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Abstract  

This thesis investigates graphites used in nuclear materials engineering 

applications – so called nuclear graphites. As well as outlining a microstructural model 

for nuclear graphite, it aims to develop a new understanding for nuclear graphite 

degradation under neutron irradiation and at high temperatures by the use of different 

characterization techniques and different irradiating species.  

Part of the thesis aims to develop a new methodology for understanding nuclear 

graphite and its damage processes via the correlative use of different characterisation 

methods and by novel data processing methods applied to characterisation data. This 

includes use of electron energy loss spectroscopy (EELS) acquired under damage free 

conditions and analysed using an improved automated fitting method in order to extract 

information on carbon bonding within the samples. Some of this methodology was 

developed using in situ electron irradiation of nuclear graphite. 

A range of different virgin (unirradiated) nuclear graphite grades were initially 

investigated and these were compared in terms of the crystallite coherence lengths 

obtained from X-ray diffraction (XRD) and by the relative proportions of non-graphitic 

carbon derived from Raman spectra. From both these results and from scanning and 

transmission electron microscopy (SEM and TEM) an initial model was developed for 

micro- and nano-structure of the complex composite graphitic material. 

Neutron irradiated nuclear graphites were then sourced and analysed using XRD, 

Raman and TEM/EELS and the effect of degradation was studied as variation of 

irradiation dose and temperature in terms of the change in crystallite size and carbon 

bonding. These results indicated a model involving the fragmentation of graphite 

crystallites and an increase in porosity during irradiation with the presence of some 

effects due to annealing of defects at higher temperatures. This is similar to a previous 

model developed for electron irradiation at doses lower than 1 dpa and temperatures 

lower than 370 °C.  
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 Introduction Chapter 1

Graphite is a key part of nuclear reactors as moderator, reflector, and major 

structural component material, whether they are Advanced Gas Cooled Reactors (AGR), 

or Magnox reactors [1]. Used in 80% of current UK I and II generation nuclear plants, 

graphite is likely to be the first material considered for future high temperature gas 

cooled reactors because of its thermal stability and integrity [2]. 

Inside a nuclear reactor, the graphite blocks are subject to high levels of radiation 

that result in chemical and physical properties changes, affecting neighbouring reactor 

components. The lifetime of reactors is therefore primarily governed by the 

performance of the graphite, an accurate estimation of its condition being essential for 

economic success, and plant safety. The characterization and comparison between the 

virgin graphite structure, and of the damage evolution after neutron irradiation, have an 

important role in predicting the long-term behaviour of graphite. A systematic study 

will support the development of more accurate theoretical models which are able to 

predict the behaviour of graphite, and will also help the improvement of new materials 

to be used in current and future nuclear reactors. 

Nuclear graphite is a synthetic material produced from pitch and petroleum coke 

particles, with a high degree of crystallinity following major thermal treatment at high 

temperatures (graphitization) [3]. When the graphitization process is complete, two 

main features can be distinguished: the majority filler particles, and the minority binder 

phase, both of which are formed by domains of aligned individual crystallites. Both 

features have potentially inter- and intra- structural porosity, ranging from Mrozowski 

cracks between crystallites (50 nm -10 µm) to micro and macro pores around domains, 

and particles [4–6]. 

The properties of nuclear graphite are determined by its structure, which can be 

changed by the neutron irradiation dose, irradiation temperature, and oxidation. Inside a  

reactor, these parameters can significantly alter the crystallite size and the lattice 

parameters of the graphite crystallites, with the a-axis contracting and the c-axis 
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expanding - assuming that the crystallites are aligned with their a-axis parallel with the 

extrusion direction [7], hence influencing bulk properties by interfering with the 

integrity and dimensions of nuclear graphite components. Even though the full details 

and mechanisms are not fully understood, it is clear that the solidity and working life of 

reactor components are influenced by dimensional changes, creep and weight loss, 

amongst other effects of neutron irradiation [7].  

Since the 1940s, a lot of effort has been spent in understanding the behaviour of 

irradiated graphite.  The bulk properties of damaged features have been thoroughly 

experimented upon [3,5,8,9] and theoretical models have been derived [10,11]. 

Although this has allowed behavioural changes in the irradiated bulk, to be partly 

accounted for in current and future graphite based reactor designs, the mechanisms of 

such processes at the nano scale still remain uncertain. The irradiation database for 

nuclear graphite is incomplete and old. Old, because of the space between the 

beginnings of the “nuclear era” (~1940s), when characterization was made on virgin or 

low level irradiated nuclear graphites and incomplete, because of the gaps in data due to 

inconsistent irradiation regimes studied. Furthermore, existing models for graphite 

behaviour do not explain the real performance inside nuclear reactors, and also do not 

predict accurately multi-scale behaviour. The study of real reactor irradiated samples 

which come from decommissioned rectors with a working life of around 20 - 30years, 

could improve the knowledge data base and offer new hypothesis in revealing the true 

behaviour of nuclear graphite when irradiated.  

This work investigates the structure of both virgin, and neutron graphites 

irradiated at different doses and temperatures (Chapter 2). 

  The aim of this thesis, as part of the FUNGRAPH project, sponsored by EPSRC, 

was to evaluate the evolution of damage in the nuclear graphite structure, and to identify 

atomic and mesoscopic relationship processes, which are dose and temperature 

dependent. The research process started with main objectives: 

• To obtain proper working parameters for damage and orientation free 

collection when using TEM/EELS examination; 

• To observe and compare the differences/similarities between different 

grades of virgin; 
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• To observe and compare the structure of different nuclear graphites 

irradiated with different parameters (e.g. temperature, dose) 

• To analyse the change in the structure of nuclear graphite from virgin to 

after neutron irradiation; 

• To compare electron and neutron irradiation damage on nuclear graphites; 

Highlighting the importance of nuclear graphite integrity and following the main 

objectives, it seems that a study of the structural properties of crystallites and crystalline 

lattice is necessary (Chapter 3), which is the main topic of this thesis. In particular, this 

thesis tried to link findings obtained experimentally by different characterization 

techniques (XRD, Raman Spectroscopy, TEM, EELS and SEM), and to propose a 

model for the structural degradation of graphite which is dependent on temperature and 

irradiation dose. The above-mentioned techniques provide information ranging from the 

atomic scale to the nano- and micro-scale structure (XRD and Raman Spectroscopy), 

that can have a big influence on the macro-scale and therefore on the working life of a 

nuclear reactor.  

X-Ray Diffraction (XRD) was used to analyse the changes of crystallites as a 

result of neutron irradiation dose, by providing means of La and Lc values, along with 

the lattice constants a and c (Chapter 5.1). This information was used in filling the 

gaps/or reinforcing the findings from EELS and Raman data. Raman spectroscopy was 

used to assess the degree of graphitization/order different nuclear graphites, by 

quantifying the ID/IG ratio, or FHWM of the G peak (Chapter 5.2). The Transmission 

Electron Microscopy (TEM) was used as a tool for finding information about the lattice 

structure (e.g. lattice constants a and c), and the crystallites orientation change within 

the lattice due to irradiation (Chapter 5.3.1). Electron Energy Loss Spectroscopy 

(EELS) was used with the aim to establish a correlation of the presence of defects due 

to irradiation (e.g. the possible change of the carbon atoms bond from sp2 to sp3 

bonding), with the degree of order observed by Raman Spectroscopy (Chapter 5.3.3). 

The reason for using the Scanning Electron Microscopy (SEM) was to correlate the 

micro-scale and atomic scale results, for a better understanding of the evolution of 

nuclear graphite’s structure from virgin to a neutron irradiated condition.  
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To minimize electron beam induced damage on the graphite by the electron beam, 

TEM and EELS were conducted at 80 keV. Other special calibrations were made in 

order to collect the EELS data correctly, without any misleading effects due to 

crystallites orientation dependence. These new studies are summarised in Appendix A.  

   Non-irradiated graphites were investigated and characterised, along with the 

corresponding irradiated analogue – irradiated with both electron (Chapter 4) and 

neutron irradiation (Chapter 5).  

Nightingale has done an extensive work on the structure and properties of nuclear 

graphite summarised in his book published in 1962 [3], however since then there has 

been the development of new grade of nuclear graphite. The virgin graphite used in this 

work included an old type of graphite, PGA (Oldbury and Wylfa graphites – big grain 

needle coke graphites), the same graphite used by Nightingale The knowledge about 

these two nuclear graphites and their structure has a major importance in the 

development of new nuclear graphites, as they are the oldest nuclear graphite used to 

build the first generation of nuclear reactors in the UK, the Magnox reactors [12]. Their 

importance increased now because, after more than 30 years of heavy neutron 

irradiation, the reactors where they were used have been decommissioned, and the 

building material can provide valuable information on changes to all kind of graphite’s 

parameters relative to long working time, including irradiation dose.  

Besides the study of virgin graphites - PGA (Oldbury and Wylfa), NBG-18, IG-

110 and Gilsocarbon (GILSO) - the research was completed by the addition of the 

newly developed graphites (PCIB and PCEA) which are considered for use in the IVth 

generation of nuclear reactors. 

Data from the virgin graphites was directly compared with data from graphites 

that were neutron irradiated with different doses and temperatures. The differences and 

similarities of all these virgin nuclear graphites make possible the comparison and the 

extrapolation of their behaviour when irradiated in a nuclear reactor, and also lead to the 

development of a model of graphite behaviour irradiated at high temperatures and 

doses. 
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The electron irradiation and beam convergence studies were conducted in 

collaboration with Miss Helen Freeman, while Dr. Fredrik Hage helped in developing 

the script in Hyperspy, which facilitated the EELS data analysis. The neutron irradiation 

research was possible due to Dr. William Windes, from National Idaho Laboratory, US, 

who provided the irradiated materials analysed in this thesis. 
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 Literature review Chapter 2

2.1. Carbon: general considerations 

Carbon is one of the oldest chemical elements, known from antiquity, and the 

most frequent element found in nature. As a chemical element, C, carbon is 

characterized by its atomic number Z = 6, and the atomic weight A = 12.011. Carbon 

contains about 98.9% of the isotope C12 with 1.1% of isotope C13; natural carbon can 

also contain the radioactive isotope C14 [5,13].  

 

2.1.1.Carbon allotropes 

Carbon has its 6 electrons in a configuration 1s22s22p2 (Figure 2.1), with the four 

free valence electrons (2s22p2) available to be shared with other atoms. The combination 

of orbitals is called hybridization, and for carbon it can have 3 forms: sp3, sp2 and sp. 

Carbon-carbon bonds can have different structures and strengths.  

 

Figure 2.1 Ground state electronic configuration of carbon [14]. 
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I. Diamond 

One of the carbon allotropes that has exclusively sp3 bonding is diamond. 

Diamond can have two forms: cubic (Figure 2.2 (a), the most common form, and more 

rarely (and unstable) a hexagonal form.  

The most common electronic state in which carbon can be found is the sp3 

hybridization form, in which each carbon atom is sharing 2s and 2p orbitals, forming a 

tetragonal structure (Figure 2.2 (b)). 

The cubic form has 8 atoms in a cubic cell of dimension a = 3.56 Å: 4 atoms 

inside, and the other 4 atoms shared, 1/8 in each corner of the cube, and ½ on each face 

of the cube. The stacking layers of diamond have a sequence of ABCABC, after every 

third (111) plane the sequence is repeating. Diamond is a dense material known for its 

properties of high stiffness and hardness among all materials [14]. 

 

 II. Graphite 

The second type of hybridization that carbon can have is sp2 Figure 2.3 (b) In this 

case, carbon is bonding one 2s orbital with two 2p orbitals, leaving one 2p orbital free, 

giving birth to two sp2 hybrid orbitals, which are in plane orbitals with an angle of 120 

degrees between each other, and leaving the unbonded 2p orbital perpendicular to the 

hybrids. For the bonding between two carbon atoms where sp2-sp2 hybrids bond to each 

 Figure 2.2 (a) Schematic diagram of the cubic diamond; (b) schematic representation of the 
diamond tetrahedron [14]. 
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other, a σ bond is born, and where the free p orbitals are bonding to each other and π 

bonding exists, forming a double bond (σ+π).  

The most famous allotrope that has exclusively the sp2 bond is the hexagonal 

graphite. For graphite, the most common stacking sequence is the hexagonal ABABAB 

form giving rise to a hexagonal unit cell. Others may exist, however are uncommon – 

e.g. ABCABC form. 

 The unit cell, which makes the basal structure of hexagonal graphite, is defined 

by the second nearest neighbour atoms, for which the position is described by two equal 

vectors with a 60o angle in between. Every unit cell consists of four atoms. The basal 

plane has the lattice constant a = 2.46Å and the rule for c-axis vector that must be twice 

the length of the inter-planar distance, so the neighbouring planes do not overlap 

(Figure 2.4). Graphite’s structure will be discussed in more detail later in this thesis. 

Figure 2.4  Representation of 2D graphite layer planes structure. Highlighted is red is the unit 
cell of graphite.  

Figure 2.3 Schematic diagram of the (a) 3D graphite; (b) sp2 hybrid [14]. 
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 III. Fullerenes and C60  

Other notable allotropes of carbon are the fullerenes, discovered in 1985 by 

Smalley & Kroto [15], and synthesised in 1990 by Kratschmer & Huffman [16], Their 

synthesis is done by the evaporation of a graphite electrode. Their structure is edgeless, 

and has the particular property of self-assembly into spheres (Figure 2.5 (b)). Fullerenes 

consist of pentagonal or hexagonal rings, for which case, depending of the number of 

rings, it has variable hybridization. The simplest fullerene structure is C20, consisting of 

twelve pentagons and has an unstable sp3 configuration. However, the most famous and 

stable structure of the fullerenes is the C60 (Figure 2.5 (c)), a structure which is made 

from a combination of (twenty) hexagons and (twelve) pentagons having both sp2 and 

sp3 hybridizations. 

The applications of fullerenes are wide, because of their properties of bonding 

with surfaces (but not to themselves), from electronics to other fields of science that 

need nano scale manipulation of the structure [17]. 

 

Figure 2.5 Schematic representation of C forms: (a) graphene sheet; (b) C60 fullerene and (c) 
single-wall nanotube. 
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 IV. Graphene and Nanotubes 

If graphite is known to be a stack of layers in the ABABAB, the 2D form of 

graphite is the graphene sheet, which forms the 3D structure of graphite.  In 1985 the 

term graphene was used the first time to define a single layer of graphite (Figure 2.5 (a)) 

and utilized as a modelling tool for systems using graphite, but it took almost 20 years 

(2004) for the graphene to be synthesized artificially in the lab as a single layer of 

material. Since then, the graphene has been intensively researched because of its unique 

chemical and thermal stability, high conductivity and low resistivity, flexibility, 

transparency and durability [18]. 

The tendency of graphene sheets to curve made possible the discovery of the 

carbon nanotubes in 1991. However, only after 1996 they were synthesised by laser 

vaporization of graphite, and since then, became one of the most intense researched 

fields. Carbon nanotubes are very close in structure to fullerene, being basically capped 

by half fullerenes (Figure 2.5 (c)) [17]. Depending on the way the graphene sheets are 

rolled up, they have varied mechanical, electronic, transport, and thermal properties 

which make them the subject of intensive research in different technological areas. 

Graphene kept the researchers from many fields busy for the past 10 years, in 

order to identify all the capabilities of such flexible material. Being either metallic or 

semiconducting, the graphene can poses metallic properties in which the valence 

electrons can move freely, or by adding impurities a graphene can play the role of a 

semiconductor structure, in which the metallic or insulating properties can be 

manipulated, 

 

 V. Graphitising and non-graphitising carbons 

A. Graphitising carbons – Graphite 

The process of going through different steps of heat treatments and changing the 

structure from turbostratic into a more ordered graphitic structure is called 

graphitization.  
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According to Oberlin [19], for carbonaceous materials to graphitise this must 

commence with a small  (<10Å) Basic Structural Unit (BSU),  which then become 

aligned and  parallel  over larger areas. Starting from the carbonization of aromatic 

hydrocarbons (e.g. anthracene, naphthalene), by increasing the temperature, the 

remaining volatiles are gradually evaporated (~600 ̊C) and a well-ordered structure is 

formed - the coke, a mixture of different cokes giving rise to coal-tar pitch [14].  

After passing the carbonization temperature (~1200 °C), the structure is free from 

metallic impurities around 2000 °C with the slow transformation of the structure from 

turbostratic into a graphitic structure (Figure 2.6). After reaching 2200 °C the structure 

has already a crystallite size increased from 50Å to 1000Å, and by controlling further 

the graphitization process (pressure ~0.1 Torr, temperature >3000 °C) [14] a highly 

order graphitic structure can be obtained as it will be seen further on. 

  

B. Non-graphitising carbons - Glassy /porous carbon 

There are a number of important forms of carbon which do not possess long range 

order.. Glassy or porous carbons are a type of disordered sp2 structure, which are 

synthesised from pitch in reaction with O2 or CO2 at temperatures in the range of 800 

°C - 1200 °C [14]. Considering their random structure, the properties of this material 

differ from the ones of amorphous carbon, and their porous structure makes them low 

density and isotropic materials. Their usages are mainly of a chemical nature: due to its 

Figure 2.6 Schematic representation of the graphitization process [19]. 
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chemical resistance being close to that of graphite, and they are employed in battery 

production or glass applications [14]. 

 

2.1.2.Graphite properties 

After J.D. Bernal introduced the hexagonal crystal structure in 1924, graphite was 

known as a hexagonal, well-developed layer structure of carbon, in which the layers 

have certain order in stacking sequence [5].  

Graphite crystal structure 

The main peculiarities of hexagonal graphite are: a) the mobility of electrons in 

the hexagonal rings in the a-b plane formed by atoms spaced at 1.415 Å each with a 

strong chemical bonding of ~628 kJ/mol and b) the large spacing of 3.354 Å between 

carbon layers along the c-direction arising from weak van der Waals force of only 

5.54kJ/mol (Nightingale 1962). 

Graphite is defined by crystallites made from a multitude of unit cells arranged in 

a periodic order according to the symmetry rules. In the a-direction and c-direction, the 

crystallites are defined by their dimensions (or coherence lengths), La and Lc 

respectively (Figure 2.7).  

Figure 2.7 Schematic representation of: (a) single hexagonal unit cell of graphite and (b) the 
crystallite sizes - highlighted in grey is the unit cell of graphite. 
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The packing of crystallites, and the nature of materials from which the graphite is 

synthesised influence the overall properties of graphite, which are in Table 2.1 

 

Table 2.1 Graphite (both synthetic –pyrolitic graphite and natural graphite) - 
general properties (values taken from different sources)  

Properties Graphite 
Bulk density (kg ·m-3) 2180- 2270 (HOPG [20,21]) 

2090 – 2230 (nat. graph. [22]) 
Electrical resistivity, (Ohm⋅m) 
ab direction 
 
 
c direction  

 
0.15 –0.25 (HOPG [23] ) 

1.2 x 10-6 (nat. graph. [24]) 
 

1.5-3.0 x 10-3(HOPG [23] ) 

Thermal conductivity,@25 ̊C (W· m-1 · K-1) 
ab direction 
 
 
c direction 

 
 

159 – 389.3 (HOPG [3]) 
160 (nat. graph.[24]) 

 
2 – 3.5 (HOPG [3]) 

Tensile strength (Pa) 
ab direction  
 
c direction 
  

 
15 - 80 x106 (HOPG [3,20]) 

8 x106 (nat. graph.[25]) 
 
- 

Compressive strength (Pa) 
ab direction 
 
 
c direction 

 
20 - 200 x106 (HOPG [23]) 
7.3 x103  (nat. graph [25]) 

- 

Coefficient of thermal expansion K-1 
ab direction 
c to grain 

 
 

2.4 x 10-9 (HOPG [20]) 
- 
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2.1.3.Types of graphite 

Three main types of graphite exist: natural, pyrolytic and synthetic graphite. 

These three types differ by their characteristics and occurrences, as is seen below.  

 

I. Natural graphite 

This type of graphite is found naturally. It occurs as small disseminated crystalline 

flakes in the structure of magnesium and calcium rocks. The main characteristic of this 

structure is that it is very anisotropic, having only some small regions of ideal and 

structure. This perfect structure can be found near the defect (twist and twin boundaries) 

within a crystallite. Even so, following purification procedures (most of it annealing, in 

order to remove impurities) natural graphite can offer an appropriate material for 

fundamental studies being a good approximation to ideal single crystal graphite.  

 

II. Pyrolytic graphite  

Produced by a chemical vapour deposition (CVD) procedure, pyrolitic graphite is 

formed by carbonization of a solid carbonaceous material: coal–tar pitch, petroleum 

fractions or polymers.  

The manufacturing procedure is as follows: within a room some poly-aromatic 

hydrocarbons (e.g. methane) are heated at elevated temperatures (>500 ̊C) where the C-

H bonds are split and the hydrogen is removed. Through the heating process, some 

hydrocarbons undergo an intermediate stage at temperatures >400 ̊C called mesophase, 

where the crystals have a lamellar arrangements with the long axes (the c-axis) laying 

down parallel to each other and develop van der Waals forces which bonds them 

together encouraging the alignment. This is the stage where the pre-cokes are formed. 

The most common deposited pyrolytic material, which has a highly oriented, perfect 

and impurity free structure, is HOPG (Highly Oriented Pyrolitic Graphite).  

HOPG has become a good substitute to mimic the natural graphite in both 

research and industry. 
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III. Synthetic graphites 

Synthetic graphite can be either moulded or extruded; the first moulded graphite 

was obtained in 1896 to be used as electrodes. 

In manufacturing synthetic graphite, the selection of the raw material is vital in 

obtaining good properties and quality products, and in determining the costs. Both the 

size of the coke particles, and the degree of carbonization of the pitch are important for 

the grade quality of the synthetic graphite as it will be shown later on in thesis. The 

main parts of synthetic graphites are: the filler, the binder, and the additional 

impregnants and additives.  

The filler particle is generally derived from cokes the first choice in most 

applications being the petroleum cokes. As a raw material, it is a pure solid carbon at 

room temperature, with a high degree of porosity characteristic of all the petroleum-

derived materials. The filler particle is also the most important component in the 

synthetic graphite, as its parameters influence the grade of the resulting graphite (e.g. 

needle coke or isotropic coke) [14]. 

 The second most important component of the synthetic graphite is the binder, 

made most of the time from coal-tar pitch (a distillation of coal), a brittle and glassy 

material. 

Starting from solid hydrocarbons as raw materials, passing through different 

stages of heat treatment, and ending at high temperatures (>2800 ̊C), the final product 

has some important properties (e.g. low neutron-absorption cross section, high 

scattering cross section, high temperature resistance etc.). These outstanding properties 

made synthetic graphite the perfect candidate for military purposes, in particular nuclear 

graphite, which will be discussed further.  
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2.2. Nuclear graphite (NG) 

The graphite used in nuclear reactors (namely the nuclear graphite) is of high 

purity synthetically obtained graphite: it has a polycrystalline structure with filler 

particles kept together by a binder [3]. When making nuclear graphite, it is very 

important to consider the reduction of the impurities present in the material [3], as a 

large fraction of impurities can change important physical properties [26]. 

2.2.1. How is it made?  

Nuclear graphite is a highly pure (~99.8% purity) mainly produced from coal-tar pitch 

and petroleum coke particles which by passing consecutive and well established 

manufacturing procedure can “achieve a higher degree of crystallinity than other 

materials” [3].  

