
Full-Wave Simulation of

High-Frequency Electromagnetic

Propagation Through

Inhomogeneous Plasma

Thomas Williams

Doctor of Philosophy

University of York

Physics

September 2014



Abstract

The propagation of EM radiation past wavelength-sized inhomogeneities is not

well understood, yet is of importance for both microwave heating and diagnostic

applications in tokamaks. The work presented in this thesis improves this under-

standing; for this purpose, EMIT-3D, a new finite-difference time-domain (FDTD)

code implementing a cold-plasma model has been written to extend full-wave simu-

lations of propagation in magnetized plasmas to 3D. The numerical development of

the algorithm is presented and supported with a new stability analysis.

Studies of propagation past density filaments (‘blobs’) are presented and com-

pared with 2D simulations. The synergistic effects of blob density and width on

scattering angle are investigated, resulting in the conclusion that even filaments of

densities below beam critical density can cause significant deviation in beam paths

over a wide frequency range. Further to this, the case of oblique incidence is an

explicitly 3D interaction, and its effects have been calculated.

The broadening and defocusing effect on microwave beams caused by realistic

edge turbulence, observed in all magnetic fusion devices, is also investigated. A fluid

model for edge turbulence is used to produce realistic turbulent profiles, which in

turn are used to initialise a set of microwave propagation simulations. The effect of

propagation through a turbulent layer is observed even at low fluctuation amplitude,

and observed to have a peak when eddy sizes approach beam wavelength.

This work supports MAST experiments using the SAMI diagnostic to image mi-

crowave emission from the plasma edge due to mode conversion from electron Bern-

stein waves; however, it has relevance for numerous microwave diagnostic, heating

and current drive applications in plasmas.
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were produced by Alf Köhn (2D full-wave results from Chapter 5 generated using

the code IPF-FDMC) and Jarrod Leddy (turbulent density profiles from Chapter 6

generated using the code BOUT++). These were obtained as part of a collaboration

which I initiated and helped to direct.

9



Chapter 1

Introduction

1.1 Magnetic confinement fusion

1.1.1 Context and basic concept

The economically sustainable production of energy from a controlled nuclear fusion

reaction has been the objective of an international research effort for 65 years. Most

research has focused on the D-T reaction between deuterium and tritium due to its

relatively high cross-section:

2
1D +3

1 T→ 4
2He +1

0 n + 17.6MeV (1.1)

In a fusion device, the goal of ignition is achieved when this reaction becomes

self-sustaining - sufficient heating to maintain the required temperature is provided

by the α particles and external heating is no longer required. This will occur under

the condition that the product of number density n, temperature T and energy

confinement time τE satisfies the inequality [1]

nTτE > 5× 1021m−3keVs (1.2)

One of the two principal approaches to fusion energy is that of magnetic con-

finement fusion (MCF); the D-T fuel is heated to T ∼ 10keV and thus ionised to
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form a plasma, which is confined using strong magnetic fields in order to achieve the

necessary τE. Although ignition has not yet been achieved in this way, continued

advances in device design, engineering, materials science, diagnostics and theoretical

understanding have seen incremental progress made towards this goal. The ITER

device, currently under construction, is expected to achieve Q = 10; that is, an

output power ten times greater than the input power, an important step towards

ignition.

1.1.2 The tokamak

ITER, along with other, smaller experimental devices already in operation, uses

the tokamak design, a toroidal configuration first devised in the 1950s. A current is

passed through a central solenoid, which acts as the primary circuit in a transformer,

causing a change in magnetic flux through the torus and hence inducing a toroidal

current through a plasma within the tokamak vessel; in addition to heating the

plasma ohmically, this generates a poloidal magnetic field, shown schematically in

Figure 1.1. External poloidal field coils are used to add an additional poloidal

component for greater control over the position and shaping of the plasma.

External toroidal field coils are used to add a toroidal magnetic field component,

resulting in a helical field. This confines the plasma while avoiding the consequences

of fundamental particle drifts which had reduced the confinement of earlier devices.

The ions and electrons confined in a tokamak with a purely toroidal field, due to the

field gradient in the radial direction, will experience a ∇B drift in opposite vertical

directions [2], setting up a vertical electric field which results in an E × B drift in

the radial direction. This results in a large net loss of particles radially outwards

from the device. This is avoided with a helical field; since the top and bottom of

the plasma are connected by fieldlines, particles will flow along them to balance any

vertical ∇B drift and prevent an electric field being established.

This field structure allows a magnetohydrodynamic (MHD) equilibrium to be

achieved, supporting a pressure gradient in the plasma which results in a sufficiently

11



Figure 1.1: Schematic of the electromagnetic fields and coils of the JET tokamak,

showing the resulting helical magnetic field. Image taken from EFDA

high core temperature for fusion.

MHD equilibrium, once achieved, is threatened by numerous classes of instability

driven by the steep gradients of the plasma, which can reduce energy and particle

confinement, cause damage to structural components and lead to disruptions which

end the tokamak pulse. A great deal of research, both experimental and theoretical,

has focused on the understanding, mitigation and control of instabilities to achieve

a longer-lasting equilibrium.

1.1.3 The spherical tokamak

While ITER has a ‘conventional’ aspect ratio (ratio of major radius to minor radius

of the torus) of ∼ 3, alternative tokamak designs have been produced with aspect

ratios of half this or less, as shown in Figure 1.2. The outboard last closed flux surface

of the plasma therefore approaches the shape of a sphere, giving these designs the

name of ‘spherical tokamak’ or ST.
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Figure 1.2: Schematic of conventional and spherical tokamak aspect ratios. Image

taken from UKAEA

The low aspect ratio design allows operation at a higher β, or ratio of plasma

pressure to magnetic pressure:

β =
nkBT

(B2/2µ0)
(1.3)

This was predicted by theoretical scalings implying that a combination of low

aspect ratio and high plasma shaping maximise the achievable β, and has been

verified experimentally over a wide range of tokamaks [3].

This has the consequence that a given temperature and pressure can be achieved

using a significantly smaller magnetic field, making such a device more economical

to build and operate; in addition, the compact structure is cheaper to construct and

the spherical geometry provides inherent suppression of certain instabilities.

The ST was first proposed in the 1980s by Peng and Strickler [4]; a number have

been constructed globally, including START at Culham Centre for Fusion Energy

(CCFE) in the UK, superseded by MAST, the Mega-Amp Spherical Tokamak, in

1999. MAST, presently undergoing a major upgrade, achieves toroidal β (calculated

using the volume-averaged plasma pressure and value of B at the plasma’s geometric

centre) ∼ 3 times those in conventional aspect ratio tokamaks, with a relatively

low magnetic field, high flow shear and strong variation in toroidal field across the

minor radius. This has allowed the testing of theory in new operational regimes and
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provided new insight into tokamak physics [5].

1.2 The tokamak plasma edge

1.2.1 Confinement modes

Additional heating and current drive beyond that generated ohmically can be sup-

plied by the use of either radio frequency antennas or the injection of energetic

neutral particles. It has been observed, beginning in the early 1980s [6], that un-

der certain conditions, as the heating power is increased, a transition takes place

from the standard low-confinement (L) mode to high-confinement (H) mode. An

edge transport barrier is formed, impeding the flow of particles across the plasma

boundary and supporting steep ‘pedestal’ gradients in temperature and pressure at

the plasma edge [7]; the resulting difference in density profiles is sketched in Fig-

ure 1.3. The pedestal supports higher core temperatures and pressures which causes

an increase in the confinement time by a factor of two [8]; the usefulness of this

for achieving reactor conditions mean that H-mode is now seen as the most likely

operating scenario for future tokamak experiments and reactors (including ITER).
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Figure 1.3: Sketch of L and H-mode density profiles along a radial cut from the core

to the edge of the tokamak where a is its minor radius; pedestal shown

1.2.2 Edge localised modes

However, the steep edge pressure gradient in H-mode makes the plasma susceptible

to instabilities known as edge localised modes (ELMs). These are transient bursts

from the edge on a microsecond timescale, and can occur repeatedly during H-mode.

ELMs are problematic for several reasons: they create extremely high transient heat

loads on plasma-facing components such as the divertor [9], and are associated with

a loss of confinement since energy is lost from the plasma.

The heat loading issue becomes more serious with the larger ELMs which will

be present on ITER, presenting a significant engineering challenge in constructing

materials to withstand them. Experimental studies have found strong evaporation

of divertor materials including the currently planned tungsten, leading to significant
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erosion over the reactor’s lifetime [10].

A theoretical understanding of the causes of ELMs will be crucial in developing

techniques to mitigate or suppress them, but is incomplete at present. At present,

the role of the current density (J) profile at the edge is thought to be important,

but measuring it experimentally at the required spatial and temporal resolution is

extremely challenging. A system for making routine measurements of the edge J

profile would provide much-needed data to constrain future ELM models.

1.2.3 Filaments and turbulence

Figure 1.4: Fast camera (visible spectrum) image of MAST filaments. Image taken

from UKAEA

ELMs have a filamentary structure which tends to follow the magnetic field-

lines, but there is also evidence for the presence of filamentary blob structures

between ELMs and in L-mode at the edge of nearly all tokamaks, as well as al-

ternative toroidal configurations such as stellarators and reversed-field pinches; they

are thought to be responsible for a significant fraction of cross-field transport at the

edge of fusion-relevant plasmas [11]. They have been observed between ELMs on

MAST, where extensive experimental work has been carried out to characterise their

structure and properties [12]. Fast camera diagnostics have enabled these detailed

studies - see Figure 1.4.
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More generally, edge turbulence has been commonly observed on tokamaks and

other devices for many years, with similar characteristics in all cases [13]. Perpen-

dicular to the magnetic field, turbulent fluctuations have length scales in the ‘drift

wave’ range of scales (∼ 0.1 — 10 cm) and frequencies (∼ 10 — 1000 kHz); parallel

length scales are on the order of tens of metres, meaning that the general structure

of edge turbulence is close to that of 2D filaments.

The amplitude of this turbulence can be extremely high, with δn/n ∼ 1 —

100%, and thus it can have important consequences. Theoretical models relating this

turbulence to drift wave dynamics, with a multi-scale distribution of E×B velocity

perturbations driven by the free energy from steep background pressure gradients

[14], have had success in explaining many features of tokamak edge turbulence,

but direct comparison of theory to experiment is still difficult due to the complex

nonlinear physics involved.

1.3 Microwave diagnostics

1.3.1 Electron cyclotron emission

Electron cyclotron diagnostics rely on the emission from electron gyrations around

magnetic field lines in the plasma. For harmonics which allow the plasma to be

treated as optically thick, the intensity per unit frequency of this emission is directly

proportional to the plasma electron temperature Te [2]:

I(ω) =
ω2Te(R)

8π3c2
(1.4)

This technique is used widely as a diagnostic for temperature in fusion devices. A

1D ECE diagnostic can provide a radial temperature profile. Further, by analysing

the emitted spectrum to find the frequencies at which cutoffs (explained in Sec-

tion 2.1.4) occur, a radial profile of electron density ne can be inferred [15]. In the

last 10 years, ECE systems have been developed using arrays of detectors which
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allow 2D images of Te and ne to be obtained. These have been used to study

edge temperature and density fluctuations on the TEXTOR [16], KSTAR [17] and

ASDEX Upgrade [18] tokamaks - see Figure 1.5.

Figure 1.5: A 2D edge Te map from ASDEX Upgrade during an inter-ELM period,

superimposed on calculated equilibrium flux surfaces (separatrix labelled as 1.0).

Obtained using 2D ECE imaging [18]

However, in a spherical tokamak, due to the low field and high plasma density,

the high-density cutoff for the O-mode microwave emission generally lies outside

the resonances at which cyclotron emission is generated, preventing it from being

imaged outside the plasma. This makes such diagnostics difficult to operate and

sometimes useless.
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1.3.2 Synthetic aperture microwave imaging

A diagnostic known as SAMI (Synthetic Aperture Microwave Imaging) has been

developed in order to take advantage of microwave emission due to mode conversion

from electron Bernstein waves (EBWs) [19]. For further details on this physical

process, see Chapter 2.

Figure 1.6: SAMI array of 21 antipodal Vivaldi antennas [19]

SAMI uses an aperture synthesis technique, with phase differences compared

between an array of receiving antennas (using no optical components - the layout

is shown in Figure 1.6) in order to obtain a map in Fourier space of microwave

emission. This is then converted to a 2D image in real space.

Installed on MAST, this diagnostic produces high time-resolution (∼ 10µs) im-

ages of O-mode emission due to EBWs generated at EC harmonics in the plasma

core. These are measured in the 10 - 35 GHz range, with a sub-range of these

frequencies corresponding to a radial position through the plasma edge [20].

The eventual aim of these measurements is to obtain highly time- and spatially-

resolved measurements of the plasma edge J-profile in order to constrain and test

predictive theoretical models of ELM onset. This is possible since the emission

is coplanar with the electron density profile and background magnetic field vector.
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Since density profiles can be measured accurately using diagnostics such as Thomson

scattering, the magnetic fieldline pitch can be deduced at a range of radii. The

toroidal field strength is known and hence the poloidal field profile can be extracted

from this. This allows an edge J-profile to be calculated.

However, large fluctuations have been observed in the measured signal during

inter-ELM periods; these demand explanation. A candidate for the cause of these

fluctuations is the scattering effect of inter-ELM filaments.

This is the original motivation for the development of the code described in

this thesis. Beyond this, it has developed into a framework for the investigation

of the interaction between microwaves and multiple types of plasma inhomogeneity

(filaments, turbulence, magnetic shear, electron flows).

Chapter 2 explains the background physics underpinning most of the work in

this thesis. Chapter 3 provides some background information on the numerical

techniques used, while Chapter 4 uses them to develop a new method and presents

a stability analysis. Chapters 5 and 6 contain results from two investigations of

different classes of plasma inhomogeneity and Chapter 7 draws conclusions and

looks ahead to future work in this vein.
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Chapter 2

Electromagnetic waves in cold

plasma

In this chapter, the theory underpinning the work in this thesis is introduced and de-

veloped. First, the cold plasma dispersion relation is derived, and used to obtain the

dispersion relations for the electromagnetic O and X-modes as well as the conditions

for conversion between these modes. A discussion of warm plasma modes is also pre-

sented, with the electrostatic electron Bernstein mode covered. An understanding

of these modes provides the necessary background for the following chapters.

2.1 Waves in cold plasmas

2.1.1 The ionosphere

Historically, the development of “cold plasma” or “magneto-ionic” theory has been

motivated by the problem of radio wave propagation in the ionosphere [21]. This

is the region, ∼ 50 − 1000 km above the Earth’s surface, in which cosmic and

solar radiation cause sufficient ionisation to atmospheric gases in order to affect the

dispersion of radio waves. Generally, for frequencies below 30 MHz its presence is

essential for propagation, as the lower ionosphere and ground act as a waveguide;

however, at frequencies above 50 MHz used in satellite communications, it can be

a source of error as the signal loses coherence due to scattering from ionospheric
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inhomogeneities [22].

From the original formulation of the theory in the 1920s and 30s, an explanation

was sought for the reflection and scattering processes affecting a radio wave as

it propagates into the ionosphere. This was achieved, with parameters being the

local values of electron and ion density and Earth’s magnetic field strength, as

well as the frequency, polarization and angle of propagation of the wave. An early

account of this can be found in Appleton (1932) [23]. It was found that the thermal

motion and resulting finite Larmor radius of the electrons can be neglected for most

ionospheric applications, with this “cold plasma” approximation reproducing the

principal modes of propagation and their cutoffs.

