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Abstract 

 

Fibrinogen is a vital component of coagulation; cleavage of fibrinogen yields fibrin 

monomers that polymerise to form a network of fibres, constituting the blood clot. 

Human fibrinogen is secreted from hepatocytes in its phosphorylated form, with 

20-25 % of circulating fibrinogen phosphorylated exclusively at A chain Ser3 and 

Ser345. Phosphorylation of fibrinogen is elevated in acute phase conditions, venous 

thrombosis and ovarian cancer, but little is known about the regulation and effects of 

this modification. The aims of this PhD project were to characterise the cellular 

mechanism and functional role of fibrinogen phosphorylation in vivo.  

Human hepatoma cells were incubated in the presence and absence of IL-6 and the 

phosphate content of secreted fibrinogen was analysed by western blotting. 

Interleukin-6 caused a 3.1-fold increase in fibrinogen phosphorylation, demonstrating 

for the first time that the up-regulation of this modification in acute phase conditions is 

regulated at the cellular level. Using real-time PCR, IL-6 was found to significantly 

enhance (6.0-fold) the expression of Golgi casein kinase Fam20A, whose recognition 

sequence matches the Ser3 and Ser345 phosphorylation sites. Expression of other 

potential fibrinogen kinases, including CK2, Fam20B and Fam20C, were unchanged. 

This finding suggests that Fam20A plays an important role in the hepatocellular 

response to acute phase conditions and may phosphorylate fibrinogen in vivo.  

Chromatographic enrichment of phosphorylated human plasma fibrinogen was 

conducted for functional analyses. Binding and activity assays found no effect of 

fibrinogen phosphorylation on FXIII cross-linking of fibrin α and γ chains, plasmin(ogen) 

binding to fibrinogen, or α2-antiplasmin incorporation. Analysis by SDS-PAGE revealed 

a small decrease in the rate of fibrinogen degradation by plasmin with increasing 

phosphorylation, indicating a possible role in protection from fibrinolysis. Scanning 

electron microscopy and turbidimetric assays revealed thinner fibres and more 

extensive branching in clots with a higher phosphate content, which typically 

represents a pro-thrombotic structure.  

This work highlights the importance of fibrinogen phosphorylation in maintaining the 

balance between clot formation and lysis. Investigations have shown that increased 

intracellular kinase activity leads to elevated fibrinogen phosphorylation in acute phase 

conditions. The observed alterations to clot phenotype with elevated fibrinogen 
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phosphorylation suggest this modification may help to stem bleeding following trauma. 

Furthermore, it may have important implications in the development of thrombosis, 

which would make it a valuable target for therapeutic intervention in associated 

pathologies.  
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Chapter 1 

Introduction 

 

Haemostasis refers to the vital physiological mechanisms that limit blood loss after 

vessel injury. These mechanisms must be tightly regulated as defects can lead to 

undesired bleeding or thrombus formation. Fibrinogen is a key player in the final stage 

of the coagulation cascade – an essential component of haemostasis – whereby 

cleavage of fibrinogen triggers the formation of a fibrin clot to repair the vascular defect. 

During synthesis, fibrinogen is phosphorylated at serine (Ser) 3 and Ser345 within its 

Aα chain, but the functional significance of this is yet to be characterised. 

Phosphorylation at these sites has been shown to affect clot structure and there is 

evidence to suggest this modification may be associated with thrombosis. Therefore, it 

is important to advance understanding of fibrinogen phosphorylation, including the 

process, its physiological purpose and its contribution to disease. 

1.1. Haemostasis and coagulation 

Haemostasis comprises several complex responses to vascular injury. Damage to the 

blood vessel results in the release of various cytokines, chemokines and proteins from 

endothelial cells, triggering localised pro-inflammatory and pro-coagulant activities. 

Vasoconstriction occurs to minimise blood loss, while platelets aggregate at the site of 

injury via adhesive von Willebrand factor (vWF) and fibrinogen, in order to seal the 

vessel wall. Simultaneously, coagulation factors are activated on the surface of tissue 

factor (TF)-bearing cells and activated platelets, ultimately leading to formation of an 

insoluble fibrin network to stabilise the platelet plug. The known coagulation factors (F) 

include TF, FVII, FXII, FXI, FIX, FVIII, FV, FX, prothrombin, fibrinogen and FXIII. 

Activation of coagulation factors occurs in a sequential manner and includes feedback 

mechanisms. Anticoagulation occurs at the appropriate time to prevent excessive 

coagulation, and is mediated by the activities of protein C, protein S, tissue factor 

pathway inhibitor (TFPI) and antithrombin III. There are two proposed models of 

coagulation: the classic coagulation cascade with intrinsic and extrinsic pathways 

leading to a common pathway, and a more recently established cell-based model of 
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coagulation involving initiation, amplification and propagation steps on TF-bearing cells 

and activated platelets (Hoffman and Monroe, 2001). 

1.1.1. The coagulation cascade 

Early reports described coagulation as a ‘waterfall sequence’ or ‘cascade of 

proenzyme-enzyme transformations’ (Davie and Ratnoff, 1964, Macfarlane, 1964). This 

led to refinement of the cascade model, involving sequential activation of serine 

proteases within separate intrinsic and extrinsic pathways, converging on a common 

pathway (Brandt, 1985).  The extrinsic pathway is also known as the TF-pathway as it 

is triggered by exposure of sub-endothelial TF upon vessel injury. Tissue factor binds 

circulating FVII, which is activated to FVIIa, initiating the cascade. The contact 

activation (intrinsic) pathway involves binding of FXII to a negative surface, causing 

autoactivation of FXII and setting in motion a series of coagulation factor activations. 

These pathways both finish via a common route which ultimately leads to fibrin clot 

formation. Figure 1 illustrates this classic cascade model of coagulation. 

1.1.1.1. Tissue factor pathway 

The TF-pathway is the predominant contributor to coagulation. Tissue factor is a 

glycoprotein which is anchored to endothelial cells via a transmembrane domain. 

Vessel injury exposes TF, enabling interaction with circulating FVII. Tissue factor acts 

as a cofactor for FVII by accelerating its activation to FVIIa and increasing its 

enzymatic activity towards its substrates (Nemerson and Repke, 1985, Bjoern et al., 

1991). The TF/FVIIa complex is the extrinsic tenase complex which feeds into the 

common pathway by activating FX. Activated FVII (FVIIa) also activates FIX, which can 

complex with FVIIIa on a cell surface for FX activation. 

1.1.1.2. Contact activation pathway 

Autoactivation of FXII occurs when it comes into contact with a negatively charged 

surface, such as sub-endothelial collagen, polyphosphate anions released from 

activated platelets, or lipopolysaccharides in bacterial cell walls (Kawamoto and 

Kaibara, 1990, Renne et al., 2005, Morrison and Cochrane, 1974, Smith et al., 2006). 

Surface-bound high molecular weight kininogen (HMWK) brings prekallikrein and FXI 

into proximity, leading to formation of a complex involving FXIIa, HMWK, prekallikrein 

(PK), and FXI (Schmaier et al., 1987). Prekallikrein is converted to kallikrein and 

activation of FXI in turn activates FIX, leading to formation of the intrinsic tenase 

complex involving FIXa and FVIIIa. 
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1.1.1.3. Common pathway 

The common pathway of the coagulation cascade is responsible for thrombin 

generation and fibrin clot formation. Tenase complexes from the tissue factor and 

contact activation pathways activate FX, which binds to FVa in the presence of 

phospholipids and calcium ions to form a prothrombinase complex (Suttie and Jackson, 

1977). Incorporation of FXa into the prothrombinase complex accelerates prothrombin 

cleavage by five orders of magnitude, compared to the activity of FXa alone (Nesheim 

et al., 1979). Production of active thrombin by prothrombinase leads to cleavage of 

N-terminal peptides from fibrinogen to initiate fibrin polymerisation (Blomback et al., 

1966). Thrombin also activates transglutaminase FXIII, which forms covalent 

cross-links between adjacent fibrin molecules to stabilise the clot. 

 

 

 

 

 

Figure 1. The coagulation cascade. The contact activation pathway and tissue factor pathway 

both result in the formation of a tenase complex (blue) in the presence of phospholipids (PL) 

and Ca2+ ions, leading to a common pathway. A prothrombinase complex (PTase) (pink) 

activates thrombin (green), whose generation is further enhanced by positive feedback 

mechanisms (green arrows). Thrombin cleaves fibrinogen, yielding fibrin monomers which 

polymerise to form a fibrin clot. The fibrin clot is stabilised by FXIII cross-linking.  
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1.1.2. The cell-based model of haemostasis 

Although the cascade model of haemostasis appears to work well in vitro, it is 

inconsistent with the nature of certain haemostatic pathologies. For example, activation 

of FX by the extrinsic tenase (TF/FVIIa) would be expected to compensate for FVIII or 

FIX deficiencies in haemophiliacs if the two pathways were distinct. In addition, the 

cascade model does not explain the cross-activation of coagulation factors within 

different pathways, such as activation of FIX by extrinsic tenase, and activation of FXI 

by thrombin (Osterud and Rapaport, 1977, Gailani and Broze, 1993).  Hence, the 

notion of separate intrinsic and extrinsic pathways has come under scrutiny (Gailani 

and Broze, 1991, Broze, 1992a, Broze, 1992b, Roberts et al., 1998), and has since 

been replaced by a cell-based model of haemostasis (Hoffman and Monroe, 2001). 

This model acknowledges the interrelation of various coagulation reactions and is more 

compatible with the in vivo condition.  

The cell-based model of haemostasis consists of three overlapping phases – initiation, 

amplification and propagation – occurring on different cell surfaces. The initiation phase 

is localised to TF-bearing cells, while amplification occurs during transition to activated 

platelet surfaces – the site of propagation (figure 2). Haemostatic mechanisms are 

triggered when TF is exposed to flowing blood following vascular endothelium 

perforation or activation by inflammatory mediators. Factor IXa, FXa and small 

quantities of thrombin are produced on TF-bearing cells. If these exceed a threshold 

level, coagulation is initiated. During amplification, platelets adhere to the damaged 

endothelium and become partially activated. The thrombin produced during initiation 

completes platelet activation and also activates FVIII, FV and FXI. Coagulation factors 

localise to the activated platelet membrane, setting the scene for the propagation 

phase. During propagation, activated proteases combine with their co-factors to form 

tenase and prothrombinase complexes. Activated FXI provides additional FIXa for 

tenase complex formation, enhancing thrombin generation. Prothrombinase catalyses 

the proteolysis of two peptide bonds within the inactive zymogen, prothrombin, 

releasing active thrombin plus two fragments (Nesheim et al., 1979). The resulting 

surge of thrombin is sufficient to clot fibrinogen.  



5 

 

 

 

 

 

 

1.1.3. Anticoagulant pathways 

Coagulation processes are tightly regulated to maintain an appropriate balance 

between pro- and anti-coagulant activities. Tissue factor pathway inhibitor is the 

principal inhibitor of the extrinsic pathway, inhibiting FXa directly, as well as indirectly 

by forming a quaternary complex with the extrinsic tenase (TF/FVIIa) and FXa (Broze 

gfghfgh

INITIATION

AMPLIFICATION

Platelet

TF-bearing cell

Activated 

platelet

TF-bearing cell

PTase

PTase

Activated platelet

Tenase PTase
PROPAGATION

Figure 2. The cell-based model of haemostasis. Initiation of coagulation occurs on TF-

bearing cells. Tenase complexes activate FX, leading to prothrombinase (PTase) formation and 

low levels of thrombin (T) generation from prothrombin (PT). During amplification, thrombin 

activates FVIII, as well as FV and FXI on the platelet surface. Platelets adhere to the 

extravascular matrix and are also activated by thrombin. Localisation of coagulation factors on 

the surface of activated platelets results in a burst of thrombin generation in the propagation 

phase. Solid arrows represent zymogen cleavage; dashed arrows represent activation. 
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et al., 1991, Sanders et al., 1985). Protein C is a coagulation factor zymogen that is 

activated by low levels of thrombin in vivo (Comp et al., 1982). Activated protein C 

inhibits FVIIIa and FVa which contribute to tenase and prothrombinase complexes 

respectively. Protein S functions as a cofactor for both protein C activation and the 

down-regulation of FXa activity by TFPI. Antithrombin III is a serine protease inhibitor 

which acts on several enzymes in the coagulation system, trapping them in an inactive 

complex via its reactive peptide bond at arginine (Arg) 393-Ser394 (Bjork et al., 1982). 

Its primary target is thrombin, but can also inhibit FXa, FXIa, FIXa, FXIIa, FVIIa, 

plasmin and kallikrein, although these inhibitions may not be physiologically relevant 

(Travis and Salvesen, 1983, Damus et al., 1973, Sanchez et al., 1998, Lawson et al., 

1993, Bjork et al., 1982). Together, the various anticoagulant proteins ensure clotting 

only occurs above a threshold level of activation, and prevent excessive fibrin 

formation. 

1.1.4. The fibrinolytic system 

Following vascular repair, fibrin clots must be broken down and solubilised to prevent 

clot embolisation or thrombosis. This process is known as fibrinolysis. Figure 3 displays 

a simplified diagram of the fibrinolytic system. In brief, cleavage of plasminogen yields 

active plasmin – a serine protease which digests fibrin into fibrin degradation products.  

 

 

 

 

 

Fibrin
Fibrin degradation

products

Plasmin

Plasminogen

α2-AP

TAFI

tPA

uPA
PAI

Fibrinogen

Thrombin

Figure 3. The fibrinolytic system. Fibrin clots are degraded by the enzyme plasmin, yielding 

fibrin degradation products. Plasmin is formed by cleavage of plasminogen by tissue 

plasminogen activator (tPA) or urokinase (uPA) and is inhibited by α2-antiplasmin (α2-AP). The 

plasminogen activators are inhibited by plasminogen activator inhibitor (PAI), and degradation of 

fibrin is inhibited by thrombin-activatable fibrinolysis inhibitor (TAFI). Green lines represent 

activation; red lines represent inhibition. 
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1.1.4.1. Plasminogen and its activators 

Plasminogen is a 90 kilodalton (kDa) glycoprotein existing as two N-terminal variants: 

glutamic acid (Glu)-plasminogen and lysine (Lys)-plasminogen. The N-terminal peptide 

domain of Glu-plasminogen is removed by cleavage at Lys77-Lys78, releasing Lys-

plasminogen. Lys-plasminogen is more readily activated, with a Michaelis constant 

(Km) of 19 µM compared to 65 µM for Glu-plasminogen (Hoylaerts et al., 1982). Glu-

plasminogen is converted to Lys-plasminogen on the endothelial cell surface for 

optimal activation of plasminogen (Gong et al., 2001). Lys-plasminogen also has higher 

affinity for fibrin due to altered conformation (Lucas et al., 1983). For activation, 

plasminogen is cleaved at the Arg561-valine (Val)562 peptide bond by tissue 

plasminogen activator (tPA) or urokinase (uPA) (Robbins et al., 1967). Tissue 

plasminogen activator is a 72 kDa glycoprotein released from endothelial cells to 

initiate fibrinolysis. It is the major intravascular activator of plasminogen, leading to the 

dissolution of fibrin clots in plasma. Urokinase is a 54 kDa glycoprotein which 

predominantly functions in pericellular proteolysis, enhancing activation of cell-bound 

plasminogen (Blasi, 1993).  

Fibrin facilitates its own degradation by binding plasminogen and tPA, creating a 

localised pool of plasmin. This binding enhances plasminogen activation, which has a 

lower Km in the presence of fibrin (Hoylaerts et al., 1982). Unlike tPA, uPA does not 

bind fibrin, yet does increase Glu-plasminogen activation in the presence of fibrin, 

possibly due to a conformational change in fibrin-bound plasminogen (Cesarman-Maus 

and Hajjar, 2005).  Both plasminogen and tPA bind to the αC region of fibrinogen with 

high affinity (dissociation constants (Kd) of 32 nM and 33 nM respectively) at sites that 

are cryptic in fibrinogen but exposed in fibrin (Tsurupa and Medved, 2001a, Tsurupa 

and Medved, 2001b).  Plasminogen and tPA bind to additional sites in fibrinogen D and 

E regions that are also only exposed in fibrin (Varadi and Patthy, 1983, Varadi and 

Patthy, 1984, Lucas et al., 1983), including Aα148-160, and γ312-324 in the case of 

tPA (Nieuwenhuizen, 1994). Plasminogen and tPA binding sites become exposed 

during fibrin assembly when D and E regions interact, disrupting interaction of the β- 

and γ-nodules with the coiled-coil region and Aα148-160 respectively (Yakovlev et al., 

2000). Plasmin generation leads to proteolysis of fibrin into soluble fragments. 

1.1.4.2. Plasmin digestion of fibrin(ogen) 

Plasmin digests both native fibrinogen and polymerised fibrin clots. Evidence suggests 

that fibrinogen evolved from a single polypeptide chain, encoded by a single gene prior 

to duplication (Henschen et al., 1983, Crabtree et al., 1985). Thus, plasmin cleaves 
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sites at similar positions within the Aα, Bβ and γ chains of fibrinogen. Plasmin attacks 

fibrinogen from its C-terminal end, with the Aα chain being most susceptible to 

proteolysis. Sequential plasmin digestion of fibrinogen generates multiple fibrinogen 

degradation products, known as fragment X, fragment Y, fragments D1-D3 and 

fragment E (figure 4). The compositions and molecular weights of these degradation 

products are well characterised (Nussenzweig et al., 1961, Ferguson et al., 1975, 

Gaffney, 1980). The three main steps in plasmin-mediated digestion of fibrinogen are 

as follows. Firstly, two 50 kDa peptides are cleaved from the C-terminal ends of the Aα 

chains (αC), yielding fragment X (240 kDa) and free αC degradation products. 

Secondly, unilateral cleavage of Bβ and γ chain C-termini in fragment X, as well as 

further processing of the Aα chain, generates fragment Y (145 kDa) and fragment D1 

(92 kDa), whereby fragment D1 is the cleaved C-termini, still held together by 

disulphide bonds. Thirdly, the same pattern of digestion on the intact half of fragment Y 

creates fragment E (50 kDa) – a dimer containing disulphide bonded Aα, Bβ and γ 

chain N-termini – and fragment D1. Additional shortening of the γ chain from its 

C-terminal end in fragment D1 creates fragments D2 (86 kDa) and D3 (82 kDa) 

(Southan et al., 1985). In vivo, degradation of cross-linked fibrin also yields a D-D 

dimer, which is used clinically in the diagnosis of thrombosis and pulmonary embolism 

(Brill-Edwards and Lee, 1999). Cleavage of fibrin in this way is essential for clot lysis. 

 

 

 

 

Figure 4. Plasmin digestion of fibrinogen. Carboxy-termini of fibrinogen Aα chains are 

digested by plasmin to generate fragment X and free αC degradation products. Asymmetric 

cleavage of the Aα, Bβ and γ chains of fragment X from their C-terminal ends yields fragment Y 

and fragment D1. Identical cleavage of the second monomer in fragment Y also yields fragment 

D1. The γ chain of fragment D1 is further digested to produce fragment D2 and fragment D3. 
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1.1.4.3. Fibrinolysis inhibitors 

Fibrinolytic mechanisms must be constrained to prevent interference with vital clot 

formation. The key inhibitors of fibrinolysis include α2-antiplasmin (α2-AP), 

plasminogen activator inhibitor (PAI)-1, PAI-2, and thrombin-activatable fibrinolysis 

inhibitor (TAFI). The reactive site in the C-terminus of serine protease inhibitor α2-AP 

(Arg364) interacts covalently with the active site of plasmin to inhibit its proteolytic 

degradation of fibrin (Shieh and Travis, 1987, Lee et al., 1999). Alpha-2-antiplasmin 

also forms non-covalent, high affinity (Kd of 45-68 nM) interactions with fibrin D1 and D-

D fragments, as well as the αC region, at sites that are cryptic in fibrinogen but 

exposed in fibrin (Tsurupa et al., 2010). This binding may orientate α2-AP to facilitate 

subsequent cross-linking of this inhibitor to fibrin by active FXIII. Plasminogen activator 

inhibitor-1 is the most important physiological inhibitor of tPA and uPA, while significant 

levels of PAI-2 in plasma are only detected in early pregnancy or pathological 

conditions (Cesarman-Maus and Hajjar, 2005). Free PAI-1 and PAI-2 complex with the 

active sites of tPA and uPA to prevent conversion of plasminogen to active plasmin. 

Fibrin-bound PAI-1 can also interact with tPA and uPA to prevent activation of 

plasminogen (Wagner et al., 1989). Thrombin-activatable fibrinolysis inhibitor is a 

60kDa glycoprotein which, upon activation by thrombin, removes C-terminal lysine and 

arginine residues of fibrin degradation products, which normally provide additional tPA 

and plasminogen binding sites and induce a 2.5-fold increase in the rate of 

plasminogen activation (Wang et al., 1998). Hence, TAFI limits tPA and plasminogen 

binding to fibrin, thereby reducing plasmin generation and preventing further 

fibrinolysis.   
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1.2. Fibrin(ogen) 

Fibrinogen was first isolated from horse plasma by Hammarsten in 1876, and from 

human plasma 70 years later (Cohn et al., 1946). Hammarsten discovered that 

fibrinogen plays a crucial role in coagulation as a precursor for fibrin upon exposure to 

thrombin. Indeed, the surge of thrombin activation during the propagation phase of 

haemostasis triggers fibrin polymerisation, creating a network of fibres to stabilise the 

platelet plug. Fibrinogen’s structure and functions have been studied extensively since. 

Fibrinogen molecules are highly heterogeneous due to alternative mature messenger 

ribonucleic acid (mRNA) splicing and polymorphisms, described below, as well as post-

translational modification (section 1.4), including Aα chain proteolysis. 

1.2.1. Genetic regulation of fibrinogen 

Fibrinogen Aα, Bβ and γ polypeptides are encoded by three genes – FGA, FGB and 

FGG, respectively – on the long arm of chromosome 4, region q23-32 (Henry et al., 

1984). The location of all three genes on the same chromosome, as well as sequence 

homologies and similarities in 5’ exon-intron domains, indicate divergence of FGA, 

FGB and FGG from a common ancestral gene. It is likely that the original gene 

duplicated to form FGA and a pre-FGB/FGG gene approximately 1 billion years ago, 

followed by subsequent duplication to form individual FGB and FGG genes some 500 

million years ago (Crabtree et al., 1985). The genes are arranged in the order of FGG-

FGA-FGB, with FGB in the opposite transcriptional orientation, which is a somewhat 

unexpected arrangement given the proposed evolutionary process (Kant et al., 1985). 

The three genes are of 5.4 (FGA), 8.2 (FGB) and 8.4 (FGG) kilobases (kb) in length 

and span a compact 50 kb cluster (Chung et al., 1990). The Aα chain gene consists of 

5 exons, FGB of 8 exons, and FGG of 10 exons. Splicing of intron-exon junctions 

generates mRNA (Mount, 1982). Cloning of complementary deoxyribonucleic acid 

(cDNA) for fibrinogen chains enabled characterisation of the individual genes. The 

mRNA molecules coding for the fibrinogen Aα, Bβ and γ chains consist of 1,875, 1,900 

and 1,600 coding nucleotides respectively, producing polypeptides of 625, 461 and 411 

amino acids in length (Rixon et al., 1983, Chung et al., 1983, Haidaris et al., 1989). 

1.2.1.1. Splice variants and polymorphisms  

Francis et al. (1980) identified a larger variant of the fibrinogen γ chain, which was later 

isolated and established as γ’ (Wolfenstein-Todel and Mosesson, 1980). This minor 

variant of the γ chain exists in 10% of fibrinogen molecules and typically forms a 

heterodimer with normal fibrinogen γ chain (γA) – γA/γ’. Fibrinogen γ’ is a result of 
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alternative splicing, leading to replacement of the last four residues of γA with a 

20-amino acid sequence (Chung and Davie, 1984). This extension carries a negative 

charge and is also sulphated at tyrosine (Tyr) residues 418 and 422, together 

impacting the functional properties of fibrinogen (Hortin, 1989, Meh et al., 2001). Lovely 

et al. (2003) reported a high affinity thrombin-binding site between residues 414 and 

427 of the γ’ extension. More recently, γ’ has been shown to interfere with protofibril 

formation, producing clots with thinner fibres and mechanically weaker structures (Allan 

et al., 2012). This variant has been highlighted as a marker for thrombotic disease 

(Farrell, 2012).  

An additional splice variant, Fib420, has a C-terminal extension of 236 amino acids on 

the Aα chain (αE) which is homologous to the C-termini of the Bβ and γ chains and is 

encoded by exon 4 of the FGA gene (Fu and Grieninger, 1994). This sequence is 

N-glycosylated, giving αE a higher than predicted molecular weight of 100 kDa. The αE 

extension contains calcium binding sites that protect fibrinogen from proteolysis by 

plasmin (Applegate et al., 1998). However, no additional polymerisation or cross-linking 

sites were detected. 

Several single nucleotide polymorphisms have been reported in fibrinogen. Two 

common polymorphisms include a threonine (Thr) to alanine (Ala) substitution at 

residue 312 in the Aα chain, and an arginine to lysine substitution at residue 448 in the 

Bβ chain (Baumann and Henschen, 1993).  The fibrinogen Aα Thr312Ala 

polymorphism occurs in the αC region, which has an important functional role in FXIII 

cross-linking. This substitution influences the fibrin clot, leading to thicker fibres and 

increased α chain cross-linking – a proposed mechanism for its association with 

venous thrombosis and clot embolisation (Standeven et al., 2003, Carter et al., 2000). 

The fibrinogen Bβ Arg448Lys polymorphism also resides in the C-terminus, and has a 

frequency of 15 % in the Caucasian population (Baumann and Henschen, 1993). Clots 

composed of BβLys448 fibrinogen have thinner fibres, reduced porosity, increased 

stiffness and slower lysis times in plasma (Ajjan et al., 2008). This polymorphism is 

associated with thrombotic and coronary artery disease (Carter et al., 1997, Behague 

et al., 1996). 

1.2.1.2. Dysfibrinogenemias 

Dysfibrinogenemias are inherited mutations in one of the three fibrinogen genes, 

leading to fibrinogen abnormalities and defective fibrin clot formation. Such mutations 

may create a bleeding or thrombotic tendency depending on the location of the 

mutation.  Certain mutations may also affect fibrinogen synthesis, leading to low levels 
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of circulating fibrinogen (hypodysfibrinogenemia). One of the more common 

dysfibrinogenemias is fibrinogen Dusart, characterised by a heterozygous base 

substitution causing an amino acid change at Aα Arg554 to a cysteine (Cys) residue 

(Soria et al., 1983). This causes a thrombophilic phenotype with abnormal clot 

properties. The Cys554 residue forms a disulphide bond with circulating albumin, which 

can hinder Aα chain interactions and lateral aggregation of protofibrils during clot 

formation, leading to thinner fibres (Koopman et al., 1993). Clots also have reduced 

porosity, increased branching, and increased resistance to fibrinolysis due to reduced 

plasminogen binding and activation by tPA (Collet et al., 1996). Another 

dysfibrinogenemia – fibrinogen Caracas – results from a base substitution and amino 

acid change from serine to N-glycosylated asparagine at position 434 of the Aα chain 

(Maekawa et al., 1991). Similar to fibrinogen Dusart, N-glycosylation of Asn434 impairs 

Aα chain interactions and lateral aggregation of protofibrils, producing clots with thinner 

fibres. In contrast, porosity was increased and clots were more susceptible to 

fibrinolysis (Woodhead et al., 1996). Additional abnormal fibrinogens result from 

replacement of Aα chain Arg16 with histidine or cysteine, as in fibrinogen Milano IV and 

fibrinogen Ledyard respectively (Lee et al., 1991, Bogli et al., 1992). These 

dysfibrinogenemias reduce the rate of cleavage of Aα chain N-terminal peptide 

fibrinopeptide A by thrombin to initiate polymerisation. Hence, clot formation is delayed 

and patients exhibit a bleeding phenotype. These hereditary diseases demonstrate 

how a minor genetic alteration can significantly alter the function of fibrinogen, with 

serious consequences.  

1.2.2. Fibrinogen biosynthesis 

Fibrinogen is predominantly synthesised in hepatocytes and secreted into plasma, 

circulating at an average concentration of 2.6 mg/ml (7.6 µM) (Forman and Barnhart, 

1964, Butenas and Mann, 2002). Early studies with bovine, dog and rat fibrinogen 

revealed that the Aα, Bβ and γ chains are translated from separate mRNA transcripts 

and form a precursor molecule as fully assembled fibrinogen (Chung et al., 1980, Yu et 

al., 1980, Nickerson and Fuller, 1981). As is typical for secretory proteins, each chain 

also contains a signal peptide which is cleaved during co-translational translocation into 

the endoplasmic reticulum (ER). Kudryk et al. (1982) reported that synthesis and 

secretion of dog fibrinogen takes 15-20 minutes and that Aα, Bβ and γ chains are 

secreted to an equal extent. Disulphide bond formation between half molecules of dog 

fibrinogen took place in the ER, while phosphorylation and sulphation of fibrinogen 

occurred in a post-ER compartment. A study by Hartwig and Danishefsky (1991) using 

recombinant fibrinogen expression in monkey kidney (COS) cells provided early 
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evidence for fibrinogen intermediate complexes. Expression of Aα, Bβ and γ chains, 

either individually or as pairs, in baby hamster kidney (BHK) cells established a three-

step model for fibrinogen biosynthesis: i) simultaneous formation of Aα-γ and Bβ-γ 

complexes, ii) addition of an Aα or Bβ chain to these intermediates to form a half 

molecule, and iii) assembly of mature, dimeric fibrinogen which is secreted from the cell 

(figure 5) (Huang et al., 1993b).  

 

 

 

 

 

 

 

This model was supported by subsequent cell fusion experiments, fusing BHK cells 

expressing the Bβ and γ chains with those expressing only the Aα chain, and likewise 

fusing cells expressing the Aα and γ chains with those expressing only the Bβ chain  

(Huang et al., 1996). The predominant intermediate complex was dependent on the 

cellular level of individual chains, and incorporation of preformed Aα-γ and Bβ-γ 

complexes confirmed their role as functional intermediates in fibrinogen assembly. The 

presence of Aα-γ, Bβ-γ and AαBβγ intermediates was also demonstrated in human 

hepatoma (HepG2) cells, which synthesise and secrete fibrinogen naturally, but with 

much higher levels of the Aα-γ complex. 

Surplus fibrinogen Aα and γ chains in HepG2 cells are due to different rates of 

synthesis and degradation. Yu et al. (1984) have demonstrated using pulse-chase 

experiments that Bβ chains are synthesised more slowly than Aα and γ chains, and 

combine with retained Aα and γ chains in the lumen of the ER whilst still being 

translated on the ribosome (figure 5). Retention of Aα and γ chains is mediated by 

lectin chaperones – calnexin and calreticulin – via monoglucosylated N-linked glycans 

Figure 5. Fibrinogen assembly in the ER. Fibrinogen chains are translated on ribosomes 

(green) and translocated into the ER. Pools of intermediate Aα-γ and Bβ-γ complexes combine 

with newly synthesised Bβ or Aα chains respectively to form fibrinogen half molecules (AαBβγ). 

Two half molecules combine via N-terminal disulphide bonds to complete assembly of dimeric 

fibrinogen (AαBβγ)2. Assembled fibrinogen undergoes further processing in the Golgi apparatus 

before secretion from the cell. 
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(Tamura et al., 2013). Lectin chaperones also provide the kinetic pause necessary for 

sequential hexamer formation from two trimers, rather than simultaneous combining of 

all six chains. The slower synthesis of the Bβ chain makes it the rate limiting step in 

fibrinogen assembly and secretion. The C-terminal of the Bβ chain also acts as a 

quality control for fibrinogen secretion. Truncation at Bβ Arg455, removing seven 

residues, inhibits fibrinogen secretion at a pre-Golgi compartment and permits 

secretion of individual chains and intermediate complexes (Vu et al., 2005). This 

suggests that the presence of the most C-terminal residues of the Bβ chain normally 

ensure that only fully assembled fibrinogen is secreted. 

Degradation of fibrinogen chains in the ER is mediated by the ubiquitin-proteasome 

system (Xia and Redman, 1999). Differential degradation of chains also contributes to 

the existence of Aα and γ chain pools. Roy et al. (1992) discovered that lysosome 

inhibitors markedly block the degradation of free Aα chains and Aα-γ complexes, but 

have minimal effect on free γ chains and no effect on Bβ chains. Furthermore, only the 

Bβ chain bound to immunoglobulin binding protein (BiP) – a molecular chaperone 

involved in ER-associated degradation. These findings indicate that Bβ and γ chains 

are degraded in the ER, while Aα chains and Aα-γ complexes are degraded by 

lysosomes. Similarly, upon incubation with proteasome inhibitor MG132, Xia and 

Redman (2001) observed advanced accumulation of Bβ chains, ahead of Aα and γ, on 

translocon component Sec61, indicating unequal rates of retrotranslocation from the 

lumen of the ER for degradation. These mechanisms may be important in regulating 

the level of fibrinogen secretion. 

Several pro-inflammatory stimuli and hormones are known to influence the level of 

fibrinogen secretion. Fibrinogen expression in hepatocytes is increased by conditioned 

media from (pre)adipocytes, and by hormones triiodothyronine, dexamethasone and 

prolonged exposure to insulin (Grieninger et al., 1983, Faber et al., 2012). Conversely, 

Ramackers et al. (2014) demonstrated that tumour necrosis factor (TNF)-α and 

interleukin-1β cause a down-regulation of fibrinogen production. It is well established 

that synthesis of fibrinogen increases in acute phase conditions in response to 

interleukin-6 (IL-6) (also known as hepatocyte stimulating factor). This has been 

demonstrated using cultured hepatocytes or hepatoma cells, as well as in vivo by 

injection of IL-6 into rats, eliciting a 3.4-fold increase in plasma fibrinogen concentration 

(Marinkovic et al., 1989, Faber et al., 2012, Nakata et al., 2012, Ramackers et al., 

2014). Increased fibrinogen expression with IL-6 is mediated by IL-6 responsive 

elements and CCAAT box/enhancer-binding protein (C/EBP)-binding sites in the 

fibrinogen genes (Dalmon et al., 1993, Gervois et al., 2001). The ratio of chains inside 

the cell remains the same with IL-6 as all three genes are up-regulated. Interestingly, 
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pools of Aα and γ chains are also maintained during over-expression of the Bβ chain in 

HepG2 cells, induced by transfection of Bβ cDNA, as their expression is also up-

regulated. Similarly, deficiency of Aα chain synthesis in hormone-deprived cells leads 

to concurrent degradation of surplus Bβ and γ chains (Plant and Grieninger, 1986). 

Although the mechanism is not clear, these co-ordinated responses highlight the 

importance of the correct ratio of individual polypeptides for fibrinogen biosynthesis.  

1.2.3. Fibrinogen structure 

Fibrinogen is a large 340kDa glycoprotein which circulates in blood plasma (Shulman 

1953). It has a dimeric structure composed of two sets of three polypeptide chains – 

Aα, Bβ, and γ – consisting of 610, 461 and 411 amino acids respectively (Henschen et 

al., 1983). A low resolution structure of fibrinogen was first obtained by shadow-cast 

electron microscopy, revealing three nodules connected linearly by thin, thread-like 

strands (Hall and Slayter, 1959). Subsequent electron microscopy studies and low 

resolution X-ray crystallography confirmed that fibrinogen molecules are elongated, 

trinodular structures in which a central E region is linked by α-helical coiled-coils to two 

outer D regions (D-E-D) (figure 6) (Mosesson et al., 1981, Rao et al., 1991, Weisel et 

al., 1981). Recommended terminology for the structural domains of fibrinogen has 

been reviewed by Medved and Weisel (2009). The central E region of fibrinogen 

contains the N-termini of polypeptides from each monomer, which are held together by 

disulphide bonds (section 1.2.3.1). The N-termini of the Bβ chains form the BβN 

domains and, together with the Aα chain N-termini, constitute the funnel-shaped 

domain. Two small N-terminal peptides of the Aα and Bβ chains, termed 

fibrinopeptides (Fp) A and B, are cleaved sequentially by thrombin to release fibrin and 

initiate polymerisation. The N-termini of the γ chains meet in the central E region to 

form a single asymmetric γN domain, which is located on the opposite side of the 

molecule to FpA and FpB.  

Weisel et al. (1985) discovered that the C-terminus of each chain is folded into an 

independent globular domain. The distal D nodules of fibrinogen contain the C-termini 

of the Bβ and γ chains, known as the β and γ nodules. Each of these nodules contains 

an A-, B-, and P- domain. The P-domains of β and γ nodules contain binding sites and 

pockets for fibrin polymerisation. Weisel et al. also characterised an additional fourth 

nodule of fibrinogen, which is non-covalently tethered to the E region and comprises 

the C-termini of the two Aα chains, known as the αC regions. Each αC region has two 

structurally distinct portions: i) the αC domains (residues ~Aα392-610) existing as 

folded, compact units and ii) the αC connectors (residues ~Aα221-391), connecting the 
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αC domains to the D regions (figure 6) (Medved et al., 1983, Tsurupa et al., 2002). 

Litvinov et al. (2007) provided the first direct evidence for intramolecular interactions 

involving αC domains, demonstrating that they interact homomerically with each other, 

as well as heteromerically with the central E region via FpB. The αC regions of 

fibrinogen have a wealth of functional importance with regards to fibrin polymerisation, 

cross-linking, fibrinolysis and interactions with other plasma proteins. The structure and 

function of the Aα chain is reviewed in detail in section 1.3.  

 

 

 

 

 

 

 

 

 

1.2.3.1. Disulphide bonds 

The two sets of polypeptide chains in fibrinogen are held together by 29 disulphide 

bonds between cysteine residues (Henschen, 1964), catalysed by protein disulphide 

isomerase ERp57 (Tamura et al., 2013). Cyanogen bromide cleavage of fibrinogen has 

revealed that the central portion of fibrinogen contains 11 disulphide bonds between 

the N-termini of the six polypeptide chains. Five of these hold the two sets of chains 

together: one between two Aα chains (Cys28), two between two γ chains (Cys8 and 

Cys9) and two linking Cys36 of one Aα chain to Cys65 of one Bβ chain, and vice versa 

(Blomback and Blomback, 1972, Blomback et al., 1976, Huang et al., 1993a). The 

Figure 6. Structure of fibrinogen. Schematic diagram of fibrinogen illustrating two sets of three 

polypeptide chains (Aα, Bβ and γ) connecting a central E region to two outer D regions via 

coiled-coil connectors. The central E region comprises the N-termini of the polypeptide chains, 

including FpA and FpB shown in red and green respectively.  The distal D regions include the 

β- and γ-nodules, each with A-, B- and P-domains. A fourth region consists of the αC domains, 

which are connected to the coiled-coils by the αC connectors. The αC domains interact with 

each other and are tethered to the E region via FpB.  
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remaining six occur at the N-terminal side of the coiled-coil region of fibrinogen, three 

per half molecule (Bβ76-Aα49, Bβ80-γ19, γ23-Aα45). An additional six disulphide 

bonds occur at the C-terminal end of the coiled-coil region (Bβ193-Aα165, Bβ197-γ135, 

γ139-Aα161), three per half molecule, giving a total of 17 interchain disulphide bonds 

(Doolittle et al., 1978). Twelve intrachain disulphide bonds form loops between 

proximal cysteine residues: Aα442-472; Bβ201-286, 211-440 and 394-407; γ153-182 

and 326-339 (Blomback et al., 1976, Henschen, 1978, Bouma et al., 1978). The 

N-terminal bonds are required for both assembly and secretion of fibrinogen. The most 

C-terminal disulphide bonds of the coiled-coil region are not necessary for assembly, 

but fibrinogen cannot be secreted in their absence, most likely due to mis-folding 

(Zhang and Redman, 1994, Zhang and Redman, 1996). 

1.2.3.2. Crystal Structures 

Several crystal structures of proteolysed fibrinogen fragments have been reported, 

including fragments D, double D and E, and the γ chain C-terminal (Spraggon et al., 

1997, Madrazo et al., 2001, Yee et al., 1997). Native fibrinogen, however, has proved 

difficult to crystallise due to its high flexibility. This was initially achieved using chicken 

fibrinogen at a resolution of 5.5 angstroms (Å) (Yang et al., 2000b), a success 

attributed to the lack of flexible tandem repeats in the αC regions. This method 

revealed a sigmoidal-shaped structure of 460 Å in length, in agreement with previous 

findings using rotary-shadowed fibrinogen (Williams, 1981). Subsequently, Kollman et 

al. (2009) determined the crystal structure of human fibrinogen at 3.3 Å resolution; they 

observed structural differences in the bending and twisting of the coiled-coil regions, 

suggesting the canonical sigmoid structure becomes distorted in circulation. The αC 

regions could not be detected, providing further evidence of their motility. Until very 

recently, the complete three-dimensional structure of fibrinogen remained elusive. 

Protopopova et al. (2014) have now visualised the αC regions of fibrinogen using an 

alternative approach of high resolution atomic force microscopy. This revealed αC 

protrusions with an average length of 21 nm and average height of 0.4 nm, which is 

less than that of the coiled-coil connectors. This study also elucidated the involvement 

of the αC regions in fibrin polymerisation, as discussed below. 

1.2.4. Functions of fibrinogen in clot formation 

The initial response to vessel damage involves platelet activation and aggregation at 

the site of injury. Although largely mediated by vWF, fibrinogen secreted from activated 

platelets contributes to this process by binding integrin GPIIbIIIa on the platelet surface, 

as well as αvβ3 on endothelial cells (Parise and Phillips, 1985, Cheresh, 1987). The 
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resulting platelet plug is sufficient to temporarily prevent blood loss, but on its own is 

fragile. During the secondary stage of haemostasis, aggregated platelets become 

surrounded by a network of fibrin fibres, forming a stable clot to seal the vessel wall. 

Fibrinogen is the precursor to this vital process. Thrombin generation in response to 

sub-endothelial TF exposure and clotting factor activation leads to cleavage of 

N-terminal peptides from fibrinogen Aα and Bβ chains (Blomback et al., 1967), 

triggering polymerisation and fibre formation. The resulting clot is further stabilised by 

covalent cross-links between fibrin α and γ chains, promoting fibre thickness, elasticity 

and clot stiffness (Duval et al., 2014). Cross-linking by FXIII is also important for 

incorporation of fibrinolytic proteins, to facilitate clot degradation when wound healing is 

complete. The balance between clot formation and degradation is critical. Clot structure 

is an important determinant of resistance to fibrinolysis, and is therefore relevant to 

thrombotic diseases. The following sections outline the processes involved in fibrin clot 

formation, as well as the importance of clot structure, in greater detail. 

1.2.4.1. Fibrin polymerisation 

In 1978, Blomback et al. proposed the widely accepted two-step model of fibrin 

polymerisation (figure 7A). This model of fibrin polymerisation was enhanced by 

obtaining the crystal structure of fibrinogen, enabling characterisation of the various 

interactions at each stage (Yang et al., 2000a). In this model, thrombin cleaves FpA 

and FpB sequentially from fibrinogen Aα and Bβ chains at the AαArg16-glycine (Gly)17 

and BβArg14-Gly15 bonds, yielding fibrin monomers. A third bond – AαArg19-Val20 – 

is cleaved more slowly (Blomback et al., 1967). The initial fibrinopeptide A cleavage 

exposes polymerisation site ‘EA’ in the central E region, which binds a complementary 

pocket ‘Da’ in the D region of a neighbouring molecule. The resulting end-to-middle 

EA:Da associations generate intermediate protofibrils, in which fibrinogen molecules are 

arranged end-to-end as part of a double-stranded, half-staggered oligomer, typically of 

15 units in length (Bale et al., 1982). Initial lateral interactions primarily occur between 

γ-nodules, involving segments γ350-360 and γ370-380 (Yang et al., 2000a). Several 

studies have demonstrated that the initial rate of FpB cleavage is very low, but is 

accelerated subsequent to FpA cleavage and protofibril formation (Higgins et al., 1983, 

Martinelli and Scheraga, 1980, Hanna et al., 1984). Pechik et al. (2006) have provided 

structural evidence for this, with FpA located in the vicinity of fibrinogen-bound 

thrombin, and FpB some distance away due to its length and orientation. Furthermore, 

Pechik et al. suggested that the D:E:D interactions during protofibril formation lead to 

binding of BβN domains to the D regions and consequent repositioning of FpB in 

proximity to the active site of thrombin. The lag period preceding FpB cleavage dictates 
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its effects on lateral aggregation rather than earlier steps of assembly and is crucial for 

normal protofibril and fibre formation (Weisel et al., 1993). Yang et al. have proposed 

that, upon FpB removal, binding of ‘EB’ to its complementary pocket ‘Db’ in an adjacent 

molecule repositions the β-nodules away from the coiled-coils, enabling a second type 

of lateral, intermolecular contact between β-nodules. Consequently, two protofibrils can 

associate with a half-stagger (figure 7B). Removal of FpB also causes several 

conformational changes in the αC region leading to dissociation of the αC domains 

from the central E region, making them available for lateral, intermolecular interaction 

with adjacent αC domains (figure 7A) (Gorkun et al., 1994, Rudchenko et al., 1996). In 

this way, αC domains enhance lateral aggregation of protofibrils to produce thicker 

fibres (Collet et al., 2005a). A scanning electron micrograph of fibrin fibres is displayed 

in figure 7C. 
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Figure 7. Protofibril and fibre formation. A) Two-step model of fibre formation. 

Fibrinopeptide A cleavage causes end-to-middle associations between the central E region and 

the D region of an adjacent molecule, leading to formation of double-stranded protofibrils. 

Protofibrils aggregate laterally after FpB cleavage into a fibrin fibre. Factor XIII cross-links α and 

γ chains to form a stable fibrin clot. B) Fibrin D:E region interactions form a half-stagger 

arrangement in the resulting fibre with 22.5nm periodicity. C) Scanning electron micrograph of 

fibrin fibres at 50,000X magnification. 

22.5nm 

A 

B 

C 

2 µm 



21 

In disrepute with the popular two-step model, Rocco et al. (2014) have recently 

proposed an alternative ‘Y-ladder-to-double-stranded’ (YLDS) model. Using X-ray 

and light scattering techniques, they identified structures that were thinner than those 

predicted by the classic two-step method generating half-staggered, double stranded 

protofibrils. The YLDS model involves a single EA:Da association between two fibrin 

monomers, creating a Y-shape which is repeated along the elongating single stranded 

protofibril. A second EA:Da interaction completes double stranded protofibril formation, 

ready for lateral aggregation. Since then, investigations by Protopopova et al. (2014), 

involving visualisation of αC regions in polymerising fibrin, have shed light on the 

contribution of this functional domain to fibre formation. In addition to the αC-mediated  

aggregation of protofibrils, Protopopova et al. presented a novel finding that αC regions 

contribute to the initial E:D region interactions, dampening previous speculations that 

they are only available for interaction after FpB cleavage, which normally anchors them 

to the E region (figure 7A) (Litvinov et al., 2007). Furthermore, Protopopova et al. 

observed an additional method of fibre thickening, whereby single fibrin molecules 

could join the growing fibre, facilitated by long-range αC-αC contacts. Again, this does 

not fit with the two-step model of polymerisation, but does partially support the YLDS 

model. These recent findings bring a new level of complexity to the established model 

of fibrin assembly. Protopova et al. describe a new model which encompasses lateral 

aggregation of protofibrils, fibre thickening by addition of single fibrin molecules, and 

lengthening of fibres with single stranded protofibrils. Advances in high resolution 

imaging and crystallography techniques will continue to feed our comprehension of this 

process.  

1.2.4.2. Fibre branching 

Growing fibrin fibres frequently form branch points, producing a three-dimensional 

network. There are two opportunities for branching to occur: i) during protofbril 

extension by end-to-end association of fibrin monomers, and ii) during lateral 

aggregation of protofibrils, which may diverge into two separate fibres upon 

interference from a third fibrin molecule. These situations give rise to trimolecular or 

tetramolecular branch points, respectively (Mosesson et al., 1993). Trimolecular 

branching occurs when an extraneous fibrin molecule bridges unpaired polymerisation 

sites within two separate fibrils. This produces three branches of equal linear density 

and is more common in clots with thinner fibres. Tetramolecular branching, or 

divergence of protofibrils, produces a third branch that has twice the linear density of its 

constituents. This form of branching predominates in clots composed of thicker fibres. 

Typically there is a mixture of the two, with approximately 1 million fibrin molecules 
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between branch points (Collet et al., 2005b). The degree of fibrin branching can be 

influenced by a number of factors. Fogelson and Keener (2010) have shown that 

divergence of protofibrils is dependent on fibrin monomer supply rate, and therefore is 

influenced by thrombin concentration and the rate of fibrinopeptide cleavage. There is 

also a reported relationship between branching and fibre thickness, as well as clot 

stiffness (Ryan et al., 1999). The process of lateral aggregation is constrained by 

higher degrees of branching, but enhanced by greater distances between branch 

points (Baradet et al., 1995). Hence, clot structures with increased branching tend to 

have thinner fibres, and vice versa. Clots with elevated branching also tend to exhibit 

increased rigidity. Thus, it is apparent that the branching pattern of a clot impacts its 

structural and functional properties. 

1.2.4.3. Cross-link formation by FXIII 

Networks of fibrin fibres are stabilised by FXIII-mediated cross-linking. Factor XIII is a 

transglutaminase enzyme which catalyses the incorporation of reciprocal, antiparallel 

ε–amino(γ-glutamyl)lysine covalent crosslinks between lysine and glutamine residues 

in fibrin(ogen) α and γ chains. In plasma, the zymogen form of FXIII (FXIII-A2B2) is a 

320 kDa heterotetramer with two identical A subunits (75 kDa) non-covalently bound to 

two identical B subunits (88 kDa) (Schwartz et al., 1973). The A subunits contain the 

active site for cross-linking activity, while the B subunits may serve to protect the 

zymogen from proteolytic degradation and facilitate its interaction with fibrin(ogen) 

(Souri et al., 2008, Smith et al., 2011). Thrombin activates FXIII-A2B2 by cleaving the 

Arg37-Gly38 bond within one FXIII-A subunit (Takagi and Doolittle, 1974). In this way, 

an N-terminal activation peptide is cleaved from the FXIII-A subunit but remains 

attached to the enzyme, occluding its active site. This proteolytic separation weakens 

the interaction between A and B subunits (Radek et al., 1993). The binding of calcium 

ions (Ca2+) leads to dissociation of the A subunits from the B subunits and unmasking 

of the active site cysteine via conformational change in the separated FXIII-A2, yielding 

FXIII-B2 and catalytically active FXIII-A2 (FXIII-a) (Lorand et al., 1993, Hornyak and 

Shafer, 1991).  

1.2.4.3.1. Fibrin α and γ chain cross-links 

Factor XIII forms covalent cross-links between fibrin α and γ chains during clot 

formation. Fibrin γ chain cross-links are introduced prior to lateral aggregation of 

protofibrils, while they are still easily accessible by FXIII (Dyr et al., 1989). Active FXIII 

cross-links γ chain Lys406 with glutamine (Gln)398 or Gln399 of another γ chain, 

generating γ-γ dimers (Purves et al., 1987). These isopeptide bonds confer the 
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elasticity of cross-linked fibrin, which is able to stretch up to 1.8-fold and subsequently 

recover its original form (Roska and Ferry, 1982). They also play a role in determining 

fibre density (Duval et al., 2014). The process of γ-γ dimer formation is very rapid (0-5 

minutes) and reinforces growing protofibrils prior to their lateral association (McKee et 

al., 1970). Following FpB cleavage, the rearrangement of αC domains enables 

additional cross-linking at multiple sites within the αC regions, generating α-α oligomers 

and high molecular weight α polymers. McKee et al. demonstrated that this reaction is 

much slower than γ-γ dimer formation (60-90 minutes), possibly due to FXIII diffusion 

constraints within the polymerising fibre, as well as the motility of αC domains. Four 

glutamine acceptor sites – Gln221, Gln237, Gln328, Gln366 - and multiple lysine donor 

sites – Lys539, Lsy556, Lys580, Lys601 – have been identified within the fibrinogen Aα 

chain (Cottrell et al., 1979, Matsuka et al., 1996, Sobel and Gawinowicz, 1996). Fibrin α 

chains can also be cross-linked to γ chains (α-γ). Clot stiffness is increased 2.5-fold by 

α-α cross-links, while α-γ cross-links have minimal effect (Standeven et al., 2007). 

Fibre thickening, straightening and resistance to fibrinolysis are also significantly 

promoted by α chain cross-linking (Gaffney, 1980, Duval et al., 2014). Binding of FXIII 

to the fibrinogen αC region enhances its cross-linking activity (Lewis et al., 1985); this 

interaction is reviewed in section 1.3.1. Cross-linked fibrin fibres are insoluble and form 

an extensive three-dimensional network.  

1.2.4.4. Fibrin clot structure 

Fibrin clot structure is influenced by a variety of factors, including genetic and 

environmental factors (section 1.2.1), post translational modifications (section 1.4), and 

cardiovascular disease (discussed below). These factors can influence the activity, 

function or plasma concentrations of the various clotting factors. Changes to clot 

structure can have a critical effect on haemostasis, due to altered mechanical and 

fibrinolytic stability. Clots with thicker fibres and increased branching tend to be more 

rigid, exhibiting higher degrees of inelasticity (Weisel, 2007, Ryan et al., 1999). On an 

individual basis, fibres with larger diameters take longer to lyse due to a greater 

number of fibrin molecules. However, clot lysis times are dependent on fibre number, 

branching and density. Typically, lysis is slower in clots with a more compact structure, 

with thinner fibres and increased branching, in comparison to clots with thicker fibres 

and a looser structure (Gabriel et al., 1992, Carr and Alving, 1995, Collet et al., 2000). 

This is at least in part due to the increased density, hindering penetration of fibrinolytic 

proteins through the fibre network. 
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1.2.4.4.1. Clinical implications 

Structural changes to fibrin clots have been observed in a number of diseases. 

Premature coronary artery disease (CAD) results in clots with increased density and 

reduced permeability (Collet et al., 2006), while peripheral arterial disease (PAD), 

venous thromboembolism (VTE), acute myocardial infarction (AMI) and ischemic stroke 

all cause a reduction in permeability, along with increased fibre thickness and 

resistance to fibrinolysis (Bhasin et al., 2009, Undas et al., 2009b, Undas et al., 2008, 

Undas et al., 2009a). In addition, the increased incidence of myocardial infarction with 

elevated circulating fibrinogen levels can, to some extent, be attributed to an increase 

in clot stiffness. Diabetes and metabolic syndrome generate clots with reduced 

permeability and fibre thickness, increased clot density and branching, and longer lysis 

times (Dunn et al., 2005, Carter et al., 2007). Although complex and variable, the 

common denominator of these structural changes is a reduction in clot permeability, 

which results in slower fibrinolysis, thereby yielding a pro-thrombotic phenotype. Thus, 

an awareness of changes to fibrin clot morphology in relevant pathologies and the risks 

they pose to the patient is highly important. 
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1.3. Structure and function of the fibrinogen Aα chain 

The fibrinogen Aα chain comprises three major zones of approximately 200 residues 

each: an N-terminal coiled-coil sequence, a central flexible domain with tandem 

repeats, and a C-terminal globular domain (αC domain) (Doolittle et al., 1979). The 

N-terminal zone (Aα1-194) is connected to the Bβ and γ chains via two disulphide 

rings, in between which lies the coiled-coil region (Doolittle et al., 1978). Although 

largely unstructured, the coiled-coils, which adopt an α-helical conformation, bring 

some order to the N-terminus. Following a short interzonal stretch, the central zone is 

composed of residues Aα240-424. Within this zone lie eight sets of tandem repeats 

(Aα270-372), each with 13 residues (Rixon et al., 1983). The tandem repeats have a 

high proportion of polar glycine, serine, proline or threonine residues, yet the majority of 

fibrinogen Aα chain non-polar tryptophan residues are also located in this region. It has 

been suggested that proteins with proline-rich tandem repeats adopt a helical 

poly-L-proline type II (PPII) conformation (Williamson, 1994). This conformation 

describes a left-handed helix with three residues per turn, which is stabilised by forming 

hydrogen bonds with water molecules. Such a conformation would explain the high 

hydration status of fibrinogen and also contribute some order to the C-terminal portion 

of the Aα chain (Doolittle, 1973). 

The αC region of fibrinogen (Aα221-610) makes up two thirds of the Aα chain and 

contributes approximately 25 % of the mass of fibrinogen. It is composed of an 

N-terminal αC connector containing the tandem repeat sequences, and a C-terminal 

αC domain (Aα392-610). The low content of non-polar residues in the tandem repeats 

of the αC connectors confers flexibility rather than a compact structure. In contrast, an 

abundance of non-polar amino acid side chains in the αC domains are likely to form a 

compact core (Rixon et al., 1983). Tsurupa et al. (2002) have demonstrated that the αC 

domain is indeed folded into a compact, globular structure, as inferred by heat-induced 

unfolding transitions in αC domain fragments using spectroscopy and thermoanalytical 

techniques. This was not observed in αC connector fragments, but their behaviour was 

typical of the extended helical PPII conformation. These findings were supported by 

more recent nuclear magnetic resonance studies (Burton et al., 2006). Burton et al. 

identified a β-hairpin structure in an αC domain fragment (Aα374-538), with one face 

consisting mostly of uncharged residues and the other of charged residues that are 

highly conserved among species. They proposed that an adjacent hydrophobic region 

may interact with the charged surface of the β-hairpin to form a compact unit. In 

addition, the isolated αC domain was found to be unstable, which may explain its 

propensity for inter- and intramolecular interactions. Subsequent work revealed a 

second β-hairpin, formed by residues Aα459-476, with an unstable β-sheet structure 
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(Burton et al., 2007). Oligomerisation of αC domain fragments increased their stability, 

suggesting that αC-αC interactions are thermodynamically driven. 

