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ABSTRACT

The work presented in this thesis focuses on gravity driven bilayer flow over a func-
tional surface containing topography, with both liquids taken to be perfectly immis-
cible. Two such problems are considered and investigated systematically: (i) when
the flow is confined between two rigid surfaces ("channel flow"); (ii) for the case of
free-surface film flow down an inclined plane ("free-surface flow"). Both problems
are underpinned by rigorous and comprehensive mathematical derivations, and the
governing equation sets, resulting from application of the long-wave approxima-
tion, solved numerically using efficient and accurate finite difference algorithms

programmed in C++. Such problems have received scant attention to-date.

The channel flow work begins by revisiting the problem investigated by Lenz and
Kumar (2007) and Zhou and Kumar (2012), to explore bilayer flow for the particu-
lar case of one Newtonian liquid lying above another and confined by rigid surfaces
aligned parallel to each other, the lower one containing a steep-sided topographi-
cal feature. The investigation carried out serves a number of important purposes,
the first being to establish the validity of the modelling and numerical approaches
adopted, with the mesh independent results obtained found to be in excellent agree-
ment with earlier work. In addition, the depth-averaged equation set derived in the
thesis enables solutions to be obtained when the Reynolds number is non-zero, in
contrast to the work of others which achieved only partial success. Finally, the sit-
uation when the upper wall of the channel is allowed to move horizontally with a

constant speed, inducing a shear flow, is investigated for the first time.

Bilayer free surface film flow over steep-sided topography, solutions to which have
not been reported in the literature hitherto, is similarly investigated; comparisons
having to be drawn for consistency and verification purposes with the case of sin-
gle layer flow, Decré and Baret (2003), Gaskell et al. (2004), Veremieiev et al.
(2010). Both zero and non-zero Reynolds number flow are considered and the gov-

erning equation sets and finite difference expressions re-derived to accommodate



non-Newtonian behaviour, for the particular case of power-law liquids; it is found
that for the latter case the associated depth-averaged equation set as formulated
cannot be solved unless additional simplifications are adopted. In addition, for the
case of Newtonian liquids, it is shown that the work can be extended to embody
the more practical situation of three-dimensional bilayer film flow over topography.
The mathematical model for this same film flow problem is extended to accommo-
date N layers, for the case when the Reynolds number is zero, with the derivation

provided for completeness.

il



To the loving memory of my father.
To my mother who gives me unwavering support and prayers.
To my wife who supported me in all my endeavours.

To my children who makes my life fun.

il



ACKNOWLEDGEMENTS

First and foremost I wish to express my utmost gratitude to my supervisors Prof.
Philip H. Gaskell and Dr. Sergii Veremieieyv, for introducing me to the subject area
of thin film flow and guided my research with vivid interest and great patience.
Without their professional advice and expertise, the thesis would not have been

possible.

My sincere thanks are also due to Dr. Yeaw Chu Lee for his support and guid-
ance, particularly during my first year, and his continued involvement in my work
even after moving away from Leeds. I would also like to acknowledge the help of
the I.T. support team within the school and those who maintain and run the high

performance computing cluster ARCI.

The financial support from the Libyan Ministry of Higher Education is gratefully

acknowledged.

My special thanks go to my mother, who has been a constant source of support
and encouragement and to my sisters and brothers for their support. I wish also to
acknowledge my late father, Abdulhamid Elfakhri, who have always been a great

source of inspiration to me.

Finally, I wish to express my deepest gratitude to my wife; without her support and
encouragement this thesis would never have turned into reality; and to my children

who have bought great joy to my life.

v



Contents

1 Introduction
1.1 Motivation . . . . . . . v v v e e e e e e e e e e

1.2 Physicsof thinfilmflows . . . . . ... ... ... ... .....

1.3 Single Layer Flow over Topography . . . . .. ... ... .....

1.4 BilayerSystems . . . . . . ... ...
1.5 Thesisoutline . . . . .. ... .. ... ...
2 Mathematical model
2.1 Introduction . . . . . . . ... L
2.2 Governing equations . . . . . . ... . e e e e
2.3 Determination of appropriate velocity scalings . . . . . . ... ...
2.4 Long-wave approximation . . . . . . . . . . ... ... ... ...
2.5 Depth-averaged formulation . . . ... ... ... ... .. ....
2.5.1 DAF for free-surface flow . . . . ... ... ... .. ...
2.5.2 LUB model for free-surface flow . . . . . .. .. ... ...
253 DAFforchannelflow. . . .. .. ... ... ... .....
254 LUBforchannelflow . ... ... ... ... ......

255

Compact generic DAF (LUB) equations . . . . . ... ...

2.6 Topography definition . . . . . . . ... ... ... ... ...,

3 Methods of solution

15
21

24
25
26
36
40
42
42
51
52
54
55
56

58



3.1 Introduction . . . . .. .. ... ...
3.2 Overall method of solution . . . . .. ... ... ... .......
3.2.1 Free-surface flow problem . . . . ... ... ... .....
3.2.2 Channelproblem . . ... ... ... ... .........
3.3 Methodsofsolution . . . . . ... ... .. ... .. .. ...,
3.3.1 Multigridsolver . . . . ... ... ... ... .. .. ...
3.3.2 Full weighting restriction and interpolation operators . . . .
34 Calculationdetails . . . . .. ... L L Lo

3.5 Comparison of DAF (Re=0) and LUB results . . . ... ... ...

Bilayer film flow in patterned channels

4.1 Gravity-drivenflow . . . . .. .. ... Lo
4.1.1 Validation . . . . . .. ... ...
4.1.2 Effect of the normal gravityterm . . . . . . . ... .. ...
4.13 Effectofinertia . . . . . . ... ... ... ...

4.2 Pressure gradient and shear driven flow . . . . .. .. .. ... ..

Free-surface bilayer thin film flow over topography

5.1 Two-dimensional flow . . . ... .. ... ... ... ... ..
5.1.1 Single-layer equivalent . . . . . . ... ... ........
5.1.2  Exploring parameter space, Re =0 . . . ... ... ....
5.1.3 Exploring parameter space, Re #0 . . . . ... ... ...

5.2 Three-dimensional flow over trench topography . . . . . . .. . ..

Free-surface non-Newtonian Bilayer thin film flow
6.1 Introduction . . . . . ... ... ...
6.2 Models for non-Newtonian liquids . . . . .. ... ... ......
6.3 Depth-averaged formulation for bilayer power-law thin film flow .

6.3.1 Bilayer Non-Newtonian flow with negligible inertia . . . . .

vi

92
95
95
99
100
121

132
134
134
135
145
155

163
164
164

. 169



6.3.2 Single-layer equivalent non-Newtonian inertial flow . . . . 175

6.4 Methodof solution . . . . ... ... ... ... .. ... 178
6.4.1 Discresation of the LUB equations . . . . .. .. .. ... 178

6.4.2 Discresation of the DAF equations . . . . ... ... ... 180

6.6 Resultsanddiscussion . . . . .. .. ... ... ... 182

7 Conclusion and suggestion for future work 189
7.1 Conclusions . . . . . . . ... L 190

7.2 Suggestions for future work . . . . ... o Lo 194

A Derivation of lubrication equations (LUB) for 3D free-surface flow 197

B Derivation of lubrication equations (LUB) for 2D bilayer channel flow 209

C Derivation of the depth averaged form (DAF) for channel flow 220
D Discresation of the LUB equations 230
D.1 Free-surface bilayerflow . . . . ... .. ... ... ... ..... 230
D.1.1 Spatial discretisation . . . . . .. ... ... ........ 231

D.1.2 Temporal discretisation . . . . . .. ... ... .. .... 234

D.2 Channelflow . . ... .. ... .. ... 237
D.3 Full weighting restriction and interpolation operators . . . . . . . . 240

E Lubrication equations for three-dimensional free-surface N-layer thin

film flow 242

Bibliography 249

vii



List of Figures

1.1

2.1

3.1

3.2

33

34
3.5

Critical Reynolds number as a function of the mean lower fluid
depth /1 and viscosity ratio m for two selected values of the density

ratio: (a) p =0.5; (b) p =0.1. Amaouche et al. 2007) . . .. .. .. 18

Schematic of two-dimensional gravity-driven bilayer flow through
a channel (left) and down an inclined substrate (right) inclined at
angle 6 to the horizontal, showing the associated geometry and co-

ordinate system for the problem of flow past a trench-like topography. 27

Staggered mesh arrangement used to solve equation sets based on
the DAF. . . . . . . . 67

Hierarchy of grids showing 3 grid levels (Gy, G1 and G») withc = 0

.................................... 80
An illustration os Restriction, R, and Interpolation, I, between grid
levels. . . . . . . e 81
Structure of one multigrid cycle for K = land K =2. . ... . .. 81
The Full Multigrid, FMG, illustrated for two V-cycles and four grid
levels. u;! refers to the solution vector on grid level Gy after per-
forming m FAS V-cycle; ug is the initial solution on the coarsest
grid level and ug is the solution on Gy grid level obtained by FMG
interpolation of ”2—1' ......................... 84

viii



3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

Mesh dependence of the capillary ridge height for flow over a step-

down topography with A9 = 0.5,[sg] = 0.1, 00 = up = 1.0, 6 =

10°and Re =0 . . . . . . . e

Convergence history for the problem of Figure 3.6 when the number

of grid points on the finest grid level is 1025. . . . . . .. ... ..

Comparison of free surface disturbance predicted by LUB and DAF
models when Re = 0, for free-surface flow over a trench when

ho =04, pp = =1, I, = 1.5, |sol = 0.1, Ca = 1.167 x 1074

and 8 = 10°. . . . . L

Comparison of liquid-liquid interface disturbance predicted by LUB
and DAF models when Re = 0 for channel flow over a step-down

when h9=0.4, p» = ur» = 1.0 x 1073, |so| = 0.1, Ca = 3.33 x 107

and 0@ = 10°. . . . . . L

Schematic diagram for bilayer flow in a channel containing a step-

down (left) and step-up (right) topography. for each problem the

flow is from lefttoright. . . . ... ... ... .. ... ... ...

Effect of topography height on the interface profile for flow over

a step-down topography when h19 = 0.1, 02 = 0, up = 1 x 1073

Ca=333x10"%0=90° ... .. . . . . .

Effect of topography height on the interface profile, for flow over

a step-down topography when hyg = 0.1,p2 = 1,up = 1, Ca =

3331074, 0=90% . . . . ...

Effect of topography height on capillary ridge height for flow over
a step-down, for hjg = 0.1,Ca = 3.33 X 1074, 6 = 90° and different

combination of upper liquid properties. . . . . . . . . ... ... ..

X

97



4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Effect of topography height on capillary ridge height, for flow over

a step-down topography when p; = u» = 1, 8 = 90° and different

valuesof hig. . . . . . . . . 98
Comparison of current results with those of Lenz and Kumar for
flow in channel containing a mound topography given by |so|=0.48
when £10=0.5, Ca=3.33x 107, pp = o = 1.0, =90°. . . . . .. 99
Effect of the normal gravity term on the interface shape for flow

through a channel with a step-down of |sg| = 0.1 when hjy = 0.4,
Ca=3.33x 107, p, = 1 x 1073 and py = 1.0, with: (a) 8 = 5°, (b)
0=10°and (c) 8 =90°; Re=0. . . . . ... ... .. .. ..... 103
Effect of Reynolds number on the interface shape for flow in a
channel with a step-down when h;p=0.4, Ca= 3.33 X 10~* and
p2 =0, = 1x1073, 0 = 10°, with: (a) |so| = 0.1 and (b) |so| =
0.4, 104
Effect of Reynolds number on the interface shape for flow in a
channel with a step-down when h;0=0.4, Ca= 3.33 X 10~ and
p2 = up = 1.0, 8 = 10°, with: (a) |so| = 0.1, (b) |so| = 0.4 and
©)1sol =0.8. . . . 105
Lower layer thickness,h; dependence on Re for flow in a channel
with a step-down topography when /19=0.4, Ca= 3.33x 1074, p, =
wr =1.0,|s9 =0.1,and 6 =10°. . . . .. ... ... ... ... 106
The dependence of capillary ridge height on the step height for a
step-down when hjg = 0.4,0 = 10°. (a) po =0, up = 1 X 1073 and
B pr=Lwp=1. ... 107
The dependence of capillary ridge height on Re for a step-down
when when /410=0.4, Ca= 3.33x10™* and 6 = 10°, with: (a) p2 =0,

p=1x103and (M) pa=L o =1. oo 108



4.13 Pressure gradient profiles for flow in a channel with a step-down

of |so| = 0.1 when h;p=0.4, Ca= 3.33 x 10™* and = 10°; P2 =

0,12 = 1 x 1073 (left), pp = pp = 1 (right). . . . ... ... .... 109
4.14 Comparison of interface shape for flow in a channel with a step-

down in the absence and presence of inertial effects. |so| = 0.2,

Ca= 3.33 x 10~* and p2=1,uy=1,60 = 10° and (a) Re = 0 and

(b) Re=150. . . . . . . . 110
4.15 Comparison of interface shape for flow in a channel with a step-

down in the absence and presence of inertial effects. |so| = 0.2,

Ca=3.33x10%and p» =0, o = 1 x 1073, 9 = 10° and (a) Re =

Oand (b) Re =150. . . . . .. . .. 112
4.16 Effect of hig on capillary ridge height for flow in a channel with a

step-down of |sg| = 0.2, Ca= 3.33 X 1074, 6 = 10° and (a) P2 =

wr=1land®) pr =0, =1x 1072 . . ... ... . ... ... . 113
4.17 Effect of density ratio on the interface shape for flow in a channel

with a step-down when h19=0.4, Ca= 3.33 X 10~ and ux = 1.0,

6 = 10° with: (@) Re=0and (b)Re=150. . . ... ... ... .. 114
4.18 Capillary trough depth for flow situations as in Figure 4.17. . . . . . 115
4.19 Effect of Reynolds number on the interface shape for flow in a chan-

nel with a step-up when /9=0.4, Ca= 3.33 X 10~* and 02 = Uy =

1.0, 6 = 10° with: (a) |sg| = 0.1, (b) |so| = 0.4 and (¢) |sg| =0.8. . . 116
4.20 Effect of Reynolds number on the interface shape for flow in a chan-

nel with a step-up when /19=0.4, Ca= 3.33 X 10~* and p2=0,uy =

1 x 1073, 0 = 10° with: (a)|so| = 0.1 and (b)|so| =0.4. . . . .. .. 117
4.21 Capillary trough depth of step-up as function of topography height

when h0=0.4, Ca= 3.33 x 1074, 6 = 10° for two flow configura-

tions: (@) p2 =0, o =1x103and ) po= Lo =1. . ..... 118

X1



4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

Capillary trough depth of step-up as function of Reynolds number
when £/10=0.4, |so| = 0.4, Ca= 3.33 x 1074, § = 10° for two flow
configurations: (a) p =0, = 1 x 102 and (b) pp = 1, up = 1.

As in Figure 4.6, showing the effect of Reynolds number on inter-

faceprofile. . . . . . . . ..

Comparison of interface profiles generated by gravity-driven flow,
6 = 10°, and pressure-driven flow in a channel with a step-down

given by [so|=0.1 when Re = 0, hjp=0.4, Ca= 3.33 X 10+ and

P2 = U2 = L.O. . o

Effect of Reynolds number on the interface shape for pressure-
driven flow in a channel with a step-down when h19=0.4, Ca= 3.33%

10~* and p2 =02, uy =1, 0 = 0° with: (a) |sg| = 0.1 and (b) |so|

Effect of Reynolds number on the interface shape for pressure-

driven flow in a channel with a step-up when /p=0.4, Ca= 3.33 X

. 119

120

107 and py = up = 1,, 6 = 0° with: (a) |so| = 0.1 and (b) |so| = 0.8. 123

Schematic diagram for bilayer flow in a channel containing a step-

down (left) and step-up (right) topography. . . . . ... ... ...

Effect of Reynolds number on the interface shape for shear-driven
flow in a channel with a step-up when %;0=0.4, Ca= 3.33 x 107
and pp = up = 1,, 8 = 0° with: (a)|so| = 0.1 and (b)|so| = 0.8.

The dependence of capillary ridge height for shear induced flow

over a step-down when, i1y = 0.4, Ca= 3.33x10~* and p2 =y =1,

, 0 = 0° with: (a)|so| =0.1 and (b)[so| =0.8. . . ... ... ... ..

Xii

. 125



4.30 Interface profile for shear-induced flow in a channel with a step-

down in the absence and presence of inertial effects. |so| = 0.2,

Ca= 3.33 x 1074, 02 = o = 1 and several values of hjg, , 6§ = 0°

with: (a) Re=0and (b) Re=150. . .. ... ... ... ..... 127
4.31 Capillary ridge as a function of hjo for flow situations shown in

Figure 4.30 . . . . . . . . . ... 128
4.32 Effect of Reynolds number on the interface shape for shear-driven

flow in a channel with a step-up when %;9=0.4, Ca= 3.33 x 10~

and py = pup = 1, 8 = 0° with: (a)|sg| = 0.1 and (b)|so| =0.8. . . . 129
4.33 Capillary ridge depth as a function of step depth |sg| for flow situa-

tions shown in Figure 4.32 . . . . ... ... ... ......... 130
4.34 Comparison of interface profiles generated by gravity-driven flow

and shear-induced flow with B=12 in a channel with a step-up given

by |so|=0.2 when h19=0.4 and Ca=3.33x 10™%. . . .. ... ... 131

5.1 Comparison between DAF predictions of the free surface distur-
bance when p, = pp = 1 with the experimental results of Decré
and Baret (2003) for flow over a substrate containing topography
when 6 = 30°: (a) step-up (height |so| = 0.2 and Re = 2.45); (b)
step-down (depth |so| = 0.2 and Re = 2.45); (c) trench ( |sg| = 0.19,
l;=15TlandRe=2.84). . ... ... ... ... ... ... 138
5.2 Comparison between DAF predictions of the free surface distur-
bance when pp = up = 1, § = 30° and the numerical results of
Veremieiev et al. (2010) for flow over a substrate containing a span-
wise (a) step-up and (b) step-down topography when Re = 15 and
the [sol =0.2. . . . . 139
5.3 AsinFigure 5.2 butwithRe=30. ... ... ... ......... 140

Xiii



5.4

5.5

5.6

5.7

5.8

59

5.10

5.11

5.12

Influence of density ratio on the free surface shape for different to-
pographical features when Re = 0, uo = 1.0, |sg| = 0.2, hjo = 0.5
and 6 = 10°; (a) step-up, (b) step-down, (c) trench, /; = 1.5.
Influence of density ratio on the liquid-liquid interface for different
topographical features when Re = 0, u» = 1.0, |so| = 0.2, hjg = 0.5
and 6 = 10°; (a) step-up, (b) step-down, (c) trench, [, = 1.5.

Effect of /1o on (a) the free surface and (b) the interface disturbance

when Re =0, pp =05, = 1.0, |sg| =02and 6 = 10°. . . . . ..

Influence of viscosity on free surface (top) and interface disturbance

(bottom) for step-down (left) and trench (right) topographies when

Re=0, 50| =02 p2=1,h1p=05and 6 =10°. . . ... .. ...

Evolution of the liquid-liquid interface profile when changing the

interface height for flow over trench topography when Re = 0, |so|

=0.2p2=ﬂ2: IL,and6=10°. . . ... ... ... ........

Effect of Re on the (a) free surface and (b) interface profiles for flow

over trench topography when py = up = 1.0, h1p = 0.5, |so| = 0.2,

;=15and 0 =10° . ... . . . . . . ...

Capillary ridge height for flow over trench topography for different

combinations of p, and uy when h19 = 0.5, |so| = 0.2, [, = 1.5 and

Effect of density on free surface shape when Re = 15, up = 1.0,

|so| = 0.2, hip = 0.5 and 6 = 10°; (a) step-up, (b) step-down, (c)

trench, [, = 1.5. . . . . . .. ..o

Effect of density on interface surface shape when when Re = 15,

ur = 1.0, |so| = 0.2, hjop = 0.5 and 8 = 10°; (a) step-up, (b) step-

down, (c)trench, [, =1.5.. . . . .. . . ... . ... ... . ...

Xiv

. 141

. 142

149

150



5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

Effect of Ao on the (a) free surface and (b) interface disturbance

for flow over trench topography when Re = 15, po = 0.5, up = 1,

[sol =02, =15and 0 =10°. . .. ... ... . ...... ...

Effect of viscosity on free surface (top) and interface disturbance

(bottom) for step-down (left) and trench (right) topographies when

Re=15,p0=1,h190=05,|s0| =0.2,and 0 =10°. . . . . ... ..

Comparison of free surface and interface disturbance in the pres-

ence and absence of inertia for flow over trench topography of |sg| =

0.2,/; =1.5when 6 =10° for (a) u =5.0and (b) u=0.5. ... ..

Evolution of the liquid-liquid interface profile for flow over trench

topography for the single-layer equivalent flow when 8 = 10° and

Free-surface disturbance for flow over trench topography, 6 = 30°,

lLy=w; =154, 50| =025,Re=0. . . ... ... ... .......

Liquid-liquid interface for flow over trench topography, 8 = 30°,

lLi=w, =154, ]s0| =025, Re=0. . . ... ... ... ... ...

Comparison of predicted streamwise free-surface profile at y* = 0,
Re = 0, with the lubrication approximation result of Gaskell et al.

(2004) for flow over a trench of I, = w, = 1.54, |sg| = 0.25 when

Free-surface disturbance for flow over trench topography, Re = 5,

0=30°10=w =142 |50| =0197, po=po=1. ... ......

Liquid-liquid interface disturbance for flow over trench topography,

Re=5,0=30°10=w;=142,|s0| =0.197, p2o = =1. . . . ..

Comparison of predicted streamwise free-surface profile for the

flow shown in Figure 5.20 with the results of Veremieiev et al.

(2010) aty* =Oforthe. . . . . . .. ... ... .. L

XV

152

160



5.23

5.24

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Three-dimensional plot for free surface disturbance generated by
flow over trench topography, when p; = u» = 0.5 and 6 = 10° and
l; = 1.5 when: (a) A,=1; (b) A;=5; (c) A,=10; (d) A,=15. . . . . ..
Effect of topography aspect ratio on (a) streamwise free-surface
profiles y* = 0, and (b) spanwise free-surface profiles along x* = 0
for the flow conifgurations shown in Figure 5.23 For comparison,
the profiles for flow over the corresponding one-dimensional span-

wise trench are also given when po = p =0.5. . . . . .. ... ..

