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ABSTRACT 

Cardiovascular disease causes approximately half of all deaths in Europe, with 

atherosclerosis one of the most common forms, resulting in stenosis of the coronary 

arteries. Balloon angioplasty with stenting is a common interventional procedure to 

treat stenotic arteries, but a significant problem is the biological response to stent 

placement, leading to in-stent restenosis of the vascular lesion.  

This thesis presents an investigation of stent expansion using a non-contact optical 

method, aimed at providing high-accuracy measurements of local strain during stent 

deployment. The hypothesis of this research is that in vitro 3D measurement of the 

local deformation of an unconstrained stent, and of vessel wall strain following stent 

implantation, will provide a better understanding of vessel wall injury. The interaction 

of the stent with the vessel wall has hitherto been poorly examined in vitro, and 

improvements in current knowledge are sorely needed to validate computational 

findings.  

The experimental system requires precise camera calibration to provide accurate 3D 

reconstruction of the stent/vessel surface. To obtain robust results, stent geometry 

characterisation was validated with micro-computed-tomography and error in strain 

was computed using zero-strain tests. Differences between optical and micro-CT 

measurement of 3D geometry were less than 2%, confirming the robustness and 

accuracy of the optical technique. During stent expansion tests within a vessel 
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analogue high local strains were measured at both the distal and proximal ends of the 

analogue, reaching 17% in the semi-deployed phase and 31% under full balloon 

inflation. Zero-strain tests reported a maximum strain error of <1%. 

This experimental work has led to improved understanding of stent behaviour in 3D 

and insight into the relationship between stent expansion and vessel wall strain.  

Interpretation of these results in the context of vessel injury and the resulting 

neointimal hyperplasia which causes in-stent restenosis may contribute to a reduction 

in restenosis rates. 
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AIM  OF  RESEARCH 

This thesis is focused on stent deployment characteristics.  An optical system is applied 

to examine three dimensional objects through reconstruction of the surface observed 

by a pair of digital cameras.  The aim is to evaluate stent expansion behaviour and 

determine the deformation of a vessel analogue after stent implantation.   

It is important to understand the mechanical behaviour of stents and potential sources 

of vessel wall injury, because this leads to neointimal tissue growth and, ultimately, 

in-stent restenosis [1-3].  In cases where endovascular implants expand asymmetrically 

local extreme deformations of the vessel wall may result [1, 4, 5].  Optical tracking of 

the deformation of the external surface of the artery during stent deployment can 

provide useful information regarding stent/vessel interactions.  In vitro and ex vivo 

methods for analysing vessel wall strain will provide valuable insight of in-stent 

restenosis and may lead to improvements in stent design. 

Project objectives: 

a) Design and characterise an optical system to allow imaging at coronary artery 

length scales. 

b) Develop a satisfactory geometric reconstruction technique with well 

characterised error margins. 
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c) Apply the 3D optical reconstruction technique to balloon expandable stent 

geometric characterisation (validated against micro-CT technique). 

d) Characterise changes in stent geometry during expansion in 3D to determine 

the cause of local extreme deformations of the vessel wall. 

e) Quantify the local strain imposed by the stent on the vessel analogue surface 

during the deployment process. 

In summary, this study aims to develop and characterise an experimental technique 

which can be applied to validate numerical simulation and measure coronary stent 

deployment in vitro.  
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CHAPTER  1 

INTRODUCTION AND LITERATURE REVIEW 

Chapter 1 presents an overview of the atherosclerosis process and therapeutic 

approaches for coronary artery disease (CAD) with a particular focus on percutaneous 

coronary intervention (PCI): balloon angioplasty and coronary stenting.  This chapter 

also reviews the literature relating to in-stent restenosis and the links between the 

biological response of the vessel wall and its mechanical environment.  Changes in 

vascular stress and strain during stent expansion are discussed, including the 

implications for strain measurement and optimisation of stent expansion. A summary 

of the research undertaken to improve the understanding of vessel deformation during 

and following stent implantation is presented including experimental work and 

numerical modelling carried out by several research groups and the implications of 

this research in terms of the development of in-stent restenosis.   
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1. CARDIOVASCULAR DISEASES AND ATHEROSCLEROSIS 

Cardiovascular disease (CVD) is the leading cause of human mortality in Europe [6].  

Atherosclerosis is one of the most common forms of CVD, leading to clinical 

endpoints including angina, heart attack and ischemic stroke, insidiously developing 

throughout life.  Atherosclerosis occurs mostly in the coronary arteries and the arteries 

leading to the legs and brain [7] with symptoms rarely reported until vessel occlusion 

is greater than 50%.  From this point ischemia may start to present. 

This thesis focuses on the coronary arteries which supply blood to the heart; 

atherosclerosis in these vessels contributes to almost half of all CVD deaths. 

Percutaneous coronary intervention (PCI) can restore blood flow to relieve ischemia, 

with stent implantation commonly used in such procedures [8].  However, in-stent 

restenosis (ISR) affects 20-30% of patients [9].  ISR occurs as a result of vessel wall 

injury caused by stent implantation and the resulting neointimal tissue growth.  Drug-

eluting stents (DES) have been shown to reduce the rate of ISR to less than 10% of 

treated cases [10].  However, mechanical vascular injury is not eliminated by DES use.  

The first part of this review provides an overview of normal coronary anatomy, 

atherogenesis, clinical manifestations of CAD and interventional approaches 

(particularly balloon angioplasty and coronary stenting) used to treat the disease.  The 

second part describes coronary stent characteristics, the phenomenon of in-stent 

restenosis and the outcomes of research studies (experimental and numerical) aimed 

to reduce restenosis and improve long-term vessel patency. 
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1.1. CORONARY ARTERY ANATOMY AND CONSTITUTION 

The coronary arteries are the vessels which carry oxygen and nutrient-rich blood to the 

myocardium.  Figure 1-1  illustrates the anatomy of the heart and the coronary arteries. 

 

Figure 1-1:  Sectional anatomy of the heart. License: This file is licensed under Creative 
Commons Attribution 3.0 Generic (CC BY 3.0). 

 

The right coronary artery supplies the right atrium, right ventricle and apex of the left 

ventricle with oxygen-rich blood.  The left main coronary artery divides into the left 

anterior descending artery (LAD) which perfuses the left atrium and the lateral and 

posterior part of the left ventricle [11].  

Coronary arteries are composed of three layers: the tunica intima, the tunica media and 

the tunica adventitia (Figure 1-2). The intima is the innermost layer, in contact with 

the blood, and is composed of a monolayer of endothelial cells (ECs) [12], which 

prevents blood adhering to the luminal surface [13]. In the healthy artery ECs are 

Figure 1-1: Original file from http://commons.wikimedia.org/wiki/File:Blausen_0457_Heart_SectionalAnatomy.png 

 

http://commons.wikimedia.org/wiki/File:Blausen_0457_Heart_SectionalAnatomy.png
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aligned in the direction of the flow and have a flat, elongated shape. Below the EC 

monolayer is a sheath of highly extensible material called the internal elastic lamina 

[14].  

 
Figure 1-2: Scheme of a healthy coronary artery adapted with permission from Lusis [14]. 

 

The media is the middle and the thickest layer of the vessel wall.  It consists largely of 

spindle-shaped smooth muscle cells (SMCs), elastin, type I, III and V collagen, and 

proteoglycans [13].  Moreover, is dynamic in nature, contracting or relaxing in 

response to the prevailing physiological signals [15] and has the greatest influence on 

the mechanical properties of the artery [13].  The task of the SMCs is to maintain vessel 

structure and function [16]. They are responsible for producing extracellular matrix 

(ECM) proteins including collagen and proteoglycans.  If the endothelial cell layer is 

damaged, the SMCs respond to cytokines secreted by damaged ECs and proliferate 

and migrate to the intima.  The ECM regulates many cellular functions of the artery 

wall.  This matrix consists of fibrous proteins, which provide mechanical support.  The 
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major component of the ECM is collagen. Cell function regulation by the ECM is 

achieved through interaction between cell receptors and matrix proteins [16]. 

The adventitia is the outer layer that contains small blood vessels which nourish the 

cells in the thick media.  It tethers the vessel loosely to the surrounding tissue.  It is 

composed mainly of collagen and elastin, which are responsible for maintaining the 

structural integrity of the vessel [17]. 

1.1.1.  RESPONSE OF ARTERIAL CONSTITUENTS TO MECHANICAL 

LOADING 

The vessel wall is permanently subjected to mechanical loads as a result of the beating 

of the heart. The endothelial cells (ECs) are subject to dynamic loading conditions 

because of pulsatile changes in blood flow and pressure [17].  Cyclic strain of the 

endothelium occurs as a result of vessel wall distension due to blood pressure 

oscillation and changes in shear stress on the endothelium caused by the pulsatile flow.  

The smooth muscle cells (SMCs) within the media are also exposed to the cyclic 

stretch from pulsatile changes in blood pressure [18].  

Changes in the mechanical loading of the artery, due to high blood pressure, have been 

linked to disease processes.  Abnormal mechanical loading can alter the function of 

SMCs leading to changes in extracellular matrix (ECM) composition and the 

development of atherosclerosis [16].  In addition, atherosclerotic lesions have also 

been shown to occur in regions where blood flow is disturbed [19],  for example at 

vessel branches and at sites of high curvature. The distribution of wall shear stress in 

these locations is non-uniform and irregular.  
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An understanding of the anatomy of healthy arteries and their constituents is important 

because it gives context to changes which arise during the progression of 

atherosclerosis. The next section considers the process of disease progression.  

1.1.2. ATHEROSCLEROSIS 

Atherosclerosis consists of an accumulation of lipid-rich cells, connective tissue, cell 

debris and macrophages within the wall of an artery vessel [14].  In time this forms an 

atherosclerotic plaque, which may cause stenosis (narrowing of the arterial lumen), of 

the arteries that supply blood to the myocardium [20, 21].  Early atherosclerotic lesions 

(associated with sub-endothelial accumulation of macrophages which contain 

cholesterol- so called ‘foam  cells’)  can be found in the aorta as early as in the first 

decade of life, the coronary arteries in the second decade and in the cerebral arteries 

from the third and fourth decade [14].  An idealised example of diseased coronary 

artery is shown in Figure 1-3. 

 
Figure 1-3:  Representation schema of the atherosclerotic plaque in a coronary artery. 

 

Atherosclerosis often occurs in side branches, bifurcations and at locations of arterial 

curvature, due to multidirectional and disturbed blood flow in these regions [22].  

DeBakey et al [23] characterised the distribution of atherosclerosis-related disease into 

Cross-section
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four major categories. As illustrated in Figure 1-4, atherosclerosis was more 

commonly reported in the arterial branches of the abdominal aorta (category III). This 

thesis considers disease in the coronary arteries, depicted by category I. 

 
Figure 1-4:  The distribution of atherosclerotic plaques within human arteries: I- 

coronary artery bed, II- major branches of aortic arch, III- visceral arteries of abdominal 
aorta, IV- terminal abdominal aorta, adapted with permission from Debakey et al. [23] . 

 

The steady progression of atherosclerotic plaque development over a lifetime can 

result in death from CVD [24].  Atherosclerotic plaque [14] is stiffer than the native 

arterial wall.  Lesions become increasingly complex with calcification and ulceration 

at the luminal surface.  Lipid-rich plaques are more vulnerable to rupture [25].  

Thrombosis can occur as a result of plaque rupture [26] or erosion of the plaque at its 
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weakest point.  This occurs where the fibrous cap is thinnest, and in regions filled with 

foam cells [14], as a result of stresses caused by forces affecting the vessel wall [27].  

Exposure of underlying tissue factors precipitate clot formation.  If plaque grows 

sufficiently to impair blood flow, this may result in occlusion and myocardial 

infarction [28].  Restriction of blood flow to the myocardium impairs normal cardiac 

function.   

In summary, atherosclerosis is caused by the accumulation of lipids, fibrous tissue, 

calcium deposits and blood products within the sub-endothelial space. This 

accumulation leads to thickening and hardening of the arteries, in some cases also 

reducing the vessel lumen and causing a stenosis.  A stenosis is considered significant 

(requiring intervention) when more than a 75% reduction in the luminal diameter is 

observed [29].  Different interventional approaches such as coronary artery bypass 

grafting (CABG) surgery, angioplasty and stenting have been developed to treat 

coronary artery disease.  The following section describes these approaches in more 

detail. 

1.2. INTERVENTIONAL APPROACHES 

This section describes surgical techniques which have been applied to treat coronary 

artery stenosis.  Severe narrowing or blockage of the main coronary artery may require 

open heart bypass surgery [30].  Less invasive methods include Percutaneous Coronary 

Intervention (PCI). PCI methods include both balloon angioplasty and stent 

implantation. 
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1.2.1. BYPASS SURGERY 

Coronary artery bypass surgery is usually considered for patients with severe 

narrowing or occlusion in multiple coronary arteries.  There is recent evidence (from 

2011) that annually about 800,000 patients worldwide with multiple coronary artery 

disease undergo CABG [31].  In this procedure blocked coronary arteries are bypassed 

by a portion of a healthy vessel (artery or vein) harvested from the arm (the radial 

artery), leg (the saphenous vein) or chest (the internal mammary artery).  The bypass 

length depends on severity and distribution of disease [32].  Most patients receive 

between 1 and 5 grafts.  During the operation a pump maintains the circulation 

artificially by adding oxygen to the blood and circulating the blood through the body. 

1.2.2. BALLOON ANGIOPLASTY 

Percutaneous Transluminal Coronary Angioplasty (PTCA) is a technique in which a 

balloon is inflated to dilate the arterial lumen. In 1977, PTCA was the first 

percutaneous therapy to be used [33].  To perform angioplasty the radial or femoral 

artery is accessed and a catheter is inserted using a guide wire. X-ray angiography is 

used to visualise the blood vessels and help the clinician position the catheter correctly 

at the site of coronary lesion by injecting a radio-opaque dye (contrast medium) into 

the vessel from the catheter [34].  A collapsed balloon, attached to the tip of the 

catheter, is passed into the artery through the blockage and aligned with the 

atherosclerotic plaque.  The balloon is inflated with a handheld syringe pump using a 

mixture of saline and contrast medium to visualise balloon inflation and the inflation 

pressure is increased gradually.  The balloon presses the plaque against the artery wall 

dilating the stenosis and restoring blood flow [35].  After angioplasty, the lumen of the 

blood vessel is wider and hence blood flow is increased.  
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A limitation of balloon angioplasty is restenosis.  This occurs in around 40 - 50% of 

cases [35, 36].  Studies have shown that narrowing after angioplasty is caused by a 

number of factors including elastic recoil of the overstretched segment [7], vascular 

remodelling and neointimal proliferation [36, 37].  

Elastic recoil is an acute response of the vessel occurring immediately after balloon 

deflation.  As the artery wall is elastic, it may return close to the original diameter 

when the balloon is removed [7].  Arterial remodelling is defined as a structural change 

in the arterial wall responsible for late lumen loss [38, 39] and occurs in response to 

balloon-induced injury [37, 40].  Remodelling can increase lumen narrowing, resulting 

in further shrinkage of the vessel lumen because there is nothing to support the vessel.  

Neointimal hyperplasia is the abnormal growth of new intimal tissue. This is a 

vascular repair process initiated by vascular injury and driven by the smooth muscle 

cell response [37].  

In response to these complications the introduction of stent insertion has been shown 

to be superior to balloon angioplasty alone, although there are some circumstances 

where the latter may be used such as: when dual antiplatelet therapy may be 

detrimental to the patient; in small side branches where stenting is not practical; or as 

a temporary measure prior to CABG [41]. 

1.2.3. BALLOON ANGIOPLASTY WITH STENTING 

Balloon angioplasty may be supplemented by deploying a stent mounted on the 

balloon.  As the balloon is inflated, the stent expands to form a permanent internal 

scaffold thus maintaining vessel patency [37].  Coronary stent implantation is the most 

used commonly procedure to treat stenosed coronary arteries.  
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The market for research and design is constantly developing and expanding.  In 2011 

the global market for coronary stent devices reached $7.1 billion (more than $2.5M in 

Europe).  It is expected that by 2016, the total market value will reach $10.6 billion, 

with an estimated annual growth rate of 8.3% [42].  

Stents are small metallic tubular scaffolds placed in the arteries to relieve stenosis  and 

maintain the flow of blood [43].  Balloon expandable stents were invented in 1987 by 

Palmaz  et al [44] to reduce the rate of restenosis following angioplasty and have been 

embraced worldwide by cardiologists as a highly effective tool [45].  Previous clinical 

studies have shown that stenting reduces restenosis from 40% to 20% [2, 35, 46, 47].  

When the balloon is removed, the stent remains permanently in place and acts as a 

scaffold for the artery to eliminate elastic recoil and maintain patency (Figure 1-5).  

 
Figure 1-5:  Representative schema of implanted stent in the atherosclerotic artery to keep 

it open and restore blood flow to the heart. 
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Whilst stenting is more successful than balloon angioplasty alone, early enthusiasm 

for stent technology was reduced due to the problem of in-stent restenosis. 

From section 1.4 of this review describes the characteristics of coronary stents, the 

phenomenon of in-stent restenosis and the outcomes of research studies aimed at 

improving stent performance. 

1.3. CORONARY STENTS 

Coronary stents can be self-expanding or balloon-expandable.  A self-expandable stent 

is compressed by a protective sheath on a catheter, expanding by itself when the sheath 

is retracted [48].  The present study focuses on balloon-expandable stents which are 

mounted  on  a  balloon  catheter  in  a  collapsed  or  “crimped”  state.    The  stent  expands  as  

the balloon is inflated and is left as a permanent implant after the balloon is deflated 

and removed.  Figure 1-6 illustrates a fully deployed balloon expandable coronary 

stent (Taxus Express made of 316L stainless steel). 

 
Figure 1-6: Balloon expandable 316L stainless steel Taxus Express coronary artery stent 
(Boston Scientific, 8mm length) fully expanded to 3.5mm diameter using an angioplasty 

balloon.  Image taken with camera Flea2 (FL2G-13S2C-C, Point Grey, Canada). 

 

1mm
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1.3.1. STENT DESIGN CONSIDERATIONS 

Different stent designs have different expansion and recoil characteristics [49].  From 

a structural design perspective an ideal stent should: 

- have a low profile, be flexible and trackable, to ensure ease of delivery, 

- be composed of biocompatible materials to ensure no negative biological 

reaction after implantation, 

- have a low radial and longitudinal recoil with excellent radial strength to 

maintain vessel patency after expansion, 

- expand symmetrically to avoid high local strains [45].  

These characteristics are determined by stent material and geometry [49, 50].  Stainless 

steel 316L has been used for many stent designs [49].  It has satisfactory physical 

properties and an acceptable level of radio-opacity [51].  However, this material is not 

fully biocompatible, which contributes to the formation of restenosis and thrombosis.  

Other commonly used, more biocompatible, materials include metal alloys such as 

cobalt-chromium (Co-Cr alloy), nitinol and polymers.  These elicit a less vigorous 

vessel response than stainless steel [49].  Thicker struts give better radio-visibility and 

arterial wall support, but may cause more vascular injury [52]. Stents with thinner 

struts have a lower risk of restenosis so are often used for high risk lesions [50].    

Clinically, stent choice is determined by several vessel /lesion related factors such as: 

lesion length, reference vessel diameter, lesion calcification and vessel tortuosity. The 

diameter and length can be judged by using the guiding catheter or pre-dilation 

angioplasty balloon (with known dimensions) as a reference [53]. Choice between bare 

metal stents (BMS), drug eluting stents (DES) or simple medical therapy is determined 
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by lesion position, length, diameter, along with patient factors such as compliance with 

medication (dual antiplatelet therapy is mandatory for 6 weeks following BMS and for 

12 months post DES implantation). 

Research to improve stent design is focussed on the reduction of vascular injury and 

improvement of clinical outcomes [51].  

1.4. IN-STENT RESTENOSIS  

In-stent restenosis (ISR) is the reoccurrence of stenosis after stent placement. It 

remains an important, not completely resolved clinical problem.  Usually it occurs 

secondary to vessel wall injury associated with neointimal tissue growth [7, 37].  This 

section describes the biological factors associated with development of ISR and the 

mechanical factors that contribute to the arterial injury, stimulating the ISR response. 

1.4.1. BIOLOGICAL RESPONSE TO STENTING 

The biological mechanisms which occur post stent implantation are described by the 

four-phase process shown in Figure 1-7: 

 The primary reaction to stenting is thrombosis. A layer of blood thrombus 

forms following denudation of the thromboresistant layer of endothelial cells (ECs)  

[7, 54]. Thrombus accumulates in the region of the partially denuded endothelium and 

adheres around the stent struts.  Thrombus deposition occurs on a timescale of days 

(from day 1).  

 An inflammatory reaction, which includes adherence of monocytes to the 

artery wall, occurs within the first day of stenting [7, 55].  Inflammatory cell 



CHAPTER 1:  INTRODUCTION AND LITERATURE REVIEW 

 

17 
 

recruitment starts close to the stented region [37]. Stent struts cause focal disruption 

of the artery wall leading to prolonged, chronic damage [54].  

 The main factor for restenosis is the migration and proliferation of SMCs. 

SMCs migrate towards the lumen in response to the arterial injury.  These cells 

produce extracellular matrix proteins, which form a neointima [46]. SMCs and 

monocytes proliferate and contribute to the architectural framework of the hyperplastic 

lesion. 

 
Figure 1-7:  Intensity of responses versus time; the inflammation stage includes the 

activity level of surface-adherent monocytes (SAMs) and tissue infiltrating monocytes 
(TIMs),  (data adapted from Duraiswamy [7], permission was not required). 

 

 Stent insertion limits recoil, but it does not reduce remodelling. The dynamic 

and responsive nature of the artery adapts to a new environment and strains imposed 

by the stent via remodelling [7]. Remodelling is caused by increased collagen 

deposition, elastin destruction and persistent inflammation [54].  

 Neointimal tissue formation is influenced by the force of a foreign body, the 

stent, against the arterial wall causing changes in stress and strain distribution [28, 56].  

In 50% of cases, ISR occurs within three to six months after the stenting procedure 

[46, 57].  The image below (Figure 1-8) presents cross-section of a porcine coronary 
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artery 28 days after stenting (image courtesy of Dr Julian Gunn). The original lumen 

and decrease in luminal area due to intimal hyperplasia are highlighted with the red 

dashed line and using the arrow respectively. 

To understand the ISR response, it is important to investigate the mechanical basis of 

arterial injury, which can occur during catheter insertion, stent expansion or as  

a chronic effect as described below.   

   
Figure 1-8:  Porcine coronary artery 28 days after stenting (image courtesy of Dr Julian 

Gunn).  

 

1.4.1.1.   STENT INSERTION 

On rare occasions, if there are several occlusions, the coronary artery can be injured 

by the insertion of the catheter.  The guide wire can create a false lumen within the 

plaque, which may subsequently delaminate and occlude blood flow [58].   

1.4.1.2.   STENT EXPANSION 

Asymmetrical stent expansion can cause deep vascular injury [59] due to penetration 

of the arterial wall by the stent struts.  Uneven deployment of the stent struts or rotation 

Neointimal tissue 
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of the balloon catheter can scrape or lacerate the vessel wall.  Previous studies reveal 

partial or complete endothelium denudation as an outcome of stent deployment which 

can be related to foreshortening of the stent during deployment [60, 61]. This may 

initiate SMC migration, which is proportional to the degree of arterial injury [62, 63].   

It has been shown that the greatest neointimal tissue growth occurs at the proximal and 

distal regions of the stent.  This may be due to the first contact of the implant with the 

artery  as  a  result  of  the  “dog-boning”  effect  [2, 64].  Manufactured balloons are longer 

than the stent to prevent slippage of the stent relative to the balloon that may occur 

during travel of the device through the vasculature.  This  is  related  to  the  “dog  bone”  

geometry which occurs at the proximal and distal ends in the first stage of the 

angioplasty balloon inflation (Figure 1-9).  

 
Figure 1-9:  Dog-boning effect: distal and proximal part of the stent expands before the 

central. 
 

Uneven local strut deformation has been shown to be dependent on the nature of 

balloon folding through characterisation of stent deployment in 3D [65].  This may 

have implications for the local vessel wall injury generated during contact of the stent 

with the vessel wall [66].  
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1.4.1.3.   CHRONIC INJURY 

The biomechanical interaction of the stent and the vessel wall is important to the long-

term success of the procedure.  Deep injury of the media triggers SMCs migration and 

proliferation [47] as a process of vessel healing along with establishment of a new 

endothelial monolayer.  Chronic restenosis is related linearly to the degree of vessel 

wall damage [67, 68].  Given the link between the mechanical injury caused by stent 

implantation and the biological response, it is not surprising that there has been 

significant research focussed on the understanding of these effects.   

The remaining sections of this Chapter present the state-of-the-art understanding of 

the correlation between stent design, ISR and the mechanical environment of the vessel 

through in vivo, in vitro and numerical studies.  

1.5. STATE-OF-ART OF STENT ANALYSIS 

This section reviews the state-of-the-art in the study of stent mechanical properties and 

stent/vessel wall interactions, and their potential to influence future stent design 

modifications.  These studies include in vivo human clinical studies and animal models 

aimed at improving understanding of the biological response to stenting.  The section 

concludes with a discussion of the approaches used to replicate the behaviour of 

arteries during experimental studies. 

1.5.1. IN VIVO STUDIES 

Intravascular ultrasound data confirm that most of the luminal narrowing seen in 

humans takes place within the first six months following stent implantation [69] due 

to strains which the stent imposes on the artery wall.  The extent of neointimal 

hyperplasia was found to be strongly related to stent design [57]. The area occupied 
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by neointimal tissue ranged from 20% to 50% of the lumen diameter (depending on 

the stent type).  Stent design plays an important role in neointimal tissue hyperplasia. 

This suggests that different stent types may have different interactions with the arterial 

wall. 

The pathobiological responses of the coronary arteries to stent insertion have been 

examined in numerous animal investigations [2, 59, 70].  Schulz et al [59] used  

a sheep coronary model to examine stent performance on a strut-by-strut basis and 

determined that local strain is an important factor in neointimal tissue formation.  The 

relationship between permanent strain on the vessel wall and neointimal tissue growth 

was confirmed by this study.  The porcine coronary model has been suggested to be 

the best candidate for the study of in-stent restenosis [2, 70] as the porcine 

inflammatory and thrombotic response has been shown to be similar to that observed 

in human coronary arteries [55].  Arterial stretch and over expansion of the stent was 

studied to examine development of neointimal tissue caused by deep vascular injury 

[70].  It was found that even stretch without an injury can lead to neointimal tissue 

growth.  In addition Timmins et al [2] measured the pathobiological response in a 

porcine model following deployment of two distinct stent designs in order to 

understand if neointimal tissue volume depends upon stent design.  This study 

demonstrated that the implanted stents imposed different strains on the arterial wall 

with higher strains resulting in a higher degree of neointimal tissue growth.  A higher 

rate of restenosis was observed at the proximal and distal regions of the stent in 

agreement with clinical observations [57].  It is suggested that this is related to the 

dog-boning effect during stent expansion which causes increased arterial injury at the 

stent edges.  Animal models indicate that stent design has a significant impact on 
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vessel trauma and the amount of subsequent intimal hyperplasia [59].  The limitation 

of studying restenosis in sheep and pig coronary arteries is that these are healthy, non-

atherosclerotic vessels, not diseased human arteries. 

1.5.2. IN SILICO MODELS 

Computational modelling and simulations are often used to characterise stent 

behaviour following implantation.  In silico analyses include different stent designs 

[71, 72], contact conditions of the stent with the artery [73], stent deployment in curved 

vessels [74], influence of strut thickness on the strains in the coronary wall [1, 52] and 

local luminal flow of the blood [5, 7, 75].  Numerical modelling techniques are 

effective and have been found to be efficient for understanding mechanical properties 

of stents and arterial stresses induced by stents.  The combination of in silico 

techniques and in vivo analysis provides insight into the links between biomechanical 

variations generated by the stent with quantitative in vivo evidence of neointimal 

hyperplasia [2].  

Lally et al [71] used the finite element method (FEM) to study the behaviour of two 

different stent designs in order to quantify arterial stresses as a measure of the level of 

vascular injury.  Interaction of the stent with the atherosclerotic artery was examined 

with the hypothesis that restenosis was strongly related to stent design.  An analysis of 

the arterial wall stresses indicated that a less rigid stent causes lower stress.  Further 

studies confirmed that stress and strain can vary in the arterial wall depending on stent 

design [46].  Gijsen et al [1] examined the influence of the same stent design with two 

different strut thicknesses on the strains in the vessel wall with the hypothesis that 

thicker and thinner struts will produce different arterial responses. It was found that 
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thicker struts cause more damage to the arterial wall through higher stresses.  This 

hypothesis is supported by clinical evidence from the implantation of stents with 

differing strut thickness [76].  It was found that thinner stent struts elicits less 

neointimal tissue growth.  The results also showed that stresses in the arterial wall are 

high where the wall is thin and in the area behind the stent struts (near the connectors 

between the struts).   

Zahedmanesh et al [52] also reported that strut thickness is an important predictor of 

restenosis.  Lower stresses cause less injury to the vessel wall and therefore reduce the 

likelihood of restenosis.  However, a stent with thinner struts may recoil more than 

those with thicker ones due to greater flexibility and compliance.  In his recent study 

[77] he analysed response of the artery interaction with the struts of the stent expanded 

to a diameter of 4.3, 4.7 and 5.1 mm, representing cases with mild, medium and deep 

strut penetration respectively (Figure 1-10).  Two strut thicknesses, of 0.085 and 0.17 

mm, were compared.  It was found that the maximum SMCs and neointimal tissue 

growth occurred after deploying the stent struts to the larger diameter.    

 
Figure 1-10:  The representation of the artery behaviour due to stent struts interaction 

with the internal artery wall. The thin stent strut (0.085 mm) deployed to a diameter of: a) 
4.3 mm, b) 4.7 mm, c) 5.1 mm and with thick stent strut (0.17 mm) deployed to d) 4.7 mm 

diameter; adapted with permission from Zahedmanesh et al. [77]. 
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De Beule et al [78] reported that an asymmetric stent design caused less dog-boning 

than a symmetric design and that the unfolding of the balloon determines the way the 

stent expands [10].  Pericevic et al [79] investigated how different types of plaques 

and various inflation pressures influence arterial wall stresses.  They suggested that an 

appropriate pressure should be applied depending on plaque composition, i.e. high 

pressures should be used for calcified plaques, but not for the softer plaque.  They 

believe that this approach may reduce occurrence of in-stent restenosis.   

The level of detail provided in computational studies of such complicated problems 

can be challenging to reproduce in clinical or experimental studies.  Numerical models 

are excellent research tools, especially when physical models are difficult to create, 

but rely upon a number of assumptions.  The principal advantage of numerical models 

is that it is easy to investigate specific parameters, different materials and loading 

conditions, but the influence of underlying assumptions mean that it is necessary to 

carry out experimental work to validate the results [80].   

1.5.3. IN VITRO MODELS 

To investigate the deformation of the coronary arteries and stent deployment, non-

contact imaging systems are desirable due to the small scales involved and the delicate 

nature of the stent structure.  Non-contact methods can characterise complete full-field 

surface displacements [81, 82].  It is desirable to measure the response of sample over 

the full geometry, as variations in the response of the material between local regions 

can be significant in the characterisation of non-homogenous materials such as 

coronary arteries [83].  Even if stent cell design is symmetrical and high precision 

manufacturing is possible, in practice, stents can expand in an eccentric manner.  
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Asymmetric expansion may result in excessive strain on the vessel wall resulting in 

increased vascular injury leading to higher restenosis rates [84].  

Previous experimental studies have used a single camera to characterise stent 

expansion in a rigid transparent pipe in two dimensions (2D).  These studies focussed 

on changes in stent diameter and length with applied balloon pressure [80, 85].  The 

increase in stent diameter was found to be non-linear with the applied pressure load in 

the balloon [85].  Kiousis et al [86] reported 2D experimental measurement of free 

expansion of six vascular stents to investigate the deformation mechanisms and 

provided comparisons with a computational model. They described three components 

(foreshortening, maximum dog-boning and elastic recoil) of the expansion process.  In 

addition, the mechanical behaviour of the angioplasty balloons alone was examined. 

This study proposed improved stent design to enhance uniform deployment during 

balloon inflation.  No interaction of the implant with the vascular wall was included.  

Takashima et al. [73] characterised in 2D the contact area of the stent with cylindrical 

vessel analogues, both with and without a silicone lesion.  Stents with differing 

numbers of cells and links were considered.  It was found that stents containing more 

cells have a larger contact area with the vessel wall and stresses are distributed over a 

larger surface.  This may decrease the subsequent stimulus for neointimal tissue 

growth.   

Deformation of the arterial surface after stent expansion in vitro in the bovine coronary 

arteries and ex vivo in femoral rabbit arteries was examined by Squire et al [81].  An 

irregular pattern was applied to the arterial surface using ink from a printer cartridge 

in order to examine the strain by tracking deformation vectors of the pattern.  Stainless 

steel stents of 3 mm final diameter were deployed until a maximum balloon inflation 
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pressure load of 8 atmospheres (in 2 atm steps) was achieved.  A single camera was 

used to capture the whole inflation processes.  Accuracy of the strain measurement 

was determined by inflating a large scale artery analogue with a manually marked grid.  

This resulted in a 4.1% error of the system.  2D images of deformed markers on the 

vessel wall were used to back-project onto a 3D cylindrical model for strain analysis.  

Large errors (standard error of in vivo strain measurements of 4%) were reported due 

to the limited resolution of the cameras and the back-projection process.   

Optical tracking of stent deployment in vitro in atherosclerotic human arteries was 

carried by Horny and co-workers [87].  Deformation was computed as a ratio between 

the deformed and undeformed state to assess changes due to interaction of the stent 

with the occluded artery.  Edge detection algorithms were used to plot changes in the 

artery’s   diameter.  They found significant deformation in the diseased part of the 

vessel.  This study was limited to arterial contour detection only and use of a single 

camera could not provide full 3D displacement field of the deformed artery.  

To   the   author’s   knowledge   there have been only a small number of experimental 

studies which report 3D characterisation of stent expansion or vessel wall deformation.  

Narracott et al [88] published experimental data of free stent expansion in 3D using 

two  different  balloon  folding  patterns.     Balloons  with   ‘C’  shape  folding  resulted   in  

greater non-uniform stent expansion than   balloons   with   an   ‘S’   shape.      This   study  

confirmed the hypothesis that the folding pattern of the balloon influences significantly 

the symmetry of the deployment and demonstrated robustness of the optical 

reconstruction method.  Connolley et al [89] used micro-CT scanning to image 3D 

stent behaviour at various stages of balloon inflation.  Coronary stent was deployed in 
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mock silicone artery with a simulated occlusion of 30% (length of 8.6 mm, width of 

3.7 mm with maximum thickness of 1 mm).  The results obtained showed stent 

shortening during deployment (from 13 mm length in the initial stage to 12.6 mm at a 

pressure of 8 atm).  The dog-boning effect was also observed before the stent was fully 

deployed.  It was found that micro-CT provides high resolution data (5.3 µm x 5.3 µm 

x 5.3 µm) of the metallic stent geometry.  Furthermore, Mori et al. [4] used micro-CT 

for 3D observation of the behaviour of unconstrained stent expansion and the elastic 

recoil of each stent cell after balloon deflation.  It was found that elastic recoil varies 

along the stent length (from 2.5% in the distal part to 6.7% in the proximal part).  This 

study highlighted the value of 3D qualitative and quantitative results for understanding 

vessel wall damage following stent deployment.  Micro-CT has been shown to provide 

excellent 3D models of the stents; unfortunately data acquisition takes several minutes, 

whereas stent deployment occurs over a few seconds. 

Sutton et al. [82] used a digital image correlation (DIC) method to demonstrate that 

measurement of deformation of mouse arteries in 3D is feasible and strains on the 

vessel wall can be characterised through surface marker displacement tracking. 

However, this study did not report stent/vessel wall interactions.  Moreover, the high 

magnification of the microscope gave a shallow depth of field and hence a loss of focus 

at the edges of the carotid surface.   

The goal of the present study is to characterise the strain at the contact area between 

the stent and the artery through experimental measurement.  In a preliminary report 

Horny et al. [90] presented the application of digital image correlation (DIC) to 

provide information about stent/vessel interaction in the presence of atherosclerosis in 
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a human coronary artery harvested during autopsy.  Displacements of a small number 

of reference points on the vessel wall were described. Supra-physiological 

circumferential deformation was found where the stent was in contact with the vessel 

wall (0.5mm/mm at the peak value).  3D DIC was found to be a suitable candidate to 

evaluate ex vivo stent implantation.  Moreover, Zhao [91] quantified strain on a stented 

latex straight tube using 3D DIC and developed a computational model to recapture 

the stenting experiment.  However, the diameter and thickness of the vessel analogue 

investigated in this study was two times greater (6.32 mm) and five times thicker (1.55 

mm) than the typical dimensions of a coronary artery.  Anyway this study provided 

basic understanding of the artery deformation. An advantage in this study was the 

validation of the experimental outcome with the computational model.  

