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Abstract 

This research addresses the drivers and barriers for the inclusion of 

microgeneration in new homes in the UK, and the role of different technology 

deployment models in overcoming barriers. An interdisciplinary mixed-methods 

approach is used, drawing on insight from social sciences, economics, 

innovations theory and psychology to characterise the role of deployment 

models and assess householder attitudes. 

 

A coevolutionary analysis of drivers and barriers provides evidence that many of 

the social, economic, technical and institutional issues involved with 

incorporating microgeneration in new homes are substantially different from 

those involved with retrofitting the technologies, demonstrating the importance 

of considering new build domestic microgeneration as an issue in its own right, 

rather than subsuming it into analyses of retrofitting. The use of Foxon’s 

coevolutionary framework to investigate the diffusion of specific technologies in 

a certain sector is also demonstrated. 

 

A literature synthesis brings together previously disparate strands of research to 

draw new insights into the role of different deployment models in overcoming 

barriers. It is found that the ESCO model is likely to have a significant role to play 

in facilitating the uptake of microgeneration in new homes, but that householder 

attitudes towards ESCOs may be mixed.  

 

An existing theory that more innovative householders will prefer private 

ownership of microgeneration to ESCOs (and vice versa), is tested quantitatively. 

No relationship between innovativeness and choice of deployment model is 

found in the present work. However, it is shown that different householders do 

prefer different models, with younger age, higher levels of education and urban 

living found to correlate with a preference for the ESCO model. An analysis of 

occupancy trends in the UK reveals that in the majority of cases, householders’ 

choices of deployment model are likely to align with that which is most 

economically and technically suitable for their chosen development. 
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1 Introduction 

This thesis is about the adoption of microgeneration in new homes in the United 

Kingdom (UK). I identify the major drivers and barriers to its adoption and use, 

then consider the role of different deployment models in overcoming some of 

these barriers. This chapter sets out the motivation for this research. Climate 

change and its potential consequences are introduced, along with global and UK 

targets for greenhouse gas emissions reduction. ‘Microgeneration’ is defined, and 

its potential contribution to emissions reduction targets is discussed. The 

chapter ends with a methodological overview and an outline of the rest of the 

thesis. 

 

1.1 Climate change and greenhouse gas emissions targets 

It is widely accepted that anthropogenic emissions of carbon dioxide (CO2) and 

other greenhouse gases (GHGs) to the atmosphere are causing changes to the 

global climate beyond those caused by natural fluctuations. The recent 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 

(AR5) stated that “warming of the climate system is unequivocal, and since the 

1950s, many of the observed changes are unprecedented over decades to 

millennia. The atmosphere and ocean have warmed, the amounts of snow and 

ice have diminished, sea level has risen, and the concentrations of greenhouse 

gases have increased” (IPCC 2013). By 2011, atmospheric concentrations of CO2 

had risen to approximately 391 parts per million (ppm), from approximately 

280ppm in pre-industrial times, primarily due to human activity. It is likely that 

0.5°C to 1.3°C of global mean surface warming between 1951 and 2010 can be 

attributed to these increases in GHG concentrations (IPCC 2013).  

 

It is also generally accepted that unmitigated climate change is very likely to 

have major effects on human life and society and the biosphere. In order to have 

a chance of avoiding the most dangerous effects of climate change, atmospheric 

concentrations of GHGs must be stabilised at 550ppm CO2 equivalent (CO2e) by 

2050 (Tirpak 2005). The economic cost of unmitigated climate change has been 

estimated at 5 – 20% per year of global gross domestic product (GDP), “now and 
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forever” (Stern 2007).  In other words, the cost of climate change will be borne 

by both current and future generations. The cost of stabilising atmospheric 

concentrations of CO2e at 550ppm by 2050 however was estimated in the same 

review at only 1% of global GDP per year. 

 

In light of the scientific evidence for anthropogenic climate change and its 

potentially catastrophic effects, a number of international commitments to 

reducing GHG emissions and increasing the proportions of renewable energy 

used have been made. The Kyoto Protocol is the largest multilateral commitment 

to CO2 emissions reductions, ratified by 187 countries. The Protocol came into 

force in 2005 and set legally binding limits on signatories’ greenhouse gas 

emissions. Under the first round of the Kyoto Protocol, the UK committed to 

reducing its emissions by 12.5% compared with 1990 levels by 2012: a target 

which was exceeded as in 2012 UK emissions were 26.7% below the baseline 

(DECC 2013f). Under the second round of the Kyoto Protocol, the European 

Union (EU) has committed to reduce emissions by 20% relative to the base year 

on average between 2013 and 2020. The UK’s contribution to that target is 

under negotiation at the time of writing. 

 

The UK government has set further national targets and legal limits on 

greenhouse gas emissions. The Climate Change Act of 2008 is a legal obligation 

to achieve an 80% reduction in CO2 emissions compared with 1990 levels by 

2050, via a series of five year carbon budgets over the period. The second carbon 

budget limits UK greenhouse gas emissions to 2,782 MtCO2e between 2013 and 

2017: equivalent to an annual average reduction of 28% below base year levels. 

Under the EU 2020 target, the UK has committed to reducing emissions from 

certain sectors by 16% relative to 2005 levels by 2020. Under EU Directive 

2009/28/EC on renewable energy, the legally binding UK target for the share of 

energy from renewable sources in gross final consumption of energy is 15% by 

2020 (EU 2009). In 2011 the actual figure was only 3.8% (DECC 2012b). In 2012, 

renewable sources made up only 11.3% of the UK’s generation (in terms of 

megawatt-hours (MWh) generated), which is still dominated by coal (39%) and 

natural gas (28%) (DECC 2013a). 
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1.2 Microgeneration as a response to energy and emissions 

targets 

 Definition of microgeneration 1.2.1

The term ‘microgeneration’ is usually used to describe small-scale renewable 

energy generation systems. Beyond this the exact definitions ascribed to it are 

quite variable. Even the spelling varies (reflecting its relatively recent entry into 

common use), with the most common permutations being ‘micro-generation’, 

‘micro generation’ and ‘microgeneration’. This thesis will use the latter for 

consistency, unless directly quoting from another source. 

 

The legal definition of microgeneration varies from country to country, and for 

the UK was set out in Section 82 of the 2004 Energy Act: 

 

“… “microgeneration” means the use for the generation of electricity or the 

production of heat of any plant which in generating electricity or (as the case may 

be) producing heat, relies wholly or mainly on a source of energy or a technology 

mentioned in subsection (7); and the capacity of which to generate electricity or 

(as the case may be) to produce heat does not exceed [50 kilowatts (kW) for the 

production of electricity, and 45 kilowatts thermal (kWth) for heat production].” 

 

The sources of energy and technologies listed in subsection 7 are: biomass, 

biofuels, fuel cells, photovoltaics, water (including waves and tides), wind, solar 

thermal, geothermal sources, combined heat and power (CHP) systems, air1, and 

“other sources of energy and technologies for the generation of electricity or the 

production of heat, the use of which would, in the opinion of the Secretary of 

State, cut emissions of greenhouse gases in Great Britain”. 

 

In essence then, microgeneration is legally defined in the UK as a generation 

plant which uses mostly or exclusively renewable energy sources (or waste heat) 

and has a capacity of up to 50 kW (or 45 kWth for heat production).  

                                                        

1 Added to the list by the Microgeneration (Definition) (Amendment) Act 2008. 
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Microgeneration is often further qualified as being connected to the electricity 

distribution system (as opposed to the transmission system) and being located 

close to the point of use. In addition, despite the legal definition of 

microgeneration as having a capacity of 50 kW or less, the UK Feed in Tariff (FIT) 

- introduced in April 2010 to provide payments for renewable energy generation 

(see Section 2.3.1.1) – applies to systems serving single residences up to 5MW 

capacity. In July 2013, the Department of Energy and Climate Change (DECC) 

announced that FIT payments would be extended to community projects up to 

10MW capacity. This allows larger installations such as district heating plants 

and community-scale generating systems to receive payments under the scheme. 

 

Academic descriptions of microgeneration are similarly varied. In addition to the 

aforementioned definitions which specify fuel and scale, a number of academic 

papers emphasise the local and self-sufficiency aspects of microgeneration. For 

example, Bergman et al. (2008) and Staffell et al. (2010) define it as “the 

generation of zero- or low-carbon heat and/or power by individuals, small 

businesses and communities to meet their own needs”.  Similarly the authors of a 

Sustainable Consumption Roundtable report “interpret the term micro-

generation to apply to on-site renewable [generation]” (Dobbyn and Thomas 

2005). 

 

For the purpose of this thesis, ‘microgeneration’ will be defined as the on- or 

near-site generation of electricity or production of heat by a system which 

uses mostly or exclusively renewable sources of energy – including 

combined heat and power (CHP) – and has a capacity of 10MW or less. This 

upper limit for capacity is many orders of magnitude larger than most 

standalone domestic microgeneration systems, but has been set in order that 

community-scale distributed generation projects or microgrids are not excluded.  

 

 Contribution to targets 1.2.2

Estimates of the contribution that microgeneration can make to emissions 

reduction and renewable energy targets in the UK vary depending on the 
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methods used and the policy or technology scenarios applied. However, several 

assessments have indicated that under a supportive policy regime, 

microgeneration could make a significant difference to progress towards these 

targets.  

 

A 2007 analysis showed that even with extensive refurbishment of the current 

housing stock to reduce energy demand, at least one microgeneration 

installation per home was likely to be needed to meet the target of 80% 

emissions reduction by 2050 in that sector (Boardman 2007). In 2004, the Green 

Alliance estimated that if a quarter of the 1.3 million gas boilers replaced 

annually in the UK were replaced by micro-CHP, half of the domestic sector’s 

carbon reduction target could be achieved (Collins 2004). In 2007 the Energy 

Saving Trust’s analysis found that microgeneration had the potential to be saving 

a maximum of 96 MtCO2 per year in the UK by 2050 compared with business as 

usual projections. Under a scenario of supportive but realistic policies, they 

calculated that there could be over 16 million installations in the UK by 2050, 

saving 84 MtCO2 per year (Energy Saving Trust 2007). A 2008 analysis by 

Element Energy produced slightly more conservative maximum annual savings 

(from domestic and non-domestic installations) of 3.3 MtCO2 by 2015, 11.2 

MtCO2 by 2020, 36.3 MtCO2 by 2030 and 55.3 MtCO2 by 2050. 55.3 MtCO2 per 

year would represent 7.6% of the UK’s 2020 target for renewable energy 

capacity, and is also a significant proportion of current emissions from the 

energy sector, which were 80.6 MtCO2 in 2012 - 2013 (DECC 2013e; Element 

Energy 2008).   

 

Microgeneration has a number of features which can provide benefits beyond 

simply decarbonising energy generation. The variety of technology types provide 

diversity of supply, which provides increased national energy security with 

decreased reliance on foreign imports (Bergman et al. 2008). A larger number of 

decentralised energy sources also means that accidental or malicious 

infrastructural damage is likely to have a smaller impact (Collins 2004). 

Transmission and distribution losses associated with the transport of electricity 

through the grid are also avoided. These transmission losses can be quite 

significant, with centralised power generation systems losing 60% of their 
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primary energy through waste heat and transmission (Energy Saving Trust 

2007). In 2011, 6.8TWh of power was lost from the UK’s high voltage 

transmission system (DECC 2013a). 

 

1.3 New homes and microgeneration in the UK 

In the year 2012 - 2013, the residential sector was responsible for the emission 

of 80.6 MtCO2: this was 16.6% of the UK’s total emissions over that time (DECC 

2013e). In 2012, the residential sector accounted for 57% of the UK’s final 

energy consumption (DECC 2013b). Meanwhile, a growing population and 

decreasing average number of people per household in the UK means that 

demand for new homes is increasing. The Department for Communities and 

Local Government (DCLG)  predicts that by 2021 there will be 24.3 million 

households in England, a growth of just under 1.8 million compared with 2013 

(DCLG 2013b). In 2007, the government estimated that a net of 240,000 new 

homes per year would be required in England by 2016 to meet demand (Wilson 

2010). The National Housing and Planning Advice Unit (NHPAU), which provides 

independent advice to government, estimated that this figure should be 270,000 

per year by 2016 (NHPAU 2007). If NHPAU’s target were delivered, this would 

equate over to 1.6 million new homes between the beginning of 2011 and the 

end of 2016. It should be noted that this is unlikely to be achieved: the housing 

sector was adversely affected by the recent recession, and the number of new 

homes completed in the UK in 2012 was 143,590, down from 226,420 in 2007 

(DCLG 2013a). Nonetheless, even if this rate of increase remained static, this 

would lead to just over a million new builds by 2020, making new homes an area 

of significant potential for energy and emissions savings.  

 

The fourth IPCC report pointed out that energy savings can be much higher in 

new houses than when retrofitting, as new buildings can be designed and 

operated as complete systems which are more efficient than a set of discrete 

measures (Levine et al. 2007). Microgeneration systems are likely to realise their 

full potential when used in conjunction with energy saving measures, many of 

which can be built into building fabric. The aforementioned Sustainable 

Consumption Roundtable report also found some evidence to suggest that 
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buildings with a host of integrated energy saving measures could have a greater 

effect on residents’ energy use practices than standalone measures (Dobbyn and 

Thomas 2005). There is therefore a significant opportunity to increase the 

number of domestic microgeneration installations in the UK by including them in 

new homes, potentially providing significant emissions savings. 

 

1.4 Current status of microgeneration in the UK 

Since the introduction of the FIT, the installed capacity of microgeneration in the 

UK has increased dramatically, from close to zero at the start of 2010, to over 

2GW in October 2013. This increase is shown in Figure 1, which also 

demonstrates that the vast majority of installations are of solar photovoltaics 

(PV).  

 

Nonetheless, assuming one installation per home, only 5% of homes in the UK 

had microgeneration in October 2013 (DCLG 2011a; DECC 2013c), and the total 

installed capacity in 2012 was only 0.74% of the UK’s total installed capacity 

(DECC 2013d).  
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Figure 1. Cumulative installed capacity registered for FIT, April 2010 - October 2013 

 

Graph reproduced from report of Government FIT register statistics (DECC 2013c) 

 

1.5 Summary and research aims 

This chapter has outlined the background information and motivation for the 

work presented in this thesis.  There is now unequivocal evidence that 

anthropogenic greenhouse gas emissions are contributing to climate change, and 

that if emissions are left unchecked the results are likely to be devastating to 

humans and the environment (IPCC 2013). As a result, the UK has committed to 

reducing its CO2 emissions by 80% relative to 1990 levels by 2050, and to 

producing 15% of its energy from renewable sources by 2020.  

 

The potential contribution of microgeneration technologies to GHG emission 

reductions is significant. Given the contribution of the residential sector to the 

UK’s CO2 emissions and energy consumption, the use of domestic 

microgeneration is a potentially valuable strategy for achieving the UK’s energy 

and emissions targets. New homes in particular present a significant opportunity 

for decarbonising the residential sector. The aim of this thesis is therefore to 
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characterise the barriers and opportunities for microgeneration in new UK 

homes, and to investigate how these barriers can be overcome. The specific 

research questions are: 

 

1. What are the drivers and barriers for microgeneration in new homes in 

the UK? In particular, do they differ significantly from those relating to 

retrofitting microgeneration? 

 

2. What interventions could be used to overcome barriers to 

microgeneration in new homes in the UK? 

 

3. How can different deployment models for microgeneration be used to 

overcome barriers to the technology in new homes in the UK? 

 

4. What are consumers’ attitudes to different microgeneration 

deployment options, and how do they differ for different demographic 

groups? 

 

5. What effect will differences in attitude (if any) have on consumers’ 

choice of microgeneration deployment model in new builds in the UK? 

 

Further justification for these research questions is given in subsequent 

chapters. 

 

1.6 Thesis outline 

In response to the growing recognition over the past four decades that social and 

environmental processes  (and hence research questions) are embedded in and 

emerge from highly complex and interlinked systems, an additional overarching 

aim of this thesis is to use an interdisciplinary approach to investigating and 

answering the questions posed above. By using and combining techniques and 

knowledge from different disciplines, a more flexible approach can be employed, 

ensuring that interactions between different system elements are not 

overlooked. As Nissani (1997) points out, “some worthwhile topics of research 
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fall in the interstices among traditional disciplines.” This is particularly relevant 

to Chapter 4 of this thesis, which comprises an investigation of how previously 

disparate insights from different disciplines can shed new light on the issues and 

questions around microgeneration deployment options in new homes. However, 

the entire thesis is informed by this approach.  

 

The thesis therefore uses a mixed-methods approach to investigating the 

research questions stated above. The methods are described in more detail in 

the relevant chapters, however as a general overview:  Chapter 3 analyses the 

results of semi-structured interviews using a coevolutionary theoretical 

framework, Chapter 4 uses literature synthesis and technoeconomic analysis, 

and Chapter 5 uses qualitative analysis and statistical tests to analyse 

questionnaire data. In addition to filling in some of the gaps in knowledge 

identified in Chapter 2, the results presented in Chapter 3 form a large part of 

the justification and motivation for the remainder of the thesis. Reviews of some 

of the relevant literature, and the methods used for these stages of the research, 

are therefore incorporated into Chapters 4 and 5 rather than being presented in 

standalone chapters at the beginning of the thesis. This structure allows them to 

be read and understood in the context of the ‘groundwork’ laid out in Chapter 3, 

and avoids repetition of information throughout the thesis. 

 

The structure of the thesis is as follows: 

 

Chapter 2 of the thesis comprises an overview of microgeneration technologies 

and a review of the current literature on drivers and barriers for 

microgeneration in the UK. It identifies the need for further research on new 

homes specifically, and introduces the analytical framework used in Chapter 3.  

 

Chapter 3 presents a coevolutionary study of the major drivers and barriers for 

microgeneration in new homes, and identifies opportunities for interventions 

and further research.  

 

Chapter 4 builds upon some of the key findings in Chapter 3, synthesising 

different strands of existing research to investigate how different deployment 
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arrangements for microgeneration could overcome some of the barriers 

identified. Methods and knowledge from Rogers’ work on innovators and 

contemporary studies of the diffusion of innovations are applied to the issue of 

microgeneration in new homes. Psychological theories and techniques are 

considered to investigate how they can be used to test hypotheses posited by 

contemporary researchers. A technoeconomic analysis is also carried out to 

investigate one such hypothesis. Where evidence is ambiguous or lacking, 

research questions are identified and hypotheses formulated.  

 

Chapter 5 investigates some of the hypotheses formed in Chapter 4 in more 

detail, presenting the method and results of a quantitative study of the 

relationships between householder characteristics and preferences for different 

microgeneration deployment arrangements.  

 

Chapter 6 summarises the major findings of the thesis,  discussing their 

implications for stakeholders, policy, and future studies on the uptake of 

microgeneration technologies in the UK.  
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2 Research context 

2.1 Chapter overview 

In Chapter 1, the importance of decarbonising the energy and residential sectors 

was outlined. The potential contribution of domestic microgeneration to this aim 

was also discussed, along with evidence showing that the technical potential of 

microgeneration has not yet been realised in the UK. Having stated the research 

aims of this thesis in Chapter 1, this chapter describes the research context: 

different microgeneration technologies, UK policies relevant to microgeneration 

and new homes, and industry and householder issues. The relevant existing 

research in these areas is reviewed. 

 

As discussed in Section 1.2.2, despite the technical and infrastructural 

requirements of microgeneration which differ from conventional centrally-

controlled large scale generation and distribution, it already has the potential to 

make significant contributions to energy generation and emissions reductions in 

the UK. As a result, many of the barriers to widespread deployment are 

institutional and social, rather than issues of technical insufficiency (Sauter 

2008). There are of course large benefits to be gained from continuing to 

improve the performance of existing microgeneration technologies and develop 

new ones. Detailed cutting-edge research on, for example, nano-materials for 

solar cells, wind resource assessment and building energy management systems 

is ongoing, and will certainly have an impact on the diffusion and adoption of 

microgeneration technologies. However, as discussed in Sections 1.5 and 1.6, the 

aim of this thesis is to identify interdisciplinary system-level issues, then focus 

specifically on deployment models and the implications of user preferences. 

Therefore, while acknowledging and considering the importance of technical 

issues where appropriate, this literature review is primarily focused on 

institutional, economic and social drivers and barriers for microgeneration in the 

UK, though the technical features of microgeneration which may have a bearing 

on their deployment are outlined in Section 2.2.  

 



- 13 - 

A number of researchers have considered influences on the diffusion of 

microgeneration technologies in the context of international comparisons, for 

example Praetorius et al.’s (2010)  comparison of technical innovation systems 

in the UK and Germany, and Bertoldi et al.’s (2006) study of energy service 

companies in European countries. None were found that considered 

microgeneration in new homes specifically, but where these studies add value to 

the discussion of factors affecting the uptake of microgeneration in the UK, they 

have been discussed in the sections below. Additionally, where evidence from 

the UK is lacking, studies conducted in other countries have been discussed in 

this review, notably Claudy et al.’s work on willingness to pay for 

microgeneration in the Republic of Ireland (Claudy et al. 2011; Claudy et al. 

2010a; Claudy et al. 2010b; Claudy et al. 2010c). However, this literature review 

and thesis do not focus on international differences or factors affecting 

microgeneration in countries outside the UK. The UK has been chosen as a focus 

for this thesis due partly to the current emphasis on decarbonising the 

residential sector discussed in section, and partly to provide a boundary for the 

scope of the study. Additionally, a number of existing studies provide 

international comparisons of policies, attitudes, economics and technical 

innovation systems for low carbon technologies, therefore inclusion of 

international comparison in this thesis is considered unlikely to add significant 

value to this field. 

 

A final general point about literature on microgeneration and low carbon homes 

in the UK is that policies, industry practices and markets are extremely dynamic, 

and some older analyses have therefore lost much of their relevance. As a 

representative example, Allen et al.’s comprehensive 2008 review of drivers and 

barriers to microgeneration in the UK  describes nine Government policies and 

strategies, of which six are now defunct or have been superseded.  As a result, 

relatively few system-level or policy studies exist, and those that are reviewed 

here date mostly from the last five to ten years.   

 

Section 2.2 of this chapter discusses some of the technical features of 

microgeneration. Section 2.3 describes and briefly reviews UK policies relating 

to microgeneration and new build homes. Section  2.4 considers the role of 
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industry in the uptake of microgeneration in the UK, and Section 2.5 the roles 

and attitudes of householders. Section 2.6 presents the recent research into new 

business models for microgeneration. In Section 2.7, the gaps in knowledge and 

the research aims which this thesis addresses are identified and discussed in 

more detail.  The research framework used in Chapter 3 is described and 

reviewed in Section 2.8. 

2.2 Technology 

Apart from the in-depth studies of specific technologies mentioned above, there 

have been several reviews of microgeneration technologies outlining their 

current standards, operation, market status and average payback periods. This 

section describes the different microgeneration technologies available, and 

features common to most or all of the technologies which have a bearing on their 

deployment in the UK.  

 Microgeneration technologies 2.2.1

2.2.1.1 Solar photovoltaic 

Solar photovoltaic (PV) systems use energy from the Sun to generate electricity, 

using solar cells. A solar panel consists of a number of solar cells, connected to a 

circuit.  

 

The basic mechanism behind a solar cell is the p-n junction. This is a junction 

between two semiconducting materials, one positive-type (p) and one negative-

type (n). N-type semiconductors have surplus free electrons, while p-type have a 

deficit of free electrons (with missing free electrons known as ‘holes’). Free 

electrons are in the ‘conduction band’, while electrons which are forming 

covalent bonds (non-free electrons) are in the ‘valence’ band. The energy 

required to ‘free’ an electron and promote it from the valence band to the 

conduction band is known as the band gap. In semiconductors, this band gap is 

small compared to the band gap in insulating materials. 

 

When light falls on a p-n junction, the energy excites electrons, which are 

promoted from the valence band to the conduction band, leaving behind ‘holes’ 
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in the valence band. The net effect is a layer on the n side of the junction which is 

more positively charged than before, and a layer on the p side which is more 

negatively charged than before. This causes a reverse electric field to be present 

around the junction, which causes electrons to flow into the n-region, and holes 

to flow into the p-region. A flow of electrons is a current, so there is a current 

flowing through the semiconductor which can flow out of a metal contact on the 

cell.  

 

Different types of semiconducting material and different cell designs can be used 

for greater efficiencies, but the basic p-n junction mechanism is the basis for 

nearly all solar cells. In recent years nanotechnology has been used to construct 

more efficient cells, but despite promising results this technology remains very 

expensive and is not yet used commercially. Most solar cells do not require 

direct sunlight to function and can use diffuse solar radiation. However, the 

amount of electricity generated is a function of irradiance (with commercially 

available cells having a typical efficiency of 10 – 20%), and persistently overcast 

or shady locations are not suitable for solar PV systems. South facing roofs with a 

pitch of approximately 30° are ideal, though roofs facing southeast or southwest 

may also be suitable. North facing roofs are unlikely to allow the generation of 

enough electricity to pay back the cost of the installation.  

 

In the UK, average domestic scale solar PV systems have a capacity of 3.5 – 4 kW 

and cost between £5,500 and £9,500. A well sited 4 kW system can generate 

approximately 3.7 MWh electricity per year (Energy Saving Trust 2013f). Solar 

PV accounts for the majority of electricity microgeneration installations in the 

UK, making up approximately 86% of installed capacity and 99% of installations 

(DECC 2014). 

 

2.2.1.2 Micro wind 

Wind turbines capture power from the wind, with the wind turning blades which 

drive a generator to produce electricity. RenewableUK (the professional body for 

UK wind and marine renewables) divides ‘small wind technologies’ into three 

categories: micro-wind (<1.5kW), small wind (1.5 – 15kW) and small-medium 
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wind (15 – 100kW). Roof mounted micro-wind turbines are the most common 

type of domestic turbine installation (RenewableUK 2011).  

 

Domestic wind turbines are only suitable for sites with an average wind speed of 

at least 5m/s. Accurately predicting wind speeds for a particular site is difficult, 

as local topography can have significant effects. As a result, up to a year’s worth 

of wind speed measurements may be needed for the site prior to installation 

(Energy Saving Trust 2013h). In the UK, domestic wind systems currently cost 

approximately £2,000 for 1kW, £15,000 for 2.5kW and £22,500 for 6kW (Energy 

Saving Trust 2013h). Micro wind is the second most common type of electricity 

microgeneration in the UK, accounting for approximately 9% of installed 

capacity and 1% of installations (DECC 2014). 

 

2.2.1.3 Micro hydro 

Hydroelectric power uses running water to turn a turbine and generate 

electricity. For domestic scale systems, water is diverted at a small weir to an 

intake pipe, and passes through a filter to catch debris and a settling tank where 

flow is slowed sufficiently for suspended particles to sink. The water then flows 

through a pressure pipe to the turbine (which is installed in a powerhouse along 

with a generator), then flows back along  a tailrace (either a pipe or a sloping 

channel) to the river.  

 

Hydroelectric systems need very specific site conditions, with sufficient flow rate 

and height difference over distance, and a waterway which maintains a certain 

minimum flow throughout the year. A typical UK domestic system of 5kW 

capacity currently costs approximately £25,000, though the cost is highly 

dependent on the site (Energy Saving Trust 2013d). Hydroelectricity currently 

accounts for fewer than 1% of electricity microgeneration installations in the UK 

(DECC 2014). 
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2.2.1.4 Combined heat and power 

A combined heat and power (CHP) system is one which produces both heat and 

electricity, usually at a ratio of 6:1 in domestic systems (Energy Saving Trust 

2011b). In industrial scale CHP processes, the primary purpose is electricity 

generation, with waste heat from generation captured for a secondary purpose. 

In micro-CHP systems which are used in homes, heat generation is the primary 

purpose, with electricity generation as a useful by-product. The primary fuel 

(usually natural gas) is combusted in an engine to generate heat (usually in the 

form of hot water) and electricity. This is achieved using a Stirling engine, an 

internal combustion engine or a fuel cell, with the Stirling engine currently most 

commonly installed in UK households (Energy Saving Trust 2011b). The cost of a 

domestic CHP boiler varies depending on the installer and the property, but the 

average in the UK is around £3,000 (Baxi 2012). Micro CHP currently accounts 

for fewer than 1% of electricity microgeneration installations in the UK (DECC 

2014). 

 

2.2.1.5 Biomass  

Domestic biomass heating systems are fuelled by wood: chips, pellets or logs. 

They may consist of a stove, which heats a single room, or a boiler, which 

provides space and hot water heating for a whole house. Biomass boilers can 

replace a conventional gas boiler, though they are larger and therefore require 

more space and must often be situated on the ground floor of a house. A flue 

system is also needed, which must be built, or converted from an existing 

chimney. Since it is cheaper and easier to buy fuel in bulk, space for a fuel store is 

often a requirement for a biomass heating system. In the UK, an average pellet 

boiler costs £7,000 - £13,000, and an average pellet stove £4,300 (Energy Saving 

Trust 2013i). 

 

2.2.1.6 Solar thermal 

Solar thermal systems use energy from the Sun for water or space heating. There 

are two main types of solar collector which can be used: evacuated tube and flat 

plate. Evacuated tube solar collectors consist of a series of partially evacuated 
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(vacuum) glass tubes. Each tube contains a metal heat absorber plate connected 

to a heat pipe, which transfers heat to a header pipe. Water running through the 

header pipe is thus heated, with the partial vacuum in the tube reducing heat 

loss. Flat plate collectors consist of a dark flat plate energy absorber (usually 

metallic, although polymers may be used) under a transparent cover (to allow 

solar energy through but reduce heat loss) and with insulated backing. Fluid 

pipes containing water, antifreeze or any other heat transport fluid pass 

between the backing and the collector plate, which transfers heat to the fluid. In 

both cases, energy input is required to pump the fluid through the collector. 

Evacuated tube collectors are more efficient, but are more complex and 

expensive. 

 

Solar thermal systems require sufficient roof space (around 5m2) and have the 

same roof direction requirements as solar PV in order to maximise irradiance. A 

dedicated hot water tank is also usually required.  In the UK, a typical solar 

thermal system costs £4,800 (Energy Saving Trust 2013g). 

 

2.2.1.7 Heat pumps 

Heat pumps use the opposite mechanism to refrigerators or air conditioning 

units, extracting heat energy from the environment and amplifying the 

temperature in order to heat air or water. Air source heat pumps (ASHPs) use a 

heat exchanger consisting of coiled tubing containing refrigerant. Liquid 

refrigerant with a low boiling point absorbs heat from the air (even at low air 

temperatures) and evaporates. It is pumped into a compressor to raise its 

temperature, and then passes through heat exchange coils which have air or 

water pumped over them.  The refrigerant cools and re-condenses in the process, 

and is drawn at high pressure back into the original evaporator coil. The heat 

pump may provide space heating for a room (‘air to air’) or be connected to a 

water heating system for central heating or hot water (‘air to water’), and can 

often be operated in reverse to provide cooling if required. ASHPs are sited on an 

external wall so need sufficient exterior space for installation and to allow air 

flow around the unit. 
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Ground source heat pumps (GSHPs) operate in a similar fashion to ASHPs, but 

absorb heat from the ground rather than the air. External heat exchanger tubes 

are buried underground, either horizontally at a depth of 1.2 – 1.5m which 

requires a large area of land, or vertically in two boreholes up to 100m deep 

(Staffell et al. 2010). The evaporation-compression cycle is broadly the same as 

for ASHPs, but GSHPs tend to be more efficient since the temperature 

underground is more constant than air temperature (Staffell et al. 2010). 

 

Both types of heat pump work most efficiently when heating constantly at a 

lower temperature than typical boilers. As a result, large radiators or underfloor 

heating systems are ideal, and heat pumps are most suitable for well insulated 

homes. In the UK, a typical domestic ASHP costs £6,000 – £10,000 (Energy 

Saving Trust 2013a) and a typical GSHP costs £9,000 - £17,000 (Energy Saving 

Trust 2013c) depending on the site and the size of the system. 