Since the first successful attempts to heat a magnetically confined plasma with

RF antennas in the 1960s [24], magneto-ionic theory has been applied to problems

of propagation and mode conversion of EM waves in magnetised fusion plasma.

Although it does not provide for absorption mechanisms such as cyclotron harmonic

damping, it retains broad applicability in many cases.

2.1.2 The plasma frequency

During the derivation of the cold plasma dispersion relation, the electron and ion

plasma frequencies ωpe and ωpi become significant and so it is helpful to discuss them

first.

A plasma consisting of electrons and a single ion species, assumed to be quasineu-

tral (ni ' ne ≡ n) over macroscopic lengthscales, is considered. Any perturbation of

one species away from this quasineutral starting position will result in an accumu-

lation of charge, creating an electric field which provides a restoring force, leading

to an oscillation at the plasma frequency.

Since an electron has a mass at least three orders of magnitude lower than

any ion, the timescales over which the two species accelerate and thus oscillate are

different enough that the species not being considered can be treated as a static

neutralising background.
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To illustrate the plasma oscillation: if a slab of electrons are displaced by a

distance x, a surface charge density σ = nex builds up on the face of the slab which

is furthest in the x-direction due to accumulation of negative charge. The space

left behind the slab no longer contains electrons and hence is positively charged; a

charge density σ = −nex therefore builds up on the opposite face.

This charge separation results in an electric field Ex = −nex/ε0 within the slab.

Applying Newton’s second law to an electron in the slab therefore results in a simple

harmonic oscillator equation:

me
d2x

dt2
=
−ne2x

ε0

(2.1)

with the solution

x(t) = x0 cos(ωpe) (2.2)

where

ωpe =

(
ne2

ε0me

)(1/2)

(2.3)

This analysis can be repeated for ion species, resulting in the ion plasma fre-

quency:

ωpi =

(
nZ2e2

ε0mi

)(1/2)

(2.4)

where Z is the ion atomic number.
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2.1.3 The dispersion relation

The analysis in this section draws from that found in several reference books [25,

26, 27]. We consider a plasma containing electrons and a single species of ions,

confined by an equilibrium background magnetic field B0 of arbitrary strength and

orientation.

We begin with Maxwell’s equations, which are written in full here for later ref-

erence:

∇ · E =
ρ

ε0

(2.5)

∇ ·B = 0 (2.6)

∇× E = −∂B

∂t
(2.7)

∇×B = µ0J + µ0ε0
∂E

∂t
(2.8)

We now linearise Equations 2.7 and 2.8. The equilibrium B0-field is assumed

to be uniform so ∂B0

∂t
= 0,∇ × B0 = 0 . Perturbed quantities are written without

subscripts.

We also assume plane-wave solutions, i.e. that E,B ∼ exp(i(k · r − ωt)), so

∇ → ik and ∂
∂t
→ −iω.

We therefore obtain

k× E = ωB (2.9)

k×B = −iµ0J−
ω

c2
E (2.10)
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The relation between J and E is expressed using the conductivity tensor σ,

modifying Equation 2.10:

J = σ · E (2.11)

⇒ k×B = −iµ0σ · E−
ω

c2
E (2.12)

The dielectric permittivity tensor ε is defined as follows:

ε = I +
i

ε0ω
σ (2.13)

So we can write

k×B = − ω
c2
ε · E (2.14)

Substituting in Equation 2.9 for B, we obtain:

[
kk− k2I +

ω2

c2
ε

]
· E = M · E = 0 (2.15)

A solution exists where det
(
M
)

= 0.

Now, σ and hence ε must be evaluated. To do this, the relation between J and E

in a non-relativistic approximation to a cold plasma must be found. Starting with

the linearised fluid equations of motion for electrons and ions (of atomic number Z)

in a plasma and neglecting the pressure and collision term, we obtain:

me
∂ve
∂t

= −e (E + ve ×B0) (2.16)

mi
∂vi
∂t

= Ze (E + vi ×B0) (2.17)
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We decompose these into Cartesian components and let B0 be in the z-direction,

without loss of generality. As before, we let ∂
∂t
→ −iω. First, for the electrons:

vxe = − ie

ωme

[Ex + vyeB0] (2.18)

vye = − ie

ωme

[Ey − vxeB0] (2.19)

vze = − ie

ωme

Ez (2.20)

Solving for vxe and vye:

vxe = − ie

ωme

[
Ex + iωce

ω
Ey
]

[
1−

(
ωce

ω

)2
] (2.21)

vye = − ie

ωme

[
Ey − iωce

ω
Ex
]

[
1−

(
ωce

ω

)2
] (2.22)

where the electron cyclotron frequency ωce = − eB0

me
.

Repeating this analysis for the ions yields:

vxi =
iZe

ωmi

[
Ex + iωci

ω
Ey
]

[
1−

(
ωci

ω

)2
] (2.23)

vyi =
iZe

ωmi

[
Ey − iωci

ω
Ex
]

[
1−

(
ωci

ω

)2
] (2.24)

vzi =
iZe

ωmi

Ez (2.25)

where ωci = ZeB0

mi
.
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Now, to obtain the plasma current J, we multiply these velocities by the density

and charge of their respective species and sum over both species; that is,

J = Zen0ivi − en0eve (2.26)

So for Jx, substituting in the plasma frequencies ω2
pe = n0ee2

ε0me
and ω2

pi = n0iZ
2e2

ε0mi
,

we obtain

i

ε0ω
Jx = −

ω2
pi

ω2

[
Ex + iωci

ω
Ey
]

[
1−

(
ωci

ω

)2
] − ω2

pe

ω2

[
Ex + iωce

ω
Ey
]

[
1−

(
ωce

ω

)2
] (2.27)

At this point, we make the reasonable approximation that ω � ωci, since we are

interested in higher frequencies. Hereafter ion motion is neglected altogether. With

some algebraic identities, this becomes

i

ε0ω
Jx = −

ω2
pe

2ω2

[(
ω

ω + ωce
+

ω

ω − ωce

)
Ex +

(
ω

ω − ωce
− ω

ω + ωce

)
iEy

]
(2.28)

and, for y and z:

i

ε0ω
Jy = −

ω2
pe

2ω2

[(
ω

ω + ωce
+

ω

ω − ωce

)
Ey +

(
ω

ω + ωce
− ω

ω − ωce

)
iEx

]
(2.29)

i

ε0ω
Jz = −

ω2
pe

ω2
Ez (2.30)

We now have the relation between J and E in all 3 dimensions, giving us the

conductivity tensor σ and hence the dielectric permittivity:

ε = I +
i

ε0ω
σ

=


S −iD 0

iD S 0

0 0 P

 (2.31)
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where

R = 1−
ω2
pe

ω2

(
ω

ω + ωce

)

L = 1−
ω2
pe

ω2

(
ω

ω − ωce

)

P = 1−
ω2
pe

ω2

S =
R + L

2
, D =

R− L
2

(2.32)

If the direction of B0 is made arbitrary, and a vector cyclotron frequency with

components (ωce,x, ωce,y, ωce,z) is introduced, this can be written in general tensor

form:

εij = δij −
ω2
pe

ω2 − ω2
ce

(
δij − ωce,iωce,j/ω2 + iεijkωce,k/ω

)
(2.33)

where δij and εijk are the Kronecker delta and Levi-Civita symbols respectively.

We now reinstate our assumption that B0 = B0ẑ, and substitute Equation 2.31 into

Equation 2.15 to obtain M :

M =

[
kk− k2I +

ω2

c2
ε

]

=


k2
x − k2 + ω2

c2
S kxky − iω

2

c2
D kxkz

kykx + iω
2

c2
D k2

y − k2 + ω2

c2
S kykz

kzkx kzky k2
z − k2 + ω2

c2
P

 (2.34)

Now, we also choose k to be in the xz plane, so that ky = 0, and define θ to be

the angle between k and ẑ. We then define a vector n, with magnitude equal to the

refractive index n:

n =
kc

ω
(2.35)
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⇒ nx = n sin θ, ny = 0, nz = n cos θ (2.36)

Multiplying M by c2

ω2 , using the identity cos2 θ+ sin2 θ = 1 and substituting for

n in Equation 2.34 gives

M =


S − n2 cos2 θ −iD n2 sin θ cos θ

iD S − n2 0

n2 sin θ cos θ 0 P − n2 sin2 θ

 (2.37)

Solutions of Equation 2.15 exist where det
(
M
)

= 0 . Some algebraic manipu-

lation results in equations in sin2 θ and cos2 θ , which can be divided through and

factored to give the cold plasma dispersion relation

tan2 θ =
−P (n2 −R) (n2 − L)

(Sn2 −RL) (n2 − P )
(2.38)

2.1.4 Cold plasma modes

Several distinct wave modes can then be obtained from this model; here, we will

classify those propagating either parallel or perpendicular to the magnetic field.

Modes have cutoffs (i.e. enter a region of evanescence and are unable to propagate

further) in the case where n → 0 and resonances (i.e. are absorbed, although the

cold plasma theory does not provide a physical mechanism for absorption) in the

case where n→∞ .

To find the two modes which propagate parallel to B0 we set θ = 0, which can

be seen to result in the following:

n2
‖ = R,L = 1−

ω2
pe

ω2

(
ω

ω ± ωce

)
(2.39)

29



These are the right- and left-handed circularly polarised modes respectively.

This can be seen from their eigenvectors in the matrix equation; (Ex, iEx, 0) for

R-polarised and (Ex,−iEx, 0) for L. Their respective cutoffs lie where

ω =
1

2

(
[4ω2

pe + ω2
ce]

1/2 ± ωce
)

(2.40)

and, since ωce was defined as negative, the R-polarisation has a resonance at

ω = ωce. This is the electron cyclotron resonance, where the electric field of the wave

oscillates with the same frequency and in the same direction as electrons gyrating in

the equilibrium magnetic field, leading to strong absorption. The L-polarised wave

does not experience this resonance since it oscillates in the opposite direction to the

electrons’ gyromotion.

To investigate perpendicular propagation, we set θ = π/2, giving first, straight-

forwardly,

n2
⊥ = P = 1−

ω2
pe

ω2
(2.41)

with eigenvector (0, 0, Ez). This is therefore a transverse wave, linearly polarised

with its electric field vector parallel to B0 and the particle motions therefore unaf-

fected. This mode is known as the ordinary or O-mode, and is essentially light-like,

with its dispersion modified by the dielectric property of the plasma. This is plotted

in Figure 2.1.
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Figure 2.1: O-mode dispersion relation (see Equation 2.41) where wave vector k ⊥
B0. Refractive index n plotted against squared ratio of plasma frequency to wave

frequency. High density cutoff shown by dotted line.

The O-mode encounters a cutoff where ω = ωpe. As ωpe ∝ n1/2
e , this has the

result that an O-mode of given frequency propagating into a plasma of increasing

density will reach a critical density nc at which it is reflected. This fact is exploited

by some plasma diagnostic techniques such as reflectometry [28], in which the phase

shift of reflected radiation at a range of frequencies is used to determine the position

of a range of density layers.

This cutoff can cause problems of accessibility for techniques such as electron

cyclotron resonance heating (ECRH), where an O-mode wave is injected into the

plasma edge to heat cyclotron harmonics. These are the layers in the plasma at

which the resonance condition ω = nωce where n is a non-zero integer is satisfied

(for O-mode, this resonance does not appear in the cold plasma theory, but will if
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finite Larmor radius effects are taken into account - see section 2.2.1).

As ωce ∝ B0, the relative positions of the cyclotron resonances and the O-mode

cutoff in the plasma depend on the ratio of ne to B2
0 . This can be obtained from the

plasma parameter beta, the ratio of plasma pressure to magnetic pressure; β ∝ ne

B2
0
.

Spherical tokamaks run at high beta, which carries advantages for economical

operation but results in the O-mode cutoff typically lying outside the harmonic,

closer to the edge, preventing the wave from penetrating. As an example, on MAST,

the high beta requires ECRH absorption at the fifth or sixth harmonic [29], at

which the damping is very low, which introduces additional complications and has

motivated the development of alternative heating schemes using electron Bernstein

waves (EBWs) [30].

Likewise, electron cyclotron emission (ECE) diagnostics, which detect the ra-

diation emitted at cyclotron harmonics to measure plasma temperature, are less

effective in spherical tokamaks since the emitted radiation is unable to propagate

out from the plasma. This problem has motivated the development of electron

Bernstein wave diagnostics [31].

Returning to the case of perpendicular propagation and carrying out some further

algebra, another mode with the dispersion relation

n2
⊥ =

RL

S
=

(
1− ω2

pe

ω2 − ωce

ω

)(
1− ω2

pe

ω2 + ωce

ω

)
(
1− ω2

pe

ω2 − ω2
ce

ω2

) (2.42)

is obtained. Its eigenvector is
(
Ex,− iS

D
Ex, 0

)
, meaning that its electric field is

perpendicular to the equilibrium field but the wave is partly transverse and partly

longitudinal. This results in an elliptical polarisation, varying according to the ratio

S
D

, which depends on frequency. This mode, plotted in Figure 2.2, is known as the

extraordinary or X-mode.
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Figure 2.2: X-mode dispersion relation (see Equation 2.42) where wave vector k ⊥
B0. Refractive index n plotted against squared ratio of plasma frequency to wave

frequency, for a ratio of cyclotron frequency to wave frequency (ωce/ω) of 0.4. R-

and L-polarised cutoffs shown by dotted lines; upper hybrid resonance shown by

dot-dashed line.

Here, n⊥ → 0 if R,L→ 0, so the X-mode experiences the cutoffs of both the R-

and L-polarised parallel modes previously discussed (Equation 2.40). It also has a

resonance at S → 0 , which is satisfied if ω2 = ω2
ce +ω2

pe. This is known as the upper

hybrid frequency.

The electric field components for O and X-modes propagating perpendicular to

B0 are sketched in Figure 2.3.
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Figure 2.3: Electric field orientations for O and X-modes propagating in x-direction

perpendicular to background magnetic field B0. O-mode is transverse and linearly

polarised perpendicular to B0; X-mode is elliptically polarised with both transverse

(Ey) and longitudinal (Ex) components.

2.1.5 Ordinary to Extraordinary mode conversion

In the more general case of oblique propagation at an angle θ to B0, the cold plasma

dispersion relation (Equation 2.38) can be rewritten in terms of n2 :

n2 = n2
⊥ + n2

‖ = 1− 2X (1−X)

2 (1−X)− Y 2 sin2 θ ± Γ
(2.43)

Γ =
[
Y 4 sin4 θ + 4 (1−X)2 Y 2 cos2 θ

]1/2
(2.44)

This is known as the Appleton-Hartree formula. For clarity, the convention now

adopted is that X =
ω2
pe

ω2 and Y = |ωce|
ω

. If the sign before Γ is positive, then it

describes the obliquely propagating O-mode; if negative, it describes the obliquely

propagating X-mode.

34



At the O-mode density cutoff, X = 1. If it is also the case that θ = 0, i.e. the

wave vector k is parallel to B0, then Γ = 0 and the two modes are degenerate. In

this case a complete conversion from one electromagnetic mode to the other can

occur. This will happen for an optimum value of n‖ given by

n2
‖ =

Y

Y + 1
(2.45)

If an O-mode propagating into a plasma of increasing density satisfies this rela-

tion at the density cutoff, conversion into an X-mode will occur with 100% efficiency.