1.3.1. Interaction with plasma proteins 

The N-terminal zone of the fibrinogen Aα chain is functionally important for fibrin 

polymerisation via cleavage of FpA (residues Aα1-19) by thrombin; residues 1-5 are 

important in this interaction, particularly in phosphorylated FpA (Maurer et al., 1998). 

However, the majority of interactions involve the αC region of fibrinogen. Figure 8 in 

section 1.5.1 illustrates the key sites of interaction in the Aα chain in relation to 

fibrinogen phosphorylation sites. Proteins that bind the αC region include FXIII, 

plasminogen, tPA, α2-AP, PAI-2 and fibronectin, as discussed below. Binding of FXIII 

to fibrinogen promotes its cross-linking activity (Lewis et al., 1985). Using surface 

plasmon resonance, Smith et al. (2011) localised the binding of inactive FXIII-A2B2 to 

fibrinogen αC residues 371-425 and deemed this a high affinity interaction, with a Kd of 

less than 35 nM. Calcium-dependent binding of active FXIII-A subunit with residues 

389-403 was also reported (Kd of 2.35 µM), and Glu389 highlighted as a key residue. 

Further characterisation of this interaction revealed that fibrinogen Aα389-403 binds 

within a cleft in the β-sandwich domain of activated FXIII-A2 (FXIII-a2), exposed 

following cleavage of the activation peptide (Smith et al., 2013). This binding facilitates 

cross-linking to acceptor residue Gln366 by localising it to the active site of FXIII-a2. 

Inhibition of the FXIII-a2–fibrinogen interaction caused a reduction in fibrin α and γ 

chain cross-linking as well as cross-linking of α2-AP to the fibrinogen αC region. 

Hence, the binding of FXIII to fibrinogen is important for its function in stabilising clots 

and incorporating fibrinolytic proteins.  

Fibrin(ogen) controls its own degradation by binding fibrinolytic proteins plasminogen 

and tPA, as well as their inhibitors, α2-AP and PAI-1, to achieve a localised action. 

Plasminogen binds to fibrin fragments D and E, as well as to the αC domain (residues 

392-610) with high affinity (Kd of 32 nM) (Varadi and Patthy, 1983, Varadi and Patthy, 

1984, Lucas et al., 1983, Tsurupa and Medved, 2001b). Residues Aα148-160 in the D 

region of fibrinogen enhance the rate of plasminogen activation by tPA by binding both 

proteins with equal affinity (Kd ~ 1 µM) (Voskuilen et al., 1987, Yakovlev et al., 2000). 

However, the large molar excess of plasminogen in the blood indicates that in 

physiological conditions this binding region may be saturated with plasminogen. 

Tsurupa and Medved (2001b) also discovered high affinity binding of tPA to the αC 

domain (Kd of 33 nM) at an independent site to that of plasminogen, and demonstrated 

that both plasminogen and tPA bind to sites that are cryptic in fibrinogen but exposed in 
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fibrin (Tsurupa and Medved, 2001a). Similarly, α2-AP binds with high affinity to fibrin 

fragments D1 and the D-D dimer, and to the αC region (Tsurupa et al., 2010). Again, 

these binding sites are only exposed in fibrin, not fibrinogen, with the exception of 

adsorbed fibrinogen. Tsurupa et al. proposed that the binding of α2-AP to fibrin induces 

a suitable orientation for subsequent cross-linking. Plasminogen activator inhibitor-1 

also binds to the fibrin α chain N-terminus at residues 20-88 at sites that are cryptic in 

fibrinogen (Smolarczyk et al., 2005). 

Additional proteins that interact with the fibrinogen Aα chain include thrombospondin 

and fibronectin. Both of these proteins are extracellular matrix glycoproteins that 

mediate intercellular and cell-matrix interactions. The thrombospondin binding region 

on the Aα chain has been localised to N-terminal residues 92-147; this interaction is 

thought to play a role in platelet aggregation (Bacon-Baguley et al., 1990). Conversion 

of fibrinogen to fibrin also enables a high affinity interaction between fibronectin and the 

fibrin αC region, localised to residues 221-391 (Makogonenko et al., 2002). This 

binding is thought to promote matrix formation, thereby encouraging cell adhesion and 

migration during vessel repair.  

1.3.1.1. Cross-linking to fibrinolytic proteins 

Several proteins are covalently cross-linked to the Aα chain by FXIII, in particular those 

of the (anti-)fibrinolytic system. In this way, the developing clot incorporates a timely 

mechanism to regulate its own destruction, enabling vessel repair while preventing 

problematic clot growth. Alpha-2-antiplasmin is cross-linked to the αC connectors at 

Lys303 (Kimura and Aoki, 1986b). Interestingly, Fraser et al. (2011) have 

demonstrated that covalent incorporation of α2-AP is the principal determinant of the 

antifibrinolytic function of FXIII, rather than fibrin α and γ chain cross-linking. The FXIII-

mediated cross-linking of α2-AP has a half-life of approximately 20 minutes, which 

demonstrates the incorporation of antifibrinolytic agents into new thrombi (Robinson et 

al., 2000). Inhibitors PAI-2 and TAFI are also cross-linked to the fibrin α chain. 

Plasminogen activator inhibitor-2 is cross-linked to N-terminal Lys148, Lys176, and 

Lys183, as well as Lys230 in the αC connectors, and Lys413 and Lys457 in the αC 

domain, leading to increased resistance to fibrinolysis (Ritchie et al., 2000, Ritchie et 

al., 2001). Cross-links are formed between unidentified fibrinogen lysine residues and 

the activation peptide of TAFI (Gln2, Gln5), as well as the mature enzyme (Gln292), 

and may facilitate activation of this inhibitor, enhance its antifibrinolytic activity or 

prevent it from further proteolytic degradation (Valnickova and Enghild, 1998). Thus, it 

is apparent that the fibrinogen Aα chain, in particular the αC region, has a major role in 

the regulation of fibrinolysis.  
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1.3.2. Cell surface interactions 

In addition to its role in binding plasma proteins, fibrinogen is also able to bind to 

integrins on cell surfaces, including platelets and endothelial cells. The fibrinogen Aα 

chain contains two Arg-Gly-Asp (RGD) recognition motifs for integrin binding – one in 

the N-terminus (residues 95-97) and one in the C-terminus (residues 572-574) – in 

addition to a γ chain C-terminal Ala-Gly-Asp-Val (AGDV) attachment site (Hawiger et 

al., 1989, Kloczewiak et al., 1984). Contrary to previous speculation, it has been shown 

that only the fibrinogen γ chain AGDV domain is needed for interaction with activated 

GPIIbIIIa on the platelet surface (Cheresh et al., 1989, Liu et al., 1997). The Aα chain 

RGD sequences, on the other hand, are important for endothelial cell binding. Initial 

interactions with endothelial cells are dependent of the C-terminal RGD motif as the 

N-terminal site is buried within the coiled-coil domain, and is therefore not readily 

available for interaction (Doolittle et al., 1978, Ugarova et al., 1993). Binding of the 

fibrinogen αC region to integrin αVβ3 on the surface of endothelial cells induces a 

conformational change in fibrinogen, leading to exposure of the second Aα95-97 RGD 

motif (Cheresh et al., 1989, Ugarova et al., 1993). This serves to anchor aggregating 

platelets and localise clot formation to the damaged sub-endothelium. 
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1.4. Post-translational modification of fibrinogen 

The complexity of the human proteome far outweighs that of the human genome. The 

International Human Genome Sequencing Consortium (2004) reported that there are 

only 20,000 to 25,000 human genes, yet there are over 1 million proteins (Jensen, 

2004). Initiation of transcription by alternative promoters, differential termination of 

transcription, alternative mRNA splicing, and genetic recombination are the four basic 

mechanisms that contribute to the diversity of the human transcriptome, producing 

multiple mRNA transcripts (approximately 100,000 in total) from single genes (Ayoubi 

and Van De Ven, 1996). This complexity is exponentially amplified by post-translational 

modification (PTM) of proteins. Post-translational modifications are chemical 

modifications that regulate functional aspects of the protein in question, such as 

activity, localisation, or interaction with other proteins, molecules or cells. This is a 

highly abundant and important phenomenon, and approximately 5 % of the human 

genome encodes enzymes that effectuate post translational modification (Rogers and 

Overall, 2013). Protein properties can be changed in a timely manner in response to 

specific circumstances or stimuli, and PTMs provide a significant expansion in 

combinatorial molecular states. In order of the number of reported cases in PubMed 

(Seo and Lee, 2004), common PTMs include phosphorylation, methylation, cysteine 

oxidation, glycosylation, acetylation, acylation, ubiquitination, deamidation, 

nitrosylation, SUMOylation and nitration. Proteolysis is also a form of post-translational 

modification involving cleavage of peptide bonds by proteases. Proteolysis has a 

variety of biological functions, including regulation of protein activity, cleavage of signal 

peptides and pro-proteins during biosynthesis, and protein degradation to remove 

abnormal or misfolded proteins, or to maintain physiological protein concentrations. 

There are numerous reports of fibrinogen PTMs in vivo that occur naturally, or in 

response to certain drugs or pathophysiological conditions. Naturally-occurring 

modifications may also be elevated by disease. Phosphorylation of fibrinogen is the 

focus of this thesis and is discussed in more detail in section 1.5. Importantly, post-

translational modification of fibrinogen leads to altered function and fibrin clot 

properties. Individual fibrinogen PTMs and their specific effects are described below 

and summarised in table 1. 
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Modification Site Functional effects References 

Naturally-occurring fibrinogen PTMs 

Phosphorylation Aα: S3, S345 
 Resistance to fibrinolysis, enhanced thrombin-

binding 

Blomback et al., 1966, Seydewitz et al., 1984, 

Martin et al., 1992, Maurer et al., 1998 

N-glycosylation Bβ: N364; γ: N52  Clot formation,  fibre thickness,  branching,  

porosity 

Blomback et al., 1972, Topfer-Peterson et al., 

1976, Langer et al., 1988, Zauner et al., 2012 O-glycosylation αC region (unknown sites) 

Sulphation γ’: Y418, Y422 Enhanced thrombin-binding Hortin, 1989, Meh et al., 2001, Lovely et al., 2003 

Deamidation Aα, Bβ, γ (unknown sites) Unknown Henschen-Edman, 2001 

Hydroxylation Bβ: P31 Unknown Henschen et al., 1991 

Glutamine cyclisation Bβ: Q1 Protection from aminopeptidases Blomback et al., 1966 

Proteolysis 

Aα: A1-D2 Unknown Blomback et al., 1966 

Aα: K583-M584 Unknown Rudchenko et al., 1996 

Aα: V610-R611 Unknown Rixon et al., 1983 

Aα: N269-P270, G297-G298, 

P309-G310 

 clot formation,  fibre density,  fibre thickness, 

 porosity,  clot stiffness 

Nakashima et al., 1992, Holm et al., 1985, 

Kaijzel., 2006 

Abnormal fibrinogen PTMs 

Glycation Lysine residues 
 fibre density,  clot stiffness,  resistance to 

fibrinolysis 

Alzahrani and Ajjan, 2010, Undas and Ariens, 

2011 
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Nitration Bβ:Y292, Y424 
 Clot formation,  fibrinolysis, altered clot 

structure,  clot stiffness. 
Vadseth et al., 2004, Parastatidis et al., 2008 

Methionine-oxidation Aα: M476; Bβ M367; γ: M78 
 Clot formation,  fibre density,  fibre thickness, 

 porosity,  clot stiffness 
Weigandt et al., 2012 

Metal-ion catalysed 

oxidation 
Aα, Bβ (unknown sites)  Clot formation,  fibre thickness Belisario et al., 1997, Shacter et al., 1995 

Acetylation 

Aα: K191, K208, K224, K429, 

K457, K539, K562; Bβ: K233; 

γ: K170, K273. 

 Clot formation and fibrinolysis,  fibre thickness, 

 porosity,  fibre thickness 

Svensson et al., 2012, Ajjan et al., 2009, Williams 

et al., 1998, He et al., 2001 

Homocysteinylation Cysteine and lysine residues 
 Fibre diameter,  branching,  permeability,  

clot stiffness,  resistance to fibrinolysis 

Lauricella et al., 2006, Undas et al., 2006, Rojas 

et al., 2009, Sauls et al., 2011 

 

 

Table 1. Post-translational modification of fibrinogen. Modifications are divided into naturally-occuring PTMs and abnormal PTMs that occur with drugs or 

disease. Modified sites on the Aα, Bβ and γ chains of fibrinogen are displayed (S: serine, N: asparagine, Y: tyrosine, P: proline, Q: glutamine, A: alanine, D: aspartic 

acid, V: valine, R: arginine, G: glycine, M: methionine, K: lysine) with their functional effects on fibrin clot formation. The table is adapted and updated from 

Henschen-Edman (2001). 
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1.4.1. Glycosylation 

Glycosylation involves covalent attachment of carbohydrate to a protein during 

biosynthesis via an N-glycosidic or O-glycosidic bond. The terminal monosaccharide of 

an N-glycosylating carbohydrate is usually sialic acid, which carries a negative charge 

and influences the glycoprotein’s structural and functional properties. Fibrinogen is 

N-glycosylated at asparagine (Asn)52 in the Bβ chain and Asn364 in the γ chain, both 

comprising biantennary digalactosylated mono- or di-sialylated structures (Blomback et 

al., 1972, Adamczyk et al., 2013, Topfer-Peterson et al., 1976). Increased glycosylation 

of fibrinogen has been reported in foetal fibrinogen and liver disease (Galanakis et al., 

1983, Martinez and Barsigian, 1987). The use of deglycosylated fibrinogen has 

indicated that glycosylation hinders lateral aggregation and clot formation, and 

produces clots with reduced fibre thickness, increased branching and reduced porosity 

(Langer et al., 1988). Although the Aα chain is not N-glycosylated, mass spectrometric-

based approaches have recently revealed O-glycosylation of the αC region (Zauner et 

al., 2012, Nagel and Meyer, 2014). Nagel and Meyer identified O-glycosylation of six 

distinct Aα chain peptides, corresponding to residues 262-271, 301-305, 328-337, 

505-512, 529-554 and 557-580. The exact residues and their functional implications 

remain to be characterised. 

1.4.2. Sulphation 

Tyrosine-O-sulphation is catalysed by type 1 and type 2 tyrosylprotein 

sulphotransferases in the trans-Golgi compartment during protein biosynthesis 

(Baeuerle and Huttner, 1987, Blomback et al., 1972). This modification was originally 

discovered in FpB of bovine fibrinogen (Bettelheim, 1954), and has since also been 

detected in fibrinogen γ’ at Tyr418 and Tyr 422 (Hortin, 1989, Meh et al., 2001). The 

fibrinogen γ chain contains a low affinity thrombin-binding site in the E domain, while γ’ 

also has a high affinity thrombin-binding site within its C-terminal extension (γ’408-427) 

(Meh et al., 1996). Tyrosine-sulphated residues in fibrinogen γ’ reside within this 

binding site and are important for optimal thrombin binding, with doubly sulphated γ’ 

chains exhibiting 4 to 8-fold greater affinity (Lovely et al., 2003, Meh et al., 2001).  

1.4.3. Deamidation, hydroxylation and cyclisation 

Deamidation, proline hydroxylation and glutamine cyclisation have been reported in 

fibrinogen but are not well understood. Partial deamidation is present on all three 

fibrinogen chains at asparagine and glutamine residues, but the exact position and 
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function of this hydrolysis reaction are yet to be characterised (Henschen-Edman, 

2001). Similarly, an N-terminal residue of the fibrinogen Bβ chain – Pro31 – is 

hydroxylated with unknown function (Henschen et al., 1991). Blomback et al. (1966) 

have also identified cyclisation of Bβ Gln1 to pyroglutamic acid, which may protect 

fibrinogen from degradation by aminopeptidases. 

1.4.4. Proteolysis 

The fibrinogen Aα chain cDNA sequence predicts an additional 15 amino acids at the 

C-terminal end of the polypeptide chain (Aα611-625), which does not appear in plasma 

fibrinogen, suggesting that fibrinogen may be first exposed to proteolysis during 

biosynthesis (Rixon et al., 1983). This peptide is likely to be removed by cellular 

proprotein convertases, given that a prediction score for proprotein cleavage at position 

Arg611 (0.451) falls just short of the threshold (>0.5) using ProP 1.0 Server (Duckert et 

al., 2004), which only has a 62 % sensitivity for general (non-furin) proprotein 

convertase-specific networks. By introducing an Arg611Gly mutation into the fibrinogen 

Aα chain, Farrell et al. (1993) found that fibrinogen could be assembled and secreted in 

the presence or absence of this peptide, and could be clotted upon activation by 

thrombin in either case. Thus, cleavage of this peptide is not required for biological 

activity, and its function remains unclear. 

Post-synthesis, the fibrinogen Aα chain is highly susceptible to proteolytic degradation 

in plasma. This predominantly affects the αC region, however the first residue of the 

N-terminus is also cleaved by an amino-peptidase in 10 % of Aα chains (Blomback et 

al., 1966). Blomback et al. demonstrated that this cleavage is protected by 

phosphorylation of FpA at Ser3. Cleavage of C-terminal Lys583 by plasmin reportedly 

occurs in 25 % of fibrinogen molecules, but with unknown function (Rudchenko et al., 

1996, Henschen-Edman, 2001). Proteolysis of the αC region in plasma also generates 

a 305 kDa low molecular weight (LMW) fibrinogen, with one intact and one degraded 

Aα chain, and a 270 kDa LMW’ fibrinogen with two degraded Aα chains (Holm et al., 

1985). Approximately 70 % of circulating fibrinogen molecules are the normal high 

molecular weight (HMW) fibrinogen (340kDa), while LMW and LMW’ fibrinogens 

represent just 25 % and 5 % of the plasma pool respectively. Generation of LMW and 

LMW’ fibrinogen occurs via cleavage of the Aα chain at Asn269, Gly297 and proline 

(Pro)309 (Nakashima et al., 1992). Sites of fibrinogen cleavage have been determined 

by N-terminal sequence analyses using a variety of proteases (Blomback et al., 1966, 

Nakashima et al., 1992, Henschen-Edman, 2001). However, most enzymes (thrombin, 

snake venom enzymes, leukocytes elastase, trypsin) attack from the N-terminal end of 
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fibrinogen, while those that target the C-terminal end (plasmin, leukocyte elastase, 

matrix metalloproteinases) cleave the Aα chain before Asn269 – the earliest cleavage 

site present in plasma. The molecular weights of the Aα chain fragments also differ 

from those of LMW and LMW’ fibrinogen. The relevant protease therefore remains a 

mystery. 

Clottability is impaired in proteolysed fibrinogen; Holm et al. (1985) reported clottability 

values of 98 % for HMW fibrinogen, 92 % for LMW fibrinogen and 80 % for LMW’ 

fibrinogen. The clotting time of LMW (20 minutes) and LMW’ fibrinogens (25 minutes) 

were also delayed when compared to HMW fibrinogen (14 minutes). Scanning electron 

microscopy of fibrin clots formed from HMW and LMW fibrinogen revealed significant 

differences in clot structure (Kaijzel et al., 2006). Clots composed of LMW fibrin 

exhibited increased fibre density, reduced fibre thickness, reduced porosity and 

increased clot stiffness. These findings demonstrate the importance of the αC region in 

fibrin polymerisation and clot morphology, and highlight the need for tight regulation of 

Aα chain proteolysis in plasma.  

The relative proportions of the three fibrinogens are altered in acute phase conditions. 

Reganon et al. (1993) reported an increase in the circulating fraction of HMW 

fibrinogen from 70 % to 95 % in the plasma of AMI patients, and proposed that this is 

caused by the increased synthesis of fibrinogen in acute phase conditions, rather than 

reduced proteolytic activity. The rise in HMW fibrinogen coincided with elevated 

phosphorylation of Ser3 in FpA, and resulted in faster coagulation. Reganon et al. have 

therefore postulated that HMW fibrinogen and phosphorylation of FpA are risk factors 

for thrombosis. In contrast, the proportion of circulating LMW fibrinogen is significantly 

increased in individuals with diabetes (Lipinski and Lipinska, 2000). Hence, changes in 

abundance of HMW, LMW and LMW’ fibrinogens may contribute to pathophysiological 

processes.   

1.4.5. Glycation 

Glycation of proteins involves a non-enzymatic reaction between the -amino group of 

a lysine residue and the aldehyde group of a sugar molecule, such as glucose or 

fructose. Complex rearrangements, as well as dehydration, β-elimination and 

condensation reactions lead to formation of covalently cross-linked advanced glycation 

end products (AGEs). Formation of AGEs has been implicated in several pathologies, 

including Alzheimer’s disease, renal disease, and vascular damage in atherosclerosis 

and diabetes (Bierhaus et al., 1998). Protein glycation is particularly prevalent in 

diabetes due to hyperglycaemia; glycation of fibrinogen is significantly elevated in the 
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absence of glycaemic control (Pieters et al., 2007, Hammer et al., 1989). Glycated 

fibrinogen produces clots that are denser, stiffer and more resistant to fibrinolysis, 

possibly due to modification of lysines that would normally be targeted by plasmin 

(Undas and Ariens, 2011, Alzahrani and Ajjan, 2010). Fibrinogen can also be modified 

by glycoaldehyde – a by-product of glycation – leading to delayed polymerisation, 

thinner fibrin fibres and increased resistance to fibrinolysis (Andrades et al., 2009). 

1.4.6. Nitration 

Vadseth et al. (2004) have reported increased nitration of fibrinogen in patients with 

coronary artery disease. They demonstrated that nitrated fibrinogen exhibits faster clot 

formation and FXIII cross-link incorporation, suggesting a pro-thrombotic effect of this 

PTM. Clots formed from fibrinogen exposed to nitrating oxidants were comprised of 

thinner fibres with higher porosity, and could be more easily deformed by mechanical 

stress. Nitration of fibrinogen did not influence the rate of fibrinolysis, or platelet 

aggregation and binding. Parastatidis et al. (2008) have also highlighted fibrinogen Bβ 

chain tyrosine nitration as a pro-thrombotic risk factor. Using high resolution liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) they identified nitration of 

Tyr292 and Tyr424 in the C-terminus of the Bβ chain in vivo. This modification resulted 

in four functional consequences: i) faster clot formation, ii) altered clot structure, with 

apparent ‘fibrin clusters’ but no effect on fibre diameter, iii) increased clot stiffness, and 

iv) slower fibrinolysis. Parastatidis et al. have suggested that tyrosine nitration may 

facilitate EB:DB interactions, accelerating lateral aggregation. Overall these studies 

demonstrate a link between nitrative stress and thrombosis, mediated to some extent 

by fibrinogen. 

1.4.7. Oxidation 

Reactive oxygen species can lead to formation of dityrosine, methionine sulphoxides 

and carbonyl groups (aldehydes and ketones) on amino acid side chains. Fibrinogen is 

highly susceptible to oxidative modification (Shacter et al., 1994), and may be exposed 

to reactive oxygen species in vivo during the oxidative stress associated with ischemia-

reperfusion injury and inflammation (Cohen, 1989, Cao et al., 1988, Fantone and Ward, 

1982, Weitzman and Gordon, 1990). The functional effects of fibrinogen oxidation have 

been studied in vitro using metal-ion catalysed oxidation and hypochlorite (Weigandt et 

al., 2012, Belisario et al., 1997, Shacter et al., 1995). Metal-ion catalysed oxidation 

induced dityrosine and carbonyl formation in fibrinogen, leading to delayed fibrin 

polymerisation and thinner fibres. Incubation of fibrinogen with hypochlorite resulted in 
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oxidation of the following methionine (Met) residues: AαMet476, BβMet367 and 

γMet78, which impaired clot formation, increased fibre density, reduced fibre thickness, 

reduced porosity and reduced clot stiffness.  

1.4.8. Acetylation 

Acetylation of fibrinogen is relevant to the treatment of diabetic patients with aspirin 

(acetylsalicylic acid). Fibrinogen incubated with aspirin is acetylated at multiple lysine 

residues on its Aα chain, plus two residues on its Bβ chain, and one on its γ chain 

(Svensson et al., 2012). Interestingly, some of the identified acetylated residues in the 

Aα chain – Lys208, Lys224, Lys429 and Lys539 – are involved in FXIII-mediated 

cross-linking of fibrin chains, providing a potential mechanistic explanation for 

enhanced fibrinolysis in the presence of aspirin. In addition, clot formation and lysis 

rates are increased in the presence of aspirin, while the developed clots have a looser 

structure with increased fibre thickness, increased porosity and reduced rigidity (Ajjan 

et al., 2009, Williams et al., 1998, He et al., 2001). Hence, acetylation of fibrinogen has 

significant effects on clotting dynamics as well as structural properties. 

1.4.9. Homocysteinylation 

Homocysteinylation of proteins involves acylation of the -amino group of lysine 

residues by a metabolite of homocysteine – homocysteine thiolactone, or oxidation of 

thiol groups in cysteine residues by free homocysteine. Homocysteine is present in 

plasma due to a cellular export mechanism (Christensen et al., 1991). Disruption of this 

mechanism leads to hyperhomocysteinemia, which is associated with vascular and 

thrombotic diseases (D'Angelo and Selhub, 1997). Homocysteinylation of fibrinogen 

occurs with elevated plasma homocysteine levels and significantly affects clot 

properties, leading to a more compact structure with increased fibre diameter and 

branching, reduced permeability, increased stiffness and increased resistance to 

fibrinolysis (Lauricella et al., 2006, Undas et al., 2006, Rojas et al., 2009, Sauls et al., 

2011). Hence, homocysteinylated fibrinogen is a risk factor for thrombosis. 
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1.5. Fibrinogen phosphorylation 

Phosphorylation is a fundamental form of post-translational modification which can 

activate or deactivate a protein, label it for destruction, facilitate its subcellular 

trafficking or affect its interactions with other proteins. The mechanism of 

phosphorylation involves transfer of the terminal γ-phosphate of an adenosine 

triphosphate (ATP) molecule to a serine, threonine or tyrosine residue in a protein. This 

reaction is catalysed by serine/threonine or tyrosine protein kinases. Kinases represent 

the largest enzyme family in the human genome, comprising approximately 2% with 

over 2,000 genes (Manning et al., 2002). Roughly 30% of all human proteins are 

phosphorylated by one or more of over 500 known protein kinases, which may 

represent only a quarter of the actual number (Hunter, 1994). Different kinases exhibit 

substrate specificity via the sequences around their active site that target the enzyme 

to a particular consensus motif in the protein, usually several amino acids around the 

site of phosphorylation (Ubersax and Ferrell, 2007). However, meeting the sequence 

requirements does not guarantee phosphorylation of a protein, nor do the 

phosphorylation sites always conform to the consensus motif. An additional specificity 

determinant is the location of the kinase. For example, they may reside along the 

secretory pathway for phosphorylation of secretory proteins during biosynthesis. The 

localisation of kinases is dictated by targeting subunits within the kinase, which direct 

the catalytic subunit to the target locus – an organelle, membrane, or cytoplasm – in 

proximity to its substrate or away from inhibitors (Hubbard and Cohen, 1993).  

Phosphorylation is a reversible process and phosphorylated proteins are also 

subjected to dephosphorylation by phosphatases, which catalyse the removal of 

phosphate by hydrolysis. This is important to regulate the degree of phosphorylation, in 

order to limit its function to the appropriate time and conditions. Phosphatases also 

have an important role in proofreading the activity of kinases, whereby a requirement 

for more than one phosphorylation site allows time for error correction by 

phosphatases, before the second (or nth) phosphorylation site induces function (Swain 

and Siggia, 2002). The process of phosphorylation is very complex and, in the past, 

has largely been studied using in vitro assays. This has been less than ideal as kinases 

exhibit reduced substrate specificity in vitro. More recent developments have enabled 

analysis of in vivo phosphorylation sites by mass spectrometry (Mann et al., 2002). 

This will lead to further characterisation of this highly abundant modification and its 

functional significance in individual proteins. 
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1.5.1. Ser3 and Ser345 phosphorylation 

In 1962, Blomback et al. reported the presence of phosphate in a peptide cleaved from 

fibrinogen by thrombin and tentatively identified this as a phosphoserine at residue 3. 

Further investigations revealed that human and bovine fibrinogen have similar 

phosphate contents of 9.4 µg/100 mg and 14.5 µg/100 mg respectively (Blomback et 

al., 1963). However, fibrinogen from haemophiliacs with FVIII- or FIX-deficiency had 

slightly lower phosphate contents (7.8 µg/100 mg and 8.0 µg/100 mg respectively). 

During clotting assays, only 25-40 % of fibrinogen-bound phosphate was lost after 

thrombin digestion, and it was suggested that only 30-40 % of FpA was released. 

Incubation of fibrinogen with calf intestinal alkaline phosphatase achieved a 70-80 % 

removal of phosphate, without any major change in size or shape. Dephosphorylation 

prolonged the clotting time of human fibrinogen, but had no effect on bovine fibrinogen. 

Blomback et al. (1966) later reported that approximately 25 % of cleaved FpA from 

human plasma fibrinogen contained phosphate. Furthermore, only trace amounts of 

N-terminal alanine were detected in the clot, excluding the possibility of incomplete 

cleavage of FpA, as previously speculated. These findings pointed towards the 

presence of additional phosphorylated residues in fibrinogen.  

The phosphorylation of FpA was further characterised using recombinant fibrinogen 

expressed in CHO cells (Binnie et al., 1993). Gorkun et al. (1997) have demonstrated 

that recombinant fibrinogen expressed in this way typifies plasma fibrinogen in terms of 

fibrinopeptide release, polymerisation and FXIII cross-linking. Upon separation of 

thrombin digestion products by high performance liquid chromatography (HPLC), 

Binnie et al. identified two separate peaks corresponding to phosphorylated and non-

phosphorylated FpA, and deduced from this a 22 % degree of phosphorylation. As 

recombinant fibrinogen was used, this finding indicated that partial phosphorylation of 

FpA is regulated at the synthesis stage rather than in circulation. With regards to its 

function, Hanna et al. (1984) reported accelerated cleavage of phosphorylated FpA due 

to enhanced binding of thrombin. Subsequent work by Maurer et al. (1998) supported 

this result, with phosphorylation of Ser3 causing a 65 % enhancement of substrate 

specificity for thrombin, thereby aiding enzyme-substrate complex formation and 

facilitating FpA cleavage. They proposed that the phosphate serves as an anionic 

linker, binding basic residues in thrombin to promote binding of FpA residues 1-5. 

In 1984, Seydewitz et al. determined the phosphate content of adult and foetal human 

fibrinogen by alkaline hydrolysis, analysing each polypeptide individually. They found a 

ratio of 0.9 mol phosphate/mol fibrinogen for adult fibrinogen, and an elevated 

proportion of 1.4 mol phosphate/mol fibrinogen for foetal fibrinogen. In addition, the 
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phosphate content of fibrinogen was exclusively on the Aα chain, which supports 

previous findings of a high degree of Aα chain phosphorylation in dog, pig and sheep 

fibrinogen (Kudryk et al., 1982, Cierniewski and Krajewski, 1974). For both adult and 

foetal fibrinogen, approximately 50 % of the phosphate was lost after thrombin 

digestion, suggesting that a second phosphorylation site in the Aα chain is modified to 

the same extent. This site was identified by Seydewitz et al. as Ser345, located in the 

αC connectors. More recently, a novel approach using liquid chromatography-

electrospray ionisation-tandem mass spectrometry has clearly confirmed exclusive 

phosphorylation of human fibrinogen Aα chain at Ser3 and Ser345 in vivo (Wind et al., 

2003). This was again demonstrated, using the same approach, by Nagel and Meyer 

(2014).  

Given that there are two phosphorylation sites per Aα chain, and thus four per 

fibrinogen molecule, the degree of phosphorylation reported by Seydewitz et al. (1984) 

(0.9 mol phosphate/mol fibrinogen) is equivalent to 22.5 %, the same as that of 

recombinant fibrinogen (Binnie et al., 1993). Whether all 22.5 % of molecules were fully 

phosphorylated, or represented a mixture of one, two or three phosphorylation sites, 

was not determined. Recently, Nagel and Meyer (2014) have reported a 1:1:1 ratio of 

non-, mono- and di-phosphorylated fibrinogen Aα chains, indicating that approximately 

two thirds of fibrinogen molecules (55-75 %) contain either one or two phosphate 

groups.  

The function of the Ser345 phosphorylation site has not yet been investigated. Figure 8 

shows Aα chain residues 1-220 (N-terminus) and 221-610 (C-terminus), with the Ser3 

and Ser345 phosphorylation sites in relation to various functional regions, as reviewed 

in section 1.3. The illustration highlights potential functions of the two phosphorylation 

sites, particularly Ser345, in the FXIII-mediated cross-linking of fibrin chains and 

fibrinolytic proteins to the αC region, interaction with FXIII-A2B2 and other proteins or 

cells, and exposure or protection of plasmin cleavage sites. Several in vitro studies 

have investigated the effect of fibrinogen phosphorylation on fibrin clot formation and 

resistance to fibrinolysis, as discussed below. 
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1.5.2. In vitro phosphorylation of fibrinogen 

A variety of protein kinases have been demonstrated to phosphorylate the fibrinogen 

Aα chain in vitro, including protein kinases (PK) A and C, and casein kinases (CK) 1 

and 2 (Engstrom et al., 1980, Papanikolaou et al., 1982, Guasch et al., 1986, Itarte et 

al., 1983), causing alteration of clot properties. Phosphorylation with CK2 augments 

clot turbidity and significantly enhances the rate of whole blood coagulation in vitro, an 

effect which is synergistic with polycationic compounds thought to increase CK2 activity 

(Heldin, 1987, Suk et al., 1997). Conversely, phosphorylation with PKC causes 

reversible reductions in fibre thickness and clot turbidity; this is coupled with an 

irreversible inhibition of plasmin-mediated fibrinolysis, as demonstrated with alkaline 

phosphatase, which removed approximately 80% of fibrinogen phosphate content 

(Forsberg, 1989, Forsberg and Martin, 1990, Heldin et al., 1987b). In 1991, Martin et al. 

compared the effects of fibrinogen phosphorylation by three kinases: PKA, CK1 and 

CK2. Phosphorylation with PKA resulted in thinner fibres, while phosphorylation with 

Figure 8. The location of fibrinogen Aα chain phosphorylation sites. Fibrinogen Aα chain 

residues are shown in blue with the Ser3 and Ser345 phosphorylation sites (P). A) N-terminal 

residues 1-220; B) C-terminal residues 221-610 (αC region). Protein binding regions (coloured 

bars), cross-linking (XL) donor and acceptor sites (black bars), and RGD sequences (green) are 

indicated at the appropriate locations. Thrombin cleavage of FpA (light blue) at the Arg16-Gly17 

bond is also indicated with an arrow. Upward arrows represent plasmin cleavage sites (▲), or 

sites of proteolytic degradation in circulation (▲) generating LMW and LMW’ fibrinogen. 

Additional proteins that bind the αC region at undefined sites are not displayed. The figure 

highlights the functional significance of the fibrinogen Aα chain, including potential functions of 

the phosphorylation sites.   

A 

B 
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the casein kinases increased fibre thickness, in support of previous findings. In each 

case, a rise in fibre thickness was observed after dephosphorylation with alkaline 

phosphatase and the rate of plasmin degradation was slower than for control 

fibrinogens, which persisted after phosphate removal. It was proposed that 

phosphorylation may serve to protect fibrinogen from plasmin digestion in circulation, 

with the non-reversible nature of this regulatory mechanism perhaps explicable by a 

phosphorylation-induced conformational change, impeding interaction between 

fibrinogen and plasmin(ogen). Indeed, it was later confirmed that both PKC- and CK2-

phosphorylated fibrinogens undergo a conformational change to their secondary 

structure, while phosphorylation with PKA or PKC caused changes in the tertiary 

structure of fibrinogen around tryptophan residues. These conformational changes  

resulted in a decreased rate of proteolysis by plasmin, which was again shown to be 

irreversible (Martin and Bjork, 1990).  

Subsequent characterisation of in vitro phospho-acceptor residues in the fibrinogen Aα 

chain following incubation with PKC or CK2 has identified multiple sites, predominantly 

in the αC domain, strengthening the notion that the C-terminal peptide cleavage by 

plasmin is hindered after phosphorylation by these kinases. Protein kinase C was 

found to phosphorylate Ser557, Ser558, Ser559 and Ser599, as well as additional sites 

in the central portion of the polypeptide chain near to, and not excluding, Ser345 

(Heldin and Humble, 1987). On the other hand, CK2 phosphorylated Ser523 and 

Ser590, plus other undefined serine and threonine residues between amino acids 259 

and 268 (Heldin, 1987). Heldin and colleagues did not demonstrate phosphorylation of 

Ser3 or Ser345 with these particular enzymes; however, this does not rule out a 

potential role for PKC or CK2 in the cellular phosphorylation of fibrinogen, since 

kinases are known to exhibit altered substrate specificity in vitro (Olsen et al., 2006). It 

is not yet clear which particular kinase phosphorylates fibrinogen in vivo. A summary of 

identified fibrinogen phosphorylation sites and their effects on clot formation are 

summarised in table 2.  

1.5.3. In vivo phosphorylation of fibrinogen 

Despite the lower specificity, it is plausible that the additional sites phosphorylated in 

vitro by CK2 or PKC do exist under physiological circumstances, being modified 

extracellularly in circulation when several protein kinases and pools of ATP are 

released from platelet granules during platelet activation. The earliest evidence for 

phosphorylation of fibrinogen by platelet kinases came from Krust et al. (1983), who 

found that treatment of patients with interferon, which increases platelet kinase activity, 
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leads to phosphorylation of a 70-72 kDa protein, identified as the fibrinogen Aα chain. 

Similarly, a low platelet count in patients with Argentine haemorrhagic fever coincided 

with a reduction in the level of fibrinogen phosphorylation (Lerer et al., 1991). In 

contrast, an elevated degree of fibrinogen phosphorylation has been reported in 

systemic lupus erythematous (SLE), and was associated with platelet activation 

(Ekdahl et al., 1997). Most recently, Zahedi et al. (2008) have determined the 

phosphoproteome of resting human platelets by enriching phosphopeptides and 

analysing phosphorylation sites by nano-liquid chromatography-tandem mass 

spectrometry or precursor ion scanning. They identified multiple phosphorylated 

residues on platelet fibrinogen: Ser345, Thr393, Ser505, Ser527, Ser530 and Ser590. 

Despite these findings, phosphorylation of recombinant fibrinogen, and the presence of 

phosphorylated fibrinogen in circulation under basal, non-stimulated conditions, implies 

that phosphorylation of Ser3 and Ser345 occurs via a different mechanism, most likely 

during biosynthesis (Binnie et al., 1993, Blomback et al., 1962). The reason for 

additional phosphorylation of fibrinogen by activated platelets is unknown; however, it 

is plausible that different protein kinases with distinct spatial and temporal dispositions 

may regulate multiple functions of fibrinogen as appropriate for the given milieu. Martin 

et al. (1992) have demonstrated that in vivo fibrinogen phosphorylation, elevated in 

acute phase conditions, produces clots with increased fibre thickness and an 

irreversible 50 % reduction in susceptibility to plasmin digestion. This was not 

associated with platelet activation and likely represents an increase in Ser3 and Ser345 

phosphorylation, as other studies have reported elevated phosphorylation of FpA in 

acute phase conditions (refer to section 1.5.5).  

 

 

 



43 

Kinase Phosphorylation sites Functional effects References 

In vitro phosphorylation 

PKA Unknown  Fibre thickness,  resistance to fibrinolysis Martin et al. 1991 

PKC S557, S558, S559, S599, 

additional sites in the central zone 

 Fibre thickness,  resistance to fibrinolysis, 

conformational change 

Forsberg, 1989, Forsberg and Martin, 1990, 

Heldin et al. 1987, Martin et al., 1991, Martin and 

Bjork, 1990, Heldin and Humble, 1987 

CK1 Unknown  Fibre thickness,  resistance to fibrinolysis Martin et al., 1991, Itarte et al., 1983 

CK2 S523, S590, additional residues 

between 259 and 268 

 Fibre thickness,  resistance to fibrinolysis, 

conformational change 

Guasch et al., 1986, Heldin, 1987, Suk et al., 

1997, Martin et al., 1991, Martin and Bjork, 1990 

In vivo phosphorylation 

Unknown (normal 

conditions) 

S3, S345 S3: enhanced thrombin-binding; S345: unknown Blomback et al., 1966, Seydewitz et al., 1984, 

Maurer et al., 1998 

Unknown (acute 

phase conditions) 

S3 (other sites not investigated)  Fibre thickness,  resistance to fibrinolysis Seydewitz and Witt 1985, Reganon et al. 1993, 

Martin et al.1992 

 

 

Table 2. In vitro and in vivo fibrinogen phosphorylation. Kinases that have been demonstrated to phosphorylate fibrinogen in vitro are shown with identified 

phosphorylation sites (S: serine) and their functional effects on fibrinogen structure and fibrin clot formation. The sites and effects of in vivo fibrinogen 

phosphorylation in normal and acute phase conditions are also shown for comparison, but the kinases are unknown. 
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1.5.4. Potential fibrinogen kinases 

As mentioned, the specificity of kinases for their substrates is largely dependent on a 

consensus sequence recognition motif. Consensus motifs for the kinases that have 

been demonstrated to phosphorylate fibrinogen in vitro are as follows: PKA, 

R-R-X-S/T-Y, where Y tends to be a hydrophobic amino acid; PKC, R-X-X-S/T-X-R-X; 

CK1, pS-X-X-S/T; CK2, S/T-D/E-X-E/D/pS (Ubersax and Ferrell, 2007, Pearson and 

Kemp, 1991). The Ser3 and Ser345 fibrinogen phosphorylation sites contain sequence 

homology conforming to S-X-E. Based on this homology, Seydewitz et al. (1984) 

postulated that CK2 may phosphorylate fibrinogen in vivo, as the sequence is similar to 

the requirements of CK2. Martin et al. (1992) also hypothesised that CK2 may be the in 

vivo fibrinogen kinase, as fibrinogen with elevated phosphorylation, from patients 

undergoing hip replacement surgery, had similar effects on clot formation to those 

observed by in vitro phosphorylation of fibrinogen by CK2 (Heldin, 1987, Martin et al., 

1991). Another possibility that has not yet been explored is the Golgi casein kinase 

(G-CK).  Despite their names, it is now known that CK1 and CK2 do not phosphorylate 

casein in vivo, and that G-CK is the true casein kinase. The G-CK phosphorylates 

secretory proteins at S-X-E consensus motifs, distinct from that of CK2 and exactly 

matching the fibrinogen phosphorylation sites (Lasa-Benito et al., 1996). Recently, 

Tagliabracci et al. (2012) identified the G-CK as a family of secreted protein kinases: 

Fam20A, Fam20B, Fam20C, Fam198A and Fam198B. They discovered that Fam20C 

phosphorylates a variety of secretory proteins involved in biomineralisation processes. 

Interestingly, it has also been suggested that the G-CK has a prominent role in 

generating the human plasma phosphoproteome (Salvi et al., 2010). Plasma 

phosphoproteins represent a distinct set of substrates from that of CK2, and the 

majority of phosphorylation sites satisfy the S-X-E consensus motif. In further support 

of this possibility, FpA has been phosphorylated in vitro by a casein kinase isolated 

from the Golgi apparatus of bovine mammary glands (Szymanski and Farrell, 1982). It 

is therefore likely that the G-CK may phosphorylate fibrinogen in vivo. 

1.5.5. Elevated fibrinogen phosphorylation 

Elevated levels of fibrinogen phosphorylation have been observed in various 

pathological states, suggesting a possible link to the development of thrombosis. 

Firstly, Ogata et al. (2006) reported up-regulated phosphorylation of the fibrinogen Aα 

chain in ovarian cancer patients. This is interesting as there is a well-known association 

between cancer and VTE, and a high VTE incidence has been reported in ovarian 

cancer patients (Tateo et al., 2005). Secondly, SLE leads to a substantial increase in 
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fibrinogen (Ekdahl et al., 1997). This disease is also associated with arterial or venous 

thrombosis, occurring in more than 10 % of SLE patients, possibly exceeding 50 % in 

high risk patients, and causing approximately one quarter of deaths (Love and Santoro, 

1990, Cervera et al., 2003). Thirdly, patients with VTE itself have exhibited an increase 

in fibrinogen phosphorylation (Leeksma et al., 1986, Seydewitz et al., 1987). Seydewitz 

et al. reported a rise from control levels (20-25 %) to 35 %, followed by a further 

increase to 50-70 % after two days of receiving thrombolytic therapy. Finally, several 

studies have reported an association between acute phase conditions and an elevated 

degree of fibrinogen phosphorylation. Seydewitz and Witt (1985) observed increased 

phosphorylation of FpA in patients following hip replacement surgery. The degree of 

phosphorylation increased significantly 24 hours post-operation, and declined to normal 

levels after 1 week. This was supported by a subsequent investigation, whereby the 

phosphate content of fibrinogen doubled 24 hours after hip replacement surgery 

(Martin et al., 1992). As mentioned previously (section 1.5.3), Martin et al. 

characterised the effects of this increase in phosphorylation on clot formation, and 

found a direct relationship between phosphate content and fibre thickness. 

Susceptibility to plasmin digestion was also compromised, however this remained the 

case after 8 days, by which time the phosphate content had returned to normal. This 

suggests that increased phosphorylation of fibrinogen in acute phase conditions has an 

irreversible effect on fibrinolysis, supporting findings from in vitro phosphorylation of 

fibrinogen (section 1.5.2).  

Increased fibrinogen phosphorylation in AMI patients undergoing thrombolytic therapy 

has also been reported. Patients exhibited a three-fold increase in the degree of 

fibrinogen phosphorylation, approaching the theoretical maximum of 4 mol 

phosphate/mol fibrinogen (Haglund et al. 2000). In addition, Reganon et al. (1993) 

found an initial 30% increase in FpA phosphorylation prior to treatment, rising to 65% 

after 5 hours of streptokinase therapy; this was accompanied by faster FpA release 

and clotting of the newly synthesised fibrinogen. Elevated phosphorylation of fibrinogen 

may therefore be a risk factor for thrombosis. They also found that the fraction of HMW 

fibrinogen in AMI patients receiving thrombolytic treatment was elevated beyond 

physiological levels, representing approximately 95% of total fibrinogen. Thrombolytic 

therapy depletes circulating fibrinogen and triggers synthesis of new HMW molecules, 

which have higher coagulability than other fibrinogen species (Vila et al. 1990). As 

fibrinogen is secreted in its phosphorylated form, it has been hypothesised that the 

increase in fibrinogen turnover rate and HMW fibrinogen may account for the 

concomitant rise in phosphorylation with thrombolytic therapy (Leeksma et al., 1986). 

However, given that fibrinogen is only partially phosphorylated when secreted (22 %) 
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(Binnie et al., 1993), and only one phosphorylation site (Ser345) is lost in LMW and 

LMW’ fibrinogen, it is unlikely that this would cause a such a significant elevation. It 

remains to be determined whether the balance of kinase and phosphatase activity is 

altered in acute phase conditions. Importantly, these studies collectively highlight a role 

of fibrinogen phosphorylation in haemostasis, with pro-thrombotic effects. Elevated 

fibrinogen phosphorylation may promote coagulation and present a risk factor for 

reocclusion in AMI patients. 

1.5.5.1. Ser3 phosphorylation and VTE 

In a recent study testing for gene associations with blood metabolites, loci from three 

functionally-linked genes were found to be associated with phosphorylation of 

fibrinogen Aα chain Ser3: i) the ABO gene encoding ABO blood group, ii) the FUT2 

gene encoding fucosyltransferase 2, also involved in determining blood group and iii) 

the ALPL gene encoding a tissue non-specific alkaline phosphatase (Suhre et al., 

2011). Both the ALPL and ABO loci are associated with circulating levels of alkaline 

phosphatase (Yuan et al., 2008), suggesting their influence on the degree of fibrinogen 

phosphorylation may be mediated by this enzyme. Notably, the ABO locus is also 

associated with VTE risk, whereby non-O blood group individuals have a higher risk 

than O blood group carriers (Tregouet et al., 2009). This highlights a potential role of 

fibrinogen phosphorylation in the underlying pathology of VTE. Hence, Suhre et al. 

have provided the first evidence of a genetic link between fibrinogen phosphorylation 

and thrombosis. 

To summarise, phosphorylation of fibrinogen occurs at Aα chain Ser3 and Ser345 and 

is elevated in acute phase conditions and thrombosis, suggesting an important 

contribution to haemostatic processes. However, the mechanism and functional effects 

of this modification are yet to be determined. Fibrinogen can be phosphorylated by 

several kinases in vitro with conflicting effects on clot structure, but the in vivo 

fibrinogen kinase has not been identified. With regards to function, existing research 

has focused on Ser3 phosphorylation in relation to enhanced thrombin binding and FpA 

cleavage but little is known about the role of Ser345 phosphorylation. As Ser345 is 

positioned between FXIII cross-linking acceptor sites and close to the FXIII-A2B2 

binding region, this site might be implicated in the regulation of α chain crosslinking. It 

may also coordinate fibrinolysis as several fibrinolytic proteins interact with the αC 

region of fibrinogen. Advancing understanding of the regulation of fibrinogen 

phosphorylation and its effects on clot formation and fibrinolysis may prove valuable for 

the management of thrombosis. 
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1.6. Aims and hypothesis 

1.6.1. Hypothesis 

Elevated phosphorylation of fibrinogen, as occurs in acute phase conditions, is directly 

responsible for inducing pro-thrombotic changes in the fibrin network, and is mediated 

by increased activity of a hepatocellular kinase. 

1.6.2. Aims 

This project aims to provide an in-depth investigation into the cellular mechanism and 

functional role of in vivo fibrinogen phosphorylation at Aα chain Ser3 and Ser345. The 

function of the individual phosphorylation sites will be investigated by expression of 

recombinant wild-type (WT) fibrinogen and variant fibrinogens with mutations at Ser3 

and/or Ser345 to prevent phosphorylation. This will be achieved using an established 

expression system in Chinese hamster ovary (CHO) cells (Binnie et al., 1993). 

Preliminary analysis by matrix assisted laser desorption ionisation (MALDI)-time of 

flight (TOF)/TOF mass spectrometry has confirmed that CHO cells are capable of 

phosphorylating WT fibrinogen at Ser3 and Ser345 (Appendix 3). Purified recombinant 

fibrinogens will be compared in a variety of functional studies designed to investigate 

the impact of each phosphorylation site on fibrin clot properties, including structure, 

polymerisation and lysis rates, and interactions with other haemostatic plasma 

components, such as FXIII, plasmin(ogen) and α2-AP. To characterise the mechanism 

of fibrinogen phosphorylation, methods will be developed to visualise and quantify 

phosphorylated fibrinogen inside, or secreted from, human hepatoma (HepG2) cells. 

These methods will be used to determine the subcellular location of fibrinogen 

phosphorylation, as well as the relevant fibrinogen kinase. The effect of acute phase 

cytokine interleukin-6 (IL-6) on fibrinogen expression, phosphorylation and kinase 

activity will also be examined. 

The key aims of this thesis are summarised below: 

1. To express and purify recombinant WT fibrinogen and fibrinogen variants 

lacking the Ser3 and/or Ser345 phosphorylation sites using a CHO cell 

expression system. 

 

2. To investigate the functional effect of fibrinogen phosphorylation on fibrin clot 

structure and function, including clot formation, FXIII-mediated clot stabilisation, 

interaction with fibrinolytic proteins, and plasmin digestion of fibrin(ogen). 
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3. To characterise the mechanism of fibrinogen phosphorylation by identifying the 

subcellular location and in vivo fibrinogen kinase, as well as changes to this 

regulatory process in acute phase conditions.  
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Chapter 2 

Materials and Methods 

2.1. Recombinant Fibrinogen Expression 

Full-length recombinant WT fibrinogen was expressed in CHO cells and purified by 

affinity chromatography. The integrity and functionality of this fibrinogen was then 

analysed using a variety of methods. To investigate the function of the Ser3 and 

Ser345 phosphorylation sites, a plasmid coding for the Aα chain of fibrinogen was 

mutated to change the serine residues of interest to alternative amino acids. The 

resulting vectors were transfected into CHO and Expi293F cells for expression of 

variant fibrinogen lacking the phosphorylation sites of interest.  

2.1.1. Expression of recombinant WT fibrinogen in CHO cells 

Chinese hamster ovary cells previously transfected with plasmids containing human 

fibrinogen Aα, Bβ and γ chain cDNA for expression of recombinant WT fibrinogen 

(CHO-WT) (kindly donated by Prof Susan Lord, University of North Carolina at Chapel 

Hill) were cultured in 10 x 100 mm dishes with 10 ml growth medium per dish 

(Appendix 1) and incubated at 37°C, 5 % carbon dioxide (CO2). When confluent, cells 

were split using trypsin-ethylenediamine tetraacetic acid (EDTA) solution (Sigma-

Aldrich, USA) and transferred to 10 x 2 L roller bottles, each with 200 ml growth 

medium containing 4 g Cytodex 1 dextran microcarrier beads (60-87 µm) (Sigma-

Aldrich) previously swollen in phosphate buffered saline (PBS) pH 7.4 (Appendix 1), 

autoclaved at 120°C and resuspended in growth medium after sedimentation. The 

microcarrier beads were added to roller bottles to increase surface area for cell 

adhesion and growth. Roller bottle cultures were incubated in a rolling incubator at 

37°C, 5 % CO2. After 3 days, or when confluent, cells were incubated overnight in 

100ml serum-free growth medium per bottle for adjustment to serum-free conditions. 

The cells were then cultured in insulin transferrin selenium (ITS)-supplemented 

medium (Appendix 1), using ITS as a growth factor supplement in place of serum for 

easier downstream protein purification. Fibrinogen-containing medium (100 ml) was 

harvested from each roller bottle and replaced with 100ml fresh ITS medium every 2-3 
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days for approximately 3 months. Harvested medium was filtered and stored at -20°C 

with serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich) 

[150 nM] until purification. An aliquot of medium was taken from each harvest for an 

enzyme-linked immunosorbent assay (ELISA) to quantify fibrinogen (method 2.1.2); 

this was performed every 2 weeks to monitor the degree of fibrinogen secretion and the 

culture was terminated once productivity was seen to significantly decline.  

2.1.2. ELISA for quantification of fibrinogen in harvested medium 

A 96-well microtiter plate was coated with 100 µl per well of polyclonal anti-human 

fibrinogen antibody (DAKO, Denmark) diluted 1/4000 [1.5 µg/ml] in Buffer A (Appendix 

1) and incubated at 4°C overnight. Following incubation, the plate was washed with 3 x 

300 µl Buffer B (Appendix 1). To generate a standard curve, Calbiochem® human 

fibrinogen from plasminogen-depleted plasma (Millipore, USA) was diluted to eight 

known concentrations ranging from 0.016 to 1 µg/ml in Buffer B. The fibrinogen 

standards were added to the plate in duplicate, along with samples of medium 

containing recombinant WT fibrinogen – undiluted, or diluted 1/10, 1/20 and 1/40 in 

Buffer B – and incubated for 2 hours at room temperature on a shaker. The plate was 

washed with 3 x 300 µl Buffer B and 100 µl per well of a horseradish peroxidase 

(HRP)-conjugated anti-fibrinogen antibody (abcam, UK) diluted 1/16,000 [0.625 µg/ml] 

in Buffer B was applied for 1 hour at room temperature. After a final wash step with 

Buffer B, bound fibrinogen was detected using 100 µl per well of o-phenylenediamine 

dihydrochloride (OPD) substrate (DAKO) dissolved in distilled water (dH2O) to 

0.5 mg/ml. Hydrogen peroxide was added at 0.01 % (v/v) to catalyse the oxidation of 

OPD by horseradish peroxidase; this produces a yellow colour with intensity 

proportionate to the amount of fibrinogen in the well. The reaction was stopped with 

100 µl per well of 1 M sulphuric acid and absorbance was measured at 490 nm using 

an MRX-TC plate reader (Dynex, USA). 

2.1.3. Purification of recombinant WT fibrinogen 

2.1.3.1. Ammonium sulphate precipitation of fibrinogen 

Harvested cell culture medium was mixed with a protease inhibitor cocktail (Appendix 

1) to prevent proteolytic degradation. The cocktail was buffered with 2-(N-

morpholino)ethanesulfonic acid (MES) at pH 5.6, the isoelectric point (pI) of fibrinogen, 

to encourage precipitation. Saturated ammonium sulphate solution was prepared by 

dissolving 1520 g ammonium sulphate (Fisher Scientific, USA) in 2 L dH2O heated to 
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90°C. The solution was cooled at 4°C overnight, or until crystals had formed, and 

added dropwise to the culture medium by passing through filter paper. The volume of 

100 % (v/v) saturated ammonium sulphate required for a final concentration of 40 % 

(v/v) when mixed with the media was calculated using the following formula: VAS = 

0.667VM, where VAS is the volume of ammonium sulphate to add, and VM is the starting 

volume of media. The solution was incubated overnight at 4°C with gentle stirring to 

precipitate the fibrinogen. The following day, the precipitate mix was centrifuged at 

9000 rpm, 4°C for 45 minutes without braking (Sorvall instrument RC5C) and the 

pellets resuspended in 1.2 ml pellet cocktail (Appendix 1) containing protease inhibitors 

and Tris buffer at physiological pH (7.4). Resuspended pellets were pooled and 

centrifuged at 19,000 rpm, 4°C for 30 minutes with braking (Sorvall, SS-34) and the 

supernatants containing the fibrinogen were decanted and stored at -20°C until 

purification. 

