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ABSTRACT 

Myelin is an electrical insulator sheath wrapped around axons. It is formed by 

myelinating oligodendrocyte cells in the CNS and by Schwann cells in the PNS.  Myelin 

impairment has been linked with a number of neurological diseases such as multiple 

sclerosis (MS) and neuropsychiatric disorders such as schizophrenia.  

Schizophrenia (SZ) is a severe mental disorder that affects approximately 0.5 to 1 % of 

the worldwide population. The causes of the illness are unclear but many studies have 

suggested the aetiology is a combination of genetic and environmental risk factors. Many 

genes implicated in SZ have important neurodevelopmental functions and Disrupted-in-

schizophrenia 1 (DISC1) is one of the most widely studied SZ-susceptibility genes.  

Previous work has shown that knock down of disc1 using morpholino antisense methods 

causes morphological abnormalities and inhibits the specification of olig2-positive 

oligodendrocyte precursors in the hindbrain. We identified an uncharacterized mutant 

(FB148.5) that showed very similar morphological defects to those seen in the disc1 

morpholino mutants (morphants).  

Phenotypic characterisation of FB148.5 mutants revealed a number of neurological 

abnormalities similar to that found in disc1 morphants including; specification of 

hindbrain oligodendrocytes, neurogenesis, Schwann cell development and motor axon 

outgrowth. Further mapping studies to identify the mutated gene in FB148.5 showed that 

the SSLP z1068 on linkage group 8 appears to be closely linked to the FB148.5 mutation. 

However, both the traditional mapping and high throughout strategies failed to find the 

mutated gene in this strain. Therefore, further work is needed to find the causative gene 

mutation.  
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CHAPTER I: INTRODUCTION 
 

1. MYELINATION    

The vertebrate nervous system is composed of the central nervous system (CNS) and 

the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord and 

both contain grey matter and white matter. White matter contains glial cells and 

myelinated and non-myelinated axons, while grey matter primarily contains neurons 

and glia. The PNS consists of nerves that connect the central nervous system to the rest 

of the body. Myelin is an electrically insulating substance that is formed from multiple 

layers of myelin sheath which spread as compacted spirals to surround axons. 

Myelination in the (CNS) is performed by specialised glial cells, oligodendrocytes, 

whereas, in the (PNS) myelin is produced by Schwann cells (Geren and Schmitt 1954). 

In mammals, myelin sheaths cover large axons in both the central and peripheral 

nervous systems and axonal myelination is a unique feature of the vertebrate nervous 

system, whereas the invertebrate nervous system has ensheathing glia but no myelin is 

formed (Edenfeld, Volohonsky et al. 2006). Myelinated axons are segmented by 

unmyelinated gaps known as the nodes of Ranvier. The nodes are spread out at 

distances around 100 times the axonal diameter (Salzer 2003). These structures facilitate 

the rapid conduction of action potentials and conserve energy, which is essential for 

maintaining ion gradients (Siegel, Agranoff et al. 1999).  Myelin is around 70% lipid 

and 30% protein and myelin sheath lipids consist mainly of un-esterified cholesterol.  

The ratio of cholesterol: phospholipids: glycolipids ranges from around 4:4:2 to 4:3:2 

(Baumann and Pham-Dinh 2001). Myelinating cells can be detected using a number of 

myelin structural proteins as markers including, proteolipid protein (PLP), myelin basic 
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protein (MBP) and myelin associated glycoprotein (MAG) (Dubois-Dalcq, Behar et al. 

1986) (Fig 1.1).  

  

 

 

Figure 1.1: Myelinating Cells in CNS and PNS Figure.  

(A) Oligodendrocytes in the CNS wrap multiple axons whereas (B) Schwann cells in 

the PNS wrap around a single axon. This figure is adapted from  (Poliak and Peles 

2003) with permission. 
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The importance of myelin in the normal functioning of the nervous system is 

emphasised by its roles in the aetiology of number of neurological diseases such as 

multiple sclerosis (MS) and neuropsychiatric disorders such as schizophrenia. 

1.1 CENTRAL NERVOUS SYSTEM MYELINATION  

1.1.1 OLIGODENDROCYTES  

The term oligodendrocyte originates from Greek, meaning a cell with a few branches. 

Oligodendrocytes produce the myelin sheath that insulates CNS axons. A single 

oligodendrocyte can wrap up to 30-50 axons (Bunge 1968; Peters, Palay et al. 1991). 

Oligodendrocyte development occurs through number of differentiation steps from 

oligodendrocyte precursor cells (OPC) to mature myelinating cells which lead to 

dramatic alterations in the cell morphology, as well as expression of specific markers at 

different stages of development (Barateiro and Fernandes 2014). 

1.1.2 DEVELOPMENT OF OLIGODENDROCYTES 

Oligodendrocyte lineages develop in the mammalian brain and spinal cord through 4 

main stages; oligodendrocyte precursor cells (OPC), pre-oligodendrocytes, immature 

oligodendrocytes and oligodendrocyte myelinating cells. In humans, OPCs start to 

proliferate at week 10 of gestation in the forebrain then reach their highest number at 

week 15 in the ventricular/sub-ventricular zone (Jakovcevski, Filipovic et al. 2009). In 

rodents, OPCs can be detected at E9.5 in the telencephalon (Timsit, Martinez et al. 

1995). Between 18-28 weeks in humans and around postnatal day P2 in rodents, OPCs 

express specific markers such as OLIG2, A2B5 and SOX10 in order to differentiate to 

pre-oligodendrocytes. Then, between 28-40 weeks in humans, pre-oligodendrocytes 

give rise to immature oligodendrocytes from the pre-ventricular white matter and 

subsequently express a number of markers including MBP and MAG (Back, Luo et al. 
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2001; Craig, Ling Luo et al. 2003). At 36-40 weeks, myelin basic protein (MBP) 

expressing cells can be observed and the amount of myelinated white matter increases 

from 1-5% of total brain volume (Back, Luo et al. 2001). Similarly, in both mice and 

rats at around P7, MBP-expressing cells are observed and reach maximal numbers at 

around P14 (Hartman, Agrawal et al. 1979; Bjelke and Seiger 1989; Dean, Moravec et 

al. 2011; Barateiro and Fernandes 2014). 

1.1.2.1 Oligodendrocyte Precursor Proliferation  

OPCs are proliferating cells which originate from neuroepithelial progenitor cells in the 

ventral neural tube during development (Rowitch, 2004). During ventral spinal cord 

development, neuroepithelial cells are compartmentalised to generate the progenitor 

domains known as p3, p2, p1, pMN and p0 proceeding in a dorsal to ventral direction 

(Fig 1.2). Progenitor domains p0, p1 and p2 primarily give rise to interneurons and 

astrocytes, whereas motor neurons and OPCs originate mostly from the pMN domain 

(Vallstedt, Klos et al. 2005; Tripathi, Clarke et al. 2011). However, some OPCs arise in 

dorsal progenitor domains. OPCs are identified by expression of several genes such as 

the basic helix-loop-helix (bHLH) transcription factors OLIG1 and OLIG2, platelet 

derived growth factor receptor-alpha (PDGFR-α), SRY (sex determining region Y)-box 

10 (SOX10) and chondroitin sulphate proteoglycan 4 (CSPG4) (also known as neuron-

glial antigen 2 (NG2). Neural progenitors in the pMN domain first give rise to motor 

neurons and later to OPCs (Poncet, Soula et al. 1996). Sonic hedgehog (Shh) signalling 

regulates this important switch (Park, Mehta et al. 2002). Shh is a secreted protein that 

is required for the specification of the progenitor domains as well as organizing the 

structure and function of the notochord and floor plate (Placzek 1995; Gritli-Linde, 

Lewis et al. 2001). Thus, the Shh signaling pathway is crucial for oligodendrocyte 

generation in both the spinal cord and forebrain (Orentas, Hayes et al. 1999; Nery, 
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Wichterle et al. 2001). During the specification of OPCs, these cells express Olig1/2 

which are essential for oligodendrocyte development in vertebrates. Olig1/2 mutant 

zebrafish and mice demonstrate OPC specification defects in the spinal cord and brain 

(Lu, Sun et al. 2002; Park, Mehta et al. 2002; Zhou and Anderson 2002; Li, Lu et al. 

2007). Olig1 and 2 have different functions during OPC development, although they are 

similar in many ways (Rowitch, 2004).    

 

 

  

Figure 1.2: Progenitor domains in the spinal cord.  

OPCs/OLPs are mainly generated from the pMN progenitor domain in the spinal cord. 

Image modified from (Richardson, Kessaris et al. 2006)  with permission. 
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In the brain, OPCs are primarily generated in the ventral forebrain and then migrate 

dorsally to their final destinations in the cerebral cortex (Tekki-Kessaris, Woodruff et al. 

2001);Rowitch, 2004;(Kessaris, Pringle et al. 2008). As in the spinal cord, these OPCs 

express Olig2 and PDGFR-α, and are generated under the control of Shh signalling 

(Tekki-Kessaris, Woodruff et al. 2001; Rowitch, 2004;(Fuccillo, Rallu et al. 2004). It 

has been found that some subpopulations of OPCs are born independent of Shh 

signalling. Other studies have found that other signalling pathways in addition to Shh 

also regulate OPC production, and this includes fibroblast growth factor (FGF) 

signalling (Qian, Davis et al. 1997). FGFs are a family of signalling molecules that play 

multiple roles in controlling the development of the nervous system (Ford‐Perriss, Abud 

et al. 2001; Hébert 2005; Aboitiz and Montiel 2007). It has been reported in zebrafish 

that FGF-receptor signalling regulates the production of OPCs by mediating the 

expression of olig2 and sox9 (Esain, Postlethwait et al. 2010). The SRY-box family 

transcription factors Sox9 and Sox10 have also been reported to have an important role 

in the development of OPCs by regulating PDGFR-α expression (Finzsch, Stolt et al. 

2008). However, the molecular mechanisms underlying the production of OPCs under 

the control of FGF signalling in the forebrain are still unclear.  

1.1.2.2 Oligodendrocyte Precursor Migration 

There are different waves of OPC migration in the CNS and their final destination 

depends on the original site of specification. In the cerebellum the migration route of 

OPCs is not well studied unlike in the spinal cord where OPC migration has been 

studied in more detail. It has been reported that, in chick embryos, OPCs that originate 

from parabasal plate mesencephalon and diencephalon migrate to the cerebellar cortex 

(Mecklenburg, Garcia‐López et al. 2011) or dorsal areas of the telencephalic and the 

diencephalon prosomeres (Garcia‐Lopez and Martinez 2010). Additionally, OPCs 
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derived from the entopeduncular zone in the ventral forebrain, including the cerebral 

cortex, migrate through the entire telencephalon (Kessaris, Fogarty et al. 2005). 

Elsewhere, OPCs born in the rhombencephalon remain restricted to their original site in 

the rhombomeres (Olivier, Cobos et al. 2001). However, most OPCs derived from the 

ventricular zone of the spinal cord migrate along latero-ventral, ventral-dorsal and also 

rostro-caudal axes. Additionally, 20% of spinal cord OPCs originate from dorsal 

progenitor domains (Ono, Bansal et al. 1995). Other OPCs migrate through pre-formed 

axonal tracts such as from the pre-optic area along the optic nerve (Ono, Yasui et al. 

1997; de Castro, Bribián et al. 2013). OPC migration involves interactions between 

OPC surface receptors and a number of environmental factors including chemokines, 

adhesion molecules, neurotransmitters and secreted growth factors (de Castro, Bribián 

et al. 2013). 

Chemokines are proteins characterised by their small size and the presence of four 

cysteine residues in conserved locations that are essential to the formation of their 3-

dimensional structure. The C-X-C chemokine receptor type 4 (CXCR4) has been shown 

to play a central role in OPC migration in response to the chemokine CXCL12 also 

known as stromal cell-derived factor-1 (SDF-1) (Banisadr, Frederick et al. 2011). The 

CXCL1 chemokine receptor (CXCR2) also facilities the development of 

oligodendrocytes in the spinal cord (Tran and Miller 2003). CXCR2 is expressed mainly 

in spinal cord OPCs but it is also found in the cerebral cortex. CXCR2 appears to act as 

a stop signal for OPC migration in the spinal cord (Tsai, Frost et al. 2002).  

During OPC migration, numerous adhesion contact-mediated molecules have been 

reported to be supporters of OPC migration via cell-cell interactions and subsequently 

regulate the speed of OPC motility. These molecules include extracellular matrix 
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proteins such as fibronectin, merosin, PSA-NCAM, anosmin-1 and tenascin-C (de 

Castro, Bribián et al. 2013).  

In addition, a number of chemoattractant molecules which are known to assist cell 

movements, have been linked to OPC migration. FGF2, PDGF-AA and VEGF-A are 

important growth factors but have also been shown to act as chemoattractant molecules 

that affect OPC migration (Zhang, Vutskits et al. 2003; Zhang, Vutskits et al. 2004). 

Vascular endothelial growth factor (VEGF)-A, plays a central role in angiogenesis, and 

also mediates OPC migration independent of the presence of FGF2 (Zhang, Vutskits et 

al. 2003). It has been shown that the activation of PDGF receptors via the PDGF-AA 

growth factor increases OPC migration (Fruttiger, Karlsson et al. 1999). Shh also acts as 

a chemoattractant through the canonical Shh receptor, patched-1 (Ptc1) in optic nerve 

OPCs (Merchán, Bribián et al. 2007). Other chemoattractant molecules including netrin-

1, semaphorin 3A and neuregulin-1 have significant functions in OPC migration (de 

Castro, Bribián et al. 2013). At the end of the migration process, various studies have 

reported multiple factors that act as stop signals to arrest OPC migration, and these 

include anosmin-1, endothelin-1, CXCL1 and FGF2 (de Castro, Bribián et al. 2013). 

When OPCs have migrated to their final destination, most of them differentiate in to 

myelinating oligodendrocytes. However, some OPCs remain undifferentiated and may 

subsequently contribute to adult myelination, and these are thought to number 5-8% of 

total glial cells (Jones, Jolson et al. 2003).  

1.1.2.3 Oligodendrocyte Precursor Differentiation 

As OPCs differentiate to mature oligodendrocytes, their morphology becomes more 

complex and they extend multipolar short processes. A number of intrinsic and extrinsic 

factors have been reported to be involved in the OPC differentiation process. The 
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intrinsic factors include neural transcription factors and epigenetic mechanisms, while, 

the extrinsic factors include extracellular ligands and secreted molecules (Emery 2010). 

There are numerous transcription factors that act as negative differentiation regulators in 

OPCs in order for the differentiation process to initiate. These transcription factors 

include Id2, Id4 and Hes5, which when they are active block the expression of myelin 

genes and keep OPCs undifferentiated. However, stimulation of extracellular signals 

leads to the down-regulation of these negative factors by affecting their cellular 

localization, causing pro-differentiation factors to express myelin genes and start 

differentiation (Kondo and Raff 2000; Wang, Sdrulla et al. 2001; Liu, Li et al. 2006). 

Consequently, a number of transcription factors work as positive regulators in the 

differentiation phase, most notably Olig1, Mash-1, Nkx2.2, Sox10, and YY1 (Wegner 

2008). Additionally, Zinc-finger protein 191 (Zfp191) is a transcription factor that has 

been found to control late stages of oligodendrocyte differentiation. It has been found 

that Zfp191 mutant mice lose the ability to start myelin sheath formation (Howng, Avila 

et al. 2010).   

MicroRNAs (miRNAs) are small, noncoding RNA molecules that are expressed by 

eukaryotic organisms. MicroRNAs function in the control of gene expression by 

targeting specific mRNAs and activating RNA degradation or inhibiting translation 

processes (Iorio, Ferracin et al. 2005). Interestingly, miRNAs have been shown to 

regulate CNS myelination through two miRNAs that have crucial roles in 

oligodendrocyte differentiation. These microRNAs are miR-338 miR-219, and they 

influence genes that usually act to keep OPCs in the undifferentiated condition, for 

instance Hes5, Sox6 and PDGFRα (Dugas, Cuellar et al. 2010; Zhao, He et al. 2010). 

This suggests a relationship between changes in gene expression and the signalling 

molecules which regulate OPC development during the differentiation process.  
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During differentiation OPCs express sulfatides recognised by the O4-antibody to 

develop to pre-oligodendrocytes (Bansal, Stefansson et al. 1992). In contrast, expression 

of PDGFR-α, A2B5 and NG2 are down-regulated in the pre- oligodendrocytes. 

Subsequently, these cells express galactocerebroside (GalC) along with O4 antigen and 

then pre-OPCs develop into pre-myelinating  cells and start to express myelin related 

proteins (Barateiro and Fernandes 2014).   

In addition, ligands for several receptors have been reported to control oligodendrocyte 

differentiation/myelination, such as Jagged, which signals via Notch in OPCs, as well as 

PSA-NCAM and Leucine-rich repeat and immunoglobulin domain-containing protein 1 

(LINGO-1). Additionally, the Wnt/β-catenin pathway appears to be a key factor in the 

initiation of terminal differentiation (Emery 2010). This pathway was suggested to act 

through Tcf4/Tcf7l2, a transcription factor that mediates the transcriptional effects of 

Wnt signaling. Furthermore, it has been reported that Tcf4 was found to be down-

regulated in mature oligodendrocytes and play a role in re-myelination (Fancy, 

Baranzini et al. 2009). Therefore, this suggested that Wnt signaling may regulate 

complex pathways in oligodendrocyte differentiation and myelination via connecting 

with Tcf4 to regulate oligodendrocyte differentiation (Ye, Chen et al. 2009).  

Pervious evidence showed that the ErbB2 receptor tyrosine kinase has a significant role 

in oligodendrocyte differentiation (Park, Mehta et al. 2002; Kim, Sun et al. 2003). A 

recent study demonstrated that LINGO-1 affects ErbB2 signalling to regulate 

oligodendrocyte differentiation via decreasing ErbB2 phosphorylation. LINGO-1 is 

known as a negative regulator of oligodendrocyte differentiation (Mi, Miller et al. 2005; 

Lee, Shao et al. 2014). Additionally, several studies found that hepatocyte growth factor 

(HGF)–cMet signalling mediates OPC differentiation and proliferation (Ohya, 

Funakoshi et al. 2007). HGF is affected by CD82 activity which inhibits HGF/cMet 
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during oligodendrocyte development. Therefore, HGF acts as an inhibitory regulator of 

OPC differentiation with CD82 alleviating this block (Mela and Goldman 2013). In 

addition to the previously discussed factors, G protein–coupled receptor (GPCR) Gpr17 

is known to be expressed during oligodendrocyte differentiation and overexpression of 

this protein was reported in both in vivo and vitro systems to inhibit oligodendrocyte 

differentiation. Thus, it might play a role in regulating the differentiation process (Chen, 

Wu et al. 2009). Rab family proteins are a group of small GTPases that are involved in 

vesicular trafficking with more than 60 Rab proteins having been identified in mammals 

and several of these proteins are linked to oligodendrocytes development. Rab35 has 

been described as a unique Rab protein that acts as a negative regulator for OPC 

differentiation through ACAP2 by inhibiting Arf6 (Miyamoto, Yamamori et al. 2014).  

1.1.2.4 Oligodendrocyte Myelination  

In the final phase of oligodendrocyte development, mature oligodendrocytes spread 

their membrane to form compact myelin sheaths around axons. This process is 

controlled by the axonal contact surface, axon thickness and electrical activity. Mature 

oligodendrocytes start to express a number of myelin- related proteins including myelin 

basic protein (MBP) and proteolipid protein (PLP) (Verity and Campagnoni 1988), 

2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), myelin-associated glycoprotein 

(MAG) myelin oligodendrocyte glycoprotein (MOG) and oligodendrocyte–myelin 

glycoprotein (OMgp) (Miron, Kuhlmann et al. 2011). 

Several signals that originate from the axonal membrane have been reported to regulate 

the oligodendrocyte myelination process. Studies have reported that PSA-NCAM is 

expressed constantly during the early stages of oligodendrocyte development. Then, 

before starting the myelination process, PSA-NCAM expression is down-regulated. 

This suggested that expression of PSA-NCAM acts as a negative regulatory signal for 
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oligodendrocyte myelination (Jakovcevski, Mo et al. 2007). Previous studies found that 

axonal electrical activity plays a central role during myelination. For example, 

tetrodotoxin (TTX), which blocks voltage-gated sodium channels, was found to inhibit 

myelination (Charles, Hernandez et al. 2000). However, losing PSA-NCAM has no 

effect on the ability of TTX to inhibit myelin formation. Thus, myelination required 

positive axonal signals such as TTX-sensitive electrical activity and negative signals 

such as down-regulation of PSA-NCAM (Charles, Hernandez et al. 2000). There are 

other factors from the axonal membrane that are involved in the myelination process, 

for example L1, a cell-adhesion molecule and one of the immunoglobulin superfamily, 

which is known to be an inhibitory regulator of myelination during early contact 

between the oligodendrocyte and axons (Barbin, Aigrot et al. 2004).   

 In the CNS, a master molecular regulator that guides the myelination process by 

oligodendrocytes has not been reported yet. However, in the PNS Neuregulin-1 (NRG1) 

has been described as the major regulator on the axonal membrane that leads to 

myelination by Schwann cells (Taveggia, Zanazzi et al. 2005). The role of NRG1 

signalling in CNS myelination is controversial. Early evidence suggested that NRG1 is 

a key factor in spinal cord oligodendrocyte development (Vartanian, Fischbach et al. 

1999). On the other hand, it has been reported that CNS myelination may proceed 

independently of NRG1 signalling; therefore, it is most likely that in the CNS there are 

other signalling pathways that play a similar role to that of NRG1-ErbB signalling in 

PNS myelination (Brinkmann, Agarwal et al. 2008).   

The Akt-1signalling pathway has also been shown to play a role in CNS myelination. A 

number of growth factors including NRG1 type III, insulin growth factor (IGF-1) and 

steroids, which activate the myelination process in the CNS, cause phosphorylation of 

Akt-1 by phosphatidylinositol 3-kinase (PI3K). PI3K-Akt-1-signalling increases 
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myelination by activating mTOR, the mammalian target of rapamycin (Taveggia, Feltri 

et al. 2010). 

FGF receptors 1 and 2 are expressed in mature oligodendrocytes and it has been found 

through studies in animal models that contain mutations in these genes, that they are not 

required for normal OPC differentiation and axonal ensheathment. In contrast, the 

overall CNS myelin thickness was affected, suggesting that FGF signalling regulates 

CNS myelin thickness in some way (Furusho, Dupree et al. 2012).  

Recently, it has been reported that CNS myelin thickness is also regulated by 

calcium/calmodulin-dependent kinase type IIβ (CaMKIIβ), which is a serine/threonine 

kinase that primarily works through actin cytoskeleton pathways (Waggener, Dupree et 

al. 2013). Additionally, it has been found that Laminin receptors in the CNS activate 

oligodendrocyte differentiation and survival during myelin wrapping (Colognato, 

ffrench-Constant et al. 2005). Also, β1 integrin-deficient mice showed decreased myelin 

sheath thickness and dysmyelinated axons. This study suggested that β1 integrins aid 

oligodendrocyte myelin formation through activating AKT (Barros, Nguyen et al. 

2009).   

Finally, oligodendrocytes wrap axons according to their diameter; mainly myelinating 

axons that have diameter greater than 0.2 μm (Waxman and Bennett 1972). The myelin 

sheath wraps multiple times around an axon and the number of myelin wraps is 

proportional to the axon’s diameter (Voyvodic 1989). Moreover, each oligodendrocyte 

is able to myelinate up to 60 axons (Remahl and Hildebrand 1990). It has been recently 

reported in zebrafish that oligodendrocytes have a short time window for formation of 

the myelin sheath (Czopka, ffrench-Constant et al. 2013). Myelin thickness is measured 

by calculating the g-ratio which is the ratio of the axonal diameter divided by the 

diameter of the myelin sheath. It has been reported that the g-ratio for any given animal 

is the same, around 0.6 to 0.7. Therefore, axons that have large diameters are 
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ensheathed by thick myelin (Sherman and Brophy 2005). Finally, non-myelinating 

oligodendrocytes have been reported to undergo apoptosis (Barres and Raff 1999). 

In summary, the development of myelinating oligodendrocytes is mediated by multiple 

cellular signalling pathways as well as transcription factors. However, it is still not fully 

understood how these pathways guide myelin formation at all developmental stages.     
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Figure 1.3: Oligodendrocyte developmental stages.  

Oligodendrocytes are derived from early pre-progenitors which then develop into late 

progenitors, which then become oligodendrocyte precursors (OPCs) which can be 

identified on the basis of specific markers. OPCs then develop into immature 

oligodendrocytes which later become mature oligodendrocytes. Mature 

oligodendrocytes create the specific elements of myelin and become mature myelinating 

oligodendrocytes.   
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1.2 PERIPHERAL NERVOUS SYSTEM MYELINATION 

   

1.2.1 SCHWANN CELLS (SCS)   

The main role of Schwann cells is to myelinate the axons of the peripheral nervous 

system (PNS). Schwann cells are the glial cells of the PNS and they are derived from 

neural crest cells which migrate throughout the PNS where they differentiate into 

Schwann cell precursors (Jessen, Brennan et al. 1994). After migration is complete, 

Schwann cell precursors become immature Schwann cells, and finally differentiate into 

mature Schwann cells which can either form a sheath around a single large diameter 

axon or wrap several thin diameter axons. Schwann cell development has been shown to 

be regulated by many transcription factors and pathways which tightly regulate this 

process (Jessen and Mirsky 2005).      

