The
University

® Sheffield.

Department of Computer Science

Labelling Dynamic XML Documents:
A GroupBased Approach

Submitted for the degree of Doctor of Philosophy

(PhD Thesis)

Alaa Abdulbasit Almelibari

March 2015
Supervisor: Dr Siobhan North

Abstract

Abstract

Documents that comply with the XML standard are characterised by inherent
ordering and their modelling usually takes the form of a tree. Nowadays,
applications generate massive amounts of XML data, which requires accurate and
efficient query-able XML database systems. XML querying depends on XML
labelling in much the same way as relational databases rely on indexes. Document
order and structural information are encoded by labelling schemes, thus
facilitating their use by queries without having to access the original XML
document. Dynamic XML data, data which changes, complicates the labelling
scheme. As demonstrated by much research efforts, it is difficult to allocate unique
labels to nodes in a dynamic XML tree so that all structural relationships between

the nodes are encoded by the labels.

Static XML documents are generally managed with labelling schemes that use
simple labels. By contrast, dynamic labelling schemes have extra labelling costs
and lower query performance to allow random updates irrespective of the
document update frequency. Given that static and dynamic XML documents are
often not clearly distinguished, a labelling scheme whose efficiency does not

depend on updating frequency would be useful.

The GroupBased labelling scheme proposed in this thesis is compatible with static
as well as dynamic XML documents. In particular, this scheme has a high
performance in processing dynamic XML data updates. What differentiates it from
other dynamic labelling schemes is its uniform behaviour irrespective of whether
the document is static or dynamic, ability to determine all structural relationships
between nodes, and the improved query performance in both types of document.
The advantages of the GroupBased scheme in comparison to earlier schemes are

highlighted by the experiment results.

Declaration

Declaration

[declare that the composition of this thesis and the work within are entirely my
own, apart from the specified exceptions. This work has not been put forward for

any other degree or professional qualification, except as stated.

Alaa Abdulbasit Almelibari

I1

Acknowledgements

Acknowledgements

First of all, I wish to praise God for endowing me with the perseverance and

dedication to bring this research to fruition.

Secondly, [wish to express my gratitude to my supervisor, Dr Siobhan North, who
not only offered me invaluable advice and assistance throughout this research, but
also supported me tirelessly. She is an exceptional supervisor and an extraordinary

person.

I am beyond grateful to my parents for their unconditional love, support,
encouragement and, most importantly, for having faith in me. I would not have
been able to overcome the many hurdles and complete this work without their
help and guidance and therefore I wish to dedicate my success to them. I am also
thankful to my siblings (Abdullah, Mohammed, Ammar and Arwa) for encouraging

me throughout my research. I love them more than words can say.

[am incredibly grateful to my husband (Hani) and our amazing little princess
(Danah) without whom I could have finished this work a whole year earlier!

You are the most beautiful things in my life and I feel blessed because of you both;
you have made me believe in myself. Thank you from the bottom of my heart for
giving me the motivation I needed to undertake this work, for being patient and
making sacrifices to ensure I had a positive study environment, and for inspiring

me to pursue my dreams and ambitions.

I am much obliged to the Saudi Government and Umm-Al-Qura University for
offering me the opportunity and funding I needed to undertake higher education

studies in the United Kingdom.

Finally, I am highly appreciative of all my friends in Sheffield for their help and

encouragement which gave me confidence to persevere with this research.

II

List of Figures

Fig. 1.1:
Fig. 1.2:
Fig. 1.3:
Fig. 2.1:
Fig. 2.2:
Fig. 2.3:
Fig. 2.4:
Fig. 2.5:

Fig. 2.6:

Fig. 3.1:
Fig. 3.2:
Fig. 3.3:
Fig. 3.4:
Fig. 3.5:
Fig. 3.6:
Fig. 3.7:
Fig. 3.8:

Fig. 3.9:

Fig. 4.1.1:
Fig. 4.1.2:

Fig. 4.2:

List of Figures

an example of XML documentceusmssssans

Representation of XML document in Fig.1.1.isnans

Research Process OnioN...eee.

Simple XML DOCUIMENT cururssursmsssmsesssssmssnssssssssnsssasasss

Order in XML EI@IMENTS wuuvcvvvsmrerserssssssarsssssssssassssssssssssssssssssssssssssssssssassssssssssassasssssssns

Order in XML Attributes

XML Tree for Document in Fig. 2.1 s

DTD for Document in Fig. 2.1 w.uvereseses

XML Schema for Document in Fig. 2.1 ..uuuu.

Dewey Labelling SCheme. . sssssssssssssssssasssssssssssssssssssssssaes

LSDX Labelling SCheme. . menssssmssssssssssssssssssssssssssssssssssassssssssssssssssssssssssssassassssss

ImprovedBinary Labelling Scheme............

Containment Labelling Scheme..........

Pre/Post Labelling Scheme.............

Order/Size Labelling Scheme

Insertion in Containment Labelling Scheme. ...

DDE Labelling Scheme (Initial Labelling).usssmssesssesssssssssssssssssssssssssssssssssssssssens

DDE Labelling Scheme (Handling Insertions)

GroupBased Scheme Initial Labelling

GroupBased Scheme Full Labels s ssssssssssssssssssssssass

GroupBased Scheme Leftmost Insertion

10

23

24

26

27

29

30

46

48

50

53

54

55

58

66

67

80

81

88

IV

List of Figures

Fig. 4.3:
Fig. 4.4:

Fig. 4.5:

Fig 4.6.1:

Fig 4.6.2:

Fig. 5.1:
Fig. 5.2:
Fig. 5.3.1:
Fig. 5.3.2:
Fig. 5.3.3:
Fig. 5.4:
Fig. 5.5:
Fig. 5.6.1:
Fig. 5.6.2:
Fig 5.7:
Fig. 5.8.1:
Fig. 5.8.2:

Fig. 5.9:

Fig. 5.10.1:
Fig. 5.10.2:
Fig. 5.11.1:
Fig. 5.11.2:
Fig. 5.12.1:

Fig. 5.12.2:

GroupBased Scheme Rightmost Insertion ..

GroupBased Scheme InsertBetween two nodes

GroupBased Scheme InsertBelow leaf NOde ..ccummsesmsesssmsssesssssnsssscanans

GroupBased Scheme Handling INSEIrtioNS wuueu s s s sse s sessesss nsassses snsssssnnsnns

GroupBased Scheme Full Labels after INSertions ... e s s s ssses srassses nnas

Implementation’s Design: an overview

General Pseudo cOde .
Flowchart of the initial labelling (GroupBased) schemecuuiasaas
Pseudo code of the initial labelling (GroupBased) schemeouusees
Pseudo code of the initial labelling (GroupBased) scheme
Flowchart & Pseudo code of the initial labelling (DDE) .uceeviseseesenes

Flowchart & Pseudo code of the search mechanism ...,

Flowchart of the leftmost insertion (GroupBased)

Pseudo code of the leftmost insertion (GroupBased) ..ssssmsessssses

Flowchart & Pseudo code of the leftmost insertion (DDE) ..ucussssssssssssessesees

Flowchart of the rightmost insertion (GroupBased)

Pseudo code of the rightmost insertion (GroupBased) ...couesssesesesens

Flowchart & Pseudo code of the right insertion (DDE) wuccesmnesesesesssssssesessseeas

Flowchart of the ‘lastDescendant’ method

Pseudo code of the ‘lastDescendant’ method

Flowchart of inserting between two nodes (GroupBased)cueesesseesensans

Pseudo code of inserting between two nodes (GroupBased) ..o ceeerssesesencas

Flowchart of inserting between two nodes (DDE) ..cueesesmsmsesesesnanns

Pseudo code of inserting between two nodes (DDE)

89

91

93

94

95

105

109

111

112

112

114

115

117

118

119

121

122

123

124

125

127

128

129

130

List of Figures

Fig. 5.13.1:

Fig. 5.13.2:

Fig. 5.14:

Fig. 5.15.1:

Fig. 5.15.2:

Fig. 6.1:

Fig. 7.1.1:
Fig. 7.1.2:
Fig. 7.1.3:
Fig. 7.2.1:
Fig. 7.2.2:
Fig. 7.3.1:
Fig. 7.3.2
Fig. 7.3.3:
Fig. 7.3.4:

Fig. 7.4.1:

Fig. 7.5.1:

Fig. 7.6.1:
Fig. 7.6.2:
Fig. 7.6.3:

Fig. 7.7.1:

Flowchart of inserting below a leaf node (GroupBased)ceusessssessserssenessannns
Pseudo code of inserting below a leaf node (GroupBased)euuusessesseeenns
Example of ‘isSimplified’ & ‘SImplify’ methods ...ummmsssssssssssssssessssnes

Flowchart of inserting below a leaf node (DDE) uuvsmsesssessssssssssssssessssssssssssssens

Pseudo code of inserting below a leaf node (DDE) ..ccuvssessssssssmscsssssssesssesssnsssnss

The Structure of XMach-1 Benchmark ...ccccenniemimmsnmsninniens

Initial Labelling Time (GroupBased) ...esessmsmsmsssmsssssssssmsssssssssssssssssssssssssssssens

Initial Labelling Time (DDE) .uussssssssmsssssssssssssssssssssssssssnsssasaeass
Initial Labelling Time (GroupBased vS DDE) ...ueussmsmssmsesssssssssssssssssssssssssssessssss

Initial Labels’ Size (GroupBased) & (DDE)

Initial Labels’ Size (GroupBased vS DDE) .iucsmssmsmmmsmssssssssssssssssssssssssssssssssssasasss
Initial Labelling Time (wide vs deep) XML tree StruCture ...ussesessssssssasssess

Initial Labels’ Size (wide vs deep) XML tree structure

Initial Labelling Time(wide vs deep) (GroupBased vs DDE) .coumusesessssssssenens
Initial Labels’ Size (wide vs deep) XML tree structure (GroupBased vs DDE)

The Boxplots and the p-value between DDE and the GroupBased Schemes
using XML files of size 0.5 and 1 MB for the initial labelling experiment

The Boxplots and the p-value between DDE and the GroupBased Schemes
using the dataset lineitem and xml13 for the initial labelling experiment

Determining Different Relationships (GroupBased)...ussssssmsessssssesesesssesssess

Determining Different Relationships (DDE)

Determining Different Relationships (GroupBased vS DDE) ...couevueesemssaennas

The Boxplots and the p-value between DDE and the GroupBased Schemes

132

133

134

136

136

149

169

169

170

171

171

172

173

173

174

175

176

177

177

178

179

VI

List of Figures

Fig. 7.8.1:

Fig. 7.8.2:

Fig. 7.8.3:

Fig. 7.9.1:

Fig. 7.10.1:

Fig. 7.10.2:

Fig. 7.10.3:

Fig. 7.11.1:

Fig. 7.12.1:

Fig. 7.12.2:

Fig. 7.13.1:

Fig. 7.14.1:

Fig. 7.14.2:

Fig. 7.15.1:

Fig. 7.16.1:
Fig. 7.16.2:

Fig. 7.16.3:

Fig. 7.17.1:

when identifying the Order between two nodes in a static XML document

Query Evaluation (GroupBased) .usmsssssssssmsssssmssssssssssssssssssssssssssssssssssssssasssssasss

Query Evaluation (DDE) wucsmmmmsssasses

Query Evaluation (GroupBased Vs DDE) wusmsmsmssssmsmsmssssssssssssssssssssssssssssssssess

The Boxplots and the p-value between DDE and the GroupBased Schemes
when evaluating the queries on static XML document (Q1)

Uniform Insertion Time (GroupBased)

Uniform Insertion Time (GroupBased VS DDE) ..ussmssssssssmsssssssssssssssssssssasanas

Uniform Insertion Labels’ Size (GroupBased vs DDE) w.cummmssmsmsmsmsssssssssssansns

The Boxplots and the p-value between DDE and the GroupBased Schemes
when performing the Uniform Insertion using XML file of size 0.5 MB

Ordered Skewed Insertion Time (GroupBased vs DDE) ..cusssmssmsssssssssssssnsnns

Ordered Skewed Insertion Labels’ Size (GroupBased vS DDE) ..uuissssssssesnanas

The Boxplots and the p-value between DDE and the GroupBased Schemes
when performing the Ordered Skewed Insertion (500 nodes were
1Y) o o)

Random Skewed Insertion Time (GroupBased vs DDE) .cuumsssmsmsmsssssesssesssess

Random Skewed Insertion Labels’ Size (GroupBased vS DDE) ..cocscsssesesenas

The Boxplots and the p-value between DDE and the GroupBased Schemes
when performing the Random Skewed Insertion (500 nodes were
L8 Y3 o Y) .

Relationships After Uniform INSertion ...uesssesssssssssscanans

Relationships After Ordered Skewed Insertion

Relationships After Random Skewed INSErtion ..cssmssssssssssssssssssssesssssssssssess

The Boxplots and the p-value between DDE and the GroupBased Schemes

180
181

181
182
183

184

186

187
188
188

189

190

190

191

192

193

194

195

195

196

197

VII

List of Figures

Fig. 7.18.1:

Fig. 7.19.1:

Fig. 7.20.1:

Fig. 7.20.2:

Fig. 7.20.3:

Fig. 7.21.1:

Fig. 8.1:
Fig. 8.2:
Fig. 8.3:

Fig. 8.4:

Fig. 8.5:

Fig. 8.6:

Fig. 8.7:

Fig. 8.8:

when identifying the Order between two nodes after the uniform insertion

The Boxplots and the p-value between DDE and the GroupBased Schemes
when identifying the Order between two nodes after ordered skewed
11013 o1 0) o R,

The Boxplots and the p-value between DDE and the GroupBased Schemes
when identifying the Order between two nodes after random skewed
L1017 (0) o

Query Evaluation on Dynamic Document (DDE) ...ccueseseses

Query Evaluation on Dynamic Document (GroupBased) .smsssssssssssssssssssssesns

Query Evaluation on Dynamic Document (GroupBased vS DDE) ..ucocssssacnanas

The Boxplots and the p-value between DDE and the GroupBased Schemes
when evaluating the queries on dynamic XML document (Q1) ...coveeesenessuenas

Labels’ Size before & after Insertions (GroupBased) .ussssmsssmsmsssssssssssssssanas
Labelling Time before & after Insertions (GroupBased)ccuessmsesssesssssasssssasans
Relationships before & after Insertions (GroupBased) .usssmsssssssssssssssssns

Query Evaluation before & after Insertions (GroupBased) .sssssssssssesesenas

Labels’ Size before & after Insertions (DDE) wuvsesmsssssmsssssssssssssssssssssssssssassses

Labelling Time before & after Insertions (DDE) wimssssssssmssssssssssssssssssssssesess

Relationships before & after Insertions (DDE)

Query Evaluation before & after Insertions (DDE) .

198

199

200
201

201
202

202
203

204

216

217

218

219
220

221

221

222

223
224

VIII

List of Tables

Table 2.1:

Table 4.1:

Table 4.2:

Table 6.1:

Table 6.2:

Table 6.3:

Table 7.1:

List of Tables

XPath AXIS wiuesssssssmsmssssssssssssssmsssssssssssssss s s ssssss s ssssssssssssss s snasas 32
GroupBased initial labels for XML tree in Fig 4.1. 1. 82
GroupBased labels after iINSEIrtioNS . sssassesenes 96
Some features of XML Benchmarks .o 150
Some features of XML real-datasets .umsmsssssssssssssssssssssssssssssssnss 156
Experimental QUETIES wimmmmssssmsmsssssssssssssssssssssssssssssssassssssssassssssssssssassssesnss 159
XML files used in the eXperiments .. 167

IX

Table Of Contents

Chapter 1: INtrodUuCtion ... sssssasassens 1
1.1 Introduction 1
1.2 Research MoOtivatioN. ... ssssssssasas 2

1.2.1 The Importance of XML Databases......uissssssssssssssssssssssssssssns 3
1.2.2 The Importance of XML Labelling......cconemienrernsenreeseeserssesseesessessessessssssssssesssesssssssssssanss 3
1.3 Research Methodology and Research Hypothesis 10
1.3.1 RESEATCH PIOCESS ..couteeeueeneereeureteeseeect et sssses s s s sssss s sessss st snsssaes 10
1.3.2 ReSearch PhilOSOPRY ...ttt ssss s s ssss s sessse s sasesnes 11
1.3.3 ReSearch APProach ... sssssssssssssssssssssssssssssssssssaes 12
1.3.4 RESEATCIH STrAtEEY ...ceeeueeureereeureieeseesees e ssesssssssssessse s ssse s assss st sessse st sesass b ssasssaes 13

NI TISI I U0 o L0 5 (0] @ V40) o VRSP 14
1.3.6 Data Collection Method ... ssss s ssssssssssss s ssssasessees 14
1.3.6.1 Formulating a Tentative Hypothesiscccouermeerseeennees ceeer e nn s 15
1.3.6.2 Observation and Patterns Identificationcoeseenseeenseeeeesseesssesssecssssesnns 15
1.3.6.3 Testing the HYPOthESIS ... rerrerresecessessssesssss s ssssessssssssssessees 15
1.3.6.4 DEVEIOP @ TREOTY oooererrermrermereressresssssessssesssssessssesssssssssss s s sssssesssssesssssesssssssssssssssssssssssssssseses 16

1.4 The Scope of the Research 16
1.5 Research Aims and Objectives 16
1.6 Structure of the ThesSiS .. ————————————— 18
1.7 Conclusion 20

Chapter 2: XML BacKground ... 21
2.1 Introduction 21
2.2 XML Overview 22
2.3 XML Syntax 24

2.3.T ELIEINENES coueeeeeeeeteeeeeasetseessesssesseesesssessesss s ssse s s s bbbt 24
2.3.2 ALLTIDULES cooveeeeeeecereeeeesses s sess et s s s s bbb s R s 24
2.3.4 OTAEIING e ceureeeeurereeserssesseessessssssessstssessesssbsses s base s bbb R e A s bbb s R Rt s bt 26
2.4 XML TTee STIUCLUTEocvuiemsmsmssesmssssmsssnssssssssssssnssesssssssmssssnnssssses 27
2.5 Document Type Definitions (DTDS).....cccmmmmmmmsmmmmmmmsmssssssssssssssssssssssssssas 28
2.6 XML Schema 29
2.7 XML Query Languages ... s sssases 31
2.7.1 XML Path Language (XPath).....cccreomineeieesseseisseseesssssssssessssssssssssssssssssssssssesssessssas 31
2.7.2 XML Query Language (XQUETY) ... ereereererseeusersessesssessssssessssssesssessssssesssssssssssssssssssasssssssses 33
2.7.2.1 FLWOR EXPIESSION .uucuieuiereeseesserssersesssesssssssssessesssssssesssssssssssssssssssssssssesssssssssssssssssssssssssssssssasssssssssssees 34

Table Of Contents

2.8 XML ParSiNG...ccscssusesesssasssssssssssssssssssssssss s ssssassssssssssssssas 36
2.8.1 Document Object Model (DOM).....ccreeureenreereenernsesseesessessessssssessssssssssssssssssssssessssssessssanes 36
2.8.2 Simple API fOr XML (SAX) cuveminessssisssns 37

2.9 XML Databases 38

2.10 CONCIUSION it R R RS 40

Chapter 3: Related Work on XML Labelling Schemes..........cccocucnnnnnssscsnsnsnssssnnnas 41

B0 I 001 0T LTt) 41

3.2 Labelling Schemes: An Overview 42

3.3 Common labelling schemes used for XML data 45
3.3.1 Prefix-based Labelling SChemMES ... ssessesseens 46

3.3.1.1 Structure and DeSCriptioneessssessssssssssssssssssssens 46
3.3.1.2 Strengths of Prefix-based Labelling Schemes.......cocneeeereeennrenne. 48
3.3.1.3 Weaknesses and Limitation. ..., 50
3.3.2 Interval-based Labelling SChEMES ... seesssessssssssssssees 52
3.3.2.1 Structure and DeSCription ... ceeneerseessmeesseessessssessssesssesssesens 52
3.3.2.2 Strengths of Interval-based Labelling Schemes........ccccueennrrennnn. 55
3.3.2.3 Weaknesses and Limitation......n: 56
3.3.3 Multiplication-based Labelling SChemes ... 59
3.3.3.1 Structure and DeSCriptioneeesnserssesssssssssssssssseens 59
3.3.3.2 Strengths of Multiplication-based Labelling SChemes..........cooeeeeenseeesmeeesneersssessenes 60
3.3.3.3 Weaknesses and Limitation. ... 60
3.3.4 Vector-based Labelling SChemes.........ciisnisssssssssssssssssssssssssssssnns 63
3.3.4.1 Structure and DeSCriptionoceeeneerseessmeeseerseessesesssessesssesens 63
3.3.4.2 Strengths of Vector-based Labelling Schemes........ccooeeereeennrenne. 63
3.3.4.3 Weaknesses and Limitation: ... 64
3.3.4.4 DDE Labelling SCHEIMESccuureererreerseesssresssssesssesesssesssssesssssessssessssssssssssssssssssssessssssssssssssssesssssenes 66
3.3.5 Summary of major labelling SCheMES.........crneereenreree et 68

3.4 Functional characteristics of ideal labelling schemes 69
3.4.1 Time needed to determine the different relationships.......ccooseerereenreneenreenecseennenn. 70
3.4.2 Queries’ performance before and after iNSErtions.......neneenseereenseseesseeseesseeseenns 71
3.4.3 Scheme’s ability to handle different types of iNSertion.........ccumeereeereeesseesseeseennens 72
3.4.4 New labelling scheme that is appropriate to support dynamic update.................. 73

3.5 SUMMAry of the review ... ———————— 74

3.6 CONCIUSION iR 75

Chapter 4: GroupBased Labelling Scheme for Dynamic XML Databases......... 77

XI

Table Of Contents

4.1 Introduction 77
4.2 An Overview of the Scheme 78
4.3 The Initial Labelling.....cccocvcinmsmninmsnsmnisssssssssssssssssss s ssssssssssssssssssssssssssnss 79
4.3.1 The SChemeE’S PrOPEItIEScvcueeieecereerereessesseesse st s ssessssssssss s st ssssss s ssssssssans 83
4.4 Handling INSEItiONS ... ssssssssssssssssss s sssssssssssssssssssssssssssss 88
4.4.1 The Scheme’s Properties after INSErtions: ... 97
4.5 Validating the Scheme’s Properties ... 100
4.6 Conclusion 103
Chapter 5: Design and Implementation........mmmn. 104
5.1 Introduction 104
5.2 Overview 105
5.3 Initial Labelling 110
5.3.1 The GroupBased Labelling SCheme:........coouenreneenneeneeseeneciseesesessesseessessessssssseseeans 110
5.3.2 DDE Labelling SCHEIME ...t seesssesssesssesssssssesssesssesssessssssssssssssssssssssssees 113
5.4 Search MechaniSm......um————————————————— 114
5.5 Performing INSertions......mmmmsssssssssssssssssss s ssssssssssssssssss 115
5.6 Determining Different Relationships ... 136
5161 LBVEL ettt ettt s ss s s s s R R 136
I IAN U oT=3 W 1= o TP 137
5.6.3 Ancestor/Descendant Relationship (AD)ocoeoenermeeneeseensceneennessesssesesssesssessssessseenns 138
5.6.4 Parent/Child Relationship (PC) ..ceermeereeseeesseesseseesseesssessessseessessssssssssssssssssesaees 138
5.6.5 Computing the Lowest Common Ancestor (LCA) ... eneneenneeseeneeseessereseseenne 139
5.7 Conclusion 139
Chapter 6: Experimental FrameworK....... s 140
6.1 Introduction 140
6.2 The Experimental Setup and the Implementation Platform 140
6.3 An overview of the experimental framework 141
6.3.1 Objectives of the EXPerimMents... ... ceieeneeseeseessesesses s sssesssssss s sssssssssssssesans 144
6.4 The Experimental Evaluation Criteria ... 145
6.5 A Review of Existing XML Datasets......ccmmmmssssssssssssssssaes 146
6.5.1 XML BENCHIMATKSouitrieerieeeetect ettt ssses s s ssss st ssssse st s s ssssssssssesans 146
6.5.2 Reql-Life XML DataSeLsc.errersmeesseesseessesssessssessssssesssesssasssesssssssssssssssssssssssssssssssssssssesens 152
6.5.3 The Experimental Datasets.....ocreneuneiseessessesssessessssssssssssssssssssssesssssssssssssssssssans 157
6.5.4 The XMark BeNChMArK...... e sesssessssssssssssssssssssssssssssseens 157

