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Abstract

Condition monitoring systems for prognostics and diagnostics can enable large and complex

systems to be operated more safely, at a lower cost and have a longer lifetime than is

possible without them. AURA Alert is a condition monitoring system that uses a fast

approximate k�Nearest Neighbour (kNN) search of a timeseries database containing known

system states to identify anomalous system behaviour. This search algorithm, AURA

kNN, uses a type of binary associative neural network called a Correlation Matrix Memory

(CMM) to facilitate the search of the historical database. AURA kNN is evaluated with

respect to the state of the art Locality Sensitive Hashing (LSH) approximate kNN algorithm

and shown to be orders of magnitude slower to search large historical databases. As a result,

it is determined that the standard AURA kNN scales poorly for large historical databases.

A novel method for generating CMM input tokens called Weighted Overlap Code Con-

struction is presented and combined with Baum Coded output tokens to reduce the query

time of the CMM. These modi�cations are shown to improve the ability of AURA kNN to

scale with large databases, but this comes at the cost of accuracy. In the best case an AURA

kNN search is 3.1 times faster than LSH with an accuracy penalty of 4% on databases with

1000 features and fewer than 100,000 samples. However the modi�ed AURA kNN is still

slower than LSH with databases with fewer features or more samples.

These results suggest that it may be possible for AURA kNN to be improved so that

it is competitive with the state of the art LSH algorithm.
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Chapter 1

Introduction

1.1 Problem Summary

A system can be considered as a set of �things� that are working together in order to achieve

some objective (Oxford Dictionaries 2010). These �things� could form an organic system

such as a plant, an inorganic system such as an engine, or a hybrid system consisting of

both. In most cases, the individual components can be considered as systems in their

own right. For example, a car can be considered as a system that consists of separate

sub�systems for propulsion, steering and breaking.

Unfortunately systems can fail. Indeed the consequences of such a failure can be catas-

trophic (Commission 1986; Travis 1994). It is therefore desirable to be able to predict when

such a failure will occur so that the failure can be avoided or the e�ects mitigated. Prog-

nostics is the process by which the future operation of a system can be predicted based on

the current operating characteristics and with reference to some historical notion of normal

operating behaviour (Vichare and Pecht 2006). In contrast, diagnostics is the process by

which the cause of a failure is identi�ed after it has occurred (Jardine, Lin, and Banjevic

2006).

This thesis presents an evaluation of, and improvements to, the approximate k�Nearest

Neighbour algorithm that underlies AURA Alert. AURA Alert is a commercial software

system that is used for both prognosis and diagnosis of complex, large�scale industrial sys-

tems (Austin et al. 2010). Typically these are systems with over 1000 monitored channels,

with sample rates that can range from milliseconds to hours depending on the channel and

consisting of at least 3 years of data.

1.2 Motivation

Condition monitoring systems that are used to provide prognostics and diagnostics have

a cost associated with their installation and operation. The motivation for deploying such

condition monitoring systems therefore stems from a desire to either increase the safety

(Commission 1986) or reduce the cost of operating the target system (Pecht 2008).

Costs can be reduced in two ways, by either using prognostics to avoid a catastrophic

failure in real time, for example, hard drives routinely have shock protection built in. This

functions by detecting a drop as it occurs and seeks to ensure that the disk heads are
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parked before impact. As a result, the disk heads do not cause the disks to shatter during

impact (Edgerton and Kochis 1998).

Alternatively, the condition monitoring system can be used to justify extending the

operating lifetime of a target system (Chinnam and Baruah 2004) because failures can be

anticipated and compensated for. This allows the cost of replacing a legacy system to be

avoided.

There are three high level strategies for implementing a condition monitoring system.

These are: canary systems that are designed to fail before the target system thus providing

a warning of iminent failure; physics�based models that use computational modelling of the

actual operation of the system to predict problems; and data driven models that learn to

model the outputs of a system by analysing recorded data. These strategies are considered

further in Chapter 2. However the need to monitor increasingly large and complex systems

combined with recent improvements in data collection and storage technologies (Jardine,

Lin, and Banjevic 2006) have led to a massive increase in the amount of data that is

potentially available about a system. The data driven approaches need to be able to scale

with these increasing data volumes to remain relevant.

AURA Alert is one such data driven condition monitoring system. It is able to register

an alert noti�cation when the current system characteristics deviate su�ciently from a

historical record of safe system states. AURA Alert is discussed in greater detail in Chapter

4. However the core component of the AURA Alert system is an approximate k�Nearest

Neighbours (kNN) (Fukunaga 1990) search algorithm that uses a form of binary associative

neural network called a Correlation Matrix Memory (CMM) (Austin 1996), speci�cally

using the Advanced Uncertain Reasoning Architecture (AURA) (Austin, Kennedy, and

Lees 1995) CMM framework, to facilitate the fast searching of historical system states.

Despite the importance of the AURA kNN algorithm to the operation of AURA Alert,

there has been relatively little study of AURA kNN with respect to alternative kNN al-

gorithms. To date, only Hodge and Austin (2005) provide any comparative evaluation of

AURA kNN. This comparison is limited to demonstrating that AURA kNN is faster than

the naïve Linear scan (Zezula et al. 2006) algorithm with a small loss in accuracy.

Additionally, the AURA kNN algorithm appears to scale linearly with the number of

samples that are being searched. This will make AURA kNN increasingly unsuitable as

the amount of data needed to be processed increases. However Hobson (2011) provides

suggestions for increasing the information density of binary CMMs through the selection

of the inputs and outputs that are associated within the CMM. If applied to AURA kNN,

this could potentially improve the ability of AURA kNN to scale with larger datasets.

1.3 Research Questions

My thesis is that AURA Alert can be improved through the use of new methods to optimise

the AURA kNN component. This leads to the following research questions:

1. How does AURA kNN compare with the existing state of the art kNN algorithms?

2. How can AURA kNN be modi�ed such that it is competitive with those state of the

art algorithms?
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The research presented in this thesis seeks to provide answers to these two questions by

evaluating both the standard AURA kNN and various modi�cations to AURA kNN with

respect to state of the art kNN algorithms in terms of the query time, training time and

accuracy of the algorithms.

1.4 Summary of Contributions

As a result of the investigation into the above questions, the following novel contributions

are presented in this thesis:

1. An optimisation of the Overlapped Binary Code Construction (OBCC) (Hobson

2011) method for generating binary CMM input tokens (Section 5.2).

2. A method for generating weighted CMM input tokens, Weighted Overlap Code Con-

struction (WOCC), that allows a reduced number of bits to be stored in a binary

CMM in comparison to OBCC tokens while recalling identical results (Section 5.3).

3. A modi�ed AURA kNN algorithm that uses WOCC input tokens and 2�Bit Baum

Coded (Baum, Moody, and Wilczek 1988) output tokens (Chapter 9.3).

In addition, the results of the comparison experiments in Chapter 7 demonstrate that

the standard AURA kNN algorithm is generally slower that the exact KD�Tree (Bentley

1975) and Dual KD�Tree (Gray and Moore 2000) spatial partitioning based kNN algo-

rithms.

1.5 Structure of this Thesis

Chapter 2 contains a high level overview of the approaches to prognostics and diagnostics

of systems. Canary systems, mathematical models and data driven models are introduced

with data driven models identi�ed as the most promising approach for large and complex

systems.

Chapter 3 reviews the steps involved with creating a data driven model for system

monitoring before discussing methods for building such models. Search based classi�cation

is one such method that uses similarity between the current system state and a historical

record of previous system states to determine the health of a system. A review of k�Nearest

Neighbour (kNN) algorithms for performing this is then presented.

Chapter 4 introduces AURA Alert, a system for performing search based classi�cation

using a type of binary associative neural network called a Correlation Matrix Memory

(CMM). This search is called AURA kNN.

Chapter 5 presents three novel modi�cations to AURA kNN that have the potential

to improve the speed and accuracy of the search. Overlapped Binary Code Construction

(OBCC) (Hobson 2011) is a method for generating binary inputs for a CMM. Optimisations

to this method are introduced to make it feasible for use as part of AURA kNN. Next, a

new method of generating inputs for AURA CMMs, Weighted Overlap Code Construction

(WOCC), is introduced based on OBCC. Finally the use of Baum Codes (Baum, Moody,

and Wilczek 1988) to reduce the query time of the CMM is examined.
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Chapter 6 introduces the kNN experiments that forms the basis of the evaluation

performed in later chapters. In addition, baseline results are presented for the Linear

Scan, KD�Tree, Dual KD�Tree and Locality Sensitive Hashing (LSH) kNN algorithms.

Chapter 7 details the investigation into how OBCC and WOCC input tokens a�ect the

accuracy and query time of AURA kNN when using standard unary output tokens. It is

shown that the standard Parabolic Kernel tokens perform best in this situation.

Chapter 8 investigates how the results from Chapter 7 change when 2�bit Baum Coded

output tokens are used in place of the standard unary output tokens. It is shown that

overall WOCC input tokens perform best when paired with Baum Coded output tokens.

Chapter 9 compares AURA kNN with WOCC input tokens and 2�bit Baum Coded out-

put tokens to both the standard AURA kNN and LSH as the state of the art approximate

kNN algorithm. The modi�ed AURA kNN is shown be 67.5 times faster than standard

AURA kNN for the largest datasets examined, however with a 4.6% loss in accuracy for

these datasets. Compared to LSH, the modi�ed AURA kNN is 3.1 times faster with a 4.0%

loss in accuracy on these same datasets. However the accuracy of the modi�ed AURA kNN

is shown to be very poor for datasets with relatively few features.

Finally Chapter 10 provides a review of the �ndings from this research and presents

the conclusions along with potential further work.
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Chapter 2

Prognostic and Diagnostic Systems

2.1 Introduction

This Chapter introduces three high level strategies that can be considered to approach

the task of creating both prognostic and diagnostic systems for any target system. These

strategies are: canary systems, physics�based models and data�driven models. Section 2.2

provides a brief description of each approach and discusses some of their advantages and

disadvantages.

Most real world applications of both prognostic or diagnostic systems will consist of a

combination of these three approaches. The reasons for this are discussed in Section 2.3.

Finally, Section 2.4 provides a brief outline of some issues that e�ect practically all

attempts to build prognostic or diagnostic systems for large or complex systems.

2.2 High Level Strategies

2.2.1 Canary Systems

Canary systems are simple systems that are designed to operate within the same environ-

ment as the target system. They are subjected to the same conditions as the target system

with the intention that a canary system will fail �rst. The failure of a canary system

indicates that the target system may also be about to fail (Pecht 2008).

The term originates from the use of canaries in mines during the 19th Century. Miners

took canaries down the shafts to detect the presence of carbon monoxide (Schalie et al.

1999). If the canary fell ill then the miners had time to evacuate the area before they

started to su�er from carbon monoxide poisoning themselves.

A fuse is a typical example of a canary system. When the fuse carries more electrical

current than the system can handle, the fuse wire melts. This prevents the excessive

current from damaging the rest of the system (Edison 1890).

There are a number of problems with canary systems. In order to provide multiple

warnings, or to provide a warning about a range of potential failures, it is necessary to

use multiple di�erently con�gured canaries (Pecht 2008). These are typically installed

within the target system because of the need for the canary to operate within the same

environment.

A canary system may therefore be di�cult to develop for certain types of system,
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especially those where space, weight or access to components is limited. In addition,

depending on its application, the deployment of a canary system may require that the

target legacy systems be recerti�ed (Pecht 2008).

Increasingly, large and complex systems are created by joining together pre-existing

legacy systems (Hopkins and Jenkins 2008). This can often make the development of a

suitable canary system for the merged target system very expensive.

Finally after the failure of a canary system, there remains the issue of whether the

protected system is a�ected by the introduction of a replacement canary.

2.2.2 Physics�Based and Mathematical Models

Physics�based models are software systems that are speci�ed by experts in the target

system so that they can model as closely as possible the physical e�ects of a particular

input to the system. This approach is only appropriate for systems such as an engine or a

bridge that have interactions with the physical world.

Physical models, combined with a record of the loads that a system is subjected to can

be used to determine the remaining life of the target system (Pecht 2008). The load to

which the target system is subjected can be monitored by both a record of the inputs to

the system and sensors placed on or within the system.

When the model is an accurate representation of the system, this approach has been

shown to be e�ective. For example, a mathematical model based on the physics of a

gearbox has been shown to model the e�ects of a tooth crack in a way that corresponds to

experimental observations (Howard, Jia, and Wang 2001).

However, it may be di�cult or even impossible to build su�ciently accurate models for

very large or complex systems (Jardine, Lin, and Banjevic 2006); either because a large

and complex IT system may be needed simply to perform the computation required for

the prognostics (Pope et al. 2007); or because there is insu�cient understanding about

how all components of the system operate and interact to build an accurate enough model

(Hopkins and Jenkins 2008).

2.2.3 Data Driven Models

The data�driven approach is to build software models of the system that are based solely

on data that is recorded about the target system. There is no attempt to model the actual

physical workings of the system. This approach to prognostics and diagnostics requires

the use of sensors to collect information about the target system and the storage of that

information (Jardine, Lin, and Banjevic 2006).

Examination of the historical information recorded by these sensors gives the ability to

learn from past events (Pecht 2008). This can allow the identi�cation of failure precursors

so that measures can be taken to avoid the failure when such precursors reoccur. This

examination of data can take the form of either monitoring continuously as with an online

system or monitoring in batch mode during periodic maintenance windows.

Traditionally this examination was performed via time consuming and expensive man-

ual processes (Wehenkel 1998). However with the proliferation of both sensors to create

data and networks to transfer it, the amount of data available means that this approach is

no longer sustainable. Therefore ways of automatically learning from this data are sought.
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Automatic learning can be achieved either through the use of traditional statistics

(Jardine, Lin, and Banjevic 2006; Pecht 2008), with machine learning techniques (Jardine,

Lin, and Banjevic 2006; Pecht 2008; Bishop 1995) or a combination of both.

However, all approaches su�er from similar issues such as: noise in the data that im-

pedes learning or analysis of the underlying system; identifying the relevant or important

information, often from a vast amount of collected data; and a lack of important informa-

tion, in particular, concerning the operation of the system in failure modes.

There are two ways in which to apply the data�driven approaches to developing prog-

nostics and diagnostics systems.

The �rst approach is classi�cation. This is used when there is su�cient historical

training data available to cover all the operational states of the system, including the

failure states. The classi�cation system then examines the current operational state with

respect to the training data in order to determine what label to apply to the current state.

This approach is useful for identifying known failure conditions.

The second approach is anomaly detection. This is used to identify when the system

enters an operational state that has not been seen in the historical training data. This

approach is useful for identifying new and unknown operating conditions that may act as

a precursor to a new type of failure.

2.3 Practical Application of Current Approaches

In Section 2.2 three general approaches to developing prognostic and diagnostic systems

were presented. However not every approach is suitable for every task. In addition, for

large and complex systems it may not be possible to apply a single approach to the entire

system. Therefore di�erent subsystems may be monitored using di�erent approaches. In

practice, prognostic and diagnostic systems for complex systems usually comprise of a

combination of all three approaches (Schwabacher 2005; Atlas et al. 2001).

Provided that the system is well understood, it is typically the case that mathematics

and physics�based models are able to make very accurate predictions about the system

(Howard, Jia, and Wang 2001). For example, the European Centre for Medium-Range

Weather Forecasts (ECMWF) is able to correctly predict extreme weather events 5 days in

advance (European Centre for Medium Range Weather Forcasting 2013). However, it can

often be very computationally expensive to do so. This results in either extremely high

equipment costs or a prohibitively long time to make a prediction. The ECMWF spends

around ¿14 million a year on computer equipment alone (European Centre for Medium

Range Weather Forcasting 2013) to enable fast and accurate predictions.

As a result, the choice about whether to use a physical model or a data�driven model

can often be driven by the real time requirements for a prediction. If a fault in a system

can very quickly lead to a signi�cant failure, then a potentially less accurate and faster

approach may be more suitable. Similarly if plenty of time is available to run simulations,

then greater accuracy in the predictions will be preferred.

The data�driven approach can be used when the underlying system is not su�ciently

understood to make accurate physics�based models, or when the time and expertise needed

to develop a physical model is not available. This is because the data�driven algorithms can
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learn models that exhibit the same behaviour as the system without needing to replicate the

interactions that cause the behaviour in the original system. These model can sometimes

be generalised to apply to other instances of the same system. However many complex

systems are unique, and as result, generalised data models will have to be adapted to the

speci�cs of each system.

2.4 Limitations of Current Approaches

2.4.1 Method Validation

Even the most sophisticated prognostic systems need to be both validated and veri�ed to

ensure that they are functioning correctly and to develop operator trust in the predictions

given (Pecht 2008). When considering models of real world systems, validation is the process

by which it is determined how accurately the model is able to represent its target system

(Balci 1997). Veri�cation is the process by which a system is determined to be operating

with respect to its speci�cations (Balci 1997).

If a prognostic system is unable to predict system failures then there is little reason

to incur the cost of operating the prognostic system. Similarly if the prognostic system

provides a large number of warnings that do not correspond to actual problems then the

operator will lose con�dence in the provided warnings and may ignore actual problems

when they are predicted.

Therefore it is necessary to both validate and verify the prognostic system in order to

build operator trust. This is because the cost of responding to a warning may be very high,

this cost is only o�set by the risk that failure to respond could be even more costly. So

to ensure that operators react correctly, they must trust the system to generate accurate

warnings.

However this can be very di�cult. Veri�cation of software systems can be achieved

through a combination of testing (Myers, Sandler, and Badgett 2011) and formal methods

such as model checking (Bérard et al. 2010) to prove that the system is operating as

speci�ed. However this is beyond the scope of this thesis and how these techniques can be

applied successfully to ever larger and more complex systems is an on going topic of much

research.

Validation requires that the output of the prognostic system be compared to the real

output of its target system. However, consider a system that does not fail during a par-

ticular period of time. Assuming that a prognostics is deployed to monitor it during that

period and it does not generate any warnings, there is no way to be certain that the prog-

nostic system was operating correctly during that time since a defective prognostic system

could also legitimately generate no warnings.

Validating the prognostic system requires that it be tested on systems that both operate

correctly and that fail. However, many very expensive or safety critical systems cannot

be allowed to fail due to cost or safety reasons. In these situations it can be very di�cult

to test that the prognostic system would actually work as expected in the event of a real

failure and as a result it could be di�cult to build con�dence in the prognostic system

(Pecht 2008).
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2.4.2 Liability

Prognostic systems are typically deployed to systems where the consequence of failure is

very high. These target systems are often developed to very high standards in order to

prevent their failure (O'Halloran and Pygott 2007).

However, the prognostic systems themselves may not be developed to such high stan-

dards. In the event of an uncaught failure, or false prediction, who is responsible for the

failure? It could be the operator of the prognostic system, the company that developed

the system, an individual programmer or many other entities (Pecht 2008). The method

by which this issue is resolved is likely to have a signi�cant e�ect on the development and

deployment of prognostic systems (Pecht 2008).

2.5 Summary

In this Chapter three approaches for creating prognostic and diagnostic systems have been

described.

Canary systems operate within the same environment as the target system. They

are designed to fail quicker than the target system in order to provide a warning about

immanent failure or protect the target system from damage during that failure. The

application of canary systems to large and complex systems can be problematic, especially

where the target system may need to be recerti�ed after the installation of a replacement

canary.

Physical or Mathematical models provide a software representation of the target system

based on an understanding of how the system works in the real world. When the target

system is well enough understood and there is su�cient time, computation and input data,

available this approach can provide very accurate predictions about the future of the target

system. However in the case of large and complex systems it is rarely possible to satisfy

these three requirements for the entire system.

Data driven models produce predictions based on the application of statistical analysis

or machine learning techniques to data that is recorded about the target system. This

approach can be applied even when the target system is not fully understood because the

approach involves trying to automatically learn about the operation of the system. As a

result of this however, the way by which some data�driven models work to produce their

predictions can be di�cult to understand. This therefore makes it harder to build the

necessary trust in a data�driven model.

The limitations of both canary systems and physics�based mathematical models mean

that these approaches do not scale well when trying to cover the entirety of a large or

complex system. Despite this they can be useful for monitoring smaller subsystems within

a system of systems. However the rest of this thesis shall focus on the development of data�

driven models. This is because the data driven approaches can require fewer resources than

the physics�based approaches and they are not required to interact with the target systems

as canaries are. Therefore the data�driven approach appears to be best suited to the task

of trying to monitor ever larger and more complex systems.
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Chapter 3

Data�Driven Systems Monitoring

3.1 Introduction

There are several common steps that are required by practically all applications of data�

driven model development. An overview of these common steps is given below:

In order to build a data�driven model, the �rst step is to acquire the data that drives

the model. This data is referred to as the training data and it is often a non-trivial task

to obtain su�cient high quality training data to construct useful models. Section 3.2 will

cover some of the issues that relate to collection of this training data.

With su�cient training data in hand, the next step is to clean and �lter the data. This

usually consists of stripping out any invalid or misleading data. Alternatively, it may be

necessary to construct additional data to �ll gaps that were infeasible or perhaps impossible

to gather during the data acquisition step. These issues will be discussed further in Section

3.3.

Once the training data is in a suitable state, it is necessary to extract the features

from the data that are to be used in the models. Many models require that the data

be transformed in order to better interpret important information from within the data.

Several of the most commonly applied techniques are discussed in Section 3.4.

Typically only a small proportion of the extracted features have a disproportionate

e�ect on the measured output of a system. Since many models are only able to handle a

limited number of features, it is important to select only the most discriminating features

to be used in the models. This is discussed in further detail in Section 3.5.

A data�driven model can be applied to two purposes; either to assign the currently

observed system state into prede�ned categories, usually derived from the previously ob-

served system states, this is termed classi�cation; or to identify new system states that do

not fall into any of the previously observed categories, this is termed Anomaly Detection.

The general concepts relating to both classi�cation and anomaly detection are presented

in Section 3.6.

In Sections 3.7 � 3.11 a number of techniques for developing both classi�cation and

anomaly detection models for systems are discussed.

Finally a short discussion on some of the techniques used to evaluate the models is in

Section 3.12.

The issues related to deploying a model will not be covered. This is because such
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Figure 3.1: The development pipeline for the creation of data�driven prognostics and
diagnostic systems

issues are often closely related to social and business problems rather than purely technical

problems. A discussion of these topics is beyond the scope of this thesis.

Rather than being a linear progression from one step to the next, building a data�

driven model is typically an iterative process where each stage may be returned to many

times before the model is deemed suitable for deployment. An outline of these steps can

be seen in Figure 3.1.

3.2 Training Data Acquisition

Acquisition of training data is an essential prerequisite for building any data�driven model

(Pecht 2008). Jardine, Lin, and Banjevic (2006) de�ne two types of data that can be

recorded when monitoring a system - event data and condition data.

Event data is de�ned as a log of the major events that occur to the system, for ex-

ample, installation and scheduled or unscheduled maintenance. Usually these events are

characterised by their occurrence at irregular intervals and human interaction with the

system.

Condition data is de�ned as data that is collected automatically at regular, �xed inter-

vals and records the operating characteristics of the system. In a physical system, sensors

are used to measure physical characteristics such as voltage, temperature, vibrations, etc.

In software systems, this could be a record of bandwidth, processor time, etc. It is this

data that is primarily used to build data�driven models (Jardine, Lin, and Banjevic 2006).

In recent years, the miniaturisation of electronics combined with advances in wireless

networks, has meant that it is easier to deploy sensors for the purpose of monitoring

a system. For example, Austin et al. (2013) have developed a device to record EEG

24



and accelerometer movements at 2kHz for over 24 hours while weighing only 2.3 grams.

However this has resulted in a proliferation in the amount of condition data being collected

and stored (Pecht 2008).

Yet the condition data itself is usually not su�cient to build a model. The training

data will typically also consist of a set of labels that are assigned to the condition data

samples. Each label corresponds to the operating characteristics of the system at the time

the sample was recorded. Some systems can learn from training data in an unsupervised

manner and thereby avoiding the need for labelled training data (Wilson, Keil, and Fahle

1999). However, at a minimum it is necessary to know whether or not the condition data

corresponds to a system that is operating normally.

Generally the accuracy with which a data�driven model can represent a target system

will largely depend on the volume and quality of the information contained within the

training data (Caballero et al. 2006)

The volume of training data required to accurately build a data�driven model is largely

dependent on the size and complexity of the target system. In the case of a simple binary

classi�cation of a non�parametric system, the size of a training dataset will need to more

that double in order to double the accuracy of the classi�cations (Raudys and Jain 1991).

Therefore a large amount of training data is needed to model a large and complex system

with a high level of accuracy.

In many cases the labelling of training data has to be performed by a human expert.

This introduces a signi�cant cost to gathering training data. In addition it introduces the

possibility of samples being mislabelled. Disagreement amongst experts about how to label

the samples is also likely to arise in cases where the volume of data necessitates multiple

human experts (Stephenson et al. 2009).

Despite the increase in monitoring of systems it can still be di�cult to get su�cient

training data to cover all the operating conditions of the system. When considering high

integrity systems, for example, there may not be any condition data that relates to fault

conditions of a system. This is because the occurrence of such conditions are, by design,

exceedingly rare (Markou and Singh 2003a). Few system operators of high integrity systems

would be willing to damage their systems simply to record the e�ects.

Finally there is the issue that many companies consider the condition data recorded

from their system to be business sensitive information. For that reason they are often

unwilling to share the information needed to develop models of their systems.

3.3 Cleaning and Filtering

The purpose of cleaning and �ltering the data is to reduce the amount of irrelevant in-

formation in the training data. If such information is retained in the training data it can

prevent the algorithms used to build data�driven models from converging on an acceptable

solution. In some cases, this could be overcome with additional training data (Fukunaga

1990). However, as discussed in Section 3.2, it is not always feasible to obtain more data.
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3.3.1 Cleaning

Missing or invalid samples are encountered regularly in time series data (Little 1992). There

are a large number of causes for this, but often it is due to a failure in the monitoring system.

The process of cleaning the data is to identify and remove these invalid portions of the

signal. In general, cleaning data is not easily achieved (Maimon and Rokach 2010). This

is because there is often no way of knowing whether a period of unusual or missing data

is indicating something important about the health of the system or whether it is being

caused by transient environmental issues.

One solution to this problem is to perform manual identi�cation of useful data with

the help of graphical tools (Maimon and Rokach 2010). This solution however is both time

consuming, and therefore expensive, and also potentially error prone. Additionally, when

large quantities of data are being considered, time constraints mean that it may not be

feasible to manually review all the data.

Another solution is to assume that the system functioned correctly for the majority of

the operating period during which the training data was gathered. Various methods can

then be used to identify outliers or anomalous data within this dataset.

Statistical measures such as standard deviation and the mean, or even a simple thresh-

old, could be used to identify normality and any periods that fall outside this would be

considered abnormal (Maletic and Marcus 2010). However, this requires some understand-

ing of the data and the underlying system. It may, for example, be expected that the

system will occasionally produce extreme values. If this is the case then such values will

need to be retained as useful data.

Clustering of the data can also be used to identify outliers (Yu, Sheikholeslami, and

Zhang 2002). Any data that does not fall within an identi�ed cluster can be considered to

be anomalous, in addition clusters that appear to contain less data than expected can be

used to identify where data is missing (Maletic and Marcus 2010).

Other approaches can make use of model checking (Mezzanzanica et al. 2013) to ensure

that the collected data conforms to a set of known states and transitions within the data.

For example if a system is recorded being in two di�erent states, but with no record of the

transition between them, then it can be identi�ed that the data representing the transition

is missing.

Once useful data has been identi�ed, any data that is not complete or that contains

artefacts could simply be discarded (Little 1992). The advantage of this approach is that

it ensures that the training data only consists of high quality data. The disadvantage

however is that there may not be su�cient remaining data to be able to build an accurate

model of the system (Fukunaga 1990), especially if training data was limited to begin with.

Rather than discard the corrupted training data, it may be possible to partially restore

it. For example, an extreme sample that is correctly identi�ed as an artefact could be

replaced with the mean of its adjacent samples (Little 1992). Whilst this can retain valuable

information, it is possible that the corrections could bias the model causing a reduction in

performance. In some cases it may be necessary to accept this performance penalty. For

example, if there is insu�cient uncorrupted training data available and there is no realistic

possibility of obtaining more data from the system.

Another alternative is that once the anomalous data has been identi�ed can be inter-
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actively cleaned by combining expert opinions with the statistical models of the data to

generate realistic alternative data (Masegosa and Moral 2012)

3.3.2 Filtering

Time series data (a signal) often contains a lot of noise. This is true of both condition data

and event data. The term noise describes unwanted modi�cations to a signal that is being

measured (Tuzlukov 2002). Noise can be introduced either due to a fault or de�ciency in

the monitoring system, or due to the monitoring system being sensitive enough to detect

disturbances present due to the environment in which the system is operating. An example

of this type of noise is background radiation (Penzias 1979). In many cases it can be di�cult

to distinguish between the noise and the useful information in a signal.

One method to reduce the amount of noise in the signal is to apply a digital �lter. A

digital �lter is able to modify the signal to either enhance or reduce particular aspects of

the signal by performing mathematical operations on the data. A digital �lter di�ers from

a standard analogue �lter in that it operates on discrete samples of the continuous signal

rather than on the continuous signal itself.

A measured signal is typically constructed from a large range of signals operating at

di�erent frequencies. Simple �lters are used strip out the parts of a signal at unwanted

frequencies (the noise) leaving only the parts of a signal that correspond to the system

being measured.

A more detailed discussion of �ltering is beyond the scope of this review.

3.4 Feature Generation

In principle it would be possible to use the raw data in building a model. However in

practice most applications require some transformation of the raw data in order to extract

su�cient information from the data (Bishop 1995). In general, using the raw data results

in a poorly performing model either due to a poor signal to noise ratio within the raw

data, or because many data�driven models are unable to scale up to the vast quantities of

raw data that are available.

In essence, feature generation is used to present important aspects of the data that can

be used to improve the signal to noise ratio.

There are a large variety of techniques for generating features from time series data.

Most of the techniques that are applicable for an online prognostic system divide the signal

into consecutive subsequences. Features are then generated that correspond to the period

of the subsequence.

It should be noted that in general there is no optimal technique for generating features

from a signal (Keogh and Kasetty 2003). However, each technique has di�erent advantages

that may suit itself to a particular dataset (Keogh and Kasetty 2003). As a result, selecting

the best feature generation technique can be a matter of trial and error.

3.4.1 Statistical Features

Standard statistical features that describe the form of the signal can be used as features.

These include the mean, peak, peak to peak interval and standard deviation in addition to
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other higher order statistics such as root mean squared, skew and kurtosis (Jardine, Lin,

and Banjevic 2006).

Using these statistical features requires the assumption that the properties of the system

that are being measured are independent of time (Bishop 1995). For example, there is little

point in comparing the mean values across two di�erent periods of a signal that is constantly

increasing as time progresses.

3.4.2 Discrete Fourier Transform

Any signal can be approximated through the superposition of a �nite number of sine waves

each possessing di�erent amplitude, phase and frequency (Maimon and Rokach 2010). The

Discrete Fourier Transform (DFT) is a linear transform that allows the computation of

the energy from each of the sine waves. DFT is usually implemented by a Fast Fourier

Transform (FFT) algorithm, thus the two terms are often used interchangeably. A FFT

algorithm is able to compute the Fourier coe�cients in O(nlog(n)) rather than O(n2) for

the naive DFT implementation.

For a time series ~x = x0, x1, . . . , xN−1 its DFT is a sequence of complex numbers

~X = X0, X1, . . . , XN−1 such that:

DFT (Xk) =
N−1∑
t=0

xt exp(−i2πk
t

N
)

where i =
√
−1.

For many interesting time series the energy of a signal is dominated by a small number

of high energy components (Agrawal, Faloutsos, and Swami 1993). This means that low

energy components (perhaps, including those that describe any noise) can be discarded for

only a small loss of information (Maimon and Rokach 2010). The advantage of discarding

information will be discussed in Section 3.5. It also allows the major trends in the signal,

as determined by the high energy components, to be identi�ed.

3.4.3 Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is similar to DFT in that it provides a representation of

the signal by using a basis function. Yet where DFT requires that the signal be constructed

using the sine (and cosine) function, DWT makes use of functions called wavelets in its

approximation of the signal (Graps 1995).

A wavelet is an oscillatory function that has an average amplitude of zero.

The most basic wavelet function is the Haar wavelet. The Haar wavelet is de�ned as

(Chan and Fu 1999):

haarji (xi) = haar(2jxi − i) i = 0, . . . , 2j − 1

where:

haar(t) =


1 : 0.0 ≤ t < 0.5

−1 : 0.5 ≤ t < 1.0

0 : otherwise
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this is combined with the scaling function (Chan and Fu 1999):

scale(t) =

{
1 : 0 < t < 1

0 : otherwise

during the DWT.

The Haar wavelet is limited in its potential applications because the function is dis-

continuous and therefore not continuously di�erentiable (Graps 1995). However this non

continuity also means that it is well suited to modelling discontinuous signals such as those

obtained from fault monitoring of systems (Lee 1999). Additionally, it is very fast to com-

pute because the DWT using the Haar wavelet can be computed by a process of averaging

adjacent samples with the scaling coe�cient obtained by recording the di�erence between

them (Chan and Fu 1999).

The advantage of DWT over DFT is that the DWT is able to describe the shape of

the signal at multiple resolutions. The early wavelet coe�cients describe the general shape

of the entire signal whilst the later coe�cients are able to describe local trends within

portions of signal (Maimon and Rokach 2010). This also enables noise in the signal to be

identi�ed and then reduced when the signal is reconstructed (Maimon and Rokach 2010).

Finally, the Euclidean distance between two signals approximated using DTW with the

Haar wavelet provides a lower bound on the distance of the original signals. (Chan and Fu

1999)

3.4.4 Piecewise Linear Approximation

Piecewise Linear Approximation (PLA) forms an approximation by considering the signal

as consecutive subsequences of varying length. Each subsequence is represented by a linear

approximation that is chosen to minimise the error:

error(~x) =

N−1∑
t=0

|εt|2

where ε which is typically chosen to be the Euclidean distance between the line and the

point (Pavlidis and Horowitz 1974).

It is important to note that this representation of the signal is not necessarily contin-

uous, although the minimisation of error(~x) could be constrained to ensure that the PLA

is continuous.

The algorithms for computing the PLA of a signal can be divided into three groups

(Keogh et al. 2001). First is the sliding window approach (Keogh et al. 2001). Here a

subsequence ~s is repeatedly increased in size until error(~s) exceeds a prede�ned threshold.

At this point the next subsequence is computed.

A bottom-up approach can be used by starting with a linear approximation between all

the samples and iteratively merging the subsequences which are su�ciently similar until

some stopping condition is met (Keogh et al. 2001).

Alternatively, it can be computed in a top-down approach where the initial condition

is a linear approximation of the entire signal. A sample is chosen as the point about which

to divide the signal into subsequences. This is repeated recursively on the subsequences
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until a stopping condition is reached (Keogh et al. 2001).

The primary advantage of PLA is that it can drastically reduce the amount of data

needed to store an approximation of the time series. This is especially the case if the time

series consists of long periods where the gradient of the linear approximation does not need

to change.

Using the PLA representation of the signal as a feature vector can support for faster

detection of both exact matches (Keogh et al. 2001) and similar matches using dynamic

time warping (Park, Lee, and Chu 1999) compared to matching the full signal.

3.4.5 Piecewise Aggregate Approximation

The Piecewise Aggregate Approximation (PAA) algorithm divides the time series in two

consecutive subsequences of �xed length. Each subsequence is then represented by the

mean value of its samples (Keogh and Pazzani 2000).

The primary advantage of this approach is that it is extremely simple and fast to

calculate. In addition it retains the property that the Euclidean distance between the PAA

of two subsequences provides a lower bound on the distance between the raw subsequences

(Yi and Faloutsos 2000).

3.4.6 Binning

Binning is the process by which a continuous signal is converted into a sequence of discrete

values. The range of the signal is divided into non�overlapping regions with a bin assigned

to each region. There are many strategies for determining where the region boundaries

should lie in the data range. In general the best strategy is data dependent, however this

problem is discussed further in Section 5.2.1. The binned representation is generated by

taking each value of the signal and assigning it the bin corresponding to the region within

which it falls.

This approach requires a lookup table to de�ne a distance between bins in order to

compute the similarity between two time series since there is no mathematical relationship

between arbitrary bins. However it is possible to de�ne the lookup tables so that the

distance between two binned representations of a signal can provide a lower bound on

their Euclidean distance (Lin et al. 2003).

The primary advantage of this approach is its ability to use a small amount of memory

to represent a time series whilst still retaining the ability to perform an e�cient comparison

(Camerra et al. 2010). However the discrete nature of the features generated in this way

makes it very useful for allowing algorithms that work on discrete data to be applied to

time series data (Lin et al. 2003).

3.5 Feature Selection

Once some features have been generated via one or more of the methods described in

Section 3.4 it is then necessary to select a subset of features that will be learned by the

model. Feature selection is the process of identifying the subset of features that contribute

the most to the output of the system. This in�uential subset is then used to train the data

models rather than the entire set of features generated.
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Using a subset of features results in a reduction in the available information and as a

result, if performed incorrectly, this can reduce the capability of the model to distinguish

between samples (Fukunaga 1990).

However for the majority of algorithms, beyond a certain number of features, the

performance of the models produced starts to degrade (Bishop 1995). This is known as

the �curse of dimensionality� (Bellman 1961). Another reason for the desire to reduce the

number of features is concerned with the physical constraints of the computer (Camerra

et al. 2010). Reducing the number of features considered ensures that a larger number of

samples can be stored within the computer's memory.

Time series data in particular usually has a large number of highly correlated features

(Chakrabarti et al. 2002). As a result the selection of the most in�uential features is

particularly important. The aim, therefore, of feature selection is to reduce the number

of features used whilst retaining as much information about the data as possible (Bishop

1995).

There is no general solution for selecting the optimal subset of features for a given

solution. Each system requires speci�c knowledge of, and often investigation into the

system in order to identify the subset of features that result in acceptable performance

(Maimon and Rokach 2010).

3.5.1 Expert Knowledge

In many cases, expert knowledge can be used to guide the selection of important fea-

tures. The experts are people who have prior knowledge about the system being moni-

tored (Bishop 1995). Often these are the engineers who are responsible for the operation

and maintenance of the system, or the architects who originally designed it.

The experts often know which features can be ignored and which ones are important to

consider. However the expert knowledge available may not be su�cient to identify all the

in�uential features. Also di�erent experts may not agree on which features are the most

important or even on how to measure the features they consider to be important (Robert,

Guilpin, and Limoge 1999).

3.5.2 Principal Component Analysis

Principal Component Analysis (PCA) is the process of identifying the principal components

of a data set (Jolli�e 2002). The �rst Principal Component (P0) of a data set is the vector

that describes the axis along which the largest variance can be seen. The second principle

component (P1) is a vector, perpendicular to P0, that illustrates the next largest variance

across the data set.

For a dataset X consisting of s samples and m feature then there are a corresponding

s perpendicular principle components. In order to reduce the number of features in X to

n features where n < m it is necessary to form a s × n transformation matrix W . The

transformation matrix is constructed by taking the n principle components that represent

the highest variance.

W = [P0, P1, . . . , Pn−1] (3.1)

The reduced data Y set that retains the maximum variance within the X set with only
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n features can then be computed as follows (Jolli�e 2002):

Y =W T ×X (3.2)

3.6 Classi�cation and Anomaly Detection

Classi�cation is the process by which new samples are assigned to one of a prede�ned

number of discrete classes (Bishop 1995). The act of assigning a class to a sample is

performed by a function known as a classi�er. A classi�er is de�ned as:

classifier(s) =


C1 : s ∈ C1

...

CN : s ∈ CN

where s is the new sample and {C1, . . . , CN} is the set of N classes.

Many classi�cation algorithms only function as binary classi�ers, that is a classi�er

where N = 2. However multiple binary classi�ers can be combined to produce a general

purpose classi�er (Fukunaga 1990; Burges 1998) for an arbitrary number of classes.

Anomaly detection is the process by which new samples are identi�ed that do not

belong to one of the prede�ned classes. Typically the presence of anomalies in a system

indicates that either the model of the system incomplete or that there is a fault in either

the monitoring system or the system being monitored.

A good anomaly detection algorithm will maximise the identi�cation of anomalies and

minimise the number of samples falsely identi�ed as being anomalous (Markou and Singh

2003a)

When building a data�driven anomaly detector, there is an assumption that the normal

operation of a system as modelled in the data is stable over a reasonable period of time

(Markou and Singh 2003a). If the normal operation of a system is not stable or if the system

is not observed in all normal states of operation then the algorithm will not accurately

re�ect the current state of the system. As a result, it can generate a large number of

false positives or need to be regularly retrained for the current circumstances (Markou and

Singh 2003b).

The remaining sections of this Chapter will present various algorithms that can be used

for either classi�cation or anomaly detection. The �rst step when building either a classi�er

or an anomaly detector is usually to extract the same features from the new sample as

were used in the training set (Lin et al. 2003). Therefore all the algorithms discussed in

the following Sections are assumed to be using the feature vector of a sample (as discussed

in Section 3.4) rather than the raw sample data.

3.7 Decision Trees

A decision tree classi�er is a function that recursively divides the feature space in order

to apply a classi�cation to a sample (Maimon and Rokach 2010). A decision tree forms a

directed tree with a single "root" node that has no incoming edges. Each leaf of the tree
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is assigned to a single class, should a leaf node be reached whilst traversing the tree then

the sample is assigned the classi�cation corresponding to the leaf node.

The primary advantage of this approach over the others discussed below is that the

process by which a certain sample is assigned a classi�cation is readily comprehensible to

humans (Geurts 2001; Wehenkel 1998). In addition a classi�cation is relatively cheap to

compute using the decision tree.

A threshold function could be considered as a special case of a decision tree with depth

1. Thresholds are widely used in prognostic systems, primarily because they are very

simple to both implement and to understand. However it should be noted that, despite

their widespread application, thresholds are very limited in their classi�cation capabilities

(Bishop 1995).

Training a decision tree to classify a dataset is a di�cult problem. Indeed to generate

a minimal decision tree that correctly classi�es all samples of the training set has been

shown to be NP-hard (Hancock et al. 1996). Therefore it is not feasible to generate an

optimal decision tree for the type of large and complex systems that are being considered

(Maimon and Rokach 2010).

A heuristic approach can therefore be adopted to generate decision trees with acceptable

performance. The most commonly used method is a top-down approach (Maimon and

Rokach 2010). Here the goal is that the nodes near the root di�erentiate between the

largest di�erences in the dataset, whilst the nodes nearer the leaves are concerned with

�ne grained di�erences. Usually the criteria for determining which features to use for a

decision at each node are based on information theory, i.e. maximising the amount of

information gained at each decision (Maimon and Rokach 2010). However there are several

other approaches for the selection criteria (Geurts 2001; Ferri, Flach, and Hernandez-Orallo

2002) and no criteria has been found to be optimal for all datasets (Maimon and Rokach

2010).

Condition
A

Condition
B

Leaf 1

Leaf 2 Leaf 3

satis�ed

not
satis�ed

satis�ed

not
satis�ed

Figure 3.2: Example: Decision Tree

3.8 Statistical Approaches

The statistical approach to classi�cation is to compute the probability P that the sample

belongs to each class Ci, i.e. :

P (s ∈ Ci), i = 1. . .N
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where N is the number of prede�ned classes. The sample is assigned to the class with the

highest probability of containing the sample.

In the case of anomaly detection, if the largest value of P falls below some prede�ned

threshold, then the sample is considered to be anomalous (Markou and Singh 2003a).

If the probability density function for data produced by the system is known then this

approach allows the creation of an optimal classi�er for the system using Bayes' theorem

(Fukunaga 1990). Bayes' theorem provides a method by which observations, such as the

time series data, can be interpreted in the context of previous knowledge, expressed as the

probability density function, to predict the expected outcome (Stone 2013). However the

true probability density function is usually unknown and therefore has to be estimated

from the training samples provided.

The statistical methods for training a classi�er can be grouped in to two distinct cate-

gories, the parametric and the non-parametric methods.

The parametric methods require that the system produces data samples according

to a known distribution type, and that the distribution parameters are either known or

are assumed to be correct (Fukunaga 1990). However in the case of real systems that

are being monitored, the distribution and parameters of the data are typically unknown.

Indeed it may even vary with respect to time or other environmental factors. As a result

the parametric techniques have little practical application to large and complex systems

(Markou and Singh 2003a).

The non-parametric methods, in contrast, do not make any assumption about the data

distribution (Markou and Singh 2003a) and rely solely on the provided training sample.

This means that computing accurate estimated density functions is very di�cult (Fukunaga

1990). Therefore the estimates will be less reliable and subject to the bias in the training

samples (Fukunaga 1990).

The most common method for estimating the probability density function is the Kernel

Density Estimation method (Silverman 1986). The density estimation function of a training

set S = s0, . . . , sN−1 is given by:

density_estimate(s) =
1

Nh

N−1∑
i=0

K

(
s− si
h

)

where K is a kernel function that integrates to 1 and h is the width of the kernel window.

Commonly the kernel function K will be the standard normal density function φ where:

φ(x) =
e−

1
2
x2

√
2π

(3.3)

The disadvantage of this approach is that in order for the density estimation to be

accurate, a large number of training samples are needed. However a large number of

samples makes the computation of the density estimate very slow (Bishop 1995). Although

modern computation capabilities may alleviate this somewhat.

Another issue with these approaches is that they are often not practical for use with

non�stationary systems where the system will regularly change over time (Maimon and

Rokach 2010). This is because the probability density function will need to be updated in

order to re�ect the newly changed system which will likely necessitate a large number of
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new training samples that re�ect the changed system.

3.9 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) are a technique for supporting general parameters on

either a linear or a non-linear mapping from the training samples (as inputs) to their

classi�cations (as outputs) (Bishop 1995). Arti�cial neural networks were inspired by the

biological neural networks of synapses and neurons found in an animal's nervous system.

As a result, an ANN can model complex behaviour through the interactions of simple

processing units.

The capabilities of an ANN depend on the number of layers in the network. A single

layer neural network consists of a set of weights on the inputs and a non-linear function that

determines the output of a node. Successive layers take the output of nodes in previous

layer and apply their own weights to a, possibly non�linear, function in order to determine

the output of the layer. Figure 3.3 provides an example of a three-layer neural network.

A single layer network can achieve optimal classi�cation of new input samples, provided

that the samples are linearly separable (Bishop 1995). For data sets where the samples

cannot be linearly separated, additional layers are needed. Theoretically a neural network

with an input layer, output layer and a single hidden layer as depicted in Figure 3.3 should

be su�cient to approximate any continuous function (Hornik 1991). However, in practice it

is often easier to allow additional hidden layers in order to aid the training of the network.

Determining the number of nodes in the network and the weights on the inputs to

those nodes is a di�cult problem. This is typically achieved by using an error function

that describes the performance of the network on the training set. This error function

is then minimised with respect to the weights and the nodes that describe the network.

The are a large number of optimisation algorithms that can be used to minimise the error

function (Bishop 1995) however a discussion of these is beyond the scope of this review.

input0 input1 input2

output0 output1 output2

Inputs

Hidden Layer

Output Layer

weights

weights

Figure 3.3: Neural Network Representation

Neural network based detectors are often di�cult to train (Patcha and Park 2007). This

can make them unsuitable for some types of system, particularly those that will require

periodic retraining to adjust to changes in the operating conditions (Markou and Singh

2003b).

However because neural networks do not require much prior knowledge about the data

to build a detector, neural network techniques are commonly applied to anomaly detection
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problems (Markou and Singh 2003b; Patcha and Park 2007).

The Multi-Layer Perceptron (MLP) technique has been applied to detecting anomalous

user actions on computers (Ryan, Lin, and Miikkulainen 1998). Here the network provides a

con�dence about the sample classi�cations that it produces. This is achieved by evaluating

the di�erences between the weights that are applied to the output neurones (Vasconcelos,

Fairhurst, and Bisset 1995). Similar to the statistical approaches described in Section 3.8,

if the con�dence falls below a particular threshold then the sample is considered to be

anomalous.

