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Abstract  

Three main xenobiotic transporters have been implicated in modulating breast cancer 

response to chemotherapy. These are Pgp (P-glycoprotein), MRP1 (multidrug 

resistance-associated protein 1), and BCRP (breast cancer resistance protein).  

 

My first aim was to investigate expression of these proteins before and after 

neoadjuvant chemotherapy (NAC) for breast cancer to determine whether their levels 

define response to NAC or subsequent survival. Immunohistochemistry was performed 

for Pgp, MRP1, and BCRP on paraffin embedded tissue representing matched pairs of 

core biopsy (pre-NAC) and resection specimens (post-NAC) from 39 breast cancer 

patients. Pgp and MRP1 were found to be significantly up-regulated after 

chemotherapy but levels did not relate to response or survival. High post-NAC BCRP 

expression independently predicted for poorer disease free survival (hazard ratio of 

4.04; p=0.013). 

 

Evidence within the literature suggested that MRP1 up-regulation after chemotherapy 

may be driven by activated Notch1. My second aim was to determine whether activated 

Notch1 expression correlated with MRP1 expression in the same patient samples. 

Further immunohistochemistry to determine activated Notch1 expression revealed a 

significant correlation between post-NAC activated Notch1 and MRP1 expression (rho 

coefficient 0.6; p=0.0008). The hypothesis that inhibition of Notch signaling enhances 

killing of breast cancer cells by chemotherapeutics was developed. MTT assays were 

performed after treatment of breast cancer cells with combinations of doxorubicin and 

the Notch inhibitor DAPT. Minor additive inhibition of survival/proliferation was seen in 

the combination treatment, failing to provide strong support for the hypothesis. 

 

The BCRP promoter has an oestrogen response element. My third aim was to 

investigate whether BCRP expression within breast tumours is regulated by oestrogen 
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and whether this impacts on cancer outcome. Immunohistochemistry was performed 

for BCRP in tumour samples from 51 patients receiving neoadjuvant endocrine therapy 

(NAET); matched core biopsy (pre-NAET) and resection specimens (post-NAET) were 

investigated. BCRP expression was significantly up-regulated after exposure to NAET 

(p<0.0001). High pre-NAET BCRP expression independently predicted for poorer DFS 

(hazard ratio of 17; p=0.014). Subsequent methylation analysis of cancer cell lines 

showed that the degree of methylation in the BCRP promoter region was potentially 

inversely correlated to the BCRP protein expression observed on immunoblotting. DNA 

was extracted from clinical sample and pyrosequencing analysis was performed. No 

such inverse correlation was observed in the clinical samples.   

 

My work demonstrates that analysis of tumour samples pre- and post-neoadjuvant 

therapies provides a powerful way of investigating therapy-dependent changes in 

expression of molecules of interest, and may be critical for determining the prognostic 

or predictive value of some markers. Given the relatively small sample size of the 

cohort examined, future higher powered studies are required to determine the 

prognostic significance of BCRP expression.   
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1.0  Introduction 

1.1 Breast cancer incidence and survival 

Breast cancer is the third commonest cause of death from cancer in United Kingdom 

with 11,762 deaths in 2011, which accounted for 7% of all deaths from cancer 

(http://www.cancerresearchuk.org/cancer-info/cancerstats/types/breast/mortality/uk-

breast-cancer-mortality-statistics). After lung cancer, it is the second most deadly 

cancer in women with a mortality rate in the same year of 24 deaths per 100,000 

women. Moreover, one in eight women will develop breast cancer during their lifetimes. 

The current 5-year survival estimate for patients diagnosed with breast cancer between 

2005 and 2009 is 85% (Office for National Statistics: 

http://www.ons.gov.uk/ons/rel/cancer-unit/breast-cancer-in-england/2010/sum-1.html), 

which is relatively high as compared to the other common solid cancers, such as colon 

cancer with a 5-year survival rate of 55%. However, despite this relatively successful 

treatment of breast cancer overall, some subtypes of breast cancer continue to give 

poorer outcomes. For example, triple negative breast cancer (see section 1.2) has an 

increased likelihood of distant recurrence and death within 5 years of diagnosis when 

compared to non-triple negative breast cancers (hazard ratio of 2.6 and 3.2; p<0.0001 

and p<0.001 respectively) (Dent et al., 2007).  

 

1.2 Breast cancer presentation and diagnosis 

Primary breast cancers typically either present as palpable lumps, usually initially 

identified by the patient themselves or by clinicians, or as impalpable lesions that were 

detected by mammographic screening. The diagnosis of breast cancer is made by 

microscopic examination of core biopsies taken from the breast lesion. Pathological 

assessment includes examination of the epithelial cell morphology in breast tissue. In 

normal breast tissue, terminal duct lobular units are seen surrounded by stroma. In 
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breast cancer, epithelial cells within ducts or lobules have a disorganised appearance 

and expand in a non-uniform manner. When cancer cells do not invade across the 

basement membrane and hence are confined within the ducts and lobules, they are 

termed ductal or lobular carcinoma in situ. When there is invasion of the surrounding 

tissue, they are termed invasive ductal or invasive lobular carcinoma. These diagnostic 

cores of are particular relevance to my work since I have used the material that was not 

required for diagnostic purposes extensively in this thesis. Having diagnosed cancer, 

histopathologists also use these diagnostic cores to classify the disease using various 

systems that guide subsequent treatment.  

 

Breast cancer classifications 

Breast cancers are classified according to histopathological subtypes, tumour grade, 

the international Tumour Node Metastasis (TNM) staging, and molecular subtype. 

Classification of breast cancer has particular importance as it is used to help define 

therapies and determine prognosis. 

 

The two commonest histopathological subtypes are invasive ductal and invasive 

lobular carcinomas. Li et al analysed the Surveillance, Epidemiology, and End Results 

(SEER) data from the National Cancer Institute from the United States. They 

determined that of 190,458 invasive breast cancer cases analysed, 72.8% were 

invasive ductal carcinomas, 7.6% were invasive lobular carcinomas, and 4.7% were 

invasive mixed ductal-lobular carcinomas (Li et al., 2003). The remaining 14.9% 

consists of numerous other rare histological breast cancer subtypes such as invasive 

tubular carcinoma, invasive medullary carcinoma, invasive papillary carcinoma, and 

invasive mucinous carcinoma. Depending on the morphology of breast cancer cells, 

they are assigned a grade of 1 to 3 according to the modified Bloom-Richardson 
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grading system, with higher grade tumours having worse prognoses. Higher grade 

tumours have more aggressive features with a lower degree of tubule formation, and 

higher degrees of mitotic activity and nuclear pleomorphism (Elston and Ellis, 1991). 

 

The extent of breast cancer in patients is staged according to the Tumour Node 

Metastasis (TNM) classification of the American Joint Committee on Cancer 

(http://www.cancerstaging.org/staging/)(Allen et al., 2002). Table 1.1 highlights the key 

components of the staging system which is confirmed post-operatively when 

pathological specimens are examined. 

 

T stages (tumour) T1 Tumour size ≤2cm 

 T2 Tumour size >2cm but ≤5cm   

 T3 Tumour size >5cm 

 T4 Tumour spread to the chest wall or breast skin 

envelope 

N stages (nodes) N0 No cancer cells in the axillary lymph nodes 

 N1 Metastases in 1 to 3 axillary lymph nodes 

 N2 Metastases in 4 to 9 axillary lymph nodes 

 N3 Metastases in ≥10 axillary lymph nodes or 

metastases in the ipsilateral supraclavicular lymph 

nodes 

M stages (metastases) M0 No distant metastases 

 M1 Presence of distant metastases 

  

Table 1.1: TNM staging for breast cancer 

 

http://www.cancerstaging.org/staging/
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Breast cancers are also classified into molecular subtypes (Table 1.2) depending on 

the expression of oestrogen and progesterone receptor in the cell nucleus, as well as 

HER2 (human epidermal growth factor receptor 2) protein expression on the cell 

surface as well as gene amplification. 

 

Molecular subtype Receptor status 

Luminal A ER+ and/or PR+, HER2 - 

Luminal B ER+ and/or PR+, HER2+ 

Triple negative/basal-like ER-, PR-, and HER2- 

HER2 type ER-, PR-, and HER2+ 

     

Table 1.2: Breast cancer molecular subtypes 

 

Breast cancer classifications described so far are important in identifying subgroups of 

patients who have poorer prognosis. Patients with higher grade breast cancers, 

advanced TNM staging, and basal-like phenotypes have the worst prognosis. These 

patients have higher likelihood of tumour recurrence in the breast or the axilla, as well 

as other distant sites, which usually subsequently leads to death. 

 

1.3 The importance of systemic therapy  

Treatment of breast cancer is multi-modal with patients receiving combinations of 

surgery, radiotherapy, chemotherapy, endocrine therapy, and/or the targeted biological 

therapy Herceptin. The first two modalities are loco-regional therapies that treat the 

breast and the axillary lymph nodes. The latter modalities are systemic therapies which 
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in early breast cancer are administered to treat occult metastatic disease, with an aim 

of reducing the risks of tumour recurrences and prolong survival. 

 

Loco-regional therapies 

Surgery is indicated for patients without obvious evidence of distant metastasis, which 

applies to the majority of patients seen in the clinic, and is known as early operable 

breast cancer. Surgery consists of breast conserving surgery (BCS) or mastectomy of 

the breast, and sentinel node biopsies (SNB) or axillary nodal clearance (ANC) in the 

axilla. The aim of surgery is to resect the cancer with clear margins in order to minimise 

the likelihood of local tumour recurrence. In general, patients are offered BCS if the 

tumour size to breast volume ratio is small enough to achieve clear margins whilst 

minimising cosmetic distortion to the breast. BCS is applicable to the majority of 

patients who present with T1 tumours. The feasibility of BCS for T2 tumours depends 

on the patient’s breast volume, while the majority of patients with ≥T3 tumours will 

receive mastectomies. The SNB is performed to stage the axilla (i.e. to detect the 

presence or absence of tumour metastasis in the first draining axillary lymph nodes). 

The majority of patients who have evidence of metastatic cancer cells in the sentinel 

nodes subsequently undergo a second operation, ANC, to remove the remaining 

axillary lymph nodes with an aim of resecting further potentially involved lymph nodes.  

 

Radiotherapy is administered to patients after BCS to reduce survival of any potential 

residual cancer cells. It has been shown to reduce the rate of loco-regional tumour 

recurrence in the BCS setting, meaning that patients having BCS have a very similar 

disease free survival (DFS) as those having mastectomies. Poggi et al showed the 

estimated 20-year DFS rate for patients treated with mastectomies to be 67%, versus 

63% in patients treated with BCS and radiotherapy (p=0.64), at a median follow-up of 
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18.4 years (Poggi et al., 2003). Post-mastectomy radiotherapy is not always used, and 

is reserved for patients who present with large (T3 or 4) and/or substantially node 

positive (N2 or 3) disease (Dragun et al., 2012).  

 

Systemic therapies 

Chemotherapy is administered intravenously to patients who are at increased risk of 

having occult distant metastases and this is predicted by positive axillary lymph nodes 

(Rossi et al., 1981), grade 3 or T3 tumours, or those with triple negative breast cancer. 

This group of patients have the worst prognostic features, therefore aggressive 

treatment is indicated, and chemotherapy provides significant survival advantages 

(Goldhirsch et al., 2009). Chemotherapy agents limit proliferation of cancer cells and 

induce their apoptosis, but also have harmful effects on normal cells. The aim is to kill 

cancer cells, while minimising damage to normal tissues. Common chemotherapy 

agents that are in current clinical use include anthracyclines such as epirubicin (often 

given in combination with the alkylating agent cyclophosphamide), and taxanes such 

as docetaxel. Epirubicin intercalates with DNA, causing DNA damage and subsequent 

interference with DNA and RNA synthesis (Cersosimo and Hong, 1986). 

Cyclophosphamide is an alkylating agent which binds to DNA and results in the 

disruption of cell division (Awad and Stuve, 2009). By contrast, taxanes do not target 

the DNA directly. Microtubules are important in cell division and growth, and taxanes 

interact with tubulin units, resulting in mitotic problems and apoptosis (Cortes and 

Baselga, 2007). A significant survival gains from chemotherapy administration were 

demonstrated by the National Surgical Adjuvant Breast and Bowel Project (NSABP), 

which showed that chemotherapy achieved a 58% reduction in recurrence rate and a 

40% reduction in mortality rate when compared to surgery alone at 8 years of follow-up 

(Fisher et al., 2004a). However, chemotherapy can cause substantial side-effects such 

as febrile neutropenia, pulmonary embolism, congestive heart failure, and neuro-motor 
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and sensory toxicity (Smith et al., 2004). It would be advantageous if it was possible to 

improve the clinical utility of chemotherapy agents by enhancing the killing of cancer 

cells whilst reducing the drug side-effects.  

 

Endocrine therapy is offered to patients on the basis of positive expression of the 

oestrogen receptor (ER) within the nuclei of the tumour cells. Active ER signalling is a 

key driver of proliferation of breast epithelial cells (Tyson et al., 2011). ER can be 

activated by at least 2 defined pathways: the nuclear and non-nuclear pathways. In the 

former, oestrogen-bound ER activates transcription by binding to the oestrogen 

response element (ERE) of the target genes, including c-Myc and Survivin, leading to 

enhanced tumour cell proliferation (Welboren et al., 2007). In the latter, ER interacts 

with signalling molecules such as steroid receptor co-activator (SRC), and receptor 

tyrosine kinases (RTK) in the cytoplasm. This, in turn, activates downstream kinases 

that phosphorylate ER and other transcription factors to activate transcription (Giuliano 

et al., 2011), and promote tumour growth/survival. This mechanism of ER activation is 

independent of oestrogen but is dependent on EREs. ER protein expression is 

quantified by immunohistochemistry using the Allred scoring system (Allred et al., 

2012). The total score in whole numbers ranges from 0 to 8 (note: a score of 1 is not 

possible), with an intensity score ranging from 0 to 3 added to a score quantifying the 

proportion of tumours cells staining positively ranging from 0 to 5. A score of ≥3 out of 8 

is defined as being positive for ER expression from a clinical utility viewpoint. 

 

The aim of endocrine therapies is to interfere with the up-regulated ER signalling in ER 

positive tumours, to inhibit ER-dependent growth and survival. To achieve this, pre-

menopausal breast cancer patients receive tamoxifen, whereas post-menopausal 

breast cancer patients receive aromatase inhibitors such as anastrozole, letrozole, or 

exemestane. Tamoxifen binds to the oestrogen receptor and antagonises the action of 
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oestrogen by causing conformational changes to the receptor, which in turn inhibit the 

activation of transcription at EREs. A large trial in node negative, ER positive breast 

cancer patients demonstrated that tamoxifen treatment of at least 5 years resulted in 

significant improvement in outcome as compared to placebo in terms of DFS (hazard 

ratio, HR, 0.58) and overall survival, OS (HR of 0.8) at 15 years (Fisher et al., 2004b). 

Aromatase inhibitors target the enzyme aromatase, which is involved in the conversion 

of androgen to oestrogen, and hence inhibition of this enzyme results in the reduction 

of oestrogen level. Aromatase is not only specific to breast cancer cells, and is also 

present in ovary, liver, and muscle amongst other tissues. In post-menopausal women, 

ovarian oestrogen production decreases, and the aromatase activity in breast and 

adrenal tissues contributes significantly to oestrogen synthesis. Aromatase inhibitors 

cause a systemic reduction in oestrogen levels to exert the anti-tumourigenic effect 

(Bhatnagar, 2007). Aromatase inhibitors are superior compared to tamoxifen in terms 

of DFS in post-menopausal women with ER positive breast cancer (Cuzick et al., 

2010). 

 

HER2 overexpression stimulates tumour cell proliferation. Therefore, patients who 

have HER2 overexpression are treated with the monoclonal antibody Herceptin 

(trastuzumab) that reduces tumour cell proliferation. On binding of growth factor 

ligands, HER receptors (HER1 to HER4) form dimers with the same type of HER 

receptor (homodimers) or with other HER receptors (heterodimers). No known ligand 

exists for HER2 receptor on its own, but dimerisation of HER2 receptor with other HER 

receptors (HER1, HER3, or HER4) results in activation of intracellular signalling 

pathways involving MAPK, which stimulate tumour proliferation, and PI3K-Akt, which 

promotes tumour cell survival (Rubin and Yarden, 2001). Herceptin binds to the HER2 

receptor and prevents dimerisation and subsequent activation of the intracellular 

signalling pathways described (Roukos, 2011). A randomised clinical trial by Slamon et 
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al in patients with HER2 overexpression showed that the addition of Herceptin to 

chemotherapy resulted in a 20% reduction in relative risk of death at median follow-up 

of 30 months when compared to chemotherapy alone (Slamon et al., 2001). Herceptin 

is a relatively modern systemic therapy when compared to chemotherapy and 

endocrine therapy.   

  

1.4 The emergence of neoadjuvant systemic therapy 

Traditionally systemic therapies have been administered in the adjuvant setting (i.e. 

after surgery). Chemotherapy is administered as a combination of chemotherapy 

agents or as a monotherapy that consists of typically 4 to 8 cycles. Each cycle consists 

of chemotherapy administration for 5 consecutive days, followed by a rest period 

lasting 3 to 4 weeks, which allows patients to recover from the side-effects mentioned 

in the previous section. In contrast, patients usually receive endocrine therapy as oral 

medication for a total of 5 years. For patients who require both treatment modalities, 

chemotherapy is administered initially and endocrine therapy is commenced once the 

chemotherapy treatment is completed (Mariotto et al., 2002).  

 

Alternatively, patients who require chemotherapy or endocrine therapy can receive 

either treatment prior to surgery, as a neoadjuvant treatment. This has a number of 

potential benefits. One aim is to reduce the tumour size (i.e. down-stage) prior to 

surgery, which may enable BCS instead of mastectomy in patients who otherwise 

would have been obligate candidates for mastectomy. This benefits patients as it may 

allow less distressing surgery with consequent benefits to their psychological well-

being (Parker et al., 2007). There is no reduction in survival by a neoadjuvant approach 

(Mieog et al., 2007). Patients who would already be candidates for BCS, such as 

patients with T1 tumours, are not offered neoadjuvant systemic therapy (NST) since 
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there are no obvious surgical advantages. A further potential advantage of NST is that 

therapy regimens can be modified based on the response of primary tumours with an 

ultimate aim of improving response (Rigter et al., 2013). In the adjuvant setting this is of 

course not possible since the primary tumour has been resected, and any occult 

metastases (the actual targets of systemic therapies) cannot be monitored. It is hoped, 

although firm data are lacking, that such fine-tuning of therapy regimens would improve 

outcomes. Patients are monitored by using magnetic resonance imaging (MRI) or 

ultrasound scan (USS) in order to assess tumour responses to NST. Poor response 

observed leads to abandoning the neoadjuvant therapy, and proceeding with surgery.  

 

Substantial proportions of breast cancer patients receive neoadjuvant chemotherapy 

(NAC) compared to adjuvant chemotherapy, with a reported NAC administration of up 

to 31 to 39% in a range of institutions (Fisher et al., 2012, Kennedy et al., 2010). 

Patients treated with NAC have equivalent benefit in terms of overall survival and 

avoidance of loco-regional recurrence compared to those treated with adjuvant 

chemotherapy (Mieog et al., 2007). Patients undergo an initial breast core biopsy that 

establishes the diagnosis of breast cancer (see section 1.2 above). Those selected for 

NAC are then subjected to cycles of a chemotherapy regime that typically consists of 

epirubicin and cyclophosphamide at Leeds Teaching Hospital Trust (LTHT). However, 

NAC regimes are not standardised nationally. The tumour response to NAC is 

monitored using MRI during treatment and the regime can be switched, usually to a 

taxane-based therapy (Antolin et al., 2011, Walker et al., 2011, Rastogi et al., 2008), if 

the tumour fails to respond (i.e. there is no reduction in tumour size). Patients undergo 

a baseline MRI scan prior to commencing NAC, followed by an interval MRI scan to 

assess response after the second cycle of NAC. This is subsequently followed by a 

final MRI scan at completion of final NAC cycle. The decision to switch chemotherapy 

regimen occurs after the second cycle of NAC, and all patients receive at least six 
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cycles of NAC in total unless there is tumour progression. Based on the MRI 

assessment of tumour response (Table 1.3) (Therasse et al., 2000), patients 

subsequently undergo BCS or mastectomy.  

 

Classification of MRI response to NAC Definition 

Complete response Disappearance of all tumour lesions 

Partial response ≥30% reduction in tumour size 

Stable disease <30% reduction or <20% increase in tumour 

size 

Progressive disease ≥20% increase in tumour size 

 

Table 1.3: Response Evaluation Criteria in Solid Tumours (RECIST) classification of 

tumour response to NAC assessed by MRI 

 

Response to NAC can also be assessed post-operatively by measuring the residual 

pathological tumour size after surgery. A small proportion of patients achieve 

pathological complete response (pCR), where no tumour cells are identified after NAC 

on post-operative histopathology. These patients still require surgery, however, since 

an MRI scan alone is not sensitive enough to reliably predict this response, which is 

only evident after surgery by pathological examination. A recent meta-analysis showed 

that pCR was seen in 17.1% (Kong et al., 2011) of patients, and those who achieved 

pCR have a 5-year DFS rate of above 90%, as opposed to 50 to 70% in the non-pCR 

group (Tanei et al., 2011). However, definitions of pCR can be variable (Mailliez et al., 

2010) according to the classification systems used; the NSABP classification defines 

pCR as the absence of invasive tumour cells, whereas the Honkoop’s classification 

demands that there is also an absence of in situ tumour cells. Furthermore, there are 

no standardised laboratory protocols for processing post-NAC breast tissue samples, 
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such that there are substantial variations in the histopathological processing and 

examination of excised breast tissue at different centres. 

 

Similarly, neoadjuvant endocrine therapy (NAET) is used to attempt tumour down-

staging prior to surgery. Patients will typically receive NAET for 3 to 4 months prior to 

undergoing surgery (Colleoni and Montagna, 2012). However, NAET duration of up to 

12 months has been reported (Macaskill and Dixon, 2007). The endocrine therapy is 

also continued after surgery for a total duration of 5 years. The common side-effects of 

anti-oestrogenic therapy include hot flushes, arthralgia, and reduction in bone density. 

These side-effect profiles are potentially less severe than with NAC. The majority of 

patients who receive NAET are post-menopausal. This is in contrast to NAC where 

most patients are pre-menopausal, and are able to tolerate better the more severe 

side-effects of chemotherapy. Studies have shown no difference in tumour response 

rates between the aromatase inhibitors anastrozole, letrozole, and exemestane in the 

neoadjuvant setting (Ellis et al., 2011). Therefore, no particular aromatase inhibitor is 

preferentially used for NAET at LTHT. The monitoring of response to NAET treatment 

is assessed using USS as opposed to MRI, since there is no proven benefit in the use 

of MRI to monitor response in patients treated with NAET (Kaufmann et al., 2012). 

However, no consensus exists regarding the timing of USS during NAET, and 

response to NAET is more often assessed by a combination of clinical examination and 

USS (Smith et al., 2005). In the PROACT (Pre-Operative Arimidex Compared to 

Tamoxifen) trial, 262 ER positive breast cancer patients who were deemed to have 

inoperable breast cancer or scheduled for mastectomy were treated with 3 months of 

NAET. As a result, 15 patients (5.7%) were able to receive mastectomies that were 

originally deemed to have inoperable breast cancer. Furthermore, 98 patients (37.4%) 

who were originally scheduled for mastectomy achieved sufficient down-staging to 

enable breast conserving surgery (Cataliotti et al., 2006). Moreover, the IMPACT 
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(Immediate Preoperative Anastrozole, Tamoxifen, or Combined With Tamoxifen) trial 

showed that of 124 patients who required mastectomy at baseline, a BCS rate of 44% 

was achieved with 3 months of neoadjuvant anastrozole (Smith et al., 2005). 

Compared to NAC, pCR is rarely seen with NAET (Chia et al., 2010), which probably 

relates to the anti-proliferative effect of the latter compared to the cytotoxic effect of the 

former. 

 

1.5 Predicting response to neoadjuvant systemic therapy 

The majority of patients treated with neoadjuvant systemic therapy do not achieve pCR 

and achieve partial responses. If this is insufficient to achieve tumour down-staging, 

patients are likely to require mastectomies and therefore the primary goal of the 

neoadjuvant systemic therapy is not achieved. These patients end up having delayed 

surgery with no benefit, and there are cost implications regarding MRI and USS 

monitoring of tumour response, which would have been unnecessary if these patients 

were treated with mastectomy followed by adjuvant systemic therapy. It would be of 

considerable benefit to be able to select accurately the patients who are likely to 

respond to neoadjuvant systemic therapies, and treat the remaining patients with 

surgery followed by adjuvant therapies. Clinico-pathological factors that are associated 

with improved response to NAC include invasive ductal carcinomas, ER negativity, high 

tumour grade, and increased Ki-67 expression (Kaufmann et al., 2012). Clinico-

pathological parameters that predict favourable response to NAET include positive 

progesterone receptor (PR) expression, lack of HER2 overexpression, and high ER 

expression (Macaskill and Dixon, 2007). However, relying on clinico-pathological 

parameters alone is inadequate in predicting response to NST in individual patients. 

For example, not all ER negative breast cancer patients respond to NAC in the same 

manner. Therefore, further research is required to identify more accurate predictive 

molecular markers. 
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There are studies emerging in which potential molecular predictive markers have been 

studied in the context of NAC. Using core biopsy tissues, one such study showed a 

positive correlation between thymosin beta 15 mRNA levels and pCR rates in patients 

with triple negative breast cancers, but not in luminal breast cancers (Darb-Esfahani et 

al., 2012). Wenners et al performed immunohistochemistry on tissue microarrays 

(TMA) constructed from core biopsy tissues, and showed that neutrophil gelatinase-

associated lipocalin (NGAL) expression was associated with improved pCR rate in a 

low-risk subset of patients with ER positive node-negative breast cancer (Wenners et 

al., 2012). Chen et al examined the expression of eleven candidate molecular markers 

using immunohistochemistry on core biopsy tissues. Multivariate analysis showed that 

the lack of β-tubulin III, bcl-2, and ERCC1 expression all independently predicted pCR 

in patients receiving taxane-based NAC (Chen et al., 2012b). Wang et al also 

performed immunohistochemistry on core biopsy tissues and showed that the lack of 

tau expression resulted in an improved response to taxane-based NAC (Wang et al., 

2013a). These studies show that significant correlations are only present in selected 

tumour subtypes, suggesting that tumour heterogeneity plays an important role.  

 

In the context of NAET, there are far fewer studies into predictive markers, with only Ki-

67 as a candidate. Paired biopsy samples in 158 patients were examined for a change 

in Ki-67 expression pre-NAET and after 2 weeks of NAET. At median follow-up of 37 

months, patients with high Ki-67 expression after two weeks of NAET had a lower DFS 

than those with lower Ki-67 (Hazard ratio of 1.95; p=0.004) (Dowsett et al., 2007). 

However, the baseline Ki-67 expression levels prior to NAET did not predict DFS. This 

study suggests that Ki-67 may be a marker of response to NAET.  
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Molecular 

markers 

Breast cancer 

molecular 

subtype 

Sample size mRNA or protein 

expression 

Positive/negative 

correlation  with 

pCR 

Thymosin beta 

15 

Basal 61 mRNA Positive 

NGAL Luminal 487 Protein Positive 

β-tubulin III, bcl-

2, and ERCC1 

All 91 Protein Negative 

Tau All 113 Protein Negative 

 

Table 1.4: Summary of studies investigating predictive molecular markers in breast 

cancer patients treated with NAC (Darb-Esfahani et al., 2012, Wenners et al., 2012, 

Chen et al., 2012b, Wang et al., 2013a). 

 

1.6 Mechanism of resistance to chemotherapy   

Studying predictive molecular markers can have importance in gaining further insight 

into the underlying mechanisms that are responsible for chemoresistance in breast 

cancer patients. The studied markers in Table 1.4 have been shown to have 

expression levels that correlated with tumour response to NAC in terms of pCR rate, 

and hence subsequent survival since patients who achieve pCR have improved 

survival. Therefore, their expression levels have clinical utility in predicting which 

patients respond more favourably to NAC and subsequent survival. Furthermore, 

examining the underlying mechanisms responsible for defining their expression levels 

may ultimately lead to therapies designed to improve sensitivity to chemotherapy, and 

result in improved response and survival.  
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The mechanisms of resistance to chemotherapy are highly complex and large numbers 

of molecules are involved. Different pathways involved in chemoresistance can be 

broadly classified into the alteration in protein expression affecting drug transport into 

the intracellular compartment (ABC transporters, LRP), modification in the expression 

and function of the molecules targeted by chemotherapeutics (DHFR, β-Tubulin, tau, 

MAP4), alterations in the DNA repair mechanism (Topoisomerase II, mismatch repair 

proteins), alterations in the enzyme affecting drug metabolism (cytochrome P450, GST, 

ALDH), and alteration in molecules responsible for the regulation of apoptosis 

(caspase-3, p27, p53, bcl-2, PTEN, and p27) (Rivera, 2010). 

 

The following molecules have been highlighted due to their importance in breast cancer 

chemotherapy resistance, although there is a wide literature and common themes are 

difficult to identify. One of the key mechanisms of chemoresistance is driven by ATP-

dependent drug efflux pumps, collectively termed ATP-binding cassette (ABC) 

transporters. Their substrates include the majority of chemotherapeutic agents 

currently in use, thereby the molecules potentially confer multidrug resistance (MDR). 

ABC transporters can reduce the intracellular concentration of chemotherapeutics, and 

therefore reduce their efficacy. These molecules are discussed in more detail in section 

1.8. p53 has an important role in regulation of apoptosis, cell cycle progression, and 

DNA repair. When compared to the wild-type p53, cells with mutant p53 show greater 

resistant to chemotherapeutics (Lai et al., 2012). This is attributed to the failure of cells 

to undergo apoptosis following treatment with chemotherapeutics. Breast cancer 1, 

early onset (BRCA1) is a tumour suppressor gene which is involved in regulation of 

transcription and DNA repair. Its overexpression can result in resistance to platinum-

based chemotherapeutics (Husain et al., 1998). DNA Topoisomerase II is an enzyme 

involved in DNA replication and repair. Anthracyclines exert their action by interfering 

with topoisomerase IIα (TOPOIIα). Studies have shown that TOPOIIα gene 
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amplification resulted in enhanced benefit from anthracyclines for breast cancer 

patients who were HER2-positive (Barrett-Lee, 2005). Therefore, reduction in 

topoisomerase II function results in resistance to anthracyclines. Taxanes target β-

tubulin which is involved in the formation of microtubules. Overexpression or mutations 

of β-tubulin has been shown to result in resistance to taxanes (Kamath et al., 2005).  

 

1.7 Mechanism of resistance to endocrine therapy   

Similarly, large numbers of molecules are involved in endocrine therapy resistance, 

and the mechanism of resistance can be broadly classified into the alteration of ER 

expression and its activity (ERα36, microRNAs, EGFR, HER2), alterations in the 

expression of ER co-repressors (NCoR) and co-activators (SRC3), change in the 

activity of transcriptional factors involved in mediating ER signalling in the non-nuclear 

pathway (AP-1, SP-1, NFκβ), alterations in receptor tyrosine kinase (RTK) signalling 

due to its cross-talk with ER (EGFR, HER2, PI3K, MAPK), and alterations in the 

expression of cell-cycle regulators (MYC, Cyclin E1, p21) (Giuliano et al., 2011). Some 

of the mechanisms involved in endocrine resistance are further highlighted below. 

 

Loss of ER expression can result in endocrine therapy resistance, and is in part 

controlled by post-transcriptional mechanisms. For example, ER mRNA stability can be 

affected by miR-206, and can result in the loss of ER expression (Adams et al., 2007). 

ER exerts its effect on gene expression by binding to a group of regulatory proteins to 

form the transcription initiation complex. High expression of such regulatory proteins, 

such as SRC3, is associated with tamoxifen resistance (Osborne et al., 2003). 