 

 Dispatchability and storage 2.2.2

In the energy generation sector, the term ‘dispatchable’ is used to describe 

energy sources or generation techniques which allow generation to start or stop 

on demand. Many microgeneration technologies are non-dispatchable. That is, 

they do not generate on demand, and generate at a variable rate throughout the 

day (depending on for example irradiance, wind speed, ambient temperature 

etc.). Since household energy demand is also variable, it can be difficult to match 

supply and demand. Large scale battery storage of electricity is currently difficult 

and expensive (Staffell et al. 2010) therefore it is often exported to the grid when 

supply exceeds demand, with electricity imported when the situation is reversed. 

Heat storage is usually achieved by storing it as hot water, since there is no 

national ‘heat grid’. This often requires the installation of a specialised storage 

tank, since most conventional water tanks do not have the capacity to store 

water at the required temperatures. 

 



20 
 

 Import, export and metering 2.2.3

Since the operation of a domestic microgeneration electricity system usually 

involves import from and export to the grid, sophisticated metering technology 

is advantageous. Smart meters can monitor imports and exports, or a net meter 

can be installed which goes into reverse when electricity is exported. Net meters 

are not optimal however as they can be tampered with, and do not differentiate 

between import and export tariffs (Staffell et al. 2010). Smart metering 

technology is currently rather expensive and is therefore not always installed 

along with microgeneration technologies. In these cases operators and energy 

companies will agree feed-in tariff payments for a fixed percentage of metered 

generation (‘deemed tariffs’: often 50%), regardless of actual exports. 

 

 Capacity and system sizing 2.2.4

It is more efficient to run a generating system at full capacity than partial 

capacity, since at lower powers fuel may be only partially combusted, ancillary 

power requirements (the power required to run the system) tend to remain the 

same regardless of system load (Everett and Boyle 2004), and oversized systems 

will use more power in starting up and shutting down (Staffell et al. 2010). As a 

result it is often more efficient to install a microgeneration system which has a 

capacity lower than required to fulfil a household’s demand. Smaller systems 

will also tend to have lower capital costs, but will receive smaller FIT payments 

(see Section 2.3.1.1) and will increase reliance on imports from the National Grid 

or a gas supplier. Balancing these considerations is therefore important when 

selecting system size and capacity for a household. 

 

 Expected versus actual performance 2.2.5

There are often disparities between the rated performance of a microgeneration 

system as predicted by the manufacturers and its actual performance once 

installed. This is partly due to the fact that manufacturers usually test their 

products under highly controlled conditions, rather than the variable conditions 

of households (Staffell et al. 2010), and partly because optimal performance of 

microgeneration is conditional on correct installation and operation. The 
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installation issue is addressed in the UK by the Microgeneration Certification 

Scheme (see Section 2.3.1.3). 

 

2.3 UK Policy 

A number of UK policies and regulations relate directly or indirectly to domestic 

microgeneration. Arguably the most significant policies affecting domestic 

microgeneration are the Feed-In Tariff (FIT) and Renewable Heat Incentive 

(RHI). As Figure 1 demonstrated, the introduction of the FIT in 2010 had a 

profound impact on the number of microgeneration installations in the UK. As 

such, policy critiques can almost be considered to fall into two distinct ‘eras’: 

pre-FIT, in which there were numerous calls and recommendations for such a 

scheme (for example, Boardman (2007) Element Energy (2008), Keirstead  

(2006) and Watson et al. (2008) inter alia); and post-FIT, in which many papers 

have been published examining the current and projected effects of the FIT and 

RHI (for example, Bergman and Eyre (2011) and James (2012) inter alia).   

 

Policy reviews also tend to focus either on eco-housing as a whole (including 

other decarbonisation measures such as fabric efficiency), or on 

microgeneration with an explicit or implicit focus on retrofit. There is some 

crossover, with many of the former considering microgeneration and many of 

the latter mentioning new homes, but no publically available studies to date 

focusing solely on microgeneration in new homes have been identified. This 

section describes the UK policies specifically related to microgeneration, and 

building policies which affect microgeneration in new homes, along with 

academic and industry views on them. 

 

 Microgeneration policies 2.3.1

2.3.1.1 Feed-In Tariff 

The Feed-In Tariff (FIT) came into effect in April 2010, and is designed to 

provide an incentive for installing microgeneration by providing payment for 

small scale renewable electricity generation. The scheme is financed by energy 
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companies (through a levelisation process which ensures costs are spread 

evenly among companies), who pass the costs onto consumers.  

 

Individual systems up to 5MW capacity installed on or after 15th July 2009 are 

eligible for payments at varying rates, shown in Table 1 (December 2013 tariffs). 

Systems installed prior to that are eligible for a reduced flat rate generation tariff 

of 9p/kWh. Payments are guaranteed for 20 years. In July 2013 the Government 

announced that community installations up to 10MW will be eligible for FITS 

when the Energy Bill comes into force (at the time of writing it is before the 

House of Commons for consideration of amendments by the House of Lords). 

 

In previous years tariffs differed between installations on new buildings and 

those retrofitted to existing buildings, but none of the current tariffs differentiate 

between the two. 
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Table 1. Feed in Tariffs current as of 12th December 2013 

Energy source Scale Rate1 or criteria Tariff 

(p/kWh) 

Anaerobic 

digestion 

≤250kW  15.16 

>250kW – 500kW 14.02 

>500kW 9.24 

Hydroelectricity ≤15kW  21.65 

>15 – 100kW 20.21 

>100kW – 500kW 15.50 

>500kW – 2MW 12.48 

>2MW – 5MW 3.23 

Micro CHP <2kW Available for 30,000 

installations, subject to 

review after 12,000 

installations. 

12.89 

 

Solar PV ≤4kW Higher 14.90 

≤4kW Medium 13.41 

>4 – 10kW Higher 13.50 

>4 – 10kW Medium 12.15 

>10 – 50kW Higher 12.57 

>10 – 50kW Medium 11.31 

>50 – 150kW Higher 11.10 

>50 – 150kW Medium 9.99 

>150 – 250kW Higher 10.62 

>150 – 250kW Medium 9.56 

≤250kW Lower 6.85 

>250kW – 5MW  6.85 

≤5MW ‘Standalone’ systems not 

attached or wired to an 

occupied building. 

6.85 

Wind ≤100kW  21.65 

>100 – 500kW 18.04 

>500kW – 1.5MW 9.79 

>1.5MW – 5MW 4.15 

1 Lower rate = where the building being supplied is rated lower than D under the Energy 

Performance Certificate scheme (see section 2.3.2.3). Medium rate = where the technology 

owner owns 25 or more FIT-registered microgeneration installations. Higher rate = rate used 

where neither lower or medium rate applies. 

Source: Ofgem (2013) 
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An export tariff is also available for electricity exported to the grid. The flat rate 

for any energy source is 4.64p/kWh at the time of writing. In the absence of a 

smart meter (which is currently not always included with microgeneration 

technology) it is usually assumed that 50% of electricity generated is exported, 

though this is open to negotiation with the energy company.  

 

To account for the fact that technologies tend to become cheaper over time, the 

tariffs are subject to degression: both pre-planned and contingent. Pre-planned 

degression rates are shown in Table 2. 

 

Table 2. Pre-planned degression rates current as of 12th December 2013 

Technology Frequency Effective on Degression 

Solar PV Quarterly 1st January, 1st April, 

1st July, 1st Nov of 

every year 

3.5% 

Anaerobic digestion 

biogas, 

Hydroelectricity, 

Wind 

Annually 1st April of every year 5% 

Micro CHP, all 

export tariffs 

None - - 

  

Contingent degression is a mechanism allowing flexibility in the degression 

rates. The Government has determined the ranges of expected deployment for 

each technology, used to determine tariff levels. If deployment is higher or lower 

than expected, the degression level can be increased or decreased accordingly, 

by pre-determined amounts. The tariff levels may also be reviewed annually, 

regardless of deployment levels. The policy, in addition to limits set under the 

Government’s Levy Control Framework, is therefore effectively self-limiting, as 

high rates of installation will lead to faster tariff degression (James 2012). 
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2.3.1.2 Renewable Heat Incentive 

Since the FIT excludes heat generating microgeneration technologies, a similar 

scheme for heat: the Renewable Heat Incentive (RHI),  came into force on 9th 

April 2014. It was originally intended to start in 2012 but was subject to several 

delays. 

 

The RHI is part of a two phase scheme, with the Renewable Heat Premium 

Payment (RHPP) scheme effective from August 2011 until March 2014, and full 

RHI payments starting in Spring 2014. The RHPP was a one-off grant rather than 

a feed-in tariff, with installations of renewable heat technologies from 21st July 

2011 eligible for the scheme.  A finite number of grants were available. The grant 

values and eligible technologies, updated in May 2013, are shown in Table 3. 

 

Table 3. RHPP grant values 

Technology Grant value 

Air to water heat pump £1,300 

Biomass boiler £2,000 

Ground or water source heat pump £2,300 

Solar Thermal £600 

 

The RHI operates in a similar fashion to the FIT, with tariffs paid for the 

generation of heat, guaranteed for seven years. However, the scheme is financed 

by the Government Treasury rather than energy companies, and since there is no 

heat equivalent to the National Grid payments are for generation only with no 

export tariffs. The scheme is aimed at dwellings not connected to the gas grid 

(though it is not limited to these), and is not available for new build homes. 

Systems installed on or after 15th July 2009 are eligible, though all applicants will 

be required to complete a Green Deal assessment (see section 2.3.1.4) prior to 

receiving payments. The tariff levels are shown in Table 4. 
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Table 4. RHI tariffs from Spring 2014. 

Technology Tariff (p/kWh) 

Air to water heat pumps 7.3 

Ground or water source heat pumps 18.8 

Biomass boilers 12.2 

Solar thermal 19.2  

 

The FIT and RHI have gone some way towards addressing the lack of financial 

incentive identified in previous studies. However, the continuing lack of upfront 

capital grants (with the exception of the RHPP) has been criticised (James 2012; 

Watson et al. 2006). As discussed below in Section 2.5.1.2, upfront capital cost is 

one of the largest barriers to the adoption of microgeneration by consumers. 

James (2012) also pointed out that the FIT and RHI could be problematic if 

householders intended to move before they could recover their initial 

investment in the technology. However, a report by Element Energy (2008) 

recommended that while upfront grants would stimulate uptake, a feed in tariff 

scheme was more likely to achieve genuine emissions cuts as consumers would 

be incentivised to maintain and operate their equipment correctly. Similarly 

Bergman and Eyre (2011) pointed out that the FIT and RHI are so far the only 

policy instruments to reward the actual performance of devices, and – being 

guaranteed for 20 years – provide a measure of consistency lacking in previous 

short term grant schemes. 

 

2.3.1.3 Microgeneration Certification Scheme 

In order to be eligible for payments under the FIT or RHI, microgeneration 

systems must be certified under the Microgeneration Certification Scheme (MCS), 

and installed by MCS accredited installers. The MCS falls under British Standard 

EN40511 (Product Certification Systems) and is designed to ensure that 

installed microgeneration systems are of good quality. To become certified, 

installers, suppliers or manufacturers must apply to a recognised certification 

body which assesses microgeneration products against MCS standards. 

 

The MCS has been praised for ensuring that good standards of workmanship are 

achieved for installation, but the lack of any mandatory requirements in terms of 
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maintenance and consumer information post-installation has been criticised 

(Bergman and Eyre 2011). 

 

2.3.1.4 Green Deal 

Launched in October 2012, the Green Deal is a loan system designed to 

overcome the capital cost barrier of domestic energy saving measures. A home is 

assessed by a Green Deal adviser (which costs around £120), and agreed-upon 

measures are installed with no up-front cost to the consumers, who pay back the 

cost through energy bills over an agreed period of time (up to 25 years). Liability 

for repayments remains with the property, so if the original owner moves away, 

the new owner takes over the payments. Installed measures must comply with 

the ‘golden rule’: that the financial savings they provide are equal to or greater 

than their cost.  

 

The Green Deal loans do not cover microgeneration technologies, as these are 

provided for by the FIT and RHI. However, part of the process of applying for a 

Green Deal plan is a property assessment by an accredited advisor who suggests 

which measures should be installed. This advice is intended to extend to 

microgeneration technologies where appropriate. This approach has been 

criticised as fragmented, missing an opportunity to join up policies on energy 

efficiency and microgeneration. James (2012) speculated that “government fears 

this combination of policies would be too successful and is uneasy unleashing 

the mass uptake of microgeneration and renewable heat at the respective 

current and proposed levels of subsidy for fiscal and technical reasons.” 

However, it could be argued that the requirement for properties to achieve 

Energy Performance Certificate (EPC) rating D or higher (see Section 2.3.2.3) to 

receive FIT payments ensures that microgeneration is not installed at the 

expense of fabric efficiency.  
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2.3.1.5 Tax incentives 

Since 2004, the installation of some energy-saving materials and technologies in 

homes has qualified for reduced rates of VAT, documented in HMRC notice 

708/6. The reduced-rated technologies include GSHP, ASHP, micro-CHP, wood 

fuelled boilers, solar panels, wind turbines and water turbines, which all qualify 

for VAT at 5% rather than the usual 20%. 

 

In the December 2006 pre-Budget Report the government announced that the 

sale of surplus electricity from microgeneration designed for personal use would 

not be subject to income tax. This was written into legislation in the 2007 

Finance Bill. 

 

2.3.1.6 2006 Microgeneration Strategy 

The government’s 2006 Microgeneration Strategy explored and recommended 

actions to mitigate the barriers to uptake of microgeneration technologies. The 

stated objective of the strategy was “to create conditions under which 

microgeneration becomes a realistic alternative or supplementary energy 

generation source for the householder, for the community and for small 

businesses” (Department of Trade and Industry 2006).  

 

The strategy made government support for a growth in the number of  

microgeneration installations explicit, citing its role in reducing carbon 

emissions and reducing reliance on foreign imports. It was noted that Local 

Authority interest in microgeneration technology was increasing, as it was seen 

as a way to tackle fuel poverty. It was also clear that microgeneration was 

expected to deliver carbon savings indirectly through a change in behaviour and 

attitudes, with a quote from a Sustainable Consumption Round table report: 

“[the] qualitative impacts of microgeneration technology can be substantial, 

presenting a living, breathing and emotionally engaging face to energy 

consumption” (Dobbyn and Thomas 2005). 

 

Although the strategy set out a number of objectives and planned actions, none 

was associated with a quantifiable target. The potential benefit of a specific 
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government microgeneration target was acknowledged, but it was stated that it 

was too early in the development of the market to set one and that more 

information on the potential of different technologies and likely consumer 

uptake was needed. It was decided to review this decision in 2008, and upon this 

review a target was not set.  

 

In addition to the 2008 review, the significant policy outcomes of the 

Microgeneration Strategy were a commitment to implement an accreditation 

scheme covering microgeneration products, installers and manufacturers, and a 

commitment to take “swift and appropriate action” if it was found that planning 

policy was discouraging or failing to adequately support the implementation of 

microgeneration schemes by local authorities. The former was fulfilled by the 

Microgeneration Certification Scheme (see Section 2.3.1.3). 

 

2.3.1.7 2006 Climate Change and Sustainable Energy Act  

The 2006 Climate Change and Sustainable Energy Act contained a provision to 

allow the Secretary of State to set legally binding targets for energy companies 

requiring them to source a proportion of their energy from microgeneration 

schemes. At the time of writing this has not yet happened, which some 

researchers have argued reduces the institutional ‘legitimacy’ of 

microgeneration, and fails to sufficiently direct industry activities to it 

(Praetorius et al. 2010).  

 

2.3.1.8 2011 Microgeneration Strategy 

In June 2011 DECC published a new microgeneration strategy. As part of the  

associated consultation, the Microgeneration Government-Industry Contact 

Group (MGICG) was formed, and published an action plan alongside the strategy 

document. The MGICG’s membership comprises trade associations and 

consumer-facing organisations from the microgeneration industry, and is 

intended as “a single point of contact with Government to discuss and tackle the 

non-financial barriers facing mass deployment of microgeneration technologies 

and implementation of the Microgeneration Strategy” (MGICG 2011). The key 



30 
 

regulatory change arising from the strategy and action plan was the planned 

introduction of the RHI.  

 

2.3.1.9 Smart Meter Rollout 

While not exclusively used with microgeneration, and not mandatory, smart 

meters are complementary to the technologies as they facilitate accurate 

monitoring of energy generation, use, import and export. The government’s 

Smart Meter Rollout scheme recognises this, with the aim of providing a smart 

meter for every household and small business by 2020. In 2013 the Data and 

Communications Company was established to run the smart metering system. 

 

2.3.1.10 Electricity Market Reform 

In 2013 DECC published a plan for delivering a raft of reforms to the UK’s 

electricity market, with the aim of increasing the security of electricity supply 

and reducing consumer bills. Relevant to microgeneration is the planned 

Capacity Market mechanism, whereby generators can ‘auction’ generating 

capacity at times of high demand, entering into capacity agreements. While this 

would not apply to owners of individual systems, remotely controlled ‘fleets’ of 

microgeneration units could be used to fulfil this demand (Ecuity 2013).  

 
 

 UK housing and building regulations 2.3.2

2.3.2.1 Building Regulations 

New buildings in the UK are subject to Building Regulations, which set out 

standards for all aspects of building design and function. Part L1A of the Building 

Regulations: Conservation of fuel and power in new dwellings, contains the 

standards relevant to microgeneration installations (HM Government 2010). A 

Standard Assessment Procedure (SAP) is used to calculate the target CO2 

emission rate (TER): defined as CO2 emissions per floor area per year 

(kgCO2/m2/year). The TER for a planned new dwelling must not exceed that for 

a ‘notional dwelling’ which is defined in the official SAP document. Appendix R of 
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the current SAP document (set out in 2009) sets out reference values wherein 

the variable factors are dwelling size, shape and living area. Non-variable 

reference values are heat loss parameters (U values), type and rating of heating 

system, the heating fuel used (natural), window and glazed door quality, shading, 

ventilation, chimneys, and other such building parameters (DECC 2011a). 

 

The requirements for fabric efficiency and TER are progressively tightened with 

each revision to the Building Regulations. From 6th April 2014, the following 

changes applied (with respect to the current 2010 regulations): 

 6% TER carbon reduction 

 Introduction of specific fabric energy efficiency target 

 Flexibility in building specifications, as long as CO2 and efficiency targets 

are met. 

Part L of the Building Regulations does not mandate the use of microgeneration, 

but it can be used to achieve the required CO2 emissions standard. 

 

2.3.2.2 Code for Sustainable Homes 

The Code for Sustainable Homes (CSH) is a Government national standard 

environmental assessment method for homes. It rates dwellings against six 

levels (level 6 being the highest sustainability standard), and covers nine 

categories of sustainable design, one of which is Energy and CO2 Emissions. The 

code is not legally binding in most cases, but level 3 is required for social housing 

in Northern Ireland, housing funded by the Homes and Communities Agency 

(England’s national housing agency) and housing promoted by the Welsh 

Assembly Government. Some local authorities in the UK require a certain CSH 

level to be met before granting planning permission. 

 

The current version of the CSH was set out in 2010. It uses a points system to 

calculate the level awarded to a dwelling, along with some mandatory standards 

which must be met to achieve a certain level. The TER standards required to 

meet certain levels are shown in Table 5. Levels 5 and 6 require a fabric energy 

efficiency of ≤ 39 kWh/m2/year for flats and mid terrace houses, and ≤ 46 

kWh/m2/year for end terrace, semi-detached and detached houses. 
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Table 5. Mandatory TER standards required by CSH 

TER: Percentage improvement with respect to 2010 

Building Regulations Part L1A 

Code Level 

≥ 25% Level 4 

≥ 100% Level 5 

Zero net CO2 emissions Level 6 

 

2.3.2.3 Energy Performance Certificates 

As a result of EU Directive 2002/91/EC, which requires member states to 

implement energy performance certification systems for buildings, the UK 

introduced Energy Performance Certificates (EPCs) in 2007. EPC assessors rate a 

building from A (best) to G (worst) based on efficiency and heat loss features 

such as insulation, type of boiler and double glazing. Originally applying only to 

properties with four or more bedrooms, the scheme is now also mandatory for 

three bedroom homes, which must have an EPC rating if put up for sale. 

Microgeneration is not essential to achieve a high EPC rating, but it does 

contribute to a higher score if installed appropriately. 

 

2.3.2.4 The Merton Rule 

The Merton Rule is named after the London Borough of Merton, whose council 

requires new building developments with over 10 buildings to source 10% of 

their energy needs (once built) from on-site renewable sources, i.e. 

microgeneration or district heating. In its wider application, the Merton Rule 

allows local authorities to set renewables targets for new developments that 

exceed those stipulated in the Building Regulations. Efficiency measures are 

currently included, but it has been proposed that they be removed from local 

authority control by the Deregulation Bill, which is before the House of 

Commons at the time of writing.  
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2.3.2.5 Zero Carbon Homes Target 

In 2007, the Department for Communities and Local Government committed to 

regulating for zero carbon new homes by 2016, with interim targets of a 25% 

improvement to the TER figures set in the Building Regulations by 2010, and a 

44% improvement by 2013 (DCLG 2007a).  The Zero Carbon Homes target was 

linked at the outset to the CSH, with the progressive targets defined as meeting 

level 3, level 4 and level 6 respectively. After several iterations of the policy, the 

specific definition for ‘Zero Carbon Homes’ has now been decoupled from the 

CSH and was finally set in the March 2011 Plan for Growth report associated with 

that year’s Budget (HM Treasury and BIS 2011). The key features are that only 

emissions from fixed lighting, heating, hot water and building services are now 

included in the regulation, and that although specific on-site reductions are still 

required in the form of a Fabric Energy Efficiency Standard (FEES), off-site 

carbon reduction measures known as ‘allowable solutions” are also permitted, as 

shown in Figure 2. The specifics of what will constitute allowable solutions have 

yet to be officially confirmed, although a number of suggestions have been made 

such as improving the efficiency of existing buildings in the vicinity, and paying 

to fund approved ‘green’ projects (Zero Carbon Hub 2011). For a number of 

years, the lack of a specific definition has been criticised for slowing progress in 

this area and reducing the impact of the target on building practices (Chan 

2008). The Government initiated a consultation on allowable solutions in August 

2013, with final comments received on 15th October 2013. 

 

 

Figure 2: Carbon compliance and allowable solutions under the Zero Carbon Homes target 

 (Zero Carbon Hub 2011) 

 

 

Allowable 
solutions

On-site low/zero 
carbon energy

Fabric energy 
efficiency standard
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2.4 Industry 

Industry has a significant role to play in the mainstreaming (or otherwise) of 

microgeneration, since commercial activity drives a number of activities relating 

to the diffusion of innovations, such as industry research, manufacturing, supply 

chain formation and (particularly for microgeneration in new homes) adoption. 

As a result, many studies have considered industrial drivers and barriers to 

microgeneration and low carbon homes, often as part of larger system studies. 

 

 Microgeneration 2.4.1

In terms of manufacture and supply, levels of entrepreneurial action for 

microgeneration in the UK are heterogeneous, with different technology types 

attracting different levels of interest and activity. The micro CHP market tends to 

be dominated by established companies including large energy companies, 

which have branched out into micro CHP. Micro wind is dominated by smaller 

startups, while both incumbents and new companies operate in the small PV 

market (Praetorius et al. 2010). 

 

Due to the generally limited market for microgeneration in the UK, some studies 

have warned that there are insufficient skilled installers to cope with a larger 

market (Bergman and Eyre 2011; Element Energy 2008). Bergman and Eyre 

(2011) observed that most installers specialise in a single technology type, and 

that skill levels are not as high as they could be, since best practice courses are 

often shunned in favour of cheaper courses run by manufacturers of individual 

components.  In response to previous time-limited grant schemes, and 

degression deadlines for the FIT, some supplier and installers have been accused 

of using aggressive sales tactics and false advertising about payback periods to 

maximise sales while demand is high (Keirstead 2007b; Staffell et al. 2010). Due 

also to reports of some ‘cowboy’ installers who do not properly install 

technology, and large variations in quoted prices for similar installations 

(Bergman and Jardine 2009), there is a risk of the microgeneration industry 

suffering from a ‘reputation problem’ (Bibbings 2006). It should be noted 

however that studies reporting these problems were published prior to the 
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launch of the MCS in 2009, which may have gone some way towards alleviating 

these problems. Praetorius et al. (2010) have also pointed out that the 

microgeneration industry has developed significant ‘legitimacy’ in the UK due to 

political representation in the form of Parliamentary groups such as the All-

Party Parliamentary Renewable and Sustainable Energy Group, industry 

associations such as the Sustainable Energy Association (formerly the 

Micropower Council), and the Microgeneration Government Industry Contact 

Group. 

 

 New Homes 2.4.2

As with much of the literature on decarbonising new build homes, the majority 

of industry reviews in this area consider the full range of decarbonisation 

measures rather than focusing on microgeneration. As a result, supply chain 

management and decarbonisation is frequently a focus (Chan 2008; Udeaja 

2008), and studies tend to focus on the construction industry. A frequently cited 

issue is that the construction industry tends to have a culture of conservatism, 

with market incumbents slow to innovate and resistant to change (Osmani and 

O'Reilly 2009; Udeaja 2008; Williams and Adair 2007). 

 

Contemporary insight on industry attitudes to decarbonisation targets comes 

from a study by Osmani and O’Reilly (2009), who disseminated questionnaires 

and conducted interviews with house builders to gain their perspectives on the 

feasibility of zero carbon homes by 2016. Although they made reference to ‘low 

carbon or renewable technologies’ along with other decarbonisation measures, 

the questions were on decarbonisation as a whole. At the time, the zero carbon 

target for new homes was not mandatory, so the focus of the study was therefore 

the CSH. A large number of respondents to Osmani and O’Reilly’s study stated 

that a driver for offering low carbon homes was increased reputation for ethical 

practices, and the opportunity to differentiate their offering from their 

competitors in the market. They also stated that there was a growing desire 

among people in the UK for sustainable lifestyles, although 46% of respondents 

said that lack of consumer demand for zero carbon housing was the most 

significant barrier for them. The most important driver was legislation for zero 
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carbon housing, and interviewees said that the industry would respond best to 

legislation rather than other incentives. However, lack of financial incentives was 

cited by many as a significant barrier – these differing viewpoints likely due to 

differences in opinion between respondents. Regarding microgeneration 

specifically, the study showed that it is still perceived by some in the 

construction industry (and their clients) as unreliable. Some respondents also 

perceived it as aesthetically displeasing, and opined that it took up too much 

outdoor space. 

 

2.5 Householders 

Given that the nature of microgeneration is that the energy end user is much 

more involved with the means of generation (in terms of choice, operation, 

maintenance or even just physical proximity) compared with centralised energy 

delivery, its successful implementation and use often hinges on consumer 

attitudes and actions. A large body of research has therefore built up concerning 

consumer adoption and interaction with microgeneration. Studies with a 

consumer focus tend to deal with either the decision to adopt (or reject) the 

technologies, or changes in energy use behaviours or attitudes post-adoption; 

though some studies (Caird and Roy 2010; Keirstead 2007a; Sauter and Watson 

2007) consider both.  

 

 Motivations for and barriers to adoption 2.5.1

There are three broad categories of methodology for consumer-focused studies 

which consider microgeneration adoption: questionnaire and interview studies 

with qualitative or quantitative analysis; willingness-to-pay studies using either 

hedonic analysis from installation data or stated preference through choice 

experiments; and meta-analyses, which often also contain theoretical analyses 

(the application of, for example, behavioural and choice theories). Some studies 

use a combination of two or more of these techniques. A number of studies have 

provided insights into consumers’ motivations for and barriers to adoption, 

differing perceptions of different microgeneration technologies, and the 
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variations in attitude between different sociodemographic groups. The main 

findings from these studies are discussed here. 

 

2.5.1.1 Awareness 

As Claudy et al. (2010a) point out, a prerequisite for the adoption of a technology 

is awareness of it. Their study of householders in the Republic of Ireland (ROI) is 

one of few in recent years which aim to quantify awareness of microgeneration 

in a Western European population. Using a telephone survey of 1010 adult ROI 

residents, they found that although a large proportion of the sample was not 

familiar with the term “microgeneration”, awareness of solar PV and solar 

thermal was high (80% and 75% of the sample respectively). Awareness of 

biomass boilers and micro wind turbines was somewhat lower (66% and 58% 

respectively), and awareness of micro CHP was very low (18%). These results 

are likely due to the increased visibility of solar PV and solar thermal 

technologies, which are installed on rooftops, as opposed to micro CHP which is 

installed inside. The result for micro wind would not be surprising in a UK 

context, since the overwhelming majority of installations there are of PV. In the 

ROI at the end of 2010 however, 85.2% of installations were of micro wind 

(Sustainable Energy Authority of Ireland 2010), so the relatively low awareness 

there is unexpected. The authors do not discuss this point, but it may be due to 

significant cultural overlap between the ROI and the UK, or because they 

surveyed the population at large rather than adopters, and the number of people 

who have actually installed microgeneration is small enough not to have had a 

significant impact. 

 

2.5.1.2 Financial 

Nearly all studies of consumer uptake of microgeneration find that the biggest 

barrier to adoption is the upfront capital cost (Balcombe et al. 2013; Bergman et 

al. 2008). For example, in a survey of 924 UK residents in 2010, 86% cited the 

purchase price of microgeneration technologies as a barrier to adoption (Caird 

and Roy 2010). Three recent willingness-to-pay (WTP) studies sampling large 

numbers of households from the UK (Caird and Roy 2010; Scarpa and Willis 
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2010) and the Republic of Ireland  (Claudy et al. 2011) have found that average 

upfront WTP for all microgeneration types (except for micro hydro) is less than 

the actual capital cost. In their study of 1279 households, eliciting WTP through 

choice experiments, Scarpa and Willis (2010) found an implied average 

acceptable payback period for respondents of five years: significantly lower than 

the actual typical 10 – 25 year payback periods. Surprisingly, when Claudy et al. 

(Claudy et al. 2010b) measured resistance to microgeneration as opposed to 

WTP for adoption, they found that perception of upfront cost did not have a 

significant effect on resistance to micro wind turbines. However, as they point 

out, resistance is a measure of technology rejection, which is not the opposite of 

adoption. Householders may still have the will to adopt a technology in spite of 

upfront cost, but lack the means to actually do so. Unsurprisingly therefore, 

grants towards the upfront cost of microgeneration technologies have been 

found to stimulate uptake. In a study by Jager (2006) of people who had taken up 

grants under a Dutch energy subsidy scheme , the grant was one of the two most 

important reasons for adoption.  

 

One of the most common motivations for adoption is also financial (Balcombe et 

al. 2013; Caird and Roy 2010), specifically money saving on energy bills or 

through FIT payments. Given the financial barriers mentioned above, this may 

seem paradoxical, but for those who have sufficient capital to invest, 

microgeneration can provide financial benefits. One is independence from 

volatility in energy prices, which is another commonly cited motivation for 

adoption (Claudy et al. 2011; Palm and Tengvard 2011). Ongoing financial 

incentives such as the UK FIT have also been seen to have a significant effect 

(Balcombe et al. 2013). According to the 2011 Microgeneration Strategy, (DECC 

2011b) 40% of people in the UK who consider adopting microgeneration would 

not consider it without the FIT.   

 

Despite the high importance of costs and savings to consumer decisions over 

whether to adopt microgeneration, Claudy et al. (2011) found that WTP for 

thermal systems was higher than other technologies in the study, despite other 

technologies offering higher cost savings. This is an indication that other factors 

contribute to consumer decisions in this area. 
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2.5.1.3 Environmental protection 

Coming closely second to financial considerations in importance in most studies 

(Balcombe et al. 2013), environmental protection is a significant motivator for 

many adopters of microgeneration. In Caird et al.’s (2008) UK study, 75% of 

respondents who had adopted microgeneration stated that reducing CO2 

emissions was one of the reasons: ahead of financial concerns in this case (72% 

of adopters); and a recent survey of 2047 Dutch households found a similar 

result (Leenheer et al. 2011). For some householders, microgeneration is a 

tangible symbol of their commitment to a ‘green’ lifestyle (Dobbyn and Thomas 

2005; Fischer 2004), and may even represent independence from ‘mainstream’ 

environmentally detrimental lifestyles (Palm and Tengvard 2011). This evidence 

seems somewhat at odds with other theories that people’s moral values are 

demonstrated in public initiatives while their individual investments are more a 

function of their personal utility (Ek 2005; Sauter and Watson 2007). However, a 

visible symbol of environmental commitment could be considered an aspect of 

personal utility for the householders in question. 