The performance of the MLP network can be improved by assuming that samples which

are deemed anomalous by a very large margin have been classi�ed correctly. These samples

can then be used as negative examples to retrain the network (Vasconcelos, Fairhurst, and

Bisset 1995).

3.9.1 Support Vector Machines

Support Vector Machines (SVM) are another form of neural network. It has been shown

that an SVM using a linear basis function is equivalent to the original Perceptron neural

network (Collobert and Bengio 2004) and that an SVM using the Sigmoid basis function

is equivalent to a two-layer Multi-Layered Perceptron (Burges 1998).

Figure 3.4: Example: Support Vector Machine with Linear Kernel

SVMs have been used for a wide range of systems monitoring and classi�cation ap-

plications. For example, diagnosing faults in motors (Poyhonen, Jover, and Hyotyniemi

2004), chemical processes (Guo et al. 2003) and sleep state prediction (Fargus 2012).

An SVM is a binary classi�er that seeks to �nd the optimal hyperplanes that separate

the samples belonging to two distinct classes (Markou and Singh 2003b). The optimal hy-

perplane that forms the decision boundary between the two classes is chosen by maximising

the margin between parallel support vectors. This is illustrated in Figure 3.4. The support
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vectors of a training set D are identi�ed by minimising ‖w‖
2

2 + C
∑N−1

i=0 εi such that:

yi(w · xi − b) > 1− ε, ε > 0

where xi ∈ D, yi ∈ {−1, 1} are the class labels of xi, |b|‖w‖ is the perpendicular distance of
the decision boundary from the origin, C is the error penalty and ε is the error introduced

when the datasets are not linearly separable (Burges 1998).

In order to support a non-linear decision boundary, SVMs employ the Kernel trick

that enables the samples to be mapped into a higher (possibly in�nite) dimensional space

(Burges 1998). There are many suitable kernel functions. Some examples include the

polynomial, sigmoidal and gaussian radial basis function kernels (Burges 1998).

SVMs have often been applied to anomaly detection (Tax and Duin 1999; Gardner et al.

2006; Ma and Perkins 2003). However there are typically only training samples available

for the normal operation of the system for anomaly detection. As a result the decision

boundary is constructed as a hypersphere with minimal radius that encloses the training

samples (Tax and Duin 1999) rather than the optimal boundary between the two classes.

This approach requires that the training data accurately represents the boundaries

of normal system operation. If the training data does not contain samples near to the

boundaries then the radius of the hypersphere will be too small. A small radius would

increase probability of the occurrence of false positives while a large radius increases the

occurrence of false negatives.

3.10 Arti�cial Immune Systems

Arti�cial Immune Systems (AIS) are another form of biologically inspired algorithm (For-

rest et al. 1994). AIS algorithms attempt to learn the normal operation of a system by

generating a large number of detectors, each detector is a binary classi�er intended to

learn a particular form of anomalous sample.

Since there is no training data for anomalous samples, a negative selection algorithm

is used to identify detectors that might detect anomalous samples (Dasgupta and Forrest

1996). A negative selection algorithm is as follows. First a detector is generated. The

training samples are then fed into the new detector. If it does not detect any of the

training samples, then it is retained, otherwise it is discarded. This process is repeated

many times until a large collection of detectors have been generated that do not detect

any of the training samples (Forrest et al. 1994). In this way the AIS system is trained to

recognise only samples that do not occur in normal operation.

When the AIS system is running, each new sample is given to the collection of detectors.

If any of the detectors recognise a sample then that sample is assumed to be anomalous

because the system is trained to ignore normal samples.

Clearly the method for generating the candidate detectors is important. Originally

the detectors were generated randomly (Forrest et al. 1994). However a greedy algorithm

that tries to distribute the generated detectors as much as possible (D'haeseleer, Forrest,

and Helman 1996) and a clonal selection algorithm that uses mutation operations (Cutello

et al. 2007) have also been used.

The problem with an AIS approach is that a huge number of detectors may be needed

37



to cover all possible anomalies. Indeed it may not be possible to cover all the possible

anomalies, leaving gaps where an anomalous sample would go uncaught.

3.11 Search Based Approaches

The k�Nearest Neighbour (k�NN) algorithm is commonly used for time series classi�cation

tasks (Yu et al. 2011; Jiang et al. 2007). The reason for its popularity is due to the ease

of implementation and relatively good performance across a large number of situations

(Geurts 2001; Jiang et al. 2007). Indeed with an in�nite of number training samples, the

k�NN algorithm functions as an ideal classi�er (Fukunaga 1990).

The k�NN algorithm is very simple. To classify a new sample q, the �rst step is

to identify the k training samples that are the most similar to q. These k samples are

called the neighbours of q. The classi�cation applied to q is then determined based on

the classes of q's neighbours. A common strategy is to simply assign q the most common

classi�cation of it's neighbours. This majority vote amongst the k neighbours provides a

layer of protection against invalid states being learned by the model.

k�NN is also commonly used in the context of anomaly detection. In order to identify

whether a sample is anomalous, the distance between q and its neighbours is compared

to a threshold distance. If the distance to its neighbours exceeds the threshold then q is

considered to be anomalous.

Identi�cation of the k neighbours most similar to q is performed using a distance

measure, the most commonly used distance measure being the Euclidean distance. The

distance between q and every training sample is computed and the k training samples with

the shortest distance to q are selected as its nearest neighbours.

There are a large number of distance measures that can be used in this algorithm and

the choice of distance measure has a signi�cant e�ect on the performance of the classi�er

(Fukunaga 1990; Jiang et al. 2007). Several common distance metrics that have been used

for time series classi�cation are discussed in Section 3.11.1

The primary disadvantage of k�NN is that the standard implementations do not scale

well with large training sets which makes it unsuitable for many real applications (Li et al.

2002). Several algorithms that implement the k�NN algorithm, but do not su�er from this

problem, albeit with certain trade�o�s, are discussed later in this Section.

In Section 2.4 two major issues were identi�ed that a�ect all monitoring systems. They

are how to validate the monitoring system and how to determine who is liable for any errors

that occur with the monitoring system. The k�NN algorithm has distinct advantages with

respect to these issues.

Firstly, it is easy to understand how the k�NN algorithm works, as a result it is easier

for human experts to verify any predictions about the system state that are made by k�

NN based models. Secondly, k�NN models only returns samples that have previously been

observed as an answer when queried. Assuming that only a small proportion of the states

that are trained into the model are invalid, this means that the model will only provide

valid system states as its predictions, although this does not necessarily aid in determining

the implications of being in a particular system state.

These two properties make it easier to build con�dence that the system is operating
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correctly and free of errors.

3.11.1 Distance Measures

In order to compute the k�NN it is necessary to use some form of distance measure. A

distance measure is a function that maps two feature vectors to a single value that is

somehow representative of the similarity of the two vectors.

A distance measure D is also a distance metric if it satis�es the following constraints

(Weinberger and Saul 2009):

D(x, y) +D(y, z) ≥ D(x, z) (3.4)

D(x, y) ≥ 0 (3.5)

D(x, y) = D(y, x) (3.6)

D(x, y) = 0⇔ x = y (3.7)

There are a huge number of distance measures that can be used. I shall brie�y describe

several measures that are commonly used with time series data.

Lp Norms When p = 2, this is the traditional Euclidean distance de�ned as:

euclidean(x, y) =

√√√√N−1∑
i=0

(xi − yi)2 (3.8)

This is the default distance metric used when there is no prior knowledge available

about the data set (Jiang et al. 2007; Weinberger and Saul 2009).

Often the square root will be omitted as in Equation 3.9 because this distance function

provides the same ordering of samples as the Euclidean distance and therefore will yield the

same nearest neighbours and it omits the expensive computation of a square root required

by the Euclidean distance.

squared_euclidean(x, y) = euclidean(x, y)2 =
N−1∑
i=0

(xi − yi)2 (3.9)

Unfortunately the Squared Euclidean distance is not a true metric as it does not satisfy

the triangle inequality (Equation 3.4), this does not e�ect the result of a Linear Scan

(Section 3.11.2), however it does mean that this optimisation cannot necessarily be applied

to all other k�NN algorithms.

The problem with using Euclidean distance in time series classi�cation is that it is

unable to detect similarity between time series with di�erent amplitudes. In some cases,

such as where matches are desired to be of similar amplitude, this issue could be considered

to be an advantage of this approach. However in other cases, it can be overcome by

normalising the time series before computing the distance between samples (Goldin and

Kanellakis 1995). However a stretched or compressed version of a similar time series cannot

be identi�ed (Maimon and Rokach 2010).
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Dynamic Time Warping This distance measure allows two time series to be compared

for similarities despite the features being out of phase (Berndt and Cli�ord 1994). The

DTW distance for two sequences X = x0, . . . , xi, . . . , x|X|−1 and Y = y0, . . . , yi, . . . , y|Y |−1

is computed by �rst constructing a |X| by |Y | matrix where

elementi,j = squared_euclidean(xi, yj). A warping path through the matrix W =

w0, . . . , w|W | can be computed wheremax(|X|, |Y |) ≤ |W | ≤ |X|+|Y |−1 and wk = (i, j)k.

The DTW distance is the path through the matrix that minimises the cumulative distance.

DTW is computed by (Yu et al. 2011):

DTW (xi, yj) = squared_euclidean(xi, yj) +min


DTW (xi−1, yj)

DTW (xi−1, yj−1)

DTW (xi, yj−1)

(3.10)

Unfortunately, this approach does not scale very well given that it is very computa-

tionally expensive (Vlachos et al. 2006). Additionally it does not work well in the presence

of noise, since it will try to match the outliers in the time series (Vlachos et al. 2006).

Longest Common Subsequence This distance measure has similar advantages to

DTW but also performs better in the presence of noise since it is able to ignore out-

liers during the matching process (Vlachos et al. 2006). The LCSS distance is computed

by:

LCSS(xi, yj) =


0 : i, j = 0

LCSS(xi−1, yj−1) + 1 : |xi − yj | < ε

max(LCSS(xi, yj−1), LCSS(xi−1, yj)) : otherwise

(3.11)

However with a su�ciently large training dataset, it has been shown empirically that

the performance of LCSS distance is no better than DTW (Ding et al. 2008). Therefore the

advantage of this distance measure is its improved performance where only small datasets

are available.

3.11.2 Linear Scan

The standard method for computing the nearest neighbours of a particular query is to

perform a linear scan, comparing the query sample q with each of the samples s ∈ S. After
each comparison, the Euclidean distance between q and s is then checked with the current

set of neighbours, if the distance is less than the distance to the neighbour nk, the current

k-th nearest neighbour to q, then s is added to the set of neighbours and nk is discarded.

Once all samples have been compared against q then the surviving set of neighbours are

known to be the k�nearest neighbours.

This approach has a number of advantages over other methods of computing the nearest

neighbours. The �rst advantage is that the linear scan is an exact method, i.e. each query

is guaranteed to provide the correct set of samples that are the closest to q. In addition, a

linear scan does not require any preprocessing or training stages in order to operate. As a

result it is generally very easy to implement and thus can be optimised to have a relatively

low overhead for executing queries.
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However there is a signi�cant downside to the linear scan. The execution time of this

algorithm is clearly O(N) where N is the number of samples in D. Therefore when N is

large a query can take a long time to execute.

Typically, the majority of the execution time is spent computing the distance between

q and s ∈ S. This is particularly the case when the number of features f in each sample is

large. However there are several optimisations that can be used to reduce this computation

time.

One way to speed the computation in a Linear Scan is to use a function that provides

a fast lower bound on the distance measure in order to avoid the need for a full distance

computation (Zezula et al. 2006). Using a lower bound it is possible to determine whether

the sample can possibly be one of the nearest neighbours. If the lower bound is greater

than the distance to nk then it is unnecessary to compute the expensive distance measure

since the sample can never be a nearest neighbour.

When computing a lower bound it is necessary to make a trade o� between the tightness

of the lower bound and the time required to compute it. A tighter bound enables more

pruning of distance computations, however if the tight bound is expensive to compute then

it may not result in a reduction of execution time. Depending on the distance measure

used, there are a wide range of lower bounding functions that can be applied (Zezula et al.

2006; Rakthanmanon et al. 2012)

Additionally, it is often the case that the calculation can be abandoned before complet-

ing the computation of the distance measure (Rakthanmanon et al. 2012). For example,

the typical method for computing the Euclidean distance involves iteratively adding the

squared distance between each of the features. If the partial distance computation ex-

ceeds squared_euclidean(q, nk) then there is no reason to continue the computation of

the distance as the sample cannot be one of the nearest neighbours.

3.11.3 Spatial Partitioning Trees

In general the problem with the Linear Scan algorithm occurs when a large number of

samples need to be compared with the query sample q. Therefore in order to speed up

computation of the nearest neighbours it is necessary to reduce the number of distance

computations required. Spatial partitioning is a common approach to achieving this goal.

In essence spatial partitioning consists of repeatedly dividing the search space that encom-

passes D so that distance computations are only needed for the samples that lie within a

subset of the partitions. These approaches make use of the triangle inequality constraint

on distance metrics to partition the multidimensional space. This allows a large portion of

the samples to be e�ciently pruned from the search and therefore can signi�cantly speed

the computation of the nearest neighbours (Marteau 2008).

The spatial partitions are typically represented using a tree structure, with each branch

of the tree representing a new partition. Clearly, a preprocessing or training stage is

required by these methods to build the tree, as a result this approach is better suited to

situations where multiple queries are going to be asked of D in order to o�set the overhead

introduced by the tree building stage.

There are a large number of spatial partitioning algorithms that have been applied to

the kNN problem, such as: kD Trees (Bentley 1975), Ball Trees (Omohundro 1989), Cover
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Trees (Beygelzimer, Kakade, and Langford 2006) and R�Trees (Agrawal et al. 1995).

In Section 3.11.3 the k�Dimensional (kD) Tree is examined as one of the oldest and

most commonly used general spatial partitioning algorithms for the calculating the k-NN.

k�Dimensional Tree

The k�Dimensional Tree (Bentley 1975) is a multidimensional binary search tree, where k

refers to the number of features in each sample.

At each level of the tree, the data space is divided into two partitions by a hyperplane

that runs perpendicular to an axis that represents a speci�c feature within the data space.

The location of the boundary hyperplane along the feature axis is determined by a pivot

sample p ∈ S. It is important that p is chosen such that the tree will be balanced. Figure

3.5 provides an illustration of a kD Tree with 2 features.

Figure 3.5: An Illustration of the kD Tree

This Figure shows how the kD Tree (shown right) is built from the samples in the
data space (left). The lines through the data space represent the hyperplanes that
form the partition boundaries. The colours of the nodes in the tree correspond to the
same coloured sample in the data space.

During construction of the kD Tree it is necessary to select both the target feature

and the pivot sample at each level of the tree. The target feature is typically selected

by choosing the feature containing the largest spread in values before the partition occurs

(Friedman, Bentley, and Finkel 1977). The pivot sample is chosen by selecting a sample

with the median value in the feature dimension, this ensures that the tree remains balanced

and thereby reduces the number of comparisons required during a query (Friedman, Bent-

ley, and Finkel 1977). Once the feature and pivot have been chosen, the data is partitioned

and the process is repeated at the next level for both sides of the partition.

Querying of the kD Tree is most easily understood as a backtracking recursive algorithm

(Friedman, Bentley, and Finkel 1977). At each node of the tree, q is compared to the pivot

value p. If the distance between p and q is less than the distance to the neighbour nk,
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the current k-th nearest neighbour to q, then q is added to the set of neighbours and nk

is discarded. If the node is a leaf, then the algorithm returns up the tree. Otherwise q is

compared to p in the single pivot dimension of the node in order to determine which child

node to be search next, this child is then searched. Once control returns from searching

the �rst child node, a second test is performed to determine whether the other child needs

to be searched, or whether that sub�tree can be pruned. This test checks whether there

exists a point on the other side of the partition that is also contained by a ball of radius

equal to the distance between q and nk. If so then the child is searched, otherwise that

branch does not need to be checked for neighbours.

This search algorithm is known to produce an exact result for the k�nearest neighbours

in O(G(f) × log n) where G(f) is an exponential function on the number of features f

being searched (Shakhnarovich, Indyk, and Darrell 2006). As a result, when data spaces

containing relatively few samples need to be searched, the kD Tree can be signi�cantly

faster than the linear scan, however it quickly becomes less e�cient as the number of

features increases. This is demonstrated in Chapter 6 where the kD Tree algorithm has a

mean query time that is 24 times faster than Linear Scan with 10 features but degrades to

be essentially equivalent, being just 6% faster for datasets with 100 features.

Dual Trees

If it is necessary to compute the nearest neighbours for a set of query samples Q =

q0, q1, . . . , qn, signi�cant reduction in computation time can be obtained by using a dual

tree formulation to compute the neighbours for each q ∈ Q simultaneously (Gray and

Moore 2000).

The dual tree formulation requires that a tree be built at query time to contain the

query samples q ∈ Q, this is in addition to the tree containing the samples s ∈ S that is

built during the training stage (March 2013).

The query is then performed by traversing both the query tree and the search tree

simultaneously. At each pair of nodes, a lower bound distance is computed between the

sample qi as the query node and the sample si as the search node. If the lower bound

exceeds the distance between qi and its current k�th nearest neighbour the all search

samples that are children of si can be pruned from the search, otherwise the child nodes

are traversed as normal. The result of this pruning is that the k�nearest neighbours can

be computed for all q ∈ Q in the worst case of O(N) (Ram et al. 2009). This contrasts

with the O(N × log(N)) required if the neighbours for each qi are computed by querying

the sample tree independently (Ram et al. 2009).

In order to obtain any advantage from this algorithm over standard tree based algo-

rithms, it is necessary to batch many query samples together. As a result this does limit

its potential use to non�real time applications.

Number of Features

The primary problem with all the spatial partitioning techniques is that they do not scale

well with an increasing number of features. This is known as the curse of dimensionality.

With the spatial partitioning techniques, increasing the number of features causes the
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algorithm to degrade to essentially a linear scan (Weber, Schek, and Blott 1998). As a

result the usefulness of these techniques is limited to datasets with relatively few features.

3.11.4 Approximate Nearest Neighbours

For very large datasets, such as those consisting of many features or a very large number

of samples, the exact k�Nearest Neighbour algorithms discussed above may not be able to

locate the nearest neighbours su�ciently quickly for many applications.

Fortunately, for many of these use cases, it is not always necessary to have the exact

nearest neighbours. Often a set of neighbours that are close to q but not the true nearest

neighbours would be su�cient. In these cases it is possible to trade accuracy for speed in

�nding the k�Nearest Neighbours. Algorithms that perform this trade o� are referred to

as Approximate Nearest Neighbour algorithms.

Clearly, for some datasets, the distribution of classes throughout the data space will

mean that the use of an Approximate Nearest Neighbour algorithm will result in an in-

correct classi�cation. However, in practice, this e�ect can often be mitigated by selecting

di�erent features to represent each sample.

Locality Sensitive Hashing

The Locality Sensitive Hashing (LSH) approach forms the basis for some of the state of

the art approximate k-NN algorithms. As with the tree based algorithms described in

Section 3.11.3, LSH algorithms seek to reduce the number of comparisons that need to be

computed in order to calculate the k�Nearest Neighbours to q. However rather than using

a hierarchical space partitioning approach, LSH algorithms have a single layer of space

partitions that are referred to as buckets (Datar et al. 2004).

A hashing function is used to map a sample into its relevant bucket. However unlike a

typical hash function, locality sensitive hash functions are designed so that there is a high

probability of collision between samples that are similar and a low probability of collision

between samples that are dissimilar. LSH algorithms are able to provide a signi�cant

reduction in the query time in comparison to the spatial partitioning algorithms using the

hash to directly access a single bucket to search for nearest neighbours rather than having

to traverse a tree (Datar et al. 2004), albeit at the cost of some accuracy.

LSH algorithms require a training stage in order to assign each of the samples s ∈ S
to their speci�c buckets. Typically, many buckets will be empty and therefore only the

buckets that contain any samples need to be retained.

In order to query the dataset, the hash function is applied to q and the relevant bucket

is determined. The contents of this bucket are added to a set of candidate neighbours.

Finally the candidate neighbours are then searched using a linear scan in order to �nd

an approximation of the nearest neighbours to q. Since there are relatively few samples

contained within each bucket, this linear scan is fast to execute.

Clearly for this approach to work, it is necessary to have an e�ective locality sensitive

hashing function. In order to compute the nearest neighbours in Euclidean space, an e�ec-

tive locality sensitive hash function will need to place samples that have a small Euclidean

distance between them into the same bucket with a high probability and place samples
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with a large Euclidean distance between them into di�erent buckets (Indyk and Motwani

1998).

Originally this was achieved by a process of embedding the Euclidean space into Ham-

ming space in order to implement the hash (Indyk and Motwani 1998). However this

embedding could add a signi�cant overhead and source of errors to the algorithm (Datar

et al. 2004). As a result, a family of hash functions that operate directly within Euclidean

space were developed. The process for creating such a hash function is described below.

The �rst step is to generate a random sample a consisting of a feature drawn from a

Gaussian distribution for each dimension in the data to be searched. In order to generate

the hash of sample s, the dot product a.s is computed and a random variable b is added,

this forms a projection onto a line that represents the data space. The data space is

partitioned along this line using equi�width bins of width w. In essence w speci�es the size

of each bucket in the data space and it is chosen via an optimisation algorithm to balance

the speed of a query and the accuracy of the result (Datar et al. 2004). It is worth noting

that many implementations choose w so that a sample can be assigned to only 2 bins, this

makes the binning function fast and trivial to implement.

Formally, a hash function h(s) is de�ned as:

h(s) = binw(a.s+ b) (3.12)

Each bin is assigned to a speci�c bucket therefore h(s) provided an index to the correct

data space partition for s (Datar et al. 2004). This hash can be considered to be locality

sensitive for Euclidean space because there is a high probability that when the distance

between two samples euclidean(s1, s2) is small, the distance ‖a.s1−a.s2‖ will also be small.

However the space partitions from a single hash h(s) can be relatively large, especially

if w is also large. As a result, it is typically the case that a hash function H(s) is con-

structed by concatenating the results of l hash functions h0(s), h1(s), . . . , hl−1(s) as de�ned

in Equation 3.13.

H(s) = [h0(s), h1(s), . . . , hl−1(s)] (3.13)

In this way the function H(s) is used to de�ne the bucket that sample s belongs to.

Figure 3.7 illustrates how the bucket is formed around a query sample for a hash function

with l = 2. Clearly, a larger l will reduce the size of the bucket and further prune the

number of samples that have to be searched. However this will also increase the time

required to compute H(s).

An alternative approach is to vary the value of l for each bucket (Bawa, Condie, and

Ganesan 2005). In this situation, the value of l for each bucket is set to be just large enough

to uniquely identify the bucket. It is possible that some buckets will be very similar and

therefore more hashes will be required to distinguish between those buckets than between

very dissimilar buckets. A pre�x tree can then be constructed from the set of variable

length hashes that represent each of the buckets. An example of this is given in Figure

3.6. During a query, this tree can then be traversed to locate the relevant bucket.
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Figure 3.6: An example of a pre�x tree containing the variable length binary hashes
{00, 01, 1}

In order to improve the likelihood that the true nearest neighbours are contained within

the set of candidate neighbours identi�ed from the buckets, an ensemble of hash functions

H0(s), H1(s) . . . , Hn(s) can be used. The set of candidate neighbours are then composed

of the content of all buckets identi�ed by one of the random hashes. It is from this larger

set of candidate neighbours that the approximate k�nearest neighbours are selected.
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Random Hash Vector a0

Random Hash Vector a1

Query

Figure 3.7: An Illustration of Locality Sensitive Hashing

This Figure shows how Locality Sensitive Hashing is used to prune the number of
samples that need to be evaluated to compute the k�Nearest Neighbours. In this
example there are two hash functions, the red hash derived from the random sample
a0 and the green hash derived from a1. The area of the data space that corresponds
to the same hashed bucket as the query sample has been shaded with the relevant
colour. Each partition has a width of 0.2 and, for simplicity, the random o�set b
has been set to 0. When computing the approximate nearest neighbours, the set of
candidate neighbours are those that lie within the same bucket as the query sample.
The query bucket can be seen as the intersection of the two shaded areas.
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3.12 Model Evaluation

The evaluation of a data�driven model is an essential part of the model development

process. The decision of whether to deploy the model or to continue development is based

on the outcome of the model evaluation.

One of the key characteristics of the model that need to be evaluated is its accuracy.

Speci�cally it is important that the number of false positives and false negatives are min-

imised. A false positive occurs when an error is predicted but does not occur while a false

negative occurs then there is an error that was not predicted by the model.

A low false negative rate is very important for all systems. However the level of false

positives that can be accepted will depend on the application and the cost involved with

verifying the prediction. A low false negative rate can usually be achieved at the cost of

many false positives. In most applications it is necessary to tune the models to achieve the

required balance because too many false positives will cause the users to lose trust in the

system.

Another key characteristic is the speed of prediction. In a real time monitoring system it

is essential that any failures that can be predicted by a model are done so before the failure

actually occurs. It is also important that the monitoring system can make predictions at

a fast enough rate to handle new data that is recorded from the target system.

3.13 Summary

In this Chapter, the common steps needed to develop a data�driven model for use in system

prognostics and diagnostics have been introduced. First data about the target system must

be obtained; this data then has to be cleaned and �ltered to remove noise and artefacts of

the acquisition process.

The next step is to generate features based on the obtained data. Several methods for

generating features from time series data have been discussed, including; basic statistics,

frequency analysis of the signals and strategies for compressing the representation of the

actual signal. This was followed by a brief discussion of how to identify which are the best

features to use.

Once the important features have been identi�ed, the next stage is to train a model

to learn the features of the data. Two di�erent approaches to building a model were

presented. Classi�cation of a system involves selecting the prede�ned operating state that

most closely resembles the current operation of the system whereas anomaly detection

involves identifying when the current operation of the system has moved outside what is

considered to be its normal operating envelope.

Several common methods for accomplishing both classi�cation and anomaly detection

on time series data were discussed along with discussions for when it is best to choose each

method. Using a search based approach to implement both classi�cation and anomaly

detection was also discussed and followed by a presentation of several algorithms that can

be used to implement such a search based approach.

Finally the Chapter concluded with a brief discussion about how to evaluate the per-

formance of a data�driven model.
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In the next Chapter, a speci�c data�driven model called AURA Alert will be dis-

cussed in detail. However the development pipeline illustrated in Figure 3.1 and discussed

throughout this Chapter applies equally to the development of an AURA Alert data�driven

model.
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Chapter 4

Advanced Uncertain Reasoning

Architecture

4.1 Introduction

The Advanced Uncertain Reasoning Architecture (AURA) is a framework that provides

a set of methods that make use of binary associative neural networks called Correlation

Matrix Memories (CMM) to perform pattern matching (Austin 1996). In this Chapter the

process by which an AURA CMM can be used to build a k-NN based anomaly detection

model will be presented. Section 4.2 will provide an overview of CMMs and how input and

output tokens are used to store and recall data from them. Section 4.6 will describe the

AURA Alert model for k-NN based anomaly detection that is built on top of the AURA

framework. Sections 4.3 and 4.4 describe several methods for generating the necessary

input and output tokens respectively. Finally Section 4.5 describes several algorithms for

applying a threshold to the output from a CMM in order to decode the results of a query.

4.2 Correlation Matrix Memories

A Correlation Matrix Memory (CMM) is a single layer neural network in which the input

and output neurones are fully connected. The CMM is able to learn associations between

the input neurones and output neurones. A CMM with n input neurones and m output

neurones is represented by an n × m matrix. The elements of an AURA based CMM

contain binary values that represent the weights of the network as shown in Figure 4.1.
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Figure 4.1: Example Correlation Matrix Memory

The inputs and outputs to the CMM are speci�ed as a vector of binary bits called

tokens. The number of bits required to represent a token is the token length. In gen-

eral shorter tokens are preferred since the size and memory usage of an AURA CMM is

dependent on the length of the stored tokens.

The number of bits in the token that are set to 1 is the token weight. When storing

associations between input and output tokens within a CMM it is important that all input

tokens have the same weight and all output tokens have the same weight. This is known as

a �xed weight coding. In Casasent and Telfer (1992) it has been shown that a CMM can

store the associations between a large number of pairs of input and output tokens when

the tokens have a �xed weight.

The number of sample pairs that can be stored within a CMM before there is guaranteed

to be at least a single bit error during recall is calculated as shown in Equation 4.1 (Hobson

2011).

n_pairs =

ln

(
1− 1

output_length
1

input_weight

)
1−

(
output_weight×input_weight
output_length×input_length

) (4.1)

As a result, in order to maximise the number of associations that can be stored within

a CMM of a given size, it is also important that the tokens are very sparse. A sparse

token is one where the proportion of bits set in the token is relatively low in comparison

to its length. This is important for performance reasons because the time required to store

and retrieve samples from a CMM is highly dependent on the size of the CMM and the

number of bits set within it. In order to achieve the required sparsity, the optimal token

weight has been shown to be log2(token_length) (Hobson 2011; Willshaw, Buneman, and

Longuet-Higgins 1969).

Finally a CMM also provides fault tolerance as well as the ability to generalise between

associations that have been learned (Hobson 2011).
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The inputs to, and outputs from, a binary CMM are required to be discrete. However,

often samples of continuous data have to be learned by the CMM. As a result the �rst

step when either training the CMM to learn a sample or querying the CMM to retrieve a

sample is to discretise the sample via binning (Section 3.4.6). Once the sample has been

binned, the necessary tokens for training and querying can be generated.

4.2.1 Training

The training of a CMM is performed in a deterministic manner. The CMM is represented

by a binary matrix M . An untrained CMM (M0) is initialised with all weights set to 0.

To train the network to recognise a training sample xi, a pair of input and output tokens,

Ii and Oi respectively, are generated that correspond to xi. There are various alternatives

for generating Ii and Oi from xi. The generation of input tokens are discussed in detail

in Section 4.3 and the generation of output tokens are discussed in Section 4.4. Once the

input and output tokens have been generated, the CMM is then updated via Equation 4.2

in order to store the association between Ii and Oi in the CMM.

Mi =Mi−1 ∪ (Ii ×Oi) (4.2)

This procedure can be repeated for every sample in the training set (Liang and Austin

2005). As a result the entire dataset can be learned by the network with a single pass of

the training set.

4.2.2 Retrieval

In order to query a trained CMM M for the output token that is associated with the

sample xj , the input token Ij must �rst be generated from xj . The CMM output scores

Sj are then computed by the operation:

Sj = Ij ×M (4.3)

Finally a threshold can be applied to the output scores Sj in order to retrieve the

output token Oj . Depending on the type of threshold applied it is possible to retrieve

multiple output tokens that are associated to samples that are similar to xj(Liang and

Austin 2005). There are many possible threshold algorithms that can be used. These

algorithms are discussed further in Section 4.5.

4.3 Input Tokens

In this Section, the process by which a feature vector of a sample can be converted into an

input token for a CMM is discussed. This process is referred to as encoding the sample. It

is essential that any input tokens that are generated will be similar if the original feature

vectors were also similar and that they will be dissimilar if the original feature vectors were

dissimilar so that the CMM is able to generalise to unseen samples.

The feature vectors of two samples are considered to be similar when they are separated

by a small distance. When considering tokens, two tokens are considered to be similar

when they have a large number of overlapping bits. The number of bits that need to
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overlap in order represent a speci�c level of similarity is dependent on the method used to

encode the tokens.

The Parabolic Kernel method, described in Section 4.3.1, is currently the most com-

monly used method to encode continuous features for AURA CMMs. An alternative

method Overlapped Binary Code Construction (OBCC) is a more recent alternative and

is described in Section 4.3.2.

4.3.1 Parabolic Kernel Tokens

The Parabolic Kernel method for generating input tokens produces di�erent tokens for

both training the CMM and querying the CMM. The query token makes use of a feature

of AURA CMMs that allows weights to be applied to the bits of an input token.

The CMM stores associations between binary tokens and as a result the training input

token has to be a binary token as normal. In order to encode a token from a single feature

of m bins a vector of m bits is required. A feature assigned to bin i simply has the ith bit

of its vector set to 1 (Hodge and Austin 2005).

A query to an AURA CMM supports weighted query tokens where a weight is applied

to each bit that is set in the token. During a query, if there is a match, the bit weight is

added to the output score for the column.

In order to encode an input token for querying a CMM, a parabolic kernel is then

superimposed over the bits of each feature in the training token. This is to overcome the

boundary e�ect of the binning process by weighting the CMM output scores in favour of

the closest training samples (Weeks et al. 2003).

The weight of bit j in the parabolic kernel for a feature with bit i set is given by:

weight(j) = max

(
m2

2
− (i− j)2, 0

)
(4.4)

In order to encode multiple features, the vectors the of bits representing each individual

feature are simply concatenated together.

4.3.2 Overlapped Binary Code Constructed Tokens

Overlapped Binary Code Construction (OBCC)(Hobson 2011) de�nes a method for creat-

ing sparse, �xed weight, binary input tokens that ensure a prede�ned number of overlapping

bits between two tokens created to encode a pair of samples. This method is based on the

earlier Sparse Similarity Preserving Codes (SSPC) method of (Palm, Schwenker, and Som-

mer 1994). The OBCC method can be described in three stages. The �rst stage is to create

an overlap matrix. The overlap matrix is used to specify the number of overlapping bits

between a pair of tokens. This is based on a pairwise distance between the entire range of

values to be encoded and described in Section 4.3.2.1.

Note that unlike the Parabolic Kernel approach described above, by using this method

it is possible to directly encode multiple features into a token without the need for con-

catenation 5.2.2. The overlap matrix need simply specify the number of overlapping bits

between multi�feature values.

The next stage is to generate the sparse tokens from the overlap matrix via a process

called clique decomposition. This is described in Section 4.3.2.2. It is through the selection
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of cliques for this stage that OBCC di�ers from SSPC.

Finally the tokens are padded to ensure that they have a �xed weight. This is discussed

in Section 4.3.2.3

4.3.2.1 Overlap Matrix

The �rst step in creating an overlap matrix is to compute the pairwise distance matrix

between all the values that need to be encoded. As discussed in Section 3.11.1, a distance

function is considered to be a metric function if it is non�negative, symmetrical, satis�es

the triangle inequality and provides a result of 0 between identical values.

In order to encode tokens in which the overlap between values can approximate the

distance function it is necessary that the distance function is non�negative, symmetrical

and provides a results of 0 between identical values. However it is not required to satisfy

the triangle inequality.

Binary input tokens can only support a �nite level of precision in representing the

distance between tokens. In order to increase this level of precision it is necessary to

produce increasingly large tokens.

In order to counter this the concept of a maximum pairwise distance was introduced

(Hobson 2011). This maximum distance speci�es the largest pairwise distance allowed

between two values for those two values to be considered similar to each other. Any values

with a greater pairwise distance are considered to have no similarity, this translates into

having no overlapping bits in their respective tokens. As a result the distance matrix is

computed as:

Dij =

{
distance(i, j) : distance(i, j) < max_distance

∞ : otherwise
(4.5)

Clearly the number of overlapping bits between two binary tokens has to be a whole

number. Therefore in order to convert the distance matrix into an overlap matrix the

distances have to be converted to integer values.

Simply rounding the �oat values to the nearest integer is not likely to result in a useful

overlap matrix. Consider the situation in which the bins represent normalised values in

the range (−1, 1) and a maximum distance of 0.5 representing a quarter of this range.

Rounding the Euclidean distance between bins will result in only two potential values, 1

or 0. This is a problem because it only allows the discrimination between two distance

levels, one of which already represents no similarity between values.

It is necessary, therefore, to scale the distance matrix so that it can be rounded to

represent an appropriate number of discrete distance levels. The number of discrete dis-

tances is determined by a maximum overlap parameter. This speci�es the largest number

of overlapping bits between two tokens that represent di�erent values. The number of

overlapping bits between equal values is the weight of the token and is not known at this

point in the process.

In order to map the distance matrix into an overlap matrix it is suggested that the

continuous distance values can be grouped together and represented by an integer level

of similarity (Palm, Schwenker, and Sommer 1994). One strategy for performing this is to

divide the distance range (0,max_distance) into max_overlap equi�width bins. Where
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max_overlap is a parameter that speci�es the required level of precision. Each bin cor-

responds to a speci�ed number of overlapping bits that will represent the distance, with

the bins containing smaller distances corresponding to the larger overlaps. This process is

performed by the assign_overlap function and is illustrated in Figure 4.2.

8 7 6 5 4 3 2 1 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Distance

Overlapping Bits

Figure 4.2: Converting continuous distance values to discrete overlaps

.

This Figure shows how a pairwise distance is mapped into the desired number of
overlapping bits as part of the assign_overlap function. The continuous distance is
given by the lower values and de�nes the bin boundaries. The overlap corresponding to
each bin is given by the upper values. Each distance is assigned an overlap determined
by the bin within which it falls. Any distance greater than 1.6 is assigned an overlap
of 0.

Using the assign_overlap function, the overlap matrix O can be created from the

distance matrix as shown in Equation 4.6.

Oij =

{
0 : Dij =∞

assign_overlap(Dij ,max_overlap) : otherwise
(4.6)

An example of the process of generating an overlap matrix can be seen in Figure 4.3.

4.3.2.2 Code Generation

The next step is to convert an overlap matrix into �xed weight tokens for each of the values.

The tokens are generated such that the number of overlapping bits between two tokens is

speci�ed by the corresponding cell in the overlap matrix. This is achieved by creating a

token matrix. The token matrix is m × l where m is the number of values to be encoded

and l is the length of the tokens. In essence, each row of the token matrix corresponds to

a token for a single value.

The overlap matrix is considered as an undirected weighted graph with m nodes cor-

responding to the m values and the edges corresponding to similarity between the values.

The edge weights are initially equal to the desired overlap between the two values as spec-

i�ed by the overlap matrix. An overlap of 0 between two values has no corresponding edge

between the relevant nodes.

Clique decomposition is an iterative process whereby a clique is selected and then

removed from a graph until the graph is empty. A clique is a subgraph in which every

node is connected to every other node.

In order to generate the token matrix, a clique is iteratively removed from its parent

graph by subtracting the weight of each edge in the clique from the corresponding edge in

the parent graph. If the new weight of the edge is 0 then the edge is deleted. For each
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clique identi�ed and removed from the overlap matrix, a single column is added to the

token matrix with the rows corresponding to the members of the clique set to 1. This

process is illustrated in Figure 4.4.

The most simple strategy for selecting cliques is to simply choose pairs of nodes with an

edge between them (Palm, Schwenker, and Sommer 1994). However this results in tokens

that are very long and have a large weight (Hobson 2011) and, for performance reasons, it

is desirable to have short tokens with a low weight.

Since the length of the tokens is to a large extent determined by the number of cliques

that have to be removed from the overlap matrix, it is desirable to remove fewer cliques

of greater size. A maximal clique is a clique that cannot be enlarged by the addition of

another node whilst maintaining the property of all nodes being connected to each other

(Bron and Kerbosch 1973). A maximum clique is a clique that is both maximal and for

which there are no other cliques of greater size, clearly there can however be be several

maximum cliques of equal size (Bomze et al. 1999).

Selecting maximum cliques for removal at each iteration results in tokens that are

considerably shorter and with a lower weight than selecting pairs (Hobson 2011). Table 5.12

shows pairwise tokens that are 5.5 times longer than the maximal clique tokens. However

this greedy clique decomposition approach is not guaranteed to produce the optimal length

tokens. Finding the optimal clique decomposition is a problem that is known to be NP�

Complete (Golumbic 2004).

In general, the task of identifying a maximum clique from a graph is also NP�Complete

(Karp 1972). For this reason, and because maximum clique problem occurs in many di�er-

ent domains (Bomze et al. 1999) there has been much research into methods to solve this

problem.
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Figure 4.3: Illustration of the steps to create an overlap matrix

In this Figure, the distance matrix between the values {A,B,C,D,E} is converted to
an overlap matrix with a maximum distance of 1.70 and maximum overlap of 10. The
distances are �rst binned, for example, the distance between A and C falls between
the breakpoints 0.51 and 0.68 and is therefore assigned to bin γ. The bins are then
assigned the relevant overlap value, for example, the bin γ for A,C has a overlap of
7.
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Figure 4.4: Illustration of clique decomposition used to build a Token Matrix

The purple box highlights a clique to be removed at each iteration. The green arrow
shows the selected clique being added to the to Token Matrix while the red arrow
shows how the clique is removed from the Overlap Matrix.
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4.3.2.3 Fixed Weight

Finally it is necessary to ensure that the tokens that have been generated all have the same

weight. The motivation for this property was discussed in Section 4.2. It is achieved by

adding columns to the token matrix in which only a single bit is set. This increases the

weight of one of the tokens without causing any additional overlap between the tokens.

This process is called padding and an example is given in Figure 4.5.

Token matrix

1
1
1
1
0

0
1
1
1
1

1
1
1
0
0

A
B
C
D
E

1
0
0
0
0

0
0
0
1
0

0
0
0
0
1

0
0
0
0
1

Cliques Padding

Figure 4.5: The token matrix generated from the clique decomposition has the addition
of 4 padding columns, each containing a single row set to 1, in order to ensure �xed weight
tokens.

Clearly padding the token can have a signi�cant e�ect on the length of the tokens gen-

erated. It is therefore desirable to choose the clique decomposition strategy that minimises

the amount of padding required. This is investigated further in Section 5.2.4.

4.4 Output Tokens

This Section describes the process for generating an output token that can be paired with

an input token in a CMM. The output token can generally serve two purposes. The �rst

is to identify speci�c properties of the sample being represented by its associated input

token. For example, if the input token encoded the number plate of a car, then its paired

output token could encode the colour of the car and it would then be possible to directly

query the CMM for the colour of a car given the number plate.

The alternative approach is to encode a unique identi�er as the output token. The

CMM query will then return the unique identi�er that can be used to query a traditional

database for all the information about the car. The CMM query in this case allows a

partial match of the number plate to determine the correct identi�er for the car. It is this

second approach is used for AURA Alert as described in Section 4.6 and shall be the focus

of the rest of this section.

A good method for generating output tokens to represent unique identi�ers will need to

produce tokens that are sparse, short and have a �xed weight. In addition it is important

that a large number of unique tokens can be generated for a given token size.

4.4.1 Unary Tokens

The simplest method for producing output tokens is to generate unary tokens. Unary

tokens have only a single bit set to 1 in the total length of the token (Baum, Moody, and

Wilczek 1988). The primary advantages of this method are that it is very quick and simple

to generate the codes and that each input token will be stored in a single column of the
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CMM. As a result, provided the correct input token is supplied to query the CMM there

will be no error caused by interference of other data stored in the output token retrieved.

There are however signi�cant downsides to this method. Firstly, this method requires

that there be a single column in the CMM for every sample that has to be learned. This can

lead to very large CMMs when large datasets need to be learned. Secondly, this method

reduces the query of a CMM to what is essentially a linear scan in the binary domain,

as a result it will scale poorly to larger datasets. Finally, the fault tolerance granted by

the CMM approach is lost because the input tokens are not distributed across the CMM

(Hobson 2011).

4.4.2 Baum Codes

Baum Codes can be used to produce tokens that have a �xed weight and a relatively small

amount of overlap (Baum, Moody, and Wilczek 1988). The token is divided in to l sections

where the lengths of all the sections are coprime (do not share any common factors). Each

section has a single bit set to 1 and therefore the the token weight is equal to l. In order to

generate the Baum Coded token t with sections s1, . . . , sl, bit j in the token is set according

to Equation 4.7.

bittj =

{
1 : j −

∑l−1
k=1 sk = c mod sl

0 : otherwise
(4.7)

As a result a single bit is set to 1 in each section and the position of the set bit

increments with each new token t and wraps around when it reaches the end of its section.

This is demonstrated in Figure 4.6.

s1 s2
1 0 0 1 0
0 1 0 0 1
0 0 1 1 0
1 0 0 0 1
0 1 0 1 0
0 0 1 0 1

Figure 4.6: Example of Baum Code Generation

This Figure illustrates the process of generating Baum Codes for tokens of length 5 and
weight 2. Here the sections s1 and s2 have length 3 and length 2 respectively. This allows
a total of 6 unique tokens to be constructed.

This strategy for generating codes allows s1× s2× . . .× sl unique tokens to be created
that are guaranteed to have only a small number of overlapping bits between them. This

will allow more samples to be learned by a CMM of a given size than is the case with unary

tokens. However it also introduces the possibility of an error occurring during recall as a

result of interference between samples in the CMM. The results of this potential error are

examined further in Chapter 8.
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4.5 Thresholding

The output from a CMM query is not a binary token but an array of scores that represent

the level to which the input token was matched across each row. In order to decode these

match scores into the relevant output tokens it is necessary to apply a threshold to the

output scores. Any score that is greater or equal to the threshold value is set to 1 and

any score below the threshold is set to 0. In this way the binary output tokens that are

retrieved can be decoded. An example of applying a threshold can been seen in Figure 4.7.
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Figure 4.7: An Example CMM Query with threshold value of 3.

One threshold strategy is to set the threshold value equal to the weight of the input

token. This is called Willshaw thresholding (Willshaw, Buneman, and Longuet-Higgins

1969). Willshaw thresholding is e�ective when the input token forms an exact match with

a sample that has been learned by the CMM however it does not support generalisation

to match similar but di�erent input tokens(Austin and Stonham 1987).

Provided that the input tokens used to train the CMM have a �xed weight, it is possible

to use the L�max threshold strategy. The L-max threshold (Austin 1996) is used to identify

the L closest matches from the CMM output score vector. It works by iteratively lowering

the threshold value applied to the output scores until at least L matches are observed.

The problem with this approach is that it is considerably less e�ective when unary output

token are not used (Hobson 2011) and can potentially yield output tokens that have not

been learned by the CMM as its result.

The L�WTA strategy was introduced to overcome the problem of retrieving unlearned

output tokens when using Baum Coded output tokens (Hobson 2011). With Baum Codes

it is known that only 1 bit can set in each section if the code is valid. As a result the

61



L�WTA strategy is to set the threshold value independently in each section so that only

the closest match in each section is set to 1. This ensures that a valid Baum Code is

retrieved from the CMM and increases the likelihood that the retrieved token matches one

learned by the CMM(Hobson 2011). However the downside of this method is that it can

only return the single best match for a token.

In order to retrieve multiple matches, it is possible to use a second CMM to match

the output scores so that the L�max threshold can be used on single bit outputs. This is

the approach taken in the ADAM system (Austin 1987), a precursor to AURA, but the

addition of a second CMM can potentially add a signi�cant overhead to the query.

4.6 AURA Alert

AURA Alert is an anomaly detection model based on the AURA framework. It has been

used successfully to monitor complex assets such as industrial gas turbines (Austin et al.

2010) and tra�c �ow patterns (Krishnan et al. 2010). AURA Alert learns the normal

operating behaviour of a system by being trained on a dataset of system states that are

recorded while the system is known to be operating normally.

There are three major components to the AURA Alert model. The �rst part of the

model is to de�ne the system states that need to be learned. This is achieved by using

several sensors to monitor the target system. At each time point a feature vector that

represents the system state can be created by combining the readings from a subset of

the sensors. This allows the system state to be represented as a single point in a multi�

dimensional space which can be stored within the a CMM.

The second component is an approximate Euclidean k-NN algorithm that is imple-

mented on top of the AURA framework (Weeks et al. 2003). This is achieved with input

tokens created by using equi�width binning with the Parabolic Kernel method, unary

output tokens and the L�max threshold. During the training phase, the binning process

causes multiple samples to be assigned to the same input token. In this case the samples

are considered to belong to the same state.