Increased activity of transcriptional factors, such as NFκB (Zhou et al., 2007), is also 

associated with resistance to endocrine therapy. Cross-talk between ER and RTK 

signalling can also result in endocrine therapy resistance. Specifically, ER causes up-
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regulation of RTK signalling, such as MAPK and PI3K/Akt, which in turn causes 

phosphorylation of ER and its co-regulatory proteins, resulting in the activation of ER in 

the presence of anti-oestrogens (Giuliano et al., 2011).  

 

1.8 The importance of ABC transporters 

1.8.1 Classification of ABC transporters and the distribution of their expression 

49 human ABC genes have been identified (Leonard et al., 2003), and there are 7 

subfamilies termed ABCA to ABCG. The following table adapted from Gottesman et al 

outlines the list of known ABC proteins according to each subfamily (Table 1.5). 

Subfamily Nomenclature Protein name Known tissue or cellular localization 

ABCA ABCA1 ABC1 Placenta, liver, lung, adrenal glands 

ABCA2 ABC2 Brain, monocytes 

ABCA3 ABC3 Apoptotic cells 

ABCA4 ABCR Retina 

ABCA7 KIAA0822 Brain 

ABCB ABCB1 Pgp Intestine, liver, kidney, placenta, blood-brain barrier 

ABCB2 and 3 TAP1 and 2 Endoplasmic reticulum membrane 

ABCB4 Pgp3 Liver 

ABCB7 and 8 ABC7 and M-

ABC1 

Mitochondrial membrane 

ABCB11 BSEP Liver 

ABCC ABCC1 MRP1 All tissues 

ABCC2 MRP2 Liver, kidney, intestine 

ABCC3 MRP3 Pancreas, kidney, intestine, liver, adrenal glands 
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ABCC4 MRP4 Prostate, testis, ovary, intestine, pancreas, lung 

ABCC5 MRP5 Most tissues 

ABCC6 MRP6 Liver, kidney 

ABCC7 CFTR Liver, pancreas, intestine, bronchial and sweat glands 

ABCC8 and 9 SUR1 and 2  Pancreas 

ABCD ABCD1 and 2 ALD/ALDL1 Peroxisomal membrane 

ABCD3 and 4 PXMP1 and 

PXMP1L 

Peroxisomal membrane 

ABCE/F ABCE1/ABCF1 OABP/ABC50 Unknown 

ABCG ABCG1 ABC8 Central nervous system 

ABCG2 BCRP Placenta, intestine, breast, liver 

 

Table 1.5: List of ABC transporters and their distributions of expression (Gottesman et 

al., 2002) 

 

1.8.2 Roles in normal physiology and multidrug resistance 

ABC transporters have normal physiological roles as well as roles in the multidrug 

resistance (MDR) phenotype. Table 1.5 shows that the majority of ABC transporters 

are expressed in vital organs responsible for excreting waste products of metabolism 

and potentially harmful chemicals. Their physiological function is to excrete xenobiotics 

and their metabolites, including phospholipids, ions, steroids, and amino acids. 

Therefore, the transporters have important roles in tissue defence, and prevent 

accumulation of potentially harmful compounds. They are present at the blood-brain 

barrier, luminal membranes of kidney, and the brush border membranes of intestinal 

cells amongst other locations (Klein et al., 1999b). For example, Pgp, MRP1/2/4, and 

BCRP provide protection to the brain at the blood-brain barrier. In the liver, Pgp, BSEP, 
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and MRP1-3 excrete xenobiotics into bile and blood stream. In the kidney, Pgp, 

MRP2/4, and BCRP excrete xenobiotics into urine. In the mammary gland of lactating 

animals, BCRP is involved in secretion of nutrients into milk (Huls et al., 2009).  

 

ABC transporter expression is also associated with MDR phenotype. This has been 

demonstrated experimentally repeatedly by growth of cell lines in medium containing a 

single specific chemotherapeutic agent thereby selecting for resistance; the resultant 

resistant cell lines typically show a MDR phenotype against multiple unrelated drugs, 

with deregulation of ABC transporters identified as being responsible. The wide range 

of relevant substrates of the most well studied ABC transporters are highlighted in 

Table 1.6 (Leonessa and Clarke, 2003, Chang, 2010, Doyle and Ross, 2003). This 

demonstrates that ABC transporters efflux most chemotherapeutics that are in current 

clinical use, and hence their basal expression in tumours or their change in expression 

on exposure to chemotherapy agents potentially has high clinical relevance. 

 

ABC transporter Examples of known substrates 

Pgp Anthracyclines, colchicine, cortisol, 

dexamethasone, diltiazem, methotrexate, 

mitoxantrone, nicardipine, taxanes, verapamil, 

vincristine.  

MRP1 Anthracyclines, cyclophosphamide, folic acid, 

methotrexate, vincristine.  

BCRP Anthracyclines, folic acid, methotrexate, 

mitoxantrone, sulphasalazine, topotecan.  

 

Table 1.6: Example of common substrates for ABC transporters 
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1.8.3 Molecular structure of ABC transporters 

ABC transporters are active pumps that efflux substrates against their concentration 

gradient. Their molecular structure consists of a nucleotide binding domain (NBD) in 

the cytoplasm and a transmembrane domain (TMD), composed of six transmembrane 

helices. Two or more TMDs are required to form an active ABC transporter. Two highly 

conserved peptide motifs within the NBD, Walker A and B, characterises the ABC 

transporters (Klein et al., 1999a), and are involved in the binding of ATP molecules. 

When a substrate binds to the transporters, ATP hydrolysis occurs, causing a 

conformational change at the cytosolic point of entry to the trans-membrane channel. 

This structural change moves the substrate through the protein channel and the 

plasma membrane, causing its export to the extracellular space. A further ATP 

hydrolysis at its binding site restores the protein to its original conformation, enabling it 

to bind to its substrate again (Sauna and Ambudkar, 2001). 

 

The vast majority of studies into the roles of these genes in MDR so far have focused 

on the 170 kDa ABC transporter P-glycoprotein (Pgp), the product of the ABCB1 

(MDR1) gene. It was discovered by selecting Chinese hamster ovarian cell lines with 

colchicine (Juliano and Ling, 1976), which then showed an MDR phenotype to a wide 

range of drugs. The gene encoding for Pgp, MDR1, was identified and cloned from the 

human KB carcinoma cell line (Ueda et al., 1986). The structure of Pgp consists of 12 

transmembrane helices, split into two TMDs that are linked by an intracellular ATP-

binding domain. Substrates of Pgp are highlighted in Table 1.6.  

 

Another well-studied ABC transporter is the 190 kDa Multidrug resistance-associated 

protein 1 (MRP1), the product of the ABCC1 gene. It was discovered by doxorubicin-

selection of drug resistant H69AR cells from the initially drug sensitive small cell lung 
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cancer cell line H69, and by subsequent cloning of the MRP1 cDNA (Cole et al., 1992). 

The selected cell line did not express Pgp, and both the mRNA and protein 

expressions of MRP1 was increased compared to the unselected parental cell line. 

MRP1, which has 17 transmembrane helices, shares less than 15% of amino acid 

identity compared to Pgp. Compared to Pgp, MRP1 has an additional TMD of 5 

transmembrane helices. It has similar substrate specificity to Pgp, including 

anthracyclines and methotrexates. It is worth noting that MRP1 does not efflux 

paclitaxel (Leonard et al., 2003).  

 

The 72 KDa BCRP is a less well-studied ABC transporter, especially in breast cancer. 

It is a product of the ABCG2 gene. BCRP was first identified in a human breast cancer 

cell line MCF7/AdrVp (Ni et al., 2010), a multidrug resistant cell line that does not 

express Pgp or MRP1. The cell line was developed by co-selecting the parental cell 

line in doxorubicin and verapamil, the latter being a Pgp inhibitor and therefore avoiding 

Pgp-mediated resistance (Leslie et al., 2005). Substrates of BCRP include doxorubicin, 

methotrexate, and mitoxantrone. Similar to MRP1, paclitaxel is not a substrate of 

BCRP (Leslie et al., 2005). In contrast to Pgp and MRP1, structurally BCRP consists of 

six transmembrane helices only, and an ATP-binding domain. To function as an active 

transporter, BCRP has to homodimerise. 

 

1.8.4 Regulation of Pgp, MRP1, and BCRP 

Patients with high ABC transporter expression might be expected to have poor 

responses to chemotherapy, and have lower survival rates. Therefore, manipulation of 

molecular mechanisms involved in the regulation of ABC transporter expression in 

cancer cells could potentially lead to improved efficacy of chemotherapy agents. 

Common regulation and cancer-specific deregulation mechanisms for ABC transporter 
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expression can be broadly classified into changes in genomic copy number, 

transcriptional regulation, and post-transcriptional regulation. Below I give specific 

examples in each of these categories for Pgp, MRP1 and BCRP (Nakanishi and Ross, 

2012, Kuo, 2009).  

 

Teeter et al selected Chinese hamster ovarian cells with increasing doses of vincristine 

to develop MDR. Cytogenetic analyses of the cell lines revealed MDR1 gene 

amplification as an underlying mechanism of chemoresistance (Teeter et al., 1986). 

Transcriptional regulation is defined by transcriptional factors. However, their binding to 

the target gene can be altered in cancer due to changes in DNA methylation and 

chromatin structure. Tada et al showed that in bladder cancer, MDR1 mRNA 

expression was up-regulated after exposure to chemotherapy. In this study, the 

frequency of patients with hyper-methylated MDR1 promoter region was reduced from 

50% to 17% after exposure to chemotherapy (Tada et al., 2000). Therefore, an inverse 

correlation was detected between the degree of methylation at the CpG (cytosine 

phosphate guanine) sites of the MDR1 promoter region and the mRNA levels. An 

example of post-transcriptional regulation is demonstrated by Randle et al. The 5’-

untranslated region (UTR) of the MDR1 mRNA contains considerable secondary 

structure, with double-stranded hair-pin loops. This sequence influenced the 

translational efficiency of transcripts and allowed regulation under cytotoxic stress 

(Randle et al., 2007).  

 

Yasui et al conducted cytogenetic analyses of parental cancer cell lines versus 

chemotherapy resistance cancer cell lines and determined that ABCC1 genomic copy 

number was amplified in the resistant cell lines compared to the parental cell lines 

(Yasui et al., 2004). Wild-type p53 is involved in the repression of transcription at the 

ABCC1 promoter sites, and the loss of p53 expression in colorectal cancer has been 
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shown to correlate with increased MRP1 expression (Fukushima et al., 1999). Borel et 

al examined ABCC1 mRNA expression amongst other ABC transporters in 

hepatocellular carcinoma compared to adjacent healthy liver. Higher mRNA levels were 

observed in the tumour tissue compared to healthy liver tissue. Furthermore, an 

inverse relationship was detected between microRNA expression (miR-199a/b and 

miR-296) and ABCC1 mRNA expression (Borel et al., 2012).  

 

Similarly to ABCB1 and ABCC1, comparative genomic hybridisation studies have 

shown ABCG2 genomic copy number amplifications in cancer cell lines treated with 

mitoxantrone and doxorubicin (Nakanishi and Ross, 2012). Oestrogen and its 

derivatives can act as either substrates or inhibitors (Staud and Pavek, 2005) for 

BCRP, which contains an oestrogen response element (ERE) in its promoter site. Ee et 

al showed that oestrogen enhanced BCRP mRNA expression in T47D cell lines (Ee et 

al., 2004), demonstrating transcriptional regulation of BCRP expression. In contrast, 

Imai et al showed that BCRP expression on western blot, but not at the mRNA level, 

was reduced with increasing levels of 17β-oestradiol in MCF7 cell lines, and the 

authors inferred that BCRP expression was regulated post-transcriptionally (Imai et al., 

2005).  

 

1.8.5 ABC transporter directed therapies 

The efflux activity of xenobiotic transporters can be inhibited by various targeted drugs 

(e.g. valspodar, biricodar, and tariquidar). However, they are not currently in routine 

clinical use, and have mostly been evaluated in phase II and III trials (Modok et al., 

2006). Their lack of advance in the clinical setting may be due to the fact that the 

transporters have a wide range of physiological roles and hence the inhibitors may 

cause non-specific toxicity. Verapamil, a Pgp inhibitor, was first used in clinical trials in 
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1980s, but had unacceptable levels of side-effects, including cardiotoxicity and 

myelotoxicity (Ozols et al., 1987, Mross et al., 1993). This was followed by valspodar, a 

second generation Pgp inhibitor, which had a reduced side-effect profile. However, 

phase III clinical trials using valspodar in ovarian or peritoneal cancer have not been 

encouraging. 762 patients with advanced ovarian or primary peritoneal cancer were 

treated with carboplatin and paclitaxel with or without valspodar in a phase III clinical 

trial. The result showed no significant improvement in time to disease progression or 

overall survival from the addition of valspodar. Furthermore, central and peripheral 

nervous system and gastrointestinal toxicities were more frequently seen in patients 

treated with valspodar (Lhomme et al., 2008). An MRP1 inhibitor, Sulindac, has been 

evaluated in phase I clinical trial in combination with epirubicin (O'Connor et al., 2007). 

However, as yet no further phase II or III trials have been reported. As shown in Table 

1.6, there is a considerable overlap in substrate specificities between the ABC 

transporters. Therefore, a limitation of these approaches may be that inhibition of a 

single transporter may not result in effective clinical response as it is possible, or even 

probable, that inhibition of a single transporter may lead to increased compensatory 

substrate efflux by the other transporters. However, further research is required to 

study the potential interaction and molecular cross-talk between the transporters. Apart 

from Pgp, MRP1, and BCRP, there are numerous other less well-studied ABC 

transporters (Table 1.5). It is possible that these other transporters also have key roles 

in chemoresistance. 

 

1.8.6 ABC transporter expression in cancer 

Pgp and MRP1 expression has been detected using immunohistochemistry, qPCR, 

and flow cytometry in a range of tumours including breast cancer, myeloma, lung 

cancer, ovarian cancer, and leukaemia (Leonard et al., 2003). Of note, in acute myeloid 

leukaemia Pgp expression is up-regulated in patients who suffer from disease relapse 
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(Han et al., 2000). Other studies have shown that the intrinsic expression levels of ABC 

transporters correlate with clinico-pathological parameters that are associated with 

poor patient outcome. For example, MRP1 expression in untreated hepatocellular 

carcinoma correlates with tumour grade, size, and the degree of microvascular 

invasion (Fletcher et al., 2010). Similarly a study by Weinstein et al found that Pgp 

expression in colon cancer correlated with vessel wall invasion and lymph node 

metastasis (Weinstein et al., 1991). 

 

In breast cancer, the majority of published studies have focused on the expression of 

Pgp since it was the first of the three to be discovered (Leonessa and Clarke, 2003). 

Many previous studies have focused on measuring expression levels prior to adjuvant 

(post-surgery) chemotherapy. A meta-analysis (Trock et al., 1997), including 21 

immunohistochemical studies, showed that Pgp expression was seen in 48.5% of 

breast tumours. However, the incidence ranges widely from 0 to 80% (Leonard et al., 

2003). This may reflect the differences in quantification of expression, heterogeneity 

between the patient cohorts, or the differences in the specificity of antibodies used. 

Indeed, antibodies JSB-1, C494, and C219, which have been used for “Pgp” detection, 

have been reported to have cross-reactivity with proteins other than Pgp (Trock et al., 

1997).  

 

Studies examining Pgp expression in normal breast tissues have shown variable 

results. Van der Valk et al used three antibodies (JSB-1, C219, and MRK16) for 

immunohistochemistry and showed that Pgp expression was weak and confined to the 

breast epithelial cells (van der Valk et al., 1990). Ro et al showed that Pgp expression 

was present in the adjacent normal or hyperplastic tissue in 67% of the 40 breast 

cancer specimens examined by immunohistochemistry using C219 antibody (Ro et al., 

1990). However, Pgp expression was undetectable in the normal breast tissue samples 
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with immunoblots using the same antibody, compared to the breast cancer tissue 

samples (Sanfilippo et al., 1991) where Pgp expression was detected in 10 out of 34 

cases. Such studies examining MRP1 and BCRP expression in normal breast tissues 

are limited. Linn et al (Linn et al., 1997) showed that MRP1 expression was observed in 

the normal breast epithelium as well as the malignant cells using 

immunohistochemistry. 

  

Regarding comparisons to clinico-pathological parameters, there are no studies that 

show clear correlations between Pgp expression and tumour grade or stage. Pooled 

analysis from 4 studies suggests a correlation between Pgp expression and tumour 

stage (Leonessa and Clarke, 2003), with Pgp expression observed in 23% of T1 

tumours, compared to 42% of T4 tumours. This correlation needs to be interpreted with 

caution due to the heterogeneity in study design and patient cohort in each study. Data 

from pooled studies (n=5) showed that MRP1 expression was observed in 49% of the 

cases using immunohistochemistry in untreated breast cancer patients. Similarly to 

Pgp, studies examining MRP1 expression did not detect correlations with tumour 

stage, grade, or ER status (Leonessa and Clarke, 2003). 

 

In terms of predicting survival, studies by Vargas-Roig et al (Vargas-Roig et al., 1999) 

and Honkoop et al (Honkoop et al., 1998) both show that Pgp expression detected by 

immunohistochemistry did not predict disease free survival (DFS) or overall survival 

(OS) in breast cancer, where patients in both cohorts received doxorubicin. The 

Austrian Breast and Colorectal Cancer Study Group carried out a large study (n=516) 

investigating the role of MRP1 in breast cancer (Filipits et al., 2005). Using 

immunohistochemistry, they determined that MRP1 expression independently 

predicted for poor DFS. BCRP expression has been studied using 

immunohistochemistry in lung (Kim et al., 2009) and pancreatic cancer (Lee et al., 
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2012). These studies have shown BCRP expression to be associated with poor DFS. A 

limited number of studies have used tissues from patients treated with NAC to study 

xenobiotic transporter expression in breast cancer. It is of clear interest to examine 

their expression in the context of NAC, which has become a key treatment modality in 

breast cancer. In patients treated with adjuvant chemotherapy, only the intrinsic initial 

expression of the xenobiotic transporters can be determined since the tumour has been 

resected, and no further tumour tissue is available post-adjuvant chemotherapy unless 

patients develop tumour recurrences. NAC treatment protocols enable examination of 

the effect of chemotherapy in modulating xenobiotic transporter expression, and 

whether these expression levels correlate with patient outcome. 

 

1.8.7 Introduction summary 

Breast cancer is a relatively common disease, and NST is an important treatment 

modality. ABC molecules potentially impact on response to NST, and further 

investigation of how they impact on response, and how NST impacts on their 

expression is warranted.  
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2.0 Hypothesis and Aims  

My hypothesis is that expression of xenobiotic transporters impacts on neoadjuvant 

systemic therapy response in breast cancer. 

 

1. The primary aim of the project was to investigate whether expression of Pgp, 

MRP1, and BCRP either pre- or post-NAC correlates with treatment outcome.  

 

2. The secondary aim was to examine whether Notch1 activity impacts on MRP1 

expression, and thereby on response to chemotherapy. 

 

3. The tertiary aim was to examine whether NAET modulates BCRP expression, 

and whether epigenetic mechanisms are involved.  
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3.0 Materials and methods 

3.1 Cohort selection 

Ethical approval was obtained from Leeds (East) Research Ethics Committee 

(reference 06/Q1206/180).  

 

Cohort 1 – Neoadjuvant chemotherapy 

136 breast cancer patients treated with NAC at Leeds Teaching Hospitals NHS Trust 

(LTHT) from 2005 to 2009 were identified using the LTHT computer database, Patient 

Pathway Manager (PPM). Patients to be studied further were subject to careful cohort 

selection in order to limit tumour heterogeneity. Relevant data on patient and tumour 

characteristics were collected. Strict inclusion criteria for the study included patients 

who had a minimum of 3 year clinical follow-up after NAC, post-operative radiotherapy, 

grade 2 or 3 invasive ductal carcinoma (IDC) on core biopsy specimen, and NAC 

regimen consisting of anthracyclines +/- taxanes. Exclusion criteria included 

inflammatory breast carcinoma, invasive lobular carcinoma (ILC), and those who 

received adjuvant chemotherapy as well as NAC. This identified a cohort of 45 

patients. Relevant clinical data are outlined in table 3.1. Disease free survival (DFS) 

was defined as survival free of local or distant disease post-surgery. 21 patients were 

diagnosed with axillary metastasis and nodal tissues were available in 15 cases. In 

2/15 cases the final pathology diagnosis was micrometastasis, where tumour size was 

less than 2mm. This was deemed insufficient for immunohistochemistry, and hence 13 

matching patient lymph node blocks were available for immunohistochemical analysis 

of tumour cells.  
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Characteristic Categories No. of patients (%) 
n=45 

Age <45 21 (47) 

>45 24 (53) 

Grade (pre-NAC) 2 15 (33.3) 

3 30 (66.7) 

Stage (pre-NAC) T2 26 (57.8) 

T3 16 (35.6) 

T4 3 (6.6) 

Stage (post-NAC) T0 6  (13.3) 

T1 14 (31.1) 

T2 17 (37.8) 

T3 6  (13.3) 

T4 2  (4.5) 

Tumour size change Increase 8 (17.8) 

Decrease 31 (68.9) 
pCR 6 (13.3) 

MRI response Minimal 9  (20) 

Partial 30 (66.7) 

Complete 6  (13.3) 

NAC regimen epirubicin + 
cyclophosphamide (EC) 

13 (28.9) 

EC + taxanes   32 (71.1) 

Lymphovascular invasion Positive 17 (37.8) 

Axillary metastasis Positive 21 (46.7) 

Estrogen receptor Positive 26 (57.8) 

Her2 Positive 9 (20) 

Surgery breast conserving 17 (37.8) 

Mastectomy 28 (62.2) 

Follow up median: 4.5 years  
(range 3-8.8 years) 

 

Recurrence  17 (37.8) 

Death  10 (22.2) 

 

Table 3.1: Clinico-pathological characteristics of the NAC cohort (note: a relatively high 

number of patients suffered from recurrences, reflecting the aggressive nature of 

disease presentation in this cohort) 

 

Cohort 2 – Neoadjuvant endocrine therapy 

144 breast cancer patients treated with NAET at LTHT from 2005 to 2013 were 

identified using the LTHT computer database, Patient Pathway Manager (PPM). 

Patients who were part of the POETIC or NEO-EXCEL clinical trials were excluded 

from further consideration. In the former trial the length of duration of NAET was only 2 
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weeks (Dowsett et al., 2011), and in the latter trial NAET was combined with celecoxib. 

Therefore, 86 patients were available for further cohort selection. Inclusion criteria for 

the study included NAET duration of 1 month to 1 year, IDC or ILC, Allred score for ER 

expression of 7 or 8, no change in NAET regime, and lack of HER2 overexpression. 

This identified a cohort of 51 patients. Relevant clinical data are outlined in Table 3.2. 

Patients were mostly post-menopausal and this is reflected by administration of 

aromatase inhibitors in the majority. Most patients presented with lower grade and 

stage tumours, reflected by the lower recurrence rates.  

Characteristic Categories No. of patients (%) 
n=51 

Age Median: 67 years old 
(range 40-95 years old) 

 

Histological type IDC 38 (74.5) 
ILC 7 (13.7) 

IDC/ILC 7 (13.7) 

Grade  1 15 (29.4) 
2 30 (58.8) 

3 6 (11.8) 

Stage (pre-NAET) T1         17 (33.3) 

T2 26 (51) 
T3 5 (9.8) 

T4 3 (5.9) 

Stage (post-NAET) T1 19 (37.3) 

T2 25 (49) 

T3 7 (13.7) 

Tumour size change Increase or no change           22 (43.1) 

Decrease  29 (56.9) 

Lymphovascular invasion                Positive           11 (21.6) 

Receptor status (4/8 as 
cut-off for positive 

expression)  

ER 51 (100) 

   PR  37 (78.7) 

NAET duration Median: 90 days 
(range 30-362 days) 

 

NAET regimen Anastrozole 24 (47.1) 

Letrozole 20 (39.2) 

Tamoxifen 7 (13.7) 

Axillary metastasis Positive 21 (41.2) 

Surgery breast conserving 22 (43.1) 

Mastectomy 29 (56.9) 

Adjuvant chemotherapy  6 (11.8) 

Recurrence Median follow-up 7 (13.7) 

 

Table 3.2: Clinico-pathological characteristics of the NAET cohort  
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3.2 Haematoxylin & Eosin staining and step sectioning 

Archival formalin-fixed paraffin-embedded (FFPE) matching breast core biopsy and 

resection blocks were obtained for the selected patients. Single core biopsy (pre-

NAC/NAET) blocks were available, compared to the numerous resection blocks (post-

NAC/NAET). A review of histopathology reports was required to identify appropriate 

resection blocks that contained tumour. To ensure the resection block contained 

tumour cells, haematoxylin & Eosin (H&E) staining was performed on the selected 

blocks.  

 

Blocks were sectioned at depths of 5µm with a microtome, and sections were placed 

onto single SuperFrost Plus slides (Menzel-Glaser, Braunschweig, Germany). Slides 

were then air-dried, and incubated at 37oC. Sections were dewaxed in xylene, and 

rehydrated with graded ethanol. They were then stained in Mayer’s haematoxylin, 

Scotts substitute, and eosin. Following this, sections were dehydrated in ethanol and 

xylene, and mounted in DPX (Fluka, Gillingham, UK). The stained slides were then 

examined under a microscope to detect the presence of tumour cells. The slides were 

also examined by a pathologist (Dr Eldo Verghese, EV, Leeds Institutes of Molecular 

Medicine, University of Leeds and Department of Histopathology, LTHT) to confirm the 

findings.  

 

In addition, 8 patients receiving NAC were reported to have achieved pCR in the 

pathology reports. In order to confirm the absence of tumour tissue in these cases, a 

single resection block was selected per patient. These blocks had evidence of fibrosis, 

or the presence of a guide wire tip, and hence corresponded to the original tumour 

location prior to NAC. Step-sectioning was performed at intervals of 100µm and four 

consecutive sections of 5µm thickness were placed onto the SuperFrost Plus slides, 
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and immunohistochemistry (Section 3.4) was performed at each level (Table 3.3) with 

the monoclonal mouse anti-human cytokeratin AE1/3 antibody (M 3515; Dako, 

Glostrup, Denmark). This revealed residual tumour cells in 2 out of 8 cases (Appendix 

3, Fig S1). Therefore, the final cohort of patients for whom pre- and post-NAC tumour 

tissue was available was increased to 39/45 cases. 

 

3.3 Antibody selection 

Many monoclonal antibodies are available for Pgp, including; C219, JSB1, MRK16, 

UIC2, and 4E3 (Beck et al., 1996). Fewer monoclonal antibodies are available for 

MRP1 (QCRL1, QCRL3, and MRPr1), and BCRP (BXP21 and BXP34). UIC2 was 

chosen to detect Pgp expression as it has been widely used for immunohistochemistry 

on breast tissue (Mechetner et al., 1998, Hegewisch-Becker et al., 1998, Tsukamoto et 

al., 1997), and has also been validated by the presence of a single band at 170kDa 

(Mechetner and Roninson, 1992) in western blot experiments. Similarly, the QCRL1 

monoclonal antibody was chosen for MRP1 as it had been used on breast cancer 

tissues (Filipits et al., 1996), and was validated by a specific western blot at 190kDa on 

breast cancer cell lines (Morrow et al., 2006). In the aforementioned study, MRP1 

staining was mostly observed in tumour cells, with occasional weak staining in some 

stromal cells. Both membranous and cytoplasmic staining patterns were observed. For 

BCRP, BXP21 showed a range of positive staining in a variety of human tumours 

including FFPE breast tissue (Diestra et al., 2002). Both homogeneous and 

heterogeneous staining intensity were observed that was mostly tumour-specific, but 

some staining was observed in the endothelial cells. The staining patterns were mixed 

membranous and cytoplasmic. Western blot experiments using BXP21 on breast 

cancer cell lines showed a presence of a specific band at 72kDa (Morrow et al., 2006). 

Therefore, BXP21 monoclonal antibody was chosen (Table 3.3). Anti-activated Notch1 

antibody detects only the active, cleaved intracellular domain of Notch1 (Notch intra-
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cellular domain, “NICD”). It has been used on breast tissue for immunohistochemistry 

(Efstratiadis et al., 2007), and on western blots with breast cancer cell lines (Hao et al., 

2010). Strong nuclear staining was observed in breast cancer cells with this antibody, 

but normal ductal epithelial cells stained negative or weakly positive. 

 

Antigen Antibody Type Code and 

manufacturer 

Pgp UIC2 Mouse monoclonal 

IgG2a anti-human  

sc-73354, Santa 

Cruz Biotech., 

Santa Cruz, USA 

MRP1 QCRL1 Mouse monoclonal 

IgG1 anti-human 

sc-18835, Santa 

Cruz Biotech., 

Santa Cruz, USA 

BCRP BXP21 Mouse monoclonal 

IgG2a anti-human 

ab3380, Abcam, 

Cambridge, UK 

Notch1 NICD Anti-activated 

Notch1 antibody 

Rabbit polyclonal 

IgG anti-human 

ab8925, Abcam, 

Cambridge, UK 

Cytokeratin AE1/3 Mouse monoclonal 

IgG1 anti-human 

M3515, Dako, 

Glostrup, Denmark 

 

Table 3.3: Selected antibodies for immunohistochemistry   

 

3.4 Immunohistochemistry 

The protocol below describes my generic immunohistochemistry method; modifications 

made for use of specific individual antibodies are noted in section 3.5, and Table 3.4. 

FFPE breast tissue blocks were sectioned at depths of 5µm with a microtome, and the 

sections were placed onto SuperFrost Plus slides (Menzel-Glaser, Braunschweig, 
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Germany). Slides were then air-dried, and incubated at 37oC for 16 hours. Sections 

were dewaxed with xylene and rehydrated with graded ethanol. This was followed by a 

5 minute wash with water. The sections were then immersed in 10mM citric acid buffer 

(pH 6.0), and epitope retrieval was performed by heat using a 900W microwave or 

pressure cooker (10 min). Sections were then immersed in 0.3% H2O2 (10 min) to block 

endogenous peroxidase activity. Slides were rinsed in Tris-buffered saline (TBS), and 

mounted on Sequenza racks (Thermo Scientific, USA). Non-specific binding activity for 

primary antibodies was blocked, when required, using 100µl of casein solution 

(SP5020; Vector Labs, Burlingame, USA) diluted 10-fold (20 min) in TBS or antibody 

diluent reagent solution (Invitrogen, USA). Otherwise 100µl of antibody diluent reagent 

solution was added, and then 100µl of the primary antibody diluted in the same diluent 

was added for either 1 hour at room temperature or 16 hours at 4oC. Slides were then 

rinsed twice with TBS-tween (TBS-T), followed by a single wash with TBS. 1.25ml of 

10% v/v Tween-20 was added to 1 litre of TBS solution to form TBS-T (Appendix 

Section 1). Each wash lasted 5 minutes. Slides were incubated in a horseradish 

peroxidase (HRP) conjugated polymer secondary antibody (Dako, Glostrup, Denmark) 

for 30 minutes. The slides were then re-washed with TBS-T and TBS as before, and 

then 100µl of diaminobenzidine (DAB) was added to each slide for exactly 10 minutes, 

followed by a wash in water for 5 minutes. The slides were stained with haematoxylin 

for one minute, followed by a one minute wash in water. This was followed by a wash 

in Scott’s tap water (refer to Appendix Section 1 for recipe) for one minute, and a 

subsequent one minute wash in water. The slides were dehydrated with graded ethanol 

and xylene, and mounted in DPX (Fluka, Gillingham, UK). The recipe list for all the 

reagents used for immunohistochemistry and other experiments are listed in the 

appendix section 1.  
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3.5 Antibody optimisation and cohort staining 

Conditions for use of the antibodies in immunohistochemistry with breast cancer tissue 

were optimised using a tissue microarray (TMA) of 30 cores of randomly selected and 

fully anonymised breast carcinomas, normal breast tissue, and placenta tissues. The 

presence of placenta tissue was particularly important since this tissue is known to 

express the xenobiotic transporters highly (as corroborated by reviewing 

immunohistochemistry results compiled on the human protein atlas project 

http://www.proteinatlas.org) and therefore this tissue acted as a positive control. 

Negative controls were performed by omitting the primary antibody, which produced no 

staining in the TMA cores. Optimised staining of TMA tissues for each antibody is 

shown in Appendix section 3, Figure S2. Variables were method of antigen retrieval, 

antibody concentration, length of incubation and method of blocking (Table 3.4). 