 The coke is the primary material that forms the body, and the pitch is used as a 

binder. The procedure is complex (Figure 2.8) and consists of multiple heating 

treatments until the crystal growth takes place. Most of the time, the filler must be 

added in order to increase the density of the resulting porous material [8].  

One of the most important steps in manufacturing nuclear graphite is the mixture 

of different phases of carbon. The quantity of filler (the petroleum coke) compared to 

that of the binder (the coal-tar pitch) is well defined by the manufacturer: about 30 parts 

binder for 70 parts filler [27]. The manufacturer has to consider that if the binder is too 

low, then the final material will crack easily because of the presence of high strain 

inside the filler; if the percentage of binder is too high, than the final material will have 

bad structure with inappropriate properties (one of most important is low thermal 

resistance to high irradiation temperatures) [28]. The density and the dimension of the 

grains are influenced also by the “packing” of the graphite, which can be either done by 

extrusion or by isostatic moulding. The manufacturing methods are influencing also the 

geometric form of the grains and the isotropy of the ending material, in the way that the 

extruded graphite has a needle shape grain and is anisotropic or semi-anisotropic (e.g. 

PGA like graphite), while the moulded graphite has more a spherical grain size and is 

isotropic (e.g. Gilsocarbon graphite). 
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 After suffering several baking and impregnation procedures, the final stage is 

finishing with a last procedure - the graphitization, a process that takes place ~ 30000C. 

The importance of this step is crucial in establishing the crystal growth and maximizing 

the internal order. On reaching this temperature, the material is composed only from 

carbon, having all of the physical properties well established (Hall coefficient, magnetic 

susceptibility, electrical and thermal conductivity etc.) [3].   

  

 

Figure 2.8 Process of manufacturing nuclear graphite. 
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2.2.2. Types of NG 

Pile grade A (PGA) graphite is needle-coke graphite produced by extrusion, 

being anisotropic, and has a grain size (filler domain) of ~1mm. This type of graphite 

was used in some UK designed reactors under the name of Magnox reactors. Currently 

in UK only Magnox Wylfa is still functional, the old Magnox Oldbury being shut down 

in 2012.  

Gilsocarbon (GILSO) graphite is produce by using Gilsocoke and compared to 

PGA the filler grains are spherically shaped with an average grain size of ~0.5mm.  

Mainly used in the second-generation British Advanced Gas-Cooled reactors (AGR), 

after the first generation of Magnox reactors which used PGA, this graphite is formed 

by a moulding process leading to a near-isotropic material.  

IG-110 graphite is a fine-grained product manufactured by Toyo Tanso in Japan. 

This graphite is petroleum coke isotropic graphite formed by isostatic pressing with an 

average grain size of 5-50µm and it is used in HTGR reactors in Japan. 

NBG-18 graphite is produced in Germany by SGL and is formed by vibrational 

moulding, which makes it isotropic. It has a medium grain diameter of ~1.6mm with a 

filler particle made from pitch coke. NBG-18 is used the Pebble Bed Modular 

Reactor (PBMR) in South Africa. 

PCEA is anisotropic new medium grained graphite with a needle grain size of 

360-800µm produced by extrusion and using petroleum coke source.  

PCIB as well as PCEA is a newly made material with an ultra-fine grain size 

produced by an isomolding procedure, which makes it isotropic, and having as a 

precursor petroleum coke. 

After years of research PCEA and PCIB candidate materials were selected as 

candidates for the new High Temperature Reactors (HTR) [29]. However, after intense 

property characterisation, a change in plan occurred and NBG-18 and PCEA were 

chosen for the US Next Generation Nuclear Plant (NGNP) in the building of high 

temperature gas-cooled reactor (HTGR) with a large graphite core [30]. 
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2.2.3. Microstructure and properties of NG 

As was mentioned in above, the grain shape and size of the graphite particle 

depend almost entirely on the filler particle and the manufacturing process. For the 

oldest nuclear graphites PGA and GILSO, the particles are very distinctive, in size and 

shape. In PGA the filler particle (~1mm) is long and needle shaped with pores along the 

long axis of the needle (Figure 2.9 (a)), whereas is GILSO the filler particle (~0.5mm) 

has an onion shape with pores that follow the spherical shape (Figure 2.9 (b)). 

 

Nightingale[3] was reported that for the majority of the petroleum coke graphites 

the distribution of pores, in both filler and binder phase, is in the 20-300Å range,. He 

also suggested that the longer the crystallite size, the smaller the pore volume is. A 

schematic diagram of the microstructure of needle shape nuclear graphite is shown in 

Figure 2.10. 

Figure 2.9 Polarised light micrographs showing: (a) long filler particle of PGA and (b) onion-like 
filler particle of GILS; highlighted in red are the filler phase. 



20 
 

 
 

 After more than 50 years of improvement made in manufacturing nuclear 

graphite, Kane et al. [31] reported the discovery of 3 new graphites: IG-110, NBG -18 

and PCEA shown in Figure 2.11. 

Figure 2.11 Micrographs showing: (a) fine grained IG-110; (b) NBG-18 onion-like filler particle 
and (c) PCEA filler particle; with : B-binder, C-cracks, F-filler and  P-pores after Kane et al. [31]; 

highlighted in red is the filler particle. 

Figure 2.10 Schematic representation of needle like-shape NG with structural units and 
nomenclature. 
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Kane et al. observation revealed that: 1) IG-110: with a density of 1.925 g/cm3 has 

a fine needle shape with the particle length of 27 ± 2µm; 2) NBG-18 with a density of 

1.938 g/cm3 has a round medium filler particle diameter of 360 ± 25µm  ; 3) PCEA with 

medium size filler particle of variable shape, both round and needle like , has the 

measured density of 1.896 g/cm3 with an average size of the filler particle of 137 ± 

12µm . 

As can be seen from Table 2.2 with general properties of various types of nuclear 

graphites, the new improved neutron graphites have all higher density than the previous 

generation, PGA and GILSO. This property of having a more dense material has a 

major importance as it brings higher moderation of the neutron flux. 
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Table 2.2 Representative properties of some Nuclear Graphites 

Property-units PGA1
1 GILSO1 IG1101 NBG-182 HOPG3 

 
Filler Petroleum coke Gilsocoke Petroleum 

coke 
Pitch coke  

Bulk density- (kg·m-3) 
1740 

1810 1780 1850 2250 - 2260 

Electrical resistivity, (ohm·m) 
║ to extrusion 
┴ to extrusion 

 
7.34 x 10-6 
9.40 x 10-6 

 
 

9 x 10-6 

- 
- 0.15 – 0.25  

1.5 - 3.0 x 10-3 

Thermal conductivity- (W·m-1 · K-1) @20 °C 
║ to extrusion 
┴ to extrusion 

 
227.34 
138.16 

 
131 

 
78  

- 

 
159 – 389.3 

2 – 3.5  
 

Tensile strength - (Pa) 
║ to extrusion 
┴ to extrusion 

 
17  x 106 
11 x 106 

 
17.5 x 106 

 

25 x 106 
24 x 106 15 - 80 x106 [3,20] 

 

Compressive strength -(Pa) 
║ to extrusion 
┴ to extrusion 

 
27 x 106 
27 x 106 

 
 

70 x 106 

 
 

77 x 106 
 

77 x 106  

Coeff. of thermal expansion K-1 (20-120̊C) 
║ to extrusion 
┴ to extrusion 

 
0.9 x 10-6 

2.8 x 10-6 
 

4.3 x 10-6 4.1 x 10-6 -  
2.4 x 10-9 - 

                                                
1 Representative data collected from different sources, e.g.[3,53] 
2 [169] 
3 standard data for HOPG[23] [170,171] [21] 
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2.2.4. Applications of NG 

The low neutron absorption cross section made synthetic graphite the first 

material used for military purposes and nuclear reactors (hence the name nuclear 

graphite), as a moderator and reflector, but also as a fuel-channel sleeve, thermal 

column and fuel matrix (Figure 2.12) [3].  

To explain the reflector role of graphite it must be said that it is used as a cladding 

of the core of the reactor. This shield is used in order to keep the neutrons inside, and 

not to permit any interaction between them and the coolant, which could give rise to 

extra heat by returning unnecessary neutrons into the core.  

The most important application of graphite is as a moderator.  Graphite is used in 

the core of the reactor, where the fast neutrons suffer collisions with the surrounding 

wall. By losing only a part of their kinetic energy they are scattered and return to 

interact with other existing 235U atoms and the fission processes is continued. If the 

moderator would not have a low neutron absorption cross section, the neutrons would 

be absorbed by the material and halt the fission reaction. However, if the moderator was 

made from heavy nuclei, each collision would reduce the kinetic energy of neutrons to 

Figure 2.12 Schematic design of a gas-cooled reactor. 
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minimum and when returned into the core, the probability of interaction with the 235U 

nuclei would be lower therefore halting the fission process [7,32,33].     

Graphite is used (and has been used) in couple of graphite moderated reactors 

worldwide, of which is worth mentioning:   

• the UK MAGNOX and AGR as CO2 gas cooled reactors working at 

temperatures lower than 400 °C, using as graphite moderators PGA and GILSO; 

MAGNOX is part of first generation of nuclear reactors while AGR is from the second 

generation 

•  the Natural Uranium Graphite Gas (UNGG) reactor is a First Generation 

French gas cooled reactor, working at temperature in the range 330-400 °C [34]; the 

UNGG design was also used in Spain. 

• the RBMK is a water cooled Russian design reactor from Generation II of 

nuclear reactors, using graphite as moderator [35]. 

• the High Temperature reactor (HTR-10) is a helium cooled prototype reactor 

built in China and it is working at higher temperatures (750-900 °C); This reactor is a 

new reactor design, using IG-110 graphite as moderator , and is part of the  next 

generation nuclear plants working at high temperatures – High Temperature Gas-cooled 

reactor (HTGR) - Generation IV [30]. 
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2.3. Irradiation of NG 

2.3.1. Neutron Irradiation 

When two particles collide, they experience momentum and energy transfer, ΔE, 

the level of which depends upon the mass ratio between the target (carbon) atom and the 

incident particle. The atomic displacement rate, measured in displacements per atom 

(dpa), is dependent on the kinetic energy of this incident particle, Ei.  For neutrons 

(mass = 1), Eq. 2.1 tells that in an elastic collision with a carbon atom, where atomic 

mass, A = 12, the transfer of energy from the neutron to the carbon atom is 0.28Ei [36].   

( ) iEA
AE 21
4
+

=Δ
 

Eq. 2.1 

According to calculations by Thrower and Mayer [37] a 1 MeV electron (much 

lower mass) and neutron produce 1.6 and 500 atomic displacements respectively. 

Cascades of atomic displacements are the most common route for large scale structural 

disturbances.  

 

I. General Process 

The impact of irradiation on graphite can be seen in the changing of its properties. 

This is because of the “Wigner effect” that happens as a result of radiation damage: a 

very high energy particle does permanent damage to the graphite by causing the 

displacement of carbon atoms (Figure 2.13) which start to move into the crystal lattice.  

The first displaced atom is referred to as the primary knock-on atom (PKA), 

which travels through the lattice and, if the energy is high enough (Eq. 2.1), it can 

displace further atoms.  They behave as secondary knock-on atoms (SKA), and continue 

to cause atomic displacements until the energy has been dissipated throughout the 

structure (Figure 2.13), although some movements are present until the thermal 

equilibrium is reached.  Models have been created to calculate the number of atoms 

involved in cascade events of varying energy [38–40]. 
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The relatively wide spacing of graphite’s lattice planes results in low density 

collision cascades, and the low neutron dose rates (10-7 dpa s-1) and high temperatures 

(~450 °C) in the nuclear reactor allow this cascade damage to partially anneal between 

cascade events [8]. This effect has the result of creating interstitials between layers. 

Associated with the atoms that formed the interstitials, the presence of vacancies is 

obvious [8,41]. 

 

 II. Energy transferred 

Interstitial and vacancy defects created during radiation damage can behave 

independently or coalesce into clusters and gradually deform the crystal lattice resulting 

in both chemical and physical changes. When the Wigner effect happens, many 

displaced atoms (interstitials) coalesce and give rise to localised energy, referred to as 

the Wigner energy.  Damage accumulation at temperatures below 200 °C increases the 

Wigner energy and heat content due to a lack of diffusion. In an adiabatic environment 

the Wigner energy is discharged causing a sharp increase in temperature and with 

ignition can result in fire [7].  This poses a serious risk for low-temperature nuclear 

reactors, and was the indirect cause of the Windscale nuclear accident of 1957.  To 

avoid such risks, and relieve stress within graphite blocks, the reactor core can be 

engineered to encourage dissipation of the Wigner energy.  By using temperatures 

around 900 °C in the Generation IV graphite moderated Very High Temperature Gas 

Reactors to encourage energy dissipation, the problem is addressed. However, long term 

Figure 2.13 Schematic representation of the mechanism of atoms displacement due 
to high energy neutron. 
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exposure to a high temperature environment (> 400 °C) gives rise to creep, involving 

dimensional change of components when under load.   

At temperatures similar to those of a nuclear reactor (~400 °C), the effect of 

annealing significantly reduces the damage rate. It is widely agreed that single 

vacancies become mobile at 100 – 200 °C, whereas interstitial atoms become mobile at 

temperatures of 500 °C [42,43]. 

 

III. Models proposed for defect migration 

In the past years, several models were proposed for explaining the movement of 

defects inside the nuclear graphite. These defects take the form of interstitials and 

vacancies and are the result of neutron irradiation. Two models will be discussed, one 

proposed by Bacon and Warren (A) in 1956 [10], and the other introduced by Heggie el 

al. (B) in 2010 [11]. 

 

A.  Bacon & Warren model for defect migration 

 The model proposed by Bacon and Warren [10] had as a starting point, the idea 

that the broadening of the X-ray diffraction peaks, observed in neutron irradiated 

graphites, is due not to the random distribution of localized displacements but to a 

distribution of  grouped interstitials produced with regularity after a specific number of 

layers.  

During irradiation, an interstitial or a group of interstitials (black dot in Figure 

2.14) arriving at the P position will cause another new interstitial arriving at Q’, which 

will move to position Q to minimise the distortion of the lattice. 
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The idea was that once the damage has accumulated with increasing exposure, the 

interstitials diffuse along the layer planes and combine with each other (proposed also 

by Kelly [44]). In time, the groups tend to be so big that is too difficult to anneal and 

dissociate, and they are basically forming extra sheets. Bacon & Warren also suggested 

that the vacancies do not have the same behaviour as interstitials. 

 

B. Heggie’s model for defect migration 

Different from the previous model, Heggie et al. [11] adopted a model that takes 

in account the shear between planes of graphite. According to Heggie, the traditional 

model, which blames the dimensional changes on the aggregation of interstitials atoms, 

does not have any evidence to support the theory.  

In the new model, basal plane dislocations are considered to cause the basal 

Figure 2.14 Schematic representation of interstitial increasing the space between layers, 
proposed by Bacon & Warren for radiation-damaged graphite [10]. 

 

Figure 2.15 Schematic representation of buckled graphite of which layers are held. together by 
spiro-interstitals, the dislocations being represented by ┴ symbol  [11]. 

 



29 
 

 
 

planes to shift and are seen like line dislocations and not loop dislocations, as evoked in 

the old model. Through this model another type of defect is introduced, the spiro-

interstitial. Below 2500C when a shorter layer is bonded in two places to a longer layer 

by these spiro-interstitials, the longer one tends to buckle (Figure 2.15). 

For higher temperatures, it is predicted that if two edge dislocations from in 

neighbouring planes of opposite sign interact with each other, buckling can occur and 

this is how the “ruck and tuck” defect comes up (Figure 2.16). 

 

I. Microstructure changes due to neutron irradiation 

Since 1940, consistent work has been done in researching nuclear graphite 

behaviour due to neutron irradiation. However, the researchers put more weight on 

property change, and not on the microstructural changes, which are influencing 

mechanical and material properties [45].   

Since 1963, by conducting TEM investigations (Transmission Electron 

Microscopy) Thrower reported the different behaviour of neutron irradiated graphites 

(most of the time pyrolitic graphites) when changing irradiation parameters. His 

investigation revealed cracks present in the structure of single crystal graphite when 

irradiated at 3 x 1024 n·m-2 at 200 ̊C, but not present on higher irradiation doses [46], 

contradicting Simmons and Reynolds who stated that the cracks are close at all 

irradiation temperatures. In 1964, the same author reported a variation of defect 

accumulation [47] with the presence of impurities (boron) at different irradiation 

parameters, especially increasing the temperature and preheating in different 

Figure 2.16 Two basal edge dislocation moving toward each other [11]. 
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environments (Figure 2.17). Following the same trend in 1968, he made a correlation 

between defect nucleation and crystal perfection, suggesting that the interstitial 

nucleation is happening around twist boundaries giving rise to interstitial loops , but 

without creating staking fault defects [48]. In 1973, Thrower et al. [49], investigated 

several pyrolitic graphites irradiated with doses between 2.4 x 1024 n·m-2 and 5.2 x 1025 

n/m2 at high temperatures ( up to 1450 ̊C), and showed that the crystallite size has an 

influence in  healing  the defects with annealing. 

In 1990 Niwase et al. [50] using Raman spectroscopy, observed a correlation 

between the irradiation of the graphite and the loss of the atomic order (amorphization). 

The observations were made for a dose in the range of 0.1 - 1dpa at 200 ̊C by following 

the increase with irradiation via the full width half maximum (FWHM) of the G peak 

from Raman. In the same year Tanabe et al. [51] reported not an amorphization process, 

but a decrease in size of the crystallites due to neutron irradiation, at a dose in the range 

of 1.4 x 1023 n/m2 - 1.9 x 1024 n/m2 (corresponding to 0.14 - 1.9 dpa) and the same 

temperature of 200 ̊C. Tanabe statement was reinforced with the correlation of the 

Raman results and the TEM findings (both electron diffraction and imaging). 

 After more than ten years, Niwase et al. [52], duplicated Tanabe et al. 

experiment, and following irradiation, observed that even though, the Raman spectra of  

irradiated HOPG showed signs of a disordered structure compared to virgin HOPG, 

Figure 2.17 Micrographs of single crystal natural graphite showing the increase in impurity 
nucleation with different irradiation parameters: (a) preheated in vacuum and (b) preheated in 

argon environment, before irradiation [47] . 
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although the high resolution TEM showed  little or no damage.  Niwase explained this 

finding by the ratio of the D and G peaks (I1355/I1580) being influenced not only by the 

crystallite size, but also by the presence of basal plane defects (interstitials or vacancies) 

due to irradiation. The same author proposed a correlation between point defects, TEM 

images and Raman spectroscopy (Figure 2.18). 

During the years B.T. Kelly has done intensive work on characterising the 

properties of neutron irradiated graphite especially dimensional changes. In 1993,  Kelly 

[53] , studied the behaviour of two of the most common nuclear graphites, PGA and 

GILSO under fast neutron irradiation. In his paper, he introduced two parameters in 

order to characterise the evolution of crystallite dimension (XT) and the pore 

accumulation (FX) due to neutron irradiation: 

 

 F! = R! S− 0.05 ! Eq. 2.2 

 X! =
∆L!
L!

−
∆L!
L!

 Eq. 2.3 

Figure 2.18 Schematic drawing of the change in FWHM of 1580 cm−1 and intensity ratio of 
I1355/I1580 on irradiation. 
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Where ∆Lc/Lc, ∆La/La, are the dimensional changes of the crystallites in the c and 

a dimension, RX is the XRD orientation factor, for PGA at 2200 ̊C being 0.2 and 0.4, 

parallel and perpendicular to extrusion, respectively and S is the crystallite shape 

change. 

Kelly’s finding showed an absolute correlation between the crystallite 

dimensional changes and the pores formation (Figure 2.19). 

It will be seen further on that, the crystallite size change is a very important factor 

in determining the property change. 

 

II. Property changes following neutron irradiation 

Different property data is found between virgin and irradiated graphite. These 

changes are a function of irradiation parameters, such as dose, temperature and also the 

time of irradiation. It is still unknown with precision, which factor is more influential, 

and at what exact time failure will occur. The parameters studied were chosen because 

they have a direct influence on the working lifetime and failure of a nuclear reactor. 

Although the experiments were not done on the same type of nuclear graphite, almost 

all used HOPG as reference material. This is considered to be the most perfect 

polycrystalline graphite, which has similar structures and properties to nuclear graphites 

Figure 2.19 Fitting of pore generation as a function of crystallite size dimension (XT) at an 
irradiation dose >1019 n·m-2and 600 C. 
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used in the working nuclear reactors, but for which the cost and the time effectiveness 

do not make it a good candidate for massive manufacture quantities. 

The most common data found in the literature is on: irradiation-induced size effect 

(so called dimensional changes estimated by crystallite change in dimension from 

XRD), Young’s modulus [54,55], coefficient of thermal expansion (CTE), thermal 

conductivity [56], and creep coefficient. Between all of these, the data for dimensional 

changes is more abundant and detailed [41,44,57–61] 

 

A. Dimensional changes 

The point on which results agree is that the changes are in directly related to the 

direction of orientation and the character of the deformation. It is observed that as a 

result of irradiation, there is an expansion in the c-direction (direction of the crystal with 

the stack of planes perpendicular to the extrusion direction), while in the a-direction 

(direction of the crystal with the stack of planes parallel to the extrusion direction) 

shrinkage was observed. 

Figure 2.20 Expansion of c direction  as a function of  neutron flux at different temperatures (1 
Mwd/At represents the thermal energy output for one tonne of nuclear fuel  produced  by a flux of 

3.5 x 1020 n·m-2 in the reactor, corresponding to 3.1 x 1023 displacement/m2 ) [3]. 
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Nightingale who produced one of the most remarkable bodies of work in the field 

of nuclear graphite, stated that dimensional changes are correlated with irradiation and 

with temperature [3]. He conducted experiments at room temperature and above, and 

reported that the magnitude of c-dimension expansion decreased with increasing 

temperatures (Figure 2.20), observation reported and completed by other researchers,  as 

it will be seen further on. 

 Changes in dimension related to dose and higher temperatures than room 

temperature were reported [57]. Supposing that in nuclear graphite, the crystallites align 

with the a-axis parallel with extrusion direction, and the c-axis perpendicular to the 

extrusion direction, the conclusion of different studies concerning dimensional changes 

was that irradiation at temperatures lower than 600 ̊C exhibit a change in both 

directions, perpendicular and parallel with extrusion directions, by shrinkage (Figure 

2.21). 

 

Figure 2.21 Dimensional changes induced in PGA by neutron irradiation in the temperature range 
of 300 – 650 oC: (a) parallel to extrusion – a-axis; (b) perpendicular to extrusion – c-axis [57]. 
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Above ~600 ̊C, when it is thought saturation occurs, the magnitude and the 

behaviour of dimensional change, presents different characteristics,. It was observed 

that at higher temperatures than 600 °C the shrinkage in the a-direction is continued, 

while the c-direction starts to swallow (Figure 2.22). 

At high dose rates, the final expansion may be influenced by the alteration of 

other properties due to irradiation [7]. Ultimately, the key observed changes in nuclear 

grade graphite are micro-crack closure from expansion in the c-direction and 

dimensional change from irradiation induced creep [7,62]. 