Types of time-independent non-Newtonian fluid behaviour, Chhabra
and Richardson (2011) . . . . . . . . . .. .. ... ... .....
Comparison of the free-surface disturbance obtained using the LUB
model for bilayer non-Newtonian flow, n; = np = 1.0, to that of
Newtonian fluid over trench topography with [, = 1.5, |so| = 0.2;
0=10°%Re=0. ... ... .. ...
Effect of changing the upper liquid layer index, n; for bilayer flow
over trench topography; with [, = 1.5, |so| = 0.2, 8 = 10°, Re=0. .
Effect of changing the lower liquid layer index, n; for bilayer flow
over trench topography; with [, = 1.5, |so| = 0.2, 8 = 10°, Re=0. .
Free-surface disturbance generated for different n; — n, combina-
tions for flow over trench topography; with [, = 1.5, |so| = 0.2,
0=10°%Re=0. .. ... ... ..
Liquid-liquid interface disturbance for different n; — n, combina-
tions for flow over trench topography; with [, = 1.5, |sgo| = 0.2,
0=10°%Re=0. ... ... .. ...
Comparison of the free-surface disturbance obtained using the LUB
model and the DAF for flow of a power-law fluid, n = 0.8, over

trench topography with /; = 1.5, |so| = 0.2; 6 = 10°, Re=0. . . . . .

Xvi

161

. 184

. 184

186



6.8 Comparison of the free-surface disturbance obtained using the LUB
model and the DAF for flow of a power-law fluid, n = 1.2, over
trench topography with [, = 1.5, |so| = 0.2; 6 = 10°, Re=0. . . . . . 187

6.9 Effect of power-law index on the free-surface disturbance for flow
over trench topography with [, = 1.5, |so| = 0.2; 6 = 10° and
Re=10. . .. . . 187

6.10 Effect of Reynolds number on the free-surface disturbance for flow
of a power-law fluid, n = 0.9, over trench topography /; = 1.5,

[sol =0.2;0=10° . . ... ... . 188

6.11 Effect of Reynolds number on free-surface disturbance for flow of
a power-law fluid, n = 1.1, over trench topography with [, = 1.5,

[sol =0.2;0=10° . . ... ... . 188

D.1 Collocated mesh arrangement of variables for the LUB model. . . . 233

Xvii



NOMENCLATURE

Below are listed those symbols which have a general meaning. A convention used

throughout the thesis is that, unless otherwise stated, quantities in upper case are

dimensional while those in lower case are dimensionless. Operators are identified

using a mathematical caligraph font, while vectors and tensors are denoted under-

line and double underline respectively.

Ca

I,J

Latin letters

Dimensionless body force

Capillary number

Dimensionless constant relating free surface velocity to com-
bined film thickness

Global defects vector

Coordinate of substrate / lower channel wall

Coordinate of interface surface

Coordinate of free surface / upper channel wall

Global right-hand-side vector

Advective operator
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1.1 Motivation

Thin liquid film flows appear in many industrial and engineering applications as
well as in a variety of natural and biological systems. In industry, numerous manu-
facturing processes involve the application of thin liquid films on a solid substrate;
typical examples are coating operations and the fabrication of electronic compo-
nents and sensors. In coating processes, several devices have been designed to
deposit single or multilayer thin liquid films on a solid - often moving - substrate.
These layers are eventually solidified during the drying stage. A successful coating
process requires good levelling of the coated layers with minimum disturbance at
the free surface itself. This can be achieved by controlling the flow parameters such
as the physical properties (density, viscosity and surface tension) of the coating fluid
and the coating layer thickness(es). The flow of thin films on flat surfaces has been
investigated extensively and the underlying physics is relatively well known, see
for example Kistler and Schweizer (1997). A summary of recent relevant research

effort in the field is provided by Craster and Matar (2009) in their extensive review.

Thin films flowing on surfaces containing topographic features either desired (man-
made) or unwanted (such as scratches or dust particles) are known to feature free
surface disturbances, the generation of which can persist over a distance several
order of magnitude greater in scale than the topography itself, Stillwagon and Lar-
son (1988); but in general such problems have received far less attention compared
to those involving flat substrate. In the coating industry for instance, the need to
produce coated layers with a desired thickness, while keeping free surface distur-
bances to a minimum, highlights the importance of a better understanding of the
underlying physics for such flow scenarios. Flow over patterned surfaces occurs,

for example, in the manufacture of printed circuits, microdevices, displays etc.,



Decré and Baret (2003), where several thin liquid films are deposited successively,
together with the application of photolithography for each layer, Gates et al. (2005).
Consequently, the thickness and free-surface profile of each layer is influenced by
the shape of the previously deposited one. Other applications featuring film flows
over surfaces containing topography exist in many technological fields: in partic-
ular spanning in chemical engineering, the advantage of thin films being that their
thickness is small, which results in large heat- and mass-transfer areas per unit
volume, that can be exploited to design efficient process devices such as thin-film
heat exchangers, evaporators, condensers, reactors and distillation columns, Focke
and Knibbe (1986), Webb (1994) and Helbig et al. (2009). Thin film flow is also
implemented in: microelectromechanical systems (MEMS) and in the cooling of
nanotechnology devices; the fabrication of microfluidic devices, Stone et al. (2004)
and Squires and Quake (2005); microlithography processes to control film regular-
ity, Ho et al. (2004); the fabrication of electrolysis cells, Alekseenko et al. (1994),
distillation trays, de Santos et al. (1991), and liquid-cooled turbine blades, Wilson

et al. (2001).

Moreover, thin film flow over flat and patterned substrate is important in many bi-
ological systems: the corneal liquid film in the eye, Shyy et al. (2001); surfactant
replacement therapy in preterm newborns as a treatment of respiratory system dif-
ficulties, Grotberg (1994, 2001); plant disease control, Walters (2006). On a larger
scale thin film flows appear in a range of geophysical phenomena such as glacial,
lava, snow avalanche flows and seafloor currents, Ancey (2007), and coastal flows,

Helfrich and Melville (2006).

It is clear that the above highlighted importance and range of applications provide
strong motivation for continued research in the field of thin film flow and in partic-

ular over surfaces containing topographic features.



1.2 Physics of thin film flows

Thin liquid films are driven by body forces and/or surface forces in the presence
or absence of inertial contributions. Depending on the flow system considered, the
degree to which these forces act on a fluid may be promoted or demoted. Inertia
is important in cases such as falling films or spin coating, while it can often be
neglected in situations where the flow Reynolds number is low, such as in the case
of gravity-driven flow down an inclined plane at low speed. Body forces include
gravity and centrifugal force; surface forces arise due to surface tension and its
variations. The existence of surface tension gradients in a thin liquid film induces
shear stresses at the free surface. These stresses can cause the liquid to move from
regions of low surface tension to ones of high surface tension and hence produce
variations in film thickness. This is called the Marangoni effect and is generated
by surface tension variations due to either a thermal gradient (thermocapillarity) or
the presence of a surface active agent (surfactant) with nonuniform concentration,

Scriven and Sternling (1960).

Surfactants are compounds that accumulate at the surface of a liquid or at the liquid-
liquid interface separating liquids in bilayer systems, rather than the bulk liquid, and
reduce the surface tension there. Lowering surface tension allows for easier spread-
ing of thin films, Myers (1998). Surfactants are usually used to reduce the occur-
rence of instabilities related to surface phenomena; however, they may lead to film
nonuniformities if not well controlled, Jensen and Grotberg (1993). Disturbances at
a free surface due to Marangoni stresses, which may be significant to the extent that
they lead to film rupture and dewet, Afsar-Siddiqui et al. (2004), are undesirable in
situations where uniform thickness is required. On the other hand, these stresses

may be exploited in speeding up drying processes, Marra and Huethorst (1991). In



Marangoni drying, alcohol vapour soluble in water is used to generate a concentra-
tion gradient across the surface of the wet substrate which gives rise to Marangoni
flow and subsequently dries the subjected area, Leenaars et al. (1990). This process
is used in industry to cleanse integrated circuits and liquid crystal displays, O’Brien

(1993).

Curved substrates are also known to affect free surface uniformity: coatings thin at
outside corners and thicken at inside ones, Weidner et al. (1996). Another cause
of free surface nonuniformity is the chemical composition of the substrate. Chemi-
cally heterogeneous substrates can cause variation in the wetting pattern depending

on the type of heterogeneity, Konnur et al. (2000) and Sharma et al. (2003).

In addition to thermocapillarity, thermal effect may appear in the variation of physi-
cal properties with temperature. Although a temperature gradient across a thin film
is generally small enough that physical properties can be evaluated at the average
temperature without significant error, the error may be large when liquids of high
viscosity are considered as viscosity can vary exponentially with temperature, Oron
et al. (1997). Reisfeld and Bankoff (1990) found that a heated thin liquid film with a
linear dependence of viscosity on temperature has a smaller rupture time compared

to the constant viscosity one.

Thin films are also subject to other types of forces such as long-range intermolecular
forces (Van der Waals forces) and electrostatic forces. Van der Waals forces are
significant in ultrathin films (with thickness <100 nm), Oron et al. (1997). This
range of thin films is outside the scope of the present work which concentrates on

films of several hundreds of microns in height.

Thin film flow is a thriving field of research supported by its increasing impor-
tance and applications in science and technology. This has resulted in an enormous

amount of literature related to thin films and their behavior. In the following sec-



tions a review of the research effort in the area of thin film flows is presented. The
review is limited to articles featuring single-layer film flows over topography and

the flow of bilayer films with and without topography.

1.3 Single Layer Flow over Topography

As mentioned above, the flow of thin films over topography has diverse industrial
applications. It is also important for the purpose of quality control in coating pro-
cesses. Among the first attempts to explore the problem of thin film flow over
topography theoretically was the work of Pozrikidis and Thoroddsen (1991). They
used the boundary element method to solve the governing Stokes equations numer-
ically. Their results showed that the presence of a small particle attached to the
surface of an inclined substrate generates variations to the free surface upstream
and downstream of the particle. These variations were noticed in the form of a

capillary ridge upstream of the topography and a depression downstream of it.

Stillwagon et al. (1987) performed a long-wave analysis and experiments to in-
vestigate the flow over one-dimensional topography during spin-coating, showing
that the levelling of the coating film is driven by capillarity and that levelling de-
pends on viscosity, the thickness of the coated layer and the topography width.
The same problem was considered by Stillwagon and Larson (1990) who, conduct-
ing a combined experimental and analytical study, succeeded in obtaining a one-
dimensional analytical formula for the upstream capillary ridge and its associated
downstream exponential decay. For the same spin coating problems, Peurrung and
Graves (1991,1993) performed both experimental and numerical studies and found
qualitative agreement between the two. Pritchard et al. (1992), on the other hand,

studied the problem of gravity driven two dimensional thin film flow down an in-



clined plane containing topography, approaching the problem both numerically and
experimentally. Their numerical solution was based on a finite element discretisa-
tion of the Navier-Stokes equations, using the lubrication approximation, and found
to be accurate even in cases of shallow trench topography where lubrication theory

is not strictly valid.

Kalliadasis et al. (2000) investigated the flow of a thin film down an inclined sur-
face containing a span-wise topographical feature (step-up,step-down, trench and
mound). The resulting third-order nonlinear ordinary differential equation for the
film thickness was solved as a two-point boundary value problem. Their results
showed the flow over a single step-up to be characterised by a depression just up-
stream of the step while flow over a step-down has two features: a large capillary
ridge in advance of the step and a point (the pinch) with a minimum film thickness
immediately above the step. They found that for finite topographical features when
the width is large enough, the free surface behaves as a combination of two profiles;
a step-down followed by a step-up for trenches and the opposite for mounds. For
smaller width values the two profiles interact when the exponential tails for the two
begin to overlap. The height of the ridge and the pinch are a function of topogra-
phy depth, width and steepness. It was also found that finite topography width or a

significant vertical component of gravity can suppress these effects.

A Green’s function formulation was employed to construct analytical solutions for
the flow of a thin viscous liquid film over one-dimensional step-up, step-down,
trench and mound topographies by Fernandez Parent ef al. (1998) and Lucea et al.
(1999). Results were verified via numerical solutions and experimental measure-
ments by the same authors as well as those of Messé and Decré (1997). In a later
study Hayes et al. (2000) extended this Green’s function model to solve the flow

over two-dimensional topographies. Different topographies were considered in or-



der to investigate the effects of topography steepness. It was noted that, in general,
a rapidly changing topography induces a significant free-surface disturbance while
a slowly changing one leads to a more conforming free surface profile. The solu-
tions were verified using the experimental results of Baret and Decré (2000) despite
the fact that their analysis is valid for vertically aligned substrate only while in the

experiments the substrate was inclined at a fixed angle to the horizontal.

Mazouchi and Homsy (2001) studied the two dimensional viscous flow of thin films
over topographic features via Stokes flow solved by boundary element method.
Different topographies were considered: trenches and a step-down with different
depths and capillary number values. The Stokes equations were written as a set of
harmonic and bi-harmonic equations for vorticity and stream function. These equa-
tions were converted to integral equations and the boundary integral method used
to solve them. Their results showed that, for small capillary number, the free sur-
face developed a ridge and a depression upstream of a step-down and a depression
upstream of a step-up, and the amplitudes and locations of these ridges and depres-
sions to be functions of capillary number. Their results are in good agreement with
predictions from lubrication theory for small capillary numbers. For the case of
large capillary number, they reported discrepancies from the lubrication theory that
the free surface conformed to the substrate and the maximum height of the ridge to

be exponentially correlated to the capillary number.

Free surface disturbances are not desirable in many industrial applications where
a uniform planar surface is required, such as in the coating industry. This has en-
couraged research into methods of minimizing thin film thickness variations, Still-
wagon and Larson (1988 ,1990). The optimal levelling of the capillary ridge which
forms during the flow of thin liquid films over a step-down topography, by means of

Marangoni stresses was investigated numerically by Gramlich et al. (2002). Con-



trolling the Marangoni stresses was achieved by imposing a temperature gradient
on the thin film by nonuniform heating of the solid substrate. Two temperature
profiles were considered, a rectangular profile and a parabolic one. The governing
equation was solved numerically following the method of Kalliadasis et al. (2000).
Results showed that both rectangular and parabolic temperature profiles were able
to reduce the capillary ridge. A reduction in the ridge height by as much as 50%
compared with the isothermal case was achieved. It was also found that two- and

three-step heaters can reduce the variation in surface height by up to 77%.

It has been shown subsequently that free-surface disturbances can be controlled
and if necessary minimised using other means such as appropriate design of the
topographical feature, Gaskell er al. (2004), Sellier (2008), Heining and Aksel
(2009) and Sellier and Panda (2010); employing fluid viscoelasticity, Saprykin
et al. (2007); using flexible substrate, Matar, Craster and Kumar (2007), Lee et al.
(2009b); adding surfactants, Pozrikidis (2003); using electrified thin films Tseluiko
et al. (2008); Veremieiev et al. (2012).

Decré and Baret (2003) conducted an experimental study of the flow of thin liquid
films over topographies. They studied the flow of water down an inclined surface
containing topographical features: a one-dimensional step-up and step-down and
two-dimensional square and rectangular trenches. Double-arm phase-stepped inter-
ferometry was used in their experiments to measure the free surface profile. Their
results, which agree well with previous results for the cases of two-dimensional flow
and with the solution of the Green’s function problem of Hayes et al. (2000) for the
three-dimensional case, have emerged to represent a benchmark and valuable data

for validating theoretical solutions for the same flow conditions.

Two- and three-dimensional gravity driven thin liquid film flows of Newtonian in-

compressible fluid with constant density over a non-porous inclined flat surface con-
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taining well-defined topography were studied by Gaskell et al. (2004). For the two-
dimensional flow case, a finite element solution (Bubnov-Galerkin weighted resid-
ual) of the Navier-stokes equations was obtained. The nonlinear weighted residual
equations were solved using Newtonian iteration coupled to a Frontal solver al-
gorithm. Comparison with the boundary element results of Mazouchi and Homsy
(2001) for the case of a full-width trench and with the experimental results of De-
cré and Baret (2003) for the case of one-dimensional step-up and step-down to-
pographic features showed excellent agreement. For the three-dimensional case, a
Full Approximation Storage (FAS), Trottenberg et al. (2001) multigrid approach
was used to solve the lubrication equations. These were discretised on a square
domain using second-order accurate central differences. Results for flow over lo-
calized peaks and trenches were generated and compared to the experimental mea-
surements of Decré and Baret (2003) for the case of trenches. Their results were
found to agree well with the available experimental data. They also suggested re-
ducing the free surface variations caused by a peak topography by surrounding it

with a shallow trench.

Gaskell et al. (2006) used the multigrid method to solve the problem of flow of
an evaporating gravity-driven thin film over topography in terms of the effects of
solvent concentration and topography on the free surface profile by solving the
governing of time-dependent lubrication and concentration equations when the vis-
cosity is a function of the concentration change caused by evaporation. They found
that localized topography leads to persistent heterogeneities in the composition of
the mixture while spanewise topgraphies have no effect on the composition. The
solver has subsequently been refined and improved to solve a varity of flow prob-
lem: flow over topography using error controlled automatic mesh refinement, Lee
et al. (2007); flow past occlusion with automatic mesh refinement and temporal

adaptivity, Sellier et al. (2009); pesticide droplet spreading, Glass et al. (2010);
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flow over flexible substrate containing topographical features, Lee et al. (2011);

rivulet formation, Slade (2013).

The influence of inertia on thin film flow cannot be explored in the framework of
lubrication approximation as it is based on the assumption Re ~ O(g). Among
the early attempts to account for inertia in thin film flow was the model developed
by Benney (1966). This model, which is often called the long-wave Benney-type-
model, is based on perturbation analysis and the expansion of the unknowns in
terms of the long-wave parameter, £. The model accounts for inertia in terms of
first-order dynamics of the perturbation analysis which imposes the restriction that
Re = O(1). Several other researchers, for example Lin (1974), Nakaya (1975) and
Chang (1986) and more recently Bielarz and Kalliadasis (2003) and Tseluiko ef al.

(2009) have implemented such a model in their work.

To lift the restriction on Reynolds number as it appears in the Benney-type-model,
the integral-boundary-layer (IBL) approximation based on the work of Shkadov
(1967, 1968) can be employed. This model is derived by averaging the governing
equation over the traverse coordinate assuming that the parabolic velocity profile
which satisfies the x-momentum equation for zero Reynolds number persist even
for non-zero Reynolds numbers. Different versions of the Shkadov IBL model have
been proposed by Ruyer-Quil and Manneville (1998, 2000, 2002) and Nguyen and
Balakotaiah (2000) based on using higher order polynomials to appropriate the ve-
locity profile and by retaining second order-accurate terms in the long-wave approx-
imation of the Navier-Stokes equations. Amaouche et al. (2005) further refined the
model proposed by Nguyen and Balakotaiah (2000) by keeping third order-accurate
terms in the long-wave approximation and using a polynomial up to eighth order
to approximate the velocity profile. Heining ef al. (2012) used the IBL method,

together with Volume Of Fluid (VOF) solutions and complementary experiments,
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to investigate the effect of inertia on three-dimensional thin film flow over an undu-

lated surface.

The IBL approximation has also been used to study inertial thin film flow over
corrugated surfaces and step topographies by Trifonov (2004) and Saprykin et al.
(2007), respectively. A depth-averaged form, DAF, of the Navier-Stokes and conti-
nuity equations, akin to the IBL method, was proposed by Veremieiev et al. (2010)
and to investigate three-dimensional gravity-driven inertial thin film flow down an
inclined substrate containing topographical features. The DAF, while based on a
first-order accurate long-wave approximation, is free from Reynolds number lim-
itations. It is derived by averaging the governing equations across the film and
employing the assumption that the parabolic velocity profile occurring when Re=0
persists for non-zero Reynolds number situations. This results in a set of partial
differential equations for film thickness, pressure and average velocity which have
been solved numerically using an accurate and efficient multigrid solver with au-
tomatic time-stepping. The results obtained show that the capillary features are
strongly influenced by the presence of inertia. Veremieiev (2011) reported comple-
mentary two- and three-dimensional finite element solutions to validate the accu-

racy of the DAF.

The above mentioned models are based on the long-wave approximation and there-
fore impose restrictions on the selection of Capillary number, film thickness and
topography steepness. These restrictions are avoided if the full Navier-Stokes equa-
tions are solved. Analytical solutions to the full Navier-Stokes equations are, more
or less, limited to flow over wavy substrate while steep topography problems are
treated numerically. Perturbation analyses have been applied successfully to steady
two-dimensional thin film flow over wavy substrate by Wang (1981, 1984) and

Wierschem et al. (2002) and for three-dimensional flows by Wang (2005), Luo and
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Pozrikidis (2006, 2007) and Heining (2009). However, they reveal nothing of the
eddy structure that occurs within the film itself, as a function of inertia present or the
geometry of the substrate undulation, Wierschem et al. (2003) and Wierschem and
Aksel (2004). The semi-analytical solutions constructed by Scholle et al. (2004),
Scholle et al. (2006) and Scholle and Aksel (2007), however, agree well with the

experimental results of Wierschem et al. (2003).

For film flow over steep topography, numerical methods such as the boundary el-
ement and finite element methods have been used to solve the full Navier-Stokes
equations. For example the boundary element method has been used to investi-
gate two-dimensional Stokes flow over topography such as flow over a periodic
wall, Pozrikidis (1988) and flow over a spanwise rectangular trench, Mazouchi and
Homsy (2001). The flow over a particle adjacent to flat surface investigated by
Pozrikidis and Thoroddsen (1991) and Blyth and Pozrikidis (2006) are examples
on employing the boundary element method in three-dimensional situations. It has
similarly been used to solve three-dimensional gravity-driven flow over a spheroid
and around an occlusion Baxter et al. (2009) and multiple occlusions Baxter et al.

(2010).