Conditions were chosen for xenobiotic transporters that allowed a range of tumour-

specific cytoplasmic and membranous staining intensities in different cores with 

minimal staining in fibroblast or normal breast cells. For Notch1 NICD, conditions were 

chosen that allowed a nuclear-specific staining in tumour cells. Optimisation slides 

were reviewed by breast histopathologist EV.  

Antigen Antibody Optimised primary 

antibody 

concentration 

Optimised antigen 

retrieval methods 

Additional 

blocking 

steps 

Antibody 

incubation 

period 

Pgp UIC2 1/2000 No retrieval 10% 

casein  

1 hour 

MRP1 QCRL1 1/50 Microwave None 1 hour 

BCRP BXP21 1/50 No retrieval None 16 hours 

Notch1 

NICD 

Anti-activated 

Notch1 antibody 

1/100 Microwave 10% 

casein 

1 hour 

Cytokeratin AE1/3 1/50 Pressure cooker None 1 hour 

 

Table 3.4: Conditions for use of antibodies for immunohistochemistry 

http://www.proteinatlas.org/
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Core (pre-NAC/NAET) and resection (post-NAC/NAET) tissues for the whole cohort 

were sectioned at depths of 5µm. To enable direct comparison of the staining pattern in 

these matched tissues, the core and resection tissues were placed on the same slide 

(Fig 3.1). This methodology is unique in the literature for the proteins of interest, and 

potentially reduces experimental variation.   

 

Figure 3.1: Image of core (bottom) and resection (top) tissues placed on the same 

slide 
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3.6 Scoring protocol for xenobiotic transporters 

Stained sections were digitally scanned using Scanscope XT (Aperio®) at 20x 

magnification and were observed using ImageScope (Aperio®). Staining was scored 

initially manually by two independent scorers (BK and Dr Bethany Williams (BW), a 

histopathologist; Department of Histopathology, LTHT) in order to demonstrate that 

staining could be reproducibly assessed. Scoring was then performed using a semi-

automated procedure, which was validated against the initial manual scores. First, 

weighted histoscores (van Nes et al., 2012) [0 to 300 = (1 x % of tumour cells weakly 

stained) + (2 x % moderately stained) + (3 x % strongly stained)] were determined 

independently by BK and BW on a randomly selected tumour field containing at least 

100 tumour cells on each of a total of 54 slides with an equal distribution between the 

core and resection tissues, and between the three antibodies (Appendix Section 2, 

Table S1). Inter-observer intraclass correlation coefficient (ICC) was then calculated, 

resulting in an ICC of 0.87 between the two independent observers. Imagescope 

(Aperio®) software was then used to mark the identical tumour regions digitally (Fig 

3.2). The positive brown pixel count algorithm 

(http://tmalab.jhmi.edu/aperiou/userguides/Positive_Pixel.pdf) was then applied to 

these regions. Three intensity ranges for each pixel were defined (counts of <100 

defined as weakly positive, 100 to <175 as moderate, and >=175 as strong). Pixels not 

counted as brown were defined as negative. These values were used to generate 

automated histoscores: (1 x % weakly positive pixels within epithelial region) + (2 x % 

moderate) + (3 x % strong). ICCs were calculated for BK versus Imagescope (0.83), 

and for BW versus Imagescope (0.82). These values were deemed to be satisfactory to 

validate the use of Imagescope to perform semi-automated scoring protocol for the 

entire cohort. Then, BK manually marked all epithelial tumour cell regions of the cores 

and resections and Imagescope was used to generate semi-automated histoscores.  
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Figure 3.2: An example of manual versus automated scoring. Imagescope was used to 

mark out the tumour region (inside green boundary) and to generate an automated 

score within this region. For manual scoring of the same region: individual dots within 

the marked regions show examples of manual cell counting with different colours 

representing the different bands of staining intensity: on the left the staining was 

negative and hence the dots are marked in red colour predominantly, whereas on the 

right the staining was strong and dots are marked in black colour predominantly. The 

blue and green dots represent weaker staining observed within the marked region.  

  

3.7 Scoring protocol for Notch1 NICD 

Notch1 NICD nuclear staining was scored using the Allred method (Mohammed et al., 

2012, Allred et al., 2012). This generates a total score in whole numbers ranging from 0 

to 8 (note: a score of 1 is not possible), with an intensity score ranging from 0 to 3 

added to a score quantifying the proportion of tumours cells staining positively ranging 

from 0 to 5. Two independent observers (BK and BW) performed the scoring manually 

(Appendix Section 2, Table S2). Weighted Kappa co-efficients (k) were determined to 

compare the degree of agreement between the two observers. This resulted in a 



64 
 

k=0.78 for the core specimens, and a k=0.9 for the resection specimens. This resulted 

in an overall k=0.89 (n=58). The average of the two scores was used as the final score 

to indicate the degree of Notch1 NICD expression. 

 

3.8 Cell culture 

MCF7, HB2, and T47D cells were obtained from Dr Thomas Hughes (Leeds Institutes 

of Molecular Medicine, University of Leeds), and were routinely maintained in D-MEM, 

GlutaMAXTM I, 4500mg/L D-Glucose, 110mg/L Sodium Pyruvate (31966; Invitrogen) 

with 10% fetal calf serum (Sigma-Aldrich, USA). Cell line identities were confirmed by 

Short Tandem Repeat DNA profiling (Leeds Genomic Service). Cell lines were tested 

for mycoplasma at the start of the project and at every 6 months intervals (MycoAlert 

Mycoplasma detection assay, Lonza, Basal, Switzerland), which showed that the cell 

lines were consistently negative for mycoplasma. Cells were grown routinely in 75 cm2 

tissue culture flasks (430641; Corning life sciences) at 370C in humidified 5% carbon 

dioxide/air. No antibiotics were used routinely. The cells were passaged approximately 

every 72 hours when almost fully confluent. The media was removed from the flask, 

and the cells were washed with 10ml of Dulbecco’s phosphate-buffered saline (DPBS) 

(14190-094; Invitrogen) prior to dissociation with 2.5ml of trypsin (0.05% v/v) for 5 

minutes at 37oC. The detached cells were suspended by adding 7.5ml of fresh culture 

medium to inactivate the trypsin, and centrifuged at 400g for 5 minutes. The resulting 

pellet was re-suspended in 10ml of fresh culture medium, and 1ml of the resulting 

solution was added to 14ml of fresh culture medium in a new flask.  

 

H929 and HL60 cell lines were obtained from Dr Elizabeth Valleley (Leeds Institutes of 

Molecular Medicine, University of Leeds), and were routinely maintained in RPMI 1640, 

GlutaMAXTM I (61870-010; Invitrogen) with 10% fetal calf serum. Cells were grown 

routinely in 75 cm2 tissue culture flasks at 370C in humidified 5% carbon dioxide/air. 
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Since these cells are maintained in suspension culture, passaging was performed 

approximately every 5 days by adding 1ml of suspended cells to 14ml of fresh culture 

medium. 

 

3.9 Growth/proliferation assays for response to drugs 

MTT assays were used to assess proliferation/survival of cultures after treatment with 

various drug combinations. Assays were performed using 48 well cell culture multiwell 

plates (677180; Greiner Bio-one). Each well was seeded with the appropriate number 

of MCF7 or T47D cells diluted in 250µl of culture medium. Appropriate numbers were 

determined to enable log phase growth with the culture nearing confluence at either 3 

or 5 days (10,000 and 7,500 seeding cell numbers respectively for MCF7 cells) 

(Appendix Section 3, Fig S3). For the 5 day experiment, 10,000 cells were seeded for 

T47D cells (Appendix Section 3, Fig S4). A haemocytometer was used to count viable 

cells that appeared refractile, as opposed to dead cells which that stained blue and 

non-refractile; the chambers were loaded by mixing 5µl of cells suspended in medium 

with 5µl of 0.1% trypan blue (T8154; Sigma-Aldrich). Viable cell concentrations were 

determined using the formula below, taking account of the 50% dilution. 

 

Concentration (number of cells/ml) = {(number of cells counted in 1mm x 1mm grid) x 

10,000} x 2  

                                           

Cell counting was performed in four 1mm x 1mm haemocytometer squares on each 

occasion and the final concentration was taken from the mean. Cells were incubated in 

the same conditions as described in the previous section to allow them to adhere and 

after 24 hours dose-response experiments were performed with up to 1µM 

concentration of doxorubicin hydrochloride (BPE2516-1; Fisher scientific) alone and up 
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to 10µM concentration of DAPT (sc-201315; Santa cruz) alone. Each experimental 

condition was performed for three wells to generate triplicate values. Negative controls 

included wells without doxorubicin or DAPT but with the same volume of DMSO. Cells 

were then incubated at 37oC for a further 48 hours or 96 hours before the MTT assay 

was performed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

solution (M2128; Sigma-Aldrich) was diluted in DPBS to a working concentration of 

5mg/ml. The media in each well was replaced with 50µl of the MTT solution, and 

incubated in the dark for 3 hours at 37oC. The MTT solution was then replaced with 

250µl of propan-1ol, and 100µl of the resulting solution was transferred onto a well of a 

96 well plate. The optical density was measured using a microplate reader at 570nm 

(Opsys MRTM Dynex technologies Ltd, UK), where the optical density readings from 

wells containing medium only was subtracted. The resulting IC (inhibitory 

concentration) 10, 25, and 50 doses of doxorubicin were determined for MCF7 and 

T47D cell lines. The cell lines were also treated with DAPT alone to examine its effect 

on cell growth/survival at lower doses of up to 10uM. Finally, MCF7 and T47D cells 

were incubated with or without the three IC doses of doxorubicin and with increasing 

doses of DAPT (range; 1nM to 100uM) for 2 or 4 days. 

 

3.10 Western blots 

3.10.1 Protein extraction and quantification 

Proteins were extracted from adherent cultures in 25cm2 tissue culture flasks (430639; 

Corning life sciences). Medium was removed, and cells were washed twice with DPBS. 

Once the DPBS was removed, 200µl of RIPA buffer (see Appendix Section 1 for 

recipe) with protease inhibitors (G6521; Promega) was added to each flask. Cell 

scraping was performed immediately, and the lysis buffer/cell mix was placed on ice for 

15 minutes. The resulting mixture was then centrifuged at 14,000g for 10 minutes at 

4oC to separate the cell debris from protein. The supernatant was then transferred to a 
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new microcentrifuge tube for assessment of protein concentration using the Bio-Rad 

DCTM protein assay (500-0116; Bio-Rad). This assay uses the principle that differential 

colour change of a dye is proportional to protein concentration. Bovine serum albumin 

(BSA) was serially diluted in PBS to create a range of concentrations (2mg/ml to 

0.125mg/ml) to generate a standard curve. The corresponding concentration of each 

lysate was extrapolated from this curve. 5µl of the lysate sample was added per well of 

a 96 well plate to 25µl of reagent A, followed by the addition of 200µl of reagent B. 

Absorbance was measured after 15 minutes using a Dynex OpSys MRTM microplate 

photometric reader (Dynex, Chantilly, VA) at 630nM. 

 

3.10.2 Gel electrophoresis and immunoblotting 

The lysate volume required for either 20µg or 35µg protein loading was determined for 

each sample. 5:1 mixture of NuPage® LDS 4x sample buffer (NP0007; Invitrogen) and 

2- β mercaptoethanol (Sigma-Aldrich) was prepared. This mixture was combined with 

the lysate and with additional RIPA buffer as appropriate to standardise the volumes of 

the samples. Samples were denatured at 105oC for 5 minutes and transferred to ice for 

5 minutes. The samples were then centrifuged at 8000g for 30 seconds, re-suspended 

and placed on ice. 

  

NuPage® Novex 4-12% Bis-Tris 1.0mm x 10 well gels (NP0321BOX; Life 

Technologies) were used for electrophoresis. Gels were slotted into XCell SureLockTM 

Mini-cell electrophoresis system (Invitrogen, Carlsbad, CA), which was filled with a 1x 

NuPage® MOPS SDS running buffer (NP0001; Invitrogen). Samples were loaded into 

the wells along with a Precision Plus ProteinTM Dual Color Standards (161-0374; Bio-

Rad). Electrophoresis was performed at 180V for 1 hour. Polyvinylidene fluoride 

(PVDF) membrane (88518; Thermo Scientific) was cut to match the size of the gel, and 
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activated in methanol for 30 seconds. This was rinsed for 5 minutes in running water 

thrice and soaked in 1X NuPage® transfer buffer (NP0006-1; Invitrogen). The pre-cast 

gel was removed and placed onto the activated membrane, flanked by Mini Trans-blot 

filter papers (170-3932EDU; Bio-Rad) and sponges soaked in transfer buffer. The 

resulting sandwich was loaded into the XCell II Blot Module (Invitrogen, Carlsbad, CA), 

and slotted into the mini-electrophoresis system filled with the transfer buffer. The outer 

chamber was filled with de-ionised water, and protein transfer was performed at 30V 

for 90 minutes. The PVDF membrane was removed from the system and Ponceau-S 

was used to confirm the success of protein transfer. Blocking of non-specific antibody 

binding was achieved by incubating the membrane with 1% or 5% milk powder solution 

dissolved in TBST for 1 hour. Following a 5 minutes wash with TBST, primary antibody 

incubation was performed for 16 hours at 4oC. This was performed by submerging the 

membrane in a Corning® 50ml centrifuge tube (430828; Corning®) containing the 

primary antibody, which was diluted in 1% milk powder solution dissolved in TBST. 

Three 10 minutes wash in TBST was performed, followed by HRP conjugated polymer 

secondary antibody incubation (Dako, Glostrup, Denmark) at room temperature for 1 

hour at concentration of 1/2000. Following further three 10 minute washes in TBST, 

chemiluminescence detection was performed using the SuperSignal® West Pico Trial 

kit (34079; Thermo Scientific) or the West Femto Trial kit (34094; Thermo Scientific). 

The images were acquired using a Bio-Rad Gel Doc Imaging system and Image LabTM 

software (version 4.0.1).        

 

3.10.3 Antibody optimisation for western blots  

For western blots, the following monoclonal antibodies were used; C219 for Pgp, 

MRPr1 for MRP1, and BXP21 for BCRP. Variables for optimisation were denaturing 

versus non-denaturing protocol, primary antibody concentration, quantity of protein 

loading, and method of blocking (Table 3.5). Antibody optimisation was attempted 
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using UIC2 and QCRL1 monoclonal antibodies for Pgp and MRP1 respectively. This 

proved to be unsuccessful and hence different antibodies to those used for 

immunohistochemistry were used for immunoblotting. The following table describes the 

optimised conditions for immunoblotting, where beta actin was used as a loading 

control. 

 

Antigen Antibody Concentration Denature Protein 

load 

Block 

Pgp C219 (Mouse 

mAb, 517310, 

Calbiochem) 

1/100 overnight No heating 35µg 1% milk 

MRP1 MRPr1 (Rat mAb, 

ab3368, Abcam) 

1/100 overnight No heating 35µg 1% milk 

BCRP BXP21 (Mouse 

mAb, ab3380, 

Abcam) 

1/250 overnight Heating 20µg 1% milk 

Notch1 Anti-activated 

Notch1 antibody 

(Rabbit pAb, 

ab8925, Abcam) 

1/2000 overnight Heating 20µg 5% milk 

Beta actin Anti-β-actin 

antibody (mouse 

mAb, A5441, 

Sigma-Aldrich) 

1/100,000 1 hour Heating 20µg 5% milk 

 

Table 3.5: Conditions for use of antibodies for western blot 
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3.11 DNA extraction 

3.11.1 DNA extraction from cell lines 

Cells were harvested using trypsin (adherent cells) or centrifugation (suspension cells). 

The cells were centrifuged for 10 minutes at 10oC (290g). The supernatant was 

discarded, and the pellet was re-suspended in 10ml of DPBS and washed twice. The 

resulting pellet was re-suspended in 10ml of DNA buffer (see Appendix Section 1) and 

centrifuged for 10 minutes. After removing the supernatant, the pellet was re-

suspended in 3ml of DNA buffer with 125µl of proteinase K (10mg/ml) and 400µl of 

10% SDS. The resulting solution was incubated for 16 hours at 45oC. 3.6ml of phenol, 

chloroform, and isoamyl alcohol was subsequently added and mixed thoroughly by 

vortexing, and the resulting mixture was centrifuged for 10 minutes at 10oC (1811g). 

The supernatant was transferred into a new tube, and 3.6ml of chloroform/isoamyl 

alcohol was added and mixed thoroughly. The resulting mixture was again centrifuged, 

and 3ml of the supernatant was added to 300µl of 3M sodium acetate (pH 5.2) and 9ml 

of 2-propanol to enable DNA precipitation. The resulting precipitate was washed in 

70% ethanol, and the remaining dry precipitate was dissolved in 500µl of nuclease free 

water (P119E; Promega).  

 

3.11.2 DNA extraction from formalin-fixed paraffin-embedded breast tissue 

blocks 

Macrodissection of FFPE tissues were performed to isolate tumour-rich regions with an 

active effort to limit stromal contamination. From the NAET cohort, 46 biopsy tissues 

were available, compared to 51 resection tissues. The tumour-rich regions were 

identified and marked on the stained sections after extensive training from breast 

pathologist EV. Guided by this, macrodissection was performed on adjacent sections of 

10µm thickness using a sterile surgical scalpel blade number 11 (0503; Swann-Morton 
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Ltd). The resulting tissue was collected in 1.5ml microcentrifuge tubes (Eppendorf, 

Hamburg, Germany). For the larger resection tissues, 3 sections of 10µm were 

dissected. For the smaller biopsy tissues, 5 sections of 10µm were dissected. DNA 

extraction was performed using the QIAamp® DNA FFPE tissue kit (56404; Qiagen) 

and the manufacturer’s protocols. In brief, paraffin was removed from material using 

xylene and ethanol. Material was resuspended and digested with Proteinase K and 

then incubated at 90oC in order to reverse the formalin cross-linking partially. The 

resulting DNA was then bound to silica-based membranes, and washed before elution. 

A Nanodrop spectrophotometer (Nanodrop® Technologies) was used to quantify the 

amount of DNA in the resulting solution for the cell line samples as well as the FFPE 

samples (µg/µl). The DNA concentration in the biopsy tissues ranged 6.1 to 139.1 

ng/µl, compared to 9 to 958.1 ng/µl in the resection tissues (Appendix Section 2, Table 

S3). This was in comparison to DNA concentrations of 58.2 ng/µl in H929, 138.1ng/µl 

in MCF7, 193.6ng/µl in HL60, and 392.3ng/µl in HB2 cell lines.  

 

3.12 Bisulphite conversion of extracted DNA 

Bisulphite conversion of the extracted DNA was performed using the Epitect® bisulfite 

kit (59104; Qiagen) and the manufacturer’s protocols. For bisulphite conversion of 

extracted DNA from FFPE tissue, 500ng of DNA was used where there was sufficient 

sample volume (n=71), otherwise the entire sample volume was used for bisulphite 

conversion (n=26). The latter strategy was mainly required for the core tissues (21/26 

cases). There was sufficient sample volume to convert 500ng of DNA extracted from 

cell lines. In brief, DNA solutions containing 500ng of extracted DNA were added to 

“DNA protect” buffer, which prevents DNA fragmentation during the bisulphite 

treatment. The resulting solution was added to the bisulphite mix in ABgene low profile 

PCR tube strips (AB-0776; ThermoScientific). Bisulphite-mediated conversion of 

unmethylated cytosines was carried out using a Bio-Rad PTC-220 DNA engine Dyad™ 
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Peltier thermal cycler. The thermal cycling program outlined below (Table 3.6) 

denatures DNA and facilitates sulfonation and cytosine deamination. 

   

The converted single-stranded DNAs were bound to membranes of EpiTect spin 

columns, were desulfonated on the membranes, and were eluted in 20µl of nuclease 

free water. In the case of DNA from FFPE tissue, carrier RNA was added after the 

thermal cycling incubation in order to enhance binding of DNA to EpiTect spin-column 

membranes. 

 

Step  Time Temperature 

 

Denaturation 1 5 minutes 95
o
C 

Incubation 1  25 minutes  60
o
C 

Denaturation 2 5 minutes 95
o
C 

Incubation 2 85 minutes  60
o
C 

Denaturation 3 5 minutes 95
o
C 

Incubation 3 175 minutes  60
o
C 

Hold Indefinite 20
o
C 

 

Table 3.6: Thermal cycler condition for bisulphite conversion of extracted DNA 

   

3.13 Amplification of target DNA after bisulphite conversion 

Two sets of primers were used targeting specific regions of the BCRP (ABCG2) 

promoter, as described in previous studies in myeloma (Turner et al., 2006) and 

pancreatic cancer cell lines (Chen et al., 2012a). The primers from the former study 
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have been designated as Turner et al and the latter primers designated as Chen et al 

(Table 3.7). 

 

Turner et al ABCG2 forward 5’-GGATAATATTAGGTAAGGTTGAGTAA-3’ 

Turner et al ABCG2 reverse 5’-TCAAAATAACTCCCTCCAAACAAAAC-3’ 

Chen et al ABCG2 forward 5’-AATGAGYGTTTGGTGATTTT-3’ 

Chen et al ABCG2 reverse 5’-ATTTCCCCAAATCRAAATTC-3’ 

        

Table 3.7: Primers for BCRP promoter regions 

 

5µl out of total of 20µl of the bisulphite-modified DNA was added to a mixture (35µl) 

containing 8µl GoTaq flexi buffer (M890A; Promega), 4µl of 10mM dNTPs (U151; 

Promega), 0.5µl each of the 100µM forward and reverse primers (Sigma-Aldrich), 0.5µl 

of GoTaq Hot Start polymerase (M500B; Promega), 2µl of 25M MgCl2 (A351H; 

Promega), and 19.5µl of nuclease free water. The following thermal cycling program 

was used for amplification (Table 3.8). Gradient PCR was performed for each set of 

primers to determine optimal annealing temperature (54.7oC to 61.4oC) for PCR: 56oC 

for the Turner et al primer and 55oC for the Chen et al primer (Appendix Section 3, Figs 

S5 and S6). These conditions were used for subsequent PCR on all cell lines which 

confirmed the optimal conditions (Appendix Section 3, Fig S7). 
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1 Denaturation 95
o
C 3 minutes 

2 Denaturation 95
o
C 30 seconds 

3 Annealing  56
o
C for the Turner et al primer and 

55
o
C for the Chen et al primer  

30 seconds 

4 Extension 72
o
C 30 seconds 

5 Repeat Step 2 to 4 were repeated 34 times  

6 Extension 72
o
C 45 seconds 

7 Hold 10
o
C Indefinitely 

 

Table 3.8: PCR thermal cycler conditions used to amplify BCRP promoter region 

sequences 

 

10µl of the PCR product was subsequently analysed by gel electrophoresis to confirm 

the amplification of the correct sized product. 1% agarose / TAE gels, containing 

ethidium bromide, were cast in gel trays containing 20 well combs and allowed to set at 

room temperature (30 min). Gels were submerged in an electrophoresis system (Sub-

cell GT cell®; Bio-Rad) filled with TAE buffer. Each sample was mixed with 6x Loading 

Dye (#R 0611; Fermentas), and loaded into the wells. The first well was reserved for 

the DNA ladder (#SM1331; Fermentas), which contains markers ranging from 75 to 

20,000 base pairs. DNA was visualised using the Bio-Rad Gel Doc Imaging system, 

and Image LabTM software.                                                                                                                                 

 

3.14 Molecular cloning and sequence analysis of promoter products 

The remaining 30µl of the PCR product was separated from residual primers by gel 

electrophoresis and purified from the gel using a Zymoclean™ gel DNA recovery kit 

and the manufacturer’s protocol (D4001; Zymo Research). Gel electrophoresis was 

performed as stated in the previous section with the exception of using 10µl of 
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GelGreenTM nucleic acid gel stain (41005; Biotium) instead of ethidium bromide. 

Minimal ultraviolet light exposure enabled visualisation of the DNA fragments, which 

were excised from gel with sterile surgical scalpel blades and transferred into 1.5ml 

microcentrifuge tubes. Agarose dissolving buffer was used to ensure full dissolution of 

the gel. The resulting solutions were placed into spin columns to enable DNA binding to 

membrane, and elution of the purified DNA was achieved after washing with 70% 

ethanol. The resulting DNA was used for both direct Sanger sequencing and molecular 

cloning followed by sequencing. The resulting sequences were aligned to a reference 

bisulphite-converted sequence (Fig 3.3).   

 

5’AATGAGCGTTTGGTGATTTTCGTAGTTAATTATTTTGGTTTATTTCGTTCGATTTC
GGAGGCGGGAGTGTTTGGTTTGTTTTTGCGTGTTACGGTAGGGTGATTTTAGTTT
CGAGGGAGGGCGGTGGTATTAGTTTTGTTGGCGGTTTAGCGCGGTAGGATACGT
GTGCGTTTTTAGTCGGGTCGTAGGGCGTTTATCGCGGTTCGGTAGTCGGGGTTAC
GTTTTATTTTCGTTCGCGAATTTCGATTTGGGGAAAT3’ 

 

Figure 3.3: Bisulphite-converted reference sequence for the Chen et al amplicon. The 

resulting amplicon contains 257 base pairs and 27 CpG sites which are highlighted in 

green, assuming all CpG sites are methylated. The primer sequences are underlined.  

 

Molecular cloning was performed using the TA Cloning® kit with pCR™2.1 vector 

(K2020-40; Invitrogen) and the manufacturer’s protocol. Ligation reactions consisted of 

PCR product (sufficient to achieve 1:1 vector:insert ratio), ligation buffer, pCR™2.1 

vector, and DNA ligase in a total volume of 10µl and were incubated at 14oC for 16 

hours. MAX Efficiency® DH10B™ competent E. Coli cells (18297-010; Invitrogen) were 

transformed by the addition of ligated DNA, heat shocking the cells for 45 seconds at 

43oC, and subsequent addition of the S.O.C. medium. The resulting mixture was 

incubated at 37oC for 1 hour and spread onto the Lysogeny Broth (LB) agar plates 
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containing ampicillin for 16 hour incubation at 37oC. Colonies were screened by colony 

PCR. M13 forward (5´-GTAAAACGACGGCCAG-3´) and reverse (5´-

CAGGAAACAGCTATGAC-3´) primers were used to enable amplification of insert. 20µl 

reactions contained 4µl of GoTaq flexi buffer, 2µl of 10mM dNTPs, 0.25µl of the 

forward and reverse 100µM M13 primer, 0.25µl of GoTaq Hot Start polymerase, 1µl of 

25M MgCl2, and 9.75µl of nuclease free water. Each colony was harvested using a fine 

pipette tip, dipped into the PCR reaction, and subsequently dipped into a 15ml 

centrifuge tube (430790; Corning®) containing 5ml of ampicillin-treated LB solution. 

The following thermal cycling program was used for colony PCR (Table 3.9). 

 

1 Denaturation 98oC 3 minutes 

2 Denaturation 94oC 30 seconds 

3 Annealing  60oC 30 seconds 

4 Extension 72oC 30 seconds 

5 Repeat Step 2 to 4 were repeated 29 

times 

 

6 Extension 72oC 10 minutes 

7 Hold 10oC Indefinitely 

 

Table 3.9: Thermal cycler conditions used for colony PCR 

 

Gel electrophoresis was performed as stated in section 3.13. The PCR products were 

visualised, and colonies selected that showed product sizes representative of plasmids 

containing an appropriate plasmid insert (Appendix Section 3, Figs S8 to S11). The 5ml 

cultures of these specific colonies were incubated at 37oC for 16 hours in a shaker. 

Minipreps were performed using the Qiagen plasmid buffer set. Bacterial cultures were 
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centrifuged and the supernatant discarded. Bacteria were re-suspended in P1 re-

suspension buffer (1047015; Qiagen) and lysed by the addition of P2 lysis buffer 

(1014935; Qiagen). Cell debris was precipitated by addition of P3 neutralisation buffer 

(1014958; Qiagen). The resulting mixture was centrifuged, and the DNA in the 

supernatant was precipitated by addition of propan-2-ol. The DNA was pelleted and the 

pellet washed in 70% ethanol and then re-suspended in 50µl of nuclease free water. 

The resulting DNA was diluted to 500ng/µl for Sanger sequencing (Source BioScience 

plc, Nottingham, United Kingdom). The resulting sequences from individual clones 

were successfully aligned to the reference sequence using ApE software (v2.0.32; 

copyright © 2003-2009 by M. Wayne Davis). Methylation analysis was performed using 

CpGviewer software (http://dna.leeds.ac.uk/cpgviewer/) (Carr et al., 2007) designed by 

Dr Ian Carr (Leeds Institutes of Molecular Medicine, University of Leeds) and checked 

manually. 

 

3.15 Pyrosequencing  

In pyrosequencing (Doyle et al., 2011), nucleotide incorporation during the synthesis of 

a complementary strand results in the release of pyrophosphate, which subsequently 

generates ATP. This provides the energy for the luciferase-mediated conversion of 

luciferin to oxyluciferin. This chemical reaction generates visible light, where the degree 

of luminescence is proportional to the number of incorporated nucleotides. The four 

nucleotides are added sequentially to enable base calling and provides quantitative 

analysis of each CpG sites. Pyrosequencing can perform direct sequencing of 

bisulphite-modified DNA and examine multiple CpG sites. Hence, it is ideal for 

examining methylation status of clinical samples and has been used extensively using 

FFPE tissues (van Bemmel et al., 2012, Christians et al., 2012, Tuononen et al., 2012, 

Baba et al., 2010). PyroMark CpG assay was used to examine 5 CpG sites (Fig 3.4) 

within the Chen et al amplicon (PM00111321; Hs_ABCG2_01_PM PyroMark CPG 
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assay, Qiagen). This assay was performed by Dr Philip Chambers (Leeds Cancer 

Research UK Centre, Genomics Facility) to determine if pyrosequencing analysis 

mirrored the methylation analysis from the cloned sequences.  

 
5’AATGAGCGTTTGGTGATTTTCGTAGTTAATTATTTTGGTTTATTTCGTTCGATTTC
GGAGGCGGGAGTGTTTGGTTTGTTTTTGCGTGTTACGGTAGGGTGATTTTAGTTT
CGAGGGAGGGCGGTGGTATTAGTTTTGTTGGCGGTTTAGCGCGGTAGGATACGT
GTGCGTTTTTAGTCGGGTCGTAGGGCGTTTATCGCGGTTCGGTAGTCGGGGTTAC
GTTTTATTTTCGTTCGCGAATTTCGATTTGGGGAAAT3’ 
 

Figure 3.4: Bisulphite-converted reference sequence for the Chen et al amplicon 

highlighting the sites examined for pyrosequencing. The resulting amplicon contains 

257 base pairs and 27 CpG sites which are highlighted in green, assuming all CpG 

sites are methylated. The primer sequences are underlined. The five CpG sites 

examined by pyrosequencing are highlighted in red. 

 

This approach resulted in successful methylation analysis for the cell line samples 

which mirrored the cloned sequences, but not for the FFPE samples (Appendix Section 

3, Figs S12 and S13), perhaps reflecting the amplicon size of 228 base pairs. 

Therefore, alternative primer sets were designed using PyroMark Assay Design SW 

2.0 (Qiagen) by Dr Philip Chambers (Leeds Cancer Research UK Centre, Genomics 

Facility) (Fig 3.5) with an aim to design primers with an amplicon size of less than 150 

base pairs (Patterson et al., 2011). This resulted in 2 assays which examined 2 CpG 

sites each. The designed assays resulted in amplicons of 62 and 144 base pairs. 
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Figure 3.5: Two sets of primers designed for pyrosequencing assay. The 257 base 

pair sequence is the amplicon of the Chen et al primers. The CpG sites are highlighted 

in green. The 5 CpG sites previously examined using the PyroMark assay is 

highlighted in red. Two sets of primers were designed to amplify a 62 (top row of 

sequences) and 144 (bottom row of sequences) base pair products analysing two CpG 

sites each (highlighted in bold and double underlined). The 4 CpG sites have been 

labelled as position 165 and 172 on the top row of sequences, and as position 236 and 

250 on the bottom row of sequences. The cloned sequences were examined to ensure 

that 4 CpG sites selected were representative of the whole region. 