1.5.4. EXPERIMENTAL MODELS FOR ARTERIES 

The use of mock arteries/coronaries analogues in experimental investigations is 

increasing.  They can be adopted as a replacement for animal tissue, reducing cost and 

ethical concerns [89].  Latex and silicone mock arteries used in experimental studies 

of stent expansion allow researchers to understand stent behaviour and evaluate the 

complex mechanics related to variations in stent design [89].    

Walker et al. [92] studied a blood vessel analogue which was fabricated from layered 

latex.  A plastic rod was covered with uniform coats of latex using a fine brush to 

create a latex tube.  This was used for compliance and pulse wave velocity 

measurements.  The results demonstrated that a vessel analogue can achieve similar 

mechanical properties to these results of human arteries observed in vivo (Young’s  

modulus of 0.61-1MPa).  
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The use of mock arteries also provides the possibility of lesion building.  Connolley et 

al. [89] used silicone foam to represent the plaque.  For experimental use latex or 

silicone mock arteries require radial compliance, radius and wall thickness dimensions 

similar to real arteries [92-94].  The table below presents the dimensions, internal 

diameter (ID) and wall thickness (t), of the mock arteries used in previous studies. 

Table 1: Internal diameter (ID) and wall thickness (t) of the vessel mock arteries used in 
the previous studies. 

 Mock arteries 

 Toner [95]  Rajesh [94] Conolley [89] Colombo [96] Zhao [91] 

ID 
[mm] 

3.0 3.0 3.0 3.0 6.0 

t [mm] 0.5 0.34, 0.35, 
0.36 

1.0 0.8 1.5 
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SUMMARY 

Coronary restenosis following stent deployment remains an important and unresolved 

clinical problem [28, 59].  The amount of neointimal tissue growth in response to stent 

deployment has been shown to be related to the magnitude of the stresses and strains 

caused during stent implantation [1, 70, 71, 97].  ISR is reduced from 20-30% to 10% 

of treated patients by drug eluting stents [10], but these mechanical bases of injury due 

to non-uniform stent deployment still remains an issue.  There is a need for high quality 

validation data to confirm the results of numerical models of vessel deformation during 

stent expansion.  The application of non-contact, optical methods to the study of stent-

vessel interaction yields such data at an appropriate resolution to describe the local 

variation of strain within the vessel wall.  A detailed understanding of 3D stent 

geometry and dynamic variation may provide useful information for engineers and 

clinicians in terms of optimising stent design.  It is acknowledged that improvements 

in stent design can reduce neointimal tissue growth and that restenosis varies with stent 

design [76].   

It is suggested that the examination of non-uniform local strain distribution on the 

artery wall following stent implantation can deliver improvements in future stent 

design.  Stent-induced local strain concentrations in the vessel wall may lead to tissue 

injury, which initiates neointimal tissue growth. Whilst experimental techniques are 

starting to be applied to the study of this problem, only two experimental studies report 
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the vessel wall strain during stent expansion in three dimensions.  Digital image 

correlation (DIC) is applied to track surface deformation. However, this brief technical 

note [90] and stent expansion in the latex vessel [91] does not include detailed local 

strain results. 

This thesis describes the development and application of non-contact methods for 

optical imaging of stent expansion.  Chapter 2 reviews optical imaging methods which 

have been applied to measure object geometry and deformation. The mathematical 

basis of stereo photogrammetry is described; cameras are calibrated to assess the 

accuracy of the Bouguet Calibration Toolbox.  Additionally, a preliminary 

deformation test of an elastic material is reported to determine the feasibility of using 

this technique to measure strain.  In Chapter 3 an optical system is characterised at 

three different length scales with focus on the assessment of coronary artery stent 

performance. Chapter 4 explains the challenges associated with the accurate 

assessment of 3D device geometry using imaging techniques.  Quantitative 

comparison of a volumetric 3D technique and biplanar 2D technique is reported for 

two distinct clinical applications encompassing differing length scales.  Chapter 5 

outlines application of the 3D optical reconstruction method to examine stent 

deployment, characterising the change in geometry locally and globally during balloon 

inflation.  Discussion of these results considers the specific mechanisms of expansion 

which may cause maladaptive chronic vascular responses.  Chapter 6 focuses on the 

stent together with vessel analogue wall interaction and the local strains induced 

following stent deployment.  Image registration methods are applied to quantify local 

strain.  Chapter 7 summarises the results of the thesis and describes opportunities for 

further research. 
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A highly characterised and validated optical system is developed throughout this 

project to obtain results of sufficient accuracy to determine strain fields in vessel 

analogues and in the future in coronary arteries ex vivo, underpinned by rigorous 

calibration and quality assurance assessment.  This study also reports the validation of 

optical reconstruction results with micro-CT. 
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CHAPTER  2 

3D OBJECT RECONSTRUCTION FROM 2D IMAGES 

Stereo-photogrammetry, an optical non-contact method, was used to characterise the 

geometry and deformation of stents in three dimensions (3D).  This method uses stereo 

image pairs to compute 3D world coordinates by triangulation of selected 

markers/landmarks and requires a rigorous experimental procedure to provide camera 

calibration and compute intrinsic and extrinsic camera parameters. 3D surface 

reconstruction is accomplished by triangulation, performed through projections of rays 

from right and left camera origins through matched pixel pairs in the right and left 

images. 

This chapter initially reviews optical imaging methods which have been applied to 

measure object geometry and deformation.  This is followed by a description of the 

mathematical basis of stereo photogrammetry and a discussion of methods for camera 

calibration and calibration/reconstruction accuracy assessment in an experimental 

camera system.  Finally, a preliminary test is reported to demonstrate the feasibility of 

using this technique to measure strain in a deforming elastic material.
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2. INTRODUCTION  

This study uses stereo-photogrammetric optical reconstruction methods to characterise 

the geometry and deformation of the objects in three dimensions (3D), particularly the 

examination of stent expansion behaviour and interaction with vessel analogue.  As 

described in Chapter 1, quantification of strain following stent implantation can aid 

understanding of the mechanical injury to the vessel wall during stent expansion with 

implications for stent design and deployment techniques.  

Stereo-photogrammetry for reconstruction of three dimensional (3D) geometry using 

pairs of two dimensional (2D) images is a non-contact technique used for quantitative 

measurement of surface geometry from optical digital images.  The fundamental 

principle used to determine 3D geometry and provide depth from 2D images is 

triangulation.  Stereoscopically positioned cameras are used to capture object 

deformation and the triangulation process determines surface 3D coordinates which 

can be used to determine strain as the object deforms.  A high contrast pattern which 

deforms along with the object surface is necessary to provide correspondence points 

for triangulation to quantify the deformation.   

Before describing the mathematical basis of stereo photogrammetry in further detail a 

review of optical imaging methods which have been applied to measure object 

geometry and deformation is provided. 
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2.1. OPTICAL METHODS FOR MEASUREMENT OF 3D GEOMETRY 

AND DEFORMATION 

To examine stent expansion it is important to avoid any contact and perturbation of 

the device, so sensors such as strain gauges are far from ideal to determine strain 

variation during stent deployment [98].  In any case, electrical resistance strain gauges 

are unable to provide a full-field map of the strain distribution on a deformed object 

and are not small enough for coronary stent application.  In principle, optical imaging 

techniques have the advantage of giving direct, unambiguous and quantitative depth 

information.  At sufficient frame rates, digital cameras can freeze object movement to 

provide a record of the object deformation [99] supported by software to control the 

image capture process [100].  Other non-contact methods include use of Moiré 

patterns, which require two identical patterns of closely spaced straight lines which are 

overlaid while displaced or rotated a small amount from one another.  This technique 

is unsuitable for use in the current study due to the complexity of projecting the grating 

accurately onto vessel analogue wall and the lack of spatial resolution for the small 

length scales involved [101].  Moreover, it cannot be applied to quantify large 

deformations.  Photoelasticity methods require application of a photoelastic coating to 

the object surface which is likely to be difficult for both the stents and coronary artery 

analogue, since local reinforcement and material stiffening can occur [101].   

Several optical methods that have previously been used to examine object surface 

deformation are reported in Table 2.  

 



CHAPTER 2: 3D OBJECT RECONSTRUCTION FROM 2D IMAGES 
 

36 
 

Table 2:  Experimental techniques used for strain measurement. OP- optical 
reconstruction; IR- image registration. 

Method Large 
deformation 

Full-field 

measure 

Local 

measure 

Out-of-plane 
displacement 

Application 
method 

Strain gauges No No Yes Sensitive On  the surface 

Photoelasticity Yes Yes Yes Sensitive Coating 

Moire No Yes Yes Sensitive Grating 

OP Yes Yes Yes Sensitive Landmarks 

IR Yes Yes Yes Sensitive Speckle pattern 
 

Hence, this project focuses on the optical photogrammetry (OP) reconstruction method 

using both structured and unstructured marker patterns to determine deformation using 

image registration (IR) techniques.  The remainder of this chapter describes the 

mathematical basis and experimental implementation of an OP technique using 

manual methods to define correspondence for triangulation.  Further discussion of 

image registration techniques is provided in Chapter 6. 

2.2. PHOTOGRAMMETRY 

Photogrammetry provides a three dimensional (3D) description of surface geometry 

using two dimensional (2D) images from a pair or more of calibrated cameras  

[99, 102].  This has been shown to give reliable information about object surface 

properties [103].  The photogrammetric technique can be applied to measure both 

rigid-body and elastic object behaviour.  Large rigid body motions can also be 

examined, and these should not influence data accuracy.  Complex deformations (such 

as stent deployment) can be measured as well as those of simple systems (such as 

elastic material or ideal cylinders).  Where the deformation takes place over short 

timescales, the two independent cameras need to be synchronised to freeze the 

investigated object at each stage of deformation.  A marked pattern on the object 
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surface provides landmarks which are imaged before and during deformation using an 

ordinary light source.  The 2D images obtained from each of the two stereoscopically 

positioned cameras are used to compute 3D world coordinates of the landmark points 

using triangulation [104]. 

Stereo-photogrammetry has been demonstrated as a good solution for measuring 

deformation of objects at a range of scales in three dimensions [65, 102, 105]. This 

includes stent length scales using high magnification lenses [65, 106]. The 

fundamental approach used by this technique is triangulation [107].  By taking an 

image from at least two cameras in different locations, 3D coordinates of the points of 

interest are obtained mathematically [104, 108].   

 
Figure 2.2-1: The epipolar plane consists of the 3D position of a point (Q) and the optical 

centres of left (Ol) and right (Or) cameras. The epipolar lines correspond to the 
intersection of this plane with the image sensors of the left and right cameras. Projection 
of the 3D point in each camera image should lie along the epipolar line; ql and qr are the 

pixel locations of Q in left and right images. R and T represent the rotation matrix and 
translation vector between the left and right cameras. 
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Triangulation of a selected point in three dimensional space can be visualised by 

intersection of epipolar lines from two cameras as shown in Figure 2.2-1, where Q is 

the 3D position of a landmark point and ql and qr are the positions of this landmark in 

each of the left and right camera images.  Triangulation of a set of points requires 

knowledge of the camera position and orientation, acquired through a calibration 

process, which is a rigorous experimental procedure (further detail is provided in 

section 2.2.3). The accuracy of the photogrammetric measurement depends on several 

factors, including: camera sensor resolution, the size of the object within the camera 

field of view, the number of images used to produce the calibration data and the 

geometric layout of the cameras relative to the object [99].  To obtain high accuracy 

3D data the images need to be of high quality as each camera captures the 3D scene as 

a flat 2D image.  During this mapping information on depth is lost and is recovered 

through triangulation and 3D reconstruction.  

2.2.1. TECHNICAL PRINCIPLES AND MATHEMATICAL BACKGROUND 

Camera calibration needs to be carried out to characterise the imaging system, so that 

interpretation of the point in the image can be related to its position in the real world. 

Typically this involves an experimental calibration protocol that computes camera 

parameters, which can be used, along with correspondence points in the stereo image 

pair to carry out 3D optical reconstruction.  To be familiar with the camera calibration 

method it is important to understand how real world objects are projected onto the 

image sensor inside the camera.  A pinhole camera model is used to describe the basic 

geometry of projecting rays.  This simple model can then be expanded by adding lens 

distortion terms. 
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2.2.1.1.   THE PINHOLE CAMERA MODEL 

The classical geometric model for a camera is a pinhole camera model which describes 

the mathematical relationship between the 3D real world and its projection onto the 

2D image plane [109].  All light rays are assumed to pass through the optical centre 

and no lenses are considered.  Geometric distortion and blurring are not included in 

this system [104].  The distance from the pinhole aperture to the image plane (P) is the 

focal length f (Figure 2.2-2).  Perspective projection is used to describe the relationship 

between the 3D real world coordinates and the coordinates of its projection [110].  

 
Figure 2.2-2:  Pinhole camera geometry showing the projection of stent geometry.  The 

point q on the imaging plane is the projection of the real world point Q.  

 

The principle of similar triangles is applied to calculate the projection of point 

Q=(Xw,Yw,Zw) onto the image at point q=(x,y), given by equation 2-1. 

𝑥 = 𝑓 𝑋௪ 𝑍௪                                                                𝑦 = 𝑓 𝑌௪ 𝑍௪⁄⁄    2-1 

Modifications are required if this model is applied to a physical camera containing 

lenses.  To represent the aspect ratio of the camera sensor sx, sy is defined as the  sensor 

fZ
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size in horizontal and vertical directions respectively [111].  This gives a new measure 

of focal length: 

𝑓௫ = 𝑓  𝑠௫                                                  𝑓௬ = 𝑓  𝑠௬    2-2 

As the centre of the sensor may not lie on the optical axis, possible displacement of 

the optical centre can be defined using parameters cx and cy (x and y coordinate of 

principal point determined in pixels) [109].  The parameters fx, fy, cx and cy are known 

as intrinsic parameters.  Including these additional parameters to the camera model 

relates the coordinates of point Q(Xw,Yw,Zw) to the pixel coordinates of point q(x, y): 

𝑥 = 𝑓௫(𝑋௪ 𝑌௪) + 𝑐௫⁄        

𝑦 = 𝑓௬(𝑌௪ 𝑍௪) + 𝑐௬⁄             2-3 

The depth information in a stereo rig is computed through information about the 

relative position of the two cameras.  If we consider an undistorted, aligned stereo rig 

the Z coordinate of the object is computed from the magnitude of the translation vector 

(T), as shown in Figure 2.2-3, where: 

𝑍 = 𝑓𝑇/(𝑞𝑙𝑥 − 𝑞𝑟𝑥)                 2-4 
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Figure 2.2-3:  Undistorted, aligned stereo rig demonstrating the relationship between 

depth coordinate (Z) and magnitude of translation vector between camera pair; qlx and 
qrx are the x coordinates of the Q target in the left and right image respectively.  

 

Experimental camera rigs often include a rotation (R) between the viewing planes of 

each camera.  The rigid body transformation from the 3D world, Q(Xw,Yw,Zw), to the 

coordinate system of each camera, c(xc,yc,zc), can be described by a 3 x 3 rotation 

matrix  and translation vector [112]. 

൥
𝑥௖
𝑦௖
𝑧௖
൩ = 𝑅   ൥

𝑋௪
𝑌௪
𝑍௪

൩ +   𝑇,       2-5 

where  R =  ൥
𝑟ଵ 𝑟ଶ 𝑟ଷ
𝑟ସ 𝑟ହ 𝑟଺
𝑟଻ 𝑟 𝑟ଽ

൩ and            𝑇   =    ቎
𝑇௫
𝑇௬
𝑇௭
቏   2-6 

3D rotation can be decomposed into a 2D rotation around each axis.  The products of 

rotation around the axes are the rotation matrices.  As an example a two-dimensional 

rotation around the axis Z is presented below.  

Q

Ol OrT

Z

f f

qlx qrx
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Figure 2.2-4:  Rotating point 

 

൤𝑥
ᇱ

𝑦ᇱ൨ = 𝑅௭(Θ) ቂ
𝑥
𝑦ቃ =    ቂ 𝑐𝑜𝑠Θ 𝑠𝑖𝑛Θ

−𝑠𝑖𝑛Θ 𝑐𝑜𝑠Θቃ  ቂ
𝑥
𝑦ቃ 

These rotation matrix and translation vectors are extrinsic parameters provided by 

stereo calibration, as discussed later, and are a prerequisite for carrying out 3D 

geometry reconstruction. 

2.2.2.2.   LENS DISTORTION 

Theoretically it is possible to define a lens that introduces no distortion.  However, 

lenses in physical cameras are not perfect and as a result the images may include lens 

distortion effects which represent the deviation from the image produced by a perfect 

lens.  In a real system lenses may not be fixed perfectly parallel to the sensor plane 

[111].  Radial and tangential distortion may result from the lens shape and assembly 

process of the camera respectively [113].  Fryer [114] defined radial distortion in terms 

of three parameters: k1, k2 and k3 and determined tangential distortion by two 

additional parameters p1 and p2.  The same distortion model was applied in Bouguet 

Calibration Toolbox.  

P
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y

x
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𝑥௖௢௥௥௘௖௧௘ௗ = 𝑥(1 +  𝑘ଵ    𝑟ଶ +  𝑘ଶ    𝑟ସ +  𝑘ଷ    𝑟଺)          

𝑦௖௢௥௥௘௖௧௘ௗ = 𝑦(1 +  𝑘ଵ    𝑟ଶ +  𝑘ଶ    𝑟ସ +  𝑘ଷ    𝑟଺)      

𝑥௖௢௥௥௘௖௧௘ௗ = 𝑥 + ൫2  𝑝ଵ    𝑦 +  𝑝ଶ    (𝑟ଶ +   2𝑥ଶ)൯    

𝑦௖௢௥௥௘௖௧௘ௗ = 𝑦 + (𝑝ଵ    (𝑟ଶ +   2𝑦ଶ) +  2𝑝ଶ    𝑥)          2-7 

where r is the distance of a point on the image plane from the optical centre.  In a radial 

distortion plot, distortion is zero at the centre of the image and increases with distance 

from the optical centre due to bending of the rays further from the lens centre (Figure 

2.2-5a).  This behaviour is often observed in real cameras where the image can become 

noticeably distorted in pixels near the edges of the sensor [111]. xcorrected and ycorrected 

are new locations of x and y corrected for lens distortion (equation 2-7). Figure 2.2-5a 

and b shows the radial and tangential components of the distortion model computed 

during camera calibration of an experimental system at the coronary artery length scale 

described in Chapter 4.  

Note that more peripheral points are increasingly displaced.  The arrows represent the 

effective displacement of a pixel induced by the lens distortion.  Note that points at the 

corners of the image are displaced by as much as 15 pixels for radial distortion. The 

second figure shows the impact of the tangential component of distortion. On this plot, 

the maximum induced displacement is 1.4 pixel. The cross on the figure indicates the 

centre of the image, and the circle the location of the principal point. 
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Figure 2.2-5:  a) Radial and b) tangential distortion plots made in Matlab using the 

Bouguet Calibration Toolbox [115] for a calibration image obtained with a Flea2 camera 
with a 31.5mm focal length lens.  The arrows on the rectangular grid show pixel 

displacements induced by the lens distortion.   
 

2.2.2. CAMERA CALIBRATION 

Accurate camera calibration is a prerequisite in 3D reconstruction in order to extract 

precise quantitative measurements from 2D images [116].  The calibration process is 
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used to compute intrinsic and extrinsic parameters of the cameras, which are used in 

reconstruction [104, 109].  The intrinsic parameters determine the inherent properties 

of the optics, whereas the extrinsic parameters inform us about camera position and 

orientation with respect to the coordinate system. 

Accurate calibration procedures have been developed over many years [115-117].   

A Matlab toolbox for camera calibration was used in this study.  The toolbox is based 

on the work of Zhang [116] and Bouguet [115]. The main advantage of this toolbox is 

use of a flat calibration object with a checkerboard grid pattern, which can be printed 

using high resolution laser printers.  This Bouguet Calibration Toolbox for Matlab has 

been used in previous studies [118, 119] and has demonstrated point extraction to sub-

pixel accuracy [120].  Calibration is achieved using a checkerboard grid pattern of 

accurately known dimensions, chosen depending on the required magnification.  The 

grid is captured in a number of orientations in order to calibrate each camera.  Figure 

2.2-6 illustrates camera calibration output: checkerboard grid pattern (36 x 36mm) 

captured in 11 various orientations.   

 
Figure 2.2-6:  Grid position plotted in Matlab captured in 11 different orientations during 

the experimental calibration test. 
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The 3D stereo rig geometry is determined by stereo camera calibration, providing the 

extrinsic parameters which describe the grid orientations in relation to both cameras.  

The accuracy of stereo calibration can be assessed by comparison between the 

calculated extrinsic parameters and the physical stereo system distances measured 

manually (see section 2.4.2, Figure 2.2-15).  To assess calibration accuracy a control 

object of known size is imaged and the stereo calibration data is used to reconstruct 

the object geometry through triangulation (see section 2.4). 

2.2.2.1.   SINGLE CAMERA CALIBRATION 

To carry out single camera calibration, images from the right or left cameras are 

captured for various positions of the checkerboard grid and loaded into Matlab (The 

MathWorks Inc., Natick, MA, 2000).  In the figure below, Figure 2.2-7, two grids 

imaged in six orientations are presented.   

         
Figure 2.2-7: Calibration images obtained with a Flea2 camera, single image size 

1288x964. a) A 10 x 10 checkerboard captured in 6 positions with internal grid size 
0.5x0.5mm prior to a stent deployment experiment (Chapter 4, Coronary stents). b) A 6 x 4 
checkerboard captured in 6 positions with internal grid size 2x2mm (Chapter 5, coronary 

stents). 

 

Initially both cameras are calibrated separately.  The corners of the grid are extracted 

in all images.  Corner extraction requires the user to manually define four extreme 

corners on the checkerboard pattern and confirm the size of each grid square in the x 

Calibration images Calibration images

a) b) 
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and y directions (dX and dY).  It is important to be aware that dX and dY determine 

the calibration scaling i.e. the lengths dX and dY need to be determined before cameras 

can be accurately calibrated [115].  

 

 

Figure 2.2-8:  a) The boundary of the calibration grid with the origin point of the 
reference frame attached to the grid.  b) Blue squares around the corner points depict the 

limits of the corner finder window. 
 

The same set of points must be selected in each grid image with consistent selection 

of the first clicked corner to define the origin point (O), i.e. upper left hand corner of 

the checkerboard grid pattern (Figure 2.2-8a), where row and column directions are 
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defined along the x and y axis respectively. The corner extraction automatically 

identifies all other corners and determines the number of squares in the pattern. When 

the extracted grid corners (red crosses in Figure 2.2-8a) are close to the grid corners 

in the image this indicates absence of noise and aberrations.  The blue squares around 

the corner, Figure 2.2-8b represent the limit of the corner finder window. The toolbox 

requires typing the size of the window to detect the corners.  

If image distortion is extreme the Bouguet Calibration Toolbox may struggle to predict 

the correct number of squares and it may be necessary to repeat the image acquisition 

and calibration process.  Consistent identification of origin location is important if 

more than one camera from the same setup is investigated (in this case to compute the 

relative position of the stereo camera pair in space) [108] to guarantee an identical 

pattern reference frame.  Bouguet demonstrated that the Calibration Toolbox can 

extract the grid corners resulting in reprojection error of 0.1 pixels [115]  using 300 

mm x 300 mm grid (30 mm x 30 mm internal grid size).  The reprojection error (for 

examples see Figure 2.2-10) is a geometric error corresponding to the distance in an 

image (hence, measured in pixels) between a projected point and a measured one.  This 

error is calculated by projecting the checkerboard points from world coordinates into 

image coordinates.  The comparison between reprojected and detected points gives the 

distances in pixels which present the error.  When this error is small, the corners have 

been extracted well.  A larger error often occurs when the images are distorted and it 

is harder to find the corners.  Reprojection errors are considered to be non-significant 

if less than one pixel (Computer Vision System Toolbox, MathWorks).  During this 

study the reprojection error varied from 0.5 pixels for a 30 mm x 30 mm grid (3 mm x 
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3 mm internal grid size) to a maximum of 0.9 pixels for a 6 mm x 6 mm grid (0.5 mm 

x 0.5 mm internal grid size).  

Following identification of the grid corners, the camera calibration is obtained in two 

steps:  

 initialisation (not including any lens distortion), 

 optimisation (a non-linear optimisation step minimises the total reprojection 

error (in the least squares sense) over all the calibration parameters), including 

lens distortion terms, 

Single camera calibration provides the intrinsic camera parameters: 

 focal length (fx, fy), the distance from the middle of the lens to its focal point, 

calculated in pixels and stored in the 2 x 1 vector, fc, 

  principal point (cx, cy), the intersection of the optical axis and the image plane, 

calculated in pixels and stored in the 2 x 1 vector, cc, 

 skew coefficient (the image axes skew), the angle defined between the x and y 

pixel axes, calculated in degrees (for the perfect sensors axes are perpendicular to each 

other, 90°) and stored as a scalar, alpha_c, 

 lens distortion (kc), radial and tangential distortion coefficients, stored in the 

5x1 vector, kc, 

 pixel error (errx, erry), defined as 3x the standard deviation of all the 

reprojection errors, stored as 2 x 1 vector, err.  
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2.2.2.2.   STEREO CAMERA CALIBRATION 

To obtain stereo calibration with multiple cameras, the simultaneous capture of every 

grid orientation by both right and left cameras is required in order to generate a 

consistent set of stereo data.  The stereo calibration algorithm starts from parameters 

for both cameras obtained from their single camera calibrations.  The stereo calibration 

produces two sets of updated intrinsic parameters (one for each camera), and allows 

computation of the extrinsic parameters which describe relative 3D camera position 

and orientation [117].  The relative geometry of two or more cameras in the 3D world 

is modelled as a single rigid body transformation [108], as described in equation 2-5 

and 2-6: 

 rotation matrix (R), the rotation between the coordinate system of the camera 

(u, v, w axes) and coordinate system of the calibration object (x, y, z axes), stored as a 

3 x 3 matrix 

 translation vector (T), the vector of the origin of the grid pattern in the camera 

reference frame [115], stored as a 3 x 1 vector. 

2.2.2.3.   STEREO CAMERA RIG SEPARATION ANGLE  

Cameras in a stereo rig need to be placed at a certain angle in order to image the stent.  

The image of the device needs to be sharp and, ideally, no reflection should occur.  To 

ensure that the geometric layout of the cameras to the object and angle of the stereo 

rig would not influence final results, calibration and reconstruction accuracy was 

studied for three angles. 
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2.2.2.3.1. METHODS  

The analysis of experimental camera calibration was undertaken to check differences 

in results for different angle between two cameras.  It was important to check how 

much the angle between cameras influenced reconstruction accuracy.  A stereo rig was 

used to capture checkerboard grid patterns in number of orientations for calibration 

and 3D reconstruction accuracy assessment.  The calibration protocol was repeated 

using a stereo rig with camera separation angle 30o, 60o and 90o, shown graphically in 

Figure 2.2-9. 

 
Figure 2.2-9:  Angle separation to capture the calibration grid: 30, 60 and 90 degree 

respectively. 
 

The calibration images (6 for each angle) were used to check reconstruction accuracy.  

The distance between 10 internal grids (2 x 2 mm each) was measured for five 

translations to control the variation.  

2.2.2.3.2. RESULTS  

The pixel reprojection errors for right and left camera calibrations are presented in 

Table 3, Figure 2.2-10. 
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Table 3:  The average of the reprojection errors presented in Figure 2.2-10. 

     Mean reprojection error 

  Left right 
degree       x      y      x      y 

30 0.85 0.60 0.72 0.60 

60 0.85 0.57 0.71 0.57 

90 0.86 0.58 0.73 0.61 
 

 
Figure 2.2-10:  Pixel (reprojection) errors for a) left and b) right camera calibration for 

three separations of the camera  

 

3D reconstruction accuracy assessment results are presented in table below.  

Table 4:  The output data from the 3D accuracy assessment test for the stereo rig set at 
different angles between cameras.  

 Degree  Difference [µm] STDEV 
[µm] [°] max average min 

30 55 22 3.0 15 

60 52 23 2.3 16 

90 41 14 1.8 12 
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2.2.2.3.3. DISCUSSION 

There is no significant difference between the reprojection errors obtained for the three 

stereo rigs.  These results show that the angle between cameras can be set between 30 

and 90 degrees.  In the previous study for the in vitro measurement stent expansion in 

3D [88] the separation angle of 60 degree was used.  Lujan et al. [121]  set different 

angles between cameras to measure the strain on the knee joint.  He found that the 

strain measurement was more accurate in the x direction when the camera angle was 

largest and least accurate when the angle was at its minimum; the opposite results 

occurred in the z direction.  In the stereo rig design manuals a larger stereo-angle is 

advised to use to improve out-of-plane results. 

2.3. 3D OBJECT RECONSTRUCTION FROM 2D IMAGES 

Following calibration of the stereo camera pair, stereo-photogrammetry can be applied 

to determine 3D geometry (Chapter 4) and deformation (Chapter 5 and Chapter 6).  

The reconstruction method requires that distinct landmarks/markers on the object 

surface are visible to both cameras, and that the cameras do not move during the 

collection of a single stereo image pair.  

The depth of the object can be recovered from each stereo image pair through 

reconstruction using triangulation [122].  The 3D position of a point in space is 

computed from the pixel locations of the point in both 2D images and the camera 

calibration parameters.  If the point location is first identified in a single image, 

knowledge of relative camera geometry from calibration allows selection of a 

corresponding landmark/marker in the second image aided by a geometric epipolar 

constraint.  In the other words once a landmark point is identified in one image, if the 
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same point lies on the epipolar line in the other image determined from the calibration 

data, this indicates robust camera calibration [108, 109].  If the landmark does not lie 

on the epipolar line this points to poor calibration, that images from left or right 

cameras were taken at different stages of object deformation or that there are other 

significant errors due to noise during the experiment. To provide the 3D coordinates 

of the points of interest [122] as presented in Figure 2.2-1, epipolar lines are 

mathematically intersected.  

Figure 2.2-11 shows an image of the checkerboard grid pattern and the speckle pattern 

sprayed on elastic material and coronary stent from the experimental geometry 

reconstruction.   

 
Figure 2.2-11:  a) checkerboard grid pattern used to assess calibration and reconstruction 

accuracy; b)characterisation of the scattered pattern sprayed on elastic material and c) 
characterisation of the geometry of fully expanded stent on the angioplasty balloon.  
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Points have been selected in the left-hand (Figure 2.2-11) and the epipolar line 

indicates the correspondence points on the right-hand images, demonstrating robust 

calibration (images were taken during the experiments described in Chapter 5 and 

Chapter 6 with a Flea2 stereo camera rig).  

In summary, the 3D position of a point in space is obtained by recording its 2D 

projections as reported by two independent cameras, placed at different locations [88].  

Identification of the same points in stereo image pairs enables localisation of the point 

in the 3D coordinate space of the camera rig using triangulation. 

Stereo triangulation [115] computes the 3D location of a set of points given their left 

and right image projections. If the point qlx and qrx are known, their projection lines 

are also known.  If the two image points correspond to the same 3D point Q the 

projection lines must intersect precisely at Q. This means that Q can be calculated from 

the coordinates of the two image points; a process called triangulation. 

Section 2.2 outlined the mathematical basis of camera calibration and described 

application of the Bouguet camera calibration Toolbox [115].  Section 2.3 describes 

an experimental stereo camera system used to examine a simple tensile test of elastic 

material undergoing large deformations. This experiment aims to demonstrate the 

feasibility of using photogrammetry for strain measurement through 3D reconstruction 

and assess the robustness of the camera calibration and reconstruction process. 

http://en.wikipedia.org/wiki/Triangulation_%28computer_vision%29
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2.4. EXPERIMENTAL ASSESSMENT OF CAMERA CALIBRATION 

AND APPLICATION TO STRAIN MEASUREMENT 

Using the techniques described in section 2.3 an experimental system using Canon 

Powershot A40 cameras (CP-A40) was established to explore and to understand 

stereo-photogrammetry, and to establish a robust protocol for camera calibration, 3D 

reconstruction and strain measurement.   

2.4.1.1.   METHODS  

The stereo camera pair was mounted on tripods to ensure setup stability and separated 

by approximately 70 degrees (Figure 2.2-12).   

 
Figure 2.2-12:  Experimental setup; stereo rig with two Canon Powershot A40 cameras. 

 

A calibration checkerboard grid 12 x 12 squares (1 x 1 mm each) was imaged in six 

orientations with both cameras. As mentioned previously, in order to ensure precision 

of the calibration routine, accuracy assessments were carried out with a control object 

of known size (30 mm x 30 mm) with printed dots (Figure 2.2-16) separated by a 
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known distance (3 mm). This was translated using a travelling microscope (rigid body 

motion) through 2.5 mm in increments of 0.5 mm.   

Following camera calibration, the feasibility of deriving strain measurements from 

reconstructed 3D geometry was assessed by imaging the deformation of a sheet of 

elastic material during a tensile test using a GOODBRAND GBX (Rakuten, Taiwan) 

testing machine. 2D image pairs were used to carry out 3D reconstruction of an elastic 

material marked with reference points separated approximately by 2 mm to allow 

strain calculation (Figure 2.2-13). Markers were applied manually using a Pilot fine 

point SW-DR5-B drawing pen.  The sample was fixed in grips and stretched uniaxially 

at a strain rate of 0.167 mm/s to produce a total displacement of 10 mm over 60 

seconds.  

 
Figure 2.2-13:  The elastic material with the far (blue), central (red) and near (green) 

investigated lines. 

 

To capture images the shutter button from left and right camera had to be pressed 

manually, so the tensile machine was stopped every 5s ± 1s and a stereo image pair 

was captured (12 image pairs in total) after 10 seconds to allow stress-relaxation and 

10.21mm
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ensure consistent images from both cameras.  The image pairs were used to carry out 

3D reconstruction of the deformed material and derive measures of strain. 

Strain measurement required tracking and reconstruction of consistent marker points 

on  the  deforming  object.    Engineering  strain  (ε),  which  is  the  ratio  of  deformation  to  

the initial dimension, was computed as the change in length (∆L) per unit of the 

original length (L0) between reference points, L- length after deformation (2-7a). 

Average values of strain (equation 2-7b, Figure 2.2-14) were calculated for the three 

lines presented with blue, red and green in Figure 2.2-13 and compared with the total 

strain (εT) measurement.  

 

 

𝜀 =      ௅ି  ௅బ
௅బ

= ∆௅
௅
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Figure 2.2-14:  Diagram presenting strain characterisation. 

 

The  use  of  a  ‘centre  of  gravity’ algorithm written by J. Hughes [123] was applied to 

locate the centre of each marker.  This algorithm calculates the centre of mass of the 

closest dot to a manually selected location.   

2.4.2. RESULTS 

Single and stereo calibration was performed as described in subsections 2.2.3.1 and 

2.2.3.2 respectively. The camera separation and distance from the grid derived from 
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camera calibration was shown to be in good agreement with manual measurements 

from the camera lens to the grid (97% ± 0.5%) made with a ruler, Figure 2.2-15.   

Reconstruction of twenty printed dots on the surface of the cylinder indicated an 

uncertainty of dot separation of the order 30 µm, with inter-point distance of  

3 mm ± 0.02 mm (Figure 2.2-16).  

 
Figure 2.2-15:  Accurate calibration (stereo 3D rig, b) is confirmed by accurate 

representation of the physical stereo system (a). Here the calibration result agrees with the 
manual measurements to within 97% ± 0.5%. 

 

 
Figure 2.2-16:  Control object used in accuracy assessment test. Magnified distance 
between points (3 mm ± 0.02 mm) to emphasize reconstruction accuracy (30 µm). 
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Total strain results computed from the 3D reconstruction for three regions of the elastic 

material (Figure 2.2-13) agreed to within 98% ± 0.7% of a manual caliper measurement 

of initial and final length.  Average values of strain (equation 2-7) calculated for the 

three lines presented with blue, red and green in Figure 2.2-13 differ slightly (0.5% ± 

0.2%) from the total strain (εT) measurement (Table 5).  