Away from this angle, an evanescent layer interferes with this coupling, but for small

angular deviations the wave can tunnel through so that conversion still occurs at

a reduced efficiency. This causes an elliptical ‘mode conversion window’ about this

angle.

2.2 Waves in warm plasmas

So far, only cold plasma theory has been discussed. In this approximation, electrons

have zero thermal velocity so the Larmor radius of their gyro-orbits around magnetic

fieldlines is zero. However, the plasmas of interest have a finite temperature and

thus their electrons have thermal velocity vth. This means that their Larmor radius

ρe becomes finite:

ρe =
mevth
|e|B

(2.46)
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New physics is introduced due to these ‘finite Larmor radius’ (FLR) effects.

The fluid equations used previously in this chapter no longer describe all the mode

dynamics, so to obtain a dispersion relation, a kinetic treatment must be adopted,

solving the Vlasov equation:

∂fs
∂t

+ v · ∂fs
∂x

+
qs
ms

[
E +

1

c
v ×B

]
· ∂fs
∂v

= 0 (2.47)

where fs is the distribution function of particle species s. This derivation is quite

involved and will not be presented here; for more details, see Stix [26]. This gives

rise to a hot dielectric tensor, which is equivalent to Equation 2.31 but significantly

more complicated.

2.2.1 Warm plasma modes

If the modes propagating perpendicular to B0, where k‖ = 0, are investigated as

in 2.1.4, with the additional prescription that they have frequencies away from the

harmonic resonances, i.e. ω 6= nωce, the following non-zero components of the hot

dielectric tensor are obtained:

εxx = 1−
ω2
pe

ω

∞∑
n=−∞

e−λ
n2In (λ)

λ

1

ω − nωce
(2.48)

εxy = 2− εyx = 1 + i
ω2
pe

ω

∞∑
n=−∞

ne−λ [In (λ)− I ′n (λ)]
1

ω − nωce
(2.49)

εyy = 1−
ω2
pe

ω

∞∑
n=−∞

e−λ
[
n2In (λ)

λ
+ 2λIn (λ)− 2λI ′n (λ)

]
1

ω − nωce
(2.50)

εzz = 1−
ω2
pe

ω

∞∑
n=−∞

e−λIn (λ)

[
1− nωce

ω

T⊥ − T‖
T⊥

]
1

ω − nωce
(2.51)
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where λ = 1
2
k2
⊥〈ρ2

L〉 =
k2
⊥κT⊥
meω2

ce
, In is the modified Bessel function of the nth order

and T⊥, T‖ are the perpendicular and parallel electron temperatures respectively.

If Equation 2.15 is solved using this version of the dielectric tensor, two equations

corresponding to Equations 2.41 and 2.42 are obtained:

n2
x = εzz (2.52)

n2
x = εyy −

εxyεyx
εxx

(2.53)

This shows that the O- and X-mode dispersion relations have been recovered. A

new physical effect obtained is that of harmonic cyclotron damping: the resonant

denominator of all terms of the dielectric tensor means that these modes are strongly

damped at harmonics of the cyclotron frequency, ω = nωce. At these cyclotron

harmonics, the resonant particle “sees” the first-order electric field at zero frequency

in the reference frame of its own zero-order motion. Energy is thus resonantly

transferred from the field to the particle; this is the mechanism by which the ECRH

technique heats a plasma.

It should be noted that in the cold plasma limit, where T → 0 and therefore

λ→ 0, the hot dielectric tensor components in Equations 2.48 - 2.51 reduce to their

cold-plasma equivalents, and therefore the dispersion relations for O and X-mode

(Equations 2.52 and 2.53) reduce to Equations 2.41 and 2.42.

2.2.2 The electron Bernstein mode

Having investigated electromagnetic modes, we now turn to electrostatic modes in

a hot plasma. To do this, we approximate the wave electric field in terms of an

electrostatic potential: E(r, t) = −∇φ(r, t). This simplifies the calculation of the

dispersion relation.

If propagation perpendicular to B0 is investigated, with the assumption that k⊥

is sufficiently large (i.e. wavelength sufficiently small with respect to ρe), solutions
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to the electrostatic dispersion relation can be obtained. The spectrum of modes that

emerge are known as electron Bernstein waves (EBWs) after their discoverer [32].

EBWs are longitudinal electrostatic plasma waves, caused by collective gyro-

motion of the electrons resulting in oscillations in charge density. They are back-

wards waves in that their phase and group velocities have opposite sign.

If k⊥ is allowed to become smaller and the dispersion relation is more carefully

investigated, it can be seen that the Bernstein and X-modes become coupled at the

upper hybrid resonance. As an X-mode approaches this resonance, its wavelength

becomes increasingly short until it is on the same order as the electron Larmor

radius. At this point FLR effects can no longer be ignored and an ‘X-B’ mode

conversion occurs to a Bernstein mode.

This O-X-B conversion process has been investigated as a potential means of

heating and current drive in overdense fusion plasmas (in which EC resonances are

otherwise inaccessible to conventional microwave heating techniques), such as stel-

larators [33] and spherical tokamaks [34]. In addition, the emission due to the inverse

B-X-O conversion process is now being used as a basis for tokamak diagnostics such

as SAMI (see Subsection 1.3.2).
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Chapter 3

Numerical background

3.1 Cold plasma simulation

The study of electron cyclotron frequency range EM wave propagation in magnetised

plasmas has broad relevance, from ionospheric radio wave studies [21] to heating and

current drive [35] and diagnostics [36] in magnetically confined fusion plasmas.

In order to numerically simulate interactions between EM waves and a cold

plasma dielectric, several main approaches are possible; ray tracing, scalar wave

equations such as the paraxial wave equation and full-wave simulation, of which

an example approach is the finite-difference time-domain (FDTD) method. The

fundamentals of these approaches are discussed in this chapter.

3.1.1 Ray tracing

This technique allows the evolution in space and time of a single ray through a

plasma to be tracked. This ray exists as a unique solution to the dispersion relation

of interest at a given point in space and time.

For ray tracing to be valid, it must be assumed that spatial and temporal varia-

tions in the refractive index of the plasma are slow, and the wave vector field there-

fore depends only weakly on position and time. The lowest-order WKB (Wentzel–

Kramers–Brillouin) approximation can therefore be applied.
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We start from a general wave equation:

M

(
i
∂

∂t
,−i∇, r, t

)
ψ = 0 (3.1)

where M is a matrix describing the plasma dispersion relation and ψ is a vec-

tor containing the wave field components. The lowest-order WKB approximation

allows us to make the assumption that ψ (r, t) = ψ exp(iφ(t + r)), resulting in the

approximation [25]:

M (ω,k, r, t)ψ = 0 (3.2)

where ω = −∂φ/∂t and k = ∇φ. Solutions to this will now satisfy

M≡ det
(
M
)

= 0 (3.3)

The choice of M determines the mode physics. An example is the magnetised

cold-plasma dispersion relation given in chapter 2, but ray tracing can also be carried

out for the hot plasma dispersion relation.

The ray equations are

dr

dt
=
∂Ω

∂k
(3.4)

dk

dt
= −∇Ω (3.5)

dω

dt
=
∂Ω

∂t
(3.6)
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where ω = Ω (k, r, t) is the frequency given by the desired solution to the disper-

sion relation for a given wavevector k, spatial point r and time t.

From an initial condition, r, k and ω can therefore be evolved in time over a

sufficiently short distance,M updated using their new values and this process then

iterated over the full trajectory of the ray.

When (as is generally true) there is more than one solution to Equation 3.3 and

thus more than one mode present, each mode can be tracked independently as it

propagates away from its starting position. Different modes can be characterised

and identified by their trajectories and wavelengths.

The WKB assumption breaks down in regions where fast variations occur, for

example near resonances and cutoffs as well as for cases where background scale

lengths are comparable to the wavelength. In such regions, the additional compu-

tational expense of full-wave modelling is necessary to obtain a full physical picture

(see Section 3.1.3).

The application of ray-tracing methods to plasma physics dates back to studies

of ionospheric cold-plasma mode propagation of the late 1950s [37], when the birth

of high-performance computing had made the iterative solution of these equations

feasible. Later, the technique began to be applied to magnetically confined fusion

plasmas; in the late 1970s, ray-tracers solving the hot-plasma dispersion relation

began to be applied to ICRH [38] and ECRH [39] problems in a tokamak geometry,

with both electromagnetic and mode-converted Bernstein modes investigated.

To circumvent the issue of the WKB approximation’s inapplicability in regions of

steep density gradient, a more recent approach has been to couple a ray tracing code

to a full-wave solver [40]. This has been used to model the full O-X-B conversion

process in a tokamak plasma, by switching to a finite-element solver when the mode

conversion region is reached and using the ray tracer’s output as an input at this

point.
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3.1.2 The paraxial wave equation

We begin with the Helmholtz equation for an inhomogeneous plasma:

(
∇2 + k2n2(r)

)
ψ = 0 (3.7)

where n is the refractive index. If propagation is assumed to be along or at small

angles to the z-axis, the paraxial approximation can be made that ψ(x, y, z) '

ψ′(x, y, z) exp(ikz); it is also assumed that n varies slowly along the direction of

propagation, as for the WKB approximation. Substituting this into Equation 3.7

and cancelling terms results in the paraxial wave equation

(
∂2

∂x2
+

∂2

∂y2

)
ψ + 2ik

∂ψ

∂z
+ (n2(r)− 1)k2ψ = 0 (3.8)

which can then be solved numerically. This is a common approach to modelling

laser pulse propagation in a plasma; however, like ray tracing, it loses validity for

regions of fast variation of refractive index and therefore is not appropriate for the

work in this thesis. Furthermore, it neglects backscattering, which is predicted to

be a significant effect for the models of interest. A full-wave approach was therefore

adopted.

3.1.3 Full-wave modelling

Full-wave simulations give direct solutions of Maxwell’s equations plus extra equa-

tions to describe the dielectric response of the plasma, and do not rely on the WKB

approximation for validity. This approach can therefore be applied to regions of the

plasma which cannot be treated using ray tracing, and is needed for the work on

EC interactions with inhomogeneity described in this thesis.

Full-wave modelling is a broad topic, and so the discussion in this section will

be limited to the EC frequency range (although it has also been extensively applied
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to ion cyclotron [41] and lower hybrid waves [42]). Further, although finite element

methods have been applied in this area (e.g. [40]), finite differencing schemes have

seen more use and are therefore the focus.

Two major classes of approach have been used for incorporating plasma back-

ground into the FDTD scheme described in Section 3.2. Firstly, direct integration

(DI) or auxiliary differential equation (ADE) methods, which solve Equations 3.20

- 3.25 plus a differential equation for the current density term in Equations 3.23

- 3.25 [43]. For a cold magnetised plasma, this takes the form:

∂J

∂t
= ε0ω

2
peE− ωceJ× b̂0 − νJ (3.9)

which is the linearised fluid equation of motion for the electrons. Here ωpe and ωce

are the local electron plasma frequency and cyclotron frequency, b̂0 is the unit vector

parallel to the background magnetic field and ν is the electron collision frequency.

The method used to solve this can vary widely depending on the implementation.

The second class is that of recursive convolution (RC) methods, which are derived

by relating the electric flux density to a time-domain convolution of the electric field

intensity with the plasma susceptibility [44]:

D|n = ε0ε∞E|n + ε0

∫ n∆t

τ=0
χ(τ) · E(n∆t− τ)dτ (3.10)

resulting similarly in a set of extra equations to be solved at each timestep. Here

ε∞ is the dielectric constant at infinite frequency and χ is the susceptibility, which is

a tensor for magnetised plasma but a scalar for unmagnetised plasma. It is related

to the dielectric tensor as ε = ε0(χ+ I).

Historically, the choice of method resulted from a tradeoff between generally

less computationally demanding RC and generally more accurate DI, but the in-

troduction of the piecewise linear recursive convolution (PLRC) method brought
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improved accuracy while retaining lower computational cost [45]. This improve-

ment was obtained by replacing the assumption of a constant electric field over ∆t

with a piecewise linear approximation over this interval:

E(t) = E|n +
E|n+1 − E|n

∆t
(t− n∆t) (3.11)

The RC method was originally implemented for unmagnetised plasma simula-

tions but was later modified [46] to cover magnetised plasma, resulting in a more

complex system of equations.

An example of an early application of a DI method FDTD model to a tokamak

plasma is Irby et al. (1993) [47]. This was a 2D study of O-mode reflectometry; the

background magnetic field was neglected, reducing the linearised fluid equation of

motion to

∂J

∂t
= ε0ω

2
peE (3.12)

Time-dependent perturbations to the plasma background such as a propagating

density pulse and oscillatory modes were made at timescales much longer than those

of the propagating mode, and the variations in amplitude and phase of the scattered

signal recorded.

If a background magnetic field is considered, a problem is posed by the coupling

of the three components of Equation 7.2 due to the J × b̂0 term. When stepping

from t = n∆t to t = (n+ 1)∆t, the resulting equations take the form

Jx|n+1 = f(E|n+ 1
2 , Jy|n, Jz|n)

Jy|n+1 = f(E|n+ 1
2 , Jx|n, Jz|n) (3.13)

Jz|n+1 = f(E|n+ 1
2 , Jx|n, Jy|n)

44



If these are solved simultaneously in this way (as e.g. in [48]), copies of Jx and

Jy at t = n∆t must be stored during calculation and additional memory is therefore

required. Another approach, adopted in [49], is to simply discard the old values and

solve in this way, equivalent to a symplectic Euler method:

Jx|n+1 = f(E|n+ 1
2 , Jy|n, Jz|n)

Jy|n+1 = f(E|n+ 1
2 , Jx|n+1, Jz|n) (3.14)

Jz|n+1 = f(E|n+ 1
2 , Jx|n+1, Jy|n+1)

where f are linear functions. This, however, results in a loss of the FDTD

scheme’s second-order accuracy. An alternative method of solution will be developed

in the following chapter.

Recently, hot-plasma dispersion effects have been implemented in FDTD. Köhn

et al. (2008) [49] added a correction (obtained from [50]) to the dielectric tensor of

a cold-plasma model which allowed electron Bernstein modes to propagate in the

vicinity of the upper hybrid resonance. This allowed the visualisation of the full 2D

O-X-B mode conversion process in a tokamak plasma for the first time. Elsewhere,

the full warm-plasma dielectric tensor has been implemented in a 1D FDTD model

[51].

3.2 The FDTD method

3.2.1 Introduction

The FDTD technique allows numerical time-domain solutions to Maxwell’s equa-

tions over a spatially discretised grid. It enables the simulation of a very wide

range of electromagnetic wave scattering phenomena in structures which can be

large and volumetrically complex, and can include effects such as nonlinear polari-

sation. Its computational requirements can be quite high, but with both hardware
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and programming advances in high performance parallel computing (to which the

technique is well suited) this is increasingly becoming less of a limitation [52].

The time-domain (as opposed to frequency-domain) solutions obtained allow a

broad range of frequencies to be studied with a single simulation, with effects such as

Doppler shift automatically accounted for. It also allows time-marched visualisations

to be produced, providing a more intuitive understanding of physical processes.

The technique was originally formulated by Yee in 1966 [53], and has become in-

creasingly popular in research and engineering applications since around 1990. This

has included full-wave simulation of EM waves in plasma, as seen in section 3.1.3.

Comprehensive background can be found in Taflove & Hagness [52], as well as the

guide written by Schneider [54].