1.2.2 SCHWANN CELL DEVELOPMENT 

Neural crest cells are derived from the dorsal part of the neural tube and migrate along 

different pathways that determine the lineage development of various cell types. These 

include neural cells of the autonomic sensory nervous system plus several non-neural 

cell types such as cardiac smooth muscle, melanocytes in the skin, cartilage, 

craniofacial bones and connective tissue. Cells that migrate laterally mainly give rise to 

non-neural cells (Woodhoo and Sommer 2008), while cells that migrate ventrally 

become neural cells or give rise to Schwann cell precursors (SCPs). This process takes 

place around E12- 13 in mice and E14/15 in rats, and then SCPs differentiate into 

immature Schwann cells. In rodents, myelinting SC formation proceeds around E15 to 

E17 in rats and E15 in mice. Lastly, immature Schwann cells give rise to myelinating 

and non-myelinating SC. Schwann cell ensheathement of axons in nerves was reported 
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around E17-18 in rats and E15-16 in mice (Mirsky, Jessen et al. 2002; Jessen and 

Mirsky 2005).    

  

 

 

Figure 1.4: Stages of Schwann cell development. 

Schwann cells start to differentiate from neural crest cells into Schwann precursor cells, 

and then they develop into immature Schwann cells. Immature Schwann cells can 

become non-myelinating or myelinating Schwann cells.   
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1.2.2.1 Schwann Cell Proliferation and Migration  

In order to proliferate and differentiate from SCP to immature SC these cells respond to 

several signals and express specific transcription factors. The transcription factor Sox10 

is expressed by neural crest cells as well as SCPs and is required for the transition from 

the neural crest to immature SC, however; in immature SCs Sox10 expression is 

reduced (Britsch, Goerich et al. 2001). The neuregulin (NRG) protein family and ErbB 

receptor tyrosine kinases, which are NRG-receptors, are known to be key regulators in 

numerous SC developmental stages (Brinkmann, Agarwal et al. 2008). Several studies 

have reported that NRG1 is required for the migration and proliferation of SCPs. NRG1 

type III isoform mutation in mice leads to a dramatic decrease in SCPs number at E14 

in the spinal cord (Taveggia, Zanazzi et al. 2005). Additionally, both in mice and 

zebrafish, ErbB receptors 2 and 3 have been reported to regulate both proliferation and 

migration of Schwann cells (Riethmacher, Sonnenberg-Riethmacher et al. 1997; Lyons, 

Pogoda et al. 2005). Taken together, these studies suggest that NRG1-ErbB signalling 

plays significant roles in SC development. Other factors have been shown to regulate 

SC proliferation as well as process extension and stabilization including Cdc42 and 

Rac1 during radial sorting. Cdc42 was found to be activated by neuregulin-1 (NRG1), 

while Rac1 has been linked to β1-integrin signaling to promote SC process extension 

and stabilization (Benninger, Thurnherr et al. 2007). This suggested that NRG1 

signalling may also play indirect roles in regulating SC development. In addition to 

NRG1, another mitogen that affects SC proliferation and migration is transforming 

growth factor (TGF-beta). Studies in vivo as well as in vitro showed that TGF-beta may 

play a key role in SC proliferation (Atanasoski, Notterpek et al. 2004).  

Laminin, which is one of the extracellular matrix molecules that forms the basal lamina 

around non-myelinating SCs, has also been reported to regulate SC proliferation 
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because animals that lack  laminin γ1 displayed a reduction in SC proliferation in pre-

myelinating stages (Yu, Feltri et al. 2005).  

In addition, endothelin and its receptor are expressed in embryonic nerves, and its 

expression has been shown to impair SCP maturation in rats. This suggested that 

endothelin is a negative regulator of Schwann cell maturation (Brennan, Dean et al. 

2000). Another factor that as acts to negatively control Schwann cell maturation is the 

transcription factor AP-2, a specifically AP2α,  because it was found to be down-

regulated in vivo as Schwann cell precursors are generated (Stewart, Brennan et al. 

2001). Also, in vitro overexpression of AP2α leads to delayed SCP generation. These 

findings suggest that AP2α may act as an inhibitory factor during SCs maturation 

(Stewart, Brennan et al. 2001). It has been reported that there are several stop or death 

signals that contribute to regulating SC apoptosis. These signals include nerve growth 

factor (NGF), which acts via its receptor p75 in immature SCs and has also been shown 

to be important in SC death after injury (Syroid, Maycox et al. 2000) and TGF- beta 2 

receptors (D’Antonio, Droggiti et al. 2006). Another negative signal which is involved 

in SCP differentiation, is the c-Jun-amino (N)-terminal kinase (JNK) pathway which is 

inhibited at the beginning of myelination by Krox-20 signalling, whereas it is activated 

by TGFβ  and NRG-1  in immature Schwann cells (Parkinson, Bhaskaran et al. 2004).  

Notch 1 is expressed by neural crest cells and it has been shown that Notch signals 

activate immature SC proliferation both in vivo and in vitro. However, it is down 

regulated when mature SCs start myelination which suggests that Notch acts as an 

inhibitory signal during myelination (Woodhoo, Alonso et al. 2009).  

  

Finally, immature Schwann cells express multiple transcription factors that act as 

positive regulators for SC development and induce the expression of myelin specific 

proteins to promote the development of immature SCs to myelinating SCs. These 
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factors include Krox20, which is also known as early growth response protein 2 

(EGR2), Oct6, also known as POU domain class 3 transcription factor 1 (POU3F1) and 

Brn2 (Ghislain and Charnay 2006). Besides the above factors, the TGF- inhibitor Ski 

is another protein that has been found to be an essential factor in the signalling 

pathways that control SC myelination. Ski is mainly expressed in vivo by myelinating 

SCs and promotes the expression of myelin-related genes. Lack of this factor caused 

failure in SC myelination in an appropriate culture system (Atanasoski, Notterpek et al. 

2004). The transcription factor NF-kappa B is another factor that plays a central role in 

pre-myelinating SC formation. NF-κB is expressed in SCs and preventing its expression 

results in impairment of myelination (Nickols, Valentine et al. 2003). It is unclear how 

these different transcription factors are interconnected and relate with other components 

and molecules to regulate SC myelination.  

In addition, cAMP signalling has been found to control SCP proliferation and 

differentiation during development via activating Krox20 and upregulating P0 and MAG 

expression in cultures studies (Monuki, Weinmaster et al. 1989; Ogata, Yamamoto et al. 

2006). Also, Gpr126 is a G protein coupled receptor which has been reported to 

promote SC development in zebrafish at the pro-myelinating stage through activating 

adenylate cyclase(Monk, Naylor et al. 2009). 

   

1.2.2.2 Schwann Cell Myelination  

Prior to myelination, pro-myelinating SCs form bundles around axons radially and 

separate them into smaller bundles at a 1:1 ratio with each axon to wrap them. This 

phenomenon is defined as radial sorting (Webster, Martin et al. 1973). Similarly, non-

myelinated SCs are generated around sensory axons which have diameter less than ~1 

μm to form Remak bundles (Sherman and Brophy 2005). Although is not fully 

understood yet how SCs interact with axons to be myelinated, multiple factors are 
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known to be involved such as cell adhesion molecules such as PSA- NCAM and L1 

which are thought to be expressed by non-myelinated axons and then repressed during 

axonal myelination (Sherman and Brophy 2005). 

It is well known that signals from axons are critical in the development of the Schwann 

cell lineage. NRG1 type III has been reported to be the main signal that controls myelin 

thickness around myelinated axons (Taveggia, Zanazzi et al. 2005). In addition, NRG1 

type III has a key function in Remak bundle generation in non-myelinating SCs 

(Taveggia, Zanazzi et al. 2005).      

Prior to maturation, Schwann cells begin to control their survival through producing a 

number of survival factors that block apoptosis by participating in an autocrine circuit. 

These factors include neurotrophin 3 (NT3), insulin-like growth factor 2 (IGF2), 

leukaemia inhibitory factor (LIF), lysophosphatidic acid (LPA), and platelet-derived 

growth factor-β (PDGFB) (Jessen and Mirsky 2005). In addition, several studies 

showed that Laminin/β1 integrin is essential for radial axonal sorting. β1 integrin has 

been shown to mediate the activation of Rac1 which subsequently promotes SC 

myelination and axonal wrapping (Nodari, Zambroni et al. 2007). Another molecule that 

has key functions during the late stage of myelination is Neurofascin-186 (NF186), an 

immunoglobulin cell adhesion molecule, which has been shown to be responsible for 

the clustering of sodium channels at the nodes of Ranvier (Lyons and Talbot 2012). 

1.3 MYELIN DISORDERS     

Myelin abnormalities and oligodendrocyte deficiency has been linked to several 

psychiatric disorders including autism, schizophrenia and depression (Edgar and Sibille 

2012). Additionally, similar abnormalities have also been reported in a number of 

neurodegenerative diseases such as multiple sclerosis, Alzheimer’s disease and 
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amyotrophic lateral sclerosis (ALS). Postmortem brain tissue from Alzheimer’s disease 

patients revealed a reduction in the expression of myelin related proteins such as 

CNPase, MBP and PLP (Vlkolinský, Cairns et al. 2001). Moreover, white matter 

defects have been shown by neuroimaging studies in Alzheimer patients, suggesting that 

these abnormalities might be related to the myelin damage that has been detected in 

postmortem brain tissue from patients (El Waly, Macchi et al. 2014). In addition, a 

recent study revealed that oligodendrocytes fail to perform normal myelination as well 

as providing inadequate trophic support to neurones in mutant superoxide dismutase 1 

(SOD1) transgenic mice,  a commonly used mouse model of ALS (Philips, Bento-Abreu 

et al. 2013).  

1.3.1 MULTIPLE SCLEROSIS (MS) 

Multiple sclerosis (MS) is a recurrent autoimmune disease of myelin in the CNS. A high 

prevalence of the disease occurs in young adults between 20-40 making MS the most 

common neurological disorder in young adults It affects around 2.5 million people 

worldwide (Milo and Kahana 2010), with a higher incidence in females than males 

(Taylor, Devon et al. 2003). The disease etiology is not fully understood, but it is 

assumed that MS results from a combination of genetic susceptibility and environmental 

factors that lead to immune attack of myelin sheaths throughout the CNS (Milo and 

Kahana 2010). 

MS is thought to be partly a genetic disease due to linkage and genome wide association 

studies which have identified a number of genetic loci, although twin studies have 

shown a modest rate of coincidence (around 30%) in identical twins. In contrast, non-

identical twins have shown 3-5% higher risk in MS (Sadovnick, Armstrong et al. 1993). 

The human leukocyte antigen (HLA) system, which is located on chromosome 6, 

consists of many genes that are involved in the major histocompatibility complex 
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(MHC), and contains the most susceptibility genes for MS (Baranzini 2011). 

Additionally, GWAS have discovered a number of genes outside the HLA region that 

slightly effect MS incidence. Infectious agents have been identified as an environmental 

factor for MS (Kakalacheva and Lünemann 2011). Vitamin D deficiency, influenza A 

virus, Epstein-Barr virus (EBV) and smoking have also been associated with MS (Milo 

and Kahana 2010). 

MS is a complex disease that clinically has different forms. The first form of MS 

disease is characterised by neurological defects such as numbness, weakness, 

incoordination and double or loss of vision in one eye. These symptoms can be rescued 

completely or moderately after a few days, and this pattern is known as the relapsing-

remitting subtype of MS (RRMS). In some cases MS can lead to disability without any 

relapses and remissions, which is the secondary progressive subtype of MS (SPMS). 

Small numbers of MS patients are diagnosed with the primary progressive form (PPMS) 

which is characterised by a constant progression from onset. Many cases undergo 

complete disability due to the disease pattern or from immunosuppressive drug 

complications (Fleming 2013).  

1.4.2.1 MS Demyelination  

 MS lesions in the CNS are caused by autoimmune inflammatory reactions that are 

mediated by T cell and B cells against myelin sheath and oligodendrocyte proteins 

which leads to white matter damage (Fingerprinting 2007). Demyelinated lesions in MS 

are created from activation of CD4+ T cells which leads to secretion of pro-

inflammatory cytokines. These cytokines then stimulate microglia and astrocytes as 

well as other immune cells. It has been reported that immune cells secrete self-

antibodies that might target the myelin sheath and oligodendrocytes (Gandhi, Laroni et 

al. 2010). 
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1.4.2.2 MS Remyelination 

Remyelination or the myelin regenerative process is very similar to myelination during 

development and the only difference between them is that during development, 

myelination occurs in a healthy environment, while in MS, remyelination occurs in an 

abnormal environment (Buckley, Goldsmith et al. 2008). In MS, remyelinating lesions 

are observed by immunohistochemistry using antibodies against myelin related proteins 

including MBP, CNPase and PLP. This type of lesion has thinner myelin sheaths and 

fewer axons and therefore shows a weak staining of myelin proteins termed a ‘‘shadow 

plaque’’. However, remyelination does not occur in some MS patients and large 

numbers of their lesions display no remyelination (Hanafy and Sloane 2011).  

1.3.2 SCHIZOPHRENIA (SZ) 

Schizophrenia (SZ) is a severe mental disorder that affects approximately 0.5 to 1 % of 

the worldwide population. It is characterized by a combination of symptoms such as 

delusions, hallucinations, disorganized thoughts and cognitive defects. SZ appears in 

late adolescence or early adulthood (Ross, Margolis et al. 2006). The causes of the 

illness are unclear but several studies have suggested the etiology as a combination of 

genetic risk factors, which includes a number of genes, such as Neuregulin 1, DISC1 

and Dysbindin, as well as environmental factors (Chubb, Bradshaw et al. 2007). A 

recent GWAS found 108 loci with most of them being expressed in brain and including 

several genes that are linked with glutamatergic neurotransmission, neurodevelopment 

and the immune system. This study therefore identified  new insights in SZ etiology 

(Consortium 2014).  

The existing treatment for SZ is considered only sedative and due to the poor 

knowledge of the disorder’s etiology and pathogenic mechanisms, therapeutic 
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development is extremely limited. The incidence of SZ is 1.4 times higher in men than 

women (Aleman, Kahn et al. 2003). The clinical symptoms of SZ vary but the most 

common symptoms are positive symptoms such as delusions and hallucinations, 

whereas negative symptoms are symptoms that are recognized by the absence of normal 

behaviors, including social withdrawal and abnormal emotional responses. So far there 

is no specific laboratory test to diagnose SZ and cases are diagnosed on the basis of 

symptoms after excluding other psychotic disorders such as delirium. However, it has 

been discovered that many of the clinical symptoms of SZ overlap with bipolar disorder 

symptoms (Ross, Margolis et al. 2006). Endophenotypes is a term that was used firstly 

by Gottesman in 1973, and is defined as clinical features which are heritable phenotypes 

that present at higher rates in the non-affected family members than in the general 

population. These phenotypes should co-segregate within families with psychiatric 

illness (Gottesman and Gould 2003). In SZ cases, endophenotypes have been applied to 

help describe neural abnormalities under genetic control. Thus, SZ has been associated 

with eye movement disorders (Ettinger, Picchioni et al. 2006), while the P300 wave, 

which tests cortical activity, has been used to identify deficits in memory function and 

attention in SZ patients and is also used as an enodophenotype in SZ (Bramon, 

Dempster et al. 2006). Cognitive impairments, for example, learning difficulties, 

abnormal attention and poor memory performance, have been shown to be significantly 

altered in SZ. Additionally, there is some evidence of abnormalities in 

neurodevelopment in SZ, which has led to the neurodevelopmental hypothesis of SZ. 

For instance, abnormalities in neuronal positioning (Akbarian, Bunney et al. 1993) have 

been reported as well as decreases in the cortical neuropil volume (Selemon and 

Goldman-Rakic 2001).  
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1.3.2.1 Myelin Associated Genes in SZ 

During normal development of brain, the myelination process leads to increased white 

matter volume. This process appears post-natally and normally continues into middle 

age. It has been found that increased white matter volume is linked with normal 

development of cognitive skills (Paus 2010). Since, SZ has its peak incidence during 

early adulthood, several studies have suggested myelin dysfunction in SZ as a causal 

factor in disease pathology. Abnormalities in brain white matter areas including the 

anterior commissure, fornix and corpus callosum have reported in SZ patients. 

Additionally, myelin dysfunction and reduction in oligodendrocyte numbers have been 

shown in SZ cases (Fields 2008; Jaaro-Peled, Hayashi-Takagi et al. 2009). In addition, 

numerous genetic studies have provided evidence of abnormal expression of 

oligodendrocyte and myelin related genes in SZ. These genes include CNP, MAL, 

HRBB3, MAG, TF and GSN (Hakak, Walker et al. 2001). Additionally, myelin related 

genes such as MBP, MOP, MP2, PMP22 and MAG have also been reported to show 

decreased expression in SZ (Aston, Jiang et al. 2004; Prabakaran, Swatton et al. 2004). 

In spite of this, there are several reports that showed negative results, for instance; 

MAG, CNP and OLIG2 with SZ (Mitkus, Hyde et al. 2008; Maycox, Kelly et al. 2009).    

1.3.2.2 Neuregulin 1 

NRG1 is one of four neuregulin related proteins. The NRG1 gene was first linked to SZ 

when an association study in the Icelandic population pinpointed NRG1 in a candidate 

region that had already been linked to SZ (Stefansson, Petursson et al. 2002). These 

findings were confirmed by other association studies in Caucasian and Asian 

populations (Li, Collier et al. 2006). NRG1 has therefore been considered a pivotal 

candidate gene for SZ, although it has not been implicated by recent GWAS findings. 

The gene is found on chromosome 8p12.21 and encodes a signalling protein that 
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interacts with receptor tyrosine kinases of the ErbB family. The NRG1 gene is 

expressed in most brain areas that have been correlated with SZ (Law, Shannon 

Weickert et al. 2004). 

There are many studies that have investigated the possible role of NRG1 in SZ. For 

example, Li et al (2005) provided evidence that NRG1 is required for neural progenitor 

proliferation, suggesting that defects in this gene’s activity might lead to abnormal brain 

development. Also, NRG1-ErbB4 signalling has a role in controlling axon guidance as 

well as neural migration (Rio, Rieff et al. 1997; L  َ pez-Bendito, Cautinat et al. 2006). 

Furthermore, it has been shown that NRG1 is required for axon myelination and 

oligodendrocyte differentiation, which has been observed in a zebrafish model as well 

as in cell and mouse studies (Corfas, Velardez et al. 2004; Wood, Bonath et al. 2009).  

1.3.2.3 Disrupted-in-Schizophrenia 1 (DISC1) 

Disrupted-in-Schizophrenia 1 (DISC1) is found on chromosome 1 and contains 13 

exons, which generate four alternative splice forms. The DISC1 gene was initially 

identified when a large Scottish family study found that the DISC1 locus was disrupted 

by a balanced t (1; 11), (q42.1; q14.3) chromosomal translocation associated with 

psychiatric disorders (Millar, Wilson-Annan et al. 2000). Subsequently, DISC1 has been 

associated with SZ in a number of different populations, for example Finnish, African 

American, central European, Chinese and Caucasian populations (Hennah, Varilo et al. 

2003; Qu, Tang et al. 2007; Hodgkinson, Yuan et al. 2008; Schumacher, Laje et al. 

2009). Additionally, a strong association was found with schizoaffective disorder close 

to the DISC1 locus at 1q42 (Hamshere, Bennett et al. 2005). Therefore, interest in 

DISC1 has increased as a potential candidate gene in SZ as well as in other mental 

disorders. Genetic analysis of DISC1 has detected several SNPs and haplotypes of 

DISC1 that are related to brain functions and structural abnormalities such as abnormal 
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cognitive function, decreased grey matter and hippocampal volume (Cannon, Hennah et 

al. 2005; Hennah, Tuulio-Henriksson et al. 2005; Thomson, Harris et al. 2005). 

Therefore, DISC1 has been considered one of the most promising candidate genes for 

SZ. However, there are several GWAS studies that showed negative or no significant 

results for DISC1 (Sullivan, Lin et al. 2008; O’Donovan, Craddock et al. 2009; 

Crowley, Hilliard et al. 2013). In addition, there are a number of association studies that 

failed to find linkage between DISC1 and SZ in some populations, for instance Japanese 

and Korean populations (Devon, Anderson et al. 2001; Kim, Park et al. 2008).  

It was first shown that DISC1 might have a significant role in oligodendrocyte 

differentiation during neurodevelopment in the zebrafish (Wood et al, 2009). 

Subsequently, it was shown in a mouse model that Disc1 mutants showed impairment 

of oligodendrocyte differentiation (Katsel, Tan et al. 2011). In addition, DISC1 mutation 

has linked to agenesis of the corpus callosum (AgCC) pathology in humans, and 

abnormal development of the cerebral hemispheres in mice (Clapcote and Roder 2006). 

Abnormal callosal function has also been linked to schizophrenia (Innocenti, Ansermet 

et al. 2003). This indicates that aberrant DISC1 function may underlie the mechanisms 

of agenesis of the corpus callosum (Osbun, Li et al. 2011). Human brain imaging in the 

context of DISC1 polymorphisms in SZ cases have reported large clusters of reduced 

grey matter (Duff, Macritchie et al. 2013). 

1.3.2.4  DISC1 Protein Interactions 

DISC1 is recognised as a multifunctional scaffold protein that interacts with several 

proteins which are necessary for cAMP signalling, neuronal migration, neural 

progenitor proliferation, cytoskeletal modulation and synaptic function (Chubb, 

Bradshaw et al. 2007). The mechanisms and pathways suggested to involve DISC1 

protein function are many.     
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1.3.2.4.1 Neuronal Migration 

Amyloid precursor protein (APP) is a transmembrane glycoprotein which plays a key 

role in Alzheimer’s disease. Previously, it has been reported that APP knockdown using 

siRNA in the cortex leads to abnormal neuronal migration (Young-Pearse, Suth et al. 

2010). A recent study suggested that the N-terminal domain of DISC1 interacts with the 

intracellular domain of APP which then promotes DISC1 protein distribution to the 

centrosome. Consequently, these results suggest that DISC1 controls neuronal migration 

in the cortex (Young-Pearse, Suth et al. 2010). 

DIX domain containing 1 (DIXDC1) is the mammalian homologue of zebrafish Ccd1 

that contains a Dishevelled-Axin (DIX) domain and controls Wnt/β-catenin activity 

(Shiomi, Uchida et al. 2003). It has been reported that suppression of Disc1 or 

knockdown of Dixdc1 leads to defects in neural migration. Interestingly, the over-

expression of degradation-resistant β-catenin or over-expression of both genes (Disc1 & 

Dixdc1) did not reverse the neuronal migration abnormalities. Thus, neuronal migration 

is regulated by Disc1 and Dixdc1 genes independent of Wnt/β-catenin signaling (Singh, 

Ge et al. 2010). Furthermore, it has been found that Dixdc1 interacts with Ndel1 

through phosphorylation of Dixdc1 by Cyclin-dependent kinase 5 (Cdk5) on serine 250. 

Dixdc1 also has a pivotal role in neuronal progenitor cell proliferation by interacting 

with DISC1 via Wnt-GSK3β/β-catenin signaling (Singh, Ge et al. 2010). Thus, Cdk5 is 

required to switch the DISC1 protein function from neuronal progenitor cell 

proliferation to post-mitotic neuronal migration (Singh, Ge et al. 2010). 

LIS1, also known as PAFAH1B1, encodes the lissencephaly 1 protein. LIS1 gene 

mutation causes a severe neurodevelopmental disease called lissencephaly. This disease 

is recognized by serious brain malformation caused by defective neuronal migration (Lo 

Nigro, Chong et al. 1997). It has been found that LIS1 protein plays a vital role in 
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neuronal migration and neuroblast proliferation, and Lis1 mutations lead to abnormal 

neurogenesis in the hippocampus in mice (Baraban 2007). Furthermore, it has been 

found that LIS1 is involved in the conserved nuclear transport pathway. The nuclear 

distribution (nud) mutants were discovered in Aspergillus nidulans. LIS1 is the 

mammalian orthologue of nudf, while NDE1 and NDEL1 are orthologues of nude. 

Subsequently, LIS1 was shown to form a complex with NDE1 and NDEL1 proteins. 

NDE1 and NDEL1 also have a central role in neuronal migration and LIS1 interacts 

with DISC1 through the NDEL1-LIS1 complex (Chubb, Bradshaw et al. 2007). 

 NDE-Like 1 (NDEL1) and Nuclear Distribution Factor E Homolog 1 (NDE1) share 

60% identity and 80% similarity at the amino acid level. DISC1 was found to bind to 

NDEL1 protein in a number of yeast two-hybrid studies (Morris, Kandpal et al. 2003; 

Ozeki, Tomoda et al. 2003; Brandon, Handford et al. 2004). It has been found that 

NDEL1 is important for the connection between the centrosome and nucleus during 

neuronal migration. This neuronal migration system involves dynein, microtubules and 

the LIS1-NDEL1 protein complex. Impairment of the LIS1-NDEL1 complex leads to 

inhibition of neuronal migration by preventing the centrosome from integrating with the 

nucleus.  Additionally, NDEL1 has been shown to act as an endo-oligopeptidase that 

cleaves neuropeptides. Interestingly, NDEL1-DISC1 interaction prevents this activity 

which is important in neurite outgrowth (Hayashi, Guerreiro et al. 2010).  

1.3.2.4.2 Neural Progenitor Proliferation  

DISC1 plays a critical role in neurogenesis and the proliferation of neural progenitor 

cells during mouse brain development (Mao, Ge et al. 2009). These results were seen in 

cultured brain slices, where use of short hairpin RNA (shRNA) against Disc1 lead to 

decreased differentiation of progenitor cells. In contrast, DISC1 over-expression lead to 

increased production of neural progenitor cells (Mao, Ge et al. 2009). It has long been 



31 

 

known that wnt/β-catenin signaling controls neural progenitor proliferation (Chenn and 

Walsh 2002). Recent research in 2009 by Mao et al found that DISC1 controls β-catenin 

activity. Additionally, the over-expression of degradation resistant β-catenin was shown 

to rescue the effect of Disc1 loss (Mao, Ge et al. 2009).  