2.1.3.2. Affinity chromatography with IF-1 anti-fibrinogen antibody 

A BioCad Sprint Perfusion Chromatography System was used for purification of 

recombinant WT fibrinogen by affinity chromatography.  The column consisted of an 

anti-fibrinogen IF-1 monoclonal antibody (Kamiya Biomedical, USA) coupled to a 

cyanogen bromide-activated sepharose 4B resin (GE Healthcare, UK) in IF-1 

equilibration buffer (Appendix 1). Fibrinogen-containing supernatants were mixed with 

calcium chloride (CaCl2) [10 mM] prior to loading on the column, as the IF-1 antibody 

recognises an epitope within the D-domain of fibrinogen in a calcium dependent 

manner. The column was equilibrated with 1 column volume (CV) (7.599ml) of IF-1 

equilibration buffer before injecting 5ml supernatant; this volume of supernatant was 

reduced from 15 ml to 5 ml to prevent overloading and loss of fibrinogen in the flow 

through. IF-1 wash buffers I and II (Appendix 1) were applied sequentially to the 

column to remove any unbound sample before eluting fibrinogen with 6 CV of IF-1 

elution buffer (Appendix 1). Elution was achieved with EDTA (Sigma-Aldrich) to chelate 

calcium ions from binding pockets in the fibrinogen D domain, impeding its interaction 

with the IF-1 column. The concentration of eluted fibrinogen in selected fractions was 

verified by reading absorbance at 280 nm (A280 nm) using a NanoDrop ND-1000 

spectrophotometer (Thermo Scientific) and extinction coefficient 1.51. All fractions 

containing a reasonable amount of fibrinogen were pooled and stored at -80°C.  

2.1.3.3. Concentration and dialysis of purified fibrinogen 

Dialysis tubing (25 mm) with a 12 kDa molecular weight cut off (MWCO) (Sigma-

Aldrich) was prepared by heating in dH2O with 10 mM EDTA (Sigma-Aldrich) to remove 
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divalent cations and prevent binding of protein to the membrane. Purified samples were 

transferred to dialysis tubing and placed in Tris-buffered saline (TBS)-1 pH 7.4 

(Appendix 1), three samples per litre, with gentle stirring at 4˚C overnight. The buffer 

was changed the following morning and stirred for a further hour. Samples were 

concentrated to approximately 1 mg/ml by centrifugation at 3,000 g (Hettich Rotanta 

460R) using Vivaspin 20 concentrator tubes with a 100 kDa MWCO (Life Technologies, 

USA). Finally, samples were pooled, divided into aliquots and stored at -80˚C. 

Fibrinogen from later harvests was pooled separately in case of degradation, as 

determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) (method 2.1.4). 

2.1.4. SDS-PAGE 

All materials and reagents were purchased from Life Technologies unless otherwise 

stated. Samples containing 15 µg protein were mixed with 10X reducing agent, 4X 

lithium dodecyl sulphate (LDS) sample buffer and dH2O to a final volume of 40 µl. The 

samples were then heated to 95°C for 15 minutes to denature proteins and reduce 

disulphide bonds, cooled on ice for 2 minutes and centrifuged briefly (Eppendorf 

MiniSpin Plus). Reduced samples (40 µl) were loaded onto pre-cast 4-12 % Bis-Tris 

polyacrylamide gels (1.0 mm, 10 well) with a Precision Plus Protein WesternC standard 

(molecular weight marker) (7.5 µl) (BIO-RAD, USA), consisting of 10 pre-stained 

recombinant proteins of known size ranging from 10-250 kDa. Electrophoresis was 

carried out at 200 V for 40 minutes in 500 ml MES running buffer, prepared by diluting 

a 20X concentrated stock solution with filtered dH2O. Gels were rinsed for 30 minutes 

in dH2O to remove residual buffer, stained with GelCode Blue Stain Reagent (Thermo 

Scientific, USA) for 1 hour at room temperature with shaking, destained in dH2O 

overnight and imaged the next day by transillumination with Chemi-imager software 

(Alpha Innotech, USA).  

2.1.5. Expression and purification of recombinant FXIII-A 

For use in functional studies with recombinant WT fibrinogen, recombinant FXIII-A 

(rFXIII-A) was expressed in Escherichia Coli (E. Coli) and purified by glutathione S-

transferase (GST)-affinity chromatography, according to methods described by Smith 

et al. (2011).  
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2.1.5.1. Expression of recombinant GST-FXIII-A in E. Coli 

The expression construct for recombinant GST-FXIII-A, kindly provided by Dr Penelope 

Adamson, had previously been transformed into BL21-Gold (DE3) competent E. Coli 

cells (Stratagene, USA), as described in method 2.1.8.3. Two starter cultures, each 

with 180 ml terrific broth, 20 ml phosphate buffer (Appendix 1) and 200 µl 100 mg/ml 

ampicillin, were inoculated with 10 µl of a glycerol stock of the transformed E. Coli and 

incubated for 16 hours at 37°C, 225 rpm. All buffers are detailed in Appendix 1 and 

were autoclaved before use. The next day, each starter culture was used to inoculate a 

new expression culture containing 1.8 L terrific broth, 200ml phosphate buffer and 2ml 

100mg/ml ampicillin and incubated at 37°C, 180rpm for 2 hours. Expression of 

GST-FXIII-A was induced using isopropyl β-D-1-thiogalactopyranoside [1 mM] and the 

cultures were incubated for 16 hours at 30°C, 180 rpm. Cells were harvested by 

centrifugation at 5450 rpm, 4°C for 10 minutes (Sorvall instrument RC5C) and the 

bacterial pellets were resuspended in ice cold E. Coli wash buffer (180 ml per 2 L 

culture) (Appendix 1). An additional centrifugation step at 4600 rpm, 4°C for 1 hour was 

performed to remove the wash buffer; this was discarded and the pelleted cells were 

stored at -20°C until lysis and rFXIII-A purification. 

2.1.5.2. Cell lysis of BL21-Gold E. Coli 

All reagents were purchased from Sigma-Aldrich. Frozen cell pellets from method 

2.1.5.1 were thawed and resuspended in 176 ml ice cold PBS pH 7.4 (Appendix 1) by 

stirring for 1 hour at room temperature. Bacterial cells were lysed with lysozyme 

[1 mg/ml] in the presence of dithiothreitol (DTT) [1 mM] to increase binding of the GST 

fusion protein to glutathione during subsequent affinity chromatography purification; the 

mixture was stirred gently for an additional 30 minutes at room temperature. A protease 

inhibitor cocktail containing aprotinin [2 µg/ml], pepstatin A [1 µM], leupeptin [10 µM] 

and benzamidine dihydrochloride [4 mM] was added to the culture and stirred at 4°C 

for 30 minutes, before addition of PMSF [0.5 mM] and 0.05 % (v/v) sodium 

deoxycholate – an ionic detergent used to solubilise cell membranes. After 30 minutes 

of stirring at room temperature, the culture was transferred back to 4°C and mixed 

vigorously for a further 10 minutes with 1 % (v/v) triton X-100 to aid solubilisation of 

proteins, plus DNase I [5 µg/ml] with magnesium chloride [5 mM] for DNA degradation. 

The DNase activity was halted by chelation of magnesium ions with EDTA [6 mM]. To 

separate soluble recombinant GST-FXIII-A from insoluble cellular components, lysates 

were centrifuged at 13,570 rpm for 20 minutes, 4°C (Sorvall instrument RC5C). The 

supernatant was carefully decanted, mixed briefly with 2 g streptomycin sulphate to 

precipitate nucleic acids, and centrifuged again at 13,570 rpm for 20 minutes, 4°C. 
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Finally, the supernatant was filtered through a 0.22 µm vacuum filter (Thermo 

Scientific) and made up to a 300 ml volume with PBS pH 7.4, ready for purification by 

GST-affinity chromatography.  

2.1.5.3. Purification of rFXIII-A by GST affinity chromatography 

An ÄKTA prime chromatography system (GE Healthcare, UK) was used for purification 

of GST-FXIII-A from cell lysate by exploiting the high affinity interaction between GST 

and glutathione. The system was fitted with 3 x 5 ml GSTrap Fast Flow affinity columns 

(GE Healthcare) pre-packed with Glutathione Sepharose media to bind the GST fusion 

protein. All buffers used during purification contained 15 % (v/v) glycerol for protein 

stability and are detailed in Appendix 1. The columns were equilibrated with 50 ml GST 

equilibration buffer pH 7.4 at 5 ml/min before loading 300 ml lysate at a reduced flow 

rate of 0.5 ml/min. To remove any unbound sample and wash the bound GST-FXIII-A, 

250 ml GST wash buffer was applied at a flow rate of 0.5 ml/min. The flow rate was 

gradually increased and a further 60 ml GST wash buffer was applied at 1.5 ml/min, 

followed by a final equilibration step with 420 ml equilibration buffer at 2.5 ml/min.  

Upon completion of the loading and washing steps, the GSTrap Fast Flow columns 

containing the bound GST-FXIII-A were removed from the ÄKTA prime and manually 

loaded with PreScission Protease (GE Healthcare) for cleavage of the GST tag from 

FXIII-A. PreScission Protease is a fusion protein consisting of the human rhinovirus 3C 

protease and GST. Its action involves simultaneous interaction of GST with glutathione 

and site-specific cleavage of GST between the glutamine (Q) and glycine (G) residues 

of the following amino acid sequence: LQVLFQ/GP. The PreScission Protease (2 U per 

100 µg protein) was added to 15 ml equilibration buffer and injected manually into the 

GSTrap Fast Flow columns, which were then incubated horizontally at 4°C for a 

minimum of 8 hours. Following cleavage, the columns were re-fitted to the ÄKTA prime, 

with an additional fourth 5 ml GSTrap Fast Flow column at the bottom to prevent loss of 

FXIII-A. The cleaved FXIII-A was eluted with 35 ml PBS equilibration buffer pH 7.4 at a 

flow rate of 1 ml/min, whilst collecting 1 ml fractions. The bound GST was subsequently 

eluted in 2 ml fractions using 35 ml GST elution buffer pH 8.0 containing 20 mM 

glutathione at a flow rate of 1 ml/min. The columns were regenerated at 5 ml/min with 

45 ml 5 M urea, 45 ml equilibration buffer, 45 ml 70 % (v/v) ethanol and a further 

100 ml equilibration buffer. Fractions from the FXIII-A (peak 2) and GST elution peaks 

were pooled separately and the FXIII-A was concentrated using Vivaspin concentrator 

tubes with a 30 kDa MWCO (Life Technologies). A NanoDrop ND-1000 

spectrophotometer was used to determine the concentration of FXIII-A at A280nm with 

extinction coefficient 1.58. Purified FXIII-A (7 µg) and GST (4 µl at unknown 
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concentration) samples were analysed by SDS-PAGE (method 2.1.4) and western 

blotting using an HRP-conjugated FXIII-A antibody (method 2.1.6; table 3). The blot 

was developed by addition of 1-2 ml 3,3',5,5'-Tetramethylbenzidine (Sigma-Aldrich); 

the reaction was quenched with dH2O before imaging by transillumination using a 

Kodak Image Station 2000R and Kodak 1D Image Analysis Software (Labtech 

International, UK). Finally, the activity of the purified FXIII-A was analysed by means of 

a biotin-pentylamine incorporation FXIII-A activity assay (method 2.1.7.2). 

2.1.6. Western blotting 

Samples were subjected to SDS-PAGE as described in method 2.1.4, loading 

nanogram quantities of protein with 5µl Precision Plus Protein WesternC standard to 

compensate for the more sensitive detection. Each protein within the molecular weight 

standard has a synthetic Strep-tag of 8 amino acids in length, which binds StrepTactin 

– an engineered form of streptavidin – with high affinity, enabling detection. After 

electrophoresis, gels were rinsed for 10 minutes in transfer buffer pH 8.1-8.4 (Appendix 

1) on an orbital shaker. Immobilon-P polyvinylidene-difluoride (PVDF) transfer 

membrane (Millipore) (0.45 µm pore size) was cut to 3 x 2.5 inches and pre-wetted in 

methanol for 15 seconds, rinsed in dH2O for 2 minutes and equilibrated in chilled 

transfer buffer for 2 minutes.  Filter paper and sponges of the same size were also pre-

soaked in transfer buffer before assembling into blotting cassettes in the following 

order: sponge – filter paper – SDS-PAGE gel – PVDF membrane – filter paper – 

sponge. Cassettes were inserted into a tank containing an ice pack and filled with 

chilled transfer buffer. The transfer was run at 100 V for 1 hour and the buffer was 

stirred gently throughout to maintain even temperature and ion distribution. After 1 

hour, membranes were carefully removed from the tank and washed 3 x 10 minutes in 

TBS-2-Tween 20 pH 7.4 (Appendix 1). A blocking solution of TBS-2-Tween 20 with 5 % 

(w/v) skimmed milk powder was added for 1 hour at room temperature, or 4°C 

overnight, to prevent non-specific binding of antibodies during subsequent incubation 

steps. The membrane was washed 3 x 10 minutes with TBS-2-Tween 20. The primary 

antibody was diluted in 10 ml blocking solution and incubated with the membrane for 1 

hour at room temperature on a roller. Another three wash steps were performed with 

TBS-2-Tween 20. A secondary HRP-conjugated antibody directed against the primary 

antibody species, plus a Precision Protein StrepTactin-HRP Conjugate (BIO-RAD) 

(1/5000) for detection of the molecular weight marker, were diluted in 10 ml blocking 

solution and incubated with the membrane for 1 hour at room temperature. Primary and 

secondary antibodies used for western blotting are listed in table 3. The membrane 

was washed 3 x 10 minutes with TBS-2-Tween 20 prior to development with 
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SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) or Clarity ECL 

Substrate (BIO-RAD). Enhancer and peroxide solutions were mixed in a 1:1 ratio, 

added to the blot and left for 5 minutes. Blots were imaged by chemiluminescence 

using a Kodak Image Station 2000R with Kodak 1D Image Analysis Software, or a 

G:BOX F3 with GeneSys software (Syngene, UK), for varying lengths of exposure 

depending on the amount of protein. 

 

Antibody Host species Clonality Dilution 

Anti-FXIII-A HRP  

(Enzyme Research Laboratories) 

Sheep Polyclonal 1/2000 

Anti-fibrinogen (DAKO) Rabbit Polyclonal 1/1000 

Anti-fibrinogen Aα 290-348/349-406 

(Accurate Chemical, USA) 

Mouse Monoclonal 1/1000 

Anti-fibrinogen γ 15-35 

(Accurate Chemical) 

Mouse Monoclonal 1/5000 

Anti-phosphoserine (abcam) Rabbit Polyclonal 1/100 

Anti-phosphoserine (Millipore) Mouse Monoclonal 1/1000 

Anti-rabbit HRP (DAKO) Goat Polyclonal 1/1000 

Anti-mouse HRP (DAKO) Rabbit Polyclonal 1/1000 

 

 

 

2.1.7. Functional studies with recombinant WT fibrinogen 

2.1.7.1. Turbidity and lysis assay 

Formation and lysis of a clot can be monitored in vitro by recording changes in optical 

density, or turbidity, during these dynamic processes. Turbidity increases with lateral 

aggregation of protofibrils and fibre formation in the presence of thrombin and calcium, 

and declines with proteolytic clot degradation by plasmin. Additional haemostatic 

proteins may be added to examine their influence on clot turbidity and lysis. All 

reagents were diluted to the desired concentrations in sufficient TBS-1 pH 7.4 for a 

Table 3. Western blotting antibodies. Primary and secondary antibodies used for detection of 

fibrinogen, fibrinogen Aα chain or phosphoserine by western blotting are listed with details of 

host species, clonality and working dilution. 
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final volume of 150 µl per well. Recombinant WT fibrinogen (0.5 mg/ml) was added to a 

96 well microtiter plate in duplicate ± rFXIII-A [1.1 µg/ml] in an 80 µl volume per well. 

This was overlaid with 35 µl plasminogen (Enzyme Research Laboratories) (35 µg/ml) 

and the plate was inserted into the preheated chamber of an ELx808 Absorbance 

Microplate Reader (BIO-TEK, USA) at 37°C. For activation, 35 µl of a mix containing 

recombinant tPA [0.3 µg/ml] (Technoclone, Austria), thrombin (Calbiochem) [0.5 U/ml] 

and CaCl2 [2.5 mM] were added to each well in one step and the plate was immediately 

shaken. Absorbance at 340 nm was recorded for 59 minutes in 12 second intervals and 

a customised software application was used for calculation of turbidimetric variables 

(Carter et al., 2007): lag time (Lag), representing the onset of lateral aggregation of 

protofibrils preceding exponential increase in turbidity; maximum absorbance 

(MaxAbs), representing fibre thickness and clot compactness; clotting rate; time to 

50 % lysis (Lys50MA); lysis rate; and lysis area, which encompasses clot formation, 

MaxAbs and fibrinolysis (figure 9).  

 

 

 

 

 

 

 

2.1.7.2. Biotin-pentylamine incorporation FXIII-A activity assay 

The FXIII-A activity assay relies on cross-linking of biotin-pentylamine to fibrinogen via 

its primary amine group, catalysed by the transglutaminase activity of FXIII-A. The 

degree of cross-linked biotin-pentylamine is hence used as a measure of FXIII activity. 

All reagents were from Sigma-Aldrich unless otherwise stated. Recombinant WT 

Figure 9. Turbidity and lysis curve analysis. The graph displays a typical curve with change 

in OD over time during a turbidity and lysis assay. The Lag phase is shown as the period prior to 

the onset of increase in turbidity; maximum absorbance (MaxAbs) can be read from the peak of 

the curve, while half this value (½ MaxAbs) is used to determine time to 50 % lysis (Lys50MA); 

lysis area is depicted by the grey shading. 
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½ MaxAbs 
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fibrinogen and a Calbiochem® fibrinogen control were added to a 96-well microtiter 

plate in duplicate for six different time points ± rFXIII-A. The plate was coated with 

100 µl per well of fibrinogen [40 µg/ml] in TBS-3 pH 8.3 (Appendix 1) for 40 minutes at 

room temperature and the surface blocked with 300 µl per well 1 % (w/v) bovine serum 

albumin (BSA)-TBS-1 at 37°C pH 8.3 for 90 minutes. The plate was washed with 4 x 

300 µl TBS-1, and 10 µl of rFXIII-A diluted to 11 µg/ml in TBS-1 were added to each 

well, giving a final concentration of 1.1 µg/ml after addition of the master mix.  Using a 

multi-channel pipette, 90 µl of master mix containing DTT [0.1 mM], 5-(biotinamido) 

pentylamine (Thermo Scientific) [2.7 µM], CaCl2 [1 mM] and thrombin [1 U/ml] in TBS-1 

were added to each well for 0-25 minutes in 5 minute intervals and reactions were 

stopped using 200 µl per well of 200 mM EDTA to chelate calcium ions. For the zero 

time point, EDTA was added prior to addition of the master mix. The plate was washed 

with 4 x 300 µl TBS-3-Tween 20 pH 8.3 (Appendix 1) and 100 µl per well of streptavidin 

alkaline phosphatase [2 µg/ml], diluted in 1 % (w/v) BSA-TBS-3-Tween 20, was added 

for 1 hour at 37˚C to bind incorporated biotin-pentylamine via a high affinity interaction 

between streptavidin and biotin. After a final four washes with TBS-3-Tween 20, biotin-

pentylamine was detected by addition of 100 µl per well of p-nitrophenol phosphate 

(PNPP) – a substrate for streptavidin alkaline phosphatase – dissolved in dH2O to a 

final concentration of 1 mg/ml. Once the colour had developed, reactions were stopped 

using 100 µl per well of 4 M sodium hydroxide and absorbance was measured at 

405 nm using a Dynex MRX-TC plate reader.  

2.1.7.3. Fibrin polymerisation time course experiment by SDS-PAGE 

Recombinant WT fibrinogen [0.5 mg/ml] and rFXIII-A [1.1 µg/ml] were diluted in TBS-1 

pH 7.4 to 15 µl and mixed with 5 µl activation mix containing thrombin [0.05 U/ml] and 

CaCl2 [1.5 mM], also diluted in TBS-1. Eight separate reactions were prepared and 

activation mix was added at controlled time points. After addition of the activation mix, 

each reaction was immediately transferred to a hot block at 37˚C for 0, 5, 10, 20, 30, 

60, 120 or 180 minutes. Reactions were stopped at the aforementioned time points by 

addition of 4X LDS sample buffer and 10X reducing agent. Each sample, plus a 

fibrinogen-only control, was reduced by heating at 95°C for 15 minutes and loaded onto 

a 4-12 % Bis-Tris polyaccrylamide gel with 7.5 µl Precision Protein WesternC standard. 

Samples were electrophoresed at 150 V for 85 minutes in 700 ml 3-(N-

morpholino)propanesulfonic acid (MOPS) SDS running buffer (Life Technologies), 

prepared from a 20X concentrated stock by diluting in filtered dH2O. Electrophoresis 

conditions differed to method 2.1.4, with a lower voltage, extended running time and 

use of MOPS buffer to aid separation of high molecular weight fibrin α-α, α-γ and γ-γ 



59 

polymers. The gel was washed twice in dH2O, stained for 1 hour with GelCode Blue 

Stain Reagent and rinsed in dH2O overnight before imaging by transillumination the 

next day. 

2.1.8. Generation of variant fibrinogen Aα chain constructs 

In order to substitute fibrinogen Aα chain Ser3 and Ser345 for residues which cannot 

be phosphorylated, relevant nucleotides within the Aα chain DNA sequence were 

mutated by site directed mutagenesis. Site directed mutagenesis can be used to create 

single or multiple base substitutions within a known DNA sequence. Base changes are 

designed in such a way to encode a different amino acid of choice at a particular 

location within the transcribed protein. 

Three expression vectors, created from the pMLP vector (figure 10) by insertion of 

fibrinogen Aα (pMLP-Aα), Bβ (pMLP-Bβ) or γ (pMLP-γ) chain cDNA into the multiple 

cloning site (figure 11), were kindly provided by Prof Susan Lord, University of North 

Carolina at Chapel Hill. For expression of fibrinogen variants, Aα chain Ser3 and 

Ser345 residues within the pMLP-Aα vector were mutated to asparagine, glutamic acid 

or alanine residues; the effects of each amino acid on the expression and secretion of 

fibrinogen variants were compared in a series of transfection experiments. Serine 

codons were initially changed to asparagine as these two residues have similar charge 

and polarity. Alanine has similar charge but different polarity to serine and is commonly 

used for transfection due to its structural simplicity, which is unlikely to disrupt 

secondary protein structure. Glutamic acid was employed as a phosphomimetic by 

exploiting its negative charge, resembling that of a phosphate group. The properties of 

these four amino acids are compared in table 4. 
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 Serine Asparagine Glutamic Acid Alanine 

Abbreviations Ser (S) Asn (N) Glu (E) Ala (A) 

Structure 

 

 

 

 

Charge Uncharged Uncharged *Negative  Uncharged 

Polarity Polar Polar Polar **Nonpolar 

Functional 

group 
Hydroxyl Amide Carboxyl Methyl 

 

 

 

 

 

Mutagenesis of pMLP-Aα was carried out using polymerase chain reaction (PCR) with 

primers designed to introduce the desired mutations. The variant constructs were then 

transformed into E. Coli for amplification, harvested by cell lysis and purified. Analyses 

of DNA quality and sequence integrity were performed prior to transfection into CHO 

cells. Seven new pMLP-Aα vectors were created in this way for expression of 

fibrinogen variants with the following Aα chain mutations: 

1. Ser3Asn (S3N) 

2. Ser345Asn (S345N) 

3. Ser3/345Asn (S3/345N) (double variant) 

4. Ser3Glu (S3E) 

5. Ser345Glu (S345E) 

6. Ser3/345Glu (S3/345E) (double variant) 

7. Ser345Ala (S345A) 

 

 

Table 4. Comparison of amino acid properties. The table details the structure, charge, 

polarity and side chain functional groups of the four amino acids involved in site directed 

mutagenesis of Ser3 and Ser345 phosphorylation sites: serine, asparagine, glutamic acid and 

alanine. Serine and asparagine share similar chemical properties, while glutamic acid differs by 

its negative charge (*) and alanine by its polarity (**). 
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Figure 10. pMLP vector map. Downstream of the SV40 enhancer, the pMLP vector contains 

the major late promoter (MLP) and tripartite leader sequence (L1-3) from adenovirus 2, 5’ and 

3’ splice sites, a multiple cloning site (MCS) and the SV40 mRNA polyadenylation (poly(A)) 

signal. The MCS is detailed above the map; restriction sites used for insertion of Aα (SmaI), Bβ 

(SalI and SmaI) or γ (SmaI) chain cDNA are highlighted in red, with cleavage sites indicated by 

arrows (▲). The vector also contains an origin of replication (ori), ampicillin resistance gene 

(AmpR) and AmpR promoter in the opposite orientation. 

AATTGTCGACCGCGGCCCCGGGCGGCCGC 

SalI SmaI 
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Figure 11. pMLP-Aα, -Bβ and -γ vector maps. The vector maps show pMLP with fibrinogen Aα, Bβ or γ chain cDNA inserts in the multiple cloning site. Expression 

of these polypeptide chains is driven by the adenovirus 2 major late promoter (MLP). The locations of restriction sties used to linearise the vectors (PvuI and EcoRI), 

as well as those used to remove the Aα chain insert from pMLP-Aα (NotI and SalI), are also indicated.  
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2.1.8.1. Primer design for site directed mutagenesis 

A Quikchange Primer Design tool by Agilent Technologies (USA) was used to design 

primers in accordance with the Quikchange II site directed mutagenesis kit manual. 

Serine 3 and Ser345 codons (AGT and AGC respectively) were located within the Aα 

chain sequence. Forward and reverse primers of 25-45bp in length were designed to 

target these regions with complementary sequence either side of the codon of interest, 

while primer bases within the Ser3 and Ser345 codons were changed to introduce 

codons transcribing the desired amino acids (table 5). Primers were designed to have 

40-60% guanine/cytosine (GC) content, including a G or C at the beginning and end of 

each primer, and a melting temperature (Tm) of approximately 80°C to ensure good 

annealing to the template. All custom oligonucleotides were purchased from Life 

Technologies. 

 

Primer Sequence (5’ to 3’) 
Length 

(nt) 

Tm 

(°C) 

S3N F GCACAGCATGGACTGCAGATAATGGTGAAGGTG 33 79.14 

S3N R CACCTTCACCATTATCTGCAGTCCATGCTGTGC 33 79.14 

S345N F CCTGGAATCCTGGCAACTCTGAACGCGGAAG 31 80.31 

S345N R CTTCCGCGTTCAGAGTTGCCAGGATTCCAGG 31 80.31 

S3E F GGCACAGCATGGACTGCAGATGAGGGTGAAGGTGACTTTCTAG 43 78.85 

S3E R CTAGAAAGTCACCTTCACCCTCATCTGCAGTCCATGCTGTGCC 43 78.85 

S345E F GAACCTGGAATCCTGGCGAGTCTGAACGCGGAAGTGC 37 78.42 

S345E R GCACTTCCGCGTTCAGACTCGCCAGGATTCCAGGTTC 37 78.42 

S345A F CCTGGAATCCTGGCGCCTCTGAACGCGGAAG 31 81.69 

S345A R CTTCCGCGTTCAGAGGCGCCAGGATTCCAGG 31 81.69 

 

 

 

2.1.8.2. Site directed mutagenesis 

Polymerase chain reaction was performed using a Quikchange II site directed 

mutagenesis kit (Stratagene) in accordance with the manufacturer’s instructions. All 

Table 5. Ser3 and Ser345 primers used for site directed mutagenesis. 5’ to 3’ sequences of 

forward (F) and reverse (R) primers are displayed, with the altered codons of interest 

highlighted in red, as well as nucleotide (nt) length and Tm of each primer. 
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templates and primers were diluted in molecular grade BDH® H2O (VWR International, 

USA). Each cDNA template (1 ng) was mixed with the relevant forward and reverse 

primers listed in table 5 (125 ng each), 10X reaction buffer, 1 µl of deoxynucleotide 

triphosphate (dNTP) mix, 2.5 U PfuUltra high fidelity DNA polymerase and molecular 

grade H2O up to a final volume of 50 µl in a PCR reaction tube. The cDNA was 

amplified during a process of thermal cycling in a PTC-200 thermal cycler (MJ 

Reseasrch, Canada) using the following conditions: 

1. Initiation 95°C 30 seconds 

2. Denaturation 95°C 30 seconds 

3. Annealing 55°C 1 minute 

4. Elongation 68°C 7 minutes 

The extension time represented 1 minute per kilobase of pMLP-Aα plasmid length 

(6.2 kb). A two-step site directed mutagenesis was performed to generate the 

Ser3/345Asn double variant, whereby pMLP-Aα Ser3Asn cDNA was used as the 

template in a reaction with Ser345Asn primers. Upon completion of PCR, all reactions 

were stored overnight at 4°C and the parental (non-mutated) template was digested the 

following day with 10 U DpnI for 1 hour at 37°C in a PTC-200 thermal cycler. This 

restriction enzyme has specificity for methylated-DNA and is therefore unable to cleave 

plasmid cDNA which has been propagated in vitro. Reactions were returned to 4°C 

until transformation.  

2.1.8.3. Transformation into E. Coli 

XL-1 Blue supercompetent E. Coli cells (Stratagene) were transformed with the PCR-

amplified pMLP-Aα expression vectors in accordance with the manufacturer’s 

instructions. Plasmid DNA (1 µl) was added to 50µl cells and incubated on ice for 30 

minutes. Cells were heat-shocked at 42°C for 45 seconds to facilitate uptake of DNA 

and incubated on ice for a further 2 minutes. Pre-warmed lysogeny broth (LB) 

(Appendix 1) (500 µl) was added to the cells and incubated for 1 hour at 37°C, 225 rpm 

before spreading the transformed cells (50-100 µl) onto pre-warmed LB agar (Appendix 

1) containing ampicillin [100 µg/ml]. Plates were incubated inverted overnight at 37°C, 

checked for the appearance of single colonies the following day and stored at 4°C until 

plasmid purification. 

2.1.8.4. Plasmid purification (Mini-prep) 

A QIAprep Mini-prep Kit (QIAGEN, Netherlands) was used for purification of up to 

20 μg high-copy plasmid DNA. Single bacterial colonies were picked from agar plates 

x 18 
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using a 10 µl inoculation loop and used to inoculate starter cultures of 4.5 ml 

LB/ampicillin (100 µg/ml). These cultures were incubated overnight in an orbital shaker 

at 37°C, 300 rpm. Bacterial cells were harvested by centrifugation in a bench-top 

centrifuge at 13,000 rpm (Eppendorf MiniSpin Plus) for 2 minutes, resuspended in 

250 µl Buffer P1 and lysed with SDS under alkaline conditions by mixing with 250 µl 

Buffer P2. Chromosomal DNA and proteins are denatured under the alkaline conditions 

used for bacterial cell lysis, while plasmid DNA remains stable for subsequent 

purification. After a maximum of 5 minutes, 350 µl neutralising Buffer N3 was mixed 

with the lysate, causing precipitation of the denatured protein and genomic DNA, 

cellular debris and SDS. Precipitate was removed by centrifugation for 10 minutes at 

13,000 rpm and the resulting supernatant was applied to a QIAprep spin column. The 

sample was then centrifuged at 13,000 rpm for 1 minute to enable binding of plasmid 

DNA to the membrane. The column was washed with 750 µl Buffer PE and centrifuged 

again to remove residual buffer (13,000 rpm, 1 minute). Plasmid DNA was eluted from 

the column into a clean 1.5 ml microcentrifuge tube with 50 µl molecular grade H2O 

and centrifuged at 13,000 rpm for 1 minute. The concentration of DNA within the eluate 

was analysed at A260nm using a NanoDrop ND-1000 spectrophotometer, while 

qualitative assessment of the Mini-preps was carried out by agarose gel 

electrophoresis (method 2.1.8.7). 

2.1.8.5. Plasmid purification (Maxi-prep) 

A QIAprep Maxi-prep Kit (QIAGEN) was used for purification of up to 100 μg high-copy 

plasmid DNA. Starter cultures were prepared in the same way as for a Mini-prep 

(method 2.1.8.4) and incubated for 8 hours at 37°C, 300 rpm. A second culture with 

100 ml LB/ampicillin [100 µg/ml] was inoculated with 200 μl starter culture and 

incubated at 37°C overnight, 300 rpm. The culture was centrifuged (Hettich Rotanta 

460R) the next day for 30 minutes at 4,600 x g, 4°C to pellet the cells. Pelleted cells 

were resuspended in 10 ml Buffer P1 and lysed with 10 ml Buffer P2. Buffer P3 (10 ml) 

was added to precipitate debris and the lysate was filtered through a QIAfilter Maxi 

Cartridge. For removal of endotoxins, the filtered lysate was mixed with 2.5 ml Buffer 

ER and incubated on ice for 30 minutes. A QIAGEN-tip 500 was equilibrated with 10 ml 

Buffer QBT and the filtered lysate passed through the tip by gravity flow for binding of 

plasmid DNA to the resin. After washing with 2 x 30 ml Buffer QC, DNA was eluted with 

15 ml Buffer QN and precipitated by addition of 10.5 ml room temperature isopropanol. 

The solution was centrifuged for 1 hour at 4,600 x g, 4°C to pellet the DNA. The 

supernatant was discarded and pelleted DNA was washed with 5 ml endotoxin-free, 

room temperature 70 % ethanol before a final centrifugation step for 1 hour at 
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4,600 x g, 4°C. The supernatant was again carefully decanted and the DNA pellet 

air-dried for 5 minutes before re-dissolving in 30 µl molecular grade H2O. The DNA 

concentration at A260nm was determined with a NanoDrop ND-1000 spectrophotometer 

and the Maxi-prep quality was analysed by agarose gel electrophoresis (method 

2.1.8.7). 

2.1.8.6. Restriction digestion of plasmid DNA 

Restriction digestion was used to linearise plasmid DNA for analysis by agarose gel 

electrophoresis. Restriction enzymes recognise and cleave specific sequences of DNA; 

an online restriction mapping tool – Webcutter 2.0 – was used to identify enzymes 

which cleave at only one site within the pMLP vector sequences to enable linearisation 

without producing multiple fragments. Plasmid DNA (pMLP) (350 ng) was digested with 

30 U EcoRI restriction enzyme in a 30 µl reaction mix containing 10X EcoRI buffer, 

BSA [100 µg/ml] and molecular grade H2O for 16 hours at 37°C. Reagents were 

supplied by New England Biolabs. 

2.1.8.7. Agarose gel electrophoresis 

Linearised plasmids were electrophoresed to assess their quality. Agarose gels were 

prepared by mixing 1 % or 2 % (w/v) electrophoresis-grade agarose (Life 

Technologies), for large (>1000 bp) or small (<1000 bp) strands of DNA respectively, 

with 120 ml Tris-acetate EDTA (TAE) buffer (Appendix 1) by heating until molten and 

clear. After cooling to 50°C, 8 µl ethidium bromide (0.5 mg/ml) (Sigma-Aldrich) was 

added for fluorescent staining of nucleic acids and the agarose was immediately 

poured into a cast with a well comb and left for 30 minutes to set. Linearised plasmid 

DNA samples were mixed with 6X DNA loading buffer (Appendix 1) and loaded onto 

the gel. Hyperladder I (200-10,000 bp) or Hyperladder IV (100-1000 bp) (Bioline, UK) 

was used as a molecular weight marker. Samples were electrophoresed at 100 V for 

90 minutes in TAE buffer and the DNA imaged under ultraviolet (UV)-transillumination 

using Chemi-imager software.  

2.1.8.8. Sequencing of variant Aα chain cDNA open reading frames 

The mutations introduced into the pMLP vectors did not introduce unique restriction 

sites; hence the success of mutagenesis could only be verified by DNA sequencing. 

Samples were sent to a DNA sequencing service (DNA Sequencing & Services, 

University of Dundee), which uses automated high-throughput sequencing with dye-

labelled dideoxynucleotide triphosphates as chain terminators. Isolated plasmid DNA 
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from selected clones was reacted individually with four forward primers designed to 

bind regions spanning the entire fibrinogen Aα chain open reading frame. Primers were 

designed using GenScript DNA Sequencing Primers Design Tool and adapted to 

satisfy the criteria detailed by DNA Sequencing & Services. Primer sequences are 

listed in table 6. For analysis, sequencing data was compared to the original DNA 

sequences to highlight any errors. Nucleotide sequences for the original and mutated 

plasmids were then translated into protein sequence using ExPASy Translate Tool and 

aligned using a Basic Local Alignment Search Tool (BLAST) (National Center for 

Biotechnology Information, USA) to highlight and verify the desired mutations 

(Appendix 2). 

 

Primer Position (nt) Sequence (5’ to 3’) Length (nt) 

Aα forward 1 1398 CTCTCGAGTGAATTGTCG 18 

Aα forward 2 1936 AAATGTTAGGGCCCAGTTGGTTGA 24 

Aα forward 3 2572 TGCTGGGCACTGGACCTCTG 20 

Aα forward 4 3175 CCCTTCCCGTGGTAAATCTT 20 

 

 

 

2.1.9. Transfection of pMLP-Aα variants into CHO-Bβγ cells 

Calcium phosphate (CaPO4) precipitation was used for transfection of pMLP-Aα 

vectors into CHO cells; this technique relies upon complex formation between DNA and 

precipitated CaPO4 to enable entry of DNA into the cells. Chinese hamster ovary cells 

previously transfected with pMLP-Bβ and pMLP-γ constructs by the same method were 

cultured in 100 mm dishes with 10 ml growth medium containing 400 µg/ml neomycin 

analogue G418 and incubated at 37°C, 5 % CO2. Cells were split (1:10) 1 day ahead of 

transfection and medium was replaced with a fresh 10 ml G418 medium 2 hours ahead 

of transfection. For transfection, 10 μg pMLP-Aα DNA was combined with 10X less 

(1 µg) pMSVHis selection vector (provided by Prof Susan Lord, University of North 

Carolina at Chapel Hill), filter-sterilised cell culture-grade CaCl2 [250 mM] and filter-

sterilised dH2O up to a final volume of 500 μl. The DNA/CaCl2 mixture was combined 

with 500 μl 2X HEPES-buffered saline (HeBS) (Appendix 1); the HeBS solution was 

bubbled using a mechanical pipettor and the DNA/CaCl2 mixture was simultaneously 

Table 6. Aα chain sequencing primers. Forward primers used for sequencing of the pMLP-Aα 

open reading frame are listed with their starting position in the pMLP vector (6262 bp; open 

reading frame: nucleotides 1466-3400), 5’ to 3’ sequences and nucleotide (nt) length.  
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added dropwise using a Pasteur pipette to encourage CaPO4 precipitation. The 

transfection mix was vortexed for 15 seconds and incubated at room temperature for 

30 minutes before adding 500 µl to each dish of cells. Dishes were incubated for 4 

hours at 37°C, 5 % CO2 and the cells were subjected to an osmotic shock for by 

addition of 2 ml per dish of 10 % (v/v) glycerol solution in G418 medium for 3 minutes 

to facilitate intracellular transport of DNA to the nucleus. The dishes were washed with 

3 x 5 ml growth medium and incubated for 2 days in 10 ml G418 medium at 37°C, 5 % 

CO2. At the end of this incubation period, transfected cells were trypsinised, re-plated 

at varying dilutions in growth medium (1:10, 1:20 and 1:40) and returned to 37°C, 5 % 

CO2. The following day, 10 ml growth medium containing 400 µg/ml G418 and 250 µM 

L-histidinol dihydrochloride (Sigma-Aldrich) were added to each dish to achieve stable 

transfection. The medium was replaced every 2-3 days until the appearance of large, 

healthy and well-separated colonies. Approximately 24 colonies were selected by 

aspirating medium, sealing glass cloning cylinders over the colonies using sterile 

Vaseline, and adding a few drops of trypsin/EDTA solution to each cylinder for 5 

minutes at room temperature. Cells were transferred to a 24-well plate with 0.5 ml 

L-histidinol/G418 selection medium per well and incubated overnight at 37°C, 5 % CO2 

to adhere. Fresh selection medium was added the next day and clones were cultured 

without medium change until 60-70% of the wells had reached confluence. At this 

point, medium from each clone was removed and screened for fibrinogen content by 

ELISA, according to section 2.1.2. Selected clones were then trypsinised and 

transferred to 60 mm dishes with 4 ml selection medium. Cells were cultured at 37°C, 

5 % CO2 until confluent and ready for further screening by ELISA or storage in liquid 

nitrogen (method 2.1.10). Due to problems with expression, clones were further 

analysed for the presence of intracellular fibrinogen using a variety of methods outlined 

in section 2.1.11. 

2.1.10. Freezing cells for storage in liquid nitrogen 

Confluent cells were trypsinised from plates using trypsin/EDTA solution and mixed 

with a 4X excess of growth medium before centrifuging at 1000 rpm for 15 minutes 

(Eppendorf Centrifuge 5702 R). Cell pellets were resuspended in 2 ml per dish of 

sterile freeze solution, containing 90 % (v/v) newborn calf serum (Fisher Scientific) with 

10 % (v/v) cryoprotective dimethyl sulfoxide (DMSO) (Sigma-Aldrich), and divided into 

1 ml aliquots in cryovials (Fisher Scientific). The cryovials were placed in an 

isopropanol chamber and stored at -80°C overnight for slow cooling 

(approximately -1°C/minute), before transferring to liquid nitrogen the next morning. 
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2.1.11. Analysis of intracellular CHO fibrinogen 

Expression of variant fibrinogen Aα chain in transfected CHO cells was investigated by 

cell lysis, western blotting with cell lysate and conditioned medium, 

immunofluorescence, and end-point reverse transcription PCR (RT-PCR), as detailed 

below. 

2.1.11.1. Lysis of CHO cells and harvest of conditioned medium for western 

blotting and ELISA 

In order to investigate fibrinogen expression and secretion from CHO cells transfected 

with the variant Aα chain constructs, selected clones were cultured in 60 mm dishes 

and lysed using a non-denaturing Mammalian-Protein Extraction Reagent (M-PER) 

(Thermo Scientific). A 1 ml aliquot of medium was removed, mixed with protease 

inhibitor cocktail (1:100) (Sigma), and stored at -20°C until further analysis. The 

remaining medium was aspirated and cells were washed once with 1X PBS pH 7.4, 

containing CaCl2 and magnesium chloride (MgCl2) to minimise cell detachment 

(Appendix 1), before adding 250 µl M-PER pre-mixed with protease inhibitor cocktail 

(1:100). The plates were incubated on a shaker at room temperature for 5 minutes and 

cell lysate was collected into a centrifuge tube using a pipette. Lysates were 

centrifuged at 14,000 x g for 10 minutes in a bench top centrifuge (Eppendorf MiniSpin 

Plus) to pellet cell debris, while the supernatant was transferred to a clean tube and 

stored at -20°C. Lysates were concentrated 5X using centrifugal filters with a 30 kDa 

MWCO (Millipore). Both lysate and medium (30 µl) from each clone were loaded onto a 

4-12 % Bis-Tris polyacrylamide gel for SDS-PAGE, followed by western blotting with a 

rabbit polyclonal anti-fibrinogen antibody and goat anti-rabbit HRP secondary antibody 

(methods 2.1.4 and 2.1.6; table 3). The western blot results revealed an additional 

band between the fibrinogen Aα and Bβ chain bands, which was investigated further by 

repeating the western blot without the primary antibody incubation step, probing only 

with goat anti-rabbit HRP and StrepTactin HRP before developing with SuperSignal 

West Pico Chemiluminescent Substrate. This confirmed it to be a non-specific band, 

rather than fibrinogen-related (refer to 3.1.3). In a repeat cell lysis experiment, 

harvested medium was also concentrated 5X so that sufficient fibrinogen was loaded 

onto the gel. The western blot was probed with a mouse monoclonal anti-fibrinogen Aα 

chain antibody followed by a rabbit anti-mouse HRP secondary antibody (table 3). 
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2.1.11.2. Immunofluorescent detection of fibrinogen Aα chain in CHO cells 

For details of immunofluorescence methodology and assay development, refer to 

section 2.3.2. Briefly, CHO cells transfected with variant fibrinogen Aα chain constructs, 

as well as CHO-WT and CHO-Bβγ cells, were fixed onto a microscope slide, 

permeabilised and probed with a mouse monoclonal anti-fibrinogen Aα chain primary 

antibody (table 3), followed by a Cy3-AffiniPure donkey anti-mouse secondary antibody 

(1/500) (Stratech, UK). Slides were imaged by laser-scanning confocal microscopy 

(LSCM) (method 2.3.2.3), using the same settings for control and experiment wells to 

enable comparison of fluorescence intensity. 

2.1.11.3. RNA extraction from CHO cells 

Extraction of RNA from CHO cells cultured in 6-well plates or 60 mm dishes was 

carried out using an RNeasy plus mini kit (QIAGEN), complete with genomic 

DNA-eliminator spin columns, according to the accompanying instructions. Work was 

carried out in a DNA/RNA laboratory to minimise risk of contamination with RNases 

and filter pipette tips (Gilson, USA) were used throughout the procedure to avoid cross-

contamination of samples. Cells were lysed directly by addition of 350 µl Buffer RLT; 

the lysate was collected using a cell lifter (Sigma-Aldrich) and homogenised by passing 

at least five times through a 20-gauge needle. Homogenised lysate was transferred to 

a genomic DNA-eliminator spin column in a 2 ml collection tube and centrifuged for 30 

seconds at 10,000 rpm in a bench top centrifuge (Eppendorf MiniSpin Plus). The 

column was discarded and the flow through mixed with 1 ml 70 % ethanol for 

precipitation of RNA. The sample was transferred to an RNeasy spin column in a 2 ml 

collection tube and centrifuged for 15 seconds at 10,000 rpm to allow RNA to bind the 

column. Flow-through was discarded and the column was washed with 700µl Buffer 

RW1 by inverting the tube several times and centrifuging for 15 seconds, 10,000rpm. 

Two more wash steps were performed with 500 µl Buffer RPE for 15 seconds and 2 

minutes at 10,000 rpm. The column was then placed in a clean collection tube and 

centrifuged for an additional minute to remove residual wash buffer. Finally, the spin 

column was again placed in a clean 1.5 ml microcentrifuge tube and 30 µl RNase-free 

H2O was added directly to the membrane before centrifuging for 1 minute to elute the 

RNA. The RNA yield was determined by measuring A260 nm using a NanoDrop ND-

1000 spectrophotometer and samples were stored at -20°C. 
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2.1.11.4. Reverse transcription-PCR with RNA from transfected CHO cells 

Clones of CHO cells transfected with S3N and S345N Aα chain constructs were 

screened for expression of fibrinogen Aα by RT-PCR; CHO-WT and untransfected 

CHO cells were included as positive and negative controls respectively. The extracted 

RNA was reverse transcribed and amplified in a single reaction using a QIAGEN 

OneStep RT-PCR Kit, with primers specific to the Chinese hamster fibrinogen Aα chain 

nucleotide sequence (table 7). Forward and reverse primers were designed using 

Primer-BLAST (National Center for Biotechnology Information, USA) – an online tool 

for finding specific primers to a given sequence. Primers were designed to be 18-30 

nucleotides in length with 40-60 % GC content and an annealing temperature 5°C 

below the Tm.  

Optimal reaction conditions were achieved with 100 ng RNA template and 40 cycles of 

amplification. Reactions were set up to contain 10 µl 5X OneStep RT-PCR buffer, 2 µl 

dNTP mix (with each dNTP at a final concentration of 400 µM), 3 µl each of forward 

primer and reverse primers [0.6 µM], 2 µl OneStep RT-PCR enzyme mix and 28 µl 

RNase-free H2O up to a final volume of 50 µl. Reactions were placed in a PTC-200 

thermal cycler and subjected to the following cycling conditions: 

1. Reverse transcription 50°C 30 minutes 

2. PCR activation 95°C 15 minutes 

3. Amplification: 

a. Denaturation 94°C 30 seconds 

b. Annealing 55°C 1 minute 

c. Extension 72°C 1 minute 

4. Final extension 72°C 10 minutes 

Reactions were stored at 4°C overnight upon completion. Five microlitres of each 

reaction were mixed with 3 µl 6X loading dye and 10 µl molecular grade H2O before 

loading on a 1 % agarose gel with 5 µl Hyperladder IV. Electrophoresis and imaging 

were carried out according to method 2.1.8.7.  

 

 

x 40 
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Primer Sequence (5’ to 3’) Length (nt) Tm (°C) % GC 

FGA Forward TCTGGCTGCAGGATGAAAGG 20 60.03 55 

FGA Reverse CAATGTCCACCTCCAGTCGT 20 59.68 55 

 

 

 

2.1.12. Optimisation of CHO cell transfection for fibrinogen expression 

Due to difficulties across research groups with expression of fibrinogen Aα chain 

variants using the established method of CHO cell transfection, and taking into account 

the successful expression of Bβ and γ chain variants, the constructs for individual 

chains were transfected in a different order to investigate whether this would permit 

expression and secretion of fibrinogen. Whole vectors were sequenced to check for 

errors and each vector was linearised prior to transfection to improve integration 

efficiency. New CHO cells were purchased from ATCC (USA) and transfected first of all 

with pMLP-Bβ via the standard method as described in section 2.1.9. Clones were 

analysed for Bβ chain expression by real-time PCR and the best clone was co-

transfected with pMLP-Aα and pMLP-γ for fibrinogen expression. An overview of this 

process is illustrated in figure 12. 

 

 

 

 

 

 

Screening for fibrinogen expression by ELISA

Co-transfection of pMLP-Aα and pMLP-γ into CHO-Bβ cells

Screening for positive CHO-Bβ clones by real-time PCR

Transfection of pMLP-Bβ into CHO cells

Linearisation and purification of pMLP-Aα, -Bβ and -γ constructs 

Table 7. Reverse transcription PCR primers for analysis of fibrinogen Aα chain 

expression in CHO cells. Forward and reverse primer sequences for amplification of fibrinogen 

Aα chain (FGA) cDNA are displayed with nucleotide (nt) length, Tm and GC content. 

Figure 12. The process of pMLP-Aα and pMLP-γ co-transfection into CHO-Bβ cells for 

recombinant fibrinogen expression. Each of the pMLP constructs was linearised by restriction 

digestion prior to transfection. A CHO-Bβ cell line was formed by transfection of pMLP-Bβ into 

CHO cells and selection of the most productive clone using real-time PCR. The pMLP-Aα and 

pMLP-Bβ expression constructs were co-transfected for expression of fibrinogen, which was 

analysed by ELISA with medium harvested from each clone. 



73 

2.1.12.1. Testing CHO cells for resistance to selection reagents 

All selection reagents were purchased from Source BioScience, UK. New CHO cells 

were incubated with potential selection reagents to check for resistance and to find the 

most effective and suitable reagents for selection of positive clones. Cells were 

passaged and seeded in 100 mm dishes to approximately 50 % confluence in normal 

growth medium. The medium was replaced the next day with selection medium 

containing G418 [400 µg/ml or 700 µ/ml], L-histidinol dihydrochloride [250 µM], 

hygromycin [125 µg/ml], puromycin [50 µg/ml] or zeocin [175 µg/ml] diluted in growth 

medium. After 2 days, cells were split 1:10 into the same selection medium and 

monitored for cell death over 1 week. 

2.1.12.2. Sequencing of pMLP-Aα, -Bβ and -γ constructs 

Whole pMLP-Aα WT, -Bβ and -γ constructs were sequenced by DNA Sequencing & 

Services, University of Dundee (see method 2.1.8.8). Forward and reverse sequencing 

primers designed using GenScript DNA Sequencing Primers Design Tool are listed in 

table 8. Sequencing data was compared to original DNA sequences to screen for 

errors. 

 

Primer Sequence (5’ to 3’) Length (nt) 

Forward -1 CGGGACTATGGTTGCTGAC 19 

Forward 0 CAGTACTCTTGGATCGGAAACC 22 

Forward 1 CTCTCGAGTGAATTGTCG 18 

Forward 8 CATGTCTGGATCCTCTACGC 20 

Forward 9 CAAACGTTTCGGCGAGAAG 19 

Forward 10 GCCTTATCCGGTAACTATCGTC 22 

Forward 11 CTCAGCGATCTGTCTATTTCG 21 

Forward 12 GACTGGTGAGTACTCAACCAAGTC 24 

Forward 13 GATGTTGCAAGTGTGGCG 18 

Reverse 1 CCTCTACAAATGTGGTATGGCTG 23 

Reverse 2 GACTCCTGCATTAGGAAGCAG 21 

 

 

Table 8. pMLP sequencing primers. Forward and reverse primers used for sequencing of 

entire pMLP vectors are listed with their 5’ to 3’ sequences and nucleotide (nt) length.  
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2.1.12.3. Linearisation of pMLP vectors 

To increase efficiency of viable plasmid DNA integration into the host genome, the 

pMLP-Aα WT, pMLP-Bβ and pMLP-γ vectors were linearised at a restriction site 

located within the Ampicillin resistance gene to ensure that recombination occurred 

outside of the Aα, Bβ and γ chain open reading frames. Restriction digestion reagents 

were supplied by New England Biolabs. Plasmid DNA (30 µg) was digested with 50 U 

PvuI restriction enzyme in a 35 µl reaction mix containing 10X Buffer 3, 100X BSA and 

ultrapure H2O for 3 hours at 37°C.  

2.1.12.4. Agarose gel electrophoresis and gel extraction 

Linearised pMLP vectors were separated on a 1 % agarose gel using the method 

outlined in section 2.1.8.7. Relevant bands were excised from the gel and DNA was 

extracted using a QIAquick Gel Extraction Kit (QIAGEN), as per the manufacturer’s 

instructions. In brief, agarose bands were dissolved in a supplied buffer (Buffer QG) 

with an equal volume of isopropanol, and each applied to a spin column that binds the 

DNA. The bound DNA was washed with Buffer PE. Additional wash steps were 

included to remove contaminants and promote purity of DNA samples. The DNA was 

eluted from the columns in 30 µl ultrapure H2O and the concentration determined using 

a NanoDrop ND-1000 spectrophotometer at A260 nm. 

2.1.12.5. Transfection of pMLP-Bβ into CHO cells 

Linearised pMLP-Bβ (10 µg) was transfected into new, untransfected CHO cells using 

protocol 2.1.9. A pSELECT-neo selection vector (Source BioScience) (1µg) was 

co-transfected to confer resistance to G418. On day 3, transfected cells were split into 

varying dilutions and re-plated straight into 10 ml selection medium containing G418 

[700 µg/ml]. Selection pressure was applied until the appearance of large healthy 

colonies, which were selected and transferred to 2 x 60 mm dishes per clone in 

selection medium. As individual fibrinogen chains are not secreted, expression of the 

Bβ chain in 12 selected clones was compared by reverse transcription of cellular RNA 

and real-time PCR. 

2.1.12.6. Reverse transcription of CHO-Bβ RNA 

Ribonucleic acid was extracted from CHO-Bβ clones according to method 2.1.11.3 and 

was reverse transcribed using an Applied Biosystems High Capacity cDNA Reverse 

Transcription Kit (Life Technologies). Template RNA was diluted to 200 ng/µl in 

RNase-free H2O and reactions were set up with 2 µl 10X buffer, 0.8 µl 25X dNTP mix, 
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2 µl 10X RT primers (random), 10 µl template RNA [100 ng/µl], 1 µl MultiScribe reverse 

transcriptase and 4.2 µl RNase-free H2O up to a 20 µl total volume. Reactions were 

held at 25°C for 10 minutes, 37°C for 120 minutes and 85°C for 5 minutes in a 

PTC-200 thermal cycler before proceeding to real-time PCR. 

2.1.12.7. Real-time PCR with CHO-Bβ cDNA 

Reverse transcribed cDNA was amplified by quantitative real-time PCR using SYBR 

Green I. This dye binds to any double stranded DNA, resulting in emission of a 

fluorescence signal which follows a sigmoidal trend during the reaction. The point at 

which the fluorescence of a given reaction exceeds a cycle threshold value (Ct) reflects 

the relative amount of cDNA template. This Ct value can be used to calculate 

fold-differences in expression after normalisation to the Ct value of an internal control – 

an endogenous housekeeping gene – and a reference sample.   

Primers were designed to amplify the following templates reverse transcribed from 

Chinese hamster RNA i) fibrinogen Bβ chain cDNA and ii) glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) cDNA, to be used as an internal control (method 2.1.11.4; 

table 9). Reverse transcription reactions were diluted 1:10 in RNase-free H2O before 

preparing PCR reactions, each with 10 µl Light Cycler 480 SYBR Green I Master Mix 

(Roche, Switzerland), 1 µl each of forward and reverse primers [0.2 µM], 2 µl pre-

diluted cDNA template and 6 µl RNase-free H2O to a 20 µl total volume. Each template 

was analysed with triplicate reactions. A Light Cycler 480 Instrument (Roche) was used 

for thermal cycling and quantification of SYBR green fluorescence over 40 cycles with 

the conditions detailed below: 

1. Activation 95°C 5 minutes 

2. Amplification 

a. Denaturation 95°C 10 seconds 

b. Annealing 55°C 20 seconds 

c. Extension 72°C 30 seconds 

A melting curve was included at the end of each PCR experiment to distinguish 

between specific amplification products and any non-specific products such as primer 

dimers. Reactions were held at 95°C for 30 seconds and 45°C for 1 minute before 

increasing the temperature up to 97°C at a rate of 0.11°C per second, with 5 

fluorescence data acquisitions for every +1°C. Finally, samples were cooled to 40°C for 

10 seconds. 

x 40 
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Light Cycler 480 Software (Version 1.5) (Roche) was used for calculation of Ct values 

and melting curve analysis. Real-time PCR data for fibrinogen β chain expression was 

analysed using the ∆Ct method, whereby ∆Ct is the experiment Ct value normalised to 

that of the endogenous housekeeping gene, GAPDH (Ctexperiment - Ctcontrol = ∆Ct). The 

relative expression level in each clone was compared using a 2-∆Ct calculation. 