 

3.16 Statistical analysis 

Statistical analyses were performed using SPSS v16.0 (SPSS, Chicago, USA), 

GraphPad Prism v6.0 (GraphPad, California, USA), and MedCalc v12.4.0 (MedCalc 

software, Ostend, Belgium).  
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4.0. Neoadjuvant chemotherapy induces expression levels of 

Breast Cancer Resistance Protein that predict disease-free 

survival in breast cancer 

 

4.1. Abstract 

My aim in this chapter was to investigate tumour expression of Pgp, MRP1, and BCRP 

before and after neoadjuvant chemotherapy (NAC) to determine whether levels define 

response to NAC or subsequent survival. The NAC regime consisted of anthracyclines 

with or without taxanes. Paraffin embedded tissue was collected representing matched 

pairs of core biopsy (pre-NAC) and resection specimens (post-NAC) from 45 patients 

with invasive ductal carcinomas, and expression of the three markers was examined 

using immunohistochemistry. A computer-aided scoring protocol was developed and 

validated against 2 independent observers (intra-class correlation coefficients 0.83 and 

0.82). Pgp and MRP1 expressions were significantly up-regulated after exposure to 

NAC (p=0.0024 and p<0.0001; Wilcoxon signed-rank test). BCRP expression showed 

more variation in response: cases showed either down- (41%) or up-regulation (59%) 

after NAC, but no overall significant difference was observed. Pre- or post-NAC 

expression of Pgp, MRP1 or BCRP did not correlate with clinical (MRI-determined) 

response to NAC. Pre-NAC expression of all three markers, and post-NAC expression 

of Pgp and MRP1 did not correlate with disease free survival. However, high post-NAC 

BCRP expression independently predicted for poorer disease free survival (hazard 

ratio of 4.04; 95% confidence interval 1.3-12.2; p=0.013). Therefore, NAC-induced 

BCRP expression has potential value in predicting survival in breast cancer patients 

treated with NAC, whilst Pgp and MRP1 expressions have little predictive value.   
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4.2. Introduction 

Given the known function of the xenobiotic transporters, it is reasonable to expect that 

high expression of them within tumour cells may contribute to relative chemotherapy 

resistance, which may be reflected in poor responses to therapy. In the context of NAC, 

both pre- and post-NAC expression levels can be assessed, as tissue from both pre-

treatment biopsies and post-treatment resections would potentially be available. Either 

of these measures, or the change in expression levels during treatment, may be 

informative in terms of predicting response to treatment or subsequent survival. Given 

the overlap in substrate specificities of the xenobiotic transporters, analyses of the 

relative expressions of multiple xenobiotic transporters is likely to be more informative 

than individual analyses. In this study, I aimed to determine whether Pgp, MRP1, or 

BCRP expression pre-NAC or post-NAC has a predictive role, whether their expression 

is altered by NAC, and whether any change in expression during treatment has clinical 

relevance. Together, these proteins can efflux more than 80% of chemotherapeutic 

agents that are currently in use (Kuo, 2007). 

 

Only six studies, involving a total of 176 patients, have utilised tissues from patients 

treated with NAC to study the relevance of xenobiotic transporter protein expression in 

breast cancer (Leonessa and Clarke, 2003). However, most of these 

immunohistochemistry studies have focused on Pgp expression only, and examined 

whether Pgp expression is induced by NAC. Combined analyses of these studies show 

that Pgp expression was detected pre-NAC by immunohistochemistry in 42.9% of 

patients, compared to 63.9% post-NAC, suggesting an NAC-dependent increase in 

expression. For example, 36.8% of the cases where Pgp expression was initially 

negative were positive following NAC (Leonessa and Clarke, 2003). This suggests that 

Pgp could potentially contribute to acquired chemotherapy resistance. Since then, 

further studies have examined combined expression of xenobiotic transporters in 
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breast cancer patients treated with NAC. A notable study by Rudas et al showed that 

Pgp and MRP1 expression were both significantly up-regulated after exposure to NAC 

(Rudas et al., 2003), and the absence of pre-NAC MRP1 expression predicted for 

longer DFS. However, the cohort used for this study was heterogeneous, including 

both patients with ductal carcinomas and those with lobular carcinomas. This is 

important since published data suggest that lobular carcinomas respond poorly to NAC, 

and that the breast conserving surgery rate in this group is not increased after NAC 

(Boughey et al., 2009), therefore the results in Rudas et al may combine differential 

responses in the ductal and lobular groups. Tanei et al found BCRP expression, but not 

Pgp expression, was up-regulated after exposure to NAC (Tanei et al., 2011). No 

correlation to clinicopathological parameters were detected for Pgp or BCRP 

expression. The NAC regimes in the Tanei et al study involved 12 cycles of paclitaxel, 

followed by 4 cycles of fluouracil, epirubicin, and cyclophosphamide and therefore 

comparisons to typical current NAC regimen of 6 cycles only are difficult. No previous 

studies have examined Pgp, MRP1, and BCRP together in breast cancer patients 

treated with NAC. More importantly, previous studies were not designed to limit tumour 

heterogeneity in terms of cohort selection.  

 

Breast cancer recurrences are typically distant metastases and it is these that are 

responsible for subsequent cancer-related deaths (Redig and McAllister, 2013). If 

expression levels of xenobiotic transporters within the primary tumour reflect survival, it 

can be assumed that this is because these levels also reflect the levels in metastatic 

deposits. Occult distant metastatic cells are not available to test this assumption, since 

metastases are by definition sub-clinical in these patients with primary cancers, and 

even in patients with metastatic recurrences samples are typically not available since 

distant metastases of breast cancers are seldom biopsied or resected. However, the 

resected axillary lymph nodes at the time of surgery can potentially be examined, which 
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may reflect the xenobiotic transporter expression in metastatic deposits. This approach 

has been used previously to examine Pgp and MRP1 expression, but not BCRP 

expression, in the axillary lymph nodes of breast cancer patients (Zochbauer-Muller et 

al., 2001). Pgp and MRP1 expression was determined by immunohistochemistry using 

a cohort of 32 patients. The authors determined that Pgp expression was lower in the 

lymph nodes compared to the corresponding primary tumours, but MRP1 expression 

was higher in the lymph nodes compared to the corresponding primary tumours. 

However, patients were not treated with NAC. Lymph node tissue sampling pre-NAC is 

frequently performed by fine needle aspiration yielding cytological material rather than 

the histopathological material available after core biopsies or surgical resections. As a 

result, no lymph node tissue samples were available for analysis pre-NAC. This study 

will examine whether xenobiotic transporter expression in the lymph nodes post-NAC 

reflect the equivalent expression in the matching primary tumour sample post-NAC.  

 

4.3 Results 

 

4.3.1 Expression of Pgp and MRP1 were significantly up-regulated after NAC, but 

BCRP expression responded more variably 

I aimed to determine expression levels of Pgp, MRP1, and BCRP both pre- and post-

treatment in the tumours of a cohort of breast cancer patients treated with NAC. A 

cohort of 39 patients was assembled who had matching pre-NAC core biopsy tissues 

and post-NAC resection tissues, and a further 6 patients with pre-NAC core biopsy 

tissues but no matched post-NAC tumour material as these individuals had complete 

pathological responses (Table 3.1). Protein expression was determined using 

immunohistochemistry and quantified using semi-automated histoscores. As described 

in the methods (Section 3.6), quantification of expression was initially performed 
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manually, and then digitally using the validated semi-automated scoring protocol. This 

enabled determination of protein expression for the 45 core tissues and 39 matched 

resections for Pgp, MRP1, and BCRP (full data set: Table S4). The three proteins 

mainly displayed cytoplasmic/membrane staining pattern that was specific to epithelial 

cells, with some accentuation of cell nuclei. Representative staining patterns are 

illustrated in Figure 4.1 and quantified staining levels are shown in Figure 4.2.  

 

 

 

Figure 4.1a: Representative immunohistochemistry images for Pgp and MRP1 (x20 

magnification) in matched pre-NAC (left) and post-NAC (right) breast cancer samples. 

In both cases, very little/no staining is visible in the core tissues (pre-NAC), as opposed 

to positive staining in the resection tissues (post-NAC). These images represent the 

significant up-regulation in Pgp and MRP1 expression after exposure to NAC (Kim et 

al., 2013).  

 



85 
 

 

 

                          

                                

                                       

                   Pre-NAC       Post-NAC               

Figure 4.1b: Representative immunohistochemistry images for BCRP (x20 

magnification) in matched pre-NAC (left) and post-NAC (right) breast cancer samples 

from two individuals (top and bottom). Different individuals showed weak (top) or strong 

(bottom) staining pre-NAC. The top image shows up-regulation in BCRP expression 

post-NAC, whereas the bottom image shows down-regulation in BCRP expression 

(Kim et al., 2013). 

 

Pre-NAC expression was variable for Pgp (histoscores range: <0.1-161.7) and BCRP 

(histoscores range: 0.2-143.5), compared to MRP1 expression, which was very low in 

almost all core biopsy samples (histoscores range: <0.1-35.4). Post-NAC expression 
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was variable for all three proteins; Pgp (histoscores range: 0.2-171.4), MRP1 

(histoscores range: 0.2-202.9), and BCRP (histoscores range: 4.3-161.3).  

Pgp and MRP1 expressions were frequently up-regulated post-NAC (Figures 4.1a and 

4.2a), but changes in BCRP expression were more variable (Figures 4.1b and 4.2a), 

showing frequent up-regulation or down-regulation. Up-regulation was observed in 

29/39 cases for Pgp (74%), 36/39 cases for MRP1 (92%), and 23/39 cases for BCRP 

(59%) (Figure 4.2a). Significant up-regulation was observed for Pgp and MRP1 

(Wilcoxon signed-rank tests: Pgp, p=0.0024; MRP1, p<0.0001) (Figure 4.2b). The up-

regulation seen in for MRP1 was particularly striking, with very low expression seen in 

the core tissues in almost all the cases. However, a significant up- or down-regulation 

was not observed for BCRP (Fig 4.2b).  

 

  

Figure 4.2a: Pgp and MRP1 were up-regulated whilst BCRP responded variably (red: 

up-regulation, blue: down-regulation). Matched pre-NAC and post-NAC breast cancer 

samples were stained using immunohistochemistry for Pgp, MRP1 and BCRP. 

Expression within tumour cells was quantified as histoscores of 0 – 300. Expression 

levels in matched samples are linked by lines coloured red or blue so as to indicate an 

increase or decrease in expression respectively.  
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Figure 4.2b: Pgp and MRP1, but not BCRP, were significantly up-regulated by NAC. 

Pre- and post-NAC expressions of Pgp, MRP1, and BCRP are shown as median 

histoscore values with interquartile range; n=39 (pre-NAC samples lacking matched 

post-NAC samples were excluded). Statistically significant up-regulation was observed 

for Pgp and MRP1 (p=0.0024 and p<0.0001 respectively; Wilcoxon signed-rank tests). 

No statistically significant up-regulation was observed for BCRP (p=0.18; Wilcoxon 

signed-rank test).   

 

4.3.2 Post-NAC expression of Pgp, MRP1, and BCRP in the axillary lymph nodes 

reflects expression of the primary tumours post-NAC 

If post-NAC expression levels of these transporters in the primary tumours were to be 

of relevance for cancer outcomes in terms of likelihood of metastatic recurrences and 

therefore disease-specific survival, this would suggest that primary tumour expression 

could be representative of expression in metastatic cells. In order to test this 
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hypothesis, I aimed to compare the expression of Pgp, MRP1, and BCRP in tumour 

cells in the axillary lymph nodes, when available, to the corresponding primary breast 

cancer tissue expression post-NAC. 13 lymph node blocks were identified, and 

immunohistochemistry was performed for the three proteins using same experimental 

conditions as for the primary breast cancer tissues. As previously, the semi-automated 

scoring protocol was used to quantify expression. Representative staining patterns are 

shown in Figure 4.3, demonstrating epithelial-specific staining pattern that is mainly 

cytoplasmic/membraneous. 

 

       Pgp   MRP1                      BCRP 

   

 

Figure 4.3: Pgp, MRP1, and BCRP expression in axillary lymph nodes. Post-NAC 

axillary lymph node tissues were stained using the same immunohistochemistry 

protocol as per primary tumour. The images show positive staining in tumour cells with 

weak or no staining in the surrounding stroma.   

 

Post-NAC expression in the axillary lymph nodes for the 13 patients were highly 

variable for Pgp (histoscores range: 21.6-108.7), MRP1 (histoscores range: 0.5-167.1), 

and BCRP (histoscores range: 3.6-105.7). This variability was similar to that seen in 

post-NAC in the primary tumours of the same 13 patients; Pgp (histoscores range: 
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10.1-168.7), MRP1 (histoscores range: 0.9-197.5), and BCRP (histoscores range: 4.3-

119.9). There were no statistically significant differences between the lymph node 

expression and the primary tumour expression post-NAC (Fig 4.4) (Mann-Whitney test: 

Pgp, p=0.57; MRP1, p=0.75; BCRP, p=0.26). This suggests that post-NAC primary 

tumour xenobiotic transporter expression is potentially reflective of that in metastatic 

deposits. However, no statistically significant correlation was found when post-NAC 

primary tumour expressions were compared to the matching lymph node expressions 

for Pgp, MRP1, and BCRP using Spearman’s rho analyses (Fig 4.5; Pgp, rho=0.007, 

p=0.99; MRP1, rho=0.13, p=0.68; BCRP, rho=0, p>0.99). 
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0
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B C R P  (p = 0 .2 6 )

 

Figure 4.4: Comparison of xenobiotic transporter expression in the axillary lymph 

nodes and the corresponding primary tumour post-NAC (median histoscore values with 

interquartile range). There were no statistically significant differences between the 

lymph node expression and the primary tumour expression post-NAC (Mann-Whitney 

test: Pgp, p=0.57; MRP1, p=0.75; BCRP, p=0.26).  
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Figure 4.5: Correlation of post-NAC lymph node expression with corresponding post-

NAC primary tumour expression. Protein expressions quantified by histoscores are 

shown on the y (post-NAC axilla) and x axis (matched post-NAC primary tumour) for 

Pgp, MRP1, and BCRP. No significant correlations were seen, which also remained the 

case when all three markers were examined together. 

 

4.3.3 Analyses of correlations between expression of Pgp, MRP1, and BCRP  

Next, I wished to examine whether expression levels of Pgp, MRP1 or BCRP either 

pre- or post-NAC, or the changes in expression of these markers between pre- and 

post-NAC, were related to each other. This would potentially reveal evidence of co-

regulation of these transporters. To compare the change in protein expression after 

exposure to NAC, pre-NAC expression was subtracted from matching post-NAC 

expression and positive values were assigned as up-regulation, whereas negative 

values were assigned as down-regulation.  

 

I analysed these relationships using Spearman’s rho analyses (Table 4.1). The pre- 

and post-NAC levels showed some significant correlations to the changes in 

expression levels of the same proteins, as would be expected since these values are 
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directly related. In addition, for Pgp the post-NAC level positively correlated with the 

pre-NAC level, suggesting that post-NAC expression depends to some extent on the 

initial level. The changes in expression levels of the proteins were not related to each 

other, providing no evidence of co-regulation or mutually exclusive induction. 

Interestingly a significant and moderately strong negative correlation was seen 

between the pre-NAC Pgp expression and the change in BCRP expression (rho 

coefficient -0.5; p=0.01), as well as the post-NAC BCRP expression (rho coefficient -

0.34; p=0.03).  
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 Pgp pre 

n=45 

Pgp post  

n=39 

Pgp 

∆ 

n=39 

MRP1 
pre  

n=45 

MRP1 
post  

n=39 

MRP1 
∆ 

n=39 

BCRP 

pre 
n=45 

BCRP 
post  

n=39 

BCRP 
∆ 

n=39 

Pgp pre 

n=45 

-         

Pgp 
post 

n=39 

0.44 

(0.005) 

-        

Pgp 

 ∆ 

n=39 

-0.15 

(0.36) 

0.75 

(<0.01) 

-       

MRP1 
pre 
n=45 

0.09 

(0.56) 

0.07 

(0.67) 

0.11 

(0.5) 

-      

MRP1 

post 
n=39 

-0.11 

(0.51) 

-0.29 

(0.078) 

-0.15 

(0.37) 

-0.2 

(0.23) 

-     

MRP1 
∆ 

n=39 

-0.12 

(0.47) 

-0.28 

(0.079) 

-0.28 

(0.08) 

-0.25 

(0.13) 

0.99 

(<0.01) 

-    

BCRP 

pre 
n=45 

0.27 

(0.071) 

0.07 

(0.69) 

-0.13 

(0.43) 

0.24 

(0.11) 

-0.03 

(0.88) 

-0.05 

(0.78) 

-   

BCRP 

post 
n=39 

-0.34 

(0.032) 

-0.16 

(0.35) 

0.05 

(0.75) 

-0.17 

(0.29) 

0.14 

(0.40) 

0.14 

(0.39) 

-0.12 

(0.46) 

-  

BCRP 
∆ 

n=39 

-0.5 

(0.01) 

-0.15 

(0.37) 

0.16 

(0.32) 

-0.15 

(0.36) 

0.12 

(0.48) 

0.13 

(0.42) 

-0.77 

(<0.01) 

0.63 

(<0.01) 

- 

 

Table 4.1: Spearman’s correlation coefficients demonstrating relationships between 

expression pre-NAC or post-NAC, or change in expression (∆) for Pgp, MRP1 and 

BCRP (p values are denoted in brackets). 
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4.3.4 Do pre-NAC Pgp, MRP1, and BCRP expression levels predict complete 

pathological response? 

Next, I examined whether pre-NAC expression levels predicted whether patients would 

achieve pCR. There were 6 patients with pCRs leaving 39 in the non-pCR group. There 

were no significant differences in the MRP1 and BCRP expression levels between the 

pCR group versus the non-pCR group (pCR vs non-pCR, MRP1: medians 0.1 vs 0.4, 

p=0.4; BCRP: medians 6.35 vs 19.5, p=0.43). However, for Pgp, the expression level in 

the pCR group (median score 45.7) was significantly higher compared to the non-pCR 

group (median score 8.3, Mann-Whitney U test: p=0.013) (see discussion below for 

comments on this surprising finding). 

 

4.3.5 Correlation of xenobiotic transporter expression with clinico-pathological 

parameters 

My next aim was to analyse potential correlations between pre- and post-NAC 

xenobiotic transporter expression levels as well as the change in expression levels, 

and the clinico-pathological parameters (outlined in Table 3.1) using Spearman’s rho 

analyses (Table 4.2). Due to the large number of parameters being tested, a more strict 

threshold of p<0.01 was used to indicate statistical significance (Cleophas and 

Zwinderman, 2006). This is a more pragmatic approach to reduce the risk of type I 

error, which is the risk of parameters achieving significance of commonly stated p value 

of less than 0.05 by chance due to the large number of parameters being tested. This 

approach of using a lower p value has been adopted in a number of studies (Kim et al., 

2013, Morenos et al., 2014). An alternative approach would have been to adopt 

Bonferroni correction, which has potential limitations. For example, it is a stringent test 

with a conservative approach which has potential to overcorrect for type I error and 

thereby potentially lead to type II error (Pocock, 1997).  
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No significant correlations were observed for MRP1 and BCRP expression against the 

clinico-pathological parameters. Similar findings were observed for post-NAC Pgp 

expression, as well as the change in Pgp expression. However, a positive and weakly 

strong correlation between the pre-NAC Pgp expression and patient age (rho 

coefficient 0.41; p=0.005) was detected. Correlation coefficient values of 0.2, 0.5, and 

0.8 were defined as cut-off values for categorising the strength of correlation as weak, 

moderate, and strong respectively (Zou et al., 2003).  

 

 Pgp 
pre 

 

Pgp 
post  

Pgp 
∆  
 

MRP1 
pre  

MRP1 
post  

MRP1 
∆  
 

BCRP 
pre  

BCRP 
post  

BCRP 
∆  
 

Age at diagnosis 0.41 
(0.005) 

0.31 
(0.057) 

0.04 
(0.81) 

0.1 
(0.5) 

-0.13 
(0.45) 

-0.13 
(0.44) 

0.08 
(0.62) 

-0.18 
(0.25) 

-0.33 
(0.04) 

          

Tumour factors 
determined pre-
NAC: 

         

Grade 0.19 
(0.21) 

-0.16 
(0.33) 

-0.3 
(0.06) 

0.16 
(0.28) 

-0.02 
(0.91) 

0.01 
(0.95) 

-0.09 
(0.54) 

0.04 
(0.81) 

0.04 
(0.82) 

T Stage 0.06 
   (0.69) 

-0.09 
(0.57) 

-0.13 
(0.42) 

-0.14 
(0.36) 

0.29 
(0.07) 

0.27 
(0.1) 

-0.26 
(0.08) 

-0.16 
(0.34) 

0.04 
(0.82) 

ER status -0.08 
(0.6) 

-0.17 
(0.29) 

-0.12 
(0.48) 

0.24 
(0.11) 

0.13 
(0.43) 

0.11 
(0.5) 

0.18 
(0.23) 

-0.07 
(0.7) 

-0.06 
(0.74) 

Her2 status -0.03 
(0.85) 

0.21 
(0.19) 

0.33 
(0.04) 

-0.18 
(0.23) 

0.01 
(0.97) 

0.01 
(0.94) 

0.01 
(0.96) 

-0.02 
(0.91) 

0.03 
(0.86) 

          

Tumour factors 
determined post-
NAC: 

         

T stage -0.36 
(0.017) 

-0.15 
(0.38) 

0.04 
(0.83) 

0.22 
(0.15) 

0.14 
(0.39) 

0.1 
(0.55) 

0.14 
(0.38) 

0.05 
(0.79) 

0.05 
(0.78) 

Lymphovascular 
invasion 

-0.35 
(0.41) 

-0.1 
(0.53) 

0.04 
(0.8) 

0.04 
(0.79) 

0.23 
(0.15) 

0.24 
(0.14) 

0.17 
(0.26) 

-0.38 
(0.02) 

-0.23 
(0.16) 

Axillary 
metastasis 

-0.07 
(0.66) 

0.19 
(0.24) 

0.3 
(0.07) 

0.38 
(0.011) 

-0.1 
(0.53) 

-0.11 
(0.49) 

0.36 
(0.02) 

-0.08 
(0.62) 

-0.26 
(0.11) 

 

Table 4.2: Spearman’s correlation coefficients demonstrating relationships between 

expression pre-NAC or post-NAC, or change in expression (∆) for Pgp, MRP1 and 

BCRP with clinico-pathological parameters (p values are denoted in brackets). 

 

Expression levels and the change in expression levels were then examined against the 

response to NAC. The latter was defined in three separate ways: the change in tumour 

stage after NAC (TNM staging; see Section 1.2), qualitative response as assessed by 
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MRI scan, and as a quantitative change in tumour size derived from comparison of 

resection pathology to pre-NAC MRI scans (Table 4.3). No significant correlations were 

observed at the threshold of p<0.01.  

 

 Pgp 
pre 

 

Pgp 
post  

Pgp 
∆  
 

MRP1 
pre  

MRP1 
post  

MRP
1 ∆  

 

BCR
P 

pre  

BCR
P 

post  

BCRP 
∆  
 

∆ T 
stage 

-0.25 
(0.1) 

-0.08 
(0.63) 

0.11 
(0.52) 

0.19 
(0.22) 

0.09 
(0.57) 

0.06 
(0.72) 

0.1 
(0.53) 

0.15 
(0.38) 

0.07 
(0.69) 

MRI 
response 

0.2 
(0.19) 

0.07 
(0.69) 

0.004 
(0.98) 

-0.28 
(0.06) 

0.04 
(0.8) 

0.08 
(0.62) 

0.03 
(0.85) 

-0.09 
(0.61) 

-0.2 
(0.23) 

∆ in 
tumour 
size  

-0.25 
(0.1) 

-0.16 
(0.34) 

-0.02 
(0.92) 

-0.003 
(0.98) 

0.15 
(0.37) 

0.16 
(0.32) 

0.17 
(0.28) 

0.37 
(0.02) 

0.21 
(0.21) 

 

 

Table 4.3: Spearman’s correlation coefficients demonstrating relationships between 

expression pre-NAC or post-NAC, or change in expression (∆) for Pgp, MRP1 and 

BCRP with tumour response (p values are denoted in brackets). 

 

4.3.6 Disease free survival analysis of xenobiotic transporter expression 

Next, expression levels and change in expression levels of the transporters were 

analysed for correlations with disease free survival (DFS), defined as survival post-

surgery, using Kaplan-Meier survival analyses. Receiver Operating Characteristic 

(ROC) curve analysis was performed to dichotomise expression into high and low 

groups for both pre- and post-NAC levels. This was performed by comparing the 

presence or absence of disease recurrence against protein expression as quantified by 

histoscores. This generated a ROC curve with sensitivity value on the y-axis and one 

minus specificity value on the x-axis for each histoscore value. From this curve, the cut-

off providing the highest combined sensitivity and specificity for prediction of DFS was 

selected (Fig 4.6). For the change in expression, we dichotomised into groups with up-

regulation after NAC or with down-regulation.  
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Figure 4.6: ROC curve analysis for Pgp, MRP1, and BCRP; for pre-NAC histoscores, 

the respective cut-offs were 55 for Pgp, 4 for MRP1, and 1 for BCRP. For post-NAC 

histoscores, the respective cut-offs were 90 for Pgp, 21 for MRP1, and 47 for BCRP. 

 

There was no significant relationship between the DFS and the pre-NAC expression 

levels for any of the three transporters (Fig 4.7). Similarly, no significant relationship 

was observed between DFS and the change in expression levels (Fig 4.8). It is worth 

noting that down-regulation was a rare event for MRP1, occurring in only three patients 

none of whom suffered from recurrences, therefore this particular analysis is limited by 

the small numbers in this group.  
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Figure 4.7: Kaplan-Meier survival analyses for pre-NAC xenobiotic transporter 

expression versus disease free survival. 

 

 

Figure 4.8: Kaplan-Meier survival analyses for the change in xenobiotic transporter 

expression versus disease free survival. 

 

For post-NAC Pgp and MRP1 expression levels, no significant relationship was seen 

for DFS (Fig 4.9). For BCRP however, post-NAC expression was significantly 

correlated with DFS (Log rank: p=0.007). Patients with high BCRP expression had 5-

year survival of 40%, compared to 80% for those with low BCRP expression (Fig 4.9). 

Multivariate Cox regression analysis was performed taking into account post-NAC 

BCRP expression and the pathological factors typically regarded as having prognostic 

impact, including tumour grade, receptor status, axillary metastasis, tumour stage, and 

lymphovascular invasion. This showed that only BCRP expression post-NAC 

independently predicted DFS, with high expression giving a hazard ratio of 4.04 (95% 

confidence interval, 1.3-12.2; p=0.013).  
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Figure 4.9: Kaplan-Meier survival analyses for post-NAC xenobiotic transporter 

expression versus disease free survival. No significant correlation was detected for Pgp 

and MRP1. However, high BCRP expression post-NAC significantly predicted for 

poorer disease free survival. 

 

4.4 Discussion 

Methodology 

This is the first published study to examine Pgp, MRP1, and BCRP expression using 

immunohistochemistry in the context of breast cancer patients treated with NAC (Kim 

et al., 2013). Immunohistochemistry was used since protein expression is more likely to 

reflect the function and efflux activity of the transporters than analysis of transcript 

levels. Also, immunohistochemistry provides microanatomical details and hence 

tumour epithelium can be readily distinguished and examined specifically. However, 

subjectivity in quantifying protein expression can be a problem in interpreting results. 

Another potential method would have been to examine mRNA levels of Pgp, MRP1, 

and BCRP in clinical samples using RT-PCR. Although this would have potentially 

provided a more quantitative measure of expression, quantity and quality of nucleic 

acids extracted from FFPE tissues can be variable. Moreover, unless tumour cells are 

isolated by macrodissection or laser capture microscopy, results from RT-PCR need to 
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be interpreted with caution due to potential contamination by non-tumour cells. Burger 

et al examined mRNA levels of MDR1 (Pgp), MRP1, and BCRP using fresh frozen 

tumour resection tissues from 59 patients, where 30/59 went onto receive adjuvant 

chemotherapy. The authors found that MDR1 mRNA levels were inversely correlated 

with tumour response and progression free survival, but not MRP1 or BCRP mRNA 

levels. No active effort was made to isolate tumour cells in this study, and the survival 

analysis did not include Cox regression analysis performed in our study (Burger et al., 

2003). A further study by Faneyte et al examined MRP1 mRNA expression in tissue 

samples of 30 breast cancer patients treated with NAC. However, the tissue availability 

was limited in their study with 23 samples available after neoadjuvant chemotherapy, 

and only 3 patients had matching pre- and post-NAC tissue samples available for 

analysis. They found that MRP1 mRNA expression did not correlate with clinico-

pathological parameters or patient survival (Faneyte et al., 2004). Furthermore, as 

eluded in section 1.8.4, post-transcriptional regulation, amongst other complex 

mechanisms, may play an important role in regulation of ABC transporters and hence 

mRNA levels may not reflect functional activity.  

 

To overcome the potential issues in subjective quantification of protein expression in 

immunohistochemistry, we have used a novel method of placing core tissues on the 

same slide as the resection tissues, thereby limiting potential inter-experimental 

variation. Furthermore, we quantified protein expression using the objective computer-

aided scoring protocol, which is being increasingly used in other studies (Mohammed 

et al., 2012) with the potential advantages of reproducibility and increased objectivity. 

Our scoring protocol also enabled quantification of protein expression as a continuous 

variable, and hence enabled more precise comparison of change in expression after 

exposure to NAC, as well as selection of appropriate cut-offs for survival analysis. This 

is in comparison to change in protein expression simply quantified as positive/negative 



100 
 

as adopted in another NAC study (Tanei et al., 2011). As eluded to in section 1.5, 

previous studies regarding potential predictive markers to NAC have shown that 

significant correlations are only present in selected tumour subtypes, suggesting that 

tumour heterogeneity plays an important role. Therefore, unlike previous studies 

mentioned in section 4.1, we have made an active effort to limit tumour heterogeneity 

during the patient cohort selection.  

 

Marker expression levels 

My results show that Pgp and MRP1 are up-regulated after exposure to NAC. These 

findings are in keeping with previously published studies (Rudas et al., 2003, Chung et 

al., 1997). Interestingly we found that MRP1 expression was uniformly low pre-NAC, 

which is in contrast to study by Rudas et al in which pre-NAC MRP1 expression was 

detected in 62% of their study cohort. Up-regulation of MRP1 expression occurred in 

92% of our cohort, compared to 57% in their cohort. The differences in finding may be 

due to the difference in the cohort characteristics or in experimental protocol, such as 

the monoclonal antibody used to detect MRP1 expression. Tanei et al found that BCRP 

expression was significantly increased after NAC with positive BCRP expression seen 

in 15/72 patients pre-NAC, compared to 26/72 patients post-NAC. However, the 

limitation of this study in terms of quantifying change in expression as positive/negative 

rather than as a continuous variable highlights the limitations of their study. BCRP 

expression was rather variable in our study with up-regulation observed in 59%, 

compared to the respective values of 74% for Pgp and 92% for MRP1.  

 

This study showed that Pgp, MRP1, and BCRP expression in the axillary lymph nodes 

post-NAC was not significantly different to that of primary breast cancer post-NAC. 

However, no correlation in expression pattern was found for all three transporters, 
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perhaps reflecting the fact that only 13 lymph node tissues were examined. Our finding 

is different to the previously mentioned study in section 4.1 where Pgp and MRP1 

expressions in the lymph nodes differed significantly from those of the corresponding 

primary tumours (Zochbauer-Muller et al., 2001). As our study examined lymph node 

expression post-NAC, as opposed to untreated in Zochbauer-Muller et al, it is difficult 

to compare the results and further studies with larger cohort sizes are required. 

  

We have also found that in tumours with low pre-NAC Pgp expression, there is a 

greater increase in the BCRP expression after NAC. One possible explanation is that 

high Pgp expression results in sufficient efflux of chemotherapeutic agents, and hence 

the stimulus for BCRP up-regulation is reduced. However, this is unlikely since MRP1 

up-regulation was observed in 92% of the cases, suggesting that the stimulus for up-

regulation remains. Alternatively, regulatory cross-talk between the two transporters 

may enable tumours with low Pgp expression to respond by compensatory up-

regulation of BCRP. A study by Bark et al supports this hypothesis of regulatory cross-

talk between Pgp and BCRP (Bark et al., 2008). Their study reported that Pgp down-

regulated the expression of BCRP in a doxorubicin-resistant lung cancer cell line.  