In this chapter, the standard derivation of the 3D FDTD scheme for the case of

vacuum background is presented, followed by a discussion of the simulation of EM

modes in plasma (both using the FDTD method and other techniques).

3.2.2 3D derivation

Direct numerical solutions for the evolution of B and E are sought by substitut-

ing finite difference formulae for the field derivatives in both space and time into

Equations 2.7 and 2.8:

∂B

∂t
= −∇× E (3.15)

∂E

∂t
= c2∇×B− 1

ε0

J (3.16)

In order to facilitate this, the electric and magnetic field components are dis-

cretised over a staggered spatial grid, as shown in Figure 3.1, such that no two

components are evaluated at the same point. This arrangement is known as the Yee

cell after its originator. It is assumed here (although alternative non-Cartesian or
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unstructured grids are possible) that the cell is cubic with sides of length ∆x. Cen-

tred differences can be then be taken at each field component from the 4 components

of other fields at a separation of 1
2
∆x in the spatial domain.

In addition to this, the fields are staggered in time, such that E is calculated,

B is calculated one half time-step later, then E is calculated again after one full

time-step and so on. This allows a leapfrog scheme to be used such that centred

differences are taken at a separation of 1
2
∆t in the time domain, where one timestep

is ∆t.

Figure 3.1: The Yee cell - spatial discretisation of 3D electric and magnetic fields as

used in the FDTD scheme[55]

In the notation used here, the numerical solution for a scalar field component u

at a given grid location and time will be written

u (i∆x, j∆x, k∆x, n∆t) = u|ni,j,k (3.17)
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where i, j, k, n are integers corresponding to the number of steps in the (x, y, z, t)

dimensions respectively.

The following centred difference formulae are then used:

∂

∂x
u|ni,j,k =

1

∆x
(u|ni+ 1

2
,j,k − u|

n
i− 1

2
,j,k) +O

[
∆x2

]
(3.18)

∂

∂t
u|ni,j,k =

1

∆t
(u|n+ 1

2
i,j,k − u|

n− 1
2

i,j,k ) +O
[
(∆t)2

]
(3.19)

thus giving second-order accuracy in both time and space. These are substituted

into Equation 3.15 for each component of B. For all components, temporal differ-

encing is about timestep n, but the spatial midpoint is permuted for each due to

the staggered grid; Bx about gridpoint
(
i, j + 1

2
, k + 1

2

)
, By about

(
i+ 1

2
, j, k + 1

2

)
and Bz about

(
i+ 1

2
, j + 1

2
, k
)
. Solving these for the newer values of B:

Bx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

= Bx|
n− 1

2

i,j+ 1
2
,k+ 1

2

+
∆t

∆x

[
Ey|ni,j+ 1

2
,k+1 − Ey|

n
i,j+ 1

2
,k

−Ez|ni,j+1,k+ 1
2

+ Ez|ni,j,k+ 1
2

]
(3.20)

By|
n+ 1

2

i+ 1
2
,j,k+ 1

2

= By|
n− 1

2

i+ 1
2
,j,k+ 1

2

+
∆t

∆x

[
Ez|ni+1,j,k+ 1

2
− Ez|ni,j,k+ 1

2

−Ex|ni+ 1
2
,j,k+1 + Ex|ni+ 1

2
,j,k

]
(3.21)

Bz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k

= Bz|
n− 1

2

i+ 1
2
,j+ 1

2
,k

+
∆t

∆x

[
Ex|ni+ 1

2
,j+1,k − Ex|

n
i+ 1

2
,j,k

−Ey|ni+1,j+ 1
2
,k + Ey|ni,j+ 1

2
,k

]
(3.22)
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These are fully explicit update equations for B, using stored values of B from

timestep
(
n− 1

2

)
and stored values of Ex, Ey, Ez from timestep n. The advantages

of the leapfrog scheme and staggered grid now become evident; only one timestep

needs to be stored at a time, so only one array per field component is required. The

temporal midpoint is then advanced to timestep
(
n+ 1

2

)
and differences taken by

repeating these substitutions on Equation 3.16 to obtain solutions for E. Spatially,

Ex is differenced about the gridpoint
(
i+ 1

2
, j, k

)
, Ey about

(
i, j + 1

2
, k
)

and Ez

about
(
i, j, k + 1

2

)
. This yields

Ex|n+1
i+ 1

2
,j,k

= Ex|ni+ 1
2
,j,k

− c2∆t

∆x

[
By|

n+ 1
2

i+ 1
2
,j,k+ 1

2

−By|
n+ 1

2

i+ 1
2
,j,k− 1

2

−Bz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k

+Bz|
n+ 1

2

i+ 1
2
,j− 1

2
,k

]
− ∆t

ε0

Jx|n+1
i+ 1

2
,j,k

(3.23)

Ey|n+1
i,j+ 1

2
,k

= Ey|ni,j+ 1
2
,k

− c2∆t

∆x

[
Bz|

n+ 1
2

i+ 1
2
,j+ 1

2
,k
−Bz|

n+ 1
2

i− 1
2
,j+ 1

2
,k
−Bx|

n+ 1
2

i,j+ 1
2
,k+ 1

2

+Bx|
n+ 1

2

i,j+ 1
2
,k− 1

2

]
− ∆t

ε0

Jy|n+1
i,j+ 1

2
,k

(3.24)

Ez|n+1
i,j,k+ 1

2

= Ez|ni,j,k+ 1
2

− c2∆t

∆x

[
Bx|

n+ 1
2

i,j+ 1
2
,k+ 1

2

−Bx|
n+ 1

2

i,j− 1
2
,k+ 1

2

−By|
n+ 1

2

i+ 1
2
,j,k+ 1

2

+By|
n+ 1

2

i− 1
2
,j,k+ 1

2

]
− ∆t

ε0

Jz|n+1
i,j,k+ 1

2

(3.25)

These are similar to Equations 3.20 - 3.22, but no longer fully explicit due to

the current density term J being evaluated at timestep (n+ 1). In vacuum with no
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current sources or sinks, J can be ignored, but the plasma dielectric tensor causes a J

term to arise. This is the point at which care must be taken in the implementation

of an appropriate plasma model; the treatment used in the new EMIT-3D code,

developed as part of this thesis, will be covered in the following chapter.

It is seen, however, that a pair of update equations have been derived for each

spatial dimension, which can be applied at each timestep to arrays of E and B

components in order to solve the equations of evolution for E and B (3.15) and

(3.16). It can be shown [52] that E and B will remain divergence-free in the absence

of charges so that Equations 2.5 and 2.6 are also implicitly satisfied. An FDTD code

can therefore be written in which some initial geometry and appropriate boundary

conditions are specified, a source term is introduced and timestepping continues until

a steady state has been reached and the scattered field patterns can be recorded.

The principal numerical stability constraint on the FDTD is the Courant condi-

tion (for derivation by complex-frequency analysis, see Taflove & Hagness [52]). For

propagation in free space on a 3D grid, this sets an upper limit on the ratio of the

timestep to the spatial step:

Slim,3D =
c∆t

∆x
=

1√
3

(3.26)

Beyond this value, the numerical waves begin to grow exponentially, reaching a

very large amplitude in a few timesteps and resulting in instability. The Courant

number S is therefore fixed at a lower value at the beginning of each simulation.

The modification of the FDTD algorithm to include plasma dispersion results

in a modification of this condition, and generally a more restrictive stability bound.

This is discussed for the case of the EMIT-3D code in the following chapter.
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3.3 Choice of technique

The method used in this work is the 3D ADE-FDTD technique. This was adopted

for developing the EMIT-3D code for several reasons, which will now be outlined.

While propagation through a homogeneous or slowly-varying monotonic plasma

density profile is well understood and can be calculated analytically or using a ray-

tracing method, turbulent or otherwise perturbed profiles require detailed numerical

modelling using a full-wave method.

A time-domain, as opposed to frequency-domain, method was chosen. This per-

mits a model in which no knowledge of the modelled frequency is assumed. By using

the ADE approach described in Section 3.1.3, frequency-independent simulation can

be achieved; this is desirable since no assumption of constant frequency must be

made. The future development of this code is planned to include time-dependent

plasma densities; this will allow the modelling of moving plasma surfaces, causing

Doppler effects which lead to frequency-shifted signals.

An additional benefit of a time-domain code is the possibility of visualisation of

scattering processes by animating timesteps. EMIT-3D was used to produce sev-

eral 3D animations allowing improved insight into microwave propagation through

inhomogeneities.

The choice was made to write a 3D code, as an advance on previous work using

2D simulations. This was taken in order to allow modelling of microwave interaction

in 3 dimensions with 3D inhomogeneities (e.g. those described in [30], [56]). When

studying filament interactions (see Chapter 5), this allowed the assumption of zero

out-of-plane scattering to be tested and cases of oblique incidence to be easily tested.

The computational expense of 3D FDTD is significant, requiring the storage and

iteration over multiple very large arrays for each timestep. However, the applica-

bility of parallel programming techniques to FDTD and the availability of clusters

allowing runs with 100 or more parallel processes meant that these problems could

be circumvented.
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An investigation was made into the use of the commercially available COMSOL

Multiphysics finite element simulation software package as an alternative to a code

developed specifically for the project. However, attempts to use the RF module for

time-domain simulations using this package were unsuccessful; evanescent regions in

the plasma with negative permittivity led to an unstable solution. After discussion

with COMSOL’s technical support, it became clear that this would not be possible

without a frequency-dependent material model being required.

A return was therefore made to code development. Additional benefits mo-

tivating this choice over the use of commercial software were flexibility, ease of

modification and significant scope for optimisation.
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Chapter 4

Algorithm & code development

4.1 Algorithmic development

4.1.1 Solving for plasma response

For propagation through free space, the current density J = 0; however, it is nonzero

in a plasma. In this chapter, a first-order perturbed current density J1 is added to

the FDTD algorithm in order to model plasma dispersion effects. The method

presented here was developed as part of this thesis work.

In order to calculate J, the linearised fluid equation of motion for the electrons

must be solved at each timestep:

∂J

∂t
= ε0ω

2
peE− ωceJ× b̂0 − νJ (4.1)

where ωpe and ωce are the local electron plasma frequency and cyclotron fre-

quency, b̂0 is the unit vector parallel to the background magnetic field and ν is

the electron collision frequency, set to zero on the main grid of the simulation but

nonzero in the boundary regions to damp outgoing waves.

It should be pointed out here that no J0×B1 term is present, since a background

current J0 is not included at this stage; for further development in this direction, see

Chapter 7. In Equation 7.2, the convention adopted (as in the rest of this chapter)

is that J = J1, to match the first-order variables E = E1 and B = B1.
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To obtain discretised solutions to this 3D system of equations, Equation 7.2 is

written in matrix form:

J̇(t) = PJ(t) + ε0ω
2
peE(t) (4.2)

where

P =


−ν −bzωce byωce

bzωce −ν −bxωce
−byωce bxωce −ν

 , b̂0 = (bx, by, bz)

This has the solution:

J(t) = eP (t−t0)J(t0) + ε0ω
2
pe

∫ t

t0
eP (t−τ)E(τ)dτ (4.3)

In this discretisation scheme, J is calculated in phase with B, i.e. at t = (1
2
, 3

2
, 5

2
, ...)∆t,

and so a value of E at t = (0, 1, 2, ...)∆t is available. This is used as a midpoint

approximation (valid for sufficiently small ∆t) to the value of E over the interval

[t0, t], allowing E to be removed from the convolution in Equation 4.3.

A simple integration results. After carrying this out and discretising (∆t = t−t0),

we obtain:

J|n+ 1
2 = eP∆tJ|n−

1
2 + ε0ω

2
peP

−1
(
eP∆t − I

)
E|n (4.4)
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Matrix exponentials must therefore be evaluated; inverse Laplace transforms

were used to do this exactly, since eP∆t = L−1{(sI − P )−1}t=∆t, although lower-

order expansions could also be employed. Following this method through:

eP∆t = L−1




s+ ν bzωce −byωce
−bzωce s+ ν bxωce

byωce −bxωce s+ ν


−1


t=∆t

(4.5)

After inverting the matrix, its components can be evaluated individually using

these three identities:

L−1

{
s+ ν

(s+ ν)2 + ω2
ce

}t=∆t

= e−ν∆t cos(ωce∆t) (4.6)

L−1

{
aωce

(s+ ν)2 + ω2
ce

}t=∆t

= ae−ν∆t sin(ωce∆t) (4.7)

L−1

{
aω2

ce

(s+ ν) [(s+ ν)2 + ω2
ce]

}t=∆t

= ae−ν∆t (1− cos(ωce∆t)) (4.8)

This results in a current density update equation in the form

J|n+ 1
2 = e−ν∆tΘJ|n−

1
2 +

ε0ω
2
pe

(ν2 + ω2
ce)∆t

ΞE|n (4.9)

where

Θij = bibj [1− cos(ωce∆t)]− εijkbk sin(ωce∆t) + δij cos(ωce∆t) (4.10)

Ξij = bibjα− εijkbkβ + δijγ (4.11)
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α =
ω2
ce∆t

ν
+∆te−ν∆t

[
ν (cos(ωce∆t)− 1)− ωce sin(ωce∆t)−

ω2
ce

ν

]
(4.12)

β = ωce∆t−∆te−ν∆t [ωce cos(ωce∆t) + ν sin(ωce∆t)] (4.13)

γ = ν∆t+ ∆te−ν∆t [ωce sin(ωce∆t)− ν cos(ωce∆t)] (4.14)

and, as before, δij and εijk are the Kronecker delta and Levi-Civita symbols

respectively.

This gives explicit update coefficients for Jx, with no storage of old compo-

nents required after a timestep. After rearrangement and substitution of the update

equations, the same equations are obtained for Jy and Jz. As static backgrounds

are assumed over the timescale of a single simulation, these update coefficients can

be calculated once at the beginning of a simulation and do not require updating.

A benchmarking test of the code is its ability to reproduce the analytic dispersion

relations for the O- (ordinary) and X- (extraordinary) modes observed in a magne-

tised plasma. In order to carry this out for the case of perpendicular propagation,

one-dimensional runs were carried with the field components Ex, Ez, By, Jx, Jz and

a background magnetic field B0 = B0x̂ for O-mode and B0 = B0ŷ for X-mode.

A vacuum wavelength λ0 = 50∆z was used in a domain of length 1000∆z con-

taining a homogeneous plasma background of given density ne, terminated at either

end by a lossy boundary region. A courant number S = 0.5 was used. A wave

was excited using a point source, then allowed to propagate in the z-direction until

reaching a steady state. The electric field components along the z-direction were

recorded, and analysed by finding zero-crossing points and calculating the average

wavelength over the length of the domain.

Over a set of runs, the plasma parameters ne and B0 were scanned, with the

analysis repeated for each combination of factors. Very close agreement was observed
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for both modes; O-mode is plotted in Figure 4.1 and an example X-mode for one

background magnetic field strength in Figure 4.2.

Figure 4.1: O-mode dispersion relation where wave vector k ⊥ B0, calculated from

averaged wavelength in EMIT-3D output. Wavelength normalised to vacuum wave-

length plotted against density normalised to critical density. Red crosses: numerical,

black line: analytic
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Figure 4.2: X-mode dispersion relation for Y = |ωce|/ω = 0.4 where wave vector

k ⊥ B0, calculated from averaged wavelength in EMIT-3D output. Wavelength nor-

malised to vacuum wavelength plotted against density normalised to critical density.