 

In a small number of cases, environmental concerns may pose a barrier to the 

installation of certain microgeneration technologies. Interviews with business 

stakeholders in Camden (London) found that the potential impacts of biomass 

combustion on local air quality were a barrier to the installation of biomass 

boilers (Warren 2010), and a study of 49 Norwegian households found that 

some residents thought ASHPs would reduce indoor air quality due to dust 

recirculation (Sopha et al. 2010). Aside from these studies, consumer 

perceptions about microgeneration and local air quality are not often raised in 

the literature. This may be because it is not an important issue for potential 

adopters, or because researchers – informed about the low risk posed in this 

area – do not suggest it as an area for discussion. 

 

2.5.1.4 Effort and compatibility  

Several studies of consumer attitudes to microgeneration cite Rogers’ 

(1995/2003) evidence that relative advantage, compatibility with routines, 
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perceived complexity and observability (opportunity to test a technology before 

buying, sometimes called trialability) are likely to explain 49 – 87% of the 

variation in innovation adoption rates. For further discussion of Rogers’ work, 

see Section 4.4 of this thesis. The relative lack of trialability of microgeneration 

technologies could explain the importance of normative influences and 

uncertainty in consumer decision making, discussed in Sections 2.5.1.6 

and 2.5.1.7  below. Perceived compatibility with routines and habits, often a 

function of effort required, has been shown to be important in a number of 

studies, but only for microgeneration heating systems, particularly biomass 

boilers. For example, perceived compatibility increases WTP for wood pellet 

boilers (Claudy et al. 2011). The labour required to buy, store and load fuel into 

biomass boilers has been found to be a significant barrier to adoption (Caird and 

Roy 2010), and Element Energy (2008) calculated that on average householders 

are willing to pay £6 upfront to avoid every £1 in annual maintenance for 

heating systems. This is much higher than the £2.91 WTP per £1 annual fuel bill 

saving calculated by Scarpa and Willis (2010), and while methodological 

variations may account for some of this difference, it does indicate the relative 

importance of time and effort costs to consumers compared with financial costs. 

The additional space required for most microgeneration heating systems also 

has a statistically significant negative effect on householder attitudes towards 

them (Caird and Roy 2010; Scarpa and Willis 2010). These effects tend not to be 

present for CHP, solar systems and micro wind (Claudy et al. 2010b; Claudy et al. 

2010c; Warren 2010) - unsurprisingly since once installed they require very 

little maintenance. 

The effort, cost and disruption involved in retrofitting microgeneration systems 

is also a barrier to many people. 54% of non-adopters in  Caird and Roy’s (2010) 

study stated that they did not want to undergo the “hassle of home 

modification”, and Claudy et al. (2010b; 2010c) found that the cost and 

disruption involved were significant contributors to resistance to 

microgeneration. More specifically, Scarpa and Willis (2010) found that having 

the garden dug up for GSHP installation was the “most dreaded” inconvenience, 

followed by the need to store fuel and/or sacrifice space for a hot water tank. 
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2.5.1.5 Self-efficacy 

Several studies of public attitudes to renewable energy have revealed a lack of 

self-efficacy amongst many UK residents with regards to climate change and 

environmental protection (Devine-Wright 2007; Dobbyn and Thomas 2005; 

London Renewables et al. 2003; Theobold and Walker 2008). That is, many 

people either fail to realise the effects of their energy consumption, feel that 

their personal efforts can have little or no impact on mitigating climate change, 

or believe that the responsibility for mitigation and change lies with government 

or other authorities, rather than themselves. It has been proposed that self-

efficacy is an important determinant of willingness to adopt microgeneration, as 

people may be unwilling to spend time and effort on it if they don’t believe it will 

make a difference to the environment (Claudy et al. 2010b; Claudy et al. 2010c). 

Indeed, Jager (2006) showed empirically that a sample of solar PV adopters had 

a statistically significant higher than average environmental ‘problem 

awareness’ score (relating to personal actions). However in their study of 

innovation resistance, Claudy et al (2010b; 2010c) found that the perceptions of 

microgeneration which are linked to self-efficacy – knowledge, perceived 

complexity and trialability – did not have a statistically significant effect on 

resistance. They concluded that this is in line with research which has shown 

that experts in a particular area tend to rate the benefits of radical innovations in 

that area lower than non-experts, often as a result of a more informed appraisal: 

“they know what they don’t know” (Moreau et al. 2001; Mukherjee and Hoyer 

2001). 

 

2.5.1.6 Uncertainty 

Lack of knowledge and uncertainty over technology function, performance and 

payback period is often a hindrance for those considering microgeneration. 

Despite the MCS, some people are concerned that it is difficult to find a 

trustworthy installer, or that advice from installers will be biased as they want to 

sell products (Caird et al. 2008; DECC 2011b). Balcombe et al. (2013) also 

highlight the prevalence of uncertainty and concerns over the performance of 

microgeneration, and a lack of information about or confidence in the payback 

period of investments in it. In Caird and Roy’s 2008 study, over 20% of the 
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sample had been put off adopting solar or wind systems due to uncertainty over 

their output, and in their 2010 study 68% of non-adopters cited long or 

uncertain payback times as a barrier. Conversely however, Claudy et al. (2011) 

found that performance uncertainty led to lower WTP for solar thermal systems 

and wood pellet boilers, but not for PV systems or micro wind. An possible 

explanation for these seemingly conflicting results can be found in a different 

study  by the same authors, which showed that perceived functional risk had no 

significant effect on resistance to micro wind (Claudy et al. 2010b; Claudy et al. 

2010c). Here, the authors  pointed out that if a respondent does not plan to 

adopt microgeneration anyway for different reasons, risk or performance 

uncertainty is unlikely to be a consideration. 

 

Issues around consumer uncertainty link to the broader problem that a high 

level of technical knowledge and understanding is often required in order to 

judge whether investing in microgeneration will be beneficial or not (Bergman et 

al. 2008; Caird et al. 2008). 

2.5.1.7 Normative influences 

Social normative influences can play both a positive and negative role in the 

uptake of microgeneration. This may relate to neighbourhood aesthetics, with 

some people considering adoption being discouraged due to concerns that 

neighbours will not approve of visible technologies such as solar PV or thermal, 

or micro wind (Ellison 2004; Palm and Tengvard 2011). Claudy et al. (2010b; 

2010c) also describe ‘social risk perception’ as a negative impact on WTP for 

micro wind. Given the recent sharp increase in microgeneration installations in 

the UK and ROI, it would be interesting to carry out a longitudinal study to 

investigate how aesthetic perceptions change over time and how they relate to 

familiarity with microgeneration technologies. While more direct 

discouragement in the form of warnings from dissatisfied previous adopters are 

not often addressed in the literature, the potential effect could be large. 

Marketing studies in other areas have shown that negative word of mouth 

reports have a larger effect on consumer decisions than positive ones (Herr et al. 

1991).  However, given that post-installation satisfaction for microgeneration 

has found to be high (Caird and Roy 2010), this may not be a concern. 
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In terms of positive normative influence, Claudy et al. (2010b; 2010c) found that 

support from social networks decreases resistance to microgeneration both 

directly, and indirectly by increasing its perceived benefits. In their other 2010 

study they also found that support from friends and family increases WTP for 

micro wind, solar hot water systems and wood pellet boilers. Similarly, knowing 

someone with a solar hot water system was also found to increase WTP (Claudy 

et al. 2011). This could be linked to a reduction in uncertainty over performance 

and payback period, which can be a significant barrier to adoption as discussed 

above. Scarpa and Willis (2010) also found that recommendations from friends 

increased WTP, though this effect was not statistically significant when entered 

into a logit model. 

 

2.5.1.8 Differences between technologies 

Several of the examples given above have indicated the heterogeneity of 

attitudes to different types of microgeneration technology. This is quantified in 

Claudy et al.’s (2011) WTP study, where they found that respondents were 

willing to pay most for micro wind, then solar PV, then wood pellet boilers, then 

solar thermal. This is in line with the observation in Section 2.5.1.1  above that 

micro wind has the majority share of the microgeneration market in the ROI. 

Bergman et al. (2008) stress the importance of normative influences here, 

whereby familiarity with a certain technology tends to foster a more positive 

perception. They suggest that visibility and familiarity account for the relative 

popularity of solar and wind technologies compared with CHP, anaerobic 

digestion and incineration. 

 

2.5.1.9 Differences between people and households 

Many studies have investigated the variation in attitudes and adoption between 

different types of household, and people with different demographic attributes. 

With regards to individual attributes, age, income and education have all been 

shown to have an effect. Rates of adoption and attitudes have also been shown to 

vary by household size, location and type. 
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Age is a consistent factor in attitudinal variance with a complex non-linear 

relationship to adoption (Balcombe et al. 2013). Most studies show that adopters 

of microgeneration are predominantly middle aged, particularly in the 45 – 65 

age range (Balcombe et al. 2013; Jager 2006).  Rates of adoption tend to rise 

steadily until this point, then decline in retirees and people aged over 65 

(Balcombe et al. 2013; Claudy et al. 2010a; Leenheer et al. 2011). The reason for 

this is not totally clear, but most researchers suggest that the increases in 

income and home ownership associated with increasing age are likely to be the 

cause (Balcombe et al. 2013). While environmental concerns tend to be higher in 

young people, Claudy et al. (2010a) point out that actual adoption of 

microgeneration is often a predominantly financial consideration, and many 

younger people do not have the capital to invest. Upon retirement, 

microgeneration may become less attractive due to a drop in income, a desire to 

downsize to a smaller home or move to retirement properties, and concerns 

over payback periods. Willis et al. (2011) found that microgeneration even has 

disutility for some retirees, that is, they would be willing to pay not to install it. 

Surprisingly then, Caird et al. (2008) found that 45% of survey respondents who 

had adopted solar thermal were retired. However, this is likely because the 

sample was self-selected rather than stratified: non-adopters also comprised a 

similar percentage of retirees. 

 

Adopters of microgeneration are predominantly middle class with medium to 

high incomes (Caird et al. 2008; Devine-Wright 2007; Ellison 2004). Income may 

also affect technology choice: Sopha et al. (2010) found that people classed as 

having ‘high’ incomes were more likely to choose grid-powered electric heaters 

rather than biomass boilers or heat pumps, but people with ‘middle’ incomes 

were more likely to choose biomass. The authors suggested that this is because 

those with middle incomes are ‘between barriers’: like those with higher 

incomes they are not put off by capital cost, but unlike them, they are deterred 

by ongoing fuel costs. Higher levels of education have also been linked to earlier 

adoption (Balcombe et al. 2013; Keirstead 2007a), with Fischer (2004) even 

describing early adopters as an ‘academic elite’. 

 



- 45 - 

Regarding household type, adoption is usually found to be more likely amongst 

those in larger, detached houses (Balcombe et al. 2013; Caird et al. 2008; Fischer 

2004; Roy et al. 2008). Balcombe et al. (2013) suggest that this is because these 

houses have more available space and a higher energy demand, making it easier 

and more economically rational to install microgeneration. Fischer (2004) also 

points out that those in larger houses are more likely to own them rather than 

rent, removing the problem of the landlord-tenant divide which provides little 

motivation to install for either party. It is also likely that those living in larger 

houses have higher incomes and are therefore more able to invest in 

microgeneration. Interestingly however, despite noting some variation between 

household types, Claudy et al. (2011) concluded that there was no statistically 

significant difference in WTP for microgeneration between them. 

 

Finally, Claudy et al. (2010a) found that people living in rural areas are more 

likely to be aware of microgeneration than those in urban areas. They suggested 

that this was due to the higher number of people in urban areas who live in 

rented flats, which are less suitable for individual installation of microgeneration. 

It is also possible that a rural lifestyle fosters more of an ethos of self-sufficiency, 

though this has not yet been explored in the open literature. 

 

 Post-adoption studies 2.5.2

Studies focusing on post-adoption behaviour change tend to fall into two broad 

categories: qualitative studies using interview data or secondary and theoretical 

data; and quantitative studies of energy use based on either meter readings or 

self-reported usage. 

 

It has been suggested that the presence of microgeneration in homes can engage 

users and make them aware of their energy use in ways that centrally-delivered 

energy cannot (Collins 2004). Energy consumption behaviour is an important 

aspect of increased energy efficiency, and behavioural changes have proven 

difficult to effect in the past, so any changes caused by the presence of 

microgeneration are of significant interest. As Keirstead (2007a) states, “there is 

a danger that if behavioural responses to microgeneration technologies are not 
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considered now, when consumer technologies and protocols are still being 

developed, …households [could] become locked into behaviours that may be 

undesirable in the longer term”. However, the effects of microgeneration 

technologies on residents’ energy use practices are still poorly understood, with 

existing studies few in number and showing ambiguous results (Bergman et al. 

2008). 

 

Keirstead (2007a) suggested that the installation of domestic solar PV could give 

rise to a “double dividend” if residents became more aware of their energy use 

and reduced it as a result. Using responses to a closed-format questionnaire from 

91 UK households with solar PV, he identified two significant differences 

between pre- and post-installation energy use. The first was that the use of green 

electricity tariffs increased from 50% to 76% of respondents, most of whom 

switched on the advice of the solar PV installer. The second was that the use of 

energy-efficient lighting increased from 49% to 58% of lighting points. Similarly, 

Caird and Roy (2010) found that 25% of those who had installed 

microgeneration also installed extra efficiency measures. No significant 

differences in the efficiency of other appliances were seen in Keirstead’s study, 

though as he points out, these tend to have long turnover times and 75% of 

survey respondents had owned their PV systems for less than two years. 

Respondents also provided self-assessed estimates of electricity saving since 

installing their PV system. When the responses were weighted by self-assessed 

certainty in these estimates, an overall saving of 5.6% was found. Self-assessed 

savings are however likely to be somewhat inaccurate, and as Keirstead points 

out, do not necessarily equate to a long-term change in consumption. He 

concluded that the ‘double dividend’ will not be realised without a “supportive 

sociotechnical system in place”, including appropriate generation tariffs, 

feedback and recognition from energy companies and accessible information 

about the operation and monitoring of solar PV systems. He also suggested that 

further research could investigate how long any changes in consumption 

behaviour last, whether there is a rebound effect, and whether these effects vary 

demographically.  
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The question of how long any changes in consumption behaviour might last was 

addressed by a 2007 study of a development of nine ‘eco houses’ with solar PV 

systems in the UK (Bahaj and James 2007). Energy generation and energy 

consumption by each household was monitored over the course of a year. The 

researchers found little evidence that occupants altered their energy 

consumption patterns to coincide with periods when the PV panels were 

generating. They also found that although energy consumption in many 

households was reduced following informal discussions with the researchers at 

the beginning of the study, the effect did not last and energy consumption 

increased throughout the year. A study by Erge et al. (2001) of the German  

1000-Rooftop PV scheme, in which between 68 and  1340 households per year 

were monitored between 1992 and 1999, found similar results: energy 

consumption in participating households was not significantly different from 

households without PV systems. 

 

A study by Haas et al. (1999) comparing electricity use in Austrian households 

before and after the installation of solar PV systems appeared to show an impact 

on energy consumption. The researchers’ conclusion was that the effect of 

installation varied depending on the initial energy use of the household. Most 

households with initial electricity use above 3,500kWh/year saved electricity 

after installation, while most households with initial use below this threshold 

increased their energy use. This led Haas et al. to speculate that “PV is an energy 

conservation tool for the rich”. However, the sample size for this study was 21 

households, and there are two outlying data points (both with high initial use 

and very high reported savings) which could have skewed the results 

significantly. The authors also fail to mention how soon before and after 

installation electricity use was measured, and whether the figures are averages 

or one-off readings, which makes it somewhat difficult to draw meaningful 

conclusions from the paper.  

 

A less technology-specific study in the UK was commissioned in 2005 by the 

Sustainable Consumption Roundtable (SCR), to discover how microgeneration 

can change attitudes towards environmental issues in general, and energy 

efficiency and energy practices. Actual energy use was not quantified, as the 
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focus was more on awareness and attitude. Face-to-face and telephone 

interviews were conducted with three groups: ‘active’ householders (who had 

chosen to install microgeneration technologies in their homes), ‘passive’ 

householders (who lived in social housing in which the housing provider had 

installed microgeneration), and ‘mainstream’ householders who lived in homes 

without any form of microgeneration. People of a variety of ages and socio-

economic grades were interviewed, and the types of technology used were 

micro-wind, ASHP, micro CHP, solar PV and solar thermal, including some 

combinations of these.  

 

Despite a large amount of variation in attitudinal changes, some trends emerged. 

Mainstream households tended to have very little awareness of environmental 

issues, the link between energy use and the environment, and even in some 

cases the link between energy use and energy bills. Passive householders tended 

have a much better understanding of and interest in both environmental issues 

and the link with energy use, and active householders even more so. The authors 

classified attitudinal shifts in the passive households along two axes: low to high 

environmental awareness and low to high energy self-efficacy, with the latter 

signifying “when the household makes the connection between their concern 

over consumption and their awareness about when, how and why that 

consumption is occurring”. This allowed them to pinpoint some of the factors 

affecting responses to microgeneration. “Eco-housing with multiple features” 

(that is, with efficiency measures such as grey water recycling in addition to 

microgeneration) appeared to stimulate the most increase in environmental 

awareness, with the buildings symbolising an ‘ethos’ which residents were eager 

to take on, though this did not necessarily equate to reductions in energy use. 

Microgeneration technologies with a visible presence encouraged the largest 

shifts to energy self-efficacy, but only when residents had a good understanding 

of how the technology worked. The latter was a particular issue for passive 

households, where in some cases people were unaware of how the technology 

was supposed to function and therefore either ignored it or used it incorrectly 

(Dobbyn and Thomas 2005).  
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Feedback on energy use has been found in many studies to reduce energy 

demand. A review by Darby (2006) found that direct feedback from real-time 

energy monitors or smart meters yielded reductions of 5 - 15%, while reductions 

from indirect feedback such as billing were observed as 0 – 10%. As a result, 

smart meters are often considered to be essential to maximise the benefits of 

microgeneration installation (Bergman and Eyre 2011; Watson et al. 2006). 

Indeed, Watson et al. (2006) recommend ‘future-proofing’ legislation to make 

smart meters mandatory when microgeneration is installed. 

 

In summary, there is mixed and limited evidence to support the theory that the 

presence of microgeneration alone induces long term changes in energy 

consumption by residents. However, some positive changes have been observed 

when residents are well informed and supported: in particular when smart 

meters are installed alongside microgeneration. Providing information about 

correct use of the technologies along with clear visual feedback about their 

performance is most effective in reducing energy demand, along with fair and 

clearly reported export tariffs or reductions in energy bills.  

 

 New homes 2.5.3

Although there is much evidence to show that efficiency, ‘green features’ or 

microgeneration can provide economic and social benefits to home occupants, 

quantitative evidence of a tangible effect on house prices is very limited. 

Willingness to pay studies, such as those discussed above, suggest that many 

people are willing to pay for microgeneration. However, other research has 

shown that prospective house buyers tend not to evaluate homes in terms of 

their constituent parts, but consider them as a whole and form abstract 

impressions from clusters of attributes rather than considering them in isolation 

(Lundgren and Lic 2010; Zero Carbon Hub 2010). As a result, willingness to pay 

for individual microgeneration technologies cannot be expected to directly 

translate into a higher willingness to pay for a house incorporating them. 

 

A comprehensive review of evidence commissioned by the Royal Institution of 

Chartered Surveyors (Sayce et al. 2010) found that most of the research on the 
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valuation of ‘green features’ on homes is theoretical or opinion-based, with very 

few studies based on actual home sale transactions. Much of the data on people’s 

willingness to pay is based on surveys which present hypothetical scenarios. In 

the UK for example, a survey of 1,563 adults found that 24% of respondents 

would be prepared to pay between £1,000 and £5,000 on top of the asking price 

of a home for energy efficiency measures, and 11% would be prepared to pay up 

to £10,000 (Wolseley 2006). However the only publically available source on 

this report does not specify how the questions were posed or what the specific 

efficiency measures were. 

 

Most of the quantitative studies available have been carried out in the USA on 

office buildings (Sayce et al. 2010). For example, Fuerst and McAllister (2011) 

used hedonic regression analysis to measure the effect of two energy efficiency 

measures (LEED and Energy Star) on office rental and sale prices. Controlling for 

price-determining building characteristics, they found that rents were 4-5% 

higher on average in certified buildings than non-certified buildings, and sale 

prices were 25% higher for LEED and 26% higher for Energy Star. Similarly, 

Eichholtz et al. (2013) found that LEED or Energy Star certified office buildings 

commanded 3% greater rental prices and 13% higher selling prices than 

equivalent non-certified buildings. In the residential sector, a comparison of 19 

apartments retrofitted for thermal efficiency and 45 non retrofitted apartments 

in Romania found that retrofitting increased the price by an average of 2 – 3%  

(Popescu et al. 2012). A study in Canberra, Australia, found that although energy 

efficiency accounted for only a small proportion of the variation in house prices, 

a one-star increase in the national Home Energy Rating (HER) standard led to an 

average increase of AUS$11,000 in the asking price for a detached house at the 

median price of AUS$365,000 (Berry et al. 2008). 

 

Only one study specifically considering the impact of microgeneration 

technologies on house prices in the UK could be located in the open literature at 

the time of writing. In association with Oxford City Council, Morris-Marsham and 

Moore (2011) gathered information from prospective home buyers and local 

estate agents. Prospective buyers were shown images of PV panels and solar 

thermal units and asked how much extra they would pay for a house if they were 
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included. 47% of respondents indicated that the presence of solar thermal would 

make them more likely to buy a home, 10% less likely and 43% no effect. For 

solar PV, 33% indicated that they would be more likely to buy, 17% less likely 

and 50% no effect. Those who were willing to pay more indicated that they 

would pay on average £1,500 more for a property with solar thermal, and £1,750 

more for solar PV. By multiplying these values by the percentage of people 

willing to pay more, the authors derived average ‘added value’ figures of £250 

per house for solar thermal and £233 for solar PV, though they added the caveat 

that their small sample size meant that the figures were unlikely to be 

statistically robust. Despite the apparent increase in desirability of houses 

incorporating microgeneration, interviews with local estate agents revealed that 

this was not being reflected in house prices for the most part. 80% of those 

interviewed said that the presence of solar panels on a property would not affect 

their valuation; and 60% believed that there was no demand for properties with 

solar panels while the remaining 40% did not know if there was demand or not. 

The authors commented that “a common explanation was that house buyers had 

a list of features they were looking for and renewable energy installations were 

not included” (Morris-Marsham 2010; Morris-Marsham and Moore 2011). 

 

2.6 New business models  

A number of different arrangements for the ownership, operation and 

maintenance of microgeneration technologies are available. Broadly, they can be 

separated into two groups: ‘plug and play’ arrangements - a term coined by 

Watson (2004) - under which householders own, operate and maintain  the 

microgeneration in their home; and energy services contracting arrangements, 

under which some or all ownership, operation and maintenance responsibilities 

are contracted out to a third party. Energy services contracting has been 

proposed as a method by which the rollout of microgeneration can be 

streamlined and achieved more quickly (James 2012). 

 Plug and play 2.6.1

Under plug and play arrangements householders own the microgeneration 

technologies in their home and are fully responsible for their operation and 
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maintenance. In the case of new build housing, this means that ownership passes 

from the developer to the householder at the point of sale and that, aside from 

obligations under the warranty, the developer has no further involvement.   

 Energy services contracting 2.6.2

Energy provision in the UK is currently dominated by the utility provision 

paradigm, with consumers paying utility companies per unit of electricity or gas 

provided. Conversely, energy services contracting is based on the idea that 

consumers are not concerned with units of energy, but rather energy services: the 

physical benefit, utility or good that they derive from energy conversion (EU 

2006; Eyre 2008), such as ambient temperature, lighting and appliance use 

(Steinberger et al. 2009). Under an energy services contracting arrangement, 

consumers pay for the delivery of these energy services rather than for units of 

energy.  

 

Energy services contracting arrangements fall under the broader concept of a 

‘performance economy’ (Steinberger et al. 2009), or ‘functional service economy’, 

the objective of which is to maximise the function of or benefit derived from 

goods or services while minimising the consumption of resources and energy. 

Unlike the incumbent industrialised economy in which the focus is on 

maximising the sale of products, the focus of a performance economy is on 

selling services or functions. In a performance economy, suppliers usually retain 

ownership of their products over their lifetime and sell their functions, hence 

products become cost centres as opposed to profit centres (White et al. 1999) 

and profits are maximised by increasing product longevity, reusing and recycling 

components, and providing the function or service more efficiently. A 

performance based economy has therefore been proposed as a viable, more 

sustainable alternative to the industrialised economy (Stahel 2010). Steinberger 

et al. (2009) define three main types of provision model under a performance 

economy: 

 

Product-oriented 

Providers do not retain ownership of the product, but offer lifetime maintenance, 

financing options and/or ‘takeback’ services in which they dispose of, recycle or 
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redeploy the product at the end of its lifetime or when the consumer has no 

further need for it. This type of arrangement does not deviate significantly from 

current standard business models, and as such is unlikely to have a large impact 

on environmental outcomes. 

 

Use-oriented 

The provider retains ownership of the product, and sells its use or functions 

under a leasing arrangement. Tukker and Tischner (2006) predict that use-

oriented provision has the potential to deliver up to factor two decreases in 

resource use. 

 

Result-oriented 

This arrangement focuses not on the use or functions of a particular product, but 

on the final service being provided. Under a result-oriented contract, the 

customer pays a fixed fee in return for having specified needs met.  Tukker and 

Tischner (2006) predict that result-oriented provision has the potential to 

deliver up to factor ten decreases in resource use. 

 

Energy service contracting – offered by energy service companies (ESCOs) - 

offers an alternative to the traditional business model of energy utility 

companies. Under the traditional business model, the company’s goal of 

maximising profits requires that they maximise their sales, since they are paid 

per unit of product sold. In the case of energy provision, where the ‘product’ is 

energy, this goal is at odds with political and societal goals of reducing energy 

consumption and by extension reducing GHG emissions. Energy services 

contracting removes this ‘throughput incentive’ (York and Kushler 2011), as 

ESCOs are paid to provide useful energy streams or energy services rather than 

units of energy (Boait 2009).  

 

A number of different activities fall under the heading of energy service 

contracting, and contracting arrangements differ in their scope, financing 

mechanisms and delivery methods. All share two determining characteristics to 

be considered energy service contracts: they are based on the supply of either 

useful energy or energy services (Sorrell 2005, 2007; Steinberger et al. 2009), 
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and they involve the transfer of decision rights over some or all energy 

equipment from consumer to ESCO (Sorrell 2005, 2007). Energy service 

contracting arrangements can be broadly divided into two categories: energy 

supply contracting and energy performance contracting. 

2.6.2.1 Energy supply contracting 

Energy supply contracts (ESCs) fall under the use-oriented provision model 

defined above. The ESCO owns the primary energy  conversion equipment (e.g. a 

boiler), which converts energy from its imported form (e.g. gas) to a useful 

energy stream such as hot water (Sorrell 2007). The customer is charged for 

units of useful energy, as opposed to units of gas or electricity. Alternatively 

under some arrangements the customer pays a fixed fee for the provision of 

useful energy streams within contractually agreed limits (Marino et al. 2011). 

The scope of a typical energy supply contract is shaded blue in  

 

Figure 3. Owning the primary conversion equipment allows an ESCO to reduce 

customer demand for delivered energy (fuel) because it can control and improve 

the efficiency of the equipment through expert maintenance and operation. 

Guaranteed energy saving is not usually built into the contract however, as 

secondary conversion equipment is still under the consumer’s control (Sorrell 

2007).1 

2.6.2.2 Energy performance contracting 

Energy performance contracts (EPCs) fall under the result-oriented provision 

model defined above. Under these arrangements, the ESCO owns the secondary 

conversion equipment (e.g. radiators and kitchen appliances) which provides 

energy services such as a comfortable room temperature or the ability to cook 

food. The customer is not charged per unit of delivered or useful energy, but for 

an agreed level of energy services. The scope of a typical energy performance 

contract is shaded pink in  

                                                        

1 Companies offering these types of contract are sometimes known as energy service provider 

companies (ESPCs), differentiating them from ‘true’ ESCOs which also guarantee energy savings 

as in Bertoldi et al. (2006) for example. However in this thesis, both companies supplying ESCs 

and those supplying EPCs are referred to as ‘ESCOs’. 
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Figure 3. Since under this arrangement the ESCO owns the secondary conversion 

equipment (and usually the primary conversion equipment), an even greater 

degree of control over the consumer’s demand for delivered energy can be 

achieved. As a result, EPCs often contractually guarantee a minimum standard of 

energy services for a fixed cost. 

 

Sorrell (2007) points out that in practice, many energy service contracts take a 

hybrid form partway between an ESC and an EPC. For example, it is common for 

ESCs to include the provision and operation of controls for secondary conversion 

equipment, or for an EPC to initially cover only one final energy service before 

eventually expanding to others. Sellers of secondary conversion equipment may 

also offer EPCs based only on the final energy service provided by that 

equipment. 

 

Figure 3: Scope of the different types of energy service contract 

(Adapted from Sorrell, 2007)  
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2.6.2.3 Financing for ESCOs 

In simple terms, an energy service contract will be financially viable for an ESCO 

if its revenue exceeds its outgoings, and for the customer if their savings exceed 

their payments to the ESCO. Outgoings can be separated into production costs 

and transaction costs. Sorrell (2007) provides a useful summary of these, 

adapted below along with potential revenue streams. 

 

Production costs 

- Capital cost of conversion equipment, associated infrastructure and controls. 

- Staff costs of operating and maintaining energy equipment. 

- Material costs of operating and maintaining energy equipment. 

- Purchase of energy commodities (e.g. gas or electricity). 

Sorrell (2007) identifies two main ways in which an energy contracting 

arrangement can reduce production costs relative to the traditional energy 

supply model: through economies of scale and market incentives. Economies of 

scale are achieved through bulk buying fuel, electricity and equipment, and 

having dedicated experts to manage energy services (potentially across more 

than one site). In addition to the efficiency incentives of operating in a 

performance economy, ESCOs will be incentivised to minimise production costs 

and maximise efficiency for their clients in order to win contracts in a 

competitive market. 

 

Transaction costs 

Staff, consulting and legal costs of: 

- Finding a supplier and drawing up a contract. 

- Monitoring contract performance. 

- Enforcing compliance with the contract. 

- Negotiating contract changes as needed. 

 

The greater degree of control assumed (and often the savings guarantee) under 

an EPC means that transaction costs for EPCs tend to be higher than for ESCs. 
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Potential revenue streams  

- Reductions to customer energy bills. 

- Fee per unit of useful energy delivered. 

- Fixed fee for specified performance minimum. 

- Feed in tariff payments for energy generated. 

- Payments for energy exported to the grid. 

 

The capital costs of establishing an energy service contract are: the purchase of 

new equipment for energy conversion and control, the associated infrastructure 

(e.g. wiring), and any secondary conversion equipment included in the contract. 

These capital costs may be met by internal or third party (debt) financing. Under 

internal financing, the capital cost is met by the internal funds of either the ESCO 

(‘ESCO financing’) or the customer (‘Energy user/customer financing’) (Bertoldi 

et al. 2006), with no debts incurred by either party. With third party financing, 

some or all of the capital cost is provided by a third party (a bank or financial 

institution) from which either the ESCO or the customer will borrow.  

 

Since an ESCO assumes a financial risk when borrowing from a third party, 

taking on further ‘performance risk’ (Bertoldi et al. 2006; Painuly et al. 2003) 

relating to the function of the technology is undesirable. It is therefore common 

for energy service contracts arranged with ESCO borrowing not to include a 

guaranteed minimum level of energy service provision (i.e. they are likely to be 

ESCs rather than EPCs), with savings split between the customer and the ESCO 

(Bertoldi et al. 2006). The nature of the split will be contractually agreed 

according to project characteristics such as length of contract, cost, levels of risk 

and risk sharing arrangements (Energy Charter Secretariat 2003). This 

arrangement is illustrated in Figure 4. 