 The observation of the size change motivated further investigation into the cause 

of these changes. Thrower made an extensive investigation of the defect nucleation and 

migration inside graphite, and their link with dimensional changes or other physical 

properties (e.g. elastic modulus) [26,46,48,49,63,64]. As mention in the previous 

section by conducting TEM investigations, he correlated defect nucleation and the  

formation of clusters of vacancy loops with the dimensional changes [48].  

Figure 2.22 Dimensional changes induced in PGA by neutron irradiation at 600oC and heat 
treated up to 2800oC (a) parallel to extrusion – a-axis; (b) perpendicular to extrusion – c-axis 

[53] 
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The experiments revealed that with the same experimental parameters (dose and 

temperature), the defects created were slightly different, with the appearance of some 

bigger loops for single crystals as compared with pyrolytic graphite, but with a lower 

density (Figure 2.23).   

 

B. Lattice strain 

As it was shown in this chapter, due to annealing, the created vacancies and 

interstitials tend to group in clusters. This event may induce crystal strain inside 

graphite, which is correlated with the deterioration of graphite properties, and it is 

considered to be the major factor in nuclear graphite degradation and failure.  

In 1977 Kelly et al. [41] made a theoretical estimation of the strain evolution 

(Figure 2.24) as function of irradiation temperatures, based on the true values of crystal 

dimension change from: irradiated pyrolitic single crystal or reactor grade graphite (b). 

His calculations were proven to be very similar to the accumulation of interstitial in 

defect loops, observed in the PGA irradiated at different temperatures and doses, 

behaviour presented in Figure 2.24 (a). 

Figure 2.23 Defects produced by irradiation at 1350oC to 11.7 x 1020 n/cm2 on single 
crystal (a)  and (b) pyrolytic graphite graphitized at 2900oC [48]. 
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C. Coefficient of thermal expansion (CTE) 

Related to the dimension changes, the coefficient of thermal expansion (CTE) has 

also been calculated. This is the degree of expansion divided by the change in 

temperature. It was concluded that CTE fluctuations with temperature are due to the 

variations in the thermal expansion of crystallites, and not to the other changes in 

structural parameters. This explains why in bulk graphite, changes in volume are lower 

compared to the volume of crystallites expansion, considering that the nuclear graphite 

is a porous structure that gives space to accommodate expansion of crystallites. 

It was concluded that bellow 300oC, the CTE is dependent upon dose and 

temperature in both c (┴ to extrusion) and a (║ to extrusion) directions. Unfortunately 

the lack of data explaining what exactly is happening above 300oC, gives rise to 

suspicions that the already calculated data below 300oC is influenced by the crystal 

strain due to the cooling of the material [57]. However it was observed that the CTE in 

the both c and a has the tendency first to increase and saturate at a specific dose and 

temperature, and then decreases,  (Figure 2.25) [8,28,65]. 

Figure 2.24 (a) interstitial concentration in PGA  versus neutron dose; (b) Crystal strains at 
different temperatures as a function of dose [41];N - density of nuclei; ɸ - irradiation flux, La - 

crystallite size. 

 



38 
 

 
 

 

D. Thermal conductivity 

Another important property of graphite, which has been studied, is thermal 

conductivity of graphite (although it still remains an incomplete set of data). The 

thermal conductivity is dependent on the temperature as well as the dose, and when 

measuring the thermal conductivity one has to consider the value of thermal 

conductivity of the material before and after irradiation [8]. In graphite thermal 

conductivity is due to the vibrations in the lattice, vibration that rise as a result of point 

defects and grain boundaries presented in the basal plane. 

 Kelly made a theoretical estimation (Figure 2.26) of thermal conductivity change 

for pile grade A graphite (PGA) as a function of dose and temperature. His calculations 

were based on accumulation of basal point defects in the lattice due to irradiation. His 

Figure 2.25 Varian of the mean coefficient of thermal expansion with irradiation for both high 
(denoted by *) and low temperatures [28]; a, a* denoted for the axial measurement; b,b* -radial 

measurement- 
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results were compared to empirical measurements on reactor graphite and were in good 

agreement with Rappeneau et al. [66]. 

E. Young’s modulus 

Previous work suggested that the dimensional change correlates with change in 

other properties.  In 1994, based on previous work stating that for polycrystalline 

graphite the elastic moduli is dependent on the structure factor, which itself depends on 

the XT, the evolution of crystallite dimension factor previously introduced (Figure 2.27).   

XT makes a good connection between the dimensional changes, and how this is 

related to other properties. Correlations were made by Oak Ridge National Laboratory 

for HOPG, irradiated at 600 oC, and another synthetic near –isotropic and fined-grained 

graphite, irradiated at 875 oC (Figure 2.27) [46]. Physical properties change as a 

function of XT, were also correlated for PGA irradiated at temperatures in the range of 

430 - 600 oC  [46]. 

Figure 2.26 Comparison between theoretical and empirical values of the thermal resistance as a 
function of neutron dose [172]; where K0 and K are the thermal conductivity values,  before and 

after irradiation, respectively 



40 
 

 
 

 

2.3.2.Electron Irradiation 

The lack of understanding and viewing in real time of the dynamics of structural 

changes produced by neutron irradiation required the help of more convenient 

experiments. Ions and electron seemed a good substitute of neutron irradiation, with 

both inducing damage together with a more easy control of experimental parameters. 

Electrons were preferred against ions, as the latter produce a damage cascade that was 

not easy to control, whilst electron irradiation could be done in situ in a TEM. 

Over the years, several experiments were done and observations were made based 

on the different parameters that are influencing the irradiation damage: dose, 

temperature, and duration of experiments. 

It was established that the calculated dose in dpa (displacement per atom) for 

electron irradiation and neutron irradiation should not be directly compared because of 

the difference in dose rates (1x10-4 - 1x10-3 dpa/s for electrons against 1x10-7 dpa/s for 

neutrons) [67]. It was observed that the electron irradiation causes point defect damage, 

whereas the higher mass and lower dose rate of neutrons causes cascade damage. 

Figure 2.27 Comparison of XT with dose obtained from Young Modulus, thermal expansion 
coefficient changes at 875oC on near-isotropic synthetic graphite [59]. 
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Accounting for the relatively wide spacing of graphite’s lattice planes results in 

low density collision cascades, and the low neutron dose rates (10-7 dpa s-1) and high 

temperatures (~450 °C) in the nuclear reactor allow this cascade damage to partially 

anneal between cascade events [8]. The net effect is point defect damage, making high 

temperature neutron irradiation damage arguably comparable to higher dose (10-4 - 10-3 

dpa s-1) electron beam induced damage [62,68]. 

In 1994 Pedraza et al. [67] reported evidence supporting the theoretical 

supposition of  the dimensional changes in nuclear graphite due to irradiation. The 

experiment was made in a TEM, and the samples were in situ irradiated with the 

electron beam receiving a dose of up to 1.1 dpa/s. The observation highlighted the fact 

that the existence of micro-pores were accommodating the dimensional change by 

allowing the elongated pores inside the crystal to close at higher irradiation doses, 

suggesting an expansion in the c-axis, while round pores  (which were surrounded by 

Figure 2.28 Elongated pores closing due to irradiation : (a) 0dpa; (b) 0.02dpa; (c) 0.24dpa; and 
round pores opening up due to irradiation : (a*) 0; (b*) 0.4dpa; (c*) 0.6dpa; [67]. 
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crystallites) exhibited opening due to low irradiation evidence of a-axis shrinkage 

(Figure 2.28).  

Following the same irradiation procedure and experimental parameters, the same 

authors investigated the structure of irradiate graphite by analysing the carbon K-edge 

EEL spectra. They concluded that the structure of graphite after electron irradiation was 

resembled amorphous graphite which has predominantly sp2 bonding and in which 

irradiation induced interstitials were located in non-six member ring’s [69] (suggesting 

migration of atoms and formation of  interstitials  in loops). This change in bonding was 

confirmed by others [70]. 

Tanabe intensely investigated neutron [51,71], ion and electron beam irradiation 

damage in graphite [72–74]. He claimed that the mechanism of dimensional change 

proposed before was unsustainable. Based on the lack of evidence supporting the 

assumption made in the past, according to which dimensional change is due to be 

formation of new extra basal planes caused by interstitial that were migrating and were 

forming interstitials loops. Moreover their theory was supported by TEM investigations  

highlighting plane buckling (Figure 2.29) and fragmentation of the crystallites, agreeing 

with previous ideas of the formation of amorphous graphite (or nanocrystalline 

graphite) [51,75–77]. 

Tanabe & Muto assessed also the change in damage rate and behaviour of 

graphite due to irradiation temperature. At temperature of irradiation bellow 327 °C, the 

structure tries to heal itself by reordering the displaced atoms in the basal plane into 

Figure 2.29 Processed images of graphite plane under no irradiation (a) and with buckling 
planes under electron irradiation of 1.2 dpa at 94K (b), similar behaviour of graphite under 

electron irradiation at room temperature [77]. 
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non-hexagonal rings. Above 377 °C, the damage is on a higher scale, and it occurs by 

fragmentation of crystallites but keeping the hexagonal rings intact in the basal planes 

[78]. 

In 2011 Karthik et al. [62] managed to record the formation of dislocations in 

graphite when irradiated with electrons. Their experiment was undertaken in situ in a 

TEM, and provided an irradiation dose of ~0.25 - 1dpa. The examined graphite 

presented a well-known behaviour when irradiated with electrons (e.g. lattice swelling, 

crack-closing). According to the authors, the experiment provided empirical evidence 

for the existence of interstitial loops. However, the results were obtained by Fourier 

filter, which could have been given rise to artefacts.  
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Chapter 3  Methods and methodology 

Structural characterisation can link properties at the macroscopic scale to the 

microscopic atomic construction of a desired material. The next sections of this chapter 

present three of the most common and powerful structural analysis techniques: X-Ray 

Diffraction (XRD), discussed in section 3.2; Raman Spectroscopy (RS) presented in 

section 3.3; and Electron Microscopy – Transmission Electron Microscopy (TEM), 

Electron Energy Loss Spectroscopy (EELS) and Scanning Electron Microscopy (SEM), 

discussed in section 3.4  

  

3.1.Materials used 

Different types of nuclear graphite were analysed by XRD, Raman Spectroscopy, 

TEM-EELS and SEM. They had different grain sizes, and some were pre-neutron 

irradiated at different temperatures and doses. Because the irradiated nuclear graphite 

was not available from the beginning of the study, several virgin nuclear graphites were 

used instead: two PGA graphites from Wylfa and Oldbury from the decommissioned 

reactors of the same name, Gilsocarbon, IG-110, NBG-18, PCEA and PCIB 

(background information about those samples can be found in section 2.2.2). 

The five irradiated samples used, PCIB and PCEA type, are shown in (Figure 3.1) 

and listed together with their properties in Table 3.1.  The sample were provided by  

Idaho National Laboratory (INL) US, and for more information regarding the irradiation 

procedure of the samples the reader is advised to read Appendix B, or the associated 

INL report where the samples are referred as “Piggy-Back” specimens [2,79]. 
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 For an easy identification, the samples are referred by the “NAME” referenced in 

Table 3.1.  

Table 3.1 Information on the irradiated samples used ∗ 

ID NAME Est. dose 
(dpa) 

Activity 
(kBq) 

Est. Temperature 
(°C) 

PCIB P2C03 
PCIB C03 1.5 30 350.9 

PCIB P1B02 PCIB B02 4.1 330 534.5 

PCIB P3B05 PCIB B05 6.8 175 656.9 

PCEA DW15C01 PCEA B25 1.5 15 350.9 

PCEA DW14C01 PCEA B17 6.8 30 670.9 

 

The samples were prepared differently, in accordance with each technique. For 

XRD and Raman spectroscopy some samples were cut with a Strauers Accutome-2 

                                                
∗ Irradiation data provided by INL 

PCIB P1B05 PCIB P1B02 

PCIB P1C03 

PCEA 3PB25 

PCEA 1PB17 

Figure 3.1 Irradiated samples available (left) and their dimension (right) 
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cutting machine at a speed of 1200rpm/sec into samples of dimensions approximately 

15mm (length) x15mm (width) x 1mm (height) (PCIB, PCEA and GILSO). The other 

samples were used as received – each of them having the geometry of ~ 6mm (height) x 

12mm (diameter) cylinders: virgin Wylfa, Oldbury, IG-110, NBG-18, and irradiated 

PCIB –C03, B02, B05, PCEA- B25, and B17. 

For TEM/EELS all samples were prepared abrading each sample with a piece of 

Aluminium Oxide P1200, grinding paper, in a liquid environment - isopropanol in this 

case. A drop of isopropanol mixed with the exfoliated graphite was drop cast on to 

holey carbon film supported on a copper TEM grid. 

 

3.2. X-Ray Diffraction (XRD)  

3.2.1. XRD methodology 

X-ray diffraction consists of elastic scattering of X-rays by parallel planes of 

atoms which share the same Miller indices [80,81] as depicted in  Figure 3.2, equivalent 

to reflection (with no change in phase) at a specific angle creating intense peaks by 

constructive interference which correlates with the inter-planar distances (dhkl), 

explained by Bragg’s law: 

 

Figure 3.2 Diffraction on parallel atomic satisfying Bragg’s law. 
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 nλ = d!"#sinθ Eq. 3.1 

where:  n - is the diffraction index;  λ – is the wavelength of the X-Ray used (Å); dhkl – 

is the inter-planar distance corresponding to the hkl Miller indices; θ – is the scattering 

angle. 

XRD can provide information about the coherence lengths of crystallites via 

Scherrer’s (Eq. 3.2): 

 L =
κλ

βcosθ 
Eq. 3.2 

where:  k – is the shape factor; λ – is the wavelength of X-rays used (Å); β – is the full 

width of Bragg XRD peak at half-maximum height; θ – is the  scattering peak in radians 

corresponding to Bragg XRD peak. 

Most commercial XRD equipment used today are semi-circular diffractometers, in 

which the X-ray tube and the detector move at the same time (Figure 3.3), and the DP is 

given in 2θ.  

XRD does not only give the d-spacing and the coherence lengths of crystallites, it 

can also offer information about the unit cell and symmetry of a material.  

For the case of graphite, which has an hexagonal unit cell, the lattice parameters a 

and c, can be found from the following equation: 

 1
d!"#! =

4
3
h! + hk+ k!

a! +
l!

c! 
Eq. 3.3 

Figure 3.3 Diffractometer geometry. 
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where: dhkl – is the interplanar distance; a, c – are the lattice parameters ; h, k, l – are the 

Miller indices corresponding to Bragg XRD peak. 

    In 1942 B. E. Warren proposed [82] that for the heat treated black carbon 

materials which exhibits needle-shaped crystals, the k value used for calculating La and 

Lc from Scherrer’s equation (Eq. 3.2) is different for each of the two cases. This arises 

from rotations and translations in the layers, which give, rise to lattice misorientations, 

which can result in (hk) reflections.  

 

3.2.2. XRD experimental details  

Low angle scattering of X-rays can provide information about the defects 

produced by irradiation, and the presence of inter-crystalline pores in unirradiated 

graphite [8]. 

In the case of graphite there are established specific reflections for calculating the 

unit cell parameters: for the a-spacing the (100), (110) and (112) reflections are used; 

for the c-direction, the d-spacing (the distance between consecutive basal layers) is 

calculated from the (002), (004) and (006) reflections [3].  

In the begging of the nuclear graphite “era”, researchers (e.g. Nightingale, 

Goggin, Reynold, Simmons [3,60,61,83]) were giving as indicative the (002) and (110) 

rings (or peaks for XRD) for subtracting the c- and a-constant for nuclear graphite. If 

for (002) peak the situation remained clear over the years the situation, for (110) the 

situation changed and it became more costumed to consider (100) peak as more 

appropriate to be used in calculating the value of the a-constant in carbonaceous 

materials [84–86].  

For both direction (100) and (110), a factor of correction is needs in order to 

obtain the a constant of the lattice, 4/3 for (100) and 2 for (110) (Figure 3.4), which 

means that neither of them is providing the direct a value, nor it represents the real peak 

for subtracting the a constant. Furthermore in the diffraction patters of graphite, the 

(100) peak is at lower 2θ (~42 2θ), while (110) peak is at higher 2θ (~78 2θ), the letter 

being more susceptible for broadening errors due to the angular position (e.g. strain). 
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Considering both situations for the a constant (old and recent) it was decided that (100) 

peak was the best option to be used in obtaining a an calculating La. 

By using the Scherrer equation (Eq. 3.2), an average of the out-of-plane crystallite 

size (coherence length in the c-direction) - Lc, can be estimated from the broadening of 

(002) peak, while the in-place crystallite size (coherent length in the a-direction) – La 

from the broadening of (100).   

 

XRD data analysis 

The majority of the XRD measurements in this thesis were obtained from solid 

samples (bulk as received) with a Panalytical X’pert Pro diffractometer working in 2θ 

Bragg geometry. The machine uses X-ray radiation from a Cu anode (40 keV, 40 mA, 

λ= 1.545 Å). The XRD pattern for 2θ was collected from 20̊ to 90̊ in continuous 

scanning mode with interval of 0.066̊ at a speed of 300 s (time/step).  

The diffractogram analysis was done using X´pert High Score Plus software 

where background determination and peak positions were considered in addition to 

instrumental broadening. The d-spacing was automatically provided by the software, 

while the lattice parameters a and c were calculated with Eq. 3.3. As reference, the file 

number 00-056-0159 was used, from the International Centre for Diffraction Data 

(ICDD) library , which was  accessed through the X´pert High Score Plus software [87].  

Figure 3.4 2D hexagonal crystal structure 
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The instrumental broadening was measured from the line profile of a standard 

silicon specimen, using the same experimental set-up as for the other samples. It was 

subtracted in quadrature manually from each peak position that was of interest as the 

instrumental broadening increases with the 2θ [88]. 

  The strain broadening was subtracted (where possible) using a Williams and Hall 

plot [88] (Figure 3.5). 

 Finally, the coherence lengths were determined from the remaining broadening 

by means of Scherrer’s equation (Eq. 3.2), with the following shape factors: for La  -  

k=1.84, and for Lc  - the usual value was used k = 0.9.  

 

 

 

 

 

 

Figure 3.5 FWHM in radians versus 2θ in degrees, of the Si peaks from XRD pattern 
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3.3. Raman spectroscopy  

Raman spectroscopy is one of the most classical, non-destructive spectroscopy 

techniques known. It was improved by the discovery and use of lasers as source of 

monochromatic light, and it is based on the principle of scattering and absorption of 

photons as a result of interaction with matter. The scattered photons can have different 

forms: 1. Rayleigh scattering - or the elastically scattered photons (having the same 

energy as the incident photons); 2. Stokes and anti-Stokes scattering, with inelastically 

scattered photons of a lower or higher energy than the incident photons, conditioned by 

the transfer of vibrational energy between the incident photon and the illuminated 

system, which can be initially either in ground or excited state (Figure 3.6). 

 

3.3.1.  Raman spectroscopy methodology 

When carrying out Raman spectroscopy, the sample is illuminated by a laser 

beam, which can emit light either in UV, visible or near IR range. The beam reaches the 

sample through the lens system of an optical microscope, the scattered beam is returned 

back through the same system, where finally the Raman spectrum is measured with a 

high-sensitivity, multichannel energy detector. The predominant signal comes from 

Rayleigh scattering, and the detector needs the signal to be filtered, in order not to 

Figure 3.6 Raman scattering energy level diagram; (a) Stokes Raman scattering; (b) anti-Stokes 
Raman Scattering. 
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saturate the detector, as the Rayleigh energy is much higher intensity than the Raman 

scattering. Therefore, the Raman systems have Notch filters that stop or attenuate the 

unwanted signal (e.g. fluorescence or reflectance signal from the sample). Shown in 

Figure 3.7 is the optics behind the acquisition of spectra. 

The remaining signal is filtered by a dispersion array which separates the signal 

into different wavelengths before being counted by a detector, which records the 

intensity of inelastically scattered light as a function of frequency (wavenumber). From 

this vibrational (phonon) energies can be inferred. 

 

3.3.2. Raman spectroscopy of Carbon 

Over the years Raman spectroscopy has become an important tool for 

characterizing such as amorphous carbon, black carbons and commercial graphite (from 

which nuclear graphite was derived). 

 For diamond, only one peak can be seen in the first order of Raman spectra, 

which appears at ~1332 cm-1 (Figure 3.8), with an overtone at ~ 2667 cm-1. The Raman 

spectra of diamond is due to the longitudinal vibration mode F2g  and represents the only 

Raman active vibration for cubic diamond, as suggested by Solin in 1970 [89], and 

Figure 3.7 Schematic of the Raman spectroscope equipment; where ν
0
 is the Rayleigh 

scattering and ν
M is the Raman Stokes or anti Stokes scattering 
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agreed further on by other researchers like Ramdas in 2000 [90] or Nemanich in 2004 

[91] 

In 1979, the normal vibrational modes of graphite where defined by Nemanich & 

Solin, using Eq. 3.4 [92], corresponding to Figure 3.9:  

where A2u and E1u represent the translations of the plane; B1g is the optical vibration 

mode where the carbon atoms move normal to the graphene plane; and E2g which is an 

optical vibration that describes the in-plane movement of the atoms. 

 In Raman, the only active vibrational mode is the E2g, which can be seen at ~42 

cm-1 and 1582 cm-1. Even though the graphite basal planes are bonded by weak Van der 

Waals forces, their energy is big enough to change the symmetry in the way that the ~42 

cm-1 peak is seen in graphite but not in graphene, as it is an in-plane vibration mode 

active due the graphene layers gliding over each other [93]. 

 

 Γvib=2A2u ⊕2B2g ⊕2E1u ⊕2E2g 

 

Eq. 3.4 

Figure 3.8 Raman spectra of diamond [114] 
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Raman spectra of graphite and amorphous carbons 

In graphite, the most prominent feature, considered its finger print peak 

[92,94,95], can be seen at ~1580 cm-1 (Figure 3.10), the G peak. According to 

Dresselhaus et al., and supported by other authors, this peak is attributed to the first-

order Raman scattering, and it is due to double degenerate phonon mode of in-plane 

(basal plane) vibrations - the E2g mode [96–100]. The name “first order” comes from the 

number of scattering events, which involve only one phonon emission. 

The G peak can be seen in all the poly-aromatic hydrocarbons materials and is due 

to the stretching of all pairs of sp2 atoms in both chain or rings [101].  

The second most important peak is the D peak, at ~1357cm-1 (Figure 3.10). It 

appears sometimes only in the small particles (~2-5nm) of crystallised graphites or 

disordered graphites, and disappears in perfect crystals [102–104]. The D peak is a 

feature due to the double-resonance Raman scattering, and compared to the G peak, it 

has a dispersive nature (its position can move with the change of excitation energy) 

[103]. 

Figure 3.9 Graphite vibrational modes, highlighted in red  the E2g vibration mode with the two 
specific vibrations E1u, infrared (IR) visible, and E2g which is Raman visible [93]. 
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During the years, people attributed the presence of this D band to the existence of 

defects in the lattice, and as a result of the breathing mode of the phonon [98,105]. The 

optical mode believed to be responsible for the breathing mode of phonons is A1g, a 

mode which is Raman active but not for graphite which has the D6h symmetry [106–

108]. The latter groups acknowledge the D band as arising a result of some 

intercalations or disorder in the lattice (e.g. vacancies and interstitials), and according to  

[93] the D band appears regardless of the type of defect that is distorting the lattice/ 

symmetry.  