 

Primer Sequence (5’ to 3’) Length (nt) Tm (°C) % GC 

FGB Forward AGGAGGGTTTCTTCAGTGCC 20 59.60 55 

FGB Reverse GCTTCTGCCTCTTTTGCCAC 20 60.04 55 

GAPDH Forward GCTTCTGCCTCTTTTGCCAC 20 59.96 55 

GAPDH Reverse GCTTCTGCCTCTTTTGCCAC 20 60.03 60 

 

 

 

2.1.12.8. Co-transfection of pMLP-Aα and pMLP-γ into CHO-Bβ cells 

Linearised pMLP-Aα WT and pMLP-γ vectors (10 µg each) were co-transfected into the 

selected CHO-Bβ cell line, along with pSELECT-zeo-mcs selection vector (Source 

BioScience) (2 µg) for resistance of transfected cells to antibiotic zeocin. Refer to 

section 2.1.9 for details of the transfection method. After splitting and diluting cells (day 

3), they were re-plated into selection medium containing G418 [700 µg/ml] and zeocin 

[200 µg/ml]. As no colonies survived selection, the concentration of zeocin was 

optimised as described below. The transfection was then repeated using the optimal 

zeocin concentration. 

2.1.12.9. Transfection of pSELECT-zeo-mcs into CHO cells and optimisation of 

zeocin concentration for selection 

Selection vector pSELECT-zeo-mcs was transfected (1 µg) into CHO cells using the 

CaPO4 precipitation method (method 2.1.9), with the aim of optimising zeocin 

concentration in selection medium for effective selection pressure. Two days post-

transfection, cells were trypsinised, diluted 1:20 and 1:40 and re-plated in selection 

medium containing three different concentrations of zeocin: 50 µg/ml, 100 µg/ml and 

Table 9. Real-time PCR primers for analysis of fibrinogen Bβ chain expression in CHO 

cells. Forward and reverse primer sequences for amplification of fibrinogen Bβ chain (FGB) and 

GAPDH cDNA are displayed with nucleotide (nt) length, Tm and GC content. 
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150 µg/ml. Medium was replaced with fresh selection medium every 2-3 days until 

colony formation. 

2.1.13. Recombinant fibrinogen expression in Expi293F cells 

Due to difficulties with expression of fibrinogen variants in CHO cells, an alternative 

Expi293TM expression system (Life Technologies) was employed for expression of 

recombinant fibrinogen. This system involves transient transfection of non-adherent 

Expi293F cells, which have been isolated from a human embryonic kidney (HEK) 293 

cell line by selecting for cells with a higher protein productivity. These cells can also be 

seeded at high density for maximal transfection efficiency and protein expression. The 

expression system includes optimised lipid-based transfection reagent ExpiFectamine 

and transfection enhancers, as well as Expi293 expression medium to support high 

density suspension cultures with serum-free conditions. All reagents were purchased 

from Life Technologies unless otherwise stated. 

2.1.13.1. Counting cells with a haemocytometer 

Cultured cells were counted using a haemocytometer chamber and trypan blue dye. 

First, the apparatus was cleaned with 70 % ethanol and the coverslip was moistened 

with water to affix to the haemocytometer. Trypan blue is a “vital stain”, which is 

excluded from healthy cells and selectively taken up by dead cells. After thorough 

mixing, an aliquot of cells was removed from a cell suspension and diluted with trypan 

blue. Ten microliters of this mixture were pipetted into either side of the 

haemocytometer, in between the coverslip and chamber. The haemocytometer was 

viewed under a CKX41 inverted optical microscope (OLYMPUS, Japan) with a 10X 

objective lens. Cells inside both central grids, including boundaries, were counted using 

a hand tally counter and averaged. The haemocytometer is designed such that, when 

the coverslip is in place, each grid has a volume of 1 mm3 (0.1 µl). Hence, the number 

of cells in the starting culture was calculated using the equation below, where d = 

dilution factor, c = average number of cells within the grid, and v = the original volume 

of suspension or culture containing the cells (ml): 

Total number of cells = dcv x 104 

2.1.13.2. Transient transfection of pMLP-Aα, -Bβ and –γ vectors into Expi293F 

cells 

For transfection of pMLP-Aα, -Bβ and –γ constructs, viable cells were counted using a 

haemocytometer chamber and the trypan blue (Sigma-Aldrich) dye exclusion method 
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as detailed above. Cells were seeded at a density of 2.0 x 106 viable cells/ml culture in 

Expi293 expression medium and cultured in suspension in a 125 ml spinner flask at 

37°C, 8 % CO2 with gentle stirring. Cell density and viability were monitored again the 

following day to ensure the cells were in excess of 3.0 x 106 cells/ml with greater than 

95 % overall viability in order to proceed with transfection. For a 30 ml transfection 

culture, a volume of culture containing 7.5 x 107 cells was added to a new flask and 

made up to 25.5 ml with Expi293 expression medium. Each plasmid DNA (10 µg) was 

diluted in OptiMEM I reduced serum medium (Life Technologies) to a final volume of 

1.5 ml. Eighty microliters of ExpiFectamine293 transfection reagent were also diluted in 

OptiMEM I medium to a final volume of 1.5 ml and both mixes were incubated at room 

temperature for 5 minutes. The diluted DNA and ExpiFectamine293 were combined, 

mixed gently and incubated at room temperature for 30 minutes to allow DNA-

ExpiFectamine293 complex formation; the mixture (3ml) was then added to the flask 

containing Expi293F cells for transfection. Cells were incubated on a stirrer at 37°C, 

8 % CO2 for approximately 16-18 hours. Following incubation, 150 µl 

ExpiFectamine293 Transfection Enhancer 1 and 1.5 ml ExpiFectamine293 

Transfection Enhancer 2 were added to the flask, giving a final volume of 30 ml. The 

transfected culture was then incubated on a stirrer at 37°C, 8 % CO2 for 7 days and an 

aliquot of cell suspension was removed on days 3, 5 and 7 for analysis of protein 

expression. Harvested aliquots were centrifuged at 14,000 x g for 10 minutes in a 

bench top centrifuge (Eppendorf MiniSpin Plus) to pellet cells; medium supernatant 

was transferred to a clean 1.5 ml tube, mixed with protease inhibitor cocktail (Sigma-

Aldrich) (1:500) and stored at -20°C.  

On day 7, the remaining 27 ml cell suspension was harvested by centrifugation at 

400 x g for 10 minutes, 4°C (Eppendorf Centrifuge 5702 R). Medium supernatant was 

transferred to a separate tube and pelleted cells were resuspended in 10 ml Dulbecco’s 

PBS (Life Technologies), re-pelleted at 400 x g for 10 minutes at 4°C, snap-frozen on 

liquid nitrogen and stored at -80°C. Protease inhibitor cocktail (1:500), phosphatase 

inhibitor cocktail 2 (Sigma-Aldrich) (1:1000) and phosphatase inhibitor cocktail 3 

(Sigma-Aldrich) (1:1000) were added to the medium to prevent proteolytic degradation 

and loss of phosphate from fibrinogen. The medium was then centrifuged at 4,600 x g 

for 15 minutes, 4°C (Hettich Rotanta 460R) and the supernatant filtered through a 

0.22 µm bottle top filter. Filtered medium was snap-frozen on liquid nitrogen and stored 

at -80°C. 
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2.1.13.3. Analysis of harvested Expi293 medium 

Aliquots of medium removed on days 3, 5 and 7 were first of all analysed for fibrinogen 

content by ELISA according to method 2.1.2. Medium was diluted 1/10, 1/50, 1/100, 

1/200 and 1/400, and added to a 96-well microtiter plate in duplicate. A Calbiochem® 

fibrinogen standard curve ranging from 0-1 µg/ml was used to determine the 

concentration of fibrinogen in each sample. The integrity of secreted fibrinogen in 

medium samples was verified by reducing SDS-PAGE and western blotting with a 

polyclonal anti-fibrinogen antibody (methods 2.1.4 and 2.1.6). Prior to SDS-PAGE, the 

medium was concentrated 4X using an Amicon Ultra-0.5 Centrifugal Filter Unit 

(Millipore) with a 100 kDa MWCO; the membrane was washed twice with 500 µl 20 mM 

Hepes by centrifugation at 14,000 x g in a bench top centrifuge (Eppendorf MiniSpin 

Plus) before concentrating 400 µl of media to 100 µl in the same way. 

2.1.13.4. Cloning of fibrinogen Aα, Bβ and γ chain cDNA into pmaxCloning 

Expression of recombinant fibrinogen in Expi293F cells was successful, but the yield of 

fibrinogen was still low. In attempt to enhance expression levels, the Aα, Bβ and γ 

chain open reading frames from the pMLP vectors were cloned into a new vector – 

pmaxCloning (pmC) (figure 13) – kindly provided by Dr Paul Cordell, University of 

Leeds. The pmC vector contains a cytomegalovirus (CMV) promoter which enables 

high protein expression and is optimal for the Expi293 expression system. The cloning 

process involved i) introducing restriction sites into PCR-amplified fragments containing 

the Aα, Bβ and γ chain open reading frames, ii) restriction digestion of purified PCR 

fragments and pmC, iii) ligation of PCR fragments with the pmC vector and iv) 

amplification of ligated pmC-Aα, -Bβ and –γ vectors in E. Coli and isolation using a 

QIAprep Maxi-prep Kit for transfection. 
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2.1.13.4.1. Polymerase chain reaction: introducing restriction sites 

Due to incompatibility between restriction sites in the pMLP vectors and the multiple 

cloning site of pmaxCloning, new restriction sites were introduced either side of Aα, Bβ 

and γ chain cDNA fragments; fragments containing the desired restriction sites were 

amplified from pMLP by PCR using the primers listed in table 10. Forward and reverse 

A 

Figure 13. pmaxCloning. A) Vector map.  The pmaxCloning vector contains the immediate 

early promoter of cytomegalovirus (PCMV IE) for high protein expression, a chimeric intron 

which enhances gene expression, a multiple cloning site (MCS) and an SV40 late mRNA 

polyadenylation (poly(A)) signal. In the opposite orientation, the vector contains an origin of 

replication, as well as a kanamycin resistance (KanR) gene and its promoter for bacterial 

cloning. Restriction sites within the MCS used for insertion of fibrinogen Aα, Bβ and γ cDNA 

(HindIII, EcoRI, BamHI, NotI) are indicated on the map. B) Multiple cloning site. The 102 bp 

MCS sequence is shown with sequence recognition motifs for restriction enzymes used to insert 

fibrinogen Aα, Bβ and γ cDNA highlighted in red and specific cleavage sites indicated by arrows 

(▲). 

GGTACCGCCATCATGAAGTTTAAACAAGCTTGAATTCTCTAGAGATATCCTG 

 

CAGAGATCTGGATCCCTCGAGGCTAGCGCGGCCGCGTTTAAACAGAGCTC 

Hind III 
B 

Eco RI 

Bam HI Not I 
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primers were designed to be complementary to regions either side of the start and stop 

codons respectively, with a short sequence outside of the open reading frame 

substituted with the chosen restriction site. Criteria for selection of appropriate 

restriction sites included confirmation by restriction mapping that sites were unique 

within the whole vector, as well as maximal compatibility with the original sequence to 

promote primer annealing. Primers were between 30 and 40 bp long with a GC content 

of 40-60 % and a Tm close to 70°C; the annealing temperature during PCR was set to 

5°C below the Tm of the primers. Custom primers were purchased from Life 

Technologies. 

Polymerase chain reaction was carried out using an Expand High Fidelity PCR System 

(Roche, UK). Primers were diluted to 10 µM and pMLP-Aα (WT, S3N and S345N), 

pMLP-Bβ and pMLP-γ vectors were diluted to 100 ng/µl, all in molecular grade H2O. 

Each reaction consisted of 1 µl template DNA (100 ng), 5 µl 10X buffer with MgCl2, 1 µl 

dNTP mix [200 µM], 1.5 µl each of forward and reverse primers [0.3 µM], 1 µl enzyme 

mix and 39.2 µl molecular grade H2O up to a final volume of 50 µl.  Reactions were 

prepared and mixed in PCR tubes and subjected to the following thermal cycling 

conditions in a PTC-200 thermal cycler: 

1. Initial denaturation 94°C 2 minutes 

2. Denaturation 94° 15 seconds 

3. Annealing 64°C (Aα and γ) or 67°C (Bβ) 30 seconds 

4. Elongation 72°C 2 minutes 

5. Denaturation 94°C 15 seconds 

6. Annealing 64°C (Aα and γ) or 67°C (Bβ) 30 seconds 

7. Elongation 72°C 2 minutes + 

  5 seconds/cycle 

8. Final elongation 72°C 7 minutes 

 

 

 

 

 

 

x 10 

x 20 
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2.1.13.4.2. Polymerase chain reaction product purification 

On completion of PCR reactions, PCR products were purified using a QIAquick PCR 

Purification Kit (QIAGEN), following the manufacturer’s instructions. In brief, five 

volumes of Buffer PB (250 µl) were mixed with one volume of PCR sample (50 µl), 

added to a QIAquick spin column and centrifuged at 14,000 x g for 1 minute in a bench 

top centrifuge (Eppendorf MiniSpin Plus) for binding of the DNA to the membrane. The 

flow-through was discarded and the QIAquick column was washed with 3 x 750 µl 

Buffer PE by centrifugation at 14,000 x g for 1 minute each time. After discarding flow-

through, the column was centrifuged for an additional 1 minute to remove residual 

buffer and placed in a clean 1.5 ml tube. To elute DNA, 30 µl molecular grade H2O was 

added directly to the membrane and left to stand for 1 minute before a final 

centrifugation step at 14,000 x g for 1 minute. The concentration of purified DNA was 

determined at A260 nm using a NanoDrop ND-1000 spectrophotometer and samples 

were stored at -20°C until restriction digestion. 

Primer Sequence (5’ to 3’) 
Length 

(nt) 

Tm 

(°C) 

Aα forward 

+ HindIII 
CCAGCCCCA/AGCTTAGAAAAGATGTTTTCCATGAGG 36 70.1 

Aα reverse  

+ NotI 
GAATTGCGGCC/GCCCATTTAACTTAGTCTAGGG 33 70.2 

Bβ forward 

+ EcoRI 
TGCGCCGCTCTCGAGTG/AATTCTCGACATGAAAAGA 36 73.1 

Bβ reverse 

+ NotI 
AATTGCGGCC/GCCCGTATTGGGGACTATTG 30 72.2 

γ forward + 

EcoRI 
CCCGGG/AATTCAGACATCATGAGTTGGTCCTTG 33 69.8 

γ reverse + 

BamHI 
CTCTTTGGATC/CGGTCTTTTAAACGTCTCCAGC 33 68.6 

Table 10. PCR primers used to introduce restriction sites either side of fibrinogen Aa, Bβ 

and γ cDNA fragments. 5’ to 3’ primer sequences are displayed with restriction sites 

highlighted in red and start/stop codons underlined, as well as nucleotide (nt) length and Tm of 

each primer. 
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2.1.13.4.3. Double digestion of PCR products and pmaxCloning 

The PCR-amplified Aα, Bβ and γ chain cDNA fragments were double digested with the 

relevant restriction enzymes: Aα chain fragments with HindIII and NotI (high fidelity), 

the Bβ chain fragment with EcoRI and NotI (high fidelity), and the γ chain fragment with 

EcoRI and BamHI. The pmaxCloning vector was also digested with each pair of 

restriction enzymes to enable sticky-end ligation of fragments into vector. Restriction 

digestion reagents were supplied by New England Biolabs. For both fragment and 

pmaxCloning digestion, 4 µg DNA was mixed with 30 U of each required enzyme, 10X 

buffer 2 or buffer 4 (determined using the online Double Digest Finder tool by New 

England Biolabs), BSA [100 µg/ml] and molecular grade dH2O up to a final volume of 

30 µl. Reactions were incubated at 37°C for 3 hours. Digested DNA products were 

purified from the reaction mix by agarose gel electrophoresis and gel extraction 

(method 2.1.12.4). The DNA yield was determined at A260 nm using a NanoDrop ND-

1000 spectrophotometer. 

2.1.13.4.4. Ligation of Aα, Bβ and γ cDNA fragments with pmaxCloning 

Ligation was performed using a 1:3 ratio of vector to insert, with 100 ng total DNA per 

reaction. Fragments and vectors were diluted to a concentration 25 ng/µl and, for each 

reaction, 1 µl vector was mixed with 3 µl fragment DNA, 10X DNA ligase buffer 

(Promega, USA), 1 U T4 DNA ligase (Promega) and molecular grade dH2O up to a 

final volume of 20 µl. Reactions were incubated at 4°C for 16 hours before 

transformation into XL-1 blue cells (1 µl in 50 µl cells) the following day (method 

2.1.8.3). Plasmids were purified from selected colonies using a QIAprep Maxi-Prep kit 

(method 2.1.8.5) and quantified by measuring absorbance at A260 nm with a NanoDrop 

ND-1000 spectrophotometer. Plasmid size and integrity were verified by restriction 

digestion with EcoRI (method 2.1.8.6) and agarose gel electrophoresis with 

Hyperladder I (200-10,000bp; Bioline) (method 2.1.8.7). Annotated vector maps of the 

new fibrinogen Aα, Bβ and γ chain expression constructs – named pmC-Aα WT or 

S345N, pmC-Bβ and pmC-γ – are displayed in figure 14. 

2.1.13.4.5. Transient transfection of pmC-Aα, -Bβ and –γ vectors into CHO 

cells 

To test the viability of the new pmC constructs prior to transfection into Expi293F cells, 

each vector was transiently transfected into CHO cells by CaPO4 precipitation (method 

2.1.9) and the cells were assayed for fibrinogen Aα, Bβ or γ chain expression by lysis 

and western blotting (methods 2.1.11.1 and 2.1.6 respectively). For each vector, 10 µg 
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plasmid DNA was transfected individually, in the absence of selection vector, into 

untransfected CHO cells, subjected to osmotic shock and assayed 48 hours post-

transfection. Cells lysate (20 µl) was mixed with 10X reducing agent, 4X LDS sample 

buffer and dH2O in a 40 µl total volume and subjected to SDS-PAGE and western 

blotting. Blots were probed for fibrinogen using a polyclonal anti-rabbit primary antibody 

and goat anti-rabbit HRP secondary antibody (table 3). 

2.1.13.4.6. Transient transfection of pmC-Aα, -Bβ and –γ vectors into 

Expi293F cells 

Following confirmation of successful expression of individual fibrinogen chains in CHO 

cells using the pmC-Aα, Bβ and γ vectors, transfection of Expi293F cells with the WT 

vectors was carried out, as well as with pmC-Aα S345N, -Bβ and -γ for expression of 

the Ser345 variant (method 2.1.13.2). Secreted fibrinogen was analysed according to 

method 2.1.13.3; briefly, the fibrinogen was visualised by SDS-PAGE and western 

blotting, while the concentration in medium harvested on day 7 was determined by 

ELISA to establish whether there is increased fibrinogen expression using the pmC 

vectors compared to the pMLP vectors. 
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Figure 14. pmC-Aα, -Bβ and -γ vector maps. The vector maps show the pmaxCloning (pmC) vector with fibrinogen Aα, Bβ or γ chain cDNA inserts in the multiple 

cloning site. Strong, constitutive expression of these polypeptide chains is driven by the upstream cytomegalovirus promoter (PCMV IE). The restriction sites used to 

insert the cDNA fragments (HindIII, NotI, EcoRI and BamHI) are indicated on each map.  



 

86 

2.2. Functional studies with fibrinogen phosphorylation isoforms 

As an alternative approach to expression of variant fibrinogen, the naturally occurring 

20-25 % degree of fibrinogen phosphorylation in plasma was exploited, using 

chromatography to enrich the phosphorylated fraction. Fibrinogen phosphorylation 

isoforms were then compared in several functional assays to determine the effect of 

phosphorylation on FXIII cross-linking activity, plasmin digestion, α2-antiplasmin 

incorporation and fibrin clot structure. 

2.2.1. Preparation of fibrinogen phosphorylation isoforms 

2.2.1.1. Purification of commercial fibrinogen 

Calbiochem® human fibrinogen from plasminogen-depleted plasma was purified by 

ammonium sulphate precipitation (AP-fibrinogen) (Smith et al., 2011); this was kindly 

provided by Dr Kerrie Smith, University of Leeds for use in chromatography and 

functional experiments. Calbiochem® fibrinogen was also purified by IF-1 affinity 

chromatography using an ÄKTA avant 25 system (GE Healthcare), and dialysed 

against TBS-1 pH 7.4, following the same process as that used for purification of 

recombinant fibrinogen (section 2.1.3). Coming from the same source, both of these 

fibrinogen samples were confirmed to have a 25 % degree of phosphorylation, using 

the malachite green assay as described below.  

2.2.1.2. Malachite green assay 

A malachite green assay was used to determine the degree of fibrinogen 

phosphorylation in purified samples of fibrinogen. Phosphate standards were prepared 

by diluting appropriate volumes of a stock solution of potassium dihydrogen phosphate 

(KH2PO4) in TBS-1 pH 7.4 to a 300 µl volume, giving a final concentration range of 

0-5 µM KH2PO4 (0-1000 pmol phosphate). An equivalent volume of fibrinogen sample 

at 3 µM was also prepared. For alkaline hydrolysis of protein-bound phosphate, 40 µl of 

8 M sodium hydroxide were added to each standard and fibrinogen sample before 

heating to 95˚C for 15 minutes. Samples were cooled and centrifuged (Eppendorf 

MiniSpin Plus), mixed with 120 µl 5 M hydrochloric acid and incubated on ice to 

encourage precipitation of proteins. Precipitate was removed by centrifugation at 

20,000 x g, 4˚C for 15 minutes in a bench-top centrifuge (Jouan MR1822). Each 

standard and fibrinogen sample was added to a 96-well microtiter plate in duplicate, 

with 200 µl per well. Finally, 100 µl Malachite Green Solution A (Millipore) was added to 
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each well and the absorbance measured at 630 nm after 10, 20 and 30 minutes using 

an ELx808 Absorbance Microplate Reader. Ammonium molybdate in Malachite Green 

Solution A reacts with free inorganic phosphate (Pi) under acidic conditions (H+), 

yielding an intermediate which reacts with malachite green and causes a colour change 

from yellow to green: 

1. Pi   +   (NH4)2MoO4    
H+

→    H3PMo12O40 

 

2. H3PMo12O40   +    HMG
2+    

H+

→    (MG+)(H2PMo12O40)   +    2H
+ 

 

 

 

2.2.1.3. Anion exchange chromatography 

Anion exchange chromatography was employed for the separation of phosphorylated 

and non-phosphorylated fibrinogen molecules using AP-fibrinogen. Anion exchange 

was the method of choice because, with a pI of approximately 5.6, fibrinogen has a net 

negative charge at physiological pH. Figure 15 illustrates the relationship between pH 

and the net charge of a protein at pH values exceeding the pI. Protein phosphorylation 

causes a shift to a more acidic pI due to alteration of the net charge by the negatively 

charged phosphate groups. By this principle, phosphorylated proteins bind a positively 

charged matrix with higher affinity than their non-phosphorylated counterparts and will 

therefore elute later upon application of a buffer gradient with increasing ionic strength.  

 

 

 

 

 

 

 

 

Ammonium molybdate 

Malachite Green 
(Yellow, λmax 446nm) 

 (Green, λmax 640nm) 

Figure 15. The relationship between pH and net charge of a protein. At pH values above 

the isoelectric point (pI), proteins have a net negative charge and can therefore be manipulated 

by anion exchange chromatography. 
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Separation of phosphorylated and non-phosphorylated fibrinogen was performed using 

an ÄKTA prime chromatography system with three connected 1 ml HiTrap 

Diethylaminoethanol (DEAE) Sepharose Fast Flow columns (GE Healthcare). For the 

first run, the columns were equilibrated with 10 ml 20 mM Tris-hydrochloride (HCl) pH 

8.0 before injection of 1 ml AP-fibrinogen diluted to 2 mg/ml in equilibration buffer. A 

flow rate of 1 ml/min was used throughout. After sample addition, 0.5 ml fractions were 

collected for the remainder of the method. A further 10 ml equilibration buffer was 

passed through the column before applying a concentration gradient of 1 M sodium 

chloride (NaCl), increasing from 0-100 % over a 20 ml volume, diluted with equilibration 

buffer. Finally, the column was washed with 30 ml equilibration buffer. Fractions 

corresponding to elution peaks were pooled, concentrated using Vivaspin 20 

concentrators (100 kDa MWCO) and analysed for the presence of fibrinogen by SDS-

PAGE (method 2.1.4).  

Various parameters were optimised from the initial method to promote separation and 

resolution. Initially, the pH of the equilibration buffer was lowered to pH 6.8, closer to 

the pI of fibrinogen. Gradient time was increased from 20 ml (6.7 CV) to 90 ml (30 CV), 

and then further to 180 ml (60 CV), while binding flow rate was decreased to 

0.2 ml/min, collecting 2 ml fractions. Fibrinogen from each peak was pooled separately 

and dialysed overnight against TBS-1 pH 7.4 using dialysis tubing (10 mm) with a 

12 kDa MWCO (Sigma-Aldrich) (method 2.1.3.3). The malachite green assay (method 

2.2.1.2) was used to measure the degree of phosphorylation of fibrinogen from each 

peak. Despite optimisation, there was still insufficient separation of phosphorylated and 

non-phosphorylated fibrinogen using this method; therefore, alternative approaches 

were sourced and tested. 

2.2.1.4. Phos-tag™ affinity chromatography 

As an alternative method for the chromatographic separation of phosphorylated 

fibrinogen from non-phosphorylated fibrinogen, Phos-tag™ Agarose (400 µl) (figure 18; 

section 2.3.4) was purchased from Alpha Laboratories, UK and packed into an empty 

Tricorn 5/50 High Performance Column (GE Healthcare) with two adaptors, giving a 

final bed volume of 0.353 µl. Refer to section 2.3.4 for information on Phos-tag™. 

Chromatography was performed using an ÄKTA avant 25 system (GE Healthcare), 

following a protocol described by Kinoshita et al. (2005), which was adapted to 

encourage binding of phosphorylated fibrinogen to the Phos-tag™ Agarose. Alterations 

to the method included reduction of binding flow rate from 0.25 ml/min to 0.1 ml/min 

and alteration of the elution buffer composition; phosphorylated fibrinogen was eluted 

with 50 mM EDTA rather than NaH2PO4, as trace amounts remaining after dialysis 
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interfered with the highly sensitive malachite green assay. See Appendix 1 for buffer 

compositions. The amount of fibrinogen loaded per run was also optimised to give 

sufficient yield of phosphorylated fibrinogen after elution.  

The final optimised method was as follows. Firstly, the storage buffer was removed with 

15 CV of wash buffer at a flow rate of 0.5 ml/min. The column was then equilibrated 

with 30 CV of equilibration buffer, followed by 2 CV of binding buffer, both at 

0.5 ml/min. Fibrinogen (4 mg) was diluted in binding buffer to a 2.5 ml volume and was 

loaded at a flow rate of 0.1 ml/min, collecting 0.5 ml fractions. Phosphorylated 

fibrinogen was eluted by applying a gradient from 0-100 % elution buffer diluted with 

filtered dH2O over 20 CV at 0.25 ml/min, again collecting 0.5ml fractions. Finally, a 

second wash step was performed with 5 CV wash buffer at 0.5 ml/min, followed by 5 

CV storage buffer at 0.5 ml/min. The fibrinogen concentration in each fraction was 

measured at A280 nm using the ÄKTA avant with Unicorn 6 control software and a 

NanoDrop ND-1000 spectrophotometer with extinction coefficient 1.51. Flow through 

and elution peaks were pooled, concentrated to 200 µl using Vivaspin concentrator 

tubes (100 kDa MWCO) and dialysed against TBS-1 pH 7.4 using a Slide-A-Lyzer Mini 

Dialysis Unit with a 7 kDa MWCO (Thermo Scientific). A maximum of 100 µl fibrinogen 

was added to each unit and dialysed for 2 hours at 4°C with gentle stirring, followed by 

an additional hour with fresh TBS-1. Fibrinogen was stored at -80°C until use and the 

degree of fibrinogen phosphorylation in each peak, as well as control fibrinogen, was 

analysed using the malachite green assay (method 2.2.1.2). This method yielded two 

fibrinogen samples for use in functional investigations: 13 % phosphorylated and 33 % 

phosphorylated. 

2.2.1.5. Dephosphorylation of fibrinogen 

Dephosphorylation of fibrinogen was performed according to the method detailed by 

Kinoshita et al. (2005). Calbiochem® fibrinogen was dissolved in 50 mM Tris pH 9.0 to 

a concentration of approximately 8 mg/ml. The dephosphorylation reaction mix was 

prepared with 6 mg fibrinogen, 405 U bovine intestinal alkaline phosphatase (Sigma-

Aldrich), MgCl2 [400 µM] and 50 mM Tris pH 9.0 to a final volume of 3 ml. The reaction 

was incubated overnight at 37°C. Fibrinogen was purified from the reaction mix by IF-1 

affinity chromatography (method 2.1.3.2) using an ÄKTA avant 25 system, 

concentrated by centrifugation using Vivaspin concentrator tubes (100 kDa MWCO) 

and dialysed against TBS-1 pH 7.4 using a Slide-A-Lyzer Mini Dialysis Unit (7 kDa 

MWCO), as explained in method 2.2.1.4. Dephosphorylated fibrinogen was stored at -

80°C. Removal of phosphate was confirmed by malachite green assay (method 

2.2.1.2). 
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2.2.1.6. Fibrinogen samples for functional studies 

As previously mentioned, Calbiochem® fibrinogen was purified by IF-1 affinity 

chromatography using an ÄKTA avant 25 system, and the degree of phosphorylation 

determined by malachite green assay (method 2.2.1.2). This fibrinogen was used as 

the control sample in functional assays, representing physiological phosphorylation 

levels (25 %). The two fibrinogen samples from Phos-tag™ affinity chromatography 

(13 % and 33 % phosphorylation) and dephosphorylated fibrinogen were also used in 

subsequent functional assays. 

2.2.2. Biotin-pentylamine (lysine donor) incorporation FXIII-A activity assay 

The effect of phosphate on FXIII cross-linking of lysine analogue pentylamine to 

glutamine acceptor residues within fibrinogen was examined by comparison of 

phosphorylated (13 %, 25 % and 33 %) and dephosphorylated fibrinogen samples. The 

FXIII-A activity assay was performed in accordance with the method outlined in section 

2.1.7.2 with triplicates of each sample. In both assays, the FXIII-A-mediated 

incorporation of lysine donor 5-(biotinamido) pentylamine to the phosphorylation 

isoforms was compared at 0, 5, 10, 15, 20 and 25 minutes. The experiment was 

repeated to give three independent data sets. 

2.2.3. Plasminogen binding assay 

A 96-well microtiter plate was coated with 100 µl per well of phosphorylated (13 %, 

25 % and 33 %) and dephosphorylated fibrinogen in triplicate at 40 µg/ml in 50 mM 

sodium carbonate (Na2CO3) pH 9.6 and incubated at 4°C overnight. The wells were 

washed with 3 x 300 µl TBS-4-Tween 20 pH 7.4 (Appendix 1) and blocked with 300 µl 

per well of 3 % (w/v) BSA-TBS-4-Tween 20 for 90 minutes at 37°C. The plate was 

washed with 3 x 300 µl TBS-4-Tween 20 and 100 µl per well of plasminogen was 

added at increasing concentrations from 3.75 to 240 nM, diluted in TBS-4 pH 7.4 

(Appendix 1). Plasminogen was incubated in the plate for 1 hour at 37°C before 

washing 3 x 300 µl TBS-4-Tween 20. To detect bound plasminogen, 100 µl per well of 

goat anti-human plasminogen HRP antibody (Enzyme Research Laboratories) diluted 

1/2000 in 1 % (w/v) BSA-TBS-4-Tween 20 was added for 1 hour at 37°C. Finally, the 

plate was washed 3 x 300 µl TBS-4-Tween 20 and developed using OPD substrate as 

previously described (section 2.1.2). Absorbance at 490 nm was measured with a 

Dynex MRX-TC plate reader. Three independent experiments were performed. 
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2.2.4. Plasmin digestion time course experiment by SDS-PAGE 

An initial plasmin digestion experiment was carried out to optimise the concentration of 

plasmin needed to digest 10 µg fibrinogen in 40 minutes. A concentration range of 

plasmin from 27.5 to 440 nM was tested to find the lowest concentration that could give 

sufficient digestion of fibrinogen into X, Y and D fragments. Fibrinogen [1.1 µM; 

374 µg/ml] and plasmin (Enzyme Research Laboratories) were diluted in TBS-1 pH 7.4 

to a final volume of 27 µl and incubated at 37°C for 40 minutes. Reactions were 

stopped by addition of 9 µl 4X LDS sample buffer to denature proteins, and analysed 

by non-reducing SDS-PAGE (method 2.1.4 without reducing agent). The optimal 

concentration of plasmin was found to be 220 nM (18.3 µg/ml) (section 3.2.2.4). The 

experiment was repeated using 220 nM plasmin at different time points, from 

0-40 minutes in 5 minute intervals. As fibrinogen was almost completely digested within 

5 minutes, the time course was shortened from 40 to 4 minutes, with 30 second 

intervals. To determine the influence of phosphorylation on plasmin-mediated 

fibrinogen digestion, the above method was used for digestion of phosphorylated 

(13 %, 25 % or 33 %) and dephosphorylated fibrinogen samples. After non-reducing 

SDS-PAGE, bands corresponding to fibrinogen fragments Y (145 kDa) and D1 

(92 kDa) were analysed by densitometry using ImageJ 1,23y image analysis software 

(National Institutes of Health, USA), normalising the intensity of each band to total 

protein in the lane. 

2.2.5. α2-antiplasmin incorporation assay 

A 96 well microtiter plate was coated with 100 µl per well of phosphorylated (25 %, 

13 %, 33 %) and dephosphorylated fibrinogen, each in triplicate, at 80 µg/ml in TBS-2 

pH 7.4 (Appendix 1) for 40 minutes at room temperature. The plate was washed with 3 

x 300 µl TBS-2 and incubated overnight at 4°C with 300 µl per well of 3% (w/v) BSA-

TBS-2 to block for non-specific binding. Blocking was continued for 1 hour at 37°C the 

next morning before washing with 3 x 300 µl TBS-2-Tween 20 pH 7.4. For conversion 

of fibrinogen to fibrin, 100 µl per well of activation mix containing thrombin [1 U/ml] and 

CaCl2 [5 mM] in TBS-2 was added for 45 minutes at room temperature and cleaved 

fibrinopeptides were removed with 4 x 300 µl high salt washing buffer (TBS-5-Tween 

20 pH 7.4; Appendix 1), followed by 4 x 300 µl regular TBS-2-Tween 20. Ten 

microliters of rFXIII-A master mix [1.1 µg/ml] were added to each well before addition of 

90 µl FXIII reaction mix containing DTT [100 µM], α2-AP [10 µg/ml], thrombin [1 U/ml] 

and CaCl2 [5 mM] in TBS-2. Reactions were stopped at 0, 10, 20, 30, 40 and 50 

minutes by addition of 200 µl 200 mM EDTA stop solution. The plate was washed with 
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4 x 300 µl 6 M urea, followed by 4 x 300 µl TBS-2-Tween 20, and incubated with 100 µl 

per well of goat polyclonal anti-α2-AP HRP antibody (Enzyme Research Laboratories) 

diluted 1/1000 in 3 % (w/v) BSA-TBS-2-Tween 20 for 1 hour at room temperature. A 

final wash step with 4 x 300 µl TBS-2-Tween 20 was carried out before developing the 

plate with ODP substrate (method 2.1.2) and measuring absorbance at 490 nm using 

an ELx808 Absorbance Microplate Reader. The assay was repeated in three 

independent experiments. 

2.2.6. Clot-based plasmin generation assay 

The plasmin generation assay relies on plasmin-mediated cleavage of pNitroaniline 

(pNA) from chromogenic S-2251 substrate (Chromogenix, USA) in the following 

reaction: 

 

H-D-Val-Leu-Lys-pNA    H-D-Val-Leu-Lys-OH + pNA 

 

The pNA produced absorbs light at 405 nm and the increase in absorbance at 405 nm 

is directly proportional to plasmin activity; hence, this assay was used as a measure of 

plasmin activity in clots formed in vitro with phosphorylated (13 %, 25 %, 33 %) and 

dephosphorylated fibrin. Clots were formed in the presence of FXIII-A ± α2-AP to 

examine how phosphorylation affects covalent incorporation of α2-AP. 

Fibrinogen samples were diluted to 0.25 mg/ml in TBS-6-Tween 20 pH 7.4 (Appendix 

1) and 94 µl were added to each well, followed by plasminogen [312.5 µg/ml] and 

rFXIII-A [1.4 µg/ml] ± α2-AP [1.65 µg/ml] to a final volume of 100 µl. The plate was 

inserted into an ELx808 Absorbance Microplate Reader pre-heated to 37°C and 

overlaid with 50 µl per well of activation mix containing thrombin [0.75 U/ml] and CaCl2 

[3.75 mM] diluted in TBS-6-Tween 20. Absorbance at 340 nm was measured every 12 

seconds for 15 minutes, ensuring full clot formation. The plate was then overlaid with 

50 µl per well of lysis mix containing tPA [0.05 µg/ml] and S-2251 substrate [0.6 mM], 

diluted in TBS-6-Tween 20 with 0.1% (w/v) BSA. Plasmin generation was monitored 

over 4 hours at 37°C by measuring absorbance at 405 nm every 48 seconds. Data 

were collected from three independent experiments. 

Plasmin 
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2.2.7. Turbidity analysis 

The effect of fibrinogen phosphorylation on fibre thickness and polymerisation was 

examined using the clot formation stage of the plasmin generation assay, as detailed 

above (section 2.2.6). Briefly, clots were formed using phosphorylated (13 %, 25 %, 

33 %) and dephosphorylated fibrinogen, in the presence of plasminogen and rFXIII-A. 

Clotting was activated by thrombin and CaCl2 before measuring absorbance at 340 nm 

for 15 minutes. Five independent experiments were performed and data were analysed 

using a customised software application for calculation of MaxAbs and clotting rate 

(Carter et al., 2007). 

2.2.8. Scanning electron microscopy of fibrin clots 

Fibrin clots formed from phosphorylated (25 %, 13 %, 33 %) and dephosphorylated 

fibrinogen were imaged by scanning electron microscopy (SEM) for visualisation and 

measurement of the effect of phosphorylation on fibre diameter. Fibrinogen [1 mg/ml], 

thrombin [1 U/ml] and CaCl2 [10 mM] were combined in TBS-1 pH 7.4 to a final volume 

of 110 µl. Seventy five microliters of this mix were pipetted into the lid of a 0.5 ml 

Eppendorf tube, already pierced several times with a needle to facilitate subsequent 

wash steps, and wrapped in parafilm to prevent leakage during clot formation. The 

developing clots were incubated for 2 hours at room temperature in a humidity 

chamber. Washing, fixation and dehydration steps were all performed at room 

temperature with gentle stirring in a 50 ml volume. The clots were washed by removing 

the parafilm and placing in a beaker containing 50 mM sodium cacodylate pH 7.4 for 3 

x 20 minutes. Sodium cacodylate is commonly used during specimen preparation for 

electron microscopy because the cacodylate does not form a precipitate with residual 

ions, as phosphate buffers may do if there is insufficient washing before fixation. Clots 

were transferred to a 2 % (v/v) gluteraldehyde (Sigma-Aldrich) solution in sodium 

cacodylate buffer for fixation, and washed again with sodium cacodylate buffer for 

3 x 20 minutes.  

A stepwise dehydration of the clots was carried out by sequentially transferring them to 

acetone solutions of increasing concentrations for 10 minutes each: 30 %, 50 %, 70 %, 

80 %, 90 %, 95 % and 100 %. Two further 10 minute incubations in 100 % acetone 

were performed before transferring to fresh 100 % acetone for the final time. Fibrin clot 

structures were then subjected to a process known as critical point drying, which 

enables complete dehydration of biological samples whilst preserving surface 

morphology. During this process, water within samples is replaced with liquid CO2; 

when temperature and pressure are raised beyond the critical point for CO2 (31°C and 
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1200 pounds/square inch), the liquid CO2 vaporises without change in density, thereby 

avoiding changes to surface tension which would distort surface ultrastructure. Critical 

point drying was conducted by Martin Fuller, University of Leeds using an E3000 

critical point dryer (Quorum Technologies Ltd, UK). 

On completion of drying, the clots were mounted onto 0.5 inch aluminium specimen 

stubs covered with 12 mm carbon tabs (Agar Scientific, UK) and coated with a 7 nm 

layer of platinum-palladium using a 208HR High Resolution Sputter Coater 

(Cressington, UK). The samples were individually imaged over 5 different areas using a 

Quanta 200F FEGESEM field-emission scanning electron microscope (FEI, USA) and 

fibre diameters (n=100) measured using ImageJ software. 

2.2.9. Statistical analysis 

Statistical analysis was performed where appropriate (n≥3). Data were analysed using 

Microsoft Excel to calculate mean values from independent experiments and standard 

error of the mean. Differences between mean values of different groups were analysed 

for statistical significance using a paired, two-tailed student’s t-test, with significance 

accepted at p<0.05. Data are presented as mean ± standard error of the mean, with 

the level of significance denoted by * (p<0.05), ** (p<0.01), *** (p<0.005), or **** 

(p<0.001).  
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2.3. Characterisation of intracellular fibrinogen phosphorylation 

Methods were developed to investigate the mechanism of in vivo fibrinogen 

phosphorylation, in particular the cellular location of fibrinogen phosphorylation and the 

kinase responsible. Intracellular phosphorylated fibrinogen Aα chains were visualised 

by proximity ligation assay (PLA). Other methods, such as SDS-PAGE, western 

blotting, ELISA and isoelectric focusing, were optimised for comparison of 

phosphorylation levels of secreted fibrinogen from cells incubated with various 

stimulators and inhibitors. 

2.3.1. HepG2 cell culture 

A human hepatoma cell line – HepG2 (ATCC) – was enlisted for investigations into 

cellular fibrinogen phosphorylation as these cells express fibrinogen naturally. Human 

hepatoma cells were cultured at 37°C, 5 % CO2 in full growth medium supplemented 

with L-glutamine, as detailed in Appendix 1. Cells were cultured in 100 mm dishes and 

passaged once a week by incubating with 3 ml trypsin/EDTA solution for up to 30 

minutes before diluting to 10 ml with growth medium. The cells were then passed three 

times through a 19 gauge needle to minimise clumping and re-plated at a 1:10 dilution 

in growth medium. Medium was replaced every 2-3 days. 

2.3.2. Immunofluorescent detection of cellular fibrinogen Aα chains 

Immunofluorescence was used to optimise an anti-fibrinogen Aα antibody, as well as 

markers for the ER and Golgi apparatus, prior to detection of phosphorylated fibrinogen 

Aα chains by PLA. 

2.3.2.1. Slide preparation 

Human hepatoma cells were trypsinised and counted using a haemocytometer 

chamber and the trypan blue dye exclusion method (method 2.1.13.1). For 

immunofluorescence, cells were seeded on LabTek-II 8-well chamber slides (Sigma-

Aldrich) at a density of 100,000 cells per well in 500 µl growth medium (Appendix 1) 

and incubated overnight at 37˚C, 5 % CO2. For fixation, cells were washed quickly with 

800 µl PBS pH 7.4 (Appendix 1) and incubated with 500 µl 3 % (w/v) paraformaldehyde 

(Sigma-Aldrich) solution in PBS, containing CaCl2 [100 µM] and MgCl2 [100 µM], for 20 

minutes at room temperature. After an additional three washes with PBS, cells were 

incubated with 500 µl 50 mM ammonium chloride solution in PBS for 10 minutes at 
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room temperature. Three final wash steps with PBS were performed before storing 

slides in PBS at 4˚C for up to 2 weeks. 

2.3.2.2. Assay procedure 

Slides were incubated in ice-cold methanol at -20˚C for 10 minutes to permeabilise 

cells. After three washes with PBS, slides were incubated in 0.2 % (w/v) fish skin 

gelatin (Sigma-Aldrich) solution in PBS (1X FSG) at room temperature for a minimum 

of 30 minutes to block for non-specific binding. Primary antibody solution in 1X FSG 

was added for 2 hours at room temperature in a humidified chamber, with 50 µl per 

well. After 3 x 5 minute washes with 1X FSG, 50 µl per well of secondary antibody 

solution in 1X FSG was added for 1 hour at room temperature in a humidified chamber 

covered with foil. Slides were washed four times with 1X FSG, once with PBS and once 

with 0.01X PBS, for 5 minutes each time, covered with foil. Once dry, slides were 

mounted using 15 µl per well of Duolink In Situ mounting medium containing 4',6-

diamidino-2-phenylindole (DAPI) nuclei stain (Sigma-Aldrich); glass coverslips were 

positioned and sealed with colourless nail varnish. Slides were stored at -20˚C in the 

dark and brought to room temperature before imaging. Images were captured by LSCM 

as outlined below. 

2.3.2.3. Laser scanning confocal microscopy 

Slides prepared for immunofluorescence were imaged by LSCM using an LSM 700 

inverted confocal microscope with Zen imaging software (Carl Zeiss Microscopy, 

Germany).  Images were captured using a 63x oil objective lens with four solid-state 

lasers (405 nm, 488 nm, 555 nm and 635 nm); those to be compared were taken using 

the same pinhole (1 µm), detector gain and offset settings. 

2.3.2.4. Antibody optimisation 

Various primary and secondary antibodies used for immunofluorescence are listed in 

table 11. Three antibodies were tested for successful detection of fibrinogen Aα chain 

in CHO cells and HepG2 cells, using CHO-Bβγ as a negative control; only the anti-

fibrinogen Aα 290-348/349-406 was validated for this purpose and therefore used in 

future experiments. Antibodies directed against ER and Golgi markers – anti-protein 

disulphide isomerise (anti-PDI) (ER) and anti-TGN46 (trans-Golgi) – were also 

optimised by immunofluorescence using the concentrations detailed below (table 11). 
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Antibody 
Host 

Species 
Clonality 

Concentration/dilution 

Tested Optimal 

Anti-fibrinogen Aα (Abnova, UK) Rabbit Polyclonal 1.5-5 µg/ml N/A 

Anti-fibrinogen Aα (Stratech) Rabbit Polyclonal 1/10-1/50 N/A 

Anti-fibrinogen Aα 290-348/349-406 

(Accurate Chemical) 
Mouse Monoclonal 1.5-5 µg/ml 1.5 µg/ml 

Anti-phosphoserine (abcam) Rabbit Polyclonal 2.5-20 µg/ml 2.5 µg/ml 

Alexa Fluor 488 anti-PDI                 

(New England Biolabs) 
Rabbit Monoclonal 1/25-1/100 1/50 

Anti-TGN 46 (abcam) Sheep Polyclonal 1/200-1/400 1/200 

Anti-cleaved caspase 3                   

(New England Biolabs) 
Rabbit Monoclonal N/A 1/400 

Alexa Fluor 488-AffiniPure donkey anti-

rabbit (Stratech) 
Donkey Polyclonal N/A 1/1000 

Cy3-AffiniPure donkey anti-mouse 

(Stratech) 
Donkey Polyclonal N/A 1/1000 

Alexa Fluor 647-AffiniPure donkey anti-

sheep (Stratech) 
Donkey Polyclonal N/A 1/1000 

 

 

 

2.3.3. Detection of phosphorylated fibrinogen Aα chains in HepG2 cells by 

proximity ligation assay 

The proximity ligation assay was developed to detect and quantify intracellular 

phosphorylated fibrinogen. This technique was used to i) investigate the location of 

fibrinogen phosphorylation using secretion inhibitor Brefeldin A (BFA) (section 2.3.3.3), 

ii) determine whether intracellular phosphorylation of fibrinogen increases in acute 

phase conditions (section 2.3.6), and iii) identify the in vivo fibrinogen kinase using 

broad spectrum kinase inhibitor staurosporine (STSP) (section 2.3.7). 

Table 11. Antibodies used for immunofluorescent techniques. The table lists primary and 

secondary antibodies used for immunofluorescence or the proximity ligation assay, as well as 

their respective species, clonality and chosen dilutions. 



 

98 

2.3.3.1. Assay principle 

Proximity ligation assay is a recently developed technique (Fredriksson et al., 2002) 

which enables highly specific detection in situ of two distinct entities in close proximity, 

residing less than 45 nm apart. The general method for PLA can be broken down into 

six stages, as illustrated in figure 16. After fixation of cells or tissues on a microscope 

slide, they are firstly incubated with two primary antibodies from different species. 

Oligonucleotide-conjugated PLA probes with plus or minus strands are added to detect 

each primary antibody; the plus and minus strands of the probes hybridise when in 

proximity. Hybridised oligonucleotides ligate to form a complete circle, which provides a 

template for rolling circle amplification in the presence of a polymerase. Finally, each 

amplification product is detected with fluorescently-labelled probes and appears as an 

individual spot when imaged by fluorescent microscopy. This novel technique can be 

used to detect and quantify protein-protein interactions, post-translational modifications 

and protein expression. Here, this method has been applied for the detection and 

quantification of phosphorylated human fibrinogen Aα chains in CHO cells and HepG2 

cells (figure 17). All reagents are available commercially as part of the Duolink In Situ 

kit from Olink Bioscience, distributed in the UK by Sigma-Aldrich. 
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STEP 1: Fix cells onto microscope slide. 

 

 

 

 

STEP 2: Add two primary antibodies. 

 

 

 

 

STEP 3: Add PLUS and MINUS PLA probes. 

 

 

 

 

 

STEP 4: Ligate hybridised DNA. 

 

 

 

 

 

STEP 5: Amplify ligated DNA template and 

detect with fluorescent probes. 

 

 

 

 

 

STEP 6: Image by confocal microscopy.  

 

 

 

Figure 16. The six stages of a proximity ligation assay. 1) Cultured cells are fixed onto a microscope slide using formaldehyde. 2) Cells are blocked for non-

specific binding and incubated with two different primary antibodies. 3) Cells are incubated with PLA probes directed against each primary antibody; the PLA probes 

are conjugated to plus and minus strands of DNA which hybridise when in close proximity. 4) Hybridised probes are ligated upon incubation with a DNA ligase, 

forming a circular DNA template. 5) A polymerase is added and the DNA is amplified by rolling circle amplification. Fluorescently labelled oligonucleotides that can 

hybridise with the amplification product are used for detection. 6) Cells are imaged by LSCM. Image modified from Gullberg et al. (2011). 
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2.3.3.2. PLA method 

In all experiments, HepG2 cells were incubated with 20 µg/ml BFA for 8 hours prior to 

fixing to increase the signal (refer to method 2.3.3.3 for more details). To investigate 

the mechanism of fibrinogen phosphorylation, cells were also incubated with 10 ng/ml 

IL-6 for 24 hours or 250-500 nM kinase inhibitor STSP for 8 hours (sections 2.3.6 and 

2.3.7). Subsequent fixation, permeabilisation, blocking and primary antibody incubation 

steps were followed according to sections 2.3.2.1 and 2.3.2.2. The following primary 

antibodies were used: i) mouse polyclonal anti-fibrinogen Aα chain, ii) rabbit polyclonal 

anti-phosphoserine and iii) sheep polyclonal anti-trans-Golgi network 46 (TGN46) 

(table 3). Primary antibody concentrations were optimised by immunofluorescence as 

described previously (method 2.3.2.4). The anti-phosphoserine antibody was optimised 

by PLA (table 11) by selecting the concentration which gave the highest signal-to-noise 

ratio; this was determined by subtracting the number of spots in images of control 

CHO-Bβγ cells from the signal in phosphorylated Aα chain-positive CHO-WT cells.   

After incubating cells with the primary antibody solution, Duolink In Situ PLA probes – 

anti-mouse PLUS and anti-rabbit MINUS (Sigma-Aldrich) – were diluted 1:5 in 1X FSG 

and incubated at room temperature for 20 minutes before adding to cells. During this 

time, slides were washed 4 x 5 minutes with 1X FSG on an orbital shaker. Slides were 

incubated in a humidified chamber for 1 hour at 37°C with 40 µl per well of PLA probe 

solution and washed 2 x 5 minutes with Wash Buffer A (Appendix 1). Detection was 

DNA amplification 

and labelling

PLA probe

1 antibody

Phosphorylated 

fibrinogen

Each phosphorylated 

αC produces one 

fluorescent signal

P

Figure 17.  Detection of phosphorylated fibrinogen Aα chain by proximity ligation. Primary 

antibodies directed to the fibrinogen Aα chain (αC) (left) and phosphoserine (P) (right) are 

detected with oligonucleotide-conjugated PLA probes. Ligation and amplification of PLA probes 

enables fluorescent detection, whereby each individual signal corresponds to one 

phosphorylated α chain. Image modified from Gullberg et al. (2011). 
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performed using a Duolink In Situ Detection Reagent (orange; 554 nm) (Sigma-

Aldrich). The supplied 5X ligation stock and ligase were diluted 1:5 and 1:40 

respectively in filtered dH2O, added to cells with 40 µl per well and incubated in a 

humidified chamber at 37°C for 30 minutes. Similarly, 40 µl per well of the 5X 

amplification stock and a DNA polymerase diluted 1:80 in Milli-Q H2O were added for 

100 minutes at 37°C in the dark, followed by 2 x 5 minute washes with Wash Buffer A. 

Alexa Fluor 488 anti-PDI and Alexa Fluor 647-AffiniPure donkey anti-sheep antibodies 

(table 11) were diluted in 1X FSG and added to cells for 1 hour at room temperature in 

the dark. The final washing and mounting procedures are detailed in section 2.3.2.2.  

2.3.3.3. Inhibition of the secretory pathway with BFA 

Brefeldin A inhibits the secretory pathway in cells, specifically blocking movement of 

proteins from the ER to the Golgi apparatus. This fungal metabolite leads to 

disassembly of the Golgi apparatus, with redistribution of cis- and medial-Golgi (but not 

trans-Golgi) components to the ER, disrupting a dynamic membrane recycling process 

between these two organelles (Lippincott-Schwartz et al., 1989). Brefeldin A was used 

to investigate the subcellular location of fibrinogen phosphorylation and to increase 

signal in PLA experiments. The concentration and incubation time were optimised by 

immunofluorescence with 5-20 µg/ml BFA for 4-8 hours. For PLA, cells were incubated 

with 20 µg/ml BFA diluted in 500 µl growth medium per well, for 8 hours prior to 

fixation. 

2.3.3.4. LSCM and image analysis 

Slides from PLA experiments were imaged using an LSM 700 inverted confocal 

microscope with Zen imaging software, as outlined in section 2.3.2.3. Z-stacks were 

captured with 1 µm intervals from the top to the bottom of cells within the field of view. 

Individual z-stack images were combined to form a maximum intensity projection, 

which was used for image analysis to quantify spots from whole cells. The maximum 

intensity projection images were analysed using a macro for ImageJ, designed by 

Gareth Howell, University of Leeds; the macro locates the nucleus and cytoplasmic 

area of each cell within the image and quantifies the number of spots per cell. 

2.3.4. Detection of phosphorylated fibrinogen using Phos-tag™ 

In 2002, the Department of Functional Molecular Science at Hiroshima University 

developed a novel phosphate-capturing molecule – Phos-tag™. The Phos-tag™ 

molecule binds divalent metal cations, enabling high affinity interactions with phosphate 
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monoester di-anions (figure 18A). This presents a wide range of valuable applications 

for the field of phosphoproteomics, which is still largely dependent on the use of 

radioactive isotopes and limited by poor phosphoserine and phosphothreonine 

antibody specificity and sensitivity. Phos-tag™ Biotin, Phos-tag™ Agarose and Phos-

tag™ SuperSep SDS-PAGE gels were purchased from Alpha Laboratories. Phos-tag™ 

Biotin (10 mg) was dissolved in 1.3 ml TBS-4 pH 7.4 containing 10 % (v/v) methanol to 

give a 10 mM stock solution. The applications of Phos-tag™ enlisted for this thesis are 

illustrated in figure 18B-D and detailed below.  

2.3.4.1. Phos-tag™ affinity SDS-PAGE 

Pre-cast Phos-tag™ SuperSep 12.5 % polyacrylamide gels containing 50 µM Phos-

tag™ with 100 µM zinc chloride were used for the capture and slowed migration of 

phosphorylated proteins during electrophoresis. Ammonium sulphate precipitated 

fibrinogen (25 % phosphorylation) and dephosphorylated fibrinogen (200 ng) were 

combined with 4X reducing agent and 10X LDS sample buffer, zinc nitrate [500 µM] to 

quench the equivalent molar concentration of EDTA in the LDS sample buffer, and 

dH2O to a final volume of 20 µl. Samples were heated to 95°C for 15 minutes, cooled 

on ice for 2 minutes and centrifuged briefly (Eppendorf MiniSpin Plus) to collect 

condensation before loading 15 µl per well. Electrophoresis was performed at 20 

milliamperes (mA)/gel in 500 ml Tricine SDS-PAGE running buffer prepared from a 20X 

stock solution (Life Technologies) diluted in filtered dH2O. For details of the standard 

western blotting procedure, refer to section 2.1.6. This was adapted to include a 

preliminary 10 minute wash step in transfer buffer containing 1 mM EDTA to chelate 

Zn2+ ions, followed by the usual 10 minute wash in transfer buffer without EDTA. Blots 

were probed with a mouse anti-fibrinogen Aα chain antibody and rabbit anti-mouse 

HRP secondary antibody (table 3) before developing by chemiluminescence with 

Clarity ECL Substrate. 
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A) Structure of Phos-tag™ 

 
 

B) Phos-tag™ Acrylamide (affinity SDS-PAGE) 

 
 

C) Phos-tag™ Biotin (ELISA and western blotting) 

 
 

D) Phos-tag™ Agarose (affinity chromatography) 

 
 

 

 

 

 

Phosphate 

Fibrinogen 

Figure 18. Applications of Phos-tag™. A) Phos-tag™ structure and Zn2+-mediated interaction 

with protein-bound phosphate. B) Separation of proteins according to phosphorylation state by 

SDS-PAGE with Phos-tag™ Acrylamide. C) Detection of fibrinogen-bound phosphate by ELISA 

or western blotting using Phos-tag™ Biotin and streptavidin HRP. D)  Chromatographic 

enrichment of phosphoproteins with Phos-tag™ Agarose. Images adapted from Kinoshita et al.  