During the monitoring phase, the recorded sample in converted into an input token

which is then used to query the CMM. This retrieves the best matching state from the

CMM. The �nal stage is to perform a linear scan of all the samples that are associated

with the retrieved state. This is called the �ltering state and is used to identify the closest

system state sample. The distance between this sample and the query sample is then

thresholded to identify whether the query sample represents an anomalous system state.

In the case where the sample is actually anomalous it is potentially possible to evaluate

the features of the sample to diagnose the cause of the fault (Austin et al. 2010).

4.7 Summary

The AURA Alert data�driven model has been introduced in this Chapter. This model

makes use of a Correlation Matrix Memory (CMM), a form of binary associative neural

network, to implement a distance based anomaly detection algorithm.

The CMM is trained by learning associations between pairs of binary input and output
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tokens. The data storage capacity of a CMM, and therefore the speed and accuracy with

which it can be queried, is dependent on the length and weight of both the input and

output tokens. As a result, several methods for generating both the input tokens and

output tokens have been examined.

The anomaly detection algorithm works by using the partial matching functionality

of a CMM query to implement an approximate kNN algorithm. A threshold function is

applied to the output scores from the CMM query to decode a set of candidates that can

then be �ltered by a linear scan to identify a set of neighbours. An anomaly is identi�ed

if the distance of a sample to its neighbours is su�ciently large.

Various modi�cations to this algorithm will be presented in the next Chapter.
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Chapter 5

Modi�cations to AURA k�NN

5.1 Introduction

The components of the AURA k�NN algorithm at the center of AURA Alert were described

in Chapter 4. The purpose of this Chapter is to present several novel modi�cations to the

AURA k�NN algorithm. The aim of these modi�cations is to increase the speed of AURA

k�NN while maintaining or improving its accuracy. If successful, this would allow AURA

Alert to handle the expected increase in data volumes described in Section 3.2.

The modi�cations consist of changing the input and output tokens used to train and

query the AURA CMM. The rest of the algorithm remains the same. The decision to focus

on changing the input and output tokens is due to the results of preliminary experiments

that highlighted the CMM query as being the largest bottleneck in the existing algorithm.

In Section 5.2 the use of Overlapped Binary Code Construction (OBCC) tokens is

investigated with a view to replacing Parabolic Kernel tokens as the input tokens used in

AURA k�NN. The primary motivation for this change is that OBCC tokens can support

any distance metric and therefore present the opportunity to better tailor the algorithm

to solve speci�c problems. This investigation led to the development of Weighted Overlap

Code Construction (WOCC) tokens which are presented in Section 5.3. WOCC tokens

are an optimised version of OBCC tokens that are speci�cally designed to make use of the

facilities of an AURA CMM to support weighted rows in the input tokens. Finally the use

of Baum Codes for the output tokens is investigated as a means of reducing the size of the

CMM in order to decrease query times. This is investigated in Section 5.4.

5.2 Improved OBCC

The OBCC process for generating input tokens, described in Section 4.3.2, can be sum-

marised in four steps. First a distance matrix is computed of the pairwise distance between

the values to be encoded. This is then transformed into an overlap matrix. A token matrix

is produced via a clique decomposition of the overlap matrix and �nally the token matrix

is padded to ensure that all the tokens have a �xed weight.

In this section, several of these steps are examined in detail with the aim of improving

the process of generating OBCC tokens. Improvement is measured with respect to the time

required to generate the tokens and the length and weight of the tokens in comparison to

the standard OBCC process described by Hobson (2011).
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5.2.1 Binning

The �rst step in generating OBCC tokens is to bin the signal in order to convert it into

a sequence of discrete values. This is necessary because the input to and output from

a binary CMM is required to be discrete and the raw signals or features usually consist

of continuous data. The process of binning a signal applies a form of lossy compression

whereby each value in the signal is assigned to one of a �nite number of bins.

A

B

C

BAACCBAACC

β1

β2

Figure 5.1: Illustration of binning process

The set of n bins B = b0, . . . , bn−1 is de�ned via an ordered list of n+1 boundary values

known as breakpoints β0, . . . , βn where β0 and βn correspond to −∞ and ∞ respectively.

The value x is assigned to bin bi if it lies between the upper and lower breakpoints that

de�ne the bin. The binning process, where a continuous signal is mapped to its binned

representation is illustrated in Figure 5.1.

The process of de�ning B depends on both the number of bins to be de�ned and where

the breakpoints are positioned. The strategies for placing the breakpoints are discussed in

Section 5.2.1.1 while a discussion of the number of bins to use is given in Section 5.2.1.2

While binning is necessary in order to enable a signal to be stored within a CMM, there

is also a distinct advantage provided by the binning process.

Binning drastically reduces the space of values from which the signal can consist. This

makes it possible to encode all of these values as tokens for the CMM. As a result, an

encoding strategy can be chosen which guarantees that the tokens for all similar values

will have some proportion of their bits overlapping and that tokens for dissimilar values

will have no overlapping bits.

In addition, by grouping similar signal items together, binning provides a form of gen-

eralisation. This enables signals that di�er by very small amounts to be easily recognised

as similar to each other and reduces the sensitivity of the algorithm to noise within the

signal.

Clearly this will introduce boundary e�ects where two values that are close to, but

either side of, a breakpoint will appear to be more dissimilar than two values that fall

within the same bin. This is regardless of the actual level of similarity between both pairs

of values. Within the AURA Alert system these boundary e�ects are mitigated via the

token encoding method that is selected, both PK tokens and OBCC tokens ensure that

adjacent bins have many overlapping bits in common, and the linear scan of the candidate

samples that are drawn from partial matches within the CMM.

65



5.2.1.1 Binning Strategy

Each of the bins in B is de�ned in terms of the upper and lower boundary values called

breakpoints. The positioning of the breakpoints a�ects the width of each bin and therefore

how many values fall within each bin. As a result, the strategy used to select the positions

of the breakpoints has a large e�ect on the tokens that are generated.

Dougherty, Kohavi, and Sahami (1995) categorise binning strategies as being either:

global or local, supervised or unsupervised and static or dynamic. Global strategies are

those that are applied to all data, while local strategies apply di�erent breakpoints to

subsets of the overall data. Supervised strategies make use of labelled data to inform the

location of the breakpoints while unsupervised strategies do not. Finally, static strategies

determine the breakpoints for features independently via a single pass of the data in com-

parison to dynamic strategies that optimise the breakpoints to capture interdependencies

between di�erent features.

The generation of CMM tokens has to be performed separately to the novelty detection

search due to the computational expense of generating the tokens. The reasons for this

computational expense are discussed in Section 5.2.3. However as a consequence of this,

only strategies that are global, static and unsupervised are appropriate for this purpose.

Additionally, in order to make the tokens more generally applicable, it is desirable to re-

quire minimal prior knowledge about the data before binning takes place. Several binning

strategies such as Equi�width (Dougherty, Kohavi, and Sahami 1995), Optimised Equi�

width (Schmidberger and Frank 2005), Equi�frequency (Dougherty, Kohavi, and Sahami

1995), k�Means Clustering (Min 2009) and Expectation Maximisation (Dempster, Laird,

and Rubin 1977) based clustering have previously been evaluated for the purpose of encod-

ing CMM tokens (Hodge and Austin 2012). However, of these, only the Equi�width and

Equi�frequency strategies conform to the requirements speci�ed above.

These two strategies are now considered in detail in the following section.

Equi�width The breakpoints are chosen so that the width of every bin is equal across the

input range. The exception is the outer bins which also include any values outside

the expected input range.

The breakpoints for equi�width bins are computed such that the following condition

holds:

width = βi+1 − βi, i /∈ {0, n− 1} (5.1)

Equi�frequency The breakpoints are chosen so that the number of values from the train-

ing data placed within each bin are distributed equally across all the bins. Typically

this requires advance knowledge about the values of the signals to be encoded (Hodge

and Austin 2012). However in the case of time series signals, if the signals are �rst

normalised, it can be assumed that the values within the signal will occur with an ap-

proximately Gaussian distribution (Lin et al. 2003). As a result the breakpoints can

be chosen such that the area between consecutive breakpoints under the Gaussian

curve, normalised such that
∫∞
−∞N = 1, is:

area(βi, βi+1) =
1

n
, i /∈ {0, n− 1} (5.2)
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Equi-width bins
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Figure 5.2: A comparison of binning strategies.

This Figure illustrates how the di�erent binning strategies yield di�erent breakpoints
when computed to give 9 bins for data expected to be in the range (−10, 10). Each
bin is assigned a unique colour. With the Equi�width strategy all the bins are the
same size. In contrast, the Equi�frequency strategy produces smaller bins near the
middle of the range and larger bins at the extremes. The triangles at the edges
represent these outer bins including values outside the expected range ((−∞, β1) and
(β8,+∞)).

Figure 5.2 shows the di�erences between the bins generated by these two strategies.

The Equi�frequency approach yields smaller bins towards the mean of the data range.

This is because it is assumed that once the signal has been normalised the values will more

frequently fall near the mean than at the edges of the data range (Lin et al. 2003). A side

e�ect of this is that this strategy provides a greater discriminatory capability between bins

around the mean than is available using the Equi�width strategy. However it is at the

expense of a lower discriminatory capability at the edges of the data range.

In order to determine which strategy is best for generating CMM tokens, I have per-

formed two experiments. The �rst evaluates how the binning strategy e�ects the length

and the weight of the tokens that are generated and the second investigates which binning

strategy best represents the signal.

Token Properties In order to determine the e�ect of binning strategy on the length and

weight of the tokens produced. I have performed an experiment to measure the di�erence

between tokens generated to encode a single feature of 20 bins using both Equi�width and

Equi�frequency binning. Table 5.1 provides the results with respect to the token length

and Table 5.2 provides the results with respect to the token weight.
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Table 5.1: The e�ect of binning strategy on token length

Max Distance Max Overlap Equi Width Length Equi Frequency Length

0.5 5 98 90
0.5 10 104 140
0.5 15 135 204
1.0 5 82 109
1.0 10 139 104
1.0 15 143 131
1.5 5 138 105
1.5 10 106 128
1.5 15 143 135
2.0 5 116 88
2.0 10 123 132
2.0 15 133 171
2.5 5 153 84
2.5 10 119 135
2.5 15 124 140

This table shows how the length of tokens generated to encode a single feature with
20 bins is a�ected by the binning strategy chosen.

Table 5.2: The e�ect of binning strategy on token weight

Max Distance Max Overlap Equi Width Weight Equi Frequency Weight

0.5 5 11 10
0.5 10 16 17
0.5 15 22 25
1.0 5 11 12
1.0 10 19 16
1.0 15 23 22
1.5 5 14 12
1.5 10 17 18
1.5 15 24 23
2.0 5 14 11
2.0 10 18 18
2.0 15 24 25
2.5 5 16 12
2.5 10 18 18
2.5 15 23 24

This table shows how the weight of tokens generated to encode a single feature with
20 bins is a�ected by the binning strategy chosen.

The relative di�erence between the length and weight of the tokens generated using

both binning strategies is very small. In these experiments, the mean length of Equi�width

tokens is 4% shorter while the mean weight of Equi�frequency tokens is 3.4% lower. Overall

the Equi�width tokens are shortest for 8 of the overlap matrices while the Equi�frequency

tokens are shortest for the remaining 7. With respect to token weight, Equi�frequency

tokens have a lower weight for 7 overlap matrices, Equi�width tokens are lower for 6

overlap matrices and there are 2 ties.

In these experiments, the overlap matrices were generated with the distance metric

described in Section 5.2.3.1 that is used in all the AURA kNN experiments. For the overlap

matrices generated by this distance metric, the di�erence between tokens caused by the
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choice in binning strategy is small enough to have no signi�cant e�ect on the resulting

CMM query times.

Signal Representation In order to determine which binning strategy best represents

the signal, I have performed an experiment to measure the error introduced by binning

a signal and then reconstructing the original signal from its binned representation. The

reconstruction is performed by using the mid�point of each bin as the value of that bin.

Once the signal has been reconstructed, the Euclidean distance between the original sample

and the reconstructed sample is computed and scaled by the number of features in the

signal. A smaller distance represents a more accurate representation by the binned signal.

This experiment was performed using the UCR Time Series Classi�cation Datasets

(Keogh and Kasetty 2003) (see Section 6.2.3.2) and the results of this experiment are

presented in Table 5.3.
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Table 5.3: Comparison of reconstruction error between binning strategies

Dataset Equi Width Equi Frequency

50words 0.016 0.029
Adiac 0.019 0.031
Beef 0.011 0.005
CBF 0.023 0.042
ChlorineConcentration 0.021 0.032
CinC ECG torso 0.021 0.024
Co�ee 1.502 1.549
Cricket X 0.038 0.071
Cricket Y 0.027 0.037
Cricket Z 0.038 0.072
DiatomSizeReduction 0.014 0.022
ECG200 0.028 0.048
ECGFiveDays 0.064 0.075
FaceAll 0.023 0.040
FaceFour 0.014 0.024
FacesUCR 0.023 0.039
�sh 0.012 0.016
Gun Point 0.023 0.016
Haptics 0.012 0.016
InlineSkate 0.006 0.010
ItalyPowerDemand 0.055 0.093
Lighting2 0.013 0.020
Lighting7 0.015 0.024
MALLAT 0.008 0.012
MedicalImages 0.048 0.064
MoteStrain 0.028 0.040
NonInvasiveFatalECG Thorax1 0.014 0.022
NonInvasiveFatalECG Thorax2 0.011 0.018
OliveOil 0.011 0.005
OSULeaf 0.013 0.020
SonyAIBORobot Surface 0.031 0.060
SonyAIBORobot SurfaceII 0.033 0.056
StarLightCurves 0.008 0.013
SwedishLeaf 0.023 0.037
Symbols 0.013 0.019
synthetic control 0.033 0.035
Trace 0.014 0.011
Two Patterns 0.022 0.021
TwoLeadECG 0.028 0.033
uWaveGestureLibrary X 0.014 0.020
uWaveGestureLibrary Y 0.015 0.026
uWaveGestureLibrary Z 0.014 0.019
wafer 0.021 0.034
WordsSynonyms 0.020 0.032
yoga 0.013 0.021

This table shows how accurately a signal can be reconstructed after binning us-
ing both Equi�Width and Equi�Frequency binning. The signal is reconstructed
as s′ using the mid�point of each bin and the mean feature distance, computed as
Euclidean(s, s′)/|s|, is provided for both binning strategies.

It is clear that Equi�width binning results in a smaller reconstruction error for the

majority of these datasets. The mean scaled reconstruction error across all datasets is 23%

lower when using the Equi�width binning strategy. However Equi�width is not universally

more accurate than Equi�frequency. For example the Beef dataset has a reconstruction

error that is 2.2 times lower with Equi�frequency binning. This aligns with the results of

(Hodge and Austin 2012) that the best binning strategy will be dataset dependant. How-
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ever overall it appears that Equi�width binning is the best strategy to use for representing

the signals in the UCR Time Series Classi�cation Datasets.

5.2.1.2 Number of Bins

Increasing the number of bins increases the granularity of the encoding. Table 5.4 clearly

illustrates that as the number of bins increases, the length and the weight of the generated

tokens increases signi�cantly. Using the equi�width binning strategy, the tokens for 100

bins are 83 times longer and have 4.3 times as many bits set than the 10 bin tokens. With

the equi�frequency binning strategy this increase is less being only 30 times longer and

having 2.4 times more bits set. Hodge and Austin 2012 show that the optimal number of

bins to use for best accuracy is dataset dependent. However it must also be considered

that increasing the number of bins can have a signi�cant e�ect on the size of the CMM

due to the increased token length and this will result in a reduction in query times.

Table 5.4: The e�ect of the number of bins on the properties of generated tokens.

Bin Strategy Bins Token Length Token Weight

Equi Width 10 35 13
Equi Width 20 139 19
Equi Width 30 227 21
Equi Width 40 454 26
Equi Width 50 605 29
Equi Width 60 987 35
Equi Width 70 1,184 37
Equi Width 80 1,414 39
Equi Width 90 2,122 47
Equi Width 100 2,929 56
Equi Frequency 10 55 15
Equi Frequency 20 104 16
Equi Frequency 30 214 19
Equi Frequency 40 429 24
Equi Frequency 50 577 25
Equi Frequency 60 596 25
Equi Frequency 70 636 25
Equi Frequency 80 1,268 33
Equi Frequency 90 1,389 34
Equi Frequency 100 1,651 36

This table shows how the length and weight of the generated tokens are a�ected by
increasing the number of bins used to represent each feature.

5.2.1.3 Summary

In this Section the Equi�width and Equi�frequency binning strategies have been introduced

and evaluated with the view to determining whether either strategy results in CMM tokens

with a consistently lower length or weight.

When encoding a feature of 20 bins there is little di�erence between token generated

with either strategy. However when increasing the number of bins it appears that the

Equi�frequency strategy scales better. Despite this, increasing the number of bins has a

large e�ect on the length and weight of the tokens. A 10 fold increase in bins resulted in

tokens that were 83 times longer and requires 4.3 times more bits. As a result, the number
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of bins must be minimised where possible in order to achieve good performance from the

CMM.

For the majority of datasets examined, the Equi�width strategy provided a better

representation of the signal. However this advantage is dataset dependent with some

datasets showing Equi�frequency to perform signi�cantly better.

The existing AURA kNN implementation using Parabolic Kernel input tokens uses

Equi�width binning and the results of these experiments provide no compelling evidence

to advocate not also using the Equi�width strategy for OBCC tokens.

5.2.2 Multiple Features

It is often desirable to generate tokens that can represent multiple features. For example,

consider the representation of geographic coordinates. Each location requires the speci�-

cation of a value for both its latitude and longitude. As a result each speci�c location is

represented by 2 features. In this Section two methods are detailed for using OBCC to

represent values consisting of multiple features as tokens. The concatenation approach is

discussed in Section 5.2.2.1 and the n�tuple approach is discussed in Section 5.2.2.2. A

comparison between these two approaches is given in Section 5.2.2.3.

5.2.2.1 Concatenation

The concatenation approach for creating multi�feature tokens is very straightforward. To-

kens are �rst generated individually for each of the features. These tokens are then concate-

nated in order to produce a longer token that represents all the features. The simplicity

of this approach makes it extremely fast to implement. As a result, this approach has

previously been used in various applications (Austin et al. 2010; Hodge and Austin 2005;

Krishnan et al. 2010).

5.2.2.2 n�Tuple

The alternative approach is to consider the combination of multiple values as representing

a state for which a token should be generated. This combination of values is called an

n�tuple where n speci�es the number of features that are being combined.

The original binary n�tuple method proposed by Bledsoe and Browning (1959) essen-

tially uses a lookup table to map a speci�c n�tuple to a particular state. Each state is then

assigned a unique token that is used to represent the n�tuple value. In order to increase

the generalisation ability within the features of the n�tuple this method was extended

to support features that had been binned to a predetermined number of discrete values

and is referred to as the Grey Scale n�tuple method(Austin 1988). In this approach, each

grey scale n�tuple is sorted and each ordering of the elements is assigned to a state and

represented by a unique token.

While the grey scale n�tuple method improves the generalisation between features, it

does not maintain any generalisation between the states and the tokens that represent

them. For example, consider two 4�tuples ta = (2, 3, 6, 1) and tb = (2, 3, 4, 1), these tuples

could be considered relatively similar with only a di�erence of 2 in the third element

t2. This similarity is expressed using the grey scale n�tuple method by ta and tb being
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assigned the same token to represent them. This is because the ordering is the same when

the elements of both tuples are sorted (t0, t1, t3, t2). However the tuple t
c = (4, 3, 6, 1) also

only has a di�erence of 2 from ta, this time in the �rst element t0. However because this

di�erence causes a change in the relative ordering of the elements in the tuple, ta and tc

are assigned to di�erent states and therefore given di�erent tokens. The tokens assigned

to each state do not re�ect any similarity that may be present between the di�erent states.

Using OBCC it is possible to generate tokens where the Hamming distance between an

arbitrary pair of tokens re�ects the similarity between the states that they represent. This

is achieved by assigning a unique state to each n�tuple value. An overlap matrix can then

be generated as described in Section 4.3.2.1 using a pairwise similarity metric between the

unique states as the basis for determining the desired overlap between the states. The

remaining steps in the process for generating OBCC tokens are as normal. However as the

number of features increases, the number of these unique states that need to be encoded

increases exponentially. As a result this approach can quickly become infeasible with more

than 4 features. This is examined further in the following Section.

5.2.2.3 Comparison

Consider the distances given by comparing a value v ∈ V with each of the values v′ ∈ V .
An ideal mapping from the value v to a token t ensures that the ordering of values v′ as

sorted by the chosen distance function from v would be preserved if instead sorted by the

Hamming distance between t and t′.

In order to demonstrate that the n�tuple encoding of tokens is better at preserving the

relationship between the ordering of sorted(distance(v, v′)) and sorted(Hamming(t, t′)),

a two dimensional feature space was generated with a range (−1, 1) along each axis. This

feature space was overlaid with a regular grid consisting of 100 points. Tokens were gen-

erated for each of these 2�dimensional data points using both: the concatenate method

where OBCC was used to encode the values for each dimension individually before joining

them together; and the n�tuple method where OBCC is used to encode the pair of values

directly. These data points were then sorted according to their distance from the mid�

point at (0, 0). Next the corresponding tokens were sorted according to their Hamming

distance from the token representing the mid�point. Finally the two token orderings were

compared to the correct ordering to determine which was closest.

Determining the closer ordering is performed using two measures of disorder (Estivill-

Castro and Wood 1992). The �rst measure of disorder is a count of the number of exchanges

required to correctly order the tokens. An exchange is de�ned as the positions of two tokens

being swapped. This gives a measure of how many of the tokens are incorrectly positioned.

The second measure of disorder is the maximum exchange distance. The exchange distance

is the number of positions that a token moves during an exchange. This gives a measure

of how far out of position a token is.

The results of this experiment can be seen in Table 5.6. It is clear that the n�tuple

approach is superior by both measures, with the concatenate method requiring a mean of

2.1 times as many exchanges and a maximum exchange distance that is 3.4 times larger in

order to correctly order the tokens.
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Table 5.6: Comparing token ordering for concatenation and n�tuple multi�feature tokens.

Method Max Overlap Exchange Count Max Exchange Distance

Concatenate 5 69 58
Tuple 5 29 17
Concatenate 10 79 58
Tuple 10 42 17
Concatenate 15 83 57
Tuple 15 41 17

This Table compares the disorder observed when multi�feature tokens generated using
either the concatenation method or the tuple method are sorted by the number of
overlapping bits with the token representing the mid�point of the data space. The
correct ordering, as determined by the Euclidean distance, would yield an Exchange
Count of 0 and a Maximum Exchange Distance of 0. The data space consists of
2 features in the range (−1, 1) and each feature is divided into 21 bins. Tokens
were generated for 100 points placed in a regular grid across the data space using a
maximum distance of 1.1.

The greater disorder observed with the concatenate method is due to greater weight

being placed on an exact match with a single feature than close matches across several

features. This bias is illustrated in Figure 5.3 where an increased overlap can be seen

along the horizontal and vertical axis that marks an exact match with the target mid�

point value while using the concatenate method.
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Figure 5.3: Comparison of token overlap between the Concatenate method and the n�
Tuple

This Figure shows the amount of overlap between tokens representing the 2�feature
values from (−1,−1) to (1, 1) and the token representing the mid point value of (0, 0).
The left plot shows tokens created using the concatenate method to combine features
and the right plot shows tokens created using the n-tuple method. Both sets of tokens
were created to encode Euclidean distance with a maximum overlap of 15, a maximum
distance of 2.0 and 11 equi�width bins per feature.

This illustrates the primary advantage of the n�tuple method. It is better able to accu-

rately encode arbitrary distance functions that require a combination of multiple features.

In contrast, the concatenation method simply provides a sum of the distances along each
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axis. A concrete example is that the n�tuple method can approximate the Euclidean dis-

tance for multi�feature values while the concatenation method would more closely resemble

the Manhattan distance between the values.

Another feature of the n�tuple method is that it can accurately encode arbitrary dis-

tance functions and therefore tokens can be generated to represent classes of values that

are not linearly separable. This is simply not possible with the concatenation approach.

For example, consider the problem presented in Figure 5.4. This is an example of the XOR

problem (Austin 1993). The objective is to generate tokens that represent the similarity

between points in the feature space. Points that have low pairwise Euclidean distance

are considered similar, with the caveat that any pairs of points in di�erent classes are

considered to have no similarity. This is represented in the tokens by having some bits

overlapping between tokens for the points in the same classes and no overlapping bits if

the points are in di�erent classes.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

a b

cd

Class 2

Class 1

Figure 5.4: Example of a non�linearly separable problem

This Figure shows an example of the XOR problem. The problem is to encode tokens
for points in both classes with no overlapping bits between points in di�erent classes.
The points A,C are in Class 1 and B,D are in Class 2.

Using the problem presented in Figure 5.4, tokens were generated using OBCC for

both the concatenation method and the n�tuple method. For simplicity a total of 4 bins

per feature and a maximum overlap of 3 bits were chosen. The tokens generated using

the n-tuple method for the points {A,B,C,D} are given in Table 5.7 while the tokens

generated using the concatenation method can be found in Table 5.8.
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Table 5.7: n�tuple tokens for problem given in Figure 5.4.

Point Class Token

a 1 010110000000000001000000000000110000000000

b 2 100001010000000100000100000000000000000001

c 1 010100100000001000010000000000000000000100

d 2 101001001000100000100000000000000000000000

This Table shows the tokens generated for points {A,B,C,D} in Figure 5.4 using the
n�tuple method for encoding multiple features.

Table 5.8: Concatenate tokens for problem given in Figure 5.4.

Point Class Token

a 1 111100110110

b 2 110110110110

c 1 110110111100

d 2 111100111100

This Table shows the tokens generated for points {A,B,C,D} in Figure 5.4 using the
concatenate method for encoding multiple features.

Evaluating the overlapping bits between tokens shows that the concatenation method

yields tokens with more overlapping bits between tokens from di�erent classes than between

tokens within classes. In contrast, the n�tuple method tokens behave as desired and do not

have any overlapping bits between di�erent classes. These results can be seen in Figure

5.9.

Table 5.9: Comparing token overlap between non�linearly separable classes

n�tuple
a b c d

a 6 0 2 0
b 0 6 0 2
c 2 0 6 0
d 0 2 0 6

Concatenate
a b c d

a 8 7 6 7
b 7 8 7 6
c 6 7 8 7
d 7 6 7 8

These Tables show the pairwise Hamming distance between the tokens representing
the points {A,B,C,D} from Figure 5.4 that are generated using both the n�tuple
and concatenate methods. The n�tuple tokens are provided in Table 5.7 and the
concatenate tokens are provided in Table 5.8. The shaded cells highlight a comparison
between points assigned to di�erent classes. It is desired that the shaded cells contain
a lower overlap than the non�shaded cells. Clearly this is not observed with tokens
generated using the concatenate method.

However despite the theoretical advantages to using the n�tuple method, there are

several issues that make it less practical to use than the concatenate method. The �rst

issue is that of scaling. The total number of discrete values that need to be encoded is

given by Equation 5.3.
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n_values = n_binstuple_length (5.3)

Since the number of values to encode tokens for increases exponentially with the number

of features to be encoded, it is clear that this approach does not scale to a large number

of features. Without strategies to remove a signi�cant number values that have to be

encoded, preliminary experiments show that it becomes infeasible to encode more than 4

features using this method. This is due to a combination of: the computation time and

memory required to perform the encoding; and the length and weight of the tokens that

are produced.

Another issue is with the number of similarity levels represented in the di�erent meth-

ods. With the n�tuple method, the total number of discrete distances that can be repre-

sented by the token overlap is determined by the maximum overlap parameter. In contrast,

with the concatenation method, the maximum overlap parameter only applies to a single

feature. As a result after the features are concatenated, combining the overlaps of multiple

features allows a greater granularity in representing the similarity between values. This can

be seen in Figure 5.3 where the concatenate tokens show more variety and a greater range

of overlap values. Clearly this can be accounted for in the n�tuple method by increasing

the maximum overlap, however as shown in Section 5.2.3.3 the e�ect of doing this is to

signi�cantly increase the length and weight of the tokens.

The �nal issue with the n�tuple method is that it produces tokens that are signi�cantly

longer and with a higher weight than using the concatenate method. This can be seen in

Table 5.9 where the n�tuple method produces tokens that are orders of magnitude larger

for both length and weight despite all other parameters being equal.

Table 5.9: Comparing token properties for concatenation and n�tuple multi�feature to-
kens.

Method Max Overlap Weight Length

Concatenate 5 26 254
Tuple 5 169 39,066
Concatenate 10 38 292
Tuple 10 248 57,353
Concatenate 15 50 344
Tuple 15 346 80,984

This Table compares the length and weight of multi�feature tokens generated using
either the concatenation method or the n�tuple method. The tokens encode the
Euclidean distance of two features of 11 equi�width bins, a range of (−1, 1) for each
feature and a maximum distance of 1.1.

5.2.2.4 Summary

In this Section, two methods have been presented for generating tokens that represent

multi�featured values. The concatenation method involves simply appending the tokens

representing individual features and the n�tuple method involves directly encoding the

distance between the multiple features using OBCC.
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The n�tuple method has several theoretical advantages over the concatenation method.

Speci�cally it is able to encode non�linear multi�feature distance functions and will provide

a more accurate mapping to the number of overlapping bits between tokens from the true

distance between the values.

However from a practical standpoint, the n�tuple method scales very poorly with re-

gards to both the computational resources required to generate the tokens and the length

and weight of the tokens that are generated. This limits the applicability of the n�tuple

method to real world problems.

5.2.3 Overlap Matrix Generation

The process of generating overlap matrices requires the selection of three variables: the

distance metric, the maximum distance and the maximum overlap. In this Section, the

choices associated with these variables are examined with respect to their e�ect on the

process of generating OBCC tokens.

5.2.3.1 Distance Metric

The most common general purpose distance function for comparing the similarity between

two values is the Euclidean distance between them (Lin et al. 2003).

As mentioned in Section 3.11.1, the Euclidean distance between a pair of tuples, q and

s, is given by:

euclidean(q, s) =

√√√√ n∑
i=1

(qi − si)2 (5.4)

This is a metric distance function since it satis�es all four conditions stated in Section

3.11.1. Since the tuples consist of binned values, the Euclidean distance between binned

values can be computed as follows:

binned_euclidean(qbinned, sbinned) =

√√√√ n∑
i=1

bin_distance(qi, si)2 (5.5)

where:

bin_distance(i, j) =


0 : i = j

abs(bin
upper_breakpoint
i − binlower_breakpoint

j ) : i < j

abs(bin
lower_breakpoint
i − binupper_breakpointj ) : i > j

Figure 5.5 provides an illustration of how the bin_distance is calculated. Using this

method it is guaranteed that euclidan(q, s) ≥ binned_euclidean(qbinned, sbinned) (Lin et

al. 2003).

78



A B C D E
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Figure 5.5: Illustration distance calculations between individual bins

This Figure demonstrates how the binned_distance between a value in bin A and
values in bins B, C, D and E are calculated.

The binned_euclidean distance of two binned tuples provides a lower bound on the

Euclidean distance between the original continuous tuples. Using a lower bound on the

Euclidean distance ensures that any tokens retrieved from a similarity search will not be

underestimating the similarity between the target and retrieved tokens and therefore sam-

ples will not be overlooked as a result of inaccuracies in the approximation of the Euclidean

distance between binned samples. In addition, this property enables the computation of

the distance matrix to be pruned for a signi�cant speed up. The method for pruning the

computation of distance matrix is described in the next Section.

5.2.3.2 Maximum Distance

The maximum distance parameter speci�es the largest pairwise distance allowable between

two samples for those samples to be considered in some way similar. Recall that the

distance matrix is computed as:

Dij =

{
distance(i, j) : distance(i, j) < max_distance

0 : otherwise
(5.6)

As a result, depending on the value of the maximum distance, the distance matrix can

be very sparse. This means that the amount of memory required to encode a large number

of di�erent values can be managed via the maximum distance parameter. This can be seen

in Figure 5.6 where a smaller maximum distance reduces the density of the distance matrix

which in turn re�ects a reduction in the number of distances that have to be stored.

The remaining issue is that it is still very computationally expensive to compute the

distance matrix for a large number of values. However provided that the values can be

ordered and the distance function satis�es the triangle inequality (See Equation 3.4), it

is possible to enumerate only the similar values and prevent the computation of distances

that are known to exceed the max distance. This pruning of distant values will not e�ect

the computation time of the distance matrix in the worst case, however on average it can

result in a signi�cant speed up. This can be seen in Table 5.10 where the use of pruning

results in an 82% reduction in the execution time.

The value chosen as the maximum distance is essentially constrained by the compu-

tation resources available to compute the overlap matrix and convert the overlap matrix

into binary tokens. However this choice is also problem dependent because the maximum

distance is ideally chosen to be as small as possible while still representing the required

level of similarity between values.
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Figure 5.6: Density of Overlap Matrices as the Maximum Distance Varies
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This Figure shows how the density of the overlap matrices increases as the Maximum
Distance parameter is decreased. The x�axis is the Maximum Distance and the y�axis
is the density of the overlap matrix where a density of 1 represents a fully dense matrix
in which all nodes are connected to each other. It is desirable to have a sparse matrix
which is indicated by a low density value. The left column is for overlap matrices
created using equi�width binning and the right column is for overlap matrices using
equi�frequency binning. The top row is for 1�tuple overlap matrices, the middle row
for 2�tuple overlap matrices and the bottom row for 3�tuple overlap matrices. In all
cases the same pattern is observed.
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Table 5.10: Runtime comparison of computing a Distance Matrix with and without
pruning.

Distance Matrix Execution Time (s)

Without Pruning 27.90
With Pruning 4.89

This table compares the execution time required to compute identical distance matri-
ces with and without pruning the pairwise Euclidean distances to be calculated. The
distance matrices consist of a total 1000 3�tuple, 10 bin values. The range of the bins
is (-1, 1) with a maximum distance of 0.5.

Figure 5.7: The e�ect of Maximum Overlap on the Length and Weight of tokens from a
2�tuple Overlap Matrix
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This Figure shows how varying the maximum overlap of an overlap matrix is re�ected
in the length and weight of the tokens that are generated from it. The tokens were
generated to encode 2�tuple values. Each feature has a range of (−1, 1) and 10 equi�
frequency bins with a maximum distance of 1.0. The Min algorithm (Section 5.2.4.1)
was used in converting the overlap matrix.

5.2.3.3 Maximum Overlap

The maximum overlap parameter de�nes the number of discrete levels of similarity in the

range of 0 to maximum distance that can be encoded by the resulting OBCC tokens. As a

result, increasing the maximum overlap allows greater discrimination between the pairwise

distances that are represented in the tokens. However this also has an e�ect on the length

and the weight of those tokens. As can be seen from Figures 5.7 and 5.8, the length and

weight of tokens appear to increase linearly as the maximum overlap increases. It can

also be seen that despite a linear relationship with the maximum overlap, the length and

weight of the tokens soon become very large. As a result, the maximum overlap should be

chosen to be as small as possible while still allowing the necessary discrimination between

pairwise distances. As with the maximum distance parameter, the trade o� between token

size and the level of discrimination required is problem dependent.
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Figure 5.8: The e�ect of Maximum Overlap on the Length and Weight of tokens from a
3�tuple Overlap Matrix
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This Figure shows how varying the maximum overlap of an overlap matrix is re�ected
in the length and weight of the tokens that are generated from it. The tokens were
generated to encode 3�tuple values. Each feature has a range of (−1, 1) and 10 equi�
frequency bins with a maximum distance of 1.0. The Min algorithm (Section 5.2.4.1)
was used in converting the overlap matrix.

5.2.3.4 Summary

In this Section the parameters that a�ect the process for creating an overlap matrix have

been discussed. The binned_distance metric has been chosen because it provides a lower

bounded approximation of the Euclidean distance between the binned samples.

The maximum distance parameter serves a dual purpose, primarily it is used to specify

the maximum allowable distance between two samples for them to be considered similar.

However it also serves as a method of controlling the amount of memory required to

generate the OBCC tokens by increasing the sparsity of the distance matrix and when

combined with the binnned_distance function can be used to prune the computation of

large portions of the distance matrix.

Finally the maximum overlap parameter speci�es the number of speci�c similarity levels

that are to be encoded by the OBCC tokens. Increasing the maximum overlap increases

the amount of discrimination between values that can be encoded, however this comes

at the cost of increasing the length and weight of the resulting tokens. Both the length

and the weight of the tokens appear to increase linearly with an increase in the maximum

overlap.

5.2.4 Token Generation

Once the overlap matrix has been generated, the next step is to perform a clique decompo-

sition of the graph representing the overlap matrix. This clique decomposition is used to

transform the overlap matrix into a token matrix. In this Section, several methods for se-

lecting cliques during the decomposition are examined with respect to both the runtime of

the decomposition and its e�ect on the length and weight of the tokens that are produced.
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5.2.4.1 Clique Selection Strategies

The standard algorithm for identifying the maximum clique in a graph is the Bron�

Kerbosch algorithm (Bron and Kerbosch 1973). This is a recursive backtracking algorithm

that enumerates all the maximal cliques in a graph. These maximal cliques can then

be ordered by size to identify the maximum clique. Pruning optimisations introduced

by Tomita, Tanaka, and Takahashi (2006) have reduced the computational complexity of

this algorithm to O(3(m/3)). This complexity cannot be improved because in the general

case there are a maximum of O(3(m/3)) maximal cliques in a graph that all have to be

enumerated (Moon and Moser 1965).

However for greedy clique decomposition it is only necessary to identify a single max-

imum clique at each iteration. Therefore if an upper bound on the size of the maximum

clique is known, the Bron�Kerbosch algorithm can be terminated early once a maximal

clique of the desired size is found. While not a�ecting the worst case runtime of the

algorithm, in the average case this can provide a signi�cant speed up.

With each iteration of the decomposition, edges are only ever removed from the graph.

As a result the size of the clique selected in the current iteration forms an upper bound

on the maximum clique found in the next iteration. The added overhead of tracking the

size of the enumerated cliques can cause a small performance loss in some cases with small

overlap matrices. However, as show in Table 5.11, in most cases the use of an upper bound

to detect when a maximum clique has been found leads to a signi�cant improvement in

the clique decomposition runtime.

Table 5.11: Runtime Comparison of Exact Greedy Clique Decomposition with and with-
out Upper Bound.

Overlap Matrix
Size

Bin
Strategy

No Upper Bound
Mean Runtime (s)

Upper Bound
Mean Runtime (s)

10x10 equi-width 0.0360 0.0358
10x10 equi-frequency 0.0351 0.0339
100x100 equi-width 7.1000 4.5600
100x100 equi-frequency 5.7800 3.6900

This table compares the runtime of the exact greedy clique decomposition of 4 rela-
tively small overlap matrices both with and without the use of an upper bound when
searching for maximum cliques. The overlap matrices were generated to approximate
the Euclidean distance between binned values.

Bomze et al. (1999) presents several strategies for selecting large maximal cliques from a

graph. These strategies mostly fall under the categories of sequential greedy strategies and

search based strategies. The sequential greedy strategies consist of repeatedly adding nodes

to a clique based on a score assigned to each node. The search based strategies consist of

examining the neighbours, within the search space, of a clique to identify potentially larger

cliques. As a alternative to the Bron�Kerbosch algorithm I have investigated how using

a heuristic clique selection strategy a�ects the tokens that are produced. One example of

each strategy is described below.

A very fast, simple, heuristic for selecting large maximal cliques is the MIN algorithm
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(Harant, Ryjacek, and Schiermeyer 2002). This is an example of a sequential greedy heuris-

tic algorithm. The nodes in the graph are sorted according to the degree of the node, that

is, the number of edges that are connected to the node. A clique is initially formed from

a single node by selecting the node with the highest degree. A tie is broken via random

selection. The clique is then enlarged by the selection of the next highest degree node that

is connected to all members of the clique. This process is repeated until the clique cannot

be enlarged further.

An alternative approach is the Penalty�Evaporation (PE) heuristic (St-Louis, Gendron,

and Ferland 2004). This is an example of a search based heuristic based on the Tabu search

strategy (Glover 1989). The PE algorithm works by repeating a two step process. First a

node is selected and added to a working set of nodes. Next, any nodes in the set that are

not adjacent to the newly added node are removed. This forces the working set to be a

clique at the end of each iteration. If the clique is larger than any previously seen clique,

it is remembered as the best observed clique. The search terminates after a set number of

iterations have been reached without improving upon the size of the best observed clique.

Clearly the process of selecting which node to add at each iteration is critical to the

success of this algorithm. In order to select a node a score is calculated based on how many

edges are shared with nodes in the current clique and the number of iterations since the

node was previously included in the current clique (St-Louis, Gendron, and Ferland 2004),

the node with the highest score at each iteration is chosen.

5.2.4.2 Evaluation

As previously stated in Section 4.2, the ideal token would be short and have a small weight.

Another desirable property is that the tokens can be generated in a reasonable amount

of time. It is not feasible to generate optimal tokens via optimal clique decomposition due

to the computational complexity of the problem (Golumbic 2004). Experiments to com-

pute optimal tokens for toy sized overlap matrices showed that the greedy decomposition

strategy produced tokens of equal weight and length to the optimal decomposition strat-

egy, see Table 5.12. However a lack of computation resources prevents an analysis of the

size and type of overlap matrix that causes the optimal and greedy strategies to diverge,

even with a small overlap matrix the runtime of the optimal decomposition is 4 orders

of magnitude higher than the slowest greedy decomposition. The pairwise strategy, while

being extremely fast to execute, produces tokens that are 5.5 times longer and require 3.4

times more bits to be set than either the optimal or greedy clique decomposition strategies.

For these reasons, I restrict my analysis to the greedy clique decomposition strategy in the

rest of this Section.

Three algorithms for identifying large maximal cliques, ideally maximum cliques, to

remove at each iteration have been described in this Section. These are: the exact method

derived from the clique enumeration algorithm of Bron�Kerbosch (EXACT), the greedy

sequential algorithmMIN (MIN) and the Tabu search based Penalty Evaporation algorithm

(PE).

In order to evaluate these three algorithms I have considered the length, weight, and to a

lesser extend the padding required of the tokens produced from each algorithm. In addition

I have also considered the runtime of the clique decomposition using each algorithm since
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Table 5.12: Properties of tokens generated via Optimal, Greedy and Pairwise clique
decomposition.

Clique Startegy Token Length Token Weight Runtime

optimal 34 9 72.86s
pairwise 187 31 <0.01s
greedy (exact) 34 9 0.02s
greedy (penalty_evaporation) 34 9 0.03s
greedy (min) 43 10 0.02s

This table compares the properties of tokens generated from an overlap matrix rep-
resenting the Euclidean distance between 10 equi�frequency bins in the range (-1, 1)
with a maximum overlap of 5. This is a common con�guration for encoding a single
value token.

this is very important with respect to scaling the token generation to encode a large number

of values. In the following sections I present an evaluation of the performance of each of

the strategies across overlap matrices of varying complexity and sparsity.

5.2.4.2.1 Euclidean distance Equi�width bins The most simple overlap matrix is

that which represents the Euclidean distance between equi�width bins. A total of 21 overlap

matrices were generated using the methods described in Section 4.3.2. The properties of

these overlap matrices and the parameters used to generate them are given in Table 5.13

and an example of one these overlap matrices is given in Figure 5.9.
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Table 5.13: Parameters for Equi�width Euclidean Overlap Matrices

ID Bins Max Overlap Density

EW0 10 5 0.700
EW1 10 10 0.900
EW2 20 5 0.430
EW3 20 10 0.730
EW4 20 15 0.900
EW5 20 20 0.950
EW6 30 5 0.320
EW7 30 10 0.550
EW8 30 15 0.730
EW9 30 20 0.870
EW10 30 25 0.940
EW11 40 5 0.230
EW12 40 10 0.430
EW13 40 15 0.600
EW14 40 20 0.740
EW15 40 25 0.840
EW16 50 5 0.190
EW17 50 10 0.360
EW18 50 15 0.500
EW19 50 20 0.630
EW20 50 25 0.740

This table shows the parameters used to generate overlap matrices used to evaluate
clique selection strategies. Density refers to the proportion of non�zero values in the
matrix. The data range is (−1, 1) and the maximum distance is 1.0
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Figure 5.9: Example Overlap Matrix approximating Euclidean distance for Equi�width
bins.

This Figure shows an overlap matrix approximating the Euclidean distance between
30 equi�width bins and a maximum overlap of 16. Cells a coloured on a linear scale
with black cells having an overlap of 16 and white cells having no overlap.

With the exception of the overlap matrices EW1 and EW9 the token properties from the

three algorithms are identical, i.e. the length, weight and required padding are the same.
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The results for EW1 and EW9 are given in Table 5.14. For EW1 the MIN algorithm

performs signi�cantly worse than the EXACT algorithm. The length of the MIN tokens

is 40% worse than the EXACT or PE tokens, in addition the MIN tokens require an extra

two bits to be set. However the results for EW9 provide an example where the exact clique

decomposition is worse than the heuristic clique decomposition. In this case MIN yields

tokens that are 30 bits shorter than the EXACT method and requires a weight with one

less bit set.

Table 5.14: Token Properties for Overlap Matrices EW1 and EW9

ID Property EXACT MIN PE

EW1 Length 30 48 30
Weight 13 15 13
Padding 8 24 8
Time (s) 0.11 <0.01 0.02

EW9 Length 179 149 179
Weight 27 26 27
Padding 105 75 105
Time (s) 1.51 0.09 0.37

This table compares the token properties and execution times for the overlap matrices
EW1 and EW9 when generated using the EXACT, MIN and PE clique selection
algorithms.

There is a clear ordering in terms of the execution time for each of the algorithms with

MIN completing fastest, followed by PE and �nally the EXACT algorithm, this can be

seen in Table 5.15. Considering the relative speed of MIN and the quality of the tokens it

produces in comparison to the EXACT algorithm, MIN is clearly the algorithm of choice

for this type of simple overlap matrices despite is poor performance with EW0, especially

when the number of bins to encode is large. However for small overlap matrices such as

EW1 the runtime penalty of simply using the EXACT algorithm will be negligible for most

use cases.

Table 5.15: Mean Clique Decomposition Execution Times for Euclidean Overlap Matrices

Algorithm Mean Execution Time (s)

EXACT 1.12
MIN 0.07
PE 0.37

This table shows the mean execution time for clique decomposition of the overlap
matrices speci�ed in Table 5.13 using the EXACT, MIN and PE clique selection
algorithms.

5.2.4.2.2 Euclidean distance Equi�frequency bins Overlap matrices that approx-

imate Euclidean distance between equi�frequency bins are less regular than the overlap

matrices from equi�width bins. In order to evaluate the three algorithms with less regular
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overlap matrices, a total of 21 overlap matrices were generated using the methods described

in Section 4.3.2. The properties of these overlap matrices and the parameters used to gen-

erate them are given in Table 5.16 and an example of these overlap matrices is given in

Figure 5.10. In addition to being less regular than the equi�width overlap matrices the

equi�frequency overlap matrices are also slightly sparser, this can be seen in Table 5.16.