Table 5: The final strain results, 𝜺𝒂𝒗- average value of 𝜺𝒊ᇱ𝒔- εi, 𝜺𝑻- the total strain between 
the first and last point, 𝜺𝒊 —   the strain between neighbouring points. 

Strain between markers [%] 
Area 𝜺𝒂𝒗 𝜺𝑻 

First line 43.3 43.0 

Central line 48.2 47.8 

Last line 51.4 50.7 

 

2.4.3. DISCUSSION 

This simple experiment of deformation of a sheet of elastic material demonstrates the 

robustness and accuracy of the calibration and reconstruction techniques at these 

length scales.  The length scale of the elastic material used was 3 times larger than a 

typical coronary stent length (field of view > 30 mm), due to limits of the magnification 

possible with the Canon Powershot cameras for this reconstruction test, even with use 

of an additional 16D macro lens.  These limitations result in low resolution of the 

captured object on the output image due to low magnification.   

The standard deviation in reconstruction accuracy of 30 µm may be associated with a 

number of factors: performance of the centre gravity algorithm used to determine the 

centre of each marker, marker size and separation, quality of the camera optics (which 

cannot be controlled in compact cameras).  Even though the cameras were firmly 
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mounted on the tripods, clicking the shutter button may introduce a slight motion and 

cause un-intentional errors which could be improved by remote capture techniques.   

All strain values reported were positive as strain was only determined in the y 

direction.  These results indicate a variation of 8% in the strain values reported over 

the strip region.   The material underwent greater deformation on the right than on the 

left side of the image. This is related to the geometry of the strip and fixation conditions 

and was noticeable in the output images.  Although the surface of the strip was 

observed to deform out-of-plane during application of strain the method applied 

includes out-of-plane deformation due to stereo calibration.  

A manual marking method using a Pilot fine point SW-DR5-B drawing pen was 

effective for this idealised test material and simple application of strain, but the 

marking method adopted must also be successful for higher magnification imaging 

and for different types of material including soft tissues (described in more detail in 

Chapter 6).    

In conclusion, this initial test provided a sound understanding of the principles of the 

optical 3D reconstruction method.  Improvement of the camera system to provide high 

resolution, high magnification imaging is discussed in the next Chapter. 
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SUMMARY 

Optical measurement methods are promising tools for the experimental analysis of 

stent behaviour during deployment and to measure strains induced on the vessel wall 

[87, 90].  To work with compliant materials, soft tissues and fragile implants such as 

stents, a non-contact measurement technique has a major advantage; it minimises any 

mechanical interference. Optical reconstruction can be applied to full field 

measurements or can focus on the local variations of strains on the surface of specimen 

[124].  This is perfect when non-homogenous materials such as biological soft tissues 

(arteries) are tested.  Of course, the accuracy of the calculated strain depends on the 

quality of the imaging system and a robust calibration process.  To extract precise 3D 

information from the images obtained, calibration needs to be accurate.  Cameras are 

calibrated if intrinsic and extrinsic parameters are derived and if the computed 

positions of cameras and the reconstructed object agrees with the real experimental 

conditions.    The  Toolbox  used  to  perform  calibration  in  this  study  was  the  “Bouguet  

Toolbox   in  MatLab”   [115].  This has been shown to provide accurate calibration 

results [120].   

The simple experiment of deformation of a sheet of elastic material using consumer 

cameras demonstrates acceptable resolution and magnification at these length scales 

(30-40 mm). It highlights the challenges of stent characterisation, requiring increased 

optical magnification and camera resolution.  Moreover, these consumer cameras had 
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manual shutters.  This introduces instability in camera position, resulting in noise and 

larger 3D reconstruction error, as experienced in the current study.  To address these 

issues prior to the measurement of 3D stent geometry in Chapter 4, an appropriate 

design of an optical system for imaging at coronary artery length scales was required.  

This is presented in Chapter 3.  
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CHAPTER  3 

DESIGN AND EXPERIMENTAL TESTING OF AN OPTICAL SYSTEM 

TO ALLOW IMAGING AT CORONARY ARTERY LENGTH SCALES 

Application of stereo-photogrammetry to characterise the geometry and deformation 

of coronary stents requires a high resolution and high magnification system to obtain 

accurate results.  This project explored the use of different types of camera, providing 

experience with a range of optical systems and an understanding of their influence on 

reconstruction quality, including the consumer camera system described in the 

previous chapter.  Chapter 3 details the use of a custom lens approach which allows 

design of the optics to suit the application length scale.  The design of the system is 

based on simple optics theory with appropriate experimental testing.   

The design of the optical system described here is applied in later chapters to allow 

investigation of in vitro stent deployment and examine local strains on the surface of 

a vessel analogue.  This chapter details the challenges of applying the stereo-

photogrammetric technique at such small length scales (approximately 10 mm), 

balancing the requirements for high magnification whilst maintaining a sufficient 

depth of field to capture stent deformation. 
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3. INTRODUCTION 

Chapter 2 introduced stereo-photogrammetry, camera calibration and 3D 

reconstruction approaches. The reconstruction of a planar 3D geometry and 

measurement of strain were reported using consumer cameras at a length scale of the 

order of 30 mm.  Application of the technique at smaller length scales presents 

challenges as a high magnification is required, whilst maintaining a sufficient depth of 

field. 

This chapter outlines the design of an appropriate optical system to determine stent 

expansion in vitro over a range of length scales, with a primary focus on the coronary 

artery length scale (~10 mm), since coronary stent deployment and interaction with 

the vessel wall is the main focus of this thesis.  However, a sound understanding of the 

principles associated with optical design of such systems has allowed consideration of 

other applications during the course of this research, including the assessment of larger 

scale stent devices (Chapter 4) and imaging of the whole heart (Future work). 

It is hypothesised that high resolution cameras with appropriately designed lenses can 

capture a stent throughout expansion, whilst maintaining image focus.  Examination 

of the imaging system involves understanding fundamental parameters such as: sensor 

size (SS), image resolution, working distance (u), lens to sensor distance (v), field of 

view (FOV), focal length (f), magnification (M) and depth of field (DOF).  It is 

important to appreciate how these parameters are related in order to obtain satisfactory 

results at a particular length scale.  This chapter summarises the expected relationship 

between these parameters based on simple optical theory and examines the 

experimental outcomes for a given optical design.   
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Recommended parameters are provided for optical systems at three different length 

scales which correspond to the imaging of coronary stents (Chapter 4, 5 and 6), the 

imaging of valve stents (Chapter 4) and the imaging of the whole heart (Future work).  

Experimental assessment of the optical system at coronary artery length scales is 

undertaken to ensure experimental results support the theory.  The drawing below 

illustrates the difference in scale, where the heart has the length of approximately  

100 mm, valve stent 34 mm and coronary stent 10 mm. 

 
Figure 3-1:  Representative schema of the increasing challenge in optical design. Small 

length scale (coronary stent) requires high magnification. 

 

The following sections describe the fundamental parameters of the optical system. The 

theoretical relationship between these parameters based on simple theory is described 

in section 3.2, with experimental measurement of a system at the coronary stent length 

scale (~10 mm) presented in section 3.3. 

34 mm

10 mm

4 mm

20 mm



CHAPTER 3: OPTICAL IMAGING SYSTEM 

67 
 

3.1. FUNDAMENTAL PARAMETERS OF AN OPTICAL SYSTEM 

To overcome the limitations of consumer camera described in the previous chapter, 

this project has developed an approach using fire-wire cameras, with a single lens 

optical system which can be modified for application at different length scales.        

Black-and-white (FL2G-13S2M-C) and colour (FL2G-13S2C-C) Flea2 cameras 

(Point Grey, Canada) have been used to create a stereo rig.  These cameras were 

operated via computer using FlyCap2 software (Point Grey, Canada).  Table 6 provides 

the specification of the Flea2 cameras. 

Table 6:  Flea2 camera specification 

Attribute Specification 
Image Sensor ICX445  1/3”;;  dimension  4.6 mm by 3.8 mm 
Maximum Resolution 1288 x 964 
Pixel size 3.75 x 3.75 µm 
Maximum Frame Rate 1288 x 964 at 30 FPS 

Power Consumption power via Vext GPIO pin or 9-pin 1394b interface: 8 to 
30 V, less than 2.5 W 

Lens Mount C- mount 

Camera Specification IIDC 1394-based Digital Camera Specification v1.31, 
compatible with IEEE-1394b and IEEE-1394a interfaces 

Dimensions (L x W x H) 9 mm x 29 mm x 30 mm (excluding lens holder, without 
optics) 

 

The C-mount system allows attachment of a user-defined lens system.  To determine 

the appropriate specification for such a system it is important to consider the 

fundamental parameters of the lens/camera system relevant to the application in this 

study, which are described in the following sections. 
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3.1.1. RESOLUTION 

Sensor resolution is the number of columns and rows of charge-coupled device (CCD) 

pixels in the camera sensor.  Cameras with a CCD sensor were chosen in this study as 

they have lower noise than the CMOS (complementary metal-oxide semiconductor).  

 
Figure 3-2:  CCD sensor. 

 

Spatial resolution dictates the amount of object detail that the imaging system can 

reproduce; it is determined from the field of view (FOV) size and the camera sensor 

dimensions.  The Canon Powershot A40 cameras (used to capture tensile test of elastic 

material in the previous chapter) had a sensor resolution of 1600 x 1200 pixels  

(5.33 mm x 4 mm sensor size, SS).  Despite the use of an additional macro 16D lens 

the highest possible spatial resolution was ~48 µm, limited by the low magnification 

of the camera optics.  This resolution was insufficient to accurately examine coronary 

stents.  During imaging with this system the 12 x 12 mm calibration grid occupied only 

1/6 of the image in the horizontal direction.  Dividing horizontal sensor size by field 

of view (approximately 76 mm) provides an indication of the optical magnification (M 

= 0.07).  Despite the lower sensor resolution of the Flea2 cameras the flexibility of a 

custom C-mount lens system allows higher spatial resolution to be achieved by 

obtaining a smaller field of view. 

rows

columns
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3.1.2. IMAGE CONTRAST 

Poor image contrast may affect the resolution and accuracy of results obtained using a 

quantitative optical approach.  To determine local strain on the surface of the vessel 

analogue a high contrast pattern is required as described in Chapter 6.  Increased image 

contrast may improve the performance of image registration using digital images 

[125].  Image contrast depends on lens quality, shutter speed and illumination.  A short 

camera shutter speed decreases contrast and delivers poor levels of illumination [126].  

It is necessary to distinguish in the output image differences between the object of 

interest and the shades of grey in the background.  Real lenses never reproduce a 

perfect square intensity wave when imaging an object that goes from black to white, 

as presented in Figure 3-3.  

 
Figure 3-3:  Ideal and real presentation of the square wave function of decreasing 

contrast. 

 

This optical limitation occurs as a result of numerous factors including diffraction or 

the blur caused by a shallow depth of field.  The plot above (Figure 3-3) shows an 

Imaging pixels
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idealised square intensity wave with decreasing image contrast and the expected real 

intensity wave for comparison. 

Image contrast can be calculated from the image intensities as follows: 

                   %𝐶 = ூ೘ೌೣି  ூ೘೔೙  
ூ೘ೌೣା  ூ೘೔೙

    100                 3-2 

Imax and Imin are the maximum and minimum image intensity values respectively. 

For an 8 bit image format the maximum intensity value is 255 and the minimum is 0.   

3.1.3. MAGNIFICATION 

The magnification of the lens system for application at a given length scale, is 

determined by the ratio between the sensor size and the field of view (𝑆𝑆 𝐹𝑂𝑉⁄ ) 

required to fit the object of interest within the image.   

 
Figure 3-4:  Principle of imaging with a lens. u is the object-lens distance, v is the image-

lens distance and f is the focal length of the lens. 
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The physical parameters used to determine the anticipated magnification of a single 

lens system include the distance between the sensor and lens v, the lens to object 

distance u and the focal length of the lens f to be used.  Analytical characterisation of 

these parameters for stent application is described in section 3.2. 

3.1.4. DEPTH OF FIELD, APERTURE SIZE AND DIFFRACTION 

Depth of field (DOF) is the maximum object depth that can be maintained entirely in 

focus [113] as shown in Figure 3-5.  An ideal optical system would provide infinite 

depth of field (DOF) allowing objects at all distances from the lens to be captured in 

focus.   

In this image DOF covers all of the stent geometry when it is imaged in position 2 (in 

position 1 and 3 the stent is out of focus and appears blurred).  

 
Figure 3-5:  The range of the distance when stent appears acceptably sharp. 

 

For the applications in this study, DOF needs to be sufficient to image the expanding 

stent and keep focus throughout the deployment process.  It is important to estimate 

how much the object might move relative to the camera during capturing.  The relative 

1) 
2) 

3) 
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movement includes a decrease in the distance between the stent and the camera as the 

stent diameter increases, and possible changes in stent position due to motion of the 

balloon catheter.  

Use of a larger aperture and closer focusing distances produce a shallower DOF, 

conversely, decreasing the aperture increases the DOF.  However, significant decrease 

in aperture size, and extended exposure times, can cause diffraction and noise in the 

image respectively, limiting the effective resolution of the image [127, 128] and 

decreasing image contrast.   

The Fraunhofer diffraction pattern generated by a circular aperture is illustrated in 

Figure 3-6.  The magnitude of the diffraction effect can be characterised by the 

diameter of the Airy disk, which is defined as the central bright region shown in Figure 

3-6.  If we assume that our lens is perfect, the Airy disk will depend only on the 

diameter of the aperture, the wavelength of the light and lens to sensor distance (sub-

section 3.2.1, equation 3-6). 

 
Figure 3-6:  Diffraction effect due to camera capture using lens of small diameter 

aperture. Presentation of the central bright spot (Airy disc) and fringes. 
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3.1.5. DISCUSSION 

The fundamental properties of the lens/camera system have been described above.  

Important parameters for consideration in this study are the depth of field (DOF) and 

the magnification (M). At coronary artery/stent length scales high magnification (M) 

is required to investigate local areas of the stent.  This can be achieved, either by 

moving closer to the subject or using a lens of greater focal length, decreasing the 

DOF.   

As the stent expands it will increase in diameter, so sufficient DOF is required to 

maintain focus throughout the experiment.  However, by decreasing aperture size to 

increase DOF, light passing through the aperture may generate notable diffraction [99, 

113, 128] so that, even if the DOF is sufficient, the sharpness of the image may be 

reduced as a result of diffraction blur.  As a result the acceptable level of diffraction in 

the image limits the maximum resolution that can be obtained. 

An optimal system would provide maximum resolution (due to high magnification, 

M) and maximum depth of field, without introducing significant diffraction.  Under 

some conditions this may not be possible requiring compromise.  In section 3.2 

theoretical relationships between these parameters are used to estimate the appropriate 

parameters for an optical system at the three length scales described previously, in 

section 3.3 the theory is experimentally validated for the coronary length scale.  

3.2. ANALYTICAL CHARACTERISATION OF THE OPTICAL SYSTEM  

This section considers the design of an optical system suitable for the Flea2 cameras 

at each investigated length scale, defined in terms of the object diameter and length 
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(field of view) in Table 7.  The method is described below for the coronary stent 

application, with results reported for the other length scales in section 3.2.2. 

Table 7:  Length scales at which the optical system has been applied. 

 Diameter                                
[mm] 

Length 
[mm] 

Heart - 80 

Valve stent 20 34 

Coronary stent 4 8-10 

 

3.2.1. METHODS 

The horizontal size of the camera Flea2 sensor is 4.6 mm (Figure 3-7).   

 
Figure 3-7:  Flea2 image sensor size and fully expanded coronary stent. 

 

To image a coronary stent of length 8-10 mm it is necessary to achieve a magnification 

of approximately 0.4 (4.6 divided by 10 plus consideration of the proximal and distal 

part of the inflation balloon, approximately 1+1 mm).   
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As most of the investigated stents have a diameter of 1 mm before and 4 mm after 

expansion, their radius will change by 1.5 mm.  As rigid body movement of the 

catheter during stent deployment might occur, it would be appropriate to design the 

system to provide a DOF of 4 mm, to be completely sure that expanding stent is in 

focus all the time as presented below (Figure 3-8). 

 
Figure 3-8:  Appropriate DOF for stent expansion characterisation, considering a final 

stent radius of 2 mm. 

 

The optical system is analytically characterised by equations 3-3 to 3-6 [113, 127, 

128], with the relationship between the parameters shown in Figure 3-9.  These 

equations characterise the lens/camera system in terms of the lens to object distance u, 

the lens to sensor distance v, lens focal length f and image magnification M.  The latter 

is equivalent to the ratio of v to u (from the similar triangles theorem) [99], whereas 

the depth of field DOF depends on both v and u and the acceptable size of the blur 

spot due to the object moving out of focus c. 

Initial  radius (0.5mm)

DOF(4mm)

Final  radius (2mm)
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Figure 3-9:  Presentation of working 

distance (u), lens to sensor distance (v) and 
aperture diameter (D). 
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Four lenses (Planoconvex lens, Comar Optics, 10 mm diameter each) of focal length 

(f) 20, 25, 31.5 and 40 mm, and three apertures of diameter (D) 0.8, 2.0 and 3.0 mm 

were available for experimental testing.  For each value of focal length the v, u, DOF 

and Diff values were computed for all aperture sizes to provide the desired 

magnification of 0.4.  

3.2.2. RESULTS & DISCUSSION 

Results of analytical characterisation of the optical system are presented in the Table 

8 below. 
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Table 8:  The performance of an optical system at length scales relevant to coronary stent 
expansion;  M - magnification, f - focal length, v - sensor to lens distance, u - lens to 

object distance, D - aperture diameter, DOF - depth of field, Diff - diffraction.  Theoretical 
output data. 

M f [mm] v [mm] u [mm] D [mm] DOF [mm] Diff [µm] 

0.4 

20 28 70 

0.8 17.7 47 

2.0 1.9 18.6 

3.0 0.7 12.6 

25 35 87.5 

0.8 18 58 

2.0 2.9 23.3 

3.0 1.2 15.8 

31.5 45 105 

0.8 26 75 

2.0 4.3 29 

3.0 1.9 15 

40 56 134 

0.8 30 108 

2.0 7.0 43 

3.0 2.5 25.3 

 

To provide the required magnification (M = 0.4), the computed values of v and u for 

each value of f are presented in the third and fourth column respectively.  This 

magnification results in a field of view of 11.0 mm x 9.0 mm and a spatial resolution 

of approximately 8 µm.  Note that for each focal length, depth of field increases as the 

aperture diameter is decreased (3 > 2 > 0.8 mm).   

At these small length scales sufficient DOF was computed for two focal lengths of lens 

(31.5 mm and 40 mm).  However, the computed diffraction effect is reduced for  

f = 31.5 mm. The analytical investigation suggests an appropriate optical system with 

focal length 31.5 mm, sensor to lens distance (v) 45 mm and aperture diameter (D) of 

2 mm to examine coronary artery stent deployment.  The computed DOF (4.3 mm) is 

reasonable for these parameters but the predicted diffraction blur of 29 µm is much 
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larger than a single image pixel.  However, this findings need to be validated 

experimentally.  

The challenge of designing optics to obtain high magnification whilst maintaining a 

sufficient depth of field can be seen by plotting calculated change in both DOF and 

Diff parameters with aperture diameter D (x axes) as shown in Figure 3-10.  These 

data are plotted for the optics with focal length of 31.5 mm and magnification of 0.4.    

 
Figure 3-10:  DOF and Diff plots; output from analytical results; dashes presents DOF 

and Diff values for D=2 mm. 

 

To provide the required magnification for the valve stent and the heart length scale 

(0.15, 0.07 respectively), the computed values of v and u for required value of f are 

presented in the Table 9.    

Table 9:  The parameters of the optical system at higher length scales. 

Object M f [mm] v [mm] u [mm] D [mm] DOF [mm] Diff [µm] 

Valve 
stent 0.1 

31.5 35 315 2 23 23 

40 44 440 3.0 20 19 

Heart 0.07 
40 43 570 3.0 42 19 

100 107 1528 6 75 23 
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As the length scale of the object increases whilst using the same lens focal length  

(31.5 mm), the sensor to lens distance decreases to obtain lower magnification, 

resulting in a larger lens to object distance.  The outcome of this scaling is a larger 

DOF due to lower magnification and reduced diffraction due to short lens to sensor 

distance.  The reason the diffraction is lower is that the magnitude of the diffraction 

pattern scales with the v distance (as shown in the equation 3-6). 

If a larger distance from the camera to the object is required for practical reasons (e.g. 

rig set-up environment), the lens focal length can be increased (e.g. to 40 mm) along 

with the aperture diameter (to 3 mm diameter) to suppress the evident diffraction of 

the light (Table 9).  

3.3. EXPERIMENTAL CHARACTERISATION OF THE OPTICAL 

SYSTEM  

The values computed in section 3.2 for a coronary stent length scale (Table 8) were 

compared with experimental assessment of an optical system consisting of a Flea2 

camera (Point Grey) with a single lens system (Comar Optics, UK) controlled using 

FlyCap2 capture software (Point Grey, Canada).  The experimental tests are described 

in the following sections and include assessment of image contrast with lenses of two 

focal lengths (f = 31.5 mm and f = 40 mm) and depth of field assessment for a lens 

with f = 31.5 mm with various aperture diameters.  The significance of diffraction 

effects in the captured images was evaluated.  
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3.3.1. METHODS 

For both image contrast and depth of field tests a single camera was positioned 

perpendicular to a test object.  To determine the influence of the optics on the accuracy 

of 3D reconstruction a stereo rig (with angle between cameras of 45 degrees) was built 

to image rigid body motion of a cylinder at coronary artery length scales.  

IMAGE CONTRAST EXAMINATION 

Image contrast was assessed by examining the captured image of a checkerboard grid 

pattern placed perpendicular to the camera Z axis and computing contrast from the 

intensity plot using equation 3-2.  Lenses of focal length 31.5 mm and 40 mm were 

positioned approximately 45 mm and 56 mm respectively from the camera sensor, both 

resulting in a magnification of approximately 0.4.  The aperture was 2 mm in both 

cases.  Shutter speed and frame rate were set with FlyCap2 software (PointGrey, 

Canada) to obtain sufficient light and avoid noise.  For a 40 mm focal length lens 

shutter speed was decreased to improve contrast, reducing the frame rate (Table 10).   

Table 10:  different focal lengths used to examine image contrast 

Specification 
Focal length [mm] 31.5 40 

Shutter speed [129] 30 83 
Frame rate [fps] 30 10 

 
DEPTH OF FIELD TESTING 

DOF was assessed using the sharpness of black and white vertical lines placed at an 

angle of 45° to the camera axis.  Optics with f = 31.5 mm, v = 45 mm were used to 

assess the sharpness of a set of black and white vertical lines placed at an angle of 45° 
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to the camera axis (Figure 3-11). The aperture was varied from 0.8 mm to 5 mm and 

the image intensity was examined to determine blur due to DOF effects. 

 
Figure 3-11:  Black and white vertical lines placed at an angle of 45°, a) for D=2 mm,  

b) for D=5 mm 

 

RIGID BODY MOTION TEST / RECONSTRUCTION ACCURACY 

Using lenses with focal length 31.5 mm and setting D = 2 mm, to provide sufficient 

DOF, the stereo camera rig was calibrated, as described in Chapter 2 using the Bouguet 

Calibration Toolbox for Matlab [115] and used to assess the error of the optical 

reconstruction method.  A rigid body motion test was performed with a marked 

cylindrical control object of known size, which was translated through 2.5 mm in 

increments of 0.5 mm using a travelling microscope.  

 
Figure 3-12:  Marked cylindrical control object of known size used for rigid body motion 

test to assess calibration and reconstruction accuracy. 
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3.3.2. RESULTS 

Image contrast and depth of field test results obtained with single camera as well as 

rigid body motion output from stereo rig are presented below. 

IMAGE CONTRAST 

Output images to determine image contrast are depicted in Figure 3-13.  The image 

intensity along the central row was plotted in Matlab (Figure 3-14).  An idealised 

virtual image was created and plotted for comparison. 

 
Figure 3-13:  Images obtained with focal length of 31.5 mm, gives a contrast of 91% and 
f=40 mm, which results in poor contrast of 41% (equation 3-2), compared with idealised 

virtual image with 100% contrast. 

f = 31.5 mm f = 40 mm

600 pixels

idealised
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Figure 3-14:  Image intensity of a central row plotted for idealised virtual image, focal 

length of 31.5 mm and 40 mm using aperture diameter of 2 mm.  

 

The geometry of the two images were directly comparable due to the same object 

magnification (M=0.4).  If a black and white object is examined, black and white 

details should produce the lowest (close to 0) and highest (close to 250) intensity pixels 

respectively, with all shades of grey in between accurately imaged.  A black line on a 

white background is an example of 100% contrast (as in an idealised virtual image, 

Figure 3-13, equation 3-2, where max intensity is equal to 255 and minimum intensity 

is equal 0), which experimentally is impossible to achieve.  The diffraction limit of the 

optical system distorts the square wave expected based on an idealised virtual image, 

as described earlier [127]. The diffraction effect becomes more significant in the image 

captured using the custom lens with focal length of 40 mm as shown in Figure 3-14 

and the same aperture diameter (2 mm) as for 31.5 mm focal length lens.  Figure 3-15 
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explains this behaviour where the focal length increasing from 31.5 mm to 40 mm 

requires longer lens to sensor distance- v (௩
஽
).   

An aperture of 2 mm was used for both custom lenses.  The light projected through an 

aperture still has to travel from the aperture to the sensor.  If the distance is greater, 

less light reaches the sensor, what is confirmed with intensity plot (Figure 3-14). 

 
Figure 3-15:  Focal length increase requires sensor to lens distance increase. 

 

DEPTH OF FIELD TESTING 

The image intensity of the central row of pixels is plotted for five aperture diameters, 

from 0.8 mm to 5 mm (Figure 3-16).  Additionally the intensity for aperture of 4 mm 

and 5mm diameter was plotted to present significant decrease in depth of field.  
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For a better visualisation only 500 pixels (c = 5.21 mm) are presented in Figure 3-16.  

As the object was placed at an angle of 45° to the camera axis it gives approximately 

b = 3.7 mm of depth, as calculated using equation 3-7.  

 

 

𝑎ଶ   +  𝑏ଶ     =    𝑐ଶ    (𝑎 = 𝑏)                     3-

8 

Tests performed with a range of apertures demonstrate significant reduction in the 

DOF as the aperture, D, is increased from 2 mm (Table 8, Figure 3-16).  Reducing D 

to 0.8 mm was observed to result in noticeable diffraction blur. 

RIGID BODY MOTION TEST / RECONSTRUCTION ACCURACY 

The results from change in the distance between fifteen reconstructed points on the 

cylindrical object for five successive translations of this object suggest measurement 

accuracy of the order 14 μm  with  marker  separation  of  1 mm. 

Table 11:  Maximum, average and minimum variation in distance between reconstructed 
points. 

Difference in computed distance [µm] STDEV [µm] 

Max Mean Min Max Mean Min 

40  14 1.2 14 12 11 

 

Calibration results presented as a 3D plot confirmed the analytically calculated and 

experimentally measured lens to object distance (u) of approximately 105 mm. 

β

c
b
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Figure 3-17:  3D plot of extrinsic parameters obtained via calibration showing the 

distance from the lens to the object (u) confirms computed distance. 

 

3.4. DISCUSSION 

A focal length of 31.5 mm and aperture diameter of 2 mm was selected as the most 

appropriate to image coronary stent deployment, providing M = 0.43 whilst 

maintaining sufficient DOF (4.3 mm) and not causing significant diffraction.  

Moreover, this results in good contrast. This is an advantage in tracking deformation 

with image registration techniques.  Additional advantage of this choice (f = 31.5 mm) 

is the potential to capture dynamic changes due to the high frame rate (15-30 fps) and 

fast shutter speed (~20-30 ms) which can be used to obtain acceptable image quality.  

At higher focal lengths (40 mm) the ability to capture dynamic effects is limited due 

to the longer shutter speeds (>80 ms) and lower frame rates (approximately 10 fps) 

that are required if illumination is kept constant.  However, the most significant 

difference is in the level of observed diffraction.  Rigid body motion tests at this length 

scale have shown acceptable errors in 3D reconstruction with accuracy of the order 14 

µm.  This system has been applied to study coronary stents described further in Chapter 

4, 5 and 6. 
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The advantage of using a single lens system is that optics can be reconfigured to image 

at a range of length scales.  The parameters computed in this chapter have been used 

to design optical systems applied to the imaging of valve stents (Chapter 4) and 

preliminary imaging at the whole heart length scale (Chapter 7). 
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SUMMARY 

This chapter details the design of an optical system for a stereo rig to measure in vitro 

stent deployment.  Fire-wire Flea2 cameras (PointGrey, Canada) have been chosen for 

the stent application due to fast transfer of data (up to 800 Mbps), high resolution ease 

of use and low cost.  To obtain appropriate magnification and maintain sufficient depth 

of field a single lens system has been designed for applications over a range of length 

scales. As the most challenging application is the coronary artery length scale, this was 

selected for experimental confirmation of the optical theory.  The calibration grid and 

stent can be viewed in real time with the FlyCap2 software (Point Grey, Canada).  

Stereo images are displayed in a side-by-side format.  This help to set proper angle 

between cameras and fit investigated sample in the field of view of both cameras, to 

avoid reflection and check the depth of field.  The C-mount system allowed attachment 

of a user-defined lens system.   

The appropriately configured optical system will be used to characterise stent 

geometry (Chapter 4) and for the experimental analysis of stent behaviour during its 

deployment (Chapter 5) due to obtained high magnification and sufficient depth of 

field at the coronary length scale. 
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CHAPTER  4 

STENT GEOMETRY CHARACTERISATION TO ASSESS OPTICAL 

RECONSTRUCTION ACCURACY  

This chapter reports methods and results used to assess the accuracy of measurement 

of 3D device geometry using optical methods and comparison of this technique with 

other imaging techniques.  Quantitative comparison of volumetric and biplanar 3D 

techniques is reported for two distinct clinical applications, at different length scales, 

where stent geometry is of interest.  

Optical measurement of stent geometry for both applications is undertaken using the 

optical system described in Chapter 3, tailored to the appropriate length scale.  The 

most important outcome for this study is to confirm the accuracy of the approach at 

the coronary artery length scale to ensure robust output data is obtained during the 

stent deployment tests described in Chapter 5.  

This chapter reports results which have been published in Medical Engineering and 

Physics [130].   
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4. INTRODUCTION 

The design process for the stereo camera Flea2 system with custom lenses has been 

described in Chapter 3 for applications over a range of length scales.  This chapter 

describes use of this system to capture the geometry of fully deployed Percutaneous 

Pulmonary Valve Implantation (PPVI) stent at low magnification (x0.1) and balloon 

expandable coronary stents at high magnification (x0.4). The robustness and accuracy 

of 3D reconstructions from the optical stereo-photogrammetric method is determined 

through comparison with volumetric methods in both cases. The assessment of valve 

stent reconstruction involved collaborative work undertaken with University College 

London (UCL) and compared three additional imaging methods (biplanar fluoroscopy, 

computed-tomography and micro-computed-tomography) with the optical method.   

The coronary stent geometry examined using the optical method was compared with 

micro-computed tomography, as other imaging techniques were found to have 

insufficient resolution to characterise the local geometry.   

This investigation of the optical method at two length scales demonstrates the 

effectiveness of biplanar imaging methods at lower magnification before proceeding 

to the most challenging coronary artery length scale.  The reason for stent geometry 

characterisation using both optical biplanar and volumetric methods was to assess 

accuracy and check robustness of the methodology before employing this method to 

examine local regions of a coronary stent during deployment.  

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CGkQFjAI&url=http%3A%2F%2Fwww.theheart.org%2Ffr%2Fdocuments%2Fsitestructure%2Fen%2Fcontent%2Fprograms%2F1027609%2Ftranscript.pdf&ei=da9WUsnqG4mt7QaLiICAAg&usg=AFQjCNHkJvHi2cSElogJAZf3KQu6WR5gbw&sig2=b1rJYowt4uAg25YtBigPFA&bvm=bv.53760139,d.ZGU
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CGkQFjAI&url=http%3A%2F%2Fwww.theheart.org%2Ffr%2Fdocuments%2Fsitestructure%2Fen%2Fcontent%2Fprograms%2F1027609%2Ftranscript.pdf&ei=da9WUsnqG4mt7QaLiICAAg&usg=AFQjCNHkJvHi2cSElogJAZf3KQu6WR5gbw&sig2=b1rJYowt4uAg25YtBigPFA&bvm=bv.53760139,d.ZGU
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4.1. LARGE SCALE-VALVE STENT  

The study of the Percutaneous Pulmonary Valve Implantation (PPVI) stent was a 

collaborative effort with contributions from members of the MeDDiCA Marie Curie 

Initial Training Network at UCL.  The study was designed to provide a quantitative 

assessment of uncertainty in the 3D reconstruction of stents using available imaging 

techniques.  

A number of imaging techniques were used to assess 3D stent geometry of a deployed 

Cheatham Platinum (CP) stent with a 6 ring configuration (Figure 4-1c), the PPVI 

device, MelodyTM (Medtronic, MN, USA). The stent length was approximately 34 mm 

and diameter varied from 22 mm, 19 mm and 24 mm in the distal, central and proximal 

regions respectively.  The valve stent is used to implant the pulmonary Melody valve 

in patients with valve dysfunction.  2D X-ray fluoroscopy and 3D computed 

tomography are used to control valve stent position and to assess its mechanical 

performance over time.     

4.1.1. METHODS  

4.1.1.1.   IMAGE ACQUISITION 

To mimic the anatomical valve stent implantation site, a right ventricular outflow tract 

(RVOT) of a PPVI patient, was reconstructed from magnetic resonance images (MRI) 

using the commercial software Mimics (Materialise, Leuven, Belgium) at UCL 

(Figure 4-1a).  A 3D compliant analogue of the obtained volume was produced in a 

flexible elastomeric material (TangoPlus Full-Cure® 930 compound, Objet Ltd, 

Rehovot, Israel), Figure 4-1b.  The CP stent was deployed onto this implantation site 

model to match the geometry of the underlying vessel.  Six metallic spherical markers 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CGkQFjAI&url=http%3A%2F%2Fwww.theheart.org%2Ffr%2Fdocuments%2Fsitestructure%2Fen%2Fcontent%2Fprograms%2F1027609%2Ftranscript.pdf&ei=da9WUsnqG4mt7QaLiICAAg&usg=AFQjCNHkJvHi2cSElogJAZf3KQu6WR5gbw&sig2=b1rJYowt4uAg25YtBigPFA&bvm=bv.53760139,d.ZGU
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(Figure 4-1b, c) were glued with super glue in several positions on the RVOT analogue 

(around the stent) to provide reference markers for further comparison between all 

imaging methods. 

        
Figure 4-1:  a) Right ventricular outflow tract (RVOT) of a PPVI patient reconstructed 

from magnetic resonance (MR), b) valve stent deployed on the model made from 
elastomeric material (TangoPlus Full-Cure® 930 compound, Objet Ltd, Rehovot, Israel), 

courtesy of Daria Cosentino (UCL), c) 6 ring configuration of the deployed valve stent. 

 

The stent was imaged using: a) micro computed tomography (micro-CT), b) 

conventional CT, c) biplane fluoroscopy and d) optical stereo-photogrammetry 

techniques. The imaging equipment for each method is presented in the Figure 4-2. 

To protect the sample during transport a glass cylinder with a wooden rod fixed in the 

middle was used.  All image acquisitions were obtained within a three day period.  CT 

scanning and fluoroscopy were performed at Great Ormond Street Hospital for 

Children, London, UK.  Optical stereo-photogrammetry and micro-CT were 

completed in our lab and in Mellanby Centre at the Royal Hallamshire Hospital in 

Sheffield.  Images captured using each of these techniques are presented in  
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Figure 4-3a-b (for volumetric methods) and Figure 4-4a (for biplanar methods), 

section 4.1.1.1 (Image post-processing). 

                    
Figure 4-2:  Equipment used to image valve stent a) micro-CT scanner Skyscan 1172 ex 

vivo cone-beam scanner (Bruker, Belgium), b) Conventional CT (SOMATOM Definition, 
Siemens, Germany), c)Biplane fluoroscopy Axiom Artis Flat Detector system (Siemens, 

Germany), d) Stereo camera Flea2 rig (Point Grey, Canada). 

 

Micro-CT scan was   performed  with   the   Skyscan   1172   ex   vivo   cone-­beam   scanner  

(Bruker,  Belgium)  with spatial resolution of 17 µm.    Conventional  CT  was  performed  

using  a  64-­slice  dual-­source  multidetector  system  (SOMATOM  Definition,  Siemens,  

Germany)  with  images reconstructed with a pixel size of 127 µm x 127 µm and slice 

a) b)

c) d)
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increment of 299 µm (slice thickness of 600 µm) for the low dose scan (CTl), and with 

a pixel size of 123 µm x 123 µm and a slice increment of 299 µm (slice thickness of 

600 µm) for the high dose scan (CTh).   