Finite elements solutions of the full Navier-Stokes equations, on the other hand,
have remained restricted almost exclusively to steady two-dimensional problems,
due to the high computational requirements. Bontozoglou and Serifi (2008) inves-
tigated flow down a vertical wall containing a step topography and found that in-
creasing inertia first amplifies and then suppresses the capillary features. However,
the fact that inertial flow over a vertical wall is unstable even for small Reynolds
number renders their result unreliable. Other examples involving the use of finite
element method for thin film flows are the work of Trifonov (1999), Malamataris

and Bontozoglou (1999), Gu et al. (2004) and Scholle et al. (2008).
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Thin films flowing down an inclined flat substrate are prone to inertial instability
if the Reynolds number exceeds a certain critical value Re.,;. Benjamin (1957)
and Yih (1963) found that the value of Re.,;; 1s a function of the inclination angel

according to the relation:
5
Recris = 7 cot, (1.1)

where Re.,;; is defined based on the free surface velocity and 6 is the inclination
angle. This finds support from the experimental investigations of Liu et al. (1993)
and Liu and Gollub (1993,1994). Numerical investigations of waves at the surface
of a flowing film have also been reported, see for example Ramaswamy et al. (1996)

and Malamataris et al. (2002).

When the substrate also exhibits topographical features their influence on stability
should be considered together with the effect of inertia. The experimental inves-
tigation of Vlachogiannis and Bontozoglou (2002), suggests that the presence of
periodic topography broadens the range of Re values for stable flow which agrees
with the finding of the numerical prediction of Trifonov (2007). Argyriadi et al.
(2006) also demonstrate that the presence of steep corrugation has an stabilising

effect on the flow over a step-down topography.

The influence of topography on the stability of thin film flow for the case of steep
topography such as a step-down was investigated by Kalliadasis and Homsy (2001)
and Davis and Troian (2005). They found that the capillary ridge formed down-
stream of a step topography is surprisingly stable for a wide range of the perti-
nent parameters due to the pressure gradient induced by the topography at small
wavenumbers and by surface tension at high wavenumbers. Recently, D’ Alessio
et al. (2009) employed Floquet—Bloch theory to investigate the influence of sub-

strate topography and surface tension on the stability of gravity-driven isothermal
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thin film flow down sinusoidal substrate. The same was used subsequently for non-
isothermal film flow, D’Alessio ef al. (2010). How to extend/apply this work to
accommodate the steep topography focussed upon in this thesis is not obvious as it

arguably breaks the assumption of smooth topography underpinning their analysis.

Thermocapillary-driven films are subject to Marangoni instability which is caused
by variations in the surface tension resulting from temperature changes, Davis
(1987). The presence of surfactant, on the other hand, increases R.,; as shown

by Blyth and Pozrikidis (2004).

1.4 Bilayer Systems

Bilayer thin films occur in a broad class of natural phenomena and are relevant to
various fields of engineering, see Stoker (2011) and Han (2012), such as semicon-
ductor devices, the petroleum and plastics industries, chemical reactors, the coating
of a colour film which sometimes consists of more than ten different layers. These
flows are characterized by the presence of at least one liquid-liquid interface. Bi-
layer free-surface thin film flow has received much less attention compared to the
single-layer case. The majority of published studies on the subject of bilayer thin

films deal with stability and dewetting scenarios.

While several studies have been performed to investigate the flow of continuous
bilayer free-surface and channel flows, few have considered the presence of surface
topography. Dassori et al. (1984) performed a perturbation analysis of two-phase
flow (three layers) in a channel with sinusoidal periodic walls and found the wavy
interface profile to be out of phase with respect to the periodic walls and that in-
stability arises at high viscosity ratios. Two-dimensional steady bilayer flow in a

channel containing a topographical feature is investigated in the framework of the
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lubrication approximation, by Lenz and Kumar (2007). A single third-order par-
tial differential equation that describes the behaviour of the interface is derived and
solved numerically using a finite difference method. They found that density ratio
and thickness ratio strongly influence the interface profile while viscosity has a less
significant effect. Comparison with equivalent single-layer flow reveals that capil-
lary features can be suppressed under certain flow conditions. More recently, Zhou
and Kumar (2012) attempted to extend the work of Lenz and Kumar (2007) by in-
cluding inertial effects using a diffuse-interface method for transient flow. Their
approach was able to simulate flow over step-down but not for step-up topography.
They admitted that the reason for this inability is not clear and could be due to the

lack of sufficient numerical resolution or due to the choice of initial conditions.

Alba et al. (2008) explored the steady gravity-driven bilayer thin film flow emerging
out of a channel and flowing down an inclined flat substrate. The density was
assumed uniform while viscosity and surface tension were different. The problem
was formulated using the model of Shkadov (1967) with an assumed semiparabolic
velocity profile. They found that the surface-to-interfacial tension ratio, viscosity
ratio and thickness ratio significantly affect the free surface and interface profiles.
Khayat and Tian (2009) studied steady bilayer flow in a narrow channel constructed
of a moving flat lower wall and stationary, variable height, upper wall. The flow
is induced by the translation of the flat wall shearing the lower layer, resembling
lubrication flow. The focus of the investigation was on the pressure distribution, as
it is the normal force that prevents the two surfaces from coming into contact. The
influence of channel topography and viscosity ratio on the pressure distribution is
explored showing that for a converging channel and low viscosity ratio the pressure
increases everywhere in the channel monotonically with viscosity ratio, reaching
a maximum, and decreases afterwards. In contrast, the interface level increases

monotonically with viscosity ratio and channel modulation causing considerable
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pressure buildup. The work of Alba et al. (2008) was revisited by Pandher and
Khayat (2011) where a transient version of the problem was solved numerically

and a nonlinear stability analysis performed.

In contrast to single-layer films, bilayer films can be unstable even in the absence of
inertia. This instability arises due to the existence of an interface and is caused by
the discontinuity of fluid properties across it. This type of instability is sometimes

called inertialess instability.

The interfacial instability, first identified by Yih (1967), is related to the presence
of a solid boundary close to the interface. This was extended to arbitrary densi-
ties, viscosities and thickness ratios by Yiantsios and Higgins (1988) who found
that viscosity stratification instability can be eliminated by hydrostatic effects. Kao
(1965, 1968) first investigated the long-wave stability of gravity-driven bilayer thin
films when the two fluids have different viscosity, density and thickness using the
long-wave approach used by Yih (1963) for single-layer flow. Two modes of in-
stability were identified: the interface mode and the free-surface mode. It was also
found that when the lower layer is less viscous than the upper one the flow be-
comes unstable even at Re = 0. The same was concluded by Loewenherz and
Lawrence (1989) who further investigated the inertialess instability with their focus
being upon the influence of viscosity stratification assuming both fluid are of the
same density. Later, Chen (1993) found that this instability can take place at any
Reynolds number and surface and interface tensions. Hu et al. (2006) found, as
expected, that when the heavier fluid is above, the flow is always unstable. Hu et al.

(2008) extended this finding by considering the nonzero Reynolds number case.

The stability of thin film formed from two immiscible liquids on a horizontal isother-
mal or heated substrate was considered by Pototsky et al. (2005). The problem was

solved in the framework of the lubrication approximation. The effects of inter-
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molecular interaction on the stability were taken into account. For the purpose of
comparison, single layer films were introduced by assuming either the upper or
lower layer to be rigid. The results showed that a two-layer thin film is less stable

than the corresponding effective single layer film.

Amaouche et al. (2007) investigated the stability of two-dimensional gravity-driven
flow of two superposed layers of immiscible Newtonian liquids in channels. They
extended the weighted residual approach first proposed by Ruyer-Quil and Man-
neville (2000) for single-layer flows by taking into account second order terms in
the long-wave expansion. This allowed them to predict the stability regimes in
bilayer channel flow. Their results illustrate the complicated interaction between
viscosity ratio and lower layer thickness, /1, in determining the stability threshold.
Figure 1.1 shows plot for critical Reynolds number, R, for two values of density
ratio, 0.5 and 1; it is seen from the figure that cot@/R.,;; is always small except
when /1 approaches unity. This indicates that channel flow is more inertially stable

than free surface film flow.

0.5
0.41
0.3

024

(cot 0 /R).

0.1 1

5
2 T3 4 02 0.4 06 0.8

@ =05 e - - ®) p=0.1 hi m

Figure 1.1: Critical Reynolds number as a function of the mean lower fluid depth
h1 and viscosity ratio m for two selected values of the density ratio: (a) p =0.5; (b)
o =0.1. Amaouche et al. (2007)

Alba et al. (2011) further improved the use of the Shkadov model by implementing

the weighted residual approach, first proposed by Amaouche et al. (2007), to find
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suitable weight functions for depth averaging. They applied this strategy in inves-
tigating pressure-gradient-driven transient bilayer flow in a channel. A subsequent
perturbation analysis was performed to explore the linear stability of the two-layer
system, the main conclusion being that increasing the viscosity of a thicker upper
layer destabilises the flow while when the upper layer is more viscous increasing
its thickness has a stabilising effect on the flow and that the stability diagram is

independent of the Reynolds number.

A large part of the published studies in the context of bilayer thin film flow focusses
on issues of dewtting and stability of ultra thin film (thickness < 100 nm). At this
scale of layer thickness intermolecular forces become significant and affect the flow
dynamics. Ultrathin free surface films on horizontal substrates were first studied via
the long-wave approximation by Ruckenstein and Jain (1974). These films may be
unstable and dewet due to effective molecular interactions which are introduced into
the governing equations in the form of an additional pressure term, the so-called
disjoining pressure, which in the simplest case results from the apolar London—van

der Waals dispersion forces.

Wang et al. (2001) conducted an experimental study for the dewetting of a bilayer
thin polymer film and its dependence on film thickness. They concluded that the
dewetting time is independent of the thickness for films with a high viscosity lower
layer but depends on the thickness of both layers when the viscosity is not high.
Kang et al. (2003) investigated the dewetting of bilayer thin polymer films. They
observed that at first the upper layer dewets the lower one in a way similar to lig-
uid/solid dewetting until dewetting holes merge. This is followed by a partial layer

inversion with the upper layer becoming the lower one.

Bandyopadhyay and Sharma (2008) presented a study of the dewetting and mor-

phology of thin liquid bilayer films. They performed a three-dimensional long-wave
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nonlinear analysis of the instability caused by Van der Waals forces in ultra thin
films. The governing equations were discretised using a finite difference scheme
and the resultant set of equations, subject to periodic boundary conditions, solved
using Gear’s algorithm (NAG library routine DO2EJF). They found that thickness,
viscosity and surface energy significantly affect the dewetting mode and its final
morphology. The same authors, (2010) extended their previous work to account for
the instability of thin bilayer films engendered by Van der Waals forces on chem-
ically heterogeneous substrates. Their work showed that thin bilayer films can be
used as a means to reproduce or transfer patterns from the lower layer to the free

surface and can also be used in the formation of microchannels.

Danov, Paunov, Alleborn, Raszillier and Durst (1998) conducted a stability analysis
of horizontal evaporating two-layer thin liquid films based on lubrication theory. A
system of equations was derived taking into account the presence of a surfactant
soluble in both layers and the evaporation of solvent from the upper layer. A sub-
sequence linear analysis of was performed by Danov, Paunov, Stoyanov, Alleborn,
Raszillier and Durst (1998). Marangoni effects, evaporation, surfactant effects, and
surface forces effects were studied. The early study was extended by Paunov et al.
(1998) by performing a non-linear analysis, including the effect of Van der Waals
forces. These studies allowed for better understanding of the role of each of the

above factors on the stability of thin bilayer films.

The dynamics of a pressure driven bilayer film flow in a channel under high vis-
cosity contrasts was studied by Matar, Lawrence and Sisoev (2007). They used the
lubrication approximation for the high viscosity layer and Karman-Polhausen ap-
proximation, Schlichting and Gersten (2000), for the less viscous one. The single
equation derived was discretised using a pseudospectral method and the resulting

set of nonlinear equations solved using the Newton-Kantorovich method, Argyros
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(2007). The results revealed the existence of solution nonuniqueness over certain

ranges of the problem parameters.

1.5 Thesis outline

The problem of interest in this thesis is the flow of continuous bilayer thin films in
the presence of topographical features. The liquid layers are immiscible and two
different configurations are considered: free-surface flow down an inclined sub-
strate; confined flow through a channel. As closed form analytical solutions to such
problems remain elusive, appropriate mathematical models are developed and the

associated governing equation sets solved numerically.

The novelty of the content provided in the thesis focuses in particular on the fol-

lowing aspects:

1. The formulation of a variety of mathematical models based on the long-wave
approximation, invoking lubrication theory and deriving depth-averaged forms

of the Navier-Stokes and continuity equations.

2. Solution of the governing equation sets resulting from 1., written as appropri-
ate finite difference approximations, using an efficient and accurate multigrid

strategy.

3. Exploring, for both flow configurations, the effect of different topography
types and flow parameters on the free surface and liquid-liquid interface dis-

turbances that occur when inertia is both neglected and accounted for.

4. A tentative investigation, for the free surface flow configuration, of liquid

layers that are non-Newtonian in nature, by deriving governing equation sets
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incorporating a Power-law model and solving their discrete finite difference

forms using the same multigrid approach.

The thesis has the following structure:

Chapter 2 introduces the flow configurations of interest and provides a rigours math-
ematical underpinning to the governing equations used to model them. This in-
volves using the long-wave approximation to reduce the Navier-Stokes and conti-
nuity equations to a more numerically tractable form. The dimensionality is reduced
by one and two types of equation sets emerge: one encompassing inertia terms, re-
ferred to as the depth-averaged form (DAF); the other, valid when inertia effects
are neglected, termed the the lubrication (LUB) model. Throughout the deriva-
tions appropriate scalings are employed. The LUB model follows from the DAF by
setting the Reynolds number in the associated equations to zero; alternatively, the
LUB model can be derived in its own right from first principles; for completeness a
full derivation is provided in Appendix A for both three and two dimensional film
flow. The chapter concludes with a generic compact form of the DAF, and attendant

boundary conditions, in two-dimensions representing both flow configurations.

Discrete finite difference forms of the governing equation set for the DAF, for the
case of three-dimensional film flow, are provided in Chapter 3; the three-dimensional
system of equations is purposely considered as it facilitates a more general descrip-
tion of the multigrid strategy adopted and efficient solution methodology employed
which requires the use of a staggered grid arrangement of unknowns. The three
dimensional equation set for the LUB model is given in Appendix A, while their
method of solution, using a collocated grid for the unknowns, is provided in Ap-
pendix D. Automatic adaptive time stepping is employed for both equations sets

associated with the DAF and LUB model.

A comprehensive set of results for two-dimensional bilayer flow through a chan-
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nel containing topography is presented in Chapter 4. The investigation serves two
purposes: the first to validate the above mathematical formulations and solution
procedures by comparing the results obtained when inertia is neglected with those
provided by Lenz and Kumar (2007); the second, to extend the the work of Zhou
and Kumar (2012) for such flows with inertia present and to consider other means

for driving the flow.

Chapter 5 focuses on solving gravity-driven free-surface film flow down an inclined
topographically patterned substrate. The free surface disturbances generated are
compared with corresponding experimental data and numerical solutions from the
literature where they exist, before moving on to explore the effects of different fluid
properties in each layer. In addition, three-dimensional bilayer film flow over lo-
calised topography is studied but as a proof of concept only, rather than in a sys-

tematic fashion as in the case of its two-dimensional counterpart.

Next it is shown, in Chapter 6, that the problem of free-surface bilayer film flow can
be refined to include non-Newtonian liquid behaviour in the from of a Power-law
model. For completeness a review is provide of the mathematical models avail-
able to describe non-Newtonian fluid behaviour. A governing equation set based on
the DAF is derived but it is found that, due to their form, solutions could only be
obtained for two limiting cases: (i) bilayer non-Newtonian flow when inertia is ne-
glected; (i1) inertial thin film flow when the two liquids have the same properties (the
single-layer-equivalent). The underpinning discrete finite difference equations are

provided and results generated for shear-thinning and shear-thickening behaviour.

Finally, conclusions concerning the body of work presented in Chapters 2 to 6 are
provided in Chapter 7, together with ideas and suggestions for future work - in-
cluding, as shown in Appendix E, extension to N-layers for the problem of gravity-

driven free surface film flow over topography.



Chapter 2

Mathematical model

Contents
21 Introduction . ...........000tiiiitinnen.n 25
2.2 Governingequations. . . . . .. ... 0t 26
2.3 Determination of appropriate velocity scalings . .. ... .. 36
2.4 Long-wave approximation . ............¢.00... 40
2.5 Depth-averaged formulation .................. 42
2.5.1 DAFfor free-surface flow . . ... ... .. ... ... 42
2.5.2 LUB model for free-surfaceflow . . . . . ... ... .. 51
2.5.3 DAFforchannelflow. . . .. ... ... ... ..... 52
2.54 LUBforchannelflow . ... .............. 54
2.5.5 Compact generic DAF (LUB) equations . . . . . . . .. 55
2.6 Topography definition . . . .. ... ... ... ........ 56

24



25

2.1 Introduction

Solving thin film fluid flow problems theoretically requires the formulation of an
appropriate model followed by the derivation and solution of an accompanying sys-
tem of governing equations. At present, closed form analytical solutions can be
obtained in a small number of cases only and consequently, for the majority of
engineering/scientific problems encountered in practice, numerical solution is the
only viable alternative. In the case of thin film free-surface and interfacial flows, nu-
merical solutions of the governing full three dimensional Navier-Stokes equations
are difficult to obtain as there are several parameters to be considered, and such
problems invariably contain one-or-more free boundaries, the location(s) of which
is(are) not known a priori and has(have) to be obtained as a part of the solution.
In addition, high computational memory requirements can prove very challenging
and in many cases restrictive. To alleviate these drawbacks, the long wave approx-
imation, Oron et al. (1997), can be usefully employed in formulating problems of
interest; the main assumption being that the ratio of the undisturbed asymptotic film

thickness to that of the characteristic in-plane length scale of the flow is small.

This chapter presents two mathematical formulations for the flow of thin bilayer
films, stemming from the long-wave approximation, that are used to model the
two flows of interest: a lubrication model (LUB) and a depth-averaged (boundary
integral) one (DAF), Veremieiev et al. (2010). The LUB model assumes negligible

inertia while via the DAF inertia effects can be explored.
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2.2 Governing equations

The problems of interest in this thesis involve the flow of a bilayer thin liquid film
down an inclined substrate and through an enclosed channel, in the presence of
surface topography. The two fluids are assumed incompressible, and completely
immiscible. Unless stated otherwise, the physical properties of the liquids involved
(viscosity, density and surface tension) are assumed constant. Figure 2.1 provides
cross-sectional, two-dimensional, schematic diagrams for the two flow configura-
tions investigated. The two-dimensional domain of interest is defined by a Cartesian
coordinate system (X, Z), with the positive X-axis in the flow direction and the pos-
itive Z-axis normal to it, as shown. The substrate (or the lower wall in the case of
channel flow) contains a topographical feature defined by the function Z = S(X),
which has a non-zero value at the topography and is zero elsewhere. The length of
the topography is Ly and its depth/height is Syp. The thickness of the lower layer
is H; and that of the upper layer is H,. The interface separating the two liquids
is located at H; + S, while the upper surface (which is either a rigid planer wall,
that is stationary or can move with a constant speed U, or a free surface) is located
at Hy + H; + S. The lower layer lies between Z = S(X) = Fp(X) and the inter-
face Z = H{(X) + S(X) = Fi(X); the upper layer lies between Z = F;(X) and

Z=H)X)+ H{(X)+ S(X) = F,(X). For flow in a channel F,(X) = H,.

The governing equations for the case of Newtonian liquids, in their most general

form, for both problems, are the Navier-Stokes and the continuity equations:

A

Pi

Y
( 2.1)

a—?+g~vg):—VPi+V-£+ﬁiQ,
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V.U, =0. (2.2)

The subscript i denotes the corresponding layer, with i = 1 and 2 for the lower and
upper layers, respectively. For the case of two dimensional flow: U; = (U;, W)),
where U;, W; are the velocity components in the X and Z-direction, respectively;
P; is the pressure; T is time; G = g(sinf, —cos0) is the gravitational acceleration,
where g is the standard gravity constant; p; is the density of layer i. The viscous

T
stress tensor, 7; = fi; (V Ui+ (Vﬁ) ), is given by:

2(9U{ oU; ow;
N X 0z 0X
T = i , (2.3)
pu— 8U,~ + 6Wi 2(9W,‘
0z 0X 0z

where (i; is the viscosity of layer i.

The problem is closed by imposing appropriate initial and boundary conditions.
Initially, the interface between the liquid layers and the upper free-surface for film

flow down an inclined plate are taken to be flat:

Hilr=o = Hi0—S, Halr=0 = Hy — Hjo, (2.4)

while for channel flow:

Hilr=0 = Hi0-S, (2.5)

where H is the initial thickness of the lower layer and Hy is the channel thickness

or the undisturbed total asymptotic film thickness for free-surface flow.
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The associated boundary conditions are: unidirectional flow at the inlet; no-slip and
no-penetration at a liquid-solid interface such that the two velocity components rel-
ative to a wall are zero there; at the liquid-liquid interface, kinematic and interface
stress boundary conditions apply; at the free surface, kinematic and free-surface

stress boundary condition persist. In summary:

At inlet:
Hil|x=0 = Hio for channel flow,
(2.6)
Hilx=0 = Hio, Halx=0= Hy— Hjo for free-surface flow.
At the liquid-solid interface:
Uilz=r, = Wilz=r, =0,  Uzlz=p, = U; for channel flow,
2.7
Uilz=r, = Wilz=r, = 0 for free-surface flow,

At the liquid-liquid interface and free surface, the kinematic boundary conditions

are :

OF) oF
=1, Uilz=r, =1 Wilz=r, =0 channel and free-surface flow,
0F, 0F, ’

T + Uy ZZFZ(')_X — Walz=r, =0 for free-surface flow.
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At the free-surface and liquid-liquid interface the normal and tangential stresses

balance and the boundary conditions are thus:

at the liquid-liquid interface for channel and free-surface flow:
= (P = P)lger, + (T = D)z, 1) - 1 = ik

(@ - Blzr, - m) -1 =0,

(2.9)
while at the free surface:

- P2|Z=F2 + (@lz;pz Q) Ny = 0o k>

(leze @) 1 =0,

o=

: -\ 2 IV . ..
where n; = ( oF ) . [(%) + 1] is the unit normal vector pointing outward

x> axX
. -\ 2 T2, . .
from surface i, ti = (1, %) . (%) + 1] is the unit vector tangential to surface
i and k; = —V.n; is the curvature of surface i. The atmospheric pressure is taken as

a reference pressure and G, is the interfacial tension at the liquid-liquid interface

given, Van Oss et al. (1988)) and Israelachvili (2011), by:

Gins = (Vo2 - VE1) (2.10)

where &7 is the coeflicent of surface tension of layer i. The appropriate selection
of scaling parameters is important to obtain a set of non-dimensional equations that

capture the key feature of the flow problems under consideration.