 

Interestingly for Pgp, pre-NAC expression level in the pCR group was significantly 

higher compared to the non-pCR group (Mann-Whitney U test: p=0.013). This is a 

paradoxical finding that requires further investigation, and may potentially be explained 

by single nucleotide polymorphism (SNP) in these patients attenuating the efflux 

activity of Pgp. George et al examined SNP 3435 C>T in exon 26 of the MDR1 gene in 

76 breast cancer patients treated with NAC. The authors found that patients with 

3435TT genotype with low Pgp expression had improved overall response to NAC than 

3435CC genotype with high Pgp expression. However, the difference was not 

significant (George et al., 2009). This study is further supported by meta-analysis by 
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Wang et al who showed association between the MDR1 C3435T polymorphism and 

risk of breast cancer based on 10 case-control studies involving 5282 breast cancer 

cases and 7703 controls. TT versus CC genotypes was associated with the most 

significant increased risk of breast cancer with an odds ratio of 1.45 (Wang et al., 

2013b). I do not have data concerning the genotypes of patients in my cohort. For 

MRP1 and BCRP, no statistically significant difference was detected between the pCR 

group and the non-pCR group. Therefore, these findings also suggest that pre-NAC 

xenobiotic transporter levels do not predict response to NAC, and that post-NAC 

expression may be more informative. This is reflected by the significance of the post-

NAC BCRP expression. 

 

Significance of expression in terms of survival 

Pre-NAC BCRP expression had no predictive value in terms of survival, and our study 

shows that BCRP expression levels vary widely after exposure to NAC. However, this 

variably induced-change is of potential relevance since high BCRP expression post-

NAC correlated with poor DFS. BCRP expression has also been shown to significantly 

correlate inversely with survival in patients with acute myeloid leukaemia (Damiani et 

al., 2006, Benderra et al., 2004, Benderra et al., 2005). Our study finding and the 

transferrable methodology of using objective computer-aided scoring protocol requires 

examination in a larger independent cohort for validation. Based on the Kaplan-Meier 

survival analysis of post-NAC BCRP expression versus disease free survival, post hoc 

power analysis was performed to examine whether the study cohort size was sufficient 

to identify this association. IBM SPSS SamplePower v3.0 (SPSS, Chicago, USA) was 

used for this analysis. Based on a two-tailed test with alpha value of 0.05, the cohort 

size of 39 patients resulted in a power value of 0.78. Further analysis showed that a 

cohort size of 44 patients would have achieved the commonly accepted power value of 

0.8.  
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Patients with high BCRP expression post-NAC may benefit from further adjuvant 

therapies to attempt to improve disease free survival. However, the adjuvant therapy 

may not be in the form of further chemotherapy as these patients will already have high 

BCRP expression level within any remaining tumour cells. Alternative approaches 

include investigation of mechanisms that regulate BCRP expression to potentially 

improve the efficacy of NAC, which is the focus of chapter 6.   

 

Pre-NAC MRP1 expression did not predict survival in this study, which is in contrast to 

the findings of the Rudas et al study (Rudas et al., 2003), which found that high pre-

NAC MRP1 expression predicted poor survival. However, the cohort used in this work 

included patients with lobular carcinoma, a different monoclonal primary antibody, and 

a scoring protocol which quantified expression in a discrete manner rather than our 

continuous data. In our study, MRP1 expression pre-NAC was uniformly low, and up-

regulation occurred in 92%, compared to 57% in their study. Investigating potential 

mechanism responsible for this striking up-regulation of MRP1 expression is the focus 

of the next chapter.  
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5.0 NAC up-regulates Notch1 and MRP1 expression, but Notch1 

inhibition does not potentiate chemotherapy efficacy 

 

5.1 Abstract 

My data in chapter 4 demonstrated that MRP1 expression was up-regulated in 36/39 

cases after NAC. Evidence within the literature suggested that MRP1 up-regulation 

may be driven by activated Notch1. Therefore, my first aim in this chapter was to 

determine whether activated Notch1 expression correlated with MRP1 expression. 

Activated Notch1 expression was determined in the same NAC cohort tissue samples 

as used in chapter 4 using immunohistochemistry. Similarly to MRP1, Notch1 

expression was significantly up-regulated after NAC (p=0.0003). Moreover, a 

significant correlation was observed between post-NAC Notch1 and MRP1 expression 

(rho coefficient 0.6; p=0.0008), suggesting that Notch may indeed drive MRP1 up-

regulation after NAC. The hypothesis that inhibition of Notch signaling, and therefore of 

MRP1 up-regulation, increases the sensitivity of breast cancer cells to 

chemotherapeutics was developed from these observations. This hypothesis was 

tested by assessing survival/proliferation of breast cancer cell lines using MTT assays 

after treatment with combinations of the chemotherapeutic doxorubicin and the Notch 

inhibitor DAPT. Minor additive effects on survival/proliferation were seen with 

combinations of doxorubicin and DAPT, but no synergistic effect was observed. Further 

investigation using immunoblotting revealed that under these conditions doxorubicin 

did significantly up-regulate MRP1 expression, but activated Notch1 expression was 

not significantly up-regulated. Immunohistochemistry findings from this study add 

further weight to the potential role of Notch1 in regulating MRP1 expression. However, 

further in vitro studies and alternative experimental strategies are required to determine 

whether abrogating Notch1 expression results in improved efficacy of chemotherapy.      
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5.2 Introduction 

In the previous chapter I showed that treatment of breast cancers with NAC was 

associated with dramatic up-regulation of MRP1 expression within the tumour cells. I 

was interested to investigate the molecular mechanisms potentially responsible for this 

up-regulation. A considerable body of work exists concerning the pathways that 

regulate MRP1 expression in normal physiology as well as in cancer (Bakos and 

Homolya, 2007, Haimeur et al., 2004).  

 

Regulation of MRP1 expression in normal physiology 

MRP1 has a role in protection against xenobiotics and endogenous toxic metabolites. 

Lorico et al used knock-out mice to investigate the physiological role of MRP1 (note, 

the authors refer to the murine gene as mrp). No physiological abnormalities were 

observed between mrp(+/+) and mrp(-/-) mice up to 4 months of age, perhaps 

indicating functional redundancy amongst the xenobiotic transporters. However, the 

mrp(-/-) mice displayed increased sensitivity to the chemotherapeutic agent etoposide, 

which resulted in greater bone marrow toxicity (Lorico et al., 1997). MRP1 is highly 

expressed in lung, testis, kidney, heart, and placenta (Bakos and Homolya, 2007). 

Pascolo et al showed that MRP1 expression increased with placental maturation, 

supporting the notion that MRP1 contributes to protection of the fetus from toxic 

compounds. They showed that MRP1 mRNA expression was increased four-fold in 

third compared to first trimester human placental tissue samples (Pascolo et al., 2003). 

Qian et al showed that high expression of MRP1 in Leydig cells of testis has potential 

roles in protecting testes from the feminising side effects of endogenous oestrogen 

conjugates. They used MRP1-transfected HeLa cells to show that conjugated 

oestrogen was efficiently transported by MRP1 (Qian et al., 2001).     
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Regulation of MRP1 expression in cancer 

As well as the aforementioned studies in section 1.8.4, the following studies elaborate 

further on regulation of MRP1 expression in cancer, providing evidence of 

transcriptional regulation. Under wild-type conditions, the p53 tumour suppressor 

protein represses transcription of MRP1. In cancer, mutant p53 loses the ability to 

repress MRP1 transcription, thereby resulting in up-regulation of MRP1 expression 

(Wang and Beck, 1998). A further transcriptional control is exerted by the oncogenic 

transcription factor c-jun, potentially via an AP-1 site within the MRP1 promoter. Cripe 

et al showed that transfection of a multidrug resistant leukaemic cell line, HL-60/ADR, 

with a vector to over-express dominant negative c-jun resulted in reduced MRP1 

expression and abrogation of MRP1-dependent efflux, and hence increased sensitivity 

to daunorubicin (Cripe et al., 2002).  

 

My work described in the previous chapter demonstrated that MRP1 expression was 

up-regulated by exposure to NAC in breast cancer tissue samples (Kim et al., 2013). 

Two further publications were of specific interest in the context of determining factors 

potentially responsible for NAC-dependent up-regulation of MRP1. First, a study in 

which a potential link between the transcription factor Notch1 and MRP1 was examined 

(Cho et al., 2011). The authors showed that MRP1 was a direct transcriptional target of 

Notch1 in the multi-drug resistant breast cancer cell line, MCF7/VP. They showed that 

down-regulation of Notch1 activity, using the gamma-secretase inhibitor DAPT, led to 

subsequent down-regulation of MRP1 expression as detected by western blots. 

Furthermore, transfection of MCF7/VP cells with a luciferase reporter allowing 

measurement of activity of the ABCC1 promoter (ABCC1 being the gene that codes for 

MRP1), showed that ABCC1 transcriptional activity was reduced by treatment with 

DAPT. Finally, siRNA-mediated knock down of MRP1 expression in Notch1-

overexpressing cells resulted in increased sensitivity to etoposide. Overall, this study 
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convincingly demonstrates a regulatory link between Notch1 and MRP1, and that 

targeting of Notch1 with DAPT or siRNA could be used to modulate MRP1 expression. 

The second relevant publication demonstrated that Notch1 activity was up-regulated by 

NAC in clinical breast cancers. Analysis of gene expression profiles of clinical breast 

cancer samples treated with NAC (Gonzalez-Angulo et al., 2012) revealed over-

expression of targets of Notch signalling. This study compared gene expression data of 

pre- and post-NAC tissues from 21 breast cancer patients. In non-basal-like subset of 

breast cancers, enriching of Notch signalling targets was observed in differentially 

expressed genes. Thus, from bioinformatics it was inferred that NAC may activate 

Notch signalling in the non-basal (mainly luminal) breast cancers. By combining the 

findings of these two highlighted studies, my hypothesis was that the up-regulation of 

MRP1 by NAC that I demonstrated in the previous chapter is mediated, at least in part, 

by Notch signalling. 

 

Notch proteins and Notch signalling 

Notch proteins are transmembrane receptors that interact with ligands of the delta or 

jagged families, which are mostly present on adjacent cells. Notch proteins are initially 

translated as precursor forms, which are then processed by an S1 cleavage in the 

Golgi network, resulting in the formation of the mature Notch proteins, which consist of 

extracellular, transmembrane, and cytoplasmic domains. Extra-cellular ligand binding 

to the Notch protein leads to further cleavage in two successive steps. The first 

proteolytic cleavage (S2) is performed at the extracellular domain by the 

metalloprotease ADAM17 (A Disintegrin And Metalloproteinase) and TACE (TNF-α 

converting enzyme). The second proteolytic cleavage (S3) is carried out by gamma 

secretase at the transmembrane domain, generating the free Notch intracellular 

domain (NICD) in the cytoplasm (Yin et al., 2010). The NICD is translocated to the cell 

nucleus, and acts as a transcription factor potentially regulating cell proliferation, 
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differentiation, and apoptosis through a large range of target genes. NICD binds to a 

transcriptional repressor CSL [CBF-1 (C-promoter binding factor 1), Suppressor of 

Hairless and Lag-1], which leads to the displacement of the co-repressor complex and 

recruitment of co-activators such as mastermind-like (MAML) and p300 to activate 

transcription of Notch target genes, including the Hes and Hey family genes. This in 

turn can lead to the regulation of transcriptional targets, cyclin D1 (involved in cell-cycle 

regulation), c-Myc (transcription factor), and HER2 (growth factor receptor) (Guo et al., 

2011).  

 

There are four Notch receptors; Notch1 to 4, which are encoded by separate genes. 

The Notch pathway can have oncogenic as well as tumour suppressive effects. For 

example, mouse models have demonstrated that Notch1 overexpression results in 

mammary gland tumours (Hu et al., 2006) and immunohistochemistry studies have 

shown that high Notch1 expression is associated with poorly-differentiated breast 

cancers (Li et al., 2010). Furthermore, Reedijk et al showed that high Notch1 mRNA 

expression was associated with poor overall survival in breast cancer patients (Reedijk 

et al., 2005); 5-year OS for patients with high Notch1 expression was 49% versus 64% 

for low Notch1 expression. In contrast, Parr et al examined Notch2 expression in 97 

breast cancer specimens using immunohistochemistry, and showed that high Notch2 

levels correlated with improved survival in breast cancer patients and well-differentiated 

tumours (Parr et al., 2004). 

 

Notch signalling and NAC – a potential therapeutic opportunity? 

My initial hypothesis was that Notch signalling contributes to the up-regulation of MRP1 

by NAC. Should this hypothesis be correct, my aim would then be to attempt to inhibit 

the chemotherapy-dependent up-regulation of MRP1 using inhibitors of Notch1 activity.  

I will test whether this might be used to increase the efficacy of chemotherapy, by 
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reducing MRP1-dependent chemotherapy resistance (Fig 5.1). A caveat to this 

therapeutic strategy is the fact that MRP1 expression did not demonstrate a significant 

relationship with patient survival in the work in the previous chapter, therefore MRP1-

dependent chemotherapy resistance may be relatively unimportant. However, high 

MRP1 expression consistently showed a trend to be associated with poor survival and 

MRP1 showed the most consistent NAC-dependent up-regulation, therefore interfering 

with this potential pathway of chemoresistance remains attractive. 

 

 

Figure 5.1: Proposed pathway for enhancing the efficacy of chemotherapy. The aim of 

NAC is to kill cancer cells but MRP1 has a role in protecting cancer cells by effluxing 

chemotherapeutics and hence reducing their efficacy. If up-regulation of MRP1 is 

mediated by Notch1 signalling, inhibition of Notch1 using DAPT would result in 

reduction of MRP1 levels in cancer cells, thereby improving the efficacy of NAC.  

 

Gamma-secretase inhibitors (GSI), such as DAPT (N-[N-(3,5-Difluorophenacetyl)-L-

alanyl]-S-phenylglycine t-butyl ester), have been developed to inhibit conversion of 

mature full-length Notch to its active NICD form. Hallahan et al used DAPT to induce 

this Notch inhibition in medulloblastoma cell lines and mouse models. They found that 
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DAPT caused dose-dependent decreases in the number of viable cancer cells 

(Hallahan et al., 2004). Farnie et al cultured ductal carcinoma in situ (DCIS) cells to 

form mammospheres, and showed that mammosphere-forming efficiency, calculated 

by dividing the number of mammospheres formed by the original number of single cells 

seeded, was attenuated by DAPT (Farnie et al., 2007). Therefore, DAPT was chosen 

to inhibit Notch expression for my study. GSIs are currently being evaluated in phase I 

clinical trials as a monotherapy (Groth and Fortini, 2012). However, they have been 

shown to have significant side-effects including gastro-intestinal bleeding, and 

immunosuppression. Other approaches, such as combination therapies, may be useful 

to improve the efficacy of GSI, potentially allowing use at reduced doses or lengths of 

exposure thereby reducing side-effects. Osipo et al showed that inhibition of HER2 

function by Herceptin led to up-regulation of Notch1 activity in a panel of breast cancer 

cell lines. This up-regulation was attenuated by GSIs, and the combination of GSIs with 

Herceptin led to enhanced rates of apoptosis compared to GSIs alone in both 

Herceptin resistant and Herceptin sensitive cells (Osipo et al., 2008). Hence, ErbB2 

inhibition activates Notch1 and leads to increased sensitivity to GSI. Moreover, 

Nefedova et al showed that inhibition of Notch signalling enhanced sensitivity to 

chemotherapeutics in multiple myeloma cells (Nefedova et al., 2008). Combining 

doxorubicin with GSI led to a greater rate of apoptosis in a myeloma cell line, and also 

led to significant tumour size reduction in a mouse model, compared to each drug 

alone.  

 

Therefore, in this chapter I aimed to examine expression of activated (S3 cleaved) 

Notch1 in the same cohort as studied for MRP1 in the previous chapter and test the 

relationships between Notch 1 and MRP1, and between Notch1 and clinico-

pathological parameters including NAC response. Finally, I aimed to treat breast 
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cancer cells with combinations of chemotherapeutics and inhibitors of Notch function to 

test whether the drugs exhibit synergistic cancer cell killing.  

 

5.3 Results 

5.3.1 Activated Notch1 expression was up-regulated post-NAC and correlated 

with post-NAC MRP1 expression 

I aimed to determine the expression of activated Notch1 using immunohistochemistry 

in the same cohort of breast cancer patients treated with NAC as was used in Chapter 

4, and then compare activated Notch1 expression patterns to MRP1 expression. 

However, further biopsy core tissues was available for analysis of Notch1 NICD 

expression in only a subset of this initial cohort, and therefore the matched analysis 

was possible in pre- and post-NAC tissues from only 29 of the 39 original cases. The 

clinico-pathological characteristics of this reduced cohort are illustrated in Table 5.1. 
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Characteristic Categories No. of patients (%) 
n=29 

Age <45 12 (41.4) 

>45 17 (58.6) 

Grade (pre-NAC) 2 9 (31) 

3 20 (69) 

Stage (pre-NAC) T2 19 (65.5) 

T3 10 (34.5) 

Stage (post-NAC) T1 9  (31) 

T2 15 (51.7) 

T3 5 (17.3) 

Tumour size change Increase 6 (20.7) 

Decrease 23 (79.3) 

MRI response Minimal 9  (31) 

Partial 20 (69) 

NAC regimen Epirubicin + 
cyclophosphamide (EC) 

5 (17.2) 

EC + taxanes   24 (82.8) 

Lymphovascular invasion Positive 11 (37.9) 

Axillary metastasis Positive 15 (51.7) 

Oestrogen receptor Positive 17 (58.6) 

Her2 Positive 3 (10.3) 

Surgery breast conserving 11 (37.9%) 

Mastectomy 18 (62.1%)  

Follow up median: 4.2 years  
(range 3-5.7 years) 

 

Recurrence  11 (37.9) 

Death  5 (17.2) 

 

Table 5.1: The clinico-pathological characteristics of the patient cohort for which 

Notch1 NICD expression was examined 

 

Immunohistochemistry for Notch1 NICD was performed on these matched pre- and 

post-NAC samples, using core biopsy and resection samples mounted on the same 

slide as before. Staining was observed in the nucleus and cytoplasm in epithelial cells 

only, with strong accentuation of the cell nuclei. Representative staining patterns are 

illustrated in Figure 5.2. Active Notch1 NICD is functionally active in the nucleus, unlike 

MRP1, therefore in order to score this specific active compartment a different scoring 

protocol was required from the semi-automated method used for MRP1. Manual Allred 

scoring of nuclear expression was used to quantify Notch1 NICD expression, involving 

assessment of both staining intensity (from 0 to 3) and the proportion of cells staining 
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positively (classes enumerated as 0 to 5) (Tacca et al., 2007). Two independent 

scorers quantified expression and inter-scorer reproducibility was assessed as 

excellent (Kappa values 0.78 for core tissues and 0.9 for resection tissues; see section 

3.7); the mean value of the two scores (overall kappa value of 0.89) was taken as the 

final assessment.  

 

           

  Pre-NAC     Post-NAC 

Figure 5.2: Immunohistochemistry for Notch1 NICD (x20 magnification) shows no 

nuclear staining in the core tissues (pre-NAC), as opposed to positive nuclear staining 

in the resection tissues (post-NAC). These images represent the significant up-

regulation in Notch1 NICD expression after exposure to NAC.  

 

Pre-NAC and post-NAC Notch1 NICD expression ranged from 0-4 (out of maximum 

score of 8), and 0–8 respectively (Fig 5.3). Up-regulation of Notch1 NICD expression 

after exposure to NAC was seen in 23/29 cases (Figure 5.3a) and, overall, the up-

regulation was statistically significant (Figure 5.3b) (Wilcoxon signed-rank test: 

p=0.0003). 
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          5.3a       5.3b 

   

Figure 5.3a (left) and b (right): Notch1 NICD expression pre- and post-NAC (red: up-

regulation, blue: down-regulation or no change) is shown on Figure 5.3a. Up-regulation 

was observed in 23/29 cases (79.3%). Matched pre- and post-NAC breast cancer 

samples were stained using immunohistochemistry for Notch1 NICD. Expression within 

tumour cells was quantified as Allred score of 0 to 8. Expression levels in matched 

samples are linked by lines coloured red or blue so as to indicate an increase or 

decrease in expression respectively. Figure 5.3b illustrates pre- and post-NAC 

expressions of Notch1 NICD shown as median Allred score values with interquartile 

range; n=29. Statistically significant up-regulation was observed for Notch1 NICD 

(p=0.0003; Wilcoxon signed-rank test). 

 

The pre- and post-NAC Notch1 NICD expression was then analysed with the 

equivalent MRP1 expressions from the same samples using the Spearman’s rho 

analysis. No significant correlation was observed pre-NAC between Notch1 NICD and 

MRP1 expression (rho coefficient 0.33; p=0.08; Fig 5.4a), although it should be noted 

that MRP1 expression was generally extremely low pre-NAC and these expression 

levels may be subject to a substantial contribution of non-specific noise (Fig 5.4a). 
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However, a significant correlation was observed between post-NAC Notch1 NICD and 

MRP1 expression (rho coefficient 0.6; p=0.001; Fig 5.4b). Pre- and post-NAC Notch1 

NICD expressions were also compared to the equivalent Pgp and BCRP expressions. 

Notch1 NICD expression did not correlate with either Pgp or BCRP expression either 

pre- or post-NAC (pre-NAC Notch1 NICD and Pgp expression: rho -0.03, p=0.87; post-

NAC Notch1 NICD and Pgp expression: rho 0.04, p=0.82; pre-NAC Notch1 NICD and 

BCRP expression: rho 0.03, p=0.88; post-NAC Notch1 NICD and BCRP expression: 

rho -0.02, p=0.91). These findings demonstrated that Notch1 NICD levels correlate with 

MRP1 specifically, rather than xenobiotic transporters generally. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

      5.4a (pre-NAC)             5.4b (post-NAC) 
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Figure 5.4a (left) and b (right): Scatter plots of Notch1 NICD expression versus 

MRP1 expression (n=29). Figure 5.4a illustrates pre-NAC Notch1 NICD expression 

plotted on the y-axis (Allred score of 0 to 8), and matching pre-NAC MRP1 expression 

plotted on the x-axis (histoscores). Due to low MRP1 expression pre-NAC, the x-axis is 

only shown up to histoscore of 40. No significant relationship was seen (Spearman’s 

rho coefficient 0.33, p=0.08). Figure 5.4b illustrates post-NAC Notch1 NICD expression 

plotted on the y-axis (Allred score of 0 to 8), and matching post-NAC MRP1 expression 

plotted on the x-axis (histoscores; 0 to 300). A positive and significant correlation was 

observed between post-NAC Notch1 NICD and MRP1 expression (Spearman’s rho 

coefficient 0.6; p=0.001). 

 

5.3.2. Correlation of Notch1 NICD expression with clinico-pathological 

parameters and disease free survival. 

My next aim was to examine pre- and post-NAC Notch1 NICD expression levels, as 

well as the change in expression of Notch1 NICD, against the clinico-pathological 

parameters (outlined in Table 5.1) using Spearman’s rho analyses (Table 5.2). As 

stated in the previous chapter, p<0.01 was used to indicate statistical significance. A 
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statistically significant negative correlation was seen between tumour grade and pre-

NAC Notch1 NICD expression level on univariate analysis, although this correlation 

was not significant after multivariate regression analysis. As previously (see Section 

4.2.5), the expression levels and the change in expression levels were then examined 

against the response to NAC. No significant correlations were observed.  

 

 Notch1 
pre 

 

Notch1
post  

Notch1 
∆  
 

Age at diagnosis 0.15 
(0.43) 

-0.003 
(0.99) 

0.097 
(0.62) 

    

Tumour factors 
determined pre-
NAC: 

   

Grade -0.5 
(0.006) 

-0.18 
(0.34) 

0.025 
(0.9) 

T Stage     0.25 
   (0.19) 

0.32 
(0.095) 

0.26 
(0.18) 

ER status -0.3 
(0.12) 

-0.089 
(0.65) 

0.083 
(0.67) 

Her2 status -0.08 
(0.68) 

0.14 
(0.46) 

0.17 
(0.37) 

    

Tumour factors 
determined post-
NAC: 

   

T stage 0.32 
(0.87) 

0.18 
(0.34) 

-0.044 
(0.82) 

Lymphovascular 
invasion 

0.32 
(0.09) 

0.17 
(0.38) 

0.048 
(0.8) 

Axillary 
metastasis 

0.4 
(0.032) 

0.075 
(0.7) 

-0.12 
(0.54) 

Tumour 
response 

   

∆ T stage 0.12 
(0.53) 

-0.088 
(0.65) 

0.14 
(0.46) 

MRI response 0.15 
(0.43) 

0.47 
(0.011) 

0.21 
(0.28) 

∆ in tumour size  -0.14 
(0.46) 

-0.005 
(0.98) 

-0.16 
(0.41) 

 

Table 5.2: Spearman’s correlation coefficients demonstrating relationships between 

expression pre-NAC or post-NAC, or change in expression (∆) for Notch1 NICD with 

clinico-pathological parameters (p values are denoted in brackets) 
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Next, expression levels and change in expression levels of Notch1 NICD were 

compared against disease free survival, using Kaplan-Meier survival analyses. 

Receiver Operating Characteristic (ROC) curve analysis was performed to dichotomise 

expression as previously. No significant correlations were detected between Notch1 

NICD expressions pre- or post-NAC and disease free survival (Fig 5.5). To determine 

the change in Notch1 NICD expression, pre-NAC Notch1 NICD Allred score was 

subtracted from post-NAC Notch1 NICD Allred score. In 3 cases where the Allred score 

was 0 out 8 both pre- and post-NAC, these cases were excluded from the analysis. 

 

 

Figure 5.5: Kaplan-Meier survival analyses for Notch1 NICD expression versus 

disease free survival 

 

5.3.3. Comparison of Notch1 expression in different breast cancer subtypes 

The initial published report in which up-regulation of Notch signalling targets was 

demonstrated post-NAC found this to be true in non-basal-like breast cancers only 

(Gonzalez-Angulo et al., 2012). Therefore I aimed to compare the expression pattern of 

Notch1 NICD separately in basal-like and non-basal-like breast cancers in my cohort. 

This distinction was made by examining ER, PR, and HER2 status in each patient. 

Patients who had triple negative tumours (ER-, PR-, and HER2-) were categorised into 

a basal-like group (n=13). These who had ER+ and HER2- tumours were categorised 
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into luminal A-like group (n=13), and those with ER+ and HER2+ tumours into luminal 

B-like group (n=3). Luminal A and B-like groups were combined to form 16 luminal-like 

tumours. Notch1 NICD expression was not significantly different in luminal-like tumours 

as compared to basal-like tumours either pre- or post-NAC (Fig 5.6) (p=0.06 pre-NAC; 

p=0.66 post-NAC; Mann-Whitney test). Furthermore, Notch1 NICD expression was 

significantly up-regulated after NAC in both subtypes when analysed separately (Fig 

5.7) (p=0.02 luminal-like; p=0.001 basal-like; Wilcoxon signed-rank test). 
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Figure 5.6: No difference in Notch1 NICD expression was observed between the 

basal- and luminal-like tumours pre- and post-NAC (p=0.06 pre-NAC; p=0.66 post-

NAC; Mann-Whitney test). Notch1 NICD expression is shown on y-axis (Allred score 0 

to 8) with median expression displayed with interquartile range for basal-like (n=13) 

and luminal-like tumours (n=16).  
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Figure 5.7: Significant up-regulation of Notch1 NICD expression was seen in both 

basal-like and luminal tumours upon exposure to NAC (p=0.001 basal-like; p=0.02 

luminal-like; Wilcoxon signed-rank test). Notch1 NICD expression is shown on y-axis 

(Allred score 0 to 8) with median expression displayed with interquartile range for 

basal-like (n=13) and luminal-like tumours (n=16). 

 

5.3.4. Do Notch inhibitors enhance the efficacy of doxorubicin? 

Having determined that NAC exposure, including at least some component of 

anthracyclines, resulted in up-regulation of Notch1 NICD expression and MRP1 

expression in many clinical breast cancers I wished to examine whether this would be 

recapitulated in cell line models, and whether treatment with chemotherapy agents 

would lead to induction of Notch1 activity and MRP1 expression. In accordance with 

this, data produced by other investigators in our laboratory demonstrated that treatment 

of T47D cells, a luminal breast cancer cell line, with doxorubicin induced Notch1 

activation and MRP1 expression (Fig 5.8).  



121 
 

 

Figure 5.8: Doxorubicin induces MRP1 (left) and Notch1 NICD (right) expression in 

vitro. T47D cells were treated for 24h with 1µM doxorubicin or vehicle control. MRP1 

expression was quantified by Western blot (left). Data for Western blot are 

representative of at least 2 independent biological replicates. The figure is courtesy of 

Dr James Thorne (LIMM). ELISAs (right) were used to quantify levels of Notch1 NICD 

with data shown representing 2 independent biological replicates with technical 

duplicates (error bars show SEM). The figure is courtesy of Dr Sam Stephen (LIMM). 

 

Based on these findings, I aimed to determine whether treatment with DAPT, an 

inhibitor of Notch1 activation, would potentially sensitize cells to chemotherapy agents 

(see Figure 5.1) using MTT assays to determine cell survival/proliferation. First, I 

established suitable conditions for this assay, including doses of chemotherapy agent 

and length of treatment. I treated luminal breast cancer cell lines MCF7 and T47D in 

vitro with doses up to 1μM of doxorubicin, as a representative anthracycline 

chemotherapeutic, for up to 4 days and used MTT assays to measure relative 

growth/survival. Doxorubicin is an anthracycline that has similar clinical efficacy as 

epirubicin (Bontenbal et al., 1998), and has been used on MCF7 cell lines in other 
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studies (Zang et al., 2010). Addition of increasing concentrations of doxorubicin 

resulted in reduction of growth/proliferation of the luminal cancer cell lines in an 

exponential manner (Appendix Section 3, Fig S14). From the resulting dose-response 

curves, three inhibitory concentration (IC) values of doxorubicin were extrapolated for 

each cell line, and for MCF7 cells for treatment for both 2 and 4 days. The IC10, 25, 

and 50 values are shown in Table 5.3. 

 

 IC10 (nM) IC25 (nM) IC50 (nM) 

MCF7 (2 days) 10 25 70 

MCF7 (4 days) 4 10 30 

T47D (4 days) 10 25 60 

 

Table 5.3: Inhibitory concentration values of doxorubicin for MCF7 and T47D cell lines 

 

Next, I examined the influence of the inhibitor of Notch activation DAPT, using the 

same strategy, on MCF7 cell lines only. In contrast to doxorubicin, concentrations of up 

to 10μM DAPT had little influence on growth/proliferation of MCF7 cells after either 2 or 

4 days of treatment (Appendix Section 3, Fig S15).   

 

Finally, MCF7 cells were treated for either 2 or 4 days with doxorubicin, at either the 

IC10, IC25 or IC50 doses (Table 5.3), combined with an initial range of doses of DAPT 

from 1nM through to 1uM, and cell survival/proliferation was determined as before. 

Data are shown for the IC25 shown in Fig 5.9a, while for the IC10 and 50 doses these 

are included in the appendix (Appendix Section 3, Fig S16a). As expected, doxorubicin 

alone caused a reduction in cell numbers appropriate for the dose (i.e. approximately 

reductions of 10%, 25% or 50%). The inclusion of doses of DAPT caused some minor 
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additive effects although a clear dose dependency was not seen, and overall there was 

no evidence for synergy between doxorubicin and DAPT. Next, the assay was 

repeated using a range of higher doses of DAPT, 1µM to 100µM (Fig 5.9b and 

Appendix Section 3, S16b). In this case, some toxicity from the highest doses of DAPT 

was seen, but it remained the case that there was no evidence of a synergistic effect 

from the drugs. These assays were also repeated in T47D cells at either IC10, IC25, or 

IC50 doses (Table 5.3) combined with DAPT doses ranging from 1nM to 100µM. The 

results for the IC25 are shown in Fig 5.10, while the results for IC10 and 50 doses are 

shown in Appendix Section 3, Fig S17. As previously, some minor additive effects were 

seen when doxorubicin was added to DAPT, but no synergistic effect was seen 

between doxorubicin and DAPT.  