Table 5.16: Parameters for Equi�frequency Euclidean Overlap Matrices

ID Bins Max Overlap Density

EF0 10 5 0.66
EF1 10 10 0.88
EF2 20 5 0.39
EF3 20 10 0.67
EF4 20 15 0.84
EF5 20 20 0.92
EF6 30 5 0.26
EF7 30 10 0.47
EF8 30 15 0.65
EF9 30 20 0.78
EF10 30 25 0.87
EF11 40 5 0.19
EF12 40 10 0.37
EF13 40 15 0.52
EF14 40 20 0.65
EF15 40 25 0.75
EF16 50 5 0.16
EF17 50 10 0.29
EF18 50 15 0.42
EF19 50 20 0.54
EF20 50 25 0.64

This table shows the parameters used to generate overlap matrices used to evaluate
clique selection strategies. Density refers to the proportion of non�zero values in the
matrix. The data range is (−1, 1) and the maximum distance is 1.0
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0 16 13 11 9 8 7 5 4 3 2 1 0 0 0 0 0 0 0 0
16 0 16 14 12 11 9 8 7 6 5 4 3 2 1 0 0 0 0 0
13 16 0 16 14 13 11 10 9 8 7 6 5 4 3 2 1 0 0 0
11 14 16 0 16 14 13 12 11 10 9 8 7 6 5 3 2 1 0 0
9 12 14 16 0 16 14 13 12 11 10 9 8 7 6 5 3 2 0 0
8 11 13 14 16 0 16 14 13 12 11 10 9 8 7 6 5 3 1 0
7 9 11 13 14 16 0 16 14 13 12 11 10 9 8 7 6 4 2 0
5 8 10 12 13 14 16 0 16 14 13 12 11 10 9 8 7 5 3 0
4 7 9 11 12 13 14 16 0 16 15 14 12 11 10 9 8 6 4 1
3 6 8 10 11 12 13 14 16 0 16 14 13 12 11 10 9 7 5 2
2 5 7 9 10 11 12 13 15 16 0 16 14 13 12 11 10 8 6 3
1 4 6 8 9 10 11 12 14 14 16 0 16 14 13 12 11 9 7 4
0 3 5 7 8 9 10 11 12 13 14 16 0 16 14 13 12 10 8 5
0 2 4 6 7 8 9 10 11 12 13 14 16 0 16 14 13 11 9 7
0 1 3 5 6 7 8 9 10 11 12 13 14 16 0 16 14 13 11 8
0 0 2 3 5 6 7 8 9 10 11 12 13 14 16 0 16 14 12 9
0 0 1 2 3 5 6 7 8 9 10 11 12 13 14 16 0 16 14 11
0 0 0 1 2 3 4 5 6 7 8 9 10 11 13 14 16 0 16 13
0 0 0 0 0 1 2 3 4 5 6 7 8 9 11 12 14 16 0 16
0 0 0 0 0 0 0 0 1 2 3 4 5 7 8 9 11 13 16 0

Figure 5.10: Example Overlap Matrix approximating Euclidean distance for Equi�
frequency bins.

This Figure shows an overlap matrix approximating the Euclidean distance between
30 equi�frequency bins and a maximum overlap of 16. Cells a coloured on a linear
scale with black cells having an overlap of 16 and white cells having no overlap.

In comparison to the equi�width overlap matrices, there is much greater variety between

the performance of the three methods. The result can be viewed in Tables 5.17 and 5.18.

With respect to the execution times, overall the MIN algorithm is fastest. MIN has a mean

execution time that is 3.48 times faster that the EXACT method and 6.11 times faster

than PE.

No strategy yielded the best tokens (shortest with lowest weight) for all overlap matri-

ces. Indeed each of the methods provides the best tokens for several of the overlap matrices.

Overall MIN results in the shortest tokens for 16 of the overlap matrices in comparison to

11 for EXACT and 7 for PE. While all three strategies provide the lowest weight for 16 of

the overlap matrices.

Considering the weight of the tokens, the largest di�erence between the best and worst

tokens for any overlap matrix is 3 bits, as a result the performance di�erence between

using tokens generated by any of the strategies will be very small. As a result I believe

overall that for the equi�frequency overlap matrices, the signi�cant advantage in execution

time observed for MIN combined with the providing the shortest tokens for most overlap

matrices makes it the best clique selection strategy to use.
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Table 5.17: Token Properties for Equi�Frequency Overlap Matrices

ID Property EXACT MIN PE

EF0 Length 34 43 34
Weight 9 10 9
Time (s) 0.010 0.009 0.011

EF2 Length 64 64 64
Weight 9 9 9
Time (s) 0.020 0.010 0.070

EF1 Length 39 39 39
Weight 14 14 14
Time (s) 0.020 0.009 0.021

EF3 Length 84 120 85
Weight 15 17 15
Time (s) 0.050 0.020 0.090

EF4 Length 123 137 142
Weight 22 23 23
Time (s) 0.100 0.040 0.120

EF5 Length 147 126 166
Weight 28 27 29
Time (s) 0.130 0.040 0.140

EF6 Length 124 124 124
Weight 10 10 10
Time (s) 0.031 0.020 0.140

EF7 Length 151 148 150
Weight 16 16 16
Time (s) 0.070 0.030 0.190

EF8 Length 156 156 156
Weight 21 21 21
Time (s) 0.150 0.050 0.240

EF9 Length 293 338 263
Weight 31 33 30
Time (s) 0.250 0.070 0.300

EF10 Length 388 310 414
Weight 40 38 41
Time (s) 0.350 0.100 0.411

EF11 Length 242 242 243
Weight 12 12 12
Time (s) 0.040 0.010 0.231

This table compares the token properties and execution times for the Equi�Frequency
overlap matrices when generated using the EXACT, MIN and PE clique selection
algorithms.
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Table 5.18: Token Properties for Equi�Frequency1 Overlap Matrices

ID Property EXACT MIN PE

EF12 Length 234 230 236
Weight 17 17 17
Time (s) 0.110 0.030 0.340

EF13 Length 347 335 309
Weight 25 25 24
Time (s) 0.220 0.070 0.430

EF14 Length 562 341 518
Weight 36 31 35
Time (s) 0.360 0.100 0.571

EF15 Length 515 521 555
Weight 40 42 41
Time (s) 0.540 0.140 0.670

EF16 Length 303 302 303
Weight 12 12 12
Time (s) 0.050 0.020 0.370

EF17 Length 344 324 344
Weight 18 18 18
Time (s) 0.140 0.040 0.470

EF18 Length 334 404 336
Weight 23 25 23
Time (s) 0.270 0.080 0.600

EF19 Length 342 334 343
Weight 28 28 28
Time (s) 0.470 0.130 0.720

EF20 Length 676 596 725
Weight 41 40 42
Time (s) 0.700 0.170 1.020

This table compares the token properties and execution times for the Equi�Frequency
overlap matrices when generated using the EXACT, MIN and PE clique selection
algorithms.

5.2.4.2.3 2�Tuple Euclidean distance Equi�frequency bins The multi�feature

overlap matrices generated via the n�tuple method produce signi�cantly larger and more

complicated overlap matrices. As a result, the execution times for the EXACT greedy

clique decomposition of these makes it infeasible to experiment with the same number of

overlap matrices as in the previous sections. The parameters used for the overlap matrices

in this section are given in Table 5.19 and example of these overlap matrices is given in

Figure 5.11.
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Figure 5.11: Example Overlap Matrix approximating 2�Tuple Euclidean distance for
Equi�frequency bins.

0 6 4 3 2 1 0 0 0 0 6 6 4 3 2 1 0 0 0 0 4 4 4 3 2 1 0 0 0 0 3 3 3 3 2 1 0 0 0 0 2 2 2 2 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 6 4 3 2 1 0 0 0 6 6 6 4 3 2 1 0 0 0 4 4 4 4 3 2 1 0 0 0 3 3 3 3 3 2 1 0 0 0 2 2 2 2 2 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 6 0 6 5 4 2 1 0 0 4 6 6 6 5 4 2 1 0 0 4 4 4 4 4 3 2 1 0 0 3 3 3 3 3 3 2 1 0 0 2 2 2 2 2 2 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 4 6 0 6 5 3 2 1 0 3 4 6 6 6 5 3 2 1 0 3 4 4 4 4 4 3 2 1 0 3 3 3 3 3 3 3 2 1 0 2 2 2 2 2 2 2 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 5 6 0 6 4 3 2 1 2 3 5 6 6 6 4 3 2 1 2 3 4 4 4 4 4 3 2 1 2 3 3 3 3 3 3 3 2 1 1 2 2 2 2 2 2 2 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 4 5 6 0 6 5 4 3 1 2 4 5 6 6 6 5 4 3 1 2 3 4 4 4 4 4 3 2 1 2 3 3 3 3 3 3 3 2 0 1 2 2 2 2 2 2 2 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 6 0 6 5 4 0 1 2 3 4 6 6 6 5 4 0 1 2 3 4 4 4 4 4 3 0 1 2 3 3 3 3 3 3 3 0 0 1 2 2 2 2 2 2 2 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 3 5 6 0 6 5 0 0 1 2 3 5 6 6 6 5 0 0 1 2 3 4 4 4 4 4 0 0 1 2 3 3 3 3 3 3 0 0 0 1 2 2 2 2 2 2 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 2 4 5 6 0 6 0 0 0 1 2 4 5 6 6 6 0 0 0 1 2 3 4 4 4 4 0 0 0 1 2 3 3 3 3 3 0 0 0 0 1 2 2 2 2 2 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 3 4 5 6 0 0 0 0 0 1 3 4 5 6 6 0 0 0 0 1 2 3 4 4 4 0 0 0 0 1 2 3 3 3 3 0 0 0 0 0 1 2 2 2 2 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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3 4 6 6 6 5 3 2 1 0 3 4 6 0 6 5 3 2 1 0 3 4 6 6 6 5 3 2 1 0 3 4 4 4 4 4 3 2 1 0 3 3 3 3 3 3 3 2 1 0 2 2 2 2 2 2 2 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 1 3 4 5 6 6 0 0 0 0 1 3 4 5 6 0 0 0 0 0 1 3 4 5 6 6 0 0 0 0 1 2 3 4 4 4 0 0 0 0 1 2 3 3 3 3 0 0 0 0 0 1 2 2 2 2 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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This Figure shows an overlap matrix approximating the Euclidean distance between
2�tuples of 10 equi�frequency bins and a maximum overlap of 16. Cells a coloured
on a linear scale with black cells having an overlap of 16 and white cells having no
overlap.
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Table 5.19: Parameters for 2�Tuple Euclidean Overlap Matrices

ID Tuple Size Bins Max Overlap Bin Strategy Sparsity

EW21 2 10 5 equi_width 0.60
EF21 2 10 5 equi_frequency 0.53
EW22 2 10 10 equi_width 0.99
EF22 2 10 10 equi_frequency 0.94
EW23 2 20 10 equi_wdith 0.55

This table shows the parameters used to generate overlap matrices used to evaluate
clique selection strategies. Density refers to the proportion of non�zero values in the
matrix.

The results of the token generation for these overlap matrices can be seen in Table

5.20. With regards to the execution time, it is clear that the EXACT method scales very

poorly. A maximum overlap of 5 bits allows the EXACT algorithm to be competitive with

PE however an overlap of 10 bits shows the EXACT algorithm taking around three times

longer to complete. In the case of the 20 bin overlap matrix (EW23), the EXACT method

takes 4 days to complete. As expected however, MIN is by far the fastest algorithm across

all the instances. It is important to note that MIN required less than 5 seconds to generate

tokens for EW23, this is several orders of magnitude faster than the other approaches.

The PE method clearly yields the worst tokens in terms of length and weight. However

is not as clear whether MIN or EXACT perform better. EXACT has the smallest weight

in the most overlap matrices (EF21, EW22 and EW23). However MIN has the smallest

weight in EF22 and EW21. In addition, MIN required the fewest padding bits in all overlap

matrices. In the case of EW22 this reduction in padding is su�cient to give the shortest

tokens overall despite having a greater weight than the EXACT tokens.
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Table 5.20: Token Properties for 2�tuple Overlap Matrices

ID Weight Length Padding Clique Algorithm Time (s)

EF21 31 1,556 913 EXACT 4.06
EF21 35 1,643 817 MIN 0.20
EF21 32 1,643 981 PE 4.47
EF22 73 4,542 3,446 EXACT 23.56
EF22 62 2,811 1,445 MIN 0.53
EF22 64 3,776 2,804 PE 7.87
EW21 43 2,684 2,007 EXACT 5.28
EW21 38 1,876 1,036 MIN 0.20
EW21 40 2,399 1,733 PE 4.69
EW22 47 2,232 1,462 EXACT 25.70
EW22 54 2,057 799 MIN 0.60
EW22 49 2,474 1,712 PE 6.50
EW23 177 43,337 29,678 EXACT 345,669.91
EW23 199 44,876 27,757 MIN 4.99
EW23 225 61,664 47,251 PE 456.14

This table compares the token properties and execution times for the 2�tuple overlap
matrices EF21, EF22, EW21, EW22 and EW23 when generated using the EXACT,
MIN and PE clique selection algorithms.

5.2.4.3 Conclusions

For small overlap matrices the choice of algorithm does not have a signi�cant e�ect on

the outcome. However, with few exceptions, the MIN algorithm performs better than

or equals the other algorithms while having an execution time that is at least an order of

magnitude faster than the other algorithms for the large 2�tuple overlap matrices. However,

considering the relatively short execution times for all algorithms on the small overlap

matrices, the best results can be obtained by running all three algorithms and choosing

the best tokens.

For larger overlap matrices, such as those encoding two or more values, this approach

quickly becomes infeasible due to the required execution time for the EXACT and PE

algorithms. Considering that 4 days were required to encode a relatively small 2�tuple

overlap matrix of 20 bins it is necessary to exclude the EXACT method.

The PE algorithm is intended to search for cliques that are as close as possible to the

size of the maximum cliques enumerated by the EXACT method. As a result it appears

that the best result achieved with PE is rarely better than that of the EXACT method.

The MIN algorithm yields an inferior approximation to the EXACT method while se-

lecting maximal cliques. However this appears to be su�ciently di�erent from the EXACT

method that it enables a di�erent path through the clique decomposition and as a result

can often yield shorter tokens with a lower weight and shorter total length than the EXACT

tokens. In addition, MIN typically requires fewer padding bits than the other approaches.

In situations where MIN performs worse than the EXACT algorithm, in the worst

observed case MIN tokens require 15% more bits to be set and 60% greater total length.

The 60% increase in length appears to be an outlier caused by the small total length, 30
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for EXACT tokens compared to 48 for MIN tokens, for large overlap matrices the total

length di�erence is at worst 6%. Despite this potential for worse performance than the

EXACT method, the speed of MIN in comparison to the other methods clearly outweighs

any penalty to the token properties. For the largest overlap matrix evaluated, the EXACT

method required 4 days, PE required 7 minutes and MIN required only 5 seconds to

generate tokens. In this case MIN had only 12% more bits set and 3% longer tokens than

the EXACT method. Clearly the speed of MIN combined with producing tokens that are

comparatively short and low weight makes MIN the best clique selection algorithm to use

for generating binary tokens from large overlap matrices.

5.2.4.4 Summary

In this Section, the process for converting an overlap matrix into �xed weight tokens for

each of the m values was discussed.

The overlap matrix is considered as an undirected weighted graph with m nodes cor-

responding to the m values and the edges corresponding to similarity between the values.

Initially clique decomposition is used to generate the tokens with the required Hamming

distance between each value, the tokens are then padded to ensure that all tokens have a

�xed weight.

Finding the optimal clique decomposition was considered infeasible for any overlap

matrices of a useful size. Therefore analysis was focussed on greedy clique decomposition

as it has been shown to produce relatively short tokens.

Three algorithms for selecting cliques during clique decomposition of the overlap matrix

were evaluated. These are: the EXACT algorithm is based on the Bron�Kerbosch recur-

sive backtracking maximal clique enumeration algorithm, the Penalty-Evaporation (PE)

algorithm which uses a relaxed Tabu search to add and remove nodes while searching for

a maximum clique; and the Min (MIN) algorithm which greedily adds the node with the

most number of edges to a clique until it is maximal.

The execution time of the EXACT algorithm was shown to scale poorly as the size

of the overlap matrix and the maximum overlap allowed between tokens increases. As a

result it is considered infeasible to use the EXACT algorithm for large overlap matrices.

The PE algorithm typically performed worse than the EXACT algorithm, however the

execution time scales up much better than the EXACT algorithm. This makes PE feasible

for large overlap matrices.

However the MIN algorithm, despite being the most simple clique selection algorithm, in

the majority of cases produced tokens that outperform the PE tokens and often producing

tokens that are better than the EXACT tokens. In addition, the execution time of the

MIN algorithm is an order to magnitude lower than the PE algorithm.

As a result the MIN algorithm is considered to provide the best trade�o� between the

generated token properties, such as length and weight, and the execution time required to

generate the tokens.

5.2.5 Summary

In this Section I have detailed the modi�cations to the OBCC token generation process

that I have investigated.
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The �rst step of the OBCC process is to bin the samples. I performed an evaluation of

the Equi�width and Equi�frequency binning strategies for generating OBCC tokens. The

Equi�frequency binning strategy scales better with an increasing number of bins. However

to ensure that the CMM remains small and therefore fast to query, the number of bins

must be minimised and the di�erence in token length and weight between the binning

strategies when using a small number of bins is very small. In addition, the Equi�width

strategy provides a better representation of the samples for the datasets evaluated. As a

result, the continued use of Equi�width binning is the most reasonable choice.

With regards to using OBCC to encode multiple features, the concatenation method

and the n�tuple methods have been investigated. The n�tuple methods has several theo-

retical advantages, in particular, it is able to more accurately represent distance metrics

that combine multiple features. However it scales extremely poorly as the number of fea-

ture to be encoded increases. As a result the n�tuple method is likely to be unsuitable

for the number of features typically handled to the AURA kNN algorithm and so the

concatenation method must be used.

The e�ects on the generated token length and weight of the maximum distance and

maximum overlap parameters were investigated. The maximum distance parameter is

important for controlling the computational requirements of the OBCC process and ideally

should be kept as small as possible. While the length and weight of the generated tokens

appear to scale linearly with the maximum overlap parameter.

Finally the process of generating tokens from an overlap matrix was investigated. This

process is achieved by a clique decomposition of the overlap matrix. Three clique selec-

tion algorithms where evaluated with respect to the runtime requirements of the clique

decomposition and the length and weight of the generated tokens. These algorithms were:

an optimised version of the standard exact Bron�Kerbosch clique selection algorithm and

two heuristic algorithms, MIN and Penalty Evaporation. Overall MIN was determined to

be the best clique selection algorithm as a result of providing the best trade o� between

execution times and the length and weight of the generated tokens.

5.3 Weighted Overlap Code Construction

One of the objectives in replacing the Parabolic Kernel tokens as the input tokens for

AURA kNN is to improve training and query times. However Section 5.2.4 showed that

even relatively small overlap matrices can result in tokens that have a large weight in

comparison to the Parabolic Kernel tokens.

For example, consider the overlap matrix EW0 from Table 5.13, the best OBCC tokens

generated for EW0 has a weight of 13 bits. Since the Parabolic Kernel token is only

weighted for query tokens (Section 4.3.1) only a small number of bits have to be set in the

training token. The Parabolic Kernel training token generated for EW0 would only have

a weight of 1 bit .

As a result there are several problems for using OBCC tokens with AURA kNN. Firstly,

the additional bits have to be stored by the CMM, this means that the training time of

the CMM will be increased. In addition, the CMM will be more densely populated and

will therefore consume more memory while also being slower to query because there are
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Figure 5.12: Example of Clique Decomposition Selecting Identical Cliques

This Figure illustrates how the same clique can be selected repeatedly from an overlap
matrix, resulting in identical columns in the token matrix.

more bits on each matching row that have to be decoded. These problems are observed in

the experiments of Chapter 6.

However because OBCC tokens have a number of theoretical advantages over Parabolic

Kernel tokens, particularly the ability to encode arbitrary distance metrics, I have sought

to reduce the length and particularly the weight of the OBCC tokens. This was achieved

through a modi�cation of the OBCC process called Weighted Overlap Code Construction

(WOCC).

AURA CMMs are only able to store binary input and output tokens. However they are

also able to support non�binary weights on the rows of an input token during a query. It

is this ability to apply input weights that the Parabolic Kernel tokens exploit to indicate

how much a partial match should contribute to the output score for each column. The

WOCC process modi�es OBCC to make use of this capability of AURA CMMs to apply

weights to the input tokens.

5.3.1 Changes to the OBCC Process

Recall that during the OBCC process, cliques are selected from the graph that represents

the overlap matrix. The clique is then removed from the graph and added to the token

matrix as a new column. However it is possible that a clique consisting of the same set of

nodes can be selected twice from the graph. This results in duplicate columns in the token

matrix. An example of this can be observed in Figure 5.12

As part of the WOCC process, these duplicate columns condensed into a single column
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with a weight equal to the original number of columns. There are two stages in the OBCC

process where merging of columns in the token matrix can occur:

Clique Selection In the WOCC process, once a clique has been identi�ed the minimum

edge weight within the clique is found. This minimum edge weight is the weight assigned to

the new column in the token matrix. When the clique is removed from the overlap matrix,

the minimum edge weight is subtracted from all the edges between the clique nodes that

remain in the overlap matrix.

A consequence of removing the minimum edge weight rather than the edge weight of

1 as in OBCC is that the same clique will not be repeatedly selected as the largest clique.

This is because the weight of at least one edge in the clique will become zero and therefore

be removed from the graph. As a result, the set of nodes that formed the previous clique

will no longer be a clique in the next iteration of the graph decomposition.

Another consequence is that every clique removed with a minimum edge weight greater

than 1 will reduce the overall number of bits that need to be set in the token.

Padding The padding phase of the OBCC process adds signi�cant length to the gener-

ated tokens. However it does not add additional weight. The padding phase in WOCC

consists of a single column for each row in the token matrix that is not already max weight.

Each column has a single bit with a su�cient weight to make the token weight equal to

max weight. As a result while the weight of the token remains the same, the number of

bits that are required to be set is considerably reduced. Table 5.20 shows the padding

required for overlap matrix EW23 with OBCC is 47,251 bits, in contrast, using WOCC no

more than 400 padding bits will be needed.

5.3.2 Evaluation

The changes introduced by the WOCC process essentially allow a weighted CMM to be

represented by a binary CMM. This is because the weight applied to a bit in position i

is the same for every token that is generated from a particular overlap matrix. Therefore

only one copy of the weights need to be retained.

Another bene�t is that fewer bits need to be set in the CMM in order to store tokens

with the same �xed weight as the equivalent OBCC tokens. Note that because the bits of

a WOCC token are weighted, the weight of a WOCC token is not necessarily equal to the

number of bits that are set in the token.

Tables 5.21 and 5.22 show the total length and mean number of bits set for tokens

generated from the overlap matrices EW0�EW22 and EF0�EF22 with both WOCC and

OBCC. The weight of the tokens generated from a speci�c overlap matrix is identical for

each process.
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Table 5.21: WOCC vs OBCC for Equi�width Overlap Matrices

ID OBCC Length WOCC Length OBCC Bits WOCC Bits

EW0 35 29 8.0 7.1
EW1 72 39 15.0 11.7
EW2 53 47 8.0 7.7
EW3 58 52 13.0 12.7
EW4 63 57 18.0 17.7
EW5 103 84 24.0 22.4
EW6 95 90 8.0 7.7
EW7 100 94 13.0 12.5
EW8 105 99 18.0 17.5
EW9 224 119 26.0 23.8
EW10 505 162 37.0 30.7
EW11 93 87 8.0 7.9
EW12 98 92 13.0 12.9
EW13 103 97 18.0 17.9
EW14 108 102 23.0 22.9
EW15 113 107 28.0 27.9
EW16 114 108 8.0 7.9
EW17 119 113 13.0 12.9
EW18 124 118 18.0 17.9
EW19 129 123 23.0 22.9
EW20 134 128 28.0 27.9
EW21 2,912 943 38.0 26.7
EW22 2,856 1,281 54.0 43.5

This table compares the length and mean number of bits set across all tokens generated
via WOCC and OBCC with Equi�width binning. Note that the bits for WOCC
tokens are weighted, therefore the number of bits required in each token can di�er
while retaining a �xed weight for the token.
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Table 5.22: WOCC vs OBCC for Equi�frequency Overlap Matrices

ID OBCC Length WOCC Length OBCC Bits WOCC Bits

EF0 63 37 10.0 7.8
EF1 51 37 14.0 10.8
EF2 84 68 9.0 8.1
EF3 186 78 17.0 12.7
EF4 207 91 23.0 18.7
EF5 186 89 27.0 20.8
EF6 178 114 10.0 8.1
EF7 217 116 16.0 12.6
EF8 228 124 21.0 17.7
EF9 566 147 33.0 23.7
EF10 479 182 38.0 30.8
EF11 386 150 12.0 7.8
EF12 345 168 17.0 13.6
EF13 538 188 25.0 19.0
EF14 520 215 31.0 24.6
EF15 818 270 42.0 32.2
EF16 484 188 12.0 7.8
EF17 498 216 18.0 13.4
EF18 637 232 25.0 18.0
EF19 506 226 28.0 22.8
EF20 973 279 40.0 28.6
EF21 2,460 913 35.0 25.6
EF22 4,256 1,331 62.0 43.9

This table compares the length and mean number of bits set across all tokens generated
via WOCC and OBCC with Equi�frequency binning. Note that the bits for WOCC
tokens are weighted, therefore the number of bits required in each token can di�er
while retaining a �xed weight for the token.

It is clear that WOCC generates tokens that are signi�cantly shorter in all cases. Across

all the overlap matrices investigated, the WOCC tokens are a mean of 63% shorter than

the equivalent OBCC token.

In addition, WOCC require a mean of 85% fewer bits to be set in the tokens that it

generates.

5.3.3 Conclusion

TheWOCC process requires a CMM implementation that is capable of supporting weighted

query tokens. When weighted query tokens are not supported then standard OBCC tokens

have to be used. However if such an implementation is available then the token generated

by WOCC are clearly superior to OBCC tokens. This is because they are shorter and

require fewer bits to be set.

As a result it is expected that using WOCC will translate into faster CMM training and

query times. In addition, since the tokens for both processes are generated from the same

overlap matrix, the accuracy of a CMM using either token is expected to be identical. The

e�ects of using weighted inputs on both the training and query performance, in addition
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to verifying the accuracy of WOCC tokens in comparison to OBCC tokesn is investigated

as part of the experiments in Chapter 6.

5.4 Multi Bit Output Tokens

The current version of AURA kNN uses unary output tokens to represent the samples to

be learned by the CMM. There are two major advantages to this approach.

Firstly the use of unary tokens allows the result of the L�max threshold on the output

scores be easily decoded into the L samples that closest match the query sample.

In addition, unary tokens are orthogonal to each other and therefore eliminate the e�ect

of crosstalk within the CMM. Crosstalk occurs when a column within the CMM contains

information about multiple samples that have been stored in the CMM and refers to the

noise introduced by storing information about multiple samples in a column. The more

crosstalk that is present, the greater the likelihood that a query will return an erroneous

result (Hobson 2011).

However, as a result of using unary tokens, the AURA kNN query essentially becomes

a linear scan of the binary encoded samples. As a result the only major advantage of

AURA kNN over a simple linear scan is that the binary comparison is less computationally

expensive than computing the Euclidean distance between samples.

If, instead of using unary tokens, the weight of the output token is increased, then the

token is able to represent a larger volume of information. Similarly it means that a given

amount of information can be stored in a shorter token if a larger weight is used. A shorter

token yields a smaller CMM and results in faster query times.

Unfortunately increasing the weight of the output token will also increase the amount

of crosstalk in the CMM and will therefore reduce the accuracy of the kNN query.

5.4.1 Baum Codes

Baum Codes (Baum, Moody, and Wilczek 1988), described in Section 4.4.2, provide a

method for generating output tokens that balance the desire to increase the amount infor-

mation that can be stored in a token of a given length while also minimising the amount

of crosstalk.

Figure 5.13 shows how using Baum coded output tokens with a weight of 2 to represent

samples to be stored in the CMM requires considerably shorter tokens in comparison to

the Unary tokens currently used by AURA kNN.
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Figure 5.13: A comparison of the token length between Unary tokens and 2 Bit Baum
Coded Tokens encoding an increasing number of samples.

It is clear from Figure 5.13 that the 2�bit Baum Tokens are considerably shorter than

the Unary Tokens. A 2�bit Baum token of length 143 is needed to uniquely represent 5,000

samples while the equivalent Unary token requires length 5,000. However while it is clear

that the length of the 2�bit Baum tokens grow much more slowly than Unary tokens, they

still appear to grow linearly with the number of samples to be encoded. A tenfold increase

in the number of samples to be encoded results in a tenfold increase in the length of the

2�Bit Baum token with 50,000 samples requiring a token of length 1,415 to be uniquely

encoded.

Despite this, the slower growth of the 2�Bit Baum tokens means that a CMM can store

large datasets with an order of magnitude fewer columns than using Unary tokens. This

will result in a must faster query of the CMM.

5.4.2 Output Threshold

As part of the CMM query it is necessary to threshold the output scores so that the best

matches can be retrieved. Hobson (2011) observed that the standard threshold algorithms,

L�max (Austin 1996) and Willshaw (Willshaw, Buneman, and Longuet-Higgins 1969), will

often retrieve tokens that are not valid Baum tokens, despite using Baum tokens as the

output tokens in the CMM. As a result the L�WTA algorithm (Hobson 2011), described
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Figure 5.14: Illustration of the L�max�Baum threshold
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This Figure illustrates the steps required for the L�max�Baum threshold. The output
scores are �rst divided into 2 sections, Section A of length 5 and Section B of length
3. The L�max threshold, l = 2 is applied to each of the sections yielding two subto-
kens for each section ordered by match score. The highest matching subtokens are
combined to form Baum token 1, Baum token 2 is formed by combining the highest
match from A with the second match from B, Baum token 3 is formed by combining
the second match from A with the highest match from B and the lowest matching
subtokens are combined to form Baum token 4.

in Section 4.5, was introduced to restrict the results of the threshold step to valid Baum

tokens. L�WTA provided a reduction in the number of query errors observed when using

Baum Coded output tokens.

However the L�WTA threshold only provides the single best match in the CMM. In

order to implement a kNN search it is necessary to be able to retrieve at least k potential

matches. L�max�Baum is a new threshold function that combines the ability of the L�max

threshold function to retrieve multiple matches and the ability of the L�WTA threshold

function only provide valid Baum tokens.

Similar to L�WTA, the L�max�Baum threshold function divides the output scores into

multiple sections of equal length to the sections originally used to generate the Baum

codes, see Section 4.4.2. The L�max threshold is then applied individually to each of the

sections. The desired Baum codes are then constructed by combining the items retrieved

from each of the sections. In order to identify the L best matches, it is necessary to impose

an ordering on the Baum codes that are produced. This ordering is de�ned by the match

score of each of its constituent sections. An example of this process is given in Figure 5.14.

5.4.3 Summary

In this Section, the e�ect of increasing the weight of the output tokens was examined. This

is known to cause crosstalk between samples since multiple samples are superimposed onto

each column of a CMM. Since Baum codes can be used to generate a set of tokens that

are relatively orthogonal to each other, it was decided that Baum tokens should be used

as the output tokens in order to manage this crosstalk.

The use of 2�Bit Baum tokens requires signi�cantly fewer columns to be needed by a

CMM. Using 2�Bit Baum tokens, only 1415 columns are needed to store 50,000 unique
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samples, while the Unary tokens would require a column for each sample to be stored. As

a result the CMM query can be substantially faster due to the use of a smaller CMM.

However existing threshold functions are not suited to decoding the multiple Baum

coded tokens needed to implement a kNN search. Therefore the L�max�Baum threshold

was presented in order to provide this capability.

5.5 Summary

In this Chapter, several changes to the process for selecting input and output tokens used

for the CMM component of AURA kNN have been investigated. Initially the process of

generating OBCC tokens was examined and by using the max distance parameter to limit

computation and the heuristic clique selection algorithm, MIN, it is feasible to generate

OBCC tokens for a large range of values.

Weighted Overlap Code Construction (WOCC) was introduced as a method for gen-

erating tokens that are equivalent to OBCC tokens but that are shorter and require fewer

bits to be set.

Finally, the use of Baum coded output tokens was investigated to reduce the size of a

CMM needed to store a given dataset. This required a new threshold function, L�max�

Baum, so that Baum tokens can be used as part of AURA kNN.
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Chapter 6

Baseline Nearest Neighbour

Experiments for Timeseries Data

6.1 Introduction

This Chapter consists of three Sections. In Section 6.2 the experiments are described

that are used in both this Chapter and the following Chapters to evaluate: the standard

kNN algorithms described in Section 3.11; the standard AURA kNN algorithm described

in Chapter 4; and the modi�cations to the standard AURA kNN algorithm presented in

Chapter 5; with a view to determining whether there is any advantage to replacing the

kNN algorithm used within AURA Alert.

Section 6.3 contains the results of these experiments for the exact kNN algorithms:

Linear Scan, KD�Tree (Bentley 1975) and Dual KD�Tree (Gray and Moore 2000).

Finally Section 6.4 contains the results of these experiments for the LSH algorithm

(Indyk and Motwani 1998), a state of the art approximate kNN algorithm.

The results in these sections are compared to the expected results that are predicted

by the relevant literature. This is to verify that the experiments have been implemented

correctly. In addition these results form a baseline with which to compare the AURA kNN

algorithm.

6.2 Experiment Design

In this Section, the experiment design is presented for the experiments that follow in the

rest of the Chapter.

As described in Section 4.6, AURA Alert models the normal behaviour of a complex

system by performing a fast approximate kNN search across a historical database of system

states to determine whether a new reading of the system state di�ers signi�cantly from

its previous readings. The current implementation of AURA Alert is based on the AURA

kNN algorithm, described in Chapter 4, using Parabolic Kernel (PK) input tokens and

Unary output tokens. The purpose of these experiments is to determine whether there are

alternative kNN algorithms that would provide superior performance within the context

of AURA Alert.
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6.2.1 Objectives

In order to identify whether an alternative kNN algorithm is likely to perform better as

part of AURA Alert. The experiments have been designed in order to answer the following

questions:

1. How is the execution time of each algorithm a�ected by the number of samples in

the dataset?

2. How is the execution time of each algorithm a�ected by the number of features in

each sample?

3. How does the execution time compare between each of the algorithms?

When considering the approximate nearest neighbour algorithms:

1. How is the accuracy of the retrieved neighbours a�ected by the number of samples

in the dataset?

2. How is the accuracy of the retrieved neighbours a�ected by the number of features

possessed by each sample?

In order to compare the methods for generating input tokens used for the CMM query

as part of AURA kNN, the following questions are to be answered:

1. Which of the methods for generating input tokens results in the most accurate version

of AURA kNN?

2. Which of the methods for generating input tokens results in the fastest version of

AURA kNN?

Finally, since Section 5.2.1.2 showed that the length and weight of the input tokens are

signi�cantly a�ected by the number of bins used in representing a data range:

1. What e�ect does the number of bins have on the execution time of AURA kNN?

2. What e�ect does the number of bins have on the accuracy of AURA kNN?

The rest of this Section will describe the experiments that have been designed in order

to answer these questions.

6.2.2 Evaluation Criteria

The questions presented in Section 6.2.1 require that the execution time and the accuracy

of the algorithms be evaluated.

The accuracy of an algorithm will be measured by comparing the mean feature distance

from a query sample to the set of 25 neighbours returned by the query with the mean feature

distance from the query sample to the known true set of neighbours given by the Linear

Scan algorithm, the most basic exact kNN algorithm.
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The method for computing the feature distance is given in Equation 6.1. The mean

feature distance is simply the mean of the feature distances between the query sample and

each of the retrieved neighbours.

The feature distance was chosen as the measurement for comparison rather than, for

example, the mean squared error (Hastie et al. 2009), because it aids in the comparison

between results from datasets with di�erent numbers of features by presenting a measure

that represents the contribution of a single feature to the observed distance.

feature_distance =
distance(query, neighbour)

n_features
(6.1)

In all cases a small feature distance is desired. However when comparing approximate

algorithms, it is desired that the mean feature distance be close to the mean feature distance

of an exact algorithm.

In evaluating the execution time of the algorithms it is necessary to consider both the

time required to perform a query and the time required to perform any setup required to

facilitate the query. These are termed the query time and the training time respectively.

The results of these experiments are reported in seconds and the best results are those

that complete in the shortest period of time.

6.2.3 Datasets

This Section provides details about the datasets used by the kNN experiments.

6.2.3.1 Synthetic Datasets

The synthetic datasets have been generated so that it is easier to evaluate the e�ects of

speci�c dataset characteristics. With this in mind synthetic datasets have been generated

consisting of 1, 000, 10, 000, 100, 000 and 1, 000, 000 samples. In addition the number

of features varies with datasets containing 2, 10, 100, and 1000 features. All values in

the synthetic datasets are randomly generated, with two datasets for each combination of

dataset size and number of features.

One dataset consists of samples drawn from both a random Uniform distribution and

another dataset with samples drawn from a Gaussian distribution, both with a mean of 0

and values drawn such that three standard deviations from the mean falls within the range

[−1, 1]. The characteristics of all the synthetic datasets are provided in Table 6.1. Note

that there are no datasets of 1000 features and 1,000,000 samples, this is simply due to

memory constraints on the compute cluster used to perform the experiments.

The Uniform random datasets were created to evaluate the algorithms when the data

is spread out across a large portion of the data space.

The random Gaussian datasets were created because this is more typical of the type of

data that is likely to be queried by AURA Alert. This is because, when normalised, time

series data typically has a Gaussian distribution (Lin et al. 2003) (See Appendix A).

It is expected that most uses of AURA Alert will require less than 100 features. However

the 1,000 feature datasets are included because it is possible that future applications of

AURA Alert could potentially require large numbers of features.
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Table 6.1: Properties of the Synthetic Datasets

ID Number of Samples Number of Features Random Distribution

SYNTH01 1,000 2 Uniform
SYNTH02 1,000 2 Gaussian
SYNTH03 1,000 10 Uniform
SYNTH04 1,000 10 Gaussian
SYNTH05 1,000 100 Uniform
SYNTH06 1,000 100 Gaussian
SYNTH07 1,000 1,000 Uniform
SYNTH08 1,000 1,000 Gaussian
SYNTH09 10,000 2 Uniform
SYNTH10 10,000 2 Gaussian
SYNTH11 10,000 10 Uniform
SYNTH12 10,000 10 Gaussian
SYNTH13 10,000 100 Uniform
SYNTH14 10,000 100 Gaussian
SYNTH15 10,000 1,000 Uniform
SYNTH16 10,000 1,000 Gaussian
SYNTH17 100,000 2 Uniform
SYNTH18 100,000 2 Gaussian
SYNTH19 100,000 10 Uniform
SYNTH20 100,000 10 Gaussian
SYNTH21 100,000 100 Uniform
SYNTH22 100,000 100 Gaussian
SYNTH23 100,000 1,000 Uniform
SYNTH24 100,000 1,000 Gaussian
SYNTH25 1,000,000 2 Uniform
SYNTH26 1,000,000 2 Gaussian
SYNTH27 1,000,000 10 Uniform
SYNTH28 1,000,000 10 Gaussian
SYNTH29 1,000,000 100 Uniform
SYNTH30 1,000,000 100 Gaussian

This table shows the properties of the 30 synthetic datasets generated for the k�
Nearest Neighbours experiments.
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The number of samples generated for each of the datasets was chosen to represent a

variety of dataset sizes within the range typically handled by AURA Alert.

A matching test dataset consisting of samples is generated with the same number of

features and from the same random distribution. These test datasets are used to provide

the query samples for nearest neighbour search.

6.2.3.2 Real World Datasets

The real world datasets were chosen so that the results from the synthetic datasets can be

validated on realistic data. For this reason the UCR Time Series Classi�cation (Keogh et

al. 2011) datasets were chosen as a set of datasets that are frequently used when comparing

kNN algorithms that operate on time series data. These are small datasets and are therefore

primarily of use for validating the accuracy of the methods rather than their runtime

performance. There are a total of 48 datasets of various sizes and numbers of features.

These are listed in Table 6.2.

6.2.4 Experiment Hardware

All experiments were performed on the York Advanced Research Computing Cluster (YARCC).

A node in the cluster consisted of a single Intel Xeon E5-2670 CPU at 2.6 GHz and 8GB

of RAM.

Each node was con�gured to exclusively run a single experiment. This is to prevent

other workloads on the system interfering with the timing results. The YARCC Cluster

currently consists of 27 Nodes.

6.2.5 Experiment Parameters

In order to ensure the accuracy and consistency of the experiment results, every experiment,

consisting of a dataset and an algorithm, was executed with 10 repetitions. The standard

error of the mean for these results is presented via error bars on the charts that plot the

results. Any signi�cant deviation across the repetitions will be noted when the results are

discussed.
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Table 6.2: Properties of the UCR Time Series Classi�cation Datasets

ID Training Samples Query Samples Features

50Words 450 455 270
Adiac 390 391 176
Beef 30 30 470
Car 60 60 577
CBF 30 900 128

ChlorineConcentration 467 3840 166
CinC_ECG_torso 40 1380 1639

Co�ee 28 28 286
Cricket_X 390 390 300
Cricket_Y 390 390 300
Cricket_Z 390 390 300

DiatomSizeReduction 16 306 345
ECG 100 100 96

ECGFiveDays 23 861 136
Face (all) 560 1690 131
Face (four) 24 88 350
FacesUCR 200 2050 131

Fish 175 175 463
Gun-Point 50 150 150
Haptics 155 308 1092

InlineSkate 100 550 1882
ItalyPowerDemand 67 1029 24

Lightning-2 60 61 637
Lightning-7 70 73 319
MALLAT 55 2345 1024

MedicalImages 381 760 99
MoteStrain 20 1252 84

Non-Invasive Fetal ECG Thorax1 1800 1965 750
Non-Invasive Fetal ECG Thorax2 1800 1965 750

OliveOil 30 30 570
OSU Leaf 200 242 427
Plane 105 105 144

SonyAIBORobot Surface 20 601 70
SonyAIBORobot SurfaceII 27 953 65

StarLightCurves 1000 8236 1024
Swedish Leaf 500 625 128
Symbols 25 995 398

Synthetic Control 300 300 60
Trace 100 100 275

Two Patterns 1000 4000 128
TwoLeadECG 23 1139 82

uWaveGestureLibrary_X 896 3582 315
uWaveGestureLibrary_Y 896 3582 315
uWaveGestureLibrary_Z 896 3582 315

Wafer 1000 6174 152
WordsSynonyms 267 638 270

Yoga 300 3000 426

This table shows the properties of the 48 real world datasets used for the k�Nearest
Neighbours experiments.
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6.3 Exact Algorithm Results

In this Section the performance of the exact algorithms, Linear search, KD�Tree and Dual

KD-Tree, has been evaluated with respect to the real world and synthetic datasets detailed

in Sections 6.2.3. Given that the performance and accuracy of the exact algorithms can be

predicted from their theoretical properties, the purpose of this evaluation is primarily to

demonstrate that these algorithms are operating as expected and verify the experimental

setup. This is important because the exact algorithms form the baseline comparison for

the evaluation of approximate algorithms that follow.

Accuracy

Since the Linear, KD�Tree and Dual KD�Tree algorithms are all exact algorithms, it is

expected that the accuracy will be identical across all the datasets.

The results of the Linear, KD�Tree and Dual KD�Tree experiments can be seen in

Tables 6.3 and 6.4. As expected, the mean features distance is identical across all the

algorithms.

As a result it is reasonable to conclude that the implementations of the Linear, KD�Tree

and Dual KD�Tree algorithms are correct.
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Table 6.3: Mean Feature Distance for Exact Algorithms (Synthetic)

ID Features Samples Linear KD Tree Dual KD Tree

SYNTH01 2 1,000 0.062 0.062 0.062
SYNTH02 2 1,000 0.065 0.065 0.065
SYNTH03 10 1,000 0.142 0.142 0.142
SYNTH04 10 1,000 0.124 0.124 0.124
SYNTH05 100 1,000 0.071 0.071 0.071
SYNTH06 100 1,000 0.061 0.061 0.061
SYNTH07 1,000 1,000 0.025 0.025 0.025
SYNTH08 1,000 1,000 0.021 0.021 0.021
SYNTH09 2 10,000 0.019 0.019 0.019
SYNTH10 2 10,000 0.022 0.022 0.022
SYNTH11 10 10,000 0.107 0.107 0.107
SYNTH12 10 10,000 0.096 0.096 0.096
SYNTH13 100 10,000 0.067 0.067 0.067
SYNTH14 100 10,000 0.058 0.058 0.058
SYNTH15 1,000 10,000 0.024 0.024 0.024
SYNTH16 1,000 10,000 0.021 0.021 0.021
SYNTH17 2 100,000 0.006 0.006 0.006
SYNTH18 2 100,000 0.007 0.007 0.007
SYNTH19 10 100,000 0.082 0.082 0.082
SYNTH20 10 100,000 0.076 0.076 0.076
SYNTH21 100 100,000 0.064 0.064 0.064
SYNTH22 100 100,000 0.055 0.055 0.055
SYNTH23 1,000 100,000 0.024 0.024 0.024
SYNTH24 1,000 100,000 0.021 0.021 0.021
SYNTH25 2 1,000,000 0.002 0.002 0.002
SYNTH26 2 1,000,000 0.002 0.002 0.002
SYNTH27 10 1,000,000 0.063 0.063 0.063
SYNTH28 10 1,000,000 0.060 0.060 0.060
SYNTH29 100 1,000,000 0.062 0.062 0.062
SYNTH30 100 1,000,000 0.053 0.053 0.053

This table shows the mean feature distance for the Linear, KD�Tree and Dual KD�
Tree algorithms. Since these are all exact algorithms, as expected, the results are
identical.

112



Table 6.4: Mean Feature Distance for Exact Algorithms (Real)

ID Features Samples Linear KD Tree Dual KD Tree

50words 270 450 0.046 0.046 0.046
Adiac 176 390 0.005 0.005 0.005
Beef 470 30 0.002 0.002 0.002
CBF 128 30 0.093 0.093 0.093

ChlorineConcentration 166 467 0.011 0.011 0.011
CinC_ECG_torso 1,639 40 0.032 0.032 0.032

Co�ee 286 28 0.208 0.208 0.208
Cricket_X 300 390 0.044 0.044 0.044
Cricket_Y 300 390 0.044 0.044 0.044
Cricket_Z 300 390 0.044 0.044 0.044

DiatomSizeReduction 345 16 0.010 0.010 0.010
ECG200 96 100 0.053 0.053 0.053

ECGFiveDays 136 23 0.081 0.081 0.081
FaceAll 131 560 0.072 0.072 0.072
FaceFour 350 24 0.063 0.063 0.063
FacesUCR 131 200 0.079 0.079 0.079
Gun_Point 150 50 0.034 0.034 0.034
Haptics 1,092 155 0.012 0.012 0.012

InlineSkate 1,882 100 0.013 0.013 0.013
ItalyPowerDemand 24 67 0.074 0.074 0.074

Lighting2 637 60 0.039 0.039 0.039
Lighting7 319 70 0.052 0.052 0.052
MALLAT 1,024 55 0.009 0.009 0.009

MedicalImages 99 381 0.045 0.045 0.045
MoteStrain 84 20 0.110 0.110 0.110

NonInvasiveFatalECG_Thorax1 750 1,800 0.004 0.004 0.004
NonInvasiveFatalECG_Thorax2 750 1,800 0.004 0.004 0.004

OSULeaf 427 200 0.044 0.044 0.044
OliveOil 570 30 0.000 0.000 0.000

SonyAIBORobot_Surface 70 20 0.089 0.089 0.089
SonyAIBORobot_SurfaceII 65 27 0.131 0.131 0.131

StarLightCurves 1,024 1,000 0.007 0.007 0.007
SwedishLeaf 128 500 0.029 0.029 0.029
Symbols 398 25 0.054 0.054 0.054
Trace 275 100 0.027 0.027 0.027

TwoLeadECG 82 23 0.055 0.055 0.055
Two_Patterns 128 1,000 0.083 0.083 0.083
WordsSynonyms 270 267 0.051 0.051 0.051

�sh 463 175 0.009 0.009 0.009
synthetic_control 60 300 0.106 0.106 0.106

test 3 10 0.379 0.379 0.379
uWaveGestureLibrary_X 315 896 0.031 0.031 0.031
uWaveGestureLibrary_Y 315 896 0.028 0.028 0.028
uWaveGestureLibrary_Z 315 896 0.030 0.030 0.030

wafer 152 1,000 0.029 0.029 0.029
yoga 426 300 0.019 0.019 0.019

This table shows the mean feature distance for the Linear, KD�Tree and Dual KD�
Tree algorithms. Since these are all exact algorithms, as expected, the results are
identical.