Fluoroscopy (F) images were acquired in a catheterisation laboratory equipped with 

Axiom Artis Flat Detector system (Siemens, Germany).  The arms of the fluoroscopy 

system were positioned orthogonally, at the same distance from the deployed stent. 

Acquisitions with the fluoroscopy scanner resulted in the pixel size of  

279 μm  x  279 μm. 

Optical stereo-photogrammetry was performed using the method described in Chapter 

2 to obtain optical image pairs.  A pair of Flea2 fire-wire cameras were separated by 

45° ± 5° and controlled with FlyCap2 software (Point Grey, Canada).  A checkerboard 

grid pattern containing 7 x 4 squares (2 mm x 2 mm each) was captured in seven 

different orientations to calibrate the cameras using the Bouguet Calibration Toolbox 

in Matlab.  A large scale checkerboard grid (27 mm x 21 mm) control object was 

imaged to assess calibration and reconstruction accuracy by reconstructing 3 mm 

reference distances (defined using a 3 x 3 mm checkerboard grid) captured during three 

translations.  The optical system for the valve stent length scale was designed to 

provide a field of view of around 34 mm in the maximum image dimension and to 

ensure adequate depth of field, specified as 20 mm (see section 3.2), allowing focus to 

be maintained over the full stent geometry.  To compare results with the volumetric 

imaging methods the entire stent geometry was captured by rotating the stent in 

increments of 45° ± 10° and imaging the stent at each of the eight positions. 
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The resolution of the optical images was 1288 x 964 pixels with a sensor size of  

3.75 µm x 3.75 µm per pixel, as presented in Chapter 3.  A lens of focal length 40 mm 

was used, positioned approximately 46 mm from the camera sensor, resulting in a 

magnification of 0.1.  This magnification results in a field of view of 46 x 38 mm and 

a spatial resolution of approximately 35 µm. Lens aperture was 3 mm to reduce 

diffraction effects (Chapter 3, subsection 3.2). 

4.1.1.2.     IMAGE POST-PROCESSING 

The post-processing applied to the data available from each imaging modality to 

provide 3D stent geometry is described in this section.  The 3D geometry was defined 

through identification of strut landmark points at the crown location of the stent struts 

for biplanar and volumetric methods.  Comparative measurements (between each 

method) of the struts length were made assuming strut dimensions are represented by 

straight lines joining each strut landmark point as shown for micro-CT in Figure 4-3 

and for biplanar methods in Figure 4-4. 

Volumetric methods  

Post-processing of the 3D volumetric image data (micro-CT, high dose CT and low 

dose CT) was done using Mimics software at UCL.  In Figure 4-3 a) cross-section and 

b) 3D reconstructed geometry of the stent obtained from volumetric methods are 

presented.  
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Figure 4-3:  a) The orientation of cross-section in the imaging volume; b) reconstructed 

3D models obtained from volumetric methods; c) the detail of the micro-CT geometry 
shown to demonstrate strut landmark points at the crown location of the stent struts and 
the measurement of strut length, part of image adapted with permission from Cosentino, 

Zwierzak et al. [130] . 

 

Biplanar methods  

Typical images obtained using the two biplanar methods are presented in Figure 4-4 

with the strut dimensions represented by straight lines on the right side and zoomed 

weld centre area for OP.  

Low dose CTHigh dose CTMicro-CT

a) 

b) 

c) 



CHAPTER 4: STENT GEOMETRY CHARACTERISATION 
 

98 
 

 
Figure 4-4:  Representative images from biplanar imaging techniques a) fluoroscopy, left 

and right images; b) stereo optical imaging, left and right.   

 

The 2D fluoroscopy image pairs were post-processed to obtain the 3D stent geometry.  

Landmark points were identified in both fluoroscopy images and back-projected 

(orthographic projection) into 3D space by tracing parallel rays from the orthogonal 

projections using CAD software Rhinoceros. The ray intersection determines the 

position of the strut landmark in 3D space.  The calibration was based on the distance 

measured between reference markers calculated from the micro-CT reconstruction. 

For each stent position imaged optically strut landmarks were identified in the left and 

right 2D camera images.  The 3D coordinate of each landmark was obtained by 

triangulation using the camera calibration data and the 2D position from left and right 

images [108].  The zoomed region of interest shown in Figure 4-5 shows the epipolar 

line in the right image passing through the same landmark in the left image.  

b) 

a) 
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Figure 4-5:  Triangulation of a selected point in three dimensional space achieved by 

intersection of the epipolar lines from two cameras. 

 

For each method the identification of the weld centre was repeated three times using 

the same image pair to test the repeatability of this process.  The average of the three 

reconstructed points was used to compute stent geometry parameters for comparison 

with the other imaging methods. 

4.1.1.3.   MEASURED PARAMETERS 

The reconstructed stent geometry obtained from each of the four imaging methods, 

was used to compute strut length (L), inter-strut   angle   (β)   and   circumferential  

asymmetry (Ca) of each strut unit.  The graphical representation of these parameters 

is presented in Figure 4-6.  The results obtained using each imaging technique was 

compared with micro-CT which was assumed to represent the gold standard. 

Strut length L (96 struts in total), was defined as the distance between the two landmark 

points (x1, y1, z1) and (x2, y2, z2) at the end of each strut: 

𝐿 = ඥ(𝑥ଶ −  𝑥ଵ)ଶ   +  (𝑦ଶ −  𝑦ଵ)ଶ +  (𝑧ଶ −  𝑧ଵ)ଶ    4-1 

Inter-strut   angle   β   (96   angles),   was   computed   using   the   Law   of   cosines   from   the  

dimensions of the triangle to which the investigated angle belongs: 

Epipolar line Left image Right image 
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𝛽 = 𝑎𝑐𝑜𝑠 ቀି௕
మା௔మା௖మ

ଶ௔௖
ቁ     4-2 

Stent cell asymmetry Ca (40 asymmetries) was calculated as the ratio between the cell 

longitudinal (dl) and circumferential (dc) diagonals:  

𝐶௔ =
ௗ௟
ௗ௖

     4-3 

 
Figure 4-6:  Definitions of the parameters measured for comparison: strut length (L), 

angle (𝜷) and circumferential asymmetry (Ca). Stent 3D model was created using CTan 
and improved with CTvol. 
 

4.1.1.4.   ERROR EXAMINATION 

The geometric parameters were calculated from multiple reconstructions of the stent 

geometry for each technique.  The repeatability error was assessed by calculating the 

standard   deviation   (σp) of the parameter values and the maximum percentage 

difference  (∆Pmax) from the average parameter value (P) over all reconstructions, as 

defined in equation 4-4.        

L

βa

b

c

dl
dc

Ca
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                                     4-4 

This resulted in n values of standard deviation and maximum percentage difference 

for each parameter (96 for strut length, 96 for inter-strut angle and 40 for stent cell 

asymmetry).  For all methods averaging was calculated from three reconstructions  

(n = 3).  

The maximum, mean and average of the n values of standard deviation and maximum 

percentage difference are reported in section 4.1.2. as an estimation of the 

reconstruction error associated with each imaging technique. 

A sensitivity analysis was performed, to define the maximum possible sources of 

errors for optical reconstruction, which is the main focus of this study.  The error in 

strut angle was evaluated by selecting landmarks away from the centre of each crown 

weld to assess the potential inaccuracy due to incorrect selection of strut landmarks.  

The area of interest was chosen randomly for two stent angles.  The landmarks were 

reconstructed three times for chosen struts to assess the variation in angles resulting 

from inaccurate landmark identification. The diagram below (Figure 4-7) illustrates 

the area within which landmarks were selected.  
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Figure 4-7:  Stent strut image reconstructed from micro-CT images. Potential error 

(uncertainty) area for angle measurement indicated with red green and purple points, 
where black presents the correct angle. 

 

4.1.1.5.   COMPARISON OF IMAGING TECHNIQUES WITH GOLD STANDARD 

METHOD 

Micro-CT measurements of all parameters (L-length,   β-inter-strut angle and  

Ca-circumferential asymmetry) were used as the gold standard for assessment of the 

error  arising  from  the  other  imaging  techniques.    Pearson’s  correlation  coefficient was 

calculated between the micro-CT data and all other imaging techniques, for all three 

parameters. Bland-Altman plots were produced for each parameter and for optical 

reconstruction technique using the micro-CT data as the comparative method.  

4.1.2. RESULTS- MEASURED ERROR, DIFFERENCES BETWEEN IMAGING 

TECHNIQUES 

The reconstruction of 25 points in three translation steps for calibration and 

reconstruction accuracy assessment for the optical method resulted in an average 

difference of 19 µm (Table 12) in computed size of a grid square on the checkerboard. 

β



CHAPTER 4: STENT GEOMETRY CHARACTERISATION 
 

103 
 

The variation in the computed parameter values for each technique with repeated 

reconstruction of the stent geometry is reported in Table 13.  The calculated values of 

stent  parameters   (L,  β,  Ca)  using  each   imaging   technique  were   correlated  with   the  

corresponding values from micro-CT.  Pearson’s  correlation  coefficients  computed  for  

each parameter are reported in Table 14.  

The 96 measures of strut length obtained with each imaging method individually are 

plotted against the micro-CT results in Figure 4-9.  The length was chosen for the 

linear regression plot as due to highest variation in the correlation results. 

Bland-Altman plots to compare optical reconstruction results with the micro-CT data 

are shown in Figure 4-10 for the strut length (L), inter-strut angle   (β),   and   cell  

asymmetry (Ca), respectively.  The percentage error from the comparison of micro-

CT with other imaging methods is presented in Table 15. 

The results from the sensitivity test for the two reconstructed angles for inaccurate 

landmark identification (as shown in Figure 4-7) are presented in Table 16.  The 

maximum calculated error of 2.57% was found from the sensitivity test results.  

Table 12:  Maximum, minimum and standard deviation (STDEV) from all 25 points 
reconstructed in 3 steps of translation of the control object (Chapter2, section 2.3, 

Figure 4-8) 

Difference in computed distance [µm] STDEV 
[µm] 

Max Average Min  

55  19 0.2 15 
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Table 13:  Maximum and mean standard deviations, and maximum and mean % 
differences (with respect to average values for each technique presented in the brackets) in 

the  strut  lengths  (L),  strut  angles  (β)  and  circumferential asymmetries (Ca) between 
repeated point selections. 

Parameters STDEV max and (mean) % DIFFERENCE max and (mean) 
L [mm]   

micro-CT 0.082 (0.021) 2.07 (0.52) 

hCT 0.136 (0.042) 3.51 (1.01) 
lCT 0.237 (0.068) 6.11 (1.75) 
OP 0.065 (0.020) 2.90 (0.35) 
F 0.198 (0.063) 3.79 (0.92) 
   

β  [º]   
micro-CT 1.175 (0.275) 1.59 (0.43) 

hCT 2.048(0.487) 2.71 (0.76) 
lCT 3.472 (1.024) 5.57 (1.64) 
OP 1.055 (0.356) 1.98 (0.31) 
F 2.934 (0.883) 3.60 (0.81) 
   

Ca [-]   
micro-CT 0.009 (0.003) 1.21 (0.44) 

 hCT 0.017 (0.006) 2.58 (0.85) 
 lCT 0.047 (0.013) 5.76 (1.77) 
 OP 0.009 (0.004) 1.18 (0.29) 
F 0.024 (0.011) 2.78 (0.71) 

 

 
Table 14:  Results of linear correlation coefficient between values of each parameter 

calculated using micro-CT and each of the four other imaging techniques. 

 lCT hCT OP F 

L 0.657 0.542 0.906 0.541 

β 0.981 0.993 0.993 0.989 

Ca 0.988 0.993 0.995 0.988 
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Figure 4-9:  Linear regression plotted for the ideal case to show how close plotted data are 
correlated against micro-CT 

 

Table 15:  Comparison of hCT, lCT, fluoroscopy and optical stereo-photogrammetry 
techniques: maximum (mean) % differences of all parameters with respect to micro-CT. 

Max (Mean) % 
Differences hCT lCT F OP 

L [%] 3.84 (1.04) 5.94 (1.58) 4.26 (1.22) 1.97 (0.18) 

β  [%] 3.40 (0.96) 5.87 (1.30) 3.07 (0.89) 3.00 (0.89) 

Ca [%] 2.32 (0.83) 4.43 (1.30) 4.31 (1.18) 3.02 (1.12) 
 

 

Table 16:  Repeated angle measurement to assess likely maximum error. 

 Angle Measured result [°] Difference from correct angle [°] Error [%] 

1 

1. true 96.97 - - 

vary 1 96.66 0.31 0.32 

vary 2 97.98 1.01 1.042 

vary 3 94.48 2.49 2.57 

2 

true 76.61 - - 

vary 1 75.2 1.41 1.84 

vary 2 77.97 1.36 1.77 

vary 3 77.58 0.97 1.26 
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Figure 4-10:  Bland-Altman plots for: a) strut length (L); b)  inter  strut  angles  (β);;  c)  

circumferential asymmetry (Ca) showing the differences in the values measured with the 
micro-CT technique and stereo photogrammetry. The thick line represents the mean 

difference between the value of the parameter measured with each technique and with 
micro-CT. The dotted lines represent +1.96 and -1.96 standard deviation of the differences 

between the two methods. 
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4.1.3. DISCUSSION 

For the volumetric methods the variation in the computation of all parameters with 

repeated landmark selection increases from micro-CT to hCT to lCT (the transparent 

arrows in Table 13 show increasing uncertainty).  For the biplanar methods, the 

variation increases from the optical stereo-photogrammetry to the fluoroscopy (the 

purple arrows show increasing uncertainty).  These results agree with expectations as 

the micro-CT data are obtained at the highest spatial resolution and low dose CT 

imaging is expected to be worse than that of the high dose CT.  The uncertainty of the 

optical reconstruction results is of similar magnitude to the micro-CT data, whilst the 

uncertainty of the biplanar fluoroscopy results is of similar magnitude to that of the 

high dose CT.  This relationship between the results obtained using 2D and 3D 

methods are in line with the variation in the spatial resolution of each technique.  The 

closest linear correlation with micro-CT measures was obtained using the optical 

stereo method for all three parameters, as reported in Table 14 and shown in Figure 

4-9 for the length measure.  From Table 15 it is clear that the optical reconstruction 

method results in the smallest maximum and mean percentage error values. 

These results demonstrate that local 3D PPVI stent geometry can be accurately 

measured using two biplanar views.  Comparison between biplanar fluoroscopy and 

stereo photogrammetry, demonstrates the improvements in accuracy that can be 

obtained using high resolution optical systems, which maintain the advantage of high 

temporal resolution in contrast with volumetric methods.  

Whilst biplanar angiography can be applied for in vivo imaging the increase in 

accuracy provided by the optical method is encouraging for in vitro application of this 
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technique at coronary artery length scales, which is the focus of the remainder of this 

thesis.  

4.2. SMALL SCALE-CORONARY STENT 

In section 4.1 it has been demonstrated that fluoroscopy can measure the geometry of 

valve stents in vivo.  However, this method can be not used to assess the geometry of 

coronary stents due to their small size, thin struts and the insufficient resolution of the 

X-Ray equipment to visualise stent details, as it is presented in the image below. 

 
Figure 4-11:  Stent implantation in the LAD (Left Anterior Descending Artery); image 

visualize inflated angioplasty balloon; courtesy of Dr Julian Gunn.  

 

Although optical methods cannot be applied for in vivo imaging, the increase in 

accuracy they provide is encouraging to examine coronary stent performance in 

vitro/ex vivo.  From the perspective of design of the optical system, as discussed in 

Chapter 3, the measurement of 3D coronary stent geometry presents a more significant 

challenge due to the smaller length scales involved.  This section describes extension 

of the methods applied to the PPVI stent in section 4.1 to compare the accuracy of 

biplanar optical stereo-photogrammetry and micro-CT for evaluation of 3D coronary 

stent geometry.  Both techniques were used to determine the 3D geometry of one fully 

deployed (FD) and one semi-deployed (SD) 316L surgical stainless steel Taxus 

ExpressTM balloon expandable stent (Boston Scientific) with a 7 ring configuration 
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(Figure 4-12).     The  TAXUS™  Express2™  Paclitaxel-Eluting Coronary Stent is an 

expandable, slotted, stainless steel tube, with a drug (paclitaxel) contained within a 

thin  polymer  coating  on   its  surface  to  reduce  neointimal   tissue  growth  (  TAXUS™  

Express2™  Manual,  MonorailTM).  

 
Figure 4-12:  Presentation of the 7 ring configuration of the deployed coronary Taxus 

Express stent on the angioplasty balloon. 

 

Comparison of semi- and fully-deployed stent geometry was undertaken to consider 

the   typical   ‘dog-boning’   effects   observed   as   the   stent   expands,   illustrated  

schematically in Figure 4-13. 

 
Figure 4-13:  Schematic presentation of semi (dog-boning) on the left and fully deployed, 

on the right, stent configuration.  
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4.2.1. METHODS  

4.2.1.1.  IMAGE ACQUISITION 

A piece of a metal wire (reference marker) was attached to the balloon catheter used 

to deploy the stent, to provide a reference position to locate correspondence between 

the optical and micro-CT imaging methods (Figure 4-14). 

 
Figure 4-14:  Schematic representation of the reference marker fixed on the catheter.  

 

Optical images were obtained using a stereo camera rig with a pair of Flea2 cameras, 

separated by 85°, controlled with FlyCap2 software (Point Grey, Canada).  The optical 

system designed in Chapter 3 was used to provide a field of view of around 10 mm 

along the maximum image dimension and to ensure adequate depth of field of 4 mm 

to maintain focus over the stent geometry.  The optical image resolution was 1288 x 

964 with a sensor pixel size of 3.75 µm x 3.75 µm. A lens of focal length 31.5 mm 

was positioned approximately 44 mm from the camera sensor, resulting in a 

magnification of 0.4, field of view 10 mm x 8.2 mm and a spatial resolution of 

approximately 8 µm. 

The cameras were calibrated using a small scale checkerboard grid pattern containing 

100 squares (0.5 mm x 0.5 mm) with the Bouguet Calibration Toolbox for Matlab 

[105, 115]. Calibration accuracy was determined through reconstruction of a control 

checkerboard grid (10 x 6 mm) captured during few translations by reconstructing  

2 mm reference distances between single grids.   

Reference marker 
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The stent and catheter were removed from the packaging provided by the 

manufacturer, clamping the catheter to maintain a horizontal position (Figure 4-15 and 

to ensure an appropriate distance (approximately 105 mm) was maintained between 

the lens and the stent during expansion.  This method reduces rigid body motion of the 

catheter which might move the stent outside the depth of field during balloon inflation, 

producing blurred images and increasing the error of results.  

A clinical implantation device (Merit Medical Basix25, Ireland) was connected to the 

catheter and used to inflate the balloon and to monitor the applied pressure (the setup 

of the inflation device is in Chapter 5, section 5.1.1). The balloon pressure was 

incrementally increased in steps of approximately 0.5 atmospheres.   

 

 
Figure 4-15:  Stereo camera rig (pair of Flea2 fire wire cameras) focused on the coronary 

stent crimped on the balloon.  

 

The first stent with 3.5 mm nominal deployed diameter, 8.0 mm length was semi-

deployed (SD), by increasing the balloon pressure to 4 atmospheres until a dog-boning 

effect was observed and then deflating the balloon.  The balloon was not removed to 

Clamped catheter with 
stent crimped on the 
balloon 
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keep a reference point on the catheter surface.  The second stent with 4.0 mm nominal 

deployed diameter, 8.0 mm length was fully deployed (FD) to the nominal balloon 

pressure of 9 atmospheres, with the balloon left inflated to avoid stent movement due 

to balloon deflation and keep the same relationship between the stent and the reference 

point fixed on the catheter.  Micro-CT of the stents was undertaken as a gold standard 

validation method for comparison with the optical technique.  To help and support the 

stent during scanning, it was placed in the tube made of plastic, which was glued to 

the scanner plate for the stability purpose.  Scans were performed with the Skyscan 

1172 ex vivo cone-beam scanner (Bruker, Belgium).  The voxel size was 6.0 µm x 6.0 

µm x 6.0 µm with scanning parameters: 70kV, 141µA, Aluminium/copper filter, and 

180° rotation with a 0.7° rotation step resulting in 257 projection images. The stent 

was scanned as a 3 part oversized scan. Each image acquisition time was 590 ms. 

4.2.1.2.   IMAGE POST-PROCESSING 

Optical images of the coronary stents were analysed using Matlab for the biplanar 

method, CTan, CTvol (CT data analyser) and Dimension Expert (Dimension Expert, 

DeskArtes, Finland) for the volumetric methods. 

Optical stereo-photogrammetry: Strut landmarks were used to characterise stent 

geometry, in the same way as for the PPVI stent analysis.  Identification of landmarks 

in the left and right 2D camera images is shown in Figure 4-16.  
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Figure 4-16:  Strut landmark in the left and right camera image. Epipolar line 

indicating correspondence position in the right image.    

 

The 3D coordinate of each weld centre point was obtained by triangulation using the 

camera calibration data and the 2D position from left and right images [108] as 

explained in Chapter 2.  The accuracy associated with hand picking of strut landmark 

points was estimated by repeating the measurements 7 times. 

Micro-CT: The data was reconstructed using NRecon (Skyscan, Belgium) to provide 

a 3D volumetric data set for comparison with the stereo optical reconstruction.  

Regions of interest were selected using CTAn (Skyscan, Belgium) and 3D volumes 

were created by segmentation, using a binary threshold (105, where maximum 

intensity is 255). Threshold sensitivity testing demonstrated that a higher binary 

threshold (>110), caused loss of volume (Figure 4-17a), and a lower threshold (<100) 

resulted in a lot of noise (Figure 4-17b).  
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Figure 4-17:  3D models presenting importance of the threshold value.  

 

A standard triangle language (STL) file of the reconstructed stent was exported to 

Dimension Expert, DeskArtes (Figure 4-18), where the 3D data were obtained.   

 
 

Figure 4-18:  Example images of fully-deployed stent, a) Micro-CT scan with selected area 
for reconstruction; b) stent cross section; c) chosen region of interest; d) 3D model 

(visualised using Dimension Expert software). 

a 

b 

c 

d 

a) b) 
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4.2.1.3.   MEASURED PARAMETERS 

The 3D coordinates of the landmarks derived from each method were used 

independently to calculate strut length and angle (Figure 4-19) using the same 

equations (4-1) and (4-2) as for the valve stent.  

 Strut length L (n = 31 and n = 8 for the FD and SD stents respectively)  

 and inter-strut  angle  β  (n  =  25  and  n  =  5  per  FD  and  SD  stent  respectively) 

 
Figure 4-19:  Fully deployed (FD) stent geometry: (a) Optical image (b) 

Segmented surface shown in Desk Alert. Definition of inter-strut angle  (β)  and  
strut length (L). 

 

A smaller number of lengths and angles were measured for the SD stent, as it was only 

deployed at the ends and remained in the undeformed state in the centre.  

4.2.1.4.   ERROR EVALUATION 

The reconstruction was repeated seven times for six landmarks points to assess the 

repeatability of the measurements.  The repeatability error was assessed by calculating 
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the  standard  deviation  (σp) of each parameter value over the seven reconstructions as 

defined in equation (4-4).   

Parameter values (L,  β)  computed  with  OP  were  compared  with  the  micro-CT data 

gold standard measurement.  The maximum percentage difference between the two 

imaging   methods   for   each   parameter   was   obtained   and   Pearson’s   Correlation  

Coefficient was calculated for a linear fit between the micro-CT data and the optical 

method.  Bland-Altman plots were produced using the micro-CT data as the reference 

method.  

4.2.2. RESULTS 

The final geometry of the fully- and semi-deployed stents captured with the left camera 

is presented in Figure 4-20. 

 
Figure 4-20:  Left camera images of semi-deployed Taxus Express 3.5 mm x 8 mm 

 (p= 4.0 atm) and fully-deployed Taxus Express 4x8 mm 
 

Scanned images are presented in Figure 4-21, obtained from CTan.  The metal wire 

(reference marker), which was attached to the catheter, is visible in the top of the 
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image.  This marker allowed the same area of the stent to be identified for 

reconstruction using both imaging methods.  

 
Figure 4-21:  Output from the micro-CT scanner; visualisation from CTan. 

 

Control object reconstruction suggested an average measurement accuracy of the order 

10 μm  for  10  measured  differences  in  distances  between  points  on  the  grids  compared  

for 5 translations conducted with a travelling microscope, Table 17.  The accuracy 

associated with the repeatability of hand picking of strut landmark points is presented 

together with the calibration accuracy results.  A much higher discrepancy occurred 

when picking the same landmark on the stent surface, rather when picking sharp corner 

of the checkerboard grids for the calibration accuracy assessment.   

 

 

Reference markers
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Table 17:  Maximum, minimum and standard deviation (STDEV) from all 10 points 
reconstructed in 5 steps of translation of the control object for the calibration accuracy 

assessment.  

Calibration accuracy [µm] Repeatability accuracy [µm] 
Max Mean Min STDEV Max Mean Min STDEV 
24 10 6 10 31 16 6 16 

 

The  calculated  values  of  the  stent  parameters  (L,  β)  measured  using  OP  were  correlated  

with the corresponding values measured using micro-CT.      Pearson’s   Correlation 

Coefficients values were calculated (FD: R2=0.9957 for length; R2=0.9798 for inter 

strut angle measurement; SD: R2=0.9988 for length; R2=0.9629 for angle 

measurement) demonstrating good linear correlation.  Bland-Altman plots comparing 

OP with micro- CT results for length and angle measurements are shown in Figure 

4-22. 

The OP calculation of strut length agrees to within 98.5 % and inter-strut angle agrees 

to within 97% of the micro-CT values for FD stent and strut length agrees to within 

98% and inter-strut angle agrees to within 96.5% of the micro-CT values for SD stent.  

A maximum difference of the order 0.03 mm (3.8%) and of the order 3 degrees (4%) 

was computed for a single strut length and single inter-strut angle respectively. 
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Figure 4-22:  a) FD and b) SD stent: Bland-Altman plots for strut length (L) and inter-

strut angle  (β)  (showing  the  differences  in  the  values  measured  with  the  micro-CT and OP 
technique). The thick line represents the mean difference between the value of the 

parameter measured with OP and micro-CT. The two dotted lines represent +1.96 and -
1.96 standard deviations of the differences between the two considered methods. 
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4.2.3. DISCUSSION 

Local stent geometry (strut lengths, angles between struts) at the smaller length scale 

of coronary stents was obtained using volumetric micro-CT and biplanar optical 

stereo-photogrammetry.  The optical method reported here has been shown to provide 

a description of 3D stent geometry which agrees well with volumetric data even at 

these more challenging length scales.   

Both linear regression and Bland-Altman plots confirm good agreement of the optical 

method with micro-CT data.  For the strut length parameter for both stents there is a 

small negative offset, demonstrating that the stereo method tends to underestimate strut 

length.  However, this offset is significantly less (~ 5 μm)  that  the  mean  repeatability  

error (~ 16 μm)  associated  with  identification  of  strut  landmark  points.   The offset in 

angle measurement is not consistent between the two stent reconstructions. The semi-

deployed stent had four times less lengths and angles measured due to the reduced 

number of deployed struts.  In general the results demonstrated good agreement 

between the two techniques.   

For in vitro measurement, micro-CT provides accurate 3D geometry at high resolution, 

but cannot capture stent deployment over a realistic timescale of a few seconds.  It is 

possible to obtain micro-CT data for a number of static steps of stent/balloon inflation, 

as reported by Connolley and colleagues [89], but image acquisition takes 70 min to 

scan the entire stent at each balloon inflation step (inflation steps were at 0, 8, 12 and 

17 atm).  The change in stent length and diameter was examined with image analysis 

software (ImageJ).  Another study which focuses on the imaging coronary stent 

deployment in the micro-CT scanner is presented by Mori [4], who analysed elastic 
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recoil of the coronary stent after balloon deflation.  However, no information regarding 

experimental accuracy is included in either study.   

The advantage of the optical stereo technique is that images of the stent expansion 

process are collected in the timescales of minutes and have the potential to be acquired 

dynamically in the way that cannot be achieved using micro-CT scanner.  Moreover, 

our method accuracy is checked each time by testing a control object with known size 

to obtain informative results.  

Whilst optical techniques cannot be employed to evaluate in vivo device performance, 

these techniques may be preferred to assess unconstrained coronary stent deployment 

[106]. 



 

122 
 

 

SUMMARY 

Accuracy assessment of imaging methods is important to ensure confidence in 3D 

reconstruction of geometry from biplanar imaging techniques, particularly if strain is 

to be derived from changes in the geometry during deformation.  In this chapter it has 

been shown that biplanar 3D image techniques can provide accuracy of the same order 

as 3D volumetric image modalities to assess the geometry of stents at different length 

scales.  To the author’s knowledge this is the first time that quantitative measures of 

local stent geometry have been obtained; the same applies to detailed accuracy 

assessment of imaging modalities.  

The encouraging results support further investigation of the stereo image pairs 

acquired at a number of inflation steps during unconstrained stent expansion which 

will be presented in Chapter 5 and stent deployment in a vessel analogue to examine 

strains on the vessel surface due to stent-vessel interaction, presented in Chapter 6. 

These subsequent chapters aim to improve our understanding of stent-vessel 

interactions.  
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CHAPTER  5 

MEASUREMENT OF CHANGES IN LOCAL AND GLOBAL STENT 

GEOMETRY DURING IN VITRO FREE EXPANSION 

Chapter 5 describes the application of a 3D optical reconstruction method to examine 

the free expansion of stents, characterising the change in local (inter-strut angle) and 

global (dog-boning ratio) geometry during balloon inflation.  It is necessary to 

understand how stents deploy in order to identify potential mechanisms of expansion 

that may result in adverse vascular responses.  This chapter extends the methods 

described in Chapter 4 to consider incremental changes in stent geometry during 

expansion and compares pseudo-static expansion with fully dynamic expansion.  

Dynamic expansion is undertaken over timescales which match those employed 

clinically. 

This chapter reports results which have been published in Journal of Artificial Organs 

[159].  
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5. INTRODUCTION 

In Chapter 4 it has been shown that biplanar 3D image techniques can provide accuracy 

of the same order as 3D volumetric image modalities to assess the geometry of stents 

at different length scales.  The optical stereo-photogrammetry method has been shown 

to provide a full 3D description of stent geometry which agrees well with volumetric 

data.  The landmarks on the coronary stent were reconstructed in 3D to an accuracy of 

the order 12 µm.  The optical technique has the potential to assess dynamic stent 

expansion over the same timescales used to clinically deploy the stent.   

The methods from Chapter 4 are extended here to assess coronary stent geometry at a 

number of inflation steps.  In a previous study, Kiousis et al. [131], reported 2D 

experimental measurement of free expansion of six vascular stents to investigate the 

deformation mechanisms and provided comparisons with a computational model. 

Diameter change, foreshortening, maximum dog-boning, elastic recoil during the 

deployment process (and stent recoil following balloon deflation) were determined.  

The balloon pressure ranged between 0 and 12 atmospheres.  In this previous study, 

images of stent deployment were obtained using a single CCD camera with a 

magnifying lens (details of the camera specification were not provided).  The 

limitation of this study was the use of single camera.  The stent was deployed gradually 

(in steps) over approximately 17 minutes.  This is much greater than the typical 

timescales for in vivo stent deployment which are of the order of seconds.  A similar 

approach was undertaken by Pochrzast [132]. This time a light microscope (no 

specification provided) was used to image change of stent diameter at distal, central 

and proximal part.  The balloon pressure ranged between 0 and 8 atm.  
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3D reconstruction adds depth information and the characterisation of 3D stent 

geometry provides a superior determination of the object surface, which is important 

for adequate strain analysis.  To the author’s knowledge, free expansion of the stent in 

3D has only been examined previously by Narracott [88] using stereo photogrammetry 

and Mori [4] using micro-CT.   

Narracott used stereo-photogrammetry to characterise stent deployment during 

inflation of two different balloon folding patterns.  This study supported the hypothesis 

that the folding pattern of the balloon influences the symmetry of the deployment.  3D 

optical reconstruction techniques offer the potential to determine detailed 3D 

deformation of the stent during expansion both locally and globally.  The limitation of 

previous work [88] was low camera resolution (640 x 582) and image capture using 

video data, whereas in current study direct, high resolution pixel data is obtained using 

a fire-wire connection.  An advantage of this current study is validation of the optical 

method against volumetric micro-CT (Chapter 4).  This has not been undertaken 

previously.  Mori et al. [4] examined elastic recoil due to balloon deflation using 

micro-CT scanning.  They did not report any errors presenting the results due to high 

accuracy of volumetric method.  However, the timescales of stent expansion in the 

micro-CT scanner are far from those presented clinically.    

This chapter reports an experimental investigation, with a focus on the dilation 

behaviour of balloon expandable coronary stents in 3D.  The aim is to examine the 

variation between local deformation of individual stent struts and global deformation, 

as assessed by change in stent diameter.  The information describing local stent 
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deployment during free expansion reported in this chapter will be further discussed in 

Chapter 6 to inform understanding of distribution of the strain on the vessel analogue.   

The stereo rig was used to capture incremental changes in stent geometry during 

expansion and a single camera captured dynamic expansion undertaken over 

timescales which match those employed clinically. 

5.1.  STEREO IMAGING OF PSEUDO-STATIC STENT DEPLOYMENT  

5.1.1. METHODS 

The stereo camera Flea2 system with custom lenses, described in Chapter 3, was used 

to capture the free expansion of coronary balloon expandable stents at multiple 

expansion stages.  The same optical configuration was used as described in Chapter 3 

to provide a field of view of around 10 mm along the maximum image dimension and 

to ensure adequate depth of field of 4 mm to maintain focus throughout the process of 

stent expansion.  

Three stents (of two different types) were used to assess stent behaviour in 3D during 

balloon   inflation.      Two   316   L   surgical   stainless   steel   TAXUS™   Express2™   drug  

eluting balloon expandable stents (Boston Scientific) were chosen for the first 

experiment and cobalt chromium alloy L-605 Coroflex Blue (B.Braun) stent was 

chosen for the second experiment.  These tests allow comparison of stent behaviour 

between stent designs during balloon inflation.   

The   TAXUS™   Express2™   Paclitaxel-Eluting Coronary Stent is an expandable, 

slotted, stainless steel tube, with a drug (paclitaxel) contained within a thin polymer 

coating on its surface to   reduce   neointimal   tissue   growth   (   TAXUS™  Express2™  
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Manual, MonorailTM).  The Coroflex Blue stent is a nine crown design which aims to 

optimise stent deployment and vessel wall coverage to reduce risk of intimal injury 

[133]. All stents were full deployed in vitro to investigate local and global changes in 

stent geometry during stent expansion.  The stent sizes are presented in Table 18 and 

stent designs in Figure 5-1. 

Table 18:  Stent and balloon types used in experimental study 

Brand Short name Initial D 
[mm] 

Final D 
[mm]  

Length 
[mm] 

Strut thickness 
[µm] 

Taxus Express 
TE1  

1.0 

3.0 

8.0 
132 

TE2 4.0 

Coroflex Blue CB3 3.5 65 

 

 

  
 

Figure 5-1:  Geometry of a)Taxus Express and b) Coroflex Blue coronary stents. 
 

For the TE1 and TE2 stents two cameras were separated as in previous study for the 

coronary stent by an angle of approximately 85°, for the CB3 stent the angle between 

cameras was reduced to 55° to be consistent with tests undertaken in Chapter 2 and 

confirm that camera angle does not change the calibration and reconstruction accuracy 

results.  

a) b) 
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The stent catheter was clamped (as presented in Chapter 4, section 4.2.1,  

Figure 4.4-5) to maintain a horizontal position and to ensure an appropriate distance, 

of approximately 105 mm from the cameras lenses and reduce rigid body motion of 

the wire during inflation of angioplasty balloon.  A diagram presenting lens to stent 

distance is shown in Figure 5-2.  Unwanted stent displacement during balloon 

inflation, outside the depth of field (DOF) area, can produce blurred images and 

increase the error of results as explained in Chapter 3.  

 
Figure 5-2:  Diagram presenting distance from cameras lenses to the CB3 stent. 