 

 



124 
 

 

Figure 5.9a: 2 and 4 day combination assay using MCF7 cell lines for the lower DAPT 

concentrations (1nM to 1µM). Y- axis shows optical density reading normalised to 

untreated. The first black bar denotes the controls (-) with no DAPT or doxorubicin, with 

remaining black bars showing increasing DAPT alone. The first green bar denotes the 

IC25 value (25nM and 10nM for 2 and 4 day assays respectively) without DAPT (-), 

with the remainder showing IC25 doxorubicin (DOX) with increasing DAPT.  
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Figure 5.9b: 2 and 4 day combination assay using MCF7 cell lines for the higher DAPT 

concentrations (1µM to 100µM). Y- axis shows optical density reading normalised to 

untreated. The first black bar denotes the controls (-) with no DAPT or doxorubicin, with 

remaining black bars showing increasing DAPT alone. The first green bar denotes the 

IC25 value (25nM and 10nM for 2 and 4 day assays respectively) without DAPT (-), 

with the remainder showing IC25 doxorubicin (DOX) with increasing DAPT.  
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Figure 5.10: 4 day combination assay using T47D cell lines (DAPT concentrations of 

1nM to 100µM). Y- axis shows optical density reading normalised to untreated. The first 

black bar denotes the controls (-) with no DAPT or doxorubicin, with remaining black 

bars showing increasing DAPT alone. The first green bar denotes the IC25 value 

(25nM) without DAPT (-), with the remainder showing IC25 doxorubicin (DOX) with 

increasing DAPT.  
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5.3.5. Notch1 NICD expression was not up-regulated in response to doxorubicin 

and DAPT did not inhibit Notch1 NICD or MRP1 expression at the doses used for 

survival assays 

Contrary to our proposed model, combined treatments with doxorubicin and DAPT did 

not demonstrate synergy in vitro. Therefore, I next performed Western blot analysis 

(see Section 3.10 for methods) to determine whether MRP1 expression and Notch1 

activation was changing as expected under the drug treatment conditions used, and 

also whether any changes in expression of the other xenobiotic transporters, Pgp and 

BCRP could be acting as confounding factors, since both are potentially able to efflux 

doxorubicin. Therefore, immunoblotting was performed to examine the protein 

expression for Notch1 NICD, MRP1, Pgp, and BCRP under essentially the same 

conditions used for the cell survival/proliferation analyses.  

 

MRP1 and Notch1 NICD expressions were examined on western blots using MCF7 cell 

lysate (Fig 5.11). Basal MRP1 expression was low, and up-regulation of MRP1 

expression was only observed at the lowest dose of doxorubicin treatment (IC10). In 

contrast, basal Notch1 NICD expression was considerable. Marginal up-regulation of 

Notch1 NICD expression was also observed at the lowest dose of doxorubicin 

treatment (IC10). Surprisingly, both MRP1 and Notch1 NICD expressions were down-

regulated with increasing doses (IC25 and IC50) of doxorubicin treatment. DAPT 

treatment on its own resulted in up-regulation of MRP1 expression. Similarly, 

combination therapy of doxorubicin and DAPT also resulted in up-regulation of MRP1 

expression. DAPT treatment on its own did not result in down-regulation of Notch1 

NICD expression as expected. The combination therapy of Notch1 and DAPT resulted 

in down-regulation of Notch1 NICD expression however. 
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Figure 5.11: Western blot to examine MRP1 and Notch1 NICD expression using MCF7 

cell lysates treated with doxorubicin +/- DAPT for 4 days. IC10 doxorubicin treatment 

led to up-regulation of MRP1 and Notch1 NICD expression. Note that basal Notch1 

NICD expression was considerable without any drug treatment (control). However, 

subsequent IC25 and IC50 doxorubicin treatment led to down-regulation of MRP1 and 

Notch1 NICD expression. DAPT treatment (100µM) with or without doxorubicin led to 

up-regulation of MRP1 expression. Treating the cells with DAPT did not result in down-

regulation of Notch1 NICD expression. However, the combination of doxorubicin and 

DAPT led to down-regulation of Notch1 NICD expression.   

 

The western blots for MRP1 and Notch1 NICD were repeated twice more using 

different protein lysates harvested at different biological time points but using the same 

treatment conditions described so far, as well as further combination treatments with 

DAPT for IC10 and IC25 doxorubicin doses. The resulting immunoblots (Fig 5.12) 
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showed that MRP1 expression was up-regulated in a dose dependent manner. 

However, DAPT with or without doxorubicin did not result in down-regulation of MRP1 

expression. Further MRP1 western blot was consistent with this finding (Appendix 

Section 3, Fig S18), and Notch1 NICD western blots reflected the findings on Figure 

5.11 (Appendix Section 3, Fig S19 and S20). These data provided little support for the 

role of Notch1 in regulation of MRP1 under these conditions, and provided no evidence 

that doxorubicin-dependent MRP1 up-regulation could be inhibited using DAPT. 

 

 

Figure 5.12: Western blot to examine MRP1 expression using MCF7 cell lysates 

treated with doxorubicin +/- DAPT for 4 days. Increasing doses of doxorubicin 

treatment led to up-regulation of MRP1 expression. DAPT treatment did not result in 

down-regulation of MRP1 expression however. Combination therapy of doxorubicin 

and DAPT did not cause significant down-regulation of MRP1 expression. 
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Finally, Pgp and BCRP expressions were also examined, to determine whether 

changes in expression of these pumps had potential to influence the effects on MRP1 

and Notch1 induced by doxorubicin and/or DAPT. Pgp expression was up-regulated by 

doxorubicin treatment, although not in a dose-dependent manner (Fig 5.13). 

Interestingly Pgp expression was significantly up-regulated by DAPT treatment, either 

with or without doxorubicin, raising the possibility that enhanced Pgp function could 

interfere with the effective intra-cellular doses of either DAPT or doxorubicin in this 

experiment. BCRP expression did not alter significantly with doxorubicin or DAPT 

treatment (Fig 5.13). 

 

 

 

Figure 5.13: Western blot to examine Pgp and BCRP expression using MCF7 cell 

lysates treated with doxorubicin +/- DAPT for 4 days. Doxorubicin treatment (IC10; 

4nM) up-regulated Pgp expression, but this up-regulation was not dose-dependent. 

DAPT treatment (100µM) with or without doxorubicin resulted in a significant up-

regulation of Pgp expression. Doxorubicin or DAPT treatment did not cause a 

significant change in BCRP expression. 
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5.3 Discussion 

This chapter contains data that can conveniently be divided up into clinical and tissue 

culture based analyses, and I will discuss these separately.  

 

Notch and MRP in clinical cancers 

The clinical findings demonstrate that Notch1 NICD expression and MRP1 expression 

were both significantly up-regulated after NAC in breast cancers. Furthermore, post-

NAC MRP1 expression correlated significantly with post-NAC Notch1 NICD 

expression. As far as I am aware, this is the first study to examine the change in 

Notch1 NICD expression after NAC setting using immunohistochemistry. My data add 

further weight to the gene expression study mentioned previously (Gonzalez-Angulo et 

al., 2012), in which it was inferred that Notch activity was up-regulated after NAC in 

luminal-like tumours by the changes in expression of Notch target genes. However, 

unlike the Gonzalez-Angulo et al study, I found Notch1 NICD expression to be up-

regulated by NAC in basal-like tumours as well as luminal-like tumours. Notch1 NICD 

expression or up-regulation did not significantly correlate with clinico-pathological 

parameters, response to NAC or subsequent survival on multivariate analyses, 

although it is clear that a cohort of only 29 patients is likely to be underpowered to 

detect these potential relationships. In contrast to my findings, some studies have 

revealed correlations between Notch1 expression and clinico-pathological features of 

tumours. For example, Wu et al examined total Notch1 expression in 44 patients 

diagnosed with cholangiocarcinoma using immunohistochemistry and found that 

Notch1 overexpression was more prevalent in patients with larger tumour size 

(p=0.021) (Wu et al., 2014b). Yao et al examined nuclear, cytoplasmic, and membrane 

Notch1 expression in 48 breast cancer patients. On multivariate analysis, high 

cytoplasmic Notch1 expression significantly correlated with nodal status (Yao et al., 

2011). However, the literature are conflicting since Zardawi et al found that total Notch1 
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expression in 228 patients with operable breast cancer did not correlate significantly 

with clinico-pathological parameters or patient survival (Zardawi et al., 2010). Further 

investigations should clarify the relevance of Notch1 expression in breast cancer. 

 

Notch and MRP1 in cell lines 

The significant correlation I found between post-NAC Notch1 NICD and MRP1 

expression supports the conclusions of the cell line-based study by Cho et al, in which 

MRP1 was found to be a direct transcriptional target of Notch1 (Cho et al., 2011) and 

allowed me to build the hypothesis that Notch-dependent up-regulation of MRP1 might 

be responsible for some degree of acquired chemotherapy resistance (see flow-chart 

Figure 5.1). I then proceeded to test this hypothesis using cell line models. Luminal 

breast cancer cell lines (MCF7 and T47D) were used in accordance with the findings 

from Gonzalez-Angulo et al study (Gonzalez-Angulo et al., 2012). Doxorubicin is an 

anthracycline that has similar clinical efficacy to epirubicin (Bontenbal et al., 1998), 

which is widely used in clinical practice. MRP1 does not efflux taxanes (Leonard et al., 

2003), and hence were not used for this study. GSIs have been widely used in clinical 

trials in colorectal cancer (Strosberg et al., 2012) and in other solid tumours including 

breast cancer (Tolcher et al., 2012), providing credibility for its use in our study to 

achieve Notch inhibition. DAPT was used in this study to achieve Notch inhibition in 

line with other aforementioned in vitro studies mentioned in section 5.1 (Cho et al., 

2011, Farnie et al., 2007, Hallahan et al., 2004).   

 

Three IC values of doxorubicin, IC10, 25 and 50, were chosen for use in combination 

with DAPT, itself at a wide range of potentially relevant conditions. Doxorubicin doses 

ranged from 4 to 70nM for MCF7 cell line, and 10 to 60nM for T47D cell line. These 

concentrations are comparable to concentration of doxorubicin detected by plasma 
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pharmacokinetic analysis by Chow et al. They showed that in 10 patients with solid 

tumours including breast cancer, the mean plasma end-of-infusion doxorubicin level 

was 83.8nM (range 59.1 to 106.9nM) (Chow et al., 2004). The physiological doses or 

plasma levels of DAPT in patients have not been well studied. However, concentration 

of 10mg/kg to 100mg/kg of DAPT has been used in mouse studies to achieve Notch 

inhibition (Lanz et al., 2003). The authors determined that these dosages resulted in 

plasma DAPT levels ranging from 140nM to 720nM. In our study, DAPT doses of 1nM 

to 1μM was initially used for the combination assay, which is comparable to the DAPT 

levels observed in the Lanz et al study. Furthermore, I also used higher DAPT doses of 

1μM to 100μM in accordance with the in vitro study by Cho et al (Cho et al., 2011). 

However, these higher doses may be potentially harmful in clinical setting. Despite this, 

the combination therapy of doxorubicin and DAPT in luminal cell lines did not potentiate 

the efficacy of chemotherapy with additive effects seen at best.  

 

Using western blots, I initially demonstrated activation of Notch1 NICD and MRP1 at 

only the lowest dose of doxorubicin (IC10). Further western blots at different biological 

time points showed that MRP1, but not Notch1 NICD, was up-regulated in a dose-

dependent manner in response to doxorubicin treatment. This suggests that MRP1 up-

regulation is not solely dependent on Notch. It is plausible that other regulators of 

MRP1 expression mentioned in section 1.8.4 and 5.1 may have a role in MRP1 up-

regulation in response to treatment with doxorubicin. For example, Cyclo-oxygenase 2 

(COX-2) activation can lead to up-regulation of MRP1 expression. Saikawa et al 

showed that COX-2 overexpression in colon cancer cell line, TR-5, led to up-regulation 

of ABCC1 mRNA level and chemoresistance to cisplatin. Treatment with Cox-2 

inhibitors subsequently enhanced chemosensitivity in this cell line (Saikawa et al., 

2004). MicroRNA may also have a role in regulation MRP1 expression; Borel et al 

detected an inverse relationship between microRNA expression (miR-199a/b and miR-
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296) and ABCC1 mRNA expression (Borel et al., 2012). Marginal up-regulation of 

Notch1 NICD after doxorubicin treatment was observed which was not dose-

dependent. This may potentially be explained by the difference in the cell density 

observed with varying dosage of doxorubicin treatment. For example, there is a greater 

density of viable cells after 4 days of IC10 treatment, compared to the IC50 treatment. 

Notch1 NICD is activated by extracellular ligands, and hence increased cell density 

may influence Notch1 NICD activation. This may also potentially explain the high basal 

Notch1 expression level in the control lysates.  

 

It is important to note that MCF7/VP subline was used in the Cho et al study (Cho et 

al., 2011), which is etoposide-resistant. This is in contrast to the non-resistant MCF7 

and T47D cell lines used in our study. An alternative approach may be to perform the 

combination assay on basal breast cancer cell lines, since the data from my 

immunohistochemistry study also showed up-regulation of Notch1 NICD expression in 

the basal-like breast cancers. This is in contrast to findings by Gonzalez-Angulo et al 

who found enriching of Notch signalling targets in non-basal-like breast cancers only 

(Gonzalez-Angulo et al., 2012). 

  

Most concerningly, I was unable to demonstrate that DAPT achieved significant Notch1 

NICD inhibition when cells were treated with DAPT alone. The western blot results 

showed that DAPT did not down-regulate Notch1 NICD or MRP1 expression in the 

MCF7 cell lysates. Cho et al showed that DAPT dosage of 50μM or greater was 

effective in achieving Notch1 NICD and MRP1 down-regulation. However, 100μM 

dosage of DAPT treatment in this study did not result in down-regulation of Notch1 

NICD or MRP1 expression. This is perhaps explained by the significant up-regulation of 

Pgp expression with DAPT treatment, suggesting that Pgp may efflux DAPT to 

attenuate its effect on Notch activity. A potential solution may be to add a Pgp inhibitor 
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to the combination assay or to use siRNA to inhibit Notch1 expression at the 

transcriptional level. Other alternative methods of achieving Notch1 inhibition involve 

the use of monoclonal antibody against the Notch ligand TACE, or inhibitors that 

interfere with the S2 cleavage (Yin et al., 2010). It is also important to note that GSIs do 

not solely inhibit Notch. They have a range of other substrates, including E-cadherin 

and Erb-B4, which are involved in cell adhesion and apoptosis (Lleo, 2008), and 

therefore off-target effects may have a confounding influence. 

 

Interestingly, subsequently to me completing my laboratory work, other researchers in 

my supervisor’s group have continued with this in vitro work. They demonstrated that 

doxorubicin does indeed induce Notch activation and MRP1 expression and function. 

They also demonstrated that this can be inhibited by DAPT, leading to enhanced 

doxorubicin-induced cell death. Critically, however, they were only able to demonstrate 

this using short term assays, where cells were treated with doxorubicin for up to 24 

hours, and by assessing induction of apoptosis in selected cell lines, rather than cell 

survival/proliferation. My data show that this combination treatment appears less 

promising in longer term assays and using cell survival as the end point, conditions that 

may potentially more accurately reflect chemotherapy in patients, where treatment lasts 

for many days and tumour cell survival is the most relevant measure of treatment 

failure or success.        

 

Summary 

The immunohistochemistry results from clinical tissue samples support previous in vitro 

studies that identified the significance of Notch signalling in regulating MRP1 

expression and thereby chemoresistance in breast cancer. The MTT assays and the 

western blot results show that further investigations are required in vitro before Notch 
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inhibitors can be utilised to potentially improve the efficacy of chemotherapy in clinical 

setting.  
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6.0 Neoadjuvant endocrine therapy up-regulates Breast Cancer 

Resistance Protein expression but only pre-treatment levels 

predict survival 

6.1 Abstract 

The BCRP promoter has an oestrogen response element, and there is evidence that 

BCRP expression is regulated by oestrogen, with reports of oestrogen leading to either 

transcriptional up-regulation or post-transcriptional down-regulation. However, the 

relevance of this in oestrogen-dependent cancers remains unclear. Therefore, my aim 

in this chapter was to investigate whether BCRP expression in breast tumours is 

regulated by oestrogen and whether this impacts on outcome. 51 breast cancer 

patients receiving neoadjuvant endocrine therapy (NAET) were identified, and BCRP 

expression was examined by immunohistochemistry using matched pairs of core 

biopsy (pre-NAET) and surgical specimens (post-NAET). BCRP expression was 

significantly up-regulated after exposure to NAET (p<0.0001; Wilcoxon signed-rank 

test), with up-regulation seen in 48/51 cases. Neither pre- nor post-NAET BCRP 

expression correlated with tumour response to NAET. However, high pre-NAET BCRP 

expression independently predicted for poorer disease free survival (hazard ratio of 

19.1; 95% confidence interval 1.05-348.2; p=0.046). Subsequent methylation 

sequencing analysis of cancer cell lines showed that the degree of methylation in the 

BCRP promoter region was inversely correlated to the protein expression of BCRP 

observed on immunoblotting. DNA was extracted from the paraffin embedded tissues 

used for immunohistochemistry and bisulphite-treated. Pyrosequencing was used to 

examine BCRP promoter methylation pattern. Comparison of protein expression and 

methylation levels in the clinical samples did not result in the significant negative 

correlation that was expected, and NAET did not consistently or significantly influence 

BCRP promoter methylation levels. The results from this chapter further highlight the 

significance of BCRP expression as a prognostic indicator. However, the significance 
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of DNA methylation in regulating BCRP protein expression requires further 

investigation.      

 

6.2 Introduction 

One of the main finding from Chapter 4 was that high BCRP expression post-NAC 

correlated with poor DFS. One hypothesis is that these induced high levels directly 

contributed to increased cancer cell survival. Therefore it would be of interest to 

investigate potential mechanisms responsible for defining these high BCRP expression 

levels, since modulation of these regulatory pathways could potentially be used to 

reduce BCRP expression and improve the efficacy of NAC.  A considerable body of 

data concerning mechanisms responsible for regulation of BCRP expression is 

available – and this is summarised below. Potential regulation by oestrogen and at the 

level of promoter methylation are of particular relevance as these are investigated in 

this chapter. 

 

Regulation of BCRP expression 

Broadly, the mechanisms involved in deregulation of BCRP expression can be 

classified into DNA changes (gene amplification / mutation), transcriptional changes 

(use of multiple transcriptional start sites / histone modification / methylation of CpG 

sites), and post-transcriptional regulation by miRNAs amongst other mechanisms 

(Nakanishi and Ross, 2012).  

 

The following studies elucidate the mechanisms involved in the regulation of BCRP 

expression mentioned above in order. Knutsen et al examined BCRP expression in 

breast cancer cell lines treated with chemotherapeutics. Using comparative genomic 
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and cDNA hybridisation, they determined that high BCRP expression was due to gene 

amplification (Knutsen et al., 2000). Imai et al examined ABCG2 SNPs in 59 human 

tumour cell lines. cDNA sequence analysis showed that C421A mutation which 

substitutes Lys for Gln-141 was found in the breast cancer cell line MDA-MB-231. 

G34A mutation that substitutes Met for Val-12 was found in the MCF-7 cell line. BCRP 

proteins with coding changes encoded by these SNP variants proved to be expressed 

at lower levels than wild-type BCRP in murine fibroblast PA317 cell lines (Imai et al., 

2002).  

 

BCRP expression can also be influenced by alternative promoter usage. Zong et al 

identified three novel leader exons at the 5’-UTR region of mouse ABCG2 mRNA. By 

using 5’-rapid amplification of cDNA ends (RACE), they showed that the three isoforms 

were differentially expressed from multiple promoters using different transcriptional 

start sites (Zong et al., 2006). Histone deacetylase inhibitors (HDIs) can increase 

chromatin acetylation, resulting in alteration of gene expression. Robey et al showed 

that treatment of kidney cancer cell lines with HDIs resulted in up-regulation of ABCG2 

mRNA expression (Robey et al., 2006).  

 

Pan et al examined the role of miR-328 in post-transcriptional regulation of ABCG2 in 

breast cancer cell lines. They showed that overexpression of BCRP protein was 

associated with reduction in miR-328 expression. Moreover, when breast cancer cells 

were transfected to over-express miR-328 BCRP protein expression was down-

regulated. Furthermore, inhibition of miR-328 using a selective antagomir resulted in 

up-regulation of BCRP protein expression (Pan et al., 2009).  
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The role of oestrogen in regulation of BCRP expression 

Interestingly, oestrogen and its derivatives can regulate BCRP expression. Ee et al 

discovered a putative oestrogen response element (ERE) in the BCRP promoter 

region. They also showed that ABCG2 mRNA expression was increased by the 

addition of 17β-oestradiol (E2) in the ER positive T47D and PA-1 breast cancer cell 

lines. This effect was reversed by the use of anti-oestrogen ICI 182,780. PA-1 cell lines 

were transfected with the BCRP promoter-luciferase reporter gene construct, along 

with an ERα expression vector. The subsequent luciferase assay showed that the 

promoter activity was enhanced in the presence of E2 (Ee et al., 2004). In contrast, 

Imai et al used western blots to show that BCRP protein expression was down-

regulated in response to oestrogen in MCF-7 and T47D cell lines, and this effect was 

reversed by tamoxifen. They concluded that oestrogen caused post-transcriptional 

down-regulation of BCRP expression (Imai et al., 2005). Zhang et al treated MCF-7 

cells with toremifene, an anti-oestrogen, and showed that both ABCG2 mRNA and 

protein expressions were decreased by increasing doses of toremifene (Zhang et al., 

2010). These studies show that oestrogen is likely to have a role in regulating BCRP 

expression. However, the study findings are conflicting as to whether oestrogen up-

regulates of down-regulates BCRP expression. Moreover, these experiments are 

based on cell line models, and currently there is no existing literature on how BCRP 

expressions in the breast tumours of patients are modulated by the changes in 

oestrogen levels. The question is potentially of substantial clinical importance since any 

increases in BCRP expression caused by anti-oestrogen therapies would potentially 

increase subsequent tumour cell therapy-resistance. 

 

The importance of methylation in regulating BCRP expression 

The human BCRP gene is located on chromosome 4 at 4q22. It spans over 66 kb, and 

consists of 16 exons and 15 introns. BCRP promoter region was identified as the 
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region from -300 to -50 relative to the transcription start site, whose nucleotide position 

was found 529 base pairs upstream of the junction between exon 1 and 2 (Nakanishi 

and Ross, 2012). Bailey-Dell et al used bacterial artificial chromosome sequencing and 

Proscan, a promoter identification program, to identify the putative promoter region for 

the ABCG2 gene. The functional importance of this putative promoter region was 

tested by luciferase reporter assay using MCF7 and human choriocarcinoma cell line 

known to have high endogenous BCRP expression. Transient transfection of these cell 

lines with series of deletion constructs, lacking segments of the putative promoter 

region, resulted in reduced transcriptional activity. This assay hence mapped the BCRP 

promoter region, which overlaps the adjacent CpG island (Bailey-Dell et al., 2001). 

CpG islands are regions with a high frequency of CpG sites. CpG sites are when a 

cytosine nucleotide occurs adjacent to guanine nucleotide (cytosine being 5 prime to 

the guanine nucleotide) in a linear fashion on the same strand (rather than the CG 

base pairing of cytosine and guanine between strands). The cytosine in CpG sites can 

be methylated to form 5-methylcytosine, which can lead to gene silencing in some 

cases, particularly within CpG islands. The methylated CpGs can prevent the binding of 

transcription factors, or recruit methyl-binding proteins which repress transcription.  

 

Methylation of CpG islands is maintained by DNA methyltransferases (DNMT), and 

may be inhibited by 5-aza-2'-deoxycytidine (5-aza-dC) or by siRNAs specific for 

DNMTs, leading to reactivation of gene expression (Jung et al., 2007). Methylation 

status can be experimentally assessed by bisulphite treatment of DNA, which converts 

unmethylated cytosine to uracil, but leaves methylated cytosine intact. PCR 

amplification of the modified DNA then replaces uracil with thymine. The resulting 

product can be sequenced and aligned against a reference sequence to examine the 

methylation status of individual CpG sites – methylated sites are read as cytosine while 

unmethylated sites are read as thymine.  
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There is growing evidence that the methylation status of CpG islands in the ABCG2 

promoter region has a crucial role in regulating BCRP expression. Turner et al 

performed bisulphite sequencing analysis on multiple myeloma cell lines and 

determined that degree of methylation at the ABCG2 promoter region was inversely 

correlated to the ABCG2 mRNA levels. H929 cell lines were completely methylated in 

the 13 CpG sites examined, and subsequent 5-aza-dC treatment resulted in the up-

regulation of ABCG2 mRNA expression. Moreover, the cell line results were reflected 

in the patient samples where the percentage of methylated sites within the ABCG2 

promoter was inversely correlated to the ABCG2 mRNA expression (Turner et al., 

2006). Bram et al confirmed these findings when examining ABCG2 promoter 

methylation patterns in breast, ovarian, and T-cell leukaemia cell lines (Bram et al., 

2009). Furthermore, the increase in ABCG2 mRNA levels observed after 

chemotherapy was due to site-specific demethylation, rather than global demethylation 

of CpG sites within the ABCG2 promoter.  

 

The above studies have examined the methylation status of BCRP promoter regions 

and found that the degree of methylation was inversely correlated to ABCG2 mRNA 

expression levels. However, this has not been examined in detail in breast cancer cell 

lines or in clinical breast cancer samples. Furthermore, the above studies have not 

examined whether BCRP protein expression is influenced by the methylation status of 

BCRP promoter regions.  

 

Regulation of BCRP in NAET 

In the clinical setting, some patients are treated with NAET, which modulates oestrogen 

levels or its function (see Section 1.4). This provides an ideal setting for examining 
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BCRP expression levels before and after manipulation of oestrogen function and for 

investigating the regulatory mechanisms involved in defining these levels. When 

endocrine therapy is given in the adjuvant setting, patients who require chemotherapy 

are given this treatment first, followed by endocrine therapy. However, in NAET a 

subset of patients will subsequently receive adjuvant chemotherapy. Therefore, the 

impact of NAET on BCRP expression has potential therapeutic implications. For 

example, if NAET causes up-regulation of BCRP expression, this may potentially 

reduce the efficacy of adjuvant chemotherapy. Conversely, if NAET causes down-

regulation of BCRP expression, this may support the use of concurrent chemotherapy 

and endocrine therapy. The latter is not currently recommended in clinical practice, 

although a phase II clinical trial has shown a marginal benefit in breast cancer patients 

randomised to letrozole plus cyclophosphamide, compared to letrozole alone (Bottini et 

al., 2006).  

 

In this chapter, my aim was to investigate the effect of modulating oestrogen level or 

function on BCRP expression using clinical samples from patients treated with NAET. I 

then investigated whether BCRP promoter methylation was involved in defining BCRP 

expression in breast cancers. Initially, I used breast cancer cell lines for assay 

development, but I then applied assays to the same NAET clinical samples. This 

approach allowed examination of the relationship between methylation levels and 

protein expression in clinical samples. I also examined whether NAET influenced 

BCRP promoter methylation.     
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6.3 Results 

6.3.1 BCRP expression was significantly up-regulated after NAET  

I aimed to determine expression levels of BCRP both pre- and post-treatment in the 

tumours of a cohort of breast cancer patients treated with NAET. A cohort of 51 

patients was assembled who had matching pre-NAET core biopsy tissues and post-

NAET resection tissues (Table 3.2). Immunohistochemistry for BCRP was performed 

and quantified with the protocols used previously (Section 3.6), and I examined 

whether NAET modulates BCRP expression, and if expression levels have any 

significance in terms of response to NAET or subsequent survival. Detectable BCRP 

expression was mainly in epithelial cells, with localisation that was mainly cytoplasmic 

or membrane-associated with some accentuation of cell nuclei. This was similar to the 

staining patterns observed in the NAC cohort. Protein expression was successfully 

quantified in all 51 matched pairs of core and resection tissues; these data are shown 

in Appendix Section 1: Table S5. The following representative images demonstrate the 

changes in protein expression after exposure to NAET (Fig 6.1); BCRP expression was 

up-regulated post-NAET in majority of the cases; 48/51 cases (94%) (Fig 6.2), and this 

up-regulation was statistically significant (Wilcoxon signed-rank tests: p<0.0001) (Fig 

6.2).  
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Figure 6.1: Immunohistochemistry for BCRP in the NAET cohort (x20 magnification). 

The representative matched pair of images show very little/no staining in the core 

tissues (pre-NAET), as opposed to stronger staining in the resection tissues (post-

NAET). These images represent the significant up-regulation in BCRP expression.  

 

 

 

            Pre-NAET            Post-NAET 
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 Figure 6.2: BCRP expression is up-regulated after exposure to NAET (red: up-

regulation, blue: down-regulation; left). Matched pre-NAET and post-NAET breast 

cancer samples were stained using immunohistochemistry for BCRP. Expression 

within tumour cells was quantified as a histoscores of 0 – 300. Expression levels in 

matched samples are linked by lines coloured red or blue so as to indicate an increase 

or decrease in expression respectively. BCRP up-regulation was seen in 48/51 cases 

(94%). The right panel shows median histoscore values with interquartile range (n=51) 

and demonstrates a significant overall increase in BCRP expression after NAET 

exposure (Wilcoxon signed-rank tests: p<0.0001). 

                      

6.3.2. Correlation of BCRP expression with clinico-pathological parameters 

My next aim was to analyse potential correlations between pre- and post-NAET BCRP 

expression levels, as well as the change in expression levels, against various clinico-

pathological parameters (outlined in Table 3.2) using Spearman’s rho analyses (Table 

6.1). Change in BCRP expression level was determined by subtracting matched pre-

NAET BCRP histoscores from post-NAET BCRP histoscores, with positive values 
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designated as up-regulation, and negative values designated as down-regulation. As 

stated in section 4.3.5, a more strict threshold of p<0.01 was used to indicate statistical 

significance. No significant correlations were observed for BCRP expression with the 

clinico-pathological parameters. The expression levels and the change in expression 

levels were then examined against the response to NAET. The latter was defined as 

the categorical changes in tumour stage (TNM staging) after NAET, or as the 

quantitative changes in tumour size derived from comparison of resection pathology 

tumour sizes to pre-NAET ultrasound tumour sizes (Table 6.1). No significant 

correlations were observed. NAET regimen and duration were also not significantly 

correlated to BCRP expression level pre- or post-NAET or the change in expression 

levels. 

 BCRP 
pre 

 

BCRP 
post  

BCRP ∆  
 

Age at diagnosis 0.16 
(0.27) 

0.1 
(0.49) 

0.06 
(0.7) 

Tumour factors determined pre-NAET    

Grade 0.12 
(0.39) 

-0.06 
(0.68) 

-0.05 
(0.76) 

T Stage    0.02 
  (0.87) 

-0.21 
(0.14) 

-0.2 
(0.16) 

PR status -0.17 
(0.26) 

-0.06 
(0.68) 

-0.03 
(0.83) 

Histological type 0.1  
(0.5) 

0.15 
(0.3) 

0.1 
(0.5) 

Tumour factors determined post-NAET    

T stage 0.07 
(0.65) 

-0.12 
(0.39) 

-0.08 
(0.58) 

Lymphovascular invasion -0.04 
(0.78) 

 -0.17 
(0.24) 

-0.12 
(0.4) 

Axillary metastasis -0.05 
(0.72) 

-0.36 
(0.011) 

-0.3 
(0.04) 

Duration of NAET -0.02 
(0.89) 

0.05 
(0.71) 

0.13 
(0.35) 

NAET regimen -0.2 
(0.17) 

-0.09 
(0.55) 

-0.002 
(0.99) 

Tumour response    

∆ T stage -0.09 
(0.54) 

0.05 
(0.74) 

0.14 
(0.33) 

∆ in tumour size  0.03 
(0.84) 

0.24 
(0.11) 

0.33 
(0.02) 

 

Table 6.1: Spearman’s correlation coefficients demonstrating relationships between 

expressions pre- or post-NAET, or change in expression (∆) for BCRP with clinico-

pathological parameters and tumour response (p values are denoted in brackets). 
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6.3.3 Pre-NAET BCRP expression predicts disease free survival 

Pre- and post-NAET BCRP expression levels as well as the change in expression 

levels were then analysed for correlations with DFS. For pre- and post-NAET 

expression levels, ROC curve analysis was performed to dichotomise expression into 

high and low expression groups. The cut-offs providing the highest combined sensitivity 

and specificity for prediction of DFS were selected; the respective cut-offs for 

histoscores were 13.6 for pre-NAET and 112.9 for post-NAET. For change in 

expression level, values were dichotomised into up-regulation or down-regulation. 