 

When the customer takes on financial risk by borrowing the capital costs of a 

project, they are likely to expect a minimum level of energy service provision, 

with the ESCO taking on the performance risk (i.e. these funding arrangements 

are likely to be suited to EPCs rather than ESCs) and guaranteeing a certain level 

of savings to the customer (Bertoldi et al. 2006) This arrangement is illustrated 

in  Figure 5. 
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Figure 4. Third party financing with ESCO borrowing 

(Adapted from Bertoldi et al., 2006; Sorrell, 2007) 

 

 

Figure 5. Third party financing with customer borrowing 

 (Adapted from Bertoldi et al., 2006; Sorrell, 2007) 
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2.6.2.4 Summary 

In summary, ESCO arrangements vary considerably in terms of their potential 

impact, scope, financing, costs and revenue streams. An overview of the main 

differences between ESCs and EPCs is illustrated inTable 6. 

 

Table 6. Summary of differences between supply and performance contracting 

(Adapted from Hannon, 2012; Helle, 1997; Sorrell, 2007) 

 Supply contracting Performance contracting 

Provision to 

customer 

Useful energy streams  

e.g. hot water 

Energy services 

e.g. ambient temperature 

Technologies Primary conversion equipment 

e.g. boilers, CHP plants 

Secondary conversion equipment 

e.g. radiators, lighting 

Production cost 

savings 

Low – medium Medium - high 

Transaction costs Low – medium Medium - high 

Revenue streams - Reduced customer energy bills 

- Fee per unit of useful energy 

delivered 

- Fixed fee for specified 

performance minimum 

- Feed in tariff payments for - 

energy generated. 

- Payments for energy exported 

to the grid.  

- Reduced customer energy bills 

- Price per unit of energy 

- Fixed fee for specified 

performance minimum 

 

Typical financing 

arrangement 

ESCO financing (third party or 

internal) 

Customer financing (third party or 

internal) 

 

 New roles for consumers 2.6.3

In addition to offering new methods for financing microgeneration, some 

deployment arrangements also offer energy users new roles beyond that of the 

passive consumer. Watson (2004) stated that sophisticated microgeneration 

control and feedback systems will facilitate consumer participation in its 

operation, allowing them to become ‘co-providers’ of energy and energy 

services, and take more responsibility for efficient energy provision and use. 
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Watson et al.  (2006) expanded on this point in Unlocking the Power House, in 

which they described three possible deployment models: plug and play, 

‘company driven’ (ESCO) and ‘community microgrid’ – the latter describing 

community-scale schemes which may be fully owned by community co-

operatives or part-owned by an ESCO. Watson et al. considered that the most 

active role would be played by participants in community microgrid schemes, 

due to their partnerships with the private sector and the state in co-providing 

energy. Plug and play was considered to offer a slightly less active role to 

consumers, but still afford them independence from conventional energy 

suppliers, and to require active operation and maintenance of the technologies. 

The company driven model, despite differing technically from conventional 

generation, was considered to be no different from the ‘status quo’ for 

householders, who would retain the passive consumer role as the 

microgeneration is controlled remotely by an ESCO. 

 

Citing evidence from some of the studies discussed in Section 2.5.2, some 

authors have suggested that more active roles for consumers will lead to greater 

behavioural changes: reductions in overall energy use, and shifting demand to 

times of peak generation (Bergman and Eyre 2011; Watson 2004; Watson et al. 

2006). However, the greatest potential gains may be in increasing ‘energy 

literacy’ (Bergman and Eyre 2011) and fostering positive attitudes towards and 

increased uptake of microgeneration, since, as discussed above, much of the 

evidence for quantitative changes in energy use is ambiguous or anecdotal. 

 

2.7 Gaps in knowledge and research aims 

 Microgeneration in new homes: drivers and barriers 2.7.1

As demonstrated in the existing research discussed throughout this chapter, the 

majority of studies on drivers and barriers for microgeneration in the UK focus 

on retrofit and adoption by existing households. Similarly, studies on 

decarbonising new homes tend to cover a range of decarbonisation measures 

rather than focusing on microgeneration. Where there is overlap, this tends to 

form part of a wider study as opposed to one focused on the issue. Given the 
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potential contribution of microgeneration in new homes to the UK’s renewable 

energy and emissions reduction targets a more focused study dealing with 

microgeneration in new homes specifically is proposed. This will allow the 

identification of issues specific to new build, and highlight known issues which 

are of greater importance in a new build context. A particular issue is that the 

majority of adoption studies focus on householders, while in new builds it is the 

developer’s decision whether to use microgeneration. Osmani and O’Reilly’s 

(2009) study provided useful insights here, and it will be useful to validate and 

expand upon this since no other recent studies of building industry attitudes to 

microgeneration appear to be available.  

 

Additionally, due to the changing policy landscape in the UK many previous 

system level studies of  microgeneration or low carbon homes were conducted in 

the context of different policies and regulations than those extant currently. For 

example, Watson et al.’s (2006) comprehensive system study of microgeneration 

in the UK, Unlocking the Power House, and Boardman’s (2007) widely cited Home 

Truths  report on decarbonising the residential sector were published prior to 

the establishment of the FIT and the Zero Carbon Homes Target.  In particular, 

the Zero Carbon Homes target has undergone several changes and iterations 

since many of the studies discussed above were published. It will therefore be of 

value to investigate the drivers for and barriers to microgeneration in new 

homes in the current policy context, and to investigate if and how industry and 

consumer attitudes have changed in the intervening period. This is the basis for 

the work presented in Chapter 33 of this thesis. A whole system study covering 

political, social, industry, economic and technical drivers and barriers will allow 

linkages and feedback mechanisms between sub-systems to be identified, 

providing insights into which areas should be the focus of efforts to overcome 

current barriers to microgeneration in new homes. 

 

 The role of different deployment models in new builds 2.7.2

Following from the need for a study that focuses specifically on microgeneration 

drivers and barriers in new builds, consideration of the role that different 

business/deployment models might play in overcoming any barriers identified is 
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proposed. As with microgeneration more generally, there has been no study 

focused solely on new UK homes, and there is scope for new insights to be drawn 

in light of the current policy regime. In particular, the introduction of the FIT 

since Watson et al.’s (2006) Power House report will have altered the economics 

of different models. Chapter 4 will therefore start with an analysis of existing 

evidence, and additional discussion in light of updated policies, to draw 

conclusions and make informed hypotheses about the potential for different 

deployment models to overcome economic barriers to the adoption of 

microgeneration in new homes. A simple technoeconomic analysis will also be 

conducted, drawing on and updating previous analyses in light of new policies 

and prices. 

 

Additionally, as discussed in Section 2.6.3, several studies have identified 

potentially significant differences in householder roles in energy provision, 

depending on the deployment model used. Theoretical potential for certain 

deployment models to overcome some of the psychological barriers to adoption 

has been identified, but no attempts have yet been made to quantify the 

likelihood or magnitude of any such effects. An interdisciplinary synthesis 

approach is therefore proposed: bringing together insights from social studies 

on microgeneration adoption, marketing research, and quantitative psychology 

research on predictors of consumer choice to form testable hypotheses which 

are presented in Chapter 4. Together with the technoeconomic discussion and 

analysis, this will help to clarify the roles that different deployment models can 

play in overcoming the barriers identified in Chapter 3. 

 

 Consumer attitudes to different deployment models 2.7.3

Having generated testable hypotheses on consumer attitudes to different 

deployment models in new homes, it will be possible to conduct a quantitative 

investigation. Despite the wealth of studies on consumer attitudes to and 

adoption of microgeneration, none have yet included consideration of attitudes 

towards different deployment models. Quantifying consumer attitudes towards 

different deployment models for microgeneration in new homes (and generally) 

will provide insights for industry in terms of likely future demand and marketing 
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strategies. In particular, identifying differentiation between demographic groups 

(if present) will allow targeted information campaigns, deployment model 

choices or incentives to be used to encourage microgeneration adoption. 

Quantifying the relative importance of different deployment model features for 

householders – identified by Balcombe et al. (2013) as an area for further 

research into microgeneration generally –  will also facilitate these endeavours.  

Chapter 5 therefore comprises a report on a quantitative investigation of some of 

the hypotheses generated in Chapter 4. 

 

2.8 A framework for systems-level analysis 

Having reviewed the issues associated with different aspects of microgeneration 

uptake in the UK, a framework for analysing research questions at the systems 

level will now be described. Systematically investigating the drivers and barriers 

for a technology within a complex political, social and economic context is 

challenging. As seen already in this literature review, many issues do not stand 

alone but are interlinked and dynamic. It is therefore desirable to identify a 

suitable theoretical framework for the study of drivers and barriers for 

microgeneration in new homes in the UK, to inform the directions of the 

research, and to allow for a coherent presentation of complex interdependent 

factors.   

 

Some existing whole system studies of microgeneration have made use of 

theoretical frameworks from the field of transitions studies and technical 

innovations systems studies (described in more detail below). For example, 

Allen et al.’s (2008) study of prospects for and barriers to microgeneration in the 

UK used a system innovations approach, emphasising the interactions between 

“elements and relationships in the production, diffusion and use of new, and 

economically-useful  knowledge” (Foxon et al. 2005). The authors considered a 

transition to domestic microgeneration in terms of overcoming incumbent 

locked-in centralised fossil fuel technologies, with a focus on policy interventions 

and their effects.  The system innovations approach was used in this paper to 

highlight areas of policy where incentives for technical innovation and 

improvement were lacking. Similarly Bergman and Eyre (2011) reviewed the 
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drivers and barriers to domestic MG in new homes using transition theory and 

strategic niche management as an analytical framework to identify areas where 

future policies could facilitate its uptake. Finally, Praetorius et al. (2010) 

conducted a functional analysis and comparison of the UK and Germany’s 

technical innovation systems, comparing “supportive and obstructive” factors 

and the diffusion of microgeneration in each country. Transitions frameworks 

have also been widely used to analyse UK and European low carbon transition 

pathway options and policy regimes: see for example Foxon and Pearson (2008), 

Foxon et al. (2010), Kern (2012) and Verbong and Geels (2007). There is 

therefore significant precedent for the use of these types of framework in system 

studies of low carbon energy and microgeneration. 

 

 System innovations 2.8.1

Transitions and system innovation studies is a relatively new discipline with a 

growing body of literature, concerned with whole-system changes and 

transitions in socio-technical regimes. There tends to be a particular focus on 

technologies and user practices, with studies drawing on a range of disciplines 

such as cultural studies, economics, technology studies and innovation studies 

(Geels et al. 2004). While technological innovations studies have traditionally 

focused on changing individual “technological artefacts”, transitions studies are 

concerned with more wide-reaching changes which give rise to “new markets, 

user practices, regulations, infrastructures and cultural meanings”, known as 

system innovations (Geels et al. 2004). A frequent focus is transitions to more 

sustainable systems, since step-changes in efficiency and sustainability usually 

require changes in whole systems. This is particularly relevant to the case of 

microgeneration, which represents a significant change to the currently 

dominant energy provision paradigm. 

 

The sociotechnical system (or sociotechnical regime) is an important concept in 

transition studies, emphasising the importance of considering technologies in 

context, rather than their performance in isolation. Use and function are more 

relevant in reality than technological artefacts, with technologies only 

“reali[sing] functionalities in… user contexts” (Geels et al. 2004). A sociotechnical 
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system therefore describes technology in context, comprising policy, regulations, 

societal and cultural norms, supporting infrastructure, supply chains and 

markets as well as the technology itself. This framing differs from more 

traditional technology performance analyses by considering cultural aspects to 

be equally important as technical and infrastructural.  Lie and Sørensen (2002) 

describe the process of societal integration as the ‘domestication’ of technology. 

This ‘domestication’ is a two-way process however, with social and cultural 

practices both influencing the development and function technologies, and being 

influenced by them (Aune 2002). A relevant example would be an emerging 

sociotechnical system for microgeneration technologies. They do not function in 

isolation, but require demand from the purchaser, planning permission, 

installation and connection to a grid, user competence and maintenance. User 

practices in energy consumption might in turn be changed by the presence of the 

technology (as discussed in Section 2.5.2), and so form part of the sociotechnical 

system. Although these processes have traditionally been described and 

analysed separately (Lie and Sørensen 2002), they are mutually interdependent.  

 

The term ‘transition’ denotes a change from one state to another. Geels et al. 

(2004) expound on this by noting that states have defining internal 

characteristics which give them “coherence and stability”, and that the term 

‘transition’ connotes a rapid step change from one state to another, rather than 

slow incremental change. Since this research is concerned with a transition from 

centrally-generated energy to domestic microgeneration, a transitions approach 

will be informative. Analytical frameworks used in transition studies can identify 

key agents and processes in such a transition, shedding light on how it could be 

facilitated.  

 

 Evolutionary processes in system innovations 2.8.2

Complementary to transitions frameworks are evolutionary economic 

frameworks, which examine the causal interactions between elements of 

sociotechnical systems. Like transitions approaches, they examine the 

interactions between system elements such as technologies, policies and social 

norms, but rather than focusing on the coalescence of heterogeneous elements 
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into a “working configuration” (Geels 2002, 2005b), coevolutionary economic 

theories draw upon the theory and language of natural selection  (Foxon 2011). 

Foxon (2011) suggests that the consideration given to the roles and choices of 

actors (including individual user choices, business strategies and government 

activity) by coevolutionary approaches can usefully complement transitions 

approaches and provide new insights. Four key concepts in evolutionary 

economics are bounded rationality, path dependency and lock-in, generalised 

Darwinism, and coevolution. 

2.8.2.1 Bounded rationality 

The idea of bounded rationality was first discussed by Simon (1955) as a 

rejection of ‘economic man’: the neo-classical economic assumption of perfectly 

rational economic agents. Rather, due to an inability to access and analyse every 

piece of information about an economic decision (incomplete information), 

actors in an economic system exhibit imperfectly rational choices and 

behaviours. Rather than maximising utility and profits as classical economic 

theory would dictate, firms and individuals tend to use routines, heuristics and 

decisions based on past experience (van den Bergh et al. 2006), which ‘satisfice’: 

provide satisfactory levels of profit or performance; and will only change when 

internal or external changes cause them to no longer be satisfactory (Nelson and 

Winter 1982).    

2.8.2.2 Path dependency and lock-in 

Lock-in, a term coined by Arthur (Arthur 1989),  describes the process by which 

routine practices and functionalities are embedded in (‘locked-into’) socio-

technical systems and become difficult to change. Thus “technological 

developments tend to follow irreversible pathways”: path dependency (van den 

Bergh et al. 2006). A new technology which gains an early lead in the market (for 

any reason, often by chance) is likely to ‘corner the market’ due to the process of 

increasing returns to adoption. The more a technology is adopted and used, the 

more it is likely to improve – a positive feedback loop which ‘locks-out’ 

competitors. Five key reasons for these increasing returns were identified by 

Arthur (1988) and summarised by Geels (2004): 
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Learning by using:  the more a technology is used the more is learned about it, 

allowing improvements to be made faster. 

Network externalities: the more a technology is used, the more related 

products and infrastructure are developed. 

Scale economies in production:  the more a technology is produced, the lower 

the price per unit.  

Informational increasing returns: the more a technology is used, the more 

awareness there is among consumers, encouraging other users to adopt it. 

Technological interrelatedness: the more a technology is used, the more 

complementary technologies are developed. 

 

A contemporary example of lock-in offered by van den Bergh et al. (2006) is the 

global dominance of the Windows computer operating system, which despite the 

existence of well developed alternatives such as MacOS and Linux continues to 

hold the majority of the market share. As van den Bergh at al. point out, the 

ancillary software that has developed around the Windows operating system 

now means that non-Windows users are often unable to access certain services 

or communicate with Windows users: a classic example of network externalities, 

technological interrelatedness and informational increasing returns. North 

(1990) has argued that institutions and their associated processes are also 

subject to these types of positive feedbacks. 

2.8.2.3 Generalised Darwinism 

Darwinism is the theory of biological evolution developed by Charles Darwin. 

Variations in living organisms arise as a result of random spontaneous genetic 

mutation and may be passed on through reproduction. Those genetic variations 

which give an organism a competitive advantage are more likely to be inherited 

by successive generations as the carriers are more likely to successfully 

reproduce. Generalised Darwinism, first suggested by Richard Dawkins (1983) 

as ‘Universal Darwinism’, refers to the practice of applying Darwinian ideas to 

non-biological systems such as sociotechnical systems. ‘Generalised Darwinism’ 
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is most commonly used in ecological economics to describe the analysis of socio-

technical innovation and diffusion processes, with the three main processes of 

interest being variation, selection and inheritance. Some researchers classify 

these processes differently – for example as diversity, innovation and selection 

(van den Bergh et al. 2006) – but the key concepts remain the same.  

2.8.2.3.1 Variation 

Analogous to the mutation and recombination of alleles in organisms, variation 

in economic systems describes the heterogeneity of technologies, strategies, 

structure and agents (van den Bergh et al. 2006).  It can be characterised in 

terms of organisational changes (Aldrich and Ruef 2006), or innovation (van den 

Bergh et al. 2006). van den Bergh et al. (2006) distinguish between radical and 

incremental innovations. Radical innovations are those which give rise to the 

step-change transitions described in Section 2.8.1, and are outside existing 

sociotechnical paradigms. Incremental innovations are usually improvements on 

existing technologies or systems, and arise within the current technological 

paradigm. 

 

Variation occurs in the selection environment described below (Nelson 1995).  

Many researchers consider variation and innovation to be the most important 

processes in the evolution of sociotechnical and economic systems, emphasising 

the importance of maintaining heterogeneity for as long as possible, since in 

dynamic and complex systems it is extremely difficult to judge at the outset 

which developments will be the most beneficial socially, environmentally and 

economically (van den Bergh et al. 2006). 

2.8.2.3.2 Selection 

Referred to by Nelson (1995) as “mechanisms that systematically winnow on 

[variation]”, selection is the process by which variations either persist or fail. In 

economic systems this occurs in a ‘selection environment’ which comprises 

technological, organisational, economic and institutional pressures which act to 

reduce diversity by eliminating unsuccessful variations (van den Bergh et al. 

2006).  
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2.8.2.3.3 Inheritance 

The retention of traits in organisms between generations occurs via the 

inheritance of genetic material by the descendants of the original carrier. 

Similarly in evolutionary economics, inheritance is the “survival and 

reproduction of successful agents or strategies in a system” (van den Bergh et al. 

2006). Hodgson (2002) attributes the ability of non-living entities, processes and 

ideas to persist in this way to the “propensity of human beings to communicate, 

conform and imitate”. Cordes (2006) and Ziman (2003) point out that unlike in 

nature, there is little concept of a ‘generation’ in technological development 

(though I would contend that some technologies such as games consoles do 

exhibit a ‘generational’ structure and are even named as such), and the 

development of a technology therefore resembles a web or network rather than 

a ‘family tree’. 

2.8.2.4 Coevolution 

In another example of generalised Darwinism, two evolving systems or entities 

which are both evolving and have a direct causal impact on each other’s survival 

are said to be coevolving (Murmann 2003).  Murmann is insistent upon mutual 

causality, but Kallis and Norgaard (2010) suggest that a slight relaxation of this 

definition – to include for example a situation where one system’s influence on 

another is not directly reciprocated, or where only one of multiple mutually 

influential systems is evolving – would usefully allow a wider range of situations 

to be considered. 

 

Altered likelihood of survival can be as a result of altering the selection criteria, 

for example a new incentive within the institutional structure increasing the 

likelihood of a technology being selected (the UK FIT is a good example of this), 

or a change in the ability of individual entities to replicate: for example, a firm 

adopting a new business strategy which increases its investment in technological 

innovation (Foxon 2011). These examples are of cooperative coevolution, but as 

in nature coevolutionary processes can also be interferential: predatory or 

parasitic (Kallis and Norgaard 2010; van den Bergh et al. 2006). Cooperative 

coevolution has been described in terms of ‘virtuous cycles’, for example by 

Hekkert et al. (2007) who give the example of entrepreneurs lobbying for 
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mechanisms of market creation, with market creation in turn stimulating 

entrepreneurial activity2. Foxon (2011) provides an example from Spain, where 

a supportive institutional framework in the form of a FIT system for renewable 

energy has caused selective pressure for investment in wind farms by incumbent 

energy companies, who are now in turn lobbying for enhancement of the FIT. 

These processes are closely related to the lock-in and path dependency 

described above. Conversely, inferential coevolution gives rise to vicious cycles. 

Here Hekkert et al. (2007) use an example from the Netherlands, where high 

hopes for biomass gasification were dampened by poor performance in field 

trials. The resulting collective disillusionment caused a reduction in new projects, 

research and resources for the technology, fuelling further disappointment and 

setting back its development by several years. 

 

 Foxon’s coevolutionary framework 2.8.3

Developed in response to a call for applied coevolutionary approaches (Kallis 

and Norgaard 2010), and a need for a flexible analytical framework which could 

be applied by non-specialists (Foxon 2010), Foxon’s coevolutionary framework 

combines insights from both ecological economics and sociotechnical transitions 

approaches (Foxon 2011). Developing Norgaard’s (1994) classification and 

description of the coevolutionary process illustrated in Figure 6, the framework 

describes the way in which “key events in the transition to a low carbon 

economy may occur through technological changes, forming of institutions, 

revisions to business strategies or changes in user practices, and how these 

changes interact with changes in natural ecosystems” (Foxon 2011). Each 

element described (technologies, institutions, business strategies, user practices 

and ecosystems) is a system in its own right, coevolving with the other elements 

(Freeman and Louça 2001). The elements are defined further below. The 

framework is illustrated in Figure 7. 

 

                                                        

2 Hekkert et al. do not frame their discussion in terms of coevolution, but rather reciprocal 
influences between functions of innovation systems. However, as hinted earlier in the same 
paper, this is essentially coevolution by a different name. 
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Figure 6. Norgaard's characterisation of the coevolutionary process 

 

 

 

Figure 7. Foxon's coevolutionary framework 

 

 

 

2.8.3.1 Ecosystems 

Foxon (2011) describes ecosystems as “systems of natural flows and 

interactions that maintain and enhance living systems”. As discussed in 

Chapter 1 with respect to climate change, human techno-economic systems have 
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had and continue to have a profound impact on ecosystems by altering or 

preventing these natural flows and interactions.  

2.8.3.2 Technologies 

There is no universally agreed definition for ‘technology’. Older definitions 

tended to concentrate on  the physical aspects or ‘hardware’ (Orlikowski 1992), 

such as “the substitution of equipment for human labo[u]r” (Blau et al. 1976). 

Later definitions extend to include functionalities, processes and purposes, such 

as Beinhocker’s (2007) “methods and designs for transforming matter, energy 

and information from one state to another in pursuit of a goal”, and Arthur’s 

(2009) “[natural] phenomena captured and put to use … to fulfil a human 

purpose”. For the purpose of the framework, Foxon uses the latter two 

definitions to describe technological systems.  

2.8.3.3 Institutions 

‘Institutions’ is a frequently-used term in transitions studies and economics. 

Foxon (Foxon 2011) describes them as “ways of structuring human interactions. 

In other words, the definition of ‘institutions’ encapsulates both formal systems 

such as regulations, property rights and business organisations, as well as less 

formal unwritten rules such as cultural norms. Nelson (2005) states that 

institutions both enable and constrain behaviour: providing a social context for 

actions, but also defining the limits of socially acceptable behaviour. 

2.8.3.4 Business strategies 

Foxon (2011) defines business strategies as “the means and processes by which 

firms organise their activities so as to fulfil their economic purposes”. For 

commercial firms this translates to ‘means by which profits are generated’, 

though it can also extend to charities, social enterprises or public sector 

organisations for which the primary economic purpose is to deliver goods or 

services.  

2.8.3.5 User practices 

This term denotes behaviours (by individuals, households or social groups) 

which occur in the course of interactions with technology, which are usually 

routine and shaped by cultural context. This ‘societal embedding’ (Foxon 2011) 
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was described in terms of technology domestication and technology in the social 

context in Section 2.8.1. User practices may be defined in terms of fulfilling social 

needs via processes which are constrained by social structures and available 

technology (Foxon 2011; Spaargaren 2003). In terms of Darwinian processes, 

both variations in user practices and the ‘recruitment’ of new users to these 

practices (inheritance) are of interest (Foxon 2011). 

2.8.3.6 Application of the coevolutionary framework to research questions 

Foxon’s coevolutionary framework has been chosen to frame the analysis of 

drivers and barriers for microgeneration in new homes in this thesis. The 

framework provides guidance on a systematic approach to complex issues. It 

allows analysis of the mutual causal influences within and between systems and 

can help to identify the relative importance of different factors (Kallis and 

Norgaard 2010). For this reason it is eminently suited to the challenge of 

identifying the drivers and barriers to microgeneration that exist in the complex 

interlinked systems of renewable energy generation, construction and home-

buying. Indeed, Foxon (2011) recommends that it is suitable for empirical 

analyses of challenges relating to the adoption of low carbon technologies, and it 

has recently been applied to an analysis of the coevolution of ESCOs and the UK 

energy system, in which it was integrated with Osterwalder and Pigneur’s (2010) 

nine building blocks of a business model to identify positive and negative 

feedback mechanisms affecting the development and diffusion of the ESCO 

business model in the UK (Hannon et al. 2013).  

 

As discussed in this chapter, many similar studies in the field of low carbon 

innovations and technological diffusion have used other models and frameworks.  

A number of these analytical are in their infancy and have generally been 

developed and applied in the context of a one or two studies. Since the primary 

purpose of this thesis is to investigate the diffusion of a particular technology, 

rather than contribute to the development of analytical frameworks, the use of a 

more established framework was desired. In addition to the coevolutionary 

framework described above, Geels’ Multi-Level Pathway (MLP) framework is 

prevalent in the field of low carbon innovations. It has been used extensively in 

recent years to develop low carbon transition pathway scenarios (Foxon et al. 
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2010; Verbong and Geels 2010), analyse historical transitions (Geels 2005a; 

Verbong and Geels 2007), and assess the effectiveness of policy (Kern 2012; 

Kern and Smith 2008) . It has been observed however that the MLP gives 

relatively little weight to the role of actors (particularly individual actors) in the 

sociotechnical system and the role of economic factors in sociotechnical 

transitions (Foxon 2011). Additionally the MLP has predominantly been applied 

to large-scale transitions involving multiple technologies, and arguably pre-

supposes a ‘complete’ transition by describing a process of transition from one 

relatively stable equilibrium to another. The potential transition under 

discussion in this thesis (from centralised to decentralised energy provision) is 

currently in the early stages, and is not necessarily planned as a complete 

transition but may been seen as one option among many which will contribute to 

the decarbonisation of the UK’s energy supply system. This thesis is also 

concerned with a specific sub-system: – new build homes – rather than the large 

scale systems analysed in previous studies using the MLP. As a result, the 

coevolutionary framework, which provides a more flexible structure for analysis, 

was felt to be the most suitable to frame the analysis of drivers and barriers for 

microgeneration in new UK homes in Chapter 3. 

 

 

This chapter has reviewed the literature on the diffusion of microgeneration in 

the UK, and relevant studies of low carbon homes, in order to situate this thesis 

in context and identify the gaps in knowledge which this thesis will address. 

Having identified the need for an up-to-date system level study of the drivers 

and barriers to microgeneration in new UK homes in this chapter, and described 

the analytical framework which will be employed, Chapter 3 presents the 

methodology, results and discussion of this system level study. 
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3 Unique drivers and barriers for microgeneration in 

new UK homes 

 

3.1 Chapter overview 

The literature review in Chapter 2 identified a lack of research on the drivers 

and barriers to the deployment of microgeneration in new homes in the UK, and 

the number of policy developments which have occurred since previous system 

studies of microgeneration. This chapter therefore comprises an up to date 

investigation of the drivers and barriers for microgeneration in new homes in 

the UK, using information from existing literature and semi-structured 

stakeholder interviews, analysed using a coevolutionary framework. Section 3.2 

outlines the methods used for data collection and analysis. 3.3 presents the 

results, which are discussed in a coevolutionary context in Section 3.4. 

Section 3.5 summarises the conclusions, and considers the opportunities for 

further research arising from them.  

 

3.2 Methods 

To identify the key drivers, barriers, opportunities and emerging business 

models for microgeneration in new homes, a series of interviews were  carried 

out. Interviewees were identified in the first instance from a desk study of 

relevant Government organisations, trade organisations, companies and 

research institutions. Subsequently a ‘snowballing’ technique was used, by 

asking those approached for recommendations on who to contact. 

 

Twelve face to face or telephone interviews with stakeholders and experts from 

the fields of energy and construction were conducted. Anonymised information 

about interviewees is shown in Table 7. The interviews were semi-structured 

and lasted between 30 minutes and one hour. During interviews, participants 

were encouraged to discuss issues from across the whole system, with 

interviewer bias avoided by asking broad, open questions initially to prompt 
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interviewees’ own assessments of the major issues. Questions included general 

enquiries about microgeneration in new buildings and more specific questions 

tailored to the expertise and experience of individual interviewees. The 

interviews were recorded, and after each interview the recording was reviewed 

to identify possible improvements to the questions in the next interview. Since 

the interviews were intended for qualitative rather than quantitative analysis, 

changes could be made to the interview script between interviews. A 

representative interview transcript can be seen in Appendix A. 

 

Table 7. Interviewee details 

Date of 

interview 

Role or organisation type Identifier Sector 

14/11/2011 Low carbon strategy and 

innovation consultant 

Consultant 1 Private 

22/11/2011 Low carbon buildings 

consultant/structural engineer 

Consultant 2 Private 

02/12/2011 Construction industry knowledge 

transfer consultant 

Consultant 3 Public/Private 

12/12/2011 Energy systems researcher Researcher 1 Academic 

15/12/2011 Low carbon energy technologies 

researcher 

Researcher 2 Academic 

15/12/2011 Local council Council Public 

19/12/2011 Specialist green developer Developer 1 Private 

20/12/2011 Energy systems researcher Researcher 3 Academic 

16/01/2012 Senior civil servant, BIS1  Civil Servant 1 Public  

19/01/2012 Senior civil servant, DECC Civil Servant 2 Public  

20/01/2012 Community energy 

consultant/developer 

Developer 2 Public/Private 

26/01/2012 Developer Developer 3 Private 

 

 

The interviews were transcribed and analysed using QSR NVivo software version 

9. Coding for thematic analysis was carried out using a deductive approach, 

using Foxon’s coevolutionary framework (described in Section 2.8.3) as a guide. 

Coding reliability was improved by an iterative coding process, with three 

                                                        

1 Department for Business, Innovation and Skills. 
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transcript reading and coding exercises separated by a week each. Thematic 

analysis is widely used for qualitative data as an exploratory approach: 

identifying both explicit and implicit themes from the data (Guest et al. 2011). It 

was judged to be appropriate for this analysis as it is both systematic and flexible, 

requiring rigorous analysis of the data but allowing for more nuanced 

interpretation than approaches such as word counts.  

 

Foxon’s coevolutionary framework was used to inform and organise the results 

and discussion which follow. The rationale for the use of this framework was 

given in Section 2.8. In addition to information from the interviews, existing 

literature was also used where appropriate. 

 

3.3 Drivers and barriers 

This section presents the drivers and barriers for microgeneration in new UK 

homes identified from the interviews and literature review. To provide 

structure, the discussion has been grouped under the five different systems in 

Foxon’s coevolutionary framework: technologies, institutions, business 

strategies, user practices and ecosystems. Of course, as illustrated by the 

framework diagram, these systems interact with each other, and several of the 

issues identified here could fit under multiple headings.  