In some cases another peak is present in the Raman spectra of carbons, namely 

D’, at ~1620 cm-1. The D’ peak is an overtone of the D peak, and some state that its 

appearance is due to the electron being backscattered by a second phonon and not by a 

defect (as a result of double resonance of the D peak [93]).  However, during the years, 

other explanations for the D’ peak were considered: it appears only in the imperfect 

graphites and disordered carbons [92], such as intercalated graphite compounds or 

oxidized carbons [109]; or its appearance is connected to the loss of basal plane 

translational symmetry [110] that might be found at the edges of crystallites [111]. 

At the end of the carbon Raman spectra of carbon (Figure 3.10), second order 

phonon scattering, the 2D peak at ~2710cm-1 - this is the overtone of the D peak; and 

Figure 3.10 Raman spectra found in graphitic materials. 
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the 2G peak at ~3300cm-1 - the overtone of  the G peak. During the years, researchers 

focused on the 2D peak, since it can provide evidence of micro-crystallinity [112]. 

Another peak can be seen at ~2950 cm-1, namely the D+G peak, which according to 

Wang et al. [109] can be attributed to the influence of both E2g and D modes. 

Compared to graphitic carbons, which have an ordered structure (Figure 3.11 (a)), 

amorphous carbon does not have a crystallographic order. In amorphous carbon the 

structure has only short range order [113].  The differences between the Raman spectra 

of amorphous carbons are not large, as can be seen in Figure 3.11 (b). However, the G 

and the D peak can still be seen, but the broadening of the peaks is bigger and in some 

cases they even overlap, and in other cases the intensity of the D peak is larger than the 

G peak, opposite to the case of graphite spectra. 

 

Figure 3.11 Raman spectra of different carbonaceous materials [114]. 
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 From using known information on the atomic and electronic structure of 

disordered carbons Ferrari proposed a theoretical model for the course of amorphization 

of carbon (Figure 3.12) in terms of the corresponding changes in spectra [101]: a) 

graphite change to nano-crystalline graphite; b) nano-crystalline graphite transforms to 

low sp3 content amorphous carbon; c) low sp3 content amorphous carbon transforms to 

high sp3 content amorphous carbon. According to him the easiest way to keep track of 

change in the course of amorphisation is by following the evolution of the position of 

the G peak or the ID/IG ratio.  

Since 1970, when Tuinstra & Koening’s (TK) first introduced an empirical 

relationship [95] correlating the value of coherence length in the a-direction La, found 

by XRD, with the intensity ratios of the Raman D and G peaks, it was widely used to 

define microcrystalline domains in graphitic carbons. Over the years, there has been no 

general agreement concerning this correlation: similar results from XRD for La 

[112,114–116] were reported, and some results one order of magnitude higher than the 

ones reported by TK [117] were found.  

 Those proposing the validity of the TK correlation ID/IG ~ La  admit that special 

care has to be taken in finding the La value, and suggest, for better accuracy, that XRD 

should be the first technique considered instead of  Raman [116]. Others [98,114] have 

Figure 3.12 Schematic variation of G peak and ID/IG, corresponding to different stages of 
disorder [113]. 
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applied a correction factor to the TK relationship based on the energy of the Raman 

laser, to the TK formula: 

 

  
L!(nm) =

560
E!"#$#%!

I!
I!

!!

 
 

 

Eq. 3.5 

 

where: La – is the coherence length in the a direction; Ephoton- is the energy of the laser 

photon; λphoton – is the wavelength of photon; ID, IG – are the intensities of disorder and 

order Raman peaks, respectively. 

Because the TK formula has a limited application for the domain size of 

crystallites [117], and also its applicability is debatable for all the nuclear graphites, in 

this thesis the ratio ID/IG will be used only to compare the graphitization degree/disorder 

between samples alongside several other parameters.  

During the years, different attempts were made to make a classification system for 

measuring the degree of graphitization/disorder in carbonaceous materials with the help 

of Raman Spectroscopy [109,114,118,119]. In the following analysis section of this 

thesis, only the parameters extracted from the first part of the Raman graphite spectra 

will be used to establish the perfection or lack thereof: (a) The position of the G peak; 

(b) The D/G intensity ratio; (c) The FWHM of the G peak. 

 

3.3.3.  Raman spectroscopy experimental details  

Raman investigation was carried out at room temperature, using a commercial 

Renishaw Spectrometer. The equipment is composed of a Raman Spectrometer 

equipped with a CCD detector, and a modified optical microscope, having a resolution 

of the beam of ~1µm. 

The spectra were recorded using an Ar/Kr ion laser of λ=514.5nm and a 50X 

objective was used to focus the laser light onto the samples. The laser power was 

adjusted to 24mW, and the spectral integration time was 30s with two spectra per 

accumulation. The Raman Shift spectral range 1000 - 3200 cm-1 was recorded, although 
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the machine has the capability to work between 200 - 3200cm-1 or even lower, down to 

20 cm-1, if a filter is changed. 

The specimens used were analysed as received, or prepared in a similar fashion to 

the specimens for the XRD investigation, by using a Struers Accutome-2 cutting 

machine at a speed of 1200rpm/sec. 

 

Raman spectroscopy data analysis 

In 1984 Dillon et al. [120] while investigating the disorder and crystallite 

formation in as-deposited and annealed carbon films, observed that the G peak exhibits 

an asymmetric shape under thermal treatment. While the peaks in the first order 

scattering of Raman spectra (D and G) could be described with two Gaussians, the 

asymmetric shape observed in the annealed carbons could not. The established 

procedure in this case is to use Breit-Wigner-Fano (BWF) function for the fitting of the 

G peak, and a Lorentzian fit for the D peak [113,120–122] . 

The BWF can be described as in Eq. 3.6, where ω0 is the G peak position with Γ 

being the FWHM of the same peak. 1/Q is the BWF coupling coefficient (coupling of 

the phonon-phonon modes), with the constraint that if 1/Q->0, the line shape transforms 

to a symmetrical Lorentzian.  

 

I(ω) =
I! 1+ 2 ω−ω!

QΓ
!

1+ 2 ω−ω!
QΓ

!  

 

Eq. 3.6 

 

The Raman data presented in this thesis was fitted using Origin lab 9.1, using the 

procedure described above, with the remark that a linear fitting was used for the 

background subtraction, and the initial ω0 was introduced by the user to be the value 

usually found for nuclear graphite, ω0 ~1583 cm-1. No other constraints were imposed, 

and the program was able to find the best fit determined by minimising the R2 value.  
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3.4. Electron Microscopy  

The interaction of high energy electrons with a sample is summarised below 

(Figure 3.13): 

3.4.1. Scanning electron microscope (SEM) 

SEM represents an important morphology study technique of a sample. In a SEM 

(Figure 3.14), accelerated electrons are focused into a small beam using a system of 

magnetic and electric fields, scanned across the sample surface. The incident electrons 

interact with the atoms from the sample, and scatter either inelastically or elastically, 

producing different types of signals for imaging (Figure 3.13). 

 Backscattered and secondary electrons are the main imaging signals in a SEM, 

the latter providing information on surface topology. During inelastic scattering, other 

events can take place, like the ionization of the atoms by generating characteristic X-

rays which can provide information about the elemental composition of a sample. 

Figure 3.13 Different characteristic scattered signals generated when electrons interact with matter. 
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 In the present study, surfaces of the analyzed samples were examined using a 

LEO 1530 “Gemini” (Carl Zeiss, Cambridge) field emission gun scanning electron 

microscope (FEG-SEM) - for the virgin samples - or a FEI Nova 200 Nanolab dual-beam 

FEG-SEM/FIB (FEI Co.) –for the irradiated samples. For both SEMs, the secondary 

electron images were obtained using an in-lens detector at an operating voltage of 5keV. 

The samples were analyzed as received, and no coating was necessary as the samples 

were highly conductive. 

 

3.4.2. Transmission electron microscope (TEM) 

The electrons start to travel within the column with a uniform energy, given by 

the accelerating voltage. The accelerating voltage is in close relationship with the 

resolution of the microscope: 

 𝛌 =   
1.22
E

 Eq. 3.7 

where E (eV) is the energy of the electrons, and λ is their wavelength. For an 

accelerating voltage of E= 300 keV, the wavelength of the electrons can reach sub-

angstrom dimension that are smaller to the diameter of an atom [123], while for 80 and 

Figure 3.14 Schematic representation of a SEM device 
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200 keV the wavelengths of  the electrons are 4.17 x 10-3 nm and 2.51 x 10-3 nm 

respectively. 

The development of the microscopes, and the improvement of the accelerating 

voltage did not come only with benefits, but also with the knowledge that some samples 

need specific settings for the working microscope, as the structure of a sample can be 

damaged very easily with the high accelerating voltage (due to inelastic scattering). 

Examples for electron damage can be the biological samples, which need specific 

cooling when are investigated via electron microscope, or the graphite, whose structure 

is easily damaged above 80 keV [70,124,125]. 

The transmitted signals form the basis for TEM. A basic instrument is shown 

schematically in Figure 3.15 

TEM has about 2 main working modes: image mode, and diffraction mode 

(Figure 3.16). Inside a TEM, electrons are transmitted through a very thin sample and, 

depending on the demands; the two working modes operate in different ways:  

Figure 3.15 Typical construction of electron microscope column. 
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(a) Diffraction mode - when the electrons are transmitted through the sample 

and diffracted by the internal structure. The diffracted electrons are converged by 

objective aperture in order to form the DP of the sample in the back focal plane.  

(b) Image mode - when the electrons are traveling and transmitted through the 

sample, and the scattered electrons are converged by the objective aperture and meet 

in the focal plane, where the intermediate image is formed; a magnified image is then 

projected on the microscope screen showing the image of the sample.  

 

Figure 3.16 The two main operating modes in the TEM: (a) diffraction mode which provides DP 
and (b) image mode; (reproduced after [123]. 

 

A B 
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I. Imaging modes 

The imaging mode of the TEM is based on contrast: in a thick/dense sample, 

some areas will appear darker than the thinner areas due to the increased inelastic 

scattering/absorbed electrons; this is known as mass-thickness contrast.  

Imaging using diffraction contrast can be performed in two ways. The first is the 

Bright Field method (BF) (Figure 3.17 (a)), where an aperture is inserted in order to let 

only unscattered beam to pass. The image is, based on the contrast in which the 

crystalline parts will appear darker if they diffract at the Bragg orientation or are 

amorphous areas. In crystals, the contrast is also given by the orientation of the crystal: 

for an orientation that satisfies the Bragg condition, the crystal will appear darker.  

The second image mode in which TEM works is the Dark Field mode (DF) (Figure 

3.17. (b)). In this case, the aperture allows specific diffracted rays to pass, and stops the 

incident beam taking part in the image. The image contrast is opposite to BF. DF is 

applied when the defects or some specific structures in the specimen are of interest.  

High Resolution mode (HREM) (Figure 3.17 (c)), permits the lattice image to be 

seen with atomic resolution. This mode uses both diffracted and undiffracted waves. 

The difference between this mode and the other two (BF and DF) is that it requires the 

Figure 3.17 Image formation in the TEM, in different working modes: BF, DF and HREM. 
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information from several beams and not just from one. In fact, the more beams used, the 

greater the resolution. This type of imaging is called phase-contrast imaging. When the 

beam passes through a very thin sample, the phase changes by +/- π/2 because of 

scattering but maintains its amplitude. The difference in phase causes the recombined 

beams to exhibits an interference pattern that corresponds to the lattice.  

 

II.  Electron Diffraction mode 

Electron diffraction is based in the elastic scattering of electrons by the 

crystallographic planes of a sample, and the formation of DP follows the same rules as 

for the X-ray diffraction presented in section 3.2 . 

The region of the sample, which forms the diffraction pattern, can be defined by 

use of a selected area (SA) aperture located in a intermediate image plane (see Figure 

3.16). This gives spatially resolved crystallographic information from areas ranging 

from 0.2 µm to a few microns. 

 

III. Electron Energy Loss Spectroscopy (EELS)  

In EELS mode, incident electrons interact with the specimen are inelastically 

scattered and lose part of their energy. These scattering events carry with them a huge 

amount of information about the electronic structure of the sample, and all aspects 

associated with it (e.g. atomic structure, free electron density and specimen thickness). 

The transmitted scattered electrons are dispersed using and magnetic electron 

spectrometer (Figure 3.18).  

An electron from the incident beam can lose part of its energy to the sample in 

one of  three ways: first (and most likely), it is the plasmon excitation event, which will 

happen by inducing a collective excitation of the outer shell electrons (the valence 

electrons); second, it is by ionising an individual atom up to the excitation of an electron 

from a core level to the conduction band (above the Fermi level); and third, it is by 

excitation of the entire atomic lattice by exciting phonons. 
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For a particular energy loss event (or energy loss electron) the characteristic 

scattering angle - θE is defined in mrads [123]. If the relativistic effect of the fast 

electrons is ignored the characteristic scattering angle may be approximated by: 

where E0 is the primary beam energy [126].  

As EELS is conducted in a TEM, which can provide a high spatial resolution, the 

collected spectra can give information from a small area of the sample. However, the 

technique is still very valuable as it provides structural information on chemical 

bonding, or nearest-neighbour distribution once the spectrum has been analysed [123]. 

 The EELS spectrum is divided into two main regions, low-loss (energy losses 

below 50eV), and high-loss (energy loses above 50 keV) (Figure 3.19). The high energy 

loss region is further divided into the ELNES (electron energy near-edge structure) and 

EXELFS (extended electron energy loss fine structure) on specific ionisation edges 

associated with a particular event in the sample (each of which occur at a characteristic 

energy) [68,123,127]. For this thesis, the low-loss and ELNES regions are of interest. 

 

 
θ! =       

E
2E!

 Eq. 3.8 

Figure 3.18 Geometric representation of the magnetic prism spectrometer and the focusing 
signal of energy-loss electrons in the image plane. 
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A. Low-loss region of carbon 

 The low-loss includes the most intense feature of the entire spectra, the zero-loss 

peak which contains the elastically scattered electrons. The zero low loss full width half 

maximum (FWHM) is also indicative of the energy spread of the electron source, or 

resolution of the spectrum.   The second most intense feature of the low-loss part of the 

spectrum is the plasmon. This feature is split into two regions as illustrated in Figure 

3.20.  

Figure 3.19 A characteristic EEL spectrum of a carbon sample. First part of the spectrum 
represents the low loss, followed by the core-loss at higher energies. 

 

Figure 3.20 Low Loss spectra of a carbon sample with the π-π* peak, specific for graphitic 
material and π-σ bulk plasmon peak. 
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The first region of interest in this case is the π-π* interband transitions (and π 

plasmon) of around 6.5 eV [127] . This feature is due to the presence of π type bonds 

within a specimen, which in carbonaceous materials is due to the existence of sp2 

hybridised carbon.  The second region is the valence plasmon peak, or π+σ, due to all 

the valence electrons.  The position of the plasmon peak at ~27eV [126,127] is related 

to the changes in structural or chemical phase, crystallite size, and hence valence 

electron density (N), the latter of which can be calculated [128–130] by : 
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=  

  

Eq. 3.9 

where h is the Planck’s constant, e is the electron charge, m0 is the electron mass, and ε0 

is the permittivity of free space (assuming a ‘free electron’ system) [127].  

 

B. Carbon core-loss region 

 The ELNES carbon K - is due to the excitation of the 1s electrons to unoccupied 

p-states found above the Fermi level. It is dependent on the atomic structure 

[123,126,127].  For graphite the ELNES exhibits two main features: the π* peak (~284-

285 eV), and the σ* peak (~288-291 eV) as illustrated in Figure 3.21 [131,132]. The C 

K ELNES presents interest not only for the bonding information which are contained by 

Figure 3.21 Representative typical crystalline graphitic core loss spectrum 
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the two main peaks (π* and σ*), but also for the ease of distinction between amorphous 

and crystalline materials [132,133].  

 

C. Magic angle and the orientation independent conditions 

Following Berger and McKenzie’s proposal in 1988 of using the “two window 

method” to subtract the sp2 content from isotropic carbonaceous materials, different 

methods have emerged to quantify the sp2/sp3 in more anisotropic materials, such as 

graphite [134,135]. During the years, the most significant improvement was 

acknowledging the spectral dependence of the intensity of ELNES features on sample 

orientation, which gave, rise to the use of specific working conditions at the orientation 

independent collection angle or ‘magic collection angle’ (MA). Researchers observed 

that not only the orientation of the sample relative to the incident beam can influence 

the output results, but also the acquisition parameters.  

In 1998 N. Manon et al. [136] used graphite as study material (theoretical and 

empirical) to analyse the influence between the convergence and collection angles on 

the  orientation dependence  of the spectra. They concluded that the orientation 

independence should be achieved at MA = 4θE (where θE represents the characteristic 

scattering angle defined by Eq. 3.8). C. Souche [137], found, by studying another 

hexagonal structure (boron nitride), a similar value for the  orientation independence, 

3.97θE. Theoretically Paxton [138] proposed a smaller value (MA = 1.34θE) than 

previously thought.  

In 2003 H. Daniels [139]  reported by experimental evidence, that at 200 keV the 

MA  was ≈ 2θE. This was later confirmed by relativistic calculations [140]. P. 

Schattschneider done extensive theoretical calculation regarding the MA for a multitude 

of accelerating voltages (e.g. 0 – 400 keV), but unfortunately up to now, nobody proved 

empirically the theoretical calculations to be true besides the already known value at @ 

200 keV [140–142].  
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 D. Damage of carbon at high intensity voltage 

TEM represents a useful technique to observe in real time the defects presented in 

the analysed material. The only problem is that electron irradiation can also produce 

atom displacements. Atom displacement can occur by two different processes: (a) 

through radiolytic processes associated with electron ionization and excitation or (b) 

through direct knock-on collisions with the nuclei [143]. In carbon materials such as 

graphite the main damage mechanism is knock-on - a ballistic event leaving the lattice 

with a Frenkel pair defect (vacancy plus interstitial). For an atom to get displaced the 

transferred energy should be higher that the displacement threshold energy. If the 

incident beam energy (ETEM) is known, the damage threshold energy (ED) can be 

calculated using 

 
E!"# = 0.25      

m!

m!
E! Eq. 3.10 

where mc =1.994x10-26 kg (the mass of carbon) and me = 9.1 x10-31 kg (electron mass) 

[144].  

During the years, the exact threshold energy for graphite was ill defined, with 

values ranging from 12 – 42 eV, resulting in a significant variation in the values for 

“safe” working voltages for TEM analysis. However Banhart has stated that energy 

threshold is in the range of 15 - 20 eV [145], corresponding to an electron energy of 82-

100 keV. 

 

3.4.3. TEM experimental details 

Based on the discussion above, for non-damaging imaging and analysis of the 

graphitic structures, an accelerating voltage of 80 keV was chosen. 

Generally the microscope is calibrated for operating at 200 keV. Hence, as part of 

this reason the microscope was fully calibrated at 80 keV in terms of collection and 

convergence angles, along with the magic angle. Details about the microscope 
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calibrations and the magic angle found for 80 keV the reader is advised to see Appendix 

A).  

Knowing the importance of the orientation independence for collection of the C 

K-edge data, the MA was checked and found to be 3.1 θE,, in close agreement with the 

theoretical value of 2.6θE @80 keV found by Jouffrey et al. [142]. The working 

parameters of the microscope used when obtaining the MA at 80 keV are summarised in 

Table 3.2, where CL is the camera length, C2 is the lens current on the second 

condenser lens, β is the collection semi-angle, α is the convergence angle at 80 keV, 

β*is the effective collection semi-angle (the sum in in quadrature of β and α) and R is 

the spectrometer entrance aperture radius. 

Table 3.2 Working parameters when obtaining MA at 80 keV. 

 

A. Imaging and diffraction modes – acquisition and data analysis 

For the acquisition of the BF images and diffraction patterns a FEI Tecnai F20 

field emission gun transmission electron microscope (FEG-TEM) was used, operating at 

80 keV, and equipped a Gatan SC600 Orius CCD camera (Gatan Inc, Pleasanton, CA). 

All diffraction patterns were recorded using a camera length (CL) of 150mm at a 

magnification 50kX. For the HRTEM, the images were acquired at a magnification of 

280k X.  

Structural characterization of materials can be achieved by analysing the 

reciprocal space, using selected area electron diffraction (SAED). In addition to the 

high-resolution images, electron diffraction can provide structural information not only 

on the c lattice parameter but also the a lattice parameter. 

Quoted CL (Real CL) 
(mm) 

C2 
(mA) 

β 
(mrads) 

α 
(mrads) β*(mrads) 

R 
(mm) 

115 (98) 1107 5.40 1.13 5.52 2 
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Figure 3.22 (b) shows the typical indexed electron diffraction pattern of a 

polycrystalline graphite sample. For the purposed of this thesis the (002) and (100) were 

measure and used in calculation of the lattice constants a and c respectively. 

The difficulty to find thin and large enough areas overhanging holes in the 

amorphous carbon film was high, as the grinding procedure for preparing the TEM 

samples had to take in consideration both the time of the β radiation exposure of the 

user, the radiation waste produced, and the fact that the graphene sheets tend to 

conglomerate.  

Figure 3.23 (a) shows a high resolution TEM phase contrast image, clearly 

demonstrating the arrangement of the atomic columns within a near perfect PCEA 

graphite crystal. The stack of columns shown in yellow in Figure 3.23 (b) has been 

obtained by taking Fast Fourier Transforms (FFT) of an area from the original image (a 

procedure performed in Digital Micrograph). The FFT was filtered for the intensity of 

the first order spots from the diffraction pattern, which describes the spatial frequencies 

of the (002) planes contained in the original image, after which an inverse FFT function 

was used to return to real space. 

Figure 3.22 BF image of virgin PCEA (a) with its indexed DP(b) 
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 By following this procedure, no extra information was added to the resulting 

image, but it just allowed easier measurement of image intensity profiles (Figure 3.23 

(c)) in the area integrated in the yellow rectangle in Figure 3.23 (b). Both original 

images and Fourier filtered images are shown in the thesis. 

 

B. EELS data analysis  

The EEL spectra were collected on a FEI CM200 FEG-TEM operating at 80 keV, 

equipped with a Gatan GIF 200 imaging filter camera. The used TEM working 

parameters when in EELS mode can be seen in Table 3.2. 

The position of the π* peak for all C K-edge spectra was energy calibrated to 285 

eV following background subtraction. Each C K-edge spectrum was acquired along 

with the corresponding low-loss peak, which was used to deconvolute the K-edge 

spectrum to remove plural inelastic scattering. Data extracted from the spectrum 

Figure 3.23 (a) HRTEM image of a long PCEA crystallite; (b) Fourier filtered image of the 
area of interest (highlighted in (a) in green square 3); (c) intensity profile of an integrated line 

profile (highlighted in (b) in yellow rectangle. 
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acquired from a standard HOPG sample under the same experimental conditions, was 

used to normalise subsequent carbon sp2 content using Eq. 3.11. 

 An improved automated fitting routine for was achieved by adding two Gaussian 

curves to the existing method proposed by Zhang [135] which involved the use of three 

Gaussian peaks (Figure 3.24 (a)). The additional two Gaussians were positioned under 

the initial “residual” peak (~286 - 288 eV) described by Zhang’s method. This intensity 

was ascribed to either: from the asymmetric nature of the sp2 planar component arising 

from curvature of the graphene planes, or from the presence of additional species (e.g. 