Following Gaskell et al. (2004) and Veremieiev et al. (2010), the governing equa-
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tions are non-dimensionalised using the following scalings:

X Z u w
(X’Z) = \555 1> (I/l,W) =\
Lo Hy Uy el
(2.11)
boT 0
t=——, p=—, Wwhere ¢ =—.
Lo 0 Lo

Ly is the in-plane length scale and is proportional to the capillary length, while Py =
a1UgLo/ Hg is the pressure scale. For the channel flow case, Hj is the thickness of
the channel and Uj is the average velocity; while in the case of free-surface flow, Hy
is the unperturbed total height and Uj is the fully developed free surface velocity.
In order to find Uy it is necessary to develop an expression for the fully developed

velocity profile of a bilayer flow, this is obtained subsequently in Section 2.3.

Writing equations (2.1) and (2.2) in two dimensions gives:

~ (OU; oU; oU; oP;, O2U.  O%U. o
pi(@Tl +Ul'6Xl + W; 6Zl) = —a—Xl + [ (KZI + ﬁ;) + pigsiné, (2.12)

"(% + Uan + W%) — _6Pl' + _azm + _azm
Pi T i i = HMi 9X2 572

il ~ b 2.1
0X 0z Py ) pig cos, (2.13)

ou; oW,

6_X + 8_2 = O, (214)
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which, on applying the proposed scalings, yields:

g,s,.Ug(aui du; 6u,~) _ &Py op;
U A Wi | = —————
Hy \or ' ox 9z Hoy dx
AiUo 8232”1' +‘92”i
Hg ox?2 072

)+ﬁ,~gsin9,

+ u; +w

83/31'U§ (aw,- ow; Ow,-) _ &P %4_
ot ox 'z )

Hy Hy 0z
ailo | 40%*wi 0%\
& +e& — p;gecosf,
H? ( a2 " az) P8
U, 0u; N U, 0w;
L,0x H, 0z
f1Uy

Dividing both sides of equations (2.15) and (2.16) by 72 results in:

,ﬁlUO ax
eHy
A5 2 2 2
18H 0 0
,-pA 0 smH) + u; (sz—ul u,) ,
/11U (9 2 azz

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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with,

Uo 6”1' 6w,~ _
. (E . a_z) 0. (2.20)

Equations (2.18) to (2.20) can be written in a neater form as:

(9u,- Ou,- au,- (9]91‘ zazui
gpiRe | — +uj—+wi— | =— + uie"—
ot Ox 0z 0x 0x?
(2.21)
+ Ou; + piBsind
i7 5 ibsing,
Hiogz 7P
ow; ow; ow; op; 0“w;
3 piRe |t 4 20 o 2 = Pt Y
ot Ox 0z 0z dx?2
P2 (2.22)
+ /Jigzﬁ — piBecos b,
au,- awi
+ = 0 s 223
ox 0z (2.23)
51UoH 2 018 H}
where the Reynolds number Re = w with B = — and plg 9 for free-
1 Csiné 10Uy

surface flow and channel flow, respectively, and represents a measure of the gravity
force acting in the streamwise direction; C is a constant relating the free-surface
velocity to the undisturbed film thickness - as obtained in section 2.3, see equation
(2.43). In addition p; = % and y; = %, the ratio of ith layer properties to their

lower layer counterparts.

The normal vector, tangent vector, surface curvature and dimensionless viscous
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stress tensor are given, by:

2 172

n; = (—8%, 1) . [82 (%) + 1] ,
.-

= (1e22) [ (2] ]

3
2 2
K = 82—8 Ji [1 + g2 (—afl)

[SE

2

Ox? 0x ’
du; dui  20w;
op— 286x 0z R T:
= 1 b
= Oui | 20w; Iw;
0z te 0x 28 0z
respectively.

The corresponding boundary conditions are now:

At inlet:

hilx=0 = hio for channel flow,

hilx=0 = h1o, holx=0 = 1 — hjo for free-surface flow.

At the liquid-solid interface:

Utl=f, =0, Uz|,=f, = u; for channel flow,

Ul=f, =0 for free-surface flow.

(2.24)

(2.25)

(2.26)

At the liquid-liquid interface and free surfaces, the kinematic boundary conditions

are :

of
0f>

2
s + uzlzzfzg —wal;=f, = 0 for free-surface flow.

0
o +utlz=f 6_f1 — Wil=, =0 channel and free-surface flow,
X

(2.27)



35

At the free-surface and liquid-liquid interface the normal and tangential stress bound-

ary conditions are:

=0,

P duy (0f1\? ow, Of
) _a_zWJralzlJrgza_;(a_;) S
= (P1=p2)|=p, +267 11 TTEY
1+¢ (W) =fi
duy 0 3 dur (0f1)2 dw, 0 92
(‘3f 2 - int Ca ) 3 B
1+ e () ot (1+e2 (32))
(2.28)
" % +82 3f1 _aul (9f1 zawl + _26u1 af1 (9w1 _826W1 6f1
0z 0x 0z Ox 0z ox 0x 0x ox 0x =1
0u2 2 6f1 auz 6f1 6W2 auz 6f1 6W2 26W2 afl
= — | + - +2 + -2 -
H {( (9z) “ | ox ( 0z Ox 0z 0x 0x  Ox © ox ox =1
(2.29)
dur 0fr | Ow 20U (8f>\2 20w, df
, | R GG (R) SRR
= Pp2l=p, + 26712 5
1+¢&2 (%
ox _
230
3 9 f Q.
E Ox2
=02~ )
Ca 2\ 3
af.
(1 + g2 (8_x2) )
ouy 2| 0f2 [ Ouxdf own oup 0fy 0wy 20wy 0>
wAl—=—|+e - + -2 —&T =
0z ox 0z Ox 0z Ox Ox ox ox 0x =y
(2.31)
where o; = Z—;, Tint = ”U’—’l” and Ca = “;—[1]0 is the capillary number (the ratio of

9
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viscous to surface tension forces).

2.3 Determination of appropriate velocity scalings

For steady, fully developed bilayer free-surface film flow, far enough away from a

topographical feature, both the interface and the free surface are flat (i.e H; = Hjo
O0P;

and H, = Hy — Hyo). Noting that pressure is a function of height only, — can be

0X
eliminated from the Navier-Stokes equation (2.12) which reduces to:

d?U; N pigsiné _

0, 2.32

072 A ( )
ow;  ow; ) . ) oU;

since W; = E = 27 = 0 and via the continuity equation, (2.14) X =0

0*U;
and similarly W; Integrating equation (2.1) twice with respect to Z for the lower

layer yields:
61gsinf) Z*
U =-LEM L cz40, (2.33)
a2
which on applying the no-slip boundary condition at the substrate (at Z = 0, U; = 0)

gives C; = 0 and therefore:

618sinf Z*
U =CZ- plg;l’” = (2.34)
Similarly, for the top layer:
0°U,  pogsinf
2, P28 _ (2.35)

iy i
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which on integrating becomes:

\ o
Oy _ _pagsing , .. (2.36)
0z J)

applying a zero shear stress condition at the free surface (at Z = Ho, aUz = 0) gives

0
G = %Ho and thus:

oU, ngsme
87

(Ho - 2). (2.37)

Integrating equation (2.37) with respect to Z leads to the following expression for

the velocity in the top layer:

U, =

A . 0 Zz
pz‘z" (HOZ _ 7) +Cs. (2.38)

Continuity of velocity and shear stress at the liquid-liquid interface requires that
((ﬁ -T)-m ) = 0 and U; = U, at Z = Hjg, which when applied to equations
(2.34) and (2.38), to find Cy and C4, gives:

sin6 sin6 72
vy = 2285 g gz + P 7 5. (2.39)
and
brgsind 7> H?
Uy = 28 Ho(Z - Hyg) - (5 - ﬁ)]+
H2 - (2.40)
sin6 sind
P28 Hyo(Ho — Hyo) + Pig .
f o 2

The unperturbed free-surface velocity, Uy, follows from equation (2.40) when Z =
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Hy, and is given by :

sm@H H H Hio H
) = p1g 2 /32/11(1 Z0y2 2 (1_ 10) 10 2.41)
20 H; P12 Hy Hy

which can be expressed as:

b1g sin OH?
v = 280 (242)
2/
where
C=hy+ % (1 = hyo)? + 2pahio (1 = hyo) . (2.43)

In the above expression, /g is the dimensionless version of Higy (= I;I—l(? ). It can
be seen from equation (2.43) that when p> = o> = 1 the constant C becomes unity
such that equation (2.42) then represents the classic Nusselt solution for the flow of

a single layer film down an incline, Spurk and Aksel (2008).

The velocity profiles for both layers, (2.39) and (2.40), can now be written in non-

dimensional form, via equation (2.42), namely:

U, 1 72
up = Uo ™ 0C 202(1 = h19)z + 2p1(h1oz - E) , (2.44)
U _1(p 2 hi pP1 P12
R e A (1 # 25 o1 = o) + 2721 | (245
U = U, C (Nz (Z -5+ 10( 10) 0] (2.45)

The average velocities, i1, and itp, for the lower and upper layers, respectively, are
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derived by averaging the right-hand-sides of expressions (2.44) and (2.45), that is:
1 [
_ _f Udz =~ | vidz. (2.46)
Fi ft

So, for the lower layer:

— ! hwz 1-h 201(h 2 d
”l_io_ulhmj; (pz( — h10)z +2p1( 1oz—7)) Z

(2.47)
_ ! (1 = hio)h 2o
—mc P2 10)/110 3/01 10] >
while for the upper layer:
) 1 Y o 'S p2 p1 i
=—==—— 2—=(z—-h ——+ +2—1—h hip+2— d
= U = 0= ho)C j;m( M(Z 10~ 3 ) ( 10) /110 w2 |©
1 2
:E(%hfo 3p2(1—h 0)? +2—(1—h10)h10
(2.48)

Similar steps and argument lead to the following expression for the average velocity

for bilayer film flow through a channel; the details are omitted here but can be found

in Appendix B. Accordingly :

H?> AP , P1gsinOH?
Us = ( +£) A?AL (a+ﬁ#’:) - 0 4y, (2.49)

with

_ p2h?y — (1 = hig)? ) h3,

= -1 (2.50)
4(uzhio + 1= hio) '* 3

whiy  (hig+2)(1 — hig)? 1 pahiy = (1= hio)* [y~ 1 2
) B 2 - IUZhl() , (2.51)
2 6 2 ,U2h10 +1-=hyo 2
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and

,Uzl’llo - (1 - h]O)2
~ 2(pahio + 1 = hyp)

+ (1 = hio); (2.52)

where &2 N L is the imposed pressure gradient.

Unlike the case of flow involving a single liquid layer, it is not possible, Lenz and

Kumar (2007), to express the capillary length as a function of Hy and Ca. For a

Ho_ and —#2—, for channel and thin film flow con-
(Ca)3 (6Ca)3

figurations, respectively, Decré and Baret (2003) and Gaskell et al. (2004). It is

single layer, Lg is given by

assumed therefore that the capillary length for the bilayer problems under investi-

gation can be specified in the same way without loss of generality.

2.4 Long-wave approximation

The long-wave approximation, Oron et al. (1997), is based on the presence of a
disparity between the length scales of the flow in the direction of flow and normal
to it, in that there exists a small long-wave ratio € = Hp/Lo << 1 such that terms
of order O(&?) can be neglected. This fact is exploited to simplify equations (2.21)

to (2.23) and reduce the dimensionality of the problem by one.

Applying the long-wave approximation to equations (2.21) to (2.23), by omitting

terms of O(?) and higher, leads to:

ui  du; Au, Ap; 0%u;
gpiRe o + uj— P + W — 7z ) = _(6_]; — p;iBsin 9) + Ui— 92 (2.53)
OPi | iBecos =0, (2.54)
0z
u;  Ow;
i Wiy, (2.55)

6x+ 0z
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with the associated boundary conditions becoming:

For free-surface flow

hilx=0 = h1o, h2lx=0 = ho , (2.56)
ulegy =0, (2.57)
0 0
% + Uy |z:f1a_fl - W1|z=f1 =0,
Y (2.58)
%+u2| _f%+—w'2| =f =0
ot I 9x 2 ’
(91/!1' (?u2|
Hi—=—lz=fi = K27 lz=f1 >
0z 0z (2.59)
auz
/J26—Z|z:f2 =0,
(b1 - p) | e oA
P1—DP2) lz=f, = _O-int__z s
. Cza 0x (2.60)
_ g0 f2
P2lz=p, —pa = _UZEW.

For channel flow

hilx=0 = hio , (2.61)
Utl=fy = 0, u2l,=p, = Uy, (2.62)
%mnzzﬂ%—wm:ﬁ =0, (2.63)
#1(2—?|z=f1 = FZ%_L?lz:fl ; (2.64)
(P1 = p2) o=, = —é—l% : (2.65)

Although the long-wave approximation simplifies the set of governing equations,
its range of applicability is restricted : Ca ~ 0(e3) << 1 (since 3/Ca ~ O(1)
the capillary pressure terms in equations (2.60) and (2.65) are non-zero); for free-
surface flow over peak topography the height of the latter must be much smaller

than the undisturbed film thickness, Gaskell ef al. (2004).
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2.5 Depth-averaged formulation

2.5.1 DAF for free-surface flow

Although the long-wave approximation reduces the complexity of the original gov-
erning equations, further simplification is needed in order to solve them. The com-
mon approach used to tackle thin film problems is the lubrication approximation
which assumes the flow is slow enough that the Reynolds number is O(¢) and in
such cases the right hand side of equation (2.53) can be set to zero. The lubri-
cation model (LUB) has been shown to yield accurate results in situations where
inertial contributions are minimal, Mazouchi and Homsy (2001), Decré and Baret
(2003) and Gaskell ef al. (2004). When this is not the case an alternative approach
is needed. One option is the long-wave Benney type model, stemming from the
work of Benney (1966). It is based on a perturbation analysis and expansion of
the unknowns of the problem in terms of a small long-wave parameter. This model
is applicable for flow with Re ~ O(1), with inertia taken into account in terms
of the first-order dynamics of the perturbation analysis only. An alternative to the
Benney-type model which lifts the above limiting restriction on Re, is the integral-
boundary-layer (IBL) approximation characterised by the assumption of a parabolic
velocity profile across the liquid layer. The IBL method can be traced back to
Shkadov (1967, 1968), who used it to simulate solitary waves in a thin viscous lig-
uid layer on a uniform vertically aligned surface. Since then, various other versions
have appeared and been used by Ruyer-Quil and Manneville(1998, 2000, 2002 ) ,
Nguyen and Balakotaiah (2000) and Amaouche et al. (2005) to tackle different thin

film problems.

Depth-averaging the Navier-Stokes and continuity equations, Veremieiev et al. (2010),
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a method akin to the IBL approximation, is employed in the present work, enabling
inertia effects to be accounted for within the long-wave approximation framework.
This depth-averaged form (DAF) is free from the zero Reynolds number limitation
imposed by the lubrication approximation, but shares the same restriction as the
IBL method, in that the velocity across the film is assumed to have a self-similar

quadratic profile.

Integrating equation (2.54) with respect to z for the layer i from z to f; :

Ti [ Op:
f (ﬁ + piBs cos 9) dz =0, (2.66)
. \0z
yields:
Pi = Dil.;, T piBecosf (fi—2). (2.67)

Applying the pressure boundary condition (2.60) to equation (2.67) gives:

3
e 2precotf
pr= V2 o+ ERT (o 2) 4 pa (2.68)

Ca C
and

2p1ecotf g’ ) 2p1ecotd
PL=DPliyt— @ — (f1-2) = P2, Bl AR — (/1 = 2)+pa

(2.69)
or
g 2ecotd

p=-c (0im V2 f1 + 02V2 12) + c 1 (fi=+p2 (fa = f)l+pa. (270)

Equation (2.53) depends on the pressure derivative with respect to x rather than
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the pressure itself. This allows z-dependent terms in the pressure equations to be

dropped, giving, after setting py4 to zero:

& 2¢e
p1=—— (0w V2 f1 + V2 f2) + =lpifi + p2 (f2 = fi)lcotd, (271
Ca C
and
g 5 20
P2 = =02V o+ == frcotf. (2.72)
a

Integrating the continuity equation (2.55) using Leibniz’s rule, and applying the

boundary conditions (2.57) and (2.58) leads to:

fi 8ul~ awi 6 fi 6f-l afi_l
ffi (E + 3_Z) dZ _(9_)( (L MidZ) - MilZ:f[ E + ui|z=fi_1 ox

1 Ji-1

+ Wi|Z=fi - Wi|Z=fi_1 = O,
and results in the following depth-averaged form of the mass conservation equation:
Ohi 9 (hiit;)

gkt _ 2.73
ot ox (2.73)

To obtain the depth average form of the u-momentum equation, equation (2.53) is

integrated with respect to z from f;_; to f;, namely:

fi T ou; Ou; Ou; fil ap;  2p;i *u;
.ER — tu— 4+ -—’d:f -2+ = dz, (2.74
piette ,ffil [ ar  ax T Vaz ] ¢ i\ ox  C Higzz )& (@79
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where the:
opi  2pi Ou; Ou;
RHS =|-——+ —| A& il—l.=¢ — —lo=r._. |, 2.75
( 8x+ C +u 8Z|zf, azlzf,l ( )
and the:

Ti [ ous Ou: ou: fi low  0u®  Suiw;
LHS =Pi8R€f [ i +u-i+wii] dz:piaRef [ i T S
i1 fi-1

ot "Ox 0z ot dx 0z
(2.76)
ou; Ow;
Because a_u, + awl = ( and using Leibniz’s rule, this gives:
X Z
0 fi 0 fi ) dfioi
LHS =p;eRe|— dz + — ~d+(—[:i_+
pgeal‘ffilu - dx fiflul - o M|Zf 1
0fiq dfi dfi
o Ul ompi — (uiwi)lzzfi_l) - (Euilz:fi + auﬂz:ﬁ = (uiwi) ;= ]
0 fi 0 fi
=p;eRe (—f udz + — ul-zdz) ,
ot fi-1 dx fi-1
(2.77)
where:
of; 0f;
ot gy~ ey, =0, (2.78)
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and finally:
[ O 0 fi 0 fi
LHS = pigRe | — (hiiy) + — | @dz + — i — u;)”
S = pieRe E (hiii;) + e f};_luldz+ o fH(u, u;) dz]
(60 . 8, o 0 (f_ 5
= p,-gRe -E (h,-ui) + a (h,-ul.) + a . (I/l,' - Mj) dZ]
[ da; _oh O (W) , _om 4 ([ 5
= pieRe | hi— + li— + li——— + hilli— + — i—u)dz|.
PiE e- Y + il Y + il I + u(’)x+0x fH(u u;)°dz
(2.79)
Equation (2.79) can be simplified using relation (2.73), to give:
o, . _om 8 (T _ 5
LHS = pjeRe |hi— + hjil;— + — (it; — u;)“dz| . (2.80)
ot ox  0x Jy,_,
Substituting (2.75) and (2.80) into (2.74) gives:
Oil: il P fi
p,-sRe [h,% + l’ll’l/_tia—ul + 6_ (l/_tl' - u,-)zdz]
SR 2.81)
[ 9pi N 2pi P 3141" 3141"
- Ox C ! Hi az =fi az z=fi-1] -

Equations (2.71), and (2.72), (2.73) and ( 2.81) represent the necessary equation set
to be solved in order to obtain both the liquid-liquid interface and the free surface
location. The problem is closed by specifying the inflow and assuming fully devel-
oped flow far upstream and downstream of the topography. The inflow averaged
velocities, as given by equations (2.47) and (2.48), are:

pahio(1 = hio) + 3 p113,

iylx=0 = ,
u1C

iolico = 2p2ho(1 = hio) pihi, L2 h10)?
2= 1 C mC 3 wC

(2.82)

di;

= ()’
x|,

s
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while the inlet heights are:

hily=0 = o, haly=0 = 1 = hio, (2.83)

and for fully developed flow far downstream:

Oh;

Ohil - _ Opi
ox

=22 -0, (2.84)

x=I

x=l
where /; is the length of the substrate.

Knowledge of velocity profile within the liquid layers is required to determine the
. . fi _ 2 .. al’ti . .
dispersion, f £ 1(u,- — u;)“dz, and the friction, 57 , terms in equation (2.81).
" Z =fi
To overcome this obstacle uni-directional flow based on a self-similar quadratic
velocity profile is assumed. For flow over trench and peak topography, provided
in the case of the latter the feature is a simple configuration that does not give rise
to an enclosed eddy, this assumption has been shown to yield accurate solutions,

Veremieiev (2011).

The approach followed is that of Veremieiev et al. (2010) as used for single layer
free-surface flow and which has been shown able to produce accurate results when
compared with experimental and other corresponding numerical results. This as-

sumption results in a velocity profile across the layers of the form:
w1 = 3 (ine = 2001) €7 + 2 Bily = ting) €1, (2.85)
and

2
Uy = ins + 3 (Uiny — i12) (%2 - fz), (2.86)
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_ —hy —
where & = Zh Sandfzzzh—ls
1 2

face, u;,;, calculated from:

6it1 hy + 3%ﬂ2h1

4hy + 3%/’11

Uint =

2

Using the above velocity profiles the friction terms become:

0z |y 0212y, hy
and
0z z=f2 9z z=f1 ha

The corresponding dispersion term for the lower layer is given by:

fi fi

N
(@ —w)?dz = | (@) —2dwu +updz = | ujdz - hiig,
1 1 1 1
Jfo fo fo

with u% in equation (2.90) given by:

u% = (3 (Uins — 2ﬁ1)§12 + 2 (3iy — Uine) fl)2 = (alscl2 + blfl)z

= alé] + bIET + 2a1b,1 &,

which when integrated gives:

i 1 5 3 4
f uldz = f uldé) = hy [a’f‘i—l + b%% + 2a1b1§4—l]
f 0

0

1

0

5
2, 1_ 6,
=M (Euim - guluim + gul) .