Query Performance

The mean query times for the Linear, KD�Tree and Dual KD�Tree algorithms on the

synthetic datasets can be found in Table 6.5. The query times for the real world datasets

are not evaluated because the datasets are not large enough to draw meaningful conclusions

about the performance of the algorithms. Speci�cally, some of the datasets contain so few
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samples that the execution time of the query is less than the resolution of the system clock

and any variances observed at this level are more likely to be caused by operating system

overheads than di�erences in the algorithms.

Table 6.5: Mean Query Time for Exact Algorithms (Synthetic)

ID Features Samples Linear KD Tree Dual KD Tree

SYNTH01 2 1,000 0.123 0.005 0.007
SYNTH02 2 1,000 0.139 0.006 0.013
SYNTH03 10 1,000 0.154 0.030 0.029
SYNTH04 10 1,000 0.160 0.028 0.026
SYNTH05 100 1,000 0.438 0.165 0.147
SYNTH06 100 1,000 0.466 0.183 0.166
SYNTH07 1,000 1,000 3.585 1.902 1.167
SYNTH08 1,000 1,000 3.519 1.812 1.307
SYNTH09 2 10,000 1.154 0.007 0.044
SYNTH10 2 10,000 1.236 0.008 0.052
SYNTH11 10 10,000 1.411 0.254 0.212
SYNTH12 10 10,000 1.445 0.229 0.218
SYNTH13 100 10,000 4.524 3.959 1.447
SYNTH14 100 10,000 4.624 4.114 1.359
SYNTH15 1,000 10,000 34.654 19.448 12.863
SYNTH16 1,000 10,000 34.189 18.718 12.216
SYNTH17 2 100,000 11.931 0.016 0.319
SYNTH18 2 100,000 11.862 0.011 0.324
SYNTH19 10 100,000 14.250 1.245 1.898
SYNTH20 10 100,000 14.834 2.267 2.105
SYNTH21 100 100,000 44.913 37.610 13.699
SYNTH22 100 100,000 44.026 46.588 13.688
SYNTH23 1,000 100,000 345.050 211.882 119.184
SYNTH24 1,000 100,000 352.514 217.079 130.298
SYNTH25 2 1,000,000 116.661 0.018 2.684
SYNTH26 2 1,000,000 116.297 0.020 3.093
SYNTH27 10 1,000,000 143.728 2.922 20.675
SYNTH28 10 1,000,000 144.761 6.058 19.216
SYNTH29 100 1,000,000 450.798 422.941 148.958
SYNTH30 100 1,000,000 433.448 411.861 140.706

This table shows the query time in seconds for the Linear, KD�Tree and Dual KD�
Tree algorithms.
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Figure 6.1: A comparison of the mean query time in seconds for each of the synthetic
datasets. Each marker represents the mean query time for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. A smaller query
time is better. The shaded area indicates where the KD�Tree performance is superior to
the Linear algorithm.

Figure 6.1 provides a comparison between the query times of the Linear algorithm

and the KD�Tree algorithm. It is clear that the performance characteristics of the KD�

Tree algorithm are as expected. When the number of features in the dataset is low, the

KD�Tree vastly outperforms the Linear algorithm. The mean execution time of the KD�

Tree algorithm on the 1,000,000 sample, 2 feature datasets is 0.016% of the Linear Scan

execution time.

However as the number of features increases, KD�Tree performance degrades to match

that of the Linear algorithm. The 100 feature, 1,000,000 sample datasets have a mean

execution time of 94.4% of the Linear Scan execution time. It is worth noting that even

for 10 features, a relatively small number of features, the performance degradation is very

signi�cant.
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Figure 6.2: A comparison of the mean query time in seconds for each of the synthetic
datasets. Each marker represents the mean query time for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. A smaller query
time is better. The shaded area indicates where the Dual KD�Tree performance is superior
to the Linear algorithm.

Figure 6.2 provides a comparison between the query times of the Linear algorithm and

the Dual KD�Tree algorithm. It is clear that the Dual KD�Tree algorithm is much faster

for all of the synthetic datasets. Across all the datasets, the mean execution time of the

Dual KD�Tree algorithm is just 21% of the mean execution time for the Linear Scan.
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Figure 6.3: A comparison of the mean query time in seconds for each of the synthetic
datasets. Each marker represents the mean query time for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. A smaller query
time is better. The shaded area indicates where the Dual KD�Tree performance is superior
to the Linear algorithm.

The advantage of the Dual KD�Tree over the standard KD�Tree for datasets with

many features can clearly be seen in Figure 6.3. For datasets SYNTH29 and SYNTH30,

the rightmost markers, each consisting of 100 features and 1,000,000 samples the Dual

KD�Tree algorithm has a mean execution time that is only 35% of the execution time for

the standard KD�Tree.

However it is clear that the overhead incurred in this experiment for datasets with few

features is su�cient to negate the theoretical advantages of this approach over the standard

KD�Tree. In the worst case, datasets SYNTH25 and SYNTH26, consisting of 2 features

and 1,000,00 samples, the execution time of the Dual KD�Tree algorithm is 152 longer

than the standard KD�Tree algorithm.

Training Performance

The mean training times in seconds for the Linear, KD�Tree and Dual KD�Tree algorithms

are provided in Table 6.6. As expected for the Linear algorithm this step completes almost

instantly because there is no preprocessing that is required to be performed, the actual

time taken by the experiment is less than the millisecond resolution of the machines that

the experiments are performed on.

The training times for KD�Tree and Dual KD�Tree are very similar, this was also to
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be expected. The median training times for the KD�Tree and Dual KD�Tree algorithms

are 0.08s and 0.08s with the di�erence in distribution of training times between the two

algorithms being statistically insigni�cant (Mann�Whitney�U = 44758, n1 = n2 = 300,

P > 0.05 two tailed).

In addition, both algorithms exhibit the expected increase in training times as the

number of features and samples in a dataset increases.

Table 6.6: Mean Training Time for Exact Algorithms (Synthetic)

ID Features Samples Linear KD Tree Dual KD Tree

SYNTH01 2 1,000 0.000 0.000 0.000
SYNTH02 2 1,000 0.000 0.000 0.000
SYNTH03 10 1,000 0.000 0.000 0.001
SYNTH04 10 1,000 0.000 0.000 0.000
SYNTH05 100 1,000 0.000 0.003 0.005
SYNTH06 100 1,000 0.000 0.004 0.002
SYNTH07 1,000 1,000 0.000 0.026 0.023
SYNTH08 1,000 1,000 0.000 0.026 0.031
SYNTH09 2 10,000 0.000 0.004 0.005
SYNTH10 2 10,000 0.000 0.005 0.003
SYNTH11 10 10,000 0.000 0.006 0.007
SYNTH12 10 10,000 0.000 0.006 0.008
SYNTH13 100 10,000 0.000 0.062 0.058
SYNTH14 100 10,000 0.000 0.068 0.057
SYNTH15 1,000 10,000 0.000 0.474 0.534
SYNTH16 1,000 10,000 0.000 0.415 0.497
SYNTH17 2 100,000 0.000 0.059 0.057
SYNTH18 2 100,000 0.000 0.066 0.075
SYNTH19 10 100,000 0.000 0.148 0.172
SYNTH20 10 100,000 0.000 0.159 0.182
SYNTH21 100 100,000 0.000 0.931 1.183
SYNTH22 100 100,000 0.000 1.402 1.084
SYNTH23 1,000 100,000 0.000 12.699 13.359
SYNTH24 1,000 100,000 0.000 14.159 15.501
SYNTH25 2 1,000,000 0.000 2.622 2.442
SYNTH26 2 1,000,000 0.000 2.017 2.046
SYNTH27 10 1,000,000 0.000 2.732 3.165
SYNTH28 10 1,000,000 0.000 3.006 3.127
SYNTH29 100 1,000,000 0.000 25.089 24.611
SYNTH30 100 1,000,000 0.000 23.284 23.537

This table shows the training time in seconds for the Linear, KD�Tree and Dual
KD�Tree algorithms.

Summary

In this section the Linear, KD�Tree and Dual KD�Tree algorithms have been shown to

behave as expected. All three exact algorithms agree on the nearest neighbours for every

dataset examined. The Linear algorithm has the slowest query time in every dataset.

The KD�Tree algorithm has the fastest query time for very small numbers of features
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but degrades to Linear performance as the number of features increases. In contrast the

overhead incurred by the Dual KD�Tree for a small number of features makes it slower

than the standard KD�Tree, however as the number of features increases, the bene�ts to

query time of the Dual Tree approach are easily observed. With respect to training, the

Linear algorithm requires no training step and therefore completes instantly and the KD�

Tree and Dual KD�Tree algorithms have similar training times required to construct their

trees. The training time for both tree based algorithms increases signi�cantly with both

the number of samples and number of features in the datasets.

6.4 Locality Sensitive Hashing (LSH) Results

In this Section the performance of Locality Sensitive Hashing (LSH) approximate near-

est neighbour algorithm has been evaluated with respect to the real world and synthetic

datasets detailed in Sections 6.2.3. LSH is widely used for high performance nearest neigh-

bour search for datasets with both a large number of features and a large number of samples

(Sundaram et al. 2013). Therefore the performance of this approximate algorithm forms

the baseline for an approximate nearest neighbour algorithm to which the AURA methods

will be compared.

For these experiments the number of hash tables used was �xed at 10 as suggested by

(Bawa, Condie, and Ganesan 2005). Increasing the number of hash tables will increase the

execution time of the algorithm and reduce the probability of a neighbour being excluded

from the results. Reducing the number of hash tables will reduce the execution time and

increase the probability of a neighbour being excluded. 10 hash tables is su�cient to

ensure a good covering of the random bins and not so large as to impose a signi�cant

computational overhead.

Accuracy

Since the LSH algorithm is not an exact nearest neighbour algorithm, it is expected that the

mean features distance for the LSH results will be greater than that of the exact algorithms.

In these experiments, a mean features distance equal to the exact algorithm is considered

to be a perfect result. A larger di�erence between the exact mean feature distance and the

LSH mean feature distance indicates more error in the approximate results. In this Section,

the results for both the synthetic and real world datasets are evaluated in comparison to

the exact results.
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Table 6.7: Mean Feature Distance for LSH Algorithm (Synthetic)

ID Features Samples Exact LSH

SYNTH01 2 1,000 0.06249 0.06250
SYNTH02 2 1,000 0.06456 0.06457
SYNTH03 10 1,000 0.14206 0.14371
SYNTH04 10 1,000 0.12374 0.12542
SYNTH05 100 1,000 0.07080 0.07250
SYNTH06 100 1,000 0.06061 0.06214
SYNTH07 1,000 1,000 0.02476 0.02476
SYNTH08 1,000 1,000 0.02136 0.02136
SYNTH09 2 10,000 0.01919 0.01919
SYNTH10 2 10,000 0.02229 0.02229
SYNTH11 10 10,000 0.10738 0.11075
SYNTH12 10 10,000 0.09582 0.09949
SYNTH13 100 10,000 0.06722 0.07120
SYNTH14 100 10,000 0.05752 0.06122
SYNTH15 1,000 10,000 0.02442 0.02479
SYNTH16 1,000 10,000 0.02101 0.02137
SYNTH17 2 100,000 0.00607 0.00607
SYNTH18 2 100,000 0.00725 0.00725
SYNTH19 10 100,000 0.08181 0.08596
SYNTH20 10 100,000 0.07569 0.08035
SYNTH21 100 100,000 0.06426 0.07023
SYNTH22 100 100,000 0.05485 0.06027
SYNTH23 1,000 100,000 0.02413 0.02476
SYNTH24 1,000 100,000 0.02075 0.02135
SYNTH25 2 1,000,000 0.00191 0.00191
SYNTH26 2 1,000,000 0.00238 0.00238
SYNTH27 10 1,000,000 0.06313 0.06730
SYNTH28 10 1,000,000 0.06011 0.06498
SYNTH29 100 1,000,000 0.06158 0.06920
SYNTH30 100 1,000,000 0.05268 0.05958

This table shows the mean feature distance for the LSH Algorithm, the mean feature
distance for the Exact algorithms are provided for comparison.

Table 6.7 shows the mean feature distance for each of the synthetic datasets. It is clear

that the di�erence between the LSH algorithm and the exact algorithms is very small.

Across all the synthetic datasets the mean feature distance of the LSH algorithm is only

3.54% higher than the exact algorithms.
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Figure 6.4: A comparison of the mean feature distance for each of the synthetic datasets.
Each marker represents the mean feature distance for a single synthetic dataset, the markers
are coloured according to the number of features in the dataset. A good result for LSH is
indicated by how close the marker is to the boundary with the shaded area. A marker on
the boundary indicates that LSH returns the same results as the exact algorithms.

However Figure 6.4 shows that the majority of the di�erence in mean feature distance

is accounted for by the datasets with 10 or 100 features. The datasets with 2 or 1000

features are typically much closer to the results of the exact algorithms. Indeed the mean

increase in feature distance for the 1000 feature datasets using the LSH algorithm is only

0.9%.
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Table 6.8: Mean Feature Distance for LSH Algorithm (Real)

ID Features Samples Exact LSH

50words 270 450 0.04583 0.04601
Adiac 176 390 0.00543 0.00544
Beef 470 30 0.00233 0.00233
CBF 128 30 0.09348 0.09348

ChlorineConcentration 166 467 0.01130 0.01131
CinC_ECG_torso 1,639 40 0.03179 0.03179

Co�ee 286 28 0.20785 0.20785
Cricket_X 300 390 0.04368 0.04381
Cricket_Y 300 390 0.04375 0.04389
Cricket_Z 300 390 0.04376 0.04391

DiatomSizeReduction 345 16 0.00983 0.00983
ECG200 96 100 0.05256 0.05256

ECGFiveDays 136 23 0.08129 0.08129
FaceAll 131 560 0.07213 0.07305
FaceFour 350 24 0.06316 0.06316
FacesUCR 131 200 0.07933 0.07948
Gun_Point 150 50 0.03413 0.03413
Haptics 1,092 155 0.01153 0.01153

InlineSkate 1,882 100 0.01281 0.01281
ItalyPowerDemand 24 67 0.07384 0.07384

Lighting2 637 60 0.03891 0.03891
Lighting7 319 70 0.05242 0.05242
MALLAT 1,024 55 0.00904 0.00904

MedicalImages 99 381 0.04450 0.04472
MoteStrain 84 20 0.10961 0.10961

NonInvasiveFatalECG_Thorax1 750 1,800 0.00431 0.00434
NonInvasiveFatalECG_Thorax2 750 1,800 0.00411 0.00414

OSULeaf 427 200 0.04397 0.04397
OliveOil 570 30 0.00018 0.00018

SonyAIBORobot_Surface 70 20 0.08912 0.08912
SonyAIBORobot_SurfaceII 65 27 0.13130 0.13130

StarLightCurves 1,024 1,000 0.00688 0.00688
SwedishLeaf 128 500 0.02878 0.02910
Symbols 398 25 0.05374 0.05374
Trace 275 100 0.02738 0.02738

TwoLeadECG 82 23 0.05481 0.05481
Two_Patterns 128 1,000 0.08252 0.08483
WordsSynonyms 270 267 0.05110 0.05110

�sh 463 175 0.00862 0.00862
synthetic_control 60 300 0.10573 0.10627

uWaveGestureLibrary_X 315 896 0.03133 0.03182
uWaveGestureLibrary_Y 315 896 0.02756 0.02783
uWaveGestureLibrary_Z 315 896 0.02954 0.03001

wafer 152 1,000 0.02948 0.02978
yoga 426 300 0.01895 0.01895

This table shows the mean feature distance for the LSH Algorithm, the mean feature
distance for the Exact algorithms are provided for comparison.
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Figure 6.5: A comparison of the mean feature distance for each of the real world datasets.
Each marker represents the mean feature distance for a single dataset, the markers are
coloured according to the number of features in the dataset. A good result for LSH is
indicated by how close the marker is to the boundary with the shaded area. A marker on
the boundary indicates that LSH returns the same results as the exact algorithms.

The results for the real world datasets are given in Table 6.8 and plotted in Figure

6.5. These results are clearly superior to those of the synthetic datasets. Indeed, the mean

increase in feature distance across all the real world datasets using the LSH algorithm is

only 0.32%. Considering only the datasets with less than 500 features, this increase rises

to 0.37%. In contrast the datasets with more than 500 features have an increase in mean

feature distance of only 0.15%.

Despite being an approximate algorithm, it is clear that in general, accuracy of the LSH

algorithm is very good both for the large and the small datasets. In both the real world

dataset and the synthetic datasets, it appears that the accuracy of the LSH algorithm is

superior for datasets with a large number of features and it is for this reason that LSH is

commonly used for datasets consisting of many features (Sundaram et al. 2013).

Query Performance

In this Section, the query performance of the LSH algorithm will be evaluated with respect

to the Dual KD�Tree algorithm. This is because the Dual KD�Tree algorithm was typically

the fastest of the exact algorithms, particularly on the large datasets to which the LSH

algorithm is best suited.

The mean query times for the LSH algorithm on the synthetic datasets can be found

in Table 6.9. The query times for the real world datasets are not provided because the
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datasets are not large enough to draw meaningful conclusions about the performance of

the algorithms.

Table 6.9: Mean Query Time for the LSH Algorithm (Synthetic)

ID Features Samples Dual KD Tree LSH

SYNTH01 2 1,000 0.007 0.068
SYNTH02 2 1,000 0.013 0.075
SYNTH03 10 1,000 0.029 0.076
SYNTH04 10 1,000 0.026 0.073
SYNTH05 100 1,000 0.147 0.143
SYNTH06 100 1,000 0.166 0.137
SYNTH07 1,000 1,000 1.167 1.818
SYNTH08 1,000 1,000 1.307 1.973
SYNTH09 2 10,000 0.044 0.089
SYNTH10 2 10,000 0.052 0.086
SYNTH11 10 10,000 0.212 0.116
SYNTH12 10 10,000 0.218 0.124
SYNTH13 100 10,000 1.447 0.233
SYNTH14 100 10,000 1.359 0.241
SYNTH15 1,000 10,000 12.863 1.749
SYNTH16 1,000 10,000 12.216 1.889
SYNTH17 2 100,000 0.319 0.095
SYNTH18 2 100,000 0.324 0.108
SYNTH19 10 100,000 1.898 0.145
SYNTH20 10 100,000 2.105 0.165
SYNTH21 100 100,000 13.699 0.294
SYNTH22 100 100,000 13.688 0.290
SYNTH23 1,000 100,000 119.184 1.919
SYNTH24 1,000 100,000 130.298 1.857
SYNTH25 2 1,000,000 2.684 0.110
SYNTH26 2 1,000,000 3.093 0.123
SYNTH27 10 1,000,000 20.675 0.201
SYNTH28 10 1,000,000 19.216 0.190
SYNTH29 100 1,000,000 148.958 0.308
SYNTH30 100 1,000,000 140.706 0.300

This table shows the query time in seconds for the Locality Sensitive Hashing (LSH)
algorithm.
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Figure 6.6: A comparison of the mean query time in seconds for each of the synthetic
datasets. Each marker represents the mean query time for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. A smaller query
time is better. The shaded area indicates where the LSH performance is superior to the
Dual KD�Tree algorithm.

Figure 6.6 shows a comparison between the mean query times of the LSH algorithm

and the Dual KD�Tree algorithm. It is clear that the number of features in the dataset

has a signi�cant e�ect on the query time of the dataset. The total execution time of the

1000 feature datasets is 5.76 times longer than the total execution time of the 100 feature

datasets.

However, it is also apparent from Table 6.9 that the query time does not change sig-

ni�cantly as the number of samples increases. The mean query time only doubles as the

number of samples in the 100 feature datasets increases from 1,000 to 1,000,000. This

excellent ability to scale well with increasing dataset sized is expected and is one of the

major reasons why LSH is widely used.

While Dual KD�Tree is faster than the LSH for the small datasets, SYNTH01�SYNTH09,

that consist of only 1000 samples, LSH is substantially faster than the Dual KD�Tree al-

gorithm for the larger datasets. For datasets SYNTH29 and SYNTH30, consisting of

1,000,000 samples, the LSH algorithm is faster by three orders of magnitude.

Training Performance

In this Section, the training performance of the LSH algorithm will be evaluated with

respect to the Dual KD�Tree algorithm. This is to be consistent with the query time
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comparison above. In addition the training times for KD�Tree and Dual KD-Tree were

found to be very similar and a comparison with the non�existent training of the Linear

algorithm is not useful.

Table 6.10: Mean Training Time for the LSH Algorithm (Synthetic)

ID Features Samples Dual KD Tree LSH

SYNTH01 2 1,000 0.000 0.032
SYNTH02 2 1,000 0.000 0.034
SYNTH03 10 1,000 0.001 0.055
SYNTH04 10 1,000 0.000 0.048
SYNTH05 100 1,000 0.005 0.191
SYNTH06 100 1,000 0.002 0.209
SYNTH07 1,000 1,000 0.023 0.365
SYNTH08 1,000 1,000 0.031 0.405
SYNTH09 2 10,000 0.005 0.351
SYNTH10 2 10,000 0.003 0.331
SYNTH11 10 10,000 0.007 0.655
SYNTH12 10 10,000 0.008 0.734
SYNTH13 100 10,000 0.058 3.762
SYNTH14 100 10,000 0.057 3.932
SYNTH15 1,000 10,000 0.534 20.380
SYNTH16 1,000 10,000 0.497 23.184
SYNTH17 2 100,000 0.057 3.692
SYNTH18 2 100,000 0.075 4.200
SYNTH19 10 100,000 0.172 8.848
SYNTH20 10 100,000 0.182 10.319
SYNTH21 100 100,000 1.183 60.299
SYNTH22 100 100,000 1.084 66.571
SYNTH23 1,000 100,000 13.359 387.808
SYNTH24 1,000 100,000 15.501 398.625
SYNTH25 2 1,000,000 2.442 49.638
SYNTH26 2 1,000,000 2.046 57.752
SYNTH27 10 1,000,000 3.165 176.161
SYNTH28 10 1,000,000 3.127 188.207
SYNTH29 100 1,000,000 24.611 1,055.715
SYNTH30 100 1,000,000 23.537 1,042.559

This table shows the training time in seconds for the Locality Sensitive Hashing (LSH)
algorithm.

The mean training times for each of the synthetic datasets are provided in Table 6.10.

The LSH training times are substantially longer than for the Dual KD�Tree algorithm. In

all cases it takes several orders of magnitude longer to perform the training for the LSH.

In addition Figures 6.7 and 6.8 appear to show the training time increasing linearly with

both the number of samples in the dataset and the number of features in each sample.
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Figure 6.7: A comparison of the mean training time in seconds with the number of
features in a dataset. Each marker represents the mean training time for a single synthetic
dataset, the markers are coloured according to the number of samples in the dataset.
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Figure 6.8: A comparison of the mean training time in seconds with the number of
samples in a dataset. Each marker represents the mean training time for a single synthetic
dataset, the markers are coloured according to the number of features in the dataset.

Summary

In this Section, the LSH algorithm has been evaluated with respect to the exact Dual KD�

Tree algorithm. The accuracy of the LSH algorithm is very similar to that of the exact

algorithm. On the real world datasets the mean feature distance for the LSH algorithm is

only 0.32% larger than the results for the exact algorithms. It is likely that this level of

accuracy would be su�cient for most applications of AURA Alert.

The query time of LSH is the primary advantage of the algorithm. Within the range

of datasets used for this experiment, there does not appear to be a signi�cant increase in

the query time for datasets with many samples in comparison to those with few samples.

As a result, while the LSH algorithm may not be the best algorithm for small datasets, i.e.

those with fewer than 10,000 samples, it is several orders of magnitude faster than any of

the exact algorithms for the largest datasets.

This major advantage in query speed comes at the cost of the training time. In com-

parison to Dual KD�Tree, LSH requires considerably longer to train. This training time

appears to grow linearly with both the number of samples and the number of features in

the dataset. As a result, in the worst case, LSH required a mean training time of 1056

seconds to train dataset SYNTH29 consisting of 1,000,000 samples and 100 features while

the Dual KD�Tree required only 25 seconds.

In conclusion, the LSH algorithm would be well suited to applications that require
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frequent querying of very large datasets where this would enable the higher cost of the

training to be out weighed by the signi�cantly faster query times.
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Chapter 7

AURA Unary Output Token

Experiments

In this Chapter the AURA kNN algorithm is investigated using a unary output token.

The purpose of these experiments is to determine the best input token method to use with

AURA kNN and to evaluate how the AURA kNN compares to the baseline algorithms

examined in Section 6.3.

The Parabolic Kernel (PK) input token with a unary output token is currently the

standard con�guration of AURA kNN used by AURA Alert. However this con�guration has

previously only been compared to the Linear Scan algorithm (Hodge and Austin 2005) and

it is unknown how this con�guration will preform in comparison to faster exact algorithms

such as Dual KD�Tree or the approximate LSH algorithm. This is the �rst comparison to

be published that considers either the OBCC or WOCC input tokens.

In Section 7.1 the e�ect of varying the number of bins used to encode the input tokens

is considered. This is followed by Section 7.2 where the performance of the three input

token methods is compared with the baseline algorithms.

7.1 Number of Bins

Section 5.2.1.2 demonstrated how increasing the number of bins adversely a�ect the length

and weight of OBCC tokens. However using more bins allows tokens to be generated that

provide a greater level of discrimination between each token.

The purpose of this Section is to determine whether there are any improvements in

the accuracy of the AURA kNN algorithm by using more bins and whether it is worth the

performance cost caused by the resulting larger input tokens.

Accuracy

In this Section the e�ect on the accuracy of increasing the number of bins is investigated

for each of the three input token methods, PK, OBCC and WOCC. The table of results for

these experiments on the synthetic datasets is given below, the results on the real world

datasets can be found in Appendix B.
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Table 7.1: Mean Feature Distance for Number of Bins with PK AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.062 0.062 0.062 0.063 0.063
SYNTH02 2 1,000 0.065 0.065 0.065 0.065 0.065
SYNTH03 10 1,000 0.142 0.149 0.149 0.149 0.149
SYNTH04 10 1,000 0.124 0.128 0.128 0.128 0.128
SYNTH05 100 1,000 0.071 0.072 0.072 0.072 0.072
SYNTH06 100 1,000 0.061 0.062 0.062 0.062 0.062
SYNTH07 1,000 1,000 0.025 0.025 0.025 0.025 0.025
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.020 0.019 0.019 0.019
SYNTH10 2 10,000 0.022 0.023 0.022 0.022 0.023
SYNTH11 10 10,000 0.107 0.110 0.110 0.110 0.110
SYNTH12 10 10,000 0.096 0.099 0.098 0.097 0.097
SYNTH13 100 10,000 0.067 0.069 0.069 0.069 0.069
SYNTH14 100 10,000 0.058 0.059 0.059 0.059 0.059
SYNTH15 1,000 10,000 0.024 0.025 0.025 0.025 0.025
SYNTH16 1,000 10,000 0.021 0.021 0.021 0.021 0.021
SYNTH17 2 100,000 0.006 0.006 0.006 0.006 0.006
SYNTH18 2 100,000 0.007 0.008 0.008 0.008 0.007
SYNTH19 10 100,000 0.082 0.084 0.082 0.082 0.082
SYNTH20 10 100,000 0.076 0.080 0.078 0.078 0.077
SYNTH21 100 100,000 0.064 0.066 0.066 0.066 0.066
SYNTH22 100 100,000 0.055 0.057 0.057 0.057 0.057
SYNTH23 1,000 100,000 0.024 0.024 0.024 0.024 0.024
SYNTH24 1,000 100,000 0.021 0.021 0.021 0.021 0.021
SYNTH25 2 1,000,000 0.002 0.002 0.002 0.002 0.002
SYNTH26 2 1,000,000 0.002 0.002 0.002 0.003 0.003
SYNTH27 10 1,000,000 0.063 0.066 0.064 0.063 0.063
SYNTH28 10 1,000,000 0.060 0.065 0.063 0.062 0.062
SYNTH29 100 1,000,000 0.062 0.064 0.064 0.064 0.064
SYNTH30 100 1,000,000 0.053 0.055 0.055 0.055 0.055

This table shows the mean feature distance for the AURA algorithm with PK input
tokens, Unary output tokens and a varying numbers of bins.

Table 7.1 gives the results for the AURA Nearest Neighbours algorithm using the PK

input tokens and Unary output tokens. This is the con�guration that has traditionally

been used as part of AURA Alert. It is expected that increasing the number of bins will

correspond to a decrease in the mean feature distances observed. While it appears that

this is the case from these results, because the mean feature distance has a small decrease

as the number of bins increases, there is no statistically signi�cant di�erence between the

observed feature distances for 10 bins and for 80 bins (One�Way ANOVA, f = 0.012,

p = 0.998 > 0.05) despite the large increase in the number of bins. The real world datasets

also did not display any statistically signi�cant di�erences (One�Way ANOVA, f = 0.003,

p = 1.000 > 0.05) between the 10 bin results and the 80 bin results.
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Table 7.2: Mean Feature Distance for Number of Bins with OBCC AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.062 0.062 0.063 0.096 0.226
SYNTH02 2 1,000 0.065 0.065 0.065 0.090 0.177
SYNTH03 10 1,000 0.142 0.181 0.190 0.197 0.201
SYNTH04 10 1,000 0.124 0.159 0.166 0.172 0.175
SYNTH05 100 1,000 0.071 0.075 0.076 0.077 0.077
SYNTH06 100 1,000 0.061 0.066 0.066 0.067 0.067
SYNTH07 1,000 1,000 0.025 0.025 0.025 0.025 0.025
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.020 0.019 0.019 0.030
SYNTH10 2 10,000 0.022 0.023 0.022 0.023 0.031
SYNTH11 10 10,000 0.107 0.155 0.165 0.177 0.183
SYNTH12 10 10,000 0.096 0.134 0.144 0.154 0.158
SYNTH13 100 10,000 0.067 0.073 0.074 0.075 0.075
SYNTH14 100 10,000 0.058 0.064 0.065 0.065 0.066
SYNTH15 1,000 10,000 0.024 0.025 0.025 0.025 0.025
SYNTH16 1,000 10,000 0.021 0.022 0.022 0.022 0.022
SYNTH17 2 100,000 0.006 0.006 0.006 0.006 0.006
SYNTH18 2 100,000 0.007 0.008 0.008 0.008 0.008
SYNTH19 10 100,000 0.082 0.126 0.142 0.157 0.166
SYNTH20 10 100,000 0.076 0.111 0.125 0.138 0.145
SYNTH21 100 100,000 0.064 0.072 0.073 0.074 0.074
SYNTH22 100 100,000 0.055 0.062 0.063 0.064 0.065
SYNTH23 1,000 100,000 0.024 0.025 0.025 0.025 0.025
SYNTH24 1,000 100,000 0.021 0.022 0.022 0.022 0.022
SYNTH25 2 1,000,000 0.002 0.002 0.002 0.002 0.002
SYNTH26 2 1,000,000 0.002 0.002 0.002 0.003 0.003
SYNTH27 10 1,000,000 0.063 0.098 0.120 0.140 0.151
SYNTH28 10 1,000,000 0.060 0.089 0.106 0.123 0.132
SYNTH29 100 1,000,000 0.062 0.070 0.071 0.072 0.073
SYNTH30 100 1,000,000 0.053 0.061 0.062 0.063 0.064

This table shows the mean feature distance for the AURA algorithm with OBCC
input tokens, unary output tokens and a varying numbers of bins.

Table 7.2 gives the results for the AURA Nearest Neighbours algorithm using the

OBCC input tokens and unary output tokens. Here we can see that, counter�intuitively,

there is a signi�cant increase in the mean feature distance for OBCC tokens with more

bins (One�Way ANOVA, f = 6.17, p = 0.000 < 0.05). A potential reason for this result

could be due to the limits placed on the maximum allowed overlap between input tokens

during the generation of the OBCC tokens that is required to ensure that the tokens

remain a manageable length. Within the real world datasets, this degradation in accuracy

is not observed, the accuracy on these datasets did not display any statistically signi�cant

di�erences (One�Way ANOVA, f = 0.006, p = 0.999 > 0.05) as the number of bins

increased.
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Table 7.3: Mean Feature Distance for Number of Bins with WOCC AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.062 0.062 0.063 0.096 0.226
SYNTH02 2 1,000 0.065 0.065 0.065 0.090 0.177
SYNTH03 10 1,000 0.142 0.181 0.190 0.197 0.201
SYNTH04 10 1,000 0.124 0.159 0.166 0.172 0.175
SYNTH05 100 1,000 0.071 0.075 0.076 0.077 0.077
SYNTH06 100 1,000 0.061 0.066 0.066 0.067 0.067
SYNTH07 1,000 1,000 0.025 0.025 0.025 0.025 0.025
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.020 0.019 0.019 0.030
SYNTH10 2 10,000 0.022 0.023 0.022 0.023 0.031
SYNTH11 10 10,000 0.107 0.155 0.165 0.177 0.183
SYNTH12 10 10,000 0.096 0.134 0.144 0.154 0.158
SYNTH13 100 10,000 0.067 0.073 0.074 0.075 0.075
SYNTH14 100 10,000 0.058 0.064 0.065 0.065 0.066
SYNTH15 1,000 10,000 0.024 0.025 0.025 0.025 0.025
SYNTH16 1,000 10,000 0.021 0.022 0.022 0.022 0.022
SYNTH17 2 100,000 0.006 0.006 0.006 0.006 0.006
SYNTH18 2 100,000 0.007 0.008 0.008 0.008 0.008
SYNTH19 10 100,000 0.082 0.126 0.142 0.157 0.166
SYNTH20 10 100,000 0.076 0.111 0.125 0.138 0.145
SYNTH21 100 100,000 0.064 0.072 0.073 0.074 0.074
SYNTH22 100 100,000 0.055 0.062 0.063 0.064 0.065
SYNTH23 1,000 100,000 0.024 0.025 0.025 0.025 0.025
SYNTH24 1,000 100,000 0.021 0.022 0.022 0.022 0.022
SYNTH25 2 1,000,000 0.002 0.002 0.002 0.002 0.002
SYNTH26 2 1,000,000 0.002 0.002 0.002 0.003 0.003
SYNTH27 10 1,000,000 0.063 0.098 0.120 0.140 0.151
SYNTH28 10 1,000,000 0.060 0.089 0.106 0.123 0.132
SYNTH29 100 1,000,000 0.062 0.070 0.071 0.072 0.073
SYNTH30 100 1,000,000 0.053 0.061 0.062 0.063 0.064

This table shows the mean feature distance for the AURA algorithm with WOCC
input tokens, unary output tokens and a varying numbers of bins.

Table 7.3 gives the results for the AURA Nearest Neighbours algorithm using the

WOCC input tokens and unary output tokens. As expected, the accuracy of these tokens

is identical to that of the OBCC tokens and similarly, there is a signi�cant increase in

the mean feature distance as the number of bins increases (One�Way ANOVA, f = 6.17,

p = 0.000 < 0.05). As with the OBCC tokens, this degradation in accuracy is not ob-

served within the real world datasets, the accuracy on these datasets did not display any

statistically signi�cant di�erences (One�Way ANOVA, f = 0.006, p = 0.999 > 0.05) as

the number of bins increased.

Query Performance

This Section investigates the e�ect on query time of increasing the number of bins for each

of the three input token methods, PK, OBCC and WOCC. The results of these experiments

are given below.
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Table 7.4: Mean Query Time for Number of Bins with PK AURA (Synthetic)

ID Features Samples 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.096 0.085 0.099 0.106
SYNTH02 2 1,000 0.097 0.088 0.095 0.110
SYNTH03 10 1,000 0.127 0.119 0.125 0.124
SYNTH04 10 1,000 0.112 0.119 0.129 0.129
SYNTH05 100 1,000 0.210 0.219 0.247 0.291
SYNTH06 100 1,000 0.216 0.235 0.253 0.302
SYNTH07 1,000 1,000 1.142 1.199 1.421 1.878
SYNTH08 1,000 1,000 1.314 1.299 1.550 2.056
SYNTH09 2 10,000 0.135 0.118 0.160 0.340
SYNTH10 2 10,000 0.118 0.119 0.158 0.310
SYNTH11 10 10,000 0.656 0.692 0.758 0.787
SYNTH12 10 10,000 0.621 0.714 0.801 0.816
SYNTH13 100 10,000 1.459 1.530 1.542 1.584
SYNTH14 100 10,000 1.561 1.621 1.688 1.708
SYNTH15 1,000 10,000 12.455 10.752 10.393 10.684
SYNTH16 1,000 10,000 12.900 11.925 11.914 11.747
SYNTH17 2 100,000 0.390 0.216 0.219 0.472
SYNTH18 2 100,000 0.465 0.247 0.230 0.466
SYNTH19 10 100,000 6.636 7.383 8.605 9.331
SYNTH20 10 100,000 6.071 7.340 8.728 9.455
SYNTH21 100 100,000 17.344 20.662 24.509 26.250
SYNTH22 100 100,000 18.543 21.676 25.869 27.797
SYNTH23 1,000 100,000 119.093 144.322 171.968 200.853
SYNTH24 1,000 100,000 119.534 159.917 190.666 195.135
SYNTH25 2 1,000,000 4.385 1.181 0.412 0.518
SYNTH26 2 1,000,000 6.132 1.555 0.546 0.559
SYNTH27 10 1,000,000 65.392 79.352 94.646 99.622
SYNTH28 10 1,000,000 66.379 80.838 90.038 105.464
SYNTH29 100 1,000,000 178.781 213.471 241.205 281.756
SYNTH30 100 1,000,000 182.917 219.228 262.427 297.216

This table shows the mean query time in seconds for the AURA algorithm with PK
input tokens, unary output tokens and a varying numbers of bins.

Table 7.4 gives the results for the AURA Nearest Neighbours algorithm using PK input

tokens and unary output tokens. This is the con�guration that has traditionally been used

as part of AURA Alert. It appears that the results are generally as expected. Increasing

bins yields an increased query time (One�Way ANOVA, f = 3.26, p = 0.021 < 0.05).

Datasets SYNTH25 and SYNTH26 are clearly outliers to this trend, if they are excluded,

the mean query time increases by 24.7% as the number of bins increases from 10 to 80.

However for datasets SYNTH25 and SYNTH26 with only 2 features and 1,000,000 samples

fewer bins does not result in faster query times but rather a 90% reduction in query time.
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Table 7.5: Mean Query Time for Number of Bins with OBCC AURA (Synthetic)

ID Features Samples 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.101 0.094 0.098 0.088
SYNTH02 2 1,000 0.103 0.095 0.099 0.090
SYNTH03 10 1,000 0.156 0.126 0.133 0.129
SYNTH04 10 1,000 0.167 0.135 0.137 0.132
SYNTH05 100 1,000 0.688 0.449 0.405 0.406
SYNTH06 100 1,000 0.862 0.512 0.431 0.434
SYNTH07 1,000 1,000 6.047 4.932 5.034 5.758
SYNTH08 1,000 1,000 8.401 5.585 5.384 5.688
SYNTH09 2 10,000 0.116 0.118 0.140 0.197
SYNTH10 2 10,000 0.119 0.122 0.138 0.193
SYNTH11 10 10,000 0.989 0.737 0.736 0.670
SYNTH12 10 10,000 1.168 0.811 0.764 0.718
SYNTH13 100 10,000 5.923 3.752 3.129 2.755
SYNTH14 100 10,000 6.524 4.234 3.489 3.125
SYNTH15 1,000 10,000 50.060 32.044 25.711 23.236
SYNTH16 1,000 10,000 60.062 37.869 30.182 26.617
SYNTH17 2 100,000 0.405 0.197 0.191 0.292
SYNTH18 2 100,000 0.505 0.231 0.205 0.275
SYNTH19 10 100,000 9.878 7.464 7.283 6.595
SYNTH20 10 100,000 12.101 8.151 7.631 6.740
SYNTH21 100 100,000 52.479 36.954 31.454 28.430
SYNTH22 100 100,000 62.582 42.282 35.477 31.922
SYNTH23 1,000 100,000 481.428 320.311 269.623 249.017
SYNTH24 1,000 100,000 572.691 377.277 310.774 284.489
SYNTH25 2 1,000,000 4.679 1.102 0.397 0.335
SYNTH26 2 1,000,000 6.034 1.509 0.521 0.355
SYNTH27 10 1,000,000 99.923 80.627 74.732 70.248
SYNTH28 10 1,000,000 107.512 85.985 80.636 76.428
SYNTH29 100 1,000,000 926.413 637.902 580.114 626.345
SYNTH30 100 1,000,000 1,185.169 756.547 673.358 742.845

This table shows the mean query time in seconds for the AURA algorithm with OBCC
input tokens, unary output tokens and a varying numbers of bins.

Table 7.5 gives the results for the AURA Nearest Neighbours algorithm using OBCC

input tokens and unary output tokens. Once again, it appears that OBCC tokens are not

performing as predicted. In this case increasing bins yields a signi�cantly reduced query

time (One�Way ANOVA, f = 3.87, p = 0.009 < 0.05), the mean query time is reduced

by 33% as the number of bins increases from 10 bins to 80 bins. This is opposite to the

expected outcome.
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Table 7.6: Mean Query Time for Number of Bins with WOCC AURA (Synthetic)

ID Features Samples 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.096 0.095 0.092 0.082
SYNTH02 2 1,000 0.118 0.094 0.100 0.093
SYNTH03 10 1,000 0.129 0.121 0.126 0.117
SYNTH04 10 1,000 0.145 0.148 0.132 0.129
SYNTH05 100 1,000 0.300 0.287 0.362 0.378
SYNTH06 100 1,000 0.342 0.371 0.412 0.415
SYNTH07 1,000 1,000 2.588 2.894 4.180 4.934
SYNTH08 1,000 1,000 2.828 3.477 5.198 5.302
SYNTH09 2 10,000 0.117 0.116 0.129 0.190
SYNTH10 2 10,000 0.132 0.126 0.137 0.189
SYNTH11 10 10,000 0.636 0.637 0.680 0.649
SYNTH12 10 10,000 0.804 0.705 0.747 0.698
SYNTH13 100 10,000 2.066 2.080 2.791 2.568
SYNTH14 100 10,000 2.709 2.794 3.322 3.107
SYNTH15 1,000 10,000 15.633 15.522 23.168 22.307
SYNTH16 1,000 10,000 18.951 20.288 27.545 25.733
SYNTH17 2 100,000 0.572 0.221 0.189 0.268
SYNTH18 2 100,000 0.453 0.254 0.208 0.268
SYNTH19 10 100,000 6.218 5.982 6.600 6.449
SYNTH20 10 100,000 7.956 6.703 7.242 6.897
SYNTH21 100 100,000 19.127 21.437 27.966 27.931
SYNTH22 100 100,000 24.743 23.878 32.857 31.281
SYNTH23 1,000 100,000 147.735 155.731 234.371 226.136
SYNTH24 1,000 100,000 178.000 177.837 282.805 274.388
SYNTH25 2 1,000,000 4.194 1.254 0.374 0.341
SYNTH26 2 1,000,000 5.274 1.599 0.518 0.347
SYNTH27 10 1,000,000 73.649 64.859 71.481 66.555
SYNTH28 10 1,000,000 76.556 73.847 75.691 75.080
SYNTH29 100 1,000,000 207.231 213.543 441.144 523.540
SYNTH30 100 1,000,000 251.387 242.896 537.618 657.671

This table shows the mean query time in seconds for the AURA algorithm with
WOCC input tokens, unary output tokens and a varying numbers of bins.

Table 7.6 gives the results for the AURA Nearest Neighbours algorithm using WOCC

input tokens and unary output tokens. As with the PK tokens, increasing the number of

bins also leads to a signi�cant increase in the query time (One�Way ANOVA, f = 6.49,

p = 0.00 < 0.05) for the majority of datasets. Excluding the 2 feature datasets, the 80 bin

query times are 18% slower than the 10 bin query times. As with the PK tokens, the two

feature datasets, particularly those with many samples such as SYNTH25 and SYNTH26,

can be queried a mean of 25% faster with 80 bins rather than 10 bins.

Training Performance

This Section investigates the e�ect on the training time of increasing the number of bins

for the PK, OBCC and WOCC input tokens. The results of these experiments are given

below.
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Table 7.7: Mean Training Time for Number of Bins with PK AURA (Synthetic)

ID Features Samples 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.000 0.001 0.000 0.002
SYNTH02 2 1,000 0.000 0.001 0.002 0.001
SYNTH03 10 1,000 0.004 0.003 0.002 0.003
SYNTH04 10 1,000 0.003 0.004 0.003 0.005
SYNTH05 100 1,000 0.012 0.015 0.018 0.022
SYNTH06 100 1,000 0.011 0.014 0.016 0.022
SYNTH07 1,000 1,000 0.119 0.148 0.181 0.231
SYNTH08 1,000 1,000 0.128 0.141 0.178 0.209
SYNTH09 2 10,000 0.004 0.005 0.007 0.011
SYNTH10 2 10,000 0.007 0.003 0.009 0.010
SYNTH11 10 10,000 0.024 0.027 0.029 0.031
SYNTH12 10 10,000 0.024 0.025 0.029 0.033
SYNTH13 100 10,000 0.129 0.157 0.183 0.212
SYNTH14 100 10,000 0.123 0.149 0.177 0.205
SYNTH15 1,000 10,000 1.330 1.520 1.851 2.364
SYNTH16 1,000 10,000 1.249 1.392 1.852 2.306
SYNTH17 2 100,000 0.042 0.048 0.055 0.067
SYNTH18 2 100,000 0.043 0.049 0.056 0.064
SYNTH19 10 100,000 0.295 0.283 0.322 0.325
SYNTH20 10 100,000 0.255 0.272 0.316 0.330
SYNTH21 100 100,000 1.353 1.577 1.883 2.156
SYNTH22 100 100,000 1.327 1.484 1.824 2.094
SYNTH23 1,000 100,000 12.703 14.823 19.147 23.814
SYNTH24 1,000 100,000 11.536 14.452 18.345 21.192
SYNTH25 2 1,000,000 0.455 0.494 0.569 0.676
SYNTH26 2 1,000,000 0.529 0.490 0.577 0.643
SYNTH27 10 1,000,000 2.668 3.096 3.452 3.455
SYNTH28 10 1,000,000 2.728 2.918 3.066 3.509
SYNTH29 100 1,000,000 15.489 15.786 18.477 21.358
SYNTH30 100 1,000,000 13.033 15.136 18.023 20.388

This table shows the mean training time in seconds for the AURA algorithm with PK
input tokens, unary output tokens and a varying numbers of bins.

Table 7.7 gives the results for the AURA Nearest Neighbours algorithm using PK input

tokens and unary output tokens. This is the con�guration that has traditionally been used

as part of AURA Alert. As with the query time, the training time generally increases as

the number of bins increases. With the mean training time increasing by 38% between

the 10 bin and 80 bin con�gurations. This is a statistically signi�cant increase (One�Way

ANOVA, f = 3.374, p = 0.018 < 0.05) and is consistent regardless of the number of

features in the dataset.