O or H). The three Gaussians had the following significance: G1 ~285 eV, was fitting 

the planar C=C π* component; G2 ~292 eV the C-C σ* component and G3 ~300 eV the 

C=C σ* component. 

All five Gaussians were fitted simultaneously using the following constraints:  

- the first Gaussian (G1) centred at ~284.5 eV (with a constraint on the FWHM 

(X): 0.25 eV ≤ X ≤ 2 eV);  

- second Gaussian (G2) centred at ~291.75 eV (2.1 eV ≤X ≤ 3.0 eV);  

- third Gaussian (G3) centred at ~297.75 eV (11.2 eV ≤ X ≤ 13.1 eV).  

Figure 3.24 (a) Circled residual peak signal from 3 Gaussian fit performed in Gatan Digital 
Micrograph (b) Circled residual peak signal from 5 Gaussian fit performed in Hyperspy. The 

residual peak from (a) was deconvoluted into two separate peaks in (b). 
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While fitting the extra two Gaussians (G4 and G5), the script fixed the FWHM 

and the centre of G1, G2 and G3 along with the area of G2 and G3, but allowed the area 

of G1 to change in order to accommodate the new components, which were fitted using 

the following constraints: 

- G4 centred at ~286.5 eV (0.2 eV ≤X ≤ 1.5 eV) ; 

- G5 centred at ~288.5 eV (0.2 eV ≤X ≤ 1.5 eV).  

It will be seen later, that in the analysed samples these two Gaussians (Figure 3.24 

(b)) change not because of the presence in the sample of different species, but more 

because of the curvature of the graphitic basal planes. 

The variation of planar sp2 content was then calculated by comparing the ratio of 

the π* intensity (G1) with the total C K-edge intensity (integrated over a 20 eV window 

from the edge onset at 282.5 eV) which is proportional to the total number of carbon 

atoms present in the probed volume:  

where an average of 10 intensity values from different HOPG C K-edge spectra were 

used to calculate (Iπ* / Iπ*+σ*)th , to ensure all spectral changes were relative to a 

“perfect” 100% sp2 structure. 

Planar  sp!  content   =   
I!∗

  I  !∗!!∗
I!∗

  I!∗!!∗ !"

 Eq. 3.11 



 76  
  

 
 

Chapter 4 Methodology of simulating neutron irradiation 

by in- situ electron irradiation of nuclear graphite 

Throughout this section electron irradiation it will be referred in three ways: 

fluence refers to the number of electrons that intersect a unit area (e m-2); flux is the 

fluence rate (e m-2 s-1); and dose (dpa – displacements per atom) is the energy 

transferred fluence.  To determine the dose experienced by a material in a transmission 

electron microscope, the electron intensity, I, must first be calculated using: 

I = 1875×10
12 × τ×ε

te ×C× e
 

 

Eq.  4.1 

 

where τ is a constant associated with the operating voltage (1.3 at 200 keV), ε is 

the emulsion setting (set to 2 during TEM operation), te is the exposure time, C is the 

screen size correction factor (≡1) and e is the electronic charge (FEI 2011).  To convert 

this to an electron fluence, J, the beam area, A, must be determined to give   

J = I
A

 

 

Eq.  4.2 

 

which involves an error of approximately ± 6.4% due to uncertainty associated 

with the exposure time reading (typically ± 5%) and beam radius measurement 

(typically ± 4%). The dose, D (in dpa), is then calculated using Eq. 4.3.  

D = J  x  σ! Eq.  4.3 
 

where σd is the displacement cross section, representing the quantitative analysis 

of the radiation damage induced by charged particles in crystalline materials and  

defining the displacements of atoms from the atomic layers, carbon atoms  in the 

present case.    
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The displacement cross section varies with changing the electron energy and 

displacement threshold energy, Edt. Displacement cross section was measured referring 

to Figure 18 from Oen (1965) [146] (Appendix C) and found to have  a value of 16.25 

barns assuming an electron energy of 200 keV and a displacement threshold energy of 

20 eV [144]. A précises value of Edt has not yet been agreed upon within the literature, 

with values ranging from 15 – 25 eV, resulting in a significant variation in σd and 

therefore in resultant dose calculations [62,127,144,145].       

 

4.1.Electron irradiation data analysis  

During EELS experiments, the intensity of the beam was varied considerably for 

the acquisition of the low loss and core loss regions, which resulted in an inconsistent 

electron flux. During the acquisition of low loss spectra the beam was spread over a 

large area to give a low intensity (so as to avoid saturating the detector) resulting in a 

near-negligible flux; when collecting the core loss however, the beam was focused to a 

smaller area giving a much higher intensity which is comparable to the intensity during 

imaging. The change in fluence was accounted for by measuring the electron flux at the 

two acquisition intensities and recording the time spent at each; the cumulative fluence 

was then determined and converted to dpa.  The change in dose over time is illustrated 

Figure 4.1 Change in dose with respect to time under the electron beam (dose error = ±6.4%). 
The plateaus and slopes respectively describe the dose rate during low loss and core loss 

acquisition periods 
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in Figure 4.1 where the plateaus and slopes respectively describe the dose rate during 

low loss and core loss acquisition periods.  

Four areas of thin (<50 nm) PGA graphite were subjected to an average electron 

fluence of 4.2 x 1018 electrons cm-2 s-1 (2.4 x10-4 dpa s-1). Electron micrographs and 

electron energy loss spectra were recorded periodically throughout.   

The micrographs and their corresponding selected area electron diffraction 

(SAED) patterns shown in Figure 4.2 are typical of the damage produced by a 200 keV 

electron beam.  These micrographs are comparable to those obtained by Karthik and 

Kane [62] and Muto [77] who also investigated the effects of electron irradiation to 

nuclear graphite. 

Figure 4.2 (a) – (d) Electron micrographs of PGA graphite with their corresponding SAED 
patterns during electron beam exposure at 200 keV and room temperature, receiving 4.2 x 

1018 electrons cm-2 s-1 (2.4 x10-4 dpa s-1 ± 6.4%). 
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Diffraction patterns were also recorded at regular intervals during electron beam 

exposure. It was observed a change of the DP from defined spot rings (at t=0) to defuse 

spot rings at the end of the experiment, with the mention that even though the image 

changed from stuck of fringes to disordered material, the DP kept the arrangements of 

the graphite rings, which is a good correlation with the findings by EELS that will be 

seen further on in this thesis. The bulk π+σ valence plasmon peak in the low loss region 

of the spectrum was analysed; the position of the peak being determined by taking the 

first derivative of the spectrum.  The widely agreed value for the bulk plasmon peak 

position of highly oriented pyrolytic graphite (HOPG) in the literature is 27 eV 

[68,129,147,148] (for comparison, the corresponding value for amorphous carbon is 23 

eV).  

As illustrated in Figure 4.3, the plasmon peak energy for PGA graphite is 

consistently lower than for HOPG. This situation may be due to the misorientation of 

the specimen’s c-axis relative to the normal of the incident beam [149], in combination 

with the choice of the spectrometer collection angle [126,127]. During the experiments 

the position of the plasmon peak seems to be unchanged, or perhaps slightly decreases, 

as a function of dose to within experimental error. 

Figure 4.3 Change in plasmon peak position with dose. Data is averaged over two regions of 
electron transparent (002) oriented PGA graphite. The error bars reflect the experimental 

variance. Dose error = ± 6.4% 
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  A representative set of EELS C K-edge spectra as a function of electron 

irradiation is presented in Figure 4.4 (a) - (d). The π* peak maximum of all spectra was 

calibrated to 285 eV, and a C K-edge spectrum was acquired every 90-100 seconds  

along with the corresponding low loss peak which was used to deconvolute the K-edge 

spectrum so as to remove plural scattering. The data extracted from the spectrum 

acquired at t=0 was used to normalise subsequent sp2 content data. Note that even after 

extensive electron irradiation damage, and even though the σ* component appears to 

undergo considerable change with a reduction of the graphitic order, the presence of the 

π* peak indicates that the structure retains a distinct sp2 character. 

To characterise the ratio of (planar) sp2 bonded carbon to total carbon from the C 

K-edges the improved method described in the previous chapter was used.  

The variation of planar sp2 content was calculated by comparing the ratio of the 

π* intensity (G1) with the total C K-edge intensity (over a 20 eV window of onset 282.5 

eV) which is proportional to the total number of carbon atoms present in the probed 

volume: 

Figure 4.4 Change in EEL spectra with dose (D): (a) D = 0 dpa; (b) D = 0.113 dpa; (c) D = 
0.209 dpa; (d) D = 0.267 dpa ± 6.4%. 
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 where the intensity values from the initial C K-edge spectrum were used to 

calculate (Iπ* / Iπ*+σ*)t=0 so as to ensure all spectral changes were relative to the initial 

structure.  

As can be seen in Figure 4.5 the sp2 content changed approximately linearly with 

respect to electron dose. The sp2 content dropped to below 80% of its original value 

after a dose of at least 0.25 dpa. In the most extreme case the sp2 content dropped to 

76% following an exposure of 0.32 dpa, a value consistent with the typical value of 

75% sp2 derived for amorphous carbon using this fitting method.  These changes 

provide evidence for the introduction of atomic disorder as a result of electron beam 

exposure.  

Planar  sp!  content   =   
I!∗

  I  !∗!!∗
I!∗

  I!∗!!∗ !!!

 Eq.  4.4 

 

Figure 4.5 Change in sp2 content with electron dose. Data was analysed using the 5 Gaussian 
fitting method and averaged over four regions of electron transparent (002) oriented PGA 

graphite. The error bars reflect the experimental variance and analytical error. Dose error = ± 
6.4%. 

 



 82  
  

 
 

The signals from the G4 and G5 peaks were analysed to provide information 

regarding the non-planar sp2, or fullerene, content of the specimen by measuring the 

ratio between the combined intensity under G4+G5 signal integral (IR) and the (IR+sp2) 

integral (the combined intensities under the G4, G5 and G1 peaks) detailed in 2.3.2.This 

ratio represents the proportion of sp2-bonded carbon atoms which are bonded in a non-

planar fashion and the increase in this quantity with increasing electron dose is plotted 

in Figure 4.6.  Comparing the data in Figure 4.5 and Figure 4.6, it appears as though the 

loss of planar sp2 bonding (very roughly a 20% decrease) is predominantly accounted 

for by an increase in non-planar sp2 bonded carbon. 

The errors shown in Figure 4.5 and Figure 4.6 reflect an analytical error of ± 6%, 

determined by slightly varying the energy window (G1) to account for subjective 

discrepancy due to the operator’s choice of constraints (no significant change in data 

with varying the constraints for the other major windows (G2 and G3) was noticed). 

The error values also take into consideration the small variation in data between four 

separate experiments. This proves that the subjective nature of EELS experimentation 

and analysis does not affect the outcome data significantly. 

 The findings revealed by the proposed fitting method, of the changes in the 

planar and non-planar sp2 bonding, are supported by the HRTEM images collected 

simultaneously with the EEL spectra (Figure 4.2), highlighting an increased in the plane 

Figure 4.6 Change in non-planar sp2 content with dose over two regions of electron transparent 
(002) oriented PGA graphite. Error bars reflect experimental variance and analytical error. Dose 

error = ± 6.4%. 



 83  
  

 
 

buckling with irradiation, due to the alteration in ratio of the planar to non-planar sp2 

content. 

Taking the first derivative of the C K-edge spectrum to analyse the change in the 

Multiple Scattering Resonance (MSR) peak position during the electron beam damage 

series, it was observed a slight decrease in energy relating to an increase in C-C bond 

length (Figure 4.7).  

The error associated with this data increases for higher doses where the MSR peak 

becomes wider leading to a degree of ambiguity; the error bars in Figure 4.7 represent 

experimental variation. 

 Results obtained by Daniels [134] following a series of graphitization 

experiments are analogous, whereby the graphite began as a highly disordered material 

with an average bond length of 1.435 Å and through annealing became a near-perfect 

structure with corresponding bond length 1.420 Å. In Daniels’ case, the decrease in 

bond length during graphitization was attributed to a decrease in sp3 bonding (bond 

length = 1.54 Å) and the removal of heteroatoms and aliphatic molecules (bond length > 

1.42 Å). In the present case however, no heteroatoms and aliphatic molecules are 

introduced to the system and the high energy barrier between graphite and diamond 

phases makes sp2 to sp3 transformation unlikely unless at high temperature (~1000 K) 

Figure 4.7 Change in MSR peak position with dose over two regions of electron transparent 
(002) oriented PGA graphite. Error bars reflect experimental variance and analytical error. 

Dose error = ± 6.4%. 
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[150]. However, the electron irradiation induced atomic disorder, as observed in Figure 

4.2, reduces the packing efficiency of carbon atoms which is thought to increase the 

average bond length (e.g. for the most extreme case of amorphous carbon, the bond 

length increases to 1.44 Å [151]).  It is thus suggested that introduction of dislocations 

and defects along with the bending of planes following electron irradiation increases the 

average C-C bond length.  Furthermore, it has been proposed that an increase in bond 

length could be attributed to a reduction in valence electron density (and thus the 

possible slight reduction in plasmon energy with increasing dose as shown in Figure 

4.3) which may be associated with an increase in volume or the introduction of non-six-

membered rings of carbon atoms [62].  

 

 Summary of electron irradiation of graphite  

Using PGA graphite the damage produced at the atomic level has been studied, by  

using in situ electron irradiation at room temperature. This simulation method of 

neutron irradiation damage using electron irradiation, in addition with the use of an 

improved fitting data analysis, was used for a better understand of the behaviour of 

graphite moderators inside a nuclear reactor.  

Analysis of the low and core loss of several EEL spectral series revealed little or 

no change in valence electron density, indicative of no change in phase of the 

investigated material due to irradiation. However a decrease in planar sp2 content, to 

levels associated with amorphous carbon and an increase in non-planar sp2 content, of 

inverse proportion to the planar sp2 reduction, along with an increase in C-C bond 

length was observed, denoting a change in the physical structure of graphite due to 

electron irradiation with dose up to 0.3 dpa, 
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Chapter 5  Results and Discussions 

Using the previously described methods and samples, different types of virgin 

nuclear graphites were analysed (PGA -Wylfa and Oldbury, Gilsocarbon, Ig-110, NBG-

18) along with two series of irradiated and non-irradiated graphites, PCEA and PCIB. 

Primarily Raman spectroscopy and XRD techniques were used, in order to obtain initial 

details about the bulk structure of the virgin and irradiated materials. These methods are 

similar to those applied by researchers such as Niwase and Tanabe 

[50,51,75,76,78,152], who conducted studies on different types of irradiation (e.g. ion, 

electron and neutron irradiation) and their effects on nuclear graphite. For the irradiated 

materials and their virgin analogue, supplementary data was obtained by techniques 

such as electron diffraction, TEM image analysis and EELS (under the experimental 

conditions established in chapters 3, section 2.4.2.5.), providing additional information 

on the influence of neutron irradiation on graphite structure, and making possible the 

creation of a model on how the nuclear graphite behaves when irradiated at high 

temperatures and doses, which agrees with the studies of Muto and Tanabe [51,75,78]. 

 

5.1.X-ray Diffraction (XRD pattern) 

XRD can provide information on the internal structure on both the crystallization 

and on the aggregation of the unit cell into crystallites. All the XRD data presented in 

this chapter was analysed using the reference file as described in Chapter 3.  

5.1.1.XRD of virgin graphites 

I. PGA  

Figure 5.1 shows the two very similar indexed X-ray diffractograms obtained by 

XRD from the analysed graphite. Even though the samples were analysed as received, 

(bulk samples) and not crushed (as the reference data was), it can be seen that their 
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structure has maintained a preferred orientation of the basal planes which are 

perpendicular to the (002). 

In Figure 5.1 (b), the (101) peak presents a broader width compared to Oldbury, 

which can be due to the strain in the orientation due to smaller coherence lengths, as, 

can be seen in Table 5.1.  Even if the analysed graphites graphite have similar d-spacing 

in both a- and c-directions, and are made from the same types of materials (pitch and 

petroleum coke), the different coherence lengths of the two can be translated into 

differences in porosity of the bulk materials hence a different response due to 

irradiation, as Simons, and Shtrombakh et al. suggested [8,54]. This hypothesis can be 

confirmed, only if further intensive analysis is done, to confirm the differences in 

coherence length and in porosity. 

Figure 5.1 Diffraction patterns from the two PGA versions, (a) Oldbury and (b) Wylfa, 
with the fitting of the pattern applied in grey shading. 
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II.  More XRD data on virgin nuclear graphite 

Figure 5.2 shows the magnified X-ray diffractograms of five other virgin nuclear 

reactor graphites: PCEA, PCIB, GILSO, IG-110 and NBG-18 (see section 2.2.2).   

 When comparing with the PGA graphites, all other analysed graphites in this 

section present a tendency to broaden and to loss intensity, all other peaks except the 

(00l) peak. This tendency is more noticeable in the (100) and (101) peaks, and the (103) 

peak, which for GILSO disappeared completely. The intensity of the (004) and (006) is 

increasing also, which means that all these types of graphite have a higher degree of 

orientation versus the old PGA.  Also in Figure 5.1  and Figure 5.2, one can notice that 

the peak positions in Figure 5.2 are shifted towards lower 2θ relative to the peak 

positions of the theoretical value denoted in the patterns with a blue vertical line 

underneath each peak. This movement of the peaks can be noticed also in the lattice 

values obtained by fitting (Table 5.1). 

Figure 5.2 Comparison between XRD patterns of five different graphites with the fitting of the 
pattern applied in grey shading. 
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Figure 5.3 is a comparison of the FWHM of the (002) peak versus the position of 

the same peak, measured from the X-ray diffraction pattern, through a range of different 

nuclear graphite grades. The analysis revealed that in comparison to HOPG, the most 

ordered and oriented graphite among the studied graphites, the other graphites had the 

tendency for an increase FWHM and moving towards lower 2θ, revealing a change in 

microstructure, more imperfect than HOPG’s. 

The movement of the peak is not only due to a slight change in the lattice 

parameters, but could also be due to the strain in the lattice, from lowering the 

coherence length (crystallites) from ~2298.4 Å of the Lc of the HOPG, to ~ 206.8 Å of 

the Gilso, resulting in a larger fraction of atoms at the grain boundaries. 

Figure 5.4 describes the variability within a sample of the interlayer spacing from 

three different graphites: Gilsocarbon (GIL), PCEA and PCIB. This variation in the 

crystallographic properties is following the expected trend described by Nigthingale [3]: 

the values obtained by measuring different points of the same graphite bar give 

distinctive values. For the PCIB and GIL in the c-direction, the d-spacing varies for 

similar values of the coherence length; for the a direction, the reverse is true, with the d-

spacing keeping constant while the coherence lengths in the a-direction changes.  
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Figure 5.3 Comparison of (002) FWHM peak vs. the position of the (002) peak 
through a set of virgin nuclear graphites 
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PCEA graphite exhibits in both cases, the a- and c-directions, a preservation of 

the d-spacing which could suggest a longer range isotropy and homogeneity compared 

to the other two analysed graphites. Despite the variability within a sample, it has to be 

noted that none of the three graphites sat down near the theoretical values of the perfect 

graphite, the (002) spacing is larger whilst the (100) spacing is smaller.                   

The obtained values for both crystallite sizes and lattice parameters are partially in 

agreement with the present literature: for PGA, PCEA and IG-110 even Zhou et al. [84] 

reported values of Lc higher than La, the  Lc values being almost a perfect match with 

the calculated figures. Zheng et al. [153] reported data found for NBG 18 and IG 110, 

with the same agreement in the case of Lc, but underestimating the La. The Lc values 

and the lattice parameters are also in agreement with the extensive work that Seehra and 

Pavlovic have done on coal based graphites [154,155], but not the La value. 

Nevertheless, according to Nightingale’s research [3] La value has to be bigger 

compared to Lc, and from this point of view the values reported by him for PGA are in 

agreement with the obtained data for both La and Lc reported here. The calculations of 
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Figure 5.4 Variability within samples of the same graphite grade in: (a) 
(002) direction; (b) (100) direction 
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Nightingale’s, on which this chapter is based, took into account a different shape factor 

when calculating the Lc and La values, as proposed by Warren in 1941 [82] but ignored 

by the authors mentioned before and hence their underestimations of La values. 

 

Summary of XRD of virgin graphites 

For all the analysed virgin graphites, a similarity of the lattice parameters was 

observed. However, the coherence lengths in both a- and c-direction vary.  The ranges 

are 207 Å - 310 Å for the c-direction (excluding HOPG considered perfect graphite with 

Lc > 2000 Å), and 351 - 617 Å for the a-direction. The calculated values were partially 

in agreement with the literature, having the calculated La value consistently higher than 

the ones reported in the literature; this was understood to be due to the usage of 

different shape factor (k), the general used k value of 0.9 instead of 1.84, which should 

be used in the case of graphite. However if only k = 0.9 would be used, for both a and c 

direction, the obtained data for all the virgin graphite analysed will be in full agreement 

with the literature. 
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Table 5.1 Measured unit cell constants and coherence lengths for different NG. 

Material c-spacing (Å) Lc (Å) a-spacing (Å) La 
(100)(Å) La

(110)
 (Å) 

HOPG 3.361 ± 6x10-4 2298.4 - - - 

Oldbury 3.363 ± 2x10-4 310.2 2.458 ± 1x10-3 617.1 703.0 

Wylfa 3.372 ± 3x10-4 300.4 2.460 ± 8x10-4 459.2 730.4 

PCEA 3.370 ± 3x10-4 229.4 ± 56 2.456 ± 3x10-3 399.2 ± 49 646.6 ± 2 

PCIB 3.375 ± 3x10-4 225.9 ± 6 2.455 ± 6x10-4 374.67 ± 14 618.9±38 

GILSO 3.377 ± 4x10-4 206.8 ± 4 2.453 ± 3x10-3 384.2 ± 9 560.1±11 

NBG-18 3.369 ± 5x10-4 207.7 2.452 ± 3x10-3 356.0 646.5 

IG-110 3.375 ± 5x10-4 227.2 2.456 ± 3x10-3 351.3 612.1 
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5.1.2.XRD profile of irradiated graphite 

Figure 5.5 shows the comparison between the magnified X-Ray diffractograms of 

the virgin PCIB, and the set of irradiated PCIB graphites. The irradiation dose (& 

temperature) increases from 1.5 dpa (C03) to ~6.8 dpa (B05). The diffraction profiles 

show that with irradiation, some peaks become broader or disappear completely (e.g. 

(103) or (006)).  It can also be observed that the (100) peak is moving towards higher 2θ 

values with irradiation, and also changes its profile.  

The movement of the peak can be understood in terms of lowering of the lattice 

parameter (Table 5.2), and also in strain in the lattice, due to a decrease of the 

crystallites size La in particular. 

Figure 5.5 Comparison between XRD patterns of neutron irradiated series, starting from top 
with virgin PCIB, and following with increasing temperature and irradiation dose (~350,9 -> 

657 C; 1,5 -> 6.5dpa). 



 93  
 

 

For all the PCIB graphites analysed, the position of the (002) peak changes 

slightly, but similar to the other peaks for irradiated graphites, the (002) becomes 

broader with irradiation dose (with the highest FWHM at the highest dose – C03, 6.5 

dpa), showing a decrease in the coherence lengths in the c-direction and a possible 

increase of strain in the lattice as a result of larger fraction of atoms at the grain 

boundaries Figure 5.6. 