Red crosses: numerical, black line: analytic

4.1.2 Lossy layer boundary conditions

An absorbing boundary condition is required at the edges of the computational

domain in order that reflections from outgoing waves do not affect the simulation

results. One approach to this is with an artificial lossy layer; in the boundary re-

gions, the electron collision frequency ν in Equations 4.12 — 4.14 is ramped linearly

upwards from its edge value (zero in most cases) in order to avoid discontinuities.

After a specified boundary thickness, the grid is terminated with a Perfect Elec-

trical Conductor (PEC) layer in which the condition E = 0 is enforced. Without a

lossy layer, this results in 100% reflection, but with a layer of sufficient thickness,

reflections can be effectively nullified.

The thickness of the layer is the main drawback to this method; for effective ab-

sorption, it must be on the order of several wavelengths, which presents a significant

additional computational burden in 3D.
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However, this is the method that is used in this work, since it is straightforward

to implement and can also easily provide a measure of the power leaving the do-

main edge by summing the total absorption. With effective parallelisation on large

machines, the computational cost becomes acceptable.

4.1.3 Perfectly matched layer boundary conditions

Another commonly used approach requiring a thinner absorbing layer and therefore

reducing the requirement of memory storage is the Perfectly Matched Layer or PML

boundary condition. This method was first proposed by Bérenger in 1994 [57], but

this was in a ‘split-field’ formulation effectively doubling storage requirements. An

unsplit PML was developed by Chew and Weedon [58].

A PML absorber is a non-physical, anisotropic medium designed to have the

correct phase velocity and conductivity to completely eliminate reflections at the

grid—PML boundary (although this only applies for a continuous physical picture;

in the discretised formulation of FDTD, small reflections still occur).

PMLs cause exponential decay in waves travelling outwards and require only a

thin layer for full absorption; ∼ 10 gridpoints are required.

4.1.4 Stability

The stability constraint on FDTD schemes is given by a Courant condition. The

Courant number S = c∆t
∆x

must be less than or equal to a critical value which, for

the basic free-space algorithm as presented in section 3.1.2, depends simply on the

dimensionality of the model [52] as follows:

S ≤ 1 (1D)

S ≤ 1√
2

(2D)

S ≤ 1√
3

(3D)
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However, once an auxiliary equation to solve for J is introduced, the constraint

on this number is modified. A method for investigating this is to carry out von

Neumann analysis on the system of equations being solved.

This is a standard mathematical technique used to investigate the numerical

stability of linear finite difference schemes. First presented in 1950 by Charney et

al. [59] for the case of a single equation being evolved, it can be generalised using

a matrix formulation for methods such as FDTD which involve the iteration of

multiple coupled equations. It has been applied to the stability of FDTD schemes

containing dispersive media [60]; the presence of dispersive media (such as plasma)

has previously been found to result in a more restrictive stability constraint.

Having developed a new application of the FDTD scheme in the previous section,

it is necessary to check whether it will be numerically stable, and whether its stability

constraints have been altered. Here, a new von Neumann analysis of the scheme

developed above is presented, which was carried out as part of this thesis work. Due

to the prohibitive difficulty of carrying this out in full 3D, a 1D analysis is carried

out which can be generalised to higher dimensions.

4.1.4.1 No background magnetic field

First, for the purposes of this analysis, we obtain a 1D form of the FDTD equations

in which the only spatial direction is z, the background magnetic field is zero and

hence ωce = 0 and so the only fields required for modes to propagate are Ex, By and

Jx. However, a finite background plasma density (which can be taken to be either

homogeneous throughout the domain or present at a single point) of ωpe is present.

This results in the update equations:

Ex|n+1
j+ 1

2

= Ex|nj+ 1
2
− c2∆t

∆z

[
By|

n+ 1
2

j+1 −By|
n+ 1

2
j

]
− ∆t

ε0

Jx|
n+ 1

2

j+ 1
2

(4.15)

By|
n+ 1

2
j = By|

n− 1
2

j − ∆t

∆z

[
Ex|nj+ 1

2
− Ex|nj− 1

2

]
(4.16)
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Jx|
n+ 1

2

j+ 1
2

= e−ν∆tJx|
n− 1

2

j+ 1
2

+ ε0∆tω2
pe

(
1− e−ν∆t

ν∆t

)
Ex|nj+ 1

2
(4.17)

Since the value of ν∆t used in simulations is very small (∼ 10−12), limits are

taken:

lim
ν∆t→0

e−ν∆t = 1, lim
ν∆t→0

1− e−ν∆t

ν∆t
= 1

Equation 4.17 therefore reduces to:

Jx|
n+ 1

2

j+ 1
2

= Jx|
n− 1

2

j+ 1
2

+ ε0∆tω2
peEx|nj+ 1

2
(4.18)

To proceed with the von Neumann analysis, it is first pointed out that the round-

off error associated with each of the discretised field quantities will grow or decay

over time in the same way as their numerical solution.

The spatial variation of error on each field quantity can be expanded as a Fourier

series:

Ex|nj =
M∑
m=1

Ên
xe

ikmzj , By|nj =
M∑
m=1

B̂n
y e

ikmzj , Jx|nj =
M∑
m=1

Ĵnx e
ikmzj

and since the equations being investigated are linear, a single typical Fourier

mode with wavenumber k can be substituted for each:

Ex|nj = Ên
xe

ikzj , By|nj = B̂n
y e

ikzj , Jx|nj = Ĵnx e
ikzj

Elimination, rearrangement and substitution between timesteps is then used to

recast the update equations in matrix form:

Un+1 = GUn (4.19)
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where Un+1 = (Ên+1
x , B̂

n+ 1
2

y , Ĵ
n+ 1

2
x ) is a vector of the updated Fourier mode

amplitudes, Un = (Ên
x , B̂

n− 1
2

y , Ĵ
n− 1

2
x ) is a vector of the old field quantities and G

is an amplification matrix.

The identities eik∆z + e−ik∆z − 2 = −4 sin2(k∆z
2

) and e
ik∆z

2 + e−
ik∆z

2 = 2i sin(k∆z
2

)

are used, resulting in:

G =


1− ω2

pe∆t
2 − 4S2 sin2(k∆z

2
) −2ic2∆t

∆z
sin(k∆z

2
) −∆t

ε0

−2i∆t
∆z

sin(k∆z
2

) 1 0

ε0∆tω2
pe 0 1

 (4.20)

In order that unstable Fourier modes cannot grow over time, we require that the

absolute value of the real part of each eigenvalue of the amplification matrix G is

less than or equal to 1. A cubic equation for the eigenvalue λ is obtained by setting

det(G− λI) = 0:

−λ3 + λ2(3− ω2
pe∆t

2 − 4S2 sin2(
k∆z

2
))

− λ(3− ω2
pe∆t

2 − 4S2 sin2(
k∆z

2
)) + 1 = 0 (4.21)

which has the roots

λ = 1, λ = 1 − 2S2 sin2(
k∆z

2
)− 1

2
ω2
pe∆t

2

± 1

2

√
(ω2

pe∆t
2 + 4S2 sin2(

k∆z

2
)− 2)2 − 4 (4.22)

The real part of these can be plotted against S for a given value of ω2
pe∆t

2

and sin2(k∆z
2

); see Figure 4.3. For the first two roots, |<(λ)| ≤ 1 for all S at any
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reasonable value of ω2
pe∆t

2. However, for the third root, <(λ) < −1 after some

critical value of S, providing a stability limit. Rearranging in terms of Courant

number, the stability condition is obtained:

S sin(
k∆z

2
) ≤

√
4− ω2

pe∆t
2

2
(4.23)

where ωpe is the maximum value of plasma frequency (and hence highest density)

present in the simulation. Since the maximum value of sin(k∆z
2

) = 1, this can be

simplified to

S ≤

√
4− ω2

pe∆t
2

2
(4.24)

The maximum stable value of S is thus linearly dependent on ωpe∆t. For the

vacuum case, ωpe = 0 and so the 1D vacuum result of S ≤ 1 is recovered.

Figure 4.3: Real part of λ against Courant number S for ω2
pe∆t

2 = 0.5, sin2(k∆z
2

) = 1
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4.1.4.2 Finite background magnetic field

To investigate the effect on this stability bound of a background magnetic field, we

now extend the 1D model to allow ωce 6= 0. A constant magnetic field in the y-

direction is introduced, i.e. b̂0 = (0, 1, 0). Spatial derivatives are still only possible

in the z-direction.

This introduces a coupling between Jx, Ez and Jz and hence additional update

equations must be added to include these additional fields. Equations 4.15 and 4.16

for Ex and By are retained unaltered. The new equation for Ez is

Ez|n+1
j = Ez|nj −

∆t

ε0

Jz|
n+ 1

2
j (4.25)

Equation 4.17 is modified due to the presence of B0 and added alongside a new

equation for Jz:

Jx|
n+ 1

2

j+ 1
2

= e−ν∆t
[
cos(ωce∆t)Jx|

n− 1
2

j+ 1
2

+ sin(ωce∆t)Jz|
n− 1

2
j

]
+

ε0ω
2
pe

(ν2 + ω2
ce)∆t

[
γEx|nj+ 1

2
+ βEz|nj

]
(4.26)

Jz|
n+ 1

2
j = e−ν∆t

[
− sin(ωce∆t)Jx|

n− 1
2

j+ 1
2

+ cos(ωce∆t)Jz|
n− 1

2
j

]
+

ε0ω
2
pe

(ν2 + ω2
ce)∆t

[
−βEx|nj+ 1

2
+ γEz|nj

]
(4.27)

where β and γ are as defined in Section 4.1.1. This system of five equations is

again written in matrix form as in Equation 4.19, with the vectors redefined such that

Un+1 = (Ên+1
x , Ên+1

z , B̂
n+ 1

2
y , Ĵ

n+ 1
2

x , Ĵ
n+ 1

2
z ) and Un = (Ên

x , Ê
n
z , B̂

n− 1
2

y , Ĵ
n− 1

2
x , Ĵ

n− 1
2

z ). Us-

ing identities as before, G is now 5× 5:
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G =



1− γω2
pe

ν2+ω2
ce
− 4S2 sin2(k∆z

2
) −βω2

pee
−i k∆z

2

ν2+ω2
ce

−2ic2∆t
∆z

sin(k∆z
2

) −δ∆t
ε0
−ε∆t

ε0
e−i

k∆z
2

βω2
pee
−i k∆z

2

ν2+ω2
ce

1− γω2
pe

ν2+ω2
ce

0 ε∆t
ε0
ei

k∆z
2 −δ∆t

ε0

−2i∆t
∆z

sin(k∆z
2

) 0 1 0 0

ε0
∆t
· γω2

pe

ν2+ω2
ce

ε0
∆t
· βω

2
pee
−i k∆z

2

ν2+ω2
ce

0 δ εe−i
k∆z

2

− ε0
∆t
· βω

2
pee

i k∆z
2

ν2+ω2
ce

ε0
∆t
· γω2

pe

ν2+ω2
ce

0 −εei k∆z
2 δ



where

δ = e−ν∆t cos(ωce∆t) (4.28)

ε = e−ν∆t sin(ωce∆t) (4.29)

As before, the limit ν∆t → 0 is taken (so that δ → cos(ωce∆t) and ε →

sin(ωce∆t) and the substitution sin2(k∆z
2

) = 1 is made. This time, the eigenvalue

equation is quintic:

−λ5 + Γλ4 + Λλ3 − Λλ2 − Γλ+ 1 = 0 (4.30)

where

Γ = 3 + 2 cos(ωce∆t)−
2 sin(ωce∆t)

ωce∆t
ω2
pe∆t

2 − 4S2 (4.31)

Λ = −4− 6 cos(ωce∆t) + (6− 4S2)
sin(ωce∆t)

ωce∆t
ω2
pe∆t

2

− 2− 2 cos(ωce∆t)

(ωce∆t)2
ω4
pe∆t

4 + 4S2 + 8S2 cos(ωce∆t) (4.32)
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Figure 4.4: Real part of λ against Courant number S for ω2
pe∆t

2 = 0.5, ωce∆t = 0.5

Aside from λ = 1, the other four roots of this equation are extremely unwieldy

to express. However, the two newly arisen roots are found to have |<(λ)| ≤ 1 for

all S at any reasonable value of ω2
pe∆t

2 and thus do not contribute to the stability

bound.

The final two roots are seen to reduce to the second two in Equation 4.22 for

the case that B0 = 0; otherwise, their value is modified by the background magnetic

field strength. These are plotted against S for extremely high sample values of ωpe

and ωce in Figure 4.4.

It can be seen from this plot that the presence of a magnetic field has a weak

effect on the threshold value of S; compared to the previous case that ω2
pe∆t

2 = 0.5,

ωce∆t = 0, the introduction of a magnetic field with strength ωce∆t = 0.5 causes a

0.55% reduction of the stability bound.
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In order to rearrange the conditionally unstable root to a simple expression for

the stability condition as in Equation 4.23, a small angle approximation is applied

to the trigonometric functions of ωce∆t. This is valid for all practical values of B0

used in simulation.

sin(ωce∆t) ' ωce∆t, cos(ωce∆t) ' 1− (ωce∆t)
2

2

This results in the stability condition

S ≤ 1

2

√√√√16 + (ωpe∆t)4 − 8(ωpe∆t)2 − 4(ωce∆t)2

4− (ωpe∆t)2 − (ωce∆t)2
(4.33)

which is plotted as a surface in Figure 4.5.

Figure 4.5: Dependence of maximum stable value of Courant number, Scrit, on

maximum plasma and electron cyclotron frequencies in simulation
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Von Neumann stability analysis has therefore shown that this adaptation of

the FDTD method will be stable, as long as a Courant condition is obeyed. The

maximum values of plasma and electron cyclotron frequencies present within the

simulation domain dictate the value of this condition, but outside of extreme cases

this dependence is weak. In practice, this condition can easily be satisfied without

undue computational expense.

4.2 EMIT-3D

A code was written in the C programming language using the method developed in

Section 4.1.1 and given the name EMIT-3D (Emission of Microwaves past Inhomogeneities

in the Time-domain in 3 Dimensions). Some further details are discussed in this

section.

4.2.1 Source term

In order to excite waves on the grid, a ‘soft’ current density source which adds an

oscillating current density component to cells at the source plane is used (as opposed

to a ‘hard’ source in which electric or magnetic field values on the grid are directly

specified). This has the advantage of being transparent to backscattered waves. The

source is only applied at a single plane at the grid edge.

In order to avoid exciting spurious modes at the beginning of an FDTD simula-

tion, the source amplitude must begin at zero and be ramped to its full value over

several wave periods. At the beginning of an EMIT-3D simulation, an exponential

function of time is convoluted with the expressions given here for this purpose.

For a mode excited in the xy plane and polarised in the x direction, the source

current density term is of the form:

Jx,s(x, y, t) = Jx,s(x, y) sin(ωt+ φs(x, y)) (4.34)
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where ω is the source frequency and Jx,s(x, y) and φs(x, y) are the source current

density amplitude and phase which can vary within the xy plane. This term is added

directly to the non-source current term in Equation 3.23.

The Gaussian beams used in this thesis have amplitudes at the source plane:

Jx,s(x, y) = Jx,s exp

(
−(x− x0)2 − (y − y0)2

w2

)
(4.35)

where x0, y0 are the beam origin and w is the beam width at the source plane.

In order to focus a Gaussian beam at a desired distance from the source plane,

φs(x, y) can be varied across the plane to produce the correct beamfront curvature.

4.2.2 Parallelisation

Parallelisation was required in order to make 3D FDTD computationally tractable.