 

 Technologies 3.3.1

A key difference in the technology choice process between retrofitting 

microgeneration and including it in new builds is that the home 

designer/developer is the decision-maker, not the householder. This is likely to 

have a significant bearing on the selection environment for microgeneration 

technologies, as developers may seek only to maximise their profit from a 

technology, whereas a householder may also seek to maximise their utility. For 

example, householders may be more concerned with ease of use and aesthetics 

as they will ultimately live with and operate the technologies. 
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3.3.1.1 New homes as a solution to lock-in 

As discussed in Chapter 2, some microgeneration technologies have specific 

infrastructural requirements which may be difficult to meet when retrofitting, 

and hence cause ‘lock out’ the technologies. For example, biomass boilers may 

require installation space on the ground floor due to their size and weight, and 

space for fuel storage. While these would usually be prohibitively difficult to 

retrofit to an existing home, new homes could be designed to include these 

features from the outset, avoiding the difficulty of infrastructural lock-out. Other 

examples could include the inclusion of boreholes for GSHPs, exterior space for 

ASHPs, and the avoidance of skylights or dormer windows to leave room for 

solar PV or solar thermal systems on the roof. Building integrated PV (BIPV) is 

an example of a technology which is particularly suited to new buildings. BIPV 

refers to solar cells which are integrated into building components such as glass 

panes or roof shingles, rather than panels which are added to an existing 

building.   

 

Similarly, new developments can be designed to optimise the performance of 

some types of microgeneration. Examples might include designing roof angle 

and pitch to maximise solar irradiance or positioning buildings and trees to 

avoid overshadowing roofs.  

 

3.3.1.2 Phased developments 

Most large developments are phased rather than being delivered at one go, and 

this has implications for the choice of district scale microgeneration versus 

individual installations. District scale installations may offer greater intrinsic 

potential for efficient energy conversion than individual installations. However, a 

single district-scale installation serving a phased development will be under-

used until the entire development is completed and the homes occupied (if sized 

to meet anticipated demand when the entire development is complete), and 

risks being technologically outdated by the time later phases appear.  District 

scale schemes could be rolled out with separate installations for each phase, but 

this has implications for capital and operational costs and energy conversion 

efficiency. Different builders (be these separate companies or different branches 



- 79 - 

of one company) may be involved in different phases and the use of a single 

district heating scheme will depend on a technological and financial consensus 

being reached between these entities. 

 

 Institutions 3.3.2

3.3.2.1 Policies for new homes 

Despite the UK government’s commitment to the development of 

microgeneration, and several consecutive policies designed to stimulate retrofit 

(culminating in the FIT and RHI), there is no specific policy measure aimed at 

microgeneration in new homes. Policy with the potential to indirectly influence 

the incorporation of microgeneration in new build construction is instead 

delivered via the building regulations which govern the design and construction 

of buildings, and the Code for Sustainable Homes (CSH), described in 

Sections 2.3.2.1 and 2.3.2.2. Potentially the most significant policy for 

microgeneration in new homes at present is the Zero Carbon Homes target 

(described in detail in Section 2.3.2.5), which requires all new homes to be zero 

carbon by 2016, and is delivered through the building regulations. 

 

Interviewees consistently named the Zero Carbon Homes target as the primary 

or only driver for property developers to install microgeneration. A lack of 

market demand and the additional cost of microgeneration compared with 

conventional technologies were mentioned frequently in reinforcement of the 

point that regulation currently has to ‘force’ developers to use it. 

 

“My feeling is that legislation, if the Government stays strong… will ultimately force 

developers to [install microgeneration]. If it was left to market forces I don't think 

it would happen. Not at all.” (Consultant 2) 

 

Despite the vital role of policy in encouraging the use of microgeneration, the 

current policy landscape in some cases appears to be holding back innovation 

and investment in the domestic energy sector. The most frequent criticism of 

policy for microgeneration in new builds among interviewees was inconsistency 
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in the longevity and content of policies – echoing similar criticisms of broader 

UK renewable energy policy (Foxon et al. 2005; Mitchell and Connor 2004). A 

frequently raised point by interviewees was that while grants and tariffs for 

microgeneration tend not to apply directly to developers of new builds, they 

nonetheless affect investment in the technologies, affecting their affordability 

and desirability. Policy churn also undermines confidence in selecting 

microgeneration technologies. In the past two decades several relevant grant 

schemes and policies have come and gone (e.g. the Major Photovolataic 

Demonstration Programme which ended six years early, the Clear Skies Act and 

the Low Carbon Buildings Programme). There was also controversy after a fast 

track review by DECC in 2011 led to the announcement of substantial reductions 

in FIT payments for solar PV installations (DECC, 2011c) which was 

subsequently reversed after a legal challenge by the Friends of the Earth charity 

and solar firms Solarcentury and HomeSun.  

 

“The more often [policy] changes, the less likely it is that microgeneration is going 

to take off, because it's… quite a considerable risk for the investor to take on board 

microgeneration, because the period over which return on that investment is going 

to happen is certainly five years, maybe 30 years.” (Civil Servant 1) 

 

“With PV the FITs [caused] a bit of a take-up with people who might otherwise not 

have considered it, and now that the FITs for PV have been reduced I think we may 

well see a drop in that, I'm not sure. So, I think it's a very tenuous market.” 

(Researcher 2) 

 

“Our most high profile [local initiative] was sadly unsuccessful – it was an attempt 

to get solar panels put on 5000 council homes. Which would have happened, as we 

speak! Had not the feed in tariff been cut. So that put the whole scheme on ice.” 

(Council) 

 

The Zero Carbon Homes target has also been subject to a number of changes 

since its inception. In a policy document released in 2007, DCLG committed to 

regulating for zero carbon new homes by 2016, with interim targets of a 25% 

improvement to the carbon targets set in the Building Regulations by 2010, and 
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a 44% improvement by 2013 (DCLG, 2007a).  The Zero Carbon Homes target 

was linked at the outset to the CSH, with the progressive targets defined as 

meeting Level 3, Level 4 and Level 6 of the Code respectively. However, the 

definition of a Level 6 dwelling has changed with every subsequent publication 

of the CSH. In the 2007 edition, it was explicitly required that heat and power 

used in a Level 6 home “must be generated either in the home or on the 

development or through other local community arrangements… and must be 

renewable” (DCLG, 2007b), suggesting that microgeneration would be essential 

for developers to meet the target. After several iterations of the policy, the 

specific definition for ‘Zero Carbon Homes’ has now been decoupled from the 

CSH and was finally set in the March 2011 Plan for Growth report associated 

with that year’s Budget (HM Treasury and BIS, 2011). The key features are that 

only emissions from fixed lighting, heating, hot water and building services are 

now included in the regulation, and that although on-site reductions are still 

required the allowable solutions described in Section 2.3.2.5 are also permitted. 

At the time of writing, the specifics of what will constitute allowable solutions 

have yet to be officially confirmed, although a number of suggestions have been 

made such as improving the efficiency of existing buildings in the vicinity, and 

paying to fund approved ‘green’ projects (Zero Carbon Hub, 2011).  

 

These frequent changes and a failure to fully define regulation after nearly six 

years have led to a lack of industry confidence in the Zero Carbon Homes target, 

with interviewees reporting that many developers are “hoping that all the 

regulation goes away” (Consultant 1). The shifting definitions of what constitutes 

‘zero carbon’ have potentially altered the significance of the role of 

microgeneration in meeting the target, which reinforces aforementioned 

investor uncertainty. If off-site allowable solutions prove cheaper than 

integration of microgeneration technologies into new build housing 

developments, this may significantly hinder the growth of the market for 

microgeneration in new homes. 

  

Compounding the lack of confidence in the Zero Carbon Homes target is the lack 

of a defined process for monitoring the emissions performance of new build 

homes. None of the interviewees was aware of any procedures for ensuring 
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compliance, and indeed none is set out in any policy documents. Equally, it is not 

known what the penalty, if any, for non-compliance will be. 

 

 “There [have] been debates in Whitehall about standards for measurement and for 

compliance, and as far as I know it's not got off the ground… I think it's going to be 

a very difficult thing for anyone to make stick. The only people who make money 

out of that will be the lawyers.” (Civil Servant 1) 

 

As a result of this inconsistency and uncertainty, it appears to be almost 

universally accepted among stakeholders that the 2016 target will not be met. 

For example: 

 

“I think the 2016 target will probably come and go with very little fanfare other 

than a sense of growing realisation that we're not actually achieving it” 

(Researcher 2) 

 

“I think we'll probably miss [the target] by quite a long way.” (Civil Servant 1) 

 

If the target is further diluted by overly permissive allowable solutions, or if it is 

simply not met, it is likely that the majority of new homes will continue to be 

built without microgeneration technologies. The turnover rate for homes in the 

UK (in terms of demolition and new build) is very slow (Boardman et al. 2005), 

therefore it may be expected that homes built now will be extant for decades or 

even centuries. While retrofitting may still be possible in many cases, building 

homes without microgeneration means missing out on the additional benefits 

discussed above in Section 3.3.1.1 and reinforcing the lock-in of centralised 

energy delivery systems. Additionally, the aforementioned investor uncertainty 

caused by policy churn and delayed decision making is likely to affect investment 

in research and development for microgeneration. This may start to impact 

technology performance, and further weaken investor uncertainty, in a 

coevolutionary ‘vicious circle’. 

 

While inconsistency in policy and a lack of monitoring are perhaps the biggest 

policy barriers to the use of microgeneration in new homes, another criticism of 
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the Zero Carbon Homes target is its links to the CSH with its points-based 

approach to compliance. Despite its having been decoupled from the CSH, as a 

result of the initial definition for zero carbon homes in 2007, interviewees stated 

that CSH Level 6 is widely considered within the construction industry to be the 

‘ideal standard’ for compliance. However, some of the measures through which 

developers can reach Level 6 do not support the goals of the Zero Carbon Homes 

target: 

 

“I think if a developer is concerned about compliance, so he wants to say ‘well I've 

built these houses and they comply with CSH  Level 4’, for example, then… because 

it's a points system, obviously what they're going to do is go for what they see as 

the most cost-effective way of building up enough points to comply. So you get your 

cycle sheds because you get a little tick in the box for those, but they're not really 

helping in terms of [carbon reduction] performance.” (Researcher 2) 

 

Another example given during interviews was sizing stipulations which can 

actually reduce efficiency: 

 

“A lot of technologies [start] being sized to meet [targets] as opposed to being the 

optimum engineering solution.” (Consultant 2) 

 

As a result, the majority of interviewees were of the opinion that the policy 

framework for zero carbon homes should be based on net emissions only, 

separate from other standards such as the CSH which stipulate specific measures; 

and that market forces should dictate the measures used. 

 

“So, what policy measures need to be brought into place? Should it drive 

microgeneration technologies? I don't think it should. I think really you should be 

setting an absolute target and then allow all developers, all the design teams, to 

actually come up with their own methodology… it's better to just set the desired 

outcome in terms of carbon reduction, and let the developers do it in their own 

way.” (Consultant 2) 
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“The government position, and I completely agree with it, is that where possible 

you need the market to deliver.” (Civil Servant 2) 

 

However, as discussed in Section 2.8.2.1, the assumption of perfectly rational 

actors and the ability of free markets to deliver optimal solutions is flawed, as 

businesses and consumers may continue to follow ‘satisficing’ routines rather 

than seeking out new ways of working which optimise environmental or 

economic outcomes. Additionally, this ‘hands off’ approach may lead to 

reductions in the diversity of technology options if certain types of 

microgeneration (or efficiency measures) gain an early advantage, due to lock-in 

and increasing returns to adoption. For this reason, and due to the potential 

additional benefits of microgeneration outlined in Sections 1.2.2 and 2.5.2 

beyond simply decarbonisation, some interviewees were of the opinion that 

specific policies or targets for microgeneration would be beneficial. 

 

 “I think it would be good to have a distinct policy for microgeneration, because it is 

fundamentally different from your large wind or large solar in that it does involve 

people on an individual household basis, or perhaps on an office or school basis.” 

(Researcher 1) 

 

3.3.2.2 Housing markets 

Another institution which has the potential to impact on microgeneration in new 

homes is the housing market and the policies associated with it. Currently home 

prices are rising relative to average salaries, and the average age of first time 

home buyers is increasing (LSL Property Services 2014). In addition, the number 

and proportion of retirees in the UK is growing rapidly, and the majority of them 

live in ‘mainstream’ housing which they own outright, as opposed to assisted 

living facilities or care homes (Age UK 2011; Knight Frank 2010).  Given the 

differences in attitudes, WTP and likelihood of adoption between different 

demographic groups, this may start to affect householder awareness of and 

demand for microgeneration. Since the 45 – 65 age group is most likely to adopt 

microgeneration, older buyers may equate to greater uptake; but conversely the 

increased cost of homes relative to salaries may leave buyers less willing to 
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spend extra for non-mandatory installations. As discussed in Section 2.5.1.9, 

retirees may also be less likely to invest in microgeneration technologies. It has 

been predicted however that there will be a large increase in assisted living 

retirement ‘villages’ over the next decade (Knight Frank 2010). Since these are 

usually run by an umbrella organisation, they may be suited to district heating or 

microgrid schemes, decisions about which would be made by the company 

owning the retirement community rather than the residents. This could 

therefore represent an area of opportunity for microgeneration in new builds. 

 

Government policy is also having an effect on patterns of home purchases, 

primarily through the Help to Buy scheme which allows first time buyers to 

receive government loans for home purchases, and all buyers to purchase homes 

with a smaller mortgage deposit. Launched in 2013, it has resulted in an increase 

in the number of first time buyers (DCLG 2014). By making it easier to purchase 

first homes, the policy may dampen the effect of the trend described above.  

 

3.3.2.3 Uncertain financial incentives 

While the FIT and the Green Deal can allow home owners to offset the cost of 

retrofitting microgeneration, no similar mechanism is in place to assist 

developers. Including microgeneration incurs additional costs compared with 

using conventional technologies. While the additional cost will vary depending 

on building size and the type of microgeneration used, as a representative 

example: in 2008 the additional cost of the energy measures required to move 

from CSH Level 3 to Level 6 ranged from approximately £14,000 to £36,000 per 

house (DCLG 2008). Capital costs are usually considered to be less problematic 

for firms compared with consumers, as consumer discount rates are usually 

significantly higher than those used by firms. However, this increased capital 

cost is particularly problematic for the building industry as margins on new 

construction are often very small (Royal Institution of Chartered Surveyors 

2011) hence cash flow management and keeping construction costs to a 

minimum is vital. These issues reinforce the earlier point that developers are 

likely to take not the most technologically and environmentally effective but the 
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most cost-effective measures to comply with regulations, both in terms of the 

types of technology chosen and sizing.  

 

“Cash flow, as in any business but especially in the construction business, is a killer. 

I mean, Businesslink and Government have statistics that say, 50-plus percent of 

construction businesses go out of work, and out of business because of poor cash 

flow management. Not for any other reason, but for cash flow management. Now, 

as a statistic alone, that's pretty big. Pretty damning.” (Consultant 3) 

 

The question of who ultimately pays for the additional cost of microgeneration 

technology on a new home is a source of uncertainty. While DCLG’s impact 

assessment for the Zero Carbon Homes target suggests that developers will bear 

the additional costs (DCLG 2011d), consensus among interviewees was that the 

cost is likely to be met at least partially by whoever purchases the new home 

through the purchase price.  

 

“Well [developers] will price it accordingly, won't they. We've got these standards 

and they're required to fulfil them. Then they will price [houses] accordingly. It 

would seem to be odd if Government would give them money. Because they should 

be keeping within the regulations.” (Civil Servant 2) 

 

However, as discussed in Sections 2.5.1.2 and 2.5.3, consumer WTP for 

microgeneration is usually less than the actual capital cost. Hence if these 

technologies cause a large disparity in purchase price between new and existing 

homes, prospective buyers may shun new houses in favour of older, cheaper 

properties. Interviewees pointed out the danger of assuming perfectly 

economically rational home buyers:  

 

“As a consumer, if you're thinking "well I have £10,000" or whatever, "should I buy 

a new kitchen, should I put up PV?" It's not a simple comparison. And this is one of 

the major things where a lot of policy just [uses] the rational actor paradigm, 

thinking that information and money is all it takes, when this is clearly not the 

case. If you're considering a new kitchen versus PV, you don't think about the 
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payback time of a new kitchen obviously, why should you think about the payback 

time of PV?” (Researcher 2) 

 

Interviewees also expressed concern over the preparedness of surveyors and 

estate agents to accurately and consistently calculate the added value of 

microgeneration technologies to new homes – also discussed in Section 2.5.3. At 

least some homeowners who have planned extensions which include 

microgeneration have been unable to negotiate a sufficient mortgage because 

banks will not recognise the added value of the technology (Pers. comm. Nigel 

Wright 2011)  .  

 

 User practices 3.3.3

3.3.3.1 Choosing a home 

Consumer decisions on whether to adopt microgeneration are complex and 

multi-faceted. The majority of studies on the subject have focused on retrofit 

situations, but including microgeneration in the context of a home purchase 

introduces additional issues which may act as drivers or barriers. The most 

significant difference is that the initial impetus for householders to choose and 

install the technology is not required – rather, prospective home buyers must 

choose to purchase a home which has microgeneration already installed on it. 

 

As discussed in Section 2.5.1.4, the effort and disruption involved in installing 

microgeneration technologies is a significant barrier to adoption for many 

householders. A potential advantage of new homes with microgeneration is that 

the ‘hassle factor’ for householders is removed as the technology is already 

present when they purchase the home. In other words, rather than the ‘active’ 

technology acceptance required when retrofitting microgeneration, only ‘passive’ 

acceptance is required. New homes could present a less pressured selection 

environment for technology options such as GSHPs which are more disruptive 

upon installation, since construction work is occurring anyway and established 

gardens and grounds are not being dug up. 

 



88 
 

However, as discussed above in Section 3.3.2.3, in the absence of other financial 

incentives for developers it is likely that at least some of the additional cost of 

microgeneration will fall onto home buyers. Therefore while the ‘hassle’ issue 

can be overcome in new homes, the issue of upfront cost remains. In a 

competitive market, despite the shortage of new homes in the UK, developers 

will seek to provide home owners with options that are perceived as most 

desirable. At present, there is much evidence to indicate that most prospective 

home buyers are largely indifferent to renewable energy features, tending to 

prioritise other features. 

 

“There is no market demand. I can't imagine that there are many customers who 

walk into show houses and say, ‘ok, where's the PV panel, where's the heat pump?’ 

you know, ‘why haven't you put them in?’” (Consultant 1) 

 

As discussed in Section 2.5.1.3 and 2.5.1.5, microgeneration can hold other 

appeals such as independence and environmental protection. However 

interviewees opined that even so financial concerns usually take precedence, 

and that prospective buyers would only choose microgeneration if they were 

convinced it would save them money. 

 

“Trying to sell carbon [reduction] to people, it gives people like a fluffy feeling: a 

nice happy feeling… some people would be driven maybe to spend a bit more on 

their house because of that, but really what they'd be thinking about is reduced 

energy costs versus a conventional house, and that probably will always be the 

biggest driver.” (Consultant 2) 

 

Many interviewees therefore believed that the majority of home buyers would 

only start to seek out microgeneration once electricity and gas prices reached an 

‘uncomfortable’ level. 

 

“Well the obvious thing [driving consumer demand] is energy costs. There's an 

inexorable upward trend. So the benefits will be self-evident I think. I don't think 

there's any more incentive required beyond that.” (Civil Servant 2) 
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“What will drive [mainstreaming of microgeneration] would be the rising energy 

costs. So we've had a 20% increase across the board in the last 12, 14 months in 

energy prices. Looking at the various reports, that's set to continue quite 

dramatically. That will have the same effect as petrol prices had on people. It's 

beginning to hurt. And the same thing will apply to people's homes.” (Consultant 3) 

 

It is reasonable to assume that the ‘tipping point’ will differ depending on 

occupants’ socio-economic status and level of awareness regarding energy price 

trends and projections. As a result, the demographic stratifications in attitudes 

and likelihood of microgeneration adoption discussed in Section 2.5.1.9 may 

begin to change as energy prices rise. 

 

3.3.3.2 Using microgeneration 

Section 2.5.2 described the behavioural changes which may result from the 

adoption of microgeneration technologies: namely increased awareness of 

energy and environmental issues, increased adoption of efficiency measures, and 

even in some cases reductions in energy use. However, the evidence for these 

changes was mixed, and Dobbyn and Thomas (2005) noted that attitudinal 

changes were greatest in households which had actively decided to adopt the 

technology, rather than those who had passively accepted it by moving into 

social housing where microgeneration was present. Dobbyn and Thomas also 

observed that passive householders were more likely to lack understanding of 

how to operate the technologies and use them to the greatest advantage. This 

observation was corroborated by interviewees in this study commenting on 

microgeneration in social housing: 

 

“The user interface is not that friendly… the installers set it up and they say ‘don't 

touch it - just leave it, it's fine’. And  then people [think] ‘oh well I'd better not touch 

it’ - they get frightened of touching it… not everyone was given an instruction 

manual so even people who wanted to interact with it in some cases weren't able 

to.” (Researcher 2) 
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Householders for whom microgeneration is an incidental feature of a home they 

purchase may lack the interest or motivation to learn how to make the best use 

of it. In addition to lost opportunities for cost savings and carbon reduction, this 

poses the risk of eroding user confidence in the technologies, as negative word of 

mouth reports can have significant impacts on the reputation of innovations (see 

Section 2.5.1.7). Furthermore, home buyers are unlikely to meet the installer of 

the microgeneration, and are therefore reliant on the developer to act as a ‘go-

between’ to provide the information. The repeal of the requirement for Home 

Information Packs in 2011 potentially compounds this risk. 

 

However, despite the observation that behavioural effects were smaller in 

passive households, Dobbyn and Thomas did observe increases in awareness 

and efficacy for some of the passive households in their study. This suggests that 

including microgeneration in new homes has the potential benefit of reaching 

and effecting attitudinal changes in those who would otherwise not have 

adopted the technology. 

 

 Business strategies 3.3.4

3.3.4.1 The building industry 

The nature of the building and construction industry itself can present barriers 

to the uptake of microgeneration in new buildings. In 2010, the top ten house 

builders in the UK completed 47,783 houses (Building.co.uk 2011), making up 

approximately 40% of the 124,200 new builds completed in England that year 

(DCLG 2011b). A small number of these companies hold a large share of the 

market, with the top three in the completion league table all building over twice 

as many houses as the company in fourth position (Building.co.uk 2011). This 

dominant role is important, because conservatism among these industry leaders 

has been identified as a barrier to innovation (Tassinari and LoCascio 2011; 

Watson et al. 2006).  Indeed, many interviewees cited conservatism of the major 

builders as a factor which is stifling low carbon innovation in the housing sector: 
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 “The building industry in Britain [is] very conservative; new build is mostly down 

to… a few dozen large companies which build similar homes over and over, which 

is completely different from retrofit which is literally tens of thousands of small 

[projects].” (Researcher 1) 

 

“If the established [developers] were being smart, they would look to innovate and 

get into new markets, but that's not the way they work. There are very few of them, 

to my understanding, that are thinking that way.” (Consultant 3) 

 

These developers subcontract much of the actual building work out, and at this 

scale the construction industry is quite fragmented. In 2010 there were 256,441 

private construction contracting companies registered in the UK, of which 78% 

employed fewer than four people (Office for National Statistics 2011f). Several 

interviewees reported that a lack of knowledge sharing prevailed in the industry, 

and information sharing and continuity were perceived to be a problem even 

among people working on the same project. The large number of people 

involved in construction of new homes can lead to discontinuity in design and 

execution, and disconnects between designers and sub-contractors were 

reported to lead to built products which differed from design.   

 

“The way that the industry works, with a lot of sub-contracting and using different 

people on different projects, means that it's very difficult to take learning and good 

practice from one project and apply it to the next - even within the same company, 

never mind between companies.” (Researcher 2) 

 

“There is a disconnect between architects and installers and planners, and I'm 

aware that the heat pump industry, they complain that architects are not aware of 

this and do not design new build for heat pumps, which if they consulted installers 

they could do in the first place and make things more efficient.” (Consultant 2) 

 

The consensus from interviewees was that knowledge about the functioning and 

costs of technologies among developers was good, but that pricing and standards 

of workmanship from contractors were very variable. It was reported that prices 

for certain technology types did not appear to correlate consistently with the 
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size of the installation, and that while accreditation schemes such as the MCS had 

gone some way towards standardising skill levels, accreditation was not always 

a guarantor of good workmanship while high financial pressures on contractors 

persisted. Problems with finding skilled installers were particularly apparent for 

newer and less common technologies such as micro-CHP, while more established 

technologies such as solar PV were less problematic. 

 

“With solar thermal, prices [are] all over the place, with hardly any correlation to 

the size of your installation. With PV it's much better because it’s much more easy 

to measure exactly what you're putting in and how much it generates.” 

(Researcher 1) 

 

“It's not just about the accreditation, it's about following it through. 

Accreditation's one thing, you can jump through the various hoops and get there, 

but once you're there, who's going to check you? Especially when you come back to 

the financial pressures that people are under, poor old contractor at the end of the 

day.” (Consultant 3) 

 

A distinction between technology types was also seen in terms of developer 

confidence in microgeneration. Solar PV technologies in particular were 

frequently mentioned as being more ‘established’ and therefore inspired more 

confidence than technologies which were perceived to be more novel and 

require more complex installation such as ground source heat pumps and micro 

CHP.  

 

“Different sort of tiles on roofs or whatever is fairly straightforward; putting 

appliances into the ground and drilling deep holes is not something builders 

routinely do, so the skills that are needed and the systems that are needed I don't 

think are as well-developed and as pervasive.” (Civil Servant 1) 

 

All interviewees stressed the importance of knowledge sharing and skills among 

builders and installers and education for residents as a response to concerns 

over technological performance. Therefore a unique challenge for new build 

homes is to promote links between large numbers of different people and 
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companies, within projects and between projects, and to facilitate knowledge 

sharing without stifling competition. Research into how these outcomes could be 

best delivered could strengthen the Zero Carbon Homes target, as well as other 

aspects of sustainable building.  

 

3.3.4.2 Alternative business models 

Several interviewees cited opportunities for expansion into new markets as a 

possible driver for developers to include microgeneration on new homes, 

specifically the opportunities for developers to act as ESCOs and recoup the cost 

of the technology by receiving FIT payments. Under an energy services 

contracting arrangement, an ESCO will own, operate and maintain the 

generating technology, which could take the form of microgeneration located on 

the client’s house. The client pays a set monthly or annual fee for energy 

services, or depending on the arrangement may also buy electricity and heat 

from the ESCO at a competitive rate. A typical example of this type of 

arrangement was described by Developer 1. The developer sets up an ESCO for 

each new housing project, and then contracts out more and more of the 

maintenance work as time goes on, while still retaining overall control of the 

ESCO. The ESCO controls the microgeneration technologies on site (in this 

example, heat pumps and rooftop wind turbines) and provides a resident 

helpline. Residents pay for this service through a levy on their energy bills, and 

since they are unable to switch energy provider, the ESCO ensures that its prices 

are competitive compared with the ‘Big Six’ UK energy companies. 

 

Expansion into energy service markets by developers was suggested by some 

interviewees as a solution to the financing issues around new build 

microgeneration described earlier. While switching existing private households 

to an ESCO arrangement is challenging since their energy delivery infrastructure 

is already in place, new build provides an opportunity to implement an energy 

services arrangement. 

 

“[Developers] come up with a decentralised energy strategy for the site… and then 

maybe they retain ownership of anything that's installed on individual houses. And 
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then they sell energy, whether it be heat or electricity, to the homeowner. There are 

precedents for that, but if it's simply a developer building a hundred houses on a 

site and then selling each of those individual plots to a home-owner, there's no real 

benefit to him to install renewables is there?” (Consultant 2) 

 

The ESCO model could also be applied to existing developments by retrofitting 

the necessary technology and putting control systems in place, but this would in 

most cases involve a large amount of infrastructural change, and also require 

commitment from all or most of the existing residents in a certain area. By 

contrast, a new development could be built with the necessary infrastructure, 

and essentially represents a guaranteed demand from residents if it is the only 

energy delivery option in place. 

 

However, there were also suggestions from other interviewees that expanding 

into ESCO activities would not be attractive to developers, and that most would 

prefer to either contract out to a dedicated ESCO, or simply sell the technologies 

outright to home buyers rather than provide potentially costly and complex 

ongoing support and maintenance.  

 

“Most contractors won't want to have that sword of Damocles hanging over their 

head once they've done the work. They'll want to pass on to somebody else.” 

(Consultant 3) 

 

“I don't think a lot of traditional developers would really feel it's their business 

necessarily to maintain a presence within a development once all the plots are sold 

on. You know - they'll be looking to hand it over to an energy supply company.” 

(Researcher 1) 

 

An important consideration in this case is the period for which the builder is 

likely to remain responsible for the microgeneration system under the terms of 

the new home warranty provided to the house buyer. Over 80% of new houses 

in the UK are registered with the National House Building Council (NHBC 2012), 

which requires the builder to accept liability for repairs for two years after 

completion (NHBC 2011).  
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3.3.4.3 Social housing 

Social housing presents an opportunity for innovation in the new housing sector, 

since there is high and increasing demand for it (McManus et al. 2010). 

Microgeneration technologies may have a role to play in alleviating fuel poverty 

in lower-income areas. In cases where the housing provider has paid the capital 

cost, and particularly for heating technologies when homes are off the gas grid, 

microgeneration is expected to provide cost savings for householders 

(O'Flaherty and Pinder 2011; Walker 2008). 

 

As a result, many social housing providers use ESCO-like arrangements when 

including microgeneration in their developments. Since the housing provider 

retains ownership of the properties, they can receive FIT payments to offset the 

cost of installation, while residents can benefit from lower energy bills. Broadly 

the same benefits and disadvantages apply as for the developer as ESCO model. 

However, this arrangement presents two issues which are unique to social 

housing. The first is that social housing residents may have no, or reduced, 

choice over where they are housed and what features are included. When energy 

technologies are in place that are less familiar, or are perceived to perform less 

reliably than conventional options, residents may feel that such technologies 

have been imposed upon them. 

 

“There was an element of choice, but I think it may have been over-sold to some 

extent, and [the council] may have made slightly unrealistic claims about the sorts 

of savings [tenants] could expect. And therefore I think perhaps some people might 

feel put off by the systems for that reason.” (Researcher 2) 

 

The second issue is that the housing provider may be seen to have a duty to 

provide advice on energy saving for residents, but that a conflict of interest may 

arise when the council is receiving FIT or RHI payments.  
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“If the council wants the system and gets RHI payments, then there's no particular 

incentive to encourage the tenants to take other efficiency measures, because [the 

tenants are] paying the energy bills.” (Researcher 2) 

 

 Ecosystems  3.3.5

As discussed in Chapters 1 and 2, the motivations underlying many government 

and individual decisions on microgeneration are climate change and fossil fuel 

resource scarcity. In this sense then, ecosystem issues are exerting selection 

pressure on the chosen method of energy provision. With regards to new homes, 

population increase and changing demographics are the ecosystem issues 

driving the need for new homes. 

 

On a smaller scale, the suitability of a particular new residential development for 

microgeneration will be a function of the local climate and geography. Local 

wind, solar, biomass and water resources will all impact on the feasibility and 

efficiency of the associated technologies. Given the low priority given to 

microgeneration by both developers and prospective buyers which has been 

discussed in this chapter, site selection for new homes on the basis of suitability 

for microgeneration seems unlikely in the near future. However, if energy prices 

or other external pressures were to rise to such an extent that microgeneration 

became increasingly desirable or even essential, this could start to be the case. In 

recent decades there has been increased attention to sustainability within urban 

planning research, with one facet being urban layouts which optimise renewable 

energy use (e.g. Droege (2006), Grosso (1998), Littlefair (1998), inter alia). If 

microgeneration attains dominance in the UK energy system, it may be therefore 

that aspects of local geographies relevant to energy resources assume greater 

importance in decisions around the location and design of new homes and cities. 

 

3.4 Coevolutionary processes 

By analysing empirical data using the coevolutionary framework, the ways in 

which ecosystems, institutions, user practices, business strategies and 

technologies are mutually influencing each other to give rise to drivers and 
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barriers for microgeneration in new homes have been identified. The key 

processes are summarised in Figure 8. 