The comparison between virgin PCEA and the set of irradiated PCEA graphites is 

shown in Figure 5. of the magnified X-ray diffractograms of all PCEA samples. The 

irradiation dose (/temperature) is increasing from 1.5 dpa (B25) to 6.8 dpa (B17). The 

refined parameters for PCEA graphites are shown in Table 5.2.  

The X-ray diffractograms for the irradiated PCEA samples shows a movement 

lower 2θ of the (002) and (004) peaks and a broadening of all the (00l) peaks indicating 

an increase of the d-spacing, and a decrease in crystallite size in the c-direction. 

 

Figure 5.6 Comparison of PCIB (002) FWHM peak vs. the position of the (002) peak through the 
set of PCIB nuclear graphites, both irradiated and virgin. 
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 Figure 5. represents the comparison between the (002) FWHM and the same peak 

positions through the set of PCEA sets of graphite, both irradiated and virgin. The 

change in microstructure due to irradiation is highlighted not by the peak position in 

PCEA case (which remains relatively constant), but by the FWHM increase with 

irradiation, presenting the highest value with the highest irradiation dose (6.8dpa) 

suggesting a fragmentation of the coherence length in the c direction (Lc) and a possible 

strain effect. 

Figure 5.8 Comparison of PCEA (002) FWHM peak vs. the position of the (002) peak through the 
set of PCIB nuclear graphites, both irradiated or virgin. 
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Figure 5.7 Comparison between XRD patterns of neutron irradiated series, starting from top 
with virgin PCEA and following with increasing temperature and irradiation dose (~350,9 -> 

671  C;1,5 -> 6.8dpa). 
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 A comparison between Figure 5.5 and Figure 5. shows a similarity between the 

response of PCEA and PCIB to irradiation environment. For both sets of irradiated 

graphites, all peaks get broader (relative to the virgin material) or disappear completely 

(e.g. (103)) and some peaks overlap entirely to each other (e.g. (006) and ((112)) or 

partially (the case of ((100) and (101)). Comparative plot of the two data sets analysed 

(PCEA and PCIB) in terms of the change in d-spacing with irradiation shown in Figure 

5.7 

Figure 5.7 (a) shows the change of the d-spacing with the dose (/temperature) in 

the c-direction. For PCIB there is a swelling at the small dose of 1.5dpa (/~350 °C), 

followed by a continuous decrease at higher dose of 6.8 dpa (/~657 °C). For PCEA, the 

swelling started with 1.5dpa (/~350 °C), and decrease and then increased at 6.8 dpa 

(/~671°C). The decrease was not so evident as in the PCIB case. In Figure 5.7 (b) the d-

spacing in the a-direction is presented: for PCIB the d-spacing decreased abruptly, then 

increased up to 4 dpa (/~534 °C) when it decreased again; for PCEA a similar behaviour 

was observed. 

Figure 5.7 Change of d-spacing with dose (/temperature) in: (a) the c-direction and (b) the a-
direction. 
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 For both PCIB and PCEA a decrease in the coherence lengths (Figure 5.8) in the 

c- and a-directions of more than 50% was observed with increased dose (note y axes is 

representing the XT parameter which was discussed in Chapter 2). These findings are in 

agreement with Tanabe and Muto [51], who studied the graphite response to neutron 

and ion irradiation at room temperature up to 1.9 dpa by TEM. Figure 5.8 presents the 

dimensions of the coherence lengths in both the c- (Figure 5.8 (a)) and a-directions 

(Figure 5.8 (b)). 

For PCIB, the coherence length decreases abruptly at low temperature and dose 

(350 °C, 1.5 dpa), with an annealing behaviour evident with increasing temperature 

(537  °C, 4dpa – note that two points are overlapping on Figure 5.8 (a) but not in Figure 

5.8 (b)), and continue decreasing with increasing dose (6.8 dpa) For PCEA the same 

abrupt decrease was observed, but the “recovery” action could not be observed due to 

the absence of the PCEA sample irradiated at the intermediated parameters for which 

the observation of recovery was made for PCIB. 

 

Figure 5.8 Coherence length change due to neutron irradiation; (dimension % kept from the 
initial value) (a) La dimensional change and (b) Lc dimensional change. 
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Summary of XRD of irradiated graphites 

XRD analysis on the irradiated graphites revealed a change in the lattice 

parameter due to neutron irradiation. It was shown that PCEA and PCIB have similar 

response due to irradiation: increasing the lattice parameter in the c-direction (swelling), 

and decreasing the lattice parameter in the a-direction (shrinking), in agreement with the 

literature. Conversely the coherence lengths and hence crystallite sizes in both 

directions (Lc and La) decrease due to irradiation (Table 5.2), showing a fragmentation 

of the initial crystallite size with increasing dose.  

F
i
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Table 5.2 XRD data for different irradiated NG. Unit cell constants and coherence lengths. 

Material 

DOSE[dpa], 

Temp[0C] c-spacing (Å) Lc (Å) a-spacing (Å) La
(100)

 (Å) La
(110)

 (Å) 

PCEA NA 3.370 ± 3x10-4 229.4 ± 56 2.455 ± 3x10-3 399.2 ± 49 646.6 ± 2 

PCEA B25 1.5, 350.9 3.381 ± 8x10-4 151.2 2.444 ± 6x10-3 258.5 272.7 

PCEA B17 6.8, 670.6 3.382 ± 7x10-4 119.7 2.448 ± 5x10-3 308.8 353.4 

PCIB NA 3.375 ± 4x10-4 225.9 ± 6 2.454± 3x10-3 374.7 ± 14 618.9 ± 38 

PCIB C03 1.5, 350.9 3.378± 7x10-4 148.74 2.441 ± 6x10-3 252.2 263.6 

PCIB B02 4.0, 537.5 3.372± 9x10-4 149.3 2.454 ± 5x10-3 306.1 661.6 

PCIB B05 6.8, 656.9 3.365± 7x10-4 111.8 2.434 ± 7x10-3 203.0 311.8 
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5.2.Raman spectroscopy 

5.2.1.Raman spectra of virgin graphites 

I. Raman spectroscopy of PGA 

During the Raman analysis, it was noticed that the filler particle sizes (Figure 5.9) 

were big enough to be analysed separately by Raman spectroscopy (having a beam size 

~1µm). As for the XRD measurement, two PGA graphites were analysed in order to 

make a comparison of their properties.  

Figure 5.10 presents the Raman spectra of the two very similar (but not equal) 

phases found in PGA graphite, binder and filler ((a) and (b), respectively). The samples 

were analysed as received (bulk samples). Figure 5.10 (a*) and (b*) presents the fitting 

results (for details regarding fitting procedure see chapter 3). 

 

 

 

Figure 5.9 Optical micrograph of PGA (Oldbury) representing the two components of the nuclear 
graphite: binder (blue) and filler (red). 
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 The Raman spectra revealed a more prominent D’ peak for all the areas 

established to be binder comparable to the filler (Figure 5.10 (a*) and (b*)). This 

behaviour could be due to the increase in grain boundaries as a result of the smaller 

crystallites present in the binder, comparable to the ones in the filler, or due to 

significant microporosity in the binder. 

 

Table 5.3 Obtained ID/IG ratio and FWHM of the G peak for binder (B) and 
filler (F) of the two PGA graphites analysed (Oldbury and Wylfa). 

Material ID/IG FWHM G 
[cm-1] 

Oldbury F 0.10 ± 0.03 19.2 ± 1.6 
Oldbury B 0.19 ± 0.07 21.0 ± 1.5 

Wylfa F 0.12 ± 0.07 19.7 ± 1.8 
Wylfa B 0.22 ± 0.07 23.1 ± 2.6 

Figure 5.10 Illustrative first-order Raman spectra of Oldbury binder (a)-(a*) and filler (b)-(b*); 
with * representing the results of the fitting procedure; with: the green line the individual peak 

fitting, while the red line represents cumulative peak fitting when the fit converged.   
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Typical Raman spectra of binder and filler for PGA Wylfa graphite are shown in 

Figure 5.11 (a) and (b). Compared to Oldbury, in Wylfa D’ exhibits a lower intensity 

relative to the G peak, but the overall intensity of the D peak is higher than in the 

Oldbury one, as can be seen in Table 5.3. The values quoted in the table were 

calculated by averaging values obtained by fitting over 40 spectra per sample. 

 

Summary of Raman spectroscopy in PGA graphites 

Raman Spectroscopy results for the two PGA graphites both show a higher ID/IG 

ratios for binder as opposed to filler. The results are also in agreement with the XRD 

findings, showing smaller size crystallites for Wylfa than Oldbury (Table 5.1), 

translated in Raman spectra as more grain boundaries and hence bigger intensity to the 

D peak.  

 

Figure 5.11 Representative first-order Raman spectra of Wylfa binder (a)-(a*) and filler (b)-(b*); 
with * representing the results of the fitting procedure; with: the green line the individual peak 

fitting, while the red line represents cumulative peak fitting when the fit converged.  
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II. Raman spectroscopy of different (filler-F) grain sized graphites 

Figure 5.12 shows a typical Raman spectra from three types of graphite, each with 

a different filler size: NBG-18 ~ 300µm, IG-110 with ~ 20µm [31], and Gilsocarbon 

(GILSO) a big grain size, in the range of 0.3-1.3mm [156]. The extracted ID/IG, FWHM 

of the G peak, and the G position values of all analysed graphites were determined by 

averaging over 50 spectra / sample. Table 5.4 shows their values, compared to a more 

perfect (even though anisotropic) graphite- HOPG. Up to now, it was thought that the D 

peak intensity is due to defects, which are present in the sample, and to the crystallite 

Figure 5.12 Illustrative first-order Raman spectra of NBG 18 (a)-(a*), GILSO (b)-(b*) and IG110 
(c)-(c*); with * representing the results of the fitting procedure; with: the green line the individual 

peak fitting, while the red line represents cumulative peak fitting when the fit converged.     
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boundaries. The results for these three graphites, with different F grain sizes, show that 

the ID/IG ratio cannot be taken in consideration as a parameter when making a 

classification based on the F grain size of the graphite, but more considered as a 

parameter reflecting the disorder in the lattice, which comes from different types of 

defects (e.g. point defects or dislocations). If a classification based on the disorder in 

graphite is to be made, the FWHM of the G peak could be considered as the more 

significant parameter: the most perfect graphite would be HOPG, and the least perfect 

would be NBG-18. 

 

III. Raman spectroscopy of new developed graphites (PCEA- PCIB) 

In Figure 5.13 the Raman spectra of two newly developed graphites is shown. As 

mentioned in Chapter 2, these graphites are considered for the new generation of 

nuclear graphites. Because of this, any new information is a useful addition to the data 

library needed to assess and to improve their future behaviour when heavily irradiated at 

higher temperatures.  

Figure 5.13 Representative first-order Raman spectra of PCEA (a)-(a*) and PCIB (b)-(b*); with * 
representing the results of the fitting procedure; with: the green line the individual peak fitting, 

while the red line represents cumulative peak fitting when the fit converged. 
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PCEA has a medium F grain size (<1mm) while PCIB has a smaller F grain size 

(~360µm). The analysis revealed a higher tendency for PCIB to have an increased 

intensity of the D peak, which makes the overall ID/IG ratio higher for PCIB than PCEA. 

However, the FWHM of the G peak is similar, which means that both of them are 

equally graphitised, but not equally populated by defects. 

 

Summary of Raman spectroscopy of virgin nuclear graphites 

The results have shown that the ID/IG ratio and the FWHM of the G peak can be 

useful parameters in the classification of nuclear graphites. Next, a comparison among 

all virgin graphites analysed will be made. 

In Figure 5.14 the FWHM of the G peak is presented versus the ID/IG ratio, 

showing a positive linear correlation between FWHM of the G peak and ID/IG ratio for 

all area in the virgin graphites studied. However the slopes are slightly different for 

different graphites, which can be due to differences in the microstructure of the 

graphites by having a big influence in the spreading of the data. Hence even if a linear 

fit can be observed, the variation of ID/IG inside a samples makes the fitting r2 have 

different values and also suggesting a non linear fitting, e.g. in Oldbury PGA case, has a 

very poor fitting r2 even though Wylfa, the same grade graphite (but manufactured 

elsewhere) has more acceptable r2. Still, none of the graphites have the ID/IG ratio bigger 

than 0.4 and/or the FWHM of the G peak outside the range of 14.5 – 29 cm-1. For all  

Raman spectroscopy values the points were averaged over all the values measured/ 

sample, showed in Figure 5.14. 
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The present results can be discussed in the context of previous work (Nikiel [117], 

Tanabe [73] or Niwase [50,52,76,152]) on the characterization of the response of 

graphite to different types of irradiation. This is done in order to find a correlation 

between the graphitization stage, the disorder in the lattice, and the coherence length in 

the a-direction, as it has been demonstrated that there is a close correlation exists 

Figure 5.14 Width of the G peak versus the intensity ratio ID/IG in a linear scale for 
different types of virgin nuclear graphites. 
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between the ID/IG ratio and the length of the La value, or the abundance of crystallite 

edges. Figure 5.15 (a) shows the ID/IG ratio versus the La value found by XRD, while 

Figure 5.15 (b) shows the FWHM of the G peak versus the same La value found by 

XRD. In Figure 5.15 (c) the G peak position versus the La value is plotted.  

Comparing all results in Figure 5.15, one notices that the ID/IG versus La shows a 

good correlation, due to the influence of edge boundaries of the D peak, while is no 

correlation between the position of the G peak versus the La from XRD, as the G peak 

contains information more from the internal structure of the crystallites not from the 

Figure 5.15 Plot of virgin graphites analysed of: (a) Raman intensity ratio ID/IG versus the 
coherence length (La) from X-ray data; (b) Width of the G peak versus the La from X-ray data; (c) 

G peak position versus the La value from X-ray data 
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boundaries; a slight correlation can be observed between the FWHM of the G peak and 

the La. The linear fit of the graphites ID/IG ratio, or the FWHM of the G peak versus the 

La value are in agreement with Nikiel and Jagodzinski [117]. 

Considering the observed importance in establishing the graphitization/order 

observed in previous section, and also the correlation observed for the FWHM and the 

ID/IG ratio with the coherence length, it was decided that this parameters (ID/IG and 

FWHM versus the La), will be followed further one in assessing the damage found in 

damaged graphite (neutron irradiated graphite) 

Table 5.4 presents an overview of all parameters obtained by Raman 

spectroscopy on virgin graphites in this thesis. All values are calculated by averaging 

data from ~50 spectra per sample. 
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Table 5.4 Raman spectroscopy data for various virgin graphites. 
 

Material ID/IG FWHM G [cm-1] G peak position [cm-1] D peak position [cm-1] 

HOPG 
0.03 ± 0.02 15.2 ± 1.0 1581.9 ± 0.6 1350.8 ± 16.2 

Oldbury 
0.12 ± 0.05 18.9 ± 1.0 1581.6 ± 0.4 1353.2 ± 0.8 

Wylfa 
0.14 ± 0.06 19.6 ± 1.6 1581.8 ± 0.5 1353.1 ± 1.3 

PCEA 
0.22 ± 0.05 19.6 ± 1.0 1581.8 ± 0.4 1354.3 ± 0.5 

PCIB 
0.27 ± 0.06 19.9 ± 1.0 1582.4 ± 0.3 1354.2 ± 0.4 

GILSO 
0.26 ± 0.06 19.5 ± 1.0 1582.1 ± 0.8 1353.7 ± 0.8 

NBG-18 
0.21 ± 0.1 22.9 ± 3.0 1581.6 ± 0.44 1352.7 ± 1.1 

IG110 
0.23 ± 0.08 22.5 ± 2.0 1582.3 ± 0.6 1353.7 ± 1.0 
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5.2.2.Raman spectra of neutron irradiated graphites  

Figure 5.16 shows a collection of Raman spectra representative for the irradiated 

graphites from PCIB set of samples, compared to the virgin version of the same graphite 

grade. In the same figure, in the right hand side the fitted spectra are shown for each 

plot (denoted by *) 

Figure 5.16 Representative first-order Raman spectra of irradiate PCIB: virgin PCIB (a)-(a*), C03 
(b)-(b*), B02 (c)-(c*) and B05 (d)-(d*); with: the green line the individual peak fitting, while the red 

line represents cumulative peak fitting when the fit converged.   
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For all PCIB samples analysed, the fitting procedure presented an almost perfect 

fit with and average R2 ~ 0.99 (+/-0.002). It was observed that on irradiation, the 

position of the G peak shifted towards higher wavenumber, showing a tendency of the 

irradiated graphites to transform from graphite to nano- crystalline graphite. Together 

with the position of the G peak change, the spectra at lower irradiation dose (and 

temperature) corresponding to C03, resembles the Raman Spectra of a disordered 

material such as carbon black (see Chapter 3). With increasing dose (and temperature), 

the normal appearance of the graphite spectra appears to recover, probably due to the 

temperature annealing of some in-plane defects as suggested by Tanabe et al. [71], these 

defects being easy to anneal out.  

In Figure 5.17 a linear fit of all the sample areas in the PCIB irradiated graphites 

is shown, in comparison with the virgin version. It can be noticed, that even though C03 

has an almost negative slope, it is still linear, and as predicted by Niwase [152] (who 

worked on He ion irradiation graphite) even when very amorphous, the plot of FWHM 

of the G peak versus the ID/IG, maintains its linear relation. When compared to the 

virgin graphite, all irradiated graphite had both the FWHM of the G peak, and the ID/IG 

ratios increased. This is compatible with published work [50,52,152], even though the 

values found were obtained using electron or ion irradiation, or neutron irradiation  with 

lower irradiation parameters (e.g. dose, temperature) than the  present samples. 
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Figure 5.17 Width of the G peak versus the intensity ratio ID/IG for different samples of 
irradiate PCIB with their linear fitting. 
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For the other set of irradiated samples (PCEA), Figure 5.18 shows a collection of 

characteristic Raman spectra and fits. 

 For all PCEA samples analysed, the fitting procedure presented an almost perfect 

fit with and average R2 ~ 0.99 (+/-0.002). However for PCEA B25 the fitting procedure, 

the omission of the D’ peak was needed, as its presence made impossible the 

convergence of the fit. This situation might be due to the fact that, the D’ peak position 

might have been shadowed by the G peak, which moved towards higher wave number 

due to change in perfection of the lattice and in symmetry of the crystal.   As in the 

PCIB sample case, when irradiated with low dose at low temperature PCEA B25 (1.5 

dpa, ~350 °C) shows a Raman spectra with a more disordered appearance compared to 

Figure 5.18 Representative first-order Raman spectra of irradiate PCEA: B25 (a)-(a*) and B17 
(b)-(b*); with * representing the results of the fitting procedure. (with: the green line the individual 

peak fitting, while the red line represents cumulative peak fitting when the fit converged)   
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the sample irradiated with higher dose at higher temperature (B17 – 6.8dpa, ~670 °C). 

The resulting averaged values are presented in Table 5.5. 

In the case of the irradiated PCEA samples, the FWHM of the G peak versus the 

ID/IG ratio variation (Figure 5.19), shows a higher increase of the FWHM and of the 

ID/IG ratio as compared to the PCIB set (Figure 5.17). It might be concluded from this 

that PCEA is more affected by neutron irradiation, especially for the lower irradiation 

parameters.  

 

Summary of Raman spectra of neutron irradiated graphites 

For virgin graphites, it was established in previous section, that a linear 

correlation exists between the FWHM (a) or the ID/IG ratio (b).  

Figure 5.20 shows the plot between the La value found by XRD, and the G peak 

FWHM (a) or the ID/IG ratio (b), containing the value of the La next to the obtained 

point on the plot, for the eye guidance. 
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Figure 5.19 Width of the G peak versus the intensity ratio ID/IG for different samples of irradiate 
PCEA with their linear fitting. 
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 The change in the slope for ID/IG fitting cases is obvious compared to the virgin 

graphite, and a correlation as was proposed by Tuinstra and Koenig for Raman versus 

XRD in obtaining the La value it was proven not to work for all cases, as it has been 

discussed in the literature [117]. There appears to be little correlation between FWHM 

of the G peak and La.  

It was observed that in the case of ID/IG plot, the fitting have the same trend as 

virgin graphite. However, the fact that irradiated PCIB and PCEA have different trends 

suggests that each graphite grade behaves differently but, in order to confirm this, a 

more consistent analysis of different irradiation data has to be obtained. 
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Figure 5.20 Irradiated graphites analyses: (a) Raman intensity ration ID/IG versus the coherence 
lengths (La) from X-ray data; (b) FWHM of the G peak versus the La from X-ray data. All sets 

contain the afferent linear fitting 
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 Because the experiments were conducted with different types of irradiation 

parameters, these results could be used as an initial screening to different responses to 

neutron irradiation of the future graphite types. 

Figure 5.21 (a) shows the variation of the intensity ratio ID/IG measured by Raman 

spectroscopy of PCIB and PCEA irradiated graphites with the irradiation dose. Figure 

5.21 (b) illustrates the change of the G peak width for the same samples with the 

irradiation dose. It has to be noted that in the second plot, even though the dotted lines 

are to guide the eye, major increase of the FWHM of the G peak, at lower irradiation 

temperature, agrees with literature data for doses between 0.1–1 dpa at irradiation 

temperature lower than 200 °C [50].  

After all these, it is expected PCEA and PCIB to behave differently when 

irradiated, even though they have just a slight difference in structure. This was the 

prediction made also by Hall and Bradford [157,158] who suggested that the filler size 

particle has a high influence on the change in the physical properties of nuclear graphite 
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Figure 5.21 (a) Intensity ratio of  ID/IG and (b) FWHM of the G peak versus de irradiation dose.  
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when irradiated. The same effect is due, as studied by M. Morgan in 1960 [159], to the 

changes in mechanical properties because of the frequency of some turbostratic 

structures found in binder. 
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Table 5.5. Raman spectroscopy data for various virgin graphites, irradiated and non-irradiated. 
 

 

 

 

 

 

Table 5.5 is a summary of all the Raman findings for the PCIB and PCEA irradiated samples. All the quoted values were obtained by 

averaging the data of more than 40 spectra per sample, with the fit having 0.98(+/-0.002) < R2 < 0.99(+/-0.003). 