 

Prior to balloon inflation a checkerboard grid pattern was captured in six orientations 

to calibrate cameras using the Bouguet Calibration Toolbx in Matlab [115], as 

described in previous Chapters and explained in Chapter 2.  Calibration accuracy was 

determined through reconstruction of a control checkerboard grid with internal grids 

of size 3 mm x 3 mm.  Following calibration assessment the stent was placed within 

55º
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the field of view of two cameras.  DOF and correspondence between left and right 

images was checked using trial images prior to the stent expansion test. 

A clinical implantation device (Merit Medical Basix25, Ireland) was connected to the 

catheter and used to inflate the balloon and to control the applied pressure.  Air was 

removed from the inflation tube and water was used as an inflation medium.   

 
Figure 5-3:  The stent delivery system: a) inflation device, b) syringe with 3-way stopcock; 

c) balloon catheter with crimped stent at its tip. 

 

The pressure was increased to a value of 9 atm (911,92kPa) for both Taxus Express 

stents, in steps of 1 atm for TE1 (3.0 mm diameter) in smaller increments of 0.5 atm 

for TE2 (4.0 mm diameter).  The CB3 stent (3.5 mm diameter) was inflated to a pressure 

of 8 atm (810,60kPa) using steps of 1 atm.  The stent expansion process was imaged 

at each pressure increment.  To obtain accurate results, few seconds were given to the 

stent to stabilise, before stereo images were taken. 

a

b

c
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The stereo optical images were used to characterise stent expansion at each pressure 

increment as follows: 

 Images from each expansion stage were used, along with camera calibration 

data, to determine the 3D coordinates (x, y, z) of two landmark points on 

selected stent struts.   

 The 3D geometry of the stent struts was reconstructed at each stage of stent 

expansion.  

 The  angle  (β)  between the direction vectors along each strut was calculated as 

follows: 

𝑢= [𝑥௨, 𝑦௨, 𝑧௨] = [𝑥௣ଶ − 𝑥௣ଵ, 𝑦௣ଶ −   𝑦௣ଵ  , 𝑧௣ଶ − 𝑧௣ଵ] 

𝑤= [𝑥௪, 𝑦௪, 𝑧௪][𝑥௣ସ − 𝑥௣ଷ, 𝑦௣ସ −   𝑦௣ଷ  , 𝑧௣ସ − 𝑧௣ଷ] 

ቚ
௨
→ቚ =   ට(𝑥௣ଵ − 𝑥௣ଶ)ଶ +  (𝑦௣ଵ − 𝑦௣ଶ)ଶ +  (𝑧௣ଵ − 𝑧௣ଶ)ଶ 

ቚ
௪
→ቚ =   ට(𝑥௣ଷ − 𝑥௣ସ)ଶ +  (𝑦௣ଷ − 𝑦௣ସ)ଶ +  (𝑧௣ଷ − 𝑧௣ସ)ଶ 

                                    𝑢.𝑤 = cos(𝛽) ቚ
௨
→ቚ ቚ

௪
→ቚ –angle between vectors calculation, 5-1 

 where 
௨
→     and 

௪
→  are vectors along each strut direction (Figure 5-4).  This 

measurement was chosen to provide more meaningful definition of strut angle, 

particularly at the initial deployment. 
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Figure 5-4:  Strut length (a, c) and strut separation (b) were used to calculate strut angle. 
Grey dashes present increase in the angle between struts due to change in pressure load. 

 

In addition, characterisation of global stent deformation in 2D was undertaken by 

defining the degree of dog-boning between the proximal (DBp) and distal (DBd) parts 

of the stent, relative to the centre, defined as follows (as used by Kiousis [131] and 

Migliavacca [134]):  

𝐷𝐵௣ =   ஽೛  ି  ஽೎  
஽೛    

               𝐷𝐵ௗ =   ஽೏  ି  ஽೎  
஽೏    

    5-2 

Dd represents the distal, Dp-proximal and Dc- central diameter of the stent. 

If stent expansion is uniform along the stent length, we would expect stent behaviour 

similar to that predicted by in silico models, as shown in Figure 5-5. 

 
Figure 5-5:  Presentation of ideal schema of stent deployment, where a) presentation of 

initial stage, b) semi-deployed stage and c) final stage. Scenario presented during 
cylindrical balloon inflation, figure adapted with permission from publication of De Beule 

[10]. 

β
w

u

a) b) c) 
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Under  such  conditions  the  angles  of  all  the  units’  would  expand  gradually,  in  the  same  

way, under increasing pressure and no dog-boning effect would occur.  The variation 

of the measured parameters under these conditions is expected to be as shown in 

Figure 5-6a, which shows the anticipated variations in angle between struts expansion 

vs pressure.   In this case stent expansion results in no dog-boning (Figure 5-6b). 

  

 
Figure 5-6:  Presentation of a) local and b) global expansion of the ideal stent.  This plot 

presents situation in which stent has always the same diameter at distal, central and 
proximal part during each step of expansion; no dog-boning phase. 

 

Such stent behaviour may be predicted by numerical studies [10], particularly under 

the assumption that the balloon exerts a uniform pressure on the stent.  Under in vitro 

experimental conditions a greater variation in stent deployment is anticipated and has 

been previously reported [4, 131]. 
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5.1.2. RESULTS 

The results from calibration and reconstruction accuracy assessment using a control 

object for all three tests suggest measurement accuracy of the order 15 μm  for  both  

setups. The camera angle did not influence the calibration and reconstruction accuracy 

results. 

Table 19:  Maximum, minimum and standard deviation (STDEV) from all 25 points 
reconstructed in 3 steps of translation of the control object. 

Difference in computed distance [µm] STDEV 
[µm] 

Max Average Min  

18 8 6 15 

 

As an example of non-uniform deployment, images of the TE2 (4 mm) stent geometry 

at a pressure load of 0 (a), 3.75 (b) and 9 atm (c) are presented in Figure 5-7.  

 
Figure 5-7:  Images of the geometry of 4mm diameter stent (a) in the initial configuration 
(0atm), (b) showing dog-boning effect at 3.75 atm (in the region of the dashed lines) and 

(c) fully expanded at 9 atm. 

 

The change in inter-strut angle (local strut deformation) and dog-boning measures 

(global stent deformation) during balloon inflation are shown below (Figure 5-8 for 

TE1, Figure 5-9 for TE2 and Figure 5-10 for CB3).  The struts on the proximal (prox) 

a) 

 b) 

   c) 

Dog-boning effect 

1mm 
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and distal (dis) end of the stent, which were in the field of view of both cameras during 

the whole expansion process, were used to compute inter-strut angles.  The error bars 

represent the maximum error in angle (4%) reported during comparison between 

optical methods and micro-CT reconstruction of stent geometry from the previous 

chapter. 

  
Figure 5-8:  TE1- 3 mm diameter Taxus Express stent: a) variation in strut unit angle with 

balloon pressure for two units at the proximal end and one at the distal end.  b) dog-
boning ratio for proximal and distal ends; an image showing locations of the struts using 

to compute angles is presented at a pressure load of 3 atm. 
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Figure 5-9:  TE2- 4 mm diameter Taxus Express stent: a) dog-boning ratio for proximal 
and distal ends; b) variation in strut unit angle with balloon pressure for two units at the 

proximal end and one at the distal end 
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Figure 5-10:  CB3- 3.5 mm diameter Coroflex Blue stent. a) Dog-boning ratio for proximal 
and distal ends;  b) variation in strut unit angle with balloon pressure for two units at the 

proximal end and one at the distal end.   

 

5.1.3. DISCUSSION 

3D reconstruction of stent geometry during balloon inflation allows characterisation 

of the local deformation of stent units around the proximal and distal circumference.  

In addition, measures used in previous studies [48, 131] employing 2D methods which 

provide a more global assessment of changes in stent geometry were also computed 

for comparison.  Different outcomes of local and global measures of proximal and 
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distal stent deformation confirm that local strut deformation does not always correlate 

with changes in stent diameter.   

Rotation of the stents was observed during balloon inflation, resulting in the stereo-

visibility of a limited number of strut units throughout the expansion process.  During 

increase of balloon inflation pressure to a value of 3 atm for 3 mm (TE1) and 3.5 mm 

(CB3) diameter stents (Figure 5-8a and Figure 5-10a) and 3.75 atm for the larger, 4 

mm (TE2) diameter stent (Figure 5-9a) significant dog-boning of the stent geometry 

was observed.  Changes in the dog-boning ratio during stent expansion demonstrated 

greater deformation at both the proximal and distal ends within the range 3 to 6 

atmospheres.  For the TE1 stent dog-boning occurred at both ends of the stent. 

However, for the TE2 and CB3 stent this effect was only observed at the proximal end.  

In all cases increase in pressure to 4.5 atmospheres was sufficient to cause full 

expansion of the stent.  Further balloon inflation gradually increased stent diameter. 

The angular strut separation of the TE1 stent in the distal region follows the global dog-

boning effect whilst the two proximal units expand more gradually (Figure 5-8). This 

variation in the expansion of the proximal units may be due to their smaller initial 

angular separation.  The TE2 stent results indicate the angle of the unit in the proximal 

part increased significantly as the pressure increased to 3.75 atm whilst the distal unit 

remained unexpanded until the pressure increased to 4.5 atm (Figure 5-9).  This local 

variation in strut expansion correlates with the global expansion, as shown by the 

differences in dog-boning effect between the distal and proximal ends of the stent.  

Expansion behaviour of the CB3 stent was similar to that of the TE2.  However, the 

angle of the unit in the proximal part increased significantly at a pressure of 3 atm 

(Figure 5-10) with the distal unit remaining crimped until the pressure reached 4 atm.  
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For the CB3 stent, the local variation in strut separation correlated with the global 

behaviour.  

Similar behaviour was also observed for the 3D semi-deployed stent geometry 

obtained from Micro-CT data, examined in Chapter 4 and shown in Figure 5-11.  The 

variation in deployment of each stent unit at an applied pressure load of 4 atm was 

observed in both the distal and proximal regions, as reconstructed using CTan (CT 

data analyser). 

 
Figure 5-11:  3D model of a) distal and b) proximal part; view from top and bottom of the 

stent. 

 

The dog-boning behaviour shown in Figure 5-8b, Figure 5-9b and Figure 5-10b was 

also observed in the study of Kiousis et. al. [131] and Pochrzast [132].  However a 

difference was reported in terms of the pressure loads which cause the dog-boning: 

these were 2.5 atm in [131, 132] and 3-3.75 atm in current study.  For both stent designs 

used in the current study it is clear that the local deformation of individual stent units 

does not always directly correspond to changes in stent diameter.  It was also evident 

that both stents (TE2 and CB3) deployed in similar way.  It proved impossible to assess 

a) b) 
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all stent units due to the limited field of view and stent rotation relative to the camera 

during balloon inflation.  Figure 5-8b, Figure 5-9b shows the expansion of two 

proximal and one distal units and Figure 5-10b shows the expansion of 3 proximal (it 

should be noted that two of these are measured from the time when applied pressure 

was 3 atm onwards) and one distal unit.  To the author’s knowledge no previous study 

has explored the detail of the local deformation of the stent in 3D.  The focus in 

previous studies was mainly on the stent diameter and length change with applied 

pressure load.   

5.2. DYNAMIC STENT EXPANSION AND DYNAMIC INFLATION OF 

BALLOON CATHETERS 

To determine if dynamic stent deployment corresponds to the behaviour observed 

during pseudo-static stent expansion tests a single camera, Flea2, was used at 30 

frames per second (fps) to capture the free expansion of a Coroflex Blue (B.Braun) 

stent.  Expansion was performed by a clinician using an identical protocol to that 

employed during a clinical intervention.  30 fps was chosen as it is the maximum frame 

rate available for full-frame capture with the Flea2 camera.  This experiment was 

designed to assess whether dog-boning occurs to the same extent during dynamic 

deployment.  

In previous studies researchers [85, 131, 132] have used a single camera to image 

gradual expansion of the coronary stents and characterise changes in the external 

diameter of the stent.  The analysis of the results showed that the increase in stent 

diameter was not proportional to the pressure load applied in the balloon.  A sudden 

expansion of the stent occurred after applying a certain value of pressure 

(approximately 3-4 atmospheres).  This was supported by the pseudo-static test results 
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reported in section 5.1.2.  To the author’s knowledge no studies have examined 

dynamic expansion of an unconstrained stent in the same timescales as it occurs in a 

real clinical scenario. 

Following expansion of the stent, the balloon was detached from the plastically 

deformed, fully deployed stent, to examine qualitatively balloon inflation alone.   

5.2.1. MATERIAL AND METHODS 

The standard protocol for stent expansion was applied as described in previous sections 

of this chapter.  The stent size was 4.0 mm (diameter) by 8 mm (length).  The air was 

removed from the catheter using additional syringe (as presented in the Figure 5-3, 

page 132).  The stent expansion process took 8.5 seconds (225 frames), the balloon 

was left fully inflated for approximately 13 seconds (403 frames) and was then 

deflated.  A total of 628 frames were saved. 

The deployment of the stent was characterised through the change in stent diameter 

and the elastic recoil (ER) of each ring (Figure 5-13) measured from 2D images using 

the VIEW software [135] for selected frames.  The diameter of each ring 

(circumferential interconnection of units creates ring) of the stent was measured 

manually.  The VIEW software was calibrated using known size of stent initial 

diameter.  To assess the reproducibility of the manual measurement, the same area on 

the stent was measured 21 times. 

ER of each ring was measured and calculated using an equation already introduced by 

Mori [4]: 
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                                     𝐸𝑅 =  ஽೔೙೑೗ೌ೟೐೏  ି  ஽೏೐೑೗ೌ೟೐೏

஽೛ೝ೚ೡ೔೏೐೏
                                            5-3 

where Dinflated is the maximum diameter measured at the final inflation stage, Ddeflated is 

the diameter measured after balloon deflation and Dprovided is the value of diameter of 

the fully inflated stent provided by the stent manufacturer.  

Changes in balloon folding were recorded during the dynamic increase of balloon 

pressure.  The balloon was fully inflated over approximately 6 seconds, yielding 180 

frames.  This experiment provides additional insight into the complex deformation 

mechanism of the balloon, which may be associated with the rotation observed during 

unconstrained stent expansion.   

5.2.2. RESULTS 

The VIEW software accuracy assessment for the manual measurement resulted in a 

standard deviation of 16 µm.  Figure 5-12 shows expansion behaviour at: a) initial 

stage, b) 0.7s c) 0.93s, d) 1.16s, e) 2.53s, f) 5.06 seconds and g) after balloon deflation.  

Figure 5-13 shows each ring of the stent, identified by number and colour. The change 

in diameter of each ring is plotted in Figure 5-14.  Elastic recoil which occurred after 

balloon deflation was noticeable by eye as shown in Figure 5-15.  To express the 

elastic recoil visually two images were overlaid in Matlab Figure 5-15c.  The blended 

overlay image was created using red for the image with fully deployed stent and green 

for the image with a recoiled stent.  The yellow presents the areas of similar intensity 

between the two images. The change in diameter for each ring, between full balloon 

inflation and deflation, is plotted in Figure 5-16 and the difference in stent diameter 
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between inflated and deflated balloon stages, along with the percentage of elastic 

recoil, are presented in Table 20.  

 
Figure 5-12:  Example images from several stages during the stent expansion 

process.  
 

a) 

b) 

c) 

d) 

e) 

f) 

g) 
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Figure 5-13:  Three steps of expansion; each colour correspond to each ring of the stent: 

a) 0 sec, b) 0.93 sec, c) 2.53 sec.  

 

 
Figure 5-14:  Change in diameter due to applied pressure of each ring depending on time; 

only 1.4 seconds are plotted. The same stent behaviour is observed as in Figure 5-8 for 
pseudo-static stent expansion. 
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Figure 5-15:  Stent presented in two stages a) fully inflated at 8atm and b) deflated 

balloon; c) overlay of the image with the stent with the fully inflated and the deflated 
balloon. The blended overlay image was created using red for the image with fully 

deployed stent and green for the image with a recoiled stent.  The yellow presents the areas 
of similar intensity between the two images. 

 

 
Figure 5-16:  Recoil of each ring of the stent following balloon deflation.  
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Table 20:  The results of elastic recoil. 

Difference in diameter [mm] between stent with fully inflated and deflated balloon 

0.27 0.23 0.25 0.25 0.23 0.23 

Elastic recoil [%] 

6.75 5.75 6.25 6.25 5.75 5.75 
 

Figure 5-17 shows the angioplasty balloon in three configurations: a) deflated, b) 

semi-inflated and c) fully inflated. 

 
Figure 5-17:  Quad folding pattern of the angioplasty balloon; Inflation captured in  a) 

initial stage, b) after 3 seconds, c) after 8 seconds.  

 

5.2.3. DISCUSSION 

Due to bandwidth limitations and technical issues with dynamic synchronisation of the 

stereo camera pair, it was not possible to undertake high resolution imaging of stent 

expansion at 30fps with the current stereo rig.  Examination of 3D fully dynamic stent 

deployment is not currently possible, but dynamic imaging with a single camera 

provides quantitative data for the change in diameter of each ring of stent struts during 

deployment.  Single camera dynamic testing can be directly compared with previous 

experimental pseudo-static stent expansion studies for 2D stent geometry 

a) 

b) 

c) 
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characterisation [85, 131, 132] to assess potential variation in stent deployment 

characteristics over timescales typical for in vivo deployment.   

In the fully dynamic results it was observed that the first and sixth rings expanded 

significantly faster than other rings. This is clearly visible in Figure 5-12 above.  

Significant stent recoil occurs due to balloon deflation.  Despite the fact that each ring 

has the same structure, in current test elastic recoil ranged from 5.75% to 6.75% (0.23 

and 0.27 mm) in proximal and distal parts respectively.  These results are comparable 

to results of Mori [4], where the elastic recoil ranged from 4.7 % to 6.7 % in proximal 

and distal end.  This stent behaviour could result in a significant strain reduction due a 

reduction of stretch in the vessel wall. 

In summary, the same dog-boning behaviour was found during free expansion of a 

stent under dynamic and pseudo-static conditions.  De Beule [10] demonstrated (in a 

numerical study) that unfolding of the balloon during inflation process causes this 

phenomenon.  In the current study, analysis of the 180 frames obtained during balloon 

inflation only confirms the process of unfolding of the balloon.  It is not surprising that 

the stent rotates during free expansion, as the balloon unfolding process demonstrates 

similar behaviour without a mounted stent.  Moreover, it is not surprising that the stent 

may deploy non-uniformly.  

The variation in local strut unit expansion in both proximal and distal parts of the stent, 

despite in the similarity of structure, occurred during both pseudo-static and dynamic 

tests.  
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SUMMARY 

It is suggested that the non-uniform expansion of the stent globally and locally may 

result in local variation in strain within the vessel wall.  The results of the experiments 

reported in this chapter may provide information on the damage induced by the stent 

struts if stent deformation is linked to deformation of the arterial wall or an appropriate 

vessel analogue.  Clinical studies [2, 70] have reported strong associations between the 

asymmetry of stent deployment and the resulting degree of restenosis.  This study has 

demonstrated that local stent strut deformation does not always correlate with change 

in stent diameter.  This behaviour of the stent during the deployment may have 

implications for local strains generated during contact of the stent with the vessel wall 

and the resulting vascular injury.  There are limitations in the interpretation of the 

results of free stent expansion experiments in the context of stent/artery interactions 

which will be addressed in following chapter since the results presented here did not 

consider the interaction of the stent with the vessel wall.   
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CHAPTER  6 

STENT DEPLOYMENT IN THE CORONARY ANALOGUE TO 

DETERMINE LOCAL STRAINS 

The goal of this chapter is the characterisation of interactions between a stent and a 

vessel analogue following stent expansion.  This in vitro study was designed to 

determine the distribution of strain on the wall of a silicone vessel analogue which is 

used to mimic a coronary artery.  The optical stereo-photogrammetry method 

described in previous chapters has been used, along with image registration methods 

employing ShIRT (Sheffield Image Registration Toolkit) and VIC-2D (Correlated 

Solutions) to examine local surface deformation.  

Assessment of various marking methods has been undertaken to determine the most 

effective high contrast pattern to track surface deformations.  To quantify uncertainty 

in strain measured by ShIRT and VIC-2D, a rigid body motion (RBM), zero strain test 

was carried out.  Following this, the experimental conditions were adapted to gradually 

move towards a more realistic condition considering first a tensile test and then vessel 

analogue deformation due to stent deployment.  The aim was to compare the variations 

in strain that occur when moving from the simpler test to the more complex case.  It is 

important to examine the strain distribution due to interaction of the stent with the 

vessel wall in the context of the results from free stent expansion presented in Chapter 
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5, to determine whether localised strains are due to strut interaction with the vessel 

wall.  Analysis of these results can be used to suggest the likely distribution of vessel 

wall injury following stent deployment.  
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6. INTRODUCTION 

In Chapters 2, 3, 4 and 5 markers/landmarks on the specimen surface were selected 

manually for 3D reconstruction.  A point of interest was chosen on the left image and 

(as long as the calibration of the cameras was robust) the epipolar line indicated the 

same point on the corresponding right image.  Subsequently, reconstruction 

(triangulation) of a common point was performed to obtain 3D (x, y, z) coordinates.  

This manual process was repeated at each deformation stage for the same points of 

interest.  

The manual procedure has been shown to provide accurate results for stent geometry 

characterisation (Chapter 4) and stent expansion (Chapter 5) examination, as well as 

for strain measurement in large scale specimens marked with a regular pattern (Chapter 

2).  In order to assess local strain distributions over smaller areas, a speckle/random 

pattern provides a method to obtain detailed, localised output data.  Automatic methods 

are more effective with irregular markers as it is challenging and time consuming to 

distinguish corresponding markers on pairs of images visually.  

To examine local strains on the surface of an object undergoing large deformations, 

image registration methods have been explored.  Image registration methods employ 

registration and correlation techniques for accurate 2D or 3D measurements of object 

deformation through the use of 2D or 3D image data.  These methods can be used to 

determine deformation, displacement as well as strain and are frequently employed in 

many areas of engineering and science [136-138].  In this study the Sheffield Image 

Registration Toolkit (ShIRT) and the commercial digital image correlation software 
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VIC-2D (Correlated Solutions) have been used to determine the deformation of a 

surface in 3D over a number of deformation steps.  

In the current chapter, the background to the registration methods is outlined in Section 

6.1.  It should be noted that the aim of this study was not to develop or investigate 

novel image registration algorithms, but rather to apply developed algorithms to 

examine stent/vessel analogue interaction during stent deployment.  Hence a detailed 

discussion of the algorithms used by ShIRT and VIC-2D is not included.  Section 6.2 

focuses on the marking methods applied to the vessel analogues and to real tissue.  

Section 6.3 determines mechanical properties of the silicone used to mimic coronary 

arteries.   Sections 6.4 – 6.5 describe experimental tests undertaken to assess the 

variation of strain under increasingly complex conditions.  Section 6.5.2 compares 

these results and places them in the context of the results observed during free stent 

expansion, reported in Chapter 5.  

6.1. IMAGE REGISTRATION PRINCIPLE  

Image registration/correlation techniques have been used widely in medical imaging, 

computer vision and remote sensing [139] and have become increasingly popular for 

strain measurement in deformed objects [140, 141].  The concept of image registration 

is to find the optimum mapping of displacement between two images.  Image 

registration can be used to find the mapping between images of the same scene, 

captured at different times (e.g. for 2D characterisation), or from different viewpoints 

(using more than one camera for 3D characterisation) [138].  Methods developed for 

experimental mechanics to examine hard/rigid material and structures [142, 143] have 

been expanded to examine strain in soft biological materials [82, 144].  These optical 
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methods involve tracking an applied random speckle pattern on the surface of a test 

specimen during an experiment.   

In this study the Sheffield Image Registration Toolkit (ShIRT) [145], developed at the 

University of Sheffield, and VIC-2D (digital image correlation, Correlated Solutions) 

were explored for stent application. 

6.1.1. SHEFFIELD IMAGE REGISTRATION TOOLKIT  

Sheffield image registration toolkit (ShIRT) was developed by Barber and Hose, with 

the intention of medical images registration.  Detail of the algorithms used in ShIRT 

has been previously published [145].  The following section provides an overview of 

the key concepts underlying this image registration technique.  The fundamental 

process is to relate corresponding points in two images.  In registration the initial image 

is referred to as the fixed image and the second image is referred to as the moved 

image.  The output of the algorithm is the displacement required to move every point 

in the moved image to a corresponding point in the fixed image. 

If the coordinates of a point in one image are (x, y) and the coordinates of the same 

point in the second image  are  (x’,  y’),  a  mapping  function  can  be  defined  to  retrieve  

the coordinates of the second point from the coordinates of the first point. The relation 

between the coordinates in each image can be written as:  

𝑥ᇱ = 𝑢(𝑥, 𝑦) +   𝑥 

𝑦ᇱ = 𝑣(𝑥, 𝑦) +   𝑦 
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The aim of the image registration algorithm is to compute the mapping functions (u, 

v) for every point of the image (x, y).  In ShIRT the mapping function is defined at 

discrete points (nodes) in x and y.  

A visual representation of the registration process is shown in Figure 6-1.  To assess 

the registration output the fixed image intensities are displayed as green and the moved 

image intensities are overlaid in red.  A successful registration results in an image 

coloured yellow, as shown in Figure 6-1c.  If the registration is unsuccessful the output 

image may show red or green features as shown in Figure 6-2.   

In Figure 6-1 Image 1 presents a regular grid on a chosen area of interest with 

coordinates   (x,   y).      Image   2   presents   the   same   grid,   with   the   coordinates   (x’,   y’)  

determined from the coordinates in Image 1 and the registration mapping function. 

Detailed inspection of the location of grid points and the corresponding speckle 

patterns can also be used to assess the success of the registration between images as 

shown in Figure 6-3. 

 
Figure 6-1:  The example of two registered images. On the registration output we can 

notice effective computed mapping.  
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Figure 6-2:  An example of failed registration; stent deployed in the transparent elastic 

material. 

 
Figure 6-3:  Zoomed image to show good correspondence of the landmarks in image1 

(green crosses) and image2 (red crosses) image. 

 

Image registration can fail if the displacement between the two images is too large as 

presented in Figure 6-4.  This figure shows a checkerboard grid with the grid in the 

right image rotated through an angle of 60º from the grid in the left image. 

 
Figure 6-4:  Unsuccessful registration due to large rotation angle (approximately 60°) 

during rigid body motion test.  
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6.1.2. VIC-2D 

VIC-2D (Correlated Solutions) is commercial Digital Image Correlation (DIC) 

software which uses optimised correlation algorithms to provide full-field 

displacement data for mechanical testing.  This software requires the application of a 

random speckle pattern on the tested object surface.  An example of the technique is 

shown in Figure 6-5.  To track the deformation relative to a reference image a region 

of interest (ROI) is defined in the reference image (shown by the red area).   

 
Figure 6-5:  Region of interest selected on the left image.  

 

The DIC algorithm divides this ROI into a virtual grid.  The target of the software is 

the same as for ShIRT: to match each point in the grid of the reference image to a 

corresponding point in the deformed image.  Parameters associated with the algorithm 

include the subset size and step size, which are selected after the ROI is defined.  The 

subset size controls the area of the image that is used to track the displacement between 

images.  It has to be large enough to ensure that there is a sufficiently distinctive pattern 

contained in the area used for correlation [146].  The step size controls how many 

pixels are analysed during correlation, e.g. a step size of 5, means that correlation will 

be carried out at every fifth pixel in both the horizontal and vertical direction.  Another 

important parameter is the seed point, which is defined in the reference image to 

Seed point 
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determine the starting point for the correlation.  It is recommended that this point 

should be placed in the area of the image that undergoes the smallest amount of 

motion/deformation during the experiment (VIC-2D [147]).  To effectively track grey 

scale intensities between two images using DIC algorithms, the pattern on the object 

needs to be random, for example as a speckle pattern created with sprayed paint.  A 

regular, repeating form is not well suited to use with DIC and can introduce large errors 

[148]. This is a significant difference between VIC-2D and ShIRT.   

6.2. MARKING METHODS FOR DEFORMATION TRACKING IN 

ELASTIC MATERIALS 

Noncontact deformation measurement of a surface of uniform colour requires the 

application of markers/speckle pattern to allow quantification of strain [81, 82, 90, 

136, 149].  To accurately assess strain, the applied pattern must deform along with the 

object and should not alter the response of the material.  

Previous investigators have used a range of marking approaches. Squire et al.  [81] 

reports marking of bovine and rabbit femoral arteries using ink from a printer cartridge 

to quantify the strain from the displacement of 40 reference points.   Sutton et al. coated 

the surface of a mouse carotid artery with white Enamel spray before applying a pattern 

using toner powder [82].  Enamel spray (white and black) was also used by Horny et 

al. [90] to mark a human coronary artery.  Meunier et al. [149] marked silicone rubber 

with a pattern made of small speckles (the exact method was not defined) to measure 

local strain fields during bulge and tensile tests.  
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It is important to use a marker size suitable for the scale at which the specimen is 

imaged [146].  In this study several random and regular marking patterns were 

investigated depending on the scale.  Use of a permanent Pentel pen for manual 

marking provided an appropriate reference pattern when undertaking experimental 

work at low spatial resolutions (see section 2.3) due to the lower magnification and 

reduced emphasis on small features.  Preliminary testing was undertaken to examine 

the characterisation of cardiac motion with scattered markers shown in Figure 6-6a.  

Improvement in the marking methods was necessary for higher magnifications.  The 

manually applied Pentel pen marker appeared blurred and the square geometry of the 

scattered markers becomes significant, as shown in Figure 6-6b.  For assessment of 

strain in vessel analogues, marker quality was improved using quick drying enamel 

paint, as shown in Figure 6-7a.  For application to porcine coronary arteries, graphite 

powder was applied using a strainer, as shown in Figure 6-7b.  This method shows 

promise but it requires improvement to reduce the marker size.  

 
Figure 6-6:  Examples of the same markers imaged at different magnification, M. a) 

M=0.09 surface of a porcine heart (field of view- FOV approximately 200 mm) (Hemolab, 
Eindhoven), b) M = 0.4 image of a vessel analogue (FOV=10 mm). 

 

Scattered pattern

a b

Scattered pattern

a) b)

Speckle pattern
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Figure 6-7:  a) Stent expanded in the vessel analogue marked using enamel spray; b) Stent 

expanded in the pig coronary artery ex vivo marked with graphite powder. 

 

The tests reported in this chapter involve the use of a transparent elastic material as a 

vessel analogue.  To improve the contrast between the black markers and the super 

clear, transparent analogue, and to avoid changes in intensity due to motion of the stent 

struts within the image, a thin layer of flexible white paint (Stretchi paint, Creative 

Resources Distribution, Propbuilder) was applied to the surface of the silicone 

material.  To the author’s knowledge this is a novel method which has not been 

considered in previous studies.  The advantage of using Stretchi paint is the lack of 

cracking which occurs at high strain using other paint types.  An example of the 

silicone vessel analogue coated with Stretchi paint and marked with an irregular 

pattern is shown in Figure 6-8.   

 
Figure 6-8:  Stent deployed in the vessel analogue. A region of the silicone is covered with 

Stretchi paint with an applied speckle pattern and the other region is left clear, in its 
original state. 

 

a b



CHAPTER 6: LOCAL STRAINS 

 

159 
 

In the example shown in Figure 6-8 one half of the vessel analogue was covered in 

paint, the other half remained transparent.  The elastic paint dries quickly and adheres 

well to the surface and is specially formulated to allow bonding to the silicone and 

deformation without cracking or peeling.  

The next section outlines the mechanical properties of the silicone material used to 

mimic coronary arteries.  

6.3.  MATERIAL TO MIMIC VESSEL ANALOGUE TESTING 

For medical and engineering research on artificial in vitro arteries, it is important to 

use materials as close as possible to the mechanical properties of the arterial wall.  A 

review of the literature on previous studies using mock arteries is presented in section 

1.6.5.  The model needs to be sufficiently compliant to expand significantly under 

typical balloon inflation pressures (~10 atm).   

6.3.1. METHODS 

To obtain realistic reference geometry for the vessel analogue, a section of porcine 

heart was dissected perpendicular to the coronary artery axis and the vessel, roughly 

separated from the rest of the organ, was captured using a single camera positioned 

perpendicular to the arterial cross-section.  Comparative images were obtained for a 

sheet of silicone material (SILEX limited, Hampshire, UK) with similar thickness to 

the wall of the porcine arteries.  The thickness (t) of both the vessel and the latex sheet 

was measured using VIEW software [135] using a caliper scale as a calibration 

reference.  The thickness was measured in seven different regions.  
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The  most  crucial  parameter  was  the  Young’s  modulus  (E).    To  obtain this information 

a uniaxial tensile test was performed at the Politechnico di Milano, Milan, Italy.  Three 

samples with length and width presented in Table 21 were prepared for testing.  

Table 21:  Dimensions of the sample, where W=width, L0=initial length and t=thickness. 

 W [mm] L0 [mm] t [mm] 
sample 1 6.50 19.83  

sample 2 6.80 20.53 0.25 

sample 3 6.62 19.64  
 

 

A dynamometer MTS® Synergie 200H testing machine with load cell F_max of 1kN 

full scale was used for the tensile test. The control channel during the test was 

displacement with the maximum Linear Variable Differential Transformers (LVDT) 

of 1000 mm.  Before the principal tensile test, a small tensile pre-load of 0.3N was 

applied to each silicone sample (to ensure that sample was firmly fixed within the 

machine clamps).  The test velocity was 1 mm/s. Force was applied to each specimen 

until failure occurred.  The maximum stress, strain and Young Modulus were 

computed. 

To create the coronary artery analogue for the stent expansion tests described  

in Section 6.5.3, the superclear silicone sheet was cut to obtain a sample of  

40 mm x 20 mm and covered with Stretchi white paint (Propbuilder, UK) to obtain  

a good contrast with the fast dry black enamel spray (Plasti-kote, USA) used to create 

a speckle pattern.  To produce an artery analogue with internal diameter of  

3 mm, the required circumference (approximately 9.5 mm) of the artificial vessel was 
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measured with caliper and the silicone sheet was fixed between two blocks to create 

the artificial coronary artery, Figure 6-9 and Figure 6-32, section 6.5.2.  

 
Figure 6-9:  The silicone sheet fixed between two blocks to mimic coronary artery. 

 

An inner diameter of 3 mm, wall thickness of 0.25 mm and length of 40 mm was 

adopted to mimic a straight section of coronary artery.  

6.3.2. RESULTS 

The Figure 6-10a presents a section of porcine heart dissected perpendicular to the 

vessel axis with the vessel roughly separated from the rest of the organ and Figure 

6-10b shows the silicone material (SILEX limited, Hampshire, UK) used to mimic the 

coronary artery.  The average measured thickness of the silicone was 0.25 mm 

(standard deviation of 8 µm), while the coronary artery thickness was 0.26 mm 

(standard deviation of 20 µm).  The larger variation in thickness reported for porcine 

artery is not surprising as it has been reported that the arterial wall adjacent to the 

myocardium is thicker than the other part of the wall [150]. 
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Figure 6-10:  Section of the heart tissue with coronary artery in situ;  
b- vessel analogue. 

 

The tensile test results for three samples (S1, S2, S3) are presented in Figure 6-11 

which shows the three stress/strain curves.  

 
Figure 6-11:  Stress/strain plot from three separate tests; result of the tensile test of the 

super clear silicone specimen. 
 

The Young Modulus (𝐸 = 𝜎 𝜀⁄ ) was found to be 0.98MPa for S1, 1.03MPa for S2 and 

1.1MPa for S3 using the linear part of the stress/strain curve between strain  

= 0 and 1.  

6.3.3. DISCUSSION 

Latex and silicone mock arteries used in experimental studies of stent expansion allow 

controlled testing of stent behaviour and evaluation of the mechanical effects related 

to stent design [89].  In the current study a silicone sample was shown to have 
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mechanical properties closely matching the real coronary arteries as the values of 

Young’s  Modulus obtained during tensile testing are within the range reported by 

Karimi et.al [151] for healthy human coronaries.  The artificially created silicone 

material is homogenous whereas the natural arteries are highly inhomogeneous 

(composed of different layers as mentioned in Chapter 1) and anisotropic (have a 

different behaviour in each direction).  Additional variation in material properties of 

the artery can occur in the presence of the disease (i.e. stiffening due to plaque 

formation), the presence of atherosclerosis may increase significantly the stiffness of 

the arteries [151].  

Future work could extend the use of artificial vessels to experimentally model disease 

as discussed in Chapter 7 to increase the complexity of the process. 

The next section describes the combination of stereo-photogrammetry and image 

registration to determine surface deformation in 3D.  