The system used to achieve this is the Message Passing Interface (MPI). This is

a widely used protocol for sending and receiving data between computational pro-

cesses.

The parallelisation technique chosen was data-level decomposition due to its

suitability for FDTD. The entire computational domain is broken up into evenly

sized chunks, each of which is assigned to a process. During each timestep, each

process independently iterates over its assigned data ‘chunk’ and then communicates

with its neighbouring processes, only sending or receiving the datapoints necessary

for calculations to proceed.

For each process, the data required from neighbouring processes in order to

update the field quantities within its chunk is stored in ‘ghost cells’. Since the

numerical curl calculated in the FDTD update equations (3.20—3.25) dictates that

the update of each discretised field quantity only relies on its nearest gridpoints in

each spatial direction, only a single Yee cell thickness of ghost cells is required; see

Figures 4.6 and 4.7.
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Figure 4.6: Ghost cells (yellow) of E-components required to calculate B-

components in a 2x2x2 data chunk

Figure 4.7: Ghost cells (yellow) of B-components required to calculate E-

components in a 2x2x2 data chunk

70



In order to send and receive chunk faces, derived MPI datatypes are used.

The following order of operations is used for each timestep:

1. Update J components from t = n∆t⇒ (n+ 1) ∆t using Equation 4.9

2. Update B components from t = n∆t ⇒ (n+ 1) ∆t using Equations 3.20—

3.22

3. Send and receive B components using MPI

4. UpdateE components from t =
(
n+ 1

2

)
∆t⇒

(
n+ 3

2

)
∆t using Equations 3.23—

3.25

5. Apply current source term

6. Send and receive E components using MPI

4.3 Analysis

The NetCDF file format is used to export data from EMIT-3D (as well as to import

background density profiles). This is well suited to large output files and allows

parallel output from each process during a run. Since very large 3D datasets are

used in a typical simulation (>1 GB per run), only selected field quantities are

written to file; this can be done at every timestep or at a specified sampling rate.

In order to further reduce disk usage, output can be restricted to a 2D plane

(either xy, xz or yz), a line in a single direction or simply a point. 3D output can

also be downsampled spatially; this technique was used when producing output to

create animations.

Data analysis was largely carried out using IDL (Interactive Data Language).

A set of routines was developed to join up parallel output, calculate time-averaged

field quantities and generate plots.
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3D animations were created using the open source visualisation tool VisIt. This

enabled the propagation of microwaves past inhomogeneities in time to be studied

and provided additional physical insight.
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Chapter 5

Propagation of microwaves

through filamentary density

perturbations

5.1 Motivation

While propagation through a homogeneous or slowly-varying monotonic plasma

density profile is well understood and can be calculated analytically or using a ray-

tracing method, turbulent or otherwise perturbed profiles require detailed numerical

modelling using a full-wave method. The EMIT-3D code described in previous chap-

ters is therefore applied to this problem in this chapter, since cases with 3D physics

can arise.

The large fluctuations observed in SAMI data (see Subsection 1.3.2) during inter-

ELM periods demand explanation. One candidate is the influence of inter-ELM

filaments on the mode conversion and propagation of the emission. There is evidence

for the presence of filamentary blob structures at the edge of nearly all tokamaks,

as well as alternative configurations such as stellarators and reversed-field pinches;

they are responsible for a significant fraction of cross-field transport at the edge of

fusion-relevant plasmas [11]. They have been observed between ELMs on MAST

[12], and since their density range has been measured to be 5 × 1017 − 2 × 1018
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m−3, some filaments will have peak densities close to or above cutoff, particularly

at the lower end of the SAMI frequency range. This chapter quantifies the effect

of typical MAST inter-ELM filaments by varying filament parameters to investigate

their interactions with microwave beams.

Previous simulations have been carried out to study RF scattering from cylindri-

cal filaments for ion cyclotron resonance frequency (ICRF) and lower hybrid (LH)

heating applications using a full-wave method; Myra and D’Ippolito [61] found that,

for ICRF fast waves, only a small amount of scattering and thus power loss occurred.

However, mode conversion from fast waves into LH slow waves was predicted to be

a cause of power loss when the filament scale length was comparable to the slow

wave wavelength, although this result was qualitative rather than quantitative due

to the breakdown of the expansion used. A more significant degree of scattering

was observed with slow waves, with perturbations to the RF fields on the order of

a wavelength even when filament radii were much smaller than this.

Other simulations have studied scattering from spherical blobs for EC and LH

waves; using Fokker-Planck and ray-tracing methods, Tsironis et al. [62] concluded

that, for ITER-relevant parameters and a 170GHz ECCD beam, a blob causing even

small-angle scattering could have serious consequences for power deposition at the

cyclotron harmonics due to the distances of several metres travelled by the beam.

Hizanidis et al. [63] used geometric optics analysis to come to a similar conclusion,

with scattering angles of 1◦−4◦ for both O- and X-modes calculated. Ram, Hizanidis

and Kominis [64] used a full-wave method to study spherical blob scattering and

observed forward scattering effects that were more significant than backscattering,

and were enhanced with increasing density and scale length.

Emission can be obliquely incident with a finite width along the filament axis, so

this scattering problem is in some respects inherently 3D; this also applies to the use

of Doppler reflectometry to observe tokamak filaments [65]. EMIT-3D is therefore

used to carry out these simulations in 3D. By comparison with the 2D full-wave

code IPF-FDMC [49], the cases in which 3D treatment is required are determined.
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5.2 Edge filaments

In general, during tokamak operation, transport of heat and particles across the

scrape-off layer (SOL), perpendicular to the magnetic fieldlines, is dominated by

non-diffusive transport due to coherent plasma structures variously known as fila-

ments (the nomenclature used here), blobs, intermittent plasma objects (IPOs) and

plasmoids [66]. Experimental observation has shown this to be the case for both

L- and H-mode discharges (see Section 1.2.1) - for example, probe data from the

DIII-D tokamak showed these structures to be responsible for ∼ 50% of transport

at all radii for both modes of operation [67]. This section provides a brief summary

of filament observations.

5.2.1 L-mode

Filaments during L-mode operation were first observed in the early 1980s, with early

studies [68] using fast cameras to image Dα light produced by gas puffing on the

ASDEX and DITE tokamaks. This showed the presence of filamentary structures,

elongated in the toroidal direction. Observations on the TFTR tokamak charac-

terised these structures in more detail, measuring poloidal spacings of ∼ 3 cm for a

0.9 MA discharge and ∼ 5 cm for 1.4 MA, both with 5 MW of neutral beam heating

power [69]. Furthermore, only small toroidal angles were found between filaments

and fieldlines, suggesting that filaments tend to align along the field.

Improvements in diagnostic capabilities allowed, for example, the use of an ultra-

fast (250 kHz) camera to track the radial motion of filaments on the Alcator C-Mod

tokamak [70] during intermittently occuring radial transport events, finding radial

velocities of ∼ 0.5 km/s. Observations of L-mode filaments were made in spherical

as well as large aspect-ratio tokamaks; NSTX in 2001 [71] and later MAST [66].

Filaments on STs were found to be quantitatively similar, with perpendicular spac-

ings of several centimetres and close alignment to the magnetic field [71]. Toroidal

velocities were measured at 3 − 5 km/s [66]. L-mode filament densities have been
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measured and are typically somewhat low in comparison to the pedestal; on MAST,

they are ∼ 6× 1017 − 5× 1018 m−3 [12].

5.2.2 Edge localised modes (ELMs)

Since the first H-mode experiments on ASDEX [6], the improved plasma confinement

has consistently been seen to be degraded by fast-growing (∼ 200 µs) modes at the

edge known as ELMs, causing a periodic relaxation of the edge density gradient and

the loss of large quantities of stored energy and particles. The negative effect on

tokamak performance alongside the high power loading on the divertor and outer

wall has drawn significant research interest to this subject.

Measurements from MAST showed ELMs to be associated with field-aligned

filamentary structures [72]. However, these differ significantly from L-mode filaments

in their spatial size (∼ 7.5−15 cm [72]) and density — Thomson scattering data from

MAST [73] and DIII-D [74] shows them to have high densities which are comparable

to the pedestal, ∼ 2 − 3 × 1019 m−3. Fast cameras have been used to track ELM

motion and found their toroidal velocity to decrease from 13 to 2 km/s and radial

velocity to increase from 2 to 9 km/s as they expand radially over their ∼ 200 µs

lifetime [73].

5.2.3 Inter-ELM

Recently, the filaments present during H-mode but between ELMs have been inves-

tigated experimentally [12]. Compared to L-mode filaments, they have a lower Dα

and mean density, but in spatial width and toroidal mode number, they are interme-

diate between L-mode and ELM filaments. In a similar fashion to L-mode filaments,

they are intermittently seen to travel radially outwards at a constant velocity of 1 -

2 km/s. See Figure 5.1 for a comparison.
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Figure 5.1: Intensity traces of mapped field lines as a function of the toroidal angle

spanning the centre column for (a) inter-ELM, (b) L-mode and (c) ELM filaments

from the same shot. Beneath these, detected filaments are projected onto the cor-

responding full view camera images. Reproduced with permission from [12]

5.3 Simulation setup

5.3.1 Geometry

The simulations were carried out with a vacuum background. Onto this was super-

imposed a filament, modelled as a cylindrical density perturbation with a Gaussian

profile, its axis in the x-direction:

ne(y, z) = ne,peak exp(
−(y − y0)2 − (z − z0)2

w2
) (5.1)
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Results were obtained by exciting a linearly polarised (in the x-direction) O-

mode beam at the z = 0 plane, a distance z = 7λ0 from the cylinder axis, where λ0

is the vacuum wavelength of the incident beam. This was a Gaussian beam with a

width of 2λ0 and its waist located in the antenna plane, hence having the following

electric field intensity distribution at z = 0:

Ex(x, y) = E0 exp(
−(x− x0)2 − (y − y0)2

(2λ0)2
) (5.2)

Filaments in tokamaks are elongated along the background magnetic field lines

[12]. As this investigation concerned the simplest possible case of perpendicular

injection onto a filament of an O-mode beam (E ‖ B0 and hence polarised parallel

to the filament axis, as seen in Equation 5.2), the background magnetic field was

neglected for practical benchmarking reasons. In a 2D geometry, this has no effect

on the results obtained, since the direction of the oscillating E-field is not affected

by the density perturbation.

In order to allow improved benchmarking and comparison between EMIT-3D

and IPF-FDMC, the magnetic field is also neglected in the 3D calculations. Its

incorporation leads to additional deviation from the 2D results since the wave is no

longer a plane wave into the direction of the magnetic field but has a finite extent.

Hence, the electric field vector is no longer “forced” to oscillate exactly parallel to

B0, but with a finite angle, which results in slightly different scattering. This is a

3D effect which will be explored in future publications.

The simulation was then allowed to run in the time domain, as the beam propa-

gated through the grid and interacted with the density perturbation. It was allowed

to run until reaching a steady state (wave fields were monitored over time to ensure

a steady and converged solution), typically after ∼ 3000 timesteps, the scattered

electric field was summed over several cycles at the x-y backplane (also z = 7λ0

from the cylinder). An RMS value of this field could thus be calculated in order to

obtain a power distribution.
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A relatively small spatial step of ∆x = λ0/50 was chosen to ensure an accurate

description of the interaction with the density gradients within the filament struc-

ture. The total grid size used for each scan is stated in the Results section. The

timestep is fixed using a stable value of Courant number C = 0.5; for a filament

density of ne,peak = 0.8ne,crit this results in a value of ∆t = τp/18 where τp is the

plasma period at peak density.

Simulations were run on a computer cluster to make use of the parallel pro-

gramming features of EMIT-3D. A typical run for 3000 timesteps over 80 parallel

processors had a runtime of ∼ 8 hours.

Figure 5.2: 3D surface plot of EMIT-3D output showing simulation setup. Blue:

Ex = 0.41A surface of beam, orange: X = 0.25 surface of background density. Inci-

dent beam is excited at left-hand plane, scattered by filament at centre of domain,

then propagates as two scattered beams towards right-hand plane and is absorbed

at boundary
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5.3.2 Scaling to experiment

To ensure experimental relevance, physical parameters for the investigation were

obtained from Ben Ayed et al. (2009) [12]. Langmuir probe measurements found

that MAST inter-ELM filaments have a density range of ne = 5 × 1017 − 2 × 1018

m−3. For experimentally relevant frequencies of 10 − 35 GHz, this corresponds to

a range in the parameter ne,peak = 0.03ne,crit − 1.61ne,crit.

Filament widths, defined in [12] as “twice the difference between the maximum

and lowest neighbouring minimum”, were measured in the range w = 5−30 cm, with

a peak at 13 cm and mean at 16 cm. Corresponding Gaussian widths are estimated

to be around a quarter of this, giving a range of 1.3 − 7.5 cm. The frequencies of

interest correspond to vacuum wavelengths λ0 = 0.9−3.0 cm, so a range in Gaussian

widths of w = 0.4λ0 − 8.8λ0 is possible.

5.4 Analysis

To estimate the degree of scattering, the mean µP and standard deviation σP of the

backplane power distribution P (x, y) were calculated in both x- and y-directions as

follows (e.g. for y):

Ptot =
Nx∑
x0

Ny∑
y0

P (x, y) (5.3)

µP,y =
1

Ptot

Nx∑
x0

Ny∑
y0

[y · P (x, y)] (5.4)

σP,y =

√√√√√ 2

Ptot

Nx∑
x0

Ny∑
y0

[(y − µP,y)2 · P (x, y)] (5.5)

where Nx, Ny are the total number of gridpoints in the x- and y-directions

respectively. These quantities were compared against their values µP,vac, σP,vac for

a beam propagating only through vacuum. The point of maximum emission ymax
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was also recorded. Parameters were scanned through experimentally relevant values

over a number of runs, and the degree of scattering quantified.

5.5 Results

5.5.1 Position scan

A grid of 496× 1204× 736 gridpoints was used for this scan. The position yfil of the

centre of a filament with its axis in the x-direction (normal to beam propagation)

was varied relative to the beam axis in the y-direction. The filament’s peak electron

density was kept constant at ne,peak = 0.8ne,crit, and its Gaussian width at w = 1.0λ0.

Backplane power distributions are plotted in Figure 5.3.

Scattering in this case, as could be expected due to the inherently 2D nature

of the problem, was only observed in the y-direction - in the x-direction, the beam

profile remained close to the original Gaussian of the source. That is, no scattering

out of the plane was observed. The peak σP in the y-direction (Figure 5.4), observed

when the filament and beam axes coincide, is greater than the result for vacuum

by a factor of 3. As their separation increases past 2λ0, power distributions with

σP < σP,vac are observed, suggesting that the filament may be acting to focus the

beam, although this is only a small effect.

The point of maximum emission ymax (Figure 5.5) was maximally displaced by a

filament centred on the beam axis, with two equal maxima located at y = ±3.88λ0.

As the filament moved away, this became a single maximum which returned towards,

and then slightly beyond, the centre point at larger separations. A single beam was

recovered, but its shape was still influenced by the presence of the filament, with a

dual-lobed structure as can be seen in Figure 5.3 for yfil = 4λ0.
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Figure 5.3: Distribution of 〈E2〉 (∝ power) on backplane for position scan. yfil shown

on each plot. Dashed lines indicate the 1
e

extent of the filament density projected

onto the backplane. Contours on a log scale. Spatial coordinates shown on axes of

lower left image

As the separation increased past 4λ0, the lower emission lobe became more in-

tense than the upper and hence a discontinuity is seen in the plot of ymax. This

shows that a filament passing across a beam will in fact cause a series of two per-

turbations to its maximum, rather than the one which might naively be expected.