                                                
∗ down the column the dose is highlighted in red 

 

Material 
DOSE[dpa]∗, 

Temp[0C] 
ID/IG FWHM G [cm-1] 

G peak position 

[cm-1] 

D peak position 

[cm-1] 

PCEA NA 0.22 ± 0.1 19.7 ± 1 1581.8 ± 1 1354.3 ± 1 

PCEA B25 1.52, 350.9 0.68 ± 0.1 90.6 ± 9 1593.1 ± 2 1364.8 ± 2 

PCEA B17 6.8, 670.7 0.70 ± 0.1 48.5 ± 5 1587.2 ± 1 1361.6 ± 1 

PCIB NA 0.27 ± 0.1 19.9 ± 1 1582.4 ± 1 1354.2 ± 1 

PCIB C03 1.52, 350.9 0.83 ± 0.1 68.3 ± 7 1590.0 ± 2 1362.3 ± 3 

PCIB B02 4.04, 537.5 0.78 ± 0.1 46.9 ± 3 1587.3 ± 1 1358.8 ± 2 

PCIB B05 6.8, 656.9 0.85 ± 0.1 46.8 ± 3 1586.5 ± 2 1358.4 ± 2 
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5.3.Scanning electron microscopy  

Figure 5.22 (a) showing the analysis of the Scanning Electron Microscope (SEM) 

images for virgin PCIB, the irradiated PCIB B05, irradiated with 6.8 dpa Figure 5.22               

(b) and PCIB C03 Figure 5.22 (c), which received a dose of 1.5 dpa, revealed 

significant changes in morphology of the sample’s surfaces. The pores were evident in 

the SEM images of B05 and C03, and were of µm order, linked to each other by random 

shape, which made impossible the pore measurement. However their presence indicated 

that further work is needed to identify their nature, size and density, and more precise to 

Figure 5.22 Collection of image showing SEM image of : (a) virgin PCIB, (b)irradiated PCIB B05 
and (c) irradiated PCIB C03 
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see if the surface pores are due to irradiation or to the cutting procedure used when 

preparing the samples. 

SEM images of virgin PCEA Figure 5.23 (a) revealed a surface with higher 

degree of porosity, in contrast with virgin PCIB Figure 5.22 (a). The measurements 

were done on four SEM images providing a surface area of 9.4 mm2 each. It was 

calculated that the slit shaped pores had an area density of ~1 pore /mm2 with area 

ranging from ~400 µm2 to ~18 800 µm2, with an average pore area of ~2500 µm2 .The 

pores presented no preferred orientation being random in dimension and shape. 

Figure 5.24 and Error! Reference source not found. represents SEM images of 

irradiated PCEA B25 and PCEA B17 respectively. The measurements were done on 

SEM images providing a relative surface area of ~5.6 mm2 each. 

Based on a set of SEM images similar to Figure 5.24 (a) it was calculated that for 

the PCEA B25, the dimension of the pores had an density of ~9.5 pores/mm2 with pore 

areas in the range of ~400 µm2 to ~8700 µm2 (with an average pore are of ~2000 µm2).  

Figure 5.23 (a)SEM image of a sliced virgin PCEA; (b) histogram of the  areas of the 
measured pores 
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From PCEA B17 SEM images, similar to the one presented in Error! Reference 

source not found. (a), it was calculated that the dimension of the pores had an density 

of ~10 pores/mm2 with pore areas in the range of ~400µm2 to ~8700 µm2 (with an 

average pore are of ~3200 µm2).,  

 

Figure 5.24 (a)Typical  SEM image of the irradiated PCEA B25; (b) histograms of the  areas 
of of the measured pore; 

 

Figure 5.25 (a) SEM images of the irradiated PCEA B17; (b)  histogram of the areas of of the 
measured pore; 
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Summary of SEM analysis 

The PCEA set of samples revealed a higher surface porosity with the tendency of 

growing in pore population with irradiation. The density of pores increased from ~1 

pores/mm2 (for the virgin sample), to ~9 pores /mm2 (for B25) and ~10 pores/mm2 (for 

B17). The increase in density of surface pores came with the dimensional change of the 

pores as well reaching from a pore area of an average of ~2500 µm2 to ~3200 µm2, in 

the case of B17, while in the case of B25 the pores increased their number but decreased 

their average area dimension 

All nuclear graphites showed increased slit shaped porosity following irradiation, 

this being more marked for PCEA as compared to PCIB. It has to be noted that the SEM 

analysis is a 2D analysis of the surface pores, revealing more a qualitative change in the 

surface porosity and not taking in consideration the internal structure or the internal 

dimension of pores and their number density (hidden pores). Also due to the resolution 

of the SEM equipment, the possible presence of the surface nano-pores was not taken in 

consideration. 
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5.4.Transmission electron microscopy 

Past analyses on irradiated nuclear graphites used mostly electron, ion irradiation 

or neutron irradiation at less than 1 dpa, and most of them used as surrogate sample, 

HOPG, instead of real nuclear graphite. In the next sections, different techniques of 

electron microscopy were used, in order to crosscheck the findings from the other 

characterization techniques used in this thesis, and also add more information to the 

database of neutron irradiation in nuclear graphite.  

5.4.1. HRTEM analysis of nuclear graphites 

High-resolution images were used in order to obtain an immediate qualitative 

impression of the existing crystallinity within a sample. All images presented are 

representative of all the structures observed. All the data was acquired and analysed 

according to the procedures described in previously. The choice of the area to be 

analysed was subject to the microscopist decision and was most of the time influenced 

by the difficulty to find well-oriented areas. 

The collection of images shown in Figure 5.26 displays the structural appearance 

of the PCEA graphite sets which covers the range of irradiation from virgin PCEA  

(Figure 5.26 (a)), to irradiated PCEA B25 with 1.5 dpa at 350 °C  (Figure 5.26 (b)), and 

PCEA B17 which received 6.8 dpa at ~670 °C (Figure 5.26 (c)). The average over each 

set of data within the standard deviation of each other was PCEA: 3.40 ± 0.02 Å, PCEA 

B25: 3.44 ± 0.05 Å and PCEA B17: 3.36 ± 0.03 Å.  

The same procedure described before (section 3.4.2.5), of using FFT filtering 

followed by intensity profiles measurements, was applied for the PCIB set of samples. 

The collection of images shown in Figure 5.27 displays the structural appearance of the 

PCIB graphite sets: virgin PCIB  (Figure 5.27 (a), (a*)), irradiated PCIB C03 with 1.5 

dpa at ~350 °C  (Figure 5.27 (b),(b*)), PCIB B02 which received 4 dpa at ~537,5 °C 

(Figure 5.27 (c),(c*)), and PCIB B05 which received 6.8 dpa at ~659.9 °C  (Figure 5.27 

(d),(d*)). Compared to PCEA set, in PCIB set, all samples analysed present similar 

values of the d-spacing in the (002) direction with the following averages: PCIB: 3.39  ± 

.04 Å; PCIB C03: 3.94  ± 0.03 Å, PCIB B02: 3.37 ± 0.01 and PCIB B05: 3.39 ± 0.02 Å. 
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For both PCEA and PCIB, the electron diffraction patterns provided values in 

agreement with the XRD derived values for the lattice parameter c. 

 

Figure 5.26 High resolution images of PCEA series along with the Fourier filtered images (denoted 
with * for each image and representing the green square from each image) showing preservation  

of long range order over neutreon irradiation at different parameters. 
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Figure 5.27 High resolution images of PCIB series( a) - (d), along with the Fourier filtered 
images(a*) - (d*) showing preservation  of long range order over neutreon irradiation at different 

parameters. 
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Even though the clarity of the images from the irradiated samples is less than for 

the virgin graphite, the images show little change with the irradiation conditions, and 

the clarity change could be due to the poor resolution of the microscope at 80 keV 

and/or to the difficulty to find suitable edges of crystallites showing the lattice fringes 

over the holes in the carbon film. However the change in contrast of the irradiated 

samples could be due also to the accumulations of point defects, which would have 

disorder the lattice. 

 

5.4.2.Data subtracted from bright field electron diffraction 

(100) ring from the SAED was used in order to find the a lattice parameter, while 

for the c direction (002) was used. The SAED presented for each BF TEM image in 

Figure 5.28 are typical appearances for all samples within the PCEA graphite series 

analysed. 

The group of images, along with their diffraction patterns, shown in Figure 5.28, 

displays the structural appearance of the PCEA sets of graphites analysed: virgin PCEA 

(Figure 5.28 (a)), irradiated PCEA B17 which received 6.8 dpa at ~670 °C (Figure 5.28 

(b)), and PCEA B25 with 1.5 dpa at ~350 °C (Figure 5.28 (c)). 

 Each set of data provided the following results for the a-direction: PCEA 2.34 ± 

0.04 Å, PCEA B25 2.34 ± 0.06 Å, and PCEA B17 2.35 ± 0.06 Å. All the value are 

below the theoretical value of 2.46 Å and bellow the value obtained by XRD, which 

might be due to the basal plane defects accumulations, within the crystallites.  For the c-

direction, the average data gives:  for PCEA ≈ 3.34 ± 0.07 Å, for PCEA B25 ≈3.34 ± 

0.09 Å and for PCEA B17  ≈ 3.35 ± 0.06 Å, values in agreement with the XRD data and 

theoretical value. 
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  The collection of images and their diffraction patterns, shown in Figure 5.29, 

displays the structural appearance of the PCIB sets of graphites analysed: virgin PCIB  

(Figure 5.29 (a)), irradiated PCIB C03 with 1.5 dpa at ~350̊ C (Figure 5.29 (b)), PCIB 

B02 which received 4 dpa at ~537,5 °C  (Figure 5.29 (c)), and PCIB B05 which 

received 6.8 dpa at ~659.9 °C (Figure 5.29 (d)). 

For the a-direction, the constants values were as following: for PCIB  ≈ 2.45 ± 

0.04 Å, for PCIB C03  ≈ 2.39 ± 0.08 Å,  for PCIB B02 ≈2.33 ± 0.05 Å, and for PCIB 

B05 ≈ 2.34 ± 0.05 Å. For the c-direction, the average data shows: PCIB ≈3.41 ± 0.1 Å, 

PCIB C03 ≈ 3.4 ± 0.08 Å, PCIB B02 ≈3.28 ± 0.06 Å, and PCIB B05 3.33 ± 0.06 Å. 

Comparing to the XRD data, for the a-direction the difference was lower  by  0.09 Å, 

Figure 5.28 BF images with their SAED of: (a) virgin PCEA, (b) irradiated PCEA B17 and (c) 
irradiated PCEA B25. 
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for the c-direction it was bigger for virgin PCIB and PCIB C03 by 0.06 Å, while for the 

other two, B02 and B05, the values measured by SAED were smaller in the range of 

0.04 - 0.09 Å. 

 The obtained values for PCIB set of materials for the a and c lattice parameters 

were lower for the irradiated graphite than the XRD and theoretical value suggesting a 

shrinkage of the plane due to accumulations of point defects within the lattice. 

 

Figure 5.29 Typical BF images with their SAED of: (a) virgin PCIB, (b) irradiated PCIB C03, 
(c) irradiated PCIB B02 and irradiated PCIB B05. 
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5.4.3. Electron energy loss spectroscopy 

The PCEA and PCIB sets of irradiated graphites were analysed by using the 

proper parameters necessary for obtaining orientation independent EELS spectra from 

anisotropic specimens @80 keV (parameters established and described in the Chapter 3.  

The information provided by EELS justifies the development of an irradiation 

damage mechanism on graphite. The stack of EEL spectra shown in Figure 5.31 are 

typical representation of the PCIB set of irradiated samples, while Figure 5.30 are 

representative spectra of PCEA set of irradiated samples. 

Figure 5.30 Characteristic EEL spectra of PCEA series representing the C K-edge of: (a) virgin 
PCEA; (b) B25 (1.5dpa, 350 C); (c) B17 (6.8dpa~656C). 

Figure 5.31 Characteristic EEL spectra of PCIB series representing the C K-edge of: (a) virgin 
PCIB; (b) C03 (1.5dpa, 350 C); (c) B02 (4dpa, ~534C) ; (d ) B05(6.dpa,~670 C). 
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Considering the possible data biasing scenario which was assumed in the previous 

chapter, when choosing the regions to be used for EELS analysis, for every analysed 

sample shown within this section, at least 30 measurements/ sample were made. 

 

I. Low loss region information of the analysed specimen 

The bulk π+σ valence plasmon peak in the low loss region of the spectrum was 

analysed; the position of the peak being determined by taking the first derivative of the 

spectrum.  The widely agreed value for the bulk plasmon peak position of highly 

oriented pyrolytic graphite (HOPG) in the literature is 27 eV [68,129,147,148] and for 

comparison, the corresponding value for amorphous carbon is 23 eV. 

As illustrated in Figure 5.32 the plasmon peak energy for all analysed areas is 

consistently within the standard deviation limits of HOPG, but even so all have lower 

plasmon peak position compared to the theoretical value of 27eV.  

This situation may be due to the misorientation of the specimen’s c-axis relative 

to the normal of the incident beam [149], in combination with the choice of the 

spectrometer collection angle [126,127] and again with the operator biasing choice. The 

Figure 5.32 Box plot of the change in plasmon peak position. Data was collected from regions of 
electron transparent graphite oriented with the [002] direction perpendicular to the electron beam 

direction. 
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comparison from the plot above of the plasmon peaks shows no significant change in 

plasmon peak position and hence density of the material. 

 

II.  Core Loss Region information of the analysed specimens  

The position of the π* peak for all spectra was calibrated to 285 eV, and each C 

K-edge spectrum was acquired along with the corresponding low loss peak which was 

used to deconvolute the K-edge spectrum so as to remove plural scattering. Data 

extracted from the spectrum acquired from a standard HOPG sample was used to 

normalise subsequent sp2 content data (procedure described in previous chapter). Note 

that even after intense neutron irradiation; the calculated sp2 content for all analysed 

samples seems to have little change (Figure 5.33). This is thought to be from the sample 

preparation method, or from the bias choice of the analysed area of the operator. 

Figure 5.33 Box plot of the: (a) Change in planar sp2 content within PCIB set;(b) Change in sp2 
content within PCEA set. Data was analysed using the 5 Gaussian fitting method.  
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This findings are in good agreement with the findings of Muto and Tanabe [75] 

who predicted that at electron irradiation beam of doses ~1dpa and  irradiations 

temperatures higher than 356 °C, the irradiation should not change the local structure of 

graphite but simply fragment the crystallites.
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Chapter 6  Summary and conclusions 

6.1.Summary of work 

Nuclear graphite properties are determined by its structure, which can be changed 

by the neutron irradiation dose and irradiation temperature. Inside a reactor, these 

parameters can significantly change the crystallite size and the lattice parameters of the 

graphite crystallites, with the a-axis contracting and the c-axis expanding - assuming 

that the crystallites are aligned with their a-axis parallel with the extrusion direction, so 

influencing bulk properties by interfering with the integrity and dimensions of nuclear 

graphite components. Even though the mechanisms are not totally understood, it is clear 

that the solidity and working life of reactor components are influenced by dimensional 

changes, amongst other effects of neutron irradiation [7]. For a better understanding of 

nuclear graphite structure, an investigation and a characterization of un-irradiated 

graphite was necessary along with the corresponding neutron irradiated graphites.  

Considering the importance of the representation of structural factors mentioned 

above, by means of different characterization techniques (XRD, Raman Spectroscopy, 

TEM, EELS and SEM), information ranging from the atomic scale to the nano- and 

micro-scale structure were obtained from different grades of virgin and irradiated 

nuclear graphite. The chosen techniques not only provided valuable information on the 

different structures and properties, both when virgin or irradiated, but they were also a 

help in improving the methodology in order to facilitate future work on nuclear 

graphite. The improved methodology regarding the extraction of chemical bonding 

information from the C K-edge by automating the fitting of the EELS spectra, was 

shown to work on damaged the graphite structures irradiated at different doses by 

electron irradiation. Furthermore improvements were made in finding the damage and 

orientation-free acquisition parameters for analysing the graphitic structures when 

analysed by TEM-EELS techniques (e.g. the magic angle at 80 keV). 

The analysis of virgin graphites by XRD showed a similarity in the measured 

lattice parameter, while the coherence lengths in both a- and c-direction vary, perhaps 
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due to different precursors (especially the filler particle size obtained from the 

precursor). These range from 20.7 nm to 31.0 nm for the c-direction, and from 35.1nm 

to 61.7 nm for the a-direction. The calculated values were partially in agreement with 

the literature, although the La values were consistently higher than the ones reported in 

the literature, although we speculate in a recent paper [84] the authors used a shape 

factor of 0.9 instead of 1.84, the latter being more widely used by carbon researchers 

[3,116,135,160] 

The Raman spectroscopy showed that the FWHM of the G peak varies linearly 

with ID/IG ratio. It is believed that while the intensity of the D peak arises from the edge 

boundaries (both crystallites and domains) and other defects present in the crystallite 

(e.g. dislocations), the FWHM of the G peak is more influenced by the point defects 

within the crystallites. It was also observed that none of the virgin graphites have a ID/IG 

ratio bigger than 0.4, with a FWHM of the G peak in the range of 14.5 – 29 cm-1 

Comparing the Raman and XRD results from virgin graphites, ID/IG ratio versus 

La shows a correlation, different for each type of graphite analysed, where by decreasing 

La leads to an increase in ID/IG as a result of increased crystallites boundaries per unit 

volume, this being in agreement with the literature [98,117,119]. There was found no 

correlation between the G peak position or the FWHM of the G peak with the La from 

XRD.  

Considering the results obtained with all this techniques on the virgin graphites 

analysed, and also by adding the information found on the literature regarding the 

structure of graphite (e.g. point defects in graphite, Mrozovski cracks, values and 

change of La and Lc, pore structure), it was possible to propose a model of the virgin 

graphite which helped explain the changes exhibited by nuclear graphite when exposed 

to different irradiation parameters. 
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Figure 6.1(b) represents a schematic view of virgin graphite at nano scale, with 

the major components marked: long crystallites, cracks between crystallites (Mrozowski 

cracks), and nano pores. La and Lc represents the dimension of crystallites (or coherence 

lengths) in a and c directions, respectively. This is part of a larger filler/ binder 

microstructure shown in Figure 6.1 (a). 

 

6.2. Accepted models for structural change of NG following 

irradiation 

The accepted understanding of the nuclear graphite degradation is that, due to 

neutron irradiation, the bulk material should firstly shrink in the a-direction and swell 

in the c-direction, change that is accommodated by the cracks before turnaround and 

relieved by irradiation creep [7,44,161] when the cracks starts to open.  However, even 

Figure 6.1 2D diagram representing: (a) Part of a needle shape filler particle with its components 
and (b) Nanometre scale representation of crystallites within the domains –yellow dashed in  (a). 
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though the bulk nuclear graphite exhibits the changes mentioned above, based on 

different research studies, Baker [7]  reported different a behavior happening at the 

atomic scale, e.g. due to neutron irradiation, the coherence length in the c direction (Lc) 

reduces its dimension, sometimes with even 75% (irradiation temperature ~300-1275 

°C), phenomena which happens in different nuclear graphites [7]. The same author 

states that the dimensional change may be subject to the analysed sample dimensions 

and to the irradiation temperature and fluence. The expansion might be due to the 

creation of new pores as the result the strains produced by the incompatible crystallite. 

This pore generation was first observed in lower temperature irradiations but occurs at 

all temperatures when the internal strains exceed a critical value, which apparently 

varies from one graphite to another [44]. 

As mentioned in the previous chapters, graphite response to irradiation was 

researched using different types of irradiation beside neutrons e.g. ions or electrons.  

Muto and Tanabe [51,75], who studied the degradation of the atomic structure of 

graphite caused by both neutrons and ions, were the first who proved through TEM  and 

Raman analysis the idea of fragmentation of the crystallites due to irradiation. 

Following previous research Shtrombakh et al. [54] proposed a model of the graphite 

crystallites fragmentations due to internal stress caused by irradiation. 

Using different characterisation techniques described in the previous chapters, 

(XRD, Raman, TEM, SEM and EELS), the analysed graphites, irradiated at relative 

lower fluencies, provided a series of data sets related to the atomic and micro structure 

of nuclear graphite.  Based on the correlation of the results from all these techniques 

and based on the findings reported in the literature of the atomic structure degradation 

of graphite, a hypothesis of two possible irradiation regimes specific for these 

particular analysed samples was proposed. 

 

6.2.1. Possible structural changes of nuclear graphite due to neutron 

irradiation with low dose-low temperature  

For neutron irradiation at low doses (~1.5 dpa) and low temperatures (~350 °C), 

the degradation of the graphite structure can be seen easy from SEM images. Both 
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irradiated graphite grades (PCEA and PCIB) revealed a change in the both the internal 

structure or the surface area. The PCEA graphite revealed a higher surface porosity with 

an increase in pore concentration with irradiation, however PCIB was influenced as well 

by the irradiation, but due to the small grain size, the surface pore area was more 

difficult to be measured with SEM analysis.  

In PCEA case, the density of pores increased from 1 pore/mm2 (for the virgin 

sample), to 9 pores /mm2 (for B25 which was irradiated with low dose at low 

temperature), more the increase in the pore number came with the slight decrease in the 

dimension of the area of the pores from ~2500 µm2 to ~2000 µm2. 

EELS and TEM analyses showed no difference in both lattice fringes and 

chemical bonding. From XRD analyses of irradiated samples, a change in the lattice 

parameter due to neutron irradiation was observed, with different responses to 

irradiation of PCEA compared to PCIB. For PCEA the lattice parameter was increased 

in the c-direction and decreased the a-direction, in agreement with the literature. In 

PCIB case the lattice parameter in the c-direction initial swelled followed by a decrease, 

while in the a-direction the change was inconclusive.  However, the change in lattice 

parameters was not reflected in the dimensions of the crystallite coherence lengths, 

which decreased dramatically when irradiated at ~350 °C  with ~1.5 dpa, in both the c 

and a directions (Table 4.5), indicating that the crystallites are breaking and forming 

more crystallites boundaries per unit volume presumably from the accumulation and 

diffusion and coalescence of defects. 

Raman revealed a change in the FWHM of the G peak, as a result of irradiation 

with 1.5 dpa, suggested to be due to the accumulation of defects within the crystallites. 

For the same peak it was observed a change in position, to higher wave numbers, which 

is thought to be indicative of the transformation from graphite to nano-graphite [101].  

This correlates with and increase on ID/IG ratio reflecting an increase in crystallites 

boundaries (and possibly more amorphous material inside the pores), shown by a 

decrease in both La and Lc , determined from XRD. All these statements are based on 

the assumption that defects can move and coalesce to form new crystallite boundaries. 

Figure 6.2 is a schematic representation of the possible degradation process of  the 

analysed nuclear graphite under irradiation of ~1.5 dpa at a temperature of ~350 °C. In 
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Figure 6.2 (b) the combination and multiplication of point defects is emphasized, along 

with the increase of porosity found by SEM. 

 

6.2.2.Possible structural changes of nuclear graphite due to neutron 

irradiation with high dose-high temperature  

Following neutron irradiation at high temperature with higher doses (~6.8 dpa), it 

was observed that there was an annealing effect due to higher irradiation temperatures 

(~650 °C).  

Although XRD showed a decrease in the Lc value, the same technique reveals an 

increase of the La, possibly due to the annealing of the basal plane point defects. The 

decrease in Lc of the crystallites was probably the main cause for the increase in 

porosity seen in SEM image analysis: the density of pores increased from 1 pores/mm2 

(for the virgin sample), to 10 pores/mm2 (for B17). The increase in density of pores was 

accompanied with dimensional growth of the area of pores from an average of ~2500 

µm2, which increased to ~3200 µm2. 

Furthermore, Raman analysis revealed a slight decrease in both G peak position 

and FWHM of the G peak with irradiation. Although the irradiation dose increased from 

Figure 6.2  2D Schematic representation of the degradation of graphite from virgin graphite 
(a) under neutron irradiation of energies > 1MeV, corresponding to irradiation dose ≈1.5 dpa 

at temperatures ≈ 360 C (b) 
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1.5 dpa to 6.8 dpa, the fact that the temperature increased from ~350 °C to ~650 °C, 

resulted in a healing of the damage, particularly defects within crystallites. The evidence 

for this is in the observed decrease in the FWHM of the G peak with almost 50% of the 

value observed at ~650 °C as compared to the value found at 350 °C.  