Kaplan-Meier Survival analyses were performed (Figure 6.3). There were no significant 

relationships between DFS and post-NAET BCRP expression levels or change in 

BCRP expression levels.  However, pre-NAET BCRP expression levels significantly 

correlated with DFS (Log rank: p=0.027); patients with high BCRP expression had a 

relatively poor 5-year survival of 63.6%, compared to those with low BCRP expression 

for whom 5-year survival was an excellent 93.3% (Fig 6.3). Multivariate Cox regression 

analysis was performed taking into account the pathological factors typically regarded 

as having prognostic impact, including tumour grade, histological subtype, receptor 

status, axillary metastasis, tumour stage, receipt of adjuvant chemotherapy or 

radiotherapy and lymphovascular invasion. This showed that high BCRP expression 

pre-NAET independently predicted DFS, with a hazard ratio of 19.1 (95% confidence 

interval, 1.05-348.2; p=0.046).  
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Figure 6.3: Kaplan-Meier survival analyses for BCRP expression levels and its change 

versus disease free survival. No significant correlation was detected for the change in 

expression levels or post-NAET expression level. However, high BCRP expression pre-

NAET significantly predicted for poorer disease free survival.  

 

6.3.4 Investigation of the role of BCRP promoter methylation in defining BCRP 

expression levels in breast cancers 

My eventual aim was to investigate whether methylation status of ABCG2 promoter 

region influenced BCRP protein expression observed in my cohorts of both NAC (see 

Section 4.3.1) and NAET (see Section 6.3.1) treated breast cancers and whether 

changes in methylation related to the changes in expression seen after treatment. In 

order to achieve this aim, in vitro experiments using cell lines were carried out initially 

to develop assays to assess BCRP promoter methylation. The cells lines used were 

the luminal breast cancer line MCF7, the non-neoplastic breast epithelial cell line HB2 

and two multiple myeloma cell lines (H929 and HL60), for which BCRP promoter 

methylation levels have previously been reported (Turner et al., 2006). DNA was 

extracted from these cell lines and bisulphite treated before amplification of a 257bp 

BCRP promoter region that reportedly undergoes methylation that regulates BCRP 

expression (Chen et al., 2012a). Amplified DNA was cloned and individual clones were 

sequenced; this enabled examination of the methylation of 27 CpG sites for each 
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individual clone (see Section 3.11 to 3.14). Chen et al showed that the ABCG2 

promoter region was globally unmethylated in pancreatic cancer cell line SW1990 

(Chen et al., 2012a). Turner et al showed that H929 cell line demonstrated infrequent 

methylation, while methylation was prevalent in HL60 cells (Turner et al., 2006). In 

accordance with published data (Chen et al., 2012a, Turner et al., 2006) both breast 

cell lines and H929 cell line demonstrated only infrequent methylation, while 

methylation was prevalent in HL60 cells (Fig 6.4).  

 

 

Figure 6.4: Examination of methylation status in the 27 CpG sites within the Chen et al 

amplicon. Black lollipops show methylated CpG sites, white lollipops show 

unmethylated CpG sites and yellow lollipops show data that were not interpretable. 

Each row represents individual clones. The majority of CpG sites were unmethylated in 

MCF7, HB2, and H929 cell lines. In contrast, CpG sites were globally methylated in 

HL60 cells. The red rectangles encompass the 4 CpG sites to be examined by 

pyrosequencing (see below).  
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Next, I examined whether BCRP protein expression correlated with these methylation 

levels. Western blots were performed using cell lysates from the four cell lines (see 

Section 3.10). Western blots showed that the level of BCRP expression was 

considerable in MCF7, HB2, and H929 cells, reflecting their unmethylated status. 

However, BCRP expression was attenuated in the HL60 cells, reflecting the methylated 

status (Fig 6.5). This demonstrates a potential inverse correlation between protein 

expression and methylation status of the BCRP promoter region, and implicated 

methylation as a key regulatory event.  

 

                       

Figure 6.5: Western blot examining differential expression of BCRP in MCF7, HB2, 

H929, and HL60 cells.  

 

Finally, I aimed to use pyrosequencing assays to determine methylation of specific 

CpG sites. This was because it was unlikely to be possible to amplify the relatively 

large amplicon described above from small, clinical FFPE samples, such as the breast 

biopsies I aimed to analyse ultimately. FFPE tissues have fragmented DNA, and for 

bisulphite modification and analysis the amplicon length should ideally be less than 150 

base pairs (Patterson et al., 2011). Therefore, this limits the number of CpG sites that 

can be examined. Given these constraints, two pyrosequencing assays were designed 

    75 kDa 

Beta actin 
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within the Chen et al amplicon resulting in 4 representative CpG sites to be examined 

with pyrosequencing. The 4 CpG sites are highlighted within the red boxes on Figure 

6.4; these were compatible with the criteria required for pyrosequencing and their 

methylation status appeared to be representative of the entire region for each cell line. 

Pyrosequencing analysis was performed for the 4 CpG sites in the 4 cell lines to 

confirm that pyrosequencing analyses reproduced the results obtained using bisulphite-

treatment and molecular cloning (Table 6.2). This showed that both assays showed the 

same pattern of methylation between the cell lines and hence validated the use of the 

pyrosequencing assays.   

 

CpG sites and degree of 

methylation 

Position 165  

       (%) 

Position 172   

        (%) 

Position 236   

        (%) 

Position 250     

       (%) 

MCF7         0        2.95        1.77       8.63 

HL60        60         59         58        63 

HB2         0          0        1.72       6.51 

H929         0          0        2.1       7.45 

 

Table 6.2: Pyrosequencing analysis of the designated 4 CpG sites (see Fig 6.4) to be 

used for methylation analysis of clinical samples. As per molecular cloning analysis, 

high degree of methylation is seen in the HL60 cell line with barely detectable degree 

of methylation observed in the MCF7, HB2, and H929 cell lines. Therefore, this 

validated the use of pyrosequencing analysis for the clinical samples. 
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6.3.5 Pyrosequencing analysis of BCRP promoter methylation using clinical 

samples from patients treated with NAET 

Having developed successful pyrosequencing assays that apparently provided insights 

into functionally-relevant BCRP promoter methylation, my next aim was to apply these 

assays to examine the methylation status of the BCRP promoter region in clinical 

samples from my neoadjuvant cohorts to determine if methylation status of BCRP 

promoter region influenced protein expression, and whether neoadjuvant therapy 

influenced the methylation status of the BCRP promoter region. Only the NAET cohort 

was available for this analysis, since I was unable to regain access to the clinical 

blocks for the NAC cohort. 46 core tissues and 51 resection tissues within the NAET 

cohort had sufficient tissue to attempt DNA extraction, bisulphite treatment, and 

pyrosequencing (see Section 3.11.2, 3.12, and 3.15). Data for the selected 4 CpG sites 

within the BCRP promoter region are shown in Appendix Section 1, Table S6. The 

analyses were successful for at least two CpG sites in only 36/46 pre-NAET core 

tissues, and for all four CpG sites in only 17/46 tissues. For the post-NAET resection 

tissues, pyrosequencing analysis was successful for at least two CpG sites in 48/51 

cases and for all four sites in 33/51 cases.  

 

The level of methylation varied from 0-40.7% in the pre-NAET samples, as opposed to 

0-33.9% in the post-NAET samples. The medians and ranges of methylation for each 

CpG sites are shown in Table 6.3. This showed that methylation was barely detectable 

for the CpG sites at position 165, 172, and 236 pre- or post-NAET. The degree of 

methylation was more pronounced on position 250 however. Figure 6.6 shows that 

methylation levels did not change significantly after exposure to NAET. Although the 

change in methylation level in position 236 was statistically significant, the median 

change in methylation level was minimal (from 0 to 2.9%). 
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CpG sites and 

degree of 

methylation; 

median with 

range in brackets 

Position 165  

       (%) 

Position 172   

        (%) 

Position 236   

        (%) 

Position 250     

       (%) 

Pre-NAET 2.5 (0-22) 0 (0-10.4) 0 (0-17.8) 10.1 (0-47.4) 

Post-NAET 0 (0-12.3) 0 (0-7.8) 2.9 (0-16.9) 11.6 (0-33.9) 

 

Table 6.3: Pyrosequencing analyses showing the degrees of methylation of 4 specific 

CpG sites. The degree of methylation is displayed for each site both pre- and post-

NAET as percentages with mean and range. 
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Figure 6.6: Analysis of pyrosequencing assay for the 4 CpG sites. Each CpG site is 

denoted in a different colour. The degree of methylation is displayed showing median 

with range. Apart from position 250, the remaining 3 CpG sites showed low degrees of 

methylation pre- or post-NAET. NAET did not result in change in methylation status of 

CpG sites shown by the p values (Mann-Whitney unpaired t-test) apart from position 

236. However, the degree in change of median was minimal (from 0 to 2.9%) in 

position 236. 
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Examination of the change in methylation level after exposure to NAET for individual 

cases were possible in 32 cases for position 165 and 172, and for 13 cases for position 

236 and 250. Increases in methylation were observed after NAET in 11/32 cases for 

position 165, 12/32 cases for position 172, 8/13 cases for position 236, and 7/13 cases 

for position 250 (Fig 6.7).  

 

Figure 6.7: Matched comparison of methylation level after exposure to NAET. Each 

graph shows change in methylation level after NAET exposure for each CpG positions 

as determined by pyrosequencing; CpG positions 165 and 172 (n=32), and CpG 

positions 236 and 250 (n=13). Red lines denote increases in methylation level, and 

blue lines denote decreases in methylation level. Increases in methylation levels were 

observed in 34.3% and 37.5% for CpG positions 165 and 172. Increase in methylation 

levels were more frequently observed for CpG positions 236 and 250 (61.5% and 

53.8% respectively).  
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6.3.6 Correlation of methylation levels in BCRP promoter region with protein 

expression 

Using the data from the pyrosequencing analysis, I then examined whether methylation 

level of the CpG sites in the clinical samples correlated with the matching protein 

expression as determined in Section 6.3.1 by immunohistochemistry. This was 

performed using Spearman’s rho analysis by comparing the degree of methylation as 

determined by pyrosequencing analysis with histoscore assessments of protein 

expression. Pre- and post-NAET histoscores were compared to pre- and post-NAET 

methylation levels respectively for the 4 CpG sites examined. The change in protein 

expression was determined by subtracting pre-NAET histoscore from the matching 

post-NAET histoscore. Similarly change in methylation level was determined by 

subtracting pre-NAET methylation level from the matching post-NAET methylation 

level. This enabled comparison of the change in methylation level with change in 

protein expression after exposure to NAET (Table 6.4). Pre- or post-NAET BCRP 

protein expression was not correlated with methylation level of the BCRP promoter 

region pre- or post-NAET respectively. Change in BCRP protein expression was 

subsequently compared to change in methylation levels. Again, no significant 

relationships were seen.   
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 Pre-NAET BCRP protein 

expression (n=51) 

Post-NAET BCRP protein 

expression (n=51) 

∆ BCRP protein 

expression (n=51) 

Pos 165 pre 

n=36 

0.17 (0.33)   

Pos 165 post 

n=48 

 -0.14 (0.35)  

Pos 165 ∆ 

n=32 

  0.1 (0.6) 

Pos 172 pre 

n=36 

0.08 (0.66)   

Pos 172 post 

n=48 

 -0.18 (0.22)  

Pos 172 ∆ 

n=32 

  -0.1 (0.59) 

Pos 236 pre 

n=18 

-0.04 (0.87)   

Pos 236 post 

n=36 

 0.32 (0.06)  

Pos 236 ∆ 

n=13 

  -0.03 (0.91) 

Pos 250 pre 

n=18 

0.05 (0.83)   

Pos 250 post 

n=36 

 0.11 (0.51)  

Pos 250 ∆ 

n=13 

  -0.35 (0.24) 

 

Table 6.4: Spearman’s correlation coefficients demonstrating relationships between 

protein expression pre- or post-NAET, or change in expression (∆) for BCRP versus 

methylation levels of 4 CpG sites pre- or post-NAET, or change in methylation (∆) of 

BCRP promoter region as determined by pyrosequencing (p values are denoted in 

brackets). 
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Finally, data concerning pre- and post-NAET samples were combined to determine 

whether methylation levels at each of the four CpG sites correlated with expression in 

up to 82 samples (Table 6.5). This analysis, surprisingly, showed that the degree of 

methylation on CpG position 236 was positively correlated with protein expression 

(rho=0.39; p=0.003). The methylation levels of the remaining 3 CpG sites did not show 

significant correlations with protein expression.  

 

                Pre- and post-NAET combined methylation level 

       Pos 165 

        (n=82) 

       Pos 172 

         (n=82) 

      Pos 236 

       (n=54) 

     Pos 250 

       (n=54) 

Pre- and post-

NAET combined 

protein expression 

         -0.08     

          (0.5) 

         -0.02    

         (0.88) 

         0.39   

      (0.003) 

         0.18   

         (0.2) 

 

Table 6.5: Combined analysis of protein expression versus methylation level. For each 

of the 4 CpG sites, the methylation levels pre- and post-NAET were combined and then 

compared against combined pre- and post-NAET protein expression using Spearman’s 

rho analysis (p values are denoted in brackets). Methylation level of position 236 was 

positively correlated with protein expression (rho=0.39; p=0.003). No significant 

correlation was observed for the remaining 3 CpG sites however. 

 

6.3.7 Comparison of BCRP promoter region methylation with clinico-pathological 

parameters 

My next aim was to analyse potential correlations between pre- and post-NAET 

methylation levels of the 4 CpG sites within the BCRP promoter region as well as the 

change in methylation levels, and the clinico-pathological parameters (outlined in Table 
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3.2) using Spearman’s rho analyses (Table 6.6). As stated in Section 4.3.5, a more 

strict threshold of p<0.01 was used to indicate statistical significance. The presence of 

axillary metastasis was positively correlated with the change in methylation of CpG site 

250 (rho=0.83; p=0.001). Therefore, axillary metastasis was more likely to be detected 

in patients where the methylation level of CpG site 250 was increased after exposure to 

NAET. Multivariate linear regression analysis was performed to determine if change in 

methylation of CpG site 250 predicted the presence of axillary metastasis. The 

following clinico-pathological parameters were included in the analysis; tumour grade, 

pre- and post-NAET tumour stage, lymphovascular invasion, histological subtype, 

duration of NAET, and NAET regimen. The change in methylation of CpG site 250 still 

remained significant upon multivariate analysis in predicting the presence of axillary 

metastasis (p=0.013).  
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Table 6.6: Spearman’s correlation coefficients demonstrating relationships between 

methylation level pre- or post-NAET, or change in methylation level (∆) with clinico-

pathological parameters (p values are denoted in brackets). 

 

Methylation levels and the change in methylation levels were then examined against 

the response to NAET. The latter was defined in two separate ways: the change in 

tumour stage after NAET (TNM staging), and as a quantitative change in tumour size 

derived from comparison of resection pathology to pre-NAET USS (Table 6.7). This 

analysis showed no significant correlation between pre- or post-NAET methylation 

levels and the change in methylation levels of the 4 CpGs sites with tumour response 

to NAET. 
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 Pos 
250 
pre 

 

Pos 
250 
post  

Pos 
250 
∆  
 

Pos 
236 
pre 

Pos 
236 
post  

Pos 
236 
∆  
 

Pos 
172 
pre  

Pos 
172 
post  

Pos 
172 
∆  
 

Pos 
165 
pre 

Pos 
165 
post 

Post 
165 
∆ 

∆ T 
Stage 

-0.07 
(0.8) 

0.08 
(0.68) 

0.32 
(0.3) 

0 
(1) 

0.19 
(0.29) 

0.39 
(0.21) 

0.26 
(0.15) 

0.01 
(0.98) 

-0.16 
(0.39) 

0.21 
(0.24) 

-0.06 
(0.72) 

-0.21 
(0.27) 

∆ in 
tumour 
size 

-0.08 
(0.77) 

-0.13 
(0.46) 

0.1 
(0.76) 

0.04 
(0.88) 

-0.01 
(0.95) 

0.06 
(0.86) 

-0.11 
(0.56) 

-0.05 
(0.77) 

0.07 
(0.73) 

-0.03 
(0.86) 

-0.09 
(0.58) 

0.06 
(0.76) 

 

Table 6.7: Spearman’s correlation coefficients demonstrating relationships between 

methylation levels pre- or post-NAET, or change in methylation levels (∆) with tumour 

response (p values are denoted in brackets). 

 

6.3.8 Comparison of methylation level of BCRP promoter region with disease free 

survival 

Pre- and post-NAET methylation levels as well as the change in methylation levels 

were then compared against DFS using Kaplan-Meier Survival analyses, after 

dichotomisation as previously using ROC curve analysis (for pre-NAET and post-NAET 

levels; see selected cut-offs in Table 6.8) or simply into increased or decreased groups 

(for change in methylation).  
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 Pos 165 Pos 172 Pos 236 Pos 250 

Cut-off 

methylation 

level pre-

NAET 

5.8 4.7 6.8 41.7 

Cut-off 

methylation 

level post-

NAET 

1.8 

 

12.4 11.9 28.9 

 

Table 6.8: Cut-off values for methylation levels based on ROC curve analysis. Pre- and 

post-NAET methylation level cut-off were determined for the 4 CpG sites based on the 

highest point of combined sensitivity and specificity. 

 

Subsequent Kaplan-Meier survival analyses showed that change in methylation levels 

after exposure to NAET did not predict DFS. High pre-NAET methylation levels in CpG 

positions 165 and 172 predicted for poor DFS (Log rank: p=0.009 and p<0.01 

respectively). High post-NAET methylation levels in CpG positions 165, 172, and 250 

also predicted for poor DFS (Log rank: p=0.018, p=0.03, and p=0.003 respectively (Fig 

6.8). Multivariate Cox regression analysis was performed taking into account the 

pathological factors typically regarded as having prognostic impact, including tumour 

grade, histological subtype, receptor status, axillary metastasis, tumour stage, receipt 

of adjuvant chemotherapy or radiotherapy, and lymphovascular invasion. This showed 

that methylation levels pre or post-NAET did not predict DFS independently (Table 

6.9).  
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Figure 6.8: Kaplan-Meier survival analyses for BCRP methylation levels and its 

change versus disease free survival. Each row denotes each of the four CpG positions 

examined. For CpG position 165, high pre- and post-NAET methylation level predicted 

poor DFS (p=0.009 and p=0.018 respectively). For CpG position 172, high pre- and 

post-NAET methylation level predicted poor DFS (p<0.01 and p=0.03 respectively). For 

CpG position 250, high post-NAET methylation level predicted poor DFS (p=0.003).  
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CpG positions Log rank p value P value after multivariate Cox 

regression analysis 

165 pre-NAET 0.009 0.21 

172 pre-NAET <0.01 0.22 

165 post-NAET 0.018 0.24 

172 post-NAET 0.03 0.26 

250 post-NAET 0.003 0.93 

 

Table 6.9: Results of multivariate Cox regression analysis on disease free survival 

versus methylation levels of the CpG sites examined. Although Kaplan-Meier analysis 

showed that the above methylation levels predicted for DFS on the Log rank p values, 

subsequent multivariate Cox regression showed that methylation levels of the 

examined CpG sites did not independently predict DFS. 

 

6.3 Discussion 

 

Impact of NAET on BCRP expression and its significance 

In this chapter I first established that BCRP protein expression was up-regulated after 

exposure to NAET using immunohistochemistry performed on clinical FFPE samples. 

This has several significances. Firstly, this study clarifies the previous conflicting in vitro 

findings regarding the role of oestrogen in regulation of BCRP expression. Ee et al 

showed that ABCG2 mRNA expression was enhanced by the addition of 17β-

oestradiol, and this effect was reversed by the use of anti-oestrogen ICI 182,780. (Ee 

et al., 2004). In contrast, Imai et al used western blot experiment to show that BCRP 

expression was down-regulated in response to oestrogen, and this effect was reversed 

by tamoxifen (Imai et al., 2005). The results from immunohistochemistry in this study 
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concur with the latter study findings. This effect was irrespective of duration of NAET or 

the NAET regimen in this study. Secondly, given that BCRP expression is up-regulated 

after NAET, this raises the question regarding the efficacy of chemotherapy after 

NAET. It might be expected that administration of adjuvant chemotherapy would have 

reduced efficacy given the high BCRP expression post-NAET, although it remains 

unknown how long the raised BCRP levels would be maintained post-NAET. In the 

current study cohort, only 6/51 patients received adjuvant chemotherapy after 

completion of NAET, and no further tissues were available after adjuvant 

chemotherapy to further study BCRP expression. This question requires examination in 

a larger cohort to determine the role of sequential chemotherapy following NAET. 

Another key finding was that high BCRP expression pre-NAET independently predicted 

poorer disease free survival in patients. This has potential clinical significance in 

predicting which subset of patients may have poor disease free survival following 

NAET. These patients may benefit from adjuvant chemotherapy to potentially improve 

disease free survival, bearing in mind the potential question regarding the efficacy of 

chemotherapy post-NAET. It is difficult to envisage how the pre-NAET BCRP levels in 

tumour cells could have a direct functional link with response to therapy in these cases 

as these levels invariably change after NAET (and these changed levels were not 

associated with survival), and the main target for the aromatase inhibitors used in most 

of these patients is not even in the breast cancer cells themselves. It may be that 

BCRP levels are simply a marker of a more aggressive tumour. In support of this, high 

BCRP expression “side population” cells are known to be resistant to chemotherapy 

and radiotherapy, and have potential for colony formation and proliferation. These cells 

are enriched for cancer stem cells, characterised by their low accumulation of Hoechst 

dye, which is mediated by functional BCRP. They are also characterised by CD44 

expression, and no or low CD24 expression (CD44+CD24-/low) (Nguyen et al., 2010). 

Therefore, high BCRP expression observed in this study may be a marker of cancer 

stem cell activity in breast cancer, and hence associated with higher rates of disease 
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recurrence. In any event, this finding requires further validation in an independent 

cohort. The semi-automated method of protein expression quantification in this study 

lends itself well for this purpose due to its reproducibility. It is worth noting that this 

study is the first to examine BCRP expression in an NAET cohort. Guidelines suggest 

NAET duration of 3 to 4 months (Chia et al., 2010) although this is variable in clinical 

practice, as reflected by my study cohort. In any event, my study showed that NAET 

treatment duration did not have any impact on the degree of change in BCRP 

expression (see Table 6.1). 

 

Investigation of methylation levels in BCRP promoter region in vitro and in clinical 

samples 

An inverse relationship between BCRP promoter region methylation level and ABCG2 

mRNA and/or protein expression has been well established in vitro. Nakano et al 

treated human small lung cancer cell line, PC-6, with 5-aZa-dC to induce demethylation 

of the BCRP promoter region. This treatment resulted in increased expression at the 

mRNA and protein levels (Nakano et al., 2008). Similarly, our in vitro experiment 

results showed that hypomethylation seen in the MCF7 cell line was reflected in 

substantial BCRP protein expression seen on immunoblotting. However, no difference 

in the degree of methylation was observed between the MCF7 breast cancer cell line 

and the non-cancerous HB2 breast cell line. Similarly, Wu et al showed that ABCG2 

promoter region was hypomethylated in lactating mouse mammary gland (Wu et al., 

2014a), supporting the cell line findings in this study that hypomethylation of ABCG2 

promoter region is not specific to cancer cells. The low levels of methylation in the four 

CpG sites examined in the clinical samples pre- and post-NAET mirror the low levels of 

methylation seen in the breast cell lines. Moreover, NAET exposure did not significantly 

change methylation levels in the matched FFPE tissue samples. This is a novel 

approach to examine the potential effect of endocrine therapy on methylation level of 



167 
 

BCRP promoter region. Other previous studies have examined the effect of DNA 

methyltransferase inhibitors on BCRP expression (Nakano et al., 2008, Turner et al., 

2006), but not of therapeutic drugs. It is also worth bearing in mind that successful 

pyrosequencing analyses of all 4 CpG sites were possible in only 17 pre-NAET core 

tissues and 33 post-NAET resection tissues respectively out of total of 51 cases. This 

is due to the relative lack of core tissue availability compared to resection tissue. 

Although frozen tissue is superior in terms of DNA integrity, patients treated at LTHT do 

not routinely have frozen tissues available for research purposes. DNA extracted from 

FFPE breast tissue blocks has undergone formalin fixation, which cause degradation 

and cross-linking between proteins and protein/DNA bases, resulting in a lower DNA 

yield. In addition, bisulphite conversion also further degrades DNA. 

  

Comparison of protein expression and methylation levels in the clinical samples did not 

result in the significant negative correlation that was expected. Although previous 

studies report an inverse relationship between ABCG2 mRNA expression and level of 

methylation in the BCRP promoter region (Bram et al., 2009, Turner et al., 2006), no 

such direct correlation could be detected when protein expression was compared to 

methylation levels in the clinical samples. Therefore, other mechanisms stated on 

section 6.1 such as gene amplification, transcriptional regulation unrelated to DNA 

methylation, and post-transcriptional regulation by miRNAs amongst other mechanisms 

are likely to have further influences on BCRP protein expression (Nakanishi and Ross, 

2012).  

 

Comparison of methylation levels and their change showed that axillary metastasis was 

more likely to be detected in patients where the methylation level of CpG site 250 was 

increased after NAET exposure. This proved significant on multivariate analysis. A 

decrease in BCRP protein level might have been expected in cases where promoter 
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methylation levels increased after NAET. However, no such inverse correlation was 

detected between methylation level and protein expression in this study, and it may be 

that this correlation between BCRP promoter dynamics and breast cancer behaviour is 

not directly related to BCRP function, but is a marker of a different aspect of the biology 

of the cells. However, in practical terms, examining methylation levels at CpG sites 

within the BCRP promoter region offers potential prognostic insights. Pre- and post-

NAET methylation levels in multiple CpG sites correlated with disease free survival on 

Log-rank univariate analysis, with higher methylation levels predicting poorer disease 

free survival. However, on multivariate analysis none of the methylation levels 

independently predicted disease free survival, demonstrating that these methylation 

levels mark aspects of cancer biology that are already encompassed within the routine 

clinico-pathological assessments. 

 

Given that BCRP expression was shown to have prognostic significance in the NAC 

cohort, the same approach of promoter methylation analysis could have been 

performed – and indeed this was my intention although I was unable to access the 

samples for further analysis. This would have been of interest to study the potential 

effect of chemotherapy on methylation levels of BCRP promoter region, and whether 

methylation was involved in determining the post-NAC BCRP levels that were 

associated with survival. 
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7.0 Discussion 

My work has focused on the analysis of xenobiotic transporter expression in the 

context of neoadjuvant systemic therapy (NST) in breast cancer. Pgp, MRP1, and 

BCRP, have been implicated in resistance to chemotherapy given their ability to efflux 

chemotherapeutics from cancer cells. The translational research carried out in this 

study aimed to identify potential molecular markers that predict tumour response or 

patient survival, and also examined potential underlying molecular mechanisms 

responsible for resistance to NST.  

 

BCRP as a prognostic marker 

This research strategy identified BCRP protein expression as having significance in 

independently predicting disease free survival in both NAC and NAET cohort. This has 

potential importance in the clinical setting since further adjuvant therapeutic strategies 

could be required to improve DFS in patients with high BCRP expression pre-NAET or 

post-NAC. It is interesting that BCRP expression has prognostic significance in both 

cohorts despite their considerable differences. In the NAET cohort, the majority of 

patients were post-menopausal with lower stage and lower grade breast cancers. All 

have high ER expression. In the NAC cohort, the majority of patients were pre-

menopausal with higher stage and higher grade breast cancers. Exposure to NAET 

resulted in overall up-regulation of BCRP expression with up-regulation seen in 48/51 

cases. In contrast, after exposure to NAC, no overall up-regulation of BCRP expression 

occurred with up-regulation seen in 23/39 cases. Despite these differences, BCRP 

expression remains a potential prognostic marker of disease free survival. This finding 

is further supported by other studies where BCRP expression was examined using 

immunohistochemistry in lung (Kim et al., 2009) and pancreatic cancer (Lee et al., 

2012). Both studies have shown BCRP expression to be associated with poor DFS, 



170 
 

although this was not in the context of any neoadjuvant therapy. Tumour response to 

NST is categorised using the RESIST criteria which defines tumour response into four 

categories (Table 1.3). In our study BCRP expression in both cohorts did not correlate 

with tumour response, despite the significant correlations observed with DFS. This may 

have been due to the categorical nature of the RECIST criteria giving a non-continuous 

representation of response; therefore, actual change in tumour size was also compared 

to BCRP expression but this again did not detect any significant correlation. This raises 

the question about whether clinical tumour response to NST is representative of 

changes in subsequent DFS. So far studies have shown that only pCR is a marker of 

improved DFS (Cortazar et al., 2014).  

 

Gene regulation of xenobiotic transporters: therapeutic implications 

Two hypotheses concerning gene regulatory pathways were generated by examining 

the changes in xenobiotic transporter expression after NST. A key reason for 

attempting to understand these gene regulatory pathways better is to assess whether 

therapeutic strategies can be designed to manipulate the gene expression of key 

molecules, rather than their function as with traditional small molecule inhibitors. This is 

particularly relevant to the first hypothesis below. A second reason is to understand 

whether and how therapies already in clinic impact on expression of key molecules, 

and therefore whether therapy induced changes in expression should be taken into 

account when planning treatment. 

   

Firstly, significant correlations between MRP1 and Notch1 NICD expressions observed 

after NAC, as well as the relevant study findings by Cho et al and Gonzalez-Angulo et 

al, resulted in the development of hypothesis that Notch1 NICD inhibition would result 

in abrogation of MRP1 activity and thereby enhance the efficacy of chemotherapeutics 



171 
 

(Cho et al., 2011, Gonzalez-Angulo et al., 2012). Chemoresistance continues to remain 

a challenge and alternative strategies are in clinical practice such as tailoring of NAC 

regime according to tumour response, but pCR rates remain low and mastectomy rates 

remain high (13.3% and 62.2% respectively in my study cohort). Therefore, 

manipulation of molecular pathways involved in chemoresistance is likely to have 

impact on improving patient outcome. My own data suggested that Notch1 inhibition 

did not synergise with chemotherapy in terms of reducing cell survival/proliferation – 

however, I also demonstrated poor efficacy of the Notch1 inhibitor used, DAPT. Further 

research in my supervisor’s group shows potential clinical relevance as they showed 

that Notch1 NICD inhibition does indeed enhance chemotherapy efficacy in vitro. A 

further promising study has been reported by Schott et al. They conducted a pre-

clinical and a phase I clinical trial evaluating the use of the GSI MK-0752 in 

combination with docetaxel. For the pre-clinical study, human breast tumour biopsies 

were transplanted into the mammary gland fat-pad of immune deficient mice. 

Treatment with MK-0752 achieved reduction in the breast cancer stem cell population 

in this context. Furthermore, compared to each therapy alone, a combination therapy of 

docetaxel and MK-0752 resulted in enhanced reduction of tumour size in mice. In the 

clinical trial, 30 breast cancer patients received MK-0752 with docetaxel and a 

favourable safety profile was reported (Schott et al., 2013). 

 

In my study, Notch1 NICD expression was significantly up-regulated in breast cancer 

patients treated with NAC. Whilst I did not establish that MRP1 is an important down-

stream target of Notch1 NICD activation, Notch is an oncogene and aberrant Notch 

signalling plays an important role in breast cancer. Its multiple roles in breast cancer 

include tumour proliferation, protection of tumour cells from apoptosis, breast cancer 

stem cell self-renewal, and angiogenesis of the surrounding stroma (Brennan and 

Clarke, 2013). Therefore, Notch inhibition remains an attractive target, and further pre-
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clinical studies are required before Notch inhibitors are to be established for potential 

clinical use.   