Interestingly, Mao et al reported that glycogen synthase kinase-3β protein (GSK3β) 

interacts with DISC1 and is inhibited by DISC1. The mechanism that was suggested to 

explain this process is that the N-terminal domain of DISC1 interacts directly with 

GSK3β and leads to inhibition of GSK3β activity. For this reason β-catenin is 

stabilized, which then supports the proliferation of neural progenitor cells (Ming and 

Song 2009). Importantly, antipsychotic treatment (lithium) was also found to inhibit 

GSK3β activity (Mao, Ge et al. 2009). GSK3β is regulated by different factors such as 

Ser 9 phosphorylation via the AKT pathway (Mao, Ge et al. 2009) and recently it has 

been found that APP also regulates GSK3β activity (Hernández, Gómez de Barreda et 

al. 2010). 

1.3.2.4.3 Neurosignaling 

The phosphodiesterase 4 (PDE4) family consists of four genes PDE4A-D that encode at 

least twenty different protein isoforms. PDE4s are enzymes consisting of two upstream 

conserved regions (UCR1, UCR2) and a catalytic N-terminal domain. DISC1 interacts 

with the UCR2 domain in PDE4. PDE4s play a critical role in the regulation of cyclic 

adenosine monophosphate (cAMP) signaling in the CNS. It has been reported that 

mutation in the DISC1-PDE4 binding site in mice leads to decreased PDE4 activity 

(Clapcote, Lipina et al. 2007). PKA (protein kinase A) phosphorylates the UCR1 

domain in PDE4 leading to activation of PDE4 isoforms. When the cAMP 

concentration rises, this leads to dissociation of PDE4 and DISC1 and also increases 

PKA phosphorylation and activation of PDE4. Therefore, DISC1 plays a regulatory role 
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in PDE4 function.  Additionally, decreasing DISC1 expression in cultured rat cells 

using RNAi, causes a decline in the extracellular signal- related kinase (ERK) level. 

ERK is considered as a key regulator of PDE4s catalytic activity. Therefore, DISC1 has 

a crucial role in controlling PDE4 activity (Chubb, Bradshaw et al. 2007). 

Girdin protein, also known as KIAA1212, is expressed in cells of the dentate gyrus of 

the hippocampus and regulates the serine /theronine kinase AKT through direct binding 

with AKT (Enomoto, Asai et al. 2009). Girdin protein was found to interact with DISC1 

in 2007 using a yeast two-hybrid screen (Camargo, Collura et al. 2006). Further studies 

have found that the DISC1- Girdin interaction leads to inhibition of AKT signaling 

(Zheng, Wang et al. 2012).  

In summary, DISC1 is a key regulator of some of the most important signaling 

pathways in neurodevelopmental disorders. DISC1 controls Wnt/β- catenin signaling by 

inhibiting GSK3β activity, cAMP signaling by interacting with PDE4 and inhibiting 

AKT/mTOR signaling by binding with Girdin. Altogether, DISC1 plays a central role in 

neurosignaling and understanding these pathways may offer new approaches to 

neuropsychiatric treatment.   

1.3.2.4.5 Synaptic Function  

Kalirin7 is a GDP/GTP exchange factor for Rac1 of the Rho protein family. Kal-7 has a 

critical function in regulating dendritic spine formation and was linked with DISC1 by a 

yeast two-hybrid screen  (Hayashi, Guerreiro et al. 2010). Traf2 and Nck-interacting 

Kinase (TNIK) is a serine/theronine kinase is another DISC1 protein partner. TNIK –

DISC1 protein interaction was demonstrated in a yeast two hybrid screen (Camargo, 

Collura et al. 2006).  TNIK is expressed in neurons that are enriched in PSD proteins 

and TNIK activity is inhibited by DISC1 protein. Reducing TNIK activity affects the 

stability of post synaptic proteins and neuronal activity (Wang, Charych et al. 2010). 
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1.3.2.4.6 Other Protein Interactions 

Several studies have found other proteins that interact with DISC1 and have a role in 

brain structure and function, for example, 14-3-3 epsilon and Kinesin-1. 14-3-3ε protein 

is vital for brain function and has been linked with various neurological disorders. Loss 

of 14-3-3ε was shown in Miller-Diker syndrome as a consequence of disarrangement of 

the NDEL1 and LIS1 complex and subsequently leads to migration defects ((Chubb, 

Bradshaw et al. 2007)). 

Function of 14-3-3ε protein has been linked with DISC1 in rat PC12 cells. The NDEL1-

LIS1-14-3-3ε complex is regulated by DISC1 and Kinesin-1, another DISC1 binding 

protein. Additionally, it has been found that the Kinesin-1 interaction with DISC1 is 

important for axonal growth and microtubule organization (Taya, Shinoda et al. 2007). 

Together, these results suggest that DISC1 plays a role as a cargo receptor for transport 

of NDEL1, LIS1, 14-3-3ε complexes by Kinesin-1 (Chubb, Bradshaw et al. 2007).  

Fasciculation and Elongation Factor Zeta1 (FEZ1) is another DISC1 protein partner that 

is implicated in the regulation of neuronal outgrowth. It has been reported that FEZ1-

DISC1 interaction affects neural differentiation in PC12 cells (Miyoshi, Honda et al. 

2003). This finding suggested that the DISC1-FEZ1 interaction has a role in brain 

function (Chubb, Bradshaw et al. 2007). 

DISC1 was also found to bind to the centrosome via Pericentrin, which is also called 

Kendrin, and acts as a regulator for Pericentriolar material 1 (PCM1) function in 

microtubule organization. Importantly, PCM1 also interacts with DISC1 at the 

centrosome and it is critical for the production  of newborn neurones (Ge, Frank et al. 

2010). It has been found that Ser704Cys and Leu607Phe, which are amino acid variants 

of DISC1, lead to abnormal positioning of PCM1 at the centrosome. This suggests that 

DISC1 alleles might affect PCM1 localization (Eastwood, Walker et al. 2010). 



34 

 

In summary, the DISC1 protein is a scaffold protein with multiple isoforms and 

functions. These cause complex DISC1 interactions with several proteins which already 

have central roles in brain development and function. DISC1 may regulate these 

proteins at distinct times and different location in brain. Understanding these functions 

will lead to better understanding of the SZ etiology and pathology ((Bradshaw and 

Porteous 2011).    

1.4 ZEBRAFISH MODELS TO STUDY MYELINATION  

Zebrafish (Danio rerio) were initially used by George Streisinger for scientific research 

in 1981 (Streisinger, Walker et al. 1981). Since then, zebrafish have been utilised as a 

high-throughput in vivo model which has become widely used in the last decade for 

therapeutic drug screens and to understand the mechanisms underlying a range of 

human diseases. Zebrafish have a number of advantages that make this model 

particularly suitable for the analysis of early development. The most important 

advantage is that zebrafish show rapid development of most organs, for example; the 

heart develops within two days post-fertilization (d.p.f) (Kimmel, Ballard et al. 1995).  

Additionally, the developmental stages of the embryos can be easily observed due to 

external fertilization, which allows in vivo studies of cell structure and function. 

Moreover, zebrafish are relatively cheap to maintain. The ability to lay large numbers of 

embryos (around 100 to 300 embryos weekly per female) is another advantage of 

zebrafish as a model system (Buckley, Goldsmith et al. 2008) .   

Several techniques are available for both forward and reverse genetic studies to 

manipulate gene function. For example; gene knock down can be achieved using 

morpholino antisense oligonucleotides to inhibit splicing or translation of mRNA 

encoding a gene of interest (Skromne and Prince 2008). In addition, to generate gene 
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mutations in zebrafish, the chemical mutagen N-ethyl-N-nitrosurea (ENU) has been 

widely used. This method generates random mutations throughout the genome and can 

be used to isolate mutants by phenotype (Wienholds, Schulte-Merker et al. 2002). ENU-

mutagenesis based screening is then followed by positional cloning techniques to 

identify the mutant gene (Talbot and Schier 1998).   

In addition, the zebrafish has gained favour as a model organism for myelination 

research through the use of in vivo imaging techniques to visualize neural cell behavior 

and the relationships between neurons and glia during myelination.  

1.4.1 DEVELOPMENT OF MYELINATING CELLS IN ZEBRAFISH  

Zebrafish oligodendrocytes possess the same morphological structures of the myelin 

sheath as other vertebrates and express similar myelin-specific proteins throughout the 

development of myelinating cells, including sox10, krox20, oct6 and mbp (Jeserich and 

Waehneldt 1986; Sivron, Cohen et al. 1990; Jeserich and Stratmann 1992; Brösamle 

and Halpern 2002; Jeserich, Klempahn et al. 2008) 

However, the main difference between zebrafish and mammals in myelin protein 

expression is that in the CNS, zebrafish express myelin protein zero (MPZ), which is 

only present in the PNS in mammals (Brösamle and Halpern 2002;(Waehneldt, 

Matthieu et al. 1986; Avila, Tevlin et al. 2007; Jeserich, Klempahn et al. 2008). 

Moreover, zebrafish often express a pair of orthologous genes for each vertebrate gene, 

as is the case for PLP/DM20 (Schweitzer, Becker et al. 2006; Brösamle and Halpern 

2002). For this reason, some myelin-specific proteins are considerably less conserved in 

zebrafish compared to mammals. In zebrafish, oligodendrocytes in both the spinal cord 

and hindbrain arise from multipotent olig2-positive precursor cells of the motor neuron 

precursor (pMN) domain (Richardson, Smith et al. 2000; Rowitch 2004). Previously, it 
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has been reported that OPCs can be detected in the zebrafish by 2 days post fertilization 

(d.p.f.) in the hindbrain and that OPC differentiation occurs around 3 d.p.f. (Park et al., 

2002). Additionally, mpb-expressing cells can be observed at 4 d.p.f. in the ventral 

hindbrain while compact myelin was reported around 7 d.p.f. (Brösamle and Halpern 

2002). In contrast, another study reported that myelinated tracts can be observed  as 

early as 54 h.p.f. in the zebrafish spinal cord using a plp:EGFP transgenic line (Yoshida 

and Macklin 2005). More recently, it was reported that myelination might start in 

zebrafish spinal cord at 3 d.p.f. (Buckley, Marguerie et al. 2010). Taken together, these 

findings demonstrate that zebrafish can be used as a model system to study and 

understand the complex mechanisms of myelination and model diseases of myelin. 

Similar to mammals, mutant erbb2 and erbb3 zebrafish show impairments in SC 

proliferation and survival (Lyons, Pogoda et al. 2005). In addition, ErbB signalling was 

found to be required for radial sorting as well as directed migration of SC along their 

axons (Gilmour, Maischein et al. 2002; Raphael, Lyons et al. 2011). In addition, 

gpr126, a member of the adhesion family of G proteins, has been studied in zebrafish 

and it was found that gpr126 mutants lack SC myelination. Further research found that 

gpr126 up-regulates krox20 and oct6 functions in SC development (Monk, Naylor et al. 

2009).  

1.5 ZEBRAFISH GENETIC SCREENS    

1.5.1 FORWARD GENETIC SCREENING 

1.5.1.1 CHEMICAL MUTAGENESIS 

Forward genetic screens aim to identify mutations that yield specific classes of 

phenotype. N-ethyl-N-nitrosourea (ENU) is a chemical mutagen that has been widely 
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used in large scale zebrafish forward genetic screens to produce point mutations 

(Grunwald and Streisinger 1992).  

Point mutations are generated throughout the entire genome in pre-meiotic germ cells 

where ethyl group transfer to individual bases of the DNA causes base substitutions in 

the subsequent DNA replication (Pastink, Vreeken et al. 1989). ENU mainly induces 

recessive mutations, so in order to purify mutants to homozygosity, multi-generation 

backcrosses are utilised. Mutagenized adult male zebrafish are crossed with wild-type 

females in what is known as the parental generation (P) to create the F1 generation. The 

first generation (F1) offspring are heterozygous for individual mutations which are 

crossed for a second time with wild-type females, to generate the second generation 

(F2), which are then randomly inter-crossed to create the third generation (F3) families 

in which homozygous mutations appear. Ultimately, the F3 embryos are selected based 

on morphological criteria using microscopy between 1-5 dpf. Subsequently, positional 

cloning is used to link a particular gene to a point mutation (Solnica-Krezel, Schier et al. 

1994; Lawson and Wolfe 2011). It is worth noting that zebrafish genomes are highly 

polymorphic between strains and obtaining a homozygous line requires multiple 

background out-crosses. The high level of polymorphic variability allowed scientists to 

use SNP mapping which is a relatively rapid and inexpensive tool to resolve the genetic 

linkage between phenotype and genotype in zebrafish strains.  

Such screens have been performed to identify myelination mutants. Myelination defects 

can be observed as a secondary effect of some early developmental mutations, thus mpb 

expression in otherwise normal appearing embryos has been used to screen for 

mutations that cause specific myelination abnormalities (Czopka and Lyons 2011). One 

screen identified four mutants that were associated with Schwann cell and 

oligodendrocyte development and differentiation defects (Kazakova, Li et al. 2006). 
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Additionally, another large scale screen was performed in zebrafish which identified 10 

different genes carrying 13 mutations that carried myelination defects (Pogoda, 

Sternheim et al. 2006). It was from this screen that erbb3
 
and erbb2 mutant lines were 

identified through disruption of mbp expression along PNS axons (Lyons, Pogoda et al. 

2005).   

In this study, a large-scale zebrafish mutagenesis phenotypic screen was previously 

performed using ENU by the Ingham laboratory in the Centre for Developmental and 

Biomedical Genetics at Sheffield University. This screen identified a small number of 

zebrafish lines that showed myelination defect phenotypes (A.J Grierson unpublished), 

for which further genetic mapping is required to determine the causal genes. Through 

this screen the FB148.5 mutation zebrafish strain was identified which is the main 

subject of this project.  

1.5.2 REVERSE GENETIC SCREENING 

Reverse genetic methods have been used in myelination research to study specific 

myelin-related gene functions by analysing the phenotypes caused by loss of gene 

function. A number of reverse genetic approaches have been used to study myelination 

in zebrafish including morpholino antisense oligonucleotides (MOs), Zinc finger 

nuclease (ZFN) technology, Targeted Induced Local Lesions in Genomes (TILLING), 

Transcription activator-like effector (TALE) nucleases (TALENs) and Clustered 

regulatory interspaced short palindromic (CRISPR) (Heasman 2002, Moens, Donn et al. 

2008; Hwang, Fu et al. 2013). 

The MO approach is utilized to analyse gene function through either blocking mRNA 

translation initiation or preventing the normal splicing of pre-mRNA (Nasevicius and 

Ekker 2000; Eisen and Smith 2008). However, this technique has disadvantages in that 
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it can give profound off target effects and is only suitable for early developmental stages 

since the effects of MOs are transient. The abnormal side effects include increased cell 

death, neural degradation (Heasman 2002) and p53 activation (Robu, Larson et al. 

2007).  As myelination is known to initiate at 3-4 days in zebrafish when the effect of 

MOs microinjected at the 1-cell stage will be wearing off, other techniques such as focal 

electroporation have been used (Concha, Russell et al. 2003; Czopka and Lyons 2011).  

Another reverse genetic screening method is Targeted Induced Local Lesions in 

Genomes (TILLING) and it has been performed in several species including plants, 

mice and zebrafish (Wienholds, van Eeden et al. 2003). This approach again uses ENU 

to perform random mutagenesis to generate a library of mutation carrying fish and then 

sequencing of genomic DNA or use of other methods to identify mutants in a specific 

gene of interest (Moens, Donn et al. 2008). This approach could also aid myelination 

research by isolating specific mutant alleles in genes that are involved in myelination.  

Zinc finger nucleases (ZFN) are one of the more recent reverse genetic approaches that 

has been used in zebrafish. ZFNs are artificial restriction enzymes that generate double-

stranded DNA breaks by cleaving specific sequences. In respect to myelination, these 

powerful genome-editing methods can be used to provide new insight into 

understanding myelin formation and maintenance because they allow targeting and 

modification of specific alleles that cause human myelination disorders in zebrafish 

(Czopka and Lyons 2011).  

In addition, Transcription activator-like effector (TALE) nucleases (TALENs) have 

recently appeared as an alternative genome engineering tool in many different 

organisms including mouse, rat, yeast, frog and zebrafish (Sun and Zhao 2013). 

TALENs are fusions of the FokI cleavage domain and DNA-binding domains derived 

from TALE proteins. This tool introduces site specific chromosomal double-strand 
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breaks, which is similar to the ZFN technique, and can be used for gene disruption, 

insertion, deletion or replacement. This approach can be applied to create targeted 

mutation in zebrafish which could help in myelination research (Sander, Cade et al. 

2011).  

Clustered regulatory interspaced short palindromic repeats have emerged recently as a 

powerful genetic editing technology. In zebrafish, the CRISPR-Cas9 has been applied 

with bacterial type II CRISPR systems to serve as RNA-guides that direct DNA 

cleavage by the Cas9 endonuclease in zebrafish embryos to induce targeted mutations 

similar to those obtained by ZFN and TALEN methods (Gaj, Gersbach et al. 2013; 

Hwang, Fu et al. 2013). 
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1.6 HYPOTHESIS    

Previous unpublished research in Sheffield identified an uncharacterized mutant 

(FB148.5) that showed very similar morphological defects to those seen in the disc1 

morpholino mutants (morphants). Therefore, we hypothesized that the gene mutated in 

FB148.5 is functionally related to disc1 and may be of relevance to psychiatric disease. 

1.7 AIMS 

There were two main aims at the outset of this project: 

•  To perform a detailed phenotypic characterisation of CNS development in 

FB148.5 mutants using whole mount in situ hybridization (WISH) and antibody 

staining against a panel of oligodendroglial and neuronal markers. 

•  To map the FB148.5 mutation by out-crossing FB148.5 onto the polymorphic 

wild-type WIK strain for two generations, and then use a panel of microsatellite 

markers to identify the linkage group harbouring the mutated gene as part of a 

positional cloning strategy. Further mapping and sequencing studies would then be 

undertaken to identify the FB148.5 mutation. 
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CHAPTER II: MATERIALS AND METHODS 
 

2.1MATERIALS 

2.1.1 ZEBRAFISH MAINTENANCE 

Wild-type zebrafish (AB and TL strains) were obtained by natural mating and 

maintained at 28.5°C in E3 medium. FB148.5 mutant zebrafish were induced by N-

ethyl-N-nitrosourea (ENU) mutagenesis and isolated in an F3 lethal screen in the 

laboratory of Professor Philip Ingham at the Centre for Developmental Genetics at the 

University of Sheffield. The mutation is inherited in a recessive Mendelian mode and 

reveals abnormal morphological phenotypes, including small eyes, curved body axis 

and misshapen head. In addition, mutant embryos were distinguished by myelination 

defects through mbp and olig2 expression patterns in the hindbrain using ISH at 48 hpf  

(Wolff, Roy et al. 2004). The heterozygous FB148.5 strain carrying the ENU induced 

mutation was originally generated in the AB strain background but was crossed several 

times to the London Wild Type (LWT) strain while maintaining the line, and later were 

out-crossed to the WIK strain to perform positional cloning. These multiple 

grandparental crosses exhibit different sets of SNPs which may interfere with mapping 

resolution and consequently yield false positive results.  

Procedures in this study were performed according to local animal welfare regulations.   

2.1.2 SOLUTIONS AND BUFFERS 

Buffers Recipes  

Phosphate buffered saline (PBS) Provided as tablets from Sigma, 
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each tablet was dissolved in 

200ml of H2O 

1X E3 medium 5 mM NaCl, 0.17 mM KCl, 0.33 

mM CaCl2, 0.33 mM MgSO4, 

20 µl of 0.03 M Methylene Blue 

per 1L was added to prevent 

fungal growth  

PBT 2% (v/v) sheep serum, 0.2% 

(w/v) bovine serum albumin 

(BSA) , 0.1% (w/v) Tween 20 in 

PBS 

20x SSC 300 mM Sodium citrate, 3 M 

NaCl 

PTW 0.1 % (w/v) Tween 20 in PBS 

Fish fix 0.1 M phosphate buffer pH 7.4, 

4% (w/v) paraformaldehyde, 4% 

(w/v) sucrose, 0.12 mM CaCl2 

Hybridization solution 5×SSC,  0.1% Tween 20, 500 

µg/ml RNAse free tRNA, 50 

µg/ml Heparin, 50% Formamide,  

9.2 mM citric acid.                                                       

Staining buffer 100 mM Tris-HCl pH9.5, 100 
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mM NaCl, 50 mM MgCl2, 0.1% 

(w/v) Tween20 

PBDT 1% (v/v) DMSO, 1% (w/v) BSA 

& 0.5% (w/v) Triton X-100 in 

PBS. 

5×TBE buffer 450  mM Tris, 450 mM Boric 

acid, 10 mM EDTA pH 8.3 – 8.7 

DEPC-H2O 0.1% (v/v) DEPC in dH2O, 

autoclaved 

50X TAE buffer 2 M Tris base, 1 M Glacial 

acetic acid, 50 mM 

EDTA pH 8.4 

 

Table 2.1: List of buffers and reagents 

 

2.1.3 PCR PRIMERS USED IN THIS STUDY 

All primers that were used in this project were ordered from Sigma (Poole, UK). 

2.2 METHODS 

2.2.1 GENERAL MOLECULAR BIOLOGY & STAINING METHODS  

2.2.1.1 BACTERIAL TRANSFORMATION  
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To perform bacterial transformations, DH5α competent cells (Life Technologies, 

Paisley, UK) were thawed on ice and then 50 µl of cells was transferred to a 1.5 ml 

micro-centrifuge tube that had been chilled on wet ice. Then, 1 μl of DNA solution was 

added to the cells and mixed gently. After that, the tube was incubated on ice for 30 

min, and then a heat shock was done to the cells for 20 s in a 37
o
C water bath. The tube 

was subsequently placed on ice for 2 min then 950 μl of pre-warmed LB medium was 

added. After that, the tube was incubated at 37
o
C for 30 min at 225rpm. Finally, 0.5 ml 

from the transformation was spread on an LB-agar plate containing 50 μg/ml of 

carbenicillin (Sigma), and then the plate was incubated overnight at 37
0
C.  

2.2.1.2 BACTERIAL CULTURE 

Using a sterile loop, a single colony was selected and used to inoculate 2 ml of LB 

medium (Fisher Bioreagents) containing 50 µg/ml of carbenicillin. After that, the tube 

was placed on a shaking incubator at 37°C and 250rpm for 8 hr. Next, 100 μl of the 

starter culture were transferred to 100ml of fresh growth medium in a 500ml flask 

which then was incubated overnight on the shaking incubator at 37°C.  

2.2.1.3 PLASMID PURIFICATION  

To purify DNA from bacteria, a Plasmid Midiprep Kit (QIAGEN GmbH) was used 

according to the manufacturer’s instructions. Briefly, the bacterial cells were harvested 

by centrifugation at 600 x g for 15 min at 4 C. Then, cells were re-suspended in 4 ml of 

Buffer P1 and transferred to a 50 ml tube. After that, 4 ml of Buffer P2 was added to the 

tube and the contents were mixed thoroughly by inverting the sealed tube 4-6 times, and 

then incubated at room temperature for 5 min. Next, 4 ml of chilled Buffer P3 was 

added and the tube was thoroughly mixed and incubated on ice for 15 min. Following 

this, the tube was centrifuged at 20,000g for 30 minutes. The supernatant from this 

centrifugation contained the plasmid DNA which was removed carefully to a fresh tube. 
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The tube was centrifuged once more for 15 min at 20,000g and the supernatant was 

removed carefully. After that, the supernatant was applied to a column and it was 

allowed to enter the resin by gravity flow. Next, the QIAprep column was washed twice 

by adding 10 ml of Buffer QC. The column was placed in a clean labelled 15 ml tube 

and the plasmid DNA was eluted by the addition of 5 ml of elution buffer QF. Then, the 

tube was incubated at room temperature for 10 minute and then centrifuged for 30 

minutes and the DNA was collected. The DNA was resuspended in 10 mM Tris buffer 

and stored in the freezer at -20°C until further use. 

2.2.1.4 DIGOXIGENIN (DIG)-LABELLED RIBOPROBE SYNTHESIS 

To prepare DIG-labeled riboprobes, plasmid templates were first linearised with 

appropriate restriction endonucleases. Linearised templates were purified using phenol: 

chloroform extraction and ethanol precipitation following standard protocols. Probe 

synthesis reactions contained the following: 

Reagent Amount 

DNA 1 μg  

10× transcription buffer (Roche) 2 μl  

10× DIG labelling mix (Roche) 2 μl  

RNA polymerase (T7,T3,SP6, all 

from Roche)  

2 μl  

RNase inhibitor (New England 

BioLabs) 

1 μl  

DEPC-treated water  To a final volume 

of 20 μl 
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Table 2.2 Probe synthesis reagents 

The probe synthesis mixture was mixed gently and centrifuged briefly, then incubated 

for 2 h at 37
o
C. After this incubation 0.5 μl was removed for agarose gel 

electrophoresis. Subsequently, to purify the probe 2.5 μl of 10× DNase buffer and 2.5 μl 

(5U) of RNase-free DNase was added to the reaction which was then incubated for a 

further 15 min at 37
o
C. The probe was then precipitated with 2.5 μl 4M LiCl and 75 μl 

ethanol at -80
0
C overnight. The next day, the precipitated probe was collected by 

centrifugation at 13,000 rpm for 20 min at 4
0
C. The pellet was washed with 100 ml 70% 

ethanol then re-centrifuged for 15 min at 4
0
C. The pellet was air-dried for 5 min at RT 

and then re-suspended in 50 µl of DEPC-treated water. Recovery of the probe was 

checked by agarose gel electrophoresis. Finally, 50 μl of formamide (Sigma) was added 

to the probe which was then stored at -20
0
C. 