; with the velocity at the liquid-liquid inter-

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)
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Substituting (2.92) into (2.90) gives:

it 5 1, 2, 1
; (it —uy)°dz = gulhl + Euim‘hl — guintulhl- (2.93)
0

Differentiating equation (2.93) with respect to x leads to:

N 7 0@ hy) ah 0 2 9 14
_ ’ iy A hy)  iyhy 0ty ) _
— —up)’dz = — = WP hy) = = — (it 1),
ox ), TR =TT TS G T 15 ox imf) T g, (imi )
(2.94)
A h
which on substituting for (L;lx D from (2.73), yields:

o (N 5 iy Ohy dh 0y 2 9 , 14
— i —u)’d; = —— —— + — — + —— (>, 1) — = — (i1 .11).
ox ), TR TS TS Gy T s g im ) T 5 gy (ame- )
(2.95)

Similarly for the upper layer:

0 f2 2 iy Ohy Wahy Oity 1 0 ) 20
2 i) dz = 2212 9 2902 h) =2 uiiahy). (2.96
ax J, (2 =ur) dz = == ot ===t 5 gy Wim12) =5 5 (Wimiiz h2). (2.96)

After substituting for the dispersion and friction terms, equations (2.88), (2.89)
and (2.95), (2.96), respectively, in the u-momentum equation (2.81), the full set of

governing equations are:

oily i Ohy 6_ du 29 )
Re|2HL _ M1 0m b Ol 9,0,
pP1€ e[ dt  Shy ot 3l +_15h1 ax(”’m D
i (2.97)
—Li(au-h)]+%_@_6 Ui = 200 _
Shi ox ox ¢ M e
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il iy Ohy 6_ Oiix 1 0, ,
Re|Z2 27072 2,72 L~ 242 p
pae e[ 9 "5k or T 5% ax T 5k, g Vin!)
_ (2.98)
_ii(ﬁ i h )] +@_@_3 Ui 12 _
5h2 Ox 2Uint 12 Ix C M2 h22 R
ohy  0(hyiy)
=0, 2.99
o ' ox (2.99)
Ohy  0(haila)
=0, 2.100
o ' ox (2.100)
& 2 2 2¢e
P1=—= (crimV J1+ 02V fz) + —[p1f1+p2(f2— f1)lcotd, (2.101)
Ca C
& 5 2pae
p2=———02V fa+ —— frcotd. (2.102)
Ca C

Above, the DAF equations for free-surface bilayer flow have been derived for the
two-dimensional flow case; the model can be extended to the more general three-
dimensional case by considering the y-momentum equation in a similar manner to

the x-momentum equation. The resulting set of equations is given in Chapter 3.



51

2.5.2 LUB model for free-surface flow

Setting the Reynolds number to zero, the above two-dimensional depth-averaged

form reduces to the LUB model. Applying this constraint to equations (2.97) and

(2.98) yields:
op1  2pi Uins — 2il
— = — -6y — =0, 2.103
P C M1 e ( )
op>  2p Uit — U2
_2p 4 =0, 2.104
ax  C R e ( )

Equations (2.103) and (2.104) can be solved in conjunction with equation (2.87) to

obtain the following streamwise average velocities across the two layers:

—— W (dp1 2p1\  hihy (dp2  2p (2.105)
3up \ox  C 2uy \ox  C )’ '
h? h2

B = (31?1 B 2p1) _ (b2 M (5172 _ 2/02)’ (2.106)
2u; \ 0x C Ui 3ur |\ 0x C

Substituting these expressions for i; and i, in equations (2.99) and (2.100) yields

the following evolution equations:

n 2 h2h 2
Om_0 M (Op1_2pi) MM (0p2 202)| _ (2.107)
ot 0x |3u; \ 0x C 2u; \ 0x C
dhy 0 |Wha (dp1 2p N hh; . m\(dp2  2p2 o
ot Ox | 2u; \ 0x C M1 3uz 0x C ’

(2.108)
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2.5.3 DATF for channel flow

A similar procedure is followed to derive a two-dimensional DAF for channel flow;
the detailed derivation of which is provided in Appendix C; the resulting set of

governing equations is summarised below:

393 (h d (h
gRe (p2N2 — p1IN1) = _U'img_ﬂ + (p2 — p1)B |sinf — & cos Hﬂ
Ca 0x3 0x
+fro = fris
(2.109)
where:
om @ ohi  6_da 1d(hd)
N;=—- L1y _g——"4y " =12, 2.1
ot smor 5ax m ox (2.109)
2, 1. 2, 1. 2, 1_ 1
¢1 = 15 in = 5t Hint ¢ = 15 in = gl2thine + St = St = T linglls,
(2.109b)
-2u int — 21y +
1 = 6'u1umz ' Ml’ fra = 6/12”””—;‘2”’_ (2.109¢)
hy hy
ohy  0(hyiy)
=0, 2.110
ot ox 2110
0hy O0(hiin)
=0. 2.111
or  ox 2111

The above equations embody the generalisation that the upper channel wall has
speed u; = U;/Up; u; # 0 applies to Configuration 1 shown in Figure 2.1.

0hy ohy . 0hy oh
For ch 1 flow — = ——— = 1. Repl — by ———
or channel flow o Y because hy + hy + 5 eplacing Y by Y
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in equation (2.111) gives:

_9h 9(hiy) _

0, 2.112
ot ox ( )

which when followed by adding equation (2.112) to equation (2.110) yields:

O(hyiy) N O(haiiy) _ 0 (it + hoily) = 0. (2.113)
Ox ox 0x

showing that the total flow rate in the channel is constant. Integrating equation

(2.113) with respect to x, the global mass balance is:

hiity + haity = Q1 + Q2 = Qrorals (2.114)

where

hy=1-(hy +9), (2.115)

and the total flow rate is calculated at the disturbance free inlet, such that the flow

rates in the undisturbed flow are given by:

3 2 3
0= hi, .\ (1 = hio)hy, Ap . (p1h10+
R2ur 4 (Bhio + 1= hy) | Al 1211
h2 (1 = h10)(p1hio + p2(1 = ko)) h?
10 10M2,01 L 10 )B sin @ + o] T 10 u,
4p1 (o + 1= hio) 1 2(Z2h1o + 1 = hio)

(2.116)
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and

0y = — (1 = hip)? P h10)*h1o Ap (Pz(l - ’110)3+
12 Apur (Zhio + 1= o) | Al 12,

hio(1 = h1o)2(o1h 1—h 1-h 2hio
10( 10)“(p1h1o + pa( 10)))Bsin0+ 10 (1 N A1 ",

4#1(%%0 + 1= hyo) 2 %hm +1=hy
(2.117)
where AA—I; is the imposed pressure gradient.
The problem is closed in terms of the following boundary conditions:
Oh
hily=0 = huo, | =0 (2.118)
X x=lg
opi dp2
o =5 =0, 2.119
ox =1, ox =l ( )
di; _ 0 (&)
E— = O, -0 =—, x= = . .
ox ., =0 o 2] x=0 =g (2.120)

2.5.4 LUB for channel flow

Setting Re to zero, the above two-dimensional DAF reduce to the following LUB

model as derived in full in Appendix C, namely:

ohy, o | h 3hy ap :
ot Ox | 12p (1 ¥ %hl + hz) ( ox p1351n0)
+ h%hg (8p2 — p2Bsin 9) - ﬂh—%ut] =0,
4y (L2hy + hy) \ O K12 (22hy + hy)
(2.121)
83
P2 —p1 = aV2 (h1 + s) + BecosO (p2 — p1) (hy +5), (2.122)

q1+q=01+0, (2.123)



55

hy=1-hy —s, (2.124)

where Q1(Q») is the fully developed flow rate through the lower(upper) layer at
the disturbance-free channel inlet and q;(g7) is its developing counterpart - see

equation (B.32) and (B.33) in Appendix B. The boundary conditions are:

hilx=0 = hio, (2.125)
Il _y, (2.126)
OX |z,

0 0

g arp ), (2.127)
Ox |0y, 0% |yooy,

2.5.5 Compact generic DAF (LUB) equations

It is possible to write the equations underpinning the DAF, and by inference the
LUB model, for both channel and free-surface bilayer flow in two dimensions, in a

general and generic compact form. Namely:

u-momentum equation:

pieReN; = —% + piBsin6 + f;. (2.128)
Continuity equation:

% ; % - 0. (2.129)
Pressure equation:

PL—p2= —O'img—3@+830089(/?2—/31)f1- (2.130)

Ca 0x?
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In the case of free-surface flow an additional equation for the pressure in the top

layer is required, namely:

g & N .

while for channel flow a global mass balance is employed:

hiity + haity = Qroral- (2.132)

The functions ¢; (via the operator /V;) and f;; in equation (2.128) depends on which
flow problem (Configuration 1 or 2, in Figure 2.1) and which layer is being consid-

ered:

For free-surface flow

2 2 1 _ 1 2 2 —
1 = 15 tim = 501 tint ¢ = 5 Uim — 5U2tint;
Uine — 201 Ujnt — Uy (2.133)
fri=bm—,  frn=3m—s—
hl h2
For channel flow
2 5, 1_ 2 5, 1_ 2 5, 1_ 1
¢1 = 15 tin = 5t tint ¢ = 15 tim = 5U2tine + T3U = SH2UE = T Uinglls,
Ui — 20 Uiy — 202 + U
fry = 6/11””—21, Fry = Gun 22 3
hl h2
(2.134)

2.6 Topography definition

Following other authors (e.g. Stillwagon and Larson (1990); Peurrung and Graves

(1991); Kalliadasis et al. (2000) and Gaskell et al. (2004)), since the topography ap-
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pears as a function in the governing equations, it is defined via arctangent functions

enabling, control of the topography sides steepness.

The current study focuses in the main on two-dimensional topographies such as
step-down, step-up and a spanwise trench, although extension to three-dimensional
free surface film flow cases is also considered. Accordingly, one-dimensional step-

up/-down topographies are defined as:
(x%) L tant (X (2.135)
s(x*)=s0 |z £ — .
12 5

while one-dimensional rectangular trench/peak topography is given by:

s(x™) = S—Ol [tan_1 (M) —tan™! (M)] , (2.136)

2tan~! 5 0 0

where the coordinate system x* has its origin at the centre of the topography, x* =

X —X; , 0 1s an adjustable parameter which controls the steepness of the topography.
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3.1 Introduction

The LUB model and DAF derived in Chapter 2 results in equation sets that are sim-
pler to solve than the original full Navier-Stokes and continuity equations, despite
the underpinning limiting assumptions made. The main advantages are a reduc-
tion of the dimensionality of the problem by one and the explicit presence of a free

surface coordinate. Nevertheless, they have to be solved numerically.

When selecting an appropriate numerical method, the most important features to
consider and realise are accuracy and efficiency. Fully implicit methods are too
computationally expensive while fully explicit ones require a very small time step
that is proportional to the square of the spatial increment, which can result in an
impractically small and restrictive time step in situations when solutions on finer

meshes are required to ensure mesh independence.

Among the attempts made to ease the above restriction concerning the size of time
step when solving the LUB equations is to use a time splitting approach, Christov
et al. (1997). This involves splitting each time-step into, most commonly, two parts
and treating different terms implicitly and explicitly. Time-splitting methods are
meant to combine some of the stability properties of implicit schemes with the cost
efficiency of explicit ones. However, when solutions on fine meshes are required,
the choice of time-step becomes severely restrictive. Nevertheless, the approach
has been used successfully by Schwartz et al. (2001) and co-worker to solve a
range of thin film and droplet spreading problems, see for example Schwartz and
Eley (1998). Weidner et al. (1996) used this method to study the flow over curved
substrate and the effect of surface tension gradient. It was also employed by Eres
et al. (2000) to investigate the stability of gravity-driven and surface tension driven

thin coating films.
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The limitations associated with time-splitting methods has encouraged the adoption
and use of multigrid methods to generate solutions on very fine meshes. Multi-
grid methods are based on employing a simple classical iterative technique as a
smoother on a sequence of grids to reduce high frequency errors, Trottenberg et al.
(2001). They are more efficient and require less memory than time-splitting ones,

as demonstrated recently by Cowling et al. (2011).

The three-dimensional predictions obtained by Gaskell et al. (2004) for thin film
flow over a localised topography, using an accurate and efficient solution strategy
based on a full approximated storage (FAS) multigrid algorithm with the use of
time step adaptivity based on the local truncation error, were the first of their kind
to appear and found to agree extremely well with the benchmark experimental data
of Decré and Baret (2003). This methodology has since been used by Gaskell and
co-workers to solve a range of thin film flow and droplet spreading problems, see
for example Sellier (2003), Sellier et al. (2009), Lee et al. (2007) Lee et al. (2011),

Veremieiev et al. (2010), Veremieiev (2011), Veremieiev et al. (2012).

Lee et al. (2007) further developed the solver to embody automatic mesh refine-
ment. They solved the problem of gravity driven thin film flow over a planer surface
containing single and grouped topographies. Automatic mesh refinement restricts
the use of fine grids to regions of significant changes such as in the vicinity of the
topography, the capillary ridge and the downstream wake. Their results revealed
corresponding efficient and accurate solutions, obtained using parallel computing,
Lee et al. (2009a), to be indistinguishable from the ones obtained using automatic
mesh refinement, leading to a significant and a considerable saving in CPU time and
storage requirements. The approach was subsequently used to great effect by Slade
(2013), and Slade et al. (2013) to investigate rivulet formation and growth down

an inclined plane and on the inner and outer surface of vertically aligned cylinder.
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Note that in addition, they implemented a method of grid devolution which resulted

in a greater improvement in efficiency.

Veremieiev et al. (2010) used a multigrid solver to predict three-dimensional gravity-
driven flow over localised topography, with inertia taken into account, using the
DAF. The same approach was used subsequently to explore the use of electric field
for the purpose of planarising the free-surface disturbance arising, Veremieiev et al.

(2012).

Of the two problem under investigation in this thesis, the one for bilayer free-
surface film flow is arguably of most practical relevance, especially for the case
of three-dimensional free-surface film flows. The channel configuration is consid-
ered mainly for validation purpose, although in addition previous work involving
non-zero Reynolds number conditions is extended; pressure and shear-driven flow

is investigated also.

Accordingly, and as mentioned in Chapter 2, the governing DAF set of equations
for three-dimensional bilayer film flow are given below, which requires considering

the y-momentum equation in a similar fashion to the x-momentum equation:

6u1 ui 3/11 6 _ 2 0 2 0
Re|ot - L2, 2 [ ) + =i Vinth
preRe| T8 = 5h g T 57100 * gl W) + G WinVindo)
1 .0 10 10 0 2
- 5T[a(ﬁluimhl) + Ea—y(ﬁlvinthl) + Ea_ym”"’”hl)] + _(;;1 - _gl (3.1)
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ov V1 Oh 6 2 0 0
preRe a—; - ﬁa—t‘ + 3P0 + T g Winvinel) + 5(%3/11)]
1 .10 10 0 0
= 5 L3 g @) + 55 Gt + 2 @] + ai;l (3.2)
Vint — 2‘_}1
Gy — VL,
M1 h12
Oty iy Ohy 6 _ 1 0 0
p2ERe b S_hZW + 57:2(”2) + % [a(uizmhz) + a_y(uintvinth)]
2 0 10 10 0 2
~ [a(ﬁzuimhz) + Ea_y(ﬁzvith) + Ea—y(\_/zumzhz)] + % - % (3.3)
_3 Ujnt _252 -0,
h
oV, V9 0hy 6 _ 1 0 0 D)
Re|— - ——— = =7 Lo \Uin inh - inh
PrERE o1 Shy, ot +5(f2(V2)+5h2 ax(u tVint 2)+8y(V t 2)]
2 10 10 0 0
= i 2 e Evint) * 5 5 (ot ) + 2 (i) ]| + alyz (34)
Vint — ‘72
-3 -0,
M2 h22
ohy  O0(huy) O(hivr)
=0, 3.5
ot ox | ay (3-5)
Ohy N 0(haity) N 0(hyir) _o, (3.6)

ot 0x oy

3 2
p1= —%(Uzvzfz + i V2 1) + gCOtG(Plfl +p2(f2 = 1)), (3.7)
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g3

Ca

202

V2f, + -

p»=—-C coté f7,

where the liquid-liquid interface velocities are calculated from:

— &h_
6u1 + 3,111 h2u2

M by
4 + 3#1 T

Ujnt =

’

uy hy

Ho
4 + 3»}11 T

6v; + 3ﬂh\72
Vipg = ——————

and the operator ¥; is defined as:

_ow  _ Ow
f(w) - ul(?_x + VIE-

The corresponding boundary conditions are:

i p2hio(1 = hio) + 3p1h3,
Ullx=0 = >

uC
i |x=0 = 2p2holl — hro) it L2l h10)?
- | [‘h?l 6\71 aﬁl a‘_}l
Vi x=0 = ~ = — - — - !
i 0x x=lg ox x=l 6y y=0,wy (9)/ y=0m5

while the inlet heights are:

hily=0 = o, haly=0 = 1 = hyo,

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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and for fully developed flow far downstream:

an
ox

o,

_ oni _opi
x=l 6)}

T Ox

_on

= =0, (3.14)
x=l ay

y=0,w; y=0,w;

where wj is the width of the substrate. If the Reynolds number is set to zero the
above DAF reduces, as shown in Chapter 2, to the LUB model. Namely, applying

this constraint to equations (3.1) to (3.4) gives:

%_%—@th;lfﬁl ) (3.15)
‘Z—pyl - 6mvl’”’h;122v1 =0, (3.16)
O 22 3u2”"";lz‘2”72 -0, (3.17)
36_1;2 B 3ﬂ2Vin;12_2‘72 -0, (3.18)

Equations (3.15) and (3.17) can be solved in conjunction with equation (3.9) to

obtain the following streamwise average velocities across the two layers:

. h (dp _2p1\ hihy (8py 2pn (3.19)
T 3m\ax T C 2m \ox  C )’ |
h2 hz
— 1 (apl B 2p1) B hihy 42 (apz _ 2p2) , (3.20)
2u \ox € po 3w flox C

and solving equations (3.16), (3.18) and (3.10) simultaneously yields the spanwise

average velocities:

h dp1 hihy dps

__ _ ’ (3.21)
31 0y 2y 9y
h? h?

__Mop _[mhy M5\ Opy (3.22)
2uy dy M1 3uz ) Oy

Substituting these expressions for i1, itp, ¥; and ¥, in equations (3.5) and (3.6)
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yields the following evolution equations:

0h1 0 [ h? (0]91 2p1) + h%hZ (apz _ 2,02)

ot 0x |3u; \ 0x C 2u; \ 0x C
- 5 (3.23)
oM (5P1) L (sz) _0
dy [3m\dy | 2 \dy ’
dhy 9 [Wih (ap1 2p N hh3 . m\(dp2 2p
ot 0x | 2u; \ d0x C Ui 3ux |\ 0x C
u (3.24)

=0,

_i'h%hz(ap1)+ mhy B (3172)
dy | 21 \ 9y H1 o 3 )\ 9y

which are, as can be seen, the same as the lubrication equations for bilayer free-

surface flow as derived in full in Appendix A.

The method of solution reported in this chapter is based on the utilisation of muli-
grid solution strategies to solve in the main the two-dimensional bilayer flow prob-
lem formulated in Chapter 2. However, the three-dimensional equation sets given
above provide the opportunity to describe the underpinning multigrid methodology
in Section 3.3 for the more general three-dimensional case. Spatial and temporal
discretisation of the governing equations for the DAF, for both free-surface and
channel bilayer flows, are described together with the associated methods of solu-
tion, while their LUB counterparts are presented in Appendix D. A Full Approxima-
tion Storage (FAS) variant of the multigrid method for nonlinear equations, Brandt

(1982), is also described along with the treatment of boundary conditions.
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3.2 Overall method of solution

The equation sets governing the DAF, subject to the relevant boundary conditions,
are solved on a Cartesian computational domain subdivided using a regular stag-
gered mesh arrangement with increments of Ax and Ay in the x- and the y-directions,
respectively, Harlow et al. (1965). The pressures and layer thickness are stored at
cell centres while the velocities are stored at cell faces. This arrangement is used
as a remedy for the well-known checkerboard instability which arises when the
first derivative of pressure and the terms in the continuity equation are calculated
using central differencing when pressure and velocity are collocated, Trottenberg
et al. (2001). A staggered grid allows the differencing of the first order derivative
of pressure to be calculated using two adjacent nodes rather than two alternate ones
if a collocated mesh is used, Patankar (1980). There are several approaches that
can be used to circumvent checkerboard instability when solving the Navier-Stokes
and continuity equations on collocated grids, Sheu and Lin (2003). Examples in-
clude: interpolating cell-face velocities using momentum interpolation methods,
Rhie and Chow (1983); the consistent physical interpolation, Schneider and Raw
(1987); approximating the pressure gradient using weighted upwinding interpola-
tion, Thiart (1990) and Date (1993). Several studies have conducted comparisons
between collocated and staggered grid approaches, see for example Peri¢ et al.

(1988) and Melaaen (1992).

The continuity and pressure equations are discretised for a control volume centred
at (1, J) while the x-momentum (y-momentum) equation is discretised for a control
volume shifted by Ax/2 (Ay/2) in the x-direction (y-direction). Figure 3.1 shows a
schematic diagram of the staggered mesh arrangement employed and the different

control volumes associated with it.
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Figure 3.1: Staggered mesh arrangement used to solve equation sets based on the
DAF.