137



Table 7.8: Mean Training Time for Number of Bins with OBCC AURA (Synthetic)

ID Features Samples 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.000 0.001 0.001 0.004
SYNTH02 2 1,000 0.001 0.000 0.001 0.005
SYNTH03 10 1,000 0.008 0.010 0.012 0.016
SYNTH04 10 1,000 0.009 0.009 0.014 0.016
SYNTH05 100 1,000 0.087 0.092 0.131 0.176
SYNTH06 100 1,000 0.097 0.093 0.130 0.182
SYNTH07 1,000 1,000 0.896 1.329 1.941 2.729
SYNTH08 1,000 1,000 1.128 1.105 1.820 2.418
SYNTH09 2 10,000 0.005 0.006 0.010 0.025
SYNTH10 2 10,000 0.005 0.005 0.010 0.024
SYNTH11 10 10,000 0.106 0.104 0.146 0.177
SYNTH12 10 10,000 0.114 0.104 0.142 0.177
SYNTH13 100 10,000 1.047 1.009 1.433 1.936
SYNTH14 100 10,000 1.000 0.998 1.362 1.899
SYNTH15 1,000 10,000 11.382 13.847 19.515 27.868
SYNTH16 1,000 10,000 12.095 13.953 20.111 26.812
SYNTH17 2 100,000 0.043 0.048 0.058 0.085
SYNTH18 2 100,000 0.045 0.049 0.059 0.085
SYNTH19 10 100,000 1.089 1.099 1.502 1.867
SYNTH20 10 100,000 1.233 1.073 1.489 1.796
SYNTH21 100 100,000 10.019 10.455 15.085 20.508
SYNTH22 100 100,000 10.317 10.520 14.497 20.086
SYNTH23 1,000 100,000 115.619 136.090 202.406 276.971
SYNTH24 1,000 100,000 116.010 136.788 208.260 280.658
SYNTH25 2 1,000,000 0.515 0.455 0.576 0.628
SYNTH26 2 1,000,000 0.452 0.480 0.589 0.642
SYNTH27 10 1,000,000 10.873 11.316 15.014 18.655
SYNTH28 10 1,000,000 10.740 11.014 14.730 18.399
SYNTH29 100 1,000,000 82.237 87.665 118.900 157.882
SYNTH30 100 1,000,000 91.697 90.478 117.299 148.335

This table shows the mean training time in seconds for the AURA algorithm with
OBCC input tokens, unary output tokens and a varying numbers of bins.

Table 7.8 gives the results for the AURA Nearest Neighbours algorithm using OBCC

input tokens and unary output tokens. As expected, the training time has a signi�cant

increase (One�Way ANOVA, f = 6.551, p = 0.000 < 0.05) as the number of bins increases.

The 10 bin training time is 52% faster than the 80 bin training time.
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Table 7.9: Mean Training Time for Number of Bins with WOCC AURA (Synthetic)

ID Features Samples 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.001 0.000 0.005 0.005
SYNTH02 2 1,000 0.001 0.000 0.000 0.004
SYNTH03 10 1,000 0.005 0.005 0.010 0.015
SYNTH04 10 1,000 0.005 0.010 0.011 0.016
SYNTH05 100 1,000 0.036 0.052 0.092 0.148
SYNTH06 100 1,000 0.036 0.068 0.095 0.147
SYNTH07 1,000 1,000 0.393 0.745 1.316 2.038
SYNTH08 1,000 1,000 0.405 0.664 1.297 2.008
SYNTH09 2 10,000 0.002 0.006 0.010 0.024
SYNTH10 2 10,000 0.003 0.002 0.009 0.019
SYNTH11 10 10,000 0.041 0.067 0.100 0.148
SYNTH12 10 10,000 0.051 0.065 0.104 0.147
SYNTH13 100 10,000 0.333 0.558 0.996 1.444
SYNTH14 100 10,000 0.379 0.595 0.991 1.545
SYNTH15 1,000 10,000 3.836 6.650 13.654 23.185
SYNTH16 1,000 10,000 3.644 7.290 14.144 21.512
SYNTH17 2 100,000 0.062 0.051 0.056 0.079
SYNTH18 2 100,000 0.042 0.048 0.059 0.077
SYNTH19 10 100,000 0.476 0.663 1.059 1.548
SYNTH20 10 100,000 0.493 0.727 1.095 1.533
SYNTH21 100 100,000 3.204 5.993 10.416 16.269
SYNTH22 100 100,000 3.905 6.018 10.471 16.101
SYNTH23 1,000 100,000 37.234 73.642 145.850 225.989
SYNTH24 1,000 100,000 37.478 68.502 156.347 232.910
SYNTH25 2 1,000,000 0.559 0.514 0.549 0.683
SYNTH26 2 1,000,000 0.472 0.482 0.560 0.650
SYNTH27 10 1,000,000 4.839 7.036 10.825 15.194
SYNTH28 10 1,000,000 5.237 7.479 10.855 15.216
SYNTH29 100 1,000,000 33.303 56.740 93.720 130.491
SYNTH30 100 1,000,000 37.722 57.860 93.955 126.915

This table shows the mean training time in seconds for the AURA algorithm with
WOCC input tokens, unary output tokens and a varying numbers of bins.

Table 7.9 gives the results for the AURA Nearest Neighbours algorithm using WOCC

input tokens and unary output tokens. As with the OBCC tokens, the training time is

60% faster with 10 bins in comparison to 80 bins. This advantage is statistically signi�cant

(One�Way ANOVA, f = 17.552, p = 0.000 < 0.05).

Evaluation

In this Section, the e�ect of varying the number of bins used when generating the input

tokens for the CMM has been examined.

Surprisingly, with PK input tokens, increasing the number of bins did not have a

signi�cant e�ect on the accuracy of the results for either the synthetic or real world datasets

(Appendix B). It did however increase both the training time and the query time for

the majority of datasets. The magnitude of the increase in training and query times is

particularly large for the largest datasets.

However for some datasets, particularly SYNTH25 and SYNTH26 with only 2 features

and 1,000,000 samples, an increase in the number of bins appears to result in a reduction

of the query times. The reason for this appears to be that there are not enough bins

to discriminate between di�erent samples. As described in Section 4, many samples can
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potentially be binned into the same bucket. With a combination of a small number of

features, relatively few bins and a large number of samples, the buckets are over�lled.

The result of this is that the �ltering stage, where the contents of the most similar buckets

returned by the CMM are compared with the query sample, has to perform a large number

of expensive comparisons. In these situations, although increasing the number of bins slows

down the CMM query, it also reduces the number of comparisons that have to be performed

by the �ltering. The end result is that the overall run times can be reduced.

For both OBCC and WOCC input tokens, increasing the number of bins leads to a

signi�cant reduction in the accuracy of the results in the synthetic datasets. As with the

PK input tokens, the accuracy of the real world datasets was not signi�cantly a�ected. A

possible reason for the loss in accuracy is the max overlap parameter of the OBCC tokens

(described in Section 5.2.3.3) results in a reduction in the discrimination between nearby

bins, however further experiments would be needed to verify this. In these experiments

the WOCC tokens are designed to emulate the OBCC tokens, and therefore has to honour

the max overlap parameter, so it is expected that they will perform similarly.

With respect to the e�ects on training and query times for OBCC input tokens, it

appears that increasing the number of bins actually results in a speed up. A possible

explanation for this result is that the larger tokens result in fewer bits being set along each

row. AURA performs a linear scan of the bits set in a row before it can set a particular bit

on that row in the CMM. This is to prevent a bit being set twice in the sparse representation

of the CMM. Yet with many bits being set in row, the overhead of this check can result in

a signi�cant slow down in the training of the CMM. Therefore by increasing the number

of bins, it spreads the bits across more rows and reduces this overhead to training the

CMM. However when the signi�cant loss of accuracy is considered, it does not make sense

to advocate using more bins with OBCC tokens.

Finally, the training and query times of the WOCC input tokens behave as expected

with both query and training times increasing as the number of bins increases.

Summary

As a results of these experiments, it is clear that it is reasonable to only consider the

experiment con�gurations that make use of 10 bins for the rest of the evaluation in this

Section. This is because increasing the number of bins has been shown to have no signi�cant

e�ect on the accuracy of the real world datasets, and has either no signi�cant e�ect, for PK,

or a detrimental e�ect, for OBCC and WOCC, on the accuracy of the synthetic datasets.

In addition, increasing the number of bins imposes a large performance penalty on the PK

and WOCC input tokens.

7.2 Input Tokens

The purpose of this Section is to compare the PK, OBCC and WOCC tokens in the context

of the AURA kNN algorithm. The accuracy, query time and training time of AURA kNN

using each of the token types as input tokens will be compared with a view to determining

the best token generation method to use in conjunction with unary output tokens.
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Accuracy

In this Section, the accuracy of the PK, OBCC and WOCC input tokens is compared. The

results of this experiment are given in Table 7.10.

Table 7.10: Mean Feature Distance for AURA Input Tokens (Synthetic)

ID Features Samples Exact PK OBCC WOCC

SYNTH01 2 1,000 0.062 0.062 0.062 0.062
SYNTH02 2 1,000 0.065 0.065 0.065 0.065
SYNTH03 10 1,000 0.142 0.149 0.181 0.181
SYNTH04 10 1,000 0.124 0.128 0.159 0.159
SYNTH05 100 1,000 0.071 0.072 0.075 0.075
SYNTH06 100 1,000 0.061 0.062 0.066 0.066
SYNTH07 1,000 1,000 0.025 0.025 0.025 0.025
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.020 0.020 0.020
SYNTH10 2 10,000 0.022 0.023 0.023 0.023
SYNTH11 10 10,000 0.107 0.110 0.155 0.155
SYNTH12 10 10,000 0.096 0.099 0.134 0.134
SYNTH13 100 10,000 0.067 0.069 0.073 0.073
SYNTH14 100 10,000 0.058 0.059 0.064 0.064
SYNTH15 1,000 10,000 0.024 0.025 0.025 0.025
SYNTH16 1,000 10,000 0.021 0.021 0.022 0.022
SYNTH17 2 100,000 0.006 0.006 0.006 0.006
SYNTH18 2 100,000 0.007 0.008 0.008 0.008
SYNTH19 10 100,000 0.082 0.084 0.126 0.126
SYNTH20 10 100,000 0.076 0.080 0.111 0.111
SYNTH21 100 100,000 0.064 0.066 0.072 0.072
SYNTH22 100 100,000 0.055 0.057 0.062 0.062
SYNTH23 1,000 100,000 0.024 0.024 0.025 0.025
SYNTH24 1,000 100,000 0.021 0.021 0.022 0.022
SYNTH25 2 1,000,000 0.002 0.002 0.002 0.002
SYNTH26 2 1,000,000 0.002 0.002 0.002 0.002
SYNTH27 10 1,000,000 0.063 0.066 0.098 0.098
SYNTH28 10 1,000,000 0.060 0.065 0.089 0.089
SYNTH29 100 1,000,000 0.062 0.064 0.070 0.070
SYNTH30 100 1,000,000 0.053 0.055 0.061 0.061

This table shows the mean feature distance for the AURA algorithm with PK, OBCC
and WOCC input tokens, unary output tokens and 10 bins.
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Figure 7.1: A comparison of the mean feature distance for each of the synthetic datasets.
The PK input tokens for this experiment consist of 10 bins. Each marker represents the
mean feature distance for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A good result for PK AURA is indicated by
how close the marker is to the boundary with the shaded area. A marker on the boundary
indicates that PK AURA returns the same results as the exact algorithms.

Figure 7.1 shows how the mean feature distance of PK input tokens compared to that

of the exact algorithms. The mean feature distance using PK AURA is only 2.9% larger

than the exact algorithms. However it appears that PK AURA performs worst on the 10

feature datasets, with the mean feature distance for these datasets alone being 4.2% larger

than the exact algorithm.
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Figure 7.2: A comparison of the mean feature distance for each of the synthetic datasets.
The OBCC input tokens for this experiment consist of 10 bins. Each marker represents the
mean feature distance for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A good result for OBCC AURA is indicated by
how close the marker is to the boundary with the shaded area. A marker on the boundary
indicates that OBCC AURA returns the same results as the exact algorithms.

Figure 7.2 shows how the mean feature distance of OBCC input tokens compares to

that of the exact algorithms. It is clear that the accuracy of the 10 feature datasets is once

again very poor. The mean feature distance of the 10 feature datasets is 30% larger than

the exact algorithms. However the accuracy increases as the number of features increases.

In particular, the 1000 feature datasets have a mean feature distance that is only 2.8%

larger than the exact algorithm. Overall the penalty for using OBCC AURA over an exact

algorithm is a mean increase of 11.9% in the mean feature distance across all datasets.
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Figure 7.3: A comparison of the mean feature distance for each of the synthetic datasets.
The WOCC input tokens for this experiment consist of 10 bins. Each marker represents
the mean feature distance for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A good result for WOCC AURA is indicated by
how close the marker is to the boundary with the shaded area. A marker on the boundary
indicates that WOCC AURA returns the same results as the exact algorithms.

Figure 7.3 shows how the mean feature distance of WOCC input tokens compares to

that of the exact algorithms. From this it is clear that the accuracy characteristics are

the same as the OBCC tokens. Indeed the mean feature distance observed with WOCC

AURA is identical to that of OBCC AURA. This is the expected result.
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Figure 7.4: A comparison of the mean feature distance for each of the synthetic datasets.
Both the WOCC input tokens and the PK input tokens for this experiment consist of 10
bins. Each marker represents the mean feature distance for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. Markers in the
shaded area indicate datasets where WOCC AURA has a smaller feature distance than PK
AURA.

Figure 7.4 provides a comparison of the mean feature distance between AURA kNN

using the PK input tokens and WOCC input tokens. With 2 feature and 1000 feature

datasets, the accuracy of both methods is very similar with PK AURA producing a mean

feature distance that is 0.9% smaller. However for the 10 and 100 feature datasets it is

clear that PK input tokens are more accurate with a mean feature distance that is 6.9%

lower for 100 feature datasets and 26% lower for 10 feature datasets.

Query Performance

In this Section the performance of the PK, OBCC and WOCC input tokens is considered

with respect to query time. The results of this experiment are presented in Table 7.11.

The Dual KD�Tree algorithm was chosen to form the comparison from the exact algo-

rithms because it was the fastest of the exact algorithms on the large datasets, particularly

those with many features.
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Table 7.11: Mean Query Time for AURA Input Tokens (Synthetic)

ID Features Samples Dual KD�Tree PK OBCC WOCC

SYNTH01 2 1,000 0.007 0.096 0.101 0.096
SYNTH02 2 1,000 0.013 0.097 0.103 0.118
SYNTH03 10 1,000 0.029 0.127 0.156 0.129
SYNTH04 10 1,000 0.026 0.112 0.167 0.145
SYNTH05 100 1,000 0.147 0.210 0.688 0.300
SYNTH06 100 1,000 0.166 0.216 0.862 0.342
SYNTH07 1,000 1,000 1.167 1.142 6.047 2.588
SYNTH08 1,000 1,000 1.307 1.314 8.401 2.828
SYNTH09 2 10,000 0.044 0.135 0.116 0.117
SYNTH10 2 10,000 0.052 0.118 0.119 0.132
SYNTH11 10 10,000 0.212 0.656 0.989 0.636
SYNTH12 10 10,000 0.218 0.621 1.168 0.804
SYNTH13 100 10,000 1.447 1.459 5.923 2.066
SYNTH14 100 10,000 1.359 1.561 6.524 2.709
SYNTH15 1,000 10,000 12.863 12.455 50.060 15.633
SYNTH16 1,000 10,000 12.216 12.900 60.062 18.951
SYNTH17 2 100,000 0.319 0.390 0.405 0.572
SYNTH18 2 100,000 0.324 0.465 0.505 0.453
SYNTH19 10 100,000 1.898 6.636 9.878 6.218
SYNTH20 10 100,000 2.105 6.071 12.101 7.956
SYNTH21 100 100,000 13.699 17.344 52.479 19.127
SYNTH22 100 100,000 13.688 18.543 62.582 24.743
SYNTH23 1,000 100,000 119.184 119.093 481.428 147.735
SYNTH24 1,000 100,000 130.298 119.534 572.691 178.000
SYNTH25 2 1,000,000 2.684 4.385 4.679 4.194
SYNTH26 2 1,000,000 3.093 6.132 6.034 5.274
SYNTH27 10 1,000,000 20.675 65.392 99.923 73.649
SYNTH28 10 1,000,000 19.216 66.379 107.512 76.556
SYNTH29 100 1,000,000 148.958 178.781 926.413 207.231
SYNTH30 100 1,000,000 140.706 182.917 1,185.169 251.387

This table shows the mean query time in seconds for the AURA algorithm with all
three input tokens, unary output tokens and 10 bins.
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Figure 7.5: A comparison of the mean query time for each of the synthetic datasets. The
PK input tokens for this experiment consist of 10 bins. Each marker represents the mean
query time for a single synthetic dataset, the markers are coloured according to the number
of features in the dataset. A marker in the shaded area indicates a dataset where the PK
AURA mean query time is faster.

Figure 7.5 shows a comparison between the mean query times of the datasets using

AURA with PK input tokens and the Dual KD�Tree algorithm. It is clear that Dual

KD�Tree is faster than the PK approach for most of the datasets, particularly the small

datasets, the mean query time of PK AURA is 38% slower than the exact Dual KD�Tree

algorithm. However for the 1000 feature datasets, the performance gap is very small with

PK AURA being 1.5% faster. Indeed for dataset SYNTH24 PK is 10.8 seconds (9%) faster.
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Figure 7.6: A comparison of the mean query time for each of the synthetic datasets. The
OBCC input tokens for this experiment consist of 10 bins. Each marker represents the
mean query time for a single synthetic dataset, the markers are coloured according to the
number of features in the dataset. A marker in the shaded area indicates a dataset where
the OBCC AURA mean query time is faster.

Figure 7.6 shows a comparison of the mean query time between AURA with OBCC

input tokens and the Dual KD�Tree algorithm. It is clear that OBCC is substantially

slower than Dual KD�Tree for all datasets. Overall the mean query time of OBCC AURA

is 4.9 times slower than Dual KD�Tree.
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Figure 7.7: A comparison of the mean query time for each of the synthetic datasets. The
WOCC input tokens for this experiment consist of 10 bins. Each marker represents the
mean query time for a single synthetic dataset, the markers are coloured according to the
number of features in the dataset. A marker in the shaded area indicates a dataset where
the WOCC AURA mean query time is faster.

Figure 7.7 shows a comparison of the mean query time between AURA with WOCC

input tokens and the Dual KD�Tree algorithm. As with OBCC tokens, it is clear that

WOCC is substantially slower than Dual KD�Tree for all datasets. The mean query time

for WOCC AURA is 2.9 times slower than the Dual KD�Tree algorithm.

Training Performance

In this Section the performance of the PK, OBCC and WOCC input tokens is considered

with respect to training time. The results of this experiment are presented in Table 7.12.
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Table 7.12: Mean Training Time for AURA Input Tokens (Synthetic)

ID Features Samples Dual KD�Tree PK OBCC WOCC

SYNTH01 2 1,000 0.000 0.000 0.000 0.001
SYNTH02 2 1,000 0.000 0.000 0.001 0.001
SYNTH03 10 1,000 0.001 0.004 0.008 0.005
SYNTH04 10 1,000 0.000 0.003 0.009 0.005
SYNTH05 100 1,000 0.005 0.012 0.087 0.036
SYNTH06 100 1,000 0.002 0.011 0.097 0.036
SYNTH07 1,000 1,000 0.023 0.119 0.896 0.393
SYNTH08 1,000 1,000 0.031 0.128 1.128 0.405
SYNTH09 2 10,000 0.005 0.004 0.005 0.002
SYNTH10 2 10,000 0.003 0.007 0.005 0.003
SYNTH11 10 10,000 0.007 0.024 0.106 0.041
SYNTH12 10 10,000 0.008 0.024 0.114 0.051
SYNTH13 100 10,000 0.058 0.129 1.047 0.333
SYNTH14 100 10,000 0.057 0.123 1.000 0.379
SYNTH15 1,000 10,000 0.534 1.330 11.382 3.836
SYNTH16 1,000 10,000 0.497 1.249 12.095 3.644
SYNTH17 2 100,000 0.057 0.042 0.043 0.062
SYNTH18 2 100,000 0.075 0.043 0.045 0.042
SYNTH19 10 100,000 0.172 0.295 1.089 0.476
SYNTH20 10 100,000 0.182 0.255 1.233 0.493
SYNTH21 100 100,000 1.183 1.353 10.019 3.204
SYNTH22 100 100,000 1.084 1.327 10.317 3.905
SYNTH23 1,000 100,000 13.359 12.703 115.619 37.234
SYNTH24 1,000 100,000 15.501 11.536 116.010 37.478
SYNTH25 2 1,000,000 2.442 0.455 0.515 0.559
SYNTH26 2 1,000,000 2.046 0.529 0.452 0.472
SYNTH27 10 1,000,000 3.165 2.668 10.873 4.839
SYNTH28 10 1,000,000 3.127 2.728 10.740 5.237
SYNTH29 100 1,000,000 24.611 15.489 82.237 33.303
SYNTH30 100 1,000,000 23.537 13.033 91.697 37.722

This table shows the mean training time in seconds for the AURA algorithm with all
three input tokens, unary output tokens and 10 bins.
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Figure 7.8: A comparison of the mean training time for each of the synthetic datasets.
The PK input tokens for this experiment consist of 10 bins. Each marker represents the
mean training time for a single synthetic dataset, the markers are coloured according to
the number of features in the dataset. A marker in the shaded area indicates a dataset
where the PK AURA mean training time is faster.

Figure 7.8 shows a comparison of the mean training time between AURA with PK

input tokens and the Dual KD�Tree algorithm. It appears that Dual KD�Tree is faster

to train with the smaller datasets, however for bigger datasets PK appears to be faster.

The rate at which the cross over point occurs appears to be dependent on the number of

features in the dataset. The 10 feature and 100 feature datasets require 1,000,000 samples

in order for PK AURA to be faster.
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Figure 7.9: A comparison of the mean training time for each of the synthetic datasets.
The OBCC input tokens for this experiment consist of 10 bins. Each marker represents
the mean training time for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A marker in the shaded area indicates a dataset
where the OBCC AURA mean training time is faster.

Figure 7.9 shows a comparison of the mean training time between AURA with OBCC

input tokens and the Dual KD�Tree algorithm. The OBCC tokens show the same general

trend as the PK tokens in terms of comparing well with only 2 features. However the

overall performance is considerably worse than the Dual KD�Tree algorithm, requiring a

mean of 5.4 times longer to train a dataset.
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Figure 7.10: A comparison of the mean training time for each of the synthetic datasets.
The WOCC input tokens for this experiment consist of 10 bins. Each marker represents
the mean training time for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A marker in the shaded area indicates a dataset
where the WOCC AURA mean training time is faster.

Figure 7.10 shows a comparison of the mean training time between AURA with WOCC

input tokens and the Dual KD�Tree algorithm. The WOCC tokens show the same general

trend as the PK and OBCC tokens. The overall performance is an improvement on OBCC

input tokens, despite being considerably worse than PK AURA. The WOCC input tokens

require a mean of 2.2 times longer than the Dual KD�Tree algorithm to train a dataset.

Evaluation

In this Section the performance of the PK, OBCC and WOCC input tokens has been

examined with 10 bins per feature and unary output tokens for the CMM.

In terms of accuracy it is clear than CMMs with OBCC and WOCC input tokens are

able to provide equivalent levels of accuracy. This is expected because the WOCC input

tokens were designed to emulate OBCC tokens. However the performance of the WOCC

tokens is considerably better than OBCC tokens, as can be seen in both the training and

query times. This is because the WOCC input tokens require a smaller CMM and fewer

bits to be set within the CMM than OBCC tokens. As a result the WOCC tokens are

strictly superior to OBCC input tokens when used within the AURA framework.

The PK input tokens are clearly superior to both the OBCC and WOCC tokens in

these experiments both with respect to accuracy and performance. When considering
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performance it is clear that the minimal number of bits that have to be set in the CMM (1

per feature) results in a considerable performance advantage over the other input tokens

where many more bits have to be set.

However despite being faster and more accurate than the other CMM methods, PK

is still generally worse than the exact Dual KD�Tree method. The only datasets where

the approximate CMM based kNN algorithms are faster than Dual KD�Tree are those

with only 2 features. As has been noted in Section 6.3, these are the datasets where Dual

KD�Tree performs the worst and a standard KD�Tree is signi�cantly faster.

Since the LSH algorithm has been shown to be faster than both the Dual KD�Tree and

standard KD�Tree with a reasonable accuracy, it is not necessary to present a comparison

between the PK AURA with unary output tokens and LSH.

Summary

As a result of these experiments it is clear that the PK input tokens provide signi�cantly

better accuracy, query and training performance than either WOCC or OBCC input tokens

when used in conjunction with unary output tokens for the CMM based kNN algorithm.

However despite this, there are exact methods that have superior accuracy and for the

majority of datasets provide better performance.

7.3 Conclusion

The characteristics of the CMM based kNN algorithm using a unary output token have

been examined in this Chapter.

In reference to the questions posed in Section 6.2.1 the following observations can be

made about the AURA kNN algorithm with a unary output token.

With the PK and WOCC input tokens an increase in the number of bins will increase

the training and query time of the algorithm. For the PK tokens, it does not however

appear to have a signi�cant e�ect on the accuracy of the algorithm across the synthetic or

real world datasets. Yet for the OBCC and WOCC tokens an increase in the number of

bins results in a reduction of the accuracy of the algorithm.

The results show that the best approach for generating the input tokens to be paired

with unary output tokens is the PK method as this is faster and more accurate than the

other approaches. This con�rms that the standard approach used by AURA Alert is best

when used with unary output tokens. It also appears that increasing the number of bins

does not lead to substantial improvements in accuracy. Therefore the correct strategy

appears to be using as few bins as possible without over�lling the discrete states with

samples.

However overall the CMM based kNN algorithm has been shown to be slower than

an exact method for each of the synthetic datasets. Therefore it appears that, from a

technical perspective, a CMM based kNN algorithm with a unary output token is not the

best algorithm to use in AURA Alert.
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Chapter 8

AURA 2�bit Output Token

Experiments

In this Chapter the performance of AURA kNN using 2�bit output tokens is investigated.

The output tokens are generated using Baum Codes with two sections as described in

Section 4.4.2. Since the length of the output tokens determines the number of columns in

the CMM, this results in a CMM with fewer columns and more bits set than the CMMs

considered in Chapter 7. Table 8.1 illustrates how the token length of the 2�bit output

tokens compares to the unary output tokens for each of the synthetic datasets.
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Table 8.1: Output Token Length

ID Features Samples Unary Token Length 2 Bit Token Length

SYNTH01 2 1,000 1,000 21
SYNTH02 2 1,000 1,000 20
SYNTH03 10 1,000 1,000 64
SYNTH04 10 1,000 1,000 64
SYNTH05 100 1,000 1,000 64
SYNTH06 100 1,000 1,000 64
SYNTH07 1,000 1,000 1,000 64
SYNTH08 1,000 1,000 1,000 64
SYNTH09 2 10,000 10,000 21
SYNTH10 2 10,000 10,000 21
SYNTH11 10 10,000 10,000 201
SYNTH12 10 10,000 10,000 201
SYNTH13 100 10,000 10,000 201
SYNTH14 100 10,000 10,000 201
SYNTH15 1,000 10,000 10,000 201
SYNTH16 1,000 10,000 10,000 201
SYNTH17 2 100,000 100,000 21
SYNTH18 2 100,000 100,000 21
SYNTH19 10 100,000 100,000 633
SYNTH20 10 100,000 100,000 633
SYNTH21 100 100,000 100,000 633
SYNTH22 100 100,000 100,000 633
SYNTH23 1,000 100,000 100,000 633
SYNTH24 1,000 100,000 100,000 633
SYNTH25 2 1,000,000 1,000,000 21
SYNTH26 2 1,000,000 1,000,000 21
SYNTH27 10 1,000,000 1,000,000 2,000
SYNTH28 10 1,000,000 1,000,000 2,000
SYNTH29 100 1,000,000 1,000,000 2,001
SYNTH30 100 1,000,000 1,000,000 2,001

This table gives the length of the output tokens used to train each of the synthetic
datasets for both unary output tokens and 2�bit Baum Coded output tokens.

The purpose of these experiments is twofold. It is necessary to determine which input

token method, PK, OBCC or WOCC, performs best with the 2�bit output tokens. In addi-

tion it is necessary to compare the performance of the approximate AURA kNN algorithm

using 2�bit output tokens with both the performance of the baseline kNN algorithms and

the approximate AURA kNN algorithm using unary output tokens.

The performance of AURA kNN using multiple bits in the output tokens has not

previously been investigated. It is expected that the accuracy of this method will su�er

due to interference caused by multiple samples being superimposed within the CMM. It

is possible that the PK method will su�er particularly because the method by which the

weights are applied to each row of the input token will potentially result in an output score

that is greater than would be expected by an exact match. In essence, the PK tokens

e�ectively no longer have �xed weight.

The training time is also likely to be increased in comparison to using unary output

tokens. This is because the CMM will be less sparse due to the increased number of bits

that have to be set and this reduces the size of the CMM. As a result more collisions

within the CMM are likely to occur during training and there is a performance penalty in

detecting and resolving these collisions imposed by the AURA framework.
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However it is hoped that the reduced CMM size caused by the use of more compact

output tokens will reduce the query time of the AURA kNN and that this will be su�cient

to o�set the disadvantages described above.

In Section 8.1 the e�ect of varying the number of bins used to encode the input tokens

is considered. This is followed by Section 8.2 where the performance of the three input

token methods are compared to identify the best tokens to use with 2�bit tokens.

8.1 Number of Bins

The purpose of this experiment is to determine whether it is reasonable to consider only

the 10 bin con�gurations in the further 2�bit output token experiments. The experiments

with unary output tokens showed that 10 bins provided the best balance of speed and

accuracy across all three input token methods. It is necessary to verify that this result still

holds when using 2�bit output tokens.

Accuracy

In this Section the e�ect on the accuracy of increasing the number of bins is investigated

for each of the three input token methods, PK, OBCC and WOCC. The table of results for

these experiments on the synthetic datasets are given below, the results on the real world

datasets can be found in Appendix B.
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Table 8.2: Mean Feature Distance for Number of Bins with 2�Bit PK AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.062 0.130 0.222 0.345 0.414
SYNTH02 2 1,000 0.065 0.152 0.217 0.294 0.331
SYNTH03 10 1,000 0.142 0.248 0.244 0.242 0.238
SYNTH04 10 1,000 0.124 0.211 0.209 0.207 0.204
SYNTH05 100 1,000 0.071 0.081 0.080 0.080 0.080
SYNTH06 100 1,000 0.061 0.070 0.070 0.070 0.069
SYNTH07 1,000 1,000 0.025 0.026 0.026 0.026 0.026
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.188 0.138 0.155 0.281
SYNTH10 2 10,000 0.022 0.184 0.146 0.138 0.233
SYNTH11 10 10,000 0.107 0.246 0.247 0.244 0.241
SYNTH12 10 10,000 0.096 0.215 0.211 0.209 0.206
SYNTH13 100 10,000 0.067 0.081 0.081 0.081 0.080
SYNTH14 100 10,000 0.058 0.070 0.070 0.070 0.070
SYNTH15 1,000 10,000 0.024 0.026 0.026 0.026 0.026
SYNTH16 1,000 10,000 0.021 0.022 0.022 0.022 0.022
SYNTH17 2 100,000 0.006 0.299 0.388 0.164 0.121
SYNTH18 2 100,000 0.007 0.329 0.309 0.194 0.126
SYNTH19 10 100,000 0.082 0.243 0.243 0.243 0.246
SYNTH20 10 100,000 0.076 0.213 0.212 0.212 0.211
SYNTH21 100 100,000 0.064 0.081 0.081 0.081 0.081
SYNTH22 100 100,000 0.055 0.070 0.070 0.070 0.070
SYNTH23 1,000 100,000 0.024 0.026 0.026 0.026 0.026
SYNTH24 1,000 100,000 0.021 0.022 0.022 0.022 0.022
SYNTH25 2 1,000,000 0.002 0.353 0.343 0.472 0.372
SYNTH26 2 1,000,000 0.002 0.380 0.359 0.341 0.303
SYNTH27 10 1,000,000 0.063 0.250 0.246 0.246 0.250
SYNTH28 10 1,000,000 0.060 0.210 0.206 0.212 0.211
SYNTH29 100 1,000,000 0.062 0.081 0.081 0.081 0.081
SYNTH30 100 1,000,000 0.053 0.070 0.070 0.070 0.070

This table shows the mean feature distance for the AURA algorithm with PK input
tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.2 gives the results for the AURA kNN algorithm using the PK input tokens and

2�bit output tokens. As expected, there is no statistically signi�cant di�erence between

the observed feature distances (One�Way ANOVA, f = 0.084, p = 0.969 > 0.05) despite

the huge increase in the number of bins. The real world datasets also did not display any

statistically signi�cant di�erences (One�Way ANOVA, f = 0.232, p = 0.874 > 0.05) as

the number of bins increased.
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Table 8.3: Mean Feature Distance for Number of Bins with 2�bit OBCC AURA (Syn-
thetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.062 0.120 0.243 0.379 0.435
SYNTH02 2 1,000 0.065 0.117 0.202 0.307 0.360
SYNTH03 10 1,000 0.142 0.249 0.247 0.246 0.246
SYNTH04 10 1,000 0.124 0.214 0.211 0.210 0.210
SYNTH05 100 1,000 0.071 0.081 0.081 0.081 0.081
SYNTH06 100 1,000 0.061 0.070 0.070 0.070 0.070
SYNTH07 1,000 1,000 0.025 0.026 0.026 0.026 0.026
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.203 0.134 0.160 0.317
SYNTH10 2 10,000 0.022 0.182 0.144 0.148 0.253
SYNTH11 10 10,000 0.107 0.246 0.248 0.247 0.248
SYNTH12 10 10,000 0.096 0.213 0.211 0.212 0.211
SYNTH13 100 10,000 0.067 0.081 0.081 0.081 0.081
SYNTH14 100 10,000 0.058 0.070 0.070 0.070 0.070
SYNTH15 1,000 10,000 0.024 0.026 0.026 0.026 0.026
SYNTH16 1,000 10,000 0.021 0.022 0.022 0.022 0.022
SYNTH17 2 100,000 0.006 0.464 0.392 0.239 0.150
SYNTH18 2 100,000 0.007 0.411 0.327 0.218 0.151
SYNTH19 10 100,000 0.082 0.243 0.243 0.244 0.249
SYNTH20 10 100,000 0.076 0.213 0.213 0.211 0.211
SYNTH21 100 100,000 0.064 0.081 0.081 0.081 0.081
SYNTH22 100 100,000 0.055 0.070 0.070 0.070 0.070
SYNTH23 1,000 100,000 0.024 0.026 0.026 0.026 0.026
SYNTH24 1,000 100,000 0.021 0.022 0.022 0.022 0.022
SYNTH25 2 1,000,000 0.002 0.475 0.486 0.497 0.385
SYNTH26 2 1,000,000 0.002 0.377 0.422 0.400 0.329
SYNTH27 10 1,000,000 0.063 0.250 0.246 0.246 0.246
SYNTH28 10 1,000,000 0.060 0.210 0.206 0.218 0.214
SYNTH29 100 1,000,000 0.062 0.081 0.081 0.081 0.081
SYNTH30 100 1,000,000 0.053 0.070 0.070 0.070 0.070

This table shows the mean feature distance for the AURA algorithm with OBCC
input tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.3 gives the results for the AURA Nearest Neighbours algorithm using the

OBCC input tokens and 2�bit output tokens. There is no statistically signi�cant di�erence

between the observed feature distances (One�Way ANOVA, f = 0.006, p = 0.999 > 0.05)

despite the huge increase in the number of bins. The real world datasets also did not display

any statistically signi�cant di�erences (One�Way ANOVA, f = 0.188, p = 0.905 > 0.05)

as the number of bins increased. As a result it appears that the OBCC tokens do not

exhibit the expected degradation in accuracy as the number of bins increases.
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Table 8.4: Mean Feature Distance for Number of Bins with 2�bit WOCC AURA (Syn-
thetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.062 0.120 0.243 0.379 0.435
SYNTH02 2 1,000 0.065 0.117 0.202 0.307 0.360
SYNTH03 10 1,000 0.142 0.249 0.247 0.246 0.246
SYNTH04 10 1,000 0.124 0.214 0.211 0.210 0.210
SYNTH05 100 1,000 0.071 0.081 0.081 0.081 0.081
SYNTH06 100 1,000 0.061 0.070 0.070 0.070 0.070
SYNTH07 1,000 1,000 0.025 0.026 0.026 0.026 0.026
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.203 0.134 0.160 0.317
SYNTH10 2 10,000 0.022 0.182 0.144 0.148 0.253
SYNTH11 10 10,000 0.107 0.246 0.248 0.247 0.248
SYNTH12 10 10,000 0.096 0.213 0.211 0.212 0.211
SYNTH13 100 10,000 0.067 0.081 0.081 0.081 0.081
SYNTH14 100 10,000 0.058 0.070 0.070 0.070 0.070
SYNTH15 1,000 10,000 0.024 0.026 0.026 0.026 0.026
SYNTH16 1,000 10,000 0.021 0.022 0.022 0.022 0.022
SYNTH17 2 100,000 0.006 0.464 0.392 0.239 0.150
SYNTH18 2 100,000 0.007 0.411 0.327 0.218 0.151
SYNTH19 10 100,000 0.082 0.243 0.243 0.244 0.249
SYNTH20 10 100,000 0.076 0.213 0.213 0.211 0.211
SYNTH21 100 100,000 0.064 0.081 0.081 0.081 0.081
SYNTH22 100 100,000 0.055 0.070 0.070 0.070 0.070
SYNTH23 1,000 100,000 0.024 0.026 0.026 0.026 0.026
SYNTH24 1,000 100,000 0.021 0.022 0.022 0.022 0.022
SYNTH25 2 1,000,000 0.002 0.475 0.486 0.497 0.385
SYNTH26 2 1,000,000 0.002 0.377 0.422 0.400 0.329
SYNTH27 10 1,000,000 0.063 0.250 0.246 0.246 0.246
SYNTH28 10 1,000,000 0.060 0.210 0.206 0.218 0.214
SYNTH29 100 1,000,000 0.062 0.081 0.081 0.081 0.081
SYNTH30 100 1,000,000 0.053 0.070 0.070 0.070 0.070

This table shows the mean feature distance for the AURA algorithm with WOCC
input tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.4 gives the results for the AURA Nearest Neighbours algorithm using the

WOCC input tokens and 2�bit output tokens. As expected, the results are identical to

those for OBCC tokens and there is no statistically signi�cant di�erence between the

observed feature distances (One�Way ANOVA, f = 0.006, p = 0.999 > 0.05) despite

the huge increase in the number of bins. The real world datasets also did not display any

statistically signi�cant di�erences (One�Way ANOVA, f = 0.188, p = 0.905 > 0.05) as the

number of bins increased. Since the WOCC tokens produce the same results as the OBCC

tokens, they also do not exhibit the expected degradation in accuracy as the number of

bins increases.

Query Performance

This Section investigates the e�ect on query time of increasing the number of bins for each

of the three input token methods, PK, OBCC and WOCC using 2�bit output tokens. The

results of these experiments are given below.

160



Table 8.5: Mean Query Time for Number of Bins with 2�Bit PK AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.007 0.103 0.084 0.085 0.085
SYNTH02 2 1,000 0.013 0.110 0.080 0.089 0.089
SYNTH03 10 1,000 0.029 0.096 0.097 0.098 0.107
SYNTH04 10 1,000 0.026 0.093 0.093 0.103 0.107
SYNTH05 100 1,000 0.147 0.172 0.263 0.247 0.311
SYNTH06 100 1,000 0.166 0.175 0.251 0.292 0.323
SYNTH07 1,000 1,000 1.167 0.837 1.934 1.786 2.438
SYNTH08 1,000 1,000 1.307 0.918 1.696 2.272 2.567
SYNTH09 2 10,000 0.044 0.155 0.117 0.119 0.130
SYNTH10 2 10,000 0.052 0.125 0.117 0.118 0.124
SYNTH11 10 10,000 0.212 0.157 0.156 0.230 0.274
SYNTH12 10 10,000 0.218 0.151 0.165 0.219 0.291
SYNTH13 100 10,000 1.447 0.250 0.415 1.038 1.659
SYNTH14 100 10,000 1.359 0.274 0.482 0.984 1.754
SYNTH15 1,000 10,000 12.863 1.342 3.045 9.421 16.307
SYNTH16 1,000 10,000 12.216 1.582 3.544 8.559 17.029
SYNTH17 2 100,000 0.319 0.260 0.153 0.134 0.176
SYNTH18 2 100,000 0.324 0.353 0.174 0.152 0.182
SYNTH19 10 100,000 1.898 0.289 0.341 0.413 0.661
SYNTH20 10 100,000 2.105 0.282 0.350 0.502 0.730
SYNTH21 100 100,000 13.699 0.653 0.952 1.650 4.096
SYNTH22 100 100,000 13.688 0.771 0.994 2.052 4.508
SYNTH23 1,000 100,000 119.184 3.905 7.203 14.369 39.194
SYNTH24 1,000 100,000 130.298 3.850 7.744 17.266 43.349
SYNTH25 2 1,000,000 2.684 4.237 0.843 0.233 0.193
SYNTH26 2 1,000,000 3.093 4.052 1.013 0.301 0.215
SYNTH27 10 1,000,000 20.675 0.892 0.951 1.196 1.533
SYNTH28 10 1,000,000 19.216 0.818 0.944 1.190 1.826
SYNTH29 100 1,000,000 148.958 1.840 2.799 4.925 9.074
SYNTH30 100 1,000,000 140.706 1.955 2.881 5.414 10.340

This table shows the mean query time in seconds for the AURA algorithm with PK
input tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.5 gives the results for the AURA Nearest Neighbours algorithm using PK input

tokens and 2�bit output tokens. It appears that the results are as expected. Increasing the

number of bins yields a signi�cant increase in query time (One�Way ANOVA, f = 33.6,

p = 6.89 × 10−21 < 0.05). The mean query time when using 10 bins is only 19% of the

mean query time using 80 bins.
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Table 8.6: Mean Query Time for Number of Bins with 2�Bit OBCC AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.007 0.108 0.082 0.086 0.088
SYNTH02 2 1,000 0.013 0.103 0.085 0.083 0.085
SYNTH03 10 1,000 0.029 0.094 0.096 0.100 0.106
SYNTH04 10 1,000 0.026 0.100 0.093 0.098 0.100
SYNTH05 100 1,000 0.147 0.246 0.239 0.247 0.308
SYNTH06 100 1,000 0.166 0.282 0.241 0.259 0.310
SYNTH07 1,000 1,000 1.167 1.674 1.686 2.234 3.404
SYNTH08 1,000 1,000 1.307 1.768 1.731 2.351 3.597
SYNTH09 2 10,000 0.044 0.125 0.112 0.118 0.121
SYNTH10 2 10,000 0.052 0.127 0.121 0.123 0.121
SYNTH11 10 10,000 0.212 0.156 0.141 0.169 0.190
SYNTH12 10 10,000 0.218 0.218 0.152 0.172 0.185
SYNTH13 100 10,000 1.447 0.418 0.421 0.530 0.702
SYNTH14 100 10,000 1.359 0.461 0.423 0.513 0.655
SYNTH15 1,000 10,000 12.863 3.381 3.123 4.624 6.748
SYNTH16 1,000 10,000 12.216 3.502 3.204 4.412 6.407
SYNTH17 2 100,000 0.319 0.397 0.171 0.168 0.198
SYNTH18 2 100,000 0.324 0.334 0.210 0.171 0.198
SYNTH19 10 100,000 1.898 0.351 0.337 0.347 0.381
SYNTH20 10 100,000 2.105 0.333 0.335 0.363 0.395
SYNTH21 100 100,000 13.699 1.182 1.025 1.150 1.410
SYNTH22 100 100,000 13.688 1.153 1.077 1.185 1.388
SYNTH23 1,000 100,000 119.184 10.110 8.140 9.409 12.804
SYNTH24 1,000 100,000 130.298 9.282 8.162 9.590 12.147
SYNTH25 2 1,000,000 2.684 3.781 0.898 0.346 0.233
SYNTH26 2 1,000,000 3.093 4.428 1.055 0.456 0.251
SYNTH27 10 1,000,000 20.675 1.026 0.968 0.968 1.002
SYNTH28 10 1,000,000 19.216 1.245 0.925 1.025 1.003
SYNTH29 100 1,000,000 148.958 3.580 3.010 3.258 3.599
SYNTH30 100 1,000,000 140.706 3.363 3.028 3.298 3.620

This table shows the mean query time in seconds for the AURA algorithm with OBCC
input tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.6 gives the results for the AURA Nearest Neighbours algorithm using OBCC

input tokens and 2�bit output tokens. As expected, the query time generally increases as

the number of bins increases. This increase is signi�cant (One�Way ANOVA, f = 3.56,

p = 0.01 < 0.05) with 10 Bins being 13.6% faster.
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Table 8.7: Mean Query Time for Number of Bins with 2�Bit WOCC AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.007 0.101 0.085 0.082 0.080
SYNTH02 2 1,000 0.013 0.149 0.083 0.084 0.084
SYNTH03 10 1,000 0.029 0.089 0.092 0.095 0.098
SYNTH04 10 1,000 0.026 0.100 0.094 0.096 0.103
SYNTH05 100 1,000 0.147 0.145 0.165 0.218 0.269
SYNTH06 100 1,000 0.166 0.192 0.198 0.226 0.262
SYNTH07 1,000 1,000 1.167 0.580 0.898 1.566 2.949
SYNTH08 1,000 1,000 1.307 0.690 1.030 1.636 3.008
SYNTH09 2 10,000 0.044 0.130 0.119 0.118 0.123
SYNTH10 2 10,000 0.052 0.151 0.122 0.118 0.121
SYNTH11 10 10,000 0.212 0.143 0.133 0.155 0.182
SYNTH12 10 10,000 0.218 0.151 0.149 0.161 0.172
SYNTH13 100 10,000 1.447 0.239 0.289 0.391 0.568
SYNTH14 100 10,000 1.359 0.261 0.315 0.412 0.559
SYNTH15 1,000 10,000 12.863 1.110 1.636 2.891 5.551
SYNTH16 1,000 10,000 12.216 1.309 1.743 3.070 5.589
SYNTH17 2 100,000 0.319 0.447 0.184 0.160 0.168
SYNTH18 2 100,000 0.324 0.346 0.226 0.172 0.184
SYNTH19 10 100,000 1.898 0.304 0.309 0.327 0.345
SYNTH20 10 100,000 2.105 0.346 0.294 0.351 0.367
SYNTH21 100 100,000 13.699 0.542 0.635 0.906 1.157
SYNTH22 100 100,000 13.688 0.559 0.669 0.962 1.196
SYNTH23 1,000 100,000 119.184 2.677 4.102 6.786 9.301
SYNTH24 1,000 100,000 130.298 2.851 4.154 7.252 10.224
SYNTH25 2 1,000,000 2.684 3.883 1.075 0.325 0.224
SYNTH26 2 1,000,000 3.093 3.402 0.998 0.435 0.265
SYNTH27 10 1,000,000 20.675 0.784 0.857 0.939 0.956
SYNTH28 10 1,000,000 19.216 0.818 0.875 0.938 0.965
SYNTH29 100 1,000,000 148.958 1.449 1.911 2.621 3.244
SYNTH30 100 1,000,000 140.706 1.601 1.924 2.730 3.213

This table shows the mean query time in seconds for the AURA algorithm with
WOCC input tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.7 gives the results for the AURA Nearest Neighbours algorithm using WOCC

input tokens and 2�bit output tokens. As expected, the query time generally increases

as the number of bins increases. This is signi�cant (One�Way ANOVA f = 16.2, p =

2.39× 10−10 < 0.05) and the query time using 10 bins is 51% faster that with 80 bins.