2.2.1.5 WHOLE-AMOUNT IN SITU HYBRIDIZATION (WISH) 

Whole-mount in situ hybridization (WISH) was applied to study spatial and temporal 

gene expression. Embryos were collected at 24, 31, 52 and 72 hours post fertilization 

(h.p.f.) in this study and were manually dechorionated using fine forceps. To prevent 

embryo pigmentation, 0.2 mM 1-phenyl-2-thiourea (PTU) (Sigma) was added at 8 h.p.f. 

Before fixation, embryos were washed with PBS then fixed with fish fix at 4
O
C 

overnight. 

The next day embryos were rinsed with PBS, then washed with 50:50 PBS: methanol 

(MeOH) and stored at -20
O
C

 
in 100% MeOH. The hybridization protocol started by 

washing the embryos in 50:50 PBS: MeOH then was followed with four washes with 

PBS + 0.1% Tween 20 (PTW) (5 min per wash). Proteinase K (Sigma) was applied to 

embryos at 10 µg/ml in PTW for appropriate time according to (table 2.3). After that, 

embryos were re-fixed in fish fix for 20 min, then washed four times with PTW and pre-
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hybridized with fresh hybridization solution (200-300 µl) at 65-70
O
C

 
for 3 hours. 

Embryos were then hybridized overnight with a 1:200 dilution of DIG-labelled 

antisense probe in hybridization solution at 65-70
O
C.  

On day 2, washing steps were performed. This started with a 20 min wash in a 1:1 mix 

of hybridization solution and 2×SSC. After that, the solution was replaced with 2× SSC 

for 20 min, then the embryos were washed with 0.2× SSC twice for 60 min each wash. 

Next, the embryos were blocked for 3 hours in PBT solution at room temperature then 

incubated overnight with an alkaline phosphatase-conjugated anti-DIG-antibody 

(Roche) at 4 
O
C. 

 On day 3, the embryos were washed 6 times with PBT for 20 minutes each wash then 

rinsed with staining buffer. Afterwards, NBT/BCIP (Roche) staining solution was 

applied to the embryos for colour development until the staining was optimal as judged 

by light microscopy. Embryos were then re-fixed at 4
O
C

 
in fish fix. The next day, 

embryos were washed with PTW then cleared with sequential washes in 10, 20, 40, 60 

and 80% glycerol/PBS. After the last wash, the embryos were stored at 4
O
C. Finally, 

images were obtained using differential interference contrast (DIC) light microscopy 

with a Leica microscope (LEICA DFC420C) and images were captured by LASAF 

software (Leica). 

 

Embryos age Incubation time in 

Proteinase K digestion 

24 (h.p.f.) 10 min 

2 (d.p.f.) 25 min 

3 (d.p.f.) 25 min 
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4 (d.p.f. 30 min  

Table 2.3 Proteinase K digestion stages and incubation time 

2.2.1.6 CARTILAGE STAINING  

To observe embryonic jaw cartilage development in FB148.5 embryos at 5 d.p.f.. alcian 

blue staining was performed. After fixation, embryos were rinsed with 0.1% Tween 20 

(Sigma) in H2O. After that alcian blue stain (Sigma) (0.05% Alcian blue, 5% acetic 

acid) was added then the embryos were stored at room temperature overnight. The next 

day, embryos were washed with 0.1% Tween 20 then in 30% (saturated) sodium borate 

solution. Afterwards, embryos were incubated with 100 µg/ml trypsin (Sigma) in 30% 

sodium borate solution for 3-4 hours to digest the tissue around the cartilages. Then, the 

embryos were cleared using 25% followed by 50% glycerol and stored at 4
o
C until 

images were taken by DIC microscopy.  

2.2.1.7 IMMUNOHISTOCHEMISTRY 

In this study we used anti-acetylated tubulin (AAT) (Sigma) and znp-1 (Developmental 

Studies Hybridoma Bank) mouse monoclonal antibodies to observe axonal development 

in mutant and sibling embryos. The procedure was done as follows: Fixed embryos in 

100% MeOH were washed gradually in 75%, 50% and 25% MeOH/H2O (5 min each). 

Embryos were then rinsed with 0.1% Triton X-100/H2O. Embryos older than 2 days 

were treated with trypsin solution (0.25% trypsin in PBT) on ice, while embryos 

younger than 2 days were treated with acetone at -20
o
C for 7-10 min. After that, 0.1% 

TX-100/H2O was again added to wash the embryos 3 times, and then block solution 

(PBDT + 5% normal serum) was applied to the embryos for 2 h using a shaking 

platform at room temperature. Next, the blocking solution was replaced with PBDT + 

5% normal serum containing the primary antibody (AAT at 1/2000 or znp-1 at 1/500) 

then the embryos were incubated overnight at 4
o
C.  
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The next day, embryos were washed 4 times with PBDT + 5% normal serum, and then 

incubated overnight at 4
o
C in the Vectastain biotinylated secondary antibody at 1/400 

(Vector Laboratories). Day 3 started with washing the embryos 4 times in PBDT + 5% 

normal serum over a 2 h period. Avidin-biotin complex (ABC) was prepared during the 

last wash and left on the bench for 30 min before use. Afterwards, the AB complex was 

added and the embryos were incubated at room temperature for 90 min on a shaking 

platform. Then, PBDT + 5% normal serum washes were performed 4 times (30 min 

each) followed by 3 washes with PBS + 0.5% TX-100 over a 1 h period.    

After that, 3,3’-Diaminobenzidine (DAB) staining was performed with a DAB 

Peroxidase Substrate Kit according to the manufacturer’s protocol (Vector 

Laboratories). After the DAB staining solution was added to the embryos they were 

incubated at room temperature with continuous monitoring until colour development 

was optimal. Finally, the embryos were washed with PBS 3 times and then fixed with 

fish fix overnight at 4
o
C. The next day, the embryos were passed through a glycerol 

series (10%, 20%, 40%, 60%, and 80%) to clear them prior to mounting.  

2.2.1.8 ELECTRON MICROSCOPY 

Fish at 5 dpf were prepared for transmission electron microscopy (TEM) as described 

elsewhere (Czopka and Lyons 2011). They underwent primary fixation in 2% 

glutaraldehyde, 4% formaldehyde, 0.1 M sodium cacodylate using microwave 

stimulation, followed by 2 h at room temperature. The biophysical basis of microwave-

stimulated processing is not understood; full experimental details are provided in 

Czopka and Lyons 2011. Specimens were decapitated prior to secondary fixation with 

2% osmium tetroxide, 0.1 M sodium cacodylate, 0.1 M imidazole, pH 7.5. Secondary 

fixation was also microwave assisted then continued overnight. Specimens were 

thoroughly rinsed in deionised water then stained with saturated uranyl acetate with 



51 

 

microwave stimulation. After that, specimens were dehydrated by passing through an 

ethanol series (50%, 70%, 95% and 100%), followed by 3 x 10 min acetone washes. 

Dehydration steps were also microwave assisted. Specimens were infiltrated with 1:1 

EMBED:acetone at room temperature overnight, then embedded in 100% EMBED in 

wells of embedding molds. Specimens were allowed to cure for 72 h at 65Cͦ. Sectioning, 

staining and transmission electron microscopy was performed by Chris Hill in the 

Electron Microscopy Unit, Department of Biomedical Science, University of Sheffield. 

G-ratios (myelin thickness) and axon diameters were measured using imageJ and 

GraphPad Prism6 with 2-tailed tests. Statistical significance was set at P<0.05.  

2.2.2 GENETIC METHODS  

2.2.2.1 DNA Extraction 

DNA was extracted using QuickExtract solution; each embryo was transferred to a 

0.2ml microcentrifuge tube with 30 µl of QuickExtract solution then processed using a 

G storm PCR machine with the following DNA extraction protocol. 

Temperature Time 

65°C 120 min 

98°C 2 min 

4°C hold 

Table 2.4 PCR programme for the DNA extraction 

Next, the extracted embryos were vortexed for 15 s, centrifuged for 1 min at 1700 r.p.m. 

then stored at -20ͦC.  

2.2.2.2 DNA purification 

2.2.2.2.1 ExoSAP 
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To remove excess dNTPs and primers from PCR products prior to sequencing, two 

enzymes, shrimp alkaline phosphatase (SAP; United States Biochemical) and 

Exonuclease 1(New England BioLabs) were used. 0.5 U of SAP and 1 U of 

Exonuclease I was added to 4 µl of H2O and 5 µl of PCR product. The following PCR 

programme was used:  

 

Temperature Time 

Starting temperature 37
o
C to 45 

minutes  

 

Denature 80
o
C to 15 

minutes 

Storing temperature 12
o
C for ever  

 

Table 2.5 ExoSAP Protocol 

2.2.2.2.2 Gel Extraction 

To extract DNA from agarose gel slices, gel extraction was performed using the QIAEX 

II kit (Qiagen) according to the manufacturer’s instructions. DNA bands were excised 

from the agarose gel using a clean sharp scalpel. They were transferred to 1.5ml micro-

centrifuge tubes and weighed. Next, 3 volumes of Buffer QX1 were added to each 

volume of DNA fragments. Then, Qiaex II (10 μl) was added to tubes and they were 

incubated at 50°C for 15 minutes during which the tubes were mixed by vortexing for 

every 2 minutes. After that, tubes were then centrifuged at 13,000g for 30 seconds and 

the supernatant was removed. Then, the pellet was washed with 500μl of Buffer QX1 

and then was re-suspended by vortexing and centrifuged for 30 seconds at 13000 g. All 

traces of supernatant were removed with a pipette. Subsequently, pellets were washed 

twice with 500μl of buffer PE. In each wash, the pellets were re-suspended in the buffer 
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by vortexing and then centrifuged for 30 seconds then the supernatant was removed. 

Afterwards, the pellets were air dried for 10 to 15 minutes and then the DNA was eluted 

by adding 20μl of 10mM Tris-Cl, pH8.5 or sterile water. The beads were then incubated 

for 5 minutes at room temperature, followed by a 30-second centrifugation. Supernatant 

containing the eluted DNA was placed in a fresh micro-centirfuge tube. DNA was 

quantified using a Nanodrop spectrophotometer and were stored at -20°C. 

2.2.2.2.3 Assay of DNA Concentration 

The concentration of DNA solutions was measured by spectrophotometry using a 

Nanodrop ND-1000 spectrophotometer. DNA concentration was determined by 

measuring the absorbance at 260 nm and the extinction coefficient used was an 

absorbance of 1 for 50µg/ml double stranded DNA.  

2.2.2.3 Polymerase Chain Reaction (PCR) 

PCR was used to amplify the DNA samples using a touchdown programme according to 

table of conditions below; 

Temperature  Period  

Starting (Temp)  94
o
C 5 min 

Touchdown temp 65-50
o
C Cycles 35 

Denature (Temp)  94
o
C 30 sec 

Annealing (Temp)  58
o
C 45 sec 

Elongation (Temp) 72
o
C 1.30 min 

Storing (Temp) 72
o
C 10 min 

  Table 2.6  PCR touchdown Programme 

A PCR master mix was prepared by adding 0.5 µM primers (Sigma) and sterile 

deionised water to 5x FirePol PCR mix (Solis Biodyne). After mixing, 9 μl of the 
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master mix was transferred to PCR tubes then 1 μl of each DNA sample was added. 

Samples were amplified using a G-Storm GS2 thermal cycler. To check the PCR 

reaction’s quality, both positive (previously validated template) and negative (no 

template) controls were used.  

2.2.2.4 PCR PRIMER OPTIMISATION 

To optimise primers, PCR reactions were performed with different concentration of 

forward and reverse primers (0.1 μM and 0.2 μM). Additionally, PCR reactions were 

done with different annealing temperatures (58ºC-68 ºC). Several DNA concentrations 

were also used (0.04- 0.2 ng/μl).  

2.2.2.5 DESIGN OF PCR PRIMERS 

PCR primers were designed using the publicly available Primer design tools web page 

at NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). All primers that were used 

in this study were ordered from Sigma (Poole, UK).    

2.2.2.6 AGAROSE GEL ELECTROPHORESIS 

Amplified DNA products were visualized using agarose gel electrophoresis. To analyse 

SSLPs, MetaPhor® Agarose (Lonza), which is a high resolution grade agarose, was 

used with 0.5X TBE buffer. Ethidium bromide was added to gels to enable visualisation 

of DNA by UV transillumination. 5 μl of each PCR product or 7μl of DNA ladder 

(Hyperladder V, Bionline) was loaded in each well of the gel. Gels were 

electrophoresed at 200 Volts for 2 hours then the DNA bands visualised using a Geni 

gel documentation system (Syngene, UK). 

2.2.3 GENETIC MAPPING APPLICATIONS 

2.2.3.1 MICROSATELLITE (SSLP) MARKERS SCAN 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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DNA from 25 mutant embryos and 25 wild-type embryos were pooled separately. 

Mutant pool DNA was placed into the odd-numbered columns of a 96-well plate 

whereas, even-numbered columns contained wild-type DNA. PCR was performed to 

genotype 192 microsatellite markers (SSLP) which cover all of the 25 zebrafish linkage 

groups. PCR products were analysed using a 3.5% agarose gel and samples were loaded 

using a multichannel pipette.  

2.2.3.2 DNA SEQUENCING  

The Core Sequencing Facility at the University of Sheffield performed the sequencing 

procedure, using the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied 

Biosciences) following the manufacturer’s instructions. Sequence data was analysed and 

manually modified using Finch TV and Sequencher 5.1 programmes. 

2.2.3.4 BAC RESCUE 

2.2.3.4.1 BAC DNA Purification 

The CHORI-211 BAC library was searched in the candidate interval using ZFIN 

(http://zfin.org/). BACs in the candidate region were obtained from Dr Sarah 

Baxendale. LB cultures were inoculated and grown in 12% Chloramphenicol (Sigma) 

LB plates (12 mg/ml). BACs were isolated from cultures using the Qiagen large 

construct kit as described by the manufacturer.  

2.2.3.4.2 Embryo microinjection 

BAC DNA (50ng/µl) was mixed with 0.5% phenol red to a give a final concentration of 

0.05% to enable the sample to be viewed through the injection process. A 1% agarose 

mold was made in a 10 cm petri dish with grooves to hold the embryos in place during 

injection. Fine microinjection needles were pulled from glass capillaries using a 

micropipette puller (Sutter Instrument Co., USA) and the volume of injected liquid 

calibrated by measuring the droplet size in Halocarbon Oil Series 27 (Sigma) in a small 

http://zfin.org/
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petri dish over a graticule. Embryos were aligned in rows in the agarose dish using fine 

forceps and injected at the 1 to 2 cells stage directly into the fertilised cell. Embryos 

were then placed in E3 medium and incubated at 28ͦC. Un-injected embryos were kept 

as controls. Embryos were checked every day for survival rate. Subsequently, embryos 

were fixed at 4 d.p.f. and analysed for mbp expression using in situ hybridization. 

2.2.4 RNA-BASED METHODS  

2.2.4.1 TOTAL RNA EXTRACTION FROM ZEBRAFISH EMBRYOS 

Pools of 20 mutant embryos and 20 siblings were collected and washed several times 

with DEPC/H2O to remove residual medium and egg debris. Then, 250 μl of Trizol 

(Invitrogen) was added and the samples homogenized by passing through a syringe 

needle 2 to 3 times. After that, samples were incubated at RT for 5 min for cell lysis. 

Chloroform (50 μl) was added to each tube and shaken vigorously for 15 s then 

incubated for 3 min at RT. Tubes were centrifuged for 15 min at 4°C at 13000g then the 

aqueous, upper phase was transferred to a fresh tube with a filter tip. 83 μl of 

isopropanol was added to the supernatant, mixed gently by pipetting up and down then 

incubated for 10 min at RT before being centrifuged at 13000g for 15 min at 4°C. Then, 

the supernatant was carefully removed and the pellet washed with 250 μl of 75% 

ethanol (in DEPC/H2O). This was followed by centrifugation for 5 min at 4°C at 

13000g. After that, the ethanol was removed then the pellet was air-dried at RT for 10 

min. Finally, the RNA was resuspended in 50-100 μl DEPC/H2O, and then total RNA 

was stored at -80°C. 

2.2.4.2 CDNA SYNTHESIS  

To synthesise cDNA the SuperScript® III First-Strand Synthesis System (Invitrogen) 

was used. Total RNA was converted to cDNA by mixing 2 μg of total RNA, 1 μl of 50 

mM oligo(dT)20 primer, 1 μl of 10 mM dNTPs and  DEPC/H2O to a final volume of 14 
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μl. This was incubated for 5 min at 65ͦC and next placed on ice for 1 min. The following 

components were then added together: 2 μl of 10X RT buffer, 4 μl of  25 mM MgCl2, 2 

μl of 0.1 M DTT, 1 μl of RNaseOUT™ (40 U/μl) and 1μl of SuperScript® III RT (200 

U/μl). This mixture was then added to the cDNA synthesis tube and mixed gently. Next, 

the reaction was incubated for 50 min at 50ͦC then the reaction was terminated at 85ͦC 

for 5 min followed by chilling on ice. Tubes were then centrifuged and 1 μl of RNase H 

was added and incubated for a further 20 min at 37ͦC. Finally, the cDNA was stored at -

20ͦC.  

2.2.4.3 REVERSE TRANSCRIPTION RT-PCR 

To amplify products from cDNA, RT- PCR was carried out using the same reaction and 

program described in section 2.2.2.3. Instead of adding 1μl of genomic DNA, 1 μl of 

cDNA was added to the mixture. 
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CHAPTER III: PHENOTYPIC 

CHARACTERSTION OF FB148.5 

3 INTRODUCTION 
 

The Ingham laboratory in the Centre for Developmental and Biomedical Genetics at 

Sheffield University performed a large-scale zebrafish mutagenesis phenotypic screen 

using the chemical mutagen N-ethyl-N-nitrosourea (ENU) (Wolff, Roy et al. 2004). 

From this screen, the FB 148.5 mutant was isolated and previous work by the Grierson 

laboratory in SITraN has identified axonal and myelination defects in the CNS and PNS 

of FB148.5 mutants. FB148.5 mutant embryos show a morphological phenotype from 

around 48 h.p.f. At 2 d.p.f., mutants can be clearly distinguished from their wild type 

siblings, as mutants display a number of morphological abnormalities including small 

eyes, cardiac oedema and a mis-shapen head, as well as later phenotypes such as a 

curved body axis and abnormal swim bladder. The severity of the phenotype increases 

from 2-5 d.p.f. leading to embryonic lethality of FB148.5 mutants at around 5-7 d.p.f.. 

Interestingly, these phenotypes are very similar to those described in disc1 morpholino 

mutants (Figs. 3.1 and 3.2). Preliminary characterization of FB148.5 mutants showed 

very similar oligodendrocyte specification defects to those in disc1 morphants (Wood, 

Bonath et al. 2009). Therefore, we hypothesized that the gene mutated in FB148.5 may 

be functionally related to disc1 and therefore be of relevance to psychiatric disease 

mechanisms.  

As mentioned previously, the preliminary phenotypic characterisation that has been 

performed on FB148.5 identified a number of neurological defects.  However, further 

detailed studies are needed to characterise the CNS phenotypes more fully. Therefore,  

in this chapter, further phenotypic studies have been done and these revealed that the 
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FB148.5 gene is essential for different stages of nervous system development, including 

specification of hindbrain oligodendrocytes, Schwann cell development, neurogenesis, 

and motor axon outgrowth,. 

 

 

Figure 3.1: Morphology of FB148.5 mutants.  

Lateral view of live FB148.5 mutant embryo at 5 dpf. The FB148.5 phenotype is 

characterized by a curved body axis, small eyes, cardiac oedema (black arrowhead), 

mis-shapen head, abnormal swim bladder and abnormal lower jaw (red arrow). (n= 45, 

technical repeat x3). 
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Figure 3.2 Morphological and craniofacial defects induced by disc1 knock-down  
(A) Lateral image of live 5 d.p.f. wild type embryo control. (B) Live 5 d.p.f. disc1 

morphant shows mis-shapen eyes, mis-shapen head, pericardial oedema, (black 

arrowhead), abnormal lower jaw (red arrow), upward curving trunk and tail, and 

failure of swim bladder to inflate (asterisk). Ventral views of 5 d.p.f. control embryo 

(C) which has normal cartilge elements and disc1 morphant (D) showing that the 

trabeculae (red arrow) and ethmoid plate (red arrowhead) are smaller but 

appropriately shaped. Images were optained from Jonathan D. Wood et al. Hum. 

Mol. Genet. 2009;18:391-404. 
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Figure 3.3 disc1 is required for expansion of the populations of olig2 and sox10-

positive cellsin the hindbrain. 

(A) Normal sox10 expression in the hindbrain midline in control embryos. (B) disc1aug 

morpholino embryos at 50 h.p.f. show reduced sox10 expression in the hindbrain. (C) 

Image of 51 h.p.f. un-injected embryo showing that the expression of olig2 is detected 

along the entire length of the hindbrain midline of un-injected embryos. (D) Expression 

of olig2 remained restricted to the midline of rhombomeres 5 and 6 in embryos injected 

with a disc1 splice site morpholino. Images were optained from Jonathan D. Wood 

et al. Hum. Mol. Genet. 2009;18:391-404. 
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3.1 FB148.5 MUTANTS SHOW DEFECTS IN OLIGODENDROCYTE 

SPECIFICATION IN THE HINDBRAIN 

Previous work on disc1 morphant zebrafish found that disc1 is required for 

oligodendrocyte production and development through regulating the specification of 

olig2-expressing precursor cells in the hindbrain (Fig 3.3 C and D) (Wood, Bonath et al. 

2009). Since the neurological and morphological abnormalities that are seen in FB148.5 

mutants are very similar to those found in disc1 morphants (Fig 3.2 & 3.3), we 

hypothesized that these two genes may act together in common developmental 

pathways. 

Specifically, it was found that disc1 is expressed in a region that also expresses olig2 in 

the hindbrain in a region that is populated with midline ventricular zone progenitors 

(Wood, Bonath et al. 2009). Oligodendrocytes arise from olig2-expressing OPCs and 

expression of Sox10 regulates the differentiation of OPCs in mice (Stolt, Rehberg et al. 

2002). To determine whether FB148.5 is necessary for the production and specification 

of oligodendrocytes, the expression of the OPC markers olig2 and sox10, as well as the 

expression of markers for terminally differentiated oligodendrocytes, plp1b and mbp, 

was analysed in FB148.5 mutants and sibling embryos. 

We found that expression of sox10 and olig2, markers for the early production of OPCs, 

was  absent or greatly reduced and restricted to hindbrain rhomobomeres 5 and 6 in 

mutant embryos (Fig 3.4 B and D), compared with the normal expression pattern in 

sibling embryos (Fig. 3.4 A and C). At 5 d.p.f., expression of myelin basic protein 

(mbp) and proteolipid protein 1b (plp1b), markers for oligodendrocyte differentiation, 

was distributed throughout the hindbrain in wide-type siblings (Fig.3.5 A and C), while 

the expression of these markers in mutants was almost completely eliminated (Fig.3.5 B 
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and D). These results demonstrate that FB148.5 mutants show severe defects in 

oligodendrocyte lineage development in the zebrafish hindbrain caused by defects in the 

specification of oligodendrocyte progenitors.  

 

 

  

Figure 3.4 Olig2 and sox10 expression in FB148.5 mutants and controls. 

(A) Whole mount in situ hybridisation for olig2 expression at 50 h.p.f. in control 

embryos shows strong expression throughout the midline of the hindbrain. (n=60, t =2, 

b =3). (B) The expression of olig2 in FB148.5 mutants is significantly reduced in the 

midline of the hindbrain (n=13, t =2, b =3). (C) Intense sox10 expression in the 

hindbrain midline in control embryos (n=55, t =2, b =3). (D) Mutant embryos at 50 

h.p.f. show a complete loss of sox10 expression in the hindbrain (n=11, t=2, b=3). The 

black arrows indicate the hindbrain rhomobomeres 5 and 6 (B, D). Magnification x20 

(all panels). Note; no negative sense control probe has been used. This data was 

interpreted according to the known expression patterns of olig2 and sox10 obtained 

from ZFIN.  
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Figure 3.5 FB148.5 mutants show defects in oligodendrocyte development in the 

hindbrain. 

(A) Whole mount in situ hybridisation for mbp expression at 5 dpf in control embryos 

shows strong expression throughout the hindbrain (n=71, t=3, b=3). (B) The expression 

of mbp in FB148.5 mutants is restricted to the hindbrain midline (n=19, t=3, b=3). (C) 

Robust plp1b expression in the hindbrain in control embryos (n=111, t=3, b=3). (D) 

Mutant embryos at 5 dpf show a total absence of plp1b expression in the hindbrain 

(n=25, t=3, b=3). The black arrows indicate the hindbrain midline area. Magnification 

x20 (all panels).  Note; no sense probe negative control has been used. This data was 

interpreted according to the known expression patterns obtained from ZFIN. 
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3.2 FB148.5 ZEBRAFISH SHOW ABNORMAL DEVELOPMENT 

OF LOWER JAW CARTILAGES  

Alcian blue staining demonstrated that most of the lower jaw cartilage elements in 

FB148.5 embryos were missing. The Meckel’s and ceratohyal cartilages were 

completely absent in the mutants compared to siblings (Fig. 3.6 C and D).  In addition, 

the basihyal, ceratobranchial and basibranchial cartilages were also lacking in FB148.5 

mutants. FB148.5 mutants show shorter trabeculae and a small ethmoid plate with 

relatively normal shape (Fig. 3.6 A and B). We conclude that the correct development 

of many cartilage elements requires FB148.5 function. These defects are also very 

similar to those reported to be caused by disc1 knock-down (Fig 3.2 C and D),  (Drerup, 

Wiora et al. 2009; Wood, Bonath et al. 2009). 