(2009); Wako n.d. Phos-tag™ Series. Available from: http://www.wako-

chem.co.jp/english/labchem/product/life/Phos-tag/pdf/Phos-tag.pdf [Accessed: 10 July 2014]. 
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2.3.4.2. ELISA with Phos-tag™ Biotin  

The high affinity interaction between biotin and streptavidin was exploited for the 

development of an assay to quantify the degree of fibrinogen phosphorylation in 

conditioned medium from HepG2 cells, using Phos-tag™ Biotin. A 96-well microtiter 

plate was coated with 100 µl per well of rabbit polyclonal anti-fibrinogen antibody 

(1/4000) in 50 mM sodium carbonate pH 9.6, at 4°C overnight. The plate was washed 

with 3 x 300 µl TBS-4-Tween 20 pH 7.4 and incubated with 300 µl per well of 3 % (w/v) 

BSA-TBS-4-Tween 20 blocking solution at 37°C for 90 minutes. Another wash step 

was performed before adding 100 µl per well of AP-fibrinogen at 170-680 ng/ml 

(approximately 50-200 fmol phosphate) in duplicate, diluted in TBS-4-Tween 20 for 2 

hours at room temperature on a shaker. Blank wells containing TBS-Tween 20-only 

were included as a negative control. For preparation of a Phos-tag™ Biotin-bound 

Streptavidin HRP conjugate, a 500 µl mix containing Phos-tag™ Biotin [20 µM], zinc 

nitrate [400 µM], 1 µl streptavidin HRP (GE Healthcare) and TBS-4-Tween 20 was 

incubated at room temperature for 30 minutes. This was scaled up depending on the 

desired final volume. The mixture was then concentrated to less than 10 µl using a 

centrifugal filter device (30 kDa MWCO) to remove excess, unbound Phos-tag™. The 

remaining solution was diluted in 500 µl TBS-4-Tween 20 per microliter of Phos-tag™ 

Biotin added to the initial mix (1/500). A serial dilution of Zn2-Phos-tag™ 

Biotin-Streptavidin HRP in TBS-4-Tween 20 was carried out to give a concentration 

range of 1/500 to 1/8000. After 3 x 300 µl washes with TBS-4-Tween 20, the prepared 

dilutions of Zn2-Phos-tag™ Biotin-Streptavidin HRP were added to the plate with 100 µl 

per well for 1 hour at room temperature on a shaker. The plate was washed with 3 x 

300 µl TBS-4-Tween 20 and developed with OPD substrate, reading absorbance at 

490 nm with a Dynex MRX-TC plate reader.  

To check for non-specific binding, a subsequent assay included a streptavidin-only 

negative control, whereby the same amount of streptavidin was diluted in 

TBS-4-Tween 20 to 500 µl without Phos-tag™ Biotin or zinc nitrate. The results 

demonstrated that streptavidin HRP was binding non-specifically to fibrinogen; 

therefore, streptavidin alkaline phosphatase was used in its place in future 

experiments. Due to inconsistencies within and between data sets, the Phos-tag™ 

Biotin and streptavidin alkaline phosphatase were added separately, rather than as a 

pre-prepared complex. After normal coating procedure (described above) and 

incubation with 100 µl per well of AP-fibrinogen and dephosphorylated fibrinogen at 

1 µg/ml, or TBS-4-Tween 20 only, the plate was washed 3 x 300 µl TBS-4-Tween 20 

and 100 µl per well of Phos-tag™ Biotin, diluted to 1 mM in TBS-4-Tween 20 

containing zinc nitrate [100 mM], were added to each well for 1 hour at room 
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temperature on a shaker. Duplicate wells were incubated with TBS-4-Tween 20-only at 

this stage to give a control for non-specific binding of streptavidin alkaline phosphatase. 

Unbound Phos-tag™ Biotin was washed off with 3 x 300 µl TBS-4-Tween 20 before 

detecting bound Phos-tag™ Biotin with 100 µl per well of streptavidin alkaline 

phosphatase diluted to 10 nM in TBS-4-Tween 20; this was added for 1 hour at room 

temperature. A final 3 x 300 µl TBS-4-Tween 20 wash step was performed and the 

plate developed with PNPP in the same way as detailed in method 2.1.7.2. 

2.3.4.3. Western blotting with Phos-tag™ Biotin 

A serial dilution of AP-fibrinogen from 500 ng to 62.5 ng was prepared for gel loading 

by mixing with 4X reducing agent, 10X LDS sample buffer and dH2O; samples were 

then heated to 95°C for 15 minutes before electrophoresis. The protein was blotted 

onto a PVDF membrane following method 2.1.6. After blotting, the membrane was 

soaked in 100 ml TBS-4-Tween 20 pH 7.4 with gentle shaking for 1 hour at room 

temperature. During this time, a Phos-tag™ Biotin-bound Streptavidin HRP conjugate 

was prepared as described in method 2.3.4.1, except the remaining solution after 

centrifugation was diluted with 20 ml TBS-4-Tween 20. The membrane was incubated 

with 10 ml of the Zn2-Phos-tag™ Biotin-Streptavidin HRP complex for 30 minutes at 

room temperature with gentle rotation. Finally, the membrane was washed in 100 ml 

TBS-4-Tween 20 for 2 x 5 minutes and developed using SuperSignal West Pico 

Chemiluminescent Substrate and a G:BOX F3 with GeneSys software. An additional 

experiment was performed in the same way, but with an additional blot probed with 

streptavidin HRP-only (no Phos-tag™ Biotin) as a negative control for non-specific 

binding. 

2.3.5. Developing methods for the detection of phosphorylated fibrinogen using 

anti-phosphoserine antibodies 

2.3.5.1. Fibrinogen-phosphoserine ELISA 

Antibodies to fibrinogen and phosphoserine were used to develop an ELISA for the 

quantification of phosphorylated fibrinogen in conditioned medium. A 96 well microtiter 

plate was coated with rabbit polyclonal anti-fibrinogen antibody (1/250) overnight at 4°C 

in sodium carbonate pH 9.6, washed with 3 x 300 µl TBS-2-Tween 20 pH 7.4 and 

blocked with 3 % (w/v) BSA-TBS-2-Tween 20. After additional washing, AP-fibrinogen 

(25 % phosphorylation) and dephosphorylated fibrinogen were diluted to 1 µg/ml in 

TBS-2-Tween 20 and added to the plate (100 µl per well) for 2 hours at room 

temperature. The plate was washed with 3 x 300 µl TBS-2-Tween 20 and incubated 
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with a concentration range of phosphoserine antibody Q5 (1/10-1/80) or mouse 

monoclonal anti-phosphoserine at 1/100. Details of antibodies can be found in table 3 

below the western blotting protocol. Both antibodies were diluted in 1 % (w/v) BSA-

TBS-2-Tween 20 and incubated overnight at 4°C with rolling. Wells were washed with 3 

x 300 µl TBS-2-Tween 20 before addition of 100 µl per well of rabbit anti-mouse HRP 

secondary antibody diluted in TBS-2-Tween-20 (1/1000) for 1 hour at room 

temperature, followed by a final washing step. The plate was developed with OPD 

substrate and absorbance measured at 490 nm using a Dynex MRX-TC plate reader. 

To reduce non-specific binding, the method was repeated with a 10 % BSA-TBS-2-

Tween 20 blocking solution and the mouse monoclonal anti-phosphoserine antibody 

was diluted in 5 % (w/v) BSA-TBS-2-Tween 20 at 4°C overnight. These improved 

blocking conditions were incorporated in subsequent experiments. For the final 

experiment, a plate was coated with mouse anti-fibrinogen γ chain antibody (1/4000) 

and later incubated with a rabbit polyclonal anti-phosphoserine antibody (1/100), 

followed by goat anti-rabbit HRP (1/1000). 

2.3.5.2. Phosphoserine western blots 

The western blotting protocol for phosphoserine detection was adapted from the 

general protocol in section 2.1.6. Ammonium sulphate precipitated fibrinogen (25 % 

phosphorylation) (0.1-5 µg) was electrophoresed and blotted onto PVDF before 

blocking in 10 % (w/v) BSA-TBS-2-Tween 20 pH 7.4 for 2 hours at room temperature. 

A mouse monoclonal anti-phosphoserine primary antibody was diluted in 5 % (w/v) 

BSA-TBS-2-Tween 20 and incubated with the blot overnight at 4°C. The blot was 

washed 4 x 15 minutes in TBS-2-Tween 20 and the rabbit anti-mouse HRP secondary 

antibody (1/5000), plus StrepTactin HRP, were added in 5 % (w/v) milk-TBS-2-Tween 

20 for 1 hour at room temperature. After 3 x 10 minute washes in TBS-2-Tween 20, the 

blot was develop by chemiluminescence with Clarity ECL Substrate. The same 

procedure was repeated using 2 µg AP-fibrinogen and dephosphorylated fibrinogen 

with a rabbit polyclonal anti-phosphoserine primary antibody and goat anti-rabbit HRP 

secondary antibody. In experiment blots, a mouse monoclonal anti-fibrinogen γ chain 

antibody was included during the primary antibody incubation step, plus an additional 

secondary antibody incubation with goat anti-rabbit HRP prior to addition of rabbit anti-

mouse HRP at 1/10,000 for γ chain detection. Probing for the fibrinogen γ chain 

enabled normalisation of phosphorylated Aα chain bands to γ chain bands during 

densitometry analysis with GeneTools software (Syngene). Refer to table 3 for details 

of antibodies and dilutions. 
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2.3.6. Investigations into the effect of IL-6 on fibrinogen expression and 

phosphorylation in HepG2 cells 

HepG2 cells were incubated with recombinant human IL-6 (expressed in HEK cells) 

(Sigma-Aldrich) to mimic acute phase conditions, addressing the question of whether 

elevated fibrinogen phosphorylation in the acute phase is due to modification inside the 

cell or in circulation. In an initial experiment, a concentration range from 5 to 80 ng/ml 

was added to the cells for 24 hours and the change in fibrinogen expression monitored 

by real-time PCR (method 2.3.6.1) to identify the optimal concentration.  

Quantification of intracellular phosphorylated fibrinogen Aα chains in the presence and 

absence of 10 ng/ml IL-6 for 24 hours was performed by PLA, as described in method 

2.3.3.2. For analysis of secreted fibrinogen, six dishes (60 mm) of HepG2 cells were 

cultured to confluence, washed once with serum-free medium and incubated with 

serum-free medium ± 10 ng/ml IL-6 in triplicate for 24 hours. Conditioned medium was 

harvested, mixed with protease and phosphatase inhibitor cocktails (Sigma-Aldrich) 

(1/500) and incubated on ice during the RNA extraction procedure (method 2.1.11.3). 

Harvested medium was subsequently concentrated to 50 µl using Amicon Ultra-0.5 

Centrifugal Filter Units with a 100 kDa MWCO and stored at -80°C until further 

analysis. The concentration of fibrinogen in each sample was measured by ELISA 

(method 2.1.2) and the degree of phosphorylation compared by SDS-PAGE and 

western blotting with an anti-phosphoserine antibody (method 2.3.5.2). Relative 

fibrinogen expression levels in the presence and absence of IL-6 were quantified by 

reverse transcription and real-time PCR, described below.  

2.3.6.1. Real-time PCR: quantifying the change in fibrinogen and casein kinase 

expression with IL-6 

Ribonucleic acid extracted from HepG2 cells incubated in the presence and absence of 

10 ng/ml IL-6 was reverse transcribed into cDNA (methods 2.1.11.3 and 2.1.12.6). The 

protocol for real-time PCR is outlined in section 2.1.12.7, with adaptations described 

here. Forward and reverse primers were designed to amplify the following human 

cDNA: fibrinogen Aα chain, CK2, Fam20A, Fam20B, Fam20C, Fam198A, Fam20B and 

18S rRNA as an internal control (table 12). Refer to section 2.1.11.4 for primer design 

and details of fibrinogen Aα chain primers. For experiments comparing fibrinogen 

expression, templates were diluted 1:10 or 1:200 for experiment and control reactions 

respectively. For experiments comparing kinase expression, RNA was diluted to 

100 ng/µl instead of 200 ng/µl (due to lower yield) prior to reverse transcription and 

cDNA templates were added to reactions undiluted (experiment) or diluted 1:100 (18S 
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rRNA control). All reactions were performed in triplicate. Real-time PCR data were 

analysed using the ∆∆Ct method by i) normalising experiment Ct values to endogenous 

control 18S rRNA Ct values (Ctexperiment - Ctcontrol = ∆Ct), ii) subtracting ∆Ct values from 

the reference ∆Ct value of the control sample (i.e. without IL-6), and iii) determining the 

relative expression in experiment samples using a 2-∆∆Ct calculation.  

 

Primer Sequence (5’ to 3’) Length (nt) Tm (°C) % GC 

CK2 Forward GCTTCCACCACAGCTCTATCA 21 59.79 52.38 

CK2 Reverse GTGTAAACTCTGGCCCTGCT 20 59.96 55 

Fam20A Forward CTGGAACAGGCGACACAAGA 20 60.25 55 

Fam20A Reverse TGCTCGCTGGAGAGACAAAG 20 60.04 55 

Fam20B Forward CAAATTGGCCAGGTGGGAGTA 21 60.27 52.38 

Fam20B Reverse CCAAAGACATCCAAGGCCACT 21 60.55 52.38 

Fam20C Forward CCATGAAACAAACGAGGGAGC 21 59.80 52.38 

Fam20C Reverse GAGCTTCTTGTCCCGTGTGA 20 59.97 55 

Fam198A Forward TGGAGGGCATAGATGGGTTTC 21 59.51 52.38 

Fam198A Reverse TCCTCGTCCCTGAAGAGTGT 20 59.89 55 

Fam198B Forward CAGAGTTCATCCAAGCAGCAG 21 59.26 52.38 

Fam198B Reverse CCAAATGCCTTGGGTCATGC 20 60.11 55 

18S rRNA Forward GTAACCCGTTGAACCCCATTC 21 59.19 52.38 

18S rRNA Reverse ACCATCCAATCGGTAGTAGCG 21 59.66 52.38 

 

 

 

2.3.7. Incubation of HepG2 cells with STSP 

Staurosporine is a potent and promiscuous ATP-competitive kinase inhibitor, which 

characteristically has no effect on G-CK activity due to a long β1-β2 loop structure 

around the ATP binding site of Fam20 proteins, impeding interaction with the inhibitor 

(Xiao et al., 2013, Meggio et al., 1995). Therefore, cells were incubated with STSP to 

determine whether fibrinogen is phosphorylated by the G-CK. As STSP induces 

Table 12. Real-time PCR primers for analysis of kinase expression in HepG2 cells. 

Forward and reverse primer sequences for amplification of casein kinase and 18S rRNA cDNA 

are displayed with nucleotide (nt) length, Tm and GC content. 
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apoptosis, the best concentration would provide effective kinase inhibition with minimal 

cell death; a concentration range of 0.5-10 µM STSP (Millipore) was added to HepG2 

cells, which were then screened for the appearance of cleaved caspase 3 – a marker 

for apoptosis – by immunofluorescence using an anti-cleaved caspase 3 antibody 

(table 11; method 2.3.2). 

A proximity ligation assay was carried out with the addition of 250-500 nM STSP for 8 

hours prior to fixing cells (method 2.3.3.2) and the number of phosphorylated fibrinogen 

Aα chains in control or STSP-treated cells was compared using ImageJ (method 

2.3.3.4). The phosphorylation status of secreted fibrinogen was also compared by 

western blotting. HepG2 cells were cultured to confluence in 60 mm dishes in full 

growth medium, washed once with serum-free medium and incubated with 0-200 nM 

STSP diluted in serum-free medium for 24 hours. Conditioned medium was harvested 

and mixed with protease and phosphatase inhibitor cocktails (1/500) before 

concentrating to 50 µl using Amicon Ultra-0.5 Centrifugal Filter Units (100 kDa MWCO). 

In a subsequent experiment, cells were cultured ± 200 nM STSP for 24 hours and 

harvested medium was concentrated to 1 ml for immunoprecipitation of fibrinogen 

(method 2.3.8). All samples were analysed by SDS-PAGE and western blotting with an 

anti-phosphoserine antibody (method 2.3.5.2). 

2.3.8. Immunoprecipitation of fibrinogen from conditioned medium 

Fibrinogen was purified from conditioned HepG2 medium by immunoprecipitation using 

Dynabeads® Magnetic Separation Technology (Life Technologies) according to the 

manufacturer’s instructions. A polyclonal anti-fibrinogen antibody (10 µg) was diluted in 

200 µl PBS-Tween 20 pH 7.4 (Appendix 1) and incubated with Dynabeads® Protein G 

for 10 minutes at room temperature with rotation. The tube was placed on a magnetic 

rack and the supernatant removed with a pipette. In this way, the Dynabeads-antibody 

complexes were washed with 200 µl PBS-Tween 20 before addition of target antigen; 

after removal of wash buffer, 1 ml fibrinogen-containing medium was added to the tube 

and incubated at room temperature for 1 hour with rotation. Supernatant was removed 

and the Dynabeads-antibody-fibrinogen complexes were washed with 3 x 200 µl PBS-

Tween 20. For elution of fibrinogen, the supernatant was removed and 20 µl 50 mM 

glycine pH 2.8 were added to the tube with 7.5 µl 4X LDS sample buffer and 3 µl 10X 

reducing agent. The mixture was heated to 95°C for 15 minutes before loading the 

supernatant on a 4-12 % Bis-Tris polyacrylamide gel. Immunoprecipitated fibrinogen 

was subjected to SDS-PAGE and western blotting with anti-phosphoserine and anti-

fibrinogen gamma chain antibodies (method 2.3.5.2), followed by Clean-Blot IP 
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Detection Kit (HRP) (Thermo Scientific) diluted 1/200 in 5 % (w/v) milk-TBS-2-Tween 

20 pH 7.4 for detection of primary antibodies without interference from denatured IgG 

bands. 

2.3.9. Reverse transfection of Fam20A siRNA into HepG2 cells 

To investigate whether Fam20A phosphorylates fibrinogen, Fam20A siRNA and a 

scrambled control siRNA (Santa Cruz Biotechnology, USA) were reverse transfected 

into HepG2 cells using Lipofectamine RNAiMAX, adhering to the protocol from Life 

Technologies. Each siRNA was resuspended in an appropriate volume of supplied 

RNase-free H2O to give a stock concentration of 10 µM. The concentration of siRNA for 

transfection was optimised using a range from 5 to 50 nM in 5 nM intervals and the 

relative knockdown in Fam20A expression determined by RNA extraction and real-time 

PCR (method 2.3.6.1). The optimised transfection protocol is described below. 

HepG2 cells were cultured to confluence in 100 mm dishes and medium was replaced 

one day ahead of transfection. In each well of a 6 well plate, 5 µl lipofectamine 

RNAiMAX and 1.5 µl Fam20A or scrambled control siRNA [5 nM] were diluted in 500 µl 

OptiMEM I reduced serum medium and incubated for 10-20 minutes at room 

temperature. Cells were trypsinised, counted using a haemocytometer (method 

2.1.13.1) and diluted to 100,000 cells/ml in antiobiotic-free growth medium before 

adding 2.5 ml (250,000) cells per well. The plate was shaken gently to evenly distribute 

cells and incubated at 37°C, 5 % CO2. Medium was replaced after 24 hours and 

incubated for a further 48 hours without change. Cells were assayed by RNA extraction 

and real-time PCR, while conditioned medium was harvested for analysis by SDS-

PAGE and western blotting with an anti-phosphoserine antibody (method 2.3.5.2). 

Harvested medium was immediately placed on ice and mixed with protease and 

phosphatase inhibitor cocktails (1/500) before concentrating to 50 µl using Amicon 

Ultra-0.5 Centrifugal Filter Units with a 100 kDa MWCO. The fibrinogen concentration 

was determined by fibrinogen ELISA with serial dilution of each sample (method 2.1.2).   

As harvested medium contained insufficient fibrinogen for downstream analysis of 

phosphoserine content, several steps were taken to improve the yield. To maximise 

cell viability, culture medium was replaced with fresh medium 12 hours post-

transfection and cells were incubated for a further 60 hours before analysis. The 

number of cells seeded per well was also increased to the upper recommended limit of 

375,000.  A final experiment was performed in the presence of 10 ng/ml IL-6 to 

increase fibrinogen expression and determine whether Fam20A is responsible for the 

elevated cellular fibrinogen Aα chain phosphorylation observed previously with IL-6; the 



111 

cytokine was added to cells 12 hours post-transfection for 60 hours. Harvested medium 

was concentrated to 1 ml and fibrinogen was immunoprecipitated before analysis of 

phosphoserine content by western blotting (method 2.3.8).      

2.3.10. Statistical analysis 

Data from experiments conducted three times or more (n≥3) were analysed for 

statistically significant differences using a paired, two-tailed student’s t-test, according 

to section 2.2.9. 
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Chapter 3 

Results 

3.1. Recombinant fibrinogen expression 

Recombinant WT fibrinogen was expressed using an established in-house CHO cell 

expression system. Site directed mutagenesis and transfection of mutated fibrinogen 

Aα chain constructs into CHO and Expi293F cells was carried out for expression of 

variant fibrinogen without the Ser3 and Ser345 phosphorylation sites, ultimately to 

investigate their function by comparison to WT fibrinogen. 

3.1.1. Expression and purification of recombinant WT fibrinogen 

During expression of recombinant WT fibrinogen in CHO cells, an aliquot of 

conditioned medium was removed from each harvest for further screening by ELISA to 

monitor fibrinogen secretion over time (figure 19). The average fibrinogen 

concentration from harvests 1-36 was 1.6 µg/ml, giving an estimated total of 48 mg 

fibrinogen in 30 L. The CHO cell expression system was terminated after 13 weeks (39 

harvests) due to a steady decline in productivity. 
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Figure 19.  Concentration of recombinant WT fibrinogen in each harvest of cell culture 

medium (1-36). Medium from CHO cells expressing recombinant WT fibrinogen was harvested 

every 2-3 days for 3 months. Productivity of the cells was monitored by measuring the 

fibrinogen concentration in each harvest of medium by ELISA. 
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Recombinant WT fibrinogen was precipitated out of the large volume of medium using 

ammonium sulphate and resuspended in pellet buffer. Fibrinogen was purified by IF-1 

affinity chromatography; figure 20 shows a large flow through peak, followed by a 

smaller fibrinogen-containing elution peak which was collected in fractions. On 

average, 950 µg fibrinogen were eluted per run from 5 ml supernatant. Fractions 

containing fibrinogen from later harvests were pooled separately in case of 

degradation. The final quantity of purified fibrinogen after concentration and dialysis 

was 21.96 mg.  

  

 

 

 

 

3.1.1.1. Functional analysis of recombinant WT fibrinogen 

The quality of purified recombinant WT fibrinogen was assessed by reducing SDS-

PAGE. An equal quantity of fibrinogen (15 µg) from each of the three samples of 

pooled harvests was loaded separately to compare quality, in case of degradation in 

later harvests. Figure 21 shows fibrinogen from harvests 1-29 (lane 1), 30-34 (lane 2) 

and 35-39 (lane 3). Three bands corresponding to the Aα (66kDa), Bβ (54kDa) and γ 

(48kDa) chains of fibrinogen were present in equal proportions and there appeared to 

be no degradation or reduction in quality of fibrinogen purified from later harvests. 

 

 

A 

Figure 20.  Chromatogram of recombinant WT fibrinogen purification by affinity 

chromatography. Ammonium sulphate-precipitated fibrinogen was loaded onto an IF-1 column 

in the presence of 10mM CaCl2 and eluted with 50 mM EGTA. A) Flow through peak; B) 

fibrinogen elution peak. Chromatography was performed using an ÄKTA prime system. 
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The functionality of purified recombinant WT fibrinogen was verified by means of 

turbidity and lysis assay, biotin-pentylamine incorporation rFXIII-A activity assay and a 

fibrin polymerisation time course experiment. Clot formation and fibrinolysis followed a 

typical trend (figure 22), with almost identical Lag and MaxAbs values in the presence 

or absence of rFXIII-A, plus negligible differences in clotting rate, lysis rate and 

Lys50MA (table 13).  
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Figure 21. Reducing SDS-PAGE of purified recombinant WT fibrinogen. Samples of 

purified fibrinogen (15µg) pooled from different harvests of CHO cell medium were separated by 

reducing SDS-PAGE. The Aα, Bβ and γ chains of fibrinogen are indicated with arrows and their 

respective molecular weights. MW: molecular weight marker; lane 1: harvests 1-29; lane 2: 30-

34; lane 3: 35-39. 
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Figure 22. Turbidity and lysis curves with recombinant WT fibrinogen. Recombinant WT 

fibrinogen at 0.5 mg/ml was incubated with plasminogen [35 µg/ml] in the presence (▲) and 

absence (■) of rFXIII-A [1.1 µg/ml], before addition of an activation mix containing 0.5 U/ml 

thrombin, 2.5 mM CaCl2 and 0.3 µg/ml tPA. The graph displays the change in absorbance at 

340 nm over time during clotting and lysis. Absorbance values are an average of duplicate wells 

(n=1).  
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 Lag (s) MaxAbs Clotting rate Lys50MA (s) Lysis rate 

- rFXIII-A 40 0.230 7.18 x 10-4 240 -5.18 x 10-4 

+ rFXIII-A 40 0.237 6.37 x 10-4- 258 -5.85 x 10-4- 

 

 

 

For assays involving cross-linking, rFXIII-A was expressed in E. Coli and purified by 

GST affinity chromatography, with a yield of 952 µg. Reducing SDS-PAGE and western 

blotting showed a strong rFXIII-A band at 83kDa with some minor degradation products 

and co-elution with GST (figure 23A and B). Incorporation of biotin-pentylamine was 

used as a measure of rFXIII-A activity to confirm that recombinant WT fibrinogen is a 

functional substrate for this enzyme. The results showed normal rFXIII-A-mediated 

cross-linking of pentylamine to WT fibrinogen increasing over time (figure 23C).  
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Figure 23. SDS-PAGE, western blotting and activity assay of purified rFXIII-A. A) SDS-

PAGE of purified rFXIII-A (7 µg) and GST elution fractions (4 µl). B) Western blotting of rFXIII-A 

and GST elution fractions with a sheep polyclonal anti-FXIII-A antibody (1/2000). MW: molecular 

weight marker; lane 1: Purified rFXIII-A; lane 2: GST elution fractions. C) FXIII-A activity assay. 

Incorporation of biotin-pentylamine [2.7 µM] to recombinant WT fibrinogen [40 µg/ml] by rFXIII-A 

[1.1µg/ml] in the presence of 1 U/ml thrombin and 1mM CaCl2 was determined by absorbance at 

405 nm. Average absorbance values from duplicate wells are displayed with error bars 

representing standard deviation (n=1). 

Table 13. Turbidity and lysis curve analysis. Turbidity and lysis curves generated using 

recombinant WT fibrinogen ± rFXIII-A were analysed using customised software for calculation 

of turbidimetric variables. Values are calculated from duplicate wells (n=1). 
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Fibrin clots formed in the presence of rFXIII-A were reduced and run on an SDS-PAGE 

gel to visualise α-α, α-γ and γ-γ chain polymer formation (figure 24) and to demonstrate 

cross-linking of fibrinogen chains. The γ-γ polymers appeared first at 10 minutes, 

increasing in intensity over time. Bands corresponding to α-α and α-γ polymers 

appeared from 30 minutes onwards. Coinciding with cross-linked polymer formation, 

there was a visible reduction in fibrin α and γ chain monomers. 

 

 

 

 

 

 

3.1.2. Generation of pMLP-Aα variants by site directed mutagenesis 

Site directed mutagenesis was carried out to produce variant fibrinogen Aα chain 

constructs for expression of recombinant fibrinogen without the Ser3 and Ser345 

phosphorylation sites. Agarose gel electrophoresis confirmed the integrity of purified 

DNA after the mutagenesis procedure, with clean bands at the correct molecular 

weight (6,265bp) indicating good quality templates with no degradation. Plasmids were 

also sequenced to ensure the desired mutations were present before transfection. For 

each variant, the sequencing data revealed base changes exclusive to the codons of 

interest, producing the correct protein sequences with the exception of Ser3 and 

Ser345 when translated using ExPASy Translate Tool. Excerpts of sequencing data 

demonstrating successful mutations can be found in Appendix 2. Variant constructs for 
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Figure 24. Reducing SDS-PAGE fibrin polymerisation time course. Recombinant WT 

fibrinogen [0.5 mg/ml] was incubated with rFXIII-A [1.1 µg/ml] in the presence of 0.05 U/ml 

thrombin and 1.5 mM CaCl2 for 0-180 minutes. Reduced samples were separated on a 4-12 % 

Bis-Tris polyacrylamide gel in MOPS running buffer. Fibrin α, β and γ chains and HMW cross-

linked dimers are indicated with arrows. MW: molecular weight marker (kDa); C: control 

fibrinogen (no rFXIII-A). 
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expression of fibrinogen Aα S3N, S345N, S3/345N, S3E, S345E, S3/345E and S345A 

were generated in this way. 

3.1.3. Transfection of pMLP-Aα variants into CHO-Bβγ cells 

Initially, CHO-Bβγ cells were transfected with pMLP-Aα S345N and the pMSVHis 

selection vector. Uptake of DNA by the cells was successfully achieved, as inferred 

from the growth of healthy colonies under selective pressure. However, when 

screening an aliquot of medium from each of the 24 selected clones by fibrinogen 

ELISA, none of the clones were found to be positive for fibrinogen secretion. To 

investigate this further, several clones were selected at random and cultured in 60 mm 

dishes for 1 week without medium change. Conditioned medium was harvested and 

the ELISA was repeated. Again, no secreted fibrinogen was detected for any of the 

clones. At this point, it was unclear whether the absence of positive clones was due to 

an inability of the cells to express non-phosphorylated fibrinogen, or due to a problem 

with the transfection method.  

The process of pMLP-Aα S345N transfection was repeated in the same way, coupled 

with transfection of pMLP-Aα WT as a control. One out of six selected WT clones was 

positive for fibrinogen expression, albeit at a low concentration of 15 ng/ml. In contrast, 

the S345N clones remained blank during the ELISA. Subsequent transfections of 

pMLP-Aα S3N and pMLP-Aα S3/345N had the same outcome. To investigate whether 

this may be an effect of losing the phosphoserine residues, phosphomimetics pMLP-Aα 

S3E and S345E, which would replace Ser3 and Ser345 with negatively charged 

glutamic acid, were also transfected into CHO-Bβγ cells. Again, the 24 well plate 

fibrinogen ELISA revealed a complete absence of secreted fibrinogen, suggesting that 

i) the phosphate groups itself, rather than its negative charge, is required for secretion, 

or ii) the problem lies within the transfection process – a conclusion which is somewhat 

weakened by the viability of pMLP-Aα WT transfection and expression. A final attempt 

to express variant fibrinogen in CHO cells was made by transfection of pMLP-Aα 

S345A to change Ser345 to alanine, which is more typically used for transfection due 

to its small, inoffensive structure. Unfortunately this still did not permit expression and 

no positive clones were detected. 

Intracellular analysis of fibrinogen was performed to establish whether the variants 

were either: i) not expressed by the cells, or ii) expressed but not secreted without the 

phosphorylation sites. Chinese hamster ovary cells transfected with WT fibrinogen 

constructs prior to this thesis (CHO-WT), and used for expression and purification of 

recombinant WT fibrinogen, were used as a positive control in these experiments. 
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Transfected CHO cells were lysed and both lysate and conditioned medium were 

analysed for fibrinogen content by western blotting. Blots were probed with a polyclonal 

anti-fibrinogen antibody (figure 25) or monoclonal anti-fibrinogen Aα chain antibody 

(figure 26). In figure 26, medium was concentrated 5X for stronger detection of 

fibrinogen; lysate was concentrated in both cases. In figure 25, the Aα, Bβ and γ chains 

of fibrinogen were all detected in lysate and conditioned medium from CHO-WT cells. 

An additional non-specific band between the Aα and Bβ chains (approximately 60 kDa) 

also appeared in the cell lysates. To determine if this band was fibrinogen-related, the 

blot was repeated without the anti-fibrinogen antibody incubation step. The results 

demonstrated that the band is a result of cross-reactivity of the secondary goat anti-

rabbit HRP antibody to another protein in CHO cells, or endogenous peroxidase 

activity. In CHO cells transfected with the S345N variant, fibrinogen bands were 

present in the lysate but were very faint. This most likely indicates unequal loading of 

fibrinogen on the gel, and could be improved by performing a cell count prior to seeding 

cells. The Bβ and γ chains of S345N fibrinogen were clearly present, while the Aα 

chain band was only just visible. In a repeat experiment, in which the blot was probed 

with a monoclonal anti-fibrinogen Aα chain antibody (figure 26), an Aα chain band was 

clearly detected for S345N fibrinogen in cell lysate, with no band in the medium. In 

contrast, the WT fibrinogen presented as a very faint band in the lysate and a strong 

band in the medium. Again, this experiment would benefit from cell counting and 

seeding cells at equal densities. The results suggest that the CHO cells were able to 

express the variant Aα chain but could not secrete it, or at least not at a sufficient level 

for detection. The question remains whether the absence of fibrinogen in the medium is 

due to very low expression levels and problems with the transfection, or whether this is 

a direct effect of mutating the phosphorylation sites. 
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Contrary to the aforementioned lysis and blotting, further investigations into fibrinogen 

expression by immunofluorescence failed to detect any variant fibrinogen Aα chain in 

CHO cells, despite positive signal in CHO-WT cells (figure 27). Ideally, more than one 

clone per variant would be screened. However, the S345N clone was the same as 

used for cell lysis and blotting, which detected low levels of Aα chain. The same anti-

fibrinogen Aα chain antibody was also used for both techniques. The absence of Aα 

chain by immunofluorescence suggests a lack, or very low level, of expression. 

Immunofluorescence may not be sensitive enough to detect these low levels of Aα 

chain. 

Figure 26. Western blotting of WT and S345N fibrinogen Aα chain from CHO cell lysate 

and medium. Lysate (L) and conditioned medium (M) from CHO cells transfected with WT or 

S345N fibrinogen constructs (clone 8) were harvested after 5 days in serum-free medium. 

Loading conditions differ to figure 25, with a 5X concentration of harvested medium for clear 

detection of the fibrinogen Aα chain.  Samples (30 µl) were separated by reducing SDS-PAGE 

and probed with a mouse monoclonal anti-fibrinogen Aα chain antibody (αC) (1/1000). MW: 

molecular weight marker. 
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Figure 25. Western blotting of WT and S345N fibrinogen from CHO cell lysate and 

medium. Chinese hamster ovary cells transfected with constructs for expression of WT or 

S345N fibrinogen (clones 8 and 21) were incubated in serum-free medium for 5 days prior to 

lysis and harvest of medium. Lysate was concentrated 5X using centrifugal filters. Lysate (L) 

and conditioned medium (M) (30 µl) were separated by reducing SDS-PAGE and probed with a 

rabbit polyclonal anti-fibrinogen antibody (Fg) (1/1000). The red box highlights a non-specific 

band in CHO cell lysates. MW: molecular weight marker. 
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Finally, fibrinogen Aα chain expression levels in CHO cells transfected with the S3N 

and S345N variant constructs were compared by RNA extraction and end-point 

RT-PCR in a single experiment. Reactions were analysed by agarose gel 

electrophoresis and the results are displayed in figure 28. A strong band at 325bp, 

representing the fibrinogen Aα chain amplification product, was present in the CHO-WT 

reaction but was absent in all of the four selected S3N clones. Faint duplicate bands 

WT Bβγ 

S3N S3E 

S345N S345E 

S3/345N 

Figure 27. Immunofluorescent staining of fibrinogen Aα chain in CHO cells. CHO-WT, 

CHO-Bβγ and CHO cells transfected with variant fibrinogen Aα chain constructs (S3N, S3E, 

S345N, S345E, S3/345N) were fixed onto an 8-well chamber slide and incubated with mouse 

monoclonal anti-fibrinogen Aα chain (red) (1.5 µg/ml) and Cy3-AffiniPure donkey anti-mouse 

(1/1000) antibodies. Mounting medium contained DAPI nucleic acid stain (blue). Images were 

captured by LSCM with a 60x oil objective lens. 
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appeared for the S345N clones, but the lower of the two bands was also present in the 

CHO-Bβ negative control, indicating contamination. The upper band is also likely to be 

contamination given its faint appearance, as well as the limitations of end-point RT-

PCR in detecting changes in expression levels, beyond confirming presence or 

absence. Real-time PCR with melting curve analysis would confirm whether or not 

these amplification products correspond to the fibrinogen Aα chain, and enable 

comparison of expression levels. The lack of fibrinogen Aα chain mRNA in transfected 

CHO cells points to a problem with transfection. However, a higher number of clones 

should be screened to ascertain if this is the case.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. RT-PCR analysis of S3N and S345N variant fibrinogen Aα chain mRNA 

expression in CHO cells. RNA was extracted from CHO-Bβγ cells (negative control) and 

transfected CHO cells expressing WT (positive control), S3N, or S345N fibrinogen. Extracted 

RNA (100 ng) was reverse transcribed and amplified using primers specific to the fibrinogen Aα 

chain [0.6 µM] (FGA; lanes 1-6) or GAPDH control (lanes 7-10) for 40 cycles. The data are from 

a single experiment (n=1). The PCR products were visualised by 2% agarose gel 

electrophoresis. M: Hyperladder I molecular weight marker; lane 1: CHO-WT; lane 2: CHO-Bβγ; 

lanes 3-6: S3N or S345N clones amplified with FGA primers; lanes 7-10: S3N or S345N clones 

amplified with GAPDH primers. S3N clones (left to right): 1, 7 12, 24. S345N clones (left to 

right): 8, 11, 21, 32. 
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3.1.4. Co-transfection of pMLP-Aα and –γ into CHO-Bβ cells 

To test the hypothesis that expression of recombinant fibrinogen in CHO cells may be 

affected by the order of transfection of Aα, Bβ and γ chain cDNA constructs, 

transfections were repeated with co-transfection of pMLP-Aα and –γ into a CHO-Bβ 

cell line. Prior to transfection, each pMLP construct was sequenced to verify sequence 

integrity. This highlighted some minor errors in the previously recorded sequences, 

however the open reading frames were of correct nucleotide sequence for translation 

of the corresponding polypeptide chains. Sequences of pMLP-Aα, -Bβ and –γ are 

displayed in Appendix 2.  

New CHO cells were purchased and transfected with linearised pMLP-Bβ and 

pSELECT-neo selection vector to establish a CHO-Bβ cell line. As individual fibrinogen 

chains are not secreted, expression of the Bβ chain in 12 selected clones was 

compared by RNA extraction and real-time PCR. Clone 12 exhibited significantly higher 

expression than other clones (figure 29) and was therefore the cell line of choice for 

subsequent co-transfection of Aα and γ chain constructs.  
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Figure 29. Comparison of fibrinogen Bβ chain expression in clones of transfected CHO 

cells by real-time PCR. CHO cells transfected with pMLP-Bβ were cultured in selection 

medium to form stable clones. Individual clones were screened for fibrinogen Bβ chain 

expression by RNA extraction and real-time PCR. Extracted RNA (20 ng) was amplified using 

primers specific to the Bβ chain [0.2 µM] for 40 cycles and the relative expression in each clone 

was compared using a 2-∆CT calculation. The clone with the highest expression (clone 12) was 

used for subsequent co-transfection of Aα and γ chain constructs. 
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The established CHO-Bβ cell line was co-transfected with pMLP-Aα WT or S345N, 

pMLP–γ and pSELECT-zeo-ncs selection vector. Cells were split into varying dilutions 

after transfection and cultured in selection medium containing zeocin at a final 

concentration of 200 µg/ml to obtain stable clones expressing fibrinogen. With 

application of selection pressure, only one set of S345N dishes (split 1/80) survived 

and formed colonies. These were transferred to a 24 well plate and screened by 

fibrinogen ELISA. The results showed that none of the medium samples contained 

fibrinogen. No colonies had formed in the other S345N dishes or any of the WT dishes 

and the cells died within a few days, suggesting one of three things: i) the transfection 

was unsuccessful, ii) the cells were diluted too much before adding selection medium, 

or iii) the concentration of zeocin in the selection medium was too high. As there had 

not previously been any problems with uptake of selection vector and stable colony 

formation, the latter two options seemed more likely. Therefore, a subsequent 

experiment was conducted to optimise zeocin concentration by transfection of 

pSELECT-zeo-mcs into CHO cells via the normal method, and incubation of 

transfected cells with medium containing a concentration range of zeocin. Cells were 

plated at different dilutions and the highest concentration of zeocin that permitted 

colony formation (150 µg/ml) was selected as the optimal concentration. The optimal 

dilution factor for cells before selection was in this case 1/40. However, a repeat 

attempt at co-transfection of pMLP-Aα and –γ was again unsuccessful, failing to 

produce healthy colonies despite plating cells at a lower dilution with less zeocin. This 

process was not repeated further due to the lengthy nature of CHO cell transfections; 

instead, a new transient transfection method using Expi293F cells was tested for 

expression of variant fibrinogen. 

3.1.5. Recombinant fibrinogen expression in Expi293F cells 

The pMLP constructs used for transfection of CHO cells were transiently transfected 

into Expi293F cells for expression of recombinant fibrinogen. Initially, pMLP-Aα WT, 

pMLP-Bβ and pMLP-γ were transfected for expression of WT fibrinogen. An aliquot of 

medium was removed on days 3, 5 and 7 post-transfection for analysis of fibrinogen 

expression by ELISA. Fibrinogen was present in the medium, with very similar 

concentrations for each day, suggesting an optimal time course of 7 days. The 

concentration of fibrinogen in medium from day 7 was 4 µg/ml, giving an overall yield of 

200 µg fibrinogen from a 50 ml culture, some of which would also be lost during 

purification. Secreted fibrinogen was visualised by western blotting with an anti-

fibrinogen antibody, which showed three clean bands at the correct molecular weights 

for the fibrinogen Aα, Bβ and γ chains (figure 30). 
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In attempt to achieve a more proficient yield, Aα WT, Aα S345N, Bβ and γ chain 

cDNAs were removed from pMLP by restriction digestion and inserted into the pmC 

vector. This vector contains a CMV promoter, which is recommended for high protein 

expression in Expi293F cells. The new constructs were analysed by agarose gel 

electrophoresis which revealed clean bands at the correct molecular weights of 

4783 bp, 4326 bp and 4178 bp for pmC-Aα, -Bβ or –γ respectively, indicating 

successful ligation of vector and insert (figure 31). Prior to Expi293F transfection, each 

pmC construct was individually transfected into CHO cells to test their viability for 

protein expression, as this is a more cost effective method. Cells were lysed and 

analysed by western blotting (figure 32). After the first attempt, only the γ chain was 

detected in the medium. A repeat attempt confirmed expression of the Bβ chain as 

well, but the WT Aα chain was not detected; this may be due to variability in 

transfection efficiency between experiments. An additional band above the Bβ chain, of 

approximately 60 kDa, is a result of non-specific interaction of the secondary antibody 

or intrinsic peroxidase acitivty, as discussed previously in section 3.1.3.  
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Figure 31. Agarose gel electrophoresis of the pmC fibrinogen expression constructs. 

Restriction digestion reactions were prepared with 4 µg pmC-Aα WT (lane 1), pmC-Bβ (lane 2), 

pmC–γ (lane 3) or pmC-Aα S345N (lane 4) maxi-preps and 30 U EcoRI. Reactions were 

incubated for 16 hours at 37°C and analysed by agarose gel electrophoresis on a 1 % gel in TE 

buffer. M: Hyperladder I molecular weight marker. 
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Figure 30. Western blot of recombinant fibrinogen secreted by Expi293F cells transfected 

with the pMLP constructs. Conditioned medium from Expi293F cells transiently transfected 

with pMLP-Aα, -Bβ and -γ was harvested, concentrated and analysed by reducing SDS-PAGE 

and western blotting with a rabbit polyclonal anti-fibrinogen antibody (1/1000). MW: molecular 

weight marker; lane 1: Expi293F fibrinogen (20 µl); AP-fibrinogen control (300 ng). 
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With confirmation that Bβ and γ chains could be expressed in CHO cells, pmC-Aα WT 

or S345N, pmC-Bβ and pmC-γ were transfected together into Expi293F cells for 

fibrinogen expression. Medium was harvested on day 7 and analysed by ELISA and 

western blotting. Both WT and S345N fibrinogen were successfully expressed using 

this system (figure 33). Wild-type fibrinogen was at a concentration of 10 µg/ml and 

S345N fibrinogen was at 16 µg/ml, giving a yield of 300 µg or 480 µg respectively from 

a 30 ml culture. This outcome demonstrates for the first time that fibrinogen can be 

expressed without the Ser345 phosphorylation site; however, the γ chain in S345N 

fibrinogen exhibited a slightly higher molecular weight (approximately 50 kDa) 

compared to the normal 48 kDa, which warrants further investigation. In addition, there 

was only a marginal improvement in yield after cloning into pmC. Given the high cost 

and low yield, this approach did not seem suitable for large-scale expression of 

recombinant fibrinogen variants. 
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Figure 32. Western blot of lysate from CHO cells transfected with the pmC expression 

constructs. Fibrinogen expression constructs pmC-Aα WT, -Bβ and –γ were transiently 

transfected into CHO cells and the cells were lysed 2 days later. Cell lysate (20 µl) was 

analysed by SDS-PAGE and western blotting with a rabbit polyclonal anti-fibrinogen antibody 

(1/1000) to screen for expression of the individual chains. MW: molecular weight marker; lane 1: 

AP-fibrinogen control (100 ng); lanes 2-4: lysate of CHO cells transfected with pmC-Aα (2), -Bβ 

(3) and –γ (4). A non-specific band of approximately 60 kDa is present in lysate lanes (2-4). 
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Figure 33. Western blot of recombinant fibrinogen secreted by Expi293F cells transfected 

with the pmC constructs. Conditioned medium from Expi293F cells transiently transfected with 

pmC-Aα WT or S345N, pmC-Bβ and pmC-γ was harvested and concentrated before measuring 

the fibrinogen concentration by ELISA. Fibrinogen (50 ng) was analysed by SDS-PAGE and 

western blotting with a rabbit polyclonal anti-fibrinogen antibody (1/1000). MW: molecular weight 

marker; lane 1: Calbiochem® fibrinogen control; lane 2: Expi293F WT fibrinogen; lane 3: 

Expi293F S345N fibrinogen. 
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3.2. Functional studies with fibrinogen phosphorylation isoforms 

Normally, plasma fibrinogen is approximately 20-25% phosphorylated. Due to problems 

with expression of recombinant fibrinogen lacking the Ser3 and Ser345 

phosphorylation sites, another approach was sought to investigate the function of this 

modification; this involved separation of phosphorylated from non-phosphorylated 

fibrinogen by chromatography. Functional studies were then conducted using these 

samples. 

3.2.1. Preparation of fibrinogen phosphorylation isoforms 

3.2.1.1. Separation of phosphorylated and non-phosphorylated fibrinogen by 

DEAE anion-exchange chromatography 

With a pI of 5.6, fibrinogen has a net negative charge at physiological pH. The addition 

of phosphate to fibrinogen makes the protein more negatively charged. Therefore, a 

positively charged DEAE Fast Flow column was used to bind fibrinogen, with a greater 

affinity for the phosphorylated form. Initially fibrinogen eluted as a single peak, 

therefore several parameters were optimised. The pH of the equilibration buffer was 

lowered from 8 to 6.8 and gradient time was doubled from 4 CV to 8 CV, but 

unfortunately there was still no separation of the phosphorylation isoforms. Extension 

of the gradient time to 30 CV and reduction of the binding flow rate to 0.2 ml/min 

resulted in two elution peaks, but the second peak was very small and not distinct from 

the first peak. Further doubling of the gradient time to 60 CV did not improve resolution 

or the size of the second peak. Figure 34 displays a chromatogram of the elution 

phase. The degree of phosphorylation of fibrinogen in each peak was assessed using 

the malachite green assay. The amount of phosphate in each well was determined 

from a standard curve and used to calculate the mol phosphate/mol fibrinogen. This 

was converted to a percentage of phosphorylation based on the assumption that 

fibrinogen has a theoretical maximum of 4 mol phosphate/mol fibrinogen (two sites per 

Aα chain). The results of this assay confirmed a slight enrichment of phosphorylated 

fibrinogen in the second anion exchange elution peak, from 25 % (1 mol phosphate/mol 

fibrinogen) for control AP-fibrinogen to 36 % phosphorylation (1.45 mol phosphate/mol 

fibrinogen). The first elution peak was only slightly reduced from 25.0 % to 24 % 

phosphorylation (0.94 mol phosphate/mol fibrinogen).  
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3.2.1.2. Separation of phosphorylated and non-phosphorylated fibrinogen by 

Phos-tag™ affinity chromatography 

Phos-tag™ chromatography was employed as an alternative to anion exchange 

chromatography in attempt to achieve greater separation of phosphorylated and non-

phosphorylated fibrinogen. During the first trials of this method, all of the loaded 

fibrinogen (1 mg) came through the column in the flow through and there was no 

detectable elution of bound fibrinogen. Loading more fibrinogen (4 mg) at a reduced 

flow rate of 0.1 ml/min resulted in an elution peak which was collected, dialysed against 

TBS-1 pH 7.4 and analysed by malachite green assay.  An aliquot of phosphate 

buffer-only was also dialysed against TBS-1 pH 7.4 and included in the malachite 

green assay as a control for residual NaH2PO4; unfortunately the control sample and 

the eluted fibrinogen sample both appeared overly green in the assay, indicating 

contamination with phosphate from the elution buffer due to insufficient dialysis. 

Therefore, the elution buffer was changed to 50 mM EDTA, which had an equally 

effective outcome in terms of the resulting elution peak and enabled subsequent 

analysis of phosphate content by malachite green assay. Fibrinogen in the flow through 

36 % phosphorylation 

Figure 34. Anion exchange chromatography with fibrinogen. Calbiochem® fibrinogen 

(2 mg) was applied to a DEAE Sepharose Fast Flow column and eluted with an increasing 

concentration of NaCl up to 1M. The chromatogram shows the elution phase with two peaks of 

24 % and 36 % phosphorylated fibrinogen, as determined by malachite green assay. 

Chromatography was performed using an ÄKTA prime system. 
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and elution fractions was 18 % and 50 % phosphorylated respectively. As this 

produced a greater range in degree of phosphorylation than the anion exchange 

method, Phos-tag™ chromatography was repeated several times to obtain enough 

fibrinogen from each peak for functional studies. Figure 35 shows a typical 

chromatogram of this method with flow through and elution peaks. The phosphate 

content of fibrinogen from each peak was determined by malachite green assay: 13 % 

(0.5 mol phosphate/mol fibrinogen) and 33 % (1.3 mol phosphate/mol fibrinogen) 

phosphorylation for fibrinogen from flow through and elution peaks respectively. Details 

of these samples are summarised in table 14, section 3.2.1.4. Unfortunately there was 

far less enrichment of phosphorylated fibrinogen than the first attempt. However, there 

was a 2.5-fold difference between the 13 % and 33 % samples, which mimics the rise 

in phosphorylation during the acute phase (from 20-25 % to approximately 50-70 %). 
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Flow through Elution 

Figure 35. Phos-tag™ Agarose affinity chromatography with fibrinogen. Calbiochem® 

fibrinogen (4 mg) was loaded onto a Phos-tag™ Agarose column and the bound phosphorylated 

fibrinogen was eluted with a gradient of EDTA up to 50 mM. The chromatogram shows the point 

of sample inject as well as flow through and elution peaks, containing 13 % and 33 % 

phosphorylated fibrinogen respectively. The green lines represent EDTA concentration. 

Chromatography was performed using an ÄKTA avant 25 system. 
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3.2.1.3. Dephosphorylation of fibrinogen 

Ammonium sulphate-precipitated fibrinogen was dephosphorylated using bovine 

intestinal alkaline phosphatase and purified from the reaction mix by IF-1 affinity 

chromatography. Dephosphorylation was confirmed by malachite green assay which 

revealed a 4 % degree of phosphorylation (0.16 mol phosphate/mol fibrinogen) in the 

purified fibrinogen sample – an 84 % reduction from control levels (0.98 mol 

phosphate/mol fibrinogen) (table 14).  

3.2.1.4. Fibrinogen samples for functional studies 

As previously described in section 3.2.1.2, phosphorylated and non-phosphorylated 

fibrinogen were separated by Phos-tag™ affinity chromatography. Control 

Calbiochem® fibrinogen and dephosphorylated Calbiochem® fibrinogen were also 

purified by IF-1 affinity chromatography. Collectively, this produced four fibrinogen 

samples with varying degrees of phosphorylation:  

1. Control IF-1 purified Calbiochem® fibrinogen (25 % phosphorylation)  

2. Dephosphorylated fibrinogen (4 % phosphorylation)  

3. Phos-tag™ chromatography flow through fibrinogen (13 % phosphorylated) 

4. Phos-tag™ chromatography eluted fibrinogen (33 % phosphorylated)  

The degree of phosphorylation of each sample was determined using the malachite 

green assay. Table 14 shows a summary of malachite green assay data, including the 

percentage phosphorylation of each sample. The four samples were then compared in 

a variety of assays to investigate the functional effects of fibrinogen phosphorylation. 

 

 Control Dephosphorylated Flow through Elution 

pmol phosphate 245 40 125 325 

mol phos/mol fg 0.98 0.16 0.50 1.30 

% phosphorylation 25 4 13 33 

 

 

 

 

Table 14. Malachite green assay with Phos-tag™ chromatography peaks and 

dephosphorylated fibrinogen. The degree of phosphorylation of fibrinogen from Phos-tag™ 

chromatography flow through and elution peaks, as well as IF-1 purified control and 

dephosphorylated Calbiochem® fibrinogen, was determined by malachite green assay. The 

data are based on duplicate wells from a single experiment. For each sample, pmol phosphate 

was divided by 250 pmol fibrinogen to convert to mol phosphate/mol fibrinogen. This value was 

divided by four to calculate the percentage phosphorylation, assuming a theoretical maximum of 

4 mol phosphate/mol fibrinogen.  
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3.2.2. The effect of fibrinogen phosphorylation on the interaction between 

fibrinogen and other plasma components  

Fibrin(ogen) interacts with several other plasma proteins during coagulation, including 

FXIII, α2-AP and plasmin(ogen). Given that these proteins bind or become covalently 

cross-linked to the αC region of the fibrinogen Aα chain, in proximity to Ser345, it is 

possible that phosphorylation of fibrinogen may regulate these interactions in some 

way. Studies were therefore conducted to investigate the effect of fibrinogen 

phosphorylation on FXIII cross-linking activity, including fibrin chain cross-linking and 

incorporation of α2-AP, as well as plasminogen binding and the rate of plasmin 

digestion of fibrinogen. 

3.2.2.1. FXIII-mediated cross-linking of fibrin α and γ chains 

A biotin pentylamine incorporation assay was used to investigate the effect of 

fibrinogen phosphorylation on the cross-linking of fibrin α and γ chains by rFXIII-A, 

using phosphorylated (13 %, 25 %, 33 %) and dephosphorylated fibrinogen substrates. 

The results showed a similar trend of biotin-pentylamine incorporation over time for the 

varying degrees of phosphorylation (figure 36). The same trend was observed in three 

independent experiments and suggests that phosphorylation does not influence clot 

stabilisation via inter-chain fibrin cross-linking.  
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Figure 36. Biotin-pentylamine incorporation by rFXIII-A. Cross-linking of biotin-pentylamine 

[2.7 µM] to phosphorylated (13 %, 25 % and 33 %) and dephosphorylated (DP) fibrinogen 

[40 µg/ml] by rFXIII-A [1.1 µg/ml] in the presence of 1 U/ml thrombin and 1mM CaCl2 was 

measured over 25 minutes and detected with streptavidin alkaline phosphatase and PNPP 

substrate. The data shown are an average of three wells from a single experiment, with error 

bars representing standard deviation. The data are representative of three independent 

experiments (n=3). 
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3.2.2.2. Incorporation of α2-AP 

Two separate assays were used to monitor cross-linking of α2-AP to the fibrin α chain: 

an α2-AP incorporation assay and a clot-based plasmin generation assay. For the 

incorporation assay, phosphorylated (13 %, 25 %, 33 %) and dephosphorylated 

fibrinogen samples were converted to fibrin in the presence of thrombin and CaCl2 

before adding a master mix containing rFXIII-A and α2-AP. Incorporation of α2-AP was 

measured over 50 minutes. Figure 37 shows the graph from one of three independent 

experiments, all of which demonstrated no difference in α2-AP incorporation with the 

varying degrees of phosphorylation.  

 

 

 

 

 

 

For the plasmin generation assay, formation of a chromogenic substrate was used as a 

measure of plasmin activity, in the presence or absence of α2-AP. Results are 

displayed in figure 38. As expected, the increase in plasmin activity over time was 

delayed by the addition of plasmin inhibitor α2-AP, reaching the same plateau at 

approximately 1 hour 30 minutes without α2-AP and 2 hours 30 minutes with α2-AP. 

However, plasmin activity in clots formed from the different fibrinogen samples was 

identical whether α2-AP was included or not. This outcome was observed in three 

independent experiments. Taken together, the data from these two assays indicate that 

phosphorylation of fibrinogen neither promotes nor inhibits cross-linking of α2-AP to 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50

A
b
s
o
rb

a
n
c
e
 a

t 
4
9
0
n
m

Time (minutes)

Control (25%)

DP

13%

33%

Figure 37. α2-AP incorporation by rFXIII-A. Fibrin was formed by incubation of fibrinogen 

[80 µg/ml] with 1 U/ml thrombin and 5 mM CaCl2. Cross-linking of α2-AP [10 µg/ml] to 

phosphorylated (13 %, 25 % and 33 %) and dephosphorylated (DP) fibrin by rFXIII-A [1.1 µg/ml] 

was measured over 50 minutes and detected with a HRP-conjugated anti-α2-AP antibody 

(1/1000) and OPD substrate. The data shown are an average of three wells from a single 

experiment, with error bars representing standard deviation. The data are representative of 

three independent experiments (n=3). 
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Lys303 in the α chain, and therefore does not impact the rate of plasmin-mediated 

fibrinogen degradation by this means. 