Training Performance

This Section investigates the e�ect on the training time of increasing the number of bins

for the PK, OBCC and WOCC input tokens. The results of these experiments are given

below.
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Table 8.8: Mean Training Time for Number of Bins with 2�Bit PK AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.000 0.002 0.001 0.003 0.003
SYNTH02 2 1,000 0.000 0.001 0.001 0.001 0.001
SYNTH03 10 1,000 0.001 0.004 0.002 0.003 0.002
SYNTH04 10 1,000 0.000 0.004 0.003 0.004 0.003
SYNTH05 100 1,000 0.005 0.010 0.011 0.013 0.019
SYNTH06 100 1,000 0.002 0.010 0.012 0.014 0.018
SYNTH07 1,000 1,000 0.023 0.088 0.113 0.170 0.211
SYNTH08 1,000 1,000 0.031 0.082 0.113 0.153 0.198
SYNTH09 2 10,000 0.005 0.006 0.006 0.009 0.016
SYNTH10 2 10,000 0.003 0.006 0.005 0.010 0.014
SYNTH11 10 10,000 0.007 0.037 0.026 0.028 0.031
SYNTH12 10 10,000 0.008 0.030 0.025 0.027 0.031
SYNTH13 100 10,000 0.058 0.098 0.110 0.132 0.166
SYNTH14 100 10,000 0.057 0.101 0.108 0.126 0.152
SYNTH15 1,000 10,000 0.534 0.867 1.048 1.363 2.010
SYNTH16 1,000 10,000 0.497 0.871 1.018 1.275 1.794
SYNTH17 2 100,000 0.057 0.039 0.047 0.054 0.073
SYNTH18 2 100,000 0.075 0.043 0.044 0.053 0.074
SYNTH19 10 100,000 0.172 0.294 0.310 0.321 0.324
SYNTH20 10 100,000 0.182 0.271 0.322 0.328 0.305
SYNTH21 100 100,000 1.183 1.163 1.182 1.379 1.544
SYNTH22 100 100,000 1.084 1.252 1.196 1.353 1.501
SYNTH23 1,000 100,000 13.359 10.061 11.607 14.371 18.269
SYNTH24 1,000 100,000 15.501 9.838 11.277 14.442 18.181
SYNTH25 2 1,000,000 2.442 0.521 0.465 0.544 0.640
SYNTH26 2 1,000,000 2.046 0.495 0.503 0.597 0.633
SYNTH27 10 1,000,000 3.165 3.297 3.278 3.315 3.359
SYNTH28 10 1,000,000 3.127 2.972 3.190 3.326 3.355
SYNTH29 100 1,000,000 24.611 11.616 12.415 13.874 15.476
SYNTH30 100 1,000,000 23.537 11.967 12.064 13.955 14.904

This table shows the mean training time in seconds for the AURA algorithm with PK
input tokens, 2�bit output tokens and a varying numbers of bins.

Table 7.7 gives the results for the AURA Nearest Neighbours algorithm using PK

input tokens and 2�bit output tokens. The training time generally appears to increase as

the number of bins increases, but this is not statistically signi�cant (One�Way ANOVA,

f = 2.385, p = 0.07 > 0.05).
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Table 8.9: Mean Training Time for Number of Bins with 2�Bit OBCC AURA (Synthetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.000 0.001 0.002 0.005 0.007
SYNTH02 2 1,000 0.000 0.000 0.001 0.004 0.005
SYNTH03 10 1,000 0.001 0.007 0.007 0.010 0.011
SYNTH04 10 1,000 0.000 0.009 0.008 0.008 0.016
SYNTH05 100 1,000 0.005 0.071 0.065 0.098 0.159
SYNTH06 100 1,000 0.002 0.080 0.067 0.095 0.160
SYNTH07 1,000 1,000 0.023 1.070 1.144 1.592 2.234
SYNTH08 1,000 1,000 0.031 1.085 1.092 1.736 2.269
SYNTH09 2 10,000 0.005 0.004 0.006 0.010 0.026
SYNTH10 2 10,000 0.003 0.006 0.005 0.008 0.018
SYNTH11 10 10,000 0.007 0.079 0.075 0.099 0.116
SYNTH12 10 10,000 0.008 0.115 0.077 0.088 0.108
SYNTH13 100 10,000 0.058 0.728 0.669 0.902 1.406
SYNTH14 100 10,000 0.057 0.726 0.795 0.896 1.494
SYNTH15 1,000 10,000 0.534 10.067 11.007 16.559 21.774
SYNTH16 1,000 10,000 0.497 10.025 10.322 15.497 20.295
SYNTH17 2 100,000 0.057 0.045 0.045 0.060 0.085
SYNTH18 2 100,000 0.075 0.038 0.047 0.057 0.081
SYNTH19 10 100,000 0.172 0.858 0.845 1.053 1.233
SYNTH20 10 100,000 0.182 0.875 0.857 1.005 1.168
SYNTH21 100 100,000 1.183 8.633 8.067 11.063 16.201
SYNTH22 100 100,000 1.084 8.390 8.082 10.913 16.468
SYNTH23 1,000 100,000 13.359 114.587 118.270 178.087 260.882
SYNTH24 1,000 100,000 15.501 111.360 128.898 182.769 239.580
SYNTH25 2 1,000,000 2.442 0.437 0.465 0.559 0.628
SYNTH26 2 1,000,000 2.046 0.517 0.508 0.589 0.639
SYNTH27 10 1,000,000 3.165 10.344 8.935 10.705 12.222
SYNTH28 10 1,000,000 3.127 11.864 8.873 10.648 12.778
SYNTH29 100 1,000,000 24.611 95.253 87.570 122.108 174.761
SYNTH30 100 1,000,000 23.537 92.965 88.383 125.196 176.401

This table shows the mean training time in seconds for the AURA algorithm with
OBCC input tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.9 gives the results for the AURA Nearest Neighbours algorithm using OBCC

input tokens and dual bit output tokens. As expected, the training time exhibits a statis-

tically signi�cant increase as the number of bins increases (One�Way ANOVA, f = 6.506,

p = 0.0002 < 0.05) with 80 bins requiring a training time that is twice (2.06) as slow as 10

bins.
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Table 8.10: Mean Training Time for Number of Bins with 2�Bit WOCC AURA (Syn-
thetic)

ID Features Samples Exact 10 Bins 20 Bins 40 Bins 80 Bins

SYNTH01 2 1,000 0.000 0.001 0.000 0.001 0.004
SYNTH02 2 1,000 0.000 0.001 0.000 0.002 0.002
SYNTH03 10 1,000 0.001 0.006 0.005 0.006 0.010
SYNTH04 10 1,000 0.000 0.002 0.006 0.006 0.010
SYNTH05 100 1,000 0.005 0.026 0.036 0.064 0.108
SYNTH06 100 1,000 0.002 0.038 0.044 0.064 0.116
SYNTH07 1,000 1,000 0.023 0.296 0.510 1.059 1.744
SYNTH08 1,000 1,000 0.031 0.336 0.572 1.079 1.771
SYNTH09 2 10,000 0.005 0.003 0.005 0.007 0.018
SYNTH10 2 10,000 0.003 0.005 0.009 0.010 0.016
SYNTH11 10 10,000 0.007 0.038 0.053 0.068 0.094
SYNTH12 10 10,000 0.008 0.042 0.058 0.076 0.091
SYNTH13 100 10,000 0.058 0.254 0.375 0.653 1.146
SYNTH14 100 10,000 0.057 0.294 0.421 0.646 1.085
SYNTH15 1,000 10,000 0.534 3.005 5.663 11.264 17.675
SYNTH16 1,000 10,000 0.497 3.616 6.710 11.945 17.986
SYNTH17 2 100,000 0.057 0.060 0.050 0.056 0.076
SYNTH18 2 100,000 0.075 0.047 0.048 0.058 0.078
SYNTH19 10 100,000 0.172 0.477 0.596 0.832 1.076
SYNTH20 10 100,000 0.182 0.545 0.626 0.891 1.049
SYNTH21 100 100,000 1.183 2.973 4.413 8.044 12.219
SYNTH22 100 100,000 1.084 3.225 4.635 8.064 13.052
SYNTH23 1,000 100,000 13.359 37.936 65.723 124.237 197.385
SYNTH24 1,000 100,000 15.501 38.851 74.417 141.724 202.160
SYNTH25 2 1,000,000 2.442 0.504 0.499 0.550 0.617
SYNTH26 2 1,000,000 2.046 0.454 0.472 0.550 0.653
SYNTH27 10 1,000,000 3.165 4.637 5.881 8.696 11.057
SYNTH28 10 1,000,000 3.127 5.001 6.193 8.691 11.191
SYNTH29 100 1,000,000 24.611 32.927 55.456 91.833 139.538
SYNTH30 100 1,000,000 23.537 35.202 52.941 93.827 151.068

This table shows the mean training time in seconds for the AURA algorithm with
WOCC input tokens, 2�bit output tokens and a varying numbers of bins.

Table 8.10 gives the results for the AURA Nearest Neighbours algorithm using WOCC

input tokens and dual bit output tokens. As expected, the training time exhibits a statis-

tically signi�cant increase as the number of bins increases (One�Way ANOVA, f = 17.5,

p = 3.858× 10−11 < 0.05). The mean training time with 10 bin tokens is 4.6 times faster

than with 80 bins.

Evaluation

In this Section, the e�ect of varying the number of bins used when generating the input

tokens for the CMM has been examined when 2�bit output tokens are used.

The PK tokens exhibit the expected behaviour with respect to accuracy and query

time. As the number of bins are increased the query takes longer and the accuracy is not

signi�cantly improved. This matches the results from the experiments with unary tokens.

However the expected increase in training time for PK is not statistically signi�cant. In

general the expected result can be observed, in particular the large datasets that take

multiple seconds to train show a clear trend, in which more bins leads to longer training

times. However the smaller datasets that require only tens of milliseconds to train often
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do not exhibit the expected increase. Considering the relatively small training times it is

possible that issues such as process scheduling, cache misses and in some cases the precision

of the timing code could be responsible. Additional repetitions of these experiments would

be required to identify the cause, however because this anomalous result does not a�ect

the overall decision to consider the 10 bins con�guration in the remaining experiments,

performing the additional repetitions is not necessary.

The OBCC and WOCC tokens appear to behave di�erently with 2�bit output tokens

compared to unary output tokens. With unary output tokens, the input tokens exhibit a

loss in accuracy as the number of bins increased. However with the 2�bit output tokens,

there is no statistically signi�cant change in the observed feature distance for both the

synthetic and real world datasets as the number of bins increases. A possible explanation

for this is due to the reduced accuracy observed with 2�bit output tokens, since the baseline

accuracy is worse than with unary output tokens there is less degradation possible before

the accuracy is equivalent to a random guess. Therefore increasing the number of bins

does not have such a signi�cant e�ect on the observed accuracy.

With respect to the query and training time, OBCC and WOCC tokens perform as

expected when the number of bins increases. Speci�cally, the training and query times

increase as the number of bins increase. This is simply due to the need for larger CMMs

to store the pairs of samples.

Summary

As a results of these experiments, it is clear that the �ndings with respect to the number of

bins to use for these datasets with unary output tokens still hold when using 2�bit output

tokens. Increasing the number of bins has been shown to have no signi�cant e�ect on the

accuracy of either the real world datasets or synthetic datasets. In addition, increasing the

number of bins appears to have a detrimental e�ect on the query and training times of all

three input token methods.

It is therefore reasonable to only consider the experiment con�gurations that make use

of 10 bins for the remaining evaluation of 2�bit output tokens in this Section.

8.2 Input Tokens

The purpose of this experiment is to determine which of the three input token methods,

PK, OBCC or WOCC performs best with 2�bit output tokens. These will only consider

using 10 bins for each of the input token methods. The experiments with unary output

tokens showed that the PK method was superior. However it is expected that this method

will su�er the most when applied to 2�bit output tokens since the variable weights applied

to each row combined with multiple samples being superimposed over a single column will

result in the PK tokens essentially no longer having a �xed weight.

Accuracy

In this Section, the accuracy of the PK, OBCC and WOCC input tokens while using 2�bit

output tokens is compared. The results of this experiment are given in Table 8.11.
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Table 8.11: Mean Feature Distance for AURA Input Tokens (Synthetic)

ID Features Samples Exact Parabolic OBCC WOCC

SYNTH01 2 1,000 0.062 0.130 0.120 0.120
SYNTH02 2 1,000 0.065 0.152 0.117 0.117
SYNTH03 10 1,000 0.142 0.248 0.249 0.249
SYNTH04 10 1,000 0.124 0.211 0.214 0.214
SYNTH05 100 1,000 0.071 0.081 0.081 0.081
SYNTH06 100 1,000 0.061 0.070 0.070 0.070
SYNTH07 1,000 1,000 0.025 0.026 0.026 0.026
SYNTH08 1,000 1,000 0.021 0.022 0.022 0.022
SYNTH09 2 10,000 0.019 0.188 0.203 0.203
SYNTH10 2 10,000 0.022 0.184 0.182 0.182
SYNTH11 10 10,000 0.107 0.246 0.246 0.246
SYNTH12 10 10,000 0.096 0.215 0.213 0.213
SYNTH13 100 10,000 0.067 0.081 0.081 0.081
SYNTH14 100 10,000 0.058 0.070 0.070 0.070
SYNTH15 1,000 10,000 0.024 0.026 0.026 0.026
SYNTH16 1,000 10,000 0.021 0.022 0.022 0.022
SYNTH17 2 100,000 0.006 0.299 0.464 0.464
SYNTH18 2 100,000 0.007 0.329 0.411 0.411
SYNTH19 10 100,000 0.082 0.243 0.243 0.243
SYNTH20 10 100,000 0.076 0.213 0.213 0.213
SYNTH21 100 100,000 0.064 0.081 0.081 0.081
SYNTH22 100 100,000 0.055 0.070 0.070 0.070
SYNTH23 1,000 100,000 0.024 0.026 0.026 0.026
SYNTH24 1,000 100,000 0.021 0.022 0.022 0.022
SYNTH25 2 1,000,000 0.002 0.353 0.475 0.475
SYNTH26 2 1,000,000 0.002 0.380 0.377 0.377
SYNTH27 10 1,000,000 0.063 0.250 0.250 0.250
SYNTH28 10 1,000,000 0.060 0.210 0.210 0.210
SYNTH29 100 1,000,000 0.062 0.081 0.081 0.081
SYNTH30 100 1,000,000 0.053 0.070 0.070 0.070

This table shows the mean feature distance for the AURA algorithm with all three
input tokens, 2�bit output tokens and 10 bins.
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Figure 8.1: A comparison of the mean feature distance for each of the synthetic datasets.
The PK input tokens for this experiment consist of 10 bins. Each marker represents the
mean feature distance for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A good result for PK AURA is indicated by
how close the marker is to the boundary with the shaded area. A marker on the boundary
indicates that PK AURA returns the same results as the exact algorithms.

Figure 8.1 shows how the mean feature distance of PK input tokens compares to that

of the exact algorithms. It is clear that the datasets with more features are able to be

queried more accurately. The 1000 feature datasets are the most accurate, the mean

feature distance for these datasets is only 5.6% larger than the exact results. The 10 and 2

feature datasets are incredibly inaccurate in comparison, for 10 features, the mean feature

distance is 2.65 times larger than the exact results and for 2 features, the mean feature

distance is 67.7 times larger. The poor performance of the datasets with few features also

appears to be made worse by increasing the number of samples stored in the CMM. With

only 1000 2�feature samples stored, the mean feature distance is only twice as large as the

exact result, with 1,000,000 samples stored, the mean feature distance is in the worst case

185 times larger. In contrast, for the 100�feature datasets, mean feature distance increases

from a mean of 15% worse than the exact result to only 32% worse when the number of

samples increases from 1,000 to 1,000,000.
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Figure 8.2: A comparison of the mean feature distance for each of the synthetic datasets.
The OBCC input tokens for this experiment consist of 10 bins. Each marker represents the
mean feature distance for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A good result for OBCC AURA is indicated by
how close the marker is to the boundary with the shaded area. A marker on the boundary
indicates that OBCC AURA returns the same results as the exact algorithms.

Figure 8.2 shows how the mean feature distance of OBCC input tokens compared to

that of the exact algorithms. As with the PK input tokens, it appears that the observed

mean feature distance on the 2�feature and 10�feature datasets is very poor. Indeed the

accuracy on these datasets is typically slightly worse with the mean feature distance of the

2�feature datasets ranging from 1.9 times the exact result for the smallest datasets to 249

times the exact result with the largest datasets. However the mean feature distance of the

1000 feature datasets is only 5.7% worse than the exact results.
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Figure 8.3: A comparison of the mean feature distance for each of the synthetic datasets.
The WOCC input tokens for this experiment consist of 10 bins. Each marker represents
the mean feature distance for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A good result for WOCC AURA is indicated by
how close the marker is to the boundary with the shaded area. A marker on the boundary
indicates that WOCC AURA returns the same results as the exact algorithms.

Figure 8.3 shows how the mean feature distance of WOCC input tokens compared to

that of the exact algorithms. The characteristics of the mean feature distance are, as

expected, exactly the same as the OBCC tokens.
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Figure 8.4: A comparison of the mean feature distance for each of the synthetic datasets.
Both the WOCC input tokens and the PK input tokens for this experiment consist of 10
bins. Each marker represents the mean feature distance for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. Markers in the
shaded area indicate datasets where WOCC AURA has a smaller feature distance than PK
AURA.

Figure 8.4 compares the mean feature distance of the OBCC and WOCC input tokens

with that of the PK input tokens. It is clear that, with the exception of the 2�feature

datasets, the accuracy of all the input token methods is very similar when used in con-

junction with 2�bit output tokens. The di�erence in mean feature distance, excluding the

2 feature datasets, between AURA knn using PK and OBCC or WOCC tokens is only

0.005%.

Query Performance

In this Section the performance of the PK, OBCC and WOCC input tokens is considered

with respect to query time. The results of this experiment are presented in Table 8.12.

As with the unary token experiments, the Dual KD�Tree algorithm was chosen to form

the comparison from the exact algorithms because it was the fastest of the exact algorithms

on the large datasets, particularly those with many features.
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Table 8.12: Mean Query Time for AURA Input Tokens with 2�Bit Output Tokens (Syn-
thetic)

ID Features Samples Dual KD�Tree Parabolic OBCC WOCC

SYNTH01 2 1,000 0.007 0.103 0.108 0.101
SYNTH02 2 1,000 0.013 0.110 0.103 0.149
SYNTH03 10 1,000 0.029 0.096 0.094 0.089
SYNTH04 10 1,000 0.026 0.093 0.100 0.100
SYNTH05 100 1,000 0.147 0.172 0.246 0.145
SYNTH06 100 1,000 0.166 0.175 0.282 0.192
SYNTH07 1,000 1,000 1.167 0.837 1.674 0.580
SYNTH08 1,000 1,000 1.307 0.918 1.768 0.690
SYNTH09 2 10,000 0.044 0.155 0.125 0.130
SYNTH10 2 10,000 0.052 0.125 0.127 0.151
SYNTH11 10 10,000 0.212 0.157 0.156 0.143
SYNTH12 10 10,000 0.218 0.151 0.218 0.151
SYNTH13 100 10,000 1.447 0.250 0.418 0.239
SYNTH14 100 10,000 1.359 0.274 0.461 0.261
SYNTH15 1,000 10,000 12.863 1.342 3.381 1.110
SYNTH16 1,000 10,000 12.216 1.582 3.502 1.309
SYNTH17 2 100,000 0.319 0.260 0.397 0.447
SYNTH18 2 100,000 0.324 0.353 0.334 0.346
SYNTH19 10 100,000 1.898 0.289 0.351 0.304
SYNTH20 10 100,000 2.105 0.282 0.333 0.346
SYNTH21 100 100,000 13.699 0.653 1.182 0.542
SYNTH22 100 100,000 13.688 0.771 1.153 0.559
SYNTH23 1,000 100,000 119.184 3.905 10.110 2.677
SYNTH24 1,000 100,000 130.298 3.850 9.282 2.851
SYNTH25 2 1,000,000 2.684 4.237 3.781 3.883
SYNTH26 2 1,000,000 3.093 4.052 4.428 3.402
SYNTH27 10 1,000,000 20.675 0.892 1.026 0.784
SYNTH28 10 1,000,000 19.216 0.818 1.245 0.818
SYNTH29 100 1,000,000 148.958 1.840 3.580 1.449
SYNTH30 100 1,000,000 140.706 1.955 3.363 1.601

This table shows the mean query time in seconds for the AURA algorithm with all
three input tokens, 2�bit output tokens and 10 bins.
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Figure 8.5: A comparison of the mean query time for each of the synthetic datasets. The
PK input tokens for this experiment consist of 10 bins. Each marker represents the mean
query time for a single synthetic dataset, the markers are coloured according to the number
of features in the dataset. A marker in the shaded area indicates a dataset where the PK
AURA mean query time is faster.

Figure 8.5 shows a comparison between the mean query times of the datasets using

AURA with PK input tokens and the Dual KD�Tree algorithm. The Dual KD�Tree is

faster than the PK approach for both the small datasets that have only 1,000 samples

and the datasets that consist of only 2�features. Otherwise the PK AURA approach is

signi�cantly faster than the Dual KD�Tree method. This is particularly true with the large

datasets where the AURA approach is a mean of 76.5 times faster than the Dual KD�Tree

method when querying 1,000,000 samples.
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Figure 8.6: A comparison of the mean query time for each of the synthetic datasets. The
OBCC input tokens for this experiment consist of 10 bins. Each marker represents the
mean query time for a single synthetic dataset, the markers are coloured according to the
number of features in the dataset. A marker in the shaded area indicates a dataset where
the OBCC AURA mean query time is faster.

Figure 8.6 shows a comparison between the mean query times of the datasets using

AURA with OBCC input tokens and the Dual KD�Tree algorithm. As observed with the

PK tokens, the Dual KD�Tree is faster than the OBCC AURA approach for both the small

datasets that have only 1,000 samples and the datasets that consist of only 2�features while

the AURA approach is faster for the large datasets. The OBCC tokens do however appear

to be considerably slower than the PK tokens. With the large datasets, OBCC tokens are

only 41.7 times faster than the Dual KD�Tree method where the PK tokens were 76.5 time

faster.
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Figure 8.7: A comparison of the mean query time for each of the synthetic datasets. The
WOCC input tokens for this experiment consist of 10 bins. Each marker represents the
mean query time for a single synthetic dataset, the markers are coloured according to the
number of features in the dataset. A marker in the shaded area indicates a dataset where
the WOCC AURA mean query time is faster.

Figure 8.7 shows a comparison between the mean query times of the datasets using

AURA with WOCC input tokens and the Dual KD�Tree algorithm. The results are inline

with the result of the other two input token methods. Dual KD�Tree is faster for the small

datasets and slower for the large datasets. WOCC AURA is a mean of 95.3 times faster

than Dual KD�Tree for the 1,000,000 sample datasets.
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Figure 8.8: A comparison of the mean query time for each of the synthetic datasets.
Both the WOCC input tokens and the PK input tokens for this experiment consist of 10
bins. Each marker represents the mean feature distance for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. Markers in the
shaded area indicate datasets where WOCC AURA is faster than PK AURA.

Figure 8.8 shows a comparison between the mean query times of the dataset with

AURA using PK input tokens and AURA using WOCC input tokens with 2�bit output

tokens. WOCC tokens appear to be generally faster than PK tokens. The mean query

time of WOCC tokens is 5.2% faster. The only datasets where PK is faster than WOCC

is on the small datasets where the query requires less than 0.5 seconds to execute.

Training Performance

In this Section the performance of the PK, OBCC and WOCC input tokens is considered

with respect to training time. The results of this experiment are presented in Table 8.13.

As with the previous experiments, the Dual KD�Tree algorithm was chosen to form the

comparison from the exact algorithms because it was the fastest of the exact algorithms

on the large datasets, particularly those with many features.
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Table 8.13: Mean Training Time for AURA Input Tokens with 2�Bit Output Tokens
(Synthetic)

ID Features Samples Dual KD�Tree Parabolic OBCC WOCC

SYNTH01 2 1,000 0.000 0.002 0.001 0.001
SYNTH02 2 1,000 0.000 0.001 0.000 0.001
SYNTH03 10 1,000 0.001 0.004 0.007 0.006
SYNTH04 10 1,000 0.000 0.004 0.009 0.002
SYNTH05 100 1,000 0.005 0.010 0.071 0.026
SYNTH06 100 1,000 0.002 0.010 0.080 0.038
SYNTH07 1,000 1,000 0.023 0.088 1.070 0.296
SYNTH08 1,000 1,000 0.031 0.082 1.085 0.336
SYNTH09 2 10,000 0.005 0.006 0.004 0.003
SYNTH10 2 10,000 0.003 0.006 0.006 0.005
SYNTH11 10 10,000 0.007 0.037 0.079 0.038
SYNTH12 10 10,000 0.008 0.030 0.115 0.042
SYNTH13 100 10,000 0.058 0.098 0.728 0.254
SYNTH14 100 10,000 0.057 0.101 0.726 0.294
SYNTH15 1,000 10,000 0.534 0.867 10.067 3.005
SYNTH16 1,000 10,000 0.497 0.871 10.025 3.616
SYNTH17 2 100,000 0.057 0.039 0.045 0.060
SYNTH18 2 100,000 0.075 0.043 0.038 0.047
SYNTH19 10 100,000 0.172 0.294 0.858 0.477
SYNTH20 10 100,000 0.182 0.271 0.875 0.545
SYNTH21 100 100,000 1.183 1.163 8.633 2.973
SYNTH22 100 100,000 1.084 1.252 8.390 3.225
SYNTH23 1,000 100,000 13.359 10.061 114.587 37.936
SYNTH24 1,000 100,000 15.501 9.838 111.360 38.851
SYNTH25 2 1,000,000 2.442 0.521 0.437 0.504
SYNTH26 2 1,000,000 2.046 0.495 0.517 0.454
SYNTH27 10 1,000,000 3.165 3.297 10.344 4.637
SYNTH28 10 1,000,000 3.127 2.972 11.864 5.001
SYNTH29 100 1,000,000 24.611 11.616 95.253 32.927
SYNTH30 100 1,000,000 23.537 11.967 92.965 35.202

This table shows the mean training time in seconds for the AURA algorithm with all
three input tokens, 2�bit output tokens and 10 bins.

178



10−3 10−2 10−1 100 101 102

10−3

10−2

10−1

100

101

102

Dual KD�Tree Training Time(s)

P
K

A
U
R
A
T
ra
in
in
g
T
im

e(
s)

Mean Training Time (Synthetic) 2�Bit PK AURA vs. Dual KD�Tree

10
10
0

10
00

N
u
m
b
er

of
F
ea
tu
re
s

Figure 8.9: A comparison of the mean training time for each of the synthetic datasets.
The PK input tokens for this experiment consist of 10 bins. Each marker represents the
mean training time for a single synthetic dataset, the markers are coloured according to
the number of features in the dataset. A marker in the shaded area indicates a dataset
where the PK AURA mean training time is faster.

Figure 8.9 shows a comparison of the mean training time between AURA with PK

input tokens and the Dual KD�Tree algorithm. PK is slower than Dual KD�Tree to train

the small datasets. However the datasets consisting of 10,000 or more samples are generally

faster with PK.
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Figure 8.10: A comparison of the mean training time for each of the synthetic datasets.
The OBCC input tokens for this experiment consist of 10 bins. Each marker represents
the mean training time for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A marker in the shaded area indicates a dataset
where the OBCC AURA mean training time is faster.

Figure 8.10 shows a comparison of the mean training time between AURA with OBCC

input tokens and the Dual KD�Tree algorithm. With the exception of the 2�feature

datasets, OBCC is considerably slower to train than Dual KD�Tree. It is particularly

poor with datasets containing 1000�features, in the worst case taking 47 times longer to

train dataset SYNTH07. However as the number of samples being stored increases, the

performance of OBCC appears to improve relative to Dual KD�Tree.
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Figure 8.11: A comparison of the mean training time for each of the synthetic datasets.
The WOCC input tokens for this experiment consist of 10 bins. Each marker represents
the mean training time for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A marker in the shaded area indicates a dataset
where the WOCC AURA mean training time is faster.

Figure 8.11 shows a comparison of the mean training time between AURA with WOCC

input tokens and the Dual KD�Tree algorithm. The performance characteristics are similar

to those of OBCC in that, with the exception of the 2�feature datasets, WOCC is con-

siderably slower to train than Dual KD�Tree and that the relative performance appears

to improve as the size of the datasets increase. However WOCC is generally considerably

faster than the OBCC tokens and in the worst case is only 13 times slower to train than

Dual KD�Tree.
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Figure 8.12: A comparison of the mean training time for each of the synthetic datasets.
Both the WOCC input tokens and the PK input tokens for this experiment consist of 10
bins. Each marker represents the mean feature distance for a single synthetic dataset, the
markers are coloured according to the number of features in the dataset. Markers in the
shaded area indicate datasets where WOCC AURA is faster than PK AURA.

Figure 8.12 shows a comparison of the mean training time between AURA with WOCC

input tokens and the Dual KD�Tree algorithm. It is clear that PK tokens are considerably

faster to train than WOCC tokens. The only exceptions to this occur when the total

training times are very short. On the mean training time of PK tokens is 2.14 times faster

than WOCC tokens.

Evaluation

The accuracy of all three input token methods is relatively similar. The accuracy on the

two feature datasets is very poor with all three input token methods and the observed

accuracy increases as the number of features in the datasets increases.

This is probably due to the amount of interference caused by superimposing 2 samples

in each column of the CMM. If the interference causes an error in the recall of a single

feature then this has a disproportionate e�ect on the datasets with only a small number

of features. For example the 1000 feature datasets are more robust to interference because

if the contribution of a single feature is corrupted by the interference then there are many

other features contributing to the match score that can compensate. For contrast, in a 2

feature dataset, corrupting the contribution of a single feature means that half the retrieved

match score will be incorrect.
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Another issue with using the 2�bit output tokens is that the observed accuracy de-

creases as the number of samples stored within the CMM increases, this observation is

also consistent across all three input token methods. It seems likely that this is due to

the storage capacity of the CMM being exceeded. As the number of samples stored in

a CMM approaches the limit of that particular CMM, the probability that an error will

occur during a query increases. As a result there is a greater likelihood of an incorrect

state being retrieved when more samples are stored within the CMM. This would match

the observed increase in mean feature distance, regardless of input token method, as the

number of samples increases.

As expected, the accuracy of the OBCC and WOCC tokens is identical. In addition the

accuracy of PK tokens is very close to that of the OBCC andWOCC tokens. Even including

exception of the 2�feature datasets, for which the accuracy is universally poor, there is no

statistically signi�cant di�erence in accuracy between the input tokens (Dependent T�Test,

t = −1.53, p = 0.138 > 0.05).

With respect to the query time there are two clear observations that can be made from

the results of these experiments. The �rst observation is that the performance charac-

teristics of all three input token methods in comparison to the Dual KD�Tree algorithm

is generally very similar. For datasets that are very small or that contain relatively few

features, Dual KD�Tree is faster than the AURA based algorithm regardless of the input

tokens used. However for the larger datasets, particularly those with 1000 features, the

AURA methods are consistently faster by 2 orders of magnitude than the Dual KD�Tree

algorithm.

The second observation is that, in contrast to the unary output token experiment in

Section 7.2, the WOCC input tokens clearly lead to faster query times than PK input

tokens. The OBCC input tokens remain the slowest method.

The reason that WOCC tokens are fastest is likely twofold. Firstly, WOCC tokens in

general will require fewer rows of the CMM to be evaluated than the PK tokens. However

this was not su�cient to make them faster with unary outputs because the overhead

involved with having to decode a denser CMM meant that expensively querying fewer

rows was not faster than cheaply querying more rows. The second component to the

relative speedup is that with the use of 2�bit output tokens, both the PK and WOCC

CMMs will be relatively dense and as a result querying a row from either input token will

be more expensive. The relative penalty incurred by WOCC tokens from having more bits

set in the CMM is therefore reduced.

The training times for each of the three input token methods are inline with expecta-

tions. Storing more bits in the CMM results in slower training times. As a result the PK

tokens are the fastest to train, followed by WOCC tokens and OBCC tokens. The use of

2�bit output tokens has not a�ected the relative performance of the input token methods

for training a CMM.

Summary

Using 2�bit output tokens results in poor accuracy for datasets consisting of only a few

features. However the accuracy improves with all input token methods as the number

of features in a dataset increases. This is o�set by a loss of accuracy that is incurred
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by increasing the number of samples to be trained. Despite this there is no signi�cant

di�erence in the observed accuracy across all the datasets regardless of whether PK, OBCC

or WOCC input tokens are used.

In terms of performance, WOCC tokens consistently provide the fastest query times,

however the PK tokens are faster to train. Overall it appears that 2�bit output tokens

perform best when combined with WOCC input tokens.

8.3 Conclusion

The characteristics of the CMM based kNN algorithm using 2�bit output tokens have been

examined in this Chapter.

In reference to the questions posed in Section 6.2.1 the following observations can be

made about the AURA kNN algorithm with 2�bit output tokens.

The number of bins used does not have a statistically signi�cant e�ect on the accuracy

of the algorithm on both the synthetic and real world datasets using either the PK, OBCC

and WOCC tokens as input tokens. However increasing the number of bins used had

a detrimental e�ect on the observed query and training times. As a result the optimal

strategy for the number of bins remains the same as for unary output tokens, use as few

bins as possible without over�lling the discrete states with samples. Unfortunately this

means that the ideal number of bins will be dataset dependent.

The results show that the best approach for generating the input tokens for pairing

with 2�bit output tokens is the WOCC method because it produces CMMs that can be

queried fastest and with no signi�cant loss in accuracy in comparison to the other input

token methods. However it should be noted that PK tokens are still faster to train than

WOCC tokens.

Overall the CMM based kNN algorithm with 2�bit output tokens has been shown to

be substantially faster than the exact Dual KD�Tree algorithm for large datasets, however

this speed comes at the cost of accuracy. As a result, provided that the level of accuracy

is acceptable, the pairing of WOCC input tokens and 2�bit output tokens can potentially

provide a CMM based kNN algorithm that is suitable for AURA Alert.
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Chapter 9

AURA 2�bit Comparative

Evaluation

9.1 Introduction

9.2 AURA Comparison

The purpose of this Section is to compare the best con�gurations for the AURA based

approximate kNN algorithm. In Chapter 7 it was determined that PK input tokens were

best paired with unary output tokens. This pairing currently forms the basis of AURA

Alert and will be referred to as the unary con�guration. However in Chapter 8 WOCC

input token were identi�ed as performing best when paired with 2�bit output tokens, this

pairing will be referred to as the 2�bit con�guration. Therefore in this Section a comparison

between the unary and the 2�bit con�guration will be performed in order to identify the

situations to which each con�guration is best suited.

9.2.1 Accuracy

In this Section a comparison of the accuracy between PK input tokens paired with unary

output tokens, the unary con�guration, and WOCC input token paired with 2�bit output

tokens, the 2�bit con�guration, is presented. The results of this experiment are given in

Table 9.1.
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Table 9.1: Mean Feature Distance AURA Comparison(Synthetic)

ID Features Samples Exact Unary 2�Bit

SYNTH01 2 1,000 0.062 0.062 0.120
SYNTH02 2 1,000 0.065 0.065 0.117
SYNTH03 10 1,000 0.142 0.149 0.249
SYNTH04 10 1,000 0.124 0.128 0.214
SYNTH05 100 1,000 0.071 0.072 0.081
SYNTH06 100 1,000 0.061 0.062 0.070
SYNTH07 1,000 1,000 0.025 0.025 0.026
SYNTH08 1,000 1,000 0.021 0.022 0.022
SYNTH09 2 10,000 0.019 0.020 0.203
SYNTH10 2 10,000 0.022 0.023 0.182
SYNTH11 10 10,000 0.107 0.110 0.246
SYNTH12 10 10,000 0.096 0.099 0.213
SYNTH13 100 10,000 0.067 0.069 0.081
SYNTH14 100 10,000 0.058 0.059 0.070
SYNTH15 1,000 10,000 0.024 0.025 0.026
SYNTH16 1,000 10,000 0.021 0.021 0.022
SYNTH17 2 100,000 0.006 0.006 0.464
SYNTH18 2 100,000 0.007 0.008 0.411
SYNTH19 10 100,000 0.082 0.084 0.243
SYNTH20 10 100,000 0.076 0.080 0.213
SYNTH21 100 100,000 0.064 0.066 0.081
SYNTH22 100 100,000 0.055 0.057 0.070
SYNTH23 1,000 100,000 0.024 0.024 0.026
SYNTH24 1,000 100,000 0.021 0.021 0.022
SYNTH25 2 1,000,000 0.002 0.002 0.475
SYNTH26 2 1,000,000 0.002 0.002 0.377
SYNTH27 10 1,000,000 0.063 0.066 0.250
SYNTH28 10 1,000,000 0.060 0.065 0.210
SYNTH29 100 1,000,000 0.062 0.064 0.081
SYNTH30 100 1,000,000 0.053 0.055 0.070

This table shows the mean feature distance for the AURA algorithm with two di�er-
ent con�gurations. The Unary con�guration consists of PK input tokens and unary
output tokens and the 2�bit con�guration consists of WOCC input tokens with 2�bit
output tokens. Both con�gurations use 10 bins.
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Figure 9.1: A comparison of the mean feature distance using AURA with two di�erent
con�gurations for each of the synthetic datasets. The Unary con�guration consists of PK
input tokens and unary output tokens and the 2�bit con�guration consists of WOCC input
tokens with 2�bit output tokens. Both con�gurations use 10 bins. Each marker represents
the mean feature distance for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A marker in the shaded area indicates a dataset
where the 2�bit con�guration is more accurate.

Figure 9.1 shows a comparison of the mean feature distance between the unary con�g-

uration and the 2�bit con�guration. As expected, it is clear that the unary con�guration is

considerably more accurate than the 2�bit con�gurations. Across all the synthetic datasets,

the mean feature distance of the 2�bit con�guration is 19.5 times larger than than the unary

con�guration. However the 2�bit con�guration performs comparably with the unary con-

�guration on the 1000 feature datasets. Here the di�erence in mean feature distance is

only 4.6% in favour of the unary con�guration.

9.2.2 Query Performance

In this Section a comparison of the query time between PK input tokens paired with unary

output tokens, the unary con�guration, and WOCC input token paired with 2�bit output

tokens, the 2�bit con�guration, is presented. The results of this experiment are given in

Table 9.2.
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Table 9.2: Mean Query Time AURA Comparison(Synthetic)

ID Features Samples Exact Unary 2�Bit

SYNTH01 2 1,000 0.123 0.096 0.101
SYNTH02 2 1,000 0.139 0.097 0.149
SYNTH03 10 1,000 0.154 0.127 0.089
SYNTH04 10 1,000 0.160 0.112 0.100
SYNTH05 100 1,000 0.438 0.210 0.145
SYNTH06 100 1,000 0.466 0.216 0.192
SYNTH07 1,000 1,000 3.585 1.142 0.580
SYNTH08 1,000 1,000 3.519 1.314 0.690
SYNTH09 2 10,000 1.154 0.135 0.130
SYNTH10 2 10,000 1.236 0.118 0.151
SYNTH11 10 10,000 1.411 0.656 0.143
SYNTH12 10 10,000 1.445 0.621 0.151
SYNTH13 100 10,000 4.524 1.459 0.239
SYNTH14 100 10,000 4.624 1.561 0.261
SYNTH15 1,000 10,000 34.654 12.455 1.110
SYNTH16 1,000 10,000 34.189 12.900 1.309
SYNTH17 2 100,000 11.931 0.390 0.447
SYNTH18 2 100,000 11.862 0.465 0.346
SYNTH19 10 100,000 14.250 6.636 0.304
SYNTH20 10 100,000 14.834 6.071 0.346
SYNTH21 100 100,000 44.913 17.344 0.542
SYNTH22 100 100,000 44.026 18.543 0.559
SYNTH23 1,000 100,000 345.050 119.093 2.677
SYNTH24 1,000 100,000 352.514 119.534 2.851
SYNTH25 2 1,000,000 116.661 4.385 3.883
SYNTH26 2 1,000,000 116.297 6.132 3.402
SYNTH27 10 1,000,000 143.728 65.392 0.784
SYNTH28 10 1,000,000 144.761 66.379 0.818
SYNTH29 100 1,000,000 450.798 178.781 1.449
SYNTH30 100 1,000,000 433.448 182.917 1.601

This table shows the mean query time in seconds for the AURA algorithm with
two di�erent con�gurations. Unary consists of PK input tokens and unary output
tokens and 2�Bit consists of WOCC input tokens with 2�bit output tokens. Both
con�gurations use 10 bins.
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Figure 9.2: A comparison of the mean query time using AURA with two di�erent con-
�gurations for each of the synthetic datasets. The Unary con�guration consists of PK
input tokens and unary output tokens and the 2�bit con�guration consists of WOCC input
tokens with 2�bit output tokens. Both con�gurations use 10 bins. Each marker represents
the mean query time for a single synthetic dataset, the markers are coloured according to
the number of features in the dataset. A marker in the shaded area indicates a dataset
where the 2�bit con�guration is faster.

Figure 9.2 shows a comparison of the mean query time between the unary con�gura-

tion and the 2�bit con�guration. As expected, it is clear that the 2�bit con�guration is

considerably faster than the unary con�guration. In addition the relative performance ad-

vantage of the 2�bit con�guration increases as the size of the dataset increases. The 2�bit

con�guration was a mean of 67.5 times faster than the unary con�guration for the largest

datasets of 1,000,000 sample datasets. This advantage is even greater when considering

only the largest datasets with 1000 features where it is 118 times faster.

9.2.3 Training Performance

In this Section a comparison of the training time between PK input tokens paired with

unary output tokens, the unary con�guration, and WOCC input token paired with 2�bit

output tokens, the 2�bit con�guration, is presented. The results of this experiment are

given in Table 9.3.
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Table 9.3: Mean Training Time AURA Comparison(Synthetic)

ID Features Samples Exact Unary 2�Bit

SYNTH01 2 1,000 0.000 0.000 0.001
SYNTH02 2 1,000 0.000 0.000 0.001
SYNTH03 10 1,000 0.000 0.004 0.006
SYNTH04 10 1,000 0.000 0.003 0.002
SYNTH05 100 1,000 0.000 0.012 0.026
SYNTH06 100 1,000 0.000 0.011 0.038
SYNTH07 1,000 1,000 0.000 0.119 0.296
SYNTH08 1,000 1,000 0.000 0.128 0.336
SYNTH09 2 10,000 0.000 0.004 0.003
SYNTH10 2 10,000 0.000 0.007 0.005
SYNTH11 10 10,000 0.000 0.024 0.038
SYNTH12 10 10,000 0.000 0.024 0.042
SYNTH13 100 10,000 0.000 0.129 0.254
SYNTH14 100 10,000 0.000 0.123 0.294
SYNTH15 1,000 10,000 0.000 1.330 3.005
SYNTH16 1,000 10,000 0.000 1.249 3.616
SYNTH17 2 100,000 0.000 0.042 0.060
SYNTH18 2 100,000 0.000 0.043 0.047
SYNTH19 10 100,000 0.000 0.295 0.477
SYNTH20 10 100,000 0.000 0.255 0.545
SYNTH21 100 100,000 0.000 1.353 2.973
SYNTH22 100 100,000 0.000 1.327 3.225
SYNTH23 1,000 100,000 0.000 12.703 37.936
SYNTH24 1,000 100,000 0.000 11.536 38.851
SYNTH25 2 1,000,000 0.000 0.455 0.504
SYNTH26 2 1,000,000 0.000 0.529 0.454
SYNTH27 10 1,000,000 0.000 2.668 4.637
SYNTH28 10 1,000,000 0.000 2.728 5.001
SYNTH29 100 1,000,000 0.000 15.489 32.927
SYNTH30 100 1,000,000 0.000 13.033 35.202

This table shows the mean train time in seconds for the AURA algorithm with two
di�erent con�gurations. Unary consists of PK input tokens and unary output tokens
and 2�Bit consists of WOCC input tokens with 2�bit output tokens. Both con�gura-
tions use 10 bins.

190



10−1 100 101 102

10−1

100

101

102

PK with Unary Output Tokens (s)

W
O
C
C
w
it
h
2�
b
it
O
u
tp
u
t
T
ok
en
s
(s
)

Mean Training Time AURA Comparison(Synthetic)

10
10
0

10
00

N
u
m
b
er

of
F
ea
tu
re
s

Figure 9.3: A comparison of the mean training time using AURA with two di�erent
con�gurations for each of the synthetic datasets. The Unary con�guration consists of PK
input tokens and unary output tokens and the 2�bit con�guration consists of WOCC input
tokens with 2�bit output tokens. Both con�gurations use 10 bins. Each marker represents
the mean training time for a single synthetic dataset, the markers are coloured according
to the number of features in the dataset. A marker in the shaded area indicates a dataset
where the 2�bit con�guration is faster.

Figure 9.3 shows a comparison of the mean feature distance between the unary con-

�guration and the 2�bit con�guration. The unary con�guration is clearly much faster to

train, across all the datasets it is a mean of 1.95 times faster to train the dataset with the

unary con�guration than the 2�bit con�guration.

9.2.4 Evaluation

Overall the accuracy of the unary con�guration is superior to that of the 2�bit con�gu-

ration. There are two reasons that this could be to case, �rst the PK tokens are more

accurate than WOCC tokens when paired with unary input tokens. As a result it is ex-

pected that the unary con�guration which uses PK input tokens would be more accurate.

The second reason is that the use of 2�bit output tokens results in multiple samples being

superimposed on a every column of the CMM. The interference cause by this superimposi-

tion will potentially introduce errors in the CMM recall and therefore result in a reduction

in the overall accuracy of a query. It is because the PK tokens su�er more greatly from this

interference that the WOCC tokens provide an equivalent level of accuracy when paired

with 2�bit output tokens. As a result, the superior accuracy of the unary con�guration

falls in line with expectations. However it is important that the relative accuracy of the
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datasets with 1000 features is very close because this suggests that 2�bit con�guration

may be a superior choice in these situations, especially when the query performance is

considered.

The 2�bit con�guration has signi�cantly faster query times than the unary con�gura-

tion. This is primarily due to the size of the CMM that has to be queried. Since the 2�bit

con�guration enables multiple samples to be superimposed within the CMM, the CMM

can be constructed to store the same number of samples with considerably fewer columns

than with the unary con�guration. In addition the rate at which the CMM is required to

grow in order to handle larger datasets is much smaller with the 2�bit con�guration. This

is because the unary con�guration requires an additional column for each new state that is

to be stored whereas the 2�bit con�guration can store multiple states for each additional

column, the number of new states that can be stored in the 2�bit con�guration depends

on the length of the Baum section used and these sections increase in length as the total

number of columns in the CMM increases, this was examined in Section 5.4. The end

result is that the 2�bit con�guration is faster than the unary con�guration and that the

relative performance advantage increases with larger datasets.

However with respect to the training time, the 2�bit con�guration is roughly twice as

slow as the unary con�guration. This is simply due to the need to set more bits within the

CMM with the 2�bit con�guration. Both the input tokens and the output tokens from the

2�bit con�guration require more bits and so combining them provides the huge number of

extra bits that have to be set in the CMM and therefore the performance penalty.

Overall, when making a decision between whether to use the unary or 2�bit con�gura-

tion it is �rst necessary to determine whether the level of accuracy provided by the 2�bit

con�guration is su�cient. If the accuracy is considered to be su�cient for the expected

dataset then the major advantage in the query time makes the 2�bit con�guration the

clear choice.

9.2.5 Summary

The unary con�guration, PK input tokens paired with Unary output tokens, is both faster

to train than the 2�bit con�guration, WOCC input tokens paired with 2�bit output tokens,

and more accurate than the 2�bit con�guration.

However the 2�bit con�guration has a signi�cantly faster query time as a result of

requiring fewer columns in the CMM. The time required to query a dataset as the size

of the dataset increases also grows much more slowly in the 2�bit con�guration and as a

result the 2�bit con�guration is 118 times faster to query the largest synthetic datasets.

9.3 LSH Comparison

The purpose of this Section is to compare the 2�bit con�guration, WOCC input tokens

paired with 2�bit output tokens, for the AURA based approximate kNN algorithm with

the LSH algorithm.

In Chapter 7 it was determined that the best results when using unary input tokens

could be obtained with PK input tokens. However this con�guration of tokens was shown

to have a slower query time than the exact Dual KD�Tree algorithm and as a result it
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was not necessary to perform a comparison between the LSH algorithm and the AURA

method because LSH has been shown in Section 6.4 to be substantially faster than the

Dual KD�Tree method in most instances.