6.4. STEREO-PHOTOGRAMMETRY AND IMAGE REGISTRATION TO 

DETERMINE SURFACE DEFORMATION IN 3D 

3D reconstruction using triangulation has been described in previous chapters.  As 

discussed in the introduction to this chapter, to obtain strain over the whole surface of 

the deformed object the 2D coordinates from left and right image used for 3D 

reconstruction are derived using image registration (ShIRT and VIC-2D), instead of 

manual point selection.  This section describes the process used to obtain this data. 
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6.4.1. GENERAL APPROACH 

The stereo rig was setup as described previously.  The camera angle between 30 and 

90 degree was chosen to avoid reflection of the sample and enable the same region of 

interest to be captured with both cameras.  The process undertaken to obtain 3D 

information of specimen deformation was as follows: 

 Calibration (as before) to determine camera parameters. 

 Manual reconstruction of a few markers to assess calibration and 

reconstruction accuracy. 

Definition of geometry in 3D requires identification of correspondence points as 

shown in Figure 6-12.  The following steps were taken to obtain correspondence points 

using image registration: 

1. Instead of manual identification a grid of points was defined on the left image 

(pxl).  The correspondence points on the right image (pxr) were obtained 

using the registration mapping between left and right images (from 

ShIRT/VIC-2D).  If the points in the left and right images corresponded well 

(by visual inspection), step 2 could be undertaken. 

 

2. Changes in position of the left correspondence points (pxl) were tracked using 

the registration mapping between position 3D0 and each new position (3D1, 

3D2 etc.) (ShIRT/ VIC-2D). 

Output: 2D data for each translation/deformation stage (pxl). 

 

3. Changes in position of the right correspondence points were ttacked in the 

same way (ShIRT/ VIC-2D) 
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Output: 2D data for each translation/deformation stage (pxr). 

 

4. The updated 2D point position (pxl and pxr) from each step of 

translation/deformation was used to recover 3D surface geometry via 

triangulation (reconstruction). 

 

5. Displacements/strains were computed in 3D from the change in 3D surface. 

 
 

Figure 6-12 graphically illustrates this process for points 1, 2, 3 and 4.   

 
Figure 6-12:  Diagram presenting registration of two initial, right and left  images; 

registration of all  left images to initial left and the same for right images; 3D 
reconstruction from pairs of 2D data (pxl, pxr). 

 

 

calibration 3D0

calibration 3D1

calibration 3D2

triangulation

triangulation

triangulation

pxl pxr

1 

2 3 

4 

4 

4 



CHAPTER 6: LOCAL STRAINS 

 

166 
 

6.4.2. POST-PROCESSING SURFACE DEFORMATION TO RECOVER STRAIN 

Quantification of surface deformation is based on tracking of markers affixed to the 

surface, with surface strain used as an outcome measure.  A large number of markers 

are required to allow computation of strain at a local level.  Strain can be characterised 

from the relative displacements of reference points on the object surface.  The 

displacement of the marked pattern on the object surface is computed using either 

ShIRT or VIC-2D registration, as described in 6.4.1.  The 3D coordinates (x, y, z) of 

the surface at each stage of deformation are provided using stereo triangulation and 

camera calibration data. 

For the rigid body motion tests described in 6.5.1 the 3D coordinates obtained from 

triangulation were used to compute the strain between pairs of surface points, as shown 

in Figure 6-13.  

 
Figure 6-13:  Graphical presentation of strain calculation for a local region of 9 surface 

points. 
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To assess how the reported strain varies with change in resolution, all combinations of 

point pairs were used to assess measures of strain.  For N points this results in 

∑ 𝑛 − 1ே
௡ୀଵ  measures of strain.  For these small strains, engineering strain is computed 

using the change in distance between points on the undeformed, L0, and the deformed 

surface, L.  

                       ∆𝐿 = 𝐿 − 𝐿଴                          𝜀 =    ∆௅
௅
=    ௅ି௅బ

௅బ
   6-1 

For large deformations using manual measurements between individual reference 

points, as described in section 6.1.1 for the elastic tensile test, the Green-Lagrange 

strain is calculated from the change in length between reference points, as follows: 

                                        𝐸 =     ௅
మି௅బమ

ଶ௅బమ
                6-2 

To provide the strain distribution over the deformed surface under non-zero strain 

conditions, the Green-Lagrange strain tensor was computed, following the approach 

described by Genovese et al. [136].  To compute the Green-Lagrange tensor the 

surface is defined using triangles between reconstructed 3D points.  An example of 

single undeformed and deformed triangle is shown in Figure 6-14. 
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Figure 6-14:  An example of single undeformed and deformed triangle. 

The Green strain: 

                                      𝑬 = 𝟏
𝟐
  (𝑭𝑻𝑭 − 𝑰)                                                       6-3 

is calculated locally for each triangular element after computing the deformation 

gradient tensor F.  The triplets of points (e.g. A, B, C) are used to obtain the 

components of the tensor by computing change from vectors in undeformed 

configuration: 𝚫𝑷(𝟏) = 𝑷𝑩 − 𝑷𝑨 and 𝚫𝑷(𝟐) = 𝑷𝑪  –  𝑷𝑨  to the deformed 

configuration: 𝚫𝒑(𝟏) = 𝒑𝑩 − 𝒑𝑨 and 𝚫𝒑(𝟐) = 𝒑𝑪  –  𝒑𝑨  .  The assumption is that 

surface deformation in the small triangle region of interest is homogenous   

𝚫𝒑 = 𝑭  𝚫𝑷.  The strain was measured in longitudinal (Ex) and transversal (Ey) 

directions relative to the camera. The deformation gradient F is determined from the 

following equations: 

 

 

A

B

C

∆P(1)=PB-PA

∆P(2)=PC-PA

∆p(1)=pB-pA

∆p(2)=pC-pA

Yglobal
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൥
Δ𝑝    ୶

(ଵ)

Δ𝑝      ௬
(ଵ)൩ =    ൤

𝐹௫ 𝐹௫௬
𝐹௬௫ 𝐹௬

൨  ൥
Δ𝑃    ୶

(ଵ)

Δ𝑃      ௬
(ଵ)൩ 

                                           ൥
Δ𝑝    ୶

(ଶ)

Δ𝑝      ௬
(ଶ)൩ =    ൤

𝐹௫ 𝐹௫௬
𝐹௬௫ 𝐹௬

൨  ൥
Δ𝑃    ୶

(ଶ)

Δ𝑃      ௬
(ଶ)൩                  6-4 

Fx, Fy, Fxy (yx) are the deformation gradients denoted as deformation in x direction, y 

direction and shear, respectively.  

6.5. EXPERIMENTAL PROTOCOL TO ASSESS EFFECTIVENESS 

The remainder of this chapter describes experimental tests undertaken to assess the 

effectiveness of image registration methods in providing measures of surface 

deformation and to examine the variation of strain under increasingly complex 

experimental conditions.  Experimental tests were undertaken under three sets of 

conditions demonstrated schematically in Figure 6-15 .  The first condition (Figure 

6-15a and b) involves rigid body motions including rotation and translation; the second 

condition involves a planar tensile test (c); the third condition (d) involves deployment 

of a stent within the vessel analogue by balloon inflation. 
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Figure 6-15:  Rotation, translation, uniaxial stretching and expansion presented 

schematically.   

 

Rigid body motion (RBM) tests were carried out using planar and cylindrical objects.  

The aim of rigid body motion test was to investigate the sources of strain uncertainty 

related to ShIRT and VIC-2D registration methods prior to non-zero strain 

measurements.  After RBM tests two deformation tests were carried out: 

- Elastic planar material tensile test 

- Stent deployment; 3D and 2D characterisation 

A summary of these tests, including the type of intensity pattern and image registration 

technique used, is provided in Table 22.  

 

a) b) 

c) d) 
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Table 22:  Test undertaken to measure the strain. 
 

Object Type Test type Processing method Output 
Planar Grid 

(regular pattern) 
 

RBM 

 

ShIRT 

 

Zero strain 

Planar object 

(speckle pattern) 

 

RBM 

ShIRT  

Zero strain VIC-2D 

Cylinder 

(speckle pattern) 

 

RBM 

ShIRT  

Zero strain VIC-2D 

Elastic material 

(speckle pattern) 

 

Tensile test 

 

VIC-2D 

 

Planar strain 

 

Analogue (stent) 

Stent expansion 
with balloon 

inflation 

 

VIC-2D 

 

3D strain 

 

To carry out RBM and deformation tests, the magnification of the cameras was 

decreased slightly (0.3), to register not only the area of the stent interacting with the 

analogue but also neighbouring regions.  This change in magnification increased depth 

of field to 5.6 mm. 

6.5.1. RIGID BODY MOTION EXPERIMENTAL TESTS 

It has been suggested [152, 153] that the use of translation and rotation tests can 

identify potential error sources of registration methods under theoretically zero-strain 

experimental conditions. The measured engineering strain value in RBM tests provides 

an indication of the measurement error.  These tests allow assessment of the anticipated 

accuracy of the measurement of non-zero strains.  Image registration with both ShIRT 

and VIC-2D was used to obtain 3D data at each object position and compute the strain 

between images as described in section 6.4.2. 
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6.5.1.1.  METHODS 

Three types of tests were carried out to explore errors related to different type of testing 

samples: 

1. Checkerboard grid rotation- 2D object, structured pattern;  

2. Flat surface translation- 2D object, random speckle pattern;  

3. Cylinder translation- 3D object marked, random speckle pattern. 

Two desk lamps were used as light sources to decrease reflections (two lamps, 

specimen, and cameras) as shown in Figure 6-16.   

 
Figure 6-16:  Setup used to capture stent deployment in the vessel analogue. 
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CHECKERBOARD GRID PATTERN ROTATION 

A checkerboard grid was captured in five different orientations with two Flea2 cameras 

separated by an angle of 45°.  The field of view in the horizontal direction was 

approximately 15 mm due to the reduced magnification. 

Image registration was undertaken as described in section 6.1, defining a region of 

interest (ROI) in the initial image.  This ROI was divided into a grid as shown in Figure 

6-17.  The green grid shows the ROI on the left image, which was then registered to 

the right image.  The red grid shows the position of the ROI from the left image, as 

registered to the right image.  A grid size of 214.3 pixels and grid spacing of 10 pixels 

was chosen, resulting in 22 columns and 15 rows (330 points in total). 57285 

measurements of distance were obtained for each orientation, as described in section 

6.4.2 and these were then used for strain calculation. 

 
Figure 6-17:  Initial left image registered to right image. 

 

In addition the first and third grid orientations were reconstructed manually, by picking 

the corners of each grid square by hand, to assess the agreement between manual and 

image registration methods and to compute the strain from the manual approach.  

ShIRT was judged to have performed an acceptable registration when the nodes in the 
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right image (green) were observed to match the corresponding locations of the 

reference nodes in the left image (red). 

Engineering strain was computed using the change in distance between points on the 

undeformed, L0, and the deformed surface, L, as described in section 6.4.2. 

VIC-2D was tested using these grid images to confirm that digital image correlation 

does not work with a structured pattern. 

FLAT SURFACE TRANSLATION 

Following the rotation test a second rigid body motion test was undertaken to directly 

compare results between ShIRT and VIC-2D using translation of a 2D object.  A flat 

rigid piece of white foam board was sprayed with quick-drying enamel paint (Plasti-

kote, USA) to create a random pattern.  

-  SHIRT 

For the translation test the ROI was divided into a grid as shown in Figure 6-18 and 

Figure 6-19.  The green grid shows the ROI on the left image, which was then 

registered to right image.  The red grid shows the position of the ROI from the left 

image, as registered to the right image. Surface deformation was assessed using two 

ROI’s of different size.  The first grid size of 27.4 pixels and grid spacing 2 pixels was 

chosen (approx. 0.07 mm distance between grid points), resulting in 12 columns by 10 

rows (120 points in total).  7140 measurements (combinations) of distance were 

obtained for each step of translation in this case.  Figure 6-18 shows this ROI defined 

on the images from left and right camera.  A second ROI was chosen as shown in 

Figure 6-19 with grid length of 91.1 pixels and grid spacing of 10 pixels 
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(approximately 0.38 mm distance between grid points) resulting in a grid of 90 points 

(10 columns by 9 rows).  4005 measurements (combinations) of distance were 

obtained for each step of translation in this case. 

 
Figure 6-18:  Initial left image registered to right image, good correlation. 

 

 
Figure 6-19:  Initial left image registered to right image, good correlation. 

 

- VIC-2D 

The left and right initial images (L0, R0) were loaded into VIC-2D.  A ROI was 

defined on the L0 image.  A seed point location was selected and the default subset-

size of 41 and step-size of 5 were used. The initial geometry was determined by 
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correlating the left and right images.  Next all left images were correlated and all right 

images were correlated, the results were saved as Matlab (.mat) files. 246051 

measurements (combinations) of distance were obtained at each step of translation.  

For both ShIRT and VIC-2D data the engineering strain was computed using the 

change in distance between points on the undeformed, L0, and the deformed surface, 

L, as explained in section 6.4.2. 

CYLINDER TRANSLATION 

The third zero strain test used a cylindrical surface to be as close as possible to the 

vessel shape.   The cylinder was sprayed to create a random pattern and translated five 

times in various directions. 

- SHIRT 

The left and right images of the initial geometry were registered.  A ROI was defined 

as a grid shown in Figure 6-20.  The green grid shows the ROI on the left image, which 

was then registered to right image.  The red grid shows the position of the ROI from 

the left image, as registered to the right image.  A grid size of 115.7 pixels and grid 

spacing of 7 pixels (approximately 0.27 mm distance between grid points) was chosen, 

resulting in 15 columns and 17 rows (255 points in total). 32385 measurements 

(combinations) of distance were obtained at each step of translation.  Figure 6-20 

presents the registration of initial 2D images from left and right camera with the 

presentation of the displacement vectors between left and right image.  
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Figure 6-20:  a) Initial left image registered to right image; b) the presentation of the 

displacement vectors between left and right image. 

 

The displacement vectors were calculated for all steps.  Registration was done in 6 

steps of translation.  

- VIC-2D 

The same process was undertaken as for the flat object.  The same default subset-size 

of 41 and step-size of 5 were used for cylinder translation.  21945 measurements 

(combinations) of distance were obtained for each step of translation.  

For both ShIRT and VIC-2D data the engineering strain was computed using the 

change in distance between points on the undeformed, L0, and the deformed surface, 

L, as explained in subchapter 6.4.2. 
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6.5.1.2.   RESULTS 

The strain results from the rigid body motion test of flat and cylindrical samples are 

presented below.   

CHECKERBOARD GRID ROTATION 

The registration of the left and right images was robust until the rotation was large (60° 

between initial and final position).  This caused issues with ShIRT registration.  This 

is clear from the 3D plot in Figure 6-21, where the poorly registered data is shown in 

black (IR5).  Similar behaviour was observed in the 2D images shown in Figure 6-22.  

There was good qualitative agreement between the reconstruction obtained with 

ShIRT and two manual reconstructions, shown in magenta and brown in Figure 6-21 

(MR1 with IR3 and MR2 with IR1 respectively).  

 
Figure 6-21:  3D plot showing grid reconstruction from data obtained using ShIRT(IR- 

image registration) and for two sets of rotation output data obtained from manual 
reconstruction (MR1 and MR2). 
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Figure 6-22:  Presentation of the registration which failed in fifth step (IR5 in Figure 

6-21) of rotation. 

 

The measured strain is plotted against the distance between points used for the strain 

evaluation (Figure 6-23) as described in section 6.4.2.  The measured distance varied 

from 0.41 mm to 11.4 mm.   The reported strain decreases as the distance between 

points increases.  For the 1st, 2nd and 3rd rotations, the strain error decreases to 

approximately 1% when the distance is larger than 2 mm.  Maximum strains occurred 

for distances smaller than 0.5 mm ranging from 5.5% for the 3rd rotation to 3.5% for 

the 1st rotation.  It was observed that, as the rotation angle increased, the magnitude of 

reported strains also increased. As it was reported previously, the registration failed 

for the 4th rotation (5th position), due to the large rotation angle.  In this case strains 

greater than 50% were reported (Figure 6-23, 4th rotation).  In Table 23 maximum and 

average strain error is reported for both ShIRT and the manual measurement (between 

MR1 and MR2 for a distance of 2 mm and 6 mm). 
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Table 23:    Strain  error  for  the  registration  of  the  grid  rotation.  ‘-‘  means  not  assessed. 

Distance between 
points [mm] 

Max Strain error [%] Average Strain Error [%] 

 ShIRT MR ShIRT MR 

0.45 5 - 2 - 

1.0 3 - 1.5 - 

2.0 1.2 3.25 0.5 1.25 

2.8 0.8 - 0.38 - 

6.0 0.5 1.5 0.25 0.8 

Figure 6-23:  Variation in computed strain using ShIRT with distance between points 
from the zero strain test. 
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FLAT SURFACE TRANSLATION 

For both registration methods, the maximum, mean and standard deviation of strain 

were computed as a function of the distance between nodes over a range of distances 

(i.e.  0.07 → 0.09 mm) as reported in Table 24.   

Registration of the left and right images using ShIRT was robust for all the translation 

steps. Decreasing the distance between nodes to value of 0.075 mm resulted in a 

maximum error of 7.5%.  For a distance between nodes of 0.5 mm, the error dropped 

to 1.8% and incrementally decreased as the distance between the points increased as 

reported in Table 24.  The 3D reconstruction of the ROI for all translation steps is 

shown in 3D in Figure 6-24. 

Using VIC-2D the correlation was robust for all translation steps. A maximum error 

of approximately 0.8% was reported (Table 25) for small node separations (between 

0.05 and 0.07 mm).  However, the mean strain error at this node separation was only 

0.13%.  Figure 6-25 shows the relationship between the maximum and mean strain 

and the distance between nodes for both registration methods (ShIRT and VIC-2D).  

Individual plots of strain for 5 translation steps for small and large ROIs using VIC-

2D is shown in Figure 6-24. 
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Figure 6-24:  3D plot presenting flat object translation of small area. 

 

Table 24:  Strain error for the small and large area from registration using ShIRT. 

ShIRT 

distance range [mm] max strain [%] mean strain [%] std [%] 

0.07 → 0.09 7.5 1.70 1.4 

0.25 → 0.35 3.9 0.87 1.0 

0.45 → 0.55 1.8 0.45 0.6 

0.65 → 0.75 1.2 0.28 0.3 

0.85 → 0.95 0.7 0.25 0.2 

1.30 → 1.50 0.7 0.16 0.12 

1.60 → 1.80 0.55 0.13 0.11 

2.00 →2.20 0.43 0.10 0.08 

2.40 → 2.60 0.4 0.09 0.06 

2.80 → 3.20 0.3 0.07 0.05 

3.30 → 3.70 0.26 0.06 0.05 

3.80→ 4.60 0.1 0.04 0.03 
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Table 25: Strain error for the small and large area from registration using  
VIC-2D. 

VIC-2D 

distance range [mm] max strain [%] mean strain [%] std [%] 

0.05 →0.07 0.8 0.13 0.10 

0.08 → 0.12 0.75 0.12 0.10 

0.14 → 0.16 0.71 0.11 0.09 

0.18 → 0.30 0.55 0.092 0.07 

0.40 →0.50 0.42 0.063 0.05 

0.50 → 0.70 0.34 0.048 0.04 

0.80 → 1.00 0.22 0.038 0.03 

1.00 → 1.60 0.16 0.03 0.02 

1.60 → 2.00 0.13 0.022 0.02 

2.00 → 2.40 0.07 0.01 0.008 

 

 
Figure 6-25:  Maximum and means strain to the distance between nodes plotted for ShIRT 

and VIC-2D. 

 



CHAPTER 6: LOCAL STRAINS 

 

184 
 

 

Figure 6-26: Variation in computed strain using VIC-2D with distance between points 
from the zero strain test. 

 

CYLINDER TRANSLATION 

Registration of the left and right images was robust for the first five translation steps 

using ShIRT and for all six translations using VIC-2D.  To determine the translation 
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distance for which ShIRT failed to register the images, manual measurement between 

a few marker points in the initial geometry and at the sixth translation was performed, 

reporting a translation distance of approximately 1.15 mm (±0.025 mm). A 3D plot of 

the reconstruction of all translation steps using ShIRT data with the failure for the sixth 

translation is presented in Figure 6-27.  

 
Figure 6-27:  3D plot of the cylinder translation; data form ShIRT 

 

For both registration methods the maximum, mean and standard deviation (STDEV) 

of strain was computed, as a function of the distance between nodes for all points over 

a range of distances as presented in Table 26.  The maximum strain obtained with 

ShIRT was of order of 3.3% for node separation in the distance range: 0.25 →  0.45.  

The values of maximum error obtained with ShIRT for the distance 1.8 → 2.1 and  

2.2 →2.5 presented in the Table 26 are with red dash lines due to single outliers shown 
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in Figure 6-28.  For the VIC-2D the maximum strain was of order of 0.97% (Table 

27) for a node separation between 0.05 and 0.07.   

Table 26:  Strain error for the cylindrical shape registration  

ShIRT 

Distance range [mm] max strain [%] mean strain [%] std [%] 

0.25 → 0.45 3.3 0.6 0.5 

0.5 → 0.8 2.4 0.4 0.3 

0.8 → 1.2 1.5 0.23 0.2 

1.3 → 1.55 1.1 0.16 0.13 

1.55 → 1.8 0.73 0.14 0.11 

1.8 → 2.1 1 0.13 0.11 

2.2 →2.5 0.98 0.1 0.08 

2.5 → 3.0 0.6 0.09 0.07 

3.0 → 3.4 0.42 0.08 0.06 

3.5 → 4.0 0.39 0.08 0.06 

4.0 → 4.5 0.39 0.08 0.06 

4.5 → 5.5 0.29 0.08 0.05 

 

 
Table 27:  Strain error for the cylindrical shape registration 

VIC-2D 

distance range [mm] max strain [%] mean strain [%] std [%] 

0.05 → 0.10 0.97 0.18 0.15 

0.15→ 0.25 0.75 0.15 0.13 

0.25→ 0.5 0.7 0.12 0.089 

0.5 → 0.7 0.5 0.11 0.076 

1.0 → 1.3 0.38 0.1 0.064 

1.3 → 1.6 0.3 0.09 0.054 

1.6 → 1.9 0.26 0.09 0.054 

1.0 → 1.6 0.24 0.1 0.055 

1.9 → 2.2 0.24 0.01 0.047 

2.3 → 2.8 0.19 0.0009 0.04 
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Figure 6-28 shows the relationship between the maximum and mean strain and the 

distance between nodes for both registration methods (ShIRT and VIC-2D) for the 4th 

translation.   

 
Figure 6-28:  Maximum and mean strain as a function of the distance between nodes for 

both ShIRT and VIC-2D.  

 

6.5.1.3.   DISCUSSION 

A rigid body motion (RBM) test was carried out using both ShIRT and VIC-2D image 

registration software to assess typical errors in strain measurement.  Three control 

objects were examined during rotation (checkerboard grid) and translation (flat object, 

cylinder with applied scattered pattern) to confirm the accuracy of the registration 

method combined with the 3D reconstruction process.  Engineering strain was 

computed to compare results from the RBM test.   

In a previous study of Genovese et al. [136] one translation step of a rigid cannula was 

conducted to check zero strain errors.  The results indicated that the error varied along 
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the specimen.  The maximum observed error of order 6% was depicted on the results 

plot, but a mean error value of approximately 0.6% was reported in this paper.  This 

value seems reasonable, given the small length scales (~0.04 mm local distance 

between nodes).   

In the current study at least 4 steps of rotation or translation were undertaken.   Even 

though these tests should indicate a zero-strain condition, reported strains of the order 

of 0.2- 5% for ShIRT and 0.07- 1% for VIC-2D, were distributed randomly across the 

region of interest.  These errors may arise from experimental noise such as: 

illumination fluctuations, camera lens distortions, correlation algorithm errors and 

random noise present in the registration.  It is important to bear in mind that the 

accuracy of the displacement measurements of a VIC-2D correlation algorithm is 

related to the type of interpolation scheme used.  Higher order interpolation schemes 

lead to lower amounts of measurement errors.  These reported RBM results were 

generated with the 8-tap sub-pixel interpolation scheme, which was the highest order 

interpolation scheme available within VIC-2D. 

As a result of these tests, VIC-2D was used for all following experiments. The 

maximum computed error was <1% with a mean error value of approximately 0.18% 

(for 0.05 →   0.1 mm local distance between nodes). This value is a significant 

improvement and places limits on the minimum detectable strain and the confidence 

with any reported strain.  It is small enough to support investigation of strain in the 

analogue artery model.    

 In the next sections a tensile test of an elastic material and more complicated study of 

vessel analogue wall deformation during stent deployment are presented.  
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6.5.2. DEFORMATION TO EXAMINE STRAIN  

As discussed in Chapter 1, both the angioplasty balloon and the stent deployment 

induce non-uniform strains in the vessel wall.  Quantitative data on the local strain 

distribution will aid understanding of the vessel wall injury and related neointimal 

tissue growth and in-stent restenosis which have been reported in both numerical 

studies [46] and porcine models [2, 70].  This section reports experimental tests to 

examine the local strain distribution which occurs during stent deployment within a 

vessel analogue. 

Following the assessment of strain uncertainty during rigid body motion (described in 

the previous section), image registration was applied to track deformations for non-

zero strain calculation.  The experimental process began with a tensile test before 

testing a vessel analogue mimicking the coronary artery to examine stent deployment.  

This approach, where the conditions of the initial tests are easy to control, was 

undertaken to improve confidence that final results are robust. Green-Lagrange strain 

was computed from the deformation of individual triangles (defined by three nodes).  

The deformation gradient, F, determined at each stage of deformation was used to 

obtain the Green strain tensor, E, as described in Section 6.4.2.  

To examine strain variation over a range of magnitudes the objects were imaged at 

several stages of deformation.  Stereo pairs of digital images were subsequently 

processed with VIC-2D to track the deformation in left and right camera, as described 

in Section 6.4.  Stereo calibration was used for 3D stereo triangulation of the left and 

right camera 2D data from VIC-2D.  
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TENSILE TEST 

Initial focus was on the simple deformation of flat silicone sheet with an applied 

speckle pattern.  A Technic (LEGO) test rig, displayed in Figure 6-29, was used to 

apply a stretch to a 38 mm x 18 mm size silicone sample marked with a speckle pattern 

(using the same marking approach as for RBM translation test).  The rig consisted of 

two rotatable rods, to which the sample was attached with double sided tape.  

 
Figure 6-29:  Rig used to stretch elastic material: tensile test.  

 

One end of the sample was fixed to the left rod and the right rod was moveable (rotated) 

to achieve various levels of axial strain.  The stereo camera rig was used to capture 

each deformation step. 

The images were taken at the initial state and a further nine deformed states (at 

increasing rotation of the right rod in the test rig).  The strains in the x direction should 
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be positive and in the y direction  negative  due  to  the  inherent  Poisson’s  ratio  properties  

(Figure 6-30).   

 
Figure 6-30:  Diagram presenting tensile and compressive deformations of the elastic 

material during stretching. 
 

The captured images were loaded into VIC-2D to perform image correlation.  A region 

of interest, of approximate size 1 mm by 4 mm, (Figure 6-31), of the applied speckle 

pattern was used to track the deformation in longitudinal (x) and transverse (y) 

directions.  A seed point location was selected in the centre of the region of interest 

and the default subset-size of 41 and step-size of 5 were used.  Additionally two 

reference points, separated by a distance of approximately 6.8 mm, were used to 

calculate the global strain in the x direction using a manual method to compare with 

registration output, as described in Section 6.4.2.  

 
Figure 6-31:  VIC-2D- Region of interest, image taken at the initial stage with left camera. 

 

Deformation in ‘x’ direction (+)Deformation in ‘y’ direction (-)

Reference points
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2D displacements were used to obtain the 3D coordinates of a grid of points within the 

region of interest, as described in section 6.4.  A grid size of 0.07 mm by 0.07 mm was 

used for this test.  Green-Lagrange strain was computed across the region of interest 

using the technique described by Genovese et. al [136] with a Matlab subroutine [154].  

1392 values of each component of strain were computed from the triangles defined by 

the X by Y grid.  In addition,  Pearson’s  correlation  coefficient  was  calculated  between  

the VIC-2D strain data and global strain from manual reconstruction.  Green-Lagrange 

strain measure was used for this exercise.  

STENT DEPLOYMENT 

The experimental imaging of stent deployment within the vessel analogue was 

designed to include in the cameras field of view not only the stent, but also the balloon 

on which the stent was crimped and to contain regions of the vessel analogue outside 

the stented area.   In order to achieve this, the cameras optics were modified to reduce 

the magnification to 0.3 (v = 41 mm, u = 135 mm).   

To image the experiment a stereo rig was formed by positioning two cameras at an 

angle of approximately 65°.  Prior to stent deployment, a checkerboard grid pattern 

was captured in six orientations to calibrate the cameras.  Calibration accuracy was 

determined through reconstruction of a control checkerboard grid with internal grids 

of size 3 mm x 3 mm.  

The silicone material (SILEX limited, Hampshire, UK) tested for suitability for 

coronary application (Section 6.3) was covered with white Stretchi paint (Creative 

Resources Distribution, Propbuilder) and sprayed with black Enamel spray (Plasti-



CHAPTER 6: LOCAL STRAINS 

 

193 
 

kote, USA) to increase image contrast and create a speckle pattern for image 

registration.    

A vessel analogue was created by wrapping the sheet over itself and securing it 

between two Perspex blocks, as shown in diagram below, Figure 6-32. 

 
Figure 6-32:  Diagram presents silicone sheet securing between two Perspex blocks to 

create straight vessel analogue section.  

 

 Following calibration assessment, a cobalt chromium alloy L-605 Coroflex Blue 

(B/Braun Medical) coronary stent (nominal deployed diameter 3.5 mm, length  

10 mm), mounted on the manufacturer-supplied balloon, was attached to a clinical 

inflation device (Merit Medical Basix25, Ireland) and inserted into the lumen of the 

vessel analogue.  

A stereo pair of images was obtained before balloon inflation.  The pressure in the 

inflation device was then increased to a value of 9 atm (911.92kPa) using steps of 

approximately 0.6 atm ±0.2 atm.  Stereo images were taken as previously using 

FlyCap2 (Point Grey).  After each inflation step, the balloon was left for 10 seconds 

to stabilise before an image pair was taken to avoid creep effects.  At the last step, 

when the pressure was increased to 9 atm (911.92kPa), the balloon was kept inflated 

for 30s (pressurisation), before deflation.  Afterwards, the balloon was deflated and 
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withdrawn along with the catheter from the lumen before another image pair was 

captured, allowing assessment of stent recoil.   

The stereo optical images of vessel analogue deformation were used to characterise 

vessel wall strain as for the tensile test. VIC-2D displacement data and camera 

calibration data were used to determine the 3D coordinates (x, y, z) of nodes within a 

selected region of interest.  Local strains were calculated on the 3D vessel surface 

using the Green-Lagrange measure in longitudinal 𝐸௫  and circumferential 𝐸௬   

directions. 

The stent/vessel analogue wall interaction experiment was designed to investigate the 

hypothesis that the strain varies along the length and around the circumference due to 

behaviour of individual struts, as observed during the free stent deployment analysis 

described in Chapter 5.  

In addition global circumferential strain was approximated by measuring the diameter 

of the analogue at five locations on the vessel wall as shown in Figure 6-36 (Results 

Section): before the distal edge of the stent (a), at the distal edge of the stent (b), in the 

central part (c), at the proximal edge of the stent (d) and after the proximal edge of the 

stent (e).  The assumption was that the analogue was cylindrical at each stage of 

deformation and the circumference (C0)  was  calculated  from  the  diameter  as  Π*1/2D2 

(Π=3.14,  D- analogue internal diameter).  Change in the circumference (C) was used 

to measure Green-Lagrange strain in the circumferential direction  

(𝐸 =     ஼
మି஼బమ

ଶ஼బమ
). 
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6.5.2.1.   RESULTS 

Strain results are presented in this section starting with the simple tensile test, followed 

by the more complex 3D deformation of the vessel analogue during stent deployment.  

The experimental tests were precisely performed and average value of calibration and 

reconstruction accuracy of 15 µm was found in both accuracy assessment tests, as 

reported in Table 28.  

Table 28:  Maximum, minimum and standard deviation (STDEV) from all 25 
points reconstructed in 3 steps of translation of the control object. 

Difference in computed distance 
[µm] 

STDEV 
[µm] 

Max Average Min  

18 15 6 15 

 
 

TENSILE TEST 

1392 local strains were computed in both x longitudinal (𝐸௫) and y transverse (𝐸௬) 

directions.  Table 29 contains the average values of 𝐸௫ strain at each deformation step 

with VIC-2D and manual strain measurements between two reference points.  

The average value of the VIC-2D strain results along with the manual measure are 

plotted with change in the applied strain step in Figure 6-33a and against each other 

in Figure 6-33b.      The   Pearson’s   correlation   coefficient   of   0.9925   confirms   good  

agreement between the two methods.   
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Table 29:  Local (image registration) and global strain (manual measurement). 

Steps Average 
strain VIC-2D 

[%] 

 Manual 
strain [%] 

 

1 2.53  2.43  

2 3.21  2.9  

3 3.88  4.2  

4 4.51  4.38  

5 6.11  5.96  

6 6.92  6.31  

7 8.17  7.91  

8 9.48  9.17  

 

 

 
Figure 6-33:  a) Variation in the average strain computed in the x direction using VIC 2D 
and manual method with applied strain. b)  Average strain computed with VIC 2D versus 

strain obtained from manual reconstruction. 
 

The strain distribution calculated in longitudinal, 𝐸௫, and transverse, 𝐸௬, directions for 

the 5th and 9th deformation stages are shown as a contour plot in Figure 6-34 and the 

maximum, minimum and standard deviation of the strain values over the whole region 
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of interest are reported in Table 30. In Figure 6-35 the strain data are plotted for the 

single line in y direction depicted by black markers on the Figure 6-34 for the 𝐸௫  strain 

and the 𝐸௬   strain over three steps of deformation.   

 
Figure 6-34:  VIC-2D strain computed in longitudinal and circumferential direction for 

chosen region of interest: 5th and 9th deformation steps; nodes separation 0.08 mm. 
 

 
Table 30:  Maximum and minimum strain reported from 1392 computed local strains in 
longitudinal direction (Ex) and transversal direction (Ey), plus the standard deviation.  

Tensile Strain 𝑬𝒙   [%] 

Steps MAX  MIN STDEV  
1 2.53 -0.003 0.40 

2 3.92  0.79 0.43 

3 4.33  1.17 0.42 

4 4.92  2.57 0.42 

5 5.65  3.30 0.40 

6 8.01  4.31 0.49 

7 8.83  5.25 0.52 

8 9.83  6.68 0.51 
 

Tensile Strain 𝑬𝒚   [%] 

Steps MAX  MIN STDEV  
1  2.25  2.50 0.55 

2  0.89 -2.61 0.50 

3  0.13 -3.42 0.40 

4 -0.47 -3.19 0.43 

5 -0.42 -3.53 0.40 

6 -0.84 -3.72 0.42 

7 -0.77 -4.42 0.42 

8 -1.61 -5.07 0.42 
 

x [mm]

y [mm] 𝑬𝒚 𝑬𝒙 
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The maximum error (0.9% for the 0.07 mm node separation used to compute the strain 

values) computed during zero strain test is shown using error bars for each strain 

component (Figure 6-35). 

 

 
Figure 6-35:  Strain variation across the length: a) 𝑬𝒙   and b) 𝑬𝒚. The strain 1, strain 5 and 

strain 8 are the results from second, sixth and ninth tensile step respectively.  

 

STENT DEPLOYMENT 

1840, 2772 and 2058 local strains were computed in both longitudinal 𝐸௫  and 

circumferential 𝐸௬   directions for the distal, central and proximal part of the vessel 
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analogue respectively.  During stent deployment the distal end of the stent first came 

into contact with the inner wall of the analogue when the inflation pressure was 

increased to 2.4 atm.  Both the distal and proximal ends of the stent continued to 

expand (showing a dog-boning phase) until the pressure load increased to 6.6 atm.  At 

a pressure load of 7.2 atm the central part of the stent deployed.  The pressure in the 

balloon was increased to 9.0 atm to fully deploy the stent, and then held for 

approximately 30s (pressurisation).  Afterwards, the balloon was deflated allowing 

stent recoil.   The overall behaviour of the stent during the deployment process was 

observed from the image data and the displacement was computed with the VIC-2D 

software.  