Again, no noticeable differences compared to virgin graphites were seen from the 

HRTEM images or EEL spectra of the irradiated samples with 6.8 dpa at ~650 °C. 

Together, all this information from the high dose irradiated samples at higher 

temperatures helped develop a second possible regime for the analysed nuclear 

graphite degradation. 

 Figure 6.3 is a schematic representation of the two possible main regimes of 

degradation of the analysed nuclear graphite due to neutron irradiation. In Figure 6.3 

(b) the first regime of is shown presenting degradation process at low doses and low 

temperatures, followed by Figure 6.3 (c) presenting the second possible degradation 

regime of nuclear graphite which occurs at high doses and high temperatures. In the 

Figure 6.3  2D Schematic representation of the degradation of graphite from virgin graphite (a) 
under neutron irradiation of energies > 1MeV, corresponding to irradiation dose ≈1.5 dpa at 

temperatures ~360 C (b) and ≈6.8dpa at ~650  C (c) 
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second process, point defects are annealed due to higher temperatures, with an increase 

in coherence lengths in the a-direction, and an increase in the nano-porosity. 

The proposed representation of graphite degradation needs further experiments to 

validate the suppositions on which the schematic representation is based on. By the fact 

that only the surface pores where taken in consideration by SEM and image analysis, 

the representation can be counted as wrong or biased, so further internal porosity has to 

be analysed by other technique e.g. XRD tomography, Gas Adsorption analysis.  Also a 

more reliable representation would be based on graphites irradiated at ranges of 

temperature and doses between the already analysed ones (350-650 °C; 1.5 -6.8dpa).  

The accepted understanding of the bulk nuclear graphite degradation is that the 

material should firstly shrink in the a-direction and swell in the c-direction, change that 

is accommodated by the porosity and relieved by irradiation creep after turnoaround. 

However, the analysed samples which received relatively low fluence, were 

investigated only from the point of view of atomic to micro scale and presented partially 

the same behavior reported in the literature (e.g. shrinkage of the Lc) by exhibiting a 

fragmentation of the crystallites [7] and an increase in the surface porosity. 

The suggested schematic representation for the possible degradation due to 

neutron irradiation of these specific analysed nuclear graphites shows a similarity with 

the previous results reported in the literature, regarding the change happening at the 

atomic scale, due to different types of irradiation (e.g. neutron, electron and ion 

irradiation) of graphites which sustained a fragmentation of the crystallite that could be 

seen with TEM, X-ray Diffraction or Raman spectroscopy 

[51,54,73,74,78,152,162,163]. Nevertheless, as the measurements were done mostly at 

the atomic scale, a more thorough investigation has to be done in order to correlate 

dimensional changes, pores presence and atomic structure alteration with the bulk 

behaviour, and to explain fully the results.  
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6.3.Conclusions 

The comparison between different types of nuclear graphites revealed valuable 

information related to structural differences of different analysed grade graphites, which 

were an aid in explaining the different behaviour of the two irradiated and distinct grade 

graphites analysed. Specifically, under the same irradiation parameters PCIB and PCEA 

have different responses provides important information regarding the choice of nuclear 

graphites to be used in nuclear reactors. The difference in dimension of the filler particle 

was seen to have influence on the increase in structural defects, PCEA showing a higher 

surface porosity irradiation compared to PCIB. 

The comparison of virgin versus neutron-irradiated graphites gave the opportunity 

to propose an initial model for the degradation of graphite under different irradiation 

processes.  However, because the experiments were conducted with different types of 

irradiation parameters (low dose-low temperature; high dose-high temperature), these 

results could only be used to develop an initial mechanism operating during neutron 

irradiation of the different graphite types, and there is a need for more experiments in 

order to assess the gaps regarding nuclear graphite responses for intermediate doses and 

temperatures. 

Until now, the model of graphite fragmentation during irradiation was proposed 

only for electron irradiation with doses lower that 1 dpa and temperatures lower than 

370 °C, as a result of point defect coalescence. Using a range of techniques, this work 

has showed that under the neutron irradiation, some graphite has the same behaviour of 

crystallite fragmentation with no significant change in carbon-carbon bonding. These 

results could lead to a new scenario for the nuclear graphite degradation under neutron 

irradiation, which can be completed with more precision by electron irradiation, by 

varying the parameters in order to achieve reactor-like conditions.  
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6.4. Future work 

Highlighting the importance of nuclear graphite integrity and following the main 

objectives to design better graphite structures, by understanding the failures of the 

previous generations of graphite, it seems that a study of the structural properties of the 

crystallites, elucidation of the key nano-structural components during the degradation 

process appears the key in achieving safer and longer working nuclear plants. 

The schematic representation proposed in this thesis, could be the first step in this 

research. Being a rudimentary model, in order to fill the gaps in knowledge and also to 

transform supposition into facts, more experiments are needed. The results of electron 

irradiation at room temperature show that temperature is an important factor in the 

structural change of graphite when irradiated. 

Experiments, which could be improved in order to confirm both the schematic 

representation and also the response of graphite when irradiated, include:  

1) Improvements the TEM sample preparation technique, in order to prove that 

the basal plane defects are forming and increasing due to neutron irradiation, and to 

confirm that contrast changes in the TEM images is due to sample preparation, Focused 

Ion Beam (FIB) milling would be a good choice in sample preparation; 

2) Prepare and analyse a set of samples with increasing irradiation temperatures 

whilst keeping the dose constant; 

3) Prepare and analyse a set of samples with increasing irradiation doses whilst 

keeping the temperature constant; 

4) Compare effects of the same irradiation parameters on a set of nuclear 

graphites with differing starting microstructures.  

5) A correlative study of porosity across the length scale (nano to micro to 

macro) and how this change with irradiation using FIB slices and view, X-ray 

tomography and nitrogen gas adsorption. 
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Appendix A Essential TEM calibration 

If EELS is performed in TEM diffraction mode the important parameters are:  

beam convergence (α) and collection angle (2β), which have to be discussed together as 

the two are combined in quadrature to obtain an effective collection angle, βef.   

A.1. Beam convergence (α) 

After the microscope was aligned, the specimen was positioned at the eucentric 

height, by minimising the movement of the viewing plane when wobbling automatically 

the second condenser lens (C2) from under focus to over focus. The specimen was 

considered to be at the eucentric height when the image did not move from side to side 

but pulsed in the centre of the viewing screen.  

When parallel beam illumination is used the diffraction pattern from a single 

crystal should look like an alignment of small and intense spots. For this calibration 

exercise, a single crystal test specimen of gold (gold foil Agar Scientific) was used. 

Figure A.1 Definition of incident beam convergence (α) 
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 The convergence values can be measured using Eq. A.1 with the details specified 

in Figure A.1.  When using the Eq. A.1, it was known from Braggs law (Eq. 3.1) that 

for Au(002)  θb= 6.204mrads with a spacing of 0.2039nm.  

2α = 2θ! ∗ (a/b) Eq. A.1  

If the incident beam is convergent, the small sharp dots forming the diffraction 

pattern will transform in to discs which will grow when changing the C2 current, up to 

the point of crossing over when they start to decrease again in size (Figure A.2). 

 Figure A.2 shows the behaviour of the beam when changing the strength of the 

C2 current at 80 keV. Starting with the bigger current at 1132 mA, the beam is 

converging to a point – “cross-over” where the discs have their maximum dimensions in 

the diffraction plane (1108mA) after which the discs start to decrease their dimensions 

(1105mA). The changing strength of the C2 current is conventionally named “focus”, is 

“over focused” when the C2 current is the biggest and became “under focused” after the 

crossing over with lower lens current. As the convergence (α) is not equal when “under 

focused” and “over focused” even though the discs/spots have the same dimension, the 

agreed convention is to work in “over focused” conditions [164].  

This data is plotted as the convergence angle vs C2 current (Figure A.3 (a) – (b)). 

Considering that the major part of the thesis was analysing carbon specimens - graphite 

(which gets damaged by an electron beam above 80 keV) the same procedure was done 

for both 200 keV and 80 keV. 

Figure A.2 Beam crossing over at sample: (a) C2=1100mA; (b)C2~1105(before cross 
over);  (c)C3=1119mA; (d)C2=1123mA 
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 From the plots showed in Figure A.3, it was possible to extract the value of 

convergence (α) at 200 keV and 80 keV. For 200 keV the convergence (α) was equal at 

0.8mrads (as found before by Daniels [164] , while for 80 keV convergence (α) = 

1.13mrads. 
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Figure A.3 Beam convergence semi-angle plot for: (a) 197 keV and (b) 80 keV (b) 
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A.2. Collection angles; Imaging and Spectroscopy (Diffraction 

Mode) 

The collection semi-angle (β) is a very important factor for as the collection of 

spectra at different β can cause misinterpretation if comparison between spectra is 

required.  In image mode, the objective aperture controls the value of β. In diffraction 

mode, as used here, β is defined by the camera length (CL) of the diffraction pattern and 

the size of the spectrometer entrance aperture. Defining β is important as EEL spectra 

should be collected at the  “magic angle” [139], at which the spectra are not influenced 

by the anisotropy of the sample [139,164–166]. 

Figure A.4 (b) defines the collection semi-angle, which has the mathematical 

formula: 

β =
L
R ∗

h
h!

 Eq. A.2 

Figure A.4 Schematic diagram defining the collection semi-angle within: (a) image mode; (b) 
diffraction mode 
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    Where:  β = Represents the collection semi-angle (mrads); L= Effective camera 

length (mm); R= Entrance aperture radius (mm); h= Distance from final projector 

crossover to the viewing screen (mm); ha= Distance from final projector crossover to 

the spectrometer entrance (mm). 

From previous research [139,164] it was known that at 200 keV the magic angle 

conditions for the carbon K- edge (E = 285 eV), were achieved at L=115mm camera 

length, which corresponded to a collection semi-angle (β) of 1.7mrads, using the 

entrance aperture of 0.6mm.  

 

A.3. Camera length (CL) calibration 

As mentioned before the camera length value has an important role in considering 

the calculation of geometrical collection semi-angle (β). When calibrating the CL at 80 

keV the same test sample was used as when finding the beam convergence (α), namely 

Au(002) with a Bragg angle of  θb= 6.204mrads with a spacing of 0.2039nm. The value 

of CL was calculated using the formula: 

Where L represents the camera length of the microscope at which the diffraction 

is collected, R is the distance from the incident spot to the first order spot, 

corresponding to the dhkl, and θ is the angle at which the electron is scattered by the hkl 

plane (in a TEM the approximation sinθ ≈ θ can be made as the scattering process 

happens at very small angles). 

In Figure A.5, R is the distance between the incident beam and the nearest spot in 

the diffraction pattern of Au(002). The relativistic λ at 80 keV, was calculated using Eq. 

A.4, giving a relativistic λ=4.17x10-3nm. 

 
Rd = λL 

Eq. A.3 

 λ =
h

2m!   eV(1+
eV

2m!c!
)
!/! 

Eq. A.4 
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Having used the known constants it was found that the camera length for 80 keV 

changed according to the Table A.1: 

Table A.1 Values of quoted and calculated camera length of the microscope 

Nominal camera 
length (mm) 

Actual camera 
length (mm) 

42 
37 

62 
48 

84 
63 

115 
98 

150 
128 

210 
182 

300 
193 

420 
348 

 

A.4. Calibration of collection semi-angle (β) 

For calibrating the value of β, one can use two methods. The first way is by using 

the existing calibration of the microscope, and second by recording a diffraction pattern 

of a known specimen, using a different entrance aperture for the GIF. 

Figure A.5 Description of camera length and the connexion with diffraction pattern as presented 
in Eq. A.3 
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Method I. Using Eq. A.5 a table was made with the collection semi-angle (Table 

A.2), using h and ha values of 389 respectively 728mm (for ha the value supplied from 

FEI was changed from 638 to 728mm due to the instalment of a second Charge Coupled 

Device (CCD) camera). 

 

Table A.2 Calculated collection semi-angle based on the values in Table A.1 

Nominal 
camera 

length (mm) 

Actual camera 
length (mm) 

Collection Semi-Angle, β (mrads) 

Entrance aperture radius , R (mm) 

  0.3 1 1.5 

42 37 4.29 14.29 21.43 
62 48 3.31 11.04 16.56 
84 63 2.53 8.42 12.63 
115 98 1.62 5.40 8.10 
150 128 1.24 4.12 6.18 
210 182 0.87 2.91 4.37 
300 194 0.82 2.74 4.10 
420 348 0.46 1.52 2.28 
620 488 0.33 1.09 1.63 
840 665 0.24 0.80 1.20 

 

Method II. The second method of finding β, employed the GIF in image mode 

and visualise the 0.6 and 2mm diameter spectrometer entrance apertures directly and 

calibrate this against a known diffraction pattern. 

The specimen used for this method was a Crocodilite sample, chosen because it 

has a big enough d-spacing (hence closer spaced diffraction pattern) to provide the 

desired information to calibrate the angular range of the spectrometer entrance aperture. 
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After the image acquisition of the diffraction pattern, the measurements were 

completed with a Digital Micrograph. It was observed that even though the 0.6 and 

2mm diameter apertures fitted well onto the CCD, the measurements from different CLs 

were hard to complete due to the fact that the real CL at 80 keV has a smaller values 

than the equivalent value at 200 keV. Hence it was only possible to measure two, 62mm 

(actually 48.07 mm) and 84 mm (in real ~ 63.04), the first corresponding to Figure A.6. 

Knowing the d-spacing for the (020) diffraction spots for Crocodilite is d=0.903nm, 

with the calculated θb = 2.307mrads (@ 80 keV), it was possible to calculate the value 

of β. By this method the measured value of β was very close to the values found by the 

first method and for 62 mm β was found to be 3.63 mrad (compared to 3.31 mrad from 

the first method) and for 84 mm β had the value of 2.61 mrad (compared to 2.53 mrad 

from the first method). The small difference between the values of both methods were 

not taken in consideration as both method imply measurement errors due to both 

microscope and user, and the difference was not larger than 10% of the measured value. 

This correlation shows that the calibration in Table A.2 (based on the microscope 

geometry) are an accurate representation of β values for EELS. 

 

Figure A.6 Effective Collection Angle 
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A.5. Effective collection semi-angle (β*) 

As stated previously, the effective collection (β*) contains the information of both 

beam convergence (α) and collection semi-angle (β), which are linked in quadrature 

[127] as in Eq. A.6:  

 β∗ = β! + α! Eq. A.6 

The effective collection angle was calculated for different conditions using the 

above equation as seen in Table A.3 Considering a convergence semi-angle α of 

1.13mrad for 80 keV (see Figure A.3) for the values of α at high C2 current).  

The value of Magic angle (MA) at different accelerating voltages has been 

theoretically calculated by P. Schattschneider [141] and shown in Figure A.7. 

  

 

 

Figure A.7 Approximation of the MA as a function of accelerating voltage and characteristic 
scattering angle 𝛉𝐄[141] 
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Table A.3 Collection angles and effective collection semi-angles at @80keV 

for both 0.6mm and 2mm entrance aperture 

 

For 200 keV the MA is θM ≈ 2θE  and calculated to be 1.7 mrad (for the carbon K-

edge with θE= 0.84mrad as  found by H. Daniels [139]),  for 80 keV only the theoretical 

predications have been  made by P. Schattschneider [141] for MA without any 

empirical evidence to support the calculations. The value at 80 keV is predicted to be  ≈ 

2.6 θE which for CK-edge is 4.63mrad (θE= 1.78mrad). Table A.4 shows the values of  

β*  in units of  θE. 

According to Jouffrey et al [142], the calculation of MA can vary with ± 0.3mrad 

at 200 keV and also added that the CL calibration can influence the calculation of MA 

with extra ±3%. Knowing that at the MA conditions, the orientation should not have any 

effect on the intensity of the two peaks at the C K-edge (π* and σ*), choice of MA was 

checked  by comparing the C K-edge of a HOPG sample as a function of sample tilt.   

Camera 
lengths (mm) 

Collection 
semi-angle β 

Eff.Collection 
semi-angle β* 

Collection 
semi-angle β 

Eff.Collection 
semi-angle β* 

Aperture 0.6mm 0.6mm 2mm 2mm 

42 4.29 4.44 14.29 14.33 

62 3.31 3.50 11.04 11.10 

84 2.53 2.77 8.42 8.50 

115 1.62 1.98 5.40 5.52 

150 1.24 1.68 4.12 4.27 

210 0.87 1.44 2.91 3.13 

300 0.82 1.40 2.74 2.96 

420 0.46 1.23 1.52 1.90 

620 0.33 1.19 1.09 1.57 

840 0.24 1.16 0.80 1.39 
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Table A.4 Characteristic scattering angles θE  for different CL2  
 

 

 

 

 

 

 

 

 

 

 

The calculated characteristic scattering angle θE @80 was found to be 1.78 mrad 

by using Eq.3.8). It can be seen from Table A.4 that for 80 keV the nearest match to the 

theoretical MA of 2.6θE is at: 1. CL=115mm (~98mm in true) and an acquisition 

aperture of 2mm, with a difference of plus 0.5 θE; 3. CL=150mm (~128mm in true) with 

a difference of minus 0.2 θE. 

 In order to check the lack of dependency on sample orientation, the ratio 

between a 5eV (window containing the π* peak) over a 20eV window (containing both 

σ* and π* peaks - (π*+ σ*)) was plotted for both CL=115mm and CL=150mm 

conditions (Figure A.8). The differences were found to be small between the two 

parameters with a bigger variation while the tilting series was acquired for the 150 mm, 

but this could be due to the instability of the microscope, so a different method needed 

to be applied in order for a decision to be made. 

                                                
2 Highlighted in green are the closest values which match the theoretical MA 

CL (mm) β* 
(mrad) 

β* as units 
of  θE 

β* 
(mrad)  β* as units 

of θE 

Aperture 0.6mm 2mm 

42 4.44 2.49 14.33 8.05 

62 3.50 1.97 11.10 6.23 

84 2.77 1.56 8.50 4.77 

115 1.98 1.11 5.52 3.10 

150 1.68 0.94 4.27 2.40 

210 1.44 0.81 3.13 1.76 

300 1.40 0.79 2.96 1.67 

420 1.23 0.69 1.90 1.07 

620 1.19 0.67 1.57 0.88 

840 1.16 0.65 1.39 0.78 
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The decisive method was the comparison of C K-edge shape for both camera 

lengths of interest (Figure A.9). Even though the intensity ratio between the two 

windows (5 eV and 20 eV) was maintained during the tilting series it was observed that 

at CL=150 mm the shape of the π* peak was larger relative to the σ* peak, a sign that 

the magic angle conditions were not satisfied. 

In the case other case, CL= 115 mm, the relative intensities of the two peak , 

appear to agree to theory [127]. It was considered that the closest to the MA value and 

was used for all measurement at 80 keV 

 

 

 

 

 

 

0.10 

0.12 

0.14 

0.16 

0.18 

0.20 

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 

π*
/(π

*+
σ*

) 
 

tilt 

0.10 

0.12 

0.14 

0.16 

0.18 

0.20 

-25 -20 -15 -10 -5 0 5 10 15 20 25 30 

π*
/(π

*+
σ*

) 
 

tilt 

Figure A.8 Comparison of tilt series at (a).CM=150mm and (b) CM=115mm using an aperture 
of A=2mm 
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Figure A.9 Overlapped EEL spectra for the tilt series of at (a) CM=150mm and (b) 
CM=115mm 
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 Sample irradiation process Appendix B

The information presented in this section is subtracted from INL US, reports 

(2011-2013) [2,79,167] containing irradiation parameters data along with the 

description of irradiation facility.  

The graphites analysed in this thesis were subject to various irradiation processes 

as part of the existing plan to build the Next Generation Nuclear Plant (NGNP) which 

will be a helium-cooled and part of very high temperature reactor (VHTR) using 

graphite as moderator in the core. The previous nuclear reactors (both research and 

commercial), build in United States, were graphite based, using H-451 (medium grain, 

near-isotropic, extruded nuclear graphite, and no longer available [168]). Hence new 

developed graphites needed to be designed and tested in order to successfully replace 

and be suitable to be used in the new generation of reactors. 

Knowing the induced irradiation creep due to high irradiation temperatures, 

neutron irradiation and applied stress, all graphites were irradiated as part of Advanced 

Graphite Creep-1 (AGC-1) experiment which took place in the Advanced Test Reactor 

(ATR) in a large flux trap at the Idaho National Laboratory (INL) Site. The experiment 

is designed to sustain 6 irradiation capsules (Figure B.1) that can hold ~500 graphite 

samples, and to have the neutron irradiation doses in the rage of 0.5 - 7 dpa, at 

temperatures up to 1200̊C. Between the graphites irradiated is worth mentioning: NBG-

18, PCEA, IG-110, and from the minor grades of graphite (i.e., “piggyback” specimens) 

PCIB and HOPG [167].  

Figure B.1 Schematic representation of an AGC-1 capsule sample stack [79]. 
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The AGC-1 capsule was irradiated in the south flux trap of the ATR from 

September 5, 2009 to January 8, 2011 crossing seven irradiation cycles (approximately 

378 effective full-power days). After irradiation, completed on January 8, 2011, the 

AGC-1 capsule was stored in the ATR Canal for approximately 60 days to allow the 

activity of the steel pressure tube section of the capsule to decay to lower levels, 

following the disassembly of the capsules [2]. 

 In order to ensure that the similar samples (top-bottom) receive the same dose the 

staking of sample had to match the ATR flux profile, which is asymmetric (Figure B.2) 

due to the core components are altering the profile. This request of insuring for similar 

samples to receive similar doses, was achieved by loading in the bottom of the capsule 

couple more piggyback samples next to de core centreline. However, more samples 

were irradiated from the new designed ones (e.g. PCEA) compared to the old generation 

H451, in order to ensure a higher variety of irradiation temperatures and doses. 

When staking the samples it was taken in consideration, also the orientation of the 

grain size relative to the irradiation load, knowing that irradiation creep is influenced by 

the orientation of the grain (being more important the measurements with the load 

applied parallel to the grain). The experiment ensured that each capsule was irradiated at 

constant temperature, and only the dose and the load was varied.  

Figure B.2 ATR flux profile during irradiation [79] 

. 
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The AGC-1 samples, which finished their irradiation cycle in January 2011, had 

an accumulated dose in the range of 1.36 - 6.94 dpa. Being the first experiment done as 

part of AGC, it had issues from the software in controlling the temperature; in the way 

that the temperature was not uniforms (Figure B.3) through the capsule, and the 

irradiation temperature was raised to ~675 °C. During irradiation the variation of 

temperature within the entire capsule was 350 °C with doses in the range of 1.82 - 6.94 

dpa. The temperature variation between matched pair samples in this central region 

ranged from a low of 30 °C to a high of 68 °C between sample pairs, these temperature 

variations are higher than planned, but within acceptable levels of uncertainty [79].  

 

NOTE: The sample analysed in this thesis, were a part of the central capsule, and 

no load was applied. 

Figure B.3 Temperature variation within the ATR irradiation capsule [79] 
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 Displacement cross section Appendix C

Figure C.1 Carbon primary and total displacement cross section as a function of electron and 
displacement threshold energies (capture from Oen (1965). 
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