XII

Table Of Contents

6.6 The Objectives of the Experimental QuUeries.......ummmsssssssss 159
Chapter 7: Results and ANalySis ... 162
7% 0 001 0T L1 ot) P, 162
7.2 Statistical significance of the results 163
7.2.1 Overview of Statistical Significance TESTSccurenreneenreensemernseseesses s seesseeeseseenne 164
7.2.2 Significance interpretation Of FESULLS ... ssseesseesseeens 166
7.3 Experimental Data 166
7.4 Static Document Experiments 168
7.4.1 Initial Labelling EXPeriMent. ... creeeeseesssessnesssessssessessssssssssssssssessssssssssssssssesssssens 168
7.4.1.1 ReSUILS’ ANALYSIS ocoureeeeerrernerseerssesseesseessssssssesssesssssssssssssessssssssssssssssssssssssans 168
7.4.1.2 Statistical Interpretation of the RESUILSceieneisisesssssssssesssssssssssssssssssssssssses 174
7.4.2 Determining Different Relationships....cceeneennenecnseenneeseeeeseessessessseesseseseeens 176
7.4.2.1 ReSUILS’ ANALYSIS ocoureeeeeerrernerseesssesseessesssssssssesssssssssssssssssessssssssssssssssssssssssans 177
7.4.2.2 Statistical Interpretation of the RESUILScemeinennneinsiisesssssessssssssssssssssssssssssssssns 178
7.4.3 QUETY PerfOrmManCe ... ssssssssssssssssssssssssssssssssans 179
7.4.3.1 ReSULLS’ ANALYSIS .uueveurerrreersrerssserssesersesesssessssesssssesssssssssssessssesssssssssssssssssess 179
7.4.3.2 Statistical Interpretation of the RESUILSceinenneinmsesesnssssssesssssssssssssssssssssssssns 184

7.5 Dynamic Document Experiments 185
7.5.1 Handling INSEITIONS c..ceieeeeerersseesseesseesesessesssesssessssessesssesssesssssssssssssssssssssssssssssssssssssasssesens 186
7.5.2 Determining Different RelationShips.....ccoeneneenseeneenneeneesessessessesseessesssssesssssseenns 194
7.5.2.1 ReSUIS’ ANALYSIS .cuvvrrenrernerssnessmsessens 195
7.5.2.2 Statistical Interpretation of the RESUILSoereenneenecreeseeeseeseeseeeseesseessesssesesseesaseeens 196
7.5.2.2.1 Different relationships after Uniform insertion.........eneeen. 196
7.5.2.2.2 Different relationships after Ordered insertion..........e.. 197
7.5.2.2.3 Different relationships after Random insertion...........eeen. 198

7.5.3 QUETY PerfOrmanCE. ..ottt seesse s ssss s ssssssss s st sessss s sassb s sssans 200
7.5.3.1 ReSULLS’ ANALYSIS ..oeeeurererermsererssssesssesesssesesssesssssssssseesssssssssssssssessssssssssssssssseess 200
7.5.3.2 Statistical Interpretation of the RESUILSoeereeineeseerseeseeeseseseeseeeseesseesssessssssssssssseeens 203

7.6 CONCIUSION i 204
Chapter 8: Evaluationcccmmmmmsmssmmssassssssssns 206
£ 20010001 0T Lot) . 206
8.2 Threats to the eXperiments......uu——————————————— 207
8.2.1 Presenting equal computer tasks to pairs of experimentsooeneeneereecseennes 208
8.2.2 Test-retest reliability ... 209
8.3 Evaluation of the Experiments 211

XIII

Table Of Contents

8.3.1 Evaluation of the Initial Labelling EXperiment.........oeeeneensernnesseesseeeseeens 211
8.3.2 Evaluation of Relationships EXPeriment. ... eneeenseeneeneensesseessseseesesseessessesssesnns 212
8.3.3 Evaluation of the Queries EXPeriment...... s 213
8.3.4 Evaluation of Handling Insertions EXperiment.........eeenseeseesnesseessesseseseenns 214
8.4 The Schemes’ Self-Comparisons 215
8.4.1 The GroupBased Schemes’ Self-CompPariSOnS.....ssssssns 216
8.4.2 DDE Scheme’s Self-COmMPariSONS. ...corueureeueeseessessesssessesssessssssessssssssssessesssssssssssssssssesans 220
8.5 The Proposed Scheme: General Evaluation 224
8.5.1 The Main Experimental FINdiNgScornnenreenscneenseseiseesseseiseessessss s ssessssssssssesans 227
8.6 The Consequences of Some Practical Decisions 229
8.7 Experimental Limitations 231
8.8 Conclusion 232
Chapter 9: CONCIUSION ... nsass 233
9.1 Introduction 233
9.2 Thesis Summary 233
9.3 Research’s Main Contributions 236
9.4 How the Hypothesis is supported by the Qutcomes...........ccuvmnmnmnmsnsssssssssnsssesenes 236
9.5 Further Research Developments and Future Directions ..., 237
0.6 FINAILY ..ocovinsiseieisisisssssmsssmnsnsssasas s s sesssssssssssssasasassnsssnsssnaes 238
23 () o) 4 Lol T 239
Appendix A: Full BoX PlOts.......ccummmmmsssasasssasass 262
a.1 Initial Labelling Experiments: 262
a.2 Determining Different Relationships on Static XML:ccovvinmmmnmnmsmsssssssnsissenens 266
a.3 Queries 0N Static XML:......ccuuummsemsmmssssmsmsssssmsmsssssssmsssssssssssssssssssssssssasssssssssssssssasssssssnssssassns 268
2.4 Uniform INSertions: ... s sssssssss s ssssssssssssss 275
a.5 Ordered-Skewed Insertions: 278
a.6 Random-Skewed Insertions: 281
a.7 Relationships after Uniform-Insertions: ... 283
a.8 Relationships after Ordered-Skewed Insertions: 285
a.9 Relationships after Random-Skewed Insertions: 286
a.10 Queries on Dynamic XML: 288

XIV

Chapter 1: Introduction

Chapter 1: Introduction

1.1 Introduction

It has become increasingly important to manage web-based information to keep
up with the accelerated pace of the expansion of the Internet. This necessity has
promoted the development of XML, which has become the norm for data exchange
on the Web (Abiteboul et al, 2000, Assefa and Ergenc, 2012, Champion, 2001,
Chang et al, 2012, Choi et al.,, 2014, Davis et al., 2003, Deng et al., 2013, Harder and
Mathis, 2010, Jonge, 2008, Luo et al, 2009, Ogbuji, 2004, Tatarinov et al, 2002,
Thimma et al., 2013, Tidwell, 2002, Vakali et al., 2005, W3schools, 2013d, Xu et al,
2012, Zhuang and Feng, 2012). This has resulted in extensive study of XML
databases and associated technologies, with an emphasis on data storage, access,

retrieval and updating.

The XML labelling scheme is the key to managing XML data competently and
rigorously. XML labelling basically means the act of assigning labels or
identification nomenclature to nodes in XML trees (Bosak and Bray, 1999).
Labelling gives each node a unique identification, it ensures that it is to establish
the relationship that exists between any two nodes in an XML tree. At first, the
concern of most studies of XML was navigating and retrieving data in static
documents, which do not require node labels to have wide-ranging functionality.
This is because, well formed XML documents were not considered to require any
externally aided approach such as labelling to make them identifiable (Chung et al,
2002, Jiang et al.,, 2011, Kaushik et al, 2002a). Because the XML documents were
considered well formed, they were thought to have the ability to be read and
understood by the use of the XML parsers without node labels (Kaushik et al,
2002b, Li and Ling, 2005b, Tatarinov et al., 2002, Wan and Liu, 2008, Wang and
Meng, 2005, Zhang et al., 2001).

Chapter 1: Introduction

Nowadays XML is not static, documents change. It is important that dynamic XML
documents are managed effectively as the majority of well-developed and popular
database products now incorporate XML processing. In the context of dynamic and
complex XML documents, labelling becomes essential to aid query processing.
Query processing refers to the ability of data retrieval, update, delete and

manipulate.

Numerous researchers (Amagasa et al., 2003, Cohen et al., 2010, Eda et al., 2005, Li
and Ling, 20054, Li and Ling, 2005b, Li et al, 2006a, O'Neil et al., 2004, Wu et al,
2004, Xu et al., 2009) have put forward dynamic schemes, but none of these is
entirely satisfactory, thus warranting further exploration. In response, this thesis
has created a new dynamic labelling scheme entitled ‘GroupBased’, which is
primarily geared towards enhancing the performance of both dynamic and static

XML documents.

The current chapter presents the research motivation in Section 1.2, the research
methodology and hypothesis in Section 1.3, and the scope of the research is
described in Section 1.4. The research aims and objectives are outlined in Section
1.5. Moreover, the chapter provides an overview of the structure of the thesis in

Section 1.6 before ending with a conclusion in Section 1.7.

1.2 Research Motivation

Overall, this thesis seeks to propose a labelling scheme that supports the effective
management of dynamic XML trees. To underscore this motivation, the
significance of XML databases and of labelling schemes is discussed in Sections

1.2.1 and 1.2.2 respectively.

Chapter 1: Introduction

1.2.1 The Importance of XML Databases

Data storage, transfer and management are the main functions of XML. As argued
by several researchers (Abiteboul et al., 2000, Champion, 2001, Connolly and Begg,
2005, Tidwell, 2002, W3schools, 2013d), XML is advantageous not only because it
can be read by people and machines alike, but also because of its flexibility,
simplicity and self-definition. Recently, XML'’s properties of standardisation, and
especially its flexibility, have been applied in many contexts, among others, in data
mapping, cardinality variations, optional or non-existing structures, have become
the catalysts for drawing complex write/read applications, allowing non-uniform
data stores, as well as promoting the fusion of data (Abiteboul et al., 2000, Assefa
and Ergenc, 2012, Champion, 2001, Choi and Wong, 2014, Chung et al., 2002, Deng
et al, 2013, Harder et al, 2007, Jonge, 2008, Liu et al., 2013, Luo et al, 2009,
Noaman and Al Mansour, 2012, Tatarinov et al.,, 2002, Thimma et al.,, 2013, Tidwell,
2002, Vakali et al, 2005, W3schools, 2013d, Xu et al, 2009, Zhuang and Feng,
2012).

In most industries, business models employ large and constantly developing sets
of barely populated attributes (Cunningham, 2006, Duong and Zhang, 2005).
Increasingly, firms have come to rely on XML, even going so far as to establish
corporations (Bosak and Bray, 1999, Gou and Chirkova, 2007) to create XML
schemas compatible with their data modelling requirements. Since many
applications demand data flexibility, it is no surprise that XML databases are used
with growing frequency not only in collaborative contexts, but also in competitive
ones (Loeser et al, 2009). The increasing popularity of XML databases has

intensified investigations focusing on enhancing their performance.

1.2.2 The Importance of XML Labelling

Large volumes of data are managed directly in XML data format. The current XML

technology is however facing many challenges due to the particularities of data

Chapter 1: Introduction

management in concrete applications (Abiteboul et al, 2000, Bouganim et al,
2004). The issues can be generalised as the need for handling data that is
imprecise and uncertain, through application of fuzzy logic, probability and even

soft computing (Ma and Yan, 2010).

Increased volumes of data handled by XML document has necessitated the
development of XML databases. This is due to the need to manage XML documents
since nowadays many applications are using it to store their configurations and
data. Such applications include Microsoft Office and Open Office (Barbosa and
Bonifati, 2007).

The XML tree structure basically refers to the unique nature in which the XML
document is arranged to form a tree which starts at the root, having branches and
developing further on to form leaves (Abiteboul et al, 2000, Darugar, 2000, Harold
et al, 2004, Ray, 2003, W3schools, 2013k). The XML tree is underpinned by the
interconnection of nodes and specific edges. In a typical XML document such as the

one given in Figure 1.1, the correspondening XML tree is shown in Figure 1.2.

<?xml version="1.0" encoding="UTF-8"?>
<menu>

<drinks>

<hot-drinks>
<coffee> </ coffee >
<tea> </ tea >

</ hot-drinks >

<cold-drinks>
<soft-drink> </ soft-drink >
<juice> </ juice>

</ cold-drinks >

</drinks>

<food>

<rice> </rice>
<chips> </chips>
</food>

</menu>

Figure 1.1: an example of XML document

Chapter 1: Introduction

menu /
food |
/ drinks /\ / \
hot-drink cold-drink rice chips)
coffee soft- ice)
J tea drink Ju ¥

Figure 1.2: Representation of XML document in Fig.1.1

The root element, acting as ‘parent’ for the other elements, is the starting point of

the tree which is node ‘menu’ in Figure 1.2.

Various relationships and family orientations can be identified within an XML tree.
The first of these is the parent/child relationship, which can be identified between
a node and any immediate node resulting from it (Wu, Lee & Hsu, 2008). Using
Figure 1.2, it can be said that node ‘drinks’ and node ‘hot-drinks’ form a
parent/child relationship. Another relationship is sibling, which exists between
nodes that share the same parent node (Cunningham, 2006); such as node ‘drinks’
and node ‘food’ in Figure 1.2. Writing on the ancestor/descendant relationship,
Yun and Chung (Yun and Chung) explained that any child that a parent has forms a
descendant of the parent. By extension, all children and their siblings are
descendants of the parent. Zhang et al. (Zhang et al.) also added that it does not
really matter how far down the family tree is, all children of children remain the
descendants of the parent. From the XML tree in Figure 1.2 therefore, it can be said
that ‘hot-drink’ is a descendant of ‘menu’. Using all the explanations given here,

any element that comes above another in the family tree is an ancestor. This means

Chapter 1: Introduction

that the node is ancestor to all its descendants; from Figure 2.1, ‘drinks’ is an

ancestor to ‘hot-drink’, ‘cold-drink’ and all their children nodes.

The tree structure limits the storage capacity of the XML document. As a result,
pointers in the trees occupy most of the storage space. However, a solution to this
is to avoid the storage of pointers, and instead, store the tree as a sequence in a
link list, and to make use of layers by using them to store the content of every node

(Shen etal, 2010).

In XML, the document order is significant and affects the data that is returned by
queries. However, in relational databases, the data is stored in tables with rows
and columns. The order of the rows in relational data does not give a clue to the
ordering of the data (Hunter et al., 2007). As a result, the main reason why XML
databases have been so slow to take off could be attributed to the fact that the
storage of XML documents on file systems works extremely well (Shen et al,

2010).

To cater for the increasing importance in XML data management, XML labelling
schemes were invented and much research has been done to develop more
efficient labelling schemes. XML labelling schemes refer to tools, which are
basically used to assign unique labels to the nodes in the tree such that constant
time is taken in the determination of the relationship between two nodes from the
labels. A good labelling scheme is, therefore, measured by how well it determines
the relationship between XML elements and how it quickly offers access to the
desired data (i.e. provide better query performance) (Haustein and Harder, 2007,

Min et al., 2009).

The performance of a query in any database depends on the data being indexed
and in XML the indexing process is based on the labelling schemes (Johnson et al,
2012). Thus, XML querying depends on XML labelling in much the same way that
relational databases rely on indexes. Labelling schemes permit the identification of

structural relationships between elements and attributes (e.g. parent-child,

Chapter 1: Introduction

ancestor-descendant, and document order) based on comparison to their labels. As
specified in (Sans and Laurent, 2008), at present there are two major categories of
labelling scheme: namely, interval-based schemes and prefix-based (Dewey)
schemes. The Ilabelling method of interval-based schemes involves the
representation of identifiers as intervals. To establish the connection between two

specific nodes, it uses the associated containment information.

In general, the interval-based scheme offers limited information, particularly with
regard to the lowest common ancestor (LCA) of a series of nodes. The prefix-based
scheme employs a depth-first tree traversal to achieve the direct encoding of the
father of a node in a tree as a prefix of its label. Structural relationships can be
successfully identified with the prefix-based scheme. In addition, this labelling
technique is the preferred option for the query processing of XML keywords (Gou
and Chirkova, 2007, Sun et al., 2007, Xu and Papakonstantinou, 2005) that use LCA
assessments due to the fact that the labels in the scheme encompass path

information. This is discussed further in Chapter 3.

There has been a surge in the need for XML updates thanks to the growing
preference for XML as a data exchange format. A labelling scheme supporting
solely static XML queries is not enough for XML to become a general standard for
data representation and exchange; a labelling scheme that effectively supports
dynamic XML trees is also necessary. A dynamic document is one that is
continually edited and updated. It may or not have a framework for making these
changes. This type of document though, without the proper contextualization can
change the content of the document to something very different from the original
document. A static document on the other hand does not allow changes to be made
(Behrends, 2007). It is written in advance anticipating a particular process. XQuery
usually in the form of XML is a functional programming language as well as a query
designed to query and change both structured and unstructured data for other
data formats (Groppe, 2008). It enables data transfer from virtual or real
documents in the wide world web to or from databases providing an interaction

that is much needed. A static XML query is concerned with the retrieval of

Chapter 1: Introduction

information and updating the node contents. It does not involve any other changes
to the structure of the document (Olteanu, 2005). A dynamic XML query not only
retrieves information and updates the content of the document in question; it also
inserts new nodes or deletes existing nodes or both often resulting in a change in

the document structure.

However, dynamic queries are problematic and difficult to handle because they
require the updating of the labels of many nodes simultaneously with the updating
of the original XML document to preserve the efficiency of the labelling scheme.
This issue has been addressed by a number of researchers (Amagasa et al., 2003,
Cohenetal, 2010, Eda et al, 2005, Gou and Chirkova, 2007, Li and Ling, 2005a, Li
and Ling, 2005b, Li et al, 2006a, O'Neil et al.,, 2004, Sun et al, 2007, Wu et al., 2004,
Xu etal., 2009).

To prevent re-labelling, earlier researchers left gaps between labels. Drawing on
the Dewey labelling scheme, O’'Neil et al. (2004) developed the ORDPATH labelling
scheme. For initial labelling, this scheme employs positive, odd integers, while for
subsequent ‘careting-in’ insertions it uses negative integers. Due to the gaps left,
however, ORDPATH is insufficiently compact and, moreover, the label insertions
are made more complicated by the ‘careting-in’ mechanism. Eliminating initial
label gaps, Li et al. (2006a) designed a new labelling scheme for processing
updates in XML documents by modifying the labels to be more compact and

enhanced update efficiency.

The downside of converting labels into dynamic formats is that it enhances the
complexity of updating and querying. Xu et al. (2009) aimed to increase the
encoding performance even more by developing two new labelling schemes for
dynamic XML trees on the basis of mathematical operations on Dewey elements.
Although the performance of the labelling schemes during the updating of XML
documents has improved, their labels continue to lack compactness, producing
additional storage cost. Furthermore, data querying is time-consuming and the

frequent insertion of nodes between two sequential siblings can diminish the

Chapter 1: Introduction

performance of the two labelling schemes. Thus, the capability of XML database

management depends on efficient dynamic labelling.

Generally, labelling schemes need to be dynamic such that they can update XML
data dynamically and avoid re-labelling or even recalculating of the value of the
existing labels (Tian and Georganas, 2002). Efficient schemes have to avoid
completely re-labelling in XML updates (Mirabi et al., 2010). They should also be
compact, meaning the length of the labels ought to be as small as possible. Finally,
they need to facilitate the identification of various relationships existing between

the nodes, to be effective (Duong and Zhang, 2008).

All these aspects will be discussed in more details in the next chapters.

Chapter 1: Introduction

1.3 Research Methodology and Research Hypothesis

1.3.1 Research Process

The research’s methodology was directly influenced by the research process onion
developed by Saunders et al (Collis et al). This research process comprises five
major modalities that influence the overall methodology to the research. These five
major modalities are research philosophy, research approach, research strategy,
time horizons, and data collection methods. The methods followed in the usage of
the research process onion have been summarised in the diagram below and

subsequently explained in detail.

Research
philosophy

Research
approach

Research
strategy

Time horizon

Data collection

Figure 1.3: Research Process Onion (Adopted from Saunders et al. (2003))

10

Chapter 1: Introduction

1.3.2 Research Philosophy

The research philosophy basically explains how available knowledge influences
the research and how the research seeks to develop new lines of knowledge
(Diriwachter and Valsiner, 2006). Saunders et al.(2003) therefore posited that the
research philosophy shows the researcher’s overall perception of the way
knowledge is constructed. To use and construct knowledge for any research of this
nature, three major types of research philosophies may be selected. These are
positivism, realism and interpretivism (Remenyi, 1998). The current research
made use of the positivism research philosophy. The positivism research
philosophy has been explained as an approach to knowledge where the researcher
uses scientific reasoning and law-like generalisations in the knowledge
construction process (Adams, 2011). This means that using positivism required
the research to be based on scientific processes that are generally empirical and
evidence based. Thus, this thesis shows how the GroupBased scheme could
improve XML labelling (Alstrup and Rauhe, 2002). It was also important to make
use of law-like generalisations which could be interpreted in the form of

hypotheses that could easily be tested for their validity.

In keeping with the research motivation explained above, the hypothesis that this
research seeks to assess is:

Applying a second layer of labels and grouping the nodes based on the parent-
child relationship may facilitate node insertions in dynamic XML data in an
efficient way, offering inexpensive labels without excessive label size growth
rate in which it is easy to maintain structural relationships, as well as

improved query performance.

The rationale that influenced the selection and use of positivism was the need to
ensuring that the findings that resulted from the study could easily be assessed by
other for validity and authenticity. This is because Green, Johnson and Adams
(Green et al) saw the positivism research philosophy as a very transparent

structure that enhances the replication of findings from the study. Because of the

11

Chapter 1: Introduction

scientific reasoning and law-like generalisations, it is always possible that the
researcher’s reasons for drawing conclusions based on the hypothesis can be

tested.

1.3.3 Research Approach

The research approach generally describes the means by which the researcher will
go about the implementation of the research philosophy. In the current context,
the research approach was to establish way the researcher must test the
hypothesis set as part of the positivism research philosophy. In research practice,
two major research approaches are known; deductive and inductive. Given (2008)
explained that the deductive research approach is highly suitable for scientific
research as it ensures that the researcher develops a hypothesis and
systematically tests it in establishing a theory. This means that for a deductive
approach to be used effectively, the researcher must approach data collection from
the known to the unknown. This is because the hypothesis is based on what the
researcher already knows from a preliminary data collection exercises (Hart,
2008). Based on the hypothesis, the researcher then establishes a theory that is not
known or is relatively new in the field of study. Given the fact that the research
used the positivism research philosophy which makes the study scientific research,
the deductive approach became the main approach that underlined the

performance of the research.