3.2.1 Free-surface flow problem

3.2.1.1 Spatial discretisation

Equations (3.1) to (3.8) are solved, subject to boundary conditions (3.12) to (3.14),
on a rectangular computational domain, (x,y) € [0, /] X [0, w] using the multigrid
approach described later in Section 3.3.1. Figure 3.1 shows the staggered mesh
arrangement and location of the different variables. The unknown scaler variables,
lower layer thickness, &1, lower layer pressure, pi, top layer thickness, /,, and
top layer pressure, p, are located at grid nodes (/, J) while streamwise average
velocities, u; and u», and spanwise average velocities, v; and v, are located at cell

faces, (I+1/2,J) and (I, J+1/2), respectively. The corresponding coupled second-
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order accurate discretisation scheme for /; and p; can be written, after grouping
convection and time derivative terms together to simplify their numerical treatment

and omitting for convenience the overbar denoting velocity averaging, as:

Ou; ;. 0hi 6 hi¢; — (hip;
opiRe ( u —u——+—ﬁ(u,-)) (hi¢i) 1. — (hidi) 1
ot Sh’ ot 5 1+%,J 0.5 (hi[J + hil+1,J) Ax
(3.25)
(hi%)H%,H% - (hiel/i)pr%,]—% Pit+1,g —Pirg  2p; 3
" - — — frigg15 =0,
0.5 (hiI,J + hil+1,J) Ay Ax ¢ ’
spiRe (@ Ok, §f~<v,~)) p LD ig g 7 Oy oy
ot Sh; ot 5 LJ+1 0.5 (h,‘[,J + h,']’]+1)
(3.26)
(hiCD) g1 — (W) py | Pirger — Pirg
A - fri1,1+% =0,
0.5 (hig + higgs1) Y

hil+%,1uil+%,f - hil—%,fuil—%,f hi1,1+%"i1,1+% - hil,]—%ViI,J—%
+ =0, (3.27)

O0h;
ot 1 Ax A
_ 83 ) f11+1,1+f11_1”]—2f11,] flI,J+l +f1[,J_1 _zfll,J
plI,J - - aa'lnt Ax2 + Ay2
gl farevg + f2rm10 = 20210 farge1 t f2r0-1 = 220y
~ca”? + (3.28)
Ca Ax2 Ay2
2e
vl (p1firs+ P2 (fary = f115)) cot.
- _ 8_30_ f21+l,J + f21_1,] - 2f21,‘] N le,]+l + f2[,J—l _ 2f2],J
T Ax? Ay? (3.29)

2
+ %le,.] COtG.
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The expressions for ¢;, ¥; and T; are :

1
¢1I+%,J = 15tinti+y.d (zuintn%,J - 3”11+%,J) ’ (3.30)
! 2 1
¢21+%,J = Glintpd g \Mint e d g~ “H204 7 ) > (3.31)
1
TlI,J+% = Evinl,J+% 2Vin1,1+% - 3V11,J+% ’ (3.32)
1
TZ[ J+i = ZVing gl \Ving 41 — 2V21 J+i ) (333)
9 2 5 9 2 9 2 9 2
1 Vigged TV gl vVt Vi)
W11+%,J ~ 70 4 Uintp 1y
Ving j+i ¥ Vinper ged T Ving gL *Vingyy -1 (2 1
+ —Uiniyal g — —ULy, 1
4 15 mtt5,J 10 11+§,J ’
(3.34)
1 Uippl gt Ul gy UL T UL gy
W = 2 2 2 A |
1J+3 10 4 mrJj+;
Wint sl g+ Wintpid oy T Wineg_d g+ Uineg 1 gy (2 1
+ —; - —v
4 15 l”l,]+% 10 1I,J+% ’
(3.35)
1V2004 TV2pn el T V2750 V200 gL
W21+§,J =73 4 Uintp11 g
Ving j+1 F Vingey, ged T Ving gL FVinpyy -1 (1 1
+ 4 g”inln%,J - 5”21+%,J ’
(3.36)
LU2pl g F U2 ) gy U2 L gt UL g
1 = —— V; 1
¢21,J+5 5 4 inj,Jj+i
Wint L g+ Winr gyl g + Winep L g+ Wi L giq (] 1
+ =V 1 — =V 1].
4 5/inLJ+; T 5 21,J+%
(3.37)
with the friction terms calculated as:
Uintpelg ~ 2”11+%,J
fr11+%,1 = 6u; 2 , (3.38)
1,,1
I+§,J
Uintp L g — U241 g
f72[+%"] =3u 2 > (3.39)
2
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Ving g+l — 2"11,J+%

frirgsy =6 , (3.40)

h2
U+l

Ving g+l = V2r 41

frorge1 =342 , (3.41)

2
h2L1+%

and h; values at cell faces interpolated from neighbouring nodes as:

hi]i%,] =0.5 (hilil,f + hil,]) ) (3.42)
hif gs1 = 0.5 (hiI,Jil + hil,J) ; (3.43)
hipe1 i1 =025 (hiI,J + higpg + hipge + hil+1,J+1) , (3.44)

The operator 7; is discretised using central differencing as:

) Uippd g = Uip-1 g Vig g+l ¥ Vip gL T Vipey gel ¥ Vipey -1
(u; =Uu; +
l( l) I+%,J 11+%,J 2Ax 4
Uipel g1 —Wipe L g1
2Ay ’

(3.45)

and

ﬁ(vi)lu.%J :(

Uippd gt Wip L gt lip ) oy TUip )\ (Viceng+d = Vi-1,g+1
4 2Ax

Vipg+3d ~Vigg-1
+ vi],]+% ZA}/ :
(3.46)

Dirichlet boundary conditions are assigned as exact values at the boundary points,
whereas Neumann boundary conditions are implemented by employing ghost nodes

at the edge of the computational domain.

To simplify the description of the calculation procedure presented below, it is con-
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venient to separate the leading temporal u;, v;, h; and p; terms from the discretised
u-momentum, v-momentum, continuity and pressure operators and to express them

. u; Vi hi Di :
as functions M1+ Ly M e MI’ ', and M 9E thus equations (3.25) to (3.29) and

can be written as:

u; U

piERe 5 + Ml-lyl ; (uy,uz, vy, v, hy, ho, p1,p2,) =0, (3.47)
Uil 2

6vi U;

pi€Re B + M, (un,ua,v1, v, by ha, i pas) =0, (3.48)
U+l e

0h; :

| ML v v b ) =0, (3.49)

LJ
pilyy + M) (hi, h2) = 0. (3.50)

oh; . . . . . .
The term B in the function M" of equation (3.47) is substituted from equation

(3.48) at the appropriate mesh location.

3.2.1.2 Temporal discretisation

An automatic adaptive time-stepping scheme is incorporated into the solution strat-
egy to optimise the time step selection in order to reduce the computational resource
requirements. The time-stepping procedure adopted uses the local truncation error
estimates (LTE) obtained from the difference between a predictor stage and the
current solution stage. Fully explicit second order time discretisation of equations
(3.47) - (3.50) yields the following expressions for the predicted values of u;, v;, h;

and p;, Veremieiev et al. (2010) :

n+1 ) 1 )
Wipr|pp10.0 =7 ”i7+1/2,1 + (1 -y )“i7+1/2,1
n+1 (3.51)

Ui non n .n pn pn N N
 pieRe (L) ML)y (ul’uz,vl,vz,hl,hz,pl,pz),
1
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n+l 2 n-l 5
Vierlpgsp =7 Vit reie * (1 - )Vi7,1+1/2
A1 (3.52)
Vi n. n . .n _ npn pn NN
- pigRe (1 * )/) MI’J"'I/Z (ul,uz’ Vl’ v2’ hl’ hz’pl’pZ) 5
n+1 _
hipr|, ;= Y2hity + (1 - 7’2) hiy
’ (3.53)
= A (L y) MY (v vy R R
n+1 i n on
Piorly * My O 2) =0 (3.54)

where n and n + 1 denote values at the end of the nth and (n + 1)st time steps, ¢t = t"

and t = "1, respectively, and y = A"/ A" is the ratio of successive time steps.

Adaptive time-stepping is performed by keeping the LTE for u; . within a specified
tolerance that in practice automatically restricts the LTE for v;y,, ki, and p;,, to
provide a means of increasing the time step in a controlled manner. The LTE for
uip, at the predictor stage can be expressed via a Taylor series expansion of equation
(3.51) in the form:

CAMTIA (L +y) Pu|”
I1+1/2,J 6

(LTE),,

, (3.55)
ar3 1+1/2,J

with the third-order time derivative term evaluated at time 7, € (¢", 1. In the
present work, an implicit S-method, see Chung (2002), is used to advance the so-

lution in time:

n+1
n+l BAt u; n+l n+l _n+l _n+l pn+l pn+l n+l n+l
U129 T pieRe " 1+1/2.d (”1 sy v vy R hy T Py Py )

(1-part

n n n n n n n n n
1+1/2,J (”1’”2’ Vi vy, by By, py ’Pz)

=Uir1y2,0 picRe
1

(3.56)
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n+l

,BAZ‘"H )
i n+l _n+l _n+l _n+l gn+l gn+l _n+l _n+l
Virj+1/2 M (”1 Uy LV Ly LRy Py, )

picRe " 1I+1/2

(1= At =,

n n n n n n n n n
LJ+1/2 (”1’ Uy, Vys Vys s hz’Pl’Pz)

=Vipge2 ~ picRe
l

(3.57)

hi?:;l + IBAIVHIM?’,'] (urla+l,u;t+1’v111+l’v;+l’ h?+1’ hg+1)
(3.58)
_nn n+l h; n.n . n .n LN LA

For g = 1/2 the method reduces to the second-order accurate in time Crank-Nicolson
scheme, whereas =1 leads to the fully implicit first-order accurate in time uncon-

ditionally stable Laasonen method.

The LTE for u at the solution (sol) stage is similarly given by a Taylor series expan-

sion of equation (3.56):
(Aln+1)3 631/!2 r

, e @ ™. (3.59)
12 ar3 1+1/2,J

(LTE)soil41/2,0 = —

As described in Chapra and Canale (2002), the assumption that the third-order
derivative term varies by only a small amount over the time step enables the LTE to

be estimated as:

n+l _ n+1
Wayi12,0 ~ W2priviyo,g

LTE =
( )1+1/2.7 1+2(1+v)/y

(3.60)

which, following Dormand (1996), is used to obtain an estimate of the overall trun-
cation error by finding its Euclidean norm that, in turn, is used to specify the next

time step At"*? via:

1/3
TOL
) , (3.61)

A2 = 0.9A"] (—
| LTE ||
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if || LTE ||< TOL. The iteration is restarted with half the current time step if || LTE

|| > TOL, where TOL is a prescribed tolerance.

To simplify the explanation and the steps taken in the multigrid process, presented
later in this chapter, based on the system of discrete equations (3.56), (3.57) and
(3.58) it is convenient to introduce the following global time-dependent nonlinear
operator, right-hand side function (defined by the solution on the previous time step)

and solution vectors:

uj uj n
NI+1/2,J 1+1/2,7 U2,
uz uz n
Niiieg Friing 21720
Vi Vi n
NI,J+1/2 1,J+1/2 Vijg+12
NVZ V2 Vzn
1J+1/2 1,J+1/2 1,J+1)2
N = R P A I R |, (3.62)
gt 1 n
NI,J 1,J hll,J
/’12 h2 n
NI,J 1,J h21,J
P1 n
Ny 0 Py
P2
NiJ 0 P2y

respectively, where:

N (u™!) = £ (u"). (3.63)

3.2.2 Channel problem

The unsteady governing equations (2.109) and (2.110) arising from the DAF for the

two-dimensional channel flow are discrtised on a staggered mesh as:
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o0 Re Ouareip  2u2pc12 Ohapip N §u U3143/2 — U27-1)2
p2 0t 5(hy+ o) 0 5 M2 2Ax
1 P2r41/2 + P2143)2 $2r41/2 + P21-1)2 Ourrsi)2
+— | h - h —egp1Re
hap + hage ( 20+ Ax 2 Ax P1 ot
_ 2wpap Ohir+1)2 N §u Ui143/2 — UL7-1)2 1 Dirv12 + Pirgap
S(hi+ hiey) ot 5 L2 2Ax Bg+ hipey \ T Ax

5 Pris1 + 11212 hijer = hip + 141 — sl)
~hi;

= )] = (pz—pl)B(sinO—scose A

3
&0 (hip32 — 31141 +3h1p = hij— L S 38741 + 38571 — 511
Ca Ax3 2Ax3

) + frare1p = Frizeie

(3.64)

oh
ot

hirs12ut 1412 = hip-12u11-1)2 _
! Ax

0. (3.65)

These equations are solved, using the multigrid method described in Subsection
3.3.1, for the lower layer thickness and average velocity, #; and u; only; the upper

layer thickness and velocity are obtained from:

Orotal = 0.5u1p41/2 (hip + hypyy)
0.5 (hay + hoyi1)

hap = 1=hy—sy, Urrp12 = , (3.66)

with the total flow rate calculated via equation (2.114). The associated discretised

friction and dispersion terms are:

Uint 14172 — 2U1141)2

Sfrire2 =241 (3.67)
+ iy + hige)?
Uint1+1/2 — 2U21412 + Uy
Jroreip = 2412 , (3.68)
W (hag + hape)?
1
Pris1p = T3 tint 12172 (zuintlil/2 = 3141111/2) , (3.69)

1
Pz = 5 tint1+3/2 (2uim1+3/2 - 3M11+3/2) , (3.70)
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1

$2141/2 = TgUini 112 (zuintlil/2 - 3“2111/2)
1 (3.71)

T <3u2111/2 + Uint1+1)2 — 2uz) ,

21432 = 5 tint1+3/2 (2uim1+3/2 - 3M21+3/2)
(3.72)

1

T (3M21+3/2 + Uint143/2 — Zut) -

The value of A at a cell face is calculated by interpolating between neighbouring
nodes: hyry1/2 = 0.5 (hyr41 + hyp). Itis convenient to separate the leading temporal
u; and h; terms from the discretised u-momentum and continuity operators and to

express them as functions M} and Mﬁ”; thus equations (3.64) and (3.65) can

I+1/2

be written as:

o

S M () =0, (3.73)
ot |11

oh

L+ M g ) = 0. (3.74)
ar |,

oh
The term (9_tl in the function M*!' of equation (3.73), is substituted from equation

(3.74) at appropriate mesh locations.

The adaptive time stepping method presented in Section 3.2.1.2 is used and the

implicit S—method employed to advance the solution in time:

iy + ’BAIMIM?JLW (h7+1’u?+1) = Uiy — (1= ,B)AanM?ll/z (h7 Mlll)
(3.75)
i+ BTG (B = = (= BTG (uf b))

(3.76)
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which can be written in the form of equation (3.63) but with:

NMI ful uln
N = I+;/2 , f — I+hl/2 , u" = I+1/2 ) (3'77)
N a hiy

For completeness the corresponding discrete forms of LUB model for three-dimensional
free-surface flow and two-dimensional channel flow on a collocated mesh are pro-

vided in Appendix D.

3.3 Methods of solution

The principal method of solving the above discret equations is the muligrid method;
however, in the case of channel flow the problem is also solved using a second
methodology akin to the one used by Lenz and Kumar (2007) and Zhou and Ku-
mar (2012) which assumes the flow to be steady. The reason for this is to check
whether the failure of the latter authors to solve the problem of flow over a step-up
topography with Re # 0 was due to the solver they used. In the present work this
was achieved using the MA42 subroutine ( a successor of MA32 ) from the Har-
well Subroutine Library (HSL) which employs the frontal method variant of Gauss
elimination, Scott (2004). The MA42 code solves a set of sparse linear equations by
building a LU decomposition of the sparse matrix in order to avoid a large number

of operations involving zero terms. The associated equation set is provided below.

For steady flow, the global mass balance changes to a condition where the flow
rate in each layer is constant. This can be utilized to write the average velocity in

terms of its corresponding layer thickness allowing the problem to be solved for
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one variable, /1. The discrete equation becomes:

o Re éu Uarv32 —M21-172 1 G210172 + P2143)2
P2 3 21+1/2 2Ax Hay + Moo 21+1 Ax
G2r01/2 T P21-102 6 U432 — U1[-1/2 1
-h —&gpiRe | =u +
21 Ax P1 3 1I+1/2 2Ax iy + B
Pire1/2 T Prrs3p2 Prre12 + Pri-12
hi41 — hyy =
Ax Ax
. h —hy+ -
(pz—pﬂB(SlH@—SCOSQ 17+1 1] T S1+1 SI)
Ax
B aint (Mg —3hips +3hiy — by L S 35741+ 387 — 511
Ca Ax3 2Ax3

+ frareip = frizeio

(3.78)

where:

hoy =1—hyy— sy,

Qi
0.5 (hiy + hizy1)

(3.79)

Uil+1/2 =

The solution process for the above equation set starts by performing forward elim-
ination which is followed by a back-substitution step. Equation (3.78) is solved
for the only unknown /. Results shows that it is possible to solve bilayer channel
flow over a step-up topography when Re # 0 using the DAF. This indicates that the
failure by Zhou and Kumar (2012) to simulate the same flow problem is not due the
solver they used. Further investigation of the applicability of the diffuse-interface
method they used for this flow situation is required to determine the reason of this

failure.
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3.3.1 Multigrid solver

In this section a discussion is provided of the multigrid methodology used, with par-
ticular reference to the problems of interest. The first comprehensive description of
the multigrid method is that of Brandt (1977), which was designed to achieve rapid
convergence to the solution of a set of nonlinear discretized equations. The method
has been described in details for the solution of different types of problems in sev-
eral comprehensive texts, see for example Briggs et al. (2000) and Trottenberg et al.
(2001). As mentioned in Section 3.1 multigrid solvers have been used successfully
to solve several thin film flow problems by Gaskell ez al. (2004), Lee et al. (2007),
Gaskell et al. (2010), Veremieiev et al. (2010) and Slade (2013) and shown to be
accurate and efficient in handling such problems. To illustrate the different steps
in the multigrid methodology employed, we take equation (3.63) to represent the

discretised equation set.

The strategy underpinning the multigrid method is to use iteration, not as a solver
but as a smoother, to reduce the high frequncy errors in the solution on a particular
grid level while the low frequncy errors are reduced on a hierarchy of coarser grids.
This exploits the fact that iterative methods are efficient as smoothers, rather than
solvers, allowing for fast convergence of the solution of a system of equations. This
provides multigrid methods with the key feature that the solution of a problem with

N unknowns can be achieved by performing O(N) operations.

A hierarchy of grids (Gx : k=0,1,2,...,K) is employed so that the number of
nodes for each grid per unit length in the x-direction is given by n; = 2kt 4+ |
where c is a constant defining the size of the coarsest grid and the mesh size, Ax =
y—(k+c+l).

The same is applied for the number of nodes and mesh size in the y-

direction. This means that node spacing is halved from one grid level to the next
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fine one which allow for simple inter-grid transformers (interpolation/restriction).
Figure 3.2 illustrates a typical grid hierarchy for three grid levels (Gy, G1 and G»)

with ¢ = 0.

Go=3x%3 G =5x%x5 G>=9%9

Figure 3.2: Hierarchy of grids showing 3 grid levels (Gy, G1 and G») withc =0 .

A combination of full approximation storage (FAS), described by Brandt (1977),
and the full multigrid technique (FMG) is used in the present work. The FAS algo-

rithm is explained below in terms of two grid levels, having coarse grid Gy and fine

grid G .

The multigrid process starts by making a number of pre-relaxation sweeps v; for the
initial approximation on the fine grid to produce a relaxed fine grid approximation
ﬂ’ln , where m refers to the iteration number and is set to zero at the start of each
multigrid cycle. The next step is to restrict @' and its residual d|’ onto Gy to obtain
a coarse grid solution wyg' , which is used to calculate correction terms vy’. This
is known as the coarse grid correction step. An updated fine grid solution is then
calculated by interpolating v, back onto G,. Restriction and interpolation operation
are illustrated in Figure 3.3. The resultant fine grid approximation is then subjected
to v, post-relaxation sweeps to obtain a better approximation for the (m + 1)th

iteration, u'. These steps are repeated until a specified convergence criterion is

satisfied.
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Figure 3.3: An illustration os Restriction, R, and Interpolation, I, between grid
levels.

The same principles, relaxation and coarse grid correction, are adopted to cater
for a larger number of grids in a general multigrid algorithm. This allows longer
wavelength errors to be reduced by relaxation on coarser grids. The coarse grid
correction is applied repeatedly until the discretised equations can be solved directly
or within a few iterations. The number of times a multigrid procedure is applied at
the coarse grid level is called the cycle index, K, and it specifies the type of coarse
grid correction cycle. Since the procedure converges fast X = 1 and K = 2,
corresponding to a V-cycle and a W-cycle, respectively, are the typical values used.
Figure 3.4 shows the structure of a V-cycle and a W-cycle for a three-level grid; a

V-cycle multigrid structure is adopted in the current work.

G2
Gi
Go
V-Cycle W-Cycle

Figure 3.4: Structure of one multigrid cycle for K = 1 and K = 2.

The full approximation storage (FAS) method employed can be described using the

pseudo-code formalism introduced by Trottenberg et al. (2001) and employed by
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Gaskell et al. (2004) and Lee et al. (2007) as follows:

u! = MGFASCYC(k, @', fr, vi,v2, %K)

e Pre-relaxation:

— Perform v, relaxation sweeps using Gauss-Seidel iteration after linearis-
ing using the Newton-Raphson method .

@" = RELAX (uZ’ fk)
e Coarse grid correction:

— Compute residual on Gy
dr = fi - Ny (@)
— Restrict residual to next coarser grid level Gy_; using full-weighting
restriction operator Ri_l :
dy, = Ri\dy
— Restrict fine grid solution to Gy
— Compute right hand side on Gy
fror=d  + N (ﬂ’,?_l)
— if k = 1, solve the problem using the coarse grid solver.
N1 (’wkm_l) = Ji-1
— if k > 1, perform K iterations using @;" , as the initial approximation

wT_l = MGFASCYC(k - 1,11’1?_1,](1{_1, Vi, Vz,q()

— compute corrections on Gk_1 using

— Interpolate corrections to G using bilinear interpolation operator I ]’f_l

m _ 71k m
v =17 v



83

— Update approximated solution on Gy

m _ ~m m
’LLk =u, +’Uk

e Post-relaxation sweep

— Perform v, relaxation sweeps using relaxation scheme.

w*! = RELAX (ul!, fy)

If computations begin by choosing an arbitrary initial guess on the fine grid there
is a chance that the solution may diverge. To avoid this problem the full multigrid
technique, FMG, is used. An initial guess on each grid is obtained by interpolat-
ing the solution from the next coarser one. At the coarsest grid, the solution is
calculated by applying a large number of smoothing iterations or by using an ex-
act nonlinear solver, in the present work the Newton-Raphson method is used as a
coarse grid solver. The procedure involves performing a small number of FAS V-
cycles (1 to 3 cycles) on intermediate grid levels and a sufficient number of V-cycle
on the finest grid level. V-cycles are performed on the finest grid level until the
residuals become smaller than a predefined tolerance. A schematic representation
for FMG is shown in Figure 3.5 for three grid levels. For any number of grid levels,

K, the procedure can be summarized using pseudo-code as:

e Fork=0,1,2,.... K

m+1
0

— If £k = 0 solve Ny (ug”‘) = fo to obtain initial guess u
— If k > 0, interpolate to finer grid Gi from Gy
Uy = H,’;_lulf_l where H’g_l may or may not be the same as I,f_l.