 

Figure 8. Key drivers and barriers for microgeneration in new homes 

 

 

 

This analysis has identified a number of issues and processes which are 

influenced by each other in various ways. One particular ‘vicious circle’ of mutual 

causation has been identified, illustrated in Figure 9. 
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Figure 9. Coevolutionary ‘vicious circle’ 

 

 

 

Since microgeneration still represents an innovation rather than a ‘conventional’ 

technology, consumer knowledge and awareness of it is lower than for 

conventional fossil fuel based centralised energy delivery system. User routines 

in home buying have not incorporated microgeneration, and it is not an 

‘expected’ feature. Developers therefore expect little competitive advantage for 

incorporating microgeneration in their developments, and this is coupled with a 

regulatory framework that is uncertain and seemingly unlikely to be enforced. 

New homes are therefore built using conventional energy technologies, 

reinforcing lock-in of the incumbent system. 

 

Several points in this ‘vicious’ circle present opportunities for it to be broken, 

and even to give rise to a ‘virtuous circle’ of development for microgeneration in 

new homes. 

 

Point A in Figure 9 represents an opportunity for regulation, in particular the 

Zero Carbon Homes target. As discussed, regulation has the ability to ‘force’ 

A
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developers to build to certain standards. As stated by interviewees, tightening 

the definitions of the policy such that allowable solutions are not favoured at the 

expense of on-site measures would likely give rise to need for microgeneration 

technologies on many new developments. This would contribute to the 

‘mainstreaming’ of the technology, making it more visible to consumers and 

raising expectations about the technology through the normative mechanisms 

discussed in Section 2.5.1.7. 

 

However, using policy as a ‘blunt instrument’ in this way is unlikely to be a 

strategy favoured by government as it would lead to significant opposition from 

industry lobby groups, and could potentially have negative impacts on the 

domestic construction industry. Introducing a financial incentive for developers 

to include microgeneration in developments (point D in Figure 9) may therefore 

be a more appropriate intervention. It is beyond the remit of this thesis to 

suggest detailed policy options, but one possibility which would fit within the 

existing regulatory framework would be to extend FIT payments to developers 

of new homes for a certain amount of time after occupancy of the house. The 

differential payments for different technology types offered also have the 

advantage of promoting diversity in technology options.  

 

Another development which could break the vicious circle at point D is the 

expansion of developer activities into energy contracting, mentioned by several 

interviewees as a potential opportunity for the industry. This in turn has several 

potential impacts on user practices. Recouping costs through maintaining 

ownership of technologies and receiving FIT payments would allow developers 

to charge less for new homes incorporating microgeneration, and may increase 

consumer demand for them. However, relinquishing ownership and control of 

the technologies to an ESCO may mean that the changes in user routines and 

energy use behaviours predicted by many researchers do not come about. These 

issues are discussed in more detail in Chapter 4. 

 

The potential for a virtuous circle of coevolution between business strategies 

and user practices as a result of these interventions is shown in Figure 10. 
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Figure 10. Virtuous circle of coevolution of business strategies and user practices 

 

 

Another opportunity for breaking the vicious cycle shown in Figure 9 is the 

rising cost of electricity and fossil heating fuels. If the cost of centrally delivered 

electricity and heating fuels continues to rise, the vicious cycle in Figure 9 may 

be interrupted at point C. As discussed in Sections 2.5.1.2 and 2.5.1.5, 

independence from conventional fuels and savings on energy bills are already 

significant motivators for many who choose to retrofit microgeneration, and 

rising energy costs are likely to increase this interest and make new builds with 

microgeneration more desirable. This in turn will provide an incentive for 

developers to include it in their developments, providing returns in the form of 

infrastructure (or the lack of infrastructure for centralised energy delivery) and 

user and industry learning. This situation is illustrated in Figure 11. 
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Figure 11. Virtuous circle of coevolution of fuel prices, business strategies, user practices and 

infrastructure 

 

 

It must be noted however that energy prices are a highly political issue. The rise 

in fuel poverty which may precede increased uptake of microgeneration 

technologies is socially and politically undesirable, and the government and 

industry would be likely to attempt to mitigate it. For example, in late 2013 and 

early 2014 the majority of the UK’s ‘Big Six’ energy companies froze their prices 

for up to two years in response to political pressure, and at the time of writing a 

cap on energy prices is a planned part of the Labour party’s election manifesto 

(Chazan and Pickard 2014). 

 

There is also the problem that those with lower incomes who are worst affected 

by fuel prices are less likely to purchase their own homes. In the case of social 

housing in the UK however, there are already several examples of housing 

providers installing microgeneration to tackle fuel poverty, and rising fuel prices 

may encourage an increase in this practice. 

3.5 Conclusions  

As discussed in Chapter 2, the issue of microgeneration in new homes has been 

previously somewhat neglected despite a wealth of literature on the drivers and 

New homes 
built with MG

Energy use 
practices evolve 

around MG

Awareness of 
and demand for 

MG

Incentives for 
developers

Centrally 
delivered energy 

prices rise

Infrastructure 
reconfigures 
around MG 



102 
 

barriers for microgeneration. Previous analyses have either dealt with the issue 

briefly, or subsumed it into more general research on ‘eco homes’, despite the 

differences between microgeneration  and energy efficiency measures. This 

chapter has used Foxon’s coevolutionary framework to analyse existing evidence 

in literature and new evidence from the semi-structured interviews to explore 

the drivers and barriers for microgeneration in new UK homes in greater depth. 

Important differences between retrofitting microgeneration and its inclusion in 

new homes have been characterised in terms of actors, barriers, drivers and 

opportunities; possible interventions to overcome barriers have been discussed; 

and areas for further research have been identified. 

 

 Differences between retrofit and new homes 3.5.1

The differences in actors, barriers, drivers and opportunities between 

retrofitting microgeneration and including it in new homes are summarised in 

Table 8. For retrofit, research has largely focused on householders as the key 

actors, as they make the decisions about whether to adopt microgeneration. 

Installers and Green Deal advisers may act as influencers of these decisions, 

through advice and sales pitches. For new homes, the number of decision makers 

is arguably much greater. Architects, building systems designers and developer 

project managers will decide on the inclusion and type of technology, and 

installers, builders and local authorities will also have input on design, planning 

and implementation. For new homes, the householders’ decisions are more 

passive than they are in the case of retrofit, though they may still be required to 

take on additional costs. In the case of social housing, the social housing provider 

will be the primary decision maker in both cases, but may have more freedom of 

choice regarding the technology configurations for new homes. 
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Table 8. Actors, barriers, drivers and opportunities for microgeneration retrofitting and 

microgeneration in new homes 

 

 

Some drivers and barriers are similar for retrofit and new homes, such as the 

opportunity for energy use behaviour change, and the capital cost of the 

technology. However even in these cases there are some differences in their 

impacts: for new developments, decisions around capital cost involve developers 

as well as householders, and the cost to householders is likely to be ‘bundled’ 

with the price of the house. Changes in energy use behaviour may also be 

different for passive adopters of the technology rather than active adopters. 

Other issues which are unique to new homes are the inconsistency and 

definition of the Zero Carbon Homes target, the nature and practices of the 

building industry, the options for optimised or integrated technologies in new 

 Retrofitting to existing homes Incorporation in new build 
housing 

Primary 
decision-makers 
(technology 
adoption, type, 
sizing etc.) 

Home owners 
Social housing providers 

Architects 
Building systems designers 
Developer project managers 
Social housing providers 

Other decision-
makers 

Installers 
Green Deal advisers 

Installers 
Builders 
Prospective home buyers 
Local authorities 

Barriers Capital cost of technology to home 
owners 
Inconvenience and disruption to 
home owners 
Normative influences on home 
owners 
Inadequate information on 
operation for home owners 

Capital cost of technology to 
developers 
Capital cost of property to home 
owners (?) 
Development phasing (barrier to 
district scale solutions) 
Housing market (?) 
Inadequate information on 
operation for home owners 

Drivers Feed in Tariff 
RHPP/RHI 
Green Deal 
Building regulations (if 
extension/major retrofit) 
Financial motivations for home 
owners 
Environmental motivations for 
home owners 
Normative influences on home 
owners 

Zero Carbon Homes target 
Code for Sustainable Homes 
Building regulations 
Opportunities for integrated, 
optimised and high involvement 
technologies 
Housing market (?) 
 

   
Opportunities Householder energy use behaviour 

change 
Householder energy use behaviour 
change 
ESCO business models for 
developers 
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builds and trends in the UK’s housing market which affect the home-buying 

demographic.  

 

It is clear therefore that overcoming barriers to microgeneration in new UK 

homes will require a different set of interventions than the barriers to retrofit. 

Analysis of the coevolutionary interactions in the relevant sociotechnical system 

has identified three such interventions, which may arise either ‘organically’ from 

developments in international markets, or as a result of deliberate actions by 

government or businesses. These are: rising energy costs, the strengthening and 

enforcement of the Zero Carbon Homes target, and the expansion of developer 

business strategies into ESCO activities.  

 

 Opportunities for further research 3.5.2

This research has also identified areas with the potential to impact upon the 

success or otherwise of microgeneration in new homes, but whose influence is 

currently unclear, and would benefit from further research. 

 

Technology 

Phased developments are likely to have an impact on the potential for district 

scale generation, due to the risks of oversizing systems, and technology advances 

during building leaving new developments with already obsolete generation 

systems. Technoeconomic modelling of different technology options, 

development sizes and phasing plans would allow quantification of the risks 

involved, and provide guidance for developers on how phasing and 

microgeneration or district scale technology could be managed. 

 

Ecosystems 

Mapping in-progress and planned developments along with available energy 

resources (wind speed, solar radiation, biomass sources) would allow an 

evaluation of the technical potential of microgeneration in planned UK 

developments. Similarly, mapping available energy resources and sites suitable 

for development would indicate where new developments could be sited to 

make the best use of local energy sources for microgeneration. 
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Policy 

Two policy interventions have been recommended here: the strengthening of the 

Zero Carbon Homes target, and the extension of the FIT to developers of new 

homes incorporating microgeneration. Technoeconomic modelling of 

representative development-scale and national-scale scenarios regarding 

technology costs and uptake as a result of different policy options would indicate 

which policy measures would result in optimal environmental and economic 

outcomes. Similarly, a longitudinal study of the demographics of new home 

buyers would indicate what impact fluctuations in the housing market and 

policies such as Help to Buy have on the demographics of purchasers, and 

therefore the likelihood of acceptance of microgeneration on new homes. 

 

Social 

It was hypothesised in this chapter with evidence from Dobbyn and Thomas 

(2005), that an increase in the number of people passively adopting 

microgeneration through home purchase, as opposed to actively deciding to 

install, would reduce the potential benefits of microgeneration in making 

consumers more aware of energy use and its environmental impacts. As 

discussed in Section 2.5.2, evidence for changes in the amount and pattern of 

energy use by microgeneration adopters is currently limited and mixed. 

Longitudinal quantitative studies of energy use by active and passive adopters  

before and after adoption would strengthen the evidence base, and also provide 

information on whether the type of adoption is likely to make a significant 

difference. 

 

Business strategies 

Having concluded that the fragmented and ‘top heavy’ nature of the building 

industry is not conducive to knowledge-sharing and best practice, research into 

how this would be mitigated is now needed. Indeed, organisational psychology 

and project management researchers have long been aware of the traditionally 

adversarial and non-collaborative nature of  the construction industry (see for 

example Bishop et al. (2009), Humphreys et al. (2003) and Wood and Ellis 

(2005) inter alia), and insights could therefore usefully be drawn from that area.   
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A significant area of opportunity for developers identified in this investigation is 

the possibility of expanding activities to include maintaining an on-site presence 

as an ESCO once building work has concluded. Theoretically, this could help 

developers to recoup some or all of the costs of including microgeneration in 

developments, ensure efficient use of the technology, and even overcome any 

consumer distrust of microgeneration. There are few precedents for this 

arrangement however, and therefore little is known about how widely this 

practice could be applied, or how potential home buyers might respond. The 

next chapter of this thesis therefore explores this area in more detail, 

considering whether different ownership and operation arrangements for 

microgeneration could help to overcome some of the barriers to its deployment 

in new homes identified in this chapter.  
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4 Can the appropriate deployment models overcome 

barriers to microgeneration in new homes? 

 

4.1 Chapter overview 

The previous chapter identified the unique barriers and opportunities for 

microgeneration in new homes in the UK. A major barrier identified was a 

perceived lack of demand for microgeneration technologies from consumers, 

who may be unwilling to pay more for new homes incorporating them. This 

feeds into another barrier: lack of financial incentives for home developers to 

incorporate microgeneration into developments. It was suggested that some 

developers might use the ESCO model to recover the additional costs of including 

microgeneration in their developments. While robust empirical evidence for the 

systematic failure of microgeneration technologies to increase home sale prices 

is lacking, the available evidence discussed in Section 2.5.3 strongly suggests that 

developers will not be able to count on recouping the additional costs of 

microgeneration through the sale price of homes. As discussed in Chapter 3, this 

currently means that most developers will choose the least cost options for 

meeting regulations, which usually excludes microgeneration. However if 

building regulations are enforced or tightened to the point that the inclusion of 

microgeneration is necessary to meet standards, increasing numbers of 

developers may choose to contract out to ESCOs or act as ESCOs themselves, if 

this is likely to help them to recoup the additional build costs.  

 

In Chapter 3, evidence was also raised that certain features of ESCO 

arrangements could help to overcome consumer reluctance to adopt the 

technologies, and increase demand. Although there is a wealth of information 

available on the different models (described in Section 2.6), and on developer 

and consumer decisions relating to energy and homes, no studies explicitly 

considering how they intersect could be located in the open literature at the time 

of writing. This chapter therefore investigates more thoroughly the potential of 

different deployment models for increasing the desirability of microgeneration 
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in new homes for both consumers and developers. The aim is to answer the third 

research question presented in Section 1.5: How can different deployment 

models for microgeneration be used to overcome barriers to the technology in 

new homes in the UK? One significant feature of a new development is that there 

are no residents prior to the energy infrastructure being installed. Unless the 

homes are being built by a co-operative therefore, the community 

microgeneration deployment model is unlikely to be used. As a result, this 

chapter does not consider community ownership models for decentralised 

energy generation. 

 

Section 4.2 describes the methods used in this chapter. Section 4.3 discusses the 

technoeconomic feasibility of different microgeneration deployment models for 

new homes, and presents a technoeconomic analysis of the different models. 

Section 4.4 discusses potential householder attitudes towards the different 

deployment options, with Section 4.5 going into more detail on theories about 

innovativeness and how it might affect these attitudes. The conclusions from 

these analyses, and hypotheses which can be developed, are presented in 

Section 4.6, and topics for future work are discussed in Section  4.6.2. 

 

4.2 Methods 

 Literature synthesis 4.2.1

Although there have been no studies making specific comparisons of  

microgeneration deployment options for new homes, analyses of various facets 

of the relevant issues have been conducted by researchers from several 

disciplines. A synthesis study was therefore conducted: analysing and linking 

previously disconnected evidence from different research disciplines in order to 

provide new insights into the question of how different deployment models for 

microgeneration could be used to overcome barriers to the technology in new 

homes in the UK. Given the constraints to community ownership models for new 

homes discussed in section 4.1 above, the analysis focused primarily on the ESCO 

and plug and play models. 
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The technique used was literature synthesis rather than meta-analysis, since 

statistical analysis was not used to analyse the results of previous studies. The 

aim was rather to explore linkages between disciplines, to conduct a ‘boundary-

breaking exercise’ (Sherwood 1997) in order to generate new theories and 

understandings. In cases where there was not enough empirical evidence to 

draw conclusions, hypotheses were formulated on the basis of theoretical 

evidence. 

 

A divergent, iterative search technique was used to identify sources for the 

literature synthesis. Review papers from each relevant field were used to 

identify key texts, which were used as starting points for further research, in 

order to identify the relevant strands and themes of each discipline. Literature 

searches focused on the central research question, exploring areas where 

evidence from different disciplined overlapped or were contradictory. Evidence 

from the following was used: 

 

- Studies on the effects of policy and institutional conditions on ESCOs. 

- Technoeconomic analyses of district heating and ESCOs. 

- Statistics on residential construction in the UK. 

- Academic literature on marketing, especially of ‘green’ products. 

- Literature and theories on attitudes to different deployment models. 

- Psychology literature on the construct of ‘innovativeness’. 

 

 Technoeconomic analysis 4.2.2

A technoecomomic model was produced in Excel and used to investigate the 

question arising from the literature synthesis in Section 4.3 below: whether the 

proportion of on-site electricity generation consumed by a householder dictates 

which deployment model has the best economic outcome for them. The model 

was intended to be indicative of a ‘typical’ new home, rather than a detailed or 

specific feasibility assessment, therefore several assumptions were made and 

only certain technology types were modelled. The model calculated cashflow and 

a simple payback period using year timesteps, based on capital expenditure, feed 

in tariff income and savings on energy bills.  A discount rate was not applied, due 
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to the inconsistency in consumer discount rates (discussed in Section 4.4). 

Although this reduces the ‘real life’ representativeness of the results, the primary 

purpose of this model is to test payback period and deployment model 

sensitivity to variations in on-site electricity use, rather than calculate specific 

actual payback periods. A detailed description of data sources and calculations is 

provided in Appendix B. In summary, the parameters used for the model were as 

follows: 

 

Household type and energy demand 

Two house types were tested: detached and attached (encompassing semi-

detached, end-terrace and mid-terrace). Houses rather than flats were used as 

the reference dwellings, since the nature of flats is such that individual-dwelling 

scale technologies are not always appropriate. Floor area and electricity 

consumption figures were taken from the Zero Carbon Hub (2009) report, 

Defining a Fabric Energy Efficiency Standard, shown in 

Table 9 below (parameters for semi-detached and terraced houses are the same, 

hence the single category ‘attached’). 

 

Table 9. House types, floor are and electricity consumption 

House type Total floor area m2 Electricity consumption 

kWh/year 

Detached 118 3300 

Attached 76 3300 

 

Technology choice 

Solar PV was chosen as the electricity generating technology as it is more 

pervasive in the UK: solar PV currently accounts for over 74% of installed 

microgeneration capacity (AEA 2013), and is less site-specific than micro wind 

or micro hydro. It is also used by the Zero Carbon Hub as the basis for its 

calculations of an appropriate ‘carbon compliance’ limit for the Zero Carbon 

Homes target (Zero Carbon Hub 2011). The system’s physical size was assumed 

to be 30% of the total floor area of the dwelling: the maximum considered 

feasible in the Zero Carbon Hub’s (2011) calculations. Generating capacity was 

assumed to be 110W per m2 (Ownergy 2013; SunRun Home 2012), and capital 
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cost was calculated from the size using the Energy Saving Trust solar calculator 

(Energy Saving Trust 2013e). The solar calculator was also used to determine 

annual electricity generation, assuming a South-facing array, and using the 

postcode SW1 2AA (10 Downing Street in London). 

 

Capital cost 

For the ESCO scenario it was assumed that the ESCO would cover 100% of the 

marginal capital cost of including the generation technologies in a new home.  

This allows for a situation wherein the developer sets up its own ESCO 

operations, and there is therefore no cost sharing between developers and 

ESCOs. For the plug and play scenario it was assumed that the householder 

would cover 100% of the marginal capital cost. 

 

Savings 

For the ESCO scenario, it was assumed that energy efficiency savings accrued to 

the ESCO, since they are fully responsible for energy generation. However, to 

ensure some benefit to the householder, it was assumed that the ESCO would sell 

electricity to householders at 90% of the UK average direct debit tariff. The tariff 

information was taken from a website which aggregates price information from 

the major UK energy suppliers (Confusedaboutenergy.co.uk 2013). This is in line 

with the usual ESCO requirement to ensure competitive energy prices for their 

customers, discussed in Section 2.6.2, and follows Watson (2004) and Watson et 

al. (2006), who give 10% as an example of a typical discount. 

 

The proportion of on-site generation consumed (at zero cost to the householder) 

was a variable in the model. 

 

FIT income 

For the ESCO scenario, it was assumed that the ESCO retained 100% of FIT 

income to offset the capital and operating costs of the technologies and 

transaction costs. For the plug and play model, it was assumed that the 

householder would receive 100% of the available FIT income. Tariff figures 

current at the time of analysis (2013) were used. These are shown in Table 1. 
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The use of a smart meter to monitor exports to the grid was assumed (rather 

than a deemed export tariff). 

 

4.3 Technoeconomic feasibility of different deployment models 

under different conditions 

 

This section considers the effect of the chosen deployment model on the 

technoeconomic feasibility of microgeneration on a new residential development. 

With a few exceptions (Provance et al. 2011; Watson 2004; Watson et al. 2008; 

Watson et al. 2006), different deployment models have rarely been compared 

directly in the literature. There are however a number of studies on the 

feasibility of ESCOs or district heating (and by extension ESCO control) under 

different conditions which provide insights into their applicability compared 

with plug and play arrangements.  

 

A number of interlinked factors have a bearing on the suitability of either the 

plug and play or ESCO model, which can be broadly categorised as institutional 

factors, technology choice, heat demand, type of development and electricity 

demand. These are discussed in turn in this section: in each case, evidence from 

studies which may not have explicitly compared deployment models is analysed, 

to either draw conclusions or develop hypotheses for future study. For 

electricity demand, the results of the technoeconomic modelling described above 

are presented and discussed. The implications of these insights for new 

developments in particular are considered. 

 

 Institutional and political factors 4.3.1

Provance et al. (2011) argue that the choice of business model for 

microgeneration is strongly driven by institutional factors operating at the 

national level. In their analysis they evaluate institutional conditions along two 

axes: ‘statism’ – the degree to which the government influences business 

activities; and ‘corporatism’ – the organisation of society with respect to 

property rights and power structures. Figure 12 illustrates the socio-political 
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conditions which Provance et al. consider to favour the different business 

models. When corporatism and statism are high, political emphasis is on social 

welfare and public property rights (public rather than private ownership). Under 

such circumstances, government incentives such as feed in tariffs and grant 

programmes are likely to encourage investment in projects which increase social 

welfare. These conditions are considered by the authors to encourage the 

emergence of the community microgrid model. When corporatism is high but the 

degree of state-directed activity is lower, the company driven (ESCO) model will 

tend to emerge as free market competition allows competing service provision 

mechanisms to develop, while the means of generation remains publicly owned. 

The plug and play model is most likely to emerge where private property rights 

are emphasised (low corporatism) and competitive market dynamics are 

prevalent (low statism). In general, a more freely competitive market is found to 

encourage both the plug and play and the company driven model. 

 

Provance et al. also contend that new microgeneration ventures are highly 

entrepreneurial and must seek ‘legitimacy’ within their institutional setting. 

They therefore name institutional and competitive isomorphism (mimicry of 

incumbents) as a driving factor in the formulation of microgeneration business 

models, particularly when free market competition dominates (when statism is 

low). This is closely related to ideas of lock in of suboptimal products and 

regimes by virtue of having developed first or gaining an early advantage by 

chance (Arthur 1989; Unruh 2000), discussed in Chapters 2 and 3.  For the UK, 

whose political ideology is currently dominated by neo-liberal free market ideals, 

this suggests that competitive isomorphism could be an important factor in the 

development of business models for microgeneration. As the number of 

residential district scale generation schemes in the UK is currently very low 

(Energy Saving Trust 2011a), and most microgeneration systems are privately 

owned, competitive isomorphism would likely favour the plug and play model. 
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Figure 12. Institutional factors favouring different business models for microgeneration 

Reproduced from Provance et al. (2011) 

 

 

 

Studies of ESCOs specifically have similarly found a set of external factors which 

are likely to encourage their formation, largely related to the formation of energy 

service contracts and access to compensation and financing. Vine (2005) 

observes that new ESCOs tend to be small start-up companies and therefore 

struggle to attract funding from financial institutions. Improving access to 

finance is therefore widely recommended (Bertoldi et al. 2006; Marino et al. 

2011; Vine 2005), and some authors recommend the development of a European 

third party financing scheme for ESCO activities (Bertoldi et al. 2006; Marino et 

al. 2011). An institutional framework which is supportive of contracting 

(Provance et al. 2011; Sorrell 2007) and the development of national or 
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recommended (Bertoldi et al. 2006; Marino et al. 2011; Vine 2005).  Sorrell 

(Sorrell 2007) also hypothesised that a competitive energy market would favour 

the development of ESCOs. This suggests that the UK, with a centralised lending 

system and a privatised (though oligarchic) energy market, may provide an 

institutional environment appropriate for ESCO formation. 

 

In their analyses of the economics of different deployment models in the UK, 

Watson et al. (2008; 2006) found that the current fiscal regime disadvantages 

corporate investors in domestic microgeneration. Companies can claim 

enhanced capital allowances (ECAs) on technologies for demand side reduction 

and some CHP technologies, but not microgeneration technologies such as PV 

and micro wind. Furthermore, ECAs are not applicable to any measures installed 

in homes: only ESCOs serving commercial buildings can benefit from them. 

Watson et al. find that allowing companies and individuals access to ECAs for 

domestic microgeneration would reduce payback times for both plug and play 

and company driven arrangements. They note however that a truly “level 

playing field” would also require that private individuals under a plug and play 

arrangement pay income tax on FIT revenue, whereas at present FIT income 

from systems installed by householders “to generate electricity mainly for their 

own home” is not taxable (HMRC 2009). In the same analysis the authors find 

that under both a baseline ‘business as usual’ scenario and  ‘level playing field’ 

scenarios, payback periods for micro-wind and PV tend to be shorter for 

company driven models than plug and play, though the analysis is based on data 

from a small number of real-world sites and is therefore arguably quite site-

specific. 

 

In summary, it is unclear whether the current political and tax regimes in the UK 

favour the plug and play or ESCO model (or neither) more, though the fact that 

only 24% of PV installations (the most common microgeneration technology) 

are owned by ‘aggregators’ rather than individual householders (DECC 2012a) 

could be considered evidence in itself. Although Watson et al.’s modelling study 

suggested that the tax regime slightly favours the ESCO model, the UK’s political 

emphasis on free market operation, and competitive isomorphism/lock-in 

appear be giving the plug and play model an advantage at present. A useful 
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avenue for further research in this area would be to investigate how much 

influence a country’s political economy has on the development of different 

deployment models, compared with other factors such as public opinion. 

 

 Heat demand and district heating 4.3.2

Thus far, studies of the applicability of different deployment models to different 

developments have largely considered the choice of model as an emergent 

consequence of the choice of technology. In most cases district scale generation 

systems (which may use CHP, biomass or ground source heat pump systems) is 

considered almost inevitably to require an ESCO-type model due to their scale 

and the complexity of their operation (Boardman 2007; Faber Maunsell and 

Capener 2007). An exception to the need for ESCO operation would be a 

community-owned district scale project, of which there is a growing number in 

the UK (Willis and Willis 2012). However, since new build developments do not 

have an incumbent ‘community’ in place prior to their being built, this 

arrangement is highly unlikely to be suitable for new homes. As a result, the 

choice of ESCO management or private ownership for a new development may 

depend heavily on the economics of district heating, particularly CHP.   

 

Heat demand is the most important ‘internal’ factor affecting the economics of 

distributed heat generation, in particular CHP. Higher and more sustained heat 

demand is desirable as it allows systems to run most efficiently, and in the case 

of CHP to generate enough electricity to be economical. The Energy Saving Trust 

states that as a general rule, district CHP systems should be able to run for 4,000 

– 5,000 hours per annum (equating to 13 - 14 hours per day) for optimum 

efficiency (Energy Saving Trust 2011a). 

 

Given the importance of heat demand to the feasibility of an ESCO-run district 

heating system, trends in the characteristics of new homes in the UK will have a 

bearing on which deployment models for microgeneration are likely to be most 

suitable. These include the physical attributes of individual dwellings, such as 

fabric efficiency and size; trends in the attributes of developments as a whole, 
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such as size and density; and other factors such as trends in the type of tenure 

and ownership.  

 

4.3.2.1 Individual dwellings 

As building regulations tighten progressively, new homes are built to higher 

standards of fabric efficiency which reduces their total heat demand. The Energy 

Saving Trust predicts that between 2006 and 2016 in the UK, space heating 

requirements will decrease by 64% for detached houses and 70% or more for 

flats (Energy Saving Trust 2011a). This also means that heat demand becomes 

increasingly driven by the demand for hot water, rather than space heating. 

Under Level 6 of the CSH, space heating accounts for only 30% of total heat 

demand for detached houses and 27% for flats; this may decline even further 

under future building regulations (Energy Saving Trust 2011a). Hot water driven 

demand profiles also tend to be much ‘flatter’, with a more consistent (lower) 

heat demand throughout the day as opposed to pronounced morning and 

evening peaks (Åberg et al. 2012). A more sustained demand profile with fewer 

peaks and troughs can be beneficial for district scale systems, due to the 

efficiency of continuous operation. However, reduced overall heat demand per 

dwelling may mean that increasing numbers of developments have insufficient 

total heat demand to make a district scale solution economical. 

 

Additionally, data from the National House Building Council (NHBC) shown in 

Figure 13 illustrates the growing trend for new build homes to be flats, and the 

decreasing market share of detached houses. Since flats generally have the 

lowest heat demand of common dwelling types, and detached houses the largest, 

this trend will further reduce average heat demands for new developments. 
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Figure 13. New homes by house type and year 

Data from (NHBC 2013) 

 

 

4.3.2.2 Tenure 

Saxena and Hinnells (2006) state that flats represent a key market for ESCOs, as 

they facilitate the installation of communal generation systems. They also make 

the point that that flats tend to be rented, or owned under leasehold rather than 

freehold, with the mandatory provision of building services for a fee. This 

arrangement would lend itself well to provision of energy services, as any fees 

associated with the ESCO could be bundled with building services fees. Aside 

from this, the issue of tenure has been largely neglected in studies of deployment 

models, with most assuming owner occupation. This is often a justified 

assumption: in 2011 – 2012 65.3% of dwellings in England were owner occupied 

(DCLG 2013c). However as illustrated in Figure 14 there has been a slow but 

steady increase over the last decade in the proportion of private renters and a 

corresponding decline in the proportion of owner occupiers. Rented properties 

are likely to be more suited to ESCO arrangements, as the owner of the property 

would not directly benefit from any savings on energy bills brought about by 

paying upfront to install microgeneration, and may prefer to contract out any 

maintenance issues. Indeed, mismatched incentives between landlords and 

tenants are often cited as a barrier to the uptake of renewable energy and 
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efficiency measures in rented properties (Bird and Hernández 2012; Gillingham 

et al. 2012).  

 

Figure 14. Percentage of tenure types in the UK by year 

Data from (DCLG 2013c) 

 

 

4.3.2.3 Dwelling density 

In addition to the importance of total heat demand, the high costs of heat 

distribution means that a key criterion for district scale heating schemes is the 
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distance between the plant and the heat delivery points, and therefore the lower 
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network. The aforementioned study of district heat in Sweden found a 

representative minimum linear heat density requirement of 2GJ/m (Reidhav and 
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feasible for district heating is over 50 dwellings per hectare (Boardman et al. 

2005; Energy Saving Trust 2011a). This density requirement is a further reason 

that district heating schemes are often most suitable for blocks of flats as 
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detached houses account for only 12% of the market share of district heat 

(Reidhav and Werner 2008).  

 

In addition to the increasing proportion of flats being built discussed above, data 

for England from the DCLG (2011c), illustrated in Figure 15, show that since the 

turn of the millennium, average development density has been increasing 

steadily. This increase in average build density may counteract the effect of 

reduced per dwelling heat demand when district heat is considered for new 

developments. 

 

Additionally the average density in London is much higher than the rest of the 

country. For the latter reason Saxena and Hinnells (2006) identified London as a 

key potential growth area for ESCOs. 

 

Figure 15. Density of new residential developments by year 

Data from (DCLG 2011c)   

 

 

4.3.2.4 Development characteristics 

As discussed thus far, heat demand is dictated in large part by the size and type 

of dwellings in a development, and the development’s size and density. Despite 
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would mean a certain level of heat demand could be guaranteed. However, 

according to a report from 2007 by the Renewables Advisory Board1 most new 

homes are built in small developments: 32% with fewer than ten dwellings, and 

only 15% with more than 500 dwellings. Many of these smaller developments 

will be likely be unsuitable for district heat: as discussed in Section 2.6.2, ESCOs 

can achieve economies of scale in production and transaction costs, and district 

heat has consistently been found to be more economical on larger sites (Energy 

Saving Trust 2011a; Faber Maunsell and Capener 2007). Two recent modelling 

studies showed a logarithmic relationship between the number of houses in a 

new development and the internal rate of return (IRR) of a district heating 

scheme (Halsey 2011; Saxena and Hinnells 2006). The Energy Saving Trust 

(2011a) states that at present for instance, biomass powered CHP is likely to be 

economical only on developments of over 1,000 dwellings.  