3.3 FB148.5 MUTATION MAY IMPAIRS DISC1 FUNCTION 

In order to test, whether the FB148.5 mutation may affect disc1 function, we analyzed 

disc1 expression in FB148.5 embryos. We found that disc1 was strongly expressed in 

the cranial neural crest-derived cartilages of the lower jaw in sibling embryos at 2 d.p.f. 

(Fig. 3.7 A), while in mutant embryos the expression was present but clearly decreased 

in intensity (Fig. 3.7 B). Additionally, expression of disc1 in control embryos was 

prominent in the hindbrain, while the expression in this area was reduced in mutant 

embryos (Fig. 3.8 A and B). These findings suggested that the mutated gene in FB148.5 

is required for disc1 function or that disc1 functions in cell types regulated by FB148.5 

and subsequently they might act in the same or similar pathways regulating 

development. 
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Figure 3.6 Cartilage defects in FB148.5 mutants. 

Ventral views of Alcian blue stained embryos at 5 dpf. (A) FB148.5 sibling shows the 

ethmoid plate (e) and trabeculae (t) (n=35, t=1, b=3). (B) FB148.5 mutants failed to 

form the proper structure of the ethmoid plate (e) and trabeculae (t) (n=6, t=1, b=3). (C) 

FB148.5 sibling showing Meckels cartilage (m), basihyal (bh), ceratohyal (ch), 

basibranchials (bb), and ceratobranchials (cb). (D) FB148.5 mutants lack all these 

structures. Magnification x20 all panels.  

  

 

 

 

 

  

 



67 

 

 

Figure 3.7 FB148.5 mutation affects disc1 expression. 

Images show whole mount in situ hybridisation for disc1 expression in FB148.5 (B, D) 

and sibling (A, C) embryos at 2 d.p.f. (A,B) Lateral views of the head showing strong 

disc1 expression in lower jaw cartilages in Sibling embryo (A) (n=27, t=1, b=3).  

compared to mutant embryo (B) (n=5, t=1, b=3). (C, D) Ventral view showing strong 

disc1 expression in lower jaw cartilages in control embryo (C) compared to FB148.5 

embryo (D). Magnification x10 all panels Note; no sense probe negative control has 

been used, however this data was interpreted according to the known expression pattern 

obtained from ZFIN. 
 

 

   

Figure 3.8 FB148.5 mutation affects disc1 expression in hindbrain. 

(A) Dorsal view of 2 d.p.f. embryo (n=27, t=1, b=3) showing disc1 expression in the 

hindbrain compared to mutant (B) embryo (n=5, t=1, b=3). Magnification x10 all panels 

Note; no negative control has been used, however this data was interpreted according to 

the known expression pattern obtained from ZFIN. 
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3.4 FB148.5 MUTANTS SHOW NEUROGENESIS DEFECTS   

Neurogenesis is defined as the process through which undifferentiated neural 

progenitors become mature functional neurones. This process consists of the induction 

of neural progenitor cells and then their proliferation and asymmetric division to form 

committed precursors. Subsequently, they differentiate into mature neurones and each 

of these steps is regulated in a spatially and temporally controlled way (Schmidt, Strähle 

et al. 2013).   

FB148.5 mutants have a small brain so in order to investigate whether the mutated gene 

in FB148.5 affects neurogenesis, the expression patterns of the pro-neural genes ash1b 

(Allende and Weinberg 1994) and ngn1 (Blader, Fischer et al. 1997) were analyzed. At 

26 h.p.f. it was not possible to discern mutant and sibling embryos on the basis of the 

expression of these genes. However, FB148.5 mutant embryos show a significant 

reduction in both ash1b and ngn1 expression at 31 h.p.f. compared to their siblings (Fig. 

3.9B and D, 3.10B). Both ash1b and ngn1 transcripts are seen in clusters of cells either 

side of the midline in each of the rhombomeres in siblings at 31 h.p.f. (Fig.3.9A and 

3.10A). These findings indicate that the FB148.5 gene product is necessary for 

neurogenesis in the zebrafish brain which may support the observed brain malformation 

phenotype. Expression of sox2, a marker of neural stem cells, was found to be only 

slightly reduced in mutants compared to siblings. This suggests that the FB148.5 

mutation does not dramatically affect the production of neural stem cells (Fig. 3.11A 

and B), but affects later stages of neurogenesis instead. 
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Figure 3.9 Neurogenesis defects in FB148.5 mutants shown by whole mount in situ 

hybridisation for ash1b expression. 

(A) Dorsal view of ash1b expression at 31 h.p.f. in a sibling embryo which shows 

strong expression in the hindbrain (n=127, t=4, b=3). (B) Mutant FB148.5 embryo 

showing dramatic loss of ash1b expression in the hindbrain (n=29, t=4, b=3). (C) 

Lateral view of control embryo showing robust ash1b expression in the hindbrain. (D) 

Expression of ash1b in mutant FB148.5 showing complete loss of expression 

throughout the midbrain and hindbrain. Magnification x20 in (A and B) and x10 in (C 

and D). Note; no negative sense probe control has been used, however this data was 

interpreted according to the known expression pattern obtained from ZFIN. 
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Figure 3.10 Neurogenesis defects in FB148.5 mutants shown by whole mount in 

situ hybridisation for ngn1 expression. 
(A) Dorsal view of ngn1 expression at 31 h.p.f. in sibling embryo which shows intense 

staining for ngn1 expression in the hindbrain (n=43, t=2, b=3). (B) Mutant FB148.5 

embryo shows a diminished expression of ngn1 in the hindbrain (n=9, t=2, b=3). 

Magnification x20 in (A and B) Note; no negative sense probe control has been used, 

however this data was interpreted according to the known expression pattern obtained 

from ZFIN. 

  

 

 

  

Figure 3.11: Normal production of neural stem cells in FB148.5 mutants shown by 

whole mount in situ hybridisation for sox2 expression.  

(A) Dorsal view of sox2 expression at 31 h.p.f. in sibling embryo which shows normal 

pattern of expression in the hindbrain (n=95, t=3, b=3). (B) Mutant FB148.5 embryo 

showing a very similar pattern of sox2 expression in the hindbrain (n=21, t=3, b=3). 

Magnification x20 in (A and B). Note; no negative sense control probe has been used; 

however this data was interpreted according to the known expression pattern obtained 

from ZFIN. 
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3.5 FB148.5 IS NOT REQUIRED FOR THE SPECIFICATION OF 

SEROTONERGIC NEURONS 

It has been reported that monorail/Foxa2, which encodes a winged-helix transcription 

factor, affects specification of both hindbrain OPCs and Raphe neurons. Moreover, 

monorail/Foxa2 function has been related to sonic hedgehog (Shh) signalling and  

causes increased expression of Hh related genes such as tiggywinkle hedgehog (twhh) 

and sonic hedgehog (shh) (Norton, Mangoli et al. 2005). Thus, defects in OPC 

specification may also be associated with Raphe neuron abnormalities. To investigate 

the specification of serotonergic Raphe nuclei in FB148.5 mutant embryos, expression 

of tryptophan hydroxylase 2 (tph2), which is an enzyme involved in the biosynthesis of 

serotonin, was examined. However, no apparent difference in the number or location of 

serotonergic cells in FB148.5 mutants was observed (Fig. 3.12). This result suggests 

that the FB148.5 mutation has little effect on serotonergic neuron specification. Also, 

this suggests that the Raphe neurones are not derived from olig2-positive precursors 

since we have found significant loss of olig2-positive neuroepithelial precursors and 

OPCs, but no obvious loss of Raphe neurones, in FB148.5 mutants.  

3.6 FB148.5 MUTANTS SHOW ABNORMAL AXONAL 

DEVELOPMENT 

Previous work on FB148.5 embryos has reported abnormal axonal development in the 

brain using anti-acetylated tubulin staining at 52 h.p.f. (Fan Yang & Andy Grierson, 

unpublished). In order to further characterise axonal defects in FB148.5 mutants, 
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embryos were analysed by immunostaining with monoclonal antibody znp-1. Then, 

quantitative measurements of spinal motor axon length were performed to determine the 

mean motor axon lengths in FB148.5 mutant and sibling embryos. FB148.5 mutants 

showed abnormal axons which are shorter and more branched compared to axons in 

siblings (Fig 3.13). The quantitative analysis found a significant reduction in FB148.5 

axon length (mean 75 µm and SD 3.2) compared to siblings (mean 96 µm and SD 5.5) 

(Fig. 3.14). These results suggest that the gene mutated in FB148.5 is essential for 

normal motor axon development and outgrowth. 

 

Figure 3.12: FB148.5 mutants showed relatively normal specification of 

serotonergic neurons.  

Whole mount in situ hybridisation for tph2 was performed. (A) Dorsal views of tph2 

expression at 2 d.p.f. in control embryos shows strong expression in the hindbrain 

(n=88, t=3, b=3). (B) The expression of tph2 in FB148.5 mutants displayed no obvious 

change in the hindbrain (n=19, t=3, b=3). (C) At 3 (d.p.f.), strong tph2 expression in the 

hindbrain in control embryos (n=106, t=3, b=3). (D) Mutant embryos at 3 (d.p.f.) may 

show a slight loss of tph2 expression in the posterior part of the hindbrain (n=24, t=3, 

b=3). Magnification x20 (all panels). Note; no negative sense control probe has been 
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used, however this data was interpreted according to the known expression pattern 

obtained from ZFIN. 
 

 

 

  

Figure 3.13 FB148.5 mutants showed abnormal motor axon outgrowth by znp-1 

immunostaining.  
(A) At 52 h.p.f. sibling embryo shows normal motor axon outgrowth (n=74, t=3, b=3). 

(B) Mutant FB148.5 embryo stained with znp-1 demonstrates shorter and prematurely 

branched motor axons (n=18, t=3, b=3).  Magnification x10 in (A and B).  

 

 

Figure 3.14: Significant reduction in FB148.5 motor axon length.  

FB148.5 mutants showed a significant reduction in motor axon length from 96 to 75 

µm. Statistical significance was determined using an un-paired t-test, ****P<0.0001. 

(n=18 WT and 18 mutant, axons, n=144 t=3, b=3). 97.94 ± 1.200, n=18, 74.50 ± 

0.7421, n=18. 

**** 
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3.7 FB148.5 MAY BE RELATED TO SONIC HEDGEHOG 

SIGNALING  

Previously, it has been reported that sonic hedgehog (shh) is essential for control of 

olig2 expression and specification of motor neurons and oligodendrocyte progenitors in 

the zebrafish hindbrain (Esain et al, Development 2010). To determine whether shh 

signaling is affected in FB148.5, we analysed the expression of shh regulated genes in 

FB148.5 mutant and sibling embryos. We focused on Patched1 (ptc1) and GLI family 

zinc-finger transcription factor 1 (gli1), which are regulators of shh signalling and are 

well-characterised transcriptional targets of the shh pathway (Wolff, Roy et al. 2004; 

Koudijs, den Broeder et al. 2008). We found that at 52 h.p.f., ptc1 expression in mutant 

embryos was significantly increased in the forebrain, midline of the hindbrain, mid-

diencephalon boundary, midbrain-hindbrain boundary and in the pharyngeal endoderm 

(Fig. 3.15B). Similarly, gli1 expression was prominently increased in the regions 

showing mis-expression of ptc1 in FB148.5 mutants (Fig.3.16B). Taking these results 

together, we conclude that the FB148.5 mutation leads to aberrant activation of the shh 

signaling pathway in several regions, especially in the CNS.  
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Figure 3.15: FB148.5 mutants showed increased ptc1 expression. 

(A) Wild-type embryo showing normal expression of ptc1 by whole mount in situ 

hybridisation (n=84, t=1, b=3). (B)  ptc1 expression is regionally increased in FB148.5 

mutant embryos (n=21, t=1, b=3). Magnification x10 in (A and B). Note; no negative 

sense control probe has been used, however this data was interpreted according to the 

known expression pattern obtained from ZFIN. 
 

 

 

Figure 3.16: FB148.5 mutants show abnormal gli1 expression by whole mount in 

situ hybridization.  

mRNA ISH for gli1 at 2 d.p.f. showing prominent expression in the brain, demonstrates 

that gli1 expression is increased in mutants (B) (n=32, t=1, b=3) compared to sibling 

embryos (A) (n=62, t=1, b=3). Magnification x10 in (A and B). Note; no negative sense 

control probe has been used, however this data was interpreted according to the known 

expression pattern obtained from ZFIN. 
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 3.8 FB148.5 MUTANTS SHOW DEFECTS IN SCHWANN CELL 

DEVELOPMENT  

Given that FB148.5 mutants display CNS myelination defects, we assessed whether 

PNS myelination was also affected in these mutants. We found that the expression of 

mbp at 4 d.p.f. in FB148.5 mutants was decreased, with gaps in the staining of the 

posterior lateral line nerve (PLLn) apparent (Fig. 3.17B), compared with mpb 

expression in wild-type siblings, where it was expressed strongly along the full length 

of the PLLn (Fig. 3.17A). In order to determine whether the mbp expression defects that 

were identified were due to SC development defects or secondary to axonal outgrowth 

defects, the lateral line nerve was analysed by anti-acetylated tubulin antibody staining 

(data not shown). It was found that in both the FB148.5 mutant and sibling embryos the 

PLLn axons extended the full length ofthe trunk, suggesting that these defects are as a 

result of defects in Schwann cell development. Moreover, to verify this finding, we 

analysed sox10 expression at 3 d.p.f., which marks neural crest derived cells, including 

Schwann cell precursors along the PLLn. We found that sox10 expression along the 

PLLn was also disrupted in FB148.5 mutants compared with siblings at 3 d.p.f. (Figure 

3.17C, D). This result suggests that the mutated gene in FB148.5 has functions that are 

essential for development of Schwann cells in the peripheral nervous system and that 

the loss of peripheral mbp expression is likely due to defects in the development of 

Schwann cells.  

To further confirm the effect of the FB148.5 mutation on PNS myelination, expression 

of krox20, which is expressed in Schwann cells committed to myelination (Topilko, 

Schneider-Maunoury et al. 1994) was also examined. Analysis of krox20 expression 

also showed a reduction in staining along the PLLn in FB148.5 mutants (Fig. 3.17F) 

compared with sibling controls (Fig. 3.17E). This result is consistent with the findings 
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of the loss of mbp and sox10 expression which suggests that FB148.5 function is 

necessary for the normal development of SCs.      

 

 

 

Figure 3.17: FB148.5 is essential for Schwann cell development.  

ISH of (A) Sibling (n=54, t=2, b=3) and (B) FB148.5 mutant (n=11, t=1, b=3) zebrafish 

larvae at 4 d.p.f., showing mbp mRNA expression in PLLn Schwann cells (arrows). 

(C) WT zebrafish embryo at 3 d.p.f., showing sox10 expression in PLLn; Schwann cell 

precursors indicated (arrow) (n=68, t=2, b=3). (D) FB14.5 mutant larva at 3 d.p.f. 

showing weak sox10 expression in PLLn Schwann cell precursors (arrow) (n=15, t=2, 

b=3). (E) Sibling larvae at 3 d.p.f., show normal krox20 mRNA expression in PLLn 

Schwann cell precursors (arrow) and in the brain (arrowhead) (n=79, t=2, b=3). (F) 

krox20 expression along the PLLn in FB148.5 mutant larvae is diminished 

(arrow), with a loss of expression also seen in the brain (arrowhead) (n=18, t=2, 

b=3). Magnification x10 in all panels. Note; no negative control sense probes were 

used, however this data was interpreted according to the known expression patterns 

obtained from ZFIN. 
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3.9 DISCUSSION  

The DISC1 gene has been considered one of the most important candidate genes for SZ 

since it was shown to be disrupted by a balanced t (1; 11), (q42.1; q14.3) chromosomal 

translocation associated with psychiatric disorders in a large Scottish family (Millar, 

Wilson-Annan et al. 2000). More recently, DISC1 mutation has been linked with 

agenesis of the corpus callosum (AgCC), suggesting that DISC1 is essential for 

development of the corpus callosum (Osbun, Li et al. 2011). Oligodendrocytes are the 

brain cells responsible for myelin sheath formation in the central nervous system (CNS) 

and they are derived during development from oligodendrocyte precursor cells. A 

number of studies have suggested that DISC1 has important functions in 

oligodendrocytes. Analysis of zebrafish disc1 morphants found that disc1 is crucial for 

oligodendrocyte production and development through controlling the production of 

olig2-expressing precursor cells in the zebrafish hindbrain (Fig 3.3) (Wood, Bonath et 

al. 2009). DISC1 protein expression has been reported in oligodendrocytes in tissue 

sections as well as in vitro cultures which supports a possible role of DISC1 in 

oligodendrocytes (Seshadri, Kamiya et al. 2010; Katsel, Tan et al. 2011). In addition, a 

recent study has found that DISC1 is expressed in mouse corpus callosum 

oligodendrocytes and the authors suggested that DISC1 functions to negatively regulate 

oligodendrocyte differentiation through down-regulating the expression of Sox10 and/or 

Nkx2.2 (Hattori, Shimizu et al. 2014). Together, these studies support a role for DISC1 

in oligodendrocyte development. A number of abnormal morphological phenotypes 

were reported in zebrafish disc1 morphants (Drerup, Wiora et al. 2009; Wood, Bonath 

et al. 2009). Interestingly, very similar phenotypes to those found in disc1 morphants 

were shown in FB148.5 mutant zebrafish (Figs. 3.1 and 2), so we hypothesized that 

these two genes may act together in a common developmental pathway.   
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In order to investigate the role of the gene mutated in FB148.5 in oligodendrocyte 

development, the expression of oligodendrocyte lineage markers was analysed, 

including olig2, sox10, mbp and plp1b. Both sox10 and olig2, which are expressed by 

oligodendrocyte precursor cells (Park, Mehta et al. 2002) were found to be restricted to 

rhombomeres 5 and 6 in the hindbrain (Fig. 3.4). Furthermore, expression of mbp and 

plp1b, which encode myelin structural proteins and are expressed in mature myelinating 

oligodendrocytes (Carson, Worboys et al. 1997), was decreased dramatically in the 

hindbrain (Fig. 3.5). These findings suggested that like disc1, the gene mutated in 

FB148.5 is critical for oligodendrocyte development. This supports the idea that disc1 

and the gene mutated in FB148.5 might overlap in their function to control 

oligodendrocyte specification and development. It is of note that several previous 

studies have documented myelin and oligodendrocyte deficits in SZ (Uranova, 

Orlovskaya et al. 2001; Katsel, Davis et al. 2005; Kerns, Vong et al. 2010). OLIG2 has 

been reported as a candidate gene in SZ, potentially interacting with other genes that 

have been linked with oligodendrocyte development such as ERBB4 and CNP 

(Georgieva, Moskvina et al. 2006). Therefore by characterizing FB148.5 we hoped to 

shed new light on pathways that disc1 functions in with potential relevance to 

schizophrenia.   

Several lines of evidence demonstrate that Disc1 is necessary for neurogenesis during 

early brain development (Austin, Ky et al. 2004; Schurov, Handford et al. 2004; Mao, 

Ge et al. 2009). It has also been reported that reducing Disc1 expression using RNAi 

leads to abnormal neuronal migration in mice (Kamiya, Kubo et al. 2005; Mao, Ge et al. 

2009; Singh, Ge et al. 2010; Lee, Fadel et al. 2011). Zebrafish disc1 morpholino 

mutants probed for expression of the neurogenesis marker ash1b showed slightly 

decreased expression in the mutant hindbrain, suggesting that disc1 also contributes to 

neurogenesis during zebrafish brain development (Wood, Bonath et al. 2009). However, 
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FB148.5 mutant embryos showed a dramatic loss of the pro-neural transcription factors 

ash1b and ngn1 in the hindbrain at 31h.p.f. (Fig 3.9 and 3.10), suggesting that the 

FB148.5 gene and disc1 may have different functional roles in neurogenesis. In 

contrast, the neural stem cell marker sox2 showed only a minor reduction of expression 

in the hindbrain of FB148.5 mutant embryos at the same stage (Fig 3.11). It is possible 

that the reduction in pro-neural gene expression within the FB148.5 mutant hindbrain 

reflects a block in pro-neural gene expression or premature differentiation of 

neuroblasts into neurons. Immunostaining for HuC, a marker for post-mitotic neurons, 

might indicate whether there was premature differentiation of neuroblasts.   

To determine whether FB148.5 might regulate disc1 expression, we analysed disc1 

expression in FB148.5 mutants and observed decreased expression in the cranial neural 

crest-derived cartilages of the lower jaw (Fig. 3.7 and 3.8). It has been reported that 

disc1 negatively regulates sox10 expression, a neural crest marker,  (Drerup, Wiora et 

al. 2009). Therefore, this may suggest that the FB148.5 mutation affects NC 

development through influencing disc1 expression directly or indirectly. However it 

may simply reflect a defect in NC development so it would be important to test other 

NC markers such as sox9 and sna1b to confirm the NC defect in FB148.5 (Cheung and 

Briscoe 2003). Neural crest defects have been suggested in Schizophrenia since many 

patients exhibit mild craniofacial abnormalities (Sivkov and Akabaliev 2003), although 

this has not been reported in the Scottish DISC1 family (Blackwood, Fordyce et al. 

2001). Expression of disc1 in mutant embryos was also reduced in the pectoral fin buds 

and sensory patches of the inner ear. 

Both disc1 morphants and FB148.5 mutants have a curved body axis, although the 

direction of curvature is different between them. A downward curved body axis is seen 

in many cilia mutants, which can have secondary effects on Sonic hedgehog (Shh) 
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signaling. Therefore, we investigated hedgehog signaling in FB148.5 mutant zebrafish. 

Shh is one of a small family of proteins that regulates the development of many tissues 

during vertebrate embryogenesis. Shh binds to Patched which in the absence of Shh 

inhibits the function of the membrane protein Smoothened (smo). The Shh-Patched 

complex releases smoothened from inhibition which then activates a signaling cascade 

ending with the activation of Gli transcription factors (Pan, Bai et al. 2006). Patched is 

therefore a negative regulator of the Shh pathway and is itself induced by Shh signaling 

as part of a negative feedback loop. We examined Shh signaling in FB148.5 mutant 

embryos by analyzing the expression of the Shh target genes gli1 and ptch2. A 

significant increase in expression of both gli1 and ptch2 was shown in FB148.5 mutants 

(Fig.3.15 and 16) suggesting that Shh signalling is altered in FB148.5 mutants. This 

result could indicate also that the FB148.5 gene affects the formation of primary cilia 

since the link between the primary cilium and Shh signaling is well established 

(Huangfu, Liu et al. 2003; Park, Haigo et al. 2006; Vierkotten, Dildrop et al. 2007). 

Further experiments to investigate whether FB148.5 has a role in cilia formation were 

not undertaken, but this finding suggested that cilia-related genes might be good 

candidates in the FB148.5 locus. 

To conclude, the phenotypic characterization of FB148.5 clearly illustrated that the 

mutated gene has multiple roles in nervous system development and is required for 

oligodendrocyte precursor specification, neurogenesis, motor axon outgrowth and 

Schwann cell development. It was hoped that this information would be informative for 

prioritizing candidate genes for sequencing in the FB148.5 locus. 
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CHAPTER IV: CHROMOSMAL MAPPING OF 

FB148.5 MUTANT ZEBRAFISH 
4.1 INTRODUCTION  

Positional cloning allows the identification of a mutated gene based on its chromosomal 

map position using the principle of genetic linkage. Genetic linkage is defined as the 

tendency of genes that are close together on the same chromosome to be inherited 

together during meiosis. Forward genetic screens in zebrafish have been widely used to 

identify the genes mutated in numerous mutants that are involved in a variety of 

biological processes. Typically, the first stage for identifying the  mutation causing a 

mutant phenotype is to perform bulked segregant analysis (BSA) through scanning the 

polymorphic zebrafish genome with genetic markers called simple sequence length 

polymorphisms (SSLPs) to analyse the genetic linkage between the mutant phenotype 

and these SSLPs (Geisler, Rauch et al. 2007). Next, individual mutant fish are screened 

to calculate the recombination or cross-over frequency. This works on the principle that 

the closer two genes or markers are to each other on a chromosome, the less likely it is 

that a crossover will occur between them. Thus, the percentage of recombination 

frequency between two genes is a measure of how close those two genes are which 

allows us to refine the candidate area in which a particular mutation lies. Finally, 

candidate genes within promising region are screened for deleterious mutations by 

sequencing genomic DNA or cDNA. 

4.1.1 INTRON-EXON STRUCTURE IN ZEBRAFISH 

Introns are a major non-coding component of genomes. They can contain gene 

regulatory elements (Majewski and Ott 2002) which have essential effects on 

transcription and alternative splicing (Mironov, Fickett et al. 1999). Intron size and 
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frequency diverge significantly across species (Long and Deutsch 1999; Lynch and 

Conery 2003). In the zebrafish, has been reported that it has an atypical distribution of 

intron sizes, with a greater number of larger introns in general and a notable peak in the 

frequency of introns of approximately 500 to 2,000 bp compared with other fish. This 

report also concluded that 47% of zebrafish introns are composed of repetitive 

sequences (Gelfman, Burstein et al. 2012). In addition, analyses of vertebrate exons 

showed similar distributions of exon numbers in human, mice, and zebrafish. A study of 

exon number in all protein-coding genes in several species, including human, mouse 

and zebrafish, showed that vertebrate genes consist of more exons on average than 

invertebrate genes (Gelfman, Burstein et al. 2012). 

