an 

interleaved fashion with of a healthy volunteer at 3 T. Notice the 

simultaneous imaging of the gas phase 129Xe (163) at the bottom of 

the lungs (arrows) which is most visible at TE2 as a result of a much 

longer T2
* of the gas phase 129Xe. 

Figure 5.6.   RF pulse excitation envelope of a truncated Sinc pulse used at 1.5 T 

and its effect on both gas and dissolved 129Xe.  The simulated flip 

angle at the gas frequency is 0.44 degrees.  Superposed spectrum 

in black show the dissolved and gas peaks acquired with such RF 

pulse centred on dissolved frequency.  

Figure 5.7.   Signal decay of dissolved 129Xe using the T2
* imaging sequence with 

the same imaging TR of 200 ms without spatial encoding gradients.  

Notice that steady state is achieved by the 3rd RF pulse, thus will 

show minimal effect if the image was obtained in a sequential 

fashion (results at 1.5 T). 
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Figure 5.8   Dissolved xenon images from a healthy volunteer at 3 T acquired 

centrically prior and post normalisation procedure using the signal 

decay curve from Fig. 5.7.  Note the bright spot in the middle of the 

lungs, where the heart is situated (presumably the left atrium and 

ventricle where oxygenated blood is received and pumped out).  

This can also be seen in Fig. 5.4, which is only observed in dissolved 

xenon images. 

Figure 6.1.  (a) Photo of the inside of the array coil. (b) Photo of one half of the 

8 channel arrays of a GE custom build proton chest coil.  (c)  Array 

coil inside the transimit 129Xe body coil inside a clinical 1.5 T MR 

scanner.  (d)  Close up of the assembly of the array coil inside the 

transmit body coil with a hollow cylindrical proton phatom inside. 

Figure 6.2.  Tuned (un-coupled, light yellow) and detuned (coupled, bright 

yellow) S11 tracer on a network analyser of the xenon body coil 

when the array coil is inside the xenon body coil. 

Figure 6.3.  Reconstructed 129Xe image (c) using individual images of the 

anterior (a) and posterior (b) elements of the 8-channel array coil.  

Imaging is performed on a healthy volunteer (27 years old, 50 kg) 

with 400 ml of ~10% polarised 129Xe gas with a resolution of 4 mm x 

4 mm x 15 mm voxel size.  (Courtesy of Madhwesha Rao, PhD 

student at University of Sheffield). 

Figure 6.4.  Simultaneous dissolved- /gas- phase 129Xe at 3 T of a healthy 

volunteer (female, 27 years old, 50 kg), readout direction is left to 

right. 

Figure 6.5   Simultaneous dissolved- /gas- phase 129Xe at 1.5 T of a healthy 

volunteer (female, 32 years old, 60 kg), readout direction is 

superior to inferior. 

Figure 6.6   First attempt to quantify ventilation/perfusion using images from 

Figure 6.4 

Figure 6.7   Chemical shift saturation recovery (CSSR) of xenon in red blood 

cells (red) and plasma / tissue (green) with respect to repetition 

time (TR) in a spectroscopic sequence (thanks to Neil Stewart, PhD 

student at University of Sheffield). 
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Figure 6.8.   Flip angle sweep on a 3 T Philips scanner with a loaded thermal 

phantom using a spectroscopy sequence. 

Figure 6.9 Interleaved CSSR imaging sequence, which was programmed on the 

Philips PARADISE pulse sequence programming environment at 3 T.  

Figure 6.10.  Images obtained from the CSSR sequence described in Fig. 6.9.  

 

 