The greatest value of ymax (with filament aligned to the beam axis) corresponded to

a scattering angle of 26◦.

This scan was also carried out in 2D using IPF-FDMC for benchmarking and

comparison purposes, with all parameters identical (∆x,∆t, λ0 etc.) to enable as

close a comparison as possible. 2D results are plotted in black on Figures 5.4 and 5.5.

Excellent agreement is shown; while it is exact for ymax, a small discrepancy in

82



calculated σP is observable for larger scattering angles. However, this is due to

necessary differences in the method of analysis between 2D and 3D cases rather

than numerical differences.

Figure 5.4: Standard deviation σP,y in y-direction for position scan. Dashed line for

case without filament. Red diamonds: EMIT-3D, black crosses: IPF-FDMC
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Figure 5.5: Shift of maximum emission point ymax in y-direction for position scan.

Dashed line for case without filament. Red diamonds: EMIT-3D, black crosses:

IPF-FDMC

5.5.2 Density scan

Again, a grid of 496 × 1204 × 736 gridpoints was used. The filament position was

held constant on the beam axis and ne,peak varied through experimentally relevant

values. Again, the scattering observed was 2D in nature — see Figure 5.6. The

standard deviation σP (Figure 5.7) increased as the density was increased while still

below cutoff, reaching a maximum with ne,peak = ne,crit. As the peak density rose

above cutoff, the degree of scattering saturated and remained nearly constant, as did

the position of the symmetric emission maxima (Figure 5.8). A maximum scattering

angle of 32◦ was not exceeded with increasing ne,peak.

However, the total power reaching the backplane was significantly decreased.

Below cutoff, a smaller decrease of total power by ∼ 9% was observed due to the

beam having scattered beyond the maximum y-extent of the computational domain.

As cutoff was reached and exceeded at the filament centre and backscattering began

to play a significant role, the total backplane power decreased to∼ 40% of its original

value.
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Again, excellent agreement of EMIT-3D with IPF-FDMC is seen in Figures 5.7

and 5.8.

Figure 5.6: As Figure 5.3 for filament density scan. ne,peak shown in terms

of ne,crit. Dashed lines at density previously shown, 0.8ne,crit/e (not visible for

ne,peak = 0.2ne,crit since this density is not reached). Contours on a log scale. Spatial

coordinates shown on axes of lower left image
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Figure 5.7: Standard deviation σP,y in y-direction for density scan. Red diamonds:

EMIT-3D, black crosses: IPF-FDMC

Figure 5.8: Shift of maximum emission point ymax in y-direction for density scan.

Red diamonds: EMIT-3D, black crosses: IPF-FDMC

5.5.3 Width scan

The grid dimensions remained at 496× 1204× 736 gridpoints. The Gaussian width

w of the filament was varied from 0 − 2.5λ0, with fixed peak density ne,peak =
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0.8ne,crit (see Figure 5.9). For w < 0.3λ0, almost no effect on ymax was observed

(see Figure 5.11); however, a large increase in σy (see Figure 5.10) was observed

for w > λ0, with the point of maximum emission also diverging from the mean. A

scattering angle of 47◦ was observed at w = 2.5λ0, and this continued to increase

for wider filaments.

Excellent agreement between codes was again observed.

Figure 5.9: As Figure 5.3 for width scan. Widths shown in units of λ0. Contours

on a log scale. Spatial coordinates shown on axes of leftmost image
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Figure 5.10: Standard deviation σP,y in y-direction for width scan. Red diamonds:

EMIT-3D, black crosses: IPF-FDMC

Figure 5.11: Shift of maximum emission point ymax in y-direction for width scan.

Red diamonds: EMIT-3D, black crosses: IPF-FDMC
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5.5.4 Angular scan

For this scan, a change in the dimensions of the grid to 605 × 1000 × 736 was

made in order to fully capture the backplane distribution. The incident angle to

the normal, θi, of the beam on the filament in the x-z plane was varied between

0◦ − 80◦ (Figure 5.12). As for the position scan, filament density and width were

held constant at ne,peak = 0.8ne,crit and w = 1.0λ0.

For as simple a picture of this scattering effect as possible, consistency was

maintained with the earlier scans by keeping B0 = 0. A test run was carried out

with a finite B0 along the filament axis, but only small deviations were observed

from the unmagnetised result. A more sophisticated analysis of the magnetised

3D scattering effect is outside the scope of this chapter but is a future topic for

investigation with EMIT-3D.

Figure 5.12: Schematic of angular scan in xz plane. Filament tilted at angle θi is

shown in orange, k is wavevector of incident beam

As the beam moved away from normal incidence, it encountered an increasingly

shallow density gradient and so refractive effects began to dominate over scattering.

This resulted in a rotation of the emission patterns, with the two spots coalescing

into a single maximum for large angles - see Figure 5.13.
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Figure 5.13: As Figure 5.3 for angular scan. Incident angles in x-z plane shown.

Contours on a log scale. Spatial coordinates shown on axes of leftmost image

Although the maximum emission point ymax shifted in both x- and y-directions,

the scattering angle only increases slightly (29◦ − 31◦). This is an example of a

genuinely 3D effect.

The effect of oblique incidence on the beam’s wavefront can be observed in

more detail from the 3D plots in Figures 5.14 and 5.15 — compare these images

to Figure 5.2. Figure 5.14 shows the leading wavefronts beginning to distort and

rotate as the beam first encounters the density perturbation at an angle of 50◦.

Figure 5.15 shows a frame from a later timestep, as the beam has propagated past

the perturbation. Splitting into two beams, as well as rotation, has occurred and

the shift of beam power in the rightwards direction (from the viewpoint into the

negative z-direction shown) along the filament axis is observable.
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Figure 5.14: 3D surface plot of EMIT-3D output at 50◦ angle of incidence, early

timestep — E-field and ne contours plotted as for Figure 5.2.

Figure 5.15: 3D surface plot of EMIT-3D output at 50◦ angle of incidence, later

timestep — E-field and ne contours plotted as for Figure 5.2.

5.6 Discussion

These results show the synergistic effects of two filament parameters, density and

width, on the observed scattering angle. While filaments with widths of several

times the beam wavelength can cause large deviations at higher frequencies (e.g. a
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filament of Gaussian width 2.5cm, close to the mean width for MAST, will scatter

a 30 GHz beam by 47◦), filament density becomes an important effect at lower

frequencies, even for underdense filaments (e.g. a filament of peak density 1.0×1018

m−3, again typical for MAST, will scatter a 10 GHz beam by 26◦).

In comparison to the results discussed earlier from the previous studies [61] -

[64], scattering angles are around an order of magnitude larger; however, the beam

wavelengths studied here are also an order of magnitude larger and on the order of

the filament width and so this result is not unexpected; MAST, rather than ITER

parameters were investigated here. In agreement with [64], forward scattering was

found to be more significant than backscattering in causing power loss, unless the

filament is overdense. An important difference in simulation setup is the use in this

chapter of Gaussian-profiled filaments, as opposed to the step-function in density

used in previous work; more detailed comparison would require a similar profile to

be used in EMIT-3D.

It is therefore shown that filamentary plasma structures can have a significant

influence on the propagation of microwaves across a broad frequency spectrum, with

consequences for both electron cyclotron diagnostics and heating. Since spherical

tokamaks maintain plasma densities comparable to other tokamaks with a lower

magnetic field and thus have lower electron cyclotron frequencies, these effects can

be particularly important. In particular, inter-ELM filaments on MAST could be

a source of fluctuation for the SAMI diagnostic, although further simulation and

experimental comparison are required to quantify such a link.

By comparison with IPF-FDMC, the cases in which 2D simulation is justified

have been determined. For normal incidence, minimal out-of-plane scattering was

observed from EMIT-3D, verifying that 2D simulation, with its reduced computa-

tional time, is valid in this case. However, for oblique incidence, which is generally

the case for emission diagnostics, 3D effects become important.
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Chapter 6

Propagation of microwaves

through turbulence

6.1 Motivation

The presence of turbulence in both the core and edge of a tokamak plasma has been

measured experimentally many times [13] (see e.g. Figure 6.1). Since turbulence

manifests in a tokamak as an ensemble of eddies extended along fieldlines, as opposed

to a single scattering structure, its effect on an incident microwave beam will clearly

differ from the cases explored in Chapter 5.

The performance of microwave emission diagnostics will be limited when edge

turbulence is present; the defocusing caused affects both propagation and more

complicated processes such as mode conversion [33]. Further, applications requiring

a focused microwave beam such as EC heating and current drive can be impacted.

It is therefore necessary to improve our understanding of this subject.

In this chapter, a full-wave study of microwave propagation through a realistic

turbulent layer is carried out. This extends the previous chapter’s investigation of

microwave scattering from a single plasma filament or blob, and obtains important

new results characterising turbulent scattering.

Previous attempts have been made to quantify the scattering effect of a turbulent

layer on a microwave beam. An analytical example is that presented by Sysoeva et
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Figure 6.1: Fluctuation amplitude by radius [75] — measured on the DIII-D tokamak

using a reciprocating Langmuir probe. Ratio of fluctuation amplitude to radius

plotted against minor radius with respect to separatrix. Circles - L-mode, triangles

- ELM-free H-mode

al. [76]; this derives an expression for the angular broadening of an O-mode beam

travelling through a turbulent layer. In this chapter, to investigate the interactions

between more realistic tokamak edge turbulence, a commonly-recognised turbulence

model is solved numerically and used to initialise a set of EMIT-3D simulations.

A key result is the relative length scale at which microwave propagation will be

most severely affected by turbulence. By varying the size of the turbulent structures

between simulations, the relationship between beam wavelength and eddy size is

explored.

6.2 Incorporating turbulent profiles

6.2.1 Artificial turbulence

Previous attempts to incorporate turbulent backgrounds into a microwave propa-

gation model have relied on a statistical description (e.g. [33], [76]). A probability

density function is used to approximate a region of turbulence with a desired energy

spectrum and correlation length.

This approach can generate useful results but nonetheless remains somewhat
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‘artificial’ and has clear deficiencies if a realistic picture of microwave propagation

through a turbulent layer is to be obtained. A more rigorous approach is desired, in

which turbulent density profiles can be used which are known to closely match edge

turbulence in a tokamak.

6.2.2 Real turbulence

In a new approach, a turbulence code can be used to simulate realistic tokamak

edge turbulence. The BOUT++ code [77] provides a flexible framework in which

multiple fluid models can be implemented and is used in this work.

The Hasegawa—Wakatani model [78] is used for tokamak edge turbulence sim-

ulations. It describes electrostatic resistive drift wave turbulence and simulates the

coupling between vorticity and density. A density gradient drives the evolution of

turbulent eddies from an initially unperturbed plasma with a constant background

magnetic field.

The following set of fluid equations are used:

∂ζ

∂t
+ {ϕ, ζ} = α(ϕ− n) (6.1)

∂n

∂t
+ {ϕ, n} = α(ϕ− n)− κ∂ϕ

∂y
(6.2)

where ϕ is potential, ζ = ∇2ϕ is the vorticity, α = −Te/(ηn0ωcie
2) ∂2

∂z2 is the

adiabacity operator describing the parallel electron response and κ = − ∂
∂x

log n0 is

the strength parameter, determined by the background density gradient. As usual,

the Poisson bracket

{a, b} =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x

These equations are typically solved numerically using a suitable code.
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6.3 EMIT-3D simulations using turbulence

To obtain usable data for microwave-turbulent scattering interaction simulations,

a 2D BOUT++ simulation using the Hasegawa-Wakatani model described above

was carried out. A value of κ = 1 (see 6.2) is specified, producing the density

gradient which drives the turbulence, and the adiabacity operator α = 0.5. Initial

perturbations consisting of a mix of mode numbers with pseudo-random phases

are applied, iterations are begun and the mean turbulent energy increases over

time; after a sufficient number of timesteps, the turbulence saturates and the mean

turbulent energy no longer grows. The simulation is allowed to run until this point

is reached, and then continues running while a series of snapshots are taken of the

resulting turbulent eddies.

At each of these snapshots, turbulent density fluctuation data, with values both

positive (accumulation) and negative (rarefaction) is written to an output array

(plotted in Figure 6.2). This data can then be used as an input background density

profile for an EMIT-3D simulation by superimposing these eddies onto a homoge-

neous plasma background. Although a gradient in plasma density was necessary in

order to drive the turbulence in BOUT++, a homogeneous plasma background is

used here in order to focus only on characterising the scattering effect.
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Figure 6.2: Full extent of BOUT++ turbulent simulation using Hasegawa-Wakatani

model. Red: increase in density, blue: decrease in density

First, the BOUT++ output data is interpolated to the EMIT-3D grid. This is

the point at which an important parameter can be set; the ratio of ion Larmor radius

to the beam vacuum wavelength (ρi/λ0). This gives a measure of the turbulent scale

length; by varying this parameter, the effect of different turbulent structure sizes on

a beam can be investigated.

Only a portion of the full simulated domain shown in Figure 6.2 is required for

each EMIT-3D simulation. A window function using hyperbolic tangents is applied

in order to select a turbulent region of given width:
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ne(y, z) = n0+Aflucnfluc(y, z)
(tanh(z − za) + 1)(tanh(zb − z) + 1)

4
(6.3)

where nfluc(y, z) is the turbulent fluctuation data from file, Afluc is the fluctuation

amplitude with respect to the background density and za and zb are the start and

end points in the z-direction of the turbulent layer. The fluctuations were simply

extended in the x-direction, as tokamak turbulence is extended along fieldlines.

By varying Afluc at this stage, the fluctuation amplitude can easily be scaled.

6.4 Results and interpretation

A set of EMIT-3D simulations were carried out using this turbulence data. Example

views in the yz plane can be seen in Figures 6.3, 6.5, 6.7 and 6.9. Each of these

shows a window of a single given turbulence snapshot (plotted in red and green

contours) with a microwave beam (electric field value out of the page in background

contour plot) propagating across it. Each plot is at a different representative value

of ρi/λ0 and the change in structure size from one simulation to the next depending

on this parameter can be seen.

In order to quantify the structure size, autocorrelation calculations on the BOUT++

datasets were carried out. Average turbulent structure size (s), defined as the aver-

age distance between minima in density, and ion Larmor radius (ρi) were found to

have a linear relationship, allowing the following scaling to be used:

s = 1.59ρi (6.4)

Data is therefore plotted in terms of structure size rather than ρi as it is a

more meaningful physical parameter from the perspective of a microwave interaction

study.

In the simulations carried out, the background density n0 = 0.5ne,crit. The

fluctuation amplitude Afluc was selected such that (ñ)RMS/n = 0.02; the RMS value
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of the fluctuation amplitude was 2% of the background density. As in the previous

chapter, Courant number S = 0.5, vacuum wavelength λ0 is 50 gridpoints and since

an O-mode wave is launched with E ‖ B0, the background magnetic field can be

neglected.

The distances za = 1λ0, zb = 4λ0; that is, the beam propagates through a layer

of homogeneous plasma of thickness λ0, through a turbulent layer of thickness 3λ0

and through another layer of homogeneous plasma of thickness λ0 before having its

electric field value recorded at the backplane.

After allowing simulations to reach a steady state, an averaging technique over

several wave periods is applied to the electric field values at the backplane as in

Chapter 5. This results in a backplane distribution of the time-averaged electric

field value, which can be further analysed.