Throughout this research, the above hypothesis is tested based on the deductive
research approach which originates from a specific case and proceeds to derive
generalizations and theories (Jebreen, 2012, Meheus and Nickles, 2009). In
deductive research, the propositions made in the beginning in the study only
support the truth of the conclusion but do not guarantee it. As such, a deductive
researcher conducts the study cognizant that the conclusion might not be true. A
deductive proposition helps the researcher to derive universal theories or
statements. Strong deductive propositions increase the probability of the
conclusion being true but they do not confirm that truth (Khan and Ullah, 2010).

Deductive reasoning is chosen because it takes into account the impact of

12

Chapter 1: Introduction

researcher bias on the outcome of the study (Sans and Laurent, 2008). This is
important because different researchers will have different notions and
orientations on a given subject, such as in various labelling schemes that cope with
dynamic XML documents from different perspectives, and this affects the outcome
of studying such a subject (HAMMAWA and SAMPSON, 2011, Stadler, 2004). The
fact that deductive research helps in developing a solution to a specific problem is
another reason why it is an appropriate approach to use in this research (Khan and
Ullah, 2010, Lorenz et al, 2013); as it can also be used to generate

recommendations on how to improve various techniques.

Inductive research was however not excluded entirely from the research.
Saunders, Lewis and Thornhill (2003) explained an inductive research approach as
one in which the researcher formulates the research theory through the critical
evaluation of available research variables. This means that instead of using a
hypothesis as the main route to forming conclusions and theories, the researcher
in an inductive study modifies various research variables based on accumulated
findings (Cooper, 2008). Aspects of an inductive approach were also used in the
study even though they did not form the main basis on which conclusions were
drawn. For example knowledge of what has already been studied on XML labelling
schemes in literature was used to set themes or research variables. The review of
literature did not become the main basis for drawing conclusions but served as a
guide for discussing the researcher’s own findings gathered through the deductive
approach. In effect, both inductive and deductive approaches were used but with
major emphasis and focus on deductive approach so as to maintain the scientific

nature of the study.

1.3.4 Research Strategy

The research strategy gives the underling approach used by the researcher in
collecting data (Hunter and Leahey, 2008). In this, as many as six possible research
strategies are recommended by Saunders et al (2003). Of these, experiment was
selected as the most appropriate for this research. The major rationale for

selecting experiment is due to its direct relationships with the positivism research

13

Chapter 1: Introduction

philosophy. It should be noted that the positivism research philosophy is
appropriate for a scientific study (Robson, 2011). Meanwhile, when used as a
research strategy, an experiment requires the researcher to engage in the
systematic manipulation of controlled testing with the aim of understanding a
causal process (Kasim et al.). The aim with which experiment is used as research
strategy is to ensure that the researcher can manipulate variables and controls
with the aim of measuring any changes that may occur in the variables
(Moghaddam and Moballeghi, 2008). In the context of the current study, the
researcher was concerned with understanding the behaviours of the GroupBased
scheme as a means of improving XML labelling by providing a scheme that deals
with insertions without having to re-label or sacrificing the queries’ performance,
construction time and memory usage. This means that the GroupBased scheme
was the independent variable based on which dependent variables including query

performance, construction time and memory usage were all tested.

1.3.5 Time Horizon

The time horizon basically shows the duration or period within which the
phenomena or variables of the study are experimented on (Sapsford and Jupp,
2006). In the literature, two major time horizons were identified longitudinal time
horizon and cross-sectional time. The longitudinal time horizon examines a
situation or phenomenon over a given period of time, wherease the cross-sectional
time horizon focuses on a particular moment (Dellinger and Leech, 2007). A cross-
sectional time horizon was used on this study as design and implementation was
developed purposely for the research. These design and implementation
specifications ensured that the performance of GroupBased scheme was tested
over a very specific time frame to discover the impact of re-labelling on queries’

performance, construction time and memory usage.

1.3.6 Data Collection Method

The overall data collection method used was observations. Observation has been
described as a systematic collection of data from a research setting or an

experiment through visual interpretation of findings (Creswell, 2007). To use

14

Chapter 1: Introduction

observation as part of the positivism research philosophy where a hypothesis was
developed and gradually tested, a number of processes were followed. These

processes have been discussed below.
1.3.6.1 Formulating a Tentative Hypothesis

Based on the observations and the patterns identified, a tentative hypothesis is
formulated. In this thesis, after analysing the existing XML labelling schemes (see
Chapter 3) and providing explanations for the patterns and problems detected, a
more general theory was formulated and the research hypothesis (in Section 1.3)
was suggested. As a result, a new labelling scheme called ‘GroupBased’ is proposed
(see Chapter 4) that may have the potential to improve the performance of current

XML labelling schemes was proposed.

1.3.6.2 Observation and Patterns Identification

The first phase of the deductive approach begins by collecting data that is related
to the research area and observes them to highlight any patterns or meaning that
can be extracted from them in order to identify the problem under study. In this
thesis, the research problems emerged from a critical investigation of the existing
XML labelling schemes (see Chapter 3), which results in determining the research

aims and objectives.
1.3.6.3 Testing the Hypothesis

In the third phase of the deductive approach the hypothesis is subjected to tests to
see whether it is verifiable. This thesis relies on the testing and assessment of an
empirical implementation to explore the research hypothesis (see Chapters 5 and
6). This process comprises a number of aspects, including appraisal of the original
labelling time and size to determine the extent to which the suggested scheme can
be applied in both static and dynamic XML documents; measurement of the length
of time necessary for the identification of structural relationships prior to and
following insertions; the impact of various types of insertion on the scheme with
regard to the size of the labels and time measurements; and the response time for

queries prior to and following insertions (see Chapter 7).

15

Chapter 1: Introduction

1.3.6.4 Develop a Theory

Evaluating the experiments that used to test the hypothesis and their results (see
Chapter 8) should help in generalising a theory and determining the main
contributions and limitations of this research (see Chapter 9). Obtaining
persistent results after several tests would mean that the hypothesis is supported.
Inconsistent results would mean that the hypothesis needs to be changed or
rejected. However, in the end a general theory or statement ought to be defined

that can help explain similar cases (Li et al., 2014, Weinstein, 2010).

1.4 The Scope of the Research

The aim of this thesis is to propose a new XML labelling scheme that may provide
better performance in managing dynamic XML data. To test the performance of the
scheme, several factors have been analysed, including labelling time, label size,
query response time, and managing updates. [t must be noted here that the queries
in this context refer to those determining the structural relationships between
nodes, node access and information retrieval. Furthermore, updates signify that
new nodes are inserted, as opposed to mere modification of current node content.
However, the scope of this thesis does not extend to XML document parsing and
storage mechanisms; i.e. the thesis does not address how the XML document are

parsed and how the labels and the data associated with them are stored.

1.5 Research Aims and Objectives

Taking into account the limitations of current labelling schemes (Section 1.2.2) and
the research hypothesis (Section 1.3), the following five research objectives were

intended to be accomplished by the proposed scheme:

e Compatibility with static as well as dynamic XML documents

There are strengths and weaknesses to both dynamic and static labelling

schemes. In cases where XML documents require regular updating, dynamic

16

Chapter 1: Introduction

labelling schemes are normally used as the static ones are less efficient due
to the number of nodes that have to be re-labelled. Static labelling schemes
are usually employed in XML documents that require sporadic or no
updating, as dynamic schemes would generate additional encoding cost and
make querying less efficient. Therefore, to improve performance, the
selection of either static or dynamic schemes should theoretically be made
based on the update frequency of the XML documents. However, things are
not as straightforward in reality due to the fact that the updating frequency
exhibits time-dependent variations; thus making the distinction between
static and dynamic XML documents less clear. This increases the difficulty
of choosing between a static and a dynamic scheme, the outcome being
often different from the initial plan. These issues highlight the importance
of creating a labelling scheme that can be applied to static as well as

dynamic XML documents.

Efficient identification of all structural relationships

Documents to which the XML standard applies follow an inherent order and
their modelling takes the form of a tree. Document order and structural
information are encoded by labelling schemes to facilitate their exploitation
by queries. The encoding of document order is imperative, but a certain
variation is permitted in the quantity of structural information the labels
contain. To give an example, prefix-based labelling schemes enable the
extraction of sibling relationships, but range-based labelling schemes do

not.

Cost-efficiency with regard to labelling time and size

Time: It is essential that the creation and allocation of labels are time-

effective, as otherwise both static and dynamic documents would have

lower performance.

17

Chapter 1: Introduction

Size: This is a key factor underpinning query and updating performance,

but it is beyond the scope of this research.

e Avoidance of re-labelling and preserving the label quality when

processing insertions

Using a persistent labelling scheme is ideal, as XML document updates do
not necessitate the re-labelling of current labels. As noted by Cohen et al.
(Cohen et al.), this lowers the cost of updating and enables users to query

the modifications brought to the XML data over time.

e Improved query performance

Accomplishing high query performance depends on the efficient extraction

of structural information from labels.

1.6 Structure of the Thesis

In this section the structural organisation of the thesis is described. In a general
sense, the thesis is divided into three parts where Chapters 1-3 represent the first
part as they introduce the research and discuss the related background and
literature. Chapters 4 and 5 represent the second part since they discuss the main
idea of the research in detail from both theoretical and practical points of view.
The third part consists of Chapters 6-9 which cover the experimental setup, the
analysis of the results, evaluation and the thesis conclusion. The description of the

thesis chapters is outlined below:

Chapter 1: The title of this chapter is ‘Introduction’ and it introduces the thesis in
general, explaining the research motivations along with its aims and objectives. It

also introduces the research hypothesis and outlines the structure of the thesis.

18

Chapter 1: Introduction

Chapter 2: Entitled XML Background’, this chapter provides a descriptive

illustration of the basic concepts of XML and its parsing mechanisms.

Chapter 3: This chapter discusses the existing XML labelling schemes from a
comparative perspective. Thus, its title is ‘Related Work in XML Labelling

Schemes’.

Chapter 4: GroupBased Labelling Scheme. This chapter discusses the proposed
scheme theoretically by describing the underlying structure of the scheme,
defining the rules that serve its intended purposes, and validating these rules using

simple algebra.

Chapter 5: Design and Implementation. This chapter describes the design and
implementation of the GroupBased scheme from a practical perspective based on
the rules specified in Chapter 4. Furthermore, justifications for some practical

decisions are provided.

Chapter 6: Experimental Framework. This chapter describes the experiments
used to evaluate the proposed scheme and their objectives. The platform used and

the chosen datasets are specified, and the existing datasets are described.

Chapter 7: This chapter presents the experimental results along with their
analysis in order to assess the proposed scheme’s performance and scalability. A
comparative discussion is provided and graphical illustration is used to support

the analysis. Thus, the title of this chapter is ‘Results and Analysis’.

Chapter 8: Evaluation. This chapter discusses the experiments and their results
from an evaluative point of view. Then the whole scheme is evaluated and its

limitations are identified.

Chapter 9: Conclusion. This chapter summarises the whole thesis and discusses

the research’s main findings, contributions and limitations. Moreover, some

19

Chapter 1: Introduction

recommendations to improve the proposed scheme’s development are presented

and the research’s future direction is highlighted.

1.7 Conclusion

To conclude, this chapter offered a brief introduction to the thesis. Then, the
motivations behind this research were described and the hypothesis was stated.
The research aims and objectives were discussed and finally the structure of the

thesis was outlined.

20

Chapter 2: XML Background

Chapter 2: XML Background

2.1 Introduction

The World Wide Web Consortium (W3C) has facilitated data sorting and sharing
between applications through the implementation of a standard called eXtensible
Markup Language 'XML' (Abiteboul et al., 2000, Bray et al, 2008, Connolly and
Begg, 2005), as a result of which application homogeneity is no longer necessary.
The popularity of the XML data model is on the rise, because the XML language is
not only convenient and simple, but also supports the storage, transfer, display and
retrieval of data in both homogeneous and heterogeneous applications (Abiteboul
etal, 2000, Anderson, 2008, Bray et al., 2008, Champion, 2001, Connolly and Begg,
2005, Jonge, 2008, Ogbuji, 2004a, Ogbuji, 2004b, Palani, 2011, Powell, 2007,
Tidwell, 2002, Vakali et al., 2005, W3c., 2010, W3schools, 2013d, Whatley, 2009).
This has led to a surge in the number of XML-supported technologies and
applications. Database technology developers have responded to the growing
demand for XML data management primarily by upgrading the strategies of XML
database management, to include the storage, retrieval and security of XML data.
Furthermore, labelling schemes, which encrypt the data related to the XML tree
order and structure into highly compact labels, have attracted significant interest.
This is a commonly used method of supporting XML data management (Cohen et
al, 2010, Li and Moon, 2001, Milo and Suciu, 1999, Silberstein et al, 2005,
Tatarinov et al., 2002, Xu et al, 2009). Nonetheless, despite the comprehensive
analysis of labelling methods, considerable difficulties have been encountered in
developing an appropriate labelling scheme; given its importance for the effective
management of XML data, this area is currently intensely researched. As specified
in the last chapter, this thesis aims to address the issue by attempting to design a
new dynamic labelling scheme and comparing it to other available labelling

schemes.

21

Chapter 2: XML Background

This chapter presents an overview of XML to provide a better understanding of the
basic concepts starting with an overview of the XML in section 2.2. Followed by a
description of XML syntax in section 2.3. Next, the concept of XML tree structure is
explained in section 2.4. XML document type definitions and schema are described
in sections 2.5 and 2.6 respectively. Section 2.7, describes the most popular XML
query languages. Then, XML parsing techniques are described in section 2.8. The
concept of XML databases is briefly discussed in section 2.9. Finally, the chapter

concludes in section 2.10.

2.2 XML Overview

Nowadays, the Extensible Mark-up Language (XML) is one of the most commonly
employed tools for structured data representation (Abiteboul et al, 2000,
Cameron, 2008, Jonge, 2008, Ogbuji, 2004a, Ogbuji, 2004b, Palani, 2011, Thimma
et al, 2013, Tidwell, 2002, Vakali et al, 2005, W3c.,, 2010, W3schools, 2013d,
Whatley, 2009). Developed from SGML in 1996, the use of XML was advocated by
W3C two years later (Ogbuji, 2004b, Tidwell, 2002, W3c., 2010, Whatley, 2009, Al-
Badawi, 2010). What distinguishes XML from HTML is the fact that it is not
concerned with appearance control, but with data storage and transfer. XML is
advantageous for a number of reasons. As a self-describing language, it enables
users to design their own tags, which is a feature which makes it highly flexible
(Tidwell, 2002). Moreover, the XML language is straightforward and text-based,
with a portable data format (Abiteboul et al., 2000, Harold et al, 2004, Palani,
2011, Ray, 2003, Tidwell, 2002, W3c., 2010, W3schools, 2013d, Whatley, 2009). It
can also be exchanged among various applications as it is read by the majority of

platforms.

An XML document for employees’ information named ‘EmpRecordList’ is
illustrated in Figure 2.1. XML files comprise a range of components, such as

elements (e.g. <Emp>), attributes (e.g. DeptNo="D003"), and comments (e.g. <!—

22

Chapter 2: XML Background

Author Name -- >) (Abiteboul et al.,, 2000, Tidwell, 2002, W3schools, 2013d, Walsh,

1998). In the following section, each XML file component is presented.

<?xml version= “1.0” encoding=UTF-8"” standalone="yes” ?>
<?xml:stylesheet type = “text/xsl” href= “Employee_Record.xs|”?>
<IDOCTYPE EMPLOYEES_RECORD SYSTEM “Employee_Record.dtd”>

<EmpRecordList>

<Emp deptNum= “D003” Sex="“M">
<EmplID> ERL44 </EmpID>
<EmpName>
<Fname> Rayan </Fname> <Lname> Darwin </Lname>
</EmpName>
<JOB_POS> Suprrvisor </JOB_POS>
<DateOfBirth> 26-07-1973 </DateOfBirth>
<Salary> 35000</Salary>
</Emp>

<Emp deptNum= “D001” Sex="“F">
<EmpID> ERL26 </EmplID>
<EmpName>
<Fname> Tacey </Fname> <Lname> Cutt </Lname>
</EmpName>
<JOB_POS> accountant </JOB_POS>
<DateOfBirth> 09-09-1982 </DateOfBirth>
<Salary> 20000 </Salary>
</Emp>

</EmpRecordList>

Figure 2.1: XML document represents employee information
(EmpRecordList.xml)

23

Chapter 2: XML Background

2.3 XML Syntax

2.3.1 Elements

In the XML document, data representation is textual. An ‘element’ encompasses
everything circumscribed by matching tags when names are case sensitive (e.g.
<Emp> and </Emp> in Fig.2.1) (Abiteboul et al, 2000, W3schools, 2013i). An
element or tag represents the fundamental component of the XML document. The
start-tag and the end-tag, referred to as markups, are, respectively, the starting and
end point of an element (e.g. <EmpName> and </EmpName>) (Abiteboul et al,
2000; Connolly and Begg, 2005). Furthermore, an element can consist of additional
element(s), text value(s) or both, and it can also be void. A root element,
representing the initial element in the document (e.g. <EmpRecordList>), is a
crucial component of any XML document. A ‘sub-element’ is an element
incorporated in another element. For instance, the sub-element of the <Emp>
element is <DateOfBirth>. In general, the arrangement of elements (tags) in an
XML document must be balanced, while the opening and closing of tags should be
diametric (Abiteboul et al., 2000, Connolly and Begg, 2005, Tidwell, 2002, Walsh,
1998, W3schools, 2013i).

2.3.2 Attributes

Formed through the association of a name and a value, attributes provide a more
expansive description of an element in XML. The position of an attribute is within
the start-tag of the element, after its name (Walsh, 1998; Abiteboul et al, 2000;
Tidwell, 2002; Connolly and Begg, 2005; Whatley, 2009). Moreover, single or
double quotes are required to delimit the value of an attribute, which is always a
string value (Connolly and Begg, 2005; W3School (XML Attributes), 2013). The
data of XML more often than not have no use for the information that an attribute
supplies; nevertheless, the information is of significance for data management. The
following is an example of an attribute (deptNum), representing the department in
which a staff member works, within the previously established element (Nolan and

Lang):

24

Chapter 2: XML Background

<Emp deptNum="D003">

The distinction between an element and an attribute in XML is the fact that an
attribute cannot be repeated, unlike a sub-element included in the same tag

(Abiteboul et al., 2000; Connolly and Begg, 2005).

What is more, despite the fact that the use of attributes or elements is not specified
by any rule, there is a general preference for elements over attributes. The reason
for this preference is that an attribute has just a single value and therefore it is
more challenging not only to expand it, but also to maintain and read it (Abiteboul

etal, 2000, Ray, 2003, Tidwell, 2002, Whatley, 2009, W3schools, 2013f).

2.3.3 Comments

In spite of the simplicity and clarity of the XML language, comments are still
necessary to elucidate complex code or to include further notes for the writer or
reader. Although the location within the XML document of the comments is not
fixed, they have to be inserted between <!-- and --> tags. Apart from the literal
string '--', all data can take the form of comments. However, an XML processor does
not transfer comments to an application (Connolly and Begg, 2005, Harold et al,

2004, Ray, 2003, Tidwell, 2002, Whatley, 2009, W3schools, 2013j).

25

Chapter 2: XML Background

2.3.4 Ordering

As elements in XML are ordered, the fragments in figure 2.2 are not the same

(Abiteboul et al., 2000, Connolly and Begg, 2005):

<Emp>

<EmpID> ERL44 </EmpID>

<DateOfBirth> 26-07-1973 </DateOfBirth>
</Emp>

Not Equal ‘

<Emp>

<DateOfBirth> 26-07-1973 </DateOfBirth>
<EmpID> ERL44 </EmpID>

</Emp>

Figure 2.2: XML Elements are Order-Sensitive

On the other hand, attributes in XML are not ordered, meaning that the fragments

in figure 2.3 are equivalent (Abiteboul et al.,, 2000, Connolly and Begg, 2005)

<Emp deptNum: “D001” Sex:an/>
\

Equal

<Emp Sex="F” deptNum= “D001” />

Figure 2.3: XML Elements are Order-Insensitive

26

Chapter 2: XML Background

2.4 XML Tree Structure

The usual representation of an XML document is that of a tree graph, where it is
mandatory for the tree to have a root. Tree branches extend to the lower level from
this parent element, depicting additional elements that take the form of nodes
(Abiteboul et al, 2000, Darugar, 2000, Harold et al,, 2004, Ray, 2003, W3schools,
2013k). The XML data model is underpinned by the interconnection of nodes and
specific edges. As noted by Teorey et al. (2011), the representation of this tree

model assumes the form of structured parent and child relationships.

As previously mentioned, the root element, acting as ‘parent’ for the other
elements, is the starting point of the tree; the additional elements - the child nodes
- are conventionally depicted in a lower level. The tree ramifies until the end of the
document, as any element may incorporate a sub-element. The tree structure of

the document in Figure 2.1 is illustrated in Figure 2.4:

EmpRecordList

i A
7N

2|

EmplD EmpNme J08_| DateOfBirth Selary |
M ,/ /’/ // o’
ERLA4 szor 26-07-1973 35000
Frame Lname
4 J
Rayan
Y Darwin

Figure 2.4: Representation of XML document in Fig.2.1

27

Chapter 2: XML Background

In the next sections, the literature related to methods and standards associated

with the XML data model is reviewed.

2.5 Document Type Definitions (DTDs)

The format of an XML document can be outlined by a Document Type Definition
(DTD), which indicates, among other things, the names of the elements that can be
included in the document, the frequency with which an element can occur in the
document, the order of the elements, the connections between elements and the
manner of their arrangement, as well as the attributes for every element type
(Connolly and Begg, 2005, Elmasri, 2008, W3schools, 2013c, W3schools, 2013a). It
can therefore be said that DTD is the grammar that underpins the XML document.
The DTD can be defined either within the XML document or as an external file,
before being subsequently employed as a reference in the actual XML document
(Abiteboul et al., 2000, Chase, 2003, Harold et al.,, 2004, Lee and Chu, 2000, Molina
etal, 2009, Ray, 2003).

Given its capacity to define a data schema and type, the DTD can simulate the
relational database schema. However, the relational database schema has an
advantage over the DTD, which lacks numerous constraints; for instance, only
‘String’ data can be declared (Abiteboul et al, 2000, Connolly and Begg, 2005,
Elmasri, 2008).

A potential DTD declaration of the ‘EmpRecordList’ example is presented in Figure

2.5:

28

Chapter 2: XML Background

<!ELEMENT EmpRecordList (Emp)*>

<!ELEMENT Emp (EmpID, EmpName, JOB_POS, DateOfBirth, Salary)>
<!IELEMENT EmpName(Fname, Lname)>

<!ELEMENT Fname (#PCDATA)>

<IELEMENT Lname (#PCDATA)>

<!ELEMENT JOB_POS (#PCDATA)>

<!ELEMENT DateOfBirth (#PCDATA)>

<!ELEMENT Salary (#PCDATA)>

<IATTLIST deptNum CDATA #REQUIRED>

<!ATTLIST Sex CDATA #IMPLIED>

Figure 2.5: DTD for the XML document in Fig. 2.1

2.6 XML Schema

To address the shortcomings of the DTD and provide a more inclusive definition of
XML document content, the W3C recommended the implementation of the XML
Schema’ language in May 2001 (Connolly and Begg, 2005, Fallside and Walmsley,
2004). A schema can be defined as a relatively static database description which is

formulated during the database design phase (Elmasri, 2008, Molina et al., 2009).