 

 

 

 

 

 

 

 

 

3.2.2.3. Plasminogen binding 

Binding of plasminogen to phosphorylated (13 %, 25 %, 33 %) and dephosphorylated 

fibrinogen was measured by ELISA at seven concentrations of plasminogen 

(3.75-240 nM), reflecting the published binding affinity of plasminogen to fibrin 

Aα221-610 of 32 nM (Tsurupa and Medved 2001). Three separate experiments 

revealed no difference in trend between the fibrinogen samples (figure 39), implying 

that plasminogen binding to the fibrinogen αC region is not altered by phosphorylation. 
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Figure 38. Plasmin generation assay. Clots composed of phosphorylated (13 %, 25 % and 

33 %) and dephosphorylated (DP) fibrin were formed by incubation of fibrinogen samples at 

0.25 mg/ml with plasminogen [312.5 µg/ml] and rFXIII-A [1.4 µg/ml] in the absence (A) or 

presence (B) of α2-AP [1.65 µg/ml]. Clotting was activated with 0.75 U/ml thrombin and 

3.75 mM CaCl2. Absorbance was monitored over 3 hours after addition of a lysis mix containing 

tPA [0.05 µg/ml] and S225-1 chromogenic substrate [0.6 mM] as an indicator of plasmin activity. 

Blue: control (25 %); red: dephosphorylated; green: 13 %; purple: 33 %. The data are an 

average of three wells from a single experiment, and are representative of three independent 

experiments (n=3). 
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3.2.2.4. Plasmin digestion of fibrinogen 

The effect of fibrinogen phosphorylation on the rate of plasmin digestion was analysed 

using a time course experiment and non-reducing SDS-PAGE. A concentration range 

of plasmin from 27.5 nM to 440 nM at 0 and 40 minutes was tested in the first 

experiment and the optimal concentration of plasmin found to be 220 nM. At this 

concentration, fibrinogen was almost completely degraded and the bands representing 

fibrinogen fragments were clearly defined (figure 40A). A second experiment was 

conducted to optimise the time-scale, using a range of time points from 5 to 40 

minutes. The results demonstrated almost complete digestion in just 5 minutes (figure 

40B). Hence, a total duration exceeding 5 minutes would not be useful for monitoring a 

steady progression. One option to improve this method would have been to lower the 

plasmin concentration, however in the previous experiment there was still a lot of intact 

fibrinogen at the top of the lane using 110 nM plasmin. The time-course was therefore 

shortened from 40 minutes to 4 minutes with 30 second intervals for subsequent 

experiments.  
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Figure 39. Plasminogen binding assay. Phosphorylated (13 %, 25 % and 33 %) and 

dephosphorylated (DP) fibrinogen [40 µg/ml] were incubated with increasing concentrations of 

plasminogen (0-240 nM) for 1 hour. Bound plasminogen was detected with an anti-plasminogen 

HRP antibody (1/2000) and OPD substrate. The data shown are an average from three wells of 

a single experiment, with error bars of standard deviation. The data are representative of three 

independent experiments (n=3). 
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Phosphorylated (13 %, 25 %, 33 %) and dephosphorylated fibrinogen were compared 

using this method. Figure 41 shows an example gel with 0 to 4 minutes plasmin 

digestion of control fibrinogen (25 % phosphorylated) and the appearance of fibrinogen 

degradation products over time. The intensity of fragment Y and fragment D1 in stained 

SDS-PAGE gels were analysed by densitometry, normalising to total protein. The 

results, expressed as a percentage of total protein, are plotted against time in figure 42. 

The graphs represent data averaged from two independent experiments and show an 

increase in fragment Y and fragment D1 over time. There was no difference in 

fragment Y formation over time between the fibrinogen samples, but a slight decrease 

in fragment D1 formation with more phosphorylation. However, this was not significant 

and the DP sample did not fit with this trend, so it is unclear whether this effect is 

genuine or due to experimental error. A more sensitive assay may be needed to clarify 

this result. 
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Figure 40. Optimisation of a plasmin digestion time course experiment. Fibrinogen (25 % 

phosphorylated) (10 µg) was digested with plasmin for controlled time periods before inhibiting 

with LDS sample buffer. Each reaction was separated by non-reducing SDS-PAGE. A) 

Incubation of fibrinogen with 27.5-440 nM plasmin for 0 and 40 minutes. B) Incubation of 

fibrinogen with 220 nM plasmin for 0 and 5 minutes, showing rapid degradation of fibrinogen. 
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Figure 42. Densitometry of fibrinogen degradation products over time with plasmin 

digestion. Phosphorylated (13 %, 25 %, 33 %) and dephosphorylated fibrinogen samples 

(10 µg) were incubated with 220 nM plasmin for 0-4 minutes in 30 second intervals and 

separated by non-reducing SDS-PAGE. The intensity of bands corresponding to fragment Y (A) 

and fragment D1 (B) over time were analysed by densitometry and normalised to total protein in 

each lane. Results are expressed as a percentage of total protein and represent average values 

from two independent experiments (n=2). 
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Figure 41. Plasmin digestion of fibrinogen. Fibrinogen (25 % phosphorylated) (10 µg) was 

incubated with 220 nM plasmin for 0-4 minutes in 30 second intervals and reactions were 

inhibited with LDS sample buffer. Each reaction was separated by non-reducing SDS-PAGE to 

visualise the fibrinogen degradation products (indicated by arrows) and Aα chain (αC) 

degradation products. MW: molecular weight marker. The above gel is an example from one of 

two experiments with phosphorylated (13 %, 25 % and 33 %) and dephosphorylated fibrinogen. 
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3.2.3. The effect of fibrinogen phosphorylation on clot structure 

3.2.3.1. Turbidity analysis 

Comparison of fibrin fibre diameter and overall clot structure was conducted by 

spectrophotometric turbidity analyses and electron microscopy of clots composed of 

phosphorylated (13 %, 25 %, 33 %) and dephosphorylated fibrin. Turbidity data 

averaged from five independent experiments were analysed using a customised 

programme for calculation of MaxAbs and clotting rate variables. The results 

demonstrated a relationship between the degree of phosphorylation and fibre 

thickness. Higher phosphate content produced lower MaxAbs values, with a significant 

reduction from 0.068 for dephosphorylated fibrin to 0.036 for 33 % phosphorylated 

fibrin (p=0.0011) (figure 43A and B). Despite this trend, there was a negligible 

difference between MaxAbs values for the 25 % (0.044) and 13 % phosphorylated 

samples (0.046) (p=0.7727), and only a small difference between the 25 % and 33 % 

phosphorylated samples (p=0.0728). However, the decline in MaxAbs from 13 % to 

33 % phosphorylation was statistically significant (p=0.0247). The observed reduction 

in MaxAbs indicates thinner fibres with increasing phosphorylation. Clotting rate 

showed a similar trend to MaxAbs, with increasing phosphorylation levels leading to 

slower clot formation, but with less of a difference between each sample (figure 43C). 

Again, incremental differences from 13 % to 25 %, and from 25 % to 33 % 

phosphorylation were non-significant (p=0.8484 and p=0.1292 respectively), but the 

difference in clotting rate between 13 % and 33 % phosphorylation was found to be 

significant (p=0.0256). Clotting rate for dephosphorylated fibrin was higher than for 

each of the other three fibrinogens (13 %, 25 % and 33 % phosphorylation), with an 

overall reduction from 2.069 x 10-4 to 1.549 x 10-4 absorbance units/second (p=0.0033). 

Lag time was too short for comparable measurement using this method, so the effect of 

phosphorylation on the rate of lateral aggregation of protofibrils could not be inferred. 

The experiment could be repeated using a lower thrombin concentration to slow down 

this initial stage and enable comparison.  
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3.2.3.2. SEM of fibrin clots 

Electron micrographs of clots showed a visible reduction in fibre diameter with higher 

degrees of phosphorylation (figure 44), supporting the turbidity data. This was analysed 

further using image analysis software, measuring the diameters of 20 fibres from five 

different images (a total of 100 fibres) per sample. Average fibre diameters were 
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Figure 43. Analysis of fibrin clot turbidity. A) Clots composed of phosphorylated (13 %, 25 % 

and 33 %) and dephosphorylated (DP) fibrin were formed by incubation of fibrinogen samples at 

0.25 mg/ml with plasminogen [312.5 µg/ml] and rFXIII-A [1.4 µg/ml], plus an activation mix 

containing 0.75 U/ml thrombin and 3.75 mM CaCl2. The absorbance at 340 nm was recorded 

over 15 minutes. A customised software application was used for calculation of MaxAbs (B) as 

an indication of fibre thickness, and clotting rate (C) in absorbance units per second (AU/s). The 

data in A, B and C are an average of five independent experiments (n=5), with error bars 

representing standard error of the mean. Statistical significance between mean MaxAbs and 

clotting rate values is indicated by * (p<0.05), ** (p<0.01) or ns (non-significant). 
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58.6 nm, 40.6 nm, 35.6 nm and 31.7 nm for dephosphorylated fibrin, and 13 %, 25 % 

and 33 % phosphorylated fibrin respectively (figure 45A). Statistical analysis revealed 

significant differences between mean fibre diameter for each increment in 

phosphorylation level, from dephosphorylated fibrin to 13 % phosphorylation 

(p=0.0002), from 13 % to 25 % phosphorylation (p=0.0006), and from 25 % to 33 % 

phosphorylation (p=0.0055). Highly significant differences were found between 

dephosphorylated and 33 % phosphorylated fibrin, and between 13 % and 33 % 

phosphorylated fibrin (p<0.0001). The trend of lower turbidity with increasing 

phosphorylation was similar to that observed by turbidity analysis, but with more 

pronounced differences when comparing the 13 % and 33 % phosphorylated samples 

to control fibrinogen (25 % phosphorylation). A comparison of turbidity and electron 

microscopy results is displayed in figure 45B. By qualitative speculation, the electron 

micrographs also point to increased branching of fibres with more phosphate (figure 

44), but this was not confirmed by quantitative means and warrants further 

investigation.  
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Figure 44. Scanning electron micrographs of fibrin clots. Phosphorylated (13 %, 25 % and 

33 %) and dephosphorylated (DP) fibrinogen samples at 1 mg/ml were incubated with 1 U/ml 

thrombin and 10 mM CaCl2 for clot formation. Clots were fixed in 2 % (v/v) gluteraldehyde, dried 

and coated with 7nm platinum-palladium before imaging by SEM at 50,000X and 100,000X 

magnification. Five different areas from a single clot were imaged per fibrinogen sample for 

analysis of fibre diameter. True dimensions are indicated by scale bars.  
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Taken together, the results of the turbidity and SEM experiments demonstrate that 

phosphorylation of fibrinogen has a notable impact on clot structure. In addition to the 

slower clotting rate, an elevated degree of phosphorylation is likely to produce clots 

with thinner fibres and increased density due to more extensive branching – a typical 

pro-thrombotic clot structure. This highlights a detrimental role of fibrinogen 

phosphorylation in thrombosis. 
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Figure 45. Comparison of fibrin fibre diameter. A) Diameters of phosphorylated (13 %, 25 % 

and 33 %) and dephosphorylated (DP) fibrin fibres in SEM images at 50,000X magnification 

were measured using ImageJ software. A total of 100 fibres were measured over five different 

areas per clot (20 fibres per image) (n=5). Average values are displayed with error bars 

representing standard error of the mean. Statistical significance between mean fibre diameters 

is indicated by ** (p<0.01), *** (p<0.001), or **** (p<0.0001). B) Comparison of the effect of 

fibrinogen phosphorylation on fibre thickness as determined by turbidity assay (MaxAbs) and 

SEM. Data are expressed as a percentage of the control sample (25 % phosphorylation). 
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3.3. Characterisation of intracellular fibrinogen phosphorylation 

Studies were carried out using HepG2 cells to investigate the intracellular mechanism 

of fibrinogen phosphorylation in control and acute phase conditions. The main aims 

were to i) identify the subcellular site of fibrinogen phosphorylation, ii) identify the 

relevant kinase, and iii) determine whether the rise in fibrinogen phosphorylation in 

acute phase conditions occurs intracellularly or in circulation. Several methods were 

employed, including western blotting, ELISA and PLA. 

3.3.1. Immunofluorescent detection of cellular fibrinogen Aα chains 

Immunofluorescence was used to optimise various antibodies for subsequent PLA 

experiments. First, three different fibrinogen Aα chain antibodies were tested at varying 

concentrations to see which one gave the strongest signal in CHO-WT cells, with 

minimal background in CHO-Bβ cells (negative control). Neither of the rabbit polyclonal 

antibodies detected the fibrinogen Aα chain (figure 46A and B), but the mouse 

monoclonal antibody worked well at an optimal concentration of 1.5 µg/ml (figure 46C). 

 
    

  
 
 
 

 

 

CHO-Bβγ CHO-WT 

 
 
 
A 

 
 
 

 
 

 
 
B 

 
 
 

 
 

 
 
C 
 
 
 

 
Figure 46. Validating antibodies for immunofluorescent detection of the fibrinogen Aα 

chain in CHO cells. CHO-WT and CHO-Bβ cells were fixed onto an 8-well chamber slide and 

incubated with antibodies to the fibrinogen Aα chain (red) at a range of concentrations. A and B: 

rabbit polyclonal anti-fibrinogen Aα chain; C: mouse monoclonal anti-fibrinogen Aα chain. 

Primary antibodies were detected with Alexa Fluor 488-Affini-Pure donkey anti-rabbit (1/1000) or 

Cy3-AffiniPure donkey anti-mouse (1/1000) secondary antibodies. Mounting medium contained 

DAPI nucleic acid stain (blue) and images were taken by LSCM with a 60x oil objective lens. 
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Antibodies against PDI and TGN46 were optimised for the detection of ER and trans-

Golgi respectively. The concentrations that gave the highest signal:background ratio 

were selected for experiments; anti-PDI was used at a 1/50 dilution and anti-TGN46 

was used at a 1/200 dilution. Figure 47 shows the immunofluorescent detection of 

fibrinogen Aα chains, PDI, TGN46 and nuclei in HepG2 cells. There was significant 

overlap between fibrinogen Aα chain and ER staining, which may represent pools of 

Aα-γ complexes in the ER (Yu et al., 1984, Xia and Redman, 2001). As expected, there 

was no significant co-localisation between the fibrinogen Aα chain and Golgi marker 

TGN46, implying that assembled fibrinogen travels quickly through the cell for 

secretion. 
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 Figure 47. Immunofluorescent detection of ER and Golgi markers in HepG2 cells. HepG2 

cells were fixed onto an 8-well chamber slide and incubated with a mouse monoclonal anti-

fibrinogen Aα chain antibody (red) (1.5 µg/ml) plus an anti-PDI (ER marker; green) (1/50) or 

anti-TGN46 (trans-Golgi marker; white) (1/200) antibody. Primary antibodies were detected with 

Cy3-AffiniPure donkey anti-mouse (1/1000) or Alexa Fluor 647-AffiniPure donkey anti-sheep 

secondary antibodies (1/1000). Mounting medium contained DAPI nucleic acid stain (blue) and 

images were taken by LSCM with a 60x oil objective lens. 
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3.3.2. Detection of phosphorylated fibrinogen Aα chains in HepG2 cells by 

proximity ligation assay 

Detection of a target by PLA requires two different primary antibodies to localise in 

close proximity. Having optimised the fibrinogen Aα chain primary antibody by 

immunofluorescence, a proximity ligation assay was performed with a concentration 

range of the second primary antibody – rabbit polyclonal anti-phosphoserine. For 

optimisation purposes, phosphorylated fibrinogen was detected in CHO-WT so that 

CHO-Bβγ cells could be used as a negative control. The optimal concentration of anti-

phosphoserine that produced a reasonable signal, but with low background, was 

2.5 µg/ml. In subsequent experiments, phosphorylated fibrinogen was detected in 

HepG2 cells, as these cells express fibrinogen naturally. Markers for the ER and trans-

Golgi were included to investigate the subcellular location of fibrinogen 

phosphorylation. However, phosphorylated fibrinogen did not co-localise with either 

marker and the signals were fairly sparse (figure 48). This may suggest that, once 

phosphorylated, fibrinogen is secreted rapidly from the cell and therefore not detected 

as a build-up of signal in one specific location. To investigate this further, BFA was 

added to the cells prior to fixation to inhibit protein secretion, as discussed below. 

 

 

     
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

Figure 48. Proximity ligation assay to detect phosphorylated fibrinogen Aα chain in 

HepG2 cells. HepG2 cells were fixed onto an 8 well chamber slide and probed with mouse 

monoclonal anti-fibrinogen Aα chain (1.5 µg/ml) and rabbit polyclonal anti-phosphoserine 

(2.5 µg/ml) primary antibodies in a proximity ligation assay to detect phosphorylated Aα chain 

(PαC; red). Cells were also incubated with ER marker Alexa-Fluor 488 anti-PDI (green) (1/50), 

trans-Golgi marker sheep polyclonal anti-TGN46 (white) (1/200), and DAPI nucleic acid stain 

(blue). The anti-TGN46 primary antibody was detected with Alexa Fluor 647-AffiniPure donkey 

anti-sheep (1/1000). Images were taken by LSCM with a 60x oil-objective lens. 
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3.3.3. The effect of secretory pathway inhibitor Brefeldin A on fibrinogen 

phosphorylation in HepG2 cells 

Secretory pathway inhibitor, BFA, was enlisted to facilitate identification of the 

subcellular site of fibrinogen phosphorylation, and to increase signal in later 

experiments. A BFA concentration of 20 µg/ml added for 8 hours gave the best result, 

with the largest increase in signal compared to control cells. This effect is shown in 

figure 49. The average number of phosphorylated fibrinogen Aα chains per cell, in the 

presence and absence of BFA, was calculated using ImageJ software. This figure 

increased significantly with BFA, from an average of 5.0 spots per cell to 16.8 spots per 

cell. Given that BFA blocks the exit of secretory proteins from the ER, but also causes 

redistribution of enzymes from the cis- and medial-Golgi back to the ER, this build-up of 

signal after addition of BFA suggests that fibrinogen is phosphorylated before it 

reaches the trans-Golgi compartment. This rules out the possibility of phosphorylation 

occurring in the trans-Golgi, secretory vesicles or at the cell surface. On the other 

hand, it suggests fibrinogen phosphorylation is likely to occur in the ER or an early 

Golgi compartment, making CK2 and the G-CK valid candidates for the in vivo 

fibrinogen kinase. 

 

 

 

 

 

 

Figure 49. The effect of BFA on fibrinogen phosphorylation in HepG2 cells. HepG2 cells 

were incubated in the presence and absence of 20 µg/ml BFA for 8 hours before fixing. Cells 

were probed with mouse monoclonal anti-fibrinogen Aα chain (1.5 µg/ml) and rabbit polyclonal 

anti-phosphoserine (2.5 µg/ml) primary antibodies in a proximity ligation assay to detect 

phosphorylated Aα chain (PαC; red). Cells were also incubated with ER marker Alexa-Fluor 488 

anti-PDI (green) (1/50) and DAPI nucleic acid stain (blue). Images were taken by LSCM with a 

60x oil-objective lens. Three wells per group were imaged within a single experiment for 

subsequent quantitation of fibrinogen phosphorylation using ImageJ software (n=1).  
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3.3.4. Developing methods for the detection of phosphorylated fibrinogen using 

Phos-tag™ 

Alongside the intracellular detection of phosphorylated fibrinogen by PLA, several 

approaches were tested for the detection of phosphorylated fibrinogen in conditioned 

medium using Phos-tag™, including SDS-PAGE, ELISA and western blotting.  

3.3.4.1. Phos-tag™ affinity SDS-PAGE 

Control (25 % phosphorylated) and dephosphorylated fibrinogen were separated by 

Phos-tag™ affinity SDS-PAGE on a precast Phos-tag™ SuperSep gel, adhering to the 

manufacturer’s instructions. Protein was blotted onto PVDF membrane and probed with 

an anti-fibrinogen Aα chain antibody, as shown in figure 50. As the interaction between 

Phos-tag™ and phosphate is zinc-dependent, EDTA in the sample buffer was 

quenched with an equivalent concentration of zinc nitrate. However, there was some 

band distortion which may be due to chelation of Zn2+ ions by EDTA – a common 

problem with this technique. There was no difference in density or position of the Aα 

chain bands between control and dephosphorylated fibrinogen samples, each 

producing one major band and one minor band of slightly lower molecular weight. This 

may indicate that fibrinogen is not phosphorylated heavily enough for sufficient 

interaction with Phos-tag™ molecules during migration through the gel. This could be 

confirmed by loading a protein with a higher degree of phosphorylation, such as 

β-casein (5 mol phosphate/mol protein), as a control. The concentration of fibrinogen or 

Phos-tag™ in the gel could be optimised to encourage interaction. The current could 

also be reduced for slower electrophoresis and increased contact time between 

Phos-tag™ and fibrinogen molecules. 

 

 

 

 

 

         C      DP 

Figure 50. Phos-tag™ affinity SDS-PAGE and western blot. Control AP-fibrinogen (C; 25 % 

phosphorylated) and dephosphorylated (DP) fibrinogen (200 ng) were reduced and separated 

on a Phos-tag™ affinity SDS-PAGE gel containing 50 µM Phos-tag™ and 100 µM zinc chloride. 

Electrophoresis was performed at 20 mA/gel in Tricine SDS-PAGE running buffer. The gel was 

incubated in transfer buffer containing 1mM EDTA prior to western blotting. The blot was probed 

with a rabbit polyclonal anti-fibrinogen Aα chain antibody (1/1000). 
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3.3.4.2. ELISA with Phos-tag™ Biotin 

The interaction between Phos-tag™ Biotin and streptavidin HRP was utilised for 

quantification of phosphorylated fibrinogen by ELISA. In the first experiment, a serial 

dilution of fibrinogen was overlaid with a concentration range of Zn2+-Phos-tagTM Biotin-

Streptavidin HRP complex. Absorbance values increased with higher concentrations of 

Phos-tag™, but showed little variation with increasing concentrations of fibrinogen, 

suggesting the Phos-tag™ may have been binding non-specifically. A second 

experiment included a Streptavidin HRP-only control, without Phos-tag™ Biotin. 

Unfortunately, signal was present in the streptavidin HRP-only wells, indicating non-

specific binding of streptavidin HRP to fibrinogen or to the plate. This was also 

confirmed by western blotting with Phos-tag™ Biotin (described in section 3.3.4.3), 

which revealed non-specific interaction between streptavidin HRP and the fibrinogen 

Aα and Bβ chains. Therefore, streptavidin alkaline phosphatase was used in place of 

streptavidin HRP in subsequent assays, including a streptavidin alkaline phosphatase-

only control each time. Phos-tag Biotin™ and streptavidin alkaline phosphatase were 

also added separately rather than as a pre-prepared complex. The streptavidin-only 

control remained blank during this experiment, making it a more suitable option that the 

HRP-conjugate. The absorbance value for AP-fibrinogen (25 % phosphorylated) 

(0.875) was slightly higher than for dephosphorylated fibrinogen (0.651), but the 

absorbance in the blank well with no fibrinogen was also high (0.498), suggesting non-

specific binding of Phos-tag™ Biotin to the well or coating antibody. Furthermore, the 

absorbance values for experiment wells were very low after blank-subtraction, despite 

a long development time and high concentration of Phos-tag, indicating poor affinity of 

Phos-tag™ for phosphorylated fibrinogen. 

3.3.4.3. Western blotting with Phos-tag™ Biotin 

In tandem with the Phos-tag™ ELISA optimisation, Phos-tag™ Biotin was also applied 

for the detection of phosphorylated fibrinogen by western blotting. A concentration 

range of AP-fibrinogen was separated by SDS-PAGE, blotted and probed with Phos-

tag™ Biotin, followed by streptavidin HRP. The resulting blot is shown in figure 51. Two 

bands corresponding to the Aα chain and the Bβ chain of fibrinogen were detected. 

Current literature provides no evidence of Bβ chain phosphorylation, hence it is likely 

that the presence of this chain is due to non-specific binding of Phos-tag™ or 

streptavidin HRP to fibrinogen. As the Aα and Bβ chains appear in similar intensity on 

this blot, it is likely that the Aα chain is also a result of non-specific binding, rather than 

detection of phosphate. A repeat experiment was performed in duplicate with i) Zn2+-

Phos-tagTM Biotin-streptavidin HRP or ii) streptavidin HRP-only. The Aα and Bβ 
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fibrinogen chains appeared in both blots, demonstrating non-specific binding of 

streptavidin HRP to fibrinogen. Hence, this approach could not be continued. 

 

 

 

 

 

3.3.5. Developing methods for the detection of phosphorylated fibrinogen using 

anti-phosphoserine antibodies 

As with the Phos-tag™ methods discussed above, anti-phosphoserine antibodies were 

also used to detect phosphorylation of secreted fibrinogen from HepG2 cells, by ELISA 

and western blotting. 

3.3.5.1. Fibrinogen-phosphoserine ELISA 

A sandwich assay was optimised for quantification of the degree of fibrinogen 

phosphorylation relative to a standard curve with an increasing amount of fibrinogen 

and phosphoserine. Initially, a blocking solution containing 3 % (w/v) BSA was used to 

prevent non-specific binding. The phosphoserine Q5 antibody produced high 

background with no specific detection of phosphorylated fibrinogen. The mouse 

monoclonal anti-phosphoserine demonstrated only a marginal difference in absorbance 

between AP-fibrinogen (1.295) and dephosphorylated fibrinogen (1.102) at the highest 

primary antibody concentration (1/100). The blank well at this concentration had an 

absorbance of 0.655, indicating non-specific binding to the plate. This also suggests 

non-specific interactions with fibrinogen, as the absorbance value for dephosphorylated 

fibrinogen was much higher than the blank. Appropriate controls confirmed that the 

primary antibody (mouse monoclonal anti-phosphoserine) was responsible for this. 

Therefore, the percentage of BSA was increased to 10 % (w/v) and the anti-

phosphoserine antibody was added to the plate in a solution containing 5 % (w/v) BSA. 

The primary antibody incubation was also carried out at 4°C overnight for reduced 

binding kinetics in favour of specific antibody-antigen interactions. These changes 

abolished the non-specific binding of mouse monoclonal anti-phosphoserine to 

500       250       125      62.5       ng 

Aα 

Bβ 

Figure 51. Western blot of fibrinogen with Phos-tag™ Biotin. AP-fibrinogen (62.5-500 ng) 

was separated by reducing SDS-PAGE and blotted onto PVDF membrane. The membrane was 

probed with 10 ml Phos-tag™ Biotin-bound Streptavidin HRP conjugate for 30 minutes to detect 

phosphorylation.  
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fibrinogen, with absorbance values of 0.458 and 0.520 for the blank wells and 

dephosphorylated fibrinogen respectively. However, the background caused by non-

specific binding of phosphoserine antibody to the plate was still fairly high, and the 

difference in absorbance between AP- and dephosphorylated fibrinogen remained 

slight (0.250). In a final experiment, the plate was coated with a mouse anti-fibrinogen γ 

chain antibody and fibrinogen-bound phosphate detected with a rabbit polyclonal anti-

phosphoserine antibody. The HRP-catalysed reaction developed very slowly and the 

resulting absorbance values were very similar for AP-fibrinogen, dephosphorylated 

fibrinogen and the blank (no fibrinogen). This again demonstrated insufficient sensitivity 

and specificity of phosphoserine antibodies for this type of assay. 

3.3.5.2. Phosphoserine western blots 

As an alternative approach, fibrinogen was separated by SDS-PAGE and probed for 

phosphoserine by immunoblotting. The mouse anti-phosphoserine produced a clear Aα 

chain band with 1 to 5 µg AP-fibrinogen (figure 52A). However, there was also some 

non-specific detection of the Bβ chain. The rabbit polyclonal anti-phosphoserine 

produced one band corresponding to phosphorylated fibrinogen Aα chain with 2 µg AP-

fibrinogen (figure 52B). The lane with dephosphorylated fibrinogen remained blank, 

demonstrating an acceptable specificity of this antibody with the conditions used. 

Hence, this antibody was used in subsequent investigations into the effect of IL-6, 

STSP and Fam20A siRNA on the degree of fibrinogen phosphorylation in HepG2 cells. 
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Figure 52. Western blotting of fibrinogen with anti-phosphoserine antibodies. 

AP-fibrinogen was separated by reducing SDS-PAGE and immunoblotted using anti-

phosphoserine antibodies. A) Phosphorylated fibrinogen (0.1-5 µg) was probed with mouse 

monoclonal anti-phosphoserine antibody (1/1000) followed by rabbit anti-mouse HRP (1/5000). 

B) Phosphorylated control fibrinogen (C; 25 % phosphorylated) and dephosphorylated 

fibrinogen (DP) (2 µg each) were probed with rabbit polyclonal anti-phosphoserine (1/100) and 

goat anti-rabbit HRP (1/5000). MW: molecular weight marker. 
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The four fibrinogen samples of varying degrees of phosphorylation – control, 

dephosphorylated, 13 % and 33 % – were analysed using this method to qualitatively 

support the malachite green assay data and to validate the phosphoserine blot as a 

useful tool for comparison of fibrinogen phosphorylation. An anti-fibrinogen γ chain 

antibody was also included to monitor loading of fibrinogen, for normalisation purposes. 

The blot image matched the previously described trend with a near absence of 

phosphoserine in the dephosphorylated lane, and a rise in band intensity from 13 % to 

control (25 %), to 33 % phosphorylation (figure 53).   

 

 

 

 

 

 

3.3.6. The effect of IL-6 on fibrinogen expression and phosphorylation in HepG2 

cells 

Human hepatoma cells were incubated with IL-6 to mimic the acute phase, providing a 

platform for investigating the mechanism of fibrinogen phosphorylation in these 

conditions. Real-time PCR was used to measure changes in expression of the 

fibrinogen Aα chain and relevant casein kinase enzymes with IL-6. Proximity ligation 

assay and phosphoserine immunoblotting were then used to determine the influence of 

IL-6 on the degree of fibrinogen phosphorylation after secretion from HepG2 cells.  

3.3.6.1. Optimisation of IL-6 concentration and its effect on fibrinogen 

expression 

The concentration of IL-6 was optimised using a range of 0-80 ng/ml. Interleukin-6 was 

added to the cells at increasing concentrations for 24 hours before extracting RNA for 
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Figure 53. Phosphoserine western blot of fibrinogen phosphorylation isoforms. 

Phosphorylated (13 %, 25 % (C), 33 %) fibrinogens separated by Phos-tag™ affinity 

chromatography and dephosphorylated (DP) fibrinogen (2 µg each) were separated by reducing 

SDS-PAGE and blotted onto PVDF membrane. Blots were probed with rabbit polyclonal anti-

phosphoserine (1/100) and mouse monoclonal anti-fibrinogen γ chain (1/5000) antibodies.  
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analysis of fibrinogen Aα mRNA levels. Extracted RNA was reverse transcribed into 

cDNA and analysed by real-time PCR with primers specific to the fibrinogen Aα chain, 

normalising to housekeeping gene 18S rRNA. Figure 54A shows a graph of fold-

change in fibrinogen Aα chain expression with increasing concentrations of IL-6. The 

expression increases rapidly up to 10 ng/ml IL-6 and then begins to plateau. This trend 

supports data published by Faber et al. (2012). Therefore, 10 ng/ml was selected as 

the optimal concentration of IL-6 for subsequent experiments. The effect of 10 ng/ml 

IL-6 on fibrinogen Aα chain expression was further characterised by incubation of 

HepG2 cells with the optimal concentration of IL-6 in three independent experiments. 

Ribonucleic acid was extracted from the cells each time after a 24 hour incubation 

period and reverse transcribed for real-time PCR. The data from each PCR experiment 

revealed a significant 3.5-fold increase in fibrinogen Aα chain expression in HepG2 

cells incubated with IL-6 (p=0.0442) (figure 54B), in agreement with previous reports 

(Faber et al., 2012, Igaz et al., 1998). 
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Figure 54. The effect of IL-6 on fibrinogen Aα chain expression. RNA extracted from HepG2 

cells incubated with IL-6 was reverse transcribed into cDNA and amplified (20 ng) during 

real-time PCR with fibrinogen Aα chain primers [0.2 µM] for 40 cycles. Relative expression was 

compared using a 2-∆∆Ct calculation, normalising to 18S rRNA. A) Optimisation of IL-6 

concentration. The graph shows the fold increase in fibrinogen Aα chain (αC) expression with 

increasing concentrations of IL-6 from 0-80 ng/ml added for 24 hours. The data are an average 

of triplicate wells within a single experiment (n=1). B) The fold increase in fibrinogen Aα chain 

expression after incubation with 10 ng/ml IL-6 for 24 hours. The data are an average of three 

independent experiments (n=3), with error bars representing standard error of the mean. The 

fold change in Aα chain expression is statistically significant (p<0.05) (*). 
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3.3.6.2. The effect of IL-6 on kinase expression profiles in HepG2 cells 

In searching for the kinase responsible for fibrinogen phosphorylation in vivo, HepG2 

cells were first of all screened for expression of six likely candidates: CK2, Fam20A, 

Fam20B, Fam20C, Fam198A and Fam198B. These kinases are capable of 

phosphorylating the S-X-E motif present at both Ser3 and Ser345. They also reside 

along the secretory pathway in the ER or Golgi compartments. Briefly, HepG2 cells 

were cultured under normal conditions before RNA extraction and real-time PCR with 

primers specific to each of the kinases. Figure 55 shows the relative expression of 

each of the six kinases. Cycle threshold values for Fam198A and Fam198B were late 

(> 35 cycles), indicating very low expression of these two kinases. Expression of the 

other four kinases was easily detected, with CK2 exhibiting the highest mRNA levels. 

However, this experiment was not replicated and the relative expression levels should 

therefore be interpreted with caution, given that minor variations in starting RNA 

concentrations can result in major fluctuations in 2-ΔΔCt values. 

 

 

 

 

 

 

Having confirmed expression of CK2 and the Fam20 Golgi casein kinases in HepG2 

cells, their expression profiles were compared in the presence and absence of IL-6, to 

give an indication of which enzyme might effectuate the elevation in fibrinogen 

phosphorylation during the acute phase response. HepG2 cells were incubated ± 

10 ng/ml IL-6 for 24 hours and RNA was extracted for real-time PCR analysis with the 

kinase-specific primers. Interestingly, there was no change in expression of CK2, 
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Figure 55. Relative expression of casein kinases in HepG2 cells. RNA extracted from 

HepG2 cells was reverse transcribed into cDNA and amplified (100 ng) during real-time PCR 

with primers specific to CK2 and Golgi casein kinases (Fam20A, Fam20B, Fam20C, Fam198A 

and Fam198B) [0.2 µM] for 40 cycles. Relative expression was compared using a 2-∆Ct 

calculation, normalising to GAPDH. The data shown are from triplicate wells within a single 

experiment (n=1). 
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Fam20B or Fam20C, but there was a large increase in Fam20A expression with IL-6 

(figure 56A). The experiment was repeated three times, measuring only the fold-

change in Fam20A expression each time. There was an average 6.0-fold increase in 

Fam20A expression, deemed significant by statistical analysis (p=0.0341) (figure 56B). 

As the p value reflects standard error, the dramatic rise in expression is likely to be 

more significant with a greater number of experimental repeats. This finding has 

exposed for the first time an important role of Fam20A in the hepatocellular response to 

acute phase conditions. Furthermore, it suggests that Fam20A may be responsible for 

phosphorylation of fibrinogen and/or other acute phase proteins that are secreted by 

hepatocytes and have the Golgi casein kinase S-X-E sequence recognition motif. 
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Figure 56. The effect of IL-6 on casein kinase expression. HepG2 cells were incubated ± 

10 ng/ml IL-6 for 24 hours. Extracted RNA was reverse transcribed into cDNA and amplified 

(100 ng) during real-time PCR with kinase-specific primers [0.2 µM] for 40 cycles. Relative 

kinase expression was compared using a 2-∆∆Ct calculation, normalising to 18S rRNA. A) Fold 

change in expression of CK2, Fam20A, Fam20B and Fam20C with IL-6. The data are an 

average of triplicate wells within a single experiment (n=1). B) Fold increase in Fam20A 

expression with IL-6. The data are an average of three independent experiments (n=3), with 

error bars representing standard error of the mean. The fold change in Fam20A expression is 

statistically significant (p<0.05) (*). 
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3.3.6.3. The effect of IL-6 on the degree of fibrinogen phosphorylation 

Interleukin-6 was added to HepG2 cells to monitor its effect on the degree of 

phosphorylation of intracellular fibrinogen by PLA, and of secreted fibrinogen by 

western blotting. For proximity ligation, cells were cultured on an 8-well chamber slide 

and incubated ± 10 ng/ml IL-6 (three wells each) for 24 hours before fixing. The assay 

was performed with anti-fibrinogen Aα chain and anti-phosphoserine antibodies for 

detection of phosphorylated fibrinogen inside the cell by confocal microscopy (figure 

57A). Images were then analysed using an ImageJ macro to determine the average 

number of spots per cell in each sample group. Interleukin-6 caused a 4.0-fold rise in 

the number of spots per cell from 2.1 to 8.3 (figure 57B), representing a greater number 

of phosphorylated fibrinogen molecules. However, this increase was only slightly higher 

than the 3.5-fold increase in fibrinogen expression, previously quantified by real-time 

PCR (section 3.3.7.1). In other words, the increase in phosphorylated fibrinogen was 

similar to that of the total number of fibrinogen molecules, suggesting the proportion, or 

percentage, of fibrinogen phosphorylation is unaltered by IL-6. 
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Figure 57. The effect of IL-6 on the quantity of phosphorylated fibrinogen Aα chains in 

HepG2 cells. HepG2 cells were incubated in the presence and absence of 10 ng/ml IL-6 for 24 

hours before fixing. A) Cells were probed with mouse monoclonal anti-fibrinogen Aα chain 

(1.5 µg/ml) and rabbit polyclonal anti-phosphoserine (2.5 µg/ml) primary antibodies in a PLA to 

detect phosphorylated Aα chain (PαC; red). Nuclei (blue) were stained with DAPI during 

mounting. Images were taken by LSCM with a 60x oil-objective lens. B) Individual spots were 

counted using ImageJ software. The mean number of spots per cell ± IL-6 are presented as an 

average of three wells from a single experiment (n=1), with error bars representing standard 

deviation. 
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The phosphate content of secreted fibrinogen in the presence and absence of IL-6 was 

compared by SDS-PAGE and western blotting. Three dishes of HepG2 cells (n=1) 

were cultured ± 10 ng/ml IL-6 for 24 hours before harvesting conditioned medium for 

analysis by western blotting with anti-phosphoserine and anti-fibrinogen γ chain 

antibodies. Phosphorylated Aα chain bands where much darker in IL-6 lanes compared 

to control lanes, despite consistent loading of the fibrinogen γ chain (figure 58A). 

Densitometry analysis with ImageJ revealed a 3.1-fold increase in phosphorylated Aα 

chain:γ chain ratio from 0.8 to 2.5 (figure 58B). This is equivalent to an elevated degree 

of fibrinogen phosphorylation from the 25 % control value to 78 % – a similar rise to 

that reported previously during the acute phase, although slightly higher. This result 

demonstrates for the first time that the rise in fibrinogen phosphorylation in acute phase 

conditions is mediated within the cell rather than by a circulating kinase. Unfortunately, 

this finding contradicts the PLA data with IL-6, leaving the question of which outcome is 

more reliable. It can be challenging with PLA experiments to image representative 

areas, as there is often large variability even within the same well. They are also limited 

by a lack of suitable negative control for the phosphoserine antibody. The western blot 

is a more stable approach with measurable loading and phosphorylation controls. 

However, repeat experiments are necessary to confirm the result in figure 58, and 

enable statistical analysis. 
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3.3.7. The effect of kinase inhibitor STSP on the degree of fibrinogen 

phosphorylation in HepG2 cells 

Having identified a dramatic increase in Fam20A expression in HepG2 cells incubated 

with IL-6, promiscuous kinase inhibitor STSP was enlisted to investigate whether 

fibrinogen is phosphorylated by the G-CK, which is uniquely insensitive to this inhibitor. 

Staurosporine induces apoptosis, therefore finding the right concentration was critical 

to achieve inhibition of kinases with minimal cell death. Initially, a concentration range 

of 0.5 to 10 µM STSP was tested by immunofluorescence, screening for cleaved 

caspase 3 as a marker of apoptosis. This method failed to detect any cleaved caspase 

3 which most likely reflects a problem with the antibody and a need for optimisation, as 

10 µM STSP should have been a more than adequate concentration to induce 
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Figure 58. The effect of IL-6 on the degree of phosphorylated fibrinogen secreted by 

HepG2 cells.  HepG2 cells were incubated ± 10 ng/ml IL-6 for 24 hours in triplicate. Conditioned 

medium was harvested and fibrinogen concentration determined by ELISA. A) Control 

AP-fibrinogen (C; 25% phosphorylation) and dephosphorylated (DP) fibrinogen (1 µg each), as 

well as samples of conditioned medium containing 1 µg fibrinogen, were separated by reducing 

SDS-PAGE. Western blots were probed with rabbit polyclonal anti-phosphoserine (1/100) and 

mouse monoclonal anti-fibrinogen γ chain (γC) (1/5000) antibodies. PαC: phosphorylated 

fibrinogen Aα chain; MW: molecular weight marker. B) Densitometry analysis of phosphorylated 

Aα chain bands normalised to the fibrinogen γ chain (PαC/γC). Averages of triplicate data from 

a single experiment (n=1) are displayed with error bars representing standard deviation. 
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apoptosis (Giuliano et al., 2004). Chosen concentrations were therefore based on 

observation of cell changes under the microscope. During culture, there was significant 

cell death above 1 µM, accompanied by apparent morphological changes during 

confocal microscopy, including minor changes at 500 nM. Proximity ligation was carried 

out after incubation of cells with 250 nM STSP. The results of the assay ± 250 nM 

STSP are displayed in figure 59A. There was significant detachment of cells from the 

slide during fixation, leaving few areas for imaging. Hence, the results could be slightly 

biased. Analysis of the mean number of spots per cell using ImageJ revealed a 60 % 

reduction from 13.0 to 5.2 spots per cell (figure 59B). This might indicate inhibition of 

the fibrinogen kinase by STSP, and that fibrinogen is not phosphorylated by the G-CK. 

However, this may also be an adverse effect of the toxicity of this concentration of 

STSP on the cells.  

To avoid the various issues surrounding this method, secreted fibrinogen in conditioned 

medium was analysed by western blotting, rather than looking at intracellular 

fibrinogen. First, HepG2 cells were incubated with 0, 50, 100 and 200 nM STSP for 24 

hours and the medium analysed by SDS-PAGE and western blotting with anti-

phosphoserine and anti-fibrinogen γ chain antibodies. Due to concentration of the 

medium prior to loading, the blot image was not very clear, with background and 

bulging of the lanes around the fibrinogen (figure 59C). However, the Aα chain 

appeared to be present even up to 200 nM STSP. The experiment was repeated with 0 

and 200 nM STSP and fibrinogen was immunoprecipitated before electrophoresis. This 

time, bands were much clearer but the phosphorylated fibrinogen Aα chain band was 

weaker with 200 nM STSP compared to control, supporting the PLA data. It could be 

concluded from these data that the G-CK is not responsible for fibrinogen 

phosphorylation. However, the data sets are inconsistent and the final method of 

western blot analysis with immunoprecipitation of fibrinogen should be repeated to 

confirm whether this is a genuine result. 
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Figure 59. The effect of STSP on fibrinogen phosphorylation in HepG2 cells. A) HepG2 

cells were incubated ± 250 nM STSP for 24 hours, including 8 hours with 20 µg/ml BFA.  Cells 

were probed with mouse monoclonal anti-fibrinogen Aα chain (1.5 µg/ml) and rabbit polyclonal 

anti-phosphoserine (2.5 µg/ml) primary antibodies in a PLA to detect phosphorylated Aα chain 

(PαC; red). Nuclei (blue) were stained with DAPI. Images were captured by LSCM with a 60x 

oil-objective lens. B) Individual spots were counted using ImageJ software. The average number 

of spots from three wells within a single experiment (n=1) are displayed with error bars 

representing standard deviation. C) HepG2 cells were incubated with 0, 50, 100 and 200 nM 

STSP (left hand blot), or 0 and 200 nM STSP (right hand blot) for 24 hours. Conditioned 

medium containing 1 µg fibrinogen was analysed by reducing SDS-PAGE and western blotting 

with rabbit polyclonal anti-phosphoserine (1/100) and mouse monoclonal anti-fibrinogen γ chain 

(1/5000) antibodies (left hand blot). In a repeat experiment, fibrinogen was immunoprecipitated 

prior to analysis (right hand blot). MW: molecular weight marker; C: control AP-fibrinogen; DP: 

dephosphorylated fibrinogen; PαC: phosphorylated fibrinogen Aα chain; γC: fibrinogen γ chain. 
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3.3.8. Knockdown of Fam20A expression in HepG2 cells with siRNA 

Expression of Fam20A is significantly elevated with IL-6 (section 3.3.6.2). To 

investigate whether Fam20A phosphorylates fibrinogen in vivo, HepG2 cells were 

transfected with siRNA to switch off expression of this kinase. For optimisation, the 

cells were transfected with a concentration range of Fam20A siRNA from 5 to 50 nM in 

5 nM intervals. Cells were assayed by real-time PCR 3 days post-transfection (figure 

60A). The siRNA transfection was successful at the lowest concentration (5 nM) which 

caused an 86 % reduction in Fam20A expression. Subsequently, the transfection was 

repeated with the optimal siRNA concentration for Fam20A siRNA and scrambled 

control siRNA. Again, RNA was extracted 3 days after transfection, and medium was 

also harvested for analysis of fibrinogen phosphorylation. A fibrinogen ELISA was 

carried out to measure the concentration of fibrinogen in each medium sample and 

unfortunately, even after concentration, the yields were too low for analysis by western 

blotting. Due to time constraints, one final experiment was performed with changes to 

the transfection protocol, including addition of IL-6 and medium change 12 hours post-

transfection, in attempt to improve the yield of fibrinogen. Ribonucleic acid was 

extracted from cells after 3 days for real-time PCR (figure 60B). The real-time PCR 

data showed a 6-fold increase in Fam20A expression with IL-6, as expected. However, 

there was only a 53 % reduction in Fam20A expression after siRNA transfection, 

indicating that the changes had compromised transfection efficiency. Further 

optimisation is necessary to achieve substantial knockdown of Fam20A expression 

with sufficient yield of fibrinogen. As for the harvested fibrinogen, ELISA data confirmed 

a good yield which enabled analysis by SDS-PAGE and western blotting with an anti-

phosphoserine antibody (figure 60C). Levels of phosphorylated fibrinogen Aα chain on 

the blot were very similar for each sample, with no apparent reduction in 

phosphorylation with the Fam20A siRNA. However, this outcome is inconclusive as the 

expression was only partially inhibited. This process should be repeated with an 

optimised siRNA transfection protocol to feasibly address the question of whether 

Fam20A phosphorylates fibrinogen. 
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Figure 60. Optimisation of Fam20A siRNA transfection. A) HepG2 cells were transfected 

with 0-15 nM Fam20A siRNA and Fam20A mRNA levels in the cells were assayed by real-time 

PCR. Extracted RNA was reverse transcribed and amplified (100 ng) with Fam20A-specific 

primers [0.2 µM] for 40 cycles. The fold-change in Fam20A expression was calculated using a 

2-ΔΔCt calculation, normalising to 18S rRNA. The data are an average of triplicate wells from a 

single experiment (n=1). B) HepG2 cells were incubated with medium only (C), 10 ng/ml IL-6 

(+IL-6), scrambled control siRNA and 10 ng/ml IL-6, or Fam20A siRNA and 10 ng/ml IL-6. 

Extracted RNA was analysed by real-time PCR in the same way as (A), to compare Fam20A 

expression. C) Fibrinogen in conditioned medium from cells in (B) was immunoprecipitated and 

analysed for phosphate content by reducing SDS-PAGE and western blotting with rabbit 

polyclonal anti-phosphoserine (1/100) and mouse monoclonal anti-fibrinogen γ chain (1/5000) 

antibodies. Lanes 1 and 2 contain purified fibrinogen controls; lanes 3-5 contain conditioned 

medium from HepG2 cells. Each lane has been loaded with 1 µg fibrinogen. Lane 1: control 

AP-fibrinogen; lane 2: dephosphorylated fibrinogen; lane 3: 10 ng/ml IL-6 only; lane 4: control 

siRNA and 10 ng/ml IL-6; lane 5: Fam20A siRNA and 10 ng/ml IL-6. MW: molecular weight 

marker; PαC: phosphorylated fibrinogen Aα chain; γC: fibrinogen γ chain. 
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Chapter 4 

Discussion 

 

In physiological circumstances, there is a delicate haemostatic balance between pro-

coagulant and anti-coagulant activities, which permits crucial vessel repair in a carefully 

executed and self-limiting fashion, so as to avoid harmful bleeding or thrombus 

formation. Disruption of this balance can have devastating consequences. Fibrin(ogen) 

is at the heart of the clotting cascade. Abnormal or variant fibrinogens can affect 

clottability and produce different fibrin clot structures. Two common polymorphisms – 

AαThr312Ala and BβArg448Lys – affect clot stiffness, compactness, porosity and 

persistence (Standeven et al., 2003, Lim et al., 2003, Ajjan et al., 2008), while a higher 

than average proportion of γ’ fibrinogen is associated with coronary artery disease and 

thrombosis, and produces clots with thinner fibres, increased branching and a weaker 

structure (Cooper et al., 2003, Allan et al., 2012). There are also many naturally-

occurring and abnormal post-translational modifications of fibrinogen that lead to 

altered clot phenotypes, affecting fibre diameter and branching, as well as clot porosity, 

stiffness and resistance to lysis, as reviewed in section 1.4. 

Fibrinogen is phosphorylated on its Aα chain at Ser3 in FpA and Ser345 in the αC 

region (Blomback et al., 1963, Blomback et al., 1966, Seydewitz et al., 1984, Wind et 

al., 2003), but the effects of this modification on the developing clot, or on fibrinolysis, 

are poorly understood. The effects of multiple kinases on the phosphorylation state of 

fibrinogen and fibrin clot structure in vitro have been characterised (Engstrom et al., 

1980, Papanikolaou et al., 1982, Guasch et al., 1986, Itarte et al., 1983, Heldin et al., 

1987a, Forsberg, 1989), but these studies produced varied and conflicting results and 

did not shed light on the situation in vivo. There is, however, an agreement that 

changes to clot architecture may have an inhibitory effect on fibrinolysis, as several 

studies have demonstrated that fibrinogen phosphorylation, both in vitro and in vivo, 

leads to increased resistance to plasmin digestion (Forsberg and Martin, 1990, Martin 

et al., 1991, Martin et al., 1992, Martin and Bjork, 1990).  

Phosphorylation of Ser3 causes faster FpA cleavage and enhanced complex formation 

with thrombin (Maurer et al., 1998), but little is known about the role of Ser345 

phosphorylation. This residue is thought to have a special function, as it is surrounded 
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by an extremely polar region with high sequence homology, including eight tandem 

repeats between residues 270 and 372 (Seydewitz et al., 1984, Rixon et al., 1983). 

Additionally, Ser345 is positioned between FXIII-a cross-linking acceptor sites (Gln328 

and Gln366) and close to the FXIII-A2B2 binding region (Smith et al., 2011, Seydewitz 

et al., 1984, Cottrell et al., 1979). Hence, phosphorylation at this site might be 

implicated in the regulation of α chain cross-linking by FXIII and lateral growth of the 

fibrin network. It may also coordinate fibrinolysis as several key proteins which function 

within this system interact with the fibrinogen αC region (Tsurupa and Medved, 2001a, 

Tsurupa and Medved, 2001b, Ritchie et al., 2000, Kimura and Aoki, 1986a).  

Over the last decade, research into the mechanism and effects of fibrinogen 

phosphorylation has been largely neglected.  Such research may be of great 

significance, as there is a body of evidence linking the phosphorylation state of 

fibrinogen with the acute phase response and thrombotic diseases (Ogata et al., 2006, 

Seydewitz et al., 1987, Seydewitz and Witt, 1985, Haglund et al., 2000, Reganon et al., 

1993, Suhre et al., 2011). Recently, two studies have flagged the importance of 

fibrinogen phosphorylation in terms of its potential biomarker or biopharmaceutical 

applications (Suhre et al., 2011, Nagel and Meyer, 2014). The ambiguity of previous in 

vitro work and difficulties with phosphorylation analysis, particularly for the Ser345 

phosphorylation site, may explain the limited progress in establishing the contribution of 

fibrinogen phosphorylation to thrombosis.   

A key aim of this investigation was to express fibrinogen Aα chain variants lacking the 

Ser3 and Ser345 phosphorylation sites, in order to assess their function. Initially, 

recombinant WT fibrinogen was expressed in CHO cells and purified by affinity 

chromatography, producing a good yield of fibrinogen with demonstrable clotting 

capability and susceptibility to FXIII-catalysed cross-linking of fibrin α and γ chains. 

Fibrinogen Aα chain constructs were mutated at Ser3 and Ser345 to non-

phosphorylatable residues, but transfecting and expressing the variant fibrinogens 

using the CHO cell system was troublesome. Recombinant WT and S345N variant 

fibrinogens were both expressed using an alternative transient transfection system with 

Expi293F cells. Although the yield was insufficient, there is potential to optimise this 

system for a much faster approach to recombinant fibrinogen expression compared to 

current methods.  

A novel phosphate capturing molecule – Phos-tag™ – was used to separate 

phosphorylated and non-phosphorylated plasma fibrinogen by affinity chromatography. 

Together with control and dephosphorylated fibrinogens, this produced four fibrinogen 

samples with varying degrees of phosphorylation for use in functional studies. In these 
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studies, the phosphorylation state of fibrinogen did not influence FXIII activity in the 

cross-linking of fibrin α and γ chains, α2-AP binding or covalent incorporation at 

Lys303, or plasminogen binding to fibrinogen. Plasmin digestion of fibrinogen was 

slightly reduced in samples with higher phosphate contents, which may indicate a 

protective effect of phosphorylation against clot lysis. Increased phosphorylation of 

fibrinogen also caused alterations to fibrin clot formation and structure, with notable 

reductions in clotting rate and fibre thickness, and an apparent increase in fibre 

branching. 

Several methods have been developed to explore the cellular mechanism of fibrinogen 

phosphorylation. A proximity ligation assay enabled detection and quantification of 

phosphorylated fibrinogen Aα chains in HepG2 cells. Secretion inhibitor BFA caused a 

significant increase in the number of fibrinogen Aα chains per cell, demonstrating that 

the intracellular phosphorylation of fibrinogen occurs before the trans-Golgi, either in 

the ER or cis/medial-Golgi compartments. Methods were also developed for analysis of 

phosphorylation levels in secreted fibrinogen. The use of anti-phosphoserine antibodies 

and Phos-tag™ Biotin for detection and quantification of phosphorylated fibrinogen by 

ELISA were deemed unsuitable due to issues with poor affinity and non-specific 

binding. However, a western blotting protocol with an antiphosphoserine antibody was 

successfully optimised to give specific detection of phosphorylated fibrinogen Aα chain. 

Real-time PCR and western blotting were used to compare fibrinogen expression and 

phosphorylation, as well as kinase expression, in the presence of acute phase-

mediator IL-6. Incubation of HepG2 cells with IL-6 caused a 3.5-fold increase in 

fibrinogen Aα chain expression and a 3.1-fold increase in the degree of fibrinogen 

phosphorylation. This has demonstrated for the first time that the elevated 

phosphorylation of fibrinogen in acute phase conditions is associated with its 

biosynthesis, rather than modification in plasma. Interleukin-6 also caused a substantial 

increase in expression of Golgi casein kinase Fam20A, suggesting this kinase has an 

important function in the acute phase response and may phosphorylate fibrinogen in 

vivo. Further investigations with kinase inhibitor STSP and Fam20A siRNA are 

ongoing. 

Overall, this work has indicated that elevated fibrinogen phosphorylation in acute phase 

conditions and thrombosis might be attributed to increased cellular kinase activity, and 

ultimately produces clots with different properties which may favour thrombosis. 
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4.1. Recombinant fibrinogen expression 

4.1.1. Wild-type fibrinogen expression in CHO cells 

An established in-house method of CHO cell transfection and protein expression was 

enlisted for the expression of recombinant WT and variant fibrinogen (Binnie et al., 

1993). Chinese hamster ovary cells are commonly used for recombinant protein 

expression due to rapid cell growth and high protein production. Expression of WT 

fibrinogen in CHO cells and subsequent purification successfully produced a good yield 

of fibrinogen, despite some loss of protein during purification. As the IF-1 affinity 

chromatography was estimated to give approximately 80 % recovery of fibrinogen 

during optimisation prior to this investigation (data not shown), protein yield was most 

likely compromised during the ammonium sulphate precipitation step, or due to 

proteolytic degradation in the medium. Analysis of purified fibrinogen confirmed correct 

subunit structure and full functionality in terms of fibrin polymerisation and lysis, and 

fibrin Aα and γ chain cross-linking in the presence of FXIII. This supports data 

published by Gorkun et al. (1997), who reported that the fibrinopeptide release, 

polymerisation and FXIII cross-linking of recombinant fibrin(ogen) resembles that of 

plasma fibrin(ogen). Preliminary mass spectrometric analysis of fibrinogen expressed 

in CHO cells has also demonstrated phosphorylation at Aα Ser3 and Ser345 residues 

(Appendix 3), in support of findings by Binnie et al. (1993), who reported a 22 % degree 

of phosphorylation at Aα Ser3 in recombinant fibrinogen expressed in CHO cells, as 

determined by HPLC experiments. Based on these results, the use of CHO cells 

seems a suitable and viable choice for the large-scale production of recombinant WT 

fibrinogen and fibrinogen Aα chain variants.  