 

Guaranteeing a high and sustained demand for district heat can alternatively be 

achieved by siting schemes on mixed-use sites which include both residential 

and commercial buildings which have a constant need for heat, such as 

swimming pools (Pöyry 2009). The  UK’s 2010 Community Infrastructure Levy 

Act allows local authorities to charge developers a fee for new developments, 

based on the size and nature of the developments. These fees are used for new 

local infrastructure, which means that new residential developments are often 

accompanied by new non-residential buildings. In addition, the 2012 National 

Planning Policy Framework (NPPF) allows local authorities to set out their own 

planning policies, within certain criteria identified by the NPPF. Many large sites 

identified by local authorities as being potential residential development sites 

will have planning conditions attached to them, enforced through local planning 

policy. These usually require developers to provide amenities such as shops, 

offices, leisure centres and schools, to ensure that such developments do not 

place a burden on existing local infrastructure. As a result of such policies, it is 

now common for new residential developments to be effectively mixed-use, 

                                                        

1 The report is no longer available, but is quoted in a report by the Energy Saving Trust (2011a). 
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increasing and flattening heat demand profiles, and making district heating a 

more likely option. 

 Electricity demand 4.3.3

Compared with studies of heat demand, there have been fewer analyses of the 

effects of electricity demand on the economics of microgeneration installations. 

Those that exist have either explicitly or implicitly used the plug and play model, 

and have shown that total household electricity demand can have a significant 

impact on the value of microgeneration installations to the householder. In a 

socio-economic analysis of PV installations in social housing schemes in South 

Yorkshire and the West Midlands, O’Flaherty and Pinder (2011) found that the 

proportion of electricity consumed on-site had a significant effect on payback 

periods and net present value of the installation for householders. The 

discrepancy was more pronounced for a scenario with no feed in tariff, but even 

with a modelled tariff, a 25% (absolute) reduction in the proportion of electricity 

consumed led to an approximately 30% decrease in net present value at every 

timestep. Watson et al.’s (2006) analysis of a site near Portsmouth found that 

one homeowner who consumed less than 50% of the electricity generated had a 

payback period 13 years longer than his neighbour who consumed 75%. The 

authors also noted that the same behaviour-induced discrepancies would occur 

for the electricity generated by micro CHP. 

 

Although neither Watson et al. or O’Flaherty and Pinder discuss the implications 

for the choice of deployment model, it appears that householders who consume 

smaller proportions of on-site electricity could be better served by a contracting 

arrangement whereby they only pay for the electricity or energy services they 

use. As discussed in Section 2.6.2.3, under an EPC an ESCO could levy a monthly 

fee (less than the householder’s previous average bill) and claim FIT payments 

to offset the capital cost of the microgeneration. Under an ESC, the householder 

could be charged at a competitive rate for the electricity they use. A 

development-scale microgrid arrangement whereby surplus electricity could be 

used by other households could also be appropriate where householder 

electricity demand is low. The capital and maintenance costs of the 

infrastructure would be higher, but more efficient use of generated electricity 
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could mean that fewer generating systems were needed. There are however very 

few microgrids of this type operating in the UK: a review of the potential for 

microgrids in the UK found that they have significant potential to reduce 

emissions from the building sector, but that current regulatory frameworks are 

not supportive of them (Abu-Sharkh et al. 2006).  

 

In order to quantitatively investigate the effect of differences in the proportion of 

on-site generation used on the payback period for householders, a 

technoeconomic analysis was carried out using the method described in 

Section 4.2.2. The results are presented below. 

 

Figure 16. Effect of electricity consumption on payback periods for plug and play model   

 

 

Unsurprisingly, since the export tariff for microgeneration is much lower than 

both the generation tariff and the average cost of electricity in the UK, consuming 

a greater proportion of the electricity generated on-site leads to a shorter 

payback period for the capital cost of a plug and play arrangement. The plateau 

at 80% consumption is due to the fact that this is the maximum proportion of 

household electricity demand that can be met by PV under the assumptions of 

the model. The shorter payback periods for detached houses are due to their 

larger size, which allows installation of a larger PV array. 

 

 

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Y
Ea

rs

Fraction of generation used

Payback period
(plug and play)

Detached payback

Attached payback



124 
 

Figure 17. Effects of electricity consumption on 5 year CFAs 

 

 

After 5 years, the initial capital cost of the PV system has not been paid back for 

either attached or detached houses, whereas savings made under the ESCO 

arrangement have accrued: with savings proportional to the amount of on-site 

electricity consumed. 

 

 

Figure 18. Effects of electricity consumption on 10 year CFAs. 
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After 10 years, the initial capital cost for the detached house has been recovered 

and a profit is now being made, regardless of the proportion of on-site electricity 

consumption. For attached houses, the capital cost has not been recovered, 

regardless of the proportion of on-site electricity consumption. In all cases, the 

accumulated savings are higher under the ESCO arrangement (for a particular 

house type). 

 

Figure 19. Effects of electricity consumption on 15 year CFAs 

 

 

After 15 years, the capital cost of the plug and play arrangement has been paid 

back in all cases, except where on-site generation consumption in attached 

houses is less than 10%. For detached houses, the plug and play arrangement is 

more profitable regardless of the proportion of on-site electricity consumed. For 

attached houses, the ESCO arrangement is more profitable regardless of the 

proportion of on-site electricity consumed.  
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Figure 20. Effects of electricity consumption on 20 year CFAs. 

 

 

After 20 years, the plug and play model is more profitable for detached houses, 

regardless of the proportion of on-site electricity consumed. For attached houses, 

consuming over 80% of the electricity generated on site makes the ESCO model 

more profitable, whereas consuming less makes the plug and play model more 

profitable. 

 

Figure 21. Effects of electricity consumption on cash flow for plug and play and ESCO models: 

detached houses 
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For detached houses, the point at which the accumulated savings for the plug 

and play model exceed those for the ESCO model varies between 11.5 and 12.5 

years, depending on the proportion of on-site electricity generation used. 

 

Figure 22. Effects of electricity consumption on cash flow for plug and play and ESCO models: 

attached houses 

 

 

For attached houses, the point at which the accumulated savings for the plug and 

play model exceed those for the ESCO model varies between 18.5 and 20.5 years, 

depending on the proportion of on-site electricity generation used. 
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example, if the capital cost of PV fell, payback periods for the plug and play 

model would fall accordingly; and if per unit grid electricity prices fell, the ESCO 

scenario would become less profitable. Since the models were designed to 

measure the differences between plug and play and ESCO for different electricity 

consumption scenarios however, they can be used under current policy and 

tariff conditions to make some observations about the effects of different 

electricity consumption levels. 

 

These results show that while electricity consumption has a significant effect on 

the profitability of microgeneration for householders, it has less effect on the 

(financially) optimal choice of deployment model. In this case, a difference was 

only seen after 20 years for attached houses, where consuming over 80% of the 

electricity generated by on-site PV yielded a greater return under the ESCO 

model than the plug and play, and vice versa. The main determining factor in 

selecting the financially optimal deployment option is the desired payback 

period, as the plug and play model ultimately yields more profit but returns do 

not exceed savings from the ESCO arrangement for 11.5 - 20.5  years, depending 

on house type and proportion of on-site generation consumed.  These results 

have some significance for developers as well as householders. If a development 

is likely to be targeted at those who may not stay there long term (for example 

first time buyers, or elderly retirees), using an ESCO model would likely appeal 

more to prospective buyers, who could be assured of making savings regardless 

of their length of occupancy. For developments whose residents are likely to stay 

longer (for example, family homes), buyers may be willing to invest up front in a 

plug and play arrangement, with the assurance that their investment will yield 

returns in the long term. The likely levels of electricity consumption of 

prospective residents is less of a differentiating factor. 

 

 

4.4 Householder attitudes 

Thus far we have seen that the choice of deployment model for microgeneration 

can have a significant impact on the economic outcome of a project. However, 

economic feasibility alone will not be sufficient to ensure the successful 
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deployment of microgeneration in new homes. Prospective buyers must be 

persuaded to choose new homes incorporating microgeneration over the 

alternatives available to them. 

 

Classical economic theories assume that consumers in possession of sufficient 

information will make the choice which maximises their utility. Under this 

assumption, supplying prospective buyers with accurate information about 

expected savings from microgeneration would be sufficient to ensure that they 

chose to buy these homes (all other attributes being equal). However, there is a 

great deal of evidence to show that this is not the case. It is beyond the remit of 

this thesis to discuss theories of human economic behaviour in detail: for a 

detailed examination of consumers as non-rational agents see for example Sen 

(1977), Tversky and Kahneman (1981, 1986) and Stern (1992). In essence, it has 

been shown that in reality, humans do not behave as the ‘rational agents’ they 

are assumed to be in classical economic analyses. This is sometimes considered 

to be the result of ‘incomplete information’ leading to non-rational decisions 

(Kivetz and Simonson 2000), and sometimes other factors including social and 

cultural norms, moral values or individual differences (McKenzie-Mohr 1994). 

 

In the field of energy efficiency, consumers’ failure to invest in efficiency 

measures even when they lead to demonstrable savings is known as the ‘energy 

paradox’ (Deutsch 2010). There is limited but increasing evidence (Bull 2012) 

that this is due in part to the difficulty for consumers of calculating operating and 

lifecycle costs; a situation succinctly described by Kempton and Layne (Kempton 

and Layne 1994): 

 

“Efficient market functioning requires that the consumer know the prices, quantity 

and quality of goods - and use that information to make purchase decisions. This 

may be a reasonable assumption in a retail store, where the price is marked on the 

shelf or directly on the product itself… retail energy purchases are very different, 

with price and consumption data difficult to acquire and expensive to analyse. The 

buyer receives energy services (light, heat etc.) but is billed via the easy to meter, 

but irrelevant to the buyer, measure of electron flow (kWh)." 
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An ethnographic study by Kempton and Montgomery (1982) found that when 

required to consider complex quantitative information in order to make a 

purchase decision, consumers rely on heuristics and informal measurements: a 

method the authors termed ‘folk quantification’. They found that this was the 

case even among consumers with a good understanding of technical energy 

measurement. Their interviewees consistently overestimated payback periods 

for energy investments, primarily as a result of failing to account for future 

increases in fuel prices. The smaller the initial outlay and the larger the energy 

reductions resulting from the investment, the less participants overestimated 

payback periods, suggesting that respondents were particularly averse to high 

upfront costs. This finding is borne out in many other studies such as Defra’s 

study of over 1,000 UK households (Oxera 2006) and Caird et al’s survey of over 

500 UK households (Caird et al. 2008). 

 

Individual consumers’ discount rates will also affect their willingness to pay 

upfront costs in return for profit over a period of time. Unlike company discount 

rates, which are usually calculated based on the cost of capital, individual 

discount rates have been found to be extremely variable, and may not conform 

to economic ‘rationality’. For example, one study of purchases of energy efficient 

fridges found that 60% of participants had an implied discount rate greater than 

35%, which equates to a payback time of less than three years (Meier and 

Whittier 1983). A similar study on air-conditioning units found an average 

implied discount rate between 15% and 25% (Hausman 1979). Even when 

participants were provided with information on market interest rates and the 

annual interest rates associated with different payment options, in a study using 

monetary reward options, discount rates were calculated as 15% - 17.5%. These 

rates are much larger than those used by most institutions and companies: as a 

representative example, in 2012 Ofgem’s recommended weighted average cost 

of capital (WACC) for National Grid Energy Transmission was 4.55% (Ofgem 

2012). 

 

It is clearly insufficient therefore to present an economic argument for 

microgeneration and expect house buyers to spend extra to obtain it, especially 

if upfront costs are involved. While pointing out the financial benefits is vital, 



- 131 - 

developers will also need to communicate the added value that microgeneration 

can provide for consumers, in a way that will overcome reluctance to invest 

upfront.  The Zero Carbon Hub has recognised the importance of marketing with 

the publication of a strategy document for marketing zero carbon new homes, 

stating that “it is essential that early progress is made to understand the kinds of 

marketing approaches and strategies that will impact effectively on consumers” 

(Zero Carbon Hub 2010). 

 

Different deployment models are starting to be recognised as potential 

marketing tools, adding to the perceived value of homes in various ways. As far 

back as 1996 Nakarado was advocating the use of ESCO-type business models as 

part of marketing strategies for renewable energy, predicting that “new 

contractual relationships and communication will be substituted for traditional 

uses of fuel and materials”. He also urged utility companies to move beyond 

economic analyses,  focus on the “language” they used, and conduct more 

sophisticated market research to identify specific consumer groups who would 

be most likely to pay for alternative energy sources (Nakarado 1996). More 

recently, Sauter and Watson (2007) suggested that “companies’ marketing and 

involvement in the decision making process is considerably more important than 

mere financial incentives to attract households’ investments”, and  advocated 

using the features of different deployment models as selling points for 

microgeneration. 

 

It has been suggested that the ESCO model could overcome consumer 

reservations about using decentralised generation technologies by removing the 

‘hassle factor’ of installation, operation and maintenance (Energy Saving Trust 

2011b; Watson et al. 2008). Boait (2009) states that a service-oriented market 

promotes the uptake of innovations by allowing consumers to use new 

technologies without having to acquire significant knowledge or expertise. He 

draws a parallel with the telecommunications industry, which “sustains a 

ferocious pace of innovation by selling consumers an easy to use service that 

hide the extreme complexity needed in their realisation”, arguing that ESCOs 

could promote adoption of decentralised generation in a similar fashion. 

Similarly, the ESCO model could overcome consumers’ distrust of new 
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technologies by protecting them from the financial risks of investment in them 

(Boait 2009; Sauter and Watson 2007; Watson et al. 2008).  

 

Another potentially attractive feature of the ESCO model is the potential to 

increase living space by employing district heating, removing the need to have a 

boiler in the home (Energy Saving Trust 2011a). This could be of particular 

significance in new homes, since a common criticism is that new dwellings are 

becoming smaller and more cramped (Ipsos MORI 2012; RIBA 2013; Roberts-

Hughes and RIBA 2011). Bertoldi et al. (2006) also suggested that an ESCO could 

represent a ‘value-added’ feature of energy distributors, differentiating them 

from an “otherwise homogeneous commodity such as electricity”. And Sauter 

and Watson (2007)  point to the ability of companies to supply upfront capital in 

an ESCO model, potentially overcoming the issues of high individual discount 

rates and consumer aversion to upfront costs discussed above. 

 

The argument of ‘function over ownership’ has also been advanced as evidence 

for the appeal of the ESCO model. White et al. (1999) point out that in modern 

markets where speed, flexibility and mobility are highly valued, the function or 

utility of products is more important than the ownership of them; and that “the 

objective economic worth of products is based upon the function they deliver.” A 

contemporary example of this can be seen in mobile phone contracts, under 

which the cost of the phone is bundled into monthly charges, with small or no 

upfront payments, and in ‘car clubs’ wherein people pay membership, and an 

hourly fee for the use of a car. However, a possible cultural preference for 

individual household ownership of  heat generating technologies was identified 

in Chapter 3 of this thesis, and White et al. acknowledge that “consumer 

preference for ownership of certain products… is in fact deeply rooted in 

subjective needs for security, control, prestige and status”, and that a functional 

view of product consumption is likely to gain more traction in business-to-

business markets where financial factors outweigh considerations of prestige 

and status. This point is echoed by Steinberger et al. (2009) who suggest that the 

“high cultural value given to ownership and control of products” could 

discourage residential consumers from using energy service contracts. Indeed, 

the concepts of user control and autonomy often arise when the benefits of 
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microgeneration are discussed. Dobbyn and Thomas (2005) described the “sheer 

pleasure of creation and of self-sufficiency” as a common householder response 

to microgeneration, and a 2006 UK study found that 22% of people who had 

seriously considered installing microgeneration cited self-sufficiency as a 

motivation (Energy Saving Trust 2007). A survey of Irish home owners found 

that those who believed that investing in microgeneration would make them 

independent from conventional fuels and energy suppliers  were willing to pay 

more for biomass boilers and solar PV than those who did not (Claudy et al. 

2011).  

 

Despite the existence of a large body of literature on consumer attitudes towards 

microgeneration, much of which aims to identify the demographic and 

attitudinal factors affecting uptake; there have been few attempts to identify 

target demographics for the different deployment models available.  Given the 

compelling – and sometimes contradictory – arguments for the features of the 

different models which may have a bearing on consumer attitudes, identifying 

which consumer groups are likely to prefer which model could prove extremely 

useful in marketing new homes incorporating microgeneration. For example, in 

his extensive study on the adoption of innovations, Rogers stated  that:  

 

“Change agents should use a different approach with each adopter category, or 

audience segmentation… this strategy breaks down a heterophilous audience into 

a series of relatively more homophilous subaudiences. Thus, one might appeal to 

innovators who adopted an innovation because it was soundly tested and 

developed by credible scientists, but this approach would not be effective with the 

late majority and laggards, who have a less favourable attitude toward science." 

(Rogers 1995/2003) 

If different microgeneration deployment models are to be used to market homes 

to prospective buyers, the ability to predict how different consumer segments 

are likely to respond will be vital. While the specific ‘client’ for a new housing 

development is not known initially, developers have excellent knowledge of the 

local market and build according to their predictions of what local residents 

need and want (DCLG 2007b). If different consumer segments do differ 

significantly in their preferences, further questions may arise over whether 
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consumers’ preferences for a specific deployment model align with the physical 

suitability of the types of dwelling they are likely to buy. For example, we have 

seen that the ESCO model is likely to be more suitable for blocks of flats and 

large, dense developments, but will  the target consumer segments for such 

developments tend towards a preference for that model? 

 

Sauter and Watson (2007) gave significant consideration to consumer 

preference in a study on the plug and play and ‘Company Driven’ (ESCO) models. 

By reviewing existing surveys of consumer attitudes to microgeneration, they 

formulated hypotheses about which deployment models would foster the 

greatest acceptance of microgeneration amongst different consumer segments. 

Since acceptance of renewables was linked to knowledge about them, they 

concluded that the plug and play model was most likely to appeal to ‘innovators’ 

who have sufficient assets to invest in new technologies and who have high 

levels of technical knowledge. In the related Powerhouse study, Watson et al. 

(2006) stated that “[innovators and early adopters] are generally characterised 

by an interest in new technologies, understanding of these technologies and 

sufficient capital available. They will therefore tend towards the more 

independent Plug and Play model.”  

 

In their discussion, Sauter and Watson drew on some observations by Fischer 

about early adopters of microCHP in Germany. Fischer rejects the term 

‘innovators’ in favour of ‘pioneers’ because: “‘innovators’ evokes the association 

of the entrepreneur and in fact denotes the inventor of some novelty [rather] 

than its first user” (Fischer 2004). Nonetheless, the ‘pioneers’ she describes are 

analogous to Rogers’ ‘innovators’ in that they are among the first to have 

adopted microCHP. While Fischer did not explicitly consider deployment models 

for microgeneration, many of her observations about the motives of early 

adopters seem to support the theory that innovators would prefer a plug and 

play model. The pioneers were described as having a desire for autonomy and a 

high level of interest in the new technology, and as home owners who wish to 

express their ideas and values visibly in their homes (Fischer 2004). A later 

paper also described them as having high levels of perceived self-efficacy, 
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strongly rejecting the statement that “people like me cannot do much for the 

environment” (Fischer 2006). 

 

The majority of respondents in the surveys examined by Sauter and Watson 

believed that responsibility for decarbonisation lies with the Government and/or 

energy companies. As a result, Sauter and Watson hypothesised that the 

company driven model would appeal to the wider public (the early adopters and 

later adopters as opposed to innovators) by overcoming an absence of personal 

commitment and technical knowledge in this group. Watson et al. (2006) also 

considered that later adopters would be less informed about microgeneration 

technologies, and that they would seek to avoid ‘hassle’, prioritising value for 

money . Watson (2004) also considered energy service contracting 

arrangements to be generally less innovative and disruptive than the plug and 

play model, stating that,  “micro-generation could be seen by energy companies 

as an extension of the status quo, with large numbers of units installed in the 

homes of passive consumers.” 

 

Section 2.5 of this thesis reviewed a number of quantitative studies on 

householders’ attitudes towards the adoption of microgeneration technologies, 

and the links between householder characteristics and likelihood of adoption. 

However, no quantitative analyses of householder attitudes to different 

deployment models, or relationships between householder characteristics and 

attitudes, have been conducted thus far. This section of the thesis has discussed 

the importance of non-financial factors and marketing to the adoption of 

microgeneration technologies in new homes. Empirical evidence regarding the 

type and nature of relationships between householder attributes and attitudes 

and their choice of deployment model would therefore be valuable in inform 

developer decisions regarding arrangements for microgeneration in new homes, 

and would help to identify methods for overcoming the consumer reluctance 

(perceived and actual) identified as a significant barrier in Chapter 3. 

 

Given the theoretical and qualitative evidence for the significance of 

‘innovativeness’ as a determinant, a more specific quantitative investigation into 

the link between householder innovativeness and choice of microgeneration 
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deployment model would also be of value. As discussed above (and considered 

in more detail in Section 4.5 which follows), likely ‘innovators’ are often 

identified by other demographic and personality traits, which could allow 

developers and marketers to predict whether prospective buyers for a 

development were likely to be innovators. If a link between innovativeness and 

deployment model preference is quantitatively measured, this would further 

inform marketing and communication strategies for new developments 

incorporating microgeneration technologies. 

 

There is little precedent for quantitative analysis of the relationship between 

innovativeness and attitudes to microgeneration deployment models. While the 

researchers whose work informs the proposed quantitative analysis linked their 

definition of ‘innovators’ to Rogers’ work in many cases, a formal definition or 

scale for ‘innovativeness’ has not been adopted for use in this area of research.  

The following section therefore considers how innovativeness is measured in 

Rogers’ studies and in psychological research, to inform the method and develop 

hypotheses for the quantitative analysis described in Chapter 5.   

 

4.5 What is an innovator? 

In order to consider whether householders’ innovativeness will impact on their 

preference for different deployment models, it is necessary to consider what is 

meant by ‘innovativeness’. Innovativeness is not a simple measurable attribute 

such as age or income, but rather a complex abstract construct. Indeed, the 

research community appears to be coming towards a consensus that 

‘innovativeness’ can actually be separated into three discrete constructs: a 

personality trait (‘innate innovativeness’), a set of behaviours (‘actualised 

innovativeness’, or ‘innovative behaviour’), and a construct encompassing both 

within a particular product domain (‘domain-specific innovativeness’). Debates 

and research on the nature and antecedents of the constructs and their 

interactions with each other and other factors are ongoing. 
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 Innovative behaviour 4.5.1

Midgley and Dowling (1978) were among the first to explicitly define innovative 

behaviour, which they termed ‘actualised innovativeness’. Also called ‘adoptive 

innovativeness’ (Hirschman 1980) and ‘new product adoption behaviour’ 

(Rogers and Shoemaker 1971), innovative behaviour is not a personality trait, 

but an observable behaviour or set of behaviours. In general, innovative 

behaviour refers to the act of adopting new products, services or behaviours. 

Various operational definitions of innovative behaviour have been proposed. It 

has been considered in terms of new products: ownership (Im et al. 2003), 

purchase (Bartels and Reinders 2010; Cestre 1996; Goldsmith and Hofacker 

1991) and use (Cotte and Wood 2004; Rogers 1995/2003); and in terms of the 

search for ‘variety’ (Steenkamp and Baumgartner 1992) or ‘novelty’ (Hirschman 

1980).  

 

A number of methods for measuring innovative behaviour have been used. In a 

meta-analysis of consumer innovativeness studies, Im et al. (2003) identified 

four main measurements: number of products owned, ownership of a particular 

product, purchase intentions and relative time of adoption for a particular 

product. The first two are known as cross-sectional methods, as they involve 

observation of one ‘snapshot’ of time. By contrast, the relative time of adoption 

method involves a time dimension and was used by Rogers (1995/2003) in what 

remains one of the most frequently-cited and influential characterisations of the 

adopters of innovations, particularly in the eco-innovation and systems 

innovation domains. In a study of the diffusion of innovations among Andean 

farmers, Deutschmann and Fals-Borda (1962b) defined five innovator 

categories: ‘innovators’ (highest innovativeness score), ‘early adopters’, ‘early 

majority’, ‘late majority’ and ‘laggards’ (lowest innovativeness score). By 

examining a large number of empirical studies of relative time of adoption of 

innovations covering a range of products, services, populations and locations, 

Rogers expanded the descriptions of these innovator categories, and produced 

an inventory of the characteristics which predict innovative behaviour. His work 

is notable for the number of empirical studies analysed, and the number of 

product, service, cultural and geographical domains it covers. His conclusions 
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about the characteristics of the different adopter categories can therefore be 

considered to be highly generalisable. Sauter and Watson (2007) and Watson et 

al.’s (2006)  propositions about the relationship between innovativeness and 

preference for particular microgeneration deployment models are frequently 

couched in terms of Rogers’ innovator categories.  

 

 Innate innovativeness 4.5.2

Innate innovativeness, also known as ‘dispositional innovativeness’ (Steenkamp 

et al. 1999; Steenkamp and Gielens 2003) and ‘open-processing innovativeness’ 

(Joseph and Vyas 1984)  is a personality trait. Unlike innovative behaviour, it is 

not directly observable, but is as Midgley and Dowling (1978) described it, “a 

function of dimensions of the human personality”. Innate innovativeness is 

generally considered to be a predisposition that all humans possess to a greater 

or lesser extent.  

 

In a review of studies and theories of innate innovativeness, Roehrich (2004) 

identified the four main “forces” which have been put proposed as antecedents 

to innate innovativeness: need for stimulation, need for novelty, need for 

uniqueness and independence towards others’ communicated experience. All 

have been supported empirically with the exception of the latter (Roehrich 

2004). Venkatraman and Price (1990) decomposed innate innovativeness into 

cognitive and sensory components: the propensity for engaging in thought, and 

the propensity to seek or avoid arousal based on change. Similarly, Wood and 

Swait (2002) developed two subscales: one measuring the need for cognition, 

and one measuring the need for change. They found that both factors influence 

innate innovativeness, but that the two subscales are not always positively 

correlated, suggesting that innate innovativeness may be an emergent property 

of multiple personality traits.  

 

 Domain-specific innovativeness 4.5.3

Building on research into innovative behaviour and innate innovativeness, a 

more recently proposed concept is that of ‘domain-specific innovativeness’ (DSI). 
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Goldsmith and Hofacker (1991) were among the first to propose the need for a 

new method of consumer classification that would allow the measurement of 

innovativeness within a specific product/service category. DSI does not explicitly 

describe either innate innovativeness or innovative behaviour, it is “a less 

abstract construct than the personality trait of innate innovativeness, but less 

observable than the purchase of new products” (Nyeck et al. 1996)2. As 

described by Bartels and Reinders (2011), DSI in fact attempts to capture both 

innate innovativeness and innovative behaviour: it “captures an individual's 

predisposition toward a product class and reflects the tendency to learn about and 

adopt new products within a specific domain of interest” (emphasis added).  

 

Theories around DSI arose in response to criticism of the idea that 

innovativeness is generalisable across domains (Gatignon and Robertson 1985; 

Nyeck et al. 1996; Robertson and Gatignon 1986). Bemmaor (1994) stated that 

the fact that innovators tend to adopt new innovations in an unpredictable 

fashion whereas ‘imitators’ are more deliberate in their adoption, means that 

people cannot be ‘innovators’ across all product categories. Empirical evidence 

from a number of studies has borne out this theory (Gatignon and Robertson 

1985), and it has therefore been suggested that DSI is a more useful measure of 

innovativeness for companies and researchers investigating a particular product 

category (Goldsmith and Hofacker 1991; Nyeck et al. 1996). 

     

 Interactions between personal characteristics and 4.5.4

innovativeness 

Much of the research into innovativeness has investigated the interaction 

between the different types of innovativeness, and other factors such as 

demographics. Given that the goal of many researchers is to predict behavioural 

outcomes, there is often an emphasis on identifying the processes which lead to 

innovative behaviour. For example, Midgley and Dowling (1978) proposed that 

new product adoption behaviour arises from the interactions between innate 

innovativeness, personal characteristics, social communication networks and 
                                                        

2 Translated from French by the present author. 
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sociodemographic variables. Similarly Spence (1994) described innovative 

behaviour as the result of predispositional variables (internal individual 

characteristics such as innate innovativeness), personal variables 

(demographics) and situational variables (external influences such as 

dissatisfaction with current products). In order to better understand the 

householder characteristics likely to affect choice of microgeneration 

deployment model, the theoretical and empirical evidence for these processes 

will now be discussed. 

 

4.5.4.1 Demographic factors as predictors of innovativeness 

A number of studies into the link between demographics and innate 

innovativeness have been carried out, with somewhat ambiguous results 

(Bartels and Reinders 2011). Some studies have found a negative correlation 

between age and innate innovativeness (i.e. innate innovativeness is lower in 

older people) which is not statistically significant (Clark and Goldsmith 2006; 

Goldsmith et al. 2006; Im et al. 2003), with one study in South Africa finding a 

statistically significant negative correlation (Steenkamp and Burgess 2002). 

Similarly, a non-significant positive correlation between income and innate 

innovativeness has been found in some cases (Im et al. 2003; Lennon et al. 

2007), with Steenkamp and Burgess’ (2002) South African study finding a 

significant positive correlation. Level of education has been found to have a 

significant positive correlation with innate innovativeness (Lennon et al. 2007; 

Steenkamp and Burgess 2002). 

 

The link between demographics and DSI is also somewhat ambiguous (Bartels 

and Reinders 2011). The nature of DSI means that the results of a study can only 

be considered to apply to the domain of interest. Age has been found to correlate 

negatively with DSI, significantly in two studies by Goldsmith and colleagues 

(Goldsmith et al. 2003; Goldsmith et al. 2005) and non-significantly in another 

study by Goldsmith, Moore and Beaudoin (1999), all in the fashion domain. In a 

study of internet shopping habits in Michigan, Blake et al. (2003) found a 

statistically significant positive correlation between education level and DSI, 

while in the fashion domain Goldsmith et al. (1999) found a non-significant 
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positive correlation. The study by Blake et al. (2003) also found a significant 

positive correlation between income and DSI. 

 

The relationships between demographics and innovative behaviour are less 

ambiguous. Age has been found (with statistical significance) to negatively 

correlate with innovative behaviour in Rogers’ (1995/2003) meta-analysis,  a 

study spanning 11 European countries and 50 products (Steenkamp et al. 1999), 

in a study spanning 4 European countries and 301 products (Gielens and 

Steenkamp 2007), in Finland in the mobile telecommunications domain 

(Munnukka 2007), and in the USA in the consumer electronics domain 

(Hirunyawipada and Paswan 2006; Im et al. 2003). Many of the same studies 

found that income is positively correlated with innovative behaviour 

(Hirunyawipada and Paswan 2006; Im et al. 2003; Im et al. 2007; Munnukka 

2007; Rogers 1995/2003). A study investigating the behaviour of extreme sports 

participants in several countries found that both age and income were positively 

correlated with innovative behaviour, though neither was statistically significant 

(Schreier and Prügl 2008). Finally, level of formal education has been found to 

positively correlate with innovative behaviour: by Deutschmann and Fals-Borda 

(1962a; 1962b) in their detailed study of Andean villagers, and by Im, Bayus and 

Mason (Im et al. 2003) in their study on the adoption of consumer electronics in 

the US. 