4.1.2 VARIANT FREQUENCY IN THE ZEBRAFISH 

Zebrafish have a high degree of variation between strains and a lower level of variation 

within each zebrafish strain (Bradley, Elmore et al. 2007; Coe, Hamilton et al. 2009). It 

has predicted that approximately more than 50,000 high-quality SNPs cover the 

zebrafish genome with average resolution of 41 kbp (Guryev, Koudijs et al. 2006). Even 

with the low number of embryos that were genotyped, it possibly provides one 

informative SNP every 500 nucleotides. For example, on linkage group 14, the average 

frequency of candidate SNP is 1 per 41 kbp, and the largest gap between two nearby 

variants is 2 Mb (Guryev, Koudijs et al. 2006). Moreover, in the zebrafish genome, the 

majority of the candidate zebrafish SNPs are C to T, or G to A transitions similar to 

human and mice genome. Though, in zebrafish the ratio of these SNPs is remarkably 

less than in human (Coe, Hamilton et al. 2009). 

 

 



84 

 

4.2 POSITIONAL CLONING  

4.2.1 FB148.5 MAPPING CROSSES  

In order to perform positional cloning, polymorphic FB148.5 mutation carriers were 

generated by out-crossing homozygous WIK/WIK wild type fish with heterozygous 

FB148.5/LWT fish. The resulting fish were considered as the F1 generation, and half of 

them would be predicted to be heterozygous carriers. The F2 mapping generation was 

then created by inter-crosses between pairs from the F1 generation and mapping pairs 

identified on the basis of approximately 25% of embryos showing the mutant phenotype 

(Fig. 4.1). 8 pairs of FB148.5/WIK were identified and then around 150 homozygous 

FB148.5 mutant embryos were collected from these pairs of parents for genetic linkage 

analysis.    

 

Figure 4.1 Mapping cross rationale.  

A polymorphic hybrid strain was generated by out-crossing homozygous WIK/WIK 

wild type fish with heterozygous FB148.5/LWT carriers. This yielded the F1 family, 

with half of them expected to be heterozygotes. F2 fish were then created by inter-

crossing heterozygous pairs from the F1 generation, so that approximately 25% of 

embryos should show the mutant phenotype (n of M=186= 25%, Sibling= 590, t=5, 

b=8).    
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4.2.2 LINKAGE ANALYSIS 

Linkage analysis was used to define the chromosomal region in which the phenotype 

causing gene is located using a panel of SSLP markers. The genetic map is measured in 

centimorgans (cM), 1 cM corresponding to 1% recombination frequency. However, in 

the physical map, 1 cM typically corresponds approximately to 1 million DNA base 

pairs (1 megabase, 1 Mbp), but this is variable. To genetically link FB148.5 to a specific 

chromosome, pools were made by mixing equal amounts of DNA from 25 homozygous 

mutant and 25 wild-type embryos (a mixture of homozygous WT and heterozygous 

embryos) and then genotyped with 192 SSLP markers (see appendix 1 list of SSLPs), 

which were spaced roughly equally across all 25 zebrafish linkage groups (LG) (Fig 

4.4). A linkage group is defined as a set of genes that are inherited together in a cross 

and each LG represents a single chromosome (Kelly, Chu et al. 2000). The SSLP 

markers are microsatellites which normally consist of TA, CA or GT dinucleotide 

repeats. The lengths of these repeats differ between many of the zebrafish strains that 

are commonly used, enabling them to be used as polymorphic genetic markers (Rauch, 

Granato et al. 1997) (Fig.4.2). SSLP markers were amplified by PCR according to 

section 2.2.2.3, then the PCR products electrophoresed in 3.5% agarose gels loaded with 

a multichannel pipette (Figure 4.3) for at least 2 h at 200 V to separate different alleles 

(see 2.2.2.5). Genetic linkage should be apparent when the WIK allele is absent in the 

mutant pool and present in the sibling pool (Figure 4.2), i.e. homozygosity for a 

polymorphic marker should be apparent in the mutant pool. This suggests that the two 

alleles (SSLP and mutated gene) are very close to each other, thus they will inherit 

together. However, if there is a large distance between SSLP and mutation loci, this will 

allow recombination to occur between them. On the initial genome scan performed, one 

of the linkage group 8 (LG8) markers (z1068) showed apparent increased homozygosity 
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in the mutant pool compared with the sibling pool (red arrow in Fig.4.4A). This marker 

was re-tested on DNA pools from the progeny of three separate mapping pairs to 

confirm the potential linkage of the FB148.5 mutation with this marker on LG8 (see 

section 4.2.3 below). 

 

Figure 4.2: Segregation of alleles in the mapping crosses.  

Red represents the WT allele and blue represents the mutant allele. The F1 heterozygous 

carriers are crossed to each other to generate the F2 generation for genetic mapping. 

One quarter of the normal F2 progeny are homozygous for the WT allele while two 

quarters of them are heterozygotes. All F2 mutants will be homozygous for the mutated 

allele. 
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Figure 4.3: Method for loading PCR products in agarose gels to enable direct 

comparison of alleles in mutant and sibling pools.  

A large electrophoresis tank was used that enabled simultaneous analysis of 200 PCR 

reactions by agarose gel electrophoresis. Mutant and sibling PCR reactions were 

performed in separate 96 well plates, then using a multi-channel pipette, PCR products 

from siblings were loaded in alternating wells with the mutant samples loaded in the 

intervening wells, thus, mutant and sibling samples for each marker were loaded next to 

each other. 
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Figure 4.4: PCR products of 48 SSLPs markers used in initial mapping. 

A total genome scan was performed with 192 SSLP markers spaced evenly across the 

25 zebrafish linkage groups (see Table 1 Appendix). The figure shows PCR products 

for 48 SSLPs; each marker was tested on mutant (M) and wild-type (WT) DNA pools. 

The red box shows an unlinked marker because the mutant DNA pool and sibling DNA 

pool both show equal intensity for the two polymorphic allele products. The red arrow 

indicates polymorphic allele products where the upper band appears to be enriched in 

the mutant pool indicating that this SSLP (z1068 on linkage group 8) may be linked to 

the FB148.5 mutation (see Figure 4.5 which confirmed the genetic linkage). Z4324 and 

z13412 SSLP are also located in LG 8 and are labelled with red stars, but neither allele 

amplified well in both pools. (Hyperladder IV was loaded on all gels and the LG for 

each marker is indicated in black above or below the gel). 
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4.2.3 THE FB148.5 MUTATION MAPS TO LINKAGE GROUP 8  

The BSA analysis shown in the previous section suggested that the FB148.5 mutation 

may locate to chromosome 8 (Fig. 4.4). SSLP z1068 showed a very broad product band 

in the sibling DNA pool, while the homozygous FB148.5 mutant DNA pool gave a 

narrower product band, indicating homozygosity for a polymorphic allele. This 

suggested that FB148.5 was linked with this marker which is found on LG 8 (Fig. 4.4). 

In order to validate that the candidate marker z1068 at 13 cM was genetically linked 

with the mutation, it was analysed in three separate mutant and sibling DNA pools 

which contained 25 embryos for each that were derived from three different mapping 

pairs. Genetic linkage was suggested in all 3 pools with the mutants showing 

homozygosity for the middle allele of three alleles detected in the siblings (Figure 4.8). 

Three alleles were amplified by PCR due to FB148.5 having been maintained on 

different genetic backgrounds since it was first identified in an ENU mutagenesis screen 

over 10 years ago. Similarly, z15031 at 28.2cM was showed strong genetic linkage with 

mutation. Genotyping of z15031 SSLP was tested with the three DNA pools which 

showed homozygosity for the upper allele confirming that the FB148.5 mutation is 

likely to be located on LG 8 (Figure 4.9).  
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Figure 4.5: PCR products for the next 48 SSLPs.   
The figure shows PCR products for 48 SSLP markers; each marker was tested on 

mutant (M) and (WT) wild-type DNA pools. A total genome scan was performed with 

48 SSLP markers (see Appendix Table 1). Markers which are labelled with stars are 

z27391, z21115, z7130, z14670, z9279 and z10929 respectively, all of which are 

located in LG 8 (see Table 4.1). (Hyperladder IV was loaded on all gels and the LG for 

each marker is shown in black above or below the gel). 
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Figure 4.6: PCR products for the next 48 SSLPs.   
The figure shows PCR products for 48 SSLP markers; each marker was tested on 

mutant DNA (M) and (WT) wild-type DNA pools (see Appendix table 1). (Hyperladder 

IV was used on all gels and the LG for each marker is indicated in black above and 

below the gel). 
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Figure 4.7: PCR products for the last 48 SSLPs.  

Figure shows PCR products for 48 SSLP markers; each marker was tested on mutant 

(M) and wild-type (WT) DNA pools (See Appendix table 1). (Hyperladder IV was used 

on all gels and the LG for each marker is indicated in black above and below the gel). 
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Figure 4.8: PCR genotyping with SSLP z1068.  

PCR products amplified from WT sibling pools showing three polymorphic alleles (left 

lane in each pair) and mutant pools (right lane in each pair) which show a high degree 

of homozygosity for the middle allele. (n=25 WT, 25 Mut, x 5, ) 

 

 

 

Figure 4.9: PCR genotyping with SSLP z15031.  

PCR products amplified from WT sibling pools showing two polymorphic alleles (left 

lane in each pair) and mutant pools (right lane in each pair) which show a high degree 

of homozygosity for the upper allele. (n=25 WT, 25 Mut, x3) 
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4.2.4 RECOMBINATION FREQUENCY ACROSS LG8 

In order to validate the linkage between LG8 and the FB148.5 mutation, individual 

mutants were tested with a number of LG8 SSLP markers. From this the recombination 

frequency for each marker was calculated and with 170 mutant embryos, z1068 showed 

24.2% recombination frequency whereas z15031 and z7819, which are located at 

28.2cM and 30cM on LG8 respectively, showed only a single recombination event 

(shown in Fig. 4.10, 4.11 and 4.12) when genotyping 45 mutant embryos (Table 4.2). 

Mutant embryos were analysed by in situ hybridization with olig2 probe to exclude any 

non-specific abnormal embryos that might interfere with the mapping results. Therefore, 

a lower number of mutant embryos was genotyped with most of these SSLPs compared 

with z1068 where embryos were tested without performing in situ  hybridization first.  

The recombination frequency can be used to help determine the relative positions 

between the linked SSLP markers and the mutation. Other markers in LG 8 were also 

tested but only 5 more SSLPs were informative, including z34962, z49543 and z24511 

which all showed 8.8% recombination frequency (Fig. 4.13, 4.14 and 4.15). 

Interestingly, these 3 markers were located relatively close together at 30.5, 31.6 and 32 

cM respectively. However, SSLP z27391 which is located at 55.1 cM showed 30% (Fig. 

4.16) and z21115 at 62 cM showed 44% recombination frequency (data not shown). 

This suggests that these SSLPs were located further away from the mutation-carrying 

gene.  
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 Marker Position Recombination % 

1 z11922 4.9cM Uninformative 

2 z1637 4.9cM Uninformative 

3 z10731 7.8cM Uninformative 

4 z20180 9cM Uninformative 

5 z1068 13cM Linkage, 24.2% R 

6 Z27279 14.7cM PCR failed 

7 Z6763 14.4cM Uninformative 

8 z9420 19.8cM Uninformative 

9 Z44909 19.8cM Uninformative 

10 z15273 25.7cM PCR failed 

11 z15031 28.2cM Strong linkage, 2.2% R 

12   z7819 30.5cM Strong linkage, 2.2% R 

13 z34962 30.5cM Linkage, 8.8% R 

14 Z49543 31.6cM Linkage, 8.8% R 

15 z24511 32cM Linkage, 8.8% R 

16 z4323 35.2cM PCR failed 

17 z13412 43.3cM Uninformative 

18 z27391 55.1cM Weak linkage, 30% R 

19 Z21115 62cM Weak linkage, 44% R 

20 z7130 65.7cM PCR failed 

21 z14670 70cM PCR failed 

22 z9279 81.5cM Uninformative 

23 z10929 98.4cM Uninformative 

Table 4.1: list of SSLPs analysed from LG 8 with percentage recombination 

frequency observed.
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4.2.5 COMPARISON OF RECOMBINATION EVENTS IN INDIVIDUAL 

EMBRYOS 

Table 4.2 shows the genotyping data for 11 selected individual embryos. Embryo No.1 

shows homozygosity at z1068 and recombination at z15031, whereas the other 10 

embryos show recombination at z1068 and homozygosity at z15031. Since these 

recombinant embryos do not share homozygosity between z1068 and z15031, the 

mutation can be deduced as being between these two markers (Table 4.2) and (Fig.4.10-

16). Unfortunately, we were unable to find any informative SSLP markers between 

z1068 and z15031 to narrow down the candidate region interval, which contains about 

50 genes in approximately 4 Mb of genomic DNA (Figure 4.17 and 4.18).  

 

Markers Z1068/ 13cM 

 

Z15031/ 

28.2cM 

 

Z7819/ 

30cM 

 

Z34962/  

30cM 

   Z49543/ 

31.6cM 

z24511/ 

32cM 

Mutant 

embryo No. 1 

Homozygous 

 

Recombinant 

 

Recombinant 

 

Recombinant 

 

Recombinant 

 

Recombinant 

 

Mutant 

embryo No. 2 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 3 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 4 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 5 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 6 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 7 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 
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Mutant 

embryo No. 8 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 9 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 

10 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Mutant 

embryo No. 

11 

Recombinant 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

Homozygous 

 

 

Table 4.2: Analysis of SSLPs linked with FB148.5 in individual embryos.  

Individual mutant embryos were tested to confirm the BSA results. Single mutant 

embryo No.1 was found to be homozygous with z1068 and recombinant with the rest of 

the markers. Testing of individual mutant embryos No 2-11 found them to be 

recombinants with z1068 and homozygous for the other markers. These results 

determined that the candidate interval lies between z1068 and z15031. 
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Figure 4.10: Genotyping of mutant embryos with the SSLP marker z1068. 

This SSLP is located at 13 cM on LG8. (WT) indicates to the grandparental alleles from 

the WIK strain, while (Mut) indicates the grandparental allele from FB148.5. 10 of 45 

mutant embryos are recombinants showing 3 alleles. Yellow stars indicate the 

recombinant embryos that are included in Table 4.3.  The red star indicates the mutant 

embryo that didn’t showed recombination with this marker but was recombinant with 

the others (Table 4.3).  
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Figure 4.11: Genotyping of mutant embryos with the SSLP marker z7819, which is 

located at 30 cM. 

(WT) indicates the grandparental alleles from the WIK strain, and (Mut) indicates the 

grandparental allele from FB148.5. One of 45 mutant embryos was a recombinant 

showing 2 alleles. Yellow stars showed non-recombinant embryos with this marker that 

is included in Table 4.3.  The red star indicates the mutant embryo that showed 

recombination with this marker as well as with the other markers listed in Table 4.3 

except z1068. 
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Figure 4.12: Genotyping of mutant embryos with the SSLP marker z15031, which 

is located at 28.2 cM.  

(WT) indicates the grandparental alleles from the WIK strain, while (Mut) indicates the 

grandparental alleles from FB148.5. One of 45 mutant embryos was a recombinant 

showing 2 alleles. Yellow stars indicate non-recombinant embryos with these markers 

that are listed in Table 4.3. The red star indicates the mutant embryo that showed 

recombination with this marker as well as with the others markers listed in Table 4.3, 

except z1068. 
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Figure 4.13: Genotyping of mutant embryos with the SSLP marker z34962, which 

is located at 30 cM.  

(WT) indicates the grandparental allele from the WIK strain, while (Mut) indicates the 

grandparental alleles from FB148.5. Four of 45 mutant embryos were recombinants 

showing 2 alleles and are labelled with (R). Yellow stars show non-recombinant 

embryos with these markers that are listed in Table 4.3.  The red star indicates the 

mutant embryo that shows recombination with this marker as well as with the others 

markers listed in Table 4.3, except z1068. 
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Figure 4.14: Genotyping of single embryos with the SSLP marker z49543, which is 

located at 31 cM. 

(WT) indicates the grandparental allele from the WIK strain, while (Mut) indicates the 

grandparental allele from FB148.5. Four of 45 mutant embryos were recombinants 

showing both alleles and are labelled with (R). Yellow stars indicate non-recombinant 

embryos with these markers that are listed in Table 4.3.  The red star indicates the 

mutant embryo that showed recombination with this marker as well as with the others 

markers in Table 4.3, except z1068. 
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Figure 4.15: Genotyping of single embryos with the SSLP marker z24511, which is 

located at 32 cM. 

(WT) indicates the grandparental allele from the WIK strain, and (Mut) indicates the 

grandparental allele from FB148.5. Four of 45 mutant embryos were recombinants 

showing 2 alleles and are labelled with (R). Yellow stars indicate non-recombinant 

embryos with these markers that are listed in Table 4.3.  The red star indicates the 

mutant embryo that showed recombination with this marker as well as with the others 

markers in Table 4.3, except z1068. 
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Figure 4.16: Genotyping of single embryos with the SSLP marker z27391, which is 

located at 55.1 cM.  

(WT) indicates the grandparental allele from the WIK strain, while (Mut) indicates the 

grandparental alleles from FB148.5. Fourteen of 45 mutant embryos were recombinants 

showing 3 alleles and are labelled with (R). Yellow stars indicate non-recombinant 

embryos with this marker that is listed in Table 4.3. The red star indicates the mutant 

embryo that showed recombination with this marker as well as with others markers 

listed in Table 4.3, except z1068. 
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Figure 4.17: Map of SSLP markers between z1068 and z15031 on chromosome 8. 

The region between z1068 and z15031 contained other markers that were tested but 

either failed or was found to be uninformative.  
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Figure 4.18 The genetic map of the candidate region between z1068 and z15031 contains around 50 genes 

. 

 

(A) The genetic map of the candidate interval between z1068 and z15031 showing positions of SSLPs, yellow = PCR failed, Red 

= uninformative, Black = informative SSLPs and Blue shows SSLPs flanking the candidate region (z1068 and z15031). (B) The 

physical map of the candidate area showing the genes in this region according to the zebrafish Ref-seq from UCSC track.   
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4.2.6 SEQUENCING OF INTRONIC REGIONS  

As a consequence of the lack of any informative SSLP markers within the candidate 

region, sequencing of intronic regions to identify informative single nucleotide 

polymorphisms as novel markers was used. A number of introns from genes spread 

throughout the candidate region were chosen randomly and were then sequenced. DNA 

from two pools of WT siblings and homozygous mutant FB148.5 was used and 

compared to Ensembl reference sequences (Table 4.3). However; no informative SNPs 

were identified in any of the sequenced introns.   

 Gene  Position 

1 Enkd1-001 

Intron7-8 

ENSDART00000141263 8:2,820,746-2,836,633 

2 SH2D6-201 

Intron 4-5 

ENSDART00000124093 8:2,290,123-2,302,348 

3 Acaa2-001 

Intron 5-6 

ENSDART00000056767 8:2,684,693-2,704,946 

4 Seta-001 

Intron 1, 2, 3 9 

ENSDART00000049109 8:2,760,324-2,766,722 

5 Ciao1 

Intron 1-2 

ENSDARG00000059212 8: 4,988,285-4,997,575 

6 Plat-001 

Intron 19-20 

ENSDART00000147275 8: 2,435,980-2,481,545 

7 Ccdc64 

Intron 1-2 

ENSDARG00000074761 8: 3,896,265-3,968,697 

8 CIT(1 of2) 

Intron 37-38 

ENSDARG00000088825 8: 4,015,429-4,121,991 

9 ihx2b-001 ENSDART00000148020 8: 3,251,922-3,268,194 
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Introns 1, 2. 3 

10 CLTCL1 (2 of 2) 

Introns 1-2 

ENSDARG00000091618 8: 2,240,226-2,242,278 

11 Gle1 

Introns 1-2/12-13 

ENSDARG00000043559 8: 2,718,593-2,749,849 

13 Ikbkb 

Introns 6-7/8-9 

ENSDART00000140265 8: 2,494,159-2,581,767 

14 Pptc7  

Introns 1-2/2-3 

ENSDART00000015214 8: 4,568,797-4,602,444 

 

Table 4.3: List of genes that had intronic regions sequenced to identify novel SNPs 

linked with FB148.5. 

 

4.3 CANDIDATE GENES   

4.3.1 GENES EXCLUDED BY GENOMIC DNA SEQUENCING  

The first gene to be excluded was dynll1, which was considered a good candidate 

because it encodes dynein, light chain, LC8-type 1, and was originally identified as a 

light chain of the dynein motor complex which has a role in dynein assembly. It has 

been found to interact with NDE1, which is a DISC1 interaction partner, and also 

localises to primary cilia, making it a good candidate to be mutated in FB148.5. 

However, DNA sequencing for all coding exons of dynll1 in genomic DNA showed no 

mutation in this gene and subsequently it was excluded from the candidate list (Fig. 

4.24).  

The candidate region contains several genes that when mutated give a phenotype similar 

to the FB148.5 mutant in some ways (Table 4.4). Claudin 5a mutants show interesting 

phenotypes including abnormal nervous system, small head, and reduction of brain 
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ventricular volume. Cldn5a has also been linked to blood-brain barrier (BBB) 

development in zebrafish (Xie, Farage et al. 2010) and contains only one exon, making 

it straightforward to analyse. However, genomic DNA sequencing results for from the 

mutant pool showed no mutations in this gene, although we found two polymorphisms 

in cldn5a. As shown in (Fig.4.19 A,B), an A>G transition was observed at nucleotide 

position 458 in WT DNA, causing a codon change of AAA is altered to become AAG 

yielding same amino acid—lysine in exon 1. The mutant DNA showed AAG, which is 

the same as the original reference. The other polymorphism is located in the 3'-UTR, 

and showed a heterozygote at nucleotide position 111 and 112 in both WT and mutant 

when compared to the reference sequence (Fig. 4.19 C,D).  A change like this would 

suggest that the mutation is not close to cldn5a gene.  

  

Genes  

Dynll1 ENSDART00000081325 

Gle1 ENSDARG00000043559 

Ccdc64 ENSDART00000101125 

Rpl6 ENSDART00000115036 

Ufd1l ENSDART00000034968 

Ihx2b ENSDART00000148020 

Cldn5a ENSDART00000064197 

Table 4.4: Genes selected on the basis of known phenotypes. 
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Figure 4.19: Sequence chromatograms for Cldn5a. 

(A) Sequence chromatogram for Cldn5a revealed a SNP with A/G in sibling (WT) 

DNA. (B) Sequence chromatogram for Cldn5a revealed no change in sequence of 

mutant (M) DNA as the sequence showed A/G too. (C) DNA chromatograms for 

sequencing at position 111 in WT DNA showed two peaks for C and G and also two 

peaks for A and G at position 112. (D) Mutant sequencing at position 111 showed same 

two C and G peaks and at 112 two peaks for A and G were also observed.  
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4.3.2 GENES EXCLUDED BY CDNA SEQUENCING  

Sequencing cDNA is an accurate and fast method to identify point mutations in the 

coding DNA sequence. Most deleterious mutations are predicted to affect exons or 

splice sites but since 90% of the zebrafish genome is non-coding, mutations in splice 

junctions, cis-regulatory elements and promoters will be missed using this method 

(Henke, Bowen et al. 2013). Several genes in the candidate area have mutants that show 

similar phenotypes to that seen in FB148.5 mutant fish. Given that these genes have 

multiple exons, we attempted to sequence the cDNA of these genes from two pools of 

20 embryos, one mutant and one WT pool, to identify any nucleotide change, deletion 

or duplication that could underlie the phenotype. Coiled-coil domain containing 64 

(Ccdc64) morphants show abnormal brain and eye development and a small head 

(Schlager, Kapitein et al. 2010). However, we failed to exclude this gene from our list 

because multiple attempts with different sets of primers failed to amplify the cDNA 

(Fig. 3 Appendix). Thus, further sequencing analysis is needed in order to exclude 

ccdc64.   

The next gene analysed was ribosomal protein L6 (rpl6). Mutants for this gene 

displayed an inflated hindbrain, small eyes and head, and pericardial odema (Uechi, 

Nakajima et al. 2006). cDNA sequence analysis of the full coding sequence of rpl6 

revealed no mutations so this gene could then most likely be excluded (Fig .4 

Appendix).   

Ubiquitin fusion degradation 1 like (yeast) (ufd1l) was also analysed because mutants 

revealed important phenotypes including a small mis-shapen head, small thick jaw, 

small eyes and pericardial odema (Amsterdam, Nissen et al. 2004). Sequence analysis 

identified a single mismatch allele of A to G at position 1870 in WT cDNA. This 

nucleotide change from GCA to GCG doesn’t cause an amino acid change since both 
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codons encode arginine. The mutant DNA showed heterozygous A/G alleles whereas 

the reference sequence contains a G (Fig 4.20). Thus, this suggests that this change is a 

normal polymorphism and also suggested that this gene is found far away from FB148.5 

mutation. 

Finally, LIM homeobox 2b (lhx2b) was also considered as a reasonable candidate gene. 

In zebrafish, lhx2b mutants showed similar phenotypes to FB148.5 such as abnormal 

brain and eye structures. This gene has been related with eye development, neurogenesis 

and Wnt signaling (Peukert, Weber et al. 2011). DNA sequence analysis revealed no 

mutations in lhx2b gene that were likely to be the causal mutation in FB148.5. 

Heterozygous alleles in both WT and mutant DNA were found in the promoter region 

(Fig.4.21A/B). Two peaks were observed in sequence analysis at position 744; the two 

nucleotides present were A/G. At position 1472 WT sequencing revealed heterozygous 

A/T alleles, while the mutant showed only one A allele which is the original nucleotide 

in the reference sequence. Also, an A/C polymorphism was detected at nucleotide 

position 1800 in mutant DNA, causing a codon change of  CAG to become CCG, 

changing the amino acid from glutamine to proline (Fig.4.22). TheWT DNA showed a 

CAG codon which is seen in the original nucleotide reference sequence. Other 

polymorphisms were observed at position 1840, 1870 and 1828; they showed T/C, G/A 

and G/A respectively (Fig 4.22C/D and 4.23) in 3
rd

 codon positions. All were silent with 

both alleles encoding Asn, Pro and Ser respectively. As a consequence, this gene has 

been excluded from the potential genes list. Also, the fact that heterozygous alleles were 

observed in the mutant DNA samples suggested that this gene is not close to the 

mutation site.  
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Figure 4.20: Sequence chromatograms for ufd1l. 