4.1.2. Variant fibrinogen expression in CHO cells 

Unfortunately, attempts to express variant fibrinogen in CHO cells were problematic. 

Mutated fibrinogen Aα cDNA constructs were transfected into CHO-Bβγ cells for 

expression of variant fibrinogen lacking the Ser3 and/or Ser345 phosphorylation sites. 

There was an unmitigated absence of fibrinogen-secreting clones when the medium 

was screened by ELISA, which was not rectified by mutation of serine phosphorylation 

sites to alternative residues – glutamic acid (phospho-mimetic) or alanine – indicating 

that the size and charge of the replacement residue was not responsible for the failed 

expression. This leaves a few possible explanations, the first being unsuccessful 

transfection of the fibrinogen Aα chain constructs. The success of transient transfection 

of the newly cloned pmC constructs into CHO cells by CaPO4 precipitation was 
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inconsistent, and the method had to be repeated. Despite being an easy, cost-effective 

approach, the success of CaPO4 precipitation is dependent on several variables, such 

as reagent concentration, order of addition and pH. Indeed, Wright (2009) has reported 

that deviation of just 0.05 pH units from the optimal range (pH 7.05-7.15) can 

significantly affect precipitate size, compromising transfection efficiency. Cationic lipids, 

such as Lipofectamine® (Life Technologies), are highly efficient in DNA transfection 

and, depending on the cell line, are between 5- and 100-fold more effective than 

CaPO4 transfection (Felgner et al., 1987). This could therefore be a valuable 

replacement in the transfection of fibrinogen constructs into CHO cells. 

However, as the pmC constructs created for variant fibrinogen expression in Expi293F 

cells were successfully transfected into CHO cells by CaPO4 precipitation, as confirmed 

by western blotting, this is unlikely to explain the failure of each stable transfection. 

This suggests the problem may lie at the selection stage. Selection with L-histidinol 

was developed by Hartman and Mulligan (1988). During selection, L-histdinol inhibits 

protein synthesis via inhibition of histidyl-tRNA synthetase. The pMSVHis selection 

vector contains the hisD gene, which encodes histidinol dehydrogenase to catalyse the 

oxidation of L-histdinol to non-toxic L-histidine. Cells that have taken up the selection 

vector are therefore able to survive in selection medium containing L-histidinol. If the 

concentration of L-histidinol is inadequate, cells which have not taken up the vector 

may also survive and form colonies. The concentration of L-histidine in selection 

medium could therefore be re-optimised to prevent untransfected cells from surviving 

selection pressure.  

Cell lysis, immunofluorescence and RT-PCR experiments were conducted to 

investigate the presence of intracellular variant Aα chain in transfected CHO cells. Cell 

lysis and western blotting had an encouraging outcome. Although faint, an Aα S345N 

band was detected in CHO cell lysate, suggesting the transfection had worked and the 

cells were able make this variant polypeptide chain, even if it was not secreted. On its 

own, this outcome indicates that either the expression was too low to obtain a 

measurable yield of secreted fibrinogen, or that variant fibrinogen could not be 

secreted, but instead was degraded inside the cell. Incubation of CHO cells with 

proteasome and lysosome inhibitors would address this possibility. 

The results of immunofluorescence and RT-PCR experiments were not in agreement 

with the cell lysis findings. The fibrinogen Aα chain was not detected in CHO cells 

transfected with pMLP-Aα S3N, S345N, S3/345N, S3E, or S345E by 

immunofluorescence. Similarly, RT-PCR with RNA from transfected CHO cells failed to 

detect amplification of fibrinogen Aα S3N mRNA in any of the four clones that were 
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screened, while the bands corresponding to the Aα chain amplification product in 

S345N clones were very faint and may represent contamination. A better approach 

would be to use real-time PCR for quantitative comparison of Aα mRNA in each clone, 

as well as melting curve analysis to provide information on the source of each band. 

The reason for discrepancy between methods is unclear; however, the Aα chain band 

detected in S345N cell lysate is unlikely to be non-specific, given that it is at the correct 

molecular weight (66kDa). The key limitation of this work is the number of clones that 

were analysed. Healthy clones were selected at random for further analysis, but not all 

surviving clones would be expected to test positive for fibrinogen Aα chain expression. 

However, the results do collectively point to low (or absent) expression of variant 

fibrinogen Aα chain. Notably, a control transfection did result in one positive clone out 

of the six tested by fibrinogen ELISA, suggesting successful transfection of the WT Aα 

chain construct. This result implies that the problem is specific to variant fibrinogen 

expression and secretion in CHO cells, rather than the method used. However, when 

developing this method of recombinant fibrinogen expression, Lord et al. (1993) found 

that 23 out of 24 selected clones transfected with WT fibrinogen expression constructs 

were positive for fibrinogen secretion when screened by ELISA. Hence, the transfection 

efficiency was still low with the WT fibrinogen Aα chain construct. 

If reduced expression in CHO cells is specific to the Aα chain variants, it suggests there 

may be a requirement for phosphate at Ser3 and Ser345 for normal progression of 

fibrinogen along its biosynthetic pathway and release into the extracellular 

environment. Secretory proteins are transported from the ER to Golgi, where they 

migrate from the cis-Golgi compartment to the trans-Golgi network. The Golgi complex 

is a common site of protein phosphorylation due to resident kinases and translocation 

of ATP into the lumen (Capasso et al., 1989). Phosphorylation of casein – a secretory 

protein containing multiple phosphorylation sites – takes place in both the cis-Golgi (α-

casein) and trans-Golgi network (β and γ-casein) (Turner et al., 1993). The 

phosphorylation of secretory proteins can influence a phenomenon known as ‘protein 

targeting’, which refers to delivery of a protein to the correct subcellular location. For 

example, phosphorylation of furin by CK2 regulates its retrieval from the plasma 

membrane and localisation at the trans-Golgi network (Jones et al., 1995). In some 

cases, phosphorylation may regulate the sorting of proteins from the trans-Golgi 

network to secretory vesicles or lysosomes, possibly mediating a switch from one 

destination to the other in response to an extracellular stimulus. This is the case for 

aquaporin 2, whose secretion is dependent on phosphorylation at Ser256 in the Golgi 

apparatus; impaired constitutive phosphorylation of aquaporin 2 directs the protein to 

lysosomes for degradation (Procino et al., 2003). Similarly, indirectly increasing 



 

166 

phosphorylation of the amyloid precursor protein, by inhibiting phosphatases, leads to a 

rise in secretion, suggesting that non-phosphorylated molecules may be destined for 

proteolytic degradation (Caporaso et al., 1992). As well as protein targeting, 

phosphorylation may be important for correct protein folding. Misfolded proteins are 

recognised and retained in the ER by molecular chaperones prior to degradation. 

Intracellular phosphorylation can therefore prove fundamental for protein expression 

and secretion. This scenario would require all of the secretory protein in question to be 

phosphorylated inside the cell. If this were the case for fibrinogen, it would need to then 

be partially dephosphorylated either at a later stage of secretion, at the cell surface, or 

in the extracellular environment, to achieve the reported 20-25 % degree of 

phosphorylation in secreted fibrinogen (Binnie et al., 1993, Blomback et al., 1966). 

Indeed, dog fibrinogen is secreted into plasma in an almost entirely phosphorylated 

form (Kudryk et al., 1982). Furthermore, dephosphorylation of human fibrinogen in 

plasma is unlikely given that Binnie et al. (1993) have reported partial phosphorylation 

of FpA in recombinant human fibrinogen expressed in CHO cells. This finding suggests 

that the partial phosphorylation of fibrinogen occurs prior to secretion from the cell, 

unless fibrinogen is susceptible to secreted phosphatases in the conditioned medium. 

One final option to consider is the order of transfection of individual constructs and the 

ratio of each expressed chain within the cell. Published accounts of recombinant 

fibrinogen expression in CHO cells describe three types of transfection: i) transfection 

of Bβ cDNA into a CHO-Aαγ cell line for expression of wild-type or variant fibrinogen 

(Binnie et al., 1993, Ajjan et al., 2008), ii) variant γ cDNA transfection into CHO-AαBβ 

cells (Okumura et al., 1997), and iii) in the case of an Aα chain variant, co-transfection 

of Aα and γ cDNA into CHO-Bβ cells (Park et al., 2013). There is no previous report of 

transfection of fibrinogen Aα cDNA into a CHO-Bβγ cell line. It has come to light during 

this investigation that other research groups have also had difficulties with expression 

of fibrinogen Aα chain variants when transfecting in this way. Given that other 

combinations have been successful, it is possible that expression of fibrinogen is 

affected by the ratio of each chain inside the cell, which may be dictated in part by their 

order of transfection. There are known cases, such as heteromeric ion channels, where 

a defined ratio of individual polypeptides comprising a multi-subunit protein is essential 

for maintaining expression levels (Eertmoed et al., 1998, Tretter et al., 2001). Normally, 

in HepG2 cells, surplus Aα and γ chains in the ER exist as Aα-γ complexes or free γ 

chains, owing to a faster rate of synthesis in comparison to Bβ chains and retention of 

Aα-γ complexes by lectin-like chaperones (Yu et al., 1984, Tamura et al., 2013, Xia and 

Redman, 2001). For the stepwise assembly of fibrinogen, pools of Aα and γ chains 

combine with rate-limiting Bβ chain during their co-translational translocation into the 
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ER and form Bβ-Aα and Bβ-γ complexes, which combine with additional Aα and γ 

chains to form fibrinogen half-molecules and dimers.  

4.1.2.1. Co-transfection of Aα and γ chain constructs into CHO-Bβ cells 

To investigate whether the order of transfection of each construct is important for 

expression, the process was repeated according to methods used by Park et al. (2013) 

for expression of a fibrinogen variant with mutated Aα chain cross-linking acceptor 

sites. A CHO-Bβ cell line was created by transfecting the Bβ chain construct into new, 

untransfected CHO cells and screening for the best clone by real-time PCR. Co-

transfection of Aα and γ chain constructs into CHO-Bβ cells was then carried out for 

expression of fibrinogen. After transfection, cells were split and re-plated at varying 

dilutions in selection medium containing 200 µg/ml zeocin – a broad-spectrum antibiotic 

from Streptomyces verticillus which induces double-strand breaks in DNA (Chankova 

et al., 2007). Only one set of plates formed colonies, but ELISA data revealed that 

none of the selected clones secreted fibrinogen. Cells in all of the other dishes died in 

selection medium. This indicates that either the transfection hadn’t worked, or the 

concentration of zeocin was too high. The concentration of zeocin was optimised and 

lowered slightly in a subsequent transfection, but this did not resolve the problem. As 

zeocin has previously been used successfully at concentrations of 100-500 µg/ml for 

stable CHO cell transfection (Oliva-Trastoy et al., 2005, Chung et al., 2014, Van 

Blokland et al., 2011, Trapani and Korn, 2003), this might suggest that uptake of DNA 

by the cells was unsuccessful. Due to time constraints, optimisation of this method was 

not completed and it remains to be seen whether the order of transfection of fibrinogen 

constructs does indeed affect the cells’ ability to express and secrete fibrinogen. 

4.1.3. Wild-type and variant fibrinogen expression in Expi293F cells  

Due to difficulties with expression of variant fibrinogen in CHO cells, an alternative 

system was sought. Various cell lines and transgenic animals have been used for 

expression of biologically active recombinant fibrinogen, including COS-1, BHK, yeast 

Pichia pastoris, and the murine mammary gland (Roy et al., 1991, Huang et al., 1993b, 

Roy et al., 1995, Prunkard et al., 1996). Our division also uses an Expi293F cell line for 

recombinant protein expression. This cell line is derived from HEK293, from which cells 

were selected for viability in high density cultures and high yields of recombinant 

protein. According to the manufacturers (Life Technologies), transfection of Expi293F 

cells can yield up to 1 mg protein per ml of culture. Therefore, as an alternative to the 

CHO cell expression system, the three fibrinogen cDNA constructs were transiently 

transfected into an Expi293F cell line. An additional advantage over the CHO cell 
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system is the timing of this method, which can be completed in just one week. The 

CHO cell system, on the other hand, takes approximately 2 months to achieve stable 

expression, followed by 2-3 months of harvesting recombinant fibrinogen. With regards 

to fibrinogen expression, the cells were able to express and secrete both WT and 

S345N fibrinogen, raising the question of why biosynthesis could be achieved in 

Expi293F cells but not in CHO cells. This may corroborate a problem with the CHO cell 

transfection methodology. Additionally, the co-transfection of all three chains during 

Expi293F transfection may be more conducive for fibrinogen expression than the lone 

transfection of Aα chain cDNA into CHO-Bβγ cells.  

It should be noted that the γ chain of S345N fibrinogen appeared to be of slightly higher 

molecular weight (approximately 50 kDa) than the WT fibrinogen γ chain (48 kDa) on 

an SDS-PAGE gel. A repeat transfection would therefore be beneficial to confirm 

whether this is a genuine effect. This is unlikely to have been caused by a problem with 

the γ chain construct or alternative splicing, given that the same construct was used for 

expression of both WT and S345N fibrinogen. Equally, the removal of the 

phosphorylation sites is unlikely to affect pre-translational events. The apparent shift in 

molecular weight may reflect additional PTM, such as glycosylation of the γ chain, 

possibly facilitated by the altered conformation of fibrinogen in the absence of 

phosphorylation. Indeed, Tagliabracci et al. (2014) have recently reported some cross-

talk between phosphorylation and O-glycosylation of secretory proteins, revealing that 

phosphorylation of fibroblast growth factor 23 (FGF23) by Fam20C inhibits 

O-glycosylation of FGF23 and promotes its cleavage. However, this scenario also 

seems unlikely given that only 25 % of Ser3 and Ser345 phosphorylation sites are 

modified intracellularly (Binnie et al., 1993), and would therefore give rise to two bands 

on the gel. The reason for this difference remains unclear and could be investigated 

further by mass spectrometry to determine the size of the polypeptide and screen for 

any additional modifications. 

Unfortunately, despite successful expression and secretion of WT and S345N 

fibrinogen in Expi293F cells, the yield was insufficient for purification and functional 

analyses, with only 300 µg and 480 µg from a 30 ml culture respectively. The 

transfection system could be scaled up to a much larger volume, using 500 ml or 1 L 

spinner flasks, but this would be a very costly approach for a small amount of 

fibrinogen. Hence, this method would be unsuitable for large-scale expression of 

recombinant fibrinogen variants. The most likely explanation for the low yield of 

fibrinogen from Expi293F cells is poor transfection efficiency, given that the cDNA for 

each fibrinogen chain was co-transfected in three separate plasmids. In terms of 

recombinant protein expression, achieving expression of a complex multi-subunit 
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protein is always more challenging than expression of a single polypeptide chain. 

Successful transfection is dependent upon integration of plasmid DNA into the genome 

by non-homologous recombination – an event which occurs with very low frequency 

(Murnane et al., 1990). Therefore, the probability of successful integration decreases 

with each additional plasmid transfected. 

One way to increase fibrinogen expression levels in Expi293F cells would be to clone 

Aα, βB and γ chain cDNA into one construct. This can be achieved using multicistronic 

vectors, whereby genes are inserted into more than one multiple cloning site, typically 

separated by internal ribosome entry sites (IRES) for attachment of ribosomes to the 

mRNA transcript and production of separate polypeptide chains (Gurtu et al., 1996, 

Zhu et al., 1999). However, the widely used IRES sequence has two important 

limitations: i) its large size (>500 nucleotides), and ii) reduced transfection efficiency of 

genes after the IRES sequence, leading to differential expression of each gene (de 

Felipe, 2002). An alternative is the use of 2A viral peptides, which provide a ‘ribosomal-

skip’ site for release of individual polypeptides (Szymczak et al., 2004). These peptides 

yield a more even stoichiometry than IRES, but do leave a 2A tag at the end of the 

expressed protein. Both of these methods can also be very time consuming. A novel 

cloning strategy – site-specific recombinational cloning – is becoming more popular 

due to ease of use and high efficiency. An example of a recombinational cloning 

system is the Multisite Gateway® Technology (Cheo et al., 2004). This system exploits 

integrase-mediated recombination between two attachment sites and enables parallel 

transfer of multiple cDNA molecules into the same vector, whilst maintaining their 

correct orientation and reading frame (Hartley et al., 2000, Park and Labaer, 2006). 

This approach could be applied to expression of recombinant fibrinogen variants, 

making for an easier, more effective expression system regardless of the cell line of 

choice.  

4.2. The functional effects of fibrinogen phosphorylation 

4.2.1. Chromatographic enrichment of phosphorylated fibrinogen 

4.2.1.1. Anion exchange chromatography 

As an alternative to expression of recombinant fibrinogen variants, commercial plasma 

fibrinogen (25 % phosphorylated) was subjected to chromatographic procedures to 

produce fibrinogen samples with varying degrees of phosphorylation. Separation of 

phosphorylated and non-phosphorylated proteins by anion exchange chromatography 
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can be heavily influenced by the pH of the equilibration buffer, which should be as 

close as possible to the pI of the protein, without risking precipitation. This would result 

in a weaker affinity between the non-phosphorylated protein and the column, enabling 

earlier elution and better separation. Despite optimisation of the equilibration buffer pH, 

as well as gradient time and flow rate, the enrichment of fibrinogen phosphorylation 

was still small (from 25 % to 36 %) and peaks were not resolved. It may not be possible 

to achieve adequate separation of phosphorylated and non-phosphorylated fibrinogen 

using this method if the degree of phosphorylation does not cause a large enough shift 

in pI. Egg white-constituent ovalbumin has two phosphorylation sites and can be 

separated into three peaks by strong anion exchange chromatography. Different 

grades of ovalbumin with a phosphate/protein mole ratio ranging from 0.37 to 1.64 

have been compared using this technique (Kornfeld et al., 2009). Interestingly, ratios of 

1.14 mol phosphate/mol ovalbumin and below resulted in poor resolution of peaks. As 

fibrinogen molecules have only 0.8-1.0 mol phosphate, this may explain the inadequate 

separation. Furthermore, if phosphorylated fibrinogen molecules are not all fully 

phosphorylated (4 mol phosphate/mol fibrinogen), but instead represent a mixture of 1, 

2, 3 or 4 mol phosphate/mol fibrinogen, the change in pI would be smaller and 

separation would be more difficult.  

4.2.1.2. Phos-tag™ affinity chromatography 

Due to the poor separation of phosphorylated and non-phosphorylated fibrinogen by 

anion exchange chromatography, another method was sourced. Phos-tag™ is an 

alkoxide-bridged dinuclear zinc(II) complex which recognises phosphate monoester 

dianions (Kinoshita et al., 2004). Phos-tag™ Agarose can be used for enrichment of 

phosphorylated proteins by affinity chromatography. The ideal enrichment of fibrinogen 

phosphorylation would have been from 25 % to between 50 and 70 % to mimic the 

phosphorylation levels in acute phase conditions. Although not as effective as hoped, 

Phos-tag™ chromatography did produce two fibrinogen samples with a much greater 

difference in phosphorylation (13 % and 33 %) compared to those from anion 

exchange chromatography (24 % and 36 %). In fact, the difference in phosphorylation 

between the two fractions was similar to the difference between control fibrinogen 

(25 % phosphorylation) and acute phase fibrinogen (50-70 % phosphorylation). 

Therefore, this method was successful in generating fibrinogen samples that could be 

used to investigate the function of phosphorylation.  

However, the limited enrichment of phosphorylated fibrinogen (from 25 % to 33 %) 

suggests there may be poor affinity of Phos-tag™ for fibrinogen. Kinoshita et al. (2005) 

have described the use of a Phos-tag™ Agarose affinity chromatography column for 
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retrieval of phosphorylated ovalbumin, αS1-casein and β-casein, which have two, eight 

and five phosphorylated serine residues respectively. Each phosphoprotein was 

retained by the column and eluted with phosphate buffer, with ovalbumin appearing 

first due to its lesser degree of phosphorylation. The specificity of the method was 

confirmed using dephosphorylated samples of each protein. Prior to optimisation, this 

same method was followed for the separation of phosphorylated and non-

phosphorylated fibrinogen, but was unsuccessful under these conditions. This may 

reflect differences in protein characteristics, such as structure and conformation, or 

differences in the number of phosphorylated residues per protein molecule.  

Another important consideration in assessing the efficacy of this method is the 

distribution of the 25 % of phosphorylated sites between fibrinogen molecules. For 

example, the presence of one to two phosphorylation sites out of four possible 

phosphorylation sites per molecule (two per Aα chain) would convey a 25-50% degree 

of phosphorylation, yet close to 100 % of molecules could potentially contain at least 

one phosphoserine capable of interacting with the column. This could well be the case, 

as Nagel and Meyer (2014) found a 1:1:1 ratio of non-, mono- and di-phosphorylated 

fibrinogen Aα chains, with a 55-71 % proportion of mono- or di-phosphorylated Aα 

chains, in healthy patient samples by liquid chromatography-mass spectrometry. In 

other words, approximately only one third of fibrinogen Aα chains were non-

phosphorylated. However, they did report large variation in the percentage of non- and 

di-phosphorylated fibrinogen Aα chains between patients. On the other hand, given 

that 67 % of fibrinogen phosphorylation sites in the elution fraction were non-

phosphorylated, this might indicate interaction of non-phosphorylated fibrinogen with 

the column. This could be explained by an affinity of Phos-tag™ for other anionic 

residues within fibrinogen, which would also provide competition for specific binding. 

Furthermore, this would support findings from the Phos-tag™ western blotting and 

ELISA experiments (sections 3.3.4.2 and 3.3.4.3), which failed to detect 

phosphorylated fibrinogen and also highlighted non-specific interaction between 

Phos-tag™ and fibrinogen.  

Phosphoserine antibodies exhibit notoriously poor sensitivity and specificity. Unlike 

phosphotyrosine antibodies, which are highly selective, phosphoserine and 

phosphotyrosine antibodies are dependent on the surrounding amino acid sequence as 

well as the phosphorylated side chain itself (Dhein, 2005, Vogel, 2008). This means 

that these antibodies bind a limited range of phosphorylated sites, and can cross-react 

with similar sequences in the absence of phosphorylation. The low specificity of anti-

phosphoserine and anti-phosphothreonine antibodies undermines the use of 

immunoaffinity chromatography for the enrichment of phosphorylated proteins, but 
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there are additional affinity chromatography procedures that might be fitting for this 

purpose. Phosphoproteins can be enriched by immobilised metal affinity 

chromatography (IMAC), in which positively charged metal ions, such as Fe3+, Ga3+, 

Al3+ and Zr4+, are coupled to a stationary phase and interact with negatively charged 

phosphate groups. Phosphoproteins are then eluted with EDTA, phosphate buffer or a 

buffer with alkaline pH (Thingholm and Jensen, 2009). Similarly, metal oxide/hydroxide 

affinity chromatography (MOAC) relies on the affinity of phosphate for metal oxides (i.e. 

titanium dioxide) or hydroxides (i.e. aluminium hydroxide), which have a positively 

charged surface at acidic pH; this is currently the most common technique used prior to 

analysis of protein phosphorylation by mass spectrometry (Wolschin et al., 2005, Dunn 

et al., 2010). However, both methods have their drawbacks. One limitation is the non-

specific binding of acidic protein residues such as glutamic or aspartic acid. In addition, 

proteins with multiple phosphorylation sites bind with high affinity to MOAC columns, 

making elution difficult (Batalha et al., 2012). This would make IMAC a more promising 

option for enrichment of phosphorylated fibrinogen. 

Fibrinogen samples separated by Phos-tag™ affinity chromatography were 13 % and 

33 % phosphorylated. The 2.5-fold increase between the highest and least 

phosphorylated samples is similar to the difference between normal and acute phase 

levels in vivo (from 20-25 % to 50-70 %), but any comparisons would be based on the 

assumption of a linear relationship between the degree of phosphorylation and its 

functional effect. Price et al. (1994) have reported a hyperbolic (i.e. linear until 

saturation) dependence of phosphoprotein activity on kinase activity if only one serine 

is phosphorylated. With two phosphoserines, the relationship becomes sigmoidal, 

meaning the change in phosphoprotein activity would be larger than that of kinase 

activity. If phosphorylated fibrinogen isoforms exist with less than 4 mol phosphate, it is 

possible that the effect of increasing phosphorylation from 20-25 % to 50-70 % might 

be greater than that observed here between the 13 % and 33 % samples, due to fewer 

mono-phosphorylated Aα chains. This scenario is unlikely, however, as both 

phosphorylation sites would need to have the same function in order to exhibit this 

cooperative activity. Although the function of Ser345 has yet to be confirmed, it is 

unlikely to be the same as Ser3 in facilitating interaction with thrombin. 
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4.2.2. The effect of fibrinogen phosphorylation on interactions with other plasma 

components 

4.2.2.1. FXIII-A activity 

Phosphorylated fibrinogen isoforms separated by Phos-tag™ affinity chromatography 

were compared in a variety of assays to determine whether the phosphorylation sites 

promote or inhibit the interaction of fibrinogen with other plasma components, including 

FXIII, α2-antiplasmin and plasmin(ogen). In addressing the question of whether 

phosphorylation alters FXIII cross-linking and stabilisation of fibrin clots, two glutamine 

cross-linking acceptor residues located either side of the Ser345 phosphorylation site – 

Gln328 and Gln366 – are of particular interest. Additional glutamine acceptor sites 

Gln221 and Gln237 may also be affected, as well as several lysine donor residues: 

Lys539, Lys556, Lys580, Lys601 (Matsuka et al., 1996). The results of the biotin 

pentylamine incorporation FXIII-A activity assay showed no difference between 

samples, suggesting that phosphorylation of Ser345 does not affect the FXIII-A-

mediated cross-linking of adjacent fibrin α and γ chains to glutamine acceptor residues 

in the fibrin α chain. However, this does not rule out a potential effect of 

phosphorylation on the availability of fibrin α chain lysine donor residues, which could 

be investigated in a similar assay using a biotin-TVQQEL-OH glutamine donor 

substrate, as described by Smith et al. (2013).  

Moreover, the result of the biotin pentylamine incorporation FXIII-A activity assay does 

not dismiss an effect of fibrinogen phosphorylation on the cross-linking of fibrin α and γ 

chains by FXIII-A2B2. Smith et al. (2011) have demonstrated that both FXIII-A and 

FXIII-A2B2 bind to the αC region of fibrinogen in close proximity to Ser345, at residues 

389-403 and 371-425 respectively. There is evidence to suggest that the B subunits of 

FXIII-A2B2 are important in the binding of this transglutaminase to fibrin(ogen). Firstly, 

the surface of the A subunits of FXIII-A2B2 are largely covered by the B subunits for 

protection from proteolytic digestion (Souri et al., 2008). In addition, FXIII-A has 

relatively low affinity for the αC region of fibrinogen (Kd of ~2.35 ± 0.09 µM), in contrast 

to the high affinity interaction between FXIII-A2B2 and the αC region of fibrinogen (Kd 

of < 35 nM) (Smith et al., 2011). Therefore, under physiological conditions, 

phosphorylation of fibrinogen may affect the nearby anchoring of the B subunits of 

FXIII-A2B2 to residues 371-425 of the fibrinogen αC region, thereby affecting cross-

linking activity.  

The dissociation of the A and B subunits of FXIII-A2B2 is a two-step process, requiring 

initial proteolytic activation by thrombin, followed by full dissociation in the presence of 
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Ca2+ ions. Credo et al. (1981) have shown that the presence of fibrinogen during this 

dissociation significantly lowers the Ca2+ requirement from 10 mM to 1.5 mM, and 

reported that residues 242-424 are important for this Ca2+-modulating function of 

fibrinogen in FXIII activation. Three high affinity calcium binding sites are present in 

fibrinogen – two in fragment D between γ311 and γ336 (Lindsey et al., 1978, Dang et 

al., 1985b), and one in the N-terminal disulphide knot in the central domain 

(Nieuwenhuizen et al., 1982, Nieuwenhuizen et al., 1983). Sialic acid residues on 

fibrinogen function as additional low affinity calcium binding sites (Marguerie et al., 

1977, Dang et al., 1989). Similarly, phosphate groups on proteins can also act as 

carriers of Ca2+ ions, such as those on casein and other proteins phosphorylated by the 

G-CK that are involved in biomineralisation processes (Tagliabracci et al., 2012, West, 

1986). Hence, phosphorylation of fibrinogen may also affect the rate of dissociation of 

the A and B subunits of FXIII-A2B2 through altered Ca2+ binding, either directly with 

phosphorylated Ser345, or by conformational change leading to exposure of Ca2+ 

binding sites in fibrinogen. 

4.2.2.2. Binding and cross-linking of α2-AP  

In addition to cross-linking of fibrin α and γ chains, the effect of fibrinogen 

phosphorylation on the binding and cross-linking of α2-AP to fibrin was investigated by 

means of an α2-AP incorporation assay and a plasmin generation assay. Recombinant 

FXIII-A was included in each assay for covalent incorporation of α2-AP, as well as 

binding. Alpha-2-antiplasmin is cross-linked to the fibrin(ogen) αC region at Lys303 

(Kimura and Aoki, 1986a). More recently, high affinity binding of α2-AP to fibrin(ogen) 

fragments D1 and D-D, as well as the αC region and αC domain of fibrin(ogen), has 

also been characterised, with a proposed function of providing the proper orientation of 

cross-linking sites (Tsurupa et al., 2010).  Tsurupa et al. (2010) demonstrated that 

these binding sites are cryptic in fibrinogen but available in fibrin, or adsorbed 

fibrinogen. In both assays, fibrinogen was converted to fibrin by addition of thrombin 

and Ca2+, permitting interaction with α2-AP. 

The α2-AP incorporation assay and plasmin generation assay both produced identical 

graphical trends for each fibrinogen sample, regardless of the degree of 

phosphorylation. This suggests phosphorylation of fibrinogen does not influence its 

interaction with α2-AP for inhibition of fibrinolysis. Although plasmin generation was 

delayed in the presence of its inhibitor α2-AP, phosphorylation of fibrinogen does not 

appear to regulate this inhibition. Furthermore, these findings support the result of the 

FXIII-A activity assay, providing no evidence for a change in FXIII-A activity with the 

different phosphorylation isoforms. Any effect of fibrinogen phosphorylation on FXIII 
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activity, via altered binding affinity for fibrinogen or FXIII-A2B2 subunit dissociation, 

would be expected to indirectly influence α2-AP incorporation at Lys303, which was not 

observed in these experiments. This is of particular importance given that α2-AP 

incorporation, rather than cross-linking of fibrin α and γ chains by FXIII, is the principal 

determinant of resistance to fibrinolysis (Fraser et al., 2011). Plasminogen activator 

inhibitor-2 is also cross-linked in proximity to Ser345, at Lys413 and Lys457 (Ritchie et 

al., 2000, Ritchie et al., 2001). The plasmin generation assay could therefore be 

repeated in the presence and absence of this inhibitor to see whether phosphorylation 

facilitates this interaction.  

4.2.2.3. Interaction with plasmin(ogen) 

It has previously been reported that elevated in vivo fibrinogen phosphorylation leads to 

increased resistance to plasmin digestion (Martin et al., 1992), an effect which is 

irreversible. Interestingly, phosphorylation of fibrinogen in vitro has the same effect, 

irrespective of the conflicting effects of the kinases in question on fibre thickness 

(Martin et al., 1991). This suggests that the principal mechanism of phosphorylation-

induced resistance to fibrinolysis is independent of changes to clot architecture, and 

may result from impaired interactions with fibrinolytic proteins. In this thesis, 

phosphorylation of fibrinogen did not affect incorporation of α2-AP. Therefore, the 

reported increased resistance to plasmin digestion most likely relates directly to the 

interaction of plasmin(ogen) with fibrinogen, either by altered binding, or by protection 

of plasmin cleavage sites due to a phosphorylation-induced conformational change. 

These possibilities are discussed in more detail below. 

4.2.2.3.1. Plasminogen binding to fibrinogen 

Plasminogen binds to the αC region of fibrin with high affinity (Kd of 32 nM) (Tsurupa 

and Medved, 2001a, Tsurupa and Medved, 2001b), and to additional sites in fibrinogen 

D and E fragments (Varadi and Patthy, 1983, Varadi and Patthy, 1984, Lucas et al., 

1983). As with α2-AP binding sites on fibrinogen, plasminogen binding sites in 

fragments D and E, as well as in the αC region, are cryptic in fibrinogen but exposed in 

fibrin (Tsurupa and Medved, 2001a, Varadi and Patthy, 1983). However, while α2-AP 

does not bind soluble fibrinogen, Tsurupa et al. (2010) demonstrated that binding does 

occur in adsorbed fibrinogen. The process of immobilising fibrinogen affects its 

conformation and can expose sites that would otherwise be hidden and unavailable for 

interaction. This has also been demonstrated for the N-terminal fibrinogen Aα chain 

platelet-binding RGD sequence (Ugarova et al., 1993). Therefore, cryptic plasminogen 

binding sites are likely to also be exposed upon adsorption of fibrinogen to a 96-well 
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plate. An ELISA was performed to investigate the binding of plasminogen to adsorbed 

fibrinogen. There was no difference in the amount of bound plasminogen between the 

phosphorylation isoforms, suggesting phosphorylation does not hinder this interaction. 

Surface plasmon resonance (SPR) would enable determination of the Kd for 

plasminogen and immobilised full-length fibrinogen, for further characterisation of 

binding affinity. Both ELISA and SPR could also be used to investigate the effect of 

phosphorylation on the activation of fibrinolysis by the binding of tPA to the αC region. 

However, there was no evidence from the plasmin generation assay of a 

phosphorylation-dependent alteration of plasmin activity by any means, including an 

effect on tPA, which was added to activate plasmin and initiate lysis. 

4.2.2.3.2. Plasmin digestion of fibrinogen 

With regards to conformational change, Martin and Bjork (1990) have reported that 

phosphorylation alters the conformation of fibrinogen. Phosphorylation of fibrinogen by 

PKC or CK2 caused alterations to the secondary structure, while phosphorylation with 

PKA or CK1 showed no such change. Similarly, phosphorylation with PKA or PKC 

caused changes in the tertiary structure of fibrinogen around tryptophan residues, but 

this was not the case after phosphorylation with CK1 or CK2. This study by Martin and 

Bjork highlights that phosphorylation-induced changes to the secondary or tertiary 

structure of fibrinogen are kinase-specific. Furthermore, the observed conformational 

changes and decreased rate of proteolysis by plasmin after phosphorylation were both 

unaltered by removal of phosphate using alkaline phosphatase. This suggests that 

phosphorylation causes an irreversible conformational change, which in turn reduces 

susceptibility to proteolysis. The effect of in vivo fibrinogen phosphorylation on 

conformation has yet to be confirmed, but could be investigated in the same way, using 

nuclear magnetic resonance, x-ray crystallography or circular dichroism. This may 

provide reasoning for any observed effects of fibrinogen phosphorylation on resistance 

to fibrinolysis. 

A plasmin digestion time course experiment was conducted to compare the rate of 

plasmin digestion of fibrinogen with increasing levels of phosphorylation. The levels of 

fibrinogen degradation products – fragment Y and fragment D1 – were measured over 

time. There was no difference seen in the intensity of fragment Y over time between 

the phosphorylation isoforms. For fragment D1, there was a slight difference between 

samples, with the 13 % phosphorylated fibrinogen sample exhibiting a faster rate of 

fragment D1 formation than the control 25 % sample, and the 33 % sample exhibiting a 

slower rate of fragment D1 formation compared to the control. This would suggest that 

phosphorylation has a protective effect over fibrinogen, promoting resistance to 
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fibrinolysis. Although the effect was marginal in this investigation, the reduced rate of 

fragment D1 formation with higher phosphate contents supports previous literature with 

in vitro and in vivo-phosphorylated fibrinogen, reporting that this modification protects 

fibrinogen from plasmin digestion (Martin et al., 1992, Martin et al., 1991, Martin and 

Bjork, 1990, Forsberg and Martin, 1990). This finding may reflect hindered interaction 

with plasmin due to conformational change, or as previously discussed, increased 

binding of Ca2+ ions to fibrinogen, which has been shown to protect fibrinogen from 

degradation by plasmin (Dang et al., 1985a). Had the results demonstrated a 

significant trend, measurement of individual α chain fragments by densitometry could 

have been used as an indication of the particular cleavage site(s) affected by the 

presence of phosphate. 

The removal of fibrinogen-bound phosphate with alkaline phosphatase, following 

incubation with kinases in vitro, has demonstrated an irreversible effect of fibrinogen 

phosphorylation on resistance to plasmin digestion (Martin et al., 1991, Martin and 

Bjork, 1990, Forsberg and Martin, 1990). Martin et al. (1992) have shown the same 

effect with fibrinogen taken from patients on days 0, 1 and 8 following hip-replacement 

surgery. Despite a return to normal phosphorylation levels on day 8, the susceptibility 

to plasmin digestion remained at 50 % of that on day 0. Based on this evidence, the 

expected result for dephosphorylated fibrinogen in this experiment would be to mimic 

control fibrinogen. Appearance of fragment D1 in the dephosphorylated sample was 

similar to the control, but unexpectedly was slightly slower. Hence, the trace of the DP 

fibrinogen sample may indicate some experimental error. Furthermore, cleavage of the 

α chain results in fragment X formation prior to fragment Y formation. Therefore, if 

phosphorylation was affecting α chain cleavage by plasmin, you would expect to see a 

difference in both fragment Y and fragment D1 between samples, which was not the 

case. However, this method may not have permitted detection of subtle differences in 

fragment Y formation as the bands were much darker, possibly approaching saturation. 

Fragment X would also be expected to follow the same trend but was not measured in 

this instance as it was not clearly distinct from the dark full-length fibrinogen band. For 

such reasons, densitometry analysis can be troublesome and somewhat subjective 

(Gassmann et al., 2009). It also may not be sensitive enough to highlight small 

differences in digestion rates.  

Investigations into plasmin digestion of fibrinogen can provide clues as to whether 

phosphorylation of Ser3 and Ser345 causes a conformational change in fibrinogen, 

altering resistance to fibrinolysis. However, plasmin digestion of fibrinogen is not 

physiological, and any effect of fibrinogen phosphorylation on susceptibility to plasmin 

may be more pronounced in polymerised, cross-linked fibrin. This approach would also 



 

178 

take into account any phosphorylation-induced changes to clot structure. Turbidity 

analysis and SEM experiments from this investigation revealed thinner fibres and 

increased branching, suggestive of an increase in clot density. Hence, fibrinolysis is 

likely to be compromised. In addition, plasminogen binds to sites that are cryptic in 

fibrinogen but exposed in fibrin (Tsurupa and Medved, 2001a, Varadi and Patthy, 

1983), and the rate of plasminogen activation by tPA is significantly enhanced in the 

presence of fibrin (Hoylaerts et al., 1982). Therefore, examination of the effect of 

phosphorylation on fibrin clot degradation would be a valuable addition to this work. To 

investigate this, turbidity and lysis analysis of fibrin clots could be used to monitor 

changes in lysis rate and Lys50MA over time. Laser scanning confocal microscopy of 

clots could also be used to calculate lysis front velocity by overlaying wells with 

plasminogen and tPA, and measuring the distance the lysis front moves within a 

particular time frame (Collet et al., 2000, Ajjan et al., 2008). However, these methods 

wouldn’t reveal which of the plasmin cleavage sites on fibrinogen are affected by 

phosphorylation.  

4.2.2.4. Additional interactions 

So far, this work has demonstrated that the effect of elevated fibrinogen 

phosphorylation in vivo on resistance to fibrinolysis, as demonstrated by Martin et al. 

(1992), is not mediated by altered FXIII-, α2-AP- or plasminogen-fibrinogen 

interactions. The effects on tPA binding and PAI-2 cross-linking have yet to be 

determined, while plasmin digestion data reported here warrants further investigation. 

Aside from plasma proteins, it would also be interesting to look for any effect of 

fibrinogen phosphorylation on the binding of fibrinogen to cell surfaces. There is one 

integrin-binding RGD sequence at either end of the fibrinogen Aα chain (residues 

95-97 and 572-574), as well as an additional AGDV attachment site in the γ chain C-

terminus (residues 408-411) (Kloczewiak et al., 1984, Hawiger et al., 1989). It has been 

shown that the N-terminal RGD site of the fibrinogen Aα chain is not readily available 

for interaction as it is buried within the coiled-coil domain (Doolittle et al., 1978, 

Ugarova et al., 1993). The C-terminal RGD sequence, on the other hand, is both 

accessible and important for the initial binding of fibrinogen to the αVβ3 integrin on the 

surface of endothelial cells (Cheresh et al., 1989). This initial ligand-receptor interaction 

can induce a conformational change, exposing the Aα 95-97 RGD site (Ugarova et al., 

1993).  

Binding of proteins to human vascular endothelial cells can be analysed by ELISA, by 

culturing the cells on a gelatinised 96-well plate and fixing with 1 % paraformaldehyde 

(Collard et al., 1999). To investigate whether Ser3 phosphorylation alters the 
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availability of  Aα 95-97, or whether Ser345 phosphorylation enhances binding of Aα 

572-574 to αVβ3, an ELISA could be performed by coating a 96-well plate with human 

vascular endothelial cells, incubating with DP, 13 %, 25 % or 33 % phosphorylated 

fibrinogen, and detecting bound fibrinogen with an anti-fibrinogen HRP antibody. With 

regards to platelet binding, only the fibrinogen γ chain AGDV domain is needed for 

interaction with activated GPIIbIIIa (Cheresh et al., 1989, Liu et al., 1997); hence the 

Aα chain RGD sites are less likely to be regulated by phosphorylation at Ser3 or 

Ser345 for this particular purpose. Yet there are still many options to explore, and 

preliminary data to expand, to decipher potential contributions of fibrinogen 

phosphorylation in the co-ordination of coagulation.   

4.2.3. The effect of fibrinogen phosphorylation on fibrin clot formation 

4.2.3.1. Fibre diameter 

The structure of fibrin clots formed from fibrinogen with varying degrees of 

phosphorylation was investigated by turbidity analysis and SEM. Turbidity assays 

revealed that phosphorylation causes a significant reduction in fibre thickness, as 

represented by a lower MaxAbs. Measurement of fibre diameter in electron 

micrographs of fibrin clots supported data from the turbidity analyses. Although the 

measurements are not an accurate representation of diameter due to sample 

dehydration, the trend of relative fibre thickness mimicked that of the turbidity data, 

providing convincing evidence of an inverse relationship between the percentage of 

phosphorylation and fibre thickness.  

In vitro, phosphorylation of fibrinogen with PKA and PKC generates fibres with smaller 

diameters (Heldin et al., 1987a, Martin et al., 1991, Forsberg, 1989), while 

phosphorylation with CK1 and CK2 produces thicker fibrin fibres (Heldin, 1987, Martin 

et al., 1991). It could be argued that the observation of thinner fibres with increasing 

phosphorylation in this study indicates that phosphorylation of fibrinogen by PKA or 

PKC is more likely than phosphorylation by CK1 or CK2. However, subsequent 

characterisation of phosphorylation sites with PKC and CK2 did not identify 

phosphorylation at Ser3 or Ser345. Protein kinase C was found to phosphorylate 

Ser557, Ser558, Ser559 and Ser599, as well as additional sites in the central portion of 

the polypeptide chain (Heldin and Humble, 1987). Casein kinase 2, on the other hand, 

phosphorylated Ser523 and Ser590, plus other undefined serine and threonine 

residues between amino acids 259 and 268 (Heldin, 1987). Hence, the results here 

cannot be related to the effects of kinases in previous studies, as kinases exhibit 

altered specificity in vitro (Olsen et al., 2006). Furthermore, fibrinogen may not be 
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phosphorylated by any of these enzymes in vivo. The effect of elevated fibrinogen 

phosphorylation on fibre diameter has previously been reported by Martin et al. (1992), 

using fibrinogen taken from patients before and after hip-replacement surgery. The 

phosphate content of fibrinogen doubled 24 hours after surgery, with a similar increase 

in fibrin fibre thickness, disagreeing with the data from this investigation. This may 

reflect discrepancies in methodology. The fibrinogen used in this thesis investigation 

was plasma purified, but had not been exposed to acute phase conditions, unlike that 

used by Martin et al. (1992). There may be other factors or modifications to fibrinogen 

that occur in vivo during the acute phase response, such as phosphorylation at 

additional sites in circulation, that could influence fibre diameter. Despite these 

differences, the results of this investigation are specific to Ser3 and Ser345, and 

demonstrate for the first time that an increased degree of phosphorylation at these 

residues leads to thinner fibres in the resulting clot. 

4.2.3.2. Fibre branching 

Clot structures also exhibited increased branching of fibres with higher levels of 

phosphorylation, based on qualitative assessment of SEM images. Fibre branching 

could be analysed quantitatively using software that allows 3D-reconstruction of 

scanning electron micrographs and rotation in the x-, y- and z-directions, in order to 

mark and count fibre branching points, as detailed by Collet et al. (2005b) and Ryan et 

al. (1999). The increased branching may be related to the reduced fibre diameter, as 

Ryan et al. (1999) report a relationship between the two, with large fibres only 

occurring when branching is minimal. Branching can occur during end-to-end binding of 

fibrin monomers (protofibril extension) or by divergence of protofibrils during lateral 

aggregation. The former is a two-step binding process; interference from a third fibrin 

molecule between these two steps creates a branch. This type of branch formation is 

dependent on monomer supply rate (Fogelson and Keener, 2010). Phosphorylation of 

fibrinogen Aα Ser3 has been demonstrated to enhance complex formation between 

fibrinogen and thrombin, leading to faster cleavage of FpA and fibrin monomer 

formation (Maurer et al., 1998). Furthermore, Blomback et al. (1989) describe a clot 

structure with thinner fibres and smaller pores with higher thrombin concentrations. 

Although the thrombin concentration was kept constant here, the greater substrate 

specificity of thrombin for phosphorylated FpA may produce a similar effect. It is 

therefore likely that phosphorylation of FpA contributes to the reduced fibre diameter 

and increased branching that coincide with higher degrees of fibrinogen 

phosphorylation. However, the effect of phosphorylation on FpA cleavage and 

protofibril formation could not be deduced from the turbidity data as lag times were too 
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short. This could be verified by repeating the assays with a lower thrombin 

concentration to extend lag times. 

4.2.3.3. Clotting rate  

In addition to the observed structural changes, the turbidity analysis also revealed an 

inverse relationship between the degree of fibrinogen phosphorylation and the rate of 

clot formation. Although the effect appeared small, statistical analysis confirmed 

significant differences. To the best of my knowledge, this is the first report of in vivo 

fibrinogen phosphorylation leading to a reduction in clotting rate. Interestingly, it has 

previously been reported that phosphorylation of Ser3 promotes complex formation 

with thrombin and facilitates FpA cleavage (Maurer et al., 1998). The findings by 

Maurer et al. coupled with this current observation therefore suggest distinct roles of 

Ser3 and Ser345 in clot formation, with phosphorylation of Ser3 enhancing protofibril 

formation (the ‘lag’ period), and phosphorylation of Ser345 interfering with lateral 

aggregation of protofibrils, leading to a slower clotting rate beyond the initial lag period. 

As mentioned above, lag times were too short in these experiments to be accurately 

determined. For this reason, this may not be the most suitable method for comparison 

of clotting rates, as calculation of this variable is also dependent on lag times. Again, 

further investigations with lower thrombin concentrations and extended lag times would 

be beneficial to clarify the effects of Ser3 and Ser345 phosphorylation on protofibril 

formation and clotting rate. 

4.2.3.4. Clinical implications 

The findings from this thesis suggest that elevated fibrinogen phosphorylation produces 

clots with structural changes that may alter thrombotic potential. In particular, the 

observed clot structure is comparable to that of diabetic patients. Subjects with 

diabetes or metabolic syndrome, who are at greater cardiovascular risk, generate clots 

that are denser and less porous, owing to thinner fibres and more branch points. 

Importantly, these structural changes make the clot more resistant to fibrinolysis (Dunn 

et al., 2005, Carter et al., 2007). It would therefore be interesting to quantify the degree 

of fibrinogen phosphorylation in diabetic patients. This could be done on a small scale 

by malachite green assay, but as this requires plasma-purified fibrinogen, an ELISA 

with phospho-specific antibodies would be the ideal method to screen large sample 

numbers. Clots of patients with other cardiovascular complications, including AMI, 

stroke, PAD and VTE, tend to form thicker fibres compared to healthy controls, but all 

exhibit reduced permeability and prolonged lysis times (Bhasin et al., 2009, Undas et 

al., 2009b, Undas et al., 2008, Undas et al., 2009a). Despite the thinner fibres, the 
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increased branching in clots composed of 33 % phosphorylated fibrinogen is likely to 

raise clot density and lower porosity – properties which antagonise the infiltration of 

fibrinolytic agents. Clot density could be measured by LCSM of fibrin clots and analysis 

using an ImageJ macro to count the number of times the fibres cross a set of gridlines, 

as an estimate of fibre number within the frame. This does not work well with SEM 

images due to insufficient contrast between fibres and background (Greenhalgh, 2013). 

Permeability could also be compared by measuring the flow rate of buffer through the 

fibrin clots and calculating the permeation coefficient, KS, as previously described 

(Ariens et al., 2000). In addition to the observed structural changes, Martin et al. (1992) 

have demonstrated that a doubling of fibrinogen phosphate content in vivo leads to a 

concurrent reduction in susceptibility to plasmin digestion. With all of this in mind, it 

would be reasonable to conclude that elevated fibrinogen phosphorylation yields a pro-

thrombotic clot structure, and therefore deserves attention in the quest to develop new 

therapeutic strategies.  

4.3. Characterisation of intracellular fibrinogen phosphorylation 

To complement the functional characterisation of fibrinogen phosphorylation, 

intracellular studies were conducted to investigate the regulatory processes underlying 

this modification, including the subcellular location of phosphorylation, as well as 

changes to kinase expression and the degree of fibrinogen phosphorylation that occur 

in response to acute phase cytokine IL-6. A range of methods were employed to 

determine the effect of cellular fibrinogen phosphorylation levels in the presence of 

IL-6, kinase inhibitor staurosporine and Fam20A siRNA.  

4.3.1. Developing methods for the detection of phosphorylated fibrinogen 

4.3.1.1. Detection and quantification of intracellular phosphorylated fibrinogen 

Aα chain by PLA 

A proximity ligation assay was developed to visualise and quantify phosphorylated 

fibrinogen Aα chains in CHO and HepG2 cells. Antibodies to the fibrinogen Aα chain, 

PDI (ER marker) and TGN46 (trans-Golgi marker) were optimised first by standard 

immunofluorescence. Fibrinogen Aα chain staining co-localised with the ER marker in 

both cell lines, with little or no co-localisation with TGN46 in the trans-Golgi. This 

agrees with recent findings by Tamura et al. (2013) who have also conducted 

immunofluorescent analysis of fibrinogen in HepG2 cells. They too observed 

co-localisation with an ER marker but not a cis-Golgi marker, and report that the 
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majority of fibrinogen molecules are confined to this early secretory compartment. The 

detection of fibrinogen Aα chains in the ER likely represents the pools of Aα chains that 

have previously been described (Yu et al., 1984, Huang et al., 1993b, Huang et al., 

1996, Xia and Redman, 2001).  

Optimal antibody concentrations were used for subsequent PLA experiments. Initially, 

PLA was performed using CHO cells, so that the signal in CHO-WT cells could be 

compared to CHO-Bβγ cells as a negative control for the anti-fibrinogen Aα chain 

antibody. Previous studies have used liquid chromatography-electrospray ionisation-

tandem mass spectrometry to demonstrate that fibrinogen phosphorylation occurs 

exclusively on the Aα chain (Wind et al., 2003, Nagel and Meyer, 2014). Given that 

phosphoserine antibodies are prone to non-specific binding, and have indeed 

demonstrated non-specific binding to the fibrinogen β chain in a western blot 

(figure 52), this assay would benefit from a suitable control for the non-specific binding 

of anti-phosphoserine to fibrinogen. This would require each chain of fibrinogen to be 

present but not phosphorylated, hence the ideal negative control would be the S3/345N 

variant lacking both of the Aα chain phosphorylation sites. Unfortunately, this was not 

achieved as part of this investigation due to problems with expression of fibrinogen 

variants in CHO cells. 

In the first PLA experiment, a concentration range of anti-phosphoserine antibody was 

optimised to give adequate signal with minimal background. Subsequent assays using 

HepG2 cells included ER and Golgi markers to investigate the intracellular location of 

phosphorylated fibrinogen Aα chains. The signal was low and randomly distributed 

throughout the cell, with no detectable co-localisation of phosphorylated fibrinogen with 

the ER or trans-Golgi. This implies that the intracellular pools of fibrinogen Aα chain, as 

demonstrated previously and by immunofluorescence in this investigation, are non-

phosphorylated (Yu et al., 1984, Huang et al., 1993b, Huang et al., 1996, Xia and 

Redman, 2001). Therefore, phosphorylation is likely to occur only in fully assembled 

fibrinogen. Tamura et al. (2013) have demonstrated that lectin chaperones retain 

fibrinogen intermediate complexes in the ER so that only fully assembled fibrinogen is 

transported out of the cell for secretion. Hence, phosphorylated fibrinogen does not 

appear to accumulate in the cell. The low signal in PLA images, despite abundant 

detection of intracellular fibrinogen Aα chains by immunofluorescence, also suggests 

that the assay is specific to phosphorylated fibrinogen Aα chains.  
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4.3.1.1.1. The subcellular location of fibrinogen phosphorylation 

To further investigate the subcellular location of fibrinogen phosphorylation, and to 

increase the PLA signal, HepG2 cells were incubated with secretion inhibitor BFA. 

Brefeldin A blocks the transit of proteins beyond the ER and redistributes cis- and 

medial-Golgi compartments back to the ER (Lippincott-Schwartz et al., 1989). The 

average number of PLA spots, representing individual phosphorylated fibrinogen Aα 

chains, was counted per cell using an ImageJ macro. The signal was found to increase 

from an average of 5.0 to 16.8 spots per cell in the presence of BFA. Pre-incubation of 

HepG2 cells with BFA is therefore a useful tool to obtain sufficient signal for 

comparison of phosphorylation levels. The build-up of phosphorylated fibrinogen in the 

presence of BFA also indicates that fibrinogen is phosphorylated before it reaches the 

trans-Golgi network, either in earlier Golgi compartments or in the ER. Consequently, 

these data still permit the possibility of phosphorylation by the two suspected fibrinogen 

kinases: i) the G-CK, which has been shown to reside in the lumen of the cis-Golgi 

(Tagliabracci et al., 2012), and ii) CK2, which is predominantly active in the ER in 

hepatocytes (Lasa et al., 1997). 

4.3.1.1.2. Limitations of PLA 

It should be noted that there are some limitations to the PLA method used in these 

investigations to measure fibrinogen phosphorylation in HepG2 cells. Firstly, HepG2 

cells have a tendency to grow in clumps. This was minimised by passing cells through 

a needle during passage, but could not be completely avoided. Imaging was therefore 

restricted to monolayer areas. Secondly, there was significant cell-to-cell variation in 

signal, making it difficult to choose representative areas. Another point to note is the 

potential for additional phosphorylation sites inside the cell that have not been 

characterised; analysis of fibrinogen phosphorylation sites has only been performed on 

fibrinogen from an extracellular environment. Matrix assisted laser desorption 

ionisation-TOF/TOF mass spectrometry could be used to confirm or identify 

phosphorylation sites on fibrinogen from HepG2 cells before and after secretion; this 

technique was used to confirm phosphorylation of Ser3 and Ser345 in recombinant 

fibrinogen expressed in CHO cells (Appendix 3). Finally, it is important to consider that 

fibrinogen Aα chains might represent a mixture of mono- and di-phosphorylated 

polypeptides. In fact, this has recently been demonstrated for the first time by Nagel 

and Meyer (2014), and presents a significant limitation for comparing the degree of 

phosphorylation, as only one site can be detected per Aα chain molecule by PLA. 

Taking all of this into account, together with the lack of negative control, PLA does not 

seem to be the most reliable approach for quantification of intracellular fibrinogen 
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phosphorylation. Therefore additional methods were sought, which focused on 

comparing phosphorylation levels of fibrinogen secreted by HepG2 cells into 

conditioned medium. The use of secreted fibrinogen circumvented any additional 

intracellular modification which may occur, and provided a larger yield of fibrinogen for 

analysis than cell lysis. 