Compute Ul',?“ = MGFASCYC(k, uo}, Te>vi, v, K)
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Figure 3.5: The Full Multigrid, FMG, illustrated for two V-cycles and four grid

levels. uj' refers to the solution vector on grid level Gy after performing m FAS

V-cycle; u8 is the initial solution on the coarsest grid level and ug is the solution on
Gy grid level obtained by FMG interpolation of “2—1'

3.3.2 Full weighting restriction and interpolation operators

The restriction operator used in the present work to transfer information from one
grid level to the next coarser one is a full weighting restriction. The operator equa-

tions can be written for a one-dimensional staggered grid for u, h and p as:

k-1 k k k
Urei2 = g [”21—1/2 + 2y + ”21+3/2] , (3.80)
1
k-1 k k k k
hy = 3 [h21—1 + 3Ny, + 3hyp + h21+2] ; (3.81)
1
k-1 k k k k
Pr =3 [p21—1 +3py + 3054 + p21+2] ; (3.82)
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where the subscript denotes the nodal position and the superscript refers to the grid

level. For a two-dimensional grid, the restriction operator becomes:

1
-1 _ k k k
Ui = 35 [”21 1220-1 T U 120042 T Uap43200-1 T U2143/22042

k k
( 20412201 T Uapi1 )2, 2]+2) +6 (”21+1/2 20 TUopp1, 2]+l)

[\.)

k k k k
3 (“21—1 1220 TUWop3p0) T U 120541 T ”21+3/2,2J+11)] )
(3.83)

1
k=1 _ k k k
Vo = 35 [Vzl 120-172 T Var220-172 T Var—12043/2 T Vari22743)2

t2 ( Va-1+12F v21+2,21+1/2) +6 (V2I,21+1/2 + "21+1,2J+1/2) (3.84)

k k k k
+3 (V21,21—1/2 T Vor0032 T Varsip0-12 V21+1,2J+3/2)] ;
1
k-1 _ L1k k k
hyy = 64 [h21—1,21—1 + Ny 10500 Mgy t hb 20422742 T3 (h21 2-1

h2[ 27421 h21+1 27-1F h21+1 27421 h21 127 F h21 12741 T h21+2 2J

k k
+154 21+1) +9 (hZI,ZJ +hyp100 t h 2127+1 1 I 2]+1)]

(3.85)

1
k-1 _ LT g k k k k
Pri =4 [P21-1,2J—1 +Pyr12740 Y Porsans—1 F Papsopgen T3 (P21,2J-1

k k k k k k
T P2127+2 T P2arv125-1 T Parv1 2042 T Por—127 T Par-120+1 T P21422s

k k k k k
+P21+2,2J+1) +9 (P21,2J T Porv120 T P22+ P21+1,2J+1)] :

(3.86)

To transfer information from the coarse grid level to the next fine level, a bilinear

interpolation operator is employed which, for a one-dimensional grid, is written as:

k k-1

Wyrrip = Upyr)os
1 (3.87)
k k-1 k-1
1432 = 5 [”1+1/2 + ”1+3/2]
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W = s 7 [3hi7t + hi].

h]2(1+1 - [3hk : + h];+1]]

el 1]

E

1
4
p§,: [
1

Pare = 3 3007+l

and for two-dimensional grid as:

1
k _ k-1 k-1
Worv1220 = g [3”1+1/2 7T U001
1
k _ k-1 k-1
“a1431220 = g [3 (”1+1/2 VROV
1
k _ k-1
Mar1220+1 = 4 [3”1+1/2 gt ”1+1/2 J+1
1
k _ k-1
Varog+12 = 4 [3"1 12t V1 1J+1/2
1
k _ k-1
Var+127+1/2 = [3"1 Jeip T V1+1 J+1/2]
1
k _ k-1 k-1
Var2s+3/2 = g [3 ("1 g2tV J+3/2)
1
k _ k-1 -1
Vore12043/2 = 3 [3 ("1 12t VI J+3)2
1
koo k-1 k-1
hy10g = 16 [9h1,J +3 (h1—1 gth
1
k _ k-1 k-1
M1 = 16 [9h1,J +3 (h1+1 gt hy
1
k _ k-1 k-1 k-
hypogi1 = 16 [9h1,J +3 (hl,J+l +h o,
1
k _ k-1 k-1
hypii2gi = 16 [9h1,1 +3 (h1+1 gt hy
1
koo k-1 k-1
P21 = 1g [9P1,J +3 (P1—1 7T P
1
k _ k-1 k-1
Par+127 = 1g [91’1,1 +3 (p1+1 JTPrg-
I
k _ k-1 k-1
Par2i+1 = 1g [9pl,J +3 (171,]+1 +tp
1
k _ k-1 k-1
Par+127+1 = 1g [9P1,J +3 (P1+1 gt PI 741

t Uy o1 T U3, -0

+ VI 1 J+12 TVICL a3

T Viiige12 T V10432

N v v v e N N~ N

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)
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3.4 Calculation details

Solutions are generated using an implicit S-method, as discussed in Subsection
3.2.1.2, with 8 = 3/4 for the DAF and using an implicit and unconditionally stable
Crank-Nicolson scheme for the LUB model. Solution starts with initial conditions
of a flat free surface and liquid-liquid interface and a fully developed velocity pro-
file. A typical time step tolerance of TOL = 1073 was used to adjust the magnitude
of the time increment. A computational domain of / = 100 is found to be sufficient
to ensure fully developed flow both far upstream and downstream the topography
for both flow configurations investigated. However, the figures presented in the
subsequent chapters do not necessarily cover the entire solution domain, but focus
instead on regions where there is significant free-surface and interface disturbances

present to be of interest.

To ensure mesh independence of the results generated several numerical experi-
ments were performed using different numbers of grid points for a reference case
of two-dimensional flow over a step-down topography for comparison. For con-
venience the fluid properties of both layers are taken to be the same and to have
the same thickness and |sg| taken to be 0.1. The percentage change in the capil-
lary ridge height that forms upstream of the topography for each solution is plotted
against the number of mesh points used, Figure 3.6, revealing a solution domain
containing 1025 equally spaced grid points on the finest level of a multigrid hierar-

chy to be more than sufficient to guarantee mesh independent results.
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Figure 3.6: Mesh dependence of the capillary ridge height for flow over a step-down
topography with g = 0.5, |sg| = 0.1, p2 = up = 1.0, = 10° and Re = 0

Therefore for the two-dimensional flow case, five grid levels were used to generate
the results with the coarsest level containing 65 and the finest grid level containing
1025 equally spaced grid points in the x-direction. The topography steepness pa-
rameter is set to 0.001 which insures the solution is independent of ¢, Veremieiev
et al. (2010). Multigrid V-cycles are executed at each time step to reduce residuals
below 107> on the finest grid level. Figure 3.7 shows the convergence history, in
terms of the residual, for the problem solved in Figure 3.6 when the number of grid

points on the finest grid level is 1025 — note the almost linear reduction achieved.



89

10" 4
10" ]
10%

10°

Residuals

Iteration

Figure 3.7: Convergence history for the problem of Figure 3.6 when the number of
grid points on the finest grid level is 1025.

3.5 Comparison of DAF (Re=0) and LUB results

Before continuing, in the subsequent chapters, to investigate channel and free-
surface bilayer flow in depth, confirmation is established that the DAF and its cor-
responding discrete equation sets, when Re is set equal to zero, produce exactly the
same set of results as the lubrication equations and their discrete form as given in
in Appendix D. This is done for two reasons: (i) to confirm the correctness of the
bilayer models derived and (ii) that they have been solved consistently; since the
mesh structure used in each case is different - the discrete form of the lubrication
equations are solved on a collocated grid for the unknowns (see for example Sell-
ier (2003), Gaskell et al. (2004), Lee et al. (2007)), while the discrete equation set

associated with the DAF requires the use of a staggered grid arrangement for the
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unknowns.

As shown below, comparison of the numerical solutions produced by both for the
two flow configurations shown in Figure 3.8 and Figure 3.9 reveals that exactly the

same results are achieved for the same flow parameters.

Figure 3.8 shows the predicted free surface disturbance obtained for film flow over
trench topography when Re = 0, Ca = 1.167 X 1074, |so| = 0.1, 1, = 1.5, hy = 0.4,
2 = p2 = 1.0 and 6 = 10°; Figure 3.9 on the other hand shows the predicted
disturbance to the liquid-liquid interface for flow in a channel over a step-down
topography when Re = 0, Ca = 3.33 x 107, |so| = 0.1, ho = 0.4, o = pr =
1.0 x 1073 and 6 = 10°.

0.1

— DAF,Re=0
LUB

-0.4 e Loy [ Lo oy w004y
-20 -10 0 10 20

Figure 3.8: Comparison of free surface disturbance predicted by LUB and DAF
models when Re = 0, for free-surface flow over a trench when hg = 0.4, po = up =
1,1l = 1.5, |sg| = 0.1, Ca = 1.167 x 10~* and 6 = 10°.
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Figure 3.9: Comparison of liquid-liquid interface disturbance predicted by LUB
and DAF models when Re = 0 for channel flow over a step-down when hy=0.4,
P2 = =1.0x1073, 50| = 0.1, Ca =3.33 x 10™* and 6 = 10°.

For both problems the free-surface/liquid-liquid interface are indistinguishable and
the results thus in excellent agreement. Accordingly, all of the results presented in
subsequent chapters, unless indicated otherwise, are obtained using the DAF of the

associated governing equations.
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In this chapter the flow of two superimposed immiscible liquids, one above the
other, through an inclined channel containing a topographic feature, as shown schemat-
ically in Figure 2.1, is explored taking into account inertia effects. The influence
of inertia, upper liquid properties as well as the topography type and dimensions
are investigated. It extends the work of Lenz and Kumar (2007) who studied the
non-inertial flow case only and that of Zhou and Kumar (2012) who considered the

same problem including inertia but with limited success.

Figure 4.1 shows a schematic diagram of the interface profile features for flow over
step-down and step-up topographies. The interface profile for flow over a step-
down topography is characterised by the presence of a capillary ridge upstream of
the step while for flow over a step-up the interface profile exhibits an upstream
capillary trough. The height(depth) of the capillary ridge(trough), hiqge (hirougn)-
is defined as the difference between the maximum(minimum) interface height and

the inlet height where the interface is flat.

In addition, other means for driving the flow are considered, with the flow (i) due
to a pressure difference along the length of the channel and (ii) induced by shearing

the upper liquid layer via a translating channel wall, explored.

In their work, Lenz and Kumar (2007) limited their study to situations where inertia
is negligible allowing them to construct a lubrication model to tackle the problem.
Subsequently, Zhou and Kumar’s (2012) attempt to extend this to inertial flows us-
ing a diffuse-interface proved problematic. They managed to generate some results
for flow over step-down topography but their method was unable to deal with flow
past a step-up. Also they simulated flows at arguably unrealistically high Reynolds

numbers which may be prone to inertial instability, Amaouche et al. (2007).

The set of governing equations, (2.109), (2.110), (2.114) and (2.115), are solved

using the the multigrid method described in Chapter 3. A computational domain
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Figure 4.1: Schematic diagram for bilayer flow in a channel containing a step-down
(left) and step-up (right) topography. for each problem the flow is from left to right.

of length / = 100 is chosen which is large enough to ensure a flat interface both
upstream and downstream of the topography. However, in the subsequent results
section only the part of solution domain where there is a significant disturbance to
the liquid-liquid interface is shown. It should be remembered, see Chapter 2, that
h1o for both step-up and step-down topography is taken as the thickness of the lower
layer in the unrestricted part of the channel. Throughout this study the long-wave
parameter , € is set to 0.1 and the capillary number Ca = 3.33 x 10 in order to be

consistent with the work of Lenz and Kumar (2007) and Zhou and Kumar (2012) .

The Reynolds number range investigated is chosen to be in the stable region as

proposed by Amaouche et al. (2007) so as to avoid the possibility of inertial in-

stabilities. Their analysis requires that ( ) is always much smaller than 1.0

€crit

except when A is close to unity. The inclination angle of the channel is taken to
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be 6 = 10° unless stated otherwise. The stable Reynolds number range based on

this value is Re < 150.

4.1 Gravity-driven flow

4.1.1 Validation

We begin by considering the same channel flow problem solved by Lenz and Ku-
mar (2007). Because they ignored the normal gravity component in the derivation
of the lubrication equation describing their model, the results they obtained are
only strictly correct when the channel is vertically aligned. For the purpose of com-
parison the inclination angle is set to 90° throughout this validation section. In
subsequent figures the x-axis is shifted so that the origin is located at the centre of

the topography.

Figure 4.2 shows the effect of increasing the topography height, s, while keeping
hio = 0.1 for flow in a channel containing a step-down topography, when p, = 0
and u, = 1073, which Lenz and Kumar (2007) called the single-layer limit because
the effect of the upper layer is negligible. Each curve in the graph represents a
particular value of topography height, starting at so = 0.04 and increasing by in-
tervals of 0.08 to reach the value 0.6. The results obtained show that increasing
so leads to a monotonic increase in the capillary ridge height formed upstream of
the step-down topography. This behaviour is similar to that experienced by a single
layer thin film flowing down an inclined substrate and meeting a step-down feature,
Kalliadasis et al. (2000), Decré and Baret (2003) and Gaskell er al. (2004). The
model is unable to generate results for |so| > 0.6.; the reason for this is that the

single-layer like behaviour of the flow results in the interface height at the capillary
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ridge exceeding 1.0 at step heights larger than 0.6, which violates the model as the

upper wall is located at z = 1.

1.0 T T T Ir

h +s

4 0.4

2 -1 0 1 2
X

(a) Current results at Re = 0 (b) Lenz & Kumar (2007)

Figure 4.2: Effect of topography height on the interface profile for flow over a step-
down topography when A9 = 0.1,p2 = O,up = 1 x 1073 Ca = 3.33 x 1074
0 =90°.

Considering instead the case u; = p> = 1 leads to an upper layer which destroys
the monotonic behaviour described above, in that the capillary ridge height first
increases with increasing so before decreasing as the gap between the interface and
the upper wall becomes smaller and smaller, as shown in Figure 4.3. This effect
can be attributed to the large pressure gradient arising in the upper layer in order to
drive the liquid through the narrow gap between the interface and the upper channel
wall. Results show that this pressure gradient leads to a decreasing capillary ridge
height until it is completely suppressed at large s, as for the case when [so| = 0.92.
The presence of a non-negligible upper layer enables the simulation of flows with

large so.

Figure 4.4 shows the change of capillary ridge height with topography height for
different combinations of p, and u,. It is clear that increasing the density or vis-
cosity of the upper layer reduces the capillary ridge and that in all cases, except
the single-layer limit, leads to a growth in capillary ridge height with topography

height, which reaches a maximum and then decreases subsequently.

[
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(a) Current results at Re = 0 (b) Lenz & Kumar (2007)

Figure 4.3: Effect of topography height on the interface profile, for flow over a
step-down topography when hjg = 0.1, 00 = 1, up = 1, Ca = 3.33 X 1074, 9 = 90°.
Figure 4.5 reveals the dependence of the capillary ridge on the height of the step-
down for several values of hjg when po = u» = 1. Each curve shows the same
trend, that of an increasing capillary ridge height to a maximum value with increas-
ing so followed by a reduction of the ridge height as s¢ is increased further. It can
be seen that the ridge height is decreased by increasing the thickness of the lower
layer if |so| < 0.65. For a topography height,|s¢|, above this limit, the curves for
different h( intersect and the capillary ridge height can become negative. A nega-
tive ridge height simply means a capillary ridge rather than trough but the interface
at the position of the capillary ridge is below the flat interface thickness, /1, at the

channel inlet.

A comparison of results generated here for Re = 0 with those of Lenz and Kumar
(2007), is provided in Figure 4.6 for flow in a channel containing a mound with
so = 0.48 and a width, /; of 2, and 4 when p, = u» = 1. The figure shows that if
the topography is wide enough the interface behaves as in the case of flow past two

independent topographies; a step-up followed a step-down.

It is clear from each of the above problems that excellent agreement is achieved

between the results obtained with the DAF when Re = 0 and the lubrication ap-
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Figure 4.4: Effect of topography height on capillary ridge height for flow over a

step-down, for h1g = 0.1,Ca = 3.33 X 1074, 8 = 90° and different combination of
upper liquid properties.
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Figure 4.5: Effect of topography height on capillary ridge height, for flow over a
step-down topography when p, = up = 1, 8 = 90° and different values of 4.

proximation predictions of Lenz and Kumar (2007).
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Figure 4.6: Comparison of current results with those of Lenz and Kumar for flow
in channel containing a mound topography given by |s¢|=0.48 when £19=0.5, Ca=
3.33x 1074, pp = ur = 1.0, 6 = 90°.

4.1.2 Effect of the normal gravity term

As demonstrated above, comparisons with results of Lenz and Kumar (2007) show
excellent agreement for the particular case when the angle of inclination, 8 = 90°
and Re = 0. However, results differ when the channel is not vertical with the de-
viation between them increasing with decreasing inclination angle. This can be
explained in terms of the normal gravity term in the pressure equation. The term

0(hy +
(p2—p1)ecos HM appearing in equation (2.109) represents the gravity com-

0x
ponent perpendicular to the flow direction. This term does not appear in the Lenz
and Kumar (2007) model formulation as they omitted the normal gravity component
from their derivation for simplicity. When p, = p; or the channel is vertical this
term vanishes but the effect of ignoring this term on the result is more pronounced
when the inclination angle is small and the two fluids have different densities. This

is shown in Figure 4.7 for flow through a channel with a step-down of |s,| = 0.1,

inclined at angles of 6 = 5°,10°,90°, when hjg = 04,0, = 1 X 10‘3,;12 =1
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and B = 12. The figure reveals that Lenz and Kumar’s results are suitable only
for vertical or nearly vertically aligned channels while for small inclination angles
the results are quantitatively inaccurate. Bertozzi and Brenner (1997) arrived at the
same conclusion when comparing theoretical predictions with experiments for flow

down an inclined plane.

4.1.3 Effect of inertia

Figure 4.8 shows the interface profile generated for flow through a channel with a
step-down of |sg| = 0.1 and 0.4, when the upper layer effect is negligible (p; =
0,up = 1x 1073) and hjo = 0.4. It reveals that far from the step the thickness
of the lower layer is the same for both the wide and narrow parts of the channel
due to the absence of any effect from the upper layer. The figure also shows that
by increasing Re from 0 to 150 the interface exhibits a wavy profile in the vicinity
of the topography and instead of there being a single capillary ridge, as in the case
when Re = 0, there appears a damped capillary effect with a maximum amplitude at
the edge of the step-down. This behaviour finds support from the work of Saprykin
et al. (2007) and Bontozoglou and Serifi (2008) for single layer free surface flow
down vertical substrate despite, as it does, their work violating the inertial stability

5
criteria for free-surface flow, Re ,;; = 1 cotd, Yih (1963).

When a non-negligible top layer is imposed (p2 = pp = 1) it influences the liquid-
liquid interface profile; the capillary ridge height becomes smaller and the far end
thickness of the lower layer is no longer the same at inlet and outlet, as shown in Fig-
ures 4.9 and 4.10, however the ratio @ is preserved at the outlet. Compared to
the single-layer limit when the ridge Léfg{lt increases monotonically with increas-

ing Re or |sg|, the two-layer case when the upper layer is not negligible shows a

different trend, see Figure 4.11. For all Re values the ridge height increases to a
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maximum with increasing |so| and then it drops; the ridge height becomes negative
at large topography heights. The same behaviour was noted by Lenz and Kumar
(2007) for inertialess flow. Increasing Re increases the ridge height in a monotonic
fashion if |sg| < 0.5, while for |so| above this limit the ridge height shows a decrease
at high Re, as shown in Figure 4.12. Inspection of the pressure gradients that de-
velop in both layers, as shown in Figure 4.13, provides some understanding as to the
interface behaviour. In the single-layer limit the flow exhibits no pressure gradient
in the top layer while in the lower layer a pressure gradient develops in the vicinity
of the topography and is zero elsewhere. The magnitude of the pressure variations,
including a peak corresponding to the capillary ridge followed by a deep negative
minimum, are amplified by increasing Re. This explains the monotonic growth of
the capillary ridge height with Re and |so| and the constant value of the lower layer
thickness when the interface is flat. For the two-layer case the lower layer exhibits
similar pressure variations to the single-layer limit but with larger magnitude and
a non-zero negative pressure gradient at the narrow part of the channel, while the
upper layer now, unlike the single-layer case, exhibits a pressure gradient with the

magnitude of its variation increasing with increasing Re.