Example backplane (xy) plots of E can be seen in Figures 6.4, 6.6, 6.8 and 6.10,

showing the shift in beam power in both dimensions as opposed to the unperturbed

case. Each of these corresponds to the proceeding yz plane plot.
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Figure 6.3: yz-plane view of turbulent scattering simulation with ρi = 0.5λ0. Abso-

lute E-field values of microwave beam plotted in background; density perturbation

contours in foreground (green - positive, red - negative). Axes normalised to λ0

Figure 6.4: Backplane (xy) view of turbulent scattering simulation with ρi = 0.5λ0.

Time-averaged value of E-field is plotted. Axes normalised to λ0

100



Figure 6.5: yz-plane view of turbulent scattering simulation with ρi = 0.75λ0. Abso-

lute E-field values of microwave beam plotted in background; density perturbation

contours in foreground (green - positive, red - negative). Axes normalised to λ0

Figure 6.6: Backplane (xy) view of turbulent scattering simulation with ρi = 0.75λ0.

Time-averaged value of E-field is plotted. Axes normalised to λ0
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Figure 6.7: yz-plane view of turbulent scattering simulation with ρi = 1λ0. Abso-

lute E-field values of microwave beam plotted in background; density perturbation

contours in foreground (green - positive, red - negative). Axes normalised to λ0

Figure 6.8: Backplane (xy) view of turbulent scattering simulation with ρi = 1λ0.

Time-averaged value of E-field is plotted. Axes normalised to λ0
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Figure 6.9: yz-plane view of turbulent scattering simulation with ρi = 2λ0. Abso-

lute E-field values of microwave beam plotted in background; density perturbation

contours in foreground (green - positive, red - negative). Axes normalised to λ0

Figure 6.10: Backplane (xy) view of turbulent scattering simulation with ρi = 2λ0.

Time-averaged value of E-field is plotted. Axes normalised to λ0

103



These results were obtained for a range of ρi (and thus s). At each value, a

set of simulations were carried out each using separate turbulent snapshots, each

sufficiently different from the last to approximate randomness. This gives a dataset

for analysis.

At the backplane, a value of χ2 is calculated for each of 7 snapshots at each value

of ρi:

χ2 =
∑
x

(E − Eflat)
2

Eflat

(6.5)

where Eflat is the time-averaged electric field distribution for a beam propagating

through an unperturbed plasma. This provides a measure of the difference between

the scattered and unscattered distributions (see Figure 6.11).

Figure 6.11: Sketch of line plot at centre of backplane showing two time-averaged

E-field distributions; unperturbed distribution Eflat (solid line) and scattered distri-

bution E (dotted line).

104



χ2 is then averaged across all snapshots. This provides us with a measure of

the shift in beam shape away from that observed in homogeneous plasma; a higher

average χ2 corresponds to greater defocusing (although, in principle, it could also

correspond to greater focusing, observation of the beam pattern showed a spreading

rather than focusing effect in all cases).

This averaged value is plotted in Figure 6.12, with χ2 normalised to its maximum

value.

Figure 6.12: χ2 plotted against structure size normalised to vacuum wavelength s/λ0

Sufficient timeslices have been used that the error bars on this graph are small.

A peak in χ2 is thus observed where structure size s = 0.64λ0; that is, the effect

of turbulence on microwave scattering is greatest in this case. Away from this scale

length, χ2 decreases. If plotted with a logarithmic x-axis as in Figure 6.13, this

fall-off in either direction appears to be linear.

It is expected that turbulent structures with a size comparable to the vacuum

wavelength will have the greatest defocusing effect on a beam, and this is borne

out by this result. However, the greatest effect appears when the size is somewhat
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Figure 6.13: χ2 plotted against logarithm of structure size normalised to vacuum

wavelength log(s/λ0)

less than a whole wavelength, giving a distribution which is noticeably skewed away

from (s/λ0) being unity.

The width at which χ2 falls to 50% of its maximum value is 1.8 log(s/λ0). This

gives a quantitative measure of the defocusing effect on a microwave beam that would

be expected from a turbulent layer of known structure size, allowing an estimation

of the likely impact on a diagnostic or heating system.

A characterisation of the interactions between microwave beams in plasma with

regions of realistic turbulence has thus been made across a range of turbulent scale

lengths. The χ2 distribution shown in Figure 6.13 is valid for a layer several wave-

lengths thick of low amplitude turbulence; an increase in the severity of the defo-

cusing effect can be expected at some of the higher turbulent amplitudes known to

be present in the tokamak edge, and for thicker layers. However, although the max-

imum value of χ2 may be higher in these cases, a similar distribution is expected.

The dependence of its skew on these profile parameters is not known.
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A broader parameter scan is left to future work at this stage (discussed in more

detail in the following chapter, alongside other topics). This will allow this charac-

terisation to be extended.

107



Chapter 7

Conclusions and future work

In this thesis, a set of related problems involving the propagation of a microwave

beam through plasma inhomogeneity were simulated for the first time; these in-

volved both a single plasma filament and a region of coherent plasma turbulence.

The effects of this inhomogeneity were quantified across a broad range of parame-

ters and their expected ramifications for experimental applications of high-frequency

EM radiation in tokamak plasmas discussed. Strong scattering and defocusing ef-

fects were observed which could substantially affect the performance of microwave

emission diagnostics, current drive and heating on tokamaks.

In order to carry out these simulations, a new 3D full-wave cold plasma code,

EMIT-3D, was developed and tested, using a new numerical scheme which is shown

to be conditionally stable under all physical simulation parameters. This provides

a flexible simulation framework in which to investigate a range of EM propagation,

scattering and refraction phenomena in magnetised plasmas of arbitrary background

electron density and magnetic field profiles. After further validation, it will also

permit mode conversion studies.

These findings are summarised in this chapter, and future plans for further work

using EMIT-3D are presented, including some additional algorithmic development.
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7.1 Filament scattering

The results obtained in Chapter 5 show the synergistic effects of two plasma fila-

ment parameters, density and width, on the observed microwave scattering angle.

While filaments with widths of several times the beam wavelength can cause large

deviations at higher frequencies (e.g. a filament of Gaussian width 2.5cm, close to

the mean width for MAST, will scatter a 30 GHz beam by 47◦), filament density

becomes an important effect at lower frequencies, even for underdense filaments (e.g.

a filament of peak density 1.0× 1018 m−3, again typical for MAST, will scatter a 10

GHz beam by 26◦).

It is therefore shown that filamentary plasma structures can have a significant

influence on the propagation of microwaves across a broad frequency spectrum, with

consequences for both electron cyclotron diagnostics and heating. Since spherical

tokamaks maintain plasma densities comparable to other tokamaks with a lower

magnetic field and thus have lower electron cyclotron frequencies, these effects can

be particularly important. In particular, inter-ELM filaments on MAST could be

a source of fluctuation for the SAMI diagnostic, although further simulation and

experimental comparison are required to quantify such a link.

By comparison with IPF-FDMC, the cases in which 2D simulation is justified

have been determined. For normal incidence, minimal out-of-plane scattering was

observed from EMIT-3D, verifying that 2D simulation, with its reduced computa-

tional time, is valid in this case. However, for oblique incidence, which is generally

the case for emission diagnostics, 3D effects become important.

7.2 Turbulence

The results obtained in Chapter 6 demonstrate the broadening effect on microwave

beams caused by realistic edge turbulence. Output from a Hasegawa-Wakatani fluid

model of plasma turbulence implemented in the BOUT++ code was used to initialise

a set of microwave scattering simulations using EMIT-3D. The deformation away
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from an unperturbed beam was measured quantitatively for each case of a beam

propagating through a turbulent layer.

This effect was investigated across a range of turbulent scale lengths in order

to understand the role played by the structure size relative to wavelength. The

defocusing effect on a beam was found to strongly depend on this parameter; the

average χ2 for a perturbed beam was found to peak for eddy sizes comparable to

but somewhat smaller than the vacuum wavelength (s = 0.64λ0); as the logarithm

of the structure size either decreased or increased away from this maximum, the

effect was found to decrease in an approximately linear fashion with a full width at

half maximum of 1.8 log(s/λ0).

For emission diagnostics such as SAMI, the turbulent structures with sizes of

several cm (hence on the order of λ0) present at the edge could therefore cause a

significant effect, with shifts in beam shape and wavevector occurring as the edge

turbulence evolves. This occurs even with a low fluctuation amplitude relative to

background density. This effect can further influence the propagation of EC heating

and current drive.

7.3 Future code development

EMIT-3D is an ongoing project and will continue to develop. Its 3D geometry allows

the investigation of effects such as magnetic shear [30] and asymmetry of the mode

conversion efficiency [56] in regimes where the density scale length Lne = n0

|∇n0| ' λ0.

Beyond the present form of the code, there are potential future modifications

which will allow investigation of a broader range of topics. Several of these paths

are outlined here.

110



7.3.1 Incorporating background electron flows

7.3.1.1 Motivation

The algorithm heretofore presented relies on the assumption that background cur-

rents or flows do not exist within the plasma; that is, that J0 = 0. However, while

this assumption is valid for special cases, it is not generally so; a tokamak plasma

typically has a significant toroidal current, even in edge regions, and may contain

electron flows.

In some cases, a background current is necessary simply for self-consistency

within the model; if a non-homogeneous background magnetic field with a finite

curl is present, J0 is required in order to satisfy the zero-order Ampère’s Law:

J0 =
∇×B0

µ0

(7.1)

If the magnetic field scale length Ls � λ0, this term is too small to affect a

propagating wave and can be neglected. However, for background magnetic field

profiles with strong spatial variations such that Ls ' λ0, it becomes necessary.

One example of such a case requiring a J0 term for self-consistency is the sim-

ulation of the effect of magnetic shear on mode conversion. This was predicted

analytically by Cairns and Lashmore-Davies [30] to have a significant effect on the

mode conversion efficiency when the magnetic shear scale length approaches the

density scale length. Since strongly sheared fields can be present at the tokamak

edge, this effect is of significant interest and thus it is desirable to have the option

of including a background current in EMIT-3D if it is to be verified with full-wave

simulation.

Further to this, the presence of electron flows in the tokamak plasma can also

give rise to a J0. Work by Jia and Gao [79] indicates that this effect can also strongly

influence mode conversion efficiency.
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In this section, the numerical method developed in Chapter 4 is modified to

include J0. This new modification could be directly implemented in EMIT-3D in

order to carry out full-wave simulations to investigate these effects.

7.3.1.2 Algorithmic details

If J0 6= 0, the linearised first-order equation of electron motion becomes:

∂J1

∂t
= ε0ω

2
peE1 − ωceJ1 × b̂0 −

e

m
J0 ×B1 − νJ1 (7.2)

and hence the newly arisen J0 ×B1 term must be incorporated into the FDTD

model. In order to include this term, the methodology derived in Chapter 4 must

be modified.

First, this equation is rewritten in matrix form as before. Subscripts are dropped

so that J,E,B are all first-order quantities.

J̇(t) = PJ(t) + ε0ω
2
peE(t) +RB(t) (7.3)

where

P =


−ν −bzωce byωce

bzωce −ν −bxωce
−byωce bxωce −ν

 , b̂0 = (bx, by, bz)

and

R =


0 −J0,z J0,y

J0,z 0 −J0,x

−J0,y J0,x 0
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This can now be integrated as before with the use of an integrating factor:

J(t) = eP (t−t0)J(t0) + ε0ω
2
pe

∫ t

t0
eP (t−τ)E(τ)dτ

+
∫ t

t0
eP (t−τ)RB(τ)dτ (7.4)

Following the previous derivation, we wish to obtain a discretised form by re-

moving both E and B from their convolutions. This can be carried out as before

using the midpoint approximations that E,B are constant over the interval [t0, t]:

Jn+1 = eP∆tJn + ε0ω
2
peP

−1(eP∆t − I)En+1/2

+ P−1(eP∆t − I)RBn+1/2 (7.5)

However, since B is calculated in phase with J, i.e. at t = (0, 1, 2, ...)∆t, a value

of B at t = (1
2
, 3

2
, 5

2
, ...)∆t is not available.

A solution to this is to replace Bn+1/2 with an average of Bn and Bn+1, giving

the discretised form:

Jn+1 = eP∆tJn + ε0ω
2
peP

−1(eP∆t − I)En+1/2

+ P−1(eP∆t − I)R(
Bn + Bn+1

2
) (7.6)
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This update can be carried out without the code’s memory requirements being

increased since storage of multiple steps is not required simultaneously. A value of

current density Jint, which is intermediate between Jn and Jn+1, is introduced and

these equations obtained:

Jint = eP∆tJn + ε0ω
2
peP

−1(eP∆t − I)En+1/2 (7.7)

+
1

2
P−1(eP∆t − I)RBn

Jn+1 = Jint +
1

2
P−1(eP∆t − I)RBn+1 (7.8)

These equations can therefore be incorporated into the standard FDTD update

algorithm as follows (cf. Subsection 4.2.2):

1. Update J components from t = n∆t to intermediate value J int using Equa-

tion 7.7

2. Update B components from t = n∆t ⇒ (n+ 1) ∆t using Equations 3.20—

3.22

3. Update J components from intermediate value J int to t = (n+ 1) ∆t using

Equation 7.8

4. Send and receive B components using MPI

5. UpdateE components from t =
(
n+ 1

2

)
∆t⇒

(
n+ 3

2

)
∆t using Equations 3.23—

3.25

6. Apply current source term

7. Send and receive E components using MPI
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The numerical development described here was carried out during this PhD

project; however, its implementation into the code remains future work.

7.3.2 Warm plasma terms

The full O-X-B conversion process is of interest for future simulation work, with

applications to EBW heating and current drive as well as diagnostics. To simulate

Bernstein modes, a cold plasma model is not sufficient and warm terms must be

included. The approach used by Köhn et al. (2008) [49], in which a correction is

added to the dielectric tensor of a cold-plasma model, is limited to investigating

EBWs near the upper hybrid resonance since it relies on a low-order expansion [50].

To move away from this region, it would be necessary to expand terms of the hot

plasma dispersion relation to arbitrary order; it is not clear that it is possible to do

so in the case of an FDTD code.

An alternative approach may be necessary to allow Bernstein waves to propa-

gate into the core of the plasma. It is likely that a fully kinetic method such as a

particle-in-cell (PIC) code may be required; PIC codes have already seen success in

simulation of astrophysical B-X conversion [80] and have much promise for applica-

tion to fusion plasmas when used in conjunction with massively parallel computing.

7.3.3 Integration

The integration of the FDTD code EMIT-3D with another numerical method such

as ray/beam tracing could result in powerful optimisation and so the development

of a suite of complementary codes is a long-term goal for this project.

The two codes could operate together in order to divide up a single simulation

into the numerical work most appropriate for each. For example, a 3D beam tracing

code could track the trajectory of a Gaussian beam through underdense plasma,

in regions where gradients in refractive index are shallow enough for the WKB

approximation to be valid. When a cutoff is approached and full-wave treatment

becomes necessary, the wavevector k of each ray in the beam can be provided to the
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FDTD module and a matching condition applied. The simulation can then continue

using the more computationally expensive FDTD module.

For a discussion of this approach in the ICRF regime see Petrov et al. [81];

future application to simulations of EC waves is a promising area for development

of EMIT-3D.
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[81] Yu. Petrov, A. Bécoulet, and I. Monakhov. Phys. Plasmas, 7:911, 2000.

121