4.3.1.2. Phos-tag™ applications for detection of phosphorylated fibrinogen 

Phos-tag™ – a novel molecule which is able to bind phosphate groups with high affinity 

– was employed in several methods for the detection of phosphorylation in secreted 

fibrinogen. Phos-tag™ affinity SDS-PAGE using pre-cast gels from the manufacturer 

did not result in separation of phosphorylated and non-phosphorylated fibrinogen, with 

bands appearing at the same position for control (25 % phosphorylated) and 

dephosphorylated fibrinogen. This outcome most likely indicates inadequate affinity of 

Phos-tag™ for phosphorylated fibrinogen, possibly reflecting a low number of 

phosphorylated residues per molecule. Loading of phosphorylated and 

dephosphorylated β-casein, which is more heavily phosphorylated (5 mol 

phosphate/mol protein), for comparison would be useful to ascertain whether the 

Phos-tag™ agarose is able to capture phosphoproteins and slow their migration under 

the given experimental conditions, thus indicating whether the problem is 

methodological or due to insufficient phosphate on fibrinogen. An ELISA using 

Phos-tag™ Biotin and streptavidin alkaline phosphatase revealed non-specific binding 

of Phos-tag™ Biotin to the plate, as indicated by high absorbance values in blank wells 

without fibrinogen, perhaps due to a large molar excess of Phos-tag™ Biotin. In 

addition, development times were slow and specific detection of phosphorylated 

fibrinogen was minimal. Finally, western blotting with Phos-tag™ Biotin and streptavidin 

HRP was unsuccessful due to non-specific binding of streptavidin HRP to the Aα and 

Bβ chains of fibrinogen, as confirmed with a streptavidin-HRP-only control. The results 

of the SDS-PAGE and ELISA suggest that Phos-tag™ has poor affinity for 

phosphorylated fibrinogen, perhaps because fibrinogen is not phosphorylated heavily 

enough to permit sufficient Phos-tag™-fibrinogen interaction. However, Phos-tag™ has 

been used for enrichment of phosphorylated fibrinogen by affinity chromatography, as 

previously discussed, and therefore does exhibit some affinity for phosphorylated 

fibrinogen. 
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4.3.1.3. Detection of phosphorylated fibrinogen using anti-phosphoserine 

antibodies 

Similar problems were encountered using anti-phosphoserine antibodies, which are 

renowned for exhibiting poor sensitivity and specificity for their phosphorylated 

substrates. For ELISA, conditions were optimised to minimise non-specific interaction 

between the antibodies and fibrinogen, but non-specific binding to the wells or coating 

antibody was still high. Using dephosphorylated fibrinogen as a negative control, there 

was some specific detection of phosphoserine, but the change in absorbance was too 

small to enable comparison of phosphorylation levels. Despite some initial non-specific 

binding to the Bβ chain and high background, a western blotting protocol was 

successfully optimised for specific detection of phosphorylated fibrinogen. The 

optimised protocol abrogated non-specific binding of anti-phosphoserine to 

dephosphorylated fibrinogen, the Bβ chain, and the PVDF membrane. It also 

demonstrated the change in phosphorylation levels between samples separated by 

Phos-tag™ chromatography, supporting the results of the malachite green assay. The 

limitation of this method is the requirement for a relatively large mass (1-2 µg) of 

fibrinogen in the well due to poor antibody sensitivity – approximately 20-40 times more 

than would be needed for detection of fibrinogen using an anti-fibrinogen antibody, 

which presented a challenge for harvesting sufficient fibrinogen from HepG2 culture. 

However, this method was successfully used to compare the degree of fibrinogen 

phosphorylation in subsequent experiments with samples of harvested medium. 

4.3.2. The effect of IL-6 on fibrinogen expression and phosphorylation in HepG2 

cells 

Having established a suitable method for the specific detection of phosphorylation in 

secreted fibrinogen, HepG2 cells were incubated with several reagents to monitor 

changes in phosphorylation levels in acute phase conditions or with kinase inhibitors. 

Interleukin-6 was added to the cells to mimic the acute phase response. While other 

cytokines, notably interleukin-1 and TNF-α, also induce acute phase protein 

expression, IL-6 is the principal mediator of this response (Yudkin et al., 2000). The 

concentration of IL-6 was optimised to 10 ng/ml, resulting in a 3.5-fold increase in 

fibrinogen expression, as determined by real-time PCR. This is similar to previous 

reports by Faber et al. (2012) and Igaz et al. (1998), who both found a 4.5-fold increase 

in fibrinogen expression in HepG2 cells incubated with 10 ng/ml IL-6. Increased 

fibrinogen expression in response to IL-6 is well characterised, and is regulated at the 

transcriptional level via IL-6 response elements in fibrinogen genes (Ray, 2000, Fuller 
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and Zhang, 2001). The effect of IL-6 on fibrinogen phosphorylation was first of all 

examined by PLA.  In the presence of IL-6, the mean number of spots per cell 

increased 4.0-fold, from 2.1 to 8.3. This increase is only slightly higher than the 3.5-fold 

increase in expression, which would suggest almost the same proportion of fibrinogen 

molecules are phosphorylated, and therefore the elevated phosphorylation that occurs 

during the acute phase response is mediated in circulation rather than intracellularly. 

Several studies have indeed suggested that fibrinogen can be phosphorylated in 

circulation by kinases released from activated platelets (Krust et al., 1983, Lerer et al., 

1991, Ekdahl et al., 1997, Zahedi et al., 2008). However, as discussed previously, the 

PLA results should be interpreted with caution due to difficulties with analysis and the 

limitation of only being able to detect one phosphate molecule per Aα chain. 

For more accurate analysis, conditioned medium was harvested from HepG2 cells after 

a 24 hour incubation period with IL-6. Fibrinogen phosphorylation was compared in 

medium samples in the presence and absence of IL-6 by western blotting with an anti-

phosphoserine antibody, normalising to the fibrinogen γ chain using an anti-fibrinogen γ 

chain antibody. The results showed a clear increase in phosphorylation of the Aα chain 

after incubation with IL-6. Further analysis by densitometry revealed a 3.1-fold increase 

– equivalent to a rise from 25 % to 78 % – which is only slightly higher than the values 

reported for acute phase conditions in vivo (Seydewitz and Witt, 1985, Reganon et al., 

1993, Martin et al., 1992). The significant increase in phosphorylation of fibrinogen from 

HepG2 cells incubated with IL-6 suggests that fibrinogen is partially phosphorylated 

when secreted. Otherwise, if fibrinogen molecules were fully phosphorylated when 

secreted from HepG2 cells, there would be no observable increase in phosphorylation 

levels in the presence of IL-6. The exception would be if additional sites, other than 

Ser3 and Ser345, are phosphorylated in the presence of IL-6. Although fibrinogen can 

be phosphorylated in circulation by platelet kinases (Krust et al., 1983, Zahedi et al., 

2008, Ekdahl et al., 1997), these results demonstrate for the first time that the 

mechanism responsible for increased phosphorylation of fibrinogen in acute phase 

conditions occurs at the cellular level rather than in circulation. However, this 

conclusion is based on the assumption that phosphorylation levels are not altered in 

the medium by secreted kinases or phosphatases. This is a reasonable assumption as 

there would be very little phosphate bound to fibrinogen after a 24 hour incubation 

period if fibrinogen was susceptible to secreted phosphatases. An intracellular increase 

in phosphorylation also seems logical given that extracellular ATP concentrations are 

typically very low, with a basal plasma concentration of 2 nM, meaning that 

phosphorylation of fibrinogen in plasma is unlikely to occur without release of ATP and 

kinases from activated platelets (Zhong and Wright, 2013, Ekdahl and Nilsson, 1995). 
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4.3.3. The effect of IL-6 on kinase expression in HepG2 cells 

Having observed an increase in cellular phosphorylation of fibrinogen in the presence 

of IL-6, the next step was to investigate whether there is altered expression of relevant 

fibrinogen kinases, including CK2 and the G-CK. First, HepG2 cells were screened for 

expression of each kinase under control conditions by real-time PCR. Previously, 

Nalbant et al. (2005) have demonstrated by RNA extraction and RT-PCR that Fam20B 

and Fam20C are expressed in a wide variety of tissues, while the Fam20A expression 

pattern was relatively limited. Expression of all three proteins was detected in the liver, 

with highest expression of Fam20C, followed by Fam20A and finally Fam20B. In 

agreement, expression of Fam20A, Fam20B and Fam20C were all detected in HepG2 

cells in this investigation, as well as CK2, but late Ct values indicated low expression of 

Fam198A and Fam198B. These kinases were therefore excluded from the following 

experiments. Second, real-time PCR was repeated using RNA from HepG2 cells 

incubated in the presence and absence of IL-6, to determine the fold-change in 

expression. Interestingly, expression of CK2, Fam20B and Fam20C did not change, 

but there was a significant 6-fold increase in expression of Fam20A. This remarkable 

increase in Fam20A expression indicates that this kinase plays a role in the 

hepatocellular response to acute phase conditions. Fam20A has previously been 

implicated in biomineralisation processes, with mutations in the Fam20A gene leading 

to severe Amelogenesis Imperfecta and Enamel-Renal Syndrome (Vogel et al., 2012, 

Wang et al., 2013), but there are no reports of altered coagulation in these cases.  A 

recent study by Kiliszek et al. (2012) has also implicated Fam20A in the acute phase 

response, revealing significant up-regulation of Fam20A expression in leukocytes from 

AMI patients. The reason for this increased expression is unknown, although Fam20A 

does play a role in haematopoiesis, which is stimulated by cytokines during the acute 

phase response (Nalbant et al., 2005, Trey and Kushner, 1995). To the best of my 

knowledge, however, this is the first time that increased Fam20A expression has been 

demonstrated in HepG2 cells in response to IL-6. This may similarly be linked to the 

hematopoietic function of the liver (Seki et al., 2000), but also highlights a potential 

function of Fam20A in phosphorylating fibrinogen and/or other acute phase proteins. In 

support of this, Szymanski and Farrell (1982) have demonstrated phosphorylation of 

FpA in vitro by a casein kinase isolated from the Golgi apparatus of bovine mammary 

glands.  

It has been suggested by Salvi et al. (2010) that the G-CK has a prominent role in 

generating the human plasma phosphoproteome, with the majority of plasma 

phosphorylation sites satisfying its consensus sequence: S-X-E. The list of plasma 

phosphoproteins also displays a similar profile to that of the G-CK substrates, but 
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distinct from that of CK2 substrates. There are several other acute phase proteins 

secreted by hepatocytes that contain S-X-E motifs, including kininogen, α1-antitrypsin, 

fetuin A, apolipoprotein E, insulin-like growth factor binding proteins (IGFBP) 1 and 3, 

complement C3, plasminogen, plasminogen-related protein B2, fibronectin I, proprotein 

convertase subtilisin/kexin type 9 (PCSK9), kallikrein-6, FV, FIX and serum albumin 

(Tagliabracci et al., 2012). Tagliabracci et al. (2012) have demonstrated 

phosphorylation of kininogen, complement C3, FV and serum albumin by Fam20C in 

vitro. Fibrinogen, on the other hand, was not phosphorylated by Fam20C. It is not yet 

clear whether Fam20C phosphorylates these substrates in vivo, or whether there is 

some cross-over between substrates for the different Fam20 proteins. However, there 

must be additional specificity determinants if secretory proteins are phosphorylated by 

other Fam20 kinases. Phosphorylation of FIX, complement C3 and PCSK9 has been 

shown to promote or diminish the protein’s susceptibility to proteolysis (Dewpura et al., 

2008, Nilsson Ekdahl and Nilsson, 1999, Atoda et al., 2006), as is the case with 

fibrinogen phosphorylation and plasmin digestion (Martin et al., 1992, Martin et al., 

1991, Martin and Bjork, 1990, Forsberg and Martin, 1990). Phosphorylation can also 

increase the affinity of protein-protein interactions. For example, phosphorylation of 

IGFBP-1 leads to increased binding, and therefore reduced bioavailability, of its 

substrate insulin-like growth factor-1 – a negative acute phase protein (Jones et al., 

1991); the significance of this is yet to be characterised. Hence, increased 

phosphorylation of acute phase proteins in hepatocytes may alter their function in 

circulation, possibly to promote coagulation and facilitate wound repair.  

In support of fibrinogen phosphorylation by the G-CK, there are in fact many similarities 

between fibrinogen and κ-casein – a G-CK substrate. Interestingly, Vorbach et al. 

(2006) have postulated that the mammary gland evolved from the innate immune 

system, and, based on structural and sequence similarities, that κ-casein may have 

evolved from fibrinogen. Approximately 80 % of the κ-casein sequence has 

counterparts in the fibrinogen γ chain sequence, with 31-42 % of amino acids at 

identical positions (Jolles et al., 1978). Additionally, as with fibrinogen, κ-casein 

contains two well-established phosphorylation sites at Ser149 and Ser127 (Hernandez-

Hernandez et al., 2011). The similarities of κ-casein and fibrinogen extend further to 

their regulation and function. The mechanism underlying increased fibrinogen 

expression in response to IL-6 in hepatocytes is similar to the transcriptional regulation 

of casein induced by prolactin in mammary epithelial cells, including similarities in 

response factors and activation of the Janus kinase/signal transducers and activators 

of transcription (JAK-STAT) pathway for downstream effects (Standke et al., 1994, 

Vorbach et al., 2006). In terms of function, κ-casein triggers the process of milk clotting 
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(Brinkhuis and Payens, 1985). Micelles are stabilised by transglutaminase activity and 

casein is degraded by a plasmin-like enzyme that acts on lysine residues (Ferranti et 

al., 2004, Smiddy et al., 2006). In addition, fibrinogen and κ-casein exhibit similar 

behaviour in terms of platelet aggregation (Jolles et al., 1986). It is also worth noting 

that the cross-linking of casein is influenced by its phosphorylation status (Aoki et al., 

1992). Given that casein is phosphorylated by the G-CK, these studies provide 

convincing evidence for a similar mechanism of fibrinogen phosphorylation in vivo. 

4.3.4. The effects of kinase inhibitor STSP and Fam20A siRNA on fibrinogen 

phosphorylation in HepG2 cells 

To test the hypothesis that fibrinogen is phosphorylated by Fam20A, HepG2 cells were 

incubated with kinase inhibitor STSP. Staurosporine inhibits the majority of kinases and 

is especially effective for PKC inhibition, but is unable to bind Fam20 proteins due to 

the unique structure of their active site (Xiao et al., 2013, Meggio et al., 1995). In the 

first instance, the effect of STSP on fibrinogen phosphorylation in HepG2 cells was 

investigated by PLA. There was a 60 % reduction in the mean number of spots per cell, 

suggesting that fibrinogen is not phosphorylated by the G-CK. However, STSP is 

known to induce apoptosis in HepG2 cells (Giuliano et al., 2004), which were showing 

visible signs of apoptosis at the concentration used. Many cells detached from the 

wells during fixation which meant there were few areas to image, leading to difficulty in 

finding representative areas. In light of these difficulties, phosphorylation of secreted 

fibrinogen was also analysed by western blotting with an anti-phosphoserine antibody. 

As Fallon and Danaher (1992) have reported half-maximal STSP-induced up-regulation 

of a carbohydrate-binding lectin with only 30 nM STSP, a lower concentration range of 

STSP (0-200 nM) was used for these experiments to minimise apoptosis.  In the first 

attempt, the phosphorylated Aα chain band persisted with increasing concentrations of 

STSP up to 200 nM, suggesting that fibrinogen is phosphorylated by the G-CK. To 

improve clarity of the blot, fibrinogen was immunoprecipitated from the medium prior to 

electrophoresis for the second experiment. Immunoprecipitation was successful, as 

clear fibrinogen bands were detected on the blot. This time, however, the 

phosphorylated Aα chain band appeared weaker with 200 nM STSP compared to 

control, indicating that a kinase other than the G-CK phosphorylates fibrinogen in 

HepG2 cells. The difference between the two results may reflect minor loading errors 

or non-specific binding of the phosphoserine antibody to the highly concentrated 

samples of conditioned medium in the absence of prior immunoprecipitation.  
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To provide a more conclusive answer as to whether Fam20A phosphorylates fibrinogen 

in vivo, Fam20A siRNA was transfected into HepG2 cells to knock down expression of 

this kinase. The protocol was successfully optimised, achieving an 86 % reduction in 

Fam20A expression. However, methodological changes to increase the yield of 

fibrinogen for analysis led to a decrease in efficiency of Fam20A knockdown by siRNA 

(53 %) and no visible difference in Aα chain phosphorylation by western blotting. 

Unfortunately, the question remains whether Fam20A phosphorylates fibrinogen in 

vivo. If this is the case, the significant rise in Fam20A expression in acute phase 

conditions may highlight an important role of Fam20A, not only in fibrinogen 

phosphorylation, but in facilitating elevated phosphorylation of a plethora of acute 

phase proteins. It would therefore be interesting to compare the degree of 

phosphorylation of other proteins with the S-X-E motif in the presence and absence of 

IL-6. This scenario would make Fam20A a valuable therapeutic target.  

In a review article, Cohen (2002) has proposed that protein kinases may be the major 

drug target of the 21st century owing to recent advances in the field, with the 

development of orally active ATP-competitive kinase inhibitors. The first drug to target 

a protein kinase was developed in 2001, named Gleevec. Gleevec inhibits the Abelson, 

c-KIT and platelet derived growth factor receptor tyrosine kinases, and is used in the 

treatment of chronic myelogenous leukaemia and gastrointestinal stromal tumours 

(Buchdunger et al., 2000, Druker et al., 1996, Joensuu et al., 2001). Many more kinase 

inhibitors are undergoing clinical trials, and Cohen (2002) reports that this therapeutic 

category is now the second largest after G protein-coupled receptor inhibitors. It would 

therefore be valuable to establish the specific role(s) of Fam20A in hepatocytes, as well 

as its increased expression in acute phase conditions and how this affects the 

numerous acute phase proteins that are secreted. 

4.4. Summary 

Phosphorylation of fibrinogen is associated with the acute phase response and 

thrombotic disorders, but the mechanism and functional role of this modification in vivo 

is not yet known. Work from this thesis aimed to advance understanding of this 

important regulatory process. Despite problems with variant fibrinogen expression, 

phosphorylation isoforms were separated by affinity chromatography for functional 

analyses. These studies revealed that fibrinogen phosphorylation does not affect FXIII 

cross-linking activity of fibrin α and γ chains, plasminogen binding to fibrinogen, or 

incorporation of α2-AP, but did highlight a potential effect of phosphorylation on 

protection from plasmin digestion. With regards to clot structure, increasing 
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phosphorylation levels caused reductions in fibre thickness and increased branching, 

which may represent a pro-thrombotic structure. Clotting rate was also significantly 

reduced with higher phosphate contents. Finally, intracellular studies demonstrated an 

increase in fibrinogen phosphorylation with acute phase cytokine IL-6, showing for the 

first time that the rise in phosphorylation during the acute phase response occurs inside 

the cell rather than in circulation. In support of this, there was a significant increase in 

expression of Golgi casein kinase Fam20A with IL-6, highlighting a potential role for 

this kinase in the hepatocellular acute phase response, including phosphorylation of 

fibrinogen. Further investigations are underway to determine whether Fam20A does 

indeed phosphorylate fibrinogen in vivo.  

4.5. Future direction  

In recalling one of the original aims of this thesis, expression of fibrinogen with 

mutations at Ser3 and Ser345 would be highly advantageous in deciphering the role of 

each individual phosphorylation site in fibrin clot formation and interactions. If the yield 

could be improved, perhaps by multicistronic cloning, recombinant WT and variant 

fibrinogen could be expressed using the Expi293™ system. Similarly, more efficient 

chromatographic procedures, such as IMAC or MOAC, could be tested for greater 

separation of phosphorylated and non-phosphorylated fibrinogen for functional 

analyses. The functional investigations presented in this thesis could be expanded to 

study the effect of fibrinogen phosphorylation on resistance to fibrinolysis, FXIII cross-

linking at lysine acceptor residues in fibrinogen, the rate of FXIII subunit dissociation 

and activation, incorporation of PAI-2, tPA binding to fibrinogen, and the interaction of 

fibrinogen with platelets and endothelial cells. It would also be valuable to further clarify 

the regulation of fibrinogen phosphorylation in vivo, including identification of the 

relevant kinase. This work would greatly benefit from the use of phospho-specific 

antibodies targeted to the fibrinogen phosphorylation sites, to detect and quantify 

changes in the degree of phosphorylation. Preliminary investigations with Fam20A 

siRNA should be continued to establish whether this kinase phosphorylates fibrinogen 

in HepG2 cells. Other kinase inhibitors, such as STSP and a CK2 inhibitor could also 

be employed to facilitate identification of the fibrinogen kinase.  

There are many additional questions surrounding fibrinogen phosphorylation to be 

addressed in the future. Phospho-specific antibodies could be used to investigate 

whether the degree of Ser3 and Ser345 phosphorylation is altered in other pathologies, 

such as bleeding disorders and diabetes. This could potentially highlight fibrinogen 

phosphorylation as a biomarker for a range of disease states, and further testify to the 
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importance of understanding the regulation and function of this modification at the 

molecular level. One particular aspect which has not been covered during this 

investigation is the phosphorylation of fibrinogen in circulation by platelet kinases, 

which occurs at sites other than Ser3 and Ser345 in resting human platelets (Zahedi et 

al., 2008). Increased phosphorylation of fibrinogen is associated with platelet activation 

(Krust et al., 1983, Ekdahl et al., 1997). Identification of additional phosphorylation sites 

on circulating fibrinogen could be investigated by MALDI-TOF/TOF after incubation of 

fibrinogen with activated platelets. This would enable functional characterisation of 

additional modifications to fibrinogen that are likely to be important in stemming 

bleeding or in contributing to undesired, pathological coagulation. Furthermore, this 

would help decipher a complex but important regulatory aspect of fibrinogen, altering 

its function according to the corresponding stimulus and location. 
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Appendix 1 

Buffer and Media Compositions 

 

Recombinant fibrinogen expression 

 

Growth medium (CHO cells) 

500 ml  Dulbecco’s Modified Eagle Medium:Nutrient Mixture F-12 Invitrogen 

25 ml  Newborn bovine calf serum Fisher Scientific 

25 ml  Nu-Serum IV VWR 

5 ml  100X Antibiotic Antimycotic Solution Sigma-Aldrich  

Stored at +4°C. 

 

1X PBS pH 7.4 

2.7 mM Potassium chloride (KCl) 

1.5 mM Potassium di hydrogen orthophosphate (KH2PO4) 

137 mM NaCl 

8 mM Di-sodium hydrogen orthophosphate dihydrate (Na2HPO4.2H2O) 

Dissolved in dH2O and autoclaved. 

 

ITS medium 

500 ml  Dulbecco’s Modified Eagle Medium:Nutrient Mixture F-12 

5 ml  100X Antibiotic Antimycotic Solution 

1 ml  5 mg/ml ITS Supplement Roche 

1 ml  2 mg/ml Aprotinin Sigma-Aldrich  

Stored at +4°C. 
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Fibrinogen ELISA 

 

Buffer A pH 7.2  

2.5 mM  NaH2PO4.2H2O 

7.5 mM  Na2HPO4.2H2O 

145 mM  NaCl 

Dissolved in dH2O. 

 

Buffer B pH 7.2 

0.2 % v/v Tween 20 

355 mM  NaCl 

Dissolved in Buffer A. 

 

 

Ammonium sulphate precipitation of fibrinogen 

 

Protease inhibitor cocktail 

Per 1 L medium: 

656 mg ε-Amino-caproic acid 

785 mg Benzamidine hydrochloride hydrate Sigma-Aldrich 

130 µl 8 mM Pepstatin A Sigma-Aldrich 

260 µl 4 mM Leupeptin Sigma-Aldrich 

1040 µl 100 mM PMSF Sigma-Aldrich 

30 ml 700 mM MES buffer pH 5.6 

 

Pellet cocktail 

66 mg ε-Amino-caproic acid 

79 mg Benzamidine 

63 µl 8 mM Pepstatin A 

125 µl 4 mM Leupeptin 

100 µl 100 mM PMSF 

17 µl 58594 U/ml Soybean Trypsin Inhibitor Sigma-Aldrich 

200 µl 500 mM EDTA 

6 ml 5 M NaCl 

20 ml 1 M Tris pH 7.4 

Made up to 100 ml with dH2O. 
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IF-1 affinity chromatography 

 

IF-1 equilibration buffer pH 7.4 

20 mM Tris base 

300 mM NaCl 

1 mM CaCl2 

Dissolved in dH2O. 

Filtered through a 0.22 µm filter and degassed. 

 

IF-1 wash buffer I pH 7.4 

20 mM Tris base 

1 M NaCl 

1 mM CaCl2 

Dissolved in dH2O. 

Filtered through a 0.22 µm filter and degassed. 

 

IF-1 wash buffer II pH 6.0 

50 mM Sodium acetate (NaCH3COO) 

300 mM NaCl 

1 mM CaCl2 

Dissolved in dH2O. 

Filtered through a 0.22 µm filter and degassed. 

 

IF-1 elution buffer pH 7.4 

20 mM Tris base 

300 mM NaCl 

50 mM EGTA 

Dissolved in dH2O. 

Filtered through a 0.22 µm filter and degassed. 
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TBS buffers 

 

Buffer Tris (mM) NaCl (mM) % Tween (v/v) pH 

TBS-1 50 100 ̶ 7.4 

TBS-2 40 140 ̶ 7.4 

TBS-2-Tween 20 40 140 0.05 7.4 

TBS-3 40 140 ̶ 8.3 

TBS-3-Tween 20 40 140 0.05 8.3 

TBS-4 10 100 ̶ 7.4 

TBS-4-Tween 20 10 100 0.1 7.4 

TBS-5-Tween 20 40 1000 0.05 7.4 

TBS-6-Tween 20 40 75 0.01 7.4 

 

Reagents were dissolved in dH2O and adjusted to the appropriate pH. 

 

 

Recombinant GST-FXIII-A expression 

 

Terrific broth 

24 g Tryptone 

48 g Yeast extract 

8 ml Glycerol 

Made up to 1800 ml with dH2O and autoclaved. 

Added 200 ml phosphate buffer before use. 

 

Phosphate buffer 

170 mM KH2PO4 

720 mM Di potassium hydrogen phosphate trihydrate (K2HPO4.3H2O) 

Dissolved in dH2O and autoclaved. 

Stored at +4°C. 

 

E. Coli wash buffer 

20 ml 1 M Tris pH 8.0 

10 ml 5 M NaCl 

Dissolved in dH2O and stored at +4°C. 
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1X PBS pH 7.4 

137 mM  NaCl 

2.7 mM  KCl 

10 mM Na2HPO4.2H2O 

2 mM KH2PO4 

Dissolved in dH2O and autoclaved. 

 

 

GST affinity chromatography 

 

GST equilibration buffer (1X PBS) pH 7.4 

15 % v/v Glycerol 

Dissolved in 1X PBS and autoclaved. 

 

GST wash buffer pH 7.4 (1X PBS with 0.2 % (v/v) Triton X-100) 

15 % v/v Glycerol 

0.2 % v/v Triton X-100 

Dissolved in 1X PBS and autoclaved. 

 

GST elution buffer pH 8.0 

50 mM Tris base 

Dissolved in dH2O and adjusted to pH 8.0 with HCl. 

Added 0.92 g Glutathione to 150 ml elution buffer before use. 

 

 

Western blotting 

 

1X TBS-Tween 20 pH 7.4 

40 mM  Tris base 

140 mM NaCl 

0.05 % v/v Tween 20 

Dissolved in dH2O. 

 

Transfer buffer pH 8.1-8.4 

25 mM Tris base 

192 mM Glycine 

20 % v/v Methanol 

Dissolved in dH2O and stored at +4°C. 



199 

Molecular cloning 

 

Lysogeny broth (LB) 

10 g NaCl 

10 g Tryptone 

5 g Yeast extract 

Dissolved in 1 L dH2O and autoclaved. 

 

LB agar pH 7.0 

5 g NaCl 

5 g Tryptone 

2.5 g Yeast extract 

10 g  Agar 

Dissolved in 500 ml dH2O and autoclaved. 

 

TAE buffer pH 8.0 

40 mM Tris base 

20 mM Glacial acetic acid 

1 mM EDTA 

Dissolved in dH2O and autoclaved. 

 

6X DNA loading buffer 

0.05 g Bromophenol blue 

3 g Ficoll 400 

Dissolved in 20 ml dH2O. 

 

 

Calcium phosphate transfection 

 

2X HeBS pH 7.05 

280 mM NaCl 

50 mM Hepes 

1.2 mM Na2HPO4 

Dissolved in dH2O. 
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CHO cell lysis 

 

1X PBS pH 7.4 

2.7mM KCl 

1.5mM KH2PO4 

137mM NaCl 

8 mM Na2HPO4.2H2O 

1.8 mM CaCl2.2H2O 

1 mM MgCl2.6H2O 

Dissolved in dH2O and filtered through a 0.22 µm filter. 

 

 

HepG2 cell culture 

 

Growth medium 

500 ml  Minimum Essential Eagle Medium Sigma-Aldrich 

50 ml Fetal Bovine Serum Fisher Scientific 

5 ml  100X Antibiotic Antimycotic Solution 

5 ml 200 mM L-glutamine solution Sigma-Aldrich 

Stored at +4°C. 

 

 

Phos-tag™ affinity chromatography 

 

Phos-tag™ storage buffer pH 7.4 

20 mM Tris base 

20 % v/v Propan-2-ol 

Dissolved in dH2O and adjusted to pH 7.4 with glacial acetic acid. 

Filtered through a 0.22 µm filter and degassed. 

 

Phos-tag™ wash buffer pH 7.4 

100 mM Tris base 

Dissolved in dH2O and adjusted to pH 7.4 with glacial acetic acid. 

Filtered through a 0.22 µm filter and degassed. 
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Phos-tag™ equilibration buffer pH 7.4 

100 mM Tris base 

1 M NaCH3COO 

100 µM Zinc acetate (ZnCH3COO) 

Dissolved in dH2O and adjusted to pH 7.4 with glacial acetic acid. 

Filtered through a 0.22 µm filter and degassed. 

 

Phos-tag™ binding buffer pH 7.4 

100 mM Tris base 

1 M NaCH3COO 

Dissolved in dH2O and adjusted to pH 7.4 with glacial acetic acid. 

Filtered through a 0.22 µm filter and degassed. 

 

Phos-tag™ elution buffer pH 7.4 

50 mM EDTA 

100 mM Tris base 

1 M NaCl 

Dissolved in dH2O. 

 

 

Immunofluorescence/PLA 

 

1X PBS pH 7.4 

2.7 mM KCl 

1.5 mM KH2PO4 

137 mM NaCl 

8 mM Na2HPO4.2H2O 

Dissolved in dH2O and filtered through a 0.22 µm filter. 

 

PLA wash buffer A 

10 mM Tris base 

150 mM NaCl 

0.05 % v/v Tween 20 

Dissolved in dH2O and filtered through a 0.22 µm filter. 
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Immunoprecipitation 

 

1X PBS-Tween 20 pH 7.4 

2.7 mM KCl 

1.5 mM KH2PO4 

137 mM NaCl 

8 mM Na2HPO4.2H2O 

0.02 % v/v  Tween 20 

Dissolved in dH2O. 
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S345N 

S3N 

Appendix 2 

Sequencing Data 

 

Sequencing of variant fibrinogen Aα chain open reading frames (pMLP-Aα) 
 
 
Sequencing data were compared to the nucleotide sequence of the original pMLP-Aα 
open reading frame to identify base changes. Altered codons of interest are highlighted 
in blue. Nucleotide sequences were translated into protein sequences and BLAST was 
used to identify differences between query (WT sequence) and subject (variant 
sequence) by generating a consensus sequence (middle). For each variant, the only 
differences found were at position 3 and/or 345 (highlighted in red), indicating that 
these residues were successfully changed from serine to asparagine/glutamic 
acid/alanine. 
 
 
Aα S3N 
 

Original nucleotide sequence (Ser3):  ACT GCA GAT AGT GGT GAA GGT 

Mutated nucleotide sequence (Asn3): ACT GCA GAT AAT GGT GAA GGT 

 
Protein sequence BLAST: 
 
Query1    MFSMRIVCLVLSVVGTAWTADSGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

          MFSMRIVCLVLSVVGTAWTAD+GEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

Sbjct1    MFSMRIVCLVLSVVGTAWTADNGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

 
 
 
 
Aα S345N 
         
Original nucleotide sequence (Ser345): AAT CCT GGC AGC TCT GAA CGC 

Mutated nucleotide sequence (Asn345): AAT CCT GGC AAC TCT GAA CGC 

         
Protein sequence BLAST: 
 
Query361  NPGSSERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV                                                                                                                                                           

NPG+SERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

Sbjct361  NPGNSERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 
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S3N 

S345N 

S345E 

S3E 

Aα S3/345N 
 
Original nucleotide sequence (Ser3):  ACT GCA GAT AGT GGT GAA GGT 

Mutated nucleotide sequence (Asn3): ACT GCA GAT AAT GGT GAA GGT 

 

Protein sequence BLAST: 
 
Query1    MFSMRIVCLVLSVVGTAWTADSGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

          MFSMRIVCLVLSVVGTAWTAD+GEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

Sbjct1    MFSMRIVCLVLSVVGTAWTADNGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

 

 
Original nucleotide sequence (Ser345): AAT CCT GGC AGC TCT GAA CGC 

Mutated nucleotide sequence (Asn345): AAT CCT GGC AAC TCT GAA CGC 

         
Protein sequence BLAST: 
 
Query361  NPGSSERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV                                                                                                                                                           

NPG+SERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

Sbjct361  NPGNSERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

 
 

 
Aα S3E 
 
Original nucleotide sequence (Ser3):  ACT GCA GAT AGT GGT GAA GGT 

Mutated nucleotide sequence (Glu3): ACT GCA GAT GAG GGT GAA GGT 

 
Protein sequence BLAST: 
 
Query1    MFSMRIVCLVLSVVGTAWTADSGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

          MFSMRIVCLVLSVVGTAWTAD+GEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

Sbjct1    MFSMRIVCLVLSVVGTAWTADEGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

 
 
 
 
Aα S345E 
         
Original nucleotide sequence (Ser345): AAT CCT GGC AGC TCT GAA CGC 

Mutated nucleotide sequence (Glu345): AAT CCT GGC GAG TCT GAA CGC 

         
Protein sequence BLAST: 
 
Query361  NPGSSERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV                                                                                                                                                           

NPG+SERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

Sbjct361  NPGESERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 
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S345A 

S3E 

S345E 

Aα S3/345E 
 
Original nucleotide sequence (Ser3):  ACT GCA GAT AGT GGT GAA GGT 

Mutated nucleotide sequence (Glu3): ACT GCA GAT GAG GGT GAA GGT 

 
Protein sequence BLAST: 
 
Query1    MFSMRIVCLVLSVVGTAWTADSGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

          MFSMRIVCLVLSVVGTAWTAD+GEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

Sbjct1    MFSMRIVCLVLSVVGTAWTADEGEGDFLAEGGGVRGPRVVERHQSACKDSDWPFCSDEDW 

 
 
 
Original nucleotide sequence (Ser345): AAT CCT GGC AGC TCT GAA CGC 

Mutated nucleotide sequence (Glu345): AAT CCT GGC GAG TCT GAA CGC 

         
Protein sequence BLAST: 
 
Query361  NPGSSERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV                                                                                                                                                           

NPG+SERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

Sbjct361  NPGESERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

 
 
 
 
Aα S345A 
         
Original nucleotide sequence (Ser345): AAT CCT GGC AGC TCT GAA CGC 

Mutated nucleotide sequence (Ala345): AAT CCT GGC GCC TCT GAA CGC 

         
Protein sequence BLAST: 
 
Query361  NPGSSERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV                                                                                                                                                           

NPG+SERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

Sbjct361  NPGASERGSAGHWTSESSVSGSTGQWHSESGSFRPDSPGSGNARPNNPDWGTFEEVSGNV 

 
 
 
 
 
Whole construct sequencing of pMLP-Aα, -Bβ and -γ 

 
 
Nucleotide sequences of the three fibrinogen expression constructs pMLP-Aα, -Bβ and 
–γ were determined from sequencing data. The sequence for each construct is 
displayed below with start/stop, Aα Ser3 and Aα Ser345 codons highlighted in yellow, 
blue and green respectively. 
 
 
pMLP-Aα sequence 
 

TCAGAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGG

GGCGTGGGAACGGGGCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGAACACAT

GTAAGCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTACACAGGAAGTGACAATTTTCG

CGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAAA

ACTGAATAAGAGGAAGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAATATTTGTCTAGGGCCC

AAGCTTTTTGCAAAAGCCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCTGGAATAGCTCAGAGGCCGAG
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GCGGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGGGGCGGAGAATGGGCGGAACTGGGCG

GAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGCTTTG

CATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTGAGATGCATGCTT

TGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACACATTCCACAGCTGGT

TCTTTCCGCCTCAGAAGGTACCCGGTCCTCCTCGTATAGAAACTCGGACCACTCTGAGACGAAGGCTCGC

GTCCAGGCCAGCACGAAGGAGGCTAAGTGGGAGGGGTAGCGGTCGTTGTCCACTAGGGGGTCCACTCGCT

CCAGGGTGTGAAGACACATGTCGCCCTCTTCGGCATCAAGGAAGGTGATTGGTTTATAGGTGTAGGCCAC

GTGACCGGGTGTTCCTGAAGGGGGGCTATAAAAGGGGGTGGGGGCGCGTTCGTCCTCACTCTCTTCCGCA

TCGCTGTCTGCGAGGGCCAGCTGTTGGGCTCGCGGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTACTC

TTGGATCGGAAACCCGTCGGCCTCCGAACGGTACTCCGCCACCGAGGGACCTGAGCGAGTCCGCATCGAC

CGGATCGGAAAACCTCTCGAGAAAGGCGTCTAACCAGTCACAGTCGCAAGGTAGGCTGAGCACCGTGGCG

GGCGGCAGCGGGTGGCGGTCGGGGTTGTTTCTGGCGGAGGTGCTGCTGATGATGTAATTAAAGTAGGCGG

TCTTGAGACGGCGGATGGTCGAGGTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAAT

GACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACCTGATCAGAATTGCGCCGCTC

TCGAGTGAATTGTCGACCGCGGCCCCTGGAGTGCTCCTCAGGAGCCAGCCCCACCCTTAGAAAAGATGTT

TTCCATGAGGATCGTCTGCCTGGTCCTAAGTGTGGTGGGCACAGCATGGACTGCAGATAGTGGTGAAGGT

GACTTTCTAGCTGAAGGAGGAGGCGTGCGTGGCCCAAGGGTTGTGGAAAGACATCAATCTGCCTGCAAAG

ATTCAGACTGGCCCTTCTGCTCTGATGAAGACTGGAACTACAAATGCCCTTCTGGCTGCAGGATGAAAGG

GTTGATTGATGAAGTCAATCAAGATTTTACAAACAGAATAAATAAGCTCAAAAATTCACTATTTGAATAT

CAGAAGAACAATAAGGATTCTCATTCGTTGACCACTAATATAATGGAAATTTTGAGAGGCGATTTTTCCT

CAGCCAATAACCGTGATAATACCTACAACCGAGTGTCAGAGGATCTGAGAAGCAGAATTGAAGTCCTGAA

GCGCAAAGTCATAGAAAAAGTACAGCATATCCAGCTTCTGCAAAAAAATGTTAGGGCCCAGTTGGTTGAT

ATGAAACGACTGGAGGTGGACATTGATATTAAGATCCGATCTTGTCGAGGGTCATGCAGTAGGGCTTTAG

CTCGTGAAGTAGATCTGAAGGACTATGAAGATCAGCAGAAGCAACTTGAACAGGTCATTGCCAAAGACTT

ACTTCCCTCTAGAGATAGGCAACACTTACCACTGATAAAAATGAAACCAGTTCCAGACTTGGTTCCCGGA

AATTTTAAGAGCCAGCTTCAGAAGGTACCCCCAGAGTGGAAGGCATTAACAGACATGCCGCAGATGAGAA

TGGAGTTAGAGAGACCTGGTGGAAATGAGATTACTCGAGGAGGCTCCACCTCTTATGGAACCGGATCAGA

GACGGAAAGCCCCAGGAACCCTAGCAGTGCTGGAAGCTGGAACTCTGGGAGCTCTGGACCTGGAAGTACT

GGAAACCGAAACCCTGGGAGCTCTGGGACTGGAGGGACTGCAACCTGGAAACCTGGGAGCTCTGGACCTG

GAAGTGCTGGAAGCTGGAACTCTGGGAGCTCTGGAACTGGAAGTACTGGAAACCAAAACCCTGGGAGCCC

TAGACCTGGTAGTACCGGAACCTGGAATCCTGGCAGCTCTGAACGCGGAAGTGCTGGGCACTGGACCTCT

GAGAGCTCTGTATCTGGTAGTACTGGACAATGGCACTCTGAATCTGGAAGTTTTAGGCCAGATAGCCCAG

GCTCTGGGAACGCGAGGCCTAACAACCCAGACTGGGGCACATTTGAAGAGGTGTCAGGAAATGTAAGTCC

AGGGACAAGGAGAGAGTACCACACAGAAAAACTGGTCACTTCTAAAGGAGATAAAGAGCTCAGGACTGGT

AAAGAGAAGGTCACCTCTGGTAGCACAACCACCACGCGTCGTTCATGCTCTAAAACCGTTACTAAGACTG

TTATTGGTCCTGATGGTCACAAAGAAGTTACCAAAGAAGTGGTGACCTCCGAAGATGGTTCTGACTGTCC

CGAGGCAATGGATTTAGGCACATTGTCTGGCATAGGTACTCTGGATGGGTTCCGCCATAGGCACCCTGAT

GAAGCTGCCTTCTTCGACACTGCCTCAACTGGAAAAACATTCCCAGGTTTCTTCTCACCTATGTTAGGAG

AGTTTGTCAGTGAGACTGAGTCTAGGGGCTCAGAATCTGGCATCTTCACAAATACAAAGGAATCCAGTTC

TCATCACCCTGGGATAGCTGAATTCCCTTCCCGTGGTAAATCTTCAAGTTACAGCAAACAATTTACTAGT

AGCACGAGTTACAACAGAGGAGACTCCACATTTGAAAGCAAGAGCTATAAAATGGCAGATGAGGCCGGAA

GTGAAGCCGATCATGAAGGAACACATAGCACCAAGAGAGGCCATGCTAAATCTCGCCCTGTCAGAGGTAT

CCACACTTCTCCTTTGGGGAAGCCTTCCCTGTCCCCCTAGACTAAGTTAAATGGGCGGCCGCAATTCTGA

TCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAA

CCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAA

AGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAAC

TCATCAATGTATCTTATCATGTCTGGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCAC

AGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTC

ATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCATCTCCT

TGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCA

GGAGTCGCATAAGGGAGAGCGTCTAGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGT

GGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGT

GCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCG

CTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCG

GCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCGACGCGCTGGGCTACGTCTTGCTGGCGTTCGCGAC

GCGAGGCTGGATGGCCTTCCCCATTATGATTCTTCTCGCTTCCGGCGGCATCGGGATGCCCGCGTTGCAG

GCCATGCTGTCCAGGCAGGTAGATGACGACCATCAGGGACAGCTTCAAGGCCAGCAAAAGGCCAGGAACC

GTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACG

CTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTC

GTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGG

CGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGT

GCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTA

AGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTG
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CTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCT

GCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGC

GGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCT

TTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAA

AAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAA

ACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCAT

CCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGC

TGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGG

GCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTA

GAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACG

CTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATG

TTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTAT

CACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGAC

TGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCA

ACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGC

GAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATC

TTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAG

GGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATC

AGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCG

CACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAAT

AGGCGTATCACGAGGCCCTTTCGTCTTCCTGA 

 
Start/stop codon               Ser3 codon               Ser345 codon 

 
 
pMLP-Bβ sequence 
 
TCAGAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGG

GGCGTGGGAACGGGGCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGAACACAT

GTAAGCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTACACAGGAAGTGACAATTTTCG

CGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAAA

ACTGAATAAGAGGAAGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAATATTTGTCTAGGGCCC

AAGCTTTTTGCAAAAGCCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCTGGAATAGCTCAGAGGCCGAG

GCGGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGGGGCGGAGAATGGGCGGAACTGGGCG

GAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGCTTTG

CATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTGAGATGCATGCTT

TGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACACATTCCACAGCTGGT

TCTTTCCGCCTCAGAAGGTACCCGGTCCTCCTCGTATAGAAACTCGGACCACTCTGAGACGAAGGCTCGC

GTCCAGGCCAGCACGAAGGAGGCTAAGTGGGAGGGGTAGCGGTCGTTGTCCACTAGGGGGTCCACTCGCT

CCAGGGTGTGAAGACACATGTCGCCCTCTTCGGCATCAAGGAAGGTGATTGGTTTATAGGTGTAGGCCAC

GTGACCGGGTGTTCCTGAAGGGGGGCTATAAAAGGGGGTGGGGGCGCGTTCGTCCTCACTCTCTTCCGCA

TCGCTGTCTGCGAGGGCCAGCTGTTGGGCTCGCGGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTACTC

TTGGATCGGAAACCCGTCGGCCTCCGAACGGTACTCCGCCACCGAGGGACCTGAGCGAGTCCGCATCGAC

CGGATCGGAAAACCTCTCGAGAAAGGCGTCTAACCAGTCACAGTCGCAAGGTAGGCTGAGCACCGTGGCG

GGCGGCAGCGGGTGGCGGTCGGGGTTGTTTCTGGCGGAGGTGCTGCTGATGATGTAATTAAAGTAGGCGG

TCTTGAGACGGCGGATGGTCGAGGTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAAT

GACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACCTGATCAGAATTGCGCCGCTC

TCGAGTGAATTGTCGACATGAAAAGAATGGTTTCGTGGAGCTTCCACAAACTTAAAACCATGAAACACCT

ATTATTGCTACTATTGTGTGTTTTTCTAGTTAAGTCCCAAGGTGTCAACGACAATGAGGAGGGTTTCTTC

AGTGCCCGTGGTCATCGACCCCTTGACAAGAAGAGAGAAGAGGCTCCCAGCCTGAGGCCTGCCCCACCGC

CCATCAGTGGAGGTGGCTATCGGGCTCGTCCAGCCAAAGCAGCTGCCACTCAAAAGAAAGTAGAAAGAAA

AGCCCCTGATGCTGGAGGCTGTCTTCACGCTGACCCAGACCTGGGGGTGTTGTGTCCTACAGGATGTCAG

TTGCAAGAGGCTTTGCTACAACAGGAAAGGCCAATCAGAAATAGTGTTGATGAGTTAAATAACAATGTGG

AAGCTGTTTCCCAGACCTCCTCTTCTTCCTTTCAGTACATGTATTTGCTGAAAGACCTGTGGCAAAAGAG

GCAGAAGCAAGTAAAAGATAATGAAAATGTAGTCAATGAGTACTCCTCAGAACTGGAAAAGCACCAATTA

TATATAGATGAGACTGTGAATAGCAATATCGCAACTAACCTTCGTGTGCTTCGTTCAATCCTGGAAAACC

TGAGAAGCAAAATACAAAAGTTAGAATCTGATGTCTCAGCTCAAATGGAATATTGTCGCACCCCATGCAC

TGTCAGTTGCAATATTCCTGTGGTGTCTGGCAAAGAATGTGAGGAAATTATCAGGAAAGGAGGTGAAACA

TCTGAAATGTATCTCATTCAACCTGACAGTTCTGTCAAACCGTATAGAGTATACTGTGACATGAATACAG

AAAATGGAGGATGGACAGTGATTCAGAACCGTCAAGACGGTAGTGTTGACTTTGGCAGGAAATGGGATCC

ATATAAACAGGGATTTGGAAATGTTGCAACCAACACAGATGGGAAGAATTACTGTGGCCTACCAGGTGAA

TATTGGCTTGGAAATGATAAAATTAGCCAGCTTACCAGGATGGGACCCACAGAACTTTTGATAGAAATGG
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AGGACTGGAAAGGAGACAAAGTAAAGGCTCACTATGGAGGATTCACTGTACAGAATGAAGCCAACAAATA

CCAGATCTCAGTGAACAAATACAGAGGAACAGCCGGTAATGCCCTCATGGATGGAGCATCTCAGCTGATG

GGAGAAAACAGGACCATGACCATTCACAACGGCATGTTCTTCAGCACGTATGACAGAGACAATGACGGCT

GGTTAACATCAGATCCCAGAAAACAGTGTTCTAAAGAAGACGGTGGTGGATGGTGGTATAATAGATGTCA

TGCAGCCAATCCAAACGGCAGATACTACTGGGGTGGACAGTACACCTGGGACATGGCAAAGCATGGCACA

GATGATGGTGTAGTATGGATGAATTGGAAGGGGTCATGGTACTCAATGAGGAAGATGAGTATGAAGATCA

GGCCCTTCTTCCCACAGCAATAGTCCCCAATACGGGCGGCCGCAATTCTGATCATAATCAGCCATACCAC

ATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAAT

GCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATT

TCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCA

TGTCTGGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCC

TATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCG

TGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGC

GGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAG

CGTCTAGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTAT

CGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTC

ATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCT

TGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTAT

CGCCGGCATGGCGGCCGACGCGCTGGGCTACGTCTTGCTGGCGTTCGCGACGCGAGGCTGGATGGCCTTC

CCCATTATGATTCTTCTCGCTTCCGGCGGCATCGGGATGCCCGCGTTGCAGGCCATGCTGTCCAGGCAGG

TAGATGACGACCATCAGGGACAGCTTCAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCT

GGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGA

AACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGA

CCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACG

CTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAG

CCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCAC

TGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTG

GTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC

GGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCA

AGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGC

TCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATC

CTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACC

AATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCC

CGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGAC

CCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTC

CTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGT

TAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCT

TCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTA

GCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGC

ACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAG

TCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGC

CACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTT

ACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTC

ACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGA

AATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAG

CGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTG

CCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCT

TTCGTCTTCCTGA 

 
Start/stop codon 
 
 
pMLP-γ sequence 
 
TCAGAATATACCTTATTTTGGATTGAAGCCAATATGATAATGAGGGGGTGGAGTTTGTGACGTGGCGCGG

GGCGTGGGAACGGGGCGGGTGACGTAGTAGTGTGGCGGAAGTGTGATGTTGCAAGTGTGGCGGAACACAT

GTAAGCGACGGATGTGGCAAAAGTGACGTTTTTGGTGTGCGCCGGTGTACACAGGAAGTGACAATTTTCG

CGCGGTTTTAGGCGGATGTTGTAGTAAATTTGGGCGTAACCGAGTAAGATTTGGCCATTTTCGCGGGAAA

ACTGAATAAGAGGAAGTGAAATCTGAATAATTTTGTGTTACTCATAGCGCGTAATATTTGTCTAGGGCCC

AAGCTTTTTGCAAAAGCCTAGGCCTCCAAAAAAGCCTCCTCACTACTTCTGGAATAGCTCAGAGGCCGAG

GCGGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCATGGGGCGGAGAATGGGCGGAACTGGGCG

GAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGCTTTG
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CATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCTGACTAATTGAGATGCATGCTT

TGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGACACACATTCCACAGCTGGT

TCTTTCCGCCTCAGAAGGTACCCGGTCCTCCTCGTATAGAAACTCGGACCACTCTGAGACGAAGGCTCGC

GTCCAGGCCAGCACGAAGGAGGCTAAGTGGGAGGGGTAGCGGTCGTTGTCCACTAGGGGGTCCACTCGCT

CCAGGGTGTGAAGACACATGTCGCCCTCTTCGGCATCAAGGAAGGTGATTGGTTTATAGGTGTAGGCCAC

GTGACCGGGTGTTCCTGAAGGGGGGCTATAAAAGGGGGTGGGGGCGCGTTCGTCCTCACTCTCTTCCGCA

TCGCTGTCTGCGAGGGCCAGCTGTTGGGCTCGCGGTTGAGGACAAACTCTTCGCGGTCTTTCCAGTACTC

TTGGATCGGAAACCCGTCGGCCTCCGAACGGTACTCCGCCACCGAGGGACCTGAGCGAGTCCGCATCGAC

CGGATCGGAAAACCTCTCGAGAAAGGCGTCTAACCAGTCACAGTCGCAAGGTAGGCTGAGCACCGTGGCG

GGCGGCAGCGGGTGGCGGTCGGGGTTGTTTCTGGCGGAGGTGCTGCTGATGATGTAATTAAAGTAGGCGG

TCTTGAGACGGCGGATGGTCGAGGTGAGGTGTGGCAGGCTTGAGATCTGGCCATACACTTGAGTGACAAT

GACATCCACTTTGCCTTTCTCTCCACAGGTGTCCACTCCCAGGTCCAACCTGATCAGAATTGCGCCGCTC

TCGAGTGAATTGTCGACCGCGGCCCGGGCACTCAGACATCATGAGTTGGTCCTTGCACCCCCGGAATTTA

ATTCTCTACTTCTATGCTCTTTTATTTCTCTCTTCAACATGTGTAGCATATGTTGCTACCAGAGACAACT

GCTGCATCTTAGATGAAAGATTCGGTAGTTATTGTCCAACTACCTGTGGCATTGCAGATTTCCTGTCTAC

TTATCAAACCAAAGTAGACAAGGATCTACAGTCTTTGGAAGACATCTTACATCAAGTTGAAAACAAAACA

TCAGAAGTCAAACAGCTGATAAAAGCAATCCAACTCACTTATAATCCTGATGAATCATCAAAACCAAATA

TGATAGACGCTGCTACTTTGAAGTCCAGGAAAATGTTAGAAGAAATTATGAAATATGAAGCATCGATTTT

AACACATGACTCAAGTATTCGATATTTGCAGGAAATATATAATTCAAATAATCAAAAGATTGTTAACCTG

AAAGAGAAGGTAGCCCAGCTTGAAGCACAGTGCCAGGAACCTTGCAAAGACACGGTGCAAATCCATGATA

TCACTGGGAAAGATTGTCAAGACATTGCCAATAAGGGAGCTAAACAGAGCGGGCTTTACTTTATTAAACC

TCTGAAAGCTAACCAGCAATTCTTAGTCTACTGTGAAATCGATGGGTCTGGAAATGGATGGACTGTGTTT

CAGAAGAGACTTGATGGCAGTGTAGATTTCAAGAAAAACTGGATTCAATATAAAGAAGGATTTGGACATC

TGTCTCCTACTGGCACAACAGAATTTTGGCTGGGAAATGAGAAGATTCATTTGATAAGCACACAGTCTGC

CATCCCATATGCATTAAGAGTGGAACTGGAAGACTGGAATGGCAGAACCAGTACTGCAGACTATGCCATG

TTCAAGGTGGGACCTGAAGCTGACAAGTACCGCCTAACATATGCCTACTTCGCTGGTGGGGATGCTGGAG

ATGCCTTTGATGGCTTTGATTTTGGCGATGATCCTAGTGACAAGTTTTTCACATCCCATAATGGCATGCA

GTTCAGTACCTGGGACAATGACAATGATAAGTTTGAAGGCAACTGTGCTGAACAGGATGGATCTGGTTGG

TGGATGAACAAGTGTCACGCTGGCCATCTCAATGGAGTTTATTACCAAGGTGGCACTTACTCAAAAGCAT

CTACTCCTAATGGTTATGATAATGGCATTATTTGGGCCACTTGGAAAACCCGGTGGTATTCCATGAAGAA

AACCACTATGAAGATAATCCCATTCAACAGACTCACAATTGGAGAAGGACAGCAACACCACCTGGGGGGA

GCCAAACAGGCTGGAGACGTTTAAAAGACCGTTTCAAAAGAGATTTACTTTTTTAAAGGACTTTATCTGA

ACAGAGAGATATAATGGGCGGCCGCAATTCTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACT

TGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAAC

TTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTT

TTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCCTCTACGC

CGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACC

GATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCC

CCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGG

CCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCTAGACCGATGCCCT

TGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGAC

TGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGC

TTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAG

CCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCGA

CGCGCTGGGCTACGTCTTGCTGGCGTTCGCGACGCGAGGCTGGATGGCCTTCCCCATTATGATTCTTCTC

GCTTCCGGCGGCATCGGGATGCCCGCGTTGCAGGCCATGCTGTCCAGGCAGGTAGATGACGACCATCAGG

GACAGCTTCAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCT

CCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAA

AGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGAT

ACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTC

GGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTA

TCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTA

ACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTA

CACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGC

TCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCA

GAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTC

ACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGA

AGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGG

CACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTAC

GATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCA

GATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCT

CCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGT

TGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCC
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CAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGA

TCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTAC

TGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGT

ATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAA

AAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAG

TTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGA

GCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATAC

TCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATG

TATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAA

ACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCCTGA 

Start/stop codon 
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Appendix 3 

Mass Spectrometry Data 

 

Recombinant WT fibrinogen expressed in CHO cells was analysed by mass 
spectrometry for detection of phosphorylation sites. Phosphopeptides were enriched 
using titanium oxide and analysed by MALDI-TOF/TOF using a Bruker Ultraflex-III 
mass spectrometer. Work was carried out by Adam Dowle, University of York. 
 
Mass spectra were matched to the fibrinogen Aα chain by Mascot search against the 
IPI human database. Two phosphopeptides were matched at positions 20-35 and 
354-367, corresponding to fibrinogen Aα chain Ser3 (ADS*GEGDFLAEGGGVR) and 
Ser345 (PGSTGTWNPGS*SER), respectively.  
 
 
Ser3 phosphorylation site 
 
Tandem mass spectrum of the Ser3 phoshopeptide: 
 

  
 
The presence of y13 and y14 (red arrow) identifies the phosphorylation site as Ser3. 
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175.004
y  1

273.995
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a 3
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b 3
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y  3
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y  4

540.011
b 5
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y  5

574.058
y  6

712.004
b 7

645.112
y  7

758.180
y  8

905.270
y  9

1020.332
y  10

1077.320
y  11

1206.448
y  12

1263.461
y  13

1315.706
a 14

1430.581
y  14

1616.840
y  16

ADpSGEGDFLAEGGGVR 
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Sequence overlay on the fragmentation spectrum for the Ser3 phosphopeptide: 
 

 
 
 
Ser345 phosphorylation site 
 
Tandem mass spectrum of the Ser345 phoshopeptide: 
 

 
 
The presence of y3 and y4 (red arrow) identifies the phosphorylation site as Ser345. 

m /z200 400 600 800 1000 1200 1400

      0 .0

      0 .1

      0 .2

      0 .3

      0 .4

      0 .5

      0 .6

      0 .7

      0 .8

      0 .9

      1 .0

      1 .1

      1 .2

      1 .3

Abs . In t. * 1000

y R E S S* G P

69.998
a 1

175.010
y  1

303.994
y  2

214.031
a 3

391.014
y  3

315.026
a 4

558.111
y  4

615.051
y  5

711.953
y  6

659.110
a 7

801.273
b 8

1512.876
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Sequence overlay on the fragmentation spectrum for the Ser345 phosphopeptide: 
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