(A) Sequence chromatograms for ufd1l revealed a G>A SNP in sibling (WT) DNA. (B) 

Sequence chromatograms for the mutant (M) DNA also revealed A and G alleles where 

the reference sequence showed a G. 

 

 

Figure 4.21: Sequence chromatograms for lhx2b  
(A) Sequence chromatograms for lhx2b revealed two peaks for an A/G SNP in sibling 

(WT) DNA in the promoter region at position 421. (B) Sequence chromatograms for the 

mutant (M) DNA revealed the same A and G peaks while the reference sequence 

showed an A. (C) WT sequencing revealed heterozygous T/A alleles at position 1472 

encoding Ser/Thr respectively. (D) Mutant sequencing showed homozygosity for the 

original A nucleotide in the reference sequence which means this variant did not lead to 

mutation change.  
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Figure 4.22: Direct sequencing of cDNA encoding lhx2b gene. 

(A) Sequence of WT cDNA showing A allele at position 1800 (B). Sequence of mutant 

cDNA showing heterozygous A/C alleles encoding Gln/Pro respectively. (C) 

Sequencing of cDNA of wild-type allele showing C instead of T in the original 

reference sequence. (D) Sequence of mutant cDNA showing heterozygous T/C alleles at 

codon 1840 (both encode Asn). 
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Figure 4.23: Direct sequencing of cDNA encoding lhx2b gene.  
(A) Sequence of WT cDNA showing A allele. (B) Sequence of mutant cDNA showing 

heterozygous A/G alleles at position 1870, both encoding Pro. (C) Sequencing of cDNA 

from wild-type showing C instead of T as in the original reference. (D) Sequence of 

mutant cDNA showing heterozygous A/C alleles at position 1828, both encoding Ser. 
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Z1068 Z15031 

Figure  4.24 Candidate genes from the linkage interval. 
Genes that are highlighted with yellow are the phenotypic candidate genes, while genes underlined with red are genes that contained 

sequenced introns. Image was imported from Ensembl  
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4.3 DISCUSSION  

The aim of positional cloning is to link a mutant phenotype to a specific chromosomal 

region and involves analysing the segregation of alleles and calculating the frequency of 

recombination events. This approach has been used in many zebrafish studies to identify 

the causative gene in mutants obtained through phenotypic screens. In this study, 

positional cloning has been used to map FB148.5 to linkage group 8 using a panel of 

192 SSLP markers originating from the Massachusetts General Hospital (MGH) marker 

map (Knapik, Goodman et al. 1998). The recombination frequency was determined by 

testing 45 individual mutant embryos and then the critical interval was defined as 15.2 

cM flanked by the markers z1068, which is placed at 13 cM, and z15031 at 28.2 cM. 

SSLP z1068 showed 24.2% recombination frequency while z15031 showed 2.2%, 

which suggested that the FB148.5 gene is closer to z15031 than z1068 (Table 4.2). The 

physical map positions of z1068 and z15031 obtained from the Ensembl genome 

assembly showed that this 15.2 cM interval corresponded to around 4 Mb and contains 

around 50 genes (Fig.4 7). Further analyses were performed to test more markers 

between the two candidate markers to find new closer flanking markers. The physical 

map in this region showed a small number of additional SSLP markers. These markers 

were tested and found to be uninformative or the PCRs failed; more specifically, the 

region from 19.8 cM to 28.2 cM contains only 3 SSLPs, 2 of which were un-

informative while the PCR for the other one failed (Fig. 4.17). Therefore, this approach 

failed to refine the genetic interval to a narrower region because no informative SSLPs 

were found close to z15031. 

As a result of the lack of polymorphic SSLP markers in the region containing the 

FB148.5 mutation, we attempted to identify intronic SNPs that could be used as markers 
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for genetic linkage to further refine the FB148.5 locus. It has been reported that the 

single nucleotide polymorphism (SNP) frequency in non-coding regions is 4.85 SNPs 

per kb, compared to 1.64 SNPs per kb in coding regions, supporting the use of these 

SNPs as genetic markers (Zhu, Song et al. 2003). PCR primers (Fig.1 Appendix) were 

designed to amplify intronic DNA from several genes spanning the defined interval 

(Fig. 4.18). However, direct sequencing of these regions failed to find any informative 

SNPs.  

As an alternative approach, candidate gene screening was undertaken to try to identify 

the mutated FB148.5 gene. We selected a number of genes that have mutants with 

similar phenotypes to FB148.5, an interesting expression pattern or cilia-related 

function to see if they harboured any potentially deleterious nucleotide change, deletion 

or duplication. This has been widely used as a successful approach to find mutated 

genes, but is time and resource costly, and we had insufficient resources to screen all 50 

genes in the candidate region in this way. Seven genes were selected as interesting 

candidate genes in the defined area including; dynl1l, gle1, udf1l, lhx2b, cldn5a, rpl6 

and ccdc64. Dynl1l was an interesting candidate gene because it has been reported that 

DYNLL1 interacts with the DISC1 partner NDEL1. Also, it’s a small gene that only 

contains three exons and therefore was easy to sequence in full. However, it was 

excluded by DNA sequencing of all coding exons. The cldn5a gene was also chosen 

due to its mutants displaying interesting phenotypes including abnormal nervous 

system, small head, and reduction of brain ventricular volume (Xie, Farage et al. 2010). 

DNA sequencing results showed no mutations in this gene, although two 

polymorphisms were found. Two alleles in both WT and mutant DNA were observed 

but the change was silent causing codon change of AAA to AAG (both lysine). The 

other polymorphism was in the 3'-UTR and again showed two alleles at positions 111 
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and 112 in both WT and mutant DNA (Fig. 4.19). We attempted cDNA sequencing of 

ccdc64 but this gene has not been excluded because PCR failed to amplify the cDNA 

using multiple sets of primer pairs. This gene contains 14 exons and sequencing of all 

these exons could be undertaken to exclude ccdc64. In addition, rpl6 was selected due 

to its mutants having phenotypes very similar to FB148.5 such as inflated hindbrain, 

small eyes and head, and pericardial oedema (Uechi, Nakajima et al. 2006). However, 

cDNA sequencing analysis revealed no mutations and excluded this gene as a candidate. 

Ufd1l was also genotyped owing to mutants having relevant phenotypes that include a 

small  mis-shaped head, small thick jaw, small eyes and pericardial odema (Amsterdam, 

Nissen et al. 2004). Sequence analysis identified a normal polymorphism mismatch 

allele of A to G at position 1870 in WT and mutant cDNA (Fig. 4.20). A number of 

polymorphisms were observed in Lhx2b, which we considered another plausible 

candidate gene for FB148.5, but these were all silent changes (Fig. 4.21.22.23) Finally, 

gle1, which is located at the z1068 end of the candidate region and whose mutants show 

similar phenotypes to FB148.5, was excluded using a complementation assay. Taken 

together, none of what we considered the most likely candidate genes were found to 

harbour a deleterious mutation in FB148.5, although ccdc64 was not fully analysed. 

Mutant DNA was found to be heterozygous for SNPs in cldn5a, ihx2b and ufd1l. These 

indicate that mutants have inherited different alleles from each parent. Thus, these genes 

may be localised far away from the mutation suggesting that the observed linkage to the 

LG8 locus might be a false positive result (Fig. 4.24). This finding is consistent with 

WGS results obtained in the following chapter.   

Recent advances in DNA sequencing technology means that whole genome sequencing 

(WGS) now provides a relatively quick and efficient method for genome analysis. 

Therefore, given the problems that we encountered refining the FB148.5 locus and the 
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large number of candidate genes in the defined candidate interval, WGS was used for 

further analysis to try and identify the mutated gene in FB148.5. 
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CHAPTER V: WHOLE GENOME 

SEQUENCING 
 

5 INTRODUCTION 

5.1 WHOLE GENOME SEQUENCING 

Recent advances in whole genome sequencing (WGS) methods provided an alternative 

method with which to try to identify the FB148.5 mutation. Whole genome sequencing 

approaches have been applied in many model organisms including Drosophila, 

Arabidopsis, Caenorhabditis elegans and mice (Blumenstiel, Noll et al. 2009; Cuperus, 

Montgomery et al. 2010; Doitsidou, Poole et al. 2010; Fairfield, Gilbert et al. 2011). 

Moreover, WGS has also been successfully utilised in zebrafish to identify phenotype-

causing mutations in a number of mutant lines (Gupta, Marlow et al. 2010; Bowen, 

Henke et al. 2012; Voz, Coppieters et al. 2012). 

The Wellcome Trust Sanger Institute in 2001 established the zebrafish genome-

sequencing project and used the Tübingen strain as a reference, since this strain was 

widely used to find mutations causing developmental abnormalities. The newest 

assembly is Zn9 with a total size of 1.412 Giga bases (Gb) (Howe, Clark et al. 2013). It 

is known that zebrafish carry a unique genome duplication known as the teleost-specific 

genome duplication (TSD) (Meyer and Schartl 1999) which complicates accurate 

annotation of the genome. WGS provides several advantages compared to the SSLP 

mapping strategy. Firstly, WGS requires a pool of approximately 50 mutants and some 

WGS strategies do not need WT embryos, which is a much lower number of mutants 

compared to that typically used in SSLP mapping. The whole library construction, 

sequencing and analysis takes a few weeks so is less expensive in term of man hours. A 
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typical WGS run provides 13 Gb of sequence which provides eightfold coverage of the 

total zebrafish genome and should be sufficient to identify a causative gene mutation 

(Voz, Coppieters et al. 2012). Genome coverage is described in terms of read depth 

which is the average number of nucleotide reads to the length of sequence. Thus, 10X 

coverage means that the genome is sequenced ten times over (Schatz, Delcher et al. 

2010).  

5.2 MAPPING FB148.5 BY WHOLE-GENOME SEQUENCING  

WGS was undertaken because of the lack of informative SSLP markers within the 

candidate region and because the sequencing of intronic regions also failed to identify 

informative nucleotide polymorphisms as novel markers. A pool of 50 mutant embryos 

was sent for library construction and high throughput genomic sequencing at GIGA 

Genomics in Liege. 

The main principle of this technique is to identify the causal mutation region through 

calculating the level of homozygosity among sequence reads across the genome 

(Fig.5.1). Recently, the Coppieters group determined the candidate region in the m1045 

mutant strain that shows hyperplasia of the exocrine pancreas using an algorithm to 

calculate the SNP homozygosity score along all the chromosomes so as to map the 

interval carrying the mutation. They identified an 8 Mb region in chromosome 5 with a 

homozygosity score close to 1 in m1045 mutants. Sequence analysis of all genes in the 

candidate region enabled them to determine a nonsense mutation in the snapc4 gene 

(Voz, Coppieters et al. 2012). 
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Figure 5.1: An example of high homozygosity score. 

Plot showing SNP homozygosity score near to 1 in 18-30 Mbp region of this 

chromosome as an example; this would be a good candidate region for the mutation. 
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5.2.1. WHOLE-GENOME SEQUENCING FAILED TO IDENTIFY THE 

CAUSAL GENE IN FB148.5 

The WGS data was generated using an Illumina platform. Paired end sequencing was 

performed using a library constructed using an Illumina TruSeq kit; the mean insert size 

was 300bp and mapping was performed using Burrow-Wheeler Aligner (BWA) on 

danRer7 (Zv9). The homozygosity mapping  was done using SAMtools SNP calls while 

variants were selected by VariantQuerier using the RefGene and Ensembl gene 

annotations. The perecntage of seqencing reads that mapped to Zv9 was approximately 

82%. 

WGS data revealed that no typical signals corresponding to a homozygous region 

selected for by a causal mutation were observed in the data set. A correct signal 

typically has slowly decreasing homozygosity levels on both sides of the homozygous 

region. Only  some relatively small highly homozygous regions where observed (Figure 

5.2). These type of signals are typical for homozygous blocks shared by the two crossed 

strains.  

The mutant embryos used in the pools were not all the offspring of a single grandparent 

carrier, but of multiple grandparent carriers. Depending on the number of generations 

between these different grandparents to the original mutant, historical recombinations 

can influence the size of the homozygous region expected  in an unpredicatable way.  

The mutation could not be mapped to chromosome 8 as we expected (Figure 5.3), nor 

did any other chromosome show a typical signal. Since small highly homozygous 

regions were observed in chromosomes 5, 20 and 23 (Figure 5.2) we retested a number 

of SSLPs from these regions to ensure that chromosomes 5, 20 and 23 are not 
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genetically linked with the FB148.5 mutation (Figure 5.4). The results of this analysis 

demonstrated that none of the SSLPs showed clear genetic linkage with the mutation.  

  

 

 

Figure 5.2: Plots showing homozygosity score levels in chr5, chr20 and chr23. 

(A) Plot of SNP homozygosity for chromosome 5 showing high score between 24 to 34 

Mbp. (B) SNPs show high homozygosity on chromosome 23 between 12 to 18 Mbp. 

(C) SNPs show homozygosity on chromosome 20 between 15 to 20 Mbp and 37 to 40 

Mbp. This suggests possible linkage between these chromosomes and the FB148.5 

mutation. These results provided by Dr Wouter Coppieters. 
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Figure 5.3: Retesting of chromosomes 5, 20 and 23 for homozygosity with SSLP 

markers. 

(A) Genotyping of microsatellites on chromosome 5. (B) PCR products of 

microsatellites on chromosome 20. (C) PCR products of microsatellites on chromosome 

23. The left lane in each case is the PCR product from the wild type (WT) pool and 

right lane is mutant (M) DNA pool. PCR products for these SSLPs were either 

uninformative or showed no genetic linkage between these chromosomes and FB148.5 

mutation. (D) Table of SSLPs selected for chromosomes 5, 20 and 23. 
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Figure 5.4: Homozygosity score level in chromosome 8. 

Analysis of SNP homozygosity for chromosome 8 failed to show typical linkage 

between this chromosome and the FB148.5 mutation in spite of prior SSLP analysis 

suggesting that the mutation lies in a candidate interval on this chromosome.   
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5.2.2 GENES EXCLUDED BY WGS 

All regions with a homozygosity score above 0.9 were annotated for candidate causal 

mutants using a number of toolkits including GATK Unified Genotyper, SAMtools and 

Variant Querier  (Li, Handsaker et al. 2009; McKenna, Hanna et al. 2010) with RefSeq 

(Zv9) and Ensembl gene annotations by Dr Coppieters. Variants within the critical 

regions were annotated by their effect on amino acid sequence and splice sites. After 

that, functional SNPs were filtered using two criteria: 

1) The SNP has to be private to the mutant line (if the SNP is also observed in 

another zebrafish line it was excluded as being the causal variant). 

2) The SNP must be homozygous for the alternative allele. 

132 private variants in regions with a homozygosity score above 0.98 were detected, 

comprising 9 splice site mutations and 7 possible loss of function mutations. These 

disruptive mutations were checked using the Broad Institute Integrative Genomics 

Viewer but none were retained as causal. All other mutations identified were missense 

mutations. Moreover, the variant annotation undertaken by Dr Coppieters provided a list 

of chromosome 8 genes that revealed interesting functional SNPs that might cause the 

FB148.5 mutation. Accordingly, PCR primers were designed to amplify around the 

SNP change for these selected variants and then the DNA was sequenced (Table 5.1). 

The dock5 gene was selected since it has a role in cytokinesis, specc1la because 

morphants for this gene show neural crest defects, fnbp1l because of an interesting 

expression pattern (CNS, midbrain and neural plate (Thisse and Thisse 2004)) and 

iqsec2 since it is related to X-linked mental retardation. However, sequencing revealed 

that no dock5 mutation was identified in the FB148.5 mutant DNA pool as illustrated in 

Fig. 5.5B compared to WT DNA (Fig. 5.5A). In addition, both sibling and mutant pools 

revealed no SNP change in fnbp1l gene (Fig. 5.6A and B). A C>G polymorphism was 
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observed in the specc1la gene sibling and mutant DNA pools (Fig.5.7A and B) but 

because the nucleotide change was identified in the WT pool as well as the mutant pool 

this suggests that this change is not causal in FB148.5. Another SNP that was identified 

in the specc1la gene by WGS was examined and did not reveal a SNP change in the 

mutant DNA pool (Fig. 5.8). Finally, the iqsec2 gene showed no SNP change in mutant 

DNA although the WT showed heterozygous alleles (Fig.5.9A) whereas the mutant 

sequence showed the original reference nucleotide as illustrated in Fig.5.9B and C. 

Taken together, DNA sequencing failed to identify any causal mutation among these 

polymorphisms. 

5.2.3 GC CONTENT 

It has been reported that GC content may affect genomic sequencing data as these areas 

cannot be accurately sequenced and give gaps in the high-throughput sequencing dataset 

(Marx 2013).  In addition, the GC content also has been found to affect fragment 

genome coverage (Benjamini and Speed 2012). Thus, to investigate whether the genes 

in the candidate interval were previously identified in chromosome 8 are rich in GC 

content I examined the GC content manually using ABS software (Table 2 Appendix). 

However, the average GC content in these genes was 45%, suggesting that high GC 

content is not a likely cause for the failure of WGS to identify the FB148.5 mutation. 
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Table 5.1: Candidate LG8 genes identified by WGS and the polymorphism observed.   
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Figure 5.5: Sequencing of dock5. 

(A, B) Sequence chromatograms for dock5 revealed the same SNP in sibling (Sib) DNA 

and mutant (Mut) DNA. (C) Sequence with highlighted forward primer (yellow), 

reverse primer (green) and the polymorphism (pink). Sequence was exported from 

Ensembl genome browser. 
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Figure 5.6: Sequencing of fnbp1l SNP.  

(A, B) Sequence chromatograms for fnbp1l revealed the SNP was present in sibling 

(Sib) and mutant (Mut) DNA. (C) Sequence with highlighted forward primer (yellow), 

reverse primer (green) and polymorphism (pink). Sequence was exported from Ensembl 

genome browser. 
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Figure 5.7: Sequencing of specc1la SNP.  
(A) Sequence chromatograms for specc1la shows the SNP change from C to G is 

present in sequence trace of sibling (Sib) and mutant (Mut) DNA as C to G change (B) 

suggesting that it is not the causal mutation in FB148.5. (C) Sequence with highlighted 

forward primer (yellow), reverse primer (green) and polymorphism (pink). Sequence 

was exported from Ensembl genome browser. 
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Figure 5.8: Sequencing of second specc1la/b SNP. 

(A) Sequence chromatograms for specc1la/b revealed the SNP was present in sibling 

(Sib) and (B) mutant (Mut) DNA. (C) Sequence with highlighted forward primer 

(yellow), reverse primer (green) and polymorphism (pink). Sequence was exported from 

Ensembl genome browser. 
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Figure 5.9: Sequencing of iqsec2 SNP. 

(A) Sequence chromatogram for iqsec2 revealed heterozygous C/T SNP sequence in 

sibling (Sib) DNA. (B) Sequence chromatogram for iqsec2 reveals no SNP change 

compared with reference sequence in mutant (Mut) DNA suggesting that this is not a 

causal change (C) Sequence with highlighted forward primer (yellow), reverse primer 

(green) and polymorphism (pink). Sequence was exported from Ensembl genome 

browser. 
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 5.3 FB148.5 RESCUE BY BAC CLONE INJECTION  

Since positional cloning and WGS failed to identify the mutated gene in FB148.5 we 

tried to rescue FB148.5 mutants using bacterial artificial chromosomes (BACs) 

encompassing the region of interest on LG8. Microinjection of BAC clones can partially 

rescue mutant zebrafish phenotypes (Yan, Talbot et al. 1998) but relies on the BAC 

partitioning to the required cell type. To determine whether appropriate BAC clones can 

rescue FB148.5 mutants, we found 7 BACs clones (Table, 5.2) in the region of interest 

by searching through the CHORI-211 BAC library (zfin.org) (Fig. 5.10). These 7 

genomic DNA clones were injected in to 1-2 cell embryos and the injected embryos 

were allowed to develop to 4-5 d.p.f.. To evaluate partial BAC rescue, in situ 

hybridization was performed using the myelination marker myelin basic protein (mbp) 

as a probe so as to identify rescue of oligodendrocyte defects in the hindbrain.  

The first BAC clone that was identified in the candidate area was CH211-220D9. This 

clone contains a number of genes including ikbkb, plat, polb, si:ch211-220d9.3 and 

vdac3. However, DNA microinjection into mutant FB148.5 embryos did not reveal any 

increase in oligodendrocyte numbers in the hindbrain (Fig. 5.11C, D). Next, the CH211-

51H9 clone was injected into FB148.5 embryos. This clone includes acaa2, fam102aa, 

gle1,mrpl40, naif1, seta, si:ch211-51h9.6 , si:ch211-51h9.7, slc25a25a  and zdhhc12a. 

Again, the mutant embryos did not show any increased specification of hindbrain 

oligodendrocytes (Fig. 5.11E, F). Although, CH211-159C13 and CH211-146J7 

overlapped and both contain only one gene (lhx2b), they were both injected into 

embryos and tested by in situ hybridization for mbp as before. Similar to the previous 

BAC clones they could not rescue FB148.5 defects in the oligodendrocyte lineage (Fig. 

5.11G, H and 5.12A, B). CH211-218I18 was also injected into embryos to rescue 

FB148.5 phenotypes. This clone contains cux2b and mtmr3 genes, but it also failed to 
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rescue oligodendrocyte defects in mutant embryos (Fig. 5.12C, D). CH211-166A6 was 

another BAC clone that was identified in the candidate interval and encodes cux2b, 

myl2b, pptc7a, rad9b, si:ch211-166a6.5 and srrd. However, this BAC clone also did 

not show any rescue for FB148.5 defects in oligodendrocyte specification (Fig. 5.12F, 

E). Finally, the CH211-24O8 clone which contains diabloa and or130-1 genes was 

injected into embryos but it did not demonstrate any rescue of the FB148.5 phenotype 

(Fig 5.12G, H). It must however be acknowledged that the likelihood of hitting the 

appropriate neural precursors with the BAC to elicit a partial mosaic rescue is low. In 

addition, due to time limitations only a small number of mutants were injected with 

each BAC and embryos that underwent BAC clone DNA microinjection showed lower 

survival rates than uninjected controls which might be due to the concentration of DNA 

injected (50 ng/ul) (Table 5.3).    
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Table 5.2 List of BAC clones that were identified in the candidate interval with 

their size and genes encoded listed. 

  

 

Figure 5.10: BAC clones locations in the linkage interval. 
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Figure 5.11: BAC clones did not give mosaic rescue of oligodendrocyte defects in 5 

d.p.f. FB148.5 larvae. 

(A, B) Show mbp expression in un-injected WT (A) and mutant (B) embryos. (C to H) 

BAC clones were injected into 1-2 cell stage embryos then larvae were assayed by in 

situ hybridization with mbp probe. (D, F, and H) CH211-220D9, CH211-51H9, and 

CH211-159C13 clones were injected into mutant FB148.5 embryos and in all cases it 

was found that the BAC clones could not rescue the oligodendrocyte defects in the 

hindbrain compared with un-injected mutant FB148.5 embryos. Magnification x20 in 

all panels. (technical repeat x1). 
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Figure 5.12: BAC clones did not give mosaic rescue of the oligodendrocyte defects 

in 5 d.p.f. FB148.5 larvae.  

(A to H) BAC clones were injected into 1-2 cell stage embryos then larvae were 

assayed by in situ hybridization with mbp probe at 5 d.p.f.. (B, D, F, and H)  CH211-

146J7, CH211-218I18, CH211-166A6 and CH211-24O8 clones were injected in to 

mutant FB148.5 larvae and all showed that BAC clones did not rescue oligodendrocyte 

numbers in the hindbrain compared with un-injected mutant FB148.5 embryos. 

Magnification x20 in all panels. (x1). 
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BAC Clone Purified 

DNA 

concentration 

ng/ul 

DNA 

Concentration 

injected ng/ul 

No. 

Sibling 

embryos 

No. 

Mutant 

embryos 

Survival 

Rate % 

CH211-220D9 384.8 50 47 9 70% 

CH211-51H9 380 50 32 5 32% 

CH211-159C13 167 50 50 5 50% 

CH211-146J7 93 50 42 7 36% 

CH211-218I18 144 50 61 11 44% 

CH211-166A6 134 50 58 9 27% 

CH211-24O8 125 50 35 4 25% 

 

Table 5.3: Quantification of attempted BAC rescue experiments.     
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5.3 DISCUSSION 

In this chapter WGS was used as an alternative strategy due to the failure of the 

traditional SSLP mapping approach to refine the locus in the candidate region for 

FB148.5 on LG8. This approach also has the advantage of taking much less time and we 

sent a pool of 50 mutant embryos for WGS at GIGA Genomics in Liege. However, 

WGS failed to determine the FB148.5 mutation in the candidate region. One potential 

problem was that the mutant embryos that were sent to WGS were collected from more 

than one grandparental mutant which may have affected the degree of homozygosity 

around the mutation site. Others labs in the Bateson Centre at the University of 

Sheffield have had around 50% success rate with other mutants using this approach. It 

has also been reported that high-throughput sequencing in human samples has been 

unable to identify causal mutation in number of Mendelian diseases such as medullary 

cystic kidney disease (Kirby, Gnirke et al. 2013) and a number of possible factors have 

been suggested for this including the GC richness, presence of repeated bases, missing 

bases in the initial genome reference sequence and low genome coverage in the 

candidate region (Marx 2013). Thus, GC content was determined in the defined LG8 

region and was found to be of an average level. However, the other factors mentioned 

above still need to be verified.  