In terms of data types and configuration, the structure of a given XML document is
outlined via the ‘XML Schema’ definition. This involves indicating the manner in
which every element is defined, as well as the type of data corresponding to its
value. Furthermore, the ‘Schema’ is actually represented as an XML document, the
inherent elements and attributes being used to express the ‘Schema’. The ‘Schema’
is identical to XML with regard to its viewing, editing and processing, as well as the
tools necessary to accomplish these procedures (Abiteboul et al., 2000, Connolly
and Begg, 2005, Harold et al, 2004, Lee and Chu, 2000, Molina et al, 2009, Radiya
and Dixit, 2000, W3schools, 2013b, Waldt, 2010).

29

Chapter 2: XML Background

Furthermore, the ‘Schema’ does not have the shortcomings of a DTD as it is more
expressive than DTD in terms of supporting various types of data, the domains of
the values, and the number of times an element occurs in an XML document

(Fallside and Walmsley, 2004).

An XML Schema for the ‘EmpRecordList’ example is illustrated in Figure 2.6:

<xsd:schema xmins:xsd= “http://www.w3.0rg/2001/XMLSchema”>

<xsd:simpleType name = “CHAR_5">
<xsd:restriction base= “xsd:string”>
<xsd:length value = “5"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name = “Empinfo”>
<xsd:sequence>
<xsd:element name= “EmpID” type=“CHAR_5" />
<xsd:element name= “Fname” type=“CHAR_16" />
<xsd:element name= “Lname” type=“CHAR_16" />
<xsd:element name= “JOB_POS” type=“CHAR_14" />
<xsd:element name= “DateOfBirth” type=“DATE" />
<xsd:element name= “Salary” type=“DECIMAL_S5_2" />
<xsd:element name= “deptNum” type=“CHAR_4" />
<xsd:element name= “Sex” type=“CHAR_1" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name = “Table” >
<xsd:sequence>

<xsd:element name= “tuple” type="Emplinfo” ninOccurs="“0" maxOccurs=“unbounded” />

</xsd:sequence>
</xsd:complexType>

<xsd:element name= “EmpRecordList” type=“Table” />

</xsd:schema>

Figure 2.6: XML Schema for the XML document in Fig. 2.1

30

Chapter 2: XML Background

2.7 XML Query Languages

The relevance of database systems in the management of data derives from the
procedures for data retrieval, processing, extraction, conversion and integration,
which are dealt with on the basis of query language (Boag et al.,, 2011, Connolly
and Begg, 2005, Elmasri, 2008).

SQL cannot be used to query XML data, as they share similarities with semi-
structured data. Consequently, XML data have to be queried using specific
languages. The most commonly used languages for querying XML data are XPath

and XQuery, which are discussed in the following sections.

2.7.1 XML Path Language (XPath)

W3C recommends XML data to be queried with the use of the XML query language
XPath, which employs a simple syntax to manipulate the elements and attributes in
an XML document (W3schools, 2013m). XPath treats the XML document as a
logically ordered tree-structure. There are seven distinct nodes that make up the
XPath tree, namely, element, attribute, text, namespace, processing instruction,
comment, and the document's root. Every component of the XML document has an
equivalent node in XPath (Berglund et al, 2010b, Boag et al, 2007, Connolly and
Begg, 2005, W3schools, 2013n). XPath deals with the XML document based on the
mechanism which determines the start node as well as the so-called ‘location path’
from one node to another (Berglund et al, 2010b, Harold et al., 2004, Molina et al.,
2009, Ray, 2003, W3schools, 20131). Similar to the location path in the directory,
the ‘location path’ in XPath comprises a number of steps linked by '/’ to identify
the location, its root and final destination being the starting and end point,
respectively. Every step in the ‘location path’ is underpinned by the axis and ‘node
test’ pair. The axis denotes the direction of navigation, whereas the ‘node test’
indicates the node type in the document. In addition to this, a predicate condition
may also be present within square brackets, acting as a filter condition to identify a

particular node or a nodes with a certain value (Harold and Means, 2002; Ray,

31

Chapter 2: XML Background

2003; Molina et al, 2009; W3C, 2010; Elmasri and Navathe, 2011Connolly and
Begg, 2005; W3School (XPath Syntax), 2013). Table 2.1 shows the thirteen types

of axis associated with XPath:

AxisName Abbreviation (if Purpose
any)
ancestor refers to all ancestors of the current node
ancestor-or-self refers to the current node itself and its

ancestor nodes

descendant refers to all descendants of the current
node
desendant-or-self // refers to the current node itself and its

descendant nodes

following refers to all siblings of the current node

following-sibling refers to the siblings which are after the
current node

namespace refers to the namespace of the current
node
parent e refers to the current node’s parent
preceding refers to every node exist before the start

tag of the current node

preceding-sibling refers to all siblings before the current
node
self . refers to the current node
child / refers to al children of the current node
attribute @ Returning all attributes of the current node

Table 2.1: XPath Axis

32

Chapter 2: XML Background

To explain how these marks are used, here are some examples of XPath

expressions for the EmpRecordList

a) / EmpRecordList/Emp/JOB_POS

The JOB_POS node, which is attached to the parent Emp node, can be accessed via

this expression.

b) / EmpRecordList /Emp@deptNum

The identifier (deptNum) attribute of the Emp node can be selected through the

above expression.

In XPath expressions, the role of predicates, represented in square brackets “[]”, is
to facilitate the identification of particular nodes and values (Berglund et al,
2010b, Connolly and Begg, 2005, Elmasri, 2008, Harold et al., 2004, Molina et al,,
2009, Ray, 2003, W3schools, 20130).

2.7.2 XML Query Language (XQuery)

The W3C Query Working Group has recommended the XML query language
XQuery (Boag et al, 2011), developed on the basis of the ‘Quilt’ XML query
language. XQuery is comparable to SQL, in that the representation of a query takes
the form of an expression that can undertake functional tasks, while the value of
the expression consists of ordered nodes or atomic values (Al-Badawi, 2010).
Given that it is an extension of XPath, XQuery has path expressions identical to
those of XPath (Al-Badawi, 2010, Connolly and Begg, 2005). The result of the
expression is an ordered series of nodes; however, the result may be affected by
redundancy due to repetition of the same node with the same name and type.
Moreover, similar to the XPath, the XPath axis dictates the direction of movement
of every step in the expression. Additionally, predicate condition(s) can be applied

to narrow down or exclude nodes in every step (Connolly and Begg, 2005). Several

33

Chapter 2: XML Background

other new expressions were developed, apart from the XQuery path expression.

‘FLWOR’ is one such expressions, being an acronym for FOR, LET, WHERE, ORDER

BY and RETURN clauses. FOR or LET (multiple clauses are permissible) represent

the starting point of the expression, while the subsequent WHERE and ORDER are

optional. RETURN is necessarily the end point of the expression (Boag et al., 2011,
Cameron, 2008, Connolly and Begg, 2005, Elmasri, 2008, Molina et al., 2009,
W3schools, 2013e).

2.7.2.1 FLWOR Expression

The FOR and LET clauses:

These two clauses bind values and variables. Values may have multiple
variables, an association which is known as ‘tuple’. The FOR and LET
clauses are employed, respectively, with and without the repetition. In
addition, multiple FOR or LET clauses may be included in an expression

(Connolly and Begg, 2005).

The WHERE clause:

It contains a predicate, which specifies one or more conditions, to minimise
and control the result generated by FOR or LET clause (Connolly and Begg,
2005).

The RETURN and ORDER BY clauses:

Each FLWOR expression must include a RETURN clause. The evaluation of
each tuple is the aim of the application of this clause, while the result of the
FLWOR expression is given by the combination of all evaluations (Connolly
and Begg, 2005, W3schools, 2013e). The sequence of the resulting tuples is
denoted by the ORDER BY clause, when it is included (Connolly and Begg,
2005, W3schools, 2013e).

34

Chapter 2: XML Background

To explain how these clauses are used, here are some simple examples of FLOWR

expressions for the EmpRecordList document (See Fig. 2.1)

a)

b)

Return all employees with salary more than £25,000
LET $EmpSalary := £25,000
RETURN doc(“EmpRecordList.xml”)//Emp[Salary > $SEmpSalary |

Return all male employees at the department D003
FOR $E IN doc(“EmpRecordList.xml”)//Emp

WHERE $E /@ deptNum="D003” AND $E /@ Sex="M"
RETURN $E/EmpID

Return all departments that have less than 20 employees
<SmallDepartments>
FOR $D IN distinct-values (doc(“EmpRecordList.xml”)//Emp@deptNum)
LET $E := doc(“EmpRecordList.xml”)//Emp[@deptNum=$D]
WHERE count($E) < 20
RETURN

<deptNum> {$D/text()} </deptNum>

</SmallDepartments>

35

Chapter 2: XML Background

2.8 XML Parsing

The parser plays an essential role in XML file processing, and therefore all XML-
based applications incorporate it. The parser is designed to break down the XML
text and generate a representation in the shape of a tree or stream. DOM, SAX,
JDOM and Xerces2 are just some of the parsers employed in the construction of
XML files. Among these, the most commonly used are DOM and SAX, which form

the focus of the following sections.

2.8.1 Document Object Model (DOM)

This API represents a ‘tree-based’ model and the view of the data that employ DOM
is from an object-oriented perspective. W3C proposed DOM as a standard of
managing XML documents with the use of specific techniques and classes. During
the parsing process, based on the DOM interface, the representation of the XML
document takes the form of a tree; moreover, this process is performed for the
entire document at the same time (Abiteboul et al, 2000, Al-Badawi, 2010,
Connolly and Begg, 2005, Eriksen, 2004, Hégaret et al., 2005, Whitmer, 2004).

As observed by Frank et al. (2003), DOM facilitates the navigation, access and
manipulation of XML data. In addition, it enables not only traversal in any
direction, but it also permits the concurrent performance of reading and writing
processes, and based on the tree structure, it affords random access to XML data.
What is more, DOM provides an appropriate context for XPath (Berglund et al.,
2010a), while also managing queries and updates (Al-Badawi, 2010. The platforms
that support this parser include .NET, C++ and Java (Zhang, 2006).

DOM defines a ‘Node’ interface that comprises the sub-classes Element, Attribute
and Character-Data, which are applied during XML file processing. The Node
interface supplies several techniques through which the components of each node
can be accessed; these techniques include the ‘parentNode()’, which returns a
parent node of a particular node, and the ‘childNode()’, which returns all child

nodes for the requesting node (W3schools, 2013h, W3schools, 2013g).

36

Chapter 2: XML Background

However, despite its efficiency in facilitating rapid access and processing of the
nodes, the DOM interface has a significant drawback, in that all the objects of the
tree, including their structure, are uploaded onto the computer’s memory; hence,
any memory limitations may have a negative impact on the performance of the

interface (Al-Badawi, 2010, Harold, 2002).

2.8.2 Simple API for XML (SAX)

An ‘event-based’ API, the SAX interface is an alternative to DOM and is the product
of collaborative work undertaken on the XML-DEV mailing list. Each event
corresponds to an element in the XML document and therefore the sequence of
events emulates that of the elements. Compared to DOM, SAX is straightforward,
rapid and highly efficient at parsing because does not store the XML tree in
memory and therefore facilitates the parsing of large XML documents (Abiteboul et
al, 2000, Brownell and Megginson, Connolly and Begg, 2005, Idris, 1999,
Megginson, 2001, Project, 2013a).

As SAX is event-based, the tree is not constructed in the memory; rather, it reports
the event, such as the start and end tags of an element, straight to the application
during the parsing of the XML file. However, this makes reading the XML data
without manipulation difficult. It offers only a top down traversal and ordered
access to data, thus restricting navigation and making back navigation completely
impossible (Abiteboul et al, 2000, Al-Badawi, 2010, Connolly and Begg, 2005,
Project, 2013b).

The DOM and SAX parsers both have advantages as well as disadvantages. The
system requirements constitute the determining factor in the selection of one or
the other. In this thesis, the parser chosen for the implementation stage was DOM
because its application is straightforward. However, DOM’s storage limitations
mean that its use reduces the range of the scalability test when large XML

databases are assessed. This issue is addressed later on in Chapter 5 (Section 5.).

37

Chapter 2: XML Background

2.9 XML Databases

There are two types of XML files: data-centric and document-centric. In a data-
centric XML file, data are highly structured and usually stored in databases. By
contrast, in a document-centric XML file, the textual content is semi-structured, as
is the case with books (Bourret, 2005, Noaman and Al Mansour, 2012, Noaman and
Almansour, 2012, Sun and Wang, 2012). This research applies only to data-centric

XML files because of its link to databases application.

The issue of whether or not XML is a database has been intensely discussed.
Similar to other types of databases, XML is capable of data storage and retrieval
and therefore can be perceived to be a technology that facilitates the construction
of databases (Bourret, 2005, Noaman and Al Mansour, 2012, Sun and Wang, 2012).
Moreover, it displays numerous properties common in databases, including
storage of data in XML files, possession of schemas (DTD and XML Schemas) and
query languages (XPath and XQuery), as well as the provision of interfaces thanks
to programming languages like DOM and SAX. On the other hand, several
properties of database management systems, including update, multi-access,
recovery and security, are not exhibited efficiently by XML (Bourret, 2005,
Noaman and Al Mansour, 2012, Steegmans, 2004). It is these shortcomings that are
at the root of the debate as to whether XML should be considered to be a database.
Responding to the shortcomings, many researchers have attempted to improve the
XML’s database like characteristics. In line with such attempts, this research

generally seeks to enhance the dynamic update of XML databases.

Enabled XML database and native XML database are the two existing categories of
XML databases (Bourret, 2005, Elmasri, 2008, Molina et al., 2009, Papamarkos et
al., 2009, Steegmans, 2004). The first category relies on traditional databases like
relational databases to store data, and its primary use is in supporting current
applications, as many XML files have already been stored in relational databases
(Abd El-Aziz and Kannan, 2012, Papamarkos et al, 2009, Steegmans, 2004).

Employing standard approaches, enabled XML databases achieve the transfer of

38

Chapter 2: XML Background

data from the XML structure to the relational structure with the help of mapping
methods (SAXProject). However, it has some weaknesses. Papamarkos et al
(2009) indicated that, because of the number of joins, it is inefficient at managing
large XML files. Furthermore, it does not take into account the hierarchical
structure, nested data and sequence of elements. It may also lose information
during the conversion process (Bourret, 2005, Noaman and Al Mansour, 2012,

Steegmans, 2004, Sun and Wang, 2012)

A native XML database has as its basic unit an XML file, and therefore it constitutes
a suitable method for managing XML databases (Fiebig et al., 2002, Steegmans,
2004, Sun and Wang, 2012). Due to the fact that it is compact, it can be searched
with ease and its content can be managed (Bourret, 2005, Sun and Wang, 2012).
Additionally, native XML databases enhance the efficiency of retrieval as they
supports XML query languages (Bourret, 2005, Papamarkos et al, 2009,
Steegmans, 2004, Sun and Wang, 2012). It also has greater flexibility than enabled
XML database (Bourret, 2005). The inability of the native XML database to provide
data in formats other than XML constitutes its greatest weakness (Abd El-Aziz and
Kannan, 2012, Bourret, 2005). There are two types of native XML database: text-
based and model-based (Bourret, 2005, Papamarkos et al., 2009). The XML file is
managed by the text-based type in the form of text and stored as a file in file
systems or as a CLOB/BLOB in relational databases. By contrast, XML data are
managed by the model-based type as objects, while file representation takes the
form of a tree, like in DOM (Bourret, 2005, Harold et al, 2004, Noaman and
Almansour, 2012, Staken, 2001, Steegmans, 2004, Sun and Wang, 2012). Only

native XML databases are relevent in this thesis.

39

Chapter 2: XML Background

2.10 Conclusion

This chapter briefly covered the fundamental topics of XML technology, as it is a
huge subject and cannot be totally covered in this limited chapter. However, the
described topics provide adequate background and introduction to XML before
exploring the XML labelling technology in the next chapter since it is the concern of

this thesis.

40

Chapter 3: Related Work on XML Labelling Schemes

Chapter 3: Related Work on XML Labelling
Schemes

3.1 Introduction

Native XML storage and query support have been the focus of much research due
to the growing significance of managing XML data. This task is made more
challenging by the ordered tree-structured model of the data, which offers
extensive semantic content. To query XML data, there is need to adopt an effective
and efficient labelling scheme. XML tree order and structural information, such as
parent/child or ancestor/descendant are encoded into highly compact labels by
labelling schemes; the result of significant research in the recent past. It is
important to note that the metrics for a labelling scheme are the compactness of
the encoded labels and the speed of the algorithm for both creation and use of the
labels. To develop an efficient labelling scheme that can handle an ordered tree-
structured data model, various scholars have focused on the aim of developing a
labelling scheme that is efficient and effective in handling both static and dynamic

XML documents and these approaches are discussed below.

In the introductory chapter of this thesis, there were specific objectives which
defined the motivation of this study, and its goals. The first area of literature
relevant to this goal is an overview of labelling schemes. The second part of the
literature review presents and discusses other labelling schemes that have
commonly been used with XML documents. The first theme is different from the
second because in the first, only the overall approach to the functionality of the
schemes is presented but in the second, there is more detail of the schemes
reviewing their strengths, weaknesses and limitations. By so doing, it exposes the
research challenges. Lastly, the literature review will identify the weaknesses and
limitations of other labelling schemes to propose alternative ideas for new scheme

which helps to address the identified weaknesses and limitations.

41

Chapter 3: Related Work on XML Labelling Schemes

Section 3.2 of the chapter provides an overview of the labelling schemes, while
Section 3.3 presents common labelling schemes used for XML data along with their
strengths and weaknesses, such as prefix-based schemes (Section 3.3.1), interval-
based schemes (Section 3.3.2), multiplication-based schemes (Section 3.3.3) and
vector-based schemes (Section 3.3.4). A summary of the major XML labelling
schemes is provided in Section 3.3.5. Section 3.4 discusses the characteristics to be
seen in any ideal scheme. Section 3.5 summarises the literature review and Section

3.6 concludes the chapter.

3.2 Labelling Schemes: An Overview

Four major schemes are overviewed in this section. These are prefix-based
schemes, interval-based schemes, multiplication-based schemes and vector-based
schemes. After the overview, these will be discussed in later sections of the

chapter.

Data representation and information exchanges over the web have increased
remarkably over the past decade. To ensure that there is a universal query
language that is used in the performance of these web activities, eXtensible Mark-
up Language (XML) has emerged as a common data format which defines the rules
used for encoding documents in a way that can be considered as both human-
readable and machine-readable (Amato et al.,, 2003). Since XML has been accepted
as a standard of exchanging data on the Internet, the improvement of its efficiency
through development of robust management schemes has been identified as a
potential method of reducing the cost of data searching (Bruno et al.,, 2002, Catania
et al, 2005, Liu et al, 2009, Lu et al, 2005, Sun et al, 2007, Xu and
Papakonstantinou, 2005). Murata et al. (2009) lamented that regardless of the
universal acclamation given to XML, some irregularities may arise from its usage in
its most original format. Most of the irregularities have been found to focus on the
query function of XML (Zhang et al, 2001). Query as used in this context refers to
the permission granted to the human and machine users in establishing contact

with the base of the XML document (Abiteboul et al, 2001). In the light of this, a

42

Chapter 3: Related Work on XML Labelling Schemes

number of query languages have been developed, particularly by W3C group to be
used for XML. Two of these are XPath and XQuery, which have declarative queries
and path expressions characteristics (Rousseeuw et al, 1999). These
characteristics help to overcome the irregularities of XML. But even with these two
query languages, Yun et al. (2008) still contended that the need to increase query
performance remained necessary to make the functionality of XML over the web
useful and effective. As a solution to the quest for an increase in query
performance, the creation of effective indexing has been developed over the years
(O'Neil et al, 2004). Duong and Zhang (2008) noted that these indexes work

mainly by allowing queries to bypass the need to scan a whole table of results.

It is based on the functionality of the all important index that the issue of labelling
schemes arises, where the study’s major emphasis is on dynamic labelling scheme.
Goldman and Widom (1997) explained dynamic labelling scheme (henceforth
referred simply to as labelling scheme) as dynamic data used in XML format being
extracted from a strange database and placed in a deserved XML format. The
presence of labelling schemes have been noted to be important for index
functioning because as Murata et al. (2009) observed to ensure that the index can
function by allowing queries to bypass the entire scanning process, noted it is vital
to have a unique label assigned to each node in the XML trees in a way that makes
it easy to determine the relationship between any two given nodes. The nodes are
basically the identification parameters given to components on the XML tree. In
this context relationship means relation such as ancestor- descendant relationship
or sibling. The labelling is therefore needed to allow structural queries that can be
answered only by the use of index (Yu et al.,, 2005). What this implies in this case is
that the need to access the actual documents is eliminated, making the whole
query process fast and effective (Wang et al, 2003). Because the creation of the
index is largely based on the presence of the unique labels assigned to each node in
the XML tree, several researchers have focused their attention on the development
of labelling schemes that are used to achieve this purpose. It is important to note
that the various forms of labelling schemes work with path indexing and

numbering schemes to facilitate the query process for XML data. The motivation of

43

Chapter 3: Related Work on XML Labelling Schemes

this study is however focused on labelling schemes due to their unique roles in the

indexing processes.

Several schemes have been proposed to help in making the function of labelling
easier in both the contexts of computer and human user of XML documents. For
instance Bruno (2002), developed a method consisting of connected stacks. This
method facilitates the compact representation of the partial results of a query path
and the combination of these paths yields the final matches for a twig query. With
the query established therefore, the labelling is further facilitated as because the
query in itself is a clue to what the label should be (Bruno et al, 2002). This
method has also been advanced by Lu (2005), in processing of twig queries. It was
mainly successful due to its efficiency in supporting queries with the help of

wildcards and branching nodes which are used in labelling processes.

The identification of structural relationships in data elements such as parent-child,
ancestor-descendant and document order is achieved through a comparison of the
labels. Sans and Lauren (2008), categorise labelling schemes into two: interval-
based (range-based) and prefix-based schemes. Prefix-based schemes are also
referred to as Dewey schemes. In interval-based schemes, the identifiers are
represented as intervals. To determine the associated link between two nodes, the
scheme relies on the containment information. Prefix-based schemes on the other
hand employ a depth-first tree traversal to directly encode the parent of a node in
a tree as a prefix to its label. This implies that interval-based schemes are likely to
yield considerably more limited information than the prefix-based schemes. For
example, information regarding the Lowest Common Ancestor (LCA) for a group of
nodes is hardly ever provided by interval labels. By contrast, structural
relationships can be effectively identified based on the prefix-based scheme. Thus,
prefix-based schemes has also become the primary choice for query processing of
XML keywords as its labels comprise path information (Gou and Chirkova, 2007,
Sun et al., 2007, Xu and Papakonstantinou, 2005). This is of significant relevance

for LCA assessment.

44

Chapter 3: Related Work on XML Labelling Schemes

The position of Sans and Lauren (2008), who categorised labelling schemes into
two broad categories have however been advanced with the introduction of other
newer schemes. Other labelling schemes that have been identified include
multiplication-based and vector-based labelling schemes. In multiplication-based
schemes, the nodes in a XML document are labelled by multiplying atomic
numbers (Kha et al., 2002, Wu et al., 2004). In vector-based schemes, this is done
by vector orders as derived from mathematics (Xu et al.,, 2007, Xu et al., 2012, Xu et

al,, 2009).