In Section 9.2 an alternative pairing of WOCC input tokens and 2�bit output tokens

was shown to have substantially faster query times than could be observed using AURA

with unary output tokens.

As a result, the purpose of this Section is compare the performance of the modi�ed

AURA kNN algorithm using the 2�bit con�guration with the LSH algorithm, currently

the fastest approximate kNN algorithm.

9.3.1 Accuracy

In this Section a comparison of the accuracy between the AURA kNN implementation

using WOCC input tokens paired with 2�bit output tokens and the LSH algorithm is

presented. The results of this experiment are given in Table 9.4.

Table 9.4: Mean Feature Distance LSH AURA Comparison(Synthetic)

ID Features Samples LSH 2�Bit AURA

SYNTH01 2 1,000 0.063 0.120
SYNTH02 2 1,000 0.065 0.117
SYNTH03 10 1,000 0.144 0.249
SYNTH04 10 1,000 0.125 0.214
SYNTH05 100 1,000 0.073 0.081
SYNTH06 100 1,000 0.062 0.070
SYNTH07 1,000 1,000 0.025 0.026
SYNTH08 1,000 1,000 0.021 0.022
SYNTH09 2 10,000 0.019 0.203
SYNTH10 2 10,000 0.022 0.182
SYNTH11 10 10,000 0.111 0.246
SYNTH12 10 10,000 0.099 0.213
SYNTH13 100 10,000 0.071 0.081
SYNTH14 100 10,000 0.061 0.070
SYNTH15 1,000 10,000 0.025 0.026
SYNTH16 1,000 10,000 0.021 0.022
SYNTH17 2 100,000 0.006 0.464
SYNTH18 2 100,000 0.007 0.411
SYNTH19 10 100,000 0.086 0.243
SYNTH20 10 100,000 0.080 0.213
SYNTH21 100 100,000 0.070 0.081
SYNTH22 100 100,000 0.060 0.070
SYNTH23 1,000 100,000 0.025 0.026
SYNTH24 1,000 100,000 0.021 0.022
SYNTH25 2 1,000,000 0.002 0.475
SYNTH26 2 1,000,000 0.002 0.377
SYNTH27 10 1,000,000 0.067 0.250
SYNTH28 10 1,000,000 0.065 0.210
SYNTH29 100 1,000,000 0.069 0.081
SYNTH30 100 1,000,000 0.060 0.070

This table shows the mean feature distance for the AURA algorithm with WOCC
input tokens and 2�bit input tokens compared with the LSH algorithm.
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Figure 9.4: A comparison of the mean feature distance between the AURA algorithm
with WOCC input tokens and 2�bit output tokens and the LSH algorithm. Each marker
represents the mean feature distance for a single synthetic dataset, the markers are coloured
according to the number of features in the dataset. A marker in the shaded area indicates
a dataset where AURA is more accurate.

Figure 9.4 shows a comparison of the mean feature distance between AURA kNN

using WOCC input tokens and 2�bit output tokens and LSH. Given the poor accuracy

of this AURA con�guration when applied to datasets with a small number of features,

as observed in Chapter 8, and the generally high accuracy of LSH across all datasets, as

observed in Section 6.4, the results of this comparison are unsurprising. The LSH algorithm

is signi�cantly more accurate on the datasets with few features however the gap between

the accuracy of both methods narrows as the number of features in the datasets increases.

The di�erence between mean feature distances observed with the 1000 feature datasets is

only 4%. Regardless LSH is strictly more accurate across all the synthetic datasets. With

regards to the real world datasets, the LSH algorithm is also more accurate. The mean

feature distance across all the real world datasets is 28.4% lower with LSH than AURA

kNN.

9.3.2 Query Performance

In this Section a comparison of the query time between the AURA kNN implementation

using WOCC input tokens paired with 2�bit output tokens and the LSH algorithm is

presented. The relative query performance of these two algorithms is unknown. The

results of this experiment are given in Table 9.5.
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Table 9.5: Mean Query Time LSH AURA Comparison(Synthetic)

ID Features Samples LSH 2�Bit AURA

SYNTH01 2 1,000 0.068 0.101
SYNTH02 2 1,000 0.075 0.149
SYNTH03 10 1,000 0.076 0.089
SYNTH04 10 1,000 0.073 0.100
SYNTH05 100 1,000 0.143 0.145
SYNTH06 100 1,000 0.137 0.192
SYNTH07 1,000 1,000 1.818 0.580
SYNTH08 1,000 1,000 1.973 0.690
SYNTH09 2 10,000 0.089 0.130
SYNTH10 2 10,000 0.086 0.151
SYNTH11 10 10,000 0.116 0.143
SYNTH12 10 10,000 0.124 0.151
SYNTH13 100 10,000 0.233 0.239
SYNTH14 100 10,000 0.241 0.261
SYNTH15 1,000 10,000 1.749 1.110
SYNTH16 1,000 10,000 1.889 1.309
SYNTH17 2 100,000 0.095 0.447
SYNTH18 2 100,000 0.108 0.346
SYNTH19 10 100,000 0.145 0.304
SYNTH20 10 100,000 0.165 0.346
SYNTH21 100 100,000 0.294 0.542
SYNTH22 100 100,000 0.290 0.559
SYNTH23 1,000 100,000 1.919 2.677
SYNTH24 1,000 100,000 1.857 2.851
SYNTH25 2 1,000,000 0.110 3.883
SYNTH26 2 1,000,000 0.123 3.402
SYNTH27 10 1,000,000 0.201 0.784
SYNTH28 10 1,000,000 0.190 0.818
SYNTH29 100 1,000,000 0.308 1.449
SYNTH30 100 1,000,000 0.300 1.601

This table shows the mean query time in seconds for the AURA algorithm with
WOCC input tokens and 2�bit input tokens compared with the LSH algorithm.
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Figure 9.5: A comparison of the mean query time in seconds between the AURA algorithm
with WOCC input tokens and 2�bit output tokens and the LSH algorithm. Each marker
represents the mean feature distance for a single synthetic dataset, the markers are coloured
according to the number of features in the dataset. A marker in the shaded area indicates
a dataset where AURA is faster.

Figure 9.5 shows a comparison of the mean query time between AURA kNN using

WOCC input tokens and 2�bit output tokens and LSH. In general the LSH algorithm is

faster than AURA, particularly with the largest of the datasets. Overall the mean query

time of the LSH algorithm is 22.9% smaller than the AURA mean query time. However

with the smaller datasets consisting of 1000 features AURA is actually faster than LSH.

In the best case dataset SYNTH07 can be queried 3.1 times faster with AURA than LSH.

However as the number of samples in the dataset increases, LSH becomes faster than

AURA.

9.3.3 Training Performance

In this Section a comparison of the training time between the AURA kNN implementation

using WOCC input tokens paired with 2�bit output tokens and the LSH algorithm is

presented. The relative query performance of these two algorithms is unknown. The

results of this experiment are given in Table 9.6.
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Table 9.6: Mean Training Time LSH AURA Comparison(Synthetic)

ID Features Samples LSH Dual AURA

SYNTH01 2 1,000 0.032 0.001
SYNTH02 2 1,000 0.034 0.001
SYNTH03 10 1,000 0.055 0.006
SYNTH04 10 1,000 0.048 0.002
SYNTH05 100 1,000 0.191 0.026
SYNTH06 100 1,000 0.209 0.038
SYNTH07 1,000 1,000 0.365 0.296
SYNTH08 1,000 1,000 0.405 0.336
SYNTH09 2 10,000 0.351 0.003
SYNTH10 2 10,000 0.331 0.005
SYNTH11 10 10,000 0.655 0.038
SYNTH12 10 10,000 0.734 0.042
SYNTH13 100 10,000 3.762 0.254
SYNTH14 100 10,000 3.932 0.294
SYNTH15 1,000 10,000 20.380 3.005
SYNTH16 1,000 10,000 23.184 3.616
SYNTH17 2 100,000 3.692 0.060
SYNTH18 2 100,000 4.200 0.047
SYNTH19 10 100,000 8.848 0.477
SYNTH20 10 100,000 10.319 0.545
SYNTH21 100 100,000 60.299 2.973
SYNTH22 100 100,000 66.571 3.225
SYNTH23 1,000 100,000 387.808 37.936
SYNTH24 1,000 100,000 398.625 38.851
SYNTH25 2 1,000,000 49.638 0.504
SYNTH26 2 1,000,000 57.752 0.454
SYNTH27 10 1,000,000 176.161 4.637
SYNTH28 10 1,000,000 188.207 5.001
SYNTH29 100 1,000,000 1,055.715 32.927
SYNTH30 100 1,000,000 1,042.559 35.202

This table shows the mean training time in seconds for the AURA algorithm with
WOCC input tokens and 2�bit input tokens compared with the LSH algorithm.
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Figure 9.6: A comparison of the mean training time in seconds between the AURA
algorithm with WOCC input tokens and 2�bit output tokens and the LSH algorithm. Each
marker represents the mean feature distance for a single synthetic dataset, the markers are
coloured according to the number of features in the dataset. A marker in the shaded area
indicates a dataset where AURA is faster.

Figure 9.5 shows a comparison of the mean query time between AURA kNN using

WOCC input tokens and 2�bit output tokens and LSH. In Section 6.4 the training time of

the LSH algorithm was identi�ed as its major weakness. This is illustrated once again as

the AURA algorithm is signi�cantly faster to train for nearly every dataset. In the case of

the 1000 feature datasets when the accuracy and query times of AURA are comparable to

LSH, AURA can be trained a mean of 6.02 times faster than LSH.

9.3.4 Evaluation

The accuracy of AURA using WOCC input tokens and 2�bit output tokens is very poor

for datasets with only a small number of features. This was discussed in Section 8.2.

In contrast the accuracy of the LSH algorithm is consistently good with respect to the

exact algorithms as demonstrated in Section 6.4. As a result it is unsurprising that when

comparing these two algorithms the results are very similar to those observed between this

AURA con�guration and the exact algorithms.

Additionally the comparison between training times for each algorithm showed that the

AURA con�guration was much faster to train than LSH. The AURA con�guration used is

not the fastest con�guration for training times. However the training performance of LSH

was identi�ed as the major weakness in Section 6.4 and it is unsurprising that this AURA
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con�guration is able to train the datasets faster.

In contrast to the accuracy and training time comparisons, the results of the comparison

between query times were unexpected. In the majority of the datasets LSH is faster than

AURA, however for the 1000 feature datasets with 10,000 samples or less AURA is a mean

of 3.1 times faster. These datasets are also the ones in which the accuracy of AURA

is comparable to that of the LSH algorithms. As a result it appears that this AURA

con�guration is potentially a better choice than LSH for datasets with these characteristics.

However the query times of the LSH algorithm grow much more slowly than those of AURA,

so as a result LSH is faster for the 100,000 sample datasets with 1000 features.

Overall the LSH algorithm is more accurate than this con�guration of AURA and in

most cases has faster query times. As a result, from a technical perspective, the LSH

algorithm would be a superior choice to this AURA con�guration for the kNN component

of AURA Alert.

9.3.5 Summary

In this Section a comparison between AURA using WOCC input tokens and 2�bit output

tokens and the LSH algorithm was presented. In general LSH is superior to AURA with

respect to both its query times and its accuracy. Across all the synthetic datasets LSH is

consistently more accurate and is generally faster to query. However the main weakness of

LSH is the training time which is consistently slower than AURA. Despite this the query

time and accuracy bene�ts provided by LSH mean that, without considering business

factors, LSH would be a better choice for the kNN implementation within AURA Alert.

The major exception to these �ndings is that for the datasets of 1000 features and

10,000 features or less AURA is both faster to train, faster to query and relatively accurate

in comparison the LSH algorithm. If the datasets to be evaluated by AURA Alert fell

within these parameters then the case can be made for using this AURA con�guration

despite the small accuracy loss. However, at the moment AURA Alert is not typically

used for datasets with these properties.

9.4 Conclusion

In this chapter, the AURA approximate kNN algorithm has been evaluated with respect

to the standard kNN algorithms reviewed in Section 3.11.

Initially the baseline experiments were performed using the exact Linear, KD Tree,

and Dual KD Tree algorithms and the approximate LSH algorithm. The results of these

experiments showed that for datasets with a very small number of features, KD Tree is

the fastest algorithm. While, for very large datasets, the Dual KD Tree algorithm is the

fastest exact algorithm, the approximate LSH algorithm was shown to be massively faster

than any of the exact algorithms for all the synthetic datasets with more than 2 features.

Despite the speed of LSH, it is also relatively accurate, with the penalty to the mean

feature distance across all the synthetic datasets being only 3.54%.

The results of these baseline experiments match the expected results suggested by the

relevant literature and therefore validates the experimental setup for use in the evaluation

of AURA kNN.
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The �rst stage of this evaluation was to compare the standard AURA kNN using Unary

output tokens. Three methods for generating input tokens, Parabolic Kernel (PK), Over-

lapped Binary Code Construction (OBCC) and Weighted Overlapped Code Construction

(WOCC) were compared with respect to the accuracy of the kNN query, and the execution

times for querying and training the algorithm.

The main �nding of these experiments was that PK tokens, the standard input tokens

used by AURA kNN, were both faster and more accurate than the other input tokens when

paired with unary output tokens. Despite this, the exact Dual KD Tree algorithm is still

faster than AURA kNN with PK input tokens and Unary output tokens.

With regards to the OBCC and WOCC input tokens, it was shown that the WOCC

tokens exhibit identical accuracy to the OBCC tokens and that WOCC tokens are generally

faster when both training and querying a CMM.

The next set of experiments considered the use of 2�bit Baum coded output tokens

to speed up the query time of the AURA kNN algorithm. Compared to the other input

tokens, the accuracy of PK tokens su�ers greatly with 2�bit output tokens. As a result,

there is no signi�cant di�erence in accuracy between the three input token methods.

When dataset only have a small number of features, the observed accuracy is very poor.

For datasets with many features however, there is only a small penalty in the mean feature

distance in comparison to the exact results. Another observation of the 2�bit output

experiments is that accuracy appears to decrease as the size of the dataset increases.

However the 2�bit output tokens achieve their objective of improving the query time

of the algorithm. Overall WOCC tokens were shown to provide the fastest query times

when combined with 2�bit output tokens. This combination of tokens improves the query

time by a factor of 67.5 for the largest dataset examined. However this comes at a cost of

accuracy. In the best case, where the datasets have a large number of features, there is a

4.6% penalty to using 2�bit output tokens.

The 2�bit AURA kNN algorithm also fairs poorly in comparison to LSH. In both the

synthetic and real world datasets, LSH is more accurate and, for the majority of datasets,

faster than 2�bit AURA kNN. However crucially, for the 1000 feature datasets, where the

accuracy of 2�bit AURA kNN is only a mean of 4% worse than LSH, AURA kNN is 3.1

times faster than LSH when there are 10,000 or fewer samples in the dataset.

From these results it is possible to drawn the following conclusions. The original AURA

kNN algorithm is inferior to both the LSH and Dual KD Tree algorithms in both speed and

accuracy. The modi�cations to AURA kNN that were proposed in Chapter 5, particularly

WOCC input tokens and 2�bit Baum coded output tokens, have signi�cantly improved the

speed of the algorithm, but at the cost of accuracy. The speci�c situation, a dataset with

less than 100,000 samples and 1,000 features, where the modi�ed AURA kNN is faster and

with only a minor accuracy penalty in comparison to LSH is not commonly encountered

by AURA Alert. Therefore the LSH algorithm would be a superior choice for the AURA

Alert kNN algorithm where the typical datasets consist of less than 1,000 features or more

than 100,000 samples.
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Chapter 10

Conclusions

10.1 Introduction

In Chapter 1, two research questions were posed; �rstly, how does the AURA k�Nearest

Neighbour (kNN) algorithm compare with the existing state of the art kNN algorithms?;

and secondly, how can the AURA kNN algorithm be modi�ed so that it is competitive

with those state of the art kNN algorithms?

The answer to these questions is important because the AURA kNN algorithm is in-

tegral to the AURA Alert anomaly detection system described in Chapter 4. Anomaly

detection, along with classi�cation, are the key methods by which data driven models of

can be used to support both prognostics and diagnostics of complex systems. These topics

are discussed in detail in Chapter 3.

It is important for AURA Alert to be able to handle the increasingly large volumes of

data that are collected as part of monitoring large and complex systems. For this, it is

essential that the kNN algorithm used to identify similar historical system states is able to

scale well so that it can provide a fast and accurate search across a large number of such

historical system states.

Previously, the only comparative analysis of kNN algorithms to consider AURA kNN

was performed by Hodge and Austin (2005). However this analysis only considers the basic

Linear Scan algorithm in comparison to AURA kNN. In Chapter 3, several algorithms were

detailed with the potential to be both more accurate and faster than AURA kNN.

With regards to the question of how AURA kNN could be improved, the work of

Hobson (2011) described several techniques for maximising the information density of the

Correlation Matrix Memories (CMM) used to implement AURA kNN. This presented the

possibility of being able to use a smaller CMM to implement a particular search and

therefore enable AURA kNN to scale better with larger datasets.

10.2 Findings

Given the two research questions stated above, the �ndings of this research can be divided

into two groups. Those belonging to research into how modify AURA kNN and those

belonging to the comparative evaluation of AURA kNN.

The �ndings that relate to how to modify AURA kNN are discussed in detail in Chapter

5. However there are three novel contributions that are summarised below.
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The �rst concerns optimisation of the Overlapped Binary Code Construction (OBCC)

method. The work of Hobson (2011) described a method for generating OBCC tokens.

But this work gives little considerable to how the method would scale to handle real world

problems. In Section 5.2.4 it was shown that by using the MIN clique decomposition

algorithm instead of the standard Bron�Kerbosch algorithm a substantial improvement in

execution time can be achieved with only a very small increase in the size of the tokens

that are generated. Encoding 400 unique values requires only 4.99 seconds using MIN in

comparison to approximately 4 days when using Bron�Kerbosch. The cost of this speedup

is that the weight of the resulting tokens is increased by only 12 bits.

The next contribution was the introduction of the Weighted Overlap Code Construction

(WOCC) method for generating tokens. The OBCC method of Hobson (2011) generates

pure binary CMM tokens. However AURA based CMMs are able to support weighted

tokens during recall, but not during the training stage. After observing that multiple

columns of the token matrix generated via OBCC were identical, the WOCC method was

presented in Section 5.3 that allows these duplicate columns to be collapsed into a single

column and associated weight. This method allows the theoretical advantages of OBCC

to preserved while also generating smaller tokens.

The accuracy of AURA kNN with WOCC input tokens is robust to changes in param-

eters such as; max distance, max overlap and number of bins, that are used to generate

the input tokens. This is due to the �nal �ltering stage where a Linear scan of the can-

didate samples is used to �nd the k neighbours. However the CMM training and query

times are very sensitive to changes in token length that are caused by increasing the above

parameters. Therefore it is necessary to minimise these parameters, but also balance the

reduced CMM query time with an increased Linear scan caused by more candidates being

retrieved from the CMM when these parameters are small.

The �nal novel modi�cation was to consider the use of Baum Coded output tokens

for the CMM used in AURA kNN. Hobson (2011) noted that, up to a certain point, the

information density of a CMM can be increased by increasing the weight of the CMM

output tokens. This is because it allows more unique tokens to be encoded for a given

length of token. Baum Codes (Baum, Moody, and Wilczek 1988) provide a fast method

of generating sparse tokens of a speci�ed weight. In Section 5.4 it was observed that by

increasing the information density of the CMM, a smaller CMM can be used to store a

dataset of a given size. It was shown that a dataset of 5,000 samples could be stored

with 93% fewer CMM columns using 2�Bit Baum Coded output tokens rather than unary

tokens. This use of non�unary output tokens had not previously been used with AURA

kNN.

These changes to the method for generating input and output tokens presented several

alternative con�gurations for a CMM to use as part of AURA kNN. In Chapters 6, 7,

8 and 9 these were examined with a view to comparing both the standard and modi�ed

AURA kNN with the spatial partitioning kNN algorithms described in Section 3.11.3 and

the state of the art LSH algorithm described in Section 3.11.4. A summary of the �ndings

is given below.

Neither OBCC or WOCC input tokens are as fast or accurate as Parabolic Kernel

(Hodge and Austin 2005) (PK) input tokens. Regardless, the standard AURA kNN algo-
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rithm, using PK input tokens and unary output tokens, was consistently slower than the

Dual KD�Tree algorithm. This is an exact algorithm, therefore there is no advantage to

be gained by using AURA kNN over Dual KD�Tree. The LSH algorithm was shown to

be several orders of magnitude faster than the exact Dual KD�Tree algorithm with only a

0.32% accuracy penalty.

In order to allow AURA kNN to be competitive with LSH it was necessary to use

2�Bit Baum Coded output tokens. However a result of using these output tokens was that

WOCC input tokens provided the fastest queries of a CMM. In addition, the accuracy

of using PK tokens was reduced to the point that there was no signi�cant di�erence in

accuracy between WOCC tokens and PK tokens.

Comparing the modi�ed AURA kNN, using WOCC input tokens and 2�Bit Baum

Coded output tokens, with LSH showed that, for most datasets, LSH is still superior.

The mean query time of LSH is 22% faster than the modi�ed AURA kNN algorithm. In

addition, LSH is considerably more accurate, particularly for datasets with a small number

of features. LSH is a mean of 2.5 times more accurate on the 10 feature synthetic datasets.

However with datasets that have 1,000 features and fewer than 10,000 samples, modi�ed

AURA kNN is faster than LSH and in the best case it is 3.1 times faster with a 4% accuracy

penalty.

Overall, considering the number of feature and samples in the datasets that are typically

processed by AURA Alert, LSH is clearly superior for these use cases.

10.3 Limitations

There are two caveats that must be considered with respect to the �ndings of this research.

The �rst is that the commercially sensitive nature of industrial condition monitoring

data has meant that it has not been possible to acquire a large real world dataset with

which to perform the experiments in Chapters 6, 7, 8 and 9. As a result majority of the

conclusions have has to be drawn from synthetic datasets.

However, these results should still hold when applied to real world condition monitoring

data. This is because the Gaussian random datasets were generated such that they would

be similar to the expected condition monitoring datasets (A) and the �ndings with respect

to accuracy are consistent with the real world datasets that were examined.

The second caveat is that these experiments were only performed with single threaded

implementations of the algorithms. This is because the AURA library that formed the basis

for much of this research currently does not currently support multi�threaded querying of

the CMM.

Both AURA kNN and LSH are well suited to parallel query execution. However there

is signi�cant commercial value in these single threaded results and the best approach for

implementing a parallel AURA kNN search would require signi�cant further research.

10.4 Future Work

However the results do point to some further research that could potentially improve

AURA kNN. Increasing the weight of the output tokens can further improve the speed of
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the algorithm. However the accuracy penalty must be countered.

One way in which this could potentially be achieved is to use the WOCC method to

encode the overlap function that de�nes PK tokens (Section 4.3.1). This way, the superior

accuracy of the PK tokens would hopefully not be as a�ected by the crosstalk introduced

by the increased weight of the output tokens.

Another method for improving the accuracy could be to improve the decoding of the

output scores during the threshold stage of the CMM query (Section 5.4.2). Alternative

methods for determining the ranking the decoded Baum Coded tokens, for example, by

total weight, could potentially improve the overall accuracy of the kNN search.

The accuracy can be improved by increasing the number of candidate samples that

are considered in the �ltering stage of the query. This will increase the query time, but

potentially by trading an increased �ltering time for a reduced CMM query time, the

overall time for the kNN query could be reduced.

Finally, it would be worthwhile to evaluate AURA Alert using the alternative kNN

algorithms considered as part of this research. In particular an implementation that uses

LSH would be worth investigating.

10.5 Final conclusion

The two questions that were posed as the basis for this research were: How does the AURA

kNN algorithm compare with the existing state of the art kNN algorithms?; And how can

the AURA kNN algorithm be modi�ed so that it is competitive with those state of the art

kNN algorithms?

It has been shown that the standard AURA kNN compares poorly to both the exact

spatial partitioning kNN algorithms and the approximate kNN algorithm LSH. In addition,

the modi�cations investigated as part of this research were insu�cient to improve AURA

kNN to the point where is competitive with LSH for the types of dataset that AURA kNN

is typically used for. However the results of these modi�cation do point towards potential

further improvements, by combining WOCC input tokens with more bits set in the output

tokens, that could help close the gap in performance.
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Appendix A

Normalised Timeseries data has

Gaussian distribution

Lin et al. (2003) demonstrate that, after normalisation, the values in a time series can

typically be assumed to fall approximately within a Gaussian distribution. I have veri�ed

that this assumption holds with some of the real world datasets that I have used as part

of my research. In the following experiment I demonstrate that the assumption holds in

one of these datasets.

The Left Hippocampus EEG channel from dataset PLB1_1C_599_24h was selected

randomly as the target time series. This is mouse EEG data recorded at 200Hz for a period

of approximately 24 hours giving a total of 17,347,228 samples. This channel was divided

into windows of length 200 with an overlap of 100 samples between adjacent windows.

In total this provides 173,471 example windows of time series data. Each window was

normalised to have a mean of 0 and a standard deviation of 1.

These windows were then binned using both the Equi�width and Equi�frequency bin-

ning strategies. For both strategies, the breakpoints were calculated for 10 bins and a

normalised data range between -2 and 2.

Finally the number of occurrences of each bin across all the examples was counted. The

results are shown in Figure A.1. Using the Equi�frequency binning strategy produces bins

that have a roughly equal number of occurrences, this is the desired outcome for this strat-

egy. However, the implementation of Equi�frequency binning is based on the assumption

that the normalised time series data has an approximately Gaussian distribution in order

to determine the location of the breakpoints. Since the placement of the breakpoints has

lead to a roughly equal occurrence of each bin, this assumption appears to be true. Further

evidence that the normalised time series data has a Gaussian distribution can be seen via

the distinctive bell curve that can be observed with the Equi�width strategy where there

are more occurrences of bins that are close to the middle of the range.
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Figure A.1: Veri�cation that normalised Mouse Sleep EEG data has a Gaussian distri-
bution.
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Frequency of bins in the Mouse Sleep dataset PLB1_1C_599_24h

These histograms show the number of times each bin occurs when binning the nor-
malised Left Hippocampus EEG channel. Each of the 10 bins are labelled 0 . . . 9 along
the x�axis while their respective counts are given on the y�axis. The Equi�frequency
binning strategy assumes that the normalised data has a Gaussian distribution, this
assumption is backed up by the roughly equal occurrences of each bin using this
strategy. The distinctive bell curve observed with the Equi�width binning strategy
provides further evidence that this assumption holds.
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Appendix B

Nearest Neighbour Experiment

Tables of Results
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Table B.1: Mean Feature Distance for Number of Bins with PK AURA(Real)

ID Exact 10 Bins 20 Bins 40 Bins 80 Bins

50words 0.046 0.051 0.051 0.051 0.052
Adiac 0.005 0.006 0.006 0.006 0.006
Beef 0.002 0.002 0.002 0.002 0.002
CBF 0.093 0.094 0.094 0.094 0.094

ChlorineConcentration 0.011 0.012 0.012 0.012 0.012
CinC_ECG_torso 0.032 0.032 0.033 0.033 0.033

Co�ee 0.208 0.208 0.208 0.208 0.208
Cricket_X 0.044 0.048 0.048 0.048 0.048
Cricket_Y 0.044 0.048 0.048 0.047 0.047
Cricket_Z 0.044 0.049 0.048 0.048 0.048

DiatomSizeReduction 0.010 0.010 0.010 0.010 0.010
ECG200 0.053 0.054 0.054 0.054 0.054

ECGFiveDays 0.081 0.081 0.081 0.081 0.081
FaceAll 0.072 0.077 0.077 0.077 0.077
FaceFour 0.063 0.063 0.063 0.063 0.063
FacesUCR 0.079 0.085 0.085 0.085 0.085
Gun_Point 0.034 0.034 0.034 0.034 0.034
Haptics 0.012 0.012 0.012 0.012 0.012

InlineSkate 0.013 0.014 0.014 0.014 0.014
ItalyPowerDemand 0.074 0.075 0.075 0.075 0.075

Lighting2 0.039 0.039 0.039 0.039 0.039
Lighting7 0.052 0.055 0.052 0.052 0.053
MALLAT 0.009 0.009 0.009 0.009 0.009

MedicalImages 0.045 0.054 0.054 0.054 0.054
MoteStrain 0.110 0.110 0.110 0.110 0.110

NonInvasiveFatalECG_Thorax1 0.004 0.005 0.005 0.005 0.005
NonInvasiveFatalECG_Thorax2 0.004 0.004 0.004 0.004 0.005

OSULeaf 0.044 0.045 0.045 0.045 0.046
OliveOil 0.000 0.000 0.000 0.000 0.000

SonyAIBORobot_Surface 0.089 0.089 0.089 0.089 0.089
SonyAIBORobot_SurfaceII 0.131 0.132 0.132 0.132 0.132

StarLightCurves 0.007 0.008 0.007 0.007 0.007
SwedishLeaf 0.029 0.030 0.030 0.030 0.030
Symbols 0.054 0.054 0.054 0.054 0.054
Trace 0.027 0.028 0.028 0.028 0.028

TwoLeadECG 0.055 0.055 0.055 0.055 0.055
Two_Patterns 0.083 0.087 0.087 0.088 0.088
WordsSynonyms 0.051 0.056 0.057 0.057 0.057

�sh 0.009 0.009 0.009 0.009 0.009
synthetic_control 0.106 0.108 0.108 0.108 0.108

test 0.379 0.379 0.379 0.379 0.379
uWaveGestureLibrary_X 0.031 0.034 0.035 0.036 0.037
uWaveGestureLibrary_Y 0.028 0.032 0.032 0.032 0.032
uWaveGestureLibrary_Z 0.030 0.032 0.034 0.034 0.034

wafer 0.029 0.032 0.032 0.032 0.034
yoga 0.019 0.019 0.020 0.028 0.029

This table shows the mean feature distance for the AURA algorithm with Parabolic
Kernel input tokens, single bit output tokens and a varying numbers of bins.
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Table B.2: Mean Feature Distance for Number of Bins with OBCC AURA(Real)

ID Exact 10 Bins 20 Bins 40 Bins 80 Bins

50words 0.046 0.053 0.053 0.053 0.053
Adiac 0.005 0.006 0.006 0.006 0.006
Beef 0.002 0.002 0.002 0.002 0.002
CBF 0.093 0.094 0.094 0.094 0.094

ChlorineConcentration 0.011 0.012 0.012 0.012 0.012
CinC_ECG_torso 0.032 0.033 0.033 0.033 0.033

Co�ee 0.208 0.208 0.208 0.208 0.208
Cricket_X 0.044 0.052 0.052 0.052 0.052
Cricket_Y 0.044 0.052 0.053 0.053 0.051
Cricket_Z 0.044 0.052 0.053 0.053 0.051

DiatomSizeReduction 0.010 0.010 0.010 0.010 0.010
ECG200 0.053 0.055 0.055 0.055 0.055

ECGFiveDays 0.081 0.081 0.081 0.081 0.081
FaceAll 0.072 0.079 0.078 0.078 0.077
FaceFour 0.063 0.063 0.063 0.063 0.063
FacesUCR 0.079 0.086 0.085 0.084 0.084
Gun_Point 0.034 0.035 0.035 0.034 0.034
Haptics 0.012 0.012 0.012 0.012 0.012

InlineSkate 0.013 0.014 0.014 0.014 0.014
ItalyPowerDemand 0.074 0.076 0.076 0.077 0.077

Lighting2 0.039 0.039 0.039 0.039 0.039
Lighting7 0.052 0.055 0.052 0.052 0.053
MALLAT 0.009 0.009 0.009 0.009 0.009

MedicalImages 0.045 0.061 0.062 0.063 0.062
MoteStrain 0.110 0.110 0.110 0.110 0.110

NonInvasiveFatalECG_Thorax1 0.004 0.005 0.005 0.005 0.005
NonInvasiveFatalECG_Thorax2 0.004 0.005 0.005 0.005 0.006

OSULeaf 0.044 0.046 0.046 0.046 0.046
OliveOil 0.000 0.000 0.000 0.000 0.000

SonyAIBORobot_Surface 0.089 0.089 0.089 0.089 0.089
SonyAIBORobot_SurfaceII 0.131 0.132 0.132 0.132 0.132

StarLightCurves 0.007 0.008 0.008 0.008 0.008
SwedishLeaf 0.029 0.031 0.031 0.031 0.031
Symbols 0.054 0.054 0.054 0.054 0.054
Trace 0.027 0.028 0.028 0.028 0.028

TwoLeadECG 0.055 0.055 0.055 0.055 0.055
Two_Patterns 0.083 0.088 0.088 0.087 0.087
WordsSynonyms 0.051 0.058 0.058 0.058 0.057

�sh 0.009 0.009 0.009 0.009 0.009
synthetic_control 0.106 0.110 0.110 0.110 0.110

test 0.379 0.360 0.341 0.335 0.334
uWaveGestureLibrary_X 0.031 0.035 0.036 0.036 0.036
uWaveGestureLibrary_Y 0.028 0.033 0.033 0.032 0.032
uWaveGestureLibrary_Z 0.030 0.033 0.035 0.033 0.034

wafer 0.029 0.034 0.034 0.036 0.034
yoga 0.019 0.020 0.021 0.027 0.028

This table shows the mean feature distance for the AURA algorithm with OBCC
input tokens, single bit output tokens and a varying numbers of bins.
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Table B.3: Mean Feature Distance for Number of Bins with WOCC AURA(Real)

ID Exact 10 Bins 20 Bins 40 Bins 80 Bins

50words 0.046 0.053 0.053 0.053 0.053
Adiac 0.005 0.006 0.006 0.006 0.006
Beef 0.002 0.002 0.002 0.002 0.002
CBF 0.093 0.094 0.094 0.094 0.094

ChlorineConcentration 0.011 0.012 0.012 0.012 0.012
CinC_ECG_torso 0.032 0.033 0.033 0.033 0.033

Co�ee 0.208 0.208 0.208 0.208 0.208
Cricket_X 0.044 0.052 0.052 0.052 0.052
Cricket_Y 0.044 0.052 0.053 0.053 0.051
Cricket_Z 0.044 0.052 0.053 0.053 0.051

DiatomSizeReduction 0.010 0.010 0.010 0.010 0.010
ECG200 0.053 0.055 0.055 0.055 0.055

ECGFiveDays 0.081 0.081 0.081 0.081 0.081
FaceAll 0.072 0.079 0.078 0.078 0.077
FaceFour 0.063 0.063 0.063 0.063 0.063
FacesUCR 0.079 0.086 0.085 0.084 0.084
Gun_Point 0.034 0.035 0.035 0.034 0.034
Haptics 0.012 0.012 0.012 0.012 0.012

InlineSkate 0.013 0.014 0.014 0.014 0.014
ItalyPowerDemand 0.074 0.076 0.076 0.077 0.077

Lighting2 0.039 0.039 0.039 0.039 0.039
Lighting7 0.052 0.055 0.052 0.052 0.053
MALLAT 0.009 0.009 0.009 0.009 0.009

MedicalImages 0.045 0.061 0.062 0.063 0.062
MoteStrain 0.110 0.110 0.110 0.110 0.110

NonInvasiveFatalECG_Thorax1 0.004 0.005 0.005 0.005 0.005
NonInvasiveFatalECG_Thorax2 0.004 0.005 0.005 0.005 0.006

OSULeaf 0.044 0.046 0.046 0.046 0.046
OliveOil 0.000 0.000 0.000 0.000 0.000

SonyAIBORobot_Surface 0.089 0.089 0.089 0.089 0.089
SonyAIBORobot_SurfaceII 0.131 0.132 0.132 0.132 0.132

StarLightCurves 0.007 0.008 0.008 0.008 0.008
SwedishLeaf 0.029 0.031 0.031 0.031 0.031
Symbols 0.054 0.054 0.054 0.054 0.054
Trace 0.027 0.028 0.028 0.028 0.028

TwoLeadECG 0.055 0.055 0.055 0.055 0.055
Two_Patterns 0.083 0.088 0.088 0.087 0.087
WordsSynonyms 0.051 0.058 0.058 0.058 0.057

�sh 0.009 0.009 0.009 0.009 0.009
synthetic_control 0.106 0.110 0.110 0.110 0.110

test 0.379 0.360 0.341 0.335 0.334
uWaveGestureLibrary_X 0.031 0.035 0.036 0.036 0.036
uWaveGestureLibrary_Y 0.028 0.033 0.033 0.032 0.032
uWaveGestureLibrary_Z 0.030 0.033 0.035 0.033 0.034

wafer 0.029 0.034 0.034 0.036 0.034
yoga 0.019 0.020 0.021 0.027 0.028

This table shows the mean feature distance for the AURA algorithm with WOCC
input tokens, single bit output tokens and a varying numbers of bins.
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Table B.4: Mean Feature Distance for Number of Bins with 2�Bit PK AURA(Real)

ID Exact 10 Bins 20 Bins 40 Bins 80 Bins

50words 0.046 0.064 0.065 0.064 0.064
Adiac 0.005 0.009 0.010 0.008 0.008
Beef 0.002 0.002 0.002 0.002 0.002
CBF 0.093 0.097 0.097 0.096 0.096

ChlorineConcentration 0.011 0.026 0.027 0.025 0.025
CinC_ECG_torso 0.032 0.033 0.033 0.033 0.034

Co�ee 0.208 0.208 0.208 0.208 0.208
Cricket_X 0.044 0.061 0.059 0.059 0.059
Cricket_Y 0.044 0.059 0.059 0.057 0.057
Cricket_Z 0.044 0.060 0.058 0.059 0.058

DiatomSizeReduction 0.010 0.010 0.010 0.010 0.010
ECG200 0.053 0.070 0.068 0.068 0.067

ECGFiveDays 0.081 0.081 0.081 0.081 0.081
FaceAll 0.072 0.093 0.093 0.093 0.093
FaceFour 0.063 0.063 0.063 0.063 0.063
FacesUCR 0.079 0.097 0.097 0.097 0.097
Gun_Point 0.034 0.043 0.037 0.037 0.034
Haptics 0.012 0.013 0.014 0.015 0.015

InlineSkate 0.013 0.018 0.017 0.017 0.017
ItalyPowerDemand 0.074 0.105 0.096 0.098 0.099

Lighting2 0.039 0.039 0.039 0.039 0.039
Lighting7 0.052 0.057 0.052 0.052 0.053
MALLAT 0.009 0.010 0.009 0.009 0.010

MedicalImages 0.045 0.073 0.073 0.070 0.071
MoteStrain 0.110 0.110 0.110 0.110 0.110

NonInvasiveFatalECG_Thorax1 0.004 0.009 0.008 0.009 0.008
NonInvasiveFatalECG_Thorax2 0.004 0.009 0.008 0.009 0.009

OSULeaf 0.044 0.053 0.053 0.052 0.053
OliveOil 0.000 0.000 0.000 0.000 0.000

SonyAIBORobot_Surface 0.089 0.089 0.089 0.089 0.089
SonyAIBORobot_SurfaceII 0.131 0.132 0.132 0.133 0.132

StarLightCurves 0.007 0.015 0.014 0.014 0.013
SwedishLeaf 0.029 0.044 0.043 0.043 0.042
Symbols 0.054 0.054 0.054 0.054 0.054
Trace 0.027 0.031 0.032 0.031 0.032

TwoLeadECG 0.055 0.055 0.055 0.055 0.055
Two_Patterns 0.083 0.104 0.104 0.105 0.104
WordsSynonyms 0.051 0.067 0.066 0.067 0.067

�sh 0.009 0.011 0.009 0.009 0.009
synthetic_control 0.106 0.139 0.139 0.139 0.139

test 0.379 0.379 0.379 0.379 0.379
uWaveGestureLibrary_X 0.031 0.051 0.048 0.045 0.044
uWaveGestureLibrary_Y 0.028 0.044 0.044 0.038 0.039
uWaveGestureLibrary_Z 0.030 0.048 0.046 0.039 0.040

wafer 0.029 0.062 0.055 0.048 0.062
yoga 0.019 0.035 0.027 0.032 0.039

This table shows the mean feature distance for the AURA algorithm with Parabolic
Kernel input tokens, single bit output tokens and a varying numbers of bins.
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Table B.5: Mean Feature Distance for Number of Bins with 2�Bit OBCC AURA(Real)

ID Exact 10 Bins 20 Bins 40 Bins 80 Bins

50words 0.046 0.065 0.065 0.065 0.065
Adiac 0.005 0.008 0.008 0.008 0.007
Beef 0.002 0.002 0.002 0.002 0.002
CBF 0.093 0.097 0.097 0.096 0.096

ChlorineConcentration 0.011 0.025 0.025 0.024 0.023
CinC_ECG_torso 0.032 0.033 0.033 0.033 0.034

Co�ee 0.208 0.208 0.208 0.208 0.208
Cricket_X 0.044 0.062 0.062 0.060 0.061
Cricket_Y 0.044 0.061 0.061 0.060 0.059
Cricket_Z 0.044 0.062 0.061 0.061 0.060

DiatomSizeReduction 0.010 0.010 0.010 0.010 0.010
ECG200 0.053 0.068 0.068 0.068 0.068

ECGFiveDays 0.081 0.081 0.081 0.081 0.081
FaceAll 0.072 0.094 0.094 0.093 0.093
FaceFour 0.063 0.063 0.063 0.063 0.063
FacesUCR 0.079 0.097 0.097 0.096 0.096
Gun_Point 0.034 0.042 0.037 0.036 0.034
Haptics 0.012 0.013 0.015 0.015 0.015

InlineSkate 0.013 0.017 0.018 0.018 0.018
ItalyPowerDemand 0.074 0.099 0.099 0.099 0.099

Lighting2 0.039 0.039 0.039 0.039 0.039
Lighting7 0.052 0.057 0.052 0.052 0.053
MALLAT 0.009 0.010 0.009 0.009 0.009

MedicalImages 0.045 0.075 0.075 0.075 0.075
MoteStrain 0.110 0.110 0.110 0.110 0.110

NonInvasiveFatalECG_Thorax1 0.004 0.008 0.007 0.008 0.008
NonInvasiveFatalECG_Thorax2 0.004 0.009 0.008 0.009 0.008

OSULeaf 0.044 0.053 0.053 0.052 0.052
OliveOil 0.000 0.000 0.000 0.000 0.000

SonyAIBORobot_Surface 0.089 0.089 0.089 0.089 0.089
SonyAIBORobot_SurfaceII 0.131 0.133 0.133 0.133 0.133

StarLightCurves 0.007 0.013 0.014 0.014 0.014
SwedishLeaf 0.029 0.043 0.042 0.042 0.042
Symbols 0.054 0.054 0.054 0.054 0.054
Trace 0.027 0.032 0.031 0.032 0.031

TwoLeadECG 0.055 0.055 0.055 0.055 0.055
Two_Patterns 0.083 0.105 0.105 0.104 0.104
WordsSynonyms 0.051 0.067 0.067 0.067 0.067

�sh 0.009 0.011 0.009 0.009 0.009
synthetic_control 0.106 0.139 0.140 0.140 0.140

test 0.379 0.370 0.360 0.357 0.357
uWaveGestureLibrary_X 0.031 0.051 0.046 0.044 0.043
uWaveGestureLibrary_Y 0.028 0.047 0.043 0.038 0.038
uWaveGestureLibrary_Z 0.030 0.050 0.043 0.039 0.040

wafer 0.029 0.060 0.054 0.049 0.054
yoga 0.019 0.034 0.028 0.032 0.038

This table shows the mean feature distance for the AURA algorithm with OBCC
input tokens, single bit output tokens and a varying numbers of bins.
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Table B.6: Mean Feature Distance for Number of Bins with 2�Bit WOCC AURA(Real)

ID Exact 10 Bins 20 Bins 40 Bins 80 Bins

50words 0.046 0.065 0.065 0.065 0.065
Adiac 0.005 0.008 0.008 0.008 0.007
Beef 0.002 0.002 0.002 0.002 0.002
CBF 0.093 0.097 0.097 0.096 0.096

ChlorineConcentration 0.011 0.025 0.025 0.024 0.023
CinC_ECG_torso 0.032 0.033 0.033 0.033 0.034

Co�ee 0.208 0.208 0.208 0.208 0.208
Cricket_X 0.044 0.062 0.062 0.060 0.061
Cricket_Y 0.044 0.061 0.061 0.060 0.059
Cricket_Z 0.044 0.062 0.061 0.061 0.060

DiatomSizeReduction 0.010 0.010 0.010 0.010 0.010
ECG200 0.053 0.068 0.068 0.068 0.068

ECGFiveDays 0.081 0.081 0.081 0.081 0.081
FaceAll 0.072 0.094 0.094 0.093 0.093
FaceFour 0.063 0.063 0.063 0.063 0.063
FacesUCR 0.079 0.097 0.097 0.096 0.096
Gun_Point 0.034 0.042 0.037 0.036 0.034
Haptics 0.012 0.013 0.015 0.015 0.015

InlineSkate 0.013 0.017 0.018 0.018 0.018
ItalyPowerDemand 0.074 0.099 0.099 0.099 0.099

Lighting2 0.039 0.039 0.039 0.039 0.039
Lighting7 0.052 0.057 0.052 0.052 0.053
MALLAT 0.009 0.010 0.009 0.009 0.009

MedicalImages 0.045 0.075 0.075 0.075 0.075
MoteStrain 0.110 0.110 0.110 0.110 0.110

NonInvasiveFatalECG_Thorax1 0.004 0.008 0.007 0.008 0.008
NonInvasiveFatalECG_Thorax2 0.004 0.009 0.008 0.009 0.008

OSULeaf 0.044 0.053 0.053 0.052 0.052
OliveOil 0.000 0.000 0.000 0.000 0.000

SonyAIBORobot_Surface 0.089 0.089 0.089 0.089 0.089
SonyAIBORobot_SurfaceII 0.131 0.133 0.133 0.133 0.133

StarLightCurves 0.007 0.013 0.014 0.014 0.014
SwedishLeaf 0.029 0.043 0.042 0.042 0.042
Symbols 0.054 0.054 0.054 0.054 0.054
Trace 0.027 0.032 0.031 0.032 0.031

TwoLeadECG 0.055 0.055 0.055 0.055 0.055
Two_Patterns 0.083 0.105 0.105 0.104 0.104
WordsSynonyms 0.051 0.067 0.067 0.067 0.067

�sh 0.009 0.011 0.009 0.009 0.009
synthetic_control 0.106 0.139 0.140 0.140 0.140

test 0.379 0.370 0.360 0.357 0.357
uWaveGestureLibrary_X 0.031 0.051 0.046 0.044 0.043
uWaveGestureLibrary_Y 0.028 0.047 0.043 0.038 0.038
uWaveGestureLibrary_Z 0.030 0.050 0.043 0.039 0.040

wafer 0.029 0.060 0.054 0.049 0.054
yoga 0.019 0.034 0.028 0.032 0.038

This table shows the mean feature distance for the AURA algorithm with WOCC
input tokens, single bit output tokens and a varying numbers of bins.
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Glossary

CMM Correlation Matrix Memory � A binary associative neural network.

Token The inputs or outputs to a CMM. A single input token is associated with a single

output token for each training iteration.

Token Length The total number of values, both zero and non�zero, in a token.

Token Weight The sum of the non�zero values in a token.

AURA A library for training and querying CMMs.

kNN k�Nearest Neighbour � An algorithm that selects the k most similar samples to a

target sample.

PK Parabolic Kernel � A method for generating weighted CMM input tokens.

OBCC Overlapped Binary Code Construction � A method for generating binary CMM

input tokens.

WOCC Weighted Overlapped Code Construction � A method for generating weighted

CMM input tokens.

LSH Locality Sensitive Hashing � An approximate kNN algorithm.

Training Associating pairs of input and output tokens within a CMM.

Query Retrieving the output token from a CMM that was associated with a given input

token.
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