Figure 6-36 shows the vessel analogue (image taken in the initial stage, 0 atm) along 

with points a, b, c, d and e (yellow dashed lines) where diameter measurements were 

taken to approximate the strain of the analogue circumference (Figure 6-37) and the 

regions used to compute strain data from VIC-2D displacements.  The variation of the 

circumferential strain estimate along the length of the analogue is illustrated for six 

balloon inflation pressures and the vessel recoil.  These results illustrate high local 

strain due to stent deployment at both ends of the stent (position b and d) during the 

dog-boning phase.   
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Figure 6-36:  Vessel analogue before the stent deployment. Region of interest for the 

image registration is presented in blue.  
 

 
Figure 6-37:  Estimated circumferential, global strain of five circumferences on the vessel 

analogue (a, b, c, d, e, Figure 6-36) to applied pressure (max 9 atm). 
 

 
Figure 6-38:  The longitudinal 𝑬𝒙   and transversal 𝑬𝒚    strain distribution plotted on the 

vessel analogue surface at the three regions of interest for balloon inflation pressures of: 
2.4, 6.6, 9.0 and 0 atm. 
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Table 31 reports the maximum and minimum values and the standard deviation of all 

local strains computed from VIC-2D displacement data over the distal, central and 

proximal region of interest at four stages: initial contact of the stent with the vessel 

(2.4 atm), maximum dog-boning phase (6.6 atm), maximum stent deployment  

(9.0 atm) and elastic recoil (0 atm), as presented in Figure 6-38.  Negative minimum 

strain represents maximum compressive strain. 

Table 31:  Maximum and minimum strain reported from 1840 at distal, 2772 at central 
and 2058 at proximal local strains measure in longitudinal direction (𝑬𝒙) and transversal 
direction (𝑬𝒚), plus the standard deviation. Data reports strain measure at four stages of 

stent deployment. 
 

Pressure Strain 𝑬𝒚   Distal [%] 

[atm] MAX  MIN  STD 
2.4 9.44 -4.42 2.0 

6.6 10.58 -4.67 3.0 

9.0 22.30 -3.85 6.0 

recoil 7.65 -5.06 2.0 

 

Pressure Strain 𝑬𝒙  Distal [%] 

[atm] MAX  MIN  STD 
2.4 4.49 -3.66 1.0 

6.6 4.00 -7.73 3.0 

9.0 3.96 -10.68 5.0 

recoil 1.20 -4.10 1.0 

 

 
 

Pressure Strain 𝑬𝒚   Central [%] 

[atm] MAX  MIN  STD 
2.4  0.12 -2.23 0. 6 

6.6 -0.40 -6.04 0. 8 

9.0  19.13  3.49 3.0 

recoil  9.25 -2.98 2.0 

 

 
 

Pressure Strain 𝑬𝒙   Central [%] 

[atm] MAX  MIN  STD 
2.4 1.65  0.02 0.3 

6.6 4.70  1.59 0.6 

9.0 16.3  7.24 0.02 

recoil 6.48 -0.72 1.4 

 

 
 

Pressure Strain 𝑬𝒚   Proximal [%] 

[atm] MAX  MIN  STD 
2.4 2.87 -3.09 0. 7 

6.6 17.16 -4.25 2.9 

9.0 30.95  4.16 2.8 

recoil 8.06 -3.74 3.0 

 

 
 

Pressure Strain 𝑬𝒙   Proximal [%] 

[atm] MAX  MIN  STD 
2.4 0.90 -1.94 0.7 

6.6 4.09 -5.41 1.7 

9.0 11.35 -6.74 3.0 

recoil 10.35 -3.88 2.0 
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Initial contact between the stent and the analogue at the distal end (inflation pressure 

2.4 atm) caused abrupt increase in the local strain, which was approximately three 

times greater than the strain at the proximal end and four times greater than strain in 

the central part (Table 31).  Significant variation in local strain occurred on the vessel 

wall surface at the last stage of the dog-boning phase (6.6 atm), when the stent struts 

significantly deformed the vessel analogue at the proximal and distal ends.  At this 

stage the maximum positive strain 𝐸௬   was 7% greater at the proximal than distal part.  

The same behaviour occurred for the fully deployed stent, Table 31.  Following 

balloon deflation (0 atm), the maximum strain decreased by approximately a factor of 

two (𝐸௫   and 𝐸௬) in the central part and factor of three 𝐸௬   in distal and proximal parts.  

Figure 6-39a, Figure 6-40a and Figure 6-41a illustrate the 𝐸௫  and 𝐸௬  strain data on a 

3D contour plot of the reconstructed deformed geometry of the vessel analogue in the 

distal, proximal and central regions of interest at a single deformation stage.  For distal 

and proximal part the maximum dog-boning phase (6.6 atm) is plotted with the strain 

variation from -6% to 15%.  However, for the central part strain data from elastic recoil 

is presented to express local strain variation on the vessel wall after the balloon is 

removed.  

Figure 6-39b, Figure 6-40b and Figure 6-41b show the 𝐸௫    and 𝐸௬  strain data plotted 

for a single circumferential line in the y direction (presented with black markers plotted 

on the 3D plots) to express strain variation around the circumference at this location 

at specific balloon inflation pressures.  The maximum strain error (0.9% for the 0.07 

mm node separation used to compute the strain values) computed during the zero strain 

test is shown using error bars for each strain component. 
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6.5.2.2.   DISCUSSION 

Section 6.5.2 describes two experimental tests to compute non-zero strain on 3D 

deformed surfaces: a tensile test of an elastic planar material and vessel analogue 

deformation due to stent deployment.  For both experiments the accuracy of camera 

calibration was determined using reconstruction accuracy assessment, which 

demonstrated uncertainty in 3D position of the order 15 µm.   

As expected for the tensile test output, the strains in the longitudinal, x, direction were 

positive and in the transverse, y, direction were negative, due to  the  inherent  Poisson’s  

ratio properties as shown qualitatively in Figure 6-34 and quantitatively in Figure 6-35 

and Table 30. 

The tensile test of the elastic material resulted in low strain variation (the maximum 

variation of 3.7% was found at sixth tensile step) at each deformation stage as 

illustrated along the central line in the y direction for 𝐸௫   and 𝐸௬   strain plotted at three 

steps of deformation (Figure 6-35) and in Table 30.  Due to the homogeneity of the 

elastic material and constant uniform deformation applied across the chosen region of 

interest this small variation in longitudinal strain is reasonable.   

A maximum standard deviation of the order 0.55 % was calculated from all localised 

strain outputs.  Note that the variations in strain are of similar order as the maximum 

plotted error.  It is therefore suggested that there is little variation in strain across the 

strip.  The variations in strain may be due to uncertainty in measurement, rather than 

a  “real”  variation.   Moreover, the uncertainty is less than the changes in strain between 

each deformation.  It is important to point out that there is good agreement in terms of 

the average strain between the local strain and manual measurements.  The correlation 
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coefficient of 0.9925 (y = 0.9851x + 0.1283) between manual and VIC-2D Green-

Lagrange strain data confirmed this.  The maximum strain error decreased from 2% to 

0.2% (for 2 mm node spacing, Table 27) when compared to the tensile test strain results 

reported in Chapter 2, Section 2.4 (large length scale).  In these experiments the use of 

image registration methods allows investigation of hundreds of nodes for local strain 

calculation and deformation is automatically tracked at each deformation step.  This 

approach would be impractical using manual methods.  Using the automated tracking 

method 1392 strains can be computed in the same time as it takes to acquire two 

manual strain measures, for each deformation steps. Moreover, the relative accuracy 

between a manual and automatic approach differs.  1392 local strain values measured 

manually would be poor quality, as there is likely to be a random error associated with 

operator’s   judgement. The evidence for this is presented in Chapter 4 where the 

reproducibility associated with manual picking introducing a significant error 

(sensitivity test) on the results is reported. 

The limitation of this experiment was that the strain applied to the elastic sheet has 

been not well controlled while the tensile test was performed as the deformation 

applied during rotation of the rod was not directly measured.  Whilst this experiment 

could be refined by measuring the angle of the rotation of the rod at each stretching 

step to compute the global strain for comparison with the derived data, the manual 

measurement over the region of interest provides a measure of the overall strain of the 

sample.    

Results obtained from the confined deployment of a coronary stent within a vessel 

analogue confirmed the general behaviour presented in Chapter 5 for an unconstrained 
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stent.  First the distal and proximal ends of the stent came into contact with the 

analogue (dog-boning phase) while the central region of the stent remained 

unexpanded.  From the circumferential strain results (Figure 6-37) the dog-boning 

effect is most obvious at inflation pressures of 5.4 atm and 6.6 atm, but the edges of 

the stent were already observed to be in the contact with the analogue at a pressure 

load of 2.4 atm, which is confirmed by the data presented in Figure 6-38  

and Table 31. 

The dog-boning of the stent temporarily stretched the analogue circumferentially and 

resulted in high local strain variation (from -4.25% to approximately 17% strain in the 

proximal area).  Moreover, local strains increased significantly, Table 31, due to 

maximum inflation of the angioplasty balloon (9.0 atm) and decreased notably after 

balloon deflation.  Stent recoil occurred when the pressure was decreased to  

0 atm and the balloon was withdrawn from the analogue, reducing analogue strain 

significantly (Figure 6-39b, Figure 6-40b, Figure 6-41a and b and Table 31).  In the 

proximal part maximum local 𝐸௬  strain decreased from 30.9% for the fully inflated 

angioplasty balloon stage (9.0 atm) to 8.1% following balloon deflation.  

Higher strain values are reported for the estimated global circumferential strain 

measure than for the local strain.  This result may be related to the assumption that the 

vessel analogue is circular at each stage of deformation.  Such estimates of global 

strain provide an indication of overall stent behaviour at each applied pressure load 

from 2D images alone, but this study confirms that full 3D reconstruction of the region 

of interest on the vessel surface is required to provide detailed information of the local 

strain distribution during contact with deploying stent struts.  This knowledge is crucial 
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to understand strain-related vessel wall injury and possible correlations with the 

magnitude of neointimal tissue growth.   

VIC-2D combined with 3D reconstruction methods has provided encouraging results 

(maximum error <1% for a 0.07 mm node spacing) of the local strain distribution on 

the analogue surface following stent implantation.  Figure 6-42 demonstrates the 

relationship between the strut geometry and the regions of high and low strains around 

the circumference.  This behaviour was also presented in the in silico study of 

Zahedmanesh [77], where high stress occurred in the area of interaction of the stent 

strut with the vessel wall. 

 
Figure 6-42:  High strains at the proximal and distal stent ends due to the dog-boning of 

the stent and asymmetrical struts deployment (results shown at balloon pressure  
6.6 atm) 

 

It can be suggested that localised high strains on the vessel wall surface are due to 

assymetrical stent strut separation as it has been presented in Chapter 5. The 

magnitudes of strain variation around the circumference 𝐸௬   for the maximum stent 

deployment (pressure load of 9 atm) alter significantly: from -3.85% to 22.3% for the 

8mm
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distal part and 4.16% to 30.95% for proximal part with standard deviations  

of 6% and 2% respectively.  These differences are due to strain measured in the stented 

and unstented sections.  Analysis of these results can be used to suggest the likely 

distribution of strain-related vessel wall injury caused by the stent deployment and its 

interaction with the vessel. 

Asymmetrical behaviour of each stent unit can be determined using this experimental 

approach.  Describing such behaviour in numerical models presents a challenge.  The 

strain and stress on the internal surface of the artery has been studied numerically by 

many researchers [1, 46, 52, 71, 77] to understand the relation between arterial injury 

caused by the stent on the vessel wall and in-stent restenosis.  Numerical models are 

often used to characterise stent expansion, with applications including stent interaction 

with a stenosed artery [155], stress/strain distributions throughout the thickness of the 

vessel and stent flexibility in curved vessels [74].  Detailed study of such problems can 

be difficult to achieve with clinical or experimental studies.  Furthermore, the 

computational model can be used to investigate the wall shear stress, the impact on the 

haemodynamic environment due to stent and vessel wall deformation [156], which is 

not possible with optical experimental techniques.  However, in many in silico studies 

the nature of the stent expansion is often idealised (using a uniform pressure to 

simulate balloon expansion) and often does not take into account the complex 

interaction between the stent and the balloon.  The results of computational simulations 

which quantify strain on the arterial wall needs to be validated against experimental 

work.  Experimental tests provide data on the possible variations in strain that can arise 

during practical expansion of stent/balloon systems.  A combined numerical and 

experimental approach could provide optimum information about the stent/artery 
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interaction, resulting in the development of new stent designs to minimise vessel wall 

injury. 

The results of this study confirmed the results obtained with porcine [2, 70] and sheep 

[59] models as well as with the clinical findings [157], where the greatest amount of 

neointimal tissue growth occurred at the proximal and distal regions. These studies 

confirmed the relation between stent asymmetry, vascular injury and restenosis.   

Two recent publications have focused on the experimental measurement of 

deformation of human arteries [90] and a vessel analogue [91] following stent 

deployment in vitro, to evaluate the strain on the artery wall surface.  In  

a preliminary study Horny et al. [90] applied digital image correlation (DIC) to provide 

information about stent/vessel interaction in the presence of atherosclerosis in a human 

coronary artery harvested during autopsy.  The reporting of the results focussed only 

on a few specific locations.  Moreover, Zhao [91] quantified strain on the stented latex 

straight tube using 3D DIC and developed computational model to recapture stenting 

experiment.  However, the diameter and thickness of analogue investigated in this 

study was two times larger (6.32 mm) and five times thicker (1.55) than the typical 

dimensions of the coronary artery.  The quantification of the strain field on the artery 

[90] and analogue [91] reported in these studies did not focus on local regions of stent 

strut deformation.   

An advantage of the current study is the possibility to compare data from the local and 

global measures of strain distribution on the surface of the analogue with local and 

global measures of unconstrained stent deformation reported in Chapter 5, as shown 

in Figure 6-42.  Moreover, the accuracy of the method developed in this thesis has 
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been assessed and validated using both micro-CT volumetric scanning (Chapter 4) and 

rigid body motion zero strain test.  This study is the first demonstration of 

measurement of stent geometry using both micro-CT and optical reconstruction 

methods at the coronary stent length scale.  
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SUMMARY 

Experimental data characterising the local strains on the vessel wall following stent 

implantation is scant.  In this work considerable effort was made to check the accuracy 

(98%) of the stereo-photogrammetric optical method (Chapter 4) and image 

registration (99%) with rigid body motion tests (Chapter 6).  The main calibration and 

reconstruction accuracy carried throughout all experimental work was of an order of 

12   μm   and  mean   repeatability   error   associated   with   manual   identification   of   strut  

landmark  points  was  of  an  order  of  16  μm. 

Stereo photogrammetry combined with image registration provided strain 

measurement, which allows tracking of large deformations in a non-invasive way.  The 

VIC-2D image correlation software was used to process the images of elastic material 

and vessel analogue deformation obtained with high resolution Flea2 fire-wire 

cameras to resolve 3D strains, with focus on the interaction of the stent with a vessel 

analogue.  The surface strain was captured at every stage of deformation to understand 

the local response of the analogue due to contact with the stent.  A high contrast 

random pattern was applied to the analogue surface to track the deformation.  It should 

be noted that Stretchi paint (Propbuilder, UK) was applied, before a black enamel 

spray (Plasti-kote, USA), to increase the speckle pattern contrast and reduce reflections 

from the surface of the analogue. 
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Two recent studies have investigated deformation of human arteries [90] and vessel 

analogues [91] in vitro, to evaluate the deformation after stent deployment.  However, 

only Zhao et al. [91] reports strain accuracy (0.155% uncertainty in strain 

measurement), with no information on the spatial resolution for which this accuracy is 

obtained.  In the current study, considerable effort was undertaken to ensure that 

uncertainty of the applied methods was acceptable.  It was found that the error depends 

on the spatial resolution, for node spacing greater than 0.07 mm (0.015 mm smaller 

than that used in the stent test) the maximum error in measurement of strain was < 1%, 

allowing useful measurement of local strain with adequate accuracy. 

In addition, these previous studies do not focus on the local contact of stent struts with 

the artery.  An advantage of this study is the potential for examination of local strain 

distribution on the vessel wall which confirms the expected deformation of the vessel 

analogue based on the analysis of local stent deformation during unconstrained 

deployment, reported in Chapter 5.   

This thesis describes a non-invasive optical technique applied to examine large 

deformations on the surface of a vessel analogue at sufficient depth of field (Chapter 

3) for the investigated length scale.  High spatial resolution was obtained (10-12 µm) 

due to the high magnification of the optical design.  The deployment of a balloon 

expandable stent in a vessel analogue made of silicone was captured with two Flea2 

high resolution cameras with the same method as free stent expansion (Chapter 5).  

The surface displacement was obtained using VIC-2D and 3D output was computed 

with the stereo-photogrammetry method.  This approach allowed information to be 
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gathered along the full length of a small scale vessel analogue (15 mm) over 1/3th 

(120°) of its circumference.   

The interpretation of these results in the context of evidence from in vivo studies of 

stent deployment provides a significant advance towards improvement of stent design 

through better understanding of strain-related vascular injury and the link with in-stent 

restenosis.  Recommendations for further development of these techniques are 

provided in Chapter 7. 
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CHAPTER  7 

CONCLUSION  &  FUTURE  WORK 

This chapter presents the final conclusions of the thesis and suggestions for future 

work.  Research conducted during the PhD was an experimental work carried out 

during the MeDDiCA Marie Curie Initial Training Network project.  Most of the 

output data were three dimensional (3D).  

To the  author’s  knowledge  detailed  quantitative  measures  of  local  stent  geometry  at  

the coronary artery length scale in vitro was carried for the first time; the same applies 

to detailed accuracy assessment of imaging modalities.  
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CONCLUSION 

Deformations in biological soft tissue samples cannot be measured with contact 

methods such as strain gauges, since the attachment of the strain gauge itself will 

change the mechanical properties of the tissue and it will determine the strain only in 

localised area.  Thus, optical methods are gaining popularity in biomedical science for 

deformation measurement (of bones, tendons, cartilage, skin and vessels ex vivo).  

Accurate quantification of the deformations taking place within these tissues may 

improve understanding of disease progression.   

Stents are a good example of an application where measuring strain on the vessel wall 

following implantation would undoubtedly prove useful.  Although research on stent 

behaviour during deployment has been undertaken experimentally for many years, a 

complete understanding of stent/vessel wall interaction in 3D is yet to be obtained.  

Optical methods are capable of producing full-field displacement, strain maps and can 

be used to validate the models of in silico studies.  

This study employed 3D optical stereo-photogrammetry with image registration.  An 

optical system to characterise stent deployment symmetry in vitro was developed using 

a stereo pair of high resolution fire-wire cameras.  

A major part of this PhD was validation and error assessment of each investigated 

method.  Camera calibration and reconstruction accuracy were assessed using different 

size grids and the testing of control objects to check calibration error prior to each 

performed test.  Imaging at the coronary artery length scale involved design and testing 

of an optical system to obtain high magnification whilst maintaining sufficient depth 
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of field.  Measurement of local coronary stent geometry was validated with volumetric 

micro-CT.  Zero strain tests of different complexities were applied to check accuracy 

of image registration method prior to application for strain measurement.  Results have 

shown that high accuracy (to within 12 µm of volumetric micro-CT) can be achieved 

during reconstruction of 3D stent geometry.  Moreover, the strain error was always 

less than 1%, even for small distances between nodes such as 0.07 mm.   

It has been shown that the extent of strain and stress imparted on the vessel wall during 

stent deployment is related to the level of the injury [7, 46].  Stent implantation imposes 

high strains on local regions of the arterial wall resulting in a higher degree of 

neointimal tissue growth [2].  Greater amounts of restenosis have been observed to 

occur at the proximal and distal regions of the stent during clinical studies [57], 

suggested to be related to the dog-boning effect during non-uniform stent expansion.  

Asymmetric stent strut deployment, examined in the current study, resulting in 

excessive local strains on the vessel surface may increase the risk of vascular injury 

leading to higher restenosis rates.  

An advantage of carrying out the research for this PhD in the Medical Physics Group, 

Department of Cardiovascular Science was an opportunity to gain a good 

understanding of the in-stent restenosis problem due to collaboration with clinicians.  

Experience in solid mechanics and expertise of optical system design at the coronary 

artery length scale led to investigation of the detail of free expansion of local stent 

geometry in 3D (Chapter 5), and the response of the vessel analogue to stent 

deployment, resulting in a non-uniform strain distribution (Chapter 6). 
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FUTURE WORK 

Opportunities for future work consist of a number of stages which include both the 

technical development of the experimental methods and the application of these 

techniques to the study of the interactions between stents and porcine coronary arteries.   

A subsequent study would benefit from automated camera calibration.  Automation of 

the calibration method will reduce errors obtained during the manual process 

(achieving uncertainty lower than 10-15 µm) and reducing its time (less than 10-15 

min in total).  The Bouguet Calibration Toolbox is currently used to calibrate cameras 

[115]; further integration of calibration with camera control software is possible 

through use of the OpenCV software libraries [111].  

Due to bandwidth limitations and technical issues with dynamic synchronisation of the 

stereo camera pair, it was not possible to undertake high resolution imaging of stent 

expansion at 30fps with the current stereo rig.  In this study the stent was expanded 

gradually and images with stereo camera rig were taken.  Two fire-wire cameras were 

used on the same bus, but they were not fully synchronised.  Synchronisation of the 

cameras allows assessment of full dynamic vessel wall behaviour due to loading as 

demonstrated using a single camera in the 2D test described in Chapter 5.  Additional 

improvement of the code used to capture images needs to take place to run two (or 

more) cameras at the same time.  Synchronisation allows stent expansion to be imaged 

in real time, as performed by clinicians.  3D data of the dynamic stent deployment 

would deliver detailed understanding of the influence of rate of balloon inflation on 

the extent of arterial strains during stent deployment.  More than two, stereoscopically 

positioned cameras could be used to record the deformation process due to stent 



CHAPTER 7: CONCLUSIONS & FUTURE WORK 

 

220 
 

deployment, as described by Narracott [88] to examine the full circumference of the 

vessel. 

Image registration with VIC-2D results in good strain accuracy (max error < 1%) and 

is adequate to determine vessel analogue deformation following stent expansion as 

illustrated in Chapter 6.  Moreover, a proper marking method for analogues was 

established.  The deformation, and associated strain fields of ex vivo pig coronary 

arteries following stent expansion and additionally vessel analogues constructed from 

inhomogeneous material would determine the effects of vessel material properties on 

the strain distribution and stent deployment characteristics.  To mimic atherosclerosis, 

local thickening and/or stiffening of the wall could be included.  This type of complex 

3D study of stent deployment would provide appropriate data to validate existing 

computational models and direct future model development.  

The design of the optical system provided in Chapter 3, allows the technique to be 

used over a range of length scales, this provides the opportunity for imaging of the 

whole heart ex vivo to examine changes in vessel geometry, as described during marker 

evaluation in Chapter 6.  
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FINAL THOUGHTS 

There is a great interest in improving stent design.  Engineering approaches for the 

characterisation of the vessel wall strain caused by stents will play a role in the 

improved design of these implants and techniques for their deployment.  Better 

understanding of how stent design relates to vessel wall injury and the resulting 

neointimal hyperplasia which causes in-stent restenosis will contribute to reduction of 

restenosis rates, improving patient care and quality of life.  In the future this type of 

study will impact the economy through reduced treatment costs. 

The in vitro 3D optical reconstruction method described in this thesis can be applied 

to detailed assessment of medical devices performance (over a range of length scales 

due to the defined protocol for lens design).  In addition, the resulting data obtained 

from the experimental assessment of such devices has further application to provide 

boundary conditions or validation data for in silico studies.   
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1.   NPG  warrants  that  it  has,  to  the  best  of  its  knowledge,  the  rights  to  license  reuse  of  this
material.  However,  you  should  ensure  that  the  material  you  are  requesting  is  original  to
Nature  Publishing  Group  and  does  not  carry  the  copyright  of  another  entity  (as  credited  in
the  published  version).  If  the  credit  line  on  any  part  of  the  material  you  have  requested
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indicates  that  it  was  reprinted  or  adapted  by  NPG  with  permission  from  another  source,  then
you  should  also  seek  permission  from  that  source  to  reuse  the  material.
  

2.   Permission  granted  free  of  charge  for  material  in  print  is  also  usually  granted  for  any
electronic  version  of  that  work,  provided  that  the  material  is  incidental  to  the  work  as  a
whole  and  that  the  electronic  version  is  essentially  equivalent  to,  or  substitutes  for,  the  print
version.Where  print  permission  has  been  granted  for  a  fee,  separate  permission  must  be
obtained  for  any  additional,  electronic  re-­use  (unless,  as  in  the  case  of  a  full  paper,  this  has
already  been  accounted  for  during  your  initial  request  in  the  calculation  of  a  print  run).NB:  In
all  cases,  web-­based  use  of  full-­text  articles  must  be  authorized  separately  through  the  'Use
on  a  Web  Site'  option  when  requesting  permission.
  

3.   Permission  granted  for  a  first  edition  does  not  apply  to  second  and  subsequent  editions  and
for  editions  in  other  languages  (except  for  signatories  to  the  STM  Permissions  Guidelines,  or
where  the  first  edition  permission  was  granted  for  free).
  

4.   Nature  Publishing  Group's  permission  must  be  acknowledged  next  to  the  figure,  table  or
abstract  in  print.  In  electronic  form,  this  acknowledgement  must  be  visible  at  the  same  time
as  the  figure/table/abstract,  and  must  be  hyperlinked  to  the  journal's  homepage.

5.   The  credit  line  should  read:
Reprinted  by  permission  from  Macmillan  Publishers  Ltd:  [JOURNAL  NAME]  (reference
citation),  copyright  (year  of  publication)
For  AOP  papers,  the  credit  line  should  read:
Reprinted  by  permission  from  Macmillan  Publishers  Ltd:  [JOURNAL  NAME],  advance  online
publication,  day  month  year  (doi:  10.1038/sj.[JOURNAL  ACRONYM].XXXXX)

Note:  For  republication  from  the  British  Journal  of  Cancer,  the  following  credit
lines  apply.
Reprinted  by  permission  from  Macmillan  Publishers  Ltd  on  behalf  of  Cancer  Research  UK:
[JOURNAL  NAME]  (reference  citation),  copyright  (year  of  publication)For  AOP  papers,  the
credit  line  should  read:
Reprinted  by  permission  from  Macmillan  Publishers  Ltd  on  behalf  of  Cancer  Research  UK:
[JOURNAL  NAME],  advance  online  publication,  day  month  year  (doi:  10.1038/sj.[JOURNAL
ACRONYM].XXXXX)  

  
6.   Adaptations  of  single  figures  do  not  require  NPG  approval.  However,  the  adaptation  should  be

credited  as  follows:

Adapted  by  permission  from  Macmillan  Publishers  Ltd:  [JOURNAL  NAME]  (reference  citation),
copyright  (year  of  publication)

Note:  For  adaptation  from  the  British  Journal  of  Cancer,  the  following  credit  line
applies.
Adapted  by  permission  from  Macmillan  Publishers  Ltd  on  behalf  of  Cancer  Research  UK:
[JOURNAL  NAME]  (reference  citation),  copyright  (year  of  publication)
  

7.   Translations  of  401  words  up  to  a  whole  article  require  NPG  approval.  Please  visit
http://www.macmillanmedicalcommunications.com  for  more  information.Translations  of  up
to  a  400  words  do  not  require  NPG  approval.  The  translation  should  be  credited  as  follows:

Translated  by  permission  from  Macmillan  Publishers  Ltd:  [JOURNAL  NAME]  (reference
citation),  copyright  (year  of  publication).

Note:  For  translation  from  the  British  Journal  of  Cancer,  the  following  credit  line
applies.
Translated  by  permission  from  Macmillan  Publishers  Ltd  on  behalf  of  Cancer  Research  UK:
[JOURNAL  NAME]  (reference  citation),  copyright  (year  of  publication)

We  are  certain  that  all  parties  will  benefit  from  this  agreement  and  wish  you  the  best  in  the
use  of  this  material.  Thank  you.
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Special  Terms:

v1.1
Questions?  customercare@copyright.com  or  +1-­855-­239-­3415  (toll  free  in  the  US)  or
+1-­978-­646-­2777.

Gratis  licenses  (referencing  $0  in  the  Total  field)  are  free.  Please  retain  this  printable
license  for  your  reference.  No  payment  is  required.
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WOLTERS  KLUWER  HEALTH,  INC.  LICENSE
TERMS  AND  CONDITIONS

Mar  31,  2015

This  Agreement  between  Iwona  Zwierzak  ("You")  and  Wolters  Kluwer  Health,  Inc.

("Wolters  Kluwer  Health,  Inc.")  consists  of  your  license  details  and  the  terms  and  conditions

provided  by  Wolters  Kluwer  Health,  Inc.  and  Copyright  Clearance  Center.

License  Number 3439411213643

License  date Jul  31,  2014

Licensed  Content  Publisher Wolters  Kluwer  Health

Licensed  Content  Publication Annals  of  Surgery

Licensed  Content  Title Patterns  of  Atherosclerosis  and  their  Surgical  Significance.

Licensed  Content  Author MICHAEL  DEBAKEY,  GERALD  LAWRIE,  and  DONALD  GLAESER

Licensed  Content  Date Jan  1,  1985

Licensed  Content  Volume
Number

201

Licensed  Content  Issue
Number

2

Type  of  Use Dissertation/Thesis

Requestor  type Individual

Portion Figures/table/illustration

Number  of
figures/tables/illustrations

1

Figures/tables/illustrations
used

Fig.1

Author  of  this  Wolters  Kluwer
article

No

Title  of  your  thesis  /
dissertation

In  vitro  characterisation  of  stent  deployment  and  local  arterial  strains

Expected  completion  date Aug  2014

Estimated  size(pages) 240

Billing  Type Invoice

Billing  Address
66  Upper  Allen  Street
Apartment  16

Sheffield,  United  Kingdom  S37GW
Attn:

Total 0.00  GBP

Total

Terms  and  Conditions

Terms  and  Conditions
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1.   A  credit  line  will  be  prominently  placed  and  include  the  author(s),  title  of  article,  title  of
journal,  volume  number,  issue  number  and  inclusive  pages.

2.   The  requestor  warrants  that  the  material  shall  not  be  used  in  any  manner  which  may  be
considered  derogatory  to  the  title,  content,  or  authors  of  the  material,  or  to  Wolters  Kluwer.

3.   Permission  granted  is  non-­exclusive,  and  is  valid  throughout  the  world  in  the  English
language  and  the  languages  specified  in  your  original  request.

4.   Wolters  Kluwer  cannot  supply  the  requestor  with  the  original  artwork  or  a  "clean  copy."
5.   Permission  is  valid  if  the  borrowed  material  is  original  to  a  Wolters  Kluwer  imprint  (Lippincott-­

Raven  Publishers,  Williams  &  Wilkins,  Lea  &  Febiger,  Harwal,  Rapid  Science,  Little  Brown  &
Company,  Harper  &  Row  Medical,  American  Journal  of  Nursing  Co,  and  Urban  &
Schwarzenberg  -­  English  Language).

6.   If  you  opt  not  to  use  the  material  requested  above,  please  notify  RightsLink  or  Wolters
Kluwer  Health/Lippincott  Williams  &  Wilkins  within  90  days  of  the  original  invoice  date.

7.   This  permission  does  not  apply  to  images  that  are  credited  to  publications  other  than  Wolters
Kluwer  journals.  For  images  credited  to  non-­Wolters  Kluwer  journal  publications,  you  will
need  to  obtain  permission  from  the  journal  referenced  in  the  figure  or  table  legend  or  credit
line  before  making  any  use  of  the  image(s)  or  table(s).

8.   Adaptations  are  protected  by  copyright,  so  if  you  would  like  to  reuse  material  that  we  have
adapted  from  another  source,  you  will  need  not  only  our  permission,  but  the  permission  of
the  rights  holder  of  the  original  material.  Similarly,  if  you  want  to  reuse  an  adaptation  of
original  LWW  content  that  appears  in  another  publisher's  work,  you  will  need  our  permission
and  that  of  the  next  publisher.  The  adaptation  should  be  credited  as  follows:  Adapted  with
permission  from  Lippincott  Williams  and  Wilkins/Wolters  Kluwer  Health:  Book  author,  title,
year  of  publication  or  Journal  name,  article  author,  title,  reference  citation,  year  of
publication.

9.   Please  note  that  modification  of  text  within  figures  or  full-­text  article  is  strictly
forbidden.

10.   Please  note  that  articles  in  the  ahead-­of-­print  stage  of  publication  can  be  cited  and  the
content  may  be  re-­used  by  including  the  date  of  access  and  the  unique  DOI  number.  Any
final  changes  in  manuscripts  will  be  made  at  the  time  of  print  publication  and  will  be  reflected
in  the  final  electronic  version  of  the  issue.  Disclaimer:  Articles  appearing  in  the  Published
Ahead-­of-­Print  section  have  been  peer-­reviewed  and  accepted  for  publication  in  the  relevant
journal  and  posted  online  before  print  publication.  Articles  appearing  as  publish  ahead-­of-­
print  may  contain  statements,  opinions,  and  information  that  have  errors  in  facts,  figures,  or
interpretation.  Accordingly,  Lippincott  Williams  &  Wilkins,  the  editors  and  authors  and  their
respective  employees  are  not  responsible  or  liable  for  the  use  of  any  such  inaccurate  or
misleading  data,  opinion  or  information  contained  in  the  articles  in  this  section.

11.   Permission  is  granted  for  a  one  time  use  only  within  12  months  from  the  date  of  this  invoice.
Rights  herein  do  not  apply  to  future  reproductions,  editions,  revisions,  or  other  derivative
works.  Once  the  12-­month  term  has  expired,  permission  to  renew  must  be  submitted  in
writing.

12.   The  following  statement  needs  to  be  added  when  reprinting  the  material  in  Open  Access
journals  only:  'promotional  and  commercial  use  of  the  material  in  print,  digital  or  mobile
device  format  is  prohibited  without  the  permission  from  the  publisher  Lippincott  Williams  &
Wilkins.  Please  contact  journalpermissions@lww.com  for  further  information'.

13.   In  case  of  Disease  Colon  Rectum,  Plastic  Reconstructive  Surgery,  The  Green
Journal,  Critical  Care  Medicine,  Pediatric  Critical  Care  Medicine,  the  American

Heart  Publications,  the  American  Academy  of  Neurology  the  following  guideline
applies:  no  drug  brand/trade  name  or  logo  can  be  included  in  the  same  page  as  the  material
re-­used

14.   When  requesting  a  permission  to  translate  a  full  text  article,  Wolters  Kluwer/Lippincott
Williams  &  Wilkins  requests  to  receive  the  pdf  of  the  translated  document

15.   Other  Terms  and  Conditions:

v1.9

Questions?  customercare@copyright.com  or  +1-­855-­239-­3415  (toll  free  in  the  US)  or
+1-­978-­646-­2777.

Gratis  licenses  (referencing  $0  in  the  Total  field)  are  free.  Please  retain  this  printable
license  for  your  reference.  No  payment  is  required.
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ELSEVIER  LICENSE

TERMS  AND  CONDITIONS

Mar  31,  2015

This  is  a  License  Agreement  between  Iwona  Zwierzak  ("You")  and  Elsevier  ("Elsevier")
provided  by  Copyright  Clearance  Center  ("CCC").  The  license  consists  of  your  order  details,
the  terms  and  conditions  provided  by  Elsevier,  and  the  payment  terms  and  conditions.

All  payments  must  be  made  in  full  to  CCC.  For  payment  instructions,  please  see

information  listed  at  the  bottom  of  this  form.

Supplier Elsevier  Limited

The  Boulevard,Langford  Lane

Kidlington,Oxford,OX5  1GB,UK

Registered  Company  Number 1982084

Customer  name Iwona  Zwierzak

Customer  address 66  Upper  Allen  Street

   Sheffield,  S37GW

License  number 3440150383542

License  date Aug  01,  2014

Licensed  content  publisher Elsevier

Licensed  content  publication Medical  Engineering  &  Physics

Licensed  content  title Uncertainty  assessment  of  imaging  techniques  for  the  3D

reconstruction  of  stent  geometry

Licensed  content  author Daria  Cosentino,Iwona  Zwierzak,Silvia  Schievano,Vanessa  Díaz-­

Zuccarini,John  W.  Fenner,Andrew  J.  Narracott

Licensed  content  date August  2014

Licensed  content  volume

number

36

Licensed  content  issue

number

8

Number  of  pages 7

Start  Page 1062

End  Page 1068

Type  of  Use reuse  in  a  thesis/dissertation

Intended  publisher  of  new

work

other

Portion figures/tables/illustrations

Number  of

figures/tables/illustrations

3

Format both  print  and  electronic

Are  you  the  author  of  this

Elsevier  article?