All these labelling schemes have significant strengths and weaknesses. It is
important to point out that to harness specific strengths possessed by different
schemes, hybridization of the labelling schemes has been tried. A hybrid scheme
integrates the approaches of different schemes with the aim of developing a
scheme with the strengths of several schemes (Haw and Lee, 2009, Yun and Chung,

2008).

3.3 Common labelling schemes used for XML data

As indicated earlier, labelling schemes are highly relevant in the use of XML data as
they optimise query retrieval by providing a quick way to determine the
relationships that exist between nodes (Zhang et al., 2001). This section of the
review is dedicated to the presentation and discussion of some of the existing

labelling schemes.

Labelling schemes can be divided into prefix-based schemes (Section 3.3.1),
interval-based schemes (Section 3.3.2), multiplication-based schemes (Section

3.3.3) and vector-based schemes (3.3.4).

45

Chapter 3: Related Work on XML Labelling Schemes

3.3.1 Prefix-based Labelling Schemes

3.3.1.1 Structure and Description

A prefix-based scheme has the characteristic of directly encoding the father of a
node in an XML tree as the prefix of its label (K., 2006). Several prefix-based
schemes are have been proposed. They include are Dewey encoding (Tatarinov et
al., 2002), LSDX Duong et al.(2005), ORDPATH O’Neil et al.(2004), and Cohen et al.
(2010). Of these prefix based schemes, there has been extensive study of Dewey
encoding, making it possible to refer to it as the embodiment of prefix labelling
schemes in general (Wang et al, 2003). Typical of prefix-based schemes, the
Dewey encoding (Tatarinov et al., 2002) is structured such that each node has a
label that represents the path from the document’s root (Harold, 2004). Of the
identified labels, each of them stands for the local order of an ancestor node
present in the document’s root. In the labelling process, nodes that have the same
number of delimiters in their label are assigned to the same level (Wu et al., 2004).
The explanation to this is that such nodes with same number of delimiters in their
labels are siblings and thus do not require a differentiated labelling processing as

their outcomes will be the same. Figure 3.1, illustrates the Dewey scheme.

l Figure 3.1: Dewey Labelling Scheme

46

Chapter 3: Related Work on XML Labelling Schemes

The structural information between two given Dewey labels, deweyA : dai.daz...dam

and deweyB : dbi.db: ... dby, can be extracted based on the following rules:

e Ancestor/Descendant. For deweyA to be the ancestor of deweyB, m<n and

da;= db1, daz =db2,...,dam = dbm.

e Parent/Child. For deweyA to be the parent of deweyB, deweyA must be an

ancestor of deweyB and m = n-1.

e Sibling. For deweyA to be the sibling of deweyB, the parent labels of deweyA
and deweyB must match, in other words, if m=n and a1 = b1, az=by, ..., am1

= bm-l.

For example, from Figure 3.5, node B (1.1) is a prefix of node D (1.1.2) and
therefore B is an ancestor of D. Furthermore, node F (1.2) is compatible with the

parent label of node G (1.2.1) and thus F is the parent of G.

The structure of the Dewey scheme strongly resembles other prefix-based
schemes including ORDPATH and Labelling Scheme for Dynamic Xml data (LSDX)
which were developed by O’Neil et al. (2004)and Duong et al. (2005) respectively.
This is because in the ORDPATH scheme, Thonangi (2006) noted that a child or
descendant of a given parent are represented by odd numbers while insertions are
given even numbers. Meanwhile in the Dewey scheme also, parent and child nodes
are given different non-identical numerical formats of identification. LSDX also has
the capability of combining numbers and letters to label each tree as shown in

Figure 3.2.

47

Chapter 3: Related Work on XML Labelling Schemes

‘
-
-

-
\
N
\
\
”~
@
N
Q
N
s v
'
1y
~
’ n

ab.b Ban

TS A~ Vobe Ty
=/ U (\\”‘.

= = = inserted node I

[Figure 3.2: LSDX Labelling Scheme

Based on the figure above, it would be noted that Cohen et al. (2010) uses a similar
structure but this was not represented due to the similarities involved. Moreover,
it is the Dewey encoding that has been extensively studied, making it possible to

make reference to it as the embodiment of prefix labelling schemes in general.

3.3.1.2 Strengths of Prefix-based Labelling Schemes

The use of prefix-based schemes has been associated with a number of strengths
or merits when used as the major labelling scheme to facilitate query processing of
XML data. In the first place, Duong and Zhang (2005) posited that prefix-based
schemes such as the LSDX act as a persistent labelling scheme that does not
require re-labelling of existing labels before it can support the demand for
updating XML data. It was for this reason that Alstrup and Rauhe (2002) described

prefix-based schemes as being ideal for facilitating fast update of XML data.

Yun and Chung (2008) also mentioned that most forms of prefix-based schemes
can handle the representation of ancestor-descendant relationships together with
the sibling relationships that exist between nodes. This way it is possible to
establish the relationship between any two nodes merely by viewing their unique

codes (Amato et al., 2003). This implies that there is much efficiency when using

48

Chapter 3: Related Work on XML Labelling Schemes

the prefix-based scheme for querying purposes. Meuss and Strohmaier (1999) also
touched on the important role that knowledge of the depth of XML tree plays in
facilitating query processing for XML data, stating that such knowledge ensures
different node’s relatives are given different preferential labelling. Meanwhile,
Duong and Zhang (2005) defended their LSDX scheme by stating that it has the
ability to show the depth of the tree used in the XML document. This is done
mainly by the unique code that is assigned to each level of the nodes. This can be
said to be a multi-variant strength that ensures that the tasks of retrieving,
inserting, deleting or updating documents is done with so much ease (Hou et al,

2001).

There are other strengths with prefix-based schemes that have mainly been
attributed to the Dewey label and ORDPATH. For example Duong and Zhang
(2008) indicated that a Dewey label has the capability to single handedly
determining the path from the root to an element. This is because it integrates the
parent label with its own order. Already, it has been noted that the prefix-based
scheme has the ability to provide structural information involving ancestor-
descendant relationship, parent-child relationship and sibling relationship

(Tatarinov et al., 2002) as described in the previous section.

As an improvement to Duong and Zhang schemes (2005, 2008), Li and Lang
(2005a) developed the ‘ImprovedBinary’ scheme which is a different prefix-based
scheme designed to allocate unique and permanent labels to nodes by employing

bit strings combined with a recursive algorithm as shown in Figure 3.3.

49

Chapter 3: Related Work on XML Labelling Schemes

(a)

~——

i 011
B 01.0111 @
01.001 a8 @ i
a3
STt e '\ 011.011
N
'\ ovoz M 011.01 *

'w 01.011 ooy
~.7 Q \ oy
C @ +01.011011 @ 2,

I'\\r_

'~. 7

= = = inserted node]

I Figure 3.3: ImprovedBinry Labelling Scheme

Writing on the ORDPATH scheme, Duong and Zhang (2005) noted that the scheme
has the strength of being very effective in managing updates and insertions. This is
due to the fact that in the case of insertions, odd numbers are assigned to parent
nodes alone while insertions are labelled with even numbers. One major
characteristic with the prefix-based scheme is its potential to function on a group
basis through the formation of group-based prefix (GRP) labelling scheme (Wang
et al., 2003). Once this is done, it is possible to tap the functional strengths and
merits associated with the different schemes that are brought together to form the
GRP (Gabillon and Fansi, 2006). In such cases, the GRP combines a group ID and a

group prefix.

3.3.1.3 Weaknesses and Limitation

The strengths and merits identified above notwithstanding, there are very specific
weaknesses of the use of prefix-based schemes that make their use problematical
for query processing of XML data. One such limitation of the prefix-based schemes
was identified by Yun and Chung (2008) in the formation of non-tree edges for use
in the creation of structural relationship among nodes. The non-tree edges have
been explained to be nodes or edges that do not appear in the spanning tree used

in a typical tree relationship (Gabillon and Fansi, 2006). This is because apart from

50

Chapter 3: Related Work on XML Labelling Schemes

the difficulty associated with the construction of non-tree edge relationships for
prefix-based schemes; the resulting non-tree relationships have been noted to lack
the strength of deterministic tree label characters. This shows an extensive
weakness of prefix-based schemes in the construction of non-tree edge
relationships (Boag et al., 2007). To avoid the weaknesses involved, Fennell (2013)
recommended the need to apply only deterministic tree labels when using prefix-
based schemes. But once the non-tree labels have been used, it can be expected
that additional time will be spent in performing such extra tasks such as making
provisions for additional storage that will make up for the lapses or serve as
backup to the functions that the deterministic tree labels would have played
(Duong and Zhang, 2005). Again additional tasks may be required with respect to
query processing. Meanwhile, efficiency with time is crucial in the labelling
processing. It is not surprising that Hou et al. (2001) claimed the prefix-based

scheme required special effort to achieve query processing.

Another limitation of the use of prefix-based scheme such as Dewey Encoding
(Tatarinov et al., 2002) is the inability to assign extensive labels. Elaborating on
this, Murata et al. (2009) explained that such limitations show up most when
dealing with complex XML documents. This is because these complex XML
documents are made up of longer paths than may be seen in simpler XML
documents (Bosak and Bray, 1999). These long paths are formed as vector paths in
Dewey Encoding as a means of establishing an ancestor-descendant relationship
(Cunningham, 2006). The behaviour of such complex XML documents in producing
longer paths makes the assessment of extensive labels to a node unfeasible. This is
mainly due to the time needed to perform the assessment of extensive labels,
where only selected labels or less complex XML documents could be deemed to
achieve effective assessment. Wu et al. (2008) also opined that in prefix-based
schemes, the support for dynamic update is often highly complicated. This makes
most researchers avoid dynamic updates. Dynamic updates come with their own
benefits, which are lost when using prefix-based labelling schemes. Whenever a
dynamic update is started, changes to the parent label causes adjustments to both

the child and descendant labels (Fisher et al, 2006). Because when the parent

51

Chapter 3: Related Work on XML Labelling Schemes

label is altered, the ancestor’s labels will be inherited throughout the document
(Yu et al., 2005). As expected, once this is done, the overall updating processing

will be complicated, leading to reduce efficiency.

3.3.2 Interval-based Labelling Schemes

3.3.2.1 Structure and Description

An interval-based labelling scheme has a structure where the identifiers of all the
nodes are allocated as the start and end position numbers. These are positive
numbers distributed in the depth first traverse of the data tree that forms as part
of the label numbers (Wu et al, 2004). This process takes place so as to make the
identification process possible by constructing an explicit structural relationship
between all the nodes. According to Duong and Zhang (2005), this scheme is so
called the interval-based labelling scheme because there is an interval created
within the nodes, which joins directly with the parent or ancestor to create a

parent-child relationship.

Interval-based labelling schemes have been described in a number of papers
where researchers have independently identified unique interval-based labelling
schemes with different qualities and functionality. There are three common forms
of interval-based labelling schemes; the containment labelling scheme proposed
by(Zhang et al., 2001), the pre-post labelling proposed by (Dietz, 1982) and the
order/size scheme proposed by (Li and Moon, 2001) (2001).

Every element node in a containment labelling scheme is assigned a label with a
start, end, and level format, in which a range bounded by start and end comprises

all its descendant ranges as shown in Figure 3.4.

52

Chapter 3: Related Work on XML Labelling Schemes

1,14,1
(a)

~——

2,9,2 10,13,2
&) O
3,4,3 5,63 S 11, 12,3
[Figure 3.4: Containment Labelling Scheme]

From the figure, it can be noted that the element node ‘A’ is assigned the start
format, with ‘C, D, E, and G’ assigned the end format based on the containment

labelling scheme.

Where there are three values for each node, each of these is given a value either as
pre or post of the node Zhang et al. (2001). This pre or post value generally
represents the position of the node, say A, whether in a pre-order or post-order of
the traversal of the tree. From this point on therefore, there is a change from
containment to pre/post labels. In the pre/post labelling scheme, every label has a
pre, post and level format; pre-representing the ordinal number of the element
node in a pre-order traversal sequence, while post is the ordinal number of the

element node in a post-order traversal sequence, as shown in Figure 3.5.

From the figure given below, the level in both labelling schemes refers to the level
of the element node in the XML tree. The structural information that can be
extracted from two given containment labels, A (start;, ends, leveli) and B (startp,

endy, levely), is as follows:

53

Chapter 3: Related Work on XML Labelling Schemes

1o 72 m

e

2 4 2 6,6,2

,1,3© .1,2@ @ @s,z

[Figure 3.5: Pre/Post Labelling Scheme

e Ancestor/Descendant (AD). B is the descendant of A if and only if

start; < start; < endz < end;, which can be reduced to the more
simple form (start; < startz < end;). The simplification is justified as
(start; < startz < end; < end?) is not possible as it would signify the

improper nesting of the elements.

e Parent/Child (PC). B is a child of A if and only if B is a descendant of

A and level; = level; - 1.

For example, in Figure 3.1, 1<5<14, node A (1, 14, 1) is an ancestor of node D (5, 6,
3). Furthermore, 2<5<9 and 2 =3-1, node B (2, 9, 2) is the parent of node D (5, 6,
3).

It is possible to extract AD and PC relationships from pre/post labels with the

following:

In the case of two given pre/post labels A (preorder;, postorder;, level;) and B
(preorderz, postorders, levelz), the condition preorder; < preorder:z and postorder:
< postorderi; must be fulfilled for A to be an ancestor of B. Unlike the condition of
the containment labelling scheme, this condition cannot be subjected to

simplification.

54

Chapter 3: Related Work on XML Labelling Schemes

For example, from Figure 3.2, given that 2<3 and 1<4, node B (2, 4, 2) is an ancestor

ofnode C (3, 1, 3).

In Li and Moon (2001), the order/ size scheme of labelling is described to be a
triplet. The size of a node in a scheme is the property that determines the number
of children the scheme can hold (Li and Moon, 2001). The order on the other hand
is the format in which the labelling is performed. This implies that there are three
aspects of the node that are taken into consideration. In this case the order/size
scheme is seen to be similar to the containment labelling scheme that takes the

node’s order and order + size.

Figure 3.6, shows an example of order/size labelling scheme.

1,100, 1
(a)

-~

10, 30, 2 41, 10,2
: ®
11,5, 3 17,5, 3 el 45,5, 3
[Figure 3.6: Order/Size Labelling Scheme]

3.3.2.2 Strengths of Interval-based Labelling Schemes

In the interval-based scheme, it is possible to have labels which can function
perfectly as start position number and end position number as depicted in figures
3.5 and 3.6. This ability was classified by Eda et al. (2005) to be a major merit
when dynamism is important concern in the query processing. This is because
when there is a tree label and the same branch of the tree is present in the query

process, the start and end position numbers could both be used simultaneously or

55

Chapter 3: Related Work on XML Labelling Schemes

interchangeable when the node is traversed back from the branch of the tree
(Tatarinov et al, 2002). What is more, the interval that is created between the
start-position and end-position in interval-based labelling schemes plays a
significant role in establishing both ancestor-descendant relationship and parent-
child relationship (Cunningham, 2006). Indeed unlike the prefix-based scheme, the
interval-based scheme supports XML tree and this is a major advantage because
tree labels have been said to be more efficient than non-tree labels (O'Neil et al.,
2004). The basis for the support of XML tree is in the ability of interval-based
scheme to take both start and end position numbers, which are often used to
describe child and parent relationships on the tree. Fallside and Walmsley (2004)
explained that not only does the interval-based scheme support the tree label but
that there are both pre and post labelling schemes to which each label is assigned a
pre, post and level format to be a pre-representation of the ordinal number of the
element node found in the pre-order traversal sequence. Already, the pre/post
labelling scheme has been explained and so it can be expected that while there is a
pre-order traversal sequence with the pre-order, the post-order found in the
ordinal number of the element node is also traversed in a sequence independently

(Wu et al., 2004).

3.3.2.3 Weaknesses and Limitation

There are circumstances in which the use of interval-based labelling scheme may
be challenging. Similar to the problems with prefix-based scheme, Tatarinov et al.
(2002) noted that dynamic update is not supported in some cases of interval-based
schemes. Specially, when there are more nodes inserted than the interval allocated
between the existing nodes (Cooper et al, 2001). This limitation can be attributed
to the structure and functioning of the interval-based labelling scheme where
greater part of its workability and functionality is dependent on the interval
allocated to the nodes. The interval between the start position number and end
position number is allocated when the node is traversed back from the same
branch of the tree such as a child and its sibling (Duong and Zhang, 2005). This

simply shows the efficiency of the interval allocated between the existing nodes

56

Chapter 3: Related Work on XML Labelling Schemes

over the inserted nodes. As a result, dynamic update will either be slowed or
entirely halted when more nodes are inserted than the interval between the
existing nodes (Amato et al, 2003). This is because in this case, it is the inserted
nodes rather than the interval allocated that determines the outcome of the
dynamic updating process. The frequency of changes of XML documents have been
noted to be a major reason why dynamic updating is important and must be

considered to take place on a regular basis (Cooper et al., 2001).

Another limitation identified in the literature on interval-based labelling schemes
had to do with the fact that re-labelling takes place only under extreme
circumstances. In the opinion of Harold (Harold, 2005), this is actually the worst
case scenario with interval-based schemes, raising considerable overhead for the

scheme and almost nullifying its potential as the most compact labelling scheme.

Because the prefix labelling scheme has an advantage in terms of re-labelling, most
researchers have either selected to use prefix labelling schemes above interval-
based scheme when their priority is to minimise re-labelling or have used a
combination of a prefix labelling schemes and an interval-based labelling schemes
in order to attain better re-labelling functionality (Sean, 2006). Also writing on the
weaknesses associated with interval-based labelling scheme, Duong and Zhang
(2005) noted that re-labelling becomes difficult because of the introduction of a
node after a consecutive sibling cannot be computed from the existing solution.
The result of this is that re-labelling is always automatically triggered as illustrated
in Figure 3.7, which shows the number of nodes that required re-labelling when a

new node is inserted.

57

Chapter 3: Related Work on XML Labelling Schemes

2.9,2 10,13,2

3,4,3 ;: 7,.8,3
/

T ® o=
[} \
eHO (o)

= = = inserted node

l Figure 3.7: Insertion in Containment Labelling Scheme]

From the figure above, it is seen that when ‘Q’ is inserted as a new node, automatic
relabeling is triggered with ‘C’, indicating that there is only one node required for

relabelling.

Meanwhile, Gou and Chirkova (2007) were of the opinion that when engaging in
query processing, the automatic offset of re-labelling means that the user of the
document cannot have any control over the process. Certainly, an alternative
labelling scheme that avoids the stress of using a combined scheme in achieving

that would be beneficial.

58

Chapter 3: Related Work on XML Labelling Schemes

3.3.3 Multiplication-based Labelling Schemes

3.3.3.1 Structure and Description

A major descriptive characteristic of multiplication-based labelling schemes is the
positioning and numbers used in identifying their nodes. This is because Zhang et
al. (2001) saw that multiplication-based labelling schemes exhibit nodes that are
determined based on the use of atomic numbers. When it comes to the
determination and computation of the relationship between nodes however, it is
not these numerical labels that are used (Wu et al,, 2004). There are a number of
multiplication-based labelling schemes that have been used in optimising query
processing for XML. Common among these are the identifier labelling scheme
which was used by Kha et al (2002) and the prime number labelling scheme used
by Wu et al.(2004). Like other labelling schemes, the multiplication-based scheme
such as the prime number labelling scheme that is often used along with directed
acyclic graph (Sjoberg et al) makes use of parents, siblings, ancestors, and
descendants’ nodes (Schmidt et al, 2002). One unique feature of the
multiplication-based scheme however has to do with the fact that it has additional
relations such as children and nearest common ancestor (NCA) (Yun and Chung,
2008). In such DAG, the NCA is the lowest node that has two independent nodes on
the tree as ancestors. For example given two nodes X and Y, in a tree or DAG, the
NCA is the lowest node that possesses both X and Y as ancestors (Boag et al,
2003). Multiplication-based schemes function mainly based on the formation of
index structures which are reorganised when there is vertex updated during query
processing (Thonangi, 2006). Duong and Zhang (2005) observed a unique
behaviour in multiplication-based schemes where before the creation of node
labels, schemes such as the prime number labelling scheme allocate unique prime
numbers as the labels to every node. The number that results from this then
becomes the combination of the self-label of the node and its parent’s label. In
effect, the self-label which is created that becomes the unique path based on which

XML nodes are identified (Meuss and Strohmaier, 1999).

59

Chapter 3: Related Work on XML Labelling Schemes

3.3.3.2 Strengths of Multiplication-based Labelling Schemes

When compared to other labelling schemes, Yun and Chung (2008) asserted that
the multiplication-based scheme has the ability of facilitating simultaneous
processing outcomes when used in indexing tree or graph structured data. The
primary need for having labelling schemes is to avoid expensive join operations
when undertaking transitive closure computations as part of indexing. To achieve
this, it is expected that such qualitative outcomes including determinacy,
compaction, dynamicity, and flexibility will all be achieved (Li et al., 2006b). Even
though other forms of labelling schemes such as prefix-based schemes may
successfully achieve all these outcomes, doing so simultaneously has always been a
major challenge. But when such data structures as DAGs are introduced to
represent subsumption hierarchies in multiplication-based schemes such as the
prime number labelling scheme, it then becomes possible to achieve the preferred

outcomes in a simultaneous manner.

Another strength with the use of multiplication-based labelling schemes is the fact
that they are able to create tree edge relationships, which is absent in other
labelling schemes such as prefix-based scheme (Gou and Chirkova, 2007).
Meanwhile, when there is a non-tree relationship leading to a non-tree label, the
labelling process does not have the strength of the deterministic tree label
characters (Wu et al., 2004). This means that the multiplication-based schemes
which comes with a tree edge relationship and tree label do not need any special
storage and additional efforts to facilitate the query processing (Amagasa et al,
2003). On the whole, the multiplication-based scheme can be said to have a very

rich re-labelling ability for updates as the tree labels trigger such abilities.

3.3.3.3 Weaknesses and Limitation

From the description and structure given above, there are number of limitations to
the multiplication-based labelling scheme. In the first place, Harold (2004) saw the
multiplication-based scheme as being costly in its computation processes. This is

because multiplication-based labelling schemes make use of such complex

60

Chapter 3: Related Work on XML Labelling Schemes

labelling parameters as atomic numbers and prime numbers (Cormen et al., 2001).
Gabillon and Fansi (2006) also saw a situation where multiplication-based
schemes function based on subsumption hierarchies when they are applied in
applications such as 00 programming, software engineering and knowledge
representation. Once this is done, a growing number and volume of DAGs are
needed in the systems to support the demands that are expected to make the
appropriate index structures for XML query processing functional (Zhang et al,

2001).

These are all processes that come together to make the use of multiplication-based
labelling schemes based on costly computations which may be discouraging for
most novices who attempt to use XML data. In a related development, Hou, Zhang
& Kambayashi (2001) saw that the costly computation processes associated with
the use of multiplication-based labelling schemes makes it very difficult to apply to
large scale XML documents. The reason for this assertion is that its computation
process tends to make the size of resulting nodes very large and therefore
impacting on labelling negatively. The reason for this is that the more computation
processes are undertaken, the larger the size of the resulting scheme as internal
updating takes place internally (Zhang et al., 2001). This is why it is always difficult
to apply multiplication-based labelling schemes on large-scale XML documents

(Edaetal, 2005).