We obtained a list of variants within the candidate linkage group which displayed SNP 

changes in amino acid sequence or at splice sites. We then manually reviewed the list to 

determine genes with mutants carrying interesting phenotypes or having relevant 

expression patterns. We were left with a list of 5 candidate genes; dock5, fnbp1l, 

specc1la, specc1la/b and iqsec2. We however failed to find a causal mutation in any of 

these genes. Dedicator of cytokinesis 5 (dock 5) is a member of the DOCK protein 

family which regulate cytokinesis. In zebrafish, it has been shown that dock5 and dock1 
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are required for myoblast fusion (Moore, Parkin et al. 2007). Although the gene 

function for Formin binding protein 1-like (fnbp1l) is not well characterized, it was 

selected because of its expression pattern. It has been shown to be expressed in the 

CNS, neural plate and pharyngeal arches, and these regions show abnormal phenotypes 

in the FB148.5 mutant (zfin.org). Another candidate gene was Sperm antigen with 

calponin homology and coiled-coil domains 1-like (specc1l) since mutation of this gene 

has been linked with a human developmental disorder and zebrafish lacking specc1l 

function show jaw, facial structure and neural crest defects (Saadi, Alkuraya et al. 

2011). Additionally, we selected iqsec2 since it has been found that mutation of this 

gene leads to intellectual disability. Iqsec2 encodes a guanine nucleotide exchange 

factor for the ADP-ribosylation factor family of small GTPases (Shoubridge, Tarpey et 

al. 2010). We excluded the identified SNPs in all these genes through PCR and DNA 

sequencing and thus were unable to identify the FB148.5 mutation through this initial 

attempt at WGS.  

Subsequently, we attempted to rescue FB148.5 mutants using bacterial artificial 

chromosomes (BACs). We rationalised that microinjection of BAC clones might 

partially rescue the specification of oligodendrocyte precursor cells in mutant FB148.5 

embryos.  However, the clones injected did not show rescue of oligodendrocyte 

numbers in the mutant hindbrain compared with un-injected mutant FB148.5 embryos 

(Fig. 5.11 and 5.12). The limited number of mutant embryos injected and apparent 

toxicity of injected BAC DNA were limitations of these experiments which further 

affected the potential rescue efficiency. In addition, BACs encoding all genes in the 

candidate region were not available.  

If time and resources had allowed, we could have sent a second pool of mutant embryos 

derived from a single mutant grandparent for further whole genome sequencing to help 
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find the mutated gene in FB148.5. Sequencing of the whole zebrafish genome in this 

study was performed with eight-fold genome coverage which is usually sufficient to 

identify homozygous SNPs, but increased genome coverage (e.g. 30-fold) will increase 

the chance of SNP discovery, especially in heterozygous positions (Bentley, 

Balasubramanian et al. 2008). However the best approach to take in future might be to 

use whole exome sequencing (WES) or RNA-sequencing (RNA-Seq) which can also be 

used to find causal mutations and give information on gene expression changes and 

alternative splicing. Other studies have reported that mutations can be found using 

RNA-Seq which provides a fast and relatively low-cost alternative strategy to 

determining coding variants (Cirulli, Singh et al. 2010).  
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6. CHAPTER VI: GENERAL DISCUSSIOS 
 

The primary aim of this study was to characterise and identify the mutated gene in 

FB148.5 mutant fish and to define its function and roles during zebrafish development. 

The FB148.5 mutant was of interest to us since initial characterisation revealed very 

similar morphological phenotypes to those found in disc1 morphants (Wood, Bonath et 

al. 2009). DISC1 has been one of the most intensively studied mental illness 

susceptibility genes and recent work from our group and others has demonstrated roles 

for disc1 in oligodendrocyte development (Wood, Bonath et al. 2009; Katsel, Tan et al. 

2011; Hattori, Shimizu et al. 2014). Accordingly, we hypothesized that these two genes 

may act together in common developmental pathways related to myelination. In order to 

characterise the FB148.5 mutant phenotype, whole-mount immunostaining and in situ 

hybridization studies were performed with a panel of neurological markers. The 

previous unpublished studies of the FB148.5 mutant suggested that it may induce a 

specific myelin phenotype. However, the further characterisation of this mutant 

described in chapter 3 indicates that it has important roles in earlier stages of nervous 

system development. This work was done without performing sense probe controls, 

although all the probes that were used are well-known and control images are available 

on ZFIN from multiple publications.  

The range of phenotypes described in FB148.5 is not unique to this line. Similar 

phenotypes have been described in mutants and morphants for other genes such as 

pescadillo, gle1, ccdc64 and nrg1 (see table 6-1). Mutation of pescadillo (pes) was 

mapped to chromosome 5 and causes oligodendrocyte formation defects similar to those 

in FB148.5 in mutant larvae. Also, these larvae showed similar morphological 

phenotypes to those found in FB148.5, e.g. defects in the eye, jaw and body length 

(Simmons and Appel 2012). This gene might be another candidate to investigate that 
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correlates with FB148.5 function. Notably, Pescadillo has important functions in 

ribosome biogenesis and cell proliferation (Lerch-Gaggl, Haque et al. 2002). Pes1 

mutant mouse embryos die extremely early, at the eight-cell stage (Lerch-Gaggl, Haque 

et al. 2002). In zebrafish pes mutant larvae showed oligodendrocyte defects which 

resulted from disruption of the cell cycle in neural precursors resulting in a failure to 

produce oligodendrocyte progenitors  (Simmons and Appel 2012).  

Neuregulin 1 is another gene that when its function was disrupted using nrg1 

morpholinos showed similar morphological phenotypes to the FB148.5 mutation line: it 

is also a candidate gene for SZ (Stefansson et al., 2002). It encodes a transmembrane 

signaling protein that interacts with receptor tyrosine kinases of the ErbB family. It has 

been reported that nrg1 morphant zebrafish revealed similar defects in production of 

olig2-positive cells to those that have been demonstrated in disc1 morphants. This study 

suggested that nrg1 and disc1 perform similar roles in the zebrafish hindbrain during 

oligodendrocyte precursor specification (Wood et al., 2009). It has been reported that in 

zebrafish nrg1 type III is required for Schwann cell proliferation and migration (Perlin, 

Lush et al. 2011). Additionally, several studies on mouse models found that NRG1 has 

critical roles in regulating synaptic transmission, axon guidance and neuronal migration 

(Buonanno et al, 2001; Fischback G.D, 2007; Vartanian et al, 1999). Thus, this gene 

might be related to FB148.5 function through direct or indirect interactions with disc1 

function.    

In addition, gle1 was considered to be one of the most promising genes in the candidate 

region of FB148.5 as its mutants show a small head and eyes (Jao, Appel et al. 2012). 

However, gle1 mutation was excluded in FB148.5 using a complementation test. 

Mutation in this gene leads to lethal congenital contracture syndrome type 1 (LCCS1), 

an autosomal recessive inherited foetal motor neurone disorder (Nousiainen et al., 
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2008). Interestingly, further work on gle1 mutant zebrafish larvae showed severe 

Schwann cell defects in them (Seytanoglu, Alsomali et al., manuscript in preparation). It 

is likely that FB148.5 is also involved in Schwann development, possibly playing a 

similar role to gle1.  

In addition to the above genes, ccdc64, mybpc1 and tbx2a morphants also exhibit 

similar morphological phenotypes to FB148.5 mutant zebrafish (table 6.1). These genes 

play different roles in organogenesis and embryo development suggesting that the 

FB148.5 mutated gene might be correlated with different genes that perform diverse 

functions during embryogenesis.   
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 Morphological phenotypes  Function Chromoso

-mal 

location 

References 

1- gle1 gle1
-/-

 at ~48 hpf showed abnormal phenotypes 

including small eyes and head,  

underdeveloped pectoral fins,  and cell death in 

the head and spinal cord. Some embryos also 

demonstrated upward or downward body axis 

curvature.  

GLE1 mutations lead to LCCS1 fetal motor 

neuron disease 

(Nousiainen et al., 2008). Gle1 is an essential 

mRNA export factor.  

Chr: 8  (Nousiainen et al., 

2008) 

(Jao, Appel et al. 

2012) 

2- nrg1 Morphants showed small head and eyes Has critical roles in regulating synaptic 

transmission, axon guidance, and neuronal 

migration 

Chr: 10 (Perlin, Lush et al. 

2011), (Wood et 

al., 2009). 

3- pescadillo Mutant embryos exhibited reduce brain and 

eye size and a lack of extension of the jaw, 

probably affected by the lack of 

cartilage in the branchial arches 

 Has important functions in ribosome 

biogenesis and cell proliferation 

Chr: 5 (Lerch-Gaggl, 

Haque et al. 2002) 

4- ccdc64 Ccdc64 morphants showed small eyes and 

head and a curved body axis 

Ccdc64 interacts with the microtubule minus-

end-directed dynein/dynactin 

motor complex. 

Chr: 8 (Schlager, 

Kapitein et al. 

2010) 

5- mybpc1 Morphant embryos displayed pericardial 

edema and decreased growth of eyes and head. 

Some mybpc1 morphants showed cardiac 

edema that was correlated with reduced heart 

MYBPC1 mutations cause limb contractures 

characteristic of distal arthrogryposis 

Chr: 4 (Ha, Buchan et al. 

2013) 
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rate 

6- tbx2a Morphants showed abnormal body curvature, 

hydrocephalus, heart edema, and reductions in 

the size of the ears and eyes  

Tbx2 is a member of the T-box family of 

transcription factors essential for embryo 

development and organogenesis. Tbx2 

deficiency affects the development of the 

pharyngeal arches  

Chr: 5 (Thu, Tien et al. 

2013) 

 

Table  6.1 List of genes that were found to exhibit similar phenotypes to FB148.5 mutant zebrafish 
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It has previously been reported that neurogenesis and OPC specification defects may 

result from neural precursor cell proliferation defects (Garcion and Faissner 2001; 

Grandel, Kaslin et al. 2006). We found that FB148.5 revealed neurogenesis as well as 

OPC specification defects, suggesting that FB148.5’s effects on OPC specification and 

neurogenesis may be caused by defects in NPC proliferation. In addition, the jaw 

cartilage defects (Fig. 3.5) that have been seen in FB148.5 mutant larvae have at least 

two possible origins: one possibility is that disruption of normal jaw development may 

directly affect the specification of the relevant precursors. However, it is also possible 

that the jaw defects might be a secondary effect, since the jaw cartilages are derived 

from the cranial neural crest (CNC) (Noden 1983) and CNC proliferation and migration 

could be affected by the profound neural specification defects observed. 

Chapter 4 of this study described chromosomal mapping of the FB148.5 mutation to 

identify the chromosomal location of the mutated gene. This analysis suggested genetic 

linkage of FB148.5 to LG 8, because several polymorphic SSLPs on this chromosome 

showed a high degree of apparent homozygosity and this was confirmed in offspring 

from multiple mapping pairs (table 4.1). Further analysis also suggested that the critical 

interval was a 15.2 cM interval flanked by the markers z1068 and z15031. This 15.2 cM 

interval contains around 50 genes (Fig. 4.18) and corresponded to 4 Mb of genomic 

DNA. However, this approach failed to narrow the candidate region because of an 

absence of informative SSLPs between the two flanking markers. 

A number of limitations were encountered in this study which included the lack of any 

informative SSLP in the candidate region, the unsuccessful attempts at identifying 

intronic SNPs as genetic markers and the large number of candidate genes in the defined 

interval. Together, these factors seriously limited the positional mapping approach.  

Additionally, while the initial mapping experiments suggested the LG8 locus it should 

be acknowledged that the genome scan undertaken did not include all genomic regions. 
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This limitation was the result of a number of un-informative SSLPs and the lack of 

amplification of PCR products for some markers. It is therefore conceivable that the 

LG8 locus was a false positive.  

Recently, a number of laboratories have developed WGS methods to map zebrafish 

mutations. These groups used similar strategies involving the sequencing of libraries 

from pools of 20-50 mutant embryos from a mapping family and then calculating the 

homozygosity score by analysing SNPs distributed across the whole genome (Gupta, 

Marlow et al. 2010; Bowen, Henke et al. 2012; Voz, Coppieters et al. 2012). Therefore 

we sent a pool of 50 mutant embryos for WGS at GIGA Genomics in Liege; however, 

WGS also failed to determine the FB148.5 mutation in neither the candidate region 

identified through the SSLP screen nor any other region (Fig. 5.2, 3).  

Several limitations might have caused the WGS approach taken to fail such as the 

mutant embryos that were sent for WGS were derived from more than one 

grandparental mutant and only around 80% of sequence reads mapped to the reference 

genome. Other factors such GC content, the presence of repeated bases, missing bases 

in the initial genome reference sequence and low genome coverage in the candidate 

region (Marx 2013) could also be factors. Furthermore, a number of heterozygous SNPs 

were found in genes in the LG8 candidate region. Thus, these SNPs are likely to be 

distant from the mutation. This suggests that this may not have actually been the true 

region which was confounded by the mixed grandparental mutant background. 

Consequently, these findings are consistent with the WGS results.  

Future work on FB148.5 mutants should therefore utilise whole exome (WES) or RNA- 

sequencing (RNA-Seq) as alternative genetic approaches to find the causal mutation 

(Cirulli, Singh et al. 2010).  
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6.1 FUTURE WORK 

1- In order to determine whether FB148.5 is required for proliferation of neuronal 

precursor cells, future work would be performed using EdU incorporation as a cell 

proliferation assay. Crossing FB148.5 with transgenic lines such as Tg(olig2:EGFP) 

would enable proliferation of specific progenitor populations to be measured. 

2 - To map the FB148.5 mutation WGS could be repeated using single mutant embryos 

and compared to single WT embryos rather than using pools of DNA to identify all 

SNPs that are derived from mutant line. As discussed in chapter 5, whole exome- 

(WES) or RNA-sequencing (RNA-Seq) could also be utilised as alternative genetic 

approaches to find the causal mutation (Cirulli, Singh et al. 2010). These have the 

advantage of utilising lower complexity starting material and less variation would be 

expected c.f. WGS. The main drawback with these methods is that they only analyse 

coding regions so certain types of mutation could be missed. 

3- It is well known that DISC1 is multi-scaffold protein that interacts with many other 

proteins, so once the mutant gene has been identified it would be important to determine 

whether DISC1 interacts with the FB148.5 protein. Yeast two-hybrid and co-

immunoprecipitation assays could be done to test this. Additional research will be 

needed into these genes and their protein products to help our understanding of how 

they may affect each other or are linked, and which molecular pathways are regulated 

by them. 

To conclude, this study describes FB148.5 mutant zebrafish which show defects in 

oligodendrocyte precursor specification, neurogenesis, motor axon outgrowth and 

Schwann cell development. However, mapping this mutant to a known gene using 

different genetic approaches failed. Therefore, further experiments to identify the gene 
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mutated in FB148.5 are needed. These studies support the utility of zebrafish as a model 

system to understand myelination in relation to human disease. 
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APPENDIX 
 

Table .1: SSLP marker panel for initial mapping (genome scan). 

This table shows SSLP locations and their chromosomes.  
 

No. Marker  Chromosome  

 Position map 

cM 

1 z1986 1 3.5 

2 z728 1 3.5 

3 z1525 4 15.6 

4 z9920 4 36.7 

5 z10785 7 8.9 

6 z1206 7 25.1 

7 z10789 9 70 

8 z49814 9 81.8 

9 z4593 1 3.5 

10 z3953 1 3.5 

11 z21636 4 42.6 

12 z11876 4 55.5 

13 z4706 7 36.7 

14 z3445 7 41.5 

15 z4577 9 91.2 

16 z6648 10 4.7 

17 z22168 1 3.5 

18 z10340 1 5.1 

19 z984 4 74.8 

20 z3275 4 75.8 

21 z1182 7 45 

22 z1059 7 52.3 

23 z15847 10 10.2 

24 z26181 10 19.6 

25 z3705 1 13.4 

26 z5508 1 24.2 

27 z15414 5 3.6 

28 z11496 5 17.1 

29 z8156 7 60.7 

30 z1239 7 70.6 

31 z13632 10 28.9 

32 z9473 10 46.4 

33 z1781 1 85.1 

34 z7634 2 20.3 

35 z26471 5 33.9 

36 z13833 5 50.3 

37 z13936 7 85.9 
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38 z1068 8 13 

39 z1145 10 44.7 

40 z618511 10 36.4 

41 z22527 2 46.6 

42 z8451 2 47.7 

43 z13641 5 57.5 

44 z14143 5 77.2 

45 z4323 8 35.2 

46 z13412 8 43.3 

47 z9701 10 77.2 

48 z3260 10 92.5 

49 z6617 2 62.9 

50 z1703 2 82.6 

51 z4299 5 83.1 

52 z1202 5 103 

53 z27391 8 55.1 

54 z21115 8 62.3 

55 z10919 11 2.8 

56 z47548 11 12.2 

57 z20550 2 85 

58 z872 3 13.1 

59 z13275 6 12 

60 z6624 6 31.1 

61 z7130 8 65.8 

62 z14670 8 70.8 

63 z8214 11 15.8 

64 z13411 11 22.8 

65 z8208 3 38.5 

66 z15457 3 40.9 

67 z17402 6 33.6 

68 z51328 6 36.2 

69 z9279 8 81.5 

70 z10929 8 98.4 

71 z22038 11 36.8 

72 z1590 11 72.9 

73 z9964 3 58.8 

74 z10964 3 69.1 

75 z22712 6 39.5 

76 z5294 17 32.2 

77 z1777 9 8.3 

78 z6268 9 32.5 

79 z1778 12 3.6 

80 z3690 12 6.3 

81 z20058 3 85.7 

82 z9463 3 97.4 

83 z13614 6 67.9 
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84 z4297 6 88.1 

85 z54333 9 31.1 

86 z4673 9 37 

87 z21911 12 21.1 

88 z1473 12 30.4 

89 z6019 3 107.9 

90 z1366 4 10.9 

91 z1680 6 89.2 

92 z3273 7 1.9 

93 z5080 9 48.7 

94 z20031 9 64.1 

95 z50970 12 40.7 

96 z28630 12 41 

97 z1400 12 69.1 

98 z1358 12 78.7 

99 z17410 14 2.3 

100 z21155 16 20.7 

101 z11380 19 22 

102 z4825 19 28.1 

103 z10321 22 35.1 

104 z21243 22 43.3 

105 z1531 13 4.7 

106 z6104 13 25.2 

107 z6365 16 18.38 

108 z23305 16 46.9 

109 z7450 19 31.9 

110 z3782 19 3.5 

111 z9084 22 55.9 

112 z8945 23 9.4 

113 z5395 13 40 

114 z1627 13 40 

115 z1215 16 48.9 

116 z4670 16 60.1 

117 z11403 19 62.5 

118 z1803 19 91.6 

119 z4003 23 16.6 

120 z15422 23 32.2 

121 z9868 13 45.3 

122 z17223 13 51.5 

123 z25049 16 60.2 

124 z4268 17 3.8 

125 z6804 20 7.9 

126 z9334 20 30.6 

127 z3157 23 48.6 

128 z1773 23 60.2 

129 z6657 13 57.3 
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130 z6007 13 80.7 

131 z1490 17 15.1 

132 z22083 17 24.6 

133 z11841 20 49.8 

134 z3964 20 66.2 

135 z5075 24 2.5 

136 z1233 24 4.8 

137 z5436 14 12 

138 z5435 14 34.6 

139 z22674 17 29.9 

140 z9847 17 40.9 

141 z21170 20 67.6 

142 z4394 20 75.7 

143 z1061 24 11.5 

144 z1584 24 14.3 

145 z11725 14 49.8 

146 z22107 14 58.3 

147 z1408 14 52.2 

148 z4053 17 57.1 

149 z13626 20 86.5 

150 z24333 20 92.2 

151 z5413 24 16.6 

152 z23011 24 36 

153 z3984 14 84.8 

154 z6312 15 9.7 

155 z8771 17 69.2 

156 z63995 18 1 

157 z56034 20 102.4 

158 z4329 20 112.3 

159 z3399 24 44.1 

160 z5657 24 66.3 

161 z6712 15 15.4 

162 z21982 15 34.1 

163 z1136 18 4.3 

164 z1144 18 7 

165 z3476 21 2.3 

166 z1274 21 2.3 

167 z3901 24 72.2 

168 z1243 24 76.9 

169 z11320 15 54.1 

170 z13822 15 73.3 

171 z8488 18 32.5 

172 z10008 18 44.2 

173 z4492 21 20.5 

174 z10960 21 38.4 

175 GOF15 25 1.1 
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176 z8238 25 32.2 

177 z7381 15 79.6 

178 z732 15 87.5 

179 z3558 18 55.4 

180 z5321 18 70 

181 z4425 23 34 

182 z42626 21 71.5 

183 z3490 25 36.4 

184 z22028 25 50.5 

185 z41067 15 92.2 

186 z5223 15 98.2 

187 z4009 19 12.7 

188 z7964 19 18.5 

189 z1497 21 119 

190 z10673 22 12.6 

191 z5669 25 52 

192 z1462 25 64.2 
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Table 2 %G~C content in the genes in the LG8 candidate region 

No. Gene GC% No. Gene GC% 

1 CTU1 47% 29 dock5 46% 

2 Seta 42% 30 neflb 47% 

3 Cux2 42% 31 lhfpl4b 38% 

4 ADRA1A 51% 32 specc1la  37% 

5 ccdc64 51% 33 IQSEC2  38% 

6 dynll2 42% 34 UFD1I 48% 

7 PVRL3 36% 35 Cdc45 47% 

8 snap29 34% 36 Cldn5a 62% 

9 PPP2R2A (2 of 2) 51.69% 37 dhx37 50% 

10 bnip3la 55.60% 38 sept5a 47% 

11 si:ch73-112n4.4-001  34.10% 39 gp1bb 59% 

12 si:ch73-112n4.1-201 55.70% 40 cux2b 57% 

13 ADRA1A (2 of 2)- 52.70% 41 srrd 47% 

14 TMEM230 48.60% 42 rad9b 48% 

15 igsf9b 46.30% 43 pptc7a 52% 

16 es1 52% 44 myl2b 51% 

17 Ciao1 52.20% 45 mtmr3 54% 

18 naif1 59.8 46 CIT 54.70% 

19 seta 46.4 47 rab35b 46.5% 

20 rpl6 54.1 48 gcn1l1 55.6% 

21 gle1 53.6 49 pxn 52.6% 

22 mrp140 49.3 50 ctu1 54.2% 

23 acc2 53.8 51 fut9 42.3% 

24 vdac3 52.5 52 ihx2b 54.8% 

25 polb 46.4 53 crb2b 53.1% 

26 enk01 56.1 54 fam102aa 54.3% 

27 ikbkb 52.7 55 naif1 59.8% 

28 plat 52.6 56 seta 46.4% 

 

http://www.ensembl.org/Danio_rerio/Gene/Summary?g=ENSDARG00000001968
http://www.ensembl.org/Danio_rerio/Gene/Summary?g=ENSDARG00000012426
http://www.ensembl.org/Danio_rerio/Gene/Summary?g=ENSDARG00000076943
http://www.ensembl.org/Danio_rerio/Gene/Summary?g=ENSDARG00000006719
http://www.ensembl.org/Danio_rerio/Gene/Summary?g=ENSDARG00000077709
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Figure 1: Intronic PCR primers used 

 

 

Figure 1A: Primers used for enkd1 intron 7-8. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

 

Figure 1B: Primers used for sh2d6 intron 4-5. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1C: Primers used for acaa2 intron 5-6. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

 

Figure 1D: Primers used for seta intron 1-2. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1E: Primers used for seta intron 3-4. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

 

 

Figure 1F: Primers used for seta intron 9-10. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1G: Primers used for ciao1 intron 1-2. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

Figure 1H: Primers used for plat intron 19-20. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1I: Primers used for ccdc64 intron 1-2. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

Figure 1J: Primers used for cit intron 37-88. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1K: Primers used for ikbkb intron 6-7. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

 

Figure 1L: Primers used for ikbkb intron 8-9. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

Figure 1M: Primers used for gle1 intron 2-3. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1N: Primers used for gle1 intron 12-13. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

Figure 1O: Primers used for pptc7 intron 1-2. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1P: Primers used for pptc7 intron 2-3. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

Figure 1Q: Primers used for lhx2b intron 1-2. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1R: Primers used for lhx2b intron 2-3. The forward primer is highlighted in 

yellow and the reverse primer in green. 

 

 

 

Figure 1S: Primers used for lhx2b intron 3-4. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 1T: Primers used for cltcl1 intron 1-2. The forward primer is highlighted in 

yellow and the reverse primer in green. 
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Figure 2: Positions of primers used for sequencing cldn5a. 

Highlighted are the forward primer (yellow) and reverse primer (green) sequences and 

polymorphisms (pink). Sequence was exported from Ensembl genome browser. 
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Figure 3: Primers used for sequencing of ccdc64.  

Highlighted are forward primer (yellow) and reverse primer (green) sequences. The 

sequence was exported from Ensembl genome browser. 
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Figure 4: Primers used for sequencing rpl6. 

Highlighted are the forward primer (red) and reverse primer (green) sequences. 

Sequence was exported from Ensembl. 
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Figure 5: Primers used for sequencing ufd1l.  

Highlighted are forward primer (red) and reverse primer (green) sequences and the 

polymorphism (Pink). Sequence was exported from Ensembl genome browser. 
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Figure 6: Primers used for sequencing of lhx2b. 

Forward primers (grey), reverse primers (green) and polymorphisms (pink) are 

highlighted. Sequence was exported from Ensembl genome browser. 
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