Yes

Will  you  be  translating? No

Title  of  your In  vitro  characterisation  of  stent  deployment  and  local  arterial  strains
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thesis/dissertation

Expected  completion  date Aug  2014

Estimated  size  (number  of

pages)

240

Elsevier  VAT  number GB  494  6272  12

Permissions  price 0.00  GBP

VAT/Local  Sales  Tax 0.00  GBP  /  0.00  GBP

Total 0.00  GBP

Terms  and  Conditions

INTRODUCTION

1.  The  publisher  for  this  copyrighted  material  is  Elsevier.    By  clicking  "accept"  in
connection  with  completing  this  licensing  transaction,  you  agree  that  the  following  terms
and  conditions  apply  to  this  transaction  (along  with  the  Billing  and  Payment  terms  and
conditions  established  by  Copyright  Clearance  Center,  Inc.  ("CCC"),  at  the  time  that  you
opened  your  Rightslink  account  and  that  are  available  at  any  time  at
http://myaccount.copyright.com).

GENERAL  TERMS

2.  Elsevier  hereby  grants  you  permission  to  reproduce  the  aforementioned  material  subject  to
the  terms  and  conditions  indicated.

3.  Acknowledgement:  If  any  part  of  the  material  to  be  used  (for  example,  figures)  has
appeared  in  our  publication  with  credit  or  acknowledgement  to  another  source,  permission
must  also  be  sought  from  that  source.    If  such  permission  is  not  obtained  then  that  material
may  not  be  included  in  your  publication/copies.  Suitable  acknowledgement  to  the  source
must  be  made,  either  as  a  footnote  or  in  a  reference  list  at  the  end  of  your  publication,  as
follows:

"Reprinted  from  Publication  title,  Vol  /edition  number,  Author(s),  Title  of  article  /  title  of
chapter,  Pages  No.,  Copyright  (Year),  with  permission  from  Elsevier  [OR  APPLICABLE
SOCIETY  COPYRIGHT  OWNER]."  Also  Lancet  special  credit  -­  "Reprinted  from  The
Lancet,  Vol.  number,  Author(s),  Title  of  article,  Pages  No.,  Copyright  (Year),  with
permission  from  Elsevier."

4.  Reproduction  of  this  material  is  confined  to  the  purpose  and/or  media  for  which
permission  is  hereby  given.

5.  Altering/Modifying  Material:  Not  Permitted.  However  figures  and  illustrations  may  be
altered/adapted  minimally  to  serve  your  work.  Any  other  abbreviations,  additions,  deletions
and/or  any  other  alterations  shall  be  made  only  with  prior  written  authorization  of  Elsevier
Ltd.  (Please  contact  Elsevier  at  permissions@elsevier.com)

6.  If  the  permission  fee  for  the  requested  use  of  our  material  is  waived  in  this  instance,
please  be  advised  that  your  future  requests  for  Elsevier  materials  may  attract  a  fee.

7.  Reservation  of  Rights:  Publisher  reserves  all  rights  not  specifically  granted  in  the
combination  of  (i)  the  license  details  provided  by  you  and  accepted  in  the  course  of  this
licensing  transaction,  (ii)  these  terms  and  conditions  and  (iii)  CCC's  Billing  and  Payment
terms  and  conditions.

8.  License  Contingent  Upon  Payment:  While  you  may  exercise  the  rights  licensed
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immediately  upon  issuance  of  the  license  at  the  end  of  the  licensing  process  for  the
transaction,  provided  that  you  have  disclosed  complete  and  accurate  details  of  your  proposed
use,  no  license  is  finally  effective  unless  and  until  full  payment  is  received  from  you  (either
by  publisher  or  by  CCC)  as  provided  in  CCC's  Billing  and  Payment  terms  and  conditions.    If
full  payment  is  not  received  on  a  timely  basis,  then  any  license  preliminarily  granted  shall  be
deemed  automatically  revoked  and  shall  be  void  as  if  never  granted.    Further,  in  the  event
that  you  breach  any  of  these  terms  and  conditions  or  any  of  CCC's  Billing  and  Payment
terms  and  conditions,  the  license  is  automatically  revoked  and  shall  be  void  as  if  never
granted.    Use  of  materials  as  described  in  a  revoked  license,  as  well  as  any  use  of  the
materials  beyond  the  scope  of  an  unrevoked  license,  may  constitute  copyright  infringement
and  publisher  reserves  the  right  to  take  any  and  all  action  to  protect  its  copyright  in  the
materials.

9.  Warranties:  Publisher  makes  no  representations  or  warranties  with  respect  to  the  licensed
material.

10.  Indemnity:  You  hereby  indemnify  and  agree  to  hold  harmless  publisher  and  CCC,  and
their  respective  officers,  directors,  employees  and  agents,  from  and  against  any  and  all
claims  arising  out  of  your  use  of  the  licensed  material  other  than  as  specifically  authorized
pursuant  to  this  license.

11.  No  Transfer  of  License:  This  license  is  personal  to  you  and  may  not  be  sublicensed,
assigned,  or  transferred  by  you  to  any  other  person  without  publisher's  written  permission.

12.  No  Amendment  Except  in  Writing:  This  license  may  not  be  amended  except  in  a  writing
signed  by  both  parties  (or,  in  the  case  of  publisher,  by  CCC  on  publisher's  behalf).

13.  Objection  to  Contrary  Terms:  Publisher  hereby  objects  to  any  terms  contained  in  any
purchase  order,  acknowledgment,  check  endorsement  or  other  writing  prepared  by  you,
which  terms  are  inconsistent  with  these  terms  and  conditions  or  CCC's  Billing  and  Payment
terms  and  conditions.    These  terms  and  conditions,  together  with  CCC's  Billing  and  Payment
terms  and  conditions  (which  are  incorporated  herein),  comprise  the  entire  agreement
between  you  and  publisher  (and  CCC)  concerning  this  licensing  transaction.    In  the  event  of
any  conflict  between  your  obligations  established  by  these  terms  and  conditions  and  those
established  by  CCC's  Billing  and  Payment  terms  and  conditions,  these  terms  and  conditions
shall  control.

14.  Revocation:  Elsevier  or  Copyright  Clearance  Center  may  deny  the  permissions  described
in  this  License  at  their  sole  discretion,  for  any  reason  or  no  reason,  with  a  full  refund  payable
to  you.    Notice  of  such  denial  will  be  made  using  the  contact  information  provided  by  you.  
Failure  to  receive  such  notice  will  not  alter  or  invalidate  the  denial.    In  no  event  will  Elsevier
or  Copyright  Clearance  Center  be  responsible  or  liable  for  any  costs,  expenses  or  damage
incurred  by  you  as  a  result  of  a  denial  of  your  permission  request,  other  than  a  refund  of  the
amount(s)  paid  by  you  to  Elsevier  and/or  Copyright  Clearance  Center  for  denied
permissions.

LIMITED  LICENSE

The  following  terms  and  conditions  apply  only  to  specific  license  types:

15.  Translation:  This  permission  is  granted  for  non-­exclusive  world  English  rights  only
unless  your  license  was  granted  for  translation  rights.  If  you  licensed  translation  rights  you
may  only  translate  this  content  into  the  languages  you  requested.  A  professional  translator
must  perform  all  translations  and  reproduce  the  content  word  for  word  preserving  the
integrity  of  the  article.  If  this  license  is  to  re-­use  1  or  2  figures  then  permission  is  granted  for
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non-­exclusive  world  rights  in  all  languages.

16.  Posting  licensed  content  on  any  Website:  The  following  terms  and  conditions  apply  as
follows:  Licensing  material  from  an  Elsevier  journal:  All  content  posted  to  the  web  site  must
maintain  the  copyright  information  line  on  the  bottom  of  each  image;;  A  hyper-­text  must  be
included  to  the  Homepage  of  the  journal  from  which  you  are  licensing  at
http://www.sciencedirect.com/science/journal/xxxxx  or  the  Elsevier  homepage  for  books  at
http://www.elsevier.com;;  Central  Storage:  This  license  does  not  include  permission  for  a
scanned  version  of  the  material  to  be  stored  in  a  central  repository  such  as  that  provided  by
Heron/XanEdu.

Licensing  material  from  an  Elsevier  book:  A  hyper-­text  link  must  be  included  to  the  Elsevier
homepage  at  http://www.elsevier.com  .  All  content  posted  to  the  web  site  must  maintain  the
copyright  information  line  on  the  bottom  of  each  image.

Posting  licensed  content  on  Electronic  reserve:  In  addition  to  the  above  the  following
clauses  are  applicable:  The  web  site  must  be  password-­protected  and  made  available  only  to
bona  fide  students  registered  on  a  relevant  course.  This  permission  is  granted  for  1  year  only.
You  may  obtain  a  new  license  for  future  website  posting.

17.  For  journal  authors:  the  following  clauses  are  applicable  in  addition  to  the  above:

Preprints:

A  preprint  is  an  author's  own  write-­up  of  research  results  and  analysis,  it  has  not  been  peer-­
reviewed,  nor  has  it  had  any  other  value  added  to  it  by  a  publisher  (such  as  formatting,
copyright,  technical  enhancement  etc.).

Authors  can  share  their  preprints  anywhere  at  any  time.  Preprints  should  not  be  added  to  or
enhanced  in  any  way  in  order  to  appear  more  like,  or  to  substitute  for,  the  final  versions  of
articles  however  authors  can  update  their  preprints  on  arXiv  or  RePEc  with  their  Accepted
Author  Manuscript  (see  below).

If  accepted  for  publication,  we  encourage  authors  to  link  from  the  preprint  to  their  formal
publication  via  its  DOI.  Millions  of  researchers  have  access  to  the  formal  publications  on
ScienceDirect,  and  so  links  will  help  users  to  find,  access,  cite  and  use  the  best  available
version.  Please  note  that  Cell  Press,  The  Lancet  and  some  society-­owned  have  different
preprint  policies.  Information  on  these  policies  is  available  on  the  journal  homepage.

Accepted  Author  Manuscripts:  An  accepted  author  manuscript  is  the  manuscript  of  an
article  that  has  been  accepted  for  publication  and  which  typically  includes  author-­
incorporated  changes  suggested  during  submission,  peer  review  and  editor-­author
communications.

Authors  can  share  their  accepted  author  manuscript:

                  immediately

via  their  non-­commercial  person  homepage  or  blog

by  updating  a  preprint  in  arXiv  or  RePEc  with  the  accepted  manuscript

via  their  research  institute  or  institutional  repository  for  internal  institutional
uses  or  as  part  of  an  invitation-­only  research  collaboration  work-­group
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directly  by  providing  copies  to  their  students  or  to  research  collaborators  for
their  personal  use

for  private  scholarly  sharing  as  part  of  an  invitation-­only  work  group  on
commercial  sites  with  which  Elsevier  has  an  agreement

                  after  the  embargo  period

via  non-­commercial  hosting  platforms  such  as  their  institutional  repository

via  commercial  sites  with  which  Elsevier  has  an  agreement

In  all  cases  accepted  manuscripts  should:

                  link  to  the  formal  publication  via  its  DOI

                  bear  a  CC-­BY-­NC-­ND  license  -­  this  is  easy  to  do

                  if  aggregated  with  other  manuscripts,  for  example  in  a  repository  or  other  site,  be
shared  in  alignment  with  our  hosting  policy  not  be  added  to  or  enhanced  in  any  way  to
appear  more  like,  or  to  substitute  for,  the  published  journal  article.

Published  journal  article  (JPA):  A  published  journal  article  (PJA)  is  the  definitive  final
record  of  published  research  that  appears  or  will  appear  in  the  journal  and  embodies  all
value-­adding  publishing  activities  including  peer  review  co-­ordination,  copy-­editing,
formatting,  (if  relevant)  pagination  and  online  enrichment.

Policies  for  sharing  publishing  journal  articles  differ  for  subscription  and  gold  open  access
articles:

Subscription  Articles:  If  you  are  an  author,  please  share  a  link  to  your  article  rather  than  the
full-­text.  Millions  of  researchers  have  access  to  the  formal  publications  on  ScienceDirect,
and  so  links  will  help  your  users  to  find,  access,  cite,  and  use  the  best  available  version.

Theses  and  dissertations  which  contain  embedded  PJAs  as  part  of  the  formal  submission  can
be  posted  publicly  by  the  awarding  institution  with  DOI  links  back  to  the  formal
publications  on  ScienceDirect.

If  you  are  affiliated  with  a  library  that  subscribes  to  ScienceDirect  you  have  additional
private  sharing  rights  for  others'  research  accessed  under  that  agreement.  This  includes  use
for  classroom  teaching  and  internal  training  at  the  institution  (including  use  in  course  packs
and  courseware  programs),  and  inclusion  of  the  article  for  grant  funding  purposes.

Gold  Open  Access  Articles:  May  be  shared  according  to  the  author-­selected  end-­user
license  and  should  contain  a  CrossMark  logo,  the  end  user  license,  and  a  DOI  link  to  the
formal  publication  on  ScienceDirect.

Please  refer  to  Elsevier's  posting  policy  for  further  information.

18.  For  book  authors  the  following  clauses  are  applicable  in  addition  to  the  above:    
Authors  are  permitted  to  place  a  brief  summary  of  their  work  online  only.  You  are  not
allowed  to  download  and  post  the  published  electronic  version  of  your  chapter,  nor  may  you
scan  the  printed  edition  to  create  an  electronic  version.  Posting  to  a  repository:  Authors  are
permitted  to  post  a  summary  of  their  chapter  only  in  their  institution's  repository.
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19.  Thesis/Dissertation:  If  your  license  is  for  use  in  a  thesis/dissertation  your  thesis  may  be
submitted  to  your  institution  in  either  print  or  electronic  form.  Should  your  thesis  be
published  commercially,  please  reapply  for  permission.  These  requirements  include
permission  for  the  Library  and  Archives  of  Canada  to  supply  single  copies,  on  demand,  of
the  complete  thesis  and  include  permission  for  Proquest/UMI  to  supply  single  copies,  on
demand,  of  the  complete  thesis.  Should  your  thesis  be  published  commercially,  please
reapply  for  permission.  Theses  and  dissertations  which  contain  embedded  PJAs  as  part  of
the  formal  submission  can  be  posted  publicly  by  the  awarding  institution  with  DOI  links
back  to  the  formal  publications  on  ScienceDirect.

  

Elsevier  Open  Access  Terms  and  Conditions

You  can  publish  open  access  with  Elsevier  in  hundreds  of  open  access  journals  or  in  nearly
2000  established  subscription  journals  that  support  open  access  publishing.  Permitted  third
party  re-­use  of  these  open  access  articles  is  defined  by  the  author's  choice  of  Creative
Commons  user  license.  See  our  open  access  license  policy  for  more  information.

Terms  &  Conditions  applicable  to  all  Open  Access  articles  published  with  Elsevier:

Any  reuse  of  the  article  must  not  represent  the  author  as  endorsing  the  adaptation  of  the
article  nor  should  the  article  be  modified  in  such  a  way  as  to  damage  the  author's  honour  or
reputation.  If  any  changes  have  been  made,  such  changes  must  be  clearly  indicated.

The  author(s)  must  be  appropriately  credited  and  we  ask  that  you  include  the  end  user
license  and  a  DOI  link  to  the  formal  publication  on  ScienceDirect.

If  any  part  of  the  material  to  be  used  (for  example,  figures)  has  appeared  in  our  publication
with  credit  or  acknowledgement  to  another  source  it  is  the  responsibility  of  the  user  to
ensure  their  reuse  complies  with  the  terms  and  conditions  determined  by  the  rights  holder.

Additional  Terms  &  Conditions  applicable  to  each  Creative  Commons  user  license:

CC  BY:  The  CC-­BY  license  allows  users  to  copy,  to  create  extracts,  abstracts  and  new
works  from  the  Article,  to  alter  and  revise  the  Article  and  to  make  commercial  use  of  the
Article  (including  reuse  and/or  resale  of  the  Article  by  commercial  entities),  provided  the
user  gives  appropriate  credit  (with  a  link  to  the  formal  publication  through  the  relevant
DOI),  provides  a  link  to  the  license,  indicates  if  changes  were  made  and  the  licensor  is  not
represented  as  endorsing  the  use  made  of  the  work.  The  full  details  of  the  license  are
available  at  http://creativecommons.org/licenses/by/4.0.

CC  BY  NC  SA:  The  CC  BY-­NC-­SA  license  allows  users  to  copy,  to  create  extracts,
abstracts  and  new  works  from  the  Article,  to  alter  and  revise  the  Article,  provided  this  is  not
done  for  commercial  purposes,  and  that  the  user  gives  appropriate  credit  (with  a  link  to  the
formal  publication  through  the  relevant  DOI),  provides  a  link  to  the  license,  indicates  if
changes  were  made  and  the  licensor  is  not  represented  as  endorsing  the  use  made  of  the
work.  Further,  any  new  works  must  be  made  available  on  the  same  conditions.  The  full
details  of  the  license  are  available  at  http://creativecommons.org/licenses/by-­nc-­sa/4.0.

CC  BY  NC  ND:  The  CC  BY-­NC-­ND  license  allows  users  to  copy  and  distribute  the  Article,
provided  this  is  not  done  for  commercial  purposes  and  further  does  not  permit  distribution  of
the  Article  if  it  is  changed  or  edited  in  any  way,  and  provided  the  user  gives  appropriate
credit  (with  a  link  to  the  formal  publication  through  the  relevant  DOI),  provides  a  link  to  the
license,  and  that  the  licensor  is  not  represented  as  endorsing  the  use  made  of  the  work.  The
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full  details  of  the  license  are  available  at  http://creativecommons.org/licenses/by-­nc-­nd/4.0.
Any  commercial  reuse  of  Open  Access  articles  published  with  a  CC  BY  NC  SA  or  CC  BY
NC  ND  license  requires  permission  from  Elsevier  and  will  be  subject  to  a  fee.

Commercial  reuse  includes:

                  Associating  advertising  with  the  full  text  of  the  Article

                  Charging  fees  for  document  delivery  or  access

                  Article  aggregation

                  Systematic  distribution  via  e-­mail  lists  or  share  buttons

Posting  or  linking  by  commercial  companies  for  use  by  customers  of  those  companies.

  

20.  Other  Conditions:

  
Questions?  customercare@copyright.com  or  +1-­855-­239-­3415  (toll  free  in  the  US)  or

+1-­978-­646-­2777.

Gratis  licenses  (referencing  $0  in  the  Total  field)  are  free.  Please  retain  this  printable

license  for  your  reference.  No  payment  is  required.
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ELSEVIER  LICENSE

TERMS  AND  CONDITIONS

Mar  31,  2015

This  is  a  License  Agreement  between  Iwona  Zwierzak  ("You")  and  Elsevier  ("Elsevier")
provided  by  Copyright  Clearance  Center  ("CCC").  The  license  consists  of  your  order  details,
the  terms  and  conditions  provided  by  Elsevier,  and  the  payment  terms  and  conditions.

All  payments  must  be  made  in  full  to  CCC.  For  payment  instructions,  please  see
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Terms  and  Conditions

INTRODUCTION

1.  The  publisher  for  this  copyrighted  material  is  Elsevier.    By  clicking  "accept"  in
connection  with  completing  this  licensing  transaction,  you  agree  that  the  following  terms
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GENERAL  TERMS

2.  Elsevier  hereby  grants  you  permission  to  reproduce  the  aforementioned  material  subject  to
the  terms  and  conditions  indicated.

3.  Acknowledgement:  If  any  part  of  the  material  to  be  used  (for  example,  figures)  has
appeared  in  our  publication  with  credit  or  acknowledgement  to  another  source,  permission
must  also  be  sought  from  that  source.    If  such  permission  is  not  obtained  then  that  material
may  not  be  included  in  your  publication/copies.  Suitable  acknowledgement  to  the  source
must  be  made,  either  as  a  footnote  or  in  a  reference  list  at  the  end  of  your  publication,  as
follows:

"Reprinted  from  Publication  title,  Vol  /edition  number,  Author(s),  Title  of  article  /  title  of
chapter,  Pages  No.,  Copyright  (Year),  with  permission  from  Elsevier  [OR  APPLICABLE
SOCIETY  COPYRIGHT  OWNER]."  Also  Lancet  special  credit  -­  "Reprinted  from  The
Lancet,  Vol.  number,  Author(s),  Title  of  article,  Pages  No.,  Copyright  (Year),  with
permission  from  Elsevier."

4.  Reproduction  of  this  material  is  confined  to  the  purpose  and/or  media  for  which
permission  is  hereby  given.

5.  Altering/Modifying  Material:  Not  Permitted.  However  figures  and  illustrations  may  be
altered/adapted  minimally  to  serve  your  work.  Any  other  abbreviations,  additions,  deletions
and/or  any  other  alterations  shall  be  made  only  with  prior  written  authorization  of  Elsevier
Ltd.  (Please  contact  Elsevier  at  permissions@elsevier.com)

6.  If  the  permission  fee  for  the  requested  use  of  our  material  is  waived  in  this  instance,
please  be  advised  that  your  future  requests  for  Elsevier  materials  may  attract  a  fee.

7.  Reservation  of  Rights:  Publisher  reserves  all  rights  not  specifically  granted  in  the
combination  of  (i)  the  license  details  provided  by  you  and  accepted  in  the  course  of  this
licensing  transaction,  (ii)  these  terms  and  conditions  and  (iii)  CCC's  Billing  and  Payment
terms  and  conditions.

8.  License  Contingent  Upon  Payment:  While  you  may  exercise  the  rights  licensed



31/03/2015 Rightslink  Printable  License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e3c6dfb4-­d012-­4508-­aa92-­29249ceb1cf3 3/7

immediately  upon  issuance  of  the  license  at  the  end  of  the  licensing  process  for  the
transaction,  provided  that  you  have  disclosed  complete  and  accurate  details  of  your  proposed
use,  no  license  is  finally  effective  unless  and  until  full  payment  is  received  from  you  (either
by  publisher  or  by  CCC)  as  provided  in  CCC's  Billing  and  Payment  terms  and  conditions.    If
full  payment  is  not  received  on  a  timely  basis,  then  any  license  preliminarily  granted  shall  be
deemed  automatically  revoked  and  shall  be  void  as  if  never  granted.    Further,  in  the  event
that  you  breach  any  of  these  terms  and  conditions  or  any  of  CCC's  Billing  and  Payment
terms  and  conditions,  the  license  is  automatically  revoked  and  shall  be  void  as  if  never
granted.    Use  of  materials  as  described  in  a  revoked  license,  as  well  as  any  use  of  the
materials  beyond  the  scope  of  an  unrevoked  license,  may  constitute  copyright  infringement
and  publisher  reserves  the  right  to  take  any  and  all  action  to  protect  its  copyright  in  the
materials.

9.  Warranties:  Publisher  makes  no  representations  or  warranties  with  respect  to  the  licensed
material.

10.  Indemnity:  You  hereby  indemnify  and  agree  to  hold  harmless  publisher  and  CCC,  and
their  respective  officers,  directors,  employees  and  agents,  from  and  against  any  and  all
claims  arising  out  of  your  use  of  the  licensed  material  other  than  as  specifically  authorized
pursuant  to  this  license.

11.  No  Transfer  of  License:  This  license  is  personal  to  you  and  may  not  be  sublicensed,
assigned,  or  transferred  by  you  to  any  other  person  without  publisher's  written  permission.

12.  No  Amendment  Except  in  Writing:  This  license  may  not  be  amended  except  in  a  writing
signed  by  both  parties  (or,  in  the  case  of  publisher,  by  CCC  on  publisher's  behalf).

13.  Objection  to  Contrary  Terms:  Publisher  hereby  objects  to  any  terms  contained  in  any
purchase  order,  acknowledgment,  check  endorsement  or  other  writing  prepared  by  you,
which  terms  are  inconsistent  with  these  terms  and  conditions  or  CCC's  Billing  and  Payment
terms  and  conditions.    These  terms  and  conditions,  together  with  CCC's  Billing  and  Payment
terms  and  conditions  (which  are  incorporated  herein),  comprise  the  entire  agreement
between  you  and  publisher  (and  CCC)  concerning  this  licensing  transaction.    In  the  event  of
any  conflict  between  your  obligations  established  by  these  terms  and  conditions  and  those
established  by  CCC's  Billing  and  Payment  terms  and  conditions,  these  terms  and  conditions
shall  control.

14.  Revocation:  Elsevier  or  Copyright  Clearance  Center  may  deny  the  permissions  described
in  this  License  at  their  sole  discretion,  for  any  reason  or  no  reason,  with  a  full  refund  payable
to  you.    Notice  of  such  denial  will  be  made  using  the  contact  information  provided  by  you.  
Failure  to  receive  such  notice  will  not  alter  or  invalidate  the  denial.    In  no  event  will  Elsevier
or  Copyright  Clearance  Center  be  responsible  or  liable  for  any  costs,  expenses  or  damage
incurred  by  you  as  a  result  of  a  denial  of  your  permission  request,  other  than  a  refund  of  the
amount(s)  paid  by  you  to  Elsevier  and/or  Copyright  Clearance  Center  for  denied
permissions.

LIMITED  LICENSE

The  following  terms  and  conditions  apply  only  to  specific  license  types:

15.  Translation:  This  permission  is  granted  for  non-­exclusive  world  English  rights  only
unless  your  license  was  granted  for  translation  rights.  If  you  licensed  translation  rights  you
may  only  translate  this  content  into  the  languages  you  requested.  A  professional  translator
must  perform  all  translations  and  reproduce  the  content  word  for  word  preserving  the
integrity  of  the  article.  If  this  license  is  to  re-­use  1  or  2  figures  then  permission  is  granted  for
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non-­exclusive  world  rights  in  all  languages.

16.  Posting  licensed  content  on  any  Website:  The  following  terms  and  conditions  apply  as
follows:  Licensing  material  from  an  Elsevier  journal:  All  content  posted  to  the  web  site  must
maintain  the  copyright  information  line  on  the  bottom  of  each  image;;  A  hyper-­text  must  be
included  to  the  Homepage  of  the  journal  from  which  you  are  licensing  at
http://www.sciencedirect.com/science/journal/xxxxx  or  the  Elsevier  homepage  for  books  at
http://www.elsevier.com;;  Central  Storage:  This  license  does  not  include  permission  for  a
scanned  version  of  the  material  to  be  stored  in  a  central  repository  such  as  that  provided  by
Heron/XanEdu.

Licensing  material  from  an  Elsevier  book:  A  hyper-­text  link  must  be  included  to  the  Elsevier
homepage  at  http://www.elsevier.com  .  All  content  posted  to  the  web  site  must  maintain  the
copyright  information  line  on  the  bottom  of  each  image.

Posting  licensed  content  on  Electronic  reserve:  In  addition  to  the  above  the  following
clauses  are  applicable:  The  web  site  must  be  password-­protected  and  made  available  only  to
bona  fide  students  registered  on  a  relevant  course.  This  permission  is  granted  for  1  year  only.
You  may  obtain  a  new  license  for  future  website  posting.

17.  For  journal  authors:  the  following  clauses  are  applicable  in  addition  to  the  above:

Preprints:

A  preprint  is  an  author's  own  write-­up  of  research  results  and  analysis,  it  has  not  been  peer-­
reviewed,  nor  has  it  had  any  other  value  added  to  it  by  a  publisher  (such  as  formatting,
copyright,  technical  enhancement  etc.).

Authors  can  share  their  preprints  anywhere  at  any  time.  Preprints  should  not  be  added  to  or
enhanced  in  any  way  in  order  to  appear  more  like,  or  to  substitute  for,  the  final  versions  of
articles  however  authors  can  update  their  preprints  on  arXiv  or  RePEc  with  their  Accepted
Author  Manuscript  (see  below).

If  accepted  for  publication,  we  encourage  authors  to  link  from  the  preprint  to  their  formal
publication  via  its  DOI.  Millions  of  researchers  have  access  to  the  formal  publications  on
ScienceDirect,  and  so  links  will  help  users  to  find,  access,  cite  and  use  the  best  available
version.  Please  note  that  Cell  Press,  The  Lancet  and  some  society-­owned  have  different
preprint  policies.  Information  on  these  policies  is  available  on  the  journal  homepage.

Accepted  Author  Manuscripts:  An  accepted  author  manuscript  is  the  manuscript  of  an
article  that  has  been  accepted  for  publication  and  which  typically  includes  author-­
incorporated  changes  suggested  during  submission,  peer  review  and  editor-­author
communications.

Authors  can  share  their  accepted  author  manuscript:

                  immediately

via  their  non-­commercial  person  homepage  or  blog

by  updating  a  preprint  in  arXiv  or  RePEc  with  the  accepted  manuscript

via  their  research  institute  or  institutional  repository  for  internal  institutional
uses  or  as  part  of  an  invitation-­only  research  collaboration  work-­group



31/03/2015 Rightslink  Printable  License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=e3c6dfb4-­d012-­4508-­aa92-­29249ceb1cf3 5/7

directly  by  providing  copies  to  their  students  or  to  research  collaborators  for
their  personal  use

for  private  scholarly  sharing  as  part  of  an  invitation-­only  work  group  on
commercial  sites  with  which  Elsevier  has  an  agreement

                  after  the  embargo  period

via  non-­commercial  hosting  platforms  such  as  their  institutional  repository

via  commercial  sites  with  which  Elsevier  has  an  agreement

In  all  cases  accepted  manuscripts  should:

                  link  to  the  formal  publication  via  its  DOI

                  bear  a  CC-­BY-­NC-­ND  license  -­  this  is  easy  to  do

                  if  aggregated  with  other  manuscripts,  for  example  in  a  repository  or  other  site,  be
shared  in  alignment  with  our  hosting  policy  not  be  added  to  or  enhanced  in  any  way  to
appear  more  like,  or  to  substitute  for,  the  published  journal  article.

Published  journal  article  (JPA):  A  published  journal  article  (PJA)  is  the  definitive  final
record  of  published  research  that  appears  or  will  appear  in  the  journal  and  embodies  all
value-­adding  publishing  activities  including  peer  review  co-­ordination,  copy-­editing,
formatting,  (if  relevant)  pagination  and  online  enrichment.

Policies  for  sharing  publishing  journal  articles  differ  for  subscription  and  gold  open  access
articles:

Subscription  Articles:  If  you  are  an  author,  please  share  a  link  to  your  article  rather  than  the
full-­text.  Millions  of  researchers  have  access  to  the  formal  publications  on  ScienceDirect,
and  so  links  will  help  your  users  to  find,  access,  cite,  and  use  the  best  available  version.

Theses  and  dissertations  which  contain  embedded  PJAs  as  part  of  the  formal  submission  can
be  posted  publicly  by  the  awarding  institution  with  DOI  links  back  to  the  formal
publications  on  ScienceDirect.

If  you  are  affiliated  with  a  library  that  subscribes  to  ScienceDirect  you  have  additional
private  sharing  rights  for  others'  research  accessed  under  that  agreement.  This  includes  use
for  classroom  teaching  and  internal  training  at  the  institution  (including  use  in  course  packs
and  courseware  programs),  and  inclusion  of  the  article  for  grant  funding  purposes.

Gold  Open  Access  Articles:  May  be  shared  according  to  the  author-­selected  end-­user
license  and  should  contain  a  CrossMark  logo,  the  end  user  license,  and  a  DOI  link  to  the
formal  publication  on  ScienceDirect.

Please  refer  to  Elsevier's  posting  policy  for  further  information.

18.  For  book  authors  the  following  clauses  are  applicable  in  addition  to  the  above:    
Authors  are  permitted  to  place  a  brief  summary  of  their  work  online  only.  You  are  not
allowed  to  download  and  post  the  published  electronic  version  of  your  chapter,  nor  may  you
scan  the  printed  edition  to  create  an  electronic  version.  Posting  to  a  repository:  Authors  are
permitted  to  post  a  summary  of  their  chapter  only  in  their  institution's  repository.
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19.  Thesis/Dissertation:  If  your  license  is  for  use  in  a  thesis/dissertation  your  thesis  may  be
submitted  to  your  institution  in  either  print  or  electronic  form.  Should  your  thesis  be
published  commercially,  please  reapply  for  permission.  These  requirements  include
permission  for  the  Library  and  Archives  of  Canada  to  supply  single  copies,  on  demand,  of
the  complete  thesis  and  include  permission  for  Proquest/UMI  to  supply  single  copies,  on
demand,  of  the  complete  thesis.  Should  your  thesis  be  published  commercially,  please
reapply  for  permission.  Theses  and  dissertations  which  contain  embedded  PJAs  as  part  of
the  formal  submission  can  be  posted  publicly  by  the  awarding  institution  with  DOI  links
back  to  the  formal  publications  on  ScienceDirect.

  

Elsevier  Open  Access  Terms  and  Conditions

You  can  publish  open  access  with  Elsevier  in  hundreds  of  open  access  journals  or  in  nearly
2000  established  subscription  journals  that  support  open  access  publishing.  Permitted  third
party  re-­use  of  these  open  access  articles  is  defined  by  the  author's  choice  of  Creative
Commons  user  license.  See  our  open  access  license  policy  for  more  information.

Terms  &  Conditions  applicable  to  all  Open  Access  articles  published  with  Elsevier:

Any  reuse  of  the  article  must  not  represent  the  author  as  endorsing  the  adaptation  of  the
article  nor  should  the  article  be  modified  in  such  a  way  as  to  damage  the  author's  honour  or
reputation.  If  any  changes  have  been  made,  such  changes  must  be  clearly  indicated.

The  author(s)  must  be  appropriately  credited  and  we  ask  that  you  include  the  end  user
license  and  a  DOI  link  to  the  formal  publication  on  ScienceDirect.

If  any  part  of  the  material  to  be  used  (for  example,  figures)  has  appeared  in  our  publication
with  credit  or  acknowledgement  to  another  source  it  is  the  responsibility  of  the  user  to
ensure  their  reuse  complies  with  the  terms  and  conditions  determined  by  the  rights  holder.

Additional  Terms  &  Conditions  applicable  to  each  Creative  Commons  user  license:

CC  BY:  The  CC-­BY  license  allows  users  to  copy,  to  create  extracts,  abstracts  and  new
works  from  the  Article,  to  alter  and  revise  the  Article  and  to  make  commercial  use  of  the
Article  (including  reuse  and/or  resale  of  the  Article  by  commercial  entities),  provided  the
user  gives  appropriate  credit  (with  a  link  to  the  formal  publication  through  the  relevant
DOI),  provides  a  link  to  the  license,  indicates  if  changes  were  made  and  the  licensor  is  not
represented  as  endorsing  the  use  made  of  the  work.  The  full  details  of  the  license  are
available  at  http://creativecommons.org/licenses/by/4.0.

CC  BY  NC  SA:  The  CC  BY-­NC-­SA  license  allows  users  to  copy,  to  create  extracts,
abstracts  and  new  works  from  the  Article,  to  alter  and  revise  the  Article,  provided  this  is  not
done  for  commercial  purposes,  and  that  the  user  gives  appropriate  credit  (with  a  link  to  the
formal  publication  through  the  relevant  DOI),  provides  a  link  to  the  license,  indicates  if
changes  were  made  and  the  licensor  is  not  represented  as  endorsing  the  use  made  of  the
work.  Further,  any  new  works  must  be  made  available  on  the  same  conditions.  The  full
details  of  the  license  are  available  at  http://creativecommons.org/licenses/by-­nc-­sa/4.0.

CC  BY  NC  ND:  The  CC  BY-­NC-­ND  license  allows  users  to  copy  and  distribute  the  Article,
provided  this  is  not  done  for  commercial  purposes  and  further  does  not  permit  distribution  of
the  Article  if  it  is  changed  or  edited  in  any  way,  and  provided  the  user  gives  appropriate
credit  (with  a  link  to  the  formal  publication  through  the  relevant  DOI),  provides  a  link  to  the
license,  and  that  the  licensor  is  not  represented  as  endorsing  the  use  made  of  the  work.  The
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full  details  of  the  license  are  available  at  http://creativecommons.org/licenses/by-­nc-­nd/4.0.
Any  commercial  reuse  of  Open  Access  articles  published  with  a  CC  BY  NC  SA  or  CC  BY
NC  ND  license  requires  permission  from  Elsevier  and  will  be  subject  to  a  fee.

Commercial  reuse  includes:

                  Associating  advertising  with  the  full  text  of  the  Article

                  Charging  fees  for  document  delivery  or  access

                  Article  aggregation

                  Systematic  distribution  via  e-­mail  lists  or  share  buttons

Posting  or  linking  by  commercial  companies  for  use  by  customers  of  those  companies.

  

20.  Other  Conditions:

  
Questions?  customercare@copyright.com  or  +1-­855-­239-­3415  (toll  free  in  the  US)  or

+1-­978-­646-­2777.

Gratis  licenses  (referencing  $0  in  the  Total  field)  are  free.  Please  retain  this  printable

license  for  your  reference.  No  payment  is  required.