There is a unique characteristic of multiplication-based labelling schemes that is
often debated in literature as to whether it constitutes a strength or a weakness.
This has to do with the ability of the multiplication-based scheme to establish a
global order based on document order and the mapping of the self-label that are
involved in the functioning of the node labels (Yu et al., 2005). These global orders
are formed on the basis of the ‘simulation congruence’ (SC) value as used by
Harder et al. (2007). Tatarinov et al. (2002)opined that as far as the fact that global
order makes the multiplication-based labelling scheme integrative and universal, it
counts as an strength. However, this point is vehemently disagreed with other

researchers such as O’Neil et al. (2004) who lamented that the only condition

61

Chapter 3: Related Work on XML Labelling Schemes

under which the global orders become viable and useful is when simulation
congruence (SC) value stay small. This is because the SC value has the potential of
preventing scheme sizes from becoming very large when internal updating
processes are going on. However, there was evidence with a study by (Schmidt et
al., 2002) who saw that the SC value rarely stays small because the list of SC values
employed to determine the global ordering come in five nodes. As a result of this
situation, the SC value that results in global orders has been identified to produce
storage and maintenance that is very costly, especially in large XML documents
(Wu et al., 2004). The latter school of thought, that the limitations and demerits
that the global orders produce far outweigh the benefits that are expected from

them.

In addition to the points above, Cormen, Leiserson, Rivest and Stein (2001) saw
the multiplication-based scheme as being slow in processing and implementation.
This is largely due to the fact that when undertaking insertions and deletions with
the various multiplication labelling schemes, there is the need to engage in
recalculation of greater parts of the SC values. In one such instance, Fallside &
Walmsley (2004) found that almost half of the SC values that are used with the
Euler’s quotient function are recalculated. In such instances, query processing will
be very slow. Such lengthy processing, even though it may result in accurate
results undermines the updating processing and updating frequency. Supporting
this perspective, Tatarinov et al. (2002) observed that in the most basic form,
updating of XML requires the computation of existing labels. But in cases where
insertion and deletion of labels also demand recalculations, it would be expected
that the updating process will not only demand computing of its existing labels but

re-computations of the labels.

The re-computation process alone takes so much time, that it makes the use of
multiplication-based labelling schemes inappropriate when time or efficiency is a

priority in the query processing for XML data (Arion et al., 2007).

62

Chapter 3: Related Work on XML Labelling Schemes

3.3.4 Vector-based Labelling Schemes

3.3.4.1 Structure and Description

Zhang et al. (2001) described the vector-based scheme as having a static structure
and requiring a global rebuilding of labels triggered by the occurrence of an
update. This static nature notwithstanding, it has been found to have the ability to
be intrinsically ordered and typically modelled as a tree (Bosak and Bray, 1999).
The result is that vector-based schemes are able to function with documents that
obey the XML standards. The ability to intrinsically order and model a tree ensures
that like most other labelling schemes, the vector-based scheme encode not only
the document order but also the structural information within the document (Yun
and Chung, 2008). It is important so that the queries can exploit the labels without
accessing the original XML file. Xu et al. (2009, 2007) was one of the authors who
placed particular emphasis on the mechanisms that make the vector-based scheme
functional in XML document query processing. It was explained that a vector code

is a binary tuple that is expressed as (X, y), x being greater than zero. In the case of

two vector codes, A: (X1, y1) and B: (x2, y2), the relationship 21 < 22 must exist for

Y1 Y2
vector A to precede vector B in the vector order. When a new vector C is inserted
between vectors A and B, the vector code of C takes the form (x1+x2, y1 +y2). Since

the relationship? < Dt o Xy valid, the vector order is A<B<C (Xu et al,

1 yit Y2 V2

2007).

3.3.4.2 Strengths of Vector-based Labelling Schemes

One important strength or advantage of the use of vector-based schemes is that
they are easily compatible with other labelling schemes (Gou and Chirkova, 2007).
For example Xu et al., (2009) discovered that it is possible to use the vector-based
labelling approach together with interval-based and prefix-based labelling
schemes. This possibility is an important strength with vector-based labelling
scheme. This is because as has been seen with other labelling schemes discussed
earlier and those that will be discussed later, there are always limitations with

individual labelling schemes. The effect of these limitations on practical

63

Chapter 3: Related Work on XML Labelling Schemes

experimentation and use of labelling schemes in XML documents is that functional
outcomes with query processing that are limited may never be able to take place.
In such situations, it is only expected that other labelling approaches may be used
in addition to the substantive approach in achieving the limited function

(Cunningham, 2006).

Unfortunately though, it is not always the case that labelling schemes allow this
opportunity of being combined with other schemes. It is therefore very important
that in vector-based schemes, it is possible to introduce other approaches,
particularly the interval-based and prefix-based labelling schemes. Xu et al. (2012,
2009) actually discovered that some very specific schemes that are perfectly
compatible with vector order approach are Dewey ID encompass Dynamic Dewey
(DDE) and Compact-DDE (CDDE). Xu etal (2012) also indicated that application
of the vector labelling scheme to the interval containment-labelling scheme is
possible but this happens largely as a V-containment and not an independently

formed scheme.

3.3.4.3 Weaknesses and Limitation:

The strength discussed above gives an impressive outlook for the use of vector-
based labelling scheme. However there are some key weaknesses and limitations
with the use of vector-based labelling schemes in query processing of XML
documents. In the first place, (Harold, 2004) lamented that even though it is a
positive development that vector-based scheme can work with other labelling
schemes, this comes with a major resultant challenge. During the combination
process, the path may grow very large, having a significant effect on speed and
updating efficiency (Gou and Chirkova, 2007). In what is a slight contradiction to
the assertion just made, Tatarinov et al. (2002) argued that this increase in path
growth does not always happen but is highly dependent on a number of factors
including the complexity of the XML document in question. The latter therefore
opines that when the XML document is complex, it is possible to achieve the
combined labelling scheme approach without any difficulty with size and speed.

Having said this, it must be acknowledged that the complexity with which web

64

Chapter 3: Related Work on XML Labelling Schemes

activities and document reading are performed lately makes it necessary to make
provisions for complex XML documents in any endeavour with query processing

(Rousseeuw et al., 1999).

The fact that there may be path growth with the use of vector-based labelling
schemes depending on the complexity of the XML document cannot be overlooked
as a limitation. This limitation also serves as a motivation for further work on the
labelling scheme by emphasising on the need to achieve combined use of internal

schemes without any effect on the growth or size of the path.

Another major weakness with the use of the vector-based labelling scheme as
observed by Thonangi (2006) was the fact that there is often an outcome from the
combined labelling scheme approach where re-labelling is prevented. Zhang et al
(2001) however emphasised that prevention of re-labelling only occurs when the
need to undertake frequent updating contexts arises. It would however be unwise
assume that in a typical modern setup the need to frequently update can be
excluded in a typical query-processing scheme. It is in the light of this that the need
to ensure that the necessary provisions for re-labelling under any circumstance

with updating contexts is important.

Another weakness associated with the use of vector-based labelling scheme is that
the identification of relationships between nodes requires computation (Cohen et
al, 2010). These computations may deter ordinary users of XML documents as
they are mostly complex to implement. As it was mentioned in the initial sections
of the chapter, XML documents are designed to be read by both human users and
machine users of web content. If the exclusive reading is centred on machine users
then it would be expected that the complicity with the identification of relationship
between nodes which comes about due to the use of computations will not be a

major challenge.

65

Chapter 3: Related Work on XML Labelling Schemes

3.3.4.4 DDE Labelling Schemes

Xu et al, (2009) created a new labelling scheme known as Dynamic Dewey (DDE)
on the basis of the Dewey labelling scheme. The DDE scheme is capable of
managing both static and dynamic XML documents. The scheme consists of labels
that take the form of sequences of components to constitute a unique path from
the document root to a node. In the case of a DDE label az.az.am, the parent
label is az.az.am-1 while the local order is am. Figure 3.8 illustrates that the DDE

scheme and the Dewey scheme are identical with regard to the initial labelling.

O ® @

| Figure 3.8: DDE Labelling Scheme (Initial Labelling) |

The fact that the initial component of a DDE label is invariably a positive number is
taken into account by DDE label ordering. This is clearly valid for the initial labels

as the first component of all of them is 1.

As in the Dewey scheme, the level information is automatically stored by a DDE
label as its number of components. Arbitrary insertions and deletions do not affect

the validity of this property.

In the case of two DDE labels, ddeA: ai.az.am and ddeB: bi.by.b,, the labels

exhibit the following properties:

66

Chapter 3: Related Work on XML Labelling Schemes

e For ddeA to be an ancestor of ddeB, m<n and Lo o= Im
by by bm

e For ddeA to be the parent of B, ddeA has to be an ancestor of ddeB and m=n-
1.
e For ddeA to take precedence over ddeB in document order, A <4 B

where the following conditions must apply so that A <gq¢e B:

a a a
[] m<nand_1: _2:...: m
by by b
. a _ QA __ _ Q-1
* k <min(m,n),suchthat == ==--= == anday Xb; < by, X
by by by—1
a
. . a a Am—
e ForddeA to be a sibling of ddeB,m=nand =+ = 2=..= 2=t
by b, bm-1

Since 1 is the first component of all Dewey labels, the above properties of the DDE
labels can be applied in the scenario where a; = b; > 0 the same way as the Dewey
labels. Given that the initial DDE labels are identical to Dewey labels, the scheme
can be applied to static documents. However, the DDE labelling scheme was
developed to avoid re-labelling in dynamic XML documents during the process of
update. Figure 3.9 illustrates the ability of the DDE labelling scheme to handle

several insertions in XML documents:

2Lax

./. Y
3
~

o * 2

'w. Q F
~.”7 B .

1.1.1 | 113 1.2.1

£ .\.
[
B
\
R -
T 4

~
@
/
\

Figure 3.9: DDE Labelling Scheme (Handling Insertions) I

67

Chapter 3: Related Work on XML Labelling Schemes

3.3.5 Summary of major labelling schemes

However, a labelling scheme that supports only querying static XML would be
disadvantageous. This is because although relationships of the nodes are efficiently
determined by a static labelling scheme, dynamic updates which are essential to
performance are not provided in static schemes (Lu, 2013). In Mesiti (2004), the
combination of several schemes just to get the different advantages would not be
realistic due to the storage space cost that it comes with. To counter this challenge,
there is need to develop a robust XML labelling scheme that is applicable for both
static and dynamic XML documents. To improve on the effectiveness of the
dynamic XML scheme, many studies have focused on the need to maintain
efficiency (Amagasa et al., 2003, Cohen et al, 2010, Eda et al, 2005, Li and Ling,
20054, Li and Ling, 2005b, O'Neil et al., 2004, Wu et al., 2004, Xu et al., 2009). In all
these cases the main idea was to eliminate or substantially reduce the need for re-
labelling all the nodes. One such application of the reduction is in Mesiti (2004),
who proposes the development of a dynamic labelling system that performs sparse
labelling. In this method, a number of nodes around the updated position are
randomly selected and labelled. Not all the nodes are re-labelled in the database
thus the cost of bulk labelling and the re-labelling of the entire group of nodes is
avoided. The reason for this is to allow for effective processing of the selected
nodes within the time frame given for the update to take place as labelling several
nodes within a limited time frame may affect effectiveness (Xu et al., 2009). These
earlier approaches meant that at the initial level, gaps would be created and then
their main concern remained developing methodologies to maintain the efficiency

of the schemes despite the gaps.

O’Neil et al. (2004) is an example of a scheme that leaves such gaps in the initial
nodes. It describes a scheme called the ORDPATH labelling scheme. For initial
labelling, this scheme solely employs positive, odd integers, while for subsequent
insertions it uses negative integers. However, ORDPATH is not compact due to the

gaps left, while the label insertions are made more complex by the insertion

68

Chapter 3: Related Work on XML Labelling Schemes

mechanism that it uses. To enhance the compactness of labelling schemes and
increase update performance, as well as to avoid having to leave gaps in the initial
labels when processing updates in XML documents, Li et al. (2006a) developed a
labelling scheme that involved converting the labels from their original format to a

different ones, which are the updated versions.

The complexity of updating and querying is increased by the conversion of labels
into dynamic formats, thus raising the cost of labelling. More recently, Xu et al
(2009) sought to enhance the encoding performance by developing two new
labelling schemes for encoding dynamic XML trees on the basis of the
mathematical operations of Dewey components. The Dewey component is a
labelling scheme that has been tailored to perform in both static and dynamic XML
documents (Warfield, (2010)). Although updating XML documents was
demonstrated to improve the performance of the labelling schemes somewhat, the
labels within them remained verbose, therefore increasing the cost of storage.
Additionally, the insertion of nodes between two sequential siblings may make any
of the four major labelling schemes which are prefix-based, interval-based,

multiplication-based, and vector-based schemes inefficient.

To overcome this gap, it is expected that any new labelling scheme surfaces which
ensures that even if the difficulty to overcome re-labelling persists, then the need
for re-labelling all the nodes will be eliminated as part of the scheme. This is
however something that cannot be guaranteed when using the interval-based

scheme (Amagasa et al., 2003).

3.4 Functional characteristics of ideal labelling schemes

The review and discussion on existing labelling schemes have clearly outlined the
strengths and weaknesses associated with these schemes. But to have a better
understanding of how the existing labelling schemes serve the purpose of XML
labelling, it is important to review literature on what is seen as expected functional
characteristics of labelling schemes. By so doing it will be possible to determine

the extent of gaps that exists with the existing labelling schemes, especially their

69

Chapter 3: Related Work on XML Labelling Schemes

weaknesses. In this section of the literature review, some important functional
characteristics that are expected from labelling schemes to ensure they take
advantage of the strengths identified, whilst overcoming the weaknesses are

reviewed and discussed.

3.4.1 Time needed to determine the different relationships

When creating query processes, Rusty (Harold, 2004) noted that there is the need
to ensure that the relationships between nodes can be established using labels.
The authors of existing labelling schemes, researchers and developers of the
schemes are silent on the time used in determining the different relationships that
exists between the nodes. This is not to say that the functionalities of various
relationships such as ancestor/descendant and parent/child relationships are not
stressed. However, in the course of actually identifing the relationship, it is
important that the time needed to determine the relationship is made very clear
(Cunningham, 2006). The reason for emphasising time is that the timing used to
establish the relationship could go a very long way to affect the overall efficiency of
the labelling process (Rousseeuw et al, 1999). This is because most labelling
schemes would require the relationships to be determined before other

procedures can follow in the query processing.

There is also the level, which explains the node’s level within the XML tree where
the document root level is given as one (Amagasa et al., 2003). This relationship is
also normally established even though Cunningham (2006) saw that order and
level are very difficult to establish in most known schemes. Three other
relationships that are very common with the previously discussed schemes are
ancestor/descendant (AD), parent/child (PC) and lowest common ancestor (LCA).
Together, these three relationships are determine based on specified rules. For this
reason, Harold (Harold, 2004) identified these three relationships as some of the
most time consuming when talking about time needed to determine the different
relationships. Meanwhile, existing labelling schemes such as the vector-based

schemes highly rely on individual relationship establishment between these three

70

Chapter 3: Related Work on XML Labelling Schemes

relatives (Li and Moon, 2001). Finally there is the sibling relationship, which
determines whether two nodes share the same parent node (Cooper et al., 2001).

3.4.2 Queries’ performance before and after insertions

Ideally, this could be said to be the most important outcome with any labelling
scheme. This is because the overall goal of having a labelling scheme together with
other schemes like indexing and numbering schemes is to ensure that query
processing for XML data is facilitated (Li et al, 2006a). In effect, the extent and
level of query performance can be said to be the overall representation of the
efficacy of the labelling scheme. Most of the labelling schemes discussed did not
show much prospects when it comes to query performance for the XML data.
Several factors account for this, including the structure and procedural functions of
these schemes (Xu et al, 2007). Most interval-based labelling schemes which have
been discussed above can certainly be said to fail in addressing this expected
characteristic. This is because these interval-based labelling schemes have a
structure that makes it overwhelmingly complex to achieve efficient query
performance (Milo and Suciu, 1999). To ensure that the query performance is not
negatively affected, there are some obstacles that Eda et al. (2005) felt must be
overcome. One of these is the need to avoid re-computation in the context of
frequent updates. Again, Fennell (2013)indicated that the query performance must
show a relatively constant competence at all levels of insertion, that means both

before and after insertion.

A number of researchers have clearly outlined the parameters that may be used in
determining query performance before and after the insertions. One of these was
suggested to be the query response time before and after the insertions
(Cunningham, 2006). By implication, it is expected that both before and after the
insertions, the query response will not be seriously degraded. One other
determinant of performance that was proposed in the literature was the need to

have as wide a range of queries tested as possible (Gou and Chirkova, 2007).

71

Chapter 3: Related Work on XML Labelling Schemes

The vector-based scheme was criticised for having a re-labelling performance that
is compromised when the complexity of the XML document is high. It is against
this backdrop that the need to ensure that as many queries with different

complexities and objectivity are evaluated as possible.

Also writing on the examination of query performance, Yoshikawa, Amagasa &
Uemura (2003) suggested that to obtain the best result with the query
performance of any two given schemes before and after insertions, it is important
that the evaluation of all the queries involved in the schemes are performed on the

same platform.

3.4.3 Scheme'’s ability to handle different types of insertion

To activate query processing in an XML document, there is the need to perform
several types of insertions of nodes (Gou and Chirkova, 2007). Some of these may
be new nodes while others may be existing nodes. On the whole, Fisher et al
(2006)posited that one important characteristic feature that can be in any model
labelling scheme is the ability of the scheme to handle different types of insertions.
Meanwhile, from the beginning of the review, it will be noted that mention of
insertion handling ability by the other labelling schemes has not been discussed.
This exhibits a significant gap in literature. Because the ability to handle different
types of insertion is important, some common types of insertions that are

attributed to XML documents have been reviewed.

Alstrup and Rauhe (2002)mentioned uniform insertions as one of the types that
must be handled effectively by any model labelling scheme. Uniform insertions
mean insertions made on new nodes found between any two consecutive nodes.
That is, when there are two existing nodes, an insertion of a new node made in-
between the two forms a uniform insertion. Using the cases of multiplication-
based scheme and prefix-based schemes as example, it can be noted that schemes’
ability to handle uniform insertions has often been triggered by the numbering

systems used by these. To effectively identify the ability to handle uniform

72

Chapter 3: Related Work on XML Labelling Schemes

insertion, the time spent in executing the insertions and the new label’s size after

the insertion may be measured (Cooper et al., 2001).

Ordered skewed insertions were the second types of insertions that ought to be
handled by any ideal labelling scheme. The description of an ordered skewed
insertion is that the insertion is done before or after a particular node repeatedly
(Cohen et al., 2010). This means that when there is an existing node and several
new nodes are introduced either before or after the existing node, the scheme
should exhibit an ability to handle the resulting insertion. Cormen, Leiserson,
Rivest & Stein (2001) argued that the number of insertions made will be influential
in determining the ease with which the scheme can handle the resulting insertion.
Most forms of existing labelling schemes have failed to address this phenomenon
because for them, there is a high rate of efficiency reduction when it comes to
increasing the number of nodes that are introduced as part of the ordered skewed

insertions.

The third type of insertion that was identified in the literature was random skewed
insertion. Like the name suggests, random skewed insertion is said to occur when
new nodes are randomly inserted between existing nodes (Li et al., 2006b). The
reason the scheme’s ability to handle random skewed insertions will be said to be
very important is that some of the existing labelling schemes have a fixed node
structures that makes it difficult to introduce random insertions (Sean, 2006). An

example of this is a prefix-based scheme.

3.4.4 New labelling scheme that is appropriate to support dynamic update

Throughout the review and discussion of other labelling schemes, two factors or
parameters for ascertaining the strength and weaknesses of the schemes were re-
labelling and dynamic update. These two have further been highlighted as being
important for any labelling scheme that supports dynamic update (Fisher et al,
2006). Writing on the subject, Alstrup and Rauhe (2002) noted that most modern

usage of the World Wide Web requires frequent updates of the XML documents

73

Chapter 3: Related Work on XML Labelling Schemes

which are used as the universal language between the web and human users.
Because of this, an ideal labelling scheme will be one that supports dynamic
updating, no matter what new nodes are added (Bosak and Bray, 1999). One
serious challenge with most existing schemes is that even though they may allow
updating, this is only limited to static XML documents (Amagasa et al, 2003).
Based on this understanding, it can be reiterated that a labelling scheme that
exhibit a high sense of compatibility with dynamic updates whilst embracing

updates with static XML is needed.

Fennell (2013) opined that a labelling scheme that supports only querying of static
XML would be disadvantageous in this case. This is because although relationships
of the nodes are efficiently determined by a static labelling scheme, the dynamic
update that is essential to the issue of performance is not provided in static
schemes (Lu, 2013). It is not surprising that even with some of the earlier labelling
schemes such as LSDX, attention has been on the need to creating a labelling
scheme which supports the process of updating XML data without having to re-
label the existing labels (Xu et al., 2007). This is because if existing labels have to
be replaced before updating can take place, then the overall performance will be

significantly slower (Cohen et al., 2010).

3.5 Summary of the review

On the whole, the literature review revealed that these other labelling schemes
have unique structures and characteristics that make it possible for them to
perform the roles in query processing as far as the use of labelling is concerned
(Milo and Suciu, 1999). Even more, most of these have a strengths which make the
selection of one form of labelling scheme over the other possible, based on the

specific goal that a researcher or an experimenter may be aiming to achieve.

For example, the prefix-based labelling scheme has the strength of forming a group
based scheme, while the multiplication-based schemes have the strength of

achieving simultaneous processing outcomes without having to implement

74

Chapter 3: Related Work on XML Labelling Schemes

individual schemes to come out with the processing outcomes or factors

(McCreight, 1976, Milo and Suciu, 1999).

The literature review has also outlined the weaknesses and limitations of existing
labelling schemes. Some recurring weaknesses such as issues with updating
efficiency, insertion of new nodes and maintaining performance of queries
performance before and after insertion were found with almost all existing
labelling schemes. It was rightly appreciated in literature that older labelling
schemes have constantly been updated and improved but most of these
weaknesses persist (Li and Moon, 2001). A typical example of such weakness was
the need to engage in regular re-computing in the XML data whenever there was a
deletion and/or insertion (Goldman and Widom, 1997). Apart from the fact that
the review showed that such a re-computing processes was expensive, it was also

time consuming and thus degraded efficiency.

On the whole, four major expectations were set and reviewed. The first was the
time needed for the initial labelling process to the take place along with the label’s
size. The second was on the time needed to determine the different relationships
existing in the nodes, while the third focused on queries’ response time before and
after insertions took place. The final metric is that any proposed scheme must have
the ability to handle different types of insertion (Kaplan et al, 2002). The next

chapter of the thesis is presents the proposed scheme in detail.

3.6 Conclusion

In this chapter, the various aspects of efficiency and effectiveness of the different
existing schemes have been discussed. As demonstrated in the discussion, the
proposed labelling scheme will borrow the strengths of several schemes that have

been reviewed by several studies.

Meanwhile, the fact that there is massive and active human usage in web

processing as manifested through the use of XML documents cannot be

75

Chapter 3: Related Work on XML Labelling Schemes

underestimated. There is therefore a motivation to work out on a new labelling
scheme which makes the identification of relationships between nodes less

dependent on computations.