Figures 4.14 and 4.15 show the interface profile for flow in a channel with a step-
down topography for several values of /19 with negligible and non-negligible upper
layer and a Re value of 0 and 150. The effect of increasing /1o on the interface
disturbances is summarised in Figure 4.16. It shows a drop in the capillary ridge
height when Re = 0 for both single- and two-layer cases. This may be attributed to
the fact that increasing /1, while keeping |sg| constant, is equivalent to reducing
the topography height which is known to reduce the capillary ridge height, Lenz
and Kumar (2007) and Kalliadasis et al. (2000). Furthermore, for the two-layer
case this is accompanied by a larger pressure gradient in the top layer due to the

increasing resistance to flow caused by reducing the gap between the interface and
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the top wall. When Re = 150 the two cases show different trends; the two-layer flow
shows almost no change in the capillary ridge height with increasing the interface
height until 419 = 0.5, when it then decreases; while in the single-layer limit the
ridge height first drops when hjg is increased from 0.1 to 0.2 and then it grows
with further increase in h19. This may be attributed to the fact that the increased
inertia of the lower layer in the single-layer limit faces no resistance from the top
layer, while for the two-layer case the inertia of the top layer tends to suppress
the interface. This might also be connected to the stability of the flow as a single
layer flowing at Re = 150 with an angle of inclination of 10° would be considered
unstable according to the stability criteria for single layer flow down an inclined

substrate as mentioned earlier in this chapter.
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Figure 4.7: Effect of the normal gravity term on the interface shape for flow through
a channel with a step-down of |sg| = 0.1 when hjp = 0.4, Ca= 3.33 X 1074, P2 =
1 x 1073 and u, = 1.0, with: (a) § = 5°, (b) 8 = 10° and (c) 6 = 90°; Re = 0.
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Figure 4.9: Effect of Reynolds number on the interface shape for flow in a channel
with a step-down when h19=0.4, Ca= 3.33 X 10~* and p2 = up = 10,60 = 10°,
with: (a) |so| = 0.1, (b) |so| = 0.4 and (c) |so| = 0.8.
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Figure 4.14: Comparison of interface shape for flow in a channel with a step-down
in the absence and presence of inertial effects. |so| = 0.2, Ca= 3.33 X 10~* and
p2=1,u=1,0=10° and (a) Re = 0 and (b) Re = 150.
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The effect of varying the density of the upper liquid on the inerface profile is shown
in Figures 4.17 and 4.18. Increasing the density of the top liquid relative to the lower
one reduces the capillary trough depth both in the presence or absence of inertia.

The flow in a channel containing a step-up is also investigated. As in the case of
free-surface flow of a single-layer thin film down an inclined substrate featuring a
step-up, the interface profile shows a capillary trough upstream the topography. For

both situations, a non-negligible top layer shown in Figure 4.19 and a negligible
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top layer shown in Figure 4.20, the effect of inertia is the same: widening and
amplifying the interface disturbances. Increasing the step height, |sg| or Reynolds
number, Re, results in a monotonic increase in the depth of the capillary trough,
regardless of the upper layer’s properties, as illustrated in Figures 4.21 and 4.22.
This behaviour is different from that of the step-down discussed earlier. This may
be attributed to the fact that the capillary trough, in contrast to the ridge associated
with a step-down, does not obstruct the flow of the upper layer and hence there is

no excessive pressure build-up in the top layer in order to satisfy the mass balance.

The effect of increasing Reynolds number on the interface profile for flow in a
channel containing a mound of so = 0.48 and a step width, /; of 4 when p, = pup = 1
is shown in Figure 4.23. An increase in Re leads to widening of the interface
disturbances and also the capillary ridge (trough) is pushed towards the step face by

the increased inertia and its height (depth) is noticeably increased.



112

0‘9_""I""I""l""l""l""l""l""l""l""_
08 L h,=0.6 h
0.7 / .
0.6

£ oostk

p C

wvy

+.—

=
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4.2 Pressure gradient and shear driven flow

Flow driven by means other than gravity is also considered. Pressure gradient driven
flow shows similar interface behaviour as the gravity ones. In fact, a profile iden-
tical to that generated by gravity flow can be obtained for pressure driven flow by
choosing the same value of B and setting p, = 1 as shown in Figure 4.24 for bilayer

channel flow over a step-down given by |sg| = 0.1 when Re =0 .

0'48_'"'I""I""I""I""I""I""I""
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______________ Pressure-driven 1

0.47 |
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Figure 4.24: Comparison of interface profiles generated by gravity-driven flow,
6 = 10°, and pressure-driven flow in a channel with a step-down given by [so|=0.1
when Re = 0, h19=0.4, Ca= 3.33 x 10~* and ps = u» = 1.0.

The influence of inertia on pressure driven flow is shown in Figure 4.25 for flow
over a step-down with |sg| = 0,0.8 and in Figure 4.26 for flow over a step-up.
The same trend as for gravity flow is noted. In channel flow, it is possible to
drive the flow by shearing the upper layer by moving the upper channel wall. Of

course, this flow requires a non-negligible upper layer to drag the lower one and
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Figure 4.25: Effect of Reynolds number on the interface shape for pressure-driven
flow in a channel with a step-down when h19p=0.4, Ca= 3.33 X 10~* and P2 =
0.2, up =1, 6 = 0° with: (a) |so| = 0.1 and (b) |s9| = 0.8.

therefore all the results for shear-driven flow presented in this section is for a non-
negligible upper layer , p» = pp = 1. For a horizontal channel and in the absence
of an imposed pressure gradient, the upper liquid is dragged in a Couette flow by
the upper wall and the lower layer is dragged by the upper layer. When the flow
encounter changes in the channel height, due to a topographic feature, a pressure
gradient is generated in the narrower part of the channel and hence the flow in this
section is the superposition of Couette flow induced by the moving upper wall and

Poiseuille flow generated by the pressure gradient as illustrated schematically in
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Figure 4.26: Effect of Reynolds number on the interface shape for pressure-driven
flow in a channel with a step-up when h10=0.4, Ca= 3.33 X 10~* and 2=y =1,
, 8 = 0° with: (a) |so| = 0.1 and (b) |s9| = 0.8.

Figure 4.27. Figure 4.28 presents the effect of inertia on shear-driven flow over a
step-down of a step depth of 0.1 and 0.8. The effect of increased inertia, amplifying
the capillary ridge and widening the disturbance, is more pronounced when |sg| =
0.1 while at |sg| = 0.8 the effect is smaller and the capillary ridge is suppressed by
increasing inertia. Figure 4.29 shows more details of the dependence of capillary
ridge on step depth at Re values ranging from O to 150. The figure shows that for
the Re values considered the capillary ridge first increase to a maximum value with

increasing topography height before reaching a maximum after which it decreases.
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Figure 4.27: Schematic diagram for bilayer flow in a channel containing a step-
down (left) and step-up (right) topography.

Comparison of the interface profile for hjo values ranging from 0.1 to 0.8, in the
presence and absence of inertia, is shown in Figure 4.30 with the corresponding
capillary ridge height results summarised in Figure 4.31. They reveal that for both
inertial and non-inertial flows the capillary ridge height is decreased by increasing
the interface height at the same step depth due to the pressure build up in the upper

layer.

A similar behaviour to that of gravity-driven flow is also noticed for the case of
shear-induced flow over a step-up as shown in Figures 4.32 and 4.33, which reveal

a monotonic growth in the capillary trough with increasing step height.

Figure 4.34 shows interface profiles for three channel flow situations when £19=0.4
over a step-up topography given by [so|=0.2: flow due to gravity with a negligible
upper layer; flow due to gravity with a non-negligible upper with layer p, = up = 1;
shear flow induced by a moving upper channel wall . For the single layer limit case,
the undisturbed lower layer thickness is equal at the two ends of the channel such

that the interface height at channel exit is 0.6 (the sum of step height and layer
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Figure 4.28: Effect of Reynolds number on the interface shape for shear-driven
flow in a channel with a step-up when h10=0.4, Ca= 3.33 X 10~* and 2=y =1,
, 0 = 0° with: (a)|so| = 0.1 and (b)|so| = 0.8.

thickness, 0.4+0.2). When the upper layer is non-negligible the contraction of the
flow area generates a pressure gradient in the narrower part of the channel. The
exit thickness of lower layer is now smaller than the inlet thickness and can be
calculated from the mass balance for both layers. For the simple case when the
both layers have the same properties it can be calculated by taking into account that
the lower layer thickness represents the same fraction of of the channel height in
both the wide and narrow parts. For the case shown in Figure 4.34 the step height is

0.2 and therefore the channel thickness in the narrower part is 0.8. The lower layer
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Figure 4.29: The dependence of capillary ridge height for shear induced flow over
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thickness in the narrower part is 0.32 which represents the same ratio of 419 = 0.4 in
the wide part making the exit interface height to be 0.52 ( 0.32+0.2 ). For the shear-

driven flow case the thickness of the lower layer is 0.285 which can be calculated

from the mass balance using equations (2.116) and (2.117).
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Figure 4.30: Interface profile for shear-induced flow in a channel with a step-down
in the absence and presence of inertial effects. |so| = 0.2, Ca= 3.33 x 107#, p, =
ur = 1 and several values of kg, , 8 = 0° with: (a) Re = 0 and (b) Re = 150.
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(a)

(b) ]

Figure 4.32: Effect of Reynolds number on the interface shape for shear-driven flow
in a channel with a step-up when 410=0.4, Ca=3.33x10"%and p» = i = 1,0 = 0°
with: (a)|so| = 0.1 and (b)|so| = 0.8.
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In this chapter free-surface bilayer thin film flow down an inclined substrate con-
taining topographical features is investigated. The equation sets for both the LUB
model and DAF, derived in Chapter 2, are solved numerically using the multigrid
methodology presented in Chapter 3. The effect of inertia and the upper layer prop-
erties are explored for different topography geometries and comparisons drawn with
complementary experimental results and numerical predictions from the literature.
The extension to three-dimensional bilayer flows over localised topography is also

addressed.

Due to the absence of an explicit inertial stability criteria for bilayer free-surface
flow over topography and to avoid generating results in unstable flow regimes it
was decided to use the inertial stability criterion for single-layer flow down flat
inclined substrate as a guide when determining the stable Reynolds number range
to be explored. The well-known stability criterion for gravity-driven flow down
inclined substrate requires the Reynolds number to be smaller than a certain critical
value, Re.,;;. The value of the critical Reynolds number depends on the inclination

angle, 6, of the substrate, Benjamin (1957) and Yih (1963), and is given by:
5
R.vir = 1 cotf. 5.1

When the density of the upper layer is smaller than that of the lower one the bilayer
flow becomes more stable than the single layer counterpart, while a heavier upper
layer has a non-stabilising effect, Kao (1968). Using the above criteria and setting
p2 < 1 ensures the flow is stable. It is clear from equation (5.1 ) that if the substrate

is vertical the flow is unstable no matter how small Re is.
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5.1 Two-dimensional flow

5.1.1 Single-layer equivalent

Due to the lack of numerical or experimental results in the literature for continuous
bilayer flow over topography, the limiting case where both the lower and the upper
liquids have the same properties is used as a test bed enabling comparison with
single layer results available in the literature, in particular the experimental data of
Decré and Baret (2003). In order to make direct comparison the following fluid
properties are used: p; = 1000 kg/m>, iy = 0.001 Pa.s and 6 = 0.07 N/m and

the inclination angle is set to 30°.

Figure 5.1 shows the comparison for flow over step-up and step-down topographies
of |sg| = 0.20 when Re = 2.45 and a spanwise trench of |sg| = 0.19 and [, = 1.51
when Re = 2.84. The origin is moved such that it is located at the centre of the
topography and the free-surface location and topography profile are scaled with re-
spect to the height/depth of the topography, namely s* = s/s0 and f7 = (f2—1)/s0,
respectively. For the three cases compared the current DAF is found to capture
accurately the main features of the free surface profile. These features are the char-
acteristic free-surface trough and capillary ridge just upstream of the step-up and
step-down topographies, respectively, and the free-surface depression characteristic
of flow over a trench, Gaskell ef al. (2004). The height of the capillary ridge or the
depth of capillary trough is measured from the flat free surface in the z-direction, as
described in Chapter 4. The figure reveals excellent agreement between the current
numerical predictions and the experimental measurements for all three topographi-
cal features considered. The r.m.s. deviation between the numerical and experimen-

tal results obtained for the free-surface profiles for all three spanwise topographies
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is within the experimental accuracy of 2% reported by Decré and Baret (2003).

Similarly, comparison can be drawn with associated numerical predictions, in this
case those of Veremieiev et al. (2010). Figure 5.2 presents just such a comparison
when p; = up = 1 for flow over step-up and step-down topographies when Re =
15 and |sg| = 0.2, Ca = 1.17 x 1073 and & = 0.191. The profiles reveal excellent

agreement between the two sets of the results.

Those for Re=30, Ca = 1.86x1073 and & = 0.223, see Figure 5.3, similarly demon-
strate very close agreement between the current results and those of Veremieiev
et al. (2010). Note that o0, = 1.0, result in an over prescription the problem as
formulated and consequently oscillatory behaviour of the numerical solution. This
is not the case if a value of 0 close to but less than 1 is used. In generating Figures

5.2 and 5.3 0, was given a value of 0.95.

5.1.2 Exploring parameter space, Re = 0

The current bilayer DAF enables exploration of the influence of the upper liquid
layer properties as well as the initial interface height on the free surface and inter-
face disturbance generated. The angle of inclination is set to 6 = 10°, the capillary
number to Ca = 1.167x 10~ and & = 0.1. Figure 5.4 illustrates the influence of the
upper layer density on the free surface disturbance for flow over topography when
Re = 0. Three topographical features, a step-up, -down and a trench with [, = 1.5,
are considered when yy = 1, |so| = 0.2 and h19 = 0.5. The investigations cover
only the flow regimes when the presence of the upper layer has a stabilising effect
(i.e p2 < 1). The effect of decreasing p, from 1 to 0.1 for step-up/down topography
is to slightly increase the depth/height of the capillary feature and to push its peak

away from the topography side wall. The effect on the free surface is more pro-
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nounced for flow over trench topography where the depth of the depression, formed

after the capillary ridge, is reduced by 23%

The corresponding liquid-liquid interface profiles for the flow configurations men-
tioned above, scaled with respect to the height/depth of the topography as f| =
(f1 — hi10)/s0, are shown in Figure 5.5. For this figure, as in other subsequent plots
of Chapter 5 and Chapter 6, insets showing exploded views of the liquid-liquid in-
terface profiles formed are provided. These show that what appear as "kinks" are
in fact smooth changes and simply an artefact of the scaling employed. In general,
the interface exhibits a profile similar to that of the free surface. However, it also
shows features similar to those of the interface profile discussed in Chapter 4 and
also reported by Lenz and Kumar (2007). The step-down flow has a capillary ridge
with its peak pushed below the inlet flat interface which was noted for bilayer chan-
nel flow at high |sg| as shown, for example, in Figure 4.3. The effect of changing

density on the interface profile is small compared to its effect on the free surface.

Changing the inlet thickness of the lower layer, &g is also expected to have an
impact on the free surface disturbance when the two liquids are not the same. In-
creasing h19 when py < 1 is expected to have the same effect of increasing p, while
h1o 1s constant because both lead to an increased flow rate. This can be examined by
comparing Figure 5.6a, which shows the free surface and interface profile for flow
over a trench for different /¢ values when p, = 0.5 and u, = 1, with Figure 5.4c
for flow over a trench at different p, values. The two figures show the same trend

of increasing the depth of free surface depression when either 4o or p, increased.

The corresponding interface profile behaviour is shown in Figure 5.6b when Ao =
0.2,0.4 and 0.8. The profile for hjp = 0.2 is very similar to the free surface profile
characteristic of the flow of a single-layer thin film over a wide trench, as described

by Mazouchi and Homsy (2001) who used the boundary element (BE) method to
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study the Stokes flow of a thin liquid film over a one-dimensional trench and by
Gaskell et al. (2004) who used a finite element method and lubrication theory to
solve the problem of thin film flow over topography. When A9 = 0.8 the interface

profile becomes very similar to that of the free surface.

Next the effect of changing the upper layer viscosity is explored while keeping
h; = 0.5 and p, = 1.0. Figure 5.7 shows the influence of u; on the flow over
step-down and trench topographies. It can be seen that for step-down topography
decreasing u, leads to widening of the capillary ridge for both the free surface and
interface and the movement of the associated peak upstream of the topography side
wall. The flow over a trench shows in addition a considerable decrease in the depth
of free surface and interface depression of 14% and 15%, respectively, when 5 is

decreased from 5 to 0.5.



138

] —DAF
{ e Decre and Baret (2003)
I Topography

0.8

0.6

0.2

0.0

—— DAF
A ———————— Decre and Baret (2003)
= T Topography

0.8
0.6
0.4

0.2

(b)

0.0

—— DAF
rrrrrr Decre and Baret (2003)

I Topograph
02 opography

0.4

0.6 ~r—r—r—r—r—r—r—r—r S I —— I

Figure 5.1: Comparison between DAF predictions of the free surface disturbance
when p; = up = 1 with the experimental results of Decré and Baret (2003) for flow
over a substrate containing topography when 6 = 30°: (a) step-up (height |sg| = 0.2
and Re = 2.45); (b) step-down (depth |so| = 0.2 and Re = 2.45); (c) trench ( |so| =
0.19, /; = 1.51 and Re = 2.84).
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Figure 5.2: Comparison between DAF predictions of the free surface disturbance
when pr = uo = 1, 8 = 30° and the numerical results of Veremieiev et al. (2010)
for flow over a substrate containing a spanwise (a) step-up and (b) step-down to-
pography when Re = 15 and the |sp| = 0.2.
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Figure 5.5: Influence of density ratio on the liquid-liquid interface for different
topographical features when Re = 0, up = 1.0, |sg| = 0.2, hjo = 0.5 and 6 = 10°;

(a) step-up, (b) step-down, (c) trench, [; = 1.5.
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Figure 5.6: Effect of kg on (a) the free surface and (b) the interface disturbance
when Re =0, pp = 0.5, up = 1.0, |sg| = 0.2 and 6 = 10°.
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The bilayer model can be employed to illustrate the evolution of the interface from
close to the topography when the lower layer is infinitely thin up to the full extent of
the film by changing /1¢. This is demonstrated in Figure 5.8 for flow over a trench
topography when u» = p> = 1 which essentially represents a single-layer flow; hjq
takes values from 0.2 to 0.9 and is increased in increments of 0.1. These interface

profiles effectively represents the streamlines of the flow as there is no flow across

them.
free surface
1.0 - pa
0.8 1
0.6
“ 04 W
02 N\ﬁ
0.0 ——
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-0.2 1
T T
-10 0 10
X*

Figure 5.8: Evolution of the liquid-liquid interface profile when changing the inter-
face height for flow over trench topography when Re = 0, |so| = 0.2 po = up =1,
and 6 = 10°.

5.1.3 Exploring parameter space, Re # 0

In this section the effect of inertia on both the free surface and liquid-liquid interface

disturbance is investigated together with the influence of flow parameters, p», us
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and hl().

Figure 5.9 shows the free surface and interface disturbance generated for flow over
trench topography, /; = 1.5 and [sg| = 0.2. Increasing Re widens and increases
the amplitude of the free surface and interface disturbances. The free surface cap-
illary ridge height, h,;4,., increases by 76% and the interface’s by 84% when Re
increases from O to 30. The same behaviour was noted for the single-layer limit
of channel flow as discussed in Chapter 4 and also agrees with the predictions of
Veremieiev et al. (2010) for single-layer free-surface flow. The change of h,;qq.
with Re for different combinations of p, and u; is shown in Figure 5.10. For all
p2-H> combinations, increasing Re increases h,;4g. monotonically due to the in-
creased inertia. The wavy interface seen in the case of bilayer channel flow at high

Re is not observed here as the range of Re is limited due to stability constraints.

The flow regimes presented in Section 5.1.1 are now investigated in the presence of

inertia. In the following figures the Reynolds number is set to Re = 15.

Figure 5.11 shows the effect of density on flow over step-up/down and trench to-
pographies; the corresponding interface disturbance is shown in Figure 5.12. The
trend of a widening of the capillary features and deepening of the free surface and

interface depressions for flow over a trench is noted when p; is increased.

The influence of A9 when p; = 0.5 is demonstrated in Figure 5.13. The figure
shows similar behaviour to flow at zero Reynolds number but with magnified cap-

illary features.
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Figure 5.15: Comparison of free surface and interface disturbance in the presence
and absence of inertia for flow over trench topography of |so| = 0.2, [, = 1.5 when
6 = 10° for (a) u = 5.0 and (b) u = 0.5.

Figure 5.14 presents profiles of the free surface and interface disturbance for flow
over step-down and trench topography when Re = 15 for different values of u;. For
flow over a trench, increasing u, from 0.5 to 5.0 leads to a noticeable increase in
hyiqge and free surface depression depth of 93% and 49%, respectively, compared
to 10% and 16% for non-inertial flow. A comparison between the flow with and
without inertia at yo = 0.5 and 5 is shown in Figure 5.15 in terms of the free surface
and interface profiles for flow over trench topography when p; = 1.0 and A9 = 0.5.

The figure reveals that the influence of inertia is more remarkable at high w; values.
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Finally, 5.16 shows the interface profile obtained for different values of lower layer
thickness, hjg, when py = o = 1 together with the common free surface as chang-
ing h1o does not impact on its shape when the two liquids are the same. When A is
small an interface profile similar to the free surface profile for single-layer flow over
wide trench characterised by capillary ridge and capillary trough separated by a flat
interface is observed. The two features start to merge together as /g is increased
with the ridge eventually pushed below the flat inlet interface and a new broader
ridge is formed leading to the well known free surface shape for flow over a trench,

consisting of a capillary ridge before the trench and depression afterwards.
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Figure 5.16: Evolution of the liquid-liquid interface profile for flow over trench
topography for the single-layer equivalent flow when 6 = 10° and Re = 15.
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5.2 Three-dimensional flow over trench topography

In this section the bilayer DAF, written for three-dimensional flow, as in Section
3.1 of Chapter 3, is used to predict inertial flow over a localised trench topography.
Note, this is not intended to comprise a complete and systematic investigation but

as proof that the same can be achieved.

The definition of topography given by equation (2.136) has to be redefined to ac-
count for the additional dimension. The appropriate expression defining a two-

dimensional rectangular trench, is thus given by:

12 12
s(x*,y") = ISO [tan_l (—x t ) —tan~! (—x 2 )] )
4 tan~! ﬁtan‘1 % 0 0

[tan_1 (—y* al Wt/z) —tan~! (—y* — Wt/z)]
0 ) ’

where the coordinate system (x*, y*) has its origin at the centre of the topography,

(5.2)

x5y =(x =X,y = y1).

Solutions are generated on a square solution domain with [ = w = 50, which is
large enough to ensure fully developed flow both upstream and downstream. A grid
hierarchy of five grid levels was used to generate the results with 65(1025) grid

points, in each direction, on the coarsest(finest) mesh.

Figure 5.17 shows a complete three-dimensional visualization of the free surface
disturbance generated for flow over a square trench topography having [, = w, =
1.54 and |sg| = 0.25, when p, = u; = 1 and Re = O - that is, the two layers are
comprised of the same liquid and the system behaves as if a single fluid layer. The

free surface disturbance consists of a horseshoe-shaped bow-wave i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>