 

Secondly, the hypothesis that oestrogen is involved in defining BCRP levels, potentially 

via DNA methylation was examined in clinical samples using immunohistochemistry 

and pyrosequencing assays. While, it was clear that oestrogen activity may impact on 

BCRP expression, there was no evidence that promoter methylation was involved in 

this – and indeed I did not find an inverse correlation between protein expression and 

promoter methylation in the clinical samples. The key clinical implication of these 

findings relate to the up-regulation of BCRP by NAET and whether this impacts on 

response to subsequent therapies (see Section 6.3). 

 

BCRP as a drug target 

In this study, high BCRP expression post-NAC predicted poor DFS. At present, 

patients treated with NAC do not receive further systemic treatment unless they are ER 

positive, and subsequent management is simply clinical surveillance. The group of ER 

negative patients include patients with triple negative breast cancer who have the worst 

prognosis due to lack of alternative systemic treatment apart from chemotherapy. 

Instead of clinical surveillance, patients identified as high risk of recurrence due to high 

BCRP expression post-NAC may in theory benefit from drugs that target BCRP itself, 

such as BCRP inhibitors, immediately after surgery. Similarly, patients with high BCRP 

expression pre-NAET should perhaps be treated with BCRP inhibitors prior to NAET. 

Such anticipatory approaches are likely to be more successful since the level of 

potential systemic tumour burden is likely to be significantly lower than at the time of 

symptomatic disease recurrence where cure becomes unlikely due to the high level of 

systemic tumour burden (Arteaga, 2013). The following studies highlight the 
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development of BCRP inhibitors. Kruijtzer et al treated patients with range of solid 

tumour, including ovarian and colon cancer, with chemotherapeutic topotecan and 

GF120918, a BCRP inhibitor also known as Elacridar, as opposed to topotecan alone. 

It is worth noting that GF120918 is a dual inhibitor which also inhibits Pgp. The 

combination treatment resulted in increased bioavailability of topotecan to 97.1%, 

compared to 40% in topotecan alone group. The addition of GF120918 to topotecan 

did not result in significant additional toxic side-effects (Kruijtzer et al., 2002). However, 

the study cohort included only 16 patients and did not include patients with breast 

cancer. Rabindran et al transfected the MCF-7 cell line to over-express BCRP. They 

examined the effect of Fumitremorgin C (FTC) on accumulation of mitoxantrone, 

doxorubicin, topotecan, and paclitaxel in the BCRP overexpressing MCF-7 cells. Unlike 

GF120918, FTC is a specific inhibitor of BCRP. Treatment with FTC resulted in 

potentiation of toxicity of all the aforementioned chemotherapeutic drugs apart from 

paclitaxel (Rabindran et al., 2000). However, FTC is not currently used in vivo due to its 

significant neurotoxic side effects in mice and other animals (Allen et al., 2002). Allen et 

al showed that an analogue of FTC, Ko143, achieved potent inhibition of BCRP in 

human ovarian carcinoma cell line and mouse fibroblast cell line, demonstrated by 

increased cellular mitoxantrone accumulation. Furthermore, Ko143 was well tolerated 

in mice with no evidence of tissue pathology in major organs under histological analysis 

(Allen et al., 2002). Therefore, Ko143 could potentially be used in future clinical trials to 

investigate whether BCRP inhibition results in improved patient outcome. Interestingly, 

tyrosine kinase inhibitors (TKIs) such as imatinib (Gleevac) and gefitinib (Iressa) have 

also been implicated in BCRP inhibition. The former is used for treatment of chronic 

myeloid leukaemia. A study by Ozvegy-Laczka et al showed that TKIs caused inhibition 

of the ATPase activity of BCRP. TKIs also inhibited BCRP-dependent active 

fluorescent Hoechst dye extrusion in a BCRP-over-expressing HL60 cell line. This 

shows that functional efflux activity of BCRP protein is attenuated by TKIs without 
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affecting expression. Furthermore, treatment with TKIs increased the cytotoxicity of 

mitoxantrone in these cell lines (Ozvegy-Laczka et al., 2004).  

      

Prognostic markers: are single markers enough? 

Given the complexity of breast cancer biology, information gained from panels of 

molecular markers is likely to be more informative than individual markers in the clinical 

setting. Such a panel of molecular markers that provides prognostic information is 

already in current clinical use in the form of MammaPrint (Agendia) and OncotypeDx 

(Genomic health) to aid treatment decisions regarding the use of adjuvant 

chemotherapy (DeMichele et al., 2013). The former is a 70-gene signature test in which 

the genes were identified from a case-control study of young, node negative breast 

cancer patients with more than 10 years of follow-up. Gene expression profiles of 

patients who suffered from disease relapse were distinct from patients who remained 

disease free. The latter examines the expression of 16 outcome-related genes and 5 

reference genes, as measured by RT-PCR. These expressions are combined using a 

mathematical algorithm to calculate the risk of recurrence in patients with ER positive, 

lymph node negative breast cancer (Dowsett and Dunbier, 2008). These clinical tools 

provide objectivity in difficult clinical circumstances where the potential survival gain in 

treating patients with chemotherapy has to be balanced against its potential significant 

side-effects and costs. As yet, MammaPrint or OncotypeDx have not been validated in 

the neoadjuvant setting. Future research in breast cancer patients treated with NAC will 

hopefully identify similar panel of molecular markers, which could be utilised to 

accurately predict response to NAC and survival in individual patients. No panel of 

molecular markers exist for patients who are treated with endocrine therapy, perhaps 

reflecting the fact that patients who are ER positive have an already relatively good 

prognosis. For patients who are treated with NAET, Ellis et al developed pre-operative 

endocrine prognostic index (PEPI) which consists of pathological tumour size and 
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nodal status, Ki67 level, and ER status to predict the risk of disease relapse. Those 

patients who had high PEPI score have higher likelihood of disease relapse and should 

be recommended adjuvant chemotherapy (Ellis et al., 2008). This has particular 

relevance in our study since BCRP expression was up-regulated by NAET and hence 

the efficacy of adjuvant chemotherapy has to be in question. My study cohort of 51 

patients treated with NAET lacks power to answer this question clearly. However, such 

question could potentially be answered by the utilisation of clinical samples from trials 

such as the Perioperative Endocrine Therapy- Individualising Care (POETIC) study 

(Dowsett et al., 2011). In this national multi-centre randomised trial, post-menopausal 

ER positive breast cancer patients received four weeks of aromatase inhibitors peri-

operatively or received no peri-operative treatment with subsets of patients going onto 

receive adjuvant chemotherapy based on criteria such as PEPI. Examination of BCRP 

expression in such cohorts has feasibility as change in BCRP expression in the NAET 

cohort was not influenced by the length of therapy or regime, although unfortunately 

the samples are currently available only for the trial protocol.       

 

NST has shown to be a valuable treatment modality in aiding identification of predictive 

markers and in looking at molecular pathways and changes involved in resistance to 

NST. Its use is currently limited to patients with locally advanced breast cancer who 

would be obligate candidate for mastectomy at the time of diagnosis. It achieves down-

staging of locally advanced breast cancer to enable breast conservation surgery in a 

subset of patients. In patients where tumour to breast volume ratio is small enough to 

enable breast conservation surgery at the time of diagnosis, NST is not routinely 

offered as there is no perceived advantages. In contrast, due to equivalent DFS and 

OS between NST and adjuvant systemic therapy, international expert consensus by 

Berruti et al argue that NST should be used in routine management of operable breast 

cancer (Berruti et al., 2011). There is a rationale behind this approach, but this has to 
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be balanced against the likelihood that surgical management of breast cancer will not 

alter at the end of NST as all patients will receive at least breast conservation surgery 

at present. More patients will require treatment monitoring in the form of MRI with 

added costs, and patients will have to live with tumours in situ during therapy, which 

can result in raised anxiety and psychological morbidity. However, if high proportions of 

patients treated with NST achieved complete pathological response this would extend 

the role of NST in a greater number of patients, especially if these patients could be 

spared surgery. At present, all patients undergo surgery even if MRI monitoring 

indicates complete radiological response, and this is a pragmatic approach given that 

MRI is not sensitive enough to determine complete pathological response. Questions 

about the need for surgery in patients who achieve complete pathological responses 

have been raised by Rea et al, who proposed future trials to investigate the area (Rea 

et al., 2013). However, with the current available regime of NST, the proportion of 

patients who achieve complete pathological response remains low, especially in the 

NAET cohort. Hence, the current approach of limiting NST only to patients who are 

obligate candidates for mastectomy may be appropriate. However, it is hoped that with 

future molecular research and targeted drug development, the efficacy of NST may 

improve to such an extent that NST can be extended to a wider cohort of patients.  
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9.0 Appendix  

9.1 Recipe list 

 

TBS     60ml 2.5M NaCl 

     20ml 1M Tris Hcl 

     Make up to 1L 

 

TBST   As above with the addition of 1.25ml of 10%v/v  

Tween-20 

 

10mM Citric acid buffer (pH 6.0) Add 2.1g citric acid monohydrate to 800ml of 
distilled water. Add 13ml 2M NaOH solution 
dropwise until pH of 6.0 is reached. Make up to a 
final volume of 1L using distilled water. 

 

2M Sodium hydroxide Add 8g of sodium hydroxide to 100ml of distilled  

water 

 

0.3% Hydrogen peroxide Add 1ml of 30% hydrogen peroxide to 99ml of 
100% methanol  

 

Scott’s tap water Add 20g of magnesium sulphate and 3.5g of 
sodium bicarbonate to 1L of distilled water 
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RIPA buffer     Tris-HCL 10mM 

EDTA 1mM 

EGTA 0.5mM 

NaCl 140mM 

SDS 0.1% 

Triton x100 1% 

Na Deoxycholate 0.1% 

H2O 

1mM PMSF 

1mM DTT 

1xPIC (P8340; Sigma-Aldrich) 

 

DNA buffer     1M Tris-HCL, 1M. pH 8.0 100ml 

 0.5M EDTA    100ml 

 dH20 water    300ml 

 

TAE buffer    Glacial acetic acid 

     Tris base 

     0.5M EDTA  

 

1% agarose gel Add 2g agarose to 200ml 1x Tris Acetate EDTA 
(TAE) buffer (pH 8.0) and heat in 900W 
microwave for 2 minutes. Once cool, 6ul of 
ethidium bromide was added. 

 

LB solution Add a sachet of LB broth EZMix™ powder 
(L7658; Sigma-Aldrich) to 500ml of distilled water, 
and autoclave for 1 hour. 
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LB agar plate As above with the addition of 7.5g agar and 500ul 
of ampicillin. 25ml of the resulting solution was 
poured onto each Petri dish to set. 
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9.2 Supplementary tables 

         Total automated histoscore         Total histoscore BK           Total histoscore BW  

24.2 37.6 52 

47.7 41.6 49.4 

0.7 0 0 

38.6 106.1 84.6 

82.3 43.2 125.1 

84.5 45 112.5 

65.7 100.8 65.5 

84.2 138.2 136.2 

129 209.7 173.6 

35.2 5.3 40.6 

9.6 0 91.9 

34.3 12.8 51.3 

28.6 36.3 95.2 

67.3 180.5 115.1 

1.2 0 0 

11.1 0 0 

15.7 9.3 25.7 

27.5 4.8 28.9 

0.8 0 0 

153.8 220.4 197.5 

30.6 8 31.9 

6.2 0 0 

3.4 0 0 

13.3 0 0 

10.3 13.3 33.1 

0.4 0 0 

50.1 15.9 27.2 

6.2 0 0 

1 0 0 

60.4 43.1 90.4 

1.8 0 0 

1.4 0 0 

12.2 0 9.9 

61 117.3 104 

172.4 263.1 275 

0.3 0 0 

107 164.4 102.3 

30.4 46.1 78.9 

170.1 133.7 96.6 

8.1 4.7 3.6 

31.5 2.5 9.5 

20.2 1.8 8.8 

20.1 10.9 0 

34.2 43.7 18 

4 0 0 

81.1 134.3 83.3 

17.4 0 6 

32.3 34.4 45 

5.4 4.5 6.3 

64 78.1 141.6 

1 0 3.1 

162.6 170.3 208.2 

61.7 33.3 126.9 

89.2 115.4 130.5 

 

Table S1: Comparison of manual versus automated histoscores 
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SLIDE no 
Pre-NAC 
score BK Pre-NAC score BW 

 
Post-NAC score BK 

 

Post-NAC 
score BW 

1 0 0 
 

3 
 

3 

2 3 3 
 

5 
 

5 

3 3 2 
 

6 
 

4 

4 3 4 
 

0 
 

0 

5 0 0 
 

0 
 

0 

6 3 3 
 

5 
 

4 

7 0 0 
 

2 
 

3 

8 0 0 
 

0 
 

0 

9 0 0 
 

4 
 

4 

10 3 3 
 

7 
 

6 

11 2 3 
 

3 
 

3 

12 0 0 
 

0 
 

0 

13 0 0 
 

8 
 

8 

14 4 4 
 

5 
 

5 

15 2 2 
 

7 
 

6 

16 0 3 
 

8 
 

8 

17 0 0 
 

7 
 

7 

18 0 0 
 

4 
 

4 

19 2 2 
 

7 
 

7 

20 2 2 
 

3 
 

4 

21 3 3 
 

4 
 

4 

22 0 0 
 

3 
 

3 

23 0 0 
 

5 
 

5 

24 4 3 
 

3 
 

3 

25 4 3 
 

0 
 

0 

26 0 0 
 

6 
 

6 

27 0 0 
 

2 
 

2 

28 0 0 
 

7 
 

7 

29 0 0 
 

3 
 

3 

 

Table S2: Allred scores for Notch1 expression 
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         Patient 
number     DNA concentration pre-NAET (ng/ul)    DNA concentration post-NAET (ng/ul) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

62.2 
38.5 

22 
53.5 
12.7 
48.9 
81.8 

139.1 
9.2 
6.1 

94.8 
29 

 
46 

8 
27.1 
47.4 
48.5 
16.1 
45.3 
16.8 
65.1 
41.5 

108.3 
76.1 
48.4 

9.1 
17.4 
44.7 
10.8 
91.8 

12 
 
 

24.7 
13.7 
56.3 

63 
83.7 

 
15 

18.8 
40.8 
10.2 
36.3 

114.8 
14.7 
26.3 
30.3 
43.1 

 

50.2 
295.9 

97 
156.1 
958.1 

60.4 
77.8 

174.9 
454.9 

98.8 
24.6 

299.2 
635.2 
122.8 
138.8 
161.4 
129.3 
135.8 
124.3 

47 
907.9 

400 
68.1 

453.5 
212.4 
452.7 
280.2 
277.7 

25.2 
9 

17.9 
17.9 

253.8 
34.3 

259.2 
581 

127.7 
169.2 

60.9 
338.4 

68.2 
711.3 

48.9 
454.8 

68.9 
386.1 
112.3 

143 
291 

370.3 
58.1 

   

 

Table S3: Concentration of DNA extracted from FFPE tissues 
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Patient 
     Pre-NAC   
          Pgp  

 
 

Post-
NAC 

Pgp  
 
 

Pre-
NAC  

MRP1  
 
 

Post-
NAC 

MRP1  
Pre-NAC  
BCRP  

 
 

Post-
NAC    
      BCRP 

1 0.2 
 

0.3 
 

0.3 
 

64.8 86.3 
 

84.8 

2 0.2 
 

45.3 
 

0.03 
 

59.7 1.6 
 

65 

3 7.8 
 

26.8 
 

5.5 
 

24.6 64.5 
 

89.7 

4 0.6 
 

8.5 
 

0.2 
 

108.5 7.9 
 

88.3 

5 44.6 
 

95.1 
 

1.3 
 

28.6 1.8 
 

11.1 

6 0.2 
 

7 
 

0.1 
 

1 13.8 
 

65 

7 0.2 
 

10.1 
 

0.3 
 

94.4 5.9 
 

72.5 

8 0.05 
 

12 
 

0.02 
 

37.1 19.5 
 

30.2 

9 56 
 

12.1 
 

0.01 
 

75.3 31 
 

50 

10 8.8 
 

100.5 
 

0.02 
 

35.7 58.6 
 

4.3 

11 6.5 
 

32.5 
 

0.5 
 

76.6 22.2 
 

13.5 

12 0.9 
 

35.4 
 

0.1 
 

80.1 20.5 
 

34 

13 8.3 
 

87.8 
 

0.2 
 

84.8 2 
 

39 

14 1.7 
 

34 
 

1.3 
 

84.1 66.8 
 

4.8 

15 31.2 
 

48.8 
 

35.4 
 

18.2 46.3 
 

24.7 

16 79.8 
 

168.7 
 

1.1 
 

39.1 20.8 
 

119.9 

17 5.5 
 

13.2 
 

1.6 
 

0.9 15.3 
 

8.4 

18 12.7 
 

56 
 

0.5 
 

1.8 85.8 
 

40.6 

19 0.4 
 

0.3 
 

0.1 
 

117.5 12.8 
 

29.8 

20 3.7 
 

1.4 
 

1 
 

69.2 5.2 
 

55.4 

21 8 
 

42.1 
 

0.1 
 

30 98.5 
 

22.3 

22 0.1 
 

106.3 
 

0.01 
 

0.5 0.9 
 

161.3 

23 0.04 
 

17.2 
 

0.2 
 

82 0.2 
 

82.8 

24 8.8 
 

16.3 
 

8.1 
 

14.5 13.8 
 

33 

25 9.9 
 

25 
 

6.1 
 

36.7 28.2 
 

25.9 

26 16.2 
 

2.9 
 

0.5 
 

161.6 53.8 
 

18.9 

27 104 
 

107.9 
 

0.8 
 

9.7 7.8 
 

9.4 

28 15.8 
 

58.3 
 

0.4 
 

27.3 2.2 
 

12 

29 0.2 
 

1.4 
 

1.5 
 

0.2 1.5 
 

20.4 

30 86.7 
 

13.1 
 

0.5 
 

197.5 62.3 
 

11.8 

31 48.9 
 

171.4 
 

3.2 
 

55 131.8 
 

133.2 

32 0.6 
 

0.2 
 

0.2 
 

202.9 1.6 
 

115.8 

33 10.6 
 

117.9 
 

1.8 
 

88.4 9.4 
 

13.9 

34 40.1 
 

21.4 
 

0.8 
 

31.7 143.5 
 

73.2 

35 61.1 
 

34.5 
 

0.009 
 

28.9 107 
 

44 

36 30.8 
 

101.3 
 

0.4 
 

25.7 54.9 
 

5 

37 51.2 
 

40.4 
 

0.02 
 

91.5 34.3 
 

23.9 

38 1.8 
 

65.3 
 

0.04 
 

57.7 1.6 
 

82.7 

39 161.7 
 

32.4 
 

0.2 
 

7.4 13.7 
 

11.6 

40 36.8 
 

 
 

0.02 
 

 5 
 

 

41 77.1 
 

 
 

0.05 
 

 1.7 
 

 

42 32 
 

 
 

1.3 
 

 72.7 
 

 

43 34.5 
 

 
 

0.7 
 

 77.9 
 

 

44 97 
 

 
 

0.1 
 

 7.7 
 

 

45 54.5 
 

 
 

0.1 
 

 0.5 
 

 

 

Table S4: Semi-automated histoscores for Pgp, MRP1, and BCRP 
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         Patient    
         number 

    BCRP expression pre-NAET     
            (histoscores: 0-300)   

 BCRP expression post-NAET  
            (histoscores: 0-300) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

0.6 
5.9 
6.9 
2.0 

19.4 
0.6 
1.9 
3.1 
0.8 

10.4 
2.5 
7.4 
1.7 
0.7 
2.1 

33.7 
0.6 
7.0 
1.9 
2.0 
1.4 
4.5 
1.6 
1.7 

16.3 
1.3 
1.3 
2.9 
1.1 

33.7 
14.0 
16.7 
80.6 
13.3 
17.0 

1.2 
26.7 

1.8 
4.0 
5.1 

82.0 
27.8 

8.7 
27.7 
71.2 

2.8 
13.9 
31.6 

2.4 
1.8 
0.9 

40.9 
105.0 

33.8 
38.3 

6.0 
20.7 
50.6 
75.2 

5.5 
31.1 
23.6 

7.5 
87.2 

7.2 
80.0 

105.2 
13.0 
23.6 
45.5 
59.5 
80.7 
33.6 
16.4 
21.9 
19.5 

7.8 
63.5 
34.1 
31.4 
41.2 
16.2 
33.8 

101.5 
33.2 
50.2 
27.1 

120.5 
31.9 
53.4 
58.0 

139.6 
9.0 

42.1 
19.5 

133.4 
48.2 
25.5 

124.5 
28.7 
15.7 
68.8 

   

 

Table S5: Semi-automated histoscores for BCRP expression in the NAET cohort 

 

 

 



199 
 

 Pre-NAET methylation %   Post-NAET methylation %   

Patient 
number 

pos 
165 

pos 
172 

pos 
236 

pos 250 BCRP 
expression 
pre-NAET 

pos 
165 

pos 
172 

pos 
236 

pos  
250 

BCRP 
expression 
post-NAET 

1 0 0 0 9.51 0.6 5.79 3.31     40.9 

2 2.96 0 2.57 15.72 5.9 0 0 0 13.3 105.0 

3         6.9 5.59 1.99 7.13 16.35 33.8 

4 0 0     2.0 0 0 9.24 14.31 38.3 

5         19.4 4.17 2 2.23 7.96 6.0 

6 6.54 2.9 0 0 0.6 0 0 0 0 20.7 

7 0 0 0 0 1.9 3.41 0 3.54 10.74 50.6 

8 0 0 17.84 40.74 3.1 6.23 0 6.84 18.44 75.2 

9 2.8 0 0 8.94 0.8     0 23.84 5.5 

10         10.4 0 0 0 16.6 31.1 

11 0 0     2.5 0 0     23.6 

12 1.93 2.18 0 11.41 7.4 0 7 3 14 7.5 

13  NA NA  NA  NA  1.7 0 0 5 20 87.2 

14     0 12.85 0.7 0 0 3.82 11.8 7.2 

15 0 0     2.1 0 0 0 10.8 80.0 

16 0 0     33.7 0 0     105.2 

17 2.47 0 3.47 7.35 0.6 0 0 4.85 14.43 13.0 

18         7.0 0 0 0 11.36 23.6 

19 0 0     1.9 0 7.75 4.1 12.56 45.5 

20 0 0     2.0 1.39 0 1.94 8.12 59.5 

21 0 0     1.4 0 4 4 13 80.7 

22 0 10.06     4.5 0 4.88     33.6 

23         1.6 8.25 0     16.4 

24 3.31 2.78     1.7 12.34 7.61 0 0 21.9 

25 21.97 10.39 10.19 11.39 16.3 6.4 6     19.5 

26 6.45 5.92               7.8 

27         1.3 2.16 6.39 14.52 33.89 63.5 

28         2.9 0 0 5 11 34.1 

29         1.1         31.4 

30 3.61 0 0 10.73 33.7 0 0     41.2 

31 0 0     14.0 4.79 2.56     16.2 

32         16.7 0 0 0 0 33.8 

33  NA NA  NA  NA  80.6 0 0     101.5 

34  NA NA  NA  NA  13.3 0 0 2.99 17.03 33.2 

35 2.96 0 0 14.39 17.0 0 0 7 11 50.2 

36 2.75 0 0 18.83 1.2 0 6.3 8.54 14.99 27.1 

37 0 5.02 0 0 26.7 3.77 6.21     120.5 

38         1.8 0 0 0 8.45 31.9 

39 8.26 3.17 0 12.02 4.0     16.9 18.32 53.4 

40 NA NA  NA  NA  5.1 0 0     58.0 

41 2.89 0     82.0 3.68 2.41 2.65 9.67 139.6 

42 0 0     27.8 5.84 0 0 0 9.0 

43 7.08 4.33     8.7 0 0 3.43 8.53 42.1 

44 4.9 0     27.7         19.5 

45 3.72 3.22     71.2 3.52 0 2.33 11.07 133.4 

46 0 0     2.8 0.00 0 2.79 13.69 48.2 

47 6.73 0 0 5.48 13.9 0 0 0 14.02 25.5 

48 2.81 0 0 6.47 31.6 0 0 4.17 11.04 124.5 

49 5.04 0 0 0 2.4 2.59 2.32     28.7 

50 0 0     1.8 2.96 1.55 2.75 10.77 15.7 

51 NA NA  NA  NA  0.9 7.22 0     68.8 

 

Table S6: Pyrosequencing analysis to examine methylation level of BCRP promoter 
region in the NAET cohort. The table shows degree of methylation for each of the 4 
CpG sites pre- and post-NAET. The matching protein expression is also shown in the 
form of histoscores from immunohistochemistry. The blank columns are where the 
pyrosequencing assay was unsuccessful despite repeated assays. The 5 NA columns 
for the pre-NAET methylation analysis are where there were insufficient remaining 
FFPE tissue to perform macrodissection and subsequent DNA extraction. 
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9.3 Supplementary figures 

 

 

Figure S1: Step-sectioning of pCR blocks resulted in detection of residual tumour cells 

(anti-cytokeratin AE1/3 antibody; Dako)  

 

 

Figure S2a: Optimised TMA staining for Pgp (UIC2), x20 magnification  
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Figure S2b: Optimised TMA staining for MRP1 (QCRL1), x20 magnification 

 

 

Figure S2c: Optimised TMA staining for BCRP (BXP21), x20 magnification 
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Figure S2d: Optimised TMA staining for Notch1 (anti-activated Notch1), x20 

magnification 

 

 

 

Figure S2e: Pgp expression in axillary lymph nodes 
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Figure S2f: MRP1 expression in axillary lymph nodes 

 

 

 

Figure S2g: BCRP expression in axillary lymph nodes 
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Figure S3: 3 and 5 day MCF7 cell titration curve showing the optical density reading 

on the y-axis and the initial cell number plated per well on the x-axis. Each point on the 

graph shows triplicate results. 10,000 cells (3 days) and 7500 cells (5 days) were 

chosen for the combination assay to allow for log phase growth.   
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Figure S4: 5 day T47D cell titration curve showing the optical density reading on the y-

axis and the initial cell number plated per well on the x-axis. Each point on the graph 

shows triplicate results. 10,000 cells were chosen for the combination assay to allow 

for log phase growth.   
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Figure S5: Gradient PCR for bisulphite-modified DNA extracted from H929 cell lines 

using Turner et al primers. This showed an appropriately sized PCR product of around 

500 base pairs. The optimal annealing temperature was determined at 56oC.  

 

 

 

 

Figure S6: Gradient PCR for bisulphite-modified DNA extracted from H929 cell lines 

using Chen et al primers. This showed an appropriately sized PCR product of around 

250 base pairs. The optimal annealing temperature was determined at 55oC.  
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Figure S7: PCR of bisulphite-converted DNA from cell lines using Turner et al and 

Chen et al primers. For all cell lines, using Turner et al primers resulted in a PCR 

product of around 500 base pairs, and Chen et al primers a product of around 250 

base pairs. Negative controls included a lane with nuclease free water instead of 

bisulphite-converted DNA and DNA from HL60 cell line that was not bisulphite-

converted. For MCF7 cell line, an independent bisulphite-converted DNA sample from 

Dr James Thorne was used.  

 

 

 

 

Figure S8: Gel electrophoresis using products from colony PCR of cloned HB2 Chen 

et al amplicon. 23 colonies were randomly selected, and 9 successfully cloned plasmid 

DNA mini-preps were available for sequencing. 
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Figure S9: Gel electrophoresis using products from colony PCR of cloned H929 Chen 

et al amplicon. 23 colonies were randomly selected, and 9 successfully cloned plasmid 

DNA mini-preps were available for sequencing. 

 

 

 

 

 

Figure S10: Gel electrophoresis using products from colony PCR of cloned HL60 Chen 

et al amplicon. 23 colonies were randomly selected, and 12 successfully cloned 

plasmid DNA mini-preps were available for sequencing. 
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Figure S11: Gel electrophoresis using products from colony PCR of cloned MCF7 

Chen et al amplicon. 23 colonies were randomly selected, and 12 successfully cloned 

plasmid DNA mini-preps were available for sequencing. 

 

 

 

 

 

Figure S12: Gel electrophoresis using PCR products of the pyromark assay examining 

5 CpG sites. The bands are seen just below the 300 base pair ladder, but were only 

present for the cell line samples but not for the FFPE samples.   
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Figure S13: Pyrosequencing analysis for the 4 cell lines examining the 5 CpG sites 

assigned by the pyromark assay. The 5 CpG sites in H929, MCF7, and HB2 cell lines 

are unmethylated. However, the equivalent CpG sites in HL60 cell line shows high 

degree of methylation.  
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Figure S14: Dose-response curve for doxorubicin (MCF7 and T47D cell lines) showing 

optical density reading on the y-axis (normalised to untreated) and log 10 of 

doxorubicin concentration added to the wells at 24 hours on the x-axis (0 to 1μM). This 

allowed determination of approximate range of IC values after 2 and 4 days of 

treatment with doxorubicin for MCF7 cells, and after 4 days of treatment for T47D cells. 

Each co-ordinates represent triplicate values and optical density readings from wells 

containing medium only was subtracted. 
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Figure S15: DAPT 2 and 4 days titration curve (MCF7 cell line) showing optical density 

reading on the y-axis (normalised to untreated) and Log 10 of DAPT concentration 

added to the wells at 24 hours on the x-axis (0 to 10μM). Increasing concentration of 

DAPT on its own did not have any effect on cell growth/survival. Each co-ordinates 

represent triplicate values and optical density readings from wells containing medium 

only was subtracted.  
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Figure S16a: 2 and 4 day combination assay in MCF7 cell lines for the lower DAPT 

concentrations (1nM to 1uM). Y-axis shows optical density reading.  The first black bar 

denotes the controls (-), with increasing DAPT. The first red bar denotes the IC10 

values without DAPT (-), with the remainder showing IC10 doxorubicin with increasing 

DAPT. The first blue bar denotes the IC50 values without DAPT (-), with the remainder 

showing IC50 doxorubicin with increasing DAPT.  



214 
 

 

Figure S16b: 2 and 4 day combination assay for the MCF7 cell lines for the higher 

DAPT concentrations (1uM to 100μM). Y-axis shows optical density reading. The first 

black bar denotes the controls (-), with increasing DAPT. The first red bar denotes the 

IC10 values without DAPT (-), with the remainder showing IC10 doxorubicin with 

increasing DAPT. The first blue bar denotes the IC50 values without DAPT (-), with the 

remainder showing IC50 doxorubicin with increasing DAPT.  
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Figure S17: 4 day combination assay using T47D cell lines (DAPT concentrations of 

1nM to 100uM). Y-axis shows optical density reading. The first black bar denotes the 

controls (-), with increasing DAPT. The first red bar denotes the IC10 values without 

DAPT (-), with the remainder showing IC10 doxorubicin with increasing DAPT. The first 

blue bar denotes the IC50 values without DAPT (-), with the remainder showing IC50 

doxorubicin with increasing DAPT.  
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Figure S18: Western blot to examine MRP1 expression using MCF7 another 

independent cell lysates treated with doxorubicin +/- DAPT. Increasing doses of 

doxorubicin treatment led to a dose-dependent up-regulation of MRP1 expression. 

DAPT treatment did not result in down-regulation of MRP1 expression however. 

Combination therapy of doxorubicin and DAPT did not cause significant down-

regulation of MRP1 expression in general.  

 

 



217 
 

 

Figure S19: Western blot to examine Notch1 NICD expression using an independent 

MCF7 cell lysates treated with doxorubicin +/- DAPT. Increasing doses of doxorubicin 

resulted in the down-regulation of Notch1 NICD expression. Treating the cells with 

DAPT did not result in down-regulation of Notch1 NICD expression. However, the 

combination of doxorubicin and DAPT led to down-regulation of Notch1 NICD 

expression. 
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Figure S20: Western blot to examine Notch1 NICD expression using another 

independent MCF7 cell lysates treated with doxorubicin +/- DAPT. Increasing doses of 

doxorubicin resulted again resulted in the down-regulation of Notch1 NICD expression. 

DAPT treatment did not result in down-regulation of Notch1 NICD expression. 

However, the combination of doxorubicin and DAPT led to down-regulation of Notch1 

NICD expression.   

 

 

 

 

 

 