The schemes discussed in this chapter also form a basis for evaluating any
proposed scheme. The specific weaknesses that have been identified in these
schemes and their mitigation form strong grounds for the selection of the
modalities in dealing with the related issues of schemes like re-labelling in the case
of an update. The characteristics that the proposed labelling scheme aims to

provide are highlighted.

76

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Chapter 4: GroupBased Labelling Scheme for
Dynamic XML Databases

4.1 Introduction

Labelling a node of an XML document to reflect the structure is an important
process that helps in indexing and retrieving XML data effectively. However,
designing a dynamic labelling scheme which can handle insertions of new nodes
without the need to re-label the existing labels, as well as taking the size of the
labels and the query performance into consideration, is a challenging task; this was

mentioned earlier in the literature chapter (Ch. 3).

This chapter presents the principles of the dynamic labelling scheme proposed in
this thesis before the design and implementation details are examined in Chapter
5. In this chapter, an overview is given in Section 4.2. Then, Section 4.3 illustrates
how the initial labels are allocated and how the different relationships are
determined. Section 4.4 describes how insertions are handled and how different
relationships are preserved. A validation of the relationships using algebra is
shown in Section 4.5. Finally, in Section 4.6, the chapter ends with a general
conclusion that leads to the following chapter which discusses the scheme from

the point of view of implementation.

77

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

4.2 An Overview of the Scheme

The proposed scheme is based on the parent-child grouping to facilitate faster
identification of parent-child and sibling relationships, based on a simple
comparison. Parent-child grouping was also selected due to the fact that all XML
documents come with this type of relationship (Goldman and Widom, 1997).
Again, parent-child and sibling grouping facilitate smoother insertions of new
nodes, given the fact that in this form of grouping only a simple tree structure will
be dealt with rather than the whole tree (Kaplan et al., 2002). Gusfield (1997) also
observed that when dealing with parent-child groupings, labelling can be thought
of as being easier, faster and more accurate as it deals with a simple tree structure.
The simple structure has to do with a root node and its direct child nodes. The
advantage of allowing smoother insertion builds on the prefix GroupID labelling

scheme but does not restrict the number of nodes that can be inserted.

Another critical characteristic of the scheme is that it uses two labels for each node
in order to facilitate the processing of nodes within the same group using their
simple local labels. Where as the global label is used to connect a group to the
whole tree, which helps in identifying relationships between nodes, which belong
to different group (Milo and Suciu, 1999). Based on existing schemes such as the
DDE labelling scheme (Xu et al.,, 2009), in this scheme to create the first part global
label has its advantage as it facilitates the insertion without re-labelling of the

existing labels. It also ensures the identification of all relationships.

What is more, the scheme is designed to allow fast identification of relationships.
This is because as fast as the relationships between nodes can be determined, the

query processing will be optimised (Li and Moon, 2001).

This labelling scheme is divided into two parts. Each label has a local and a global
part. The local label, which is given to each node, can be duplicated although not

within a group whereas the global label uniquely identifies a group of local labels.

78

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

This is generated based on the Dynamic Dewey labelling scheme (Xu et al, 2009).
Xu’s scheme is a Dewy labelling scheme (Tatarinov et al, 2002) used when the
document is static; i.e. when no insertions have occurred. Each node has local and

global labels and they are assigned as follows:

e Every node except the root node is grouped with its child nodes and is given

a global label.

e The local label is assigned for each node within a group starting from the

parent node; then, the child nodes are labelled in a serial order.

e The root node refers to the document root. And the child nodes for a
specific node are the immediate child nodes without the grandchildren or
further descendants (i.e. the nodes that have direct parent/child

relationship with a specific node)

4.3 The Initial Labelling

Firstly, ‘1’ is assigned to the document root as its global and local labels. Then two

phases of the process are performed.
Phase 1:

This starts by grouping every node and its child nodes to form a sub-tree. Each
sub-tree is given a global label, which consists of two components if the node is not
a child of the root. The first component is the Dewey label. The second one is either
the number of the child node, starting from left to right 1,2,3...it"" where it" is the
last child node; or it is information about a new inserted node when random
skewed insertion has occurred. This second component of the global label is used
to preserve the document order after insertions have been made. More details are

provided in the next section.

79

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Phase 2:

This phase involves assigning a local label to each node where all the document
root’s child nodes have the same local label, which is ‘1.0’. Then, the local label of
the first child within a group is calculated by incrementing its parent’s local label
by one; the next sibling node’s local label is then derived by adding one to the
previous sibling local label and so on until the end of the document. Figure 4.1.1
shows the initial labelling of the scheme and the nodes’ full labels are presented in

Figure 4.1.2 and Table 4.1

f6:1.2.1.1 |

G: Global label

Figure 4.1.1: GroupBased Scheme Initial labelling = 12‘,;":::;,%

L: Local label

80

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

11

1.2.1;2.0 1.2.1.2;4.0

®

1.21.1;3.0 1.21.1.2;5.0

1.2.1.1.1;4.0

Figure 4.1.2: GroupBased Scheme Full Labels after Initial labelling

81

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Node || 1stpartofthe | 2rd part of the Complete Local Label

Global Label Global Label Global Label
(Mesiti et al.)

1.2.1.1 | 1
1.2.1.1 _

Table 4.1: The GroupBased Scheme Initial labelling for XML tree in Fig.4.1

Name

BEEEIEEEIEI-

As seen in Figure 4.1.1: A node can belong to two groups, which seems to overlap.
However, this is not an issue because when such overlap occurs, the node can be
treated in two ways as required to handle the situation. The first is to handle the
overlapped node as a child node in a group, while the second is to handle it as a
root node in another group (Zhang et al., 2001). For example, given a node H which

belongs to a group with label 1.2.1 as child node, this same node is also a root in

82

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

another group which is labelled 1.2.1.1. In this example, the group label where H is
aroot can be seen to have been assigned by simply concatenating the H node’s first
part of the global label (Mesiti et al.) where it appears as child node and its second
part of the global label (SG). Thus, from this explanation, two nodes belong to the

same group based on the following definition:

Definition 1:
n;and nz; € same group if, and only if, one of the two following conditions holds:
1. Their 15t part of their global labels are the same
2. The 1st part of the global label of one of them was extrapolated from the
global labels of the other one.
e.g. from Fig 4.1.1 and Table 4.1,] 'K’ and ‘H’ € same group because the FGs of
‘I’ and ‘K’ are the same which is 1.2.1.1. And was extrapolated by concatenating the

FG and SG of ‘H’; ie: “12.1” +".1”.

4.3.1 The Scheme’s Properties

Given two nodes, nj, nz with level;, level; as their levels (the level refers to the level
of the element node in the XML tree), and with labels A and B, where global labels
are ai.dz...am, it and bi.bz...bn, j* respectively and their local labels are Lai. Laz

and Lb;. Lbz, the label properties can be defined as in the following:

e Node Level:
The level information of each node can be derived from its global label as

follows:

The level is the number of components in the first part of the node’s global
label plus 1 if the second part of the global label exists; i.e. if the SG equals

null, the level is the number of component in FG.

e.g. As shown in Fig. 4.1.1 and Table 4.1, the level of node ‘B’ is (Kasim et al.),
whereas the level of node ‘J’ is (5) based on their global labels, as shown in

Table 4.1.

83

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

e Label Order:

Case 1: label order between nodes within the same group; i.e. the first parts
of their global label are equal or the global label of one of them forms the
first part of the global label of the other. In this case, the order is based on

the nodes’ local labels and can be simply determined as follows:

Definition 2:
np (is before) nz if, and only if, one of the two following conditions holds:
C1: level; < levelz

Cz: level; = level;and La;. Laz < Lby. Lb;

e.g. from Fig. 4.1.1 and Table 4.1, node ‘B’ with level (Kasim et al.) is before
node ‘D’ as its level is (3), and node ‘H’ is before ‘I" as ‘H’ local (3.0)< ‘T’ local

(4.0).

Case 2: label order between nodes within a different group. In this case, the
order is based on the first part of nodes’ global labels and is determined

using the DDE pre-order definition (Xu et al, 2009) which states that:

! Given two DDE labels, ddeA: a;.a..a, and ddeB: b..b:.b, :

| A <4s. Bifand only if one of the following apply:

- @ _ a_ _ :
m nandh1 5 e

|
* k < min(m,n),such that :—’= % == :“" and ayxXb; < by X ay
1 k-1

Adopted from (Xu et al, 2009)

84

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

e.g 1. from Fig. 4.1.1 and Table 4.1, node ‘C’ <ppe node ‘G’ because :
FG for node ‘C’' = 1.1 & FG for node ‘G’ = 1.2, thus,

As their FGs consist of two components = the minimum (2,2) = 2 such that

. _ 1 1
k can be equal 2 as it <= 2, such that L _Z_...=%13 --Z3nd
by b, bg—1 1 1

ar=1, ar=1, b1=1, bi=1 2> 1 X1 <2x1 -1 <2 and the ‘G’ <ppr‘C’ is
falseas a;=1,ax=2,b1=1,bx=1 2> 2Xx1 <1x1 -2 >1

e.g 2. Assuming node ‘W’, which is not present in the tree, is the first child of
node ‘T, its FG will be 1.2.1.2 and from Fig. 4.1.1 and Table 4.1, node ‘] with
FG 1.2.1.1<ppe node ‘Q’ because :

As their FGs consist of four components = the minimum (4,4) = 4 such that

. _ 1
k can be equal 4 as it <=4, such that %o =%k o
by b, bg—1 1

ar=1,ak=1,b1=1,b;=2 > 1x1 <1x2->1<2

2 1
===>and
2 1

e Ancestor/Descendant (AD) Relationship:

Definition 3:

ni (is ancestor of) nz if, and only if, one of the two following conditions holds:
C1: level; < level; and m <=n: n1 & nz € same group

Cz: level; < levelz and m < n ,such that, n; global label 2 FG.SG = az.az....am
and nz global label - FG.SG = b1.b;....bs

a a a
Where _1:_2::_m
by b bm

If n;is the document root, which means m=1, AD is true by default as the

document root is ancestor to any other node.

e.g. from Fig 4.1.1 and Table 4.1, ‘F’ is an ancestor of ‘H’ as they are both in
the same group and ‘F’ level < ‘H’ level - (C:applies). However, based on
(C2),'E’ is an ancestor of ‘K’ such that, global label of ‘E’ is 1.2 (as ‘E’ doesn’t

have SG) and the global label of ‘K’ is 1.2.1.1.2 which is the result of

2

() 1
concatenate ‘E’ FG and SG. Thus, 2 = £ = ... = Z—méz =7
m

by b,

85

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Parent/Child (PC) Relationship:

Case 1: n; & nz € same group. The following definition applies.
Definition 4: n; (is parent of) nz if, and only if, ni(is ancestor of) nz under C; of

Definition 2.
Case 2: n; & nz € same group where n; is the root document and n; its child,

such that, nzlevel = 2.

e.g. from Fig. 4.1.1 and Table 4.1, node ‘E’ is the parent of node ‘G’ as ‘E’ is an
ancestor of ‘G’ based on C; of Definition 2. Furthermore, node ‘A’ is the parent

of node ‘E’ as ‘A’ is the root document and ‘E’ level =2.

Sibling Relationships:

Definition 5:

n; & nz are siblings if, and only if, one of the two following conditions holds:

Ci: level; = level; and n; & n; € same group (i.e. a1.az...am = b1.bz...by):
a.FG /b.FG =1.

Cz: level; = level; =2 (i.e. the root document is their parent).

e.g. from Fig. 4.1.1 and Table 4.1, node ‘C’ & node ‘D’ are siblings as they
belong to the same group and their levels are equal. Node ‘B’ and node ‘E’ are

also siblings as their level =2.

Lowest Common Ancestor (LCA):

Definition 6:
The LCA between n;and n; is n3 where the global label of n3 is di.d>...dk, ith
and n3 is an ancestor of both nodes and one of the following two conditions

also apply:

86

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

d d d
Cir = =2 =+ = % kisthe min (m,n).
by b by

Cz: n1, nz and n3 € same group : 41.0z...m = b1.bz...bp= d1.dz...dk : && nsis the

parent node of n;and nz

e.gl. from Fig. 4.1.1 and Table 4.1, the LCA between node ‘]’ and node ‘T’ is
node ‘F’ where their global labels (FG concatenate SG (if SG exists) are 1.2.1.1.1
, 1.2.1.2 and 1.2 respectively, and ‘F’ is the ancestor of both J" and ‘I’ from
Definition 3. C;applies such that, the number of components in |’ and T

global labels is 5 and 4 respectively = the minimum (5,4) = 4; and the

L 12
following is true T=5

e.g2. Node ‘B’ is the LCA between node ‘C’ and node ‘D’ based on Czwhere the
first part of their global labels are equal and ‘B’ is an ancestor of both of them

based on C; of Definition 3.

87

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

4.4 Handling Insertions
This section shows how the re-labelling of the existing nodes is avoided during

different types of insertion (Figures 4.2-4.6).

e Leftmost Insertion: Insert a new node, n, before n

G: Global label
fG: 1*t part of G
sG: 2™ part of G
L: Local label

...... new inserted nodes

Figure 4.2: Handling Insertions (Leftmost Insertion) |

Case 1: If n is a child of the document root, a new group is created where nyis
the root and the first part of the global label is set based on the DDE scheme’s

leftmost insertion mechanism, as described below:

! DDE Leftmost Insertion:
! As A is the first child of a node, when a new node is inserted before the node

! A: a,.0,.a, where the label of the new node will be a,.a,.(a,~1).

| Adopted from (Xu et al, 2009)

88

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

As with the other child nodes of the document root, the local label of this nyis

‘1.0’ and the second part of its global label is null: e.g. node ‘T’ in Fig. 4.2.

Case 2: In the case of inserting nywithin a group where n is the first child, the
node’s local label is calculated by decrementing the first component of the n
local by one. Then, if the resulting local equals the local of the parent node, the
same component must be decremented again. However, the node’s global

label is set as follows:

o FG: is the same as the FG of the node n because they are siblings and
elements within the same group.
o SG:is calculated by decrementing the SG of n by one:

e.g. node ‘M’ in Fig. 4.2.

e Rightmost Insertion: Insert a new node, ny, after n

G&L: Y
/\ e 1G:1.3
‘;-1: S
B 3
L0,
81201 Se? """
-
s
4
/
/’
,' L4.0 -5, » i
! oG] - 6.0 ° G: Global label
\ 63 X ,‘ 1G: 1" part of G
\\ P sG: 2™ partof G
\ ,' L: Local label
s ’
S .
b LA | new inserted nodes
Figure 4.3: Handling Insertions (Rightmost Insertion) I

89

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Case 1: If n is a child of the document root, the procedure outlined for Case 1
in the leftmost insertion applies in terms of creating a new group where nyis
the root, ny local label is ‘1.0’ and the second part of its global label is null. But
the first part of nx global label is set based on DDE’s rightmost insertion

mechanism, as follows:

S R R R R W R WER R WER R R R W R R R R R R R R R W R R R R R R R e R e w e

! DDE Rightmost Insertion:
! As A is the last child of a node, when a new node is inserted after the node

! A: a,.a;.0, where the label of the new node will be a;.a,.(a,+1).

Adopted from (Xu et al, 2009)

e.g. node ‘R’ in Fig. 4.3.

Case 2: In the case of inserting nywithin a group where n is the last child, the
node’s local label is calculated by incrementing the first component of the

local of n by one. However, the node’s global label is set as follows:

o FG: is the same as for the first part of node n.
o SG: is calculated by incrementing the second part of n by one:

e.g. node ‘X’ in Fig. 4.3.

90

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

e [nsertion between two siblings: Insert a new node, ny between n; and n;

L:2.0 L2.1 L:4.3
SN sGucan seissw R
-~ s -

G: Global label
fG: 1* partof G
sG: 2™ part of G
L: Local label

--—-- new inserted nodes

Figure 4.4: Handling Insertions (Insert Between two nodes) I

Case 1:

If the document root is the parent node of n1 and nz, the procedure noted in
Case 1 for the leftmost insertion applies in terms of creating a new group
where nyis the root, nx local label is ‘1.0’ and the second part of its global label

is null. But the first part of nx global label is set based on the DDE insert-

between mechanism as follows:

" DDE Insert-Between: I

* When a new node is inserted between two consecutive siblings A and |
B, the label of the new node will be A+B (i.e. is the result of adding |

each component in A to its correspondence in B). |

Adopted from (Xu et al, 2009)

91

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Thus, nyx FG is the result of adding each component in ni FG to its

correspondence in nz FG.
e.g. node ‘Q’ in Fig. 4.4.
Case 2:

In the case of inserting nywithin a group, and if n;, n; were labelled during the
initial labelling (i.e. they exist in the original document before any insertion),
or niis newly inserted and nzis not, the procedure used in Case 2 for the
rightmost insertion applies for the local label and the first part of the global
label. However, the second part of the global label holds references of both n;

and nzlocals.
e.g. node ‘S’ between ‘C’ & ‘D’, then node ‘U’ between ‘S’ & ‘D’ in Fig. 4.4.
Case 3:

In the case of inserting nywithin a group, and when nj, nzare themselves
newly inserted, the node’s local label is calculated by adding each component
of the local of n;to its corresponding nzlocal. On the other hand, the node’s

global label is set as in Case 2:

e.g. node ‘V’ between ‘S’ & ‘U’ in Fig. 4.4.

92

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

e [nsertion Below a Leaf Node: Insert new node, nybelow n.

[]

F L:3.0
L:2.1

: L:2.0 - - 5G:2 | , ’ N
| sG:1 , > $G:LCALD @ 1 ’ N
\ \ \
N ! \ ! ! 3.0 |
“ ~ ! I \| - ’ \ 5G:2)
-~ 1 H \ " \ /,
! 1 \ - b v
P bccea="" \
| | \
fG:2.2.31 [&5 S \
l. sGil | \
|‘ ! \
] |
\ P ']
\ 7 [
\ ri |
Al ’
e - I
- h
G: Global label /
fG: 1* part of G !
sG: 2" part of G
L: Local label

------ new inserted nodes

Figure 4.5: Handling Insertions (Insert Below a Leaf Node) |

Case 1: if the leaf node initially exists or it is a child of the document root:

A new group is created and given a global label, which is a concatenation
between the first and second parts of n’s global label. However, the node’s
local label is calculated by adding one to n’s local label and its SG is set to

‘1":e.g. node ‘L’ in Fig. 4.5.
Case 2: if the leaf node is inserted between two nodes within a group:

This is similar to Case 1 in terms of SG and the local label. But the FG is set by
adding the FG of the left node’s child node to the FG of the right node’s child

node; these FGs can be extrapolated if the nodes are leaf nodes.

93

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

e.g. node ‘P in Fig. 4.5; the child(s) nodes of ‘C’ and ‘D’ have ‘1.1.1" and ‘1.1.2’
as their FGs respectively. Thus, the FG of node ‘P’ is (1+1. 1+1 . 1+2 = 2.2.3).
This also indicates that ‘S’ and ‘P’ € same group as FG of ‘P’ was extrapolated

from ‘S’ global labels where the SG of ‘S’ holds references.

Figures 4.6.1 and 4.6.2 show the XML tree in Figures 4.1.1 and 4.1.2

respectively after all types of insertion and Table 4.2 shows the labels after

insertions.

~ \
/ -

[m I - 4
\ / -- - P
\ / /

Y ’
\s_—, -
Fd
;.
/
/
/
/ L:0.0
,’ $G:0 ¢

G: Global label
fG: 1* part of G
sG: 2™ part of G
L: Local label

---=== New inserted nodes

Figure 4.6.1: Handling Insertions Ss. .’

94

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

1.2;1.0 1.2.2;3.0 1.2.2.1;4.0
B—o—)

1.2.1;2.0 121.2;40

OO,

1.2.1.1.1;4.0 1.2.1.1;3.0 1.2.1.1.3;6.0

H

1.2.1.1.2;5.0

Figure 4.6.2: GroupBased Scheme Full Labels after Insertions

95

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

1stpart of the | 2nd part of the Complete Local Label
Global Label Global Label Global Label (L)

(Mesiti et al.)

-
Uy
(e}

N
w

[N
—_
(e}

—_
o

—_
—_
[UnN
()

w
(e}

.
EI.
EI.
2.0
H
-
-
- .
M

1.1, Ref(C&D)

1.1, Ref(S&D)

1.1, Ref(S&U)

[UnN

—_
] o

w
)

926

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Node || 1st part of the 2nd part of Complete Local Label
Name || Global Label the Global Global Label (L)
(Mesiti et al.) Label (SG)

Table 4.2: The GroupBased Scheme Labels after Insertions

4.4.1 The Scheme’s Properties after Insertions:

When n; and nzare inserted between two nodes, the SGs of their global label

are (iz, iz) and (jz, jz).

e Node Level:

The same as before insertions.

e.g. As shown in Fig. 4.6.1 and Table 4.2, the level of node ‘U’ is (Kasim et al.),
whereas the level of node ‘P’ is (4) based on their global labels, as shown in

Table 4.2.

97

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Label Order:

Case 1: label order between nodes within the same group. In this case, the
order is based on either the nodes’ local labels or the second part of their

global labels as follows:

Definition 2.1:

np (is before) n; if and only if, one of the four following conditions holds:

Ci: level; < level

Cz: level; = level; and Laj. Laz < Lbi. Lbz: n1 & nzare initially labelled OR
niLocal & nzLocal are not resulted from locals addition.

C3: level; = level; and n; & nz are inserted (not initially labelled) and at least
one of their locals is resulted from locals addition = Laz X Lb; < La;X Lb2
C4 level; = level; and nz local is resulted from locals addition and n; is
initially labelled; aSG X Lbz < La;X Lb;

Cs: level; = levelz and n; local is resulted from locals addition and n; is

initially labelled; Laz X bSG <= La;X Lb;

Note: SG is the second part of nz global label.

e.g. from Fig 4.6.1 and Table 4.2, node ‘C’ is before node ‘D’ as 2.0<=3.0 and
node ‘S’ is before node ‘U’ based on Cz; node ‘S’ is before node ‘V’ based on C3
where their local labels are 2.1 and 4.3 respectively and the following
equation is true: 1 x4 < 2x 3 2 4<6. Based on C4 node ‘C’ is before node ‘V’
where their locals are 2.0 and 4.3 and the SG of ‘C’is 1: 1 X3 <2x4 23 < 8.

Based on Cs node ‘V’ is before node ‘D’ where their locals are 4.3 and 3.0 and

the SGof ‘D’is 2: 3 X 2 <4X3 26 < 12.

98

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Case 2: label order between nodes within a different group. In this case, as
same as before insertions, the order is determined using the DDE pre-order

definition (Xu et al, 2009).
e.g . from Fig. 4.6.1 and Table 4.2, node ‘P’ <ppr node ‘L’ because :
FG for node ‘P’ = 2.2.3 & FG for node ‘L’ = 1.2.2, thus,

ai=2,ax=3,b1=1, =2 > 3x1 <2x2 -3 <4

Ancestor/Descendant (AD) Relationship:

The same definition applies as same as before insertions.
e.g. from Fig 4.6.1 and Table 4.2, ‘B’ is an ancestor of ‘P’ such that, global
label of ‘B’ is 1.1(as ‘B’ doesn’t have SG) and the global label of ‘P’ is 2.2.3.1.

a a a 1 1
Thus,b—1=—2=---=b—m95=5
1 2 m

Parent/Child (PC) Relationship:

The same definition applies as same as before insertions.

e.g. from Fig. 4.6.1 and Table 4.2, node ‘B’ is the parent of node V' as ‘B’ is an

ancestor of ‘V’ based on C; of Definition 3.

Sibling Relationships:

The same definition applies as same as before insertions.

e.g. from Fig. 4.6.1 and Table 4.2, node ‘K’ & node ‘X’ are siblings as they

belong to the same group and their levels are equal.

Lowest Common Ancestor (LCA):

The same definition applies as same as before insertions.

e.g. from Fig. 4.6.1 and Table 4.2, the LCA between node ‘P’ and node ‘D’ is
node ‘B’ where their global labels (FG concatenate SG (if SG exists) are 2.2.3.1,
1.1.2 and 1.1 respectively, and ‘B’ is the ancestor of both ‘P’ and ‘D’ from

99

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Definition 3. C;applies such that, the number of components in ‘P’ and ‘D’

global labels is 4 and 3 respectively - the minimum (4,3) = 3; and the

following is true % = %

4.5 Validating the Scheme’s Properties

Given three nodes, nj, nz, n3 with Iz, Iz, I3 as their levels and with labels A, B and C
and where their global labels are {a:.az...am, (i V (i, i2)) } , {b1.bz...bn, ("' V (j1, j2)) }
{cr.cz...cr, (k" V (ki, kz2)) } and local labels are al , bL and cL respectively:

From the notation given to the global label, it would be deduced that the global
label consists of two part namely ‘First Global’ (Mesiti et al.) and ‘Second Global’
(SG). The global label notation can be explained by example as follow:

Label A has global label {a:.az...am, (ith or (i1, i2)) } :

Where ar.az...am =2 FG and (ith o7 (i3, iz)) = SG as SG can be a number that
represent the child node number (e.g: first, second ,..., ith) child and is assigned
during the initial labelling. Or SG can hold references of two nodes locals if the

node was inserted between two nodes.

e Label Order:
Case 1:
vlevel; < levelz & nj, nz € same group
P G

a
. —=-=2=...=- 5 n, ancestor of n,
bl bz bm

~ ny precedes n, = this verifies C;
C2, C3, Csand Cs can be verified as follows:

level; = levelz & nj, nz € same group

~ fromdef.4 - n,; &n,are siblings

~ fromdef.1.1,n, precedes n,: n; & n, not inserted OR their Locals are not resulted

100

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

from locals additionif and only if La < Lb

where < is based on the numbers natural order; this verifies C>

if N, is inserted between n; & n; and 1, is inserted between n,& n; and
n, local or 1, local resulted from local s addition =
fromdef.1.1,1, precedes 1, if and only if La,.L4, < Lb;.Lb,

Ly

La p p . .
=21 <222 5 14, x Lb, < L&, x Lb}, This verifies C3,
Lb; Lby

IfL4, X Lb; < La; XxLb;, =0<0

= La;.0 < Lb;.0 = LA< Lb" = This is also verifies Cg

if n', localisresulted from adding n, local to ns local :
n', isinserted between n, & n; and ny is initially labelled

~ fromdef.1.1, n; precedesn’, ifand only if n;SG.La; < Lb';.Lb’',
n,SG La

1 , < 1

Lb; Lb',

= n,SG X Lb', < La; X Lb'y ;This verifies C,

if n', localisresulted from adding n, local to n, local :
n', is inserted between n, & n, and ns is initially labelled

~ fromdef.1.1,n', precedes ny if and only if Lb',.Lb’', < n,SG.Lb,
Lb', < Lb',
n,SG Lby

= Lb', X n,SG < Lb'y X Lb, ;This verifies Cs

. n,is beforen, and n', is before n,

= La, X Lb; < Lay X Lb, and similarly Lb', X Lby < Lb'; X Lb,

La; _ Lb, L b Lb
= —= —= —
La1 - Lb1 an Lb’l - Lb1
Lay _ LD
La; — Lb'y

- Laz X Lb’1 < La1 X Lb,2

. n, preceeds n',; this verifies the Transitivity of label order.

101

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

Case 2: The DDE label order has already been verified in Xu et al. (2009)

e AD Relationship:

If niis an ancestor of nz and n3z is a sibling of n.:

. nyancestor of n3 : either nzis inserted or originally exists.
To verify:

. . a a a
from def.2: if ny is an ancestor of n; = m <n&b—1 = b—z == b—m
1 2 m

from def.4: if nz & nz are siblings =n=r & b1.bz...bn = c1.c2...cr

LB _Gn_ G G On

bl b2 bm C1 %) Cm

 myancestor of n3

e Sibling Relationships:

(Symmetry of sibling relationships):if n; is a sibling of nz, then n: is a sibling of

ni

from def.4: ifn; & n; are siblings >m=n & ai.az...am = b1.b...bn

a a a . b b b 1 1
> 2=2=..=-""=1=p Equivalently, = =2=...=L==-==-=1
by b2 bn a, az am B 1

= N, is a sibling of n;

(The transitivity of sibling relationships):if n; is a sibling of nzand n; is a sibling
of n3, then n; is a sibling of nz
To verify:

from def.4: if n; & nz are siblings >m=n & a;.az...am = b1.bz...bn

a a a ..
> 2=2=..=-"=1=p,Similarly, n=r & b1.bz...bn = c1.C2...Cr
by by by
b b b a a b a a
i_]‘:_zz...:_n:l:‘yi_lz_lx_lzﬁxl/:l:_z:...:_m
cq Cy Cr 1 by cq Cy Cr

~ ny is a sibling of nz

102

Chapter4: GroupBased Labelling Scheme for Dynamic XML Databases

e PC Relationship & LCA:

These are valid if, and only if, the AD relationship is valid which has already

been verified.

4.6 Conclusion

This chapter described the dynamic labelling scheme presented in this thesis. It
illustrated how labelling works theoretically by showing the mechanism of the
initial labelling and how different relationships are determined. Then, it
demonstrated how the scheme handles different types of insertion and how the
relationships are preserved after insertions; simple examples were provided.
Finally, a correctness of the scheme’s properties was given using simple algebra.
Describing the scheme from a design and implementation point of view is

discussed in the next chapter.

103

Chapter 5: Design and Implementation

Chapter 5: Design and Implementation

5.1 Introduction

After describing the mechanism of the labelling scheme theoretically (in Ch.4), this
chapter discusses the scheme from a design and implementation point of view. As
shown in the previous chapter, the labelling scheme presented in this thesis is
based on the Dynamic Dewey labelling scheme (DDE), so the main comparisons
are made between these two. Thus, in addition to implementing the new scheme, a
DDE scheme was also implemented. This was necessary in order to cover the more
experimental aspects as no published open sources were available. This is shown

in Chapter 6 which describes the experimental design.

This chapter explains the design and implementation of both schemes in parallel,
starting with a general explanation of the design and implementation of both
schemes in Section 5.2. Then, the initial labelling mechanisms of both techniques
are described in Section 5.3 while performing the search through the labelled
nodes is shown in Section 5.4. The way each scheme handles different types of
insertion is discussed in Section 5.5 and the implementation of different
relationships is discussed in Section 5.6. Finally, the chapter concludes in Section

5.7.

104

Chapter 5: Design and Implementation

5.2 Overview

XML ‘ y)

Document Parser
O)
XML DOM Tree
oo | | mootnode 4
Calculate &
] For each node
1 Assign the
m Last node
Two lists to store the labelled
nodes & their labels
Until all nodes are labelled

Figure 5.1: Design Overview

Generally, both schemes share the same external design but differ in the
implementation of their inner methods, which are defined based on the labelling
characteristics of each scheme. NetBeans IDE 8.0 and Java JDK 1.8 were used in

the implementation phase of both schemes. Figure 5.1 shows the design overview.

As shown in Fig. 5.1, each scheme starts by parsing the XML file using one of the
XML parsers (Ch.2). The choice of the most suitable parser between a streaming
API parser, such as SAX, and a tree-based API parser, such as DOM, was based on
the program’s characteristics. If the size of the XML documents exceeds the
available memory, the only possibility is a streaming API parser. In addition, this
parser can be used if it is possible to process the document as small sequential
input sections without a requirement that the whole document be available prior
to processing a certain part, or else if the processing of the document can be
undertaken in a series of separate operations (Brownell and Megginson, 2002,

Project, 2013a).

105

Chapter 5: Design and Implementation

However, there are several circumstances when a tree-based API is a more
suitable choice, including when the program requires simultaneous access to
different document parts, when the complexity of internal data structures matches
that of the actual document, or when the program has constantly to adjust the
document (Berglund et al.,, 2010a, Frank et al.,, 2003). Given that the main objective
of this study is to assess the capacity of the scheme to manage insertions, thus
involving frequent alterations of the document, a DOM parser was considered to be
the most appropriate choice. This type of parser is not only well-known, but also
easy to apply due to its ‘pull model’, which enables the client program to employ
different methods to obtain the desired information from a document. By contrast,
in the ‘push model’ of SAX, the parser specifies what and when it reads, regardless
of whether or not the information is required (Harold, 2002). However, this

decision has consequences and they are discussed in Chapter 8.

After parsing the document, two lists are created for each scheme. The first one
holds the nodes which are being labelled and the other one holds the label of each
node in its correspondence index within the first list. ‘ArrayList’ was chosen from

the java collections for the implementation for reasons discussed below.

Some of the tasks that java developers implement entail the storage and retrieval
of objects in collections. Java offers a number of collection classes that have unique
and overlapping characteristics. Possibly, the most used collection implementation
classes are ‘ArraylList’, ‘Vector’, and ‘LinkedList’. It can be difficult to deal with these
collection classes particularly within a multithreading setting since majority of
these do not offer default-synchronised access. Even though ‘Vector’ provides
default-synchronised access, ‘ArrayList’ compensates for this through
synchronization methods (Sanghera, 2006). The structure required in the
implementation of both indexing methods must have multiple threads that insert,

remove, and iterate through elements of the collection.

106

Chapter 5: Design and Implementation

As the name implies, the ‘ArrayList’ List interface involves defining an object array
and increasing the size of the array as needed to support elements contained in the
collection (Naftalin and Wadler, 2006). The appealing characteristics of ‘ArrayList’
include its capability to contain duplicate elements and null values. Even though it
is not a naturally thread-safe class when an instance needs to be used by several
threads, ‘ArrayList’ provides methods for synchronising modifications made to the
list. In this application, thread safety is not necessary. Because, creating and
populating the ‘ArrayList’ occurs in a single thread, which makes it safe for
multiple threads to retrieve values from the ‘ArrayList’. Another useful feature
associated with ‘ArrayList’ is that it does not compel the developer to set or even
update its capacity since the capacity increases automatically (Drozdek, 2004,

Matha, 2011, Spell, 2005).

Although the implementation of the ‘LinkedList’ interface does not provides
behaviour that is visibly different from ‘ArrayList’, it is different in the way the list
is maintained. ‘LinkedList’ class utilises double linked list to handle the collection of
objects. This implies that every node within the list has pointers to nodes that
precede and follow it, which allows a list to be navigated in either direction.
Although in theory ‘LinkedList’ ought to offer performance advantages compared
to ‘ArrayList’ when inserting or removing an element, in practice the performance
advantage is insignificant and ‘LinkedList’ is slower compared to ‘ArrayList’ when
inserting an element to the end of the list. The explanation lies in operations
performed in the middle of ‘LinkedList’ because nodes must be traversed to get to
their location in the list; therefore, ‘LinkedList’ execute more slowly than ‘ArrayList’

because accessing an element in the middle of an ‘ArrayList’is not slower or faster

than accessing one in any other location (Spell, 2005).

Apart from offering better performance, ‘ArrayList’ has an extra advantage over
‘LinkedList’ because it uses less memory. ‘LinkedList’ need to create a node object
for every element inserted in the ‘LinkedList’, while ‘ArrayList’ only needs to

maintain a single object array and the only instance it creates a new object is when

107

Chapter 5: Design and Implementation

the array needs to increase. The process of creating an object not only uses more
memory but also is time consuming making ‘LinkedList’ slower than ‘ArrayList’
(Spell, 2005). In addition, random access is faster in ‘ArrayList’ compared to

‘LinkedList’ (Sanghera, 2006).

‘ArrayList’ is an essential class implementation for Java’s Collection framework.
‘ArrayList’ implements “Serializable, Coneable, Iterable<E>, Collection<E>, List<E>,
and RandomAccess” (Lewis and Chase, 2010). The defining quality of ‘ArrayList’ is
its capability to grow or shrink in response to the needs of a program (Dale et al,
2012, Flanagan, 2005, Weiss, 1992). Therefore using this approach, the developer
does not have to worry about bounded stacks. Although, it is possible to
implement BoundedStackInterface, the developer is also able to implement
UnboundedStackinterface making sure the constructor does not need to establish

the stack size (Dale et al., 2012).

Similar to the ‘Vector’ class, the ‘ArrayList’ implementation is resizable, which
indicates that addition of a new element would cause overflow in the ‘ArrayList’
that in return causes the underlying array to resize automatically (Sikora, 2003). In
managing the array size, ‘ArrayList’ contains two extra operations: ensureCapacity
that increases array size to the precise size if the array is not that large or even
larger and trimToSize that trims the array to fit the current list size. Moreover,
‘ArrayList’ class inherits a considerable number of extra methods from its super

classes (Lewis and Chase, 2010).

Although Vector provides the thread-safe feature, which is desirable, thread safety
is not necessary in many circumstances; besides, synchronisation is a time-
consuming process. Since the implementation of the schemes does not need a
synchronised collection class, the use of ‘ArrayList’ enables constant time access to
any element due to fast random read access (Documentation, 2014, Horstmann
and Cornell, 2002, Schildt, 2006) and eliminates the possibility of using
synchronisation that can slow down the application (Spell, 2005). Therefore in this

thesis, ‘ArrayList’ seems to be the optimum implementation since other classes

108

Chapter 5: Design and Implementation

would not fully address the needs in the manner ‘ArrayList’ does. However, The

consequences of this decision are discussed in Chapter 8.

The next step in the implementation begins by examining each node and assigning
a label to it. Figure 5.2 shows the pseudo code that represents the implementation

process generally.

1) Define listOfNodes as ArrayList
2) Define listOfLabels as ArrayList

3) Read XML document
4) Parse the XML document using DOM

5) Get the Nodelist of all DOM nodes

6) while (the next node exists) {
7)Define String newlLabel
8) if (the type of the cumrent node == element){
9) Calculate the Label(s)
10) newlLabel = the calculated label
11) Add the newlLabel to listOfLabels
12) Add the current node to listOfNodes
13) } //End if
14) }//End while

Figure 5.2: General Pseudo code

109

Chapter 5: Design and Implementation

5.3 Initial Labelling

5.3.1 The GroupBased Labelling Scheme:

First, to simplify the demonstration, the following abbreviations are used.
e First part of the global label 2 FG
e Second part of the global label - SG
e Locallabel 2 L
e Note: if the global label consists of two parts, the first part is referred to as FG

and the second as SG.

As mentioned in the previous section, two lists are used to store the nodes and
their labels; however, the data type of the first list, which stores the nodes, is
obviously ‘Node’. The second list type is ‘Nodelnfo, where ‘Nodelnfo’ is a Java class
that has the global and local labels of its members; thus, the second list stores both
labels together. Even though defining the node as a member of the ‘Nodelnfo’ class
leads to using only one list in the program (as will be illustrated in Section 5.4), it
makes the search process slow. Figures 5.3.1, 5.3.2 and 5.3.3 show the flow chart

and pseudo code of the initial labelling process of the new scheme.

110

Chapter 5: Design and Implementation

Suijjaqe jeniu] s,3wayds pasegdnoln 3yl Jo UeYIMO4 YL ‘T "G 4nSig

auu S SRQEPOISH
(1s17u 5 sapoNIOIsy
(1=201 ‘feqogi) ojuju

[eaog aponiuaseds p =jeo|
=08

1e20] apoyasads p=jeao]
05’04 =1eqol#
aponsasd jo S+ =98
aponaaad jo ng =4

05'04 =eqogd 04 wased =jeqogd

01, =eao]

jaa

ann

uo paseq = [eqod

ann

woa==[(1)isrju
jJojuaaey

s gaaad

ns waaeds -, + ngwaaed =ng

ann

as|ey
0§ ‘04 Smng pnu=j 9§ wared
as|e}
1eaof ‘eqofd fuing
” ‘oJuju oJuapoN
ann as|e}

asjey

ISTTUASIIIPON “T=13u]
(1'1) ojupapoNioos ajujapoy

111

Chapter 5: Design and Implementation

1) local = “1.0"
2) if (previous Element not Exists){

3) global= parent global +"."+"1"
Y/End if

4) else {

5) prevG=get previous node global
6) global=Add one to the last component in prevG

}//End else

Figure 5.3.2: Pseudo code: calculating the labels when the parent node is the root

1) String FG, SG //first and second parts of the global

2) if (previous Element not Exists){
3) SG="1"
4) if(parent SG !=null){
5) FG= parent FG +"."+parent SG
}//End if (4)
6)elsef
7) global= parent global
Y /End else
8) local=(double) parent Local +1
}//End if(2)
9) else {

10) FG=previous node FG
11) local=(double) previous node Local +1

}//End else
12) global= FG+","+SG

Figure 5.3.3: Pseudo code: calculating the labels when the parent node is not the root

112

Chapter 5: Design and Implementation

As seen in Fig. 5.3, and as demonstrated in the previous chapter, an instance of
‘Nodelnfo’ is created for the document root and both its global and local labels are
set to ‘1’. Then, the root node and this instance are added to the first and second
lists respectively. Then, all the document’s nodes are obtained and examined
starting from index (Kasim et al); the root node is excluded as it is already
labelled. After this, each node is tested to see whether it is a child of the document
root or not. If it is, the local label is set to ‘1.0’ and the global label is calculated

based on the DDE labelling scheme.

If the examined node is not a child of the root, the node’s global label will consist of
two parts, as described in the previous chapter. It starts by checking whether a
previous sibling exists and, if so, the node’s FG is set to be equal to the previous
sibling FG while its SG and L are calculated by adding one to their corresponding
values in the previous sibling’s labels. Thus, if the examined node is the first child,
its SG is set to ‘1’ and its L is calculated by adding one to the parent node’s L; and
the nodes FG is set based on the parent node’s SG such that, if it exists, the
examined node’s FG is formed by concatenating the parent node’s FG and SG;

otherwise, the FG is set to be equal to the parent node’s FG.

After determining the node’s label, an instance of type ‘Nodelnfo’ is created to
contain the global and local labels; this is then added to the second list while the
labelled node is added to the first list. These processes continue until all the nodes

have been labelled.

5.3.2 DDE Labelling Scheme

As with the new scheme, two lists are used and the first one is of type ‘Node’ to
store the labelled nodes; the second one is of type ‘String’ as there is only one label
so there is no need to define a class. From the description available in Xu et al.
(2009) on how DDE labelling is calculated, Figure 5.4 shows the flow chart and the

pseudo code of the initial labelling process of the DDE scheme.

113

Chapter 5: Design and Implementation

1) Assign "1™ lo the root label
2) Add root node to listOfNodes
3) Add root label to listOfLabels
4) for (fromi=1 to i<nList lenth){
5) if(nList{i) is ElementNode){
6) if(prevElement exists){
7) newlLastComp=prevLabel_LastComp +1
8) label=prevLabel ofter replacing ifs
9) lastComp with the newlLastCompmp
Y/End if ()
10] else{

listOfNodes add(roat) 1)
listOfLabels add(rootlabel)

Start

rootlabel="1"
Inti=1

lobel=parent label + “."+"1"

}
W/End if (5)
12) listOfNodes.add(nList(i))
13) listOfLabels.add(label)
}//End for (4)

>

true

i<nlistlength string label

false

o true
label zprevNode Label after
5 End y addieg 1 to its last component

false

I listOfNodes add(nList(i))

label =parentNode label +°.%s"1 EoeORabiiaadatiug)

l Figure 5.4: Flowchart & Pseudo code of the DDE Scheme

The labelling starts by assigning ‘1’ to the document root, and the root node and its
label are added to the lists. Then, a list of all document nodes is obtained and
examined, ignoring the root node. If the node is a first child, the label is calculated
from its parent label; otherwise, the previous sibling label is used in the
calculation. Every time, the node and its label are added to the nodes’ and labels’

lists respectively.

5.4 Search Mechanism

As stated in the previous section, storing the nodes in a separate list facilitates the
search for a certain node and its label(s). For example, if the node is defined as a
class member besides its label(s), obtaining a specific node’s label means
traversing the list until the matching node is found; the object is returned and is
used to get the label(s) which is a time-consuming process. However, because the

nodes are in a different list, finding the index of a specific node and using that

114

Chapter 5: Design and Implementation

index to access the label is much faster and more efficient as each label is stored
under the same index in the second list. Figure 5.5 shows the flow chart and the

pseudo code of the search mechanism.

Start

Noden

index= kstOfNodes indexOf(n) 1) Determine the node which its label needed
Node n
2) Get the index of the node from listOfNodes
label=lstOfLabels get(index) ndex= istOfNodes.indexOf(n)
3) Get the lobel ot the scme index from listOfLabels
lobe stOfLabels.get{index)

End

Figure 5.5: Flowchart & Pseudo code of the Search mechanism

5.5 Performing Insertions

This section describes how each labelling scheme performs insertions in practice.

5.5.1 Leftmost Insertion (new node (n;) is inserted before node (ni)).

The leftmost insertion refers to insert a node before the first child node of any
parent node. A method called ‘leftmost_Insertion’ handles this type of insertion in
both schemes, ‘void’ is the method’s return type and nz, n; are the method’s
argument. The process starts by calling the search, as described in the previous
section, to obtain the label(s) of n; (the existing node) ; so, nz (the new node)

label(s) can be calculated based on the scheme’s characteristics as follows:

115

Chapter 5: Design and Implementation

The GroupBased Labelling Scheme:

When performing a leftmost insertion, the inserted node’s nz label is
calculated based on the n; parent node, as described in Chapter 4. If the
document root is the parent, the n; global label is formed based on the DDE
scheme; then ‘1.0’ is assigned as the nz local label. But, if the n; parent is not
the root, the FG of nz equals n; FG and the SG of nzis calculated by
decrementing the n2SG by one. The n; local label is formed by subtracting
one from the first component of the n; local label until the new local label is
less than the parent’s local label. Then, a new instance of ‘Nodelnfo’ is
created using the calculated labels. Finally, in order to keep the document
order, nz is added to the labelled nodes’ list at index(n;-1). Similarly, the
‘Nodelnfo’ instance is added at this index in the second list and n:is added
to the XML tree using the DOM method ‘insertBefore’. Figures 5.6.1 and 5.6.2

show the flowchart and the pseudo code of this method.

116

Chapter 5: Design and Implementation

T-1=20=je0]

ann

<

as|ej

=20 apoyuased==jeaop

(awayds pasegdnoin) uoniasu] 3S0WYaT Y3 JO UeYIMOo|4 T°9'S aindi4

(Fponmau)aaniagriasur apoy

(xapurojujapou)pprsERqeyPOISy
(xapur ‘apoymau)pprsapou0ist]
1-(1apou)joxapum=xapu;

!

(1e207'[eqog) oquiapoy aeaa)

08, = [20]
(1eqo12 yuauud g qq =jeqod

ann

—._HUS ﬂbﬂbﬂu—g.—
5+, +nd=[eqogd
I- 0§