 

4.5.4.2 Personality traits as predictors of innovativeness 

Personality traits that have been empirically identified as antecedents of innate 

innovativeness include need for stimulation, propensity for novelty (Roehrich 

2004; Vishwanath 2005), desire for uniqueness (Roehrich 2004) (Venkatraman 

and Price 1990; Wood and Swait 2002) , low risk aversion (Shannon and 

Mandhachirara 2008) and market ‘mavenism’ (Goldsmith et al. 2006) – itself a 

construct describing involvement, expertise and information sharing in a 

particular market (Clark et al. 2008). In general, personality traits have been 

shown to be stronger predictors of innate innovativeness than of DSI or 

innovative behaviour (Bartels and Reinders 2011; Vishwanath 2005). However, 

market mavenism has also been shown to correlate with DSI (Goldsmith et al. 
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2003) and innovative behaviour (Feick and Price 1987; Ruvio and Shoham 

2007); and need for uniqueness has been shown to correlate with DSI (Roehrich 

2004).   

 

In his meta-analysis, Rogers (1995/2003) produced a large inventory of 

personality traits which correlated with earlier adoption, i.e. innovative 

behaviour. The inventory is shown in   Table 10.  

 

Table 10. Rogers' inventory of the personality traits of earlier adopters 

Trait described by Rogers Direction of relationship with innovative 

behaviour 

Empathy Positive 

Dogmatism Negative 

Ability to deal with abstraction 

(“ability to adopt new ideas on the basis of 

abstract stimuli e.g. media messages”) 

Positive 

Rationality Positive 

Intelligence Positive 

Favourable attitude to change Positive 

Ability to cope with uncertainty and risk Positive 

Favourable attitude towards 

science/technology 

Positive 

Fatalism/low self-efficacy Negative 

Aspiration 

“with respect to education, status and 

occupation.” 

Positive 

Technical knowledge/skill Positive 

 

 

4.5.4.3 Social circumstances and communication behaviour as predictors of 

innovativeness 

Much of Rogers’ work on the factors affecting relative time of adoption focused 

on social and communication behaviours. Two aspects of an individual’s social 

and communication behaviour have been consistently found to correlate with 

innovativeness: opinion leadership and independence from interpersonal 

influence. A large number of studies have empirically linked opinion leadership 
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to innate innovativeness (Munnukka 2007); and to DSI in the 

computing/consumer electronics domain (Girardi et al. 2005; Goldsmith and 

Hofacker 1991; Shoham and Ruvio 2008; Sun et al. 2006), the fashion domain 

(Goldsmith and Hofacker 1991; Goldsmith et al. 2005; Jordaan and Simpson 

2006), the scent/cologne domain  (Goldsmith and Hofacker 1991), and in a study 

on DSI which allowed respondents to choose their domain of interest (Ruvio and 

Shoham 2007). Opinion leadership has also been identified as a correlate of 

innovative behaviour in several studies (Deutschmann and Fals Borda 1962a; 

Deutschmann and Fals Borda 1962b; Girardi et al. 2005; Hirunyawipada and 

Paswan 2006; Rogers 1995/2003). 

 

The attribute of independence from interpersonal influence has been described 

in terms of low conformity: being “free from the constraints of the local system” 

and having a greater tendency to reject social norms and prejudices (Rogers 

1995/2003), “[low] susceptibility to interpersonal influence (Bartels and 

Reinders 2011), “autonomy in innovative decisions” (Le Louarn 1997)3 and 

“[low] susceptibility to normative influence” (Steenkamp and Gielens 2003). In 

many of these studies independence from interpersonal influence has been 

shown to correlate with innovative behaviour (Bartels and Reinders 2011; 

Rogers 1995/2003; Steenkamp and Gielens 2003), and it was also found by 

Clark and Goldsmith (2006) to correlate with innate innovativeness. However, 

this lack of ‘conformity’ does not mean that innovators are disconnected from 

their social systems.  Rather, Rogers (Rogers 1995/2003) found that earlier 

adopters tended to be highly socially active and interconnected, but that they 

were more likely to have interpersonal networks outside their local social 

system, as well as within it. They are also more likely to engage in information-

seeking behaviour and to make more use of mass media and interpersonal 

communication channels: considered by some researchers to be driven by the 

aforementioned tendency to seek novelty (Roehrich 2004; Venkatraman and 

Price 1990). 

 

                                                        

3 Translated from French by the present author. 
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4.5.4.4 Innate innovativeness as a predictor of DSI and innovative behaviour 

Innate innovativeness has been shown to have a positive correlation with DSI 

(Goldsmith et al. 1995; Hirunyawipada and Paswan 2006). Its relationship with 

innovative behaviour is more ambiguous: while it is positively correlated with 

intention to purchase or use products, it has not been found to have a significant 

influence on actual purchase or use (Bartels and Reinders 2011; Im et al. 2003).  

 

4.5.4.5 DSI as a predictor of innovative behaviour 

DSI has been shown to positively correlate with innovative behaviour with 

statistical significance in a number of studies in different locations and domains 

including internet shopping (Citrin et al. 2000; Hui and Wan 2004), cars (Grewal 

et al. 2000), computers (Grewal et al. 2000), consumer electronics 

(Hirunyawipada and Paswan 2006; Vishwanath 2005) and food (Huotilainen et 

al. 2006). 

  

 Summary  4.5.5

The evidence considered here demonstrates the complexity of ‘innovativeness’ 

as a construct. Innovative behaviour, or relative time of adoption, is an emergent 

property of a host of personality traits, demographic factors and social 

influences; the relative importance of which may differ according to the product 

or service domain considered, or even the study in question. 

 

However, some facets of the nature of innovativeness have been observed 

empirically across a number of domains and studies, and may therefore be 

stated with a degree of confidence. Some key processes are: 

 

 Innate innovativeness predicts DSI (particular evidence for the 

computing/consumer electronics domain). 

 DSI predicts innovative behaviour (particular evidence for the 

computing/consumer electronics domain). 

 Age is negatively correlated with innovative behaviour. 
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 Income and level of education are positively correlated with innovative 

behaviour. 

 

This is not an exhaustive list: as discussed there are also a number of other 

personality traits, social behaviours and demographic variables which interact to 

a greater or lesser extent with innovative behaviour as predictors, mediators, 

moderators or antecedents. 

 Implications for deployment model preferences 4.5.6

Returning to the predictions made by Sauter and Watson (2007) and Fischer 

(2004, 2006), early adoption of microgeneration can be classed either as a 

manifestation of generalised innovative behaviour, or of DSI in the specific 

domain of energy generation technology, or technologies for domestic use. 

Sauter and Watson state that “innovators in the field of micro-generation 

technologies represent a particular group of consumers with high incomes and 

high levels of environmental awareness.” As discussed above, income has been 

shown to correlate with innovative behaviour, while ‘environmental awareness’ 

in this context could refer to DSI in the environmental domain, or a separate 

construct entirely. Fischer also describes a high level of technological interest in 

early adopters of CHP, which could be interpreted as DSI in the technology 

domain. 

 

Neither Sauter and Watson nor Fischer explicitly mention innate innovativeness, 

but they do describe traits which have been shown in other studies to form part 

of the construct: high perceived self-efficacy, and a desire for autonomy 

(independence from interpersonal influence). However, the weak link between 

innate innovativeness and innovative behaviour discussed above suggests that 

DSI is likely to be a more appropriate measure of innovativeness for predicting 

the early adoption of microgeneration. If ‘innovators’ do prefer the plug and play 

model, as Sauter and Watson predict, some predictions about the demographic 

characteristics of people who would likely prefer this model can be made. Given 

the correlations summarised above, they would likely be younger, have higher 

incomes, be more highly educated, be highly autonomous and be ‘opinion 

leaders’. With the exception of age, these are similar to those attributes found to 
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predict adoption of microgeneration discussed in Section 2.5. The complex 

relationships between age, attitude, income and microgeneration adoption were 

also discussed in that section. 

 

An additional issue here is that certain types of householder are also more likely 

to buy certain types of home, and live on certain types of development. The 

significant impact of dwelling and development characteristics on the economic 

feasibility of the different deployment models has been discussed in this chapter, 

and it would be valuable to identify whether any deployment model preferences 

by certain groups of householders align with their likely choice of home.  

 

4.6 Conclusions and future work 

 Conclusions 4.6.1

This chapter has used technoeconomic analysis and a literature synthesis to 

investigate how different microgeneration deployment models – ESCO or plug 

and play – could be applied under different circumstances to overcome 

householders’ reluctance to adopt the technologies on new homes, and improve 

economic outcomes for householders, developers and investors in ESCOs. New 

insights have been gained into the potential role of deployment models in 

increasing the adoption of microgeneration, and opportunities for further study 

have been identified. 

 

The evidence considered here suggests that the judicious use of different 

deployment models has the potential to overcome many of the barriers to 

microgeneration faced by developers and prospective home buyers. However, 

whether a particular deployment model will be suitable for a specific new 

residential development will be determined by a number of interlinked forces, 

some of which may not be in alignment. These are summarised inFigure 23. 
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Figure 23. Summary of factors affecting optimal deployment model for a new development. 

 

 

At this stage, with deployment of microgeneration still relatively low, it is 

difficult to predict whether one deployment model will ultimately become more 

prevalent, or whether both will become more mainstream. From the analysis of 

the factors summarised above, it appears that current trends in new residential 

developments are largely likely to favour the ESCO model. It is predicted 

therefore that if these trends continue (along with developers’ difficulties in 

recouping upfront costs of microgeneration through home prices) ESCO 

arrangements will become increasingly prevalent in new residential 

developments in the UK. This is not certain however, as factors such as reduced 

heat demand on an individual home basis and the current prevalence of the plug 

and play model (particularly for retrofit) are less favourable to the ESCO model. 

 

On sites where it is economically viable, an ESCO arrangement may overcome 

developers’ reluctance to pay for the inclusion of microgeneration on new 

homes, as it provides an income from the sale of energy. If theories around 
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microgeneration adoption and innovativeness are correct, the ESCO model may 

also go some way towards overcoming householders’ reluctance to adopt the 

technologies. Conversely for innovators, the plug and play model may prove 

more appealing.  

 

 Future work 4.6.2

The purpose of this chapter was to investigate further the ideas introduced in 

Chapter 3 about how different deployment models could overcome some of the 

barriers to the inclusion of microgeneration in new homes. This chapter has 

considered a number of different aspects in order to identify areas where more 

detailed study would be beneficial. As a result, some of the themes have not been 

explored in as much detail as possible, and some of the conclusions drawn, while 

supported by existing evidence, would still benefit from more detailed study.  

 

One such topic is the ‘external’ factors affecting deployment models, discussed in 

section 4.3.1 Since the main focus of this chapter and the subsequent one is 

‘internal’ factors, the consideration here was brief, and served mainly to provide 

context for the more detailed discussions which followed. Given that in the time 

elapsed since Provance et al.’s and Watson et al.’s study, the incumbent 

Government has changed, and policies have been introduced or retired, this 

topic would benefit from a more detailed analysis than that contained within this 

thesis. This would likely take the form of policy analysis, technoeconomic 

analysis, and stakeholder interviews, particularly with those involved in setting 

up and running ESCOs in the residential market. 

 

Another area likely to benefit from further study is the prediction that new 

residential developments in the UK will increasingly be suitable for ESCO 

arrangements, due to trends identified in the characteristics of new 

developments and householder tenure. Further study here could focus on the 

details of physical characteristics (such as size, density, mix of dwelling types 

and location) of recent and planned residential developments, to assess the 

technical and economic potential for ESCO arrangements and plug and play 

arrangements in the near future. While this would provide valuable information 
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for stakeholders such as DNOs, new and established microgeneration 

manufacturers and installers, and ESCOs, accessing data on upcoming 

developments may prove difficult as developers are unlikely to share 

economically sensitive details of their operations. 

 

This chapter has outlined the importance of effective marketing to the uptake of 

microgeneration, and the role which different deployment models could play in 

overcoming non-financial consumer concerns about it. The issue of householder 

innovativeness and deployment model preference has therefore been selected as 

an area for further analysis in this thesis. From the analysis of existing studies in 

this chapter, the following research questions and hypotheses have been 

produced, and will be tested in the following chapter. 

 

Which attributes of the different deployment models have the greatest effect on 

householders’ attitudes, and which deployment model (if either) is likely to be more 

popular with people in the UK? 

Hypothesis 1: The following factors will cause householders to prefer the 

plug and play model: 

 A desire for autonomy and control 

 Interest in technology 

Hypothesis 2: The following factors will cause householders to prefer the 

ESCO model: 

 The high upfront cost associated with the plug and play model 

 The ‘hassle factor’ of using and maintaining unfamiliar technology 

 Scepticism about renewable energy 

 Increased availability of living space in the absence of a boiler 

 

Do people’s demographic characteristics or personal attributes affect their 

preferred choice of deployment model, and if so – how? 

Hypothesis 3: DSI will positively correlate with a preference for the plug and 

play model over the ESCO model. 

Hypothesis4: Income will positively correlate with a preference for the plug 

and play model over the ESCO model. 
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Hypothesis 5: Age will negatively correlate with a preference for the plug and 

play model over the ESCO model. 

Hypothesis 7: Level of education will positively correlate with a preference 

for the plug and play model over the ESCO model. 

 

Do consumer groups’ preferences for a specific deployment model align with the 

physical suitability of the types of dwelling they are likely to buy? 

 

In the next chapter of this thesis therefore, a strategy for quantitatively assessing 

the relationships between householder attributes, attitudes and choice of 

deployment model is developed, and the results reported and discussed. 
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5 The effects of householder characteristics and 

attitudes on deployment model preference 

5.1 Chapter overview 

All of the questions identified in Chapter 4 would benefit from further 

investigation. The focus will now be turned to three  particular questions: 

 

Which attributes of the different deployment models have the greatest effect on 

householders’ attitudes, and which deployment model (if either) is likely to be more 

popular with people in the UK? 

 

Do people’s demographic characteristics or personal attributes affect their 

preferred choice of deployment model, and if so – how? 

 

Do consumer groups’ preferences for a specific deployment model align with the 

physical suitability of the types of dwelling they are likely to buy? 

 

These questions have been chosen for investigation because, given the potential 

role of the deployment model in marketing microgeneration to prospective 

home buyers, an empirical investigation of the factors affecting people’s 

preferences will provide valuable information for developers.  Knowing how 

local markets are likely to respond to the different models would allow 

developers to either use this feature of a development as a selling point, or 

identify areas where marketing strategies will need to overcome particular 

reservations. Policy-makers wishing to encourage the uptake of microgeneration 

in new homes will also be able to use this information to inform the design of 

any fiscal incentives or campaigns on this issue. This chapter describes the 

investigation of the questions above. The methods used to collect and analyse 

data are presented in Section 5.2, the results of analysis are presented in Section 

5.3, and Section 5.4 comprises a discussion of the results. The conclusions 

drawn, and potential for future work identified, are presented in Section 5.5. 
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5.2 Method 

 Data collection 5.2.1

In order to draw robust conclusions, an adequate sample size is required. The 

ideal minimum sample size (ss) for this study was calculated using a power 

calculation:  

 

For 95% confidence interval  

 

Confidence interval (c) = 0.05 

Z score1 = 1.96 

p = 0.5 (binary choice, even spread assumption) 

 𝑠𝑠 =  
𝑍2 × 𝑝 ×  (1 − 𝑝)

𝑐2
 

 

𝑠𝑠 = 384.16  

 

For 90% confidence interval 

 

Confidence interval (c) = 0.1 

Z score = 1.645 

p = 0.5 (binary choice, even spread assumption) 

 𝑠𝑠 =  
𝑍2 × 𝑝 ×  (1 − 𝑝)

𝑐2
 

 

𝑠𝑠 = 67.65  

 

 

A questionnaire, rather than focus groups or direct observation, was therefore 

deemed to be the most appropriate data collection method. Questionnaires allow 

the collection of quantitative data, and can be completed by respondents in the 

absence of the researcher, increasing the amount of data that can be collected in 

                                                        

1 Number of standard deviations above the mean. 
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a limited time frame. To ensure an adequate questionnaire response and 

completion rate, a balance had to be struck between parsimony and sufficient 

detail to make results meaningful. This was particularly challenging in light of 

the explanations of microgeneration and the different deployment models 

required for respondents to understand the questions. As a result, decisions had 

to be made regarding which demographic and attitudinal attributes to address in 

this study, as including every dimension of interest would result in an overlong 

questionnaire.  

 

 Pilot 5.2.2

The questionnaire was piloted prior to dissemination. Pilot respondents were 

chosen for their ability to provide detailed feedback. Five females and six males 

of various ages were selected. Half had previous experience with renewable 

energy or renewable energy research, so were able to check technical details. 

Half had no prior experience with renewable energy, so were able to provide 

feedback on whether questions could be understood by non-experts. The pilot 

respondents’ characteristics are shown in 

Table 11. 

 

Table 11. Pilot questionnaire respondent characteristics 

Age range Gender Familiar with renewable energy 

technologies/research 

20 – 30 Female No, but expert in personality testing and 

questionnaire design. 

20 – 30 Female No 

20 – 30 Male No 

30 – 40 Female Yes 

30 – 40 Female Yes 

30 - 40 Male Yes 

30 – 40 Male No 

40 – 50 Male Yes 

40 - 50 Male Yes 

50 – 60 Female No 

50 - 60 Male No 
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The pilot respondents were asked to fill in the questionnaire and answer the 

following questions: 

 How long did it take you to complete the questionnaire? 

 Were all the questions easy to understand? 

 Was it obvious how to answer the questions? 

 Do the choices presented make sense? Was there enough information to 

allow you to choose between them? 

 Were you upset or annoyed by any of the questions?  

 

Changes to the questionnaire script in light of comments from the pilot 

respondents are detailed in the relevant sections below. The full final 

questionnaire script is reproduced in Appendix B. 

 

 Capturing demographic information 5.2.3

As discussed in Section 4.4, the interactions between demographic variables, 

personality traits and social context which give rise to innovative behaviour are 

extremely complex, and in some cases ambiguous. In the interest of parsimony, it 

was decided that demographic factors which have been reliably shown to 

correlate with innovative behaviour would be included: age, level of education 

and income. These have all previously correlated with innovative behaviour 

individually and collectively in previous studies. A question on gender was 

included to assess the representativeness of the sample. 

 

Since income is often considered a sensitive subject in the UK, many 

questionnaires allow respondents to choose from a list of income bands rather 

than entering their exact income. However, in this instance respondents were 

asked for the exact figure. As shown in Figure 24, the distribution of incomes in 

the UK has a positive skew with a long tail. A large percentage of UK incomes fall 

within a fairly narrow range. As a result, banding incomes would result in a very 

large margin of error and excessive ‘smoothing’ of the variation in incomes. Since 

income is one of the research variables, this would negatively affect the 

usefulness of the results. Having bands small enough to reduce this error 

significantly would entail the use of ranges so small as to render the point of 
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them obsolete. In addition, the long tail on the distribution means that a very 

large number of options would then be required to capture the true range of 

incomes, making this question very long and potentially irritating or confusing 

for participants. 

 

A question on other household members was included, asking respondents to 

indicate whether they lived with a partner, other non-spousal adults, children 

over 14 or children under 14. This stratification was  intended to provide the 

means for calculating a measure of equivalised income, based on household 

composition. However, after the dissemination of the questionnaire it became 

apparent that the question on income did not capture total household income in 

cases where occupants did not share finances. The equivalised measure was 

therefore invalid, and was not used in the final analysis. 

  

In order to address the question of how householder preferences for different 

deployment models align with their dwellings’ suitability, a measure of 

urbanisation was desired. This could be achieved using postcodes and a mapping 

tool, but this method would be labour intensive and also highly subjective since 

assessments would need to be made visually. An existing open-source consumer 

segmentation system was therefore used: the MOSAIC UK tool published by 

Experian. MOSAIC UK was selected because it assigns an urbanisation ranking 

(from 1 – 15) using only a postcode (requiring only one question) and is free to 

use, subject to the disclaimer detailed in Appendix C. A drawback of this method 

is that the resolution of the data used by Experian is not specified. However since 

GIS resources were not available, this method was judged to be the most suitable 

alternative.  
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Figure 24. Distribution of equivalised net incomes in the UK, 2009 – 2010 

Source: Institute for Fiscal Studies (2011)   

 

 

 Capturing deployment model preferences 5.2.4

To elicit a stated preference from respondents for either the ESCO model or the 

plug and play model, two hypothetical scenarios were presented. Respondents 

indicated their choice of deployment model using a five point Likert scale. This 

allowed measurement of the direction and strength of preference, and included 

an option for no preference. To avoid any premature judgements by respondents, 

the scenarios were not given descriptive names, but called ‘Option 1’ (the plug 

and play option) and ‘Option 2’ (the ESCO option). 

 

The scenarios were constructed to be as representative as possible of a ‘real 

world’ choice. This meant that judgements had to be made about how much 

information prospective homes buyers would receive, and what a ‘typical’ 

arrangement would include in terms of technology, contract scope and financing. 

The two scenarios also had to adequately represent the significant differences 

between the two types of deployment model. As a result, the scenarios 

represented opposite ends of a spectrum of choices, rather than every possible 

option available. 
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5.2.4.1 Technology 

An explanation for the choice of CHP and solar PV as the generating technologies 

is given in Section 4.2.2. For the ESCO model, a district heating scenario was 

described (as opposed to household level CHP units in a microgrid), with the 

plug and play model described as having an individually operated unit in each 

household. These are not the only arrangements available, but represent the two 

‘extremes’ of the options, making the choice between the two more explicit. It 

also allowed assessment of respondents’ attitudes to sharing energy generation 

technologies. 

 

5.2.4.2 Contract scope 

The aforementioned strategy of creating scenarios which emphasised the 

differences between the two types of deployment model extended to the 

description of the contract scope. For the ESCO scenario, an ESC arrangement  

was described, with the ESCO owning the microgeneration, and having full 

control over operation and maintenance as long as they provided the 

contractually agreed service to the householder. The householder would not be 

able to switch contracts. The only involvement by the householder was in having 

solar panels on the roof, and a thermostat in their home. In the plug and play 

scenario, the householder was described as taking full responsibility for the 

operation and maintenance of the technologies.  

 

5.2.4.3 Financing 

Costs, savings and income for the scenarios were calculated as follows. Only 

costs and benefits for the householder(s) were stated, as costs to the developers 

and the ESCO would not factor into a home buyer’s decision. 

 

FIT income 

For the ESCO scenario, it was assumed that the ESCO retained 100% of FIT 

income to offset the capital and operating costs of the technologies and 

transaction costs. For the plug and play model, it was assumed that the 

householder would receive 100% of the available FIT income. Annual 
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householder income for the plug and play scenario for both technologies was 

calculated as £1043 using figures from the Energy Saving Trust’s ‘Cashback 

Calculator’ tool (Energy Saving Trust 2013b). The parameters entered into the 

tool are the same as those used by the Zero Carbon Hub for a ‘reference’ semi-

detached or end terrace house (Zero Carbon Hub 2011), assuming a build date in 

2013. Parameters for a semi-detached house were used as approximately equal 

numbers of terraced, semi-detached and detached houses are built each year 

(see Figure 13) and semi-detached therefore represents the ‘midpoint’ for 

energy consumption, efficiency and size. The Energy Saving Trust tool was used 

as it is freely available, and is the type of source which prospective buyers may 

be directed to if seeking information on energy. This therefore helps to fulfil the 

aim of presenting a plausible choice for respondents.  

 

Bill savings 

For the ESCO scenario, it was assumed that energy efficiency savings accrued to 

the ESCO, since they are fully responsible for energy generation. However, to 

ensure some benefit to the householder, it was assumed that the ESCO would sell 

gas and electricity to householders at 90% of the UK average direct debit tariff. 

The tariff information was taken from a website which aggregates price 

information from the major UK energy suppliers (Confusedaboutenergy.co.uk 

2013). This is in line with the usual ESCO requirement to ensure competitive 

energy prices for their customers, discussed in Section 2.6.2. Using the fuel 

consumption figures from the Zero Carbon Hub for a semi-detached or end 

terrace house resulted in an annual saving of £145. The bill savings for the plug 

and play model were included in the FIT income figures obtained from the 

Energy Saving Trust tool stated above. 

 

Capital costs 

For the ESCO scenario it was assumed that the ESCO would cover 100% of the 

marginal capital cost of including the generation technologies in a new home.  

This allows for a situation wherein the developer sets up its own ESCO 

operations, and there is therefore no cost sharing between developers and 

ESCOs. For householders under the plug and play scenario, installed costs tend 

to be very variable, but reported average marginal costs of the technologies and 
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their installation were found to be £7,000 for a solar PV installation (Energy 

Saving Trust 2013f) and £3,000 for CHP (Baxi 2012), for a total marginal capital 

cost of £10,000. 

 

Operating costs 

For the ESCO scenario it was assumed that the ESCO would cover the operating 

costs of the technologies. For the plug and play scenario, it was stated that the 

technologies would need to be serviced, but costs were not specified. CHP units 

cost roughly the same to service as conventional condensing boilers (Baxi 2012), 

therefore the marginal cost should be close to zero. Solar panels require cleaning 

only, and respondents were informed that they could undertake this task 

themselves, or pay someone to do it. Since the cost of commercial cleaning is so 

variable, a representative cost was not included as the risk of inaccuracy biasing 

results was too high. 

 

ESCO fee 

With the exception of ‘rent a roof’ schemes, which do not fall under the ESC 

arrangement assumed here, there are currently very few ESCOs in the UK which 

serve domestic properties, and prices are variable depending on the level of 

service agreed upon in the contract. There was therefore insufficient information 

available to calculate a ‘typical’ ESCO fee which might be levied on homeowners. 

Given the modest annual savings calculated for the ESCO scenario, a heuristic 

value of £10 per month was included to represent the situation of paying 

monthly for ESCO services. There is no ESCO involvement in the plug and play 

scenario therefore no fee.  

 

The calculated costs and savings for the two scenarios are summarised in Table 

12. In summary, Option 1 requires the householder to pay the upfront cost of the 

technology, which they then recoup through the use of free electricity from the 

PV (saving on energy bills) and FIT payments. There is no ESCO involvement. 

Option 2 requires no upfront payment from the householder: they do not receive 

FIT payments and pay a monthly fee, but do benefit from a 10% discount on 

their energy bills. The ESCO pays the upfront cost of the technology, which they 

then recoup through FIT payments and the monthly fees paid by householders. 
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Table 12. Summary of scenario options 

Option Cost Savings 

1 £10,000 one off  capital cost £1043 per year 

2 £10 per month £145 per year 

 

The scenarios and the Likert scale were presented twice. The first time, no 

financial information was included, and respondents were told to assume that 

the cost was exactly the same as buying a new house with conventional energy 

technologies. The second time, cost, savings and income figures were included 

and respondents were asked to make the choice again in light of the additional 

information. The aim of this was to gauge the importance of economic factors in 

people’s decision, relative to other factors. 

 

 Characterising the factors influencing preferences 5.2.5

Potentially attractive or unattractive features of the different deployment 

models for householders were discussed in Section 4.4. From the review there, 

the main features were identified and statements formulated to describe them. 

Questionnaire respondents were asked to choose a number from one to five (1 = 

very important, 5 = very unimportant) to show how important each statement 

was when making their choice between the two options. The statements and the 

reasons for their inclusion are shown in  Table 13. 

 

An optional textbox was provided in the questionnaire for respondents to add 

any other factors they had considered which may have been omitted. 
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Table 13. Questionnaire statements on reasons for deployment model preference. 

Feature Sources Statement(s) 

ESCO model could overcome 

consumer distrust of new 

technologies by protecting 

them from the financial 

risks of investment. 

Boait (2009) 

Sauter and 

Watson (2007) 

Watson et al. 

(2008) 

“I’m sceptical about newer energy 

technologies: I’d prefer not to invest my own 

money in them” 

 

 

Ability of companies to 

supply upfront capital in an 

ESCO model could overcome 

consumer aversion to 

upfront cost. 

Sauter and 

Watson (2007) 

“I would prefer to spread the cost of the 

energy technologies over monthly payments 

rather than pay the full cost upfront” 

ESCO model could overcome 

consumer reservations 

about using decentralised 

generation technologies by 

removing the ‘hassle factor’ 

of installation, operation 

and maintenance. 

Energy Saving 

Trust (Energy 

Saving Trust 

2011b) 

Watson et al. 

(2008) 

“I would prefer not to have the effort involved 

in maintaining my own energy generation 

technologies” 

 

Potential to increase living 

space by employing district 

heating, removing the need 

to have a boiler in the home. 

Caird and Roy 

(2010), Energy 

Saving Trust 

(2011a) 

“Not having a boiler in the home increases the 

space available for me to use (e.g. more 

kitchen cabinet space)” 

Desire for 

ownership/reluctance to 

relinquish control. 

Steinberger et 

al. (2009) 

White et al. 

(1999) 

“I would prefer to own my own energy 

generation technologies rather than have a 

company own them” 

 

“I don't like the idea of sharing my boiler with 

other people” 

 

“I would prefer to own my own energy 

generation technologies rather than have a 

company own them” 

Lack of information and 

understanding about the 

technologies, or conversely 

technological interest. 

Fischer (2004, 

2006) 

Watson et al. 

(2006) 

 

“I'd be worried about using newer energy 

technologies myself: I'd rather have an expert 

do it” 
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 Measuring innovativeness 5.2.6

A measure of innovative behaviour was not included in the questionnaire for 

two reasons. Firstly, the aim is not to investigate whether innovative behaviour 

predicts preference for one deployment model over another, but rather whether 

a preference for the plug and play model can be considered a form of innovative 

behaviour: seen in those whose traits predispose them towards innovativeness, 

and who may have engaged in innovative behaviour in other areas. Secondly, the 

techniques available to measure innovative behaviour are not suitable in this 

case. The cross-sectional methods described in Section 4.5.1 have been criticised 

for relying on sometimes arbitrary lists of items which are formulated by 

individual researchers (Goldsmith and Hofacker 1991).  The unique nature of 

microgeneration – it does not easily fit into a genre such as ‘consumer 

electronics’ – would also make producing a list of products prohibitively difficult. 

The relative time of adoption technique is a post hoc method and is only effective 

when an innovation has been widely adopted within a social system, which is not 

the case for microgeneration.  

 

Instead therefore, a measure of DSI was included. As discussed in Section 4.5.3, 

DSI can describe innovativeness in a particular domain more effectively than 

global measures of innate innovativeness or innovative behaviour. It has also 

been shown to be a strong predictor of innovative behaviour (stronger than 

innate innovativeness), both individually and collectively along with the 

demographic factors also measured in this questionnaire. DSI was measured 

using Goldsmith and Hofacker’s scale, developed in 1991. The scale consists of 

the six items shown in Figure 25, with respondents choosing from a five point 

agree/disagree Likert scale for each. 
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 Figure 25. Goldsmith and Hofacker's Domain Specific Innovativeness Scale 

1. In general, I am among the first (last) in my circle of friends to buy 

a new                    when it appears. 

 

2. If I heard that a new                   was available in the store, I would 

(not) be interested enough to buy it. 

 

3. Compared to my friends I own a few of (a lot of)                 . 

 

4. In general, I am the last (first) in my circle of friends to know the 

titles/brands of the latest                  . 

 

5. I will not (I will) buy a new                   if I haven’t heard/tried it yet. 

 

6. I (do not) like to buy                   before other people do. 

 

 

Two versions of the scale were validated by Goldsmith and Hofacker (Goldsmith 

and Hofacker 1991): version one in which items 1, 3 and 4 are negatively 

worded and scored, and version two in which items 2, 5 and 6 are negatively 

worded and scored. Version two was used for this questionnaire. For item 5, the 

‘tried’ wording option was used rather than ‘heard’, as the latter applies to 

questionnaires on music. Feedback from several pilot respondents was that item 

5 would be more easily understood if worded as “I will not buy a new                   if 

I haven't been able to try it first”. As this does not change the meaning of the item, 

the scale used in the questionnaire used the new suggested wording. The order 

of the items was randomised for each respondent to avoid question order bias. 

 

Goldsmith and Hofacker’s scale was chosen for reasons of parsimony and 

validity. Comprising only six items, the scale is considerably shorter than other 

similar scales, such as Manning, Bearden and Madden’s 1995 Consumer 

Innovativeness scale which has 14 items and two dimensions, or Leavitt and 

Walton’s 1975 Openness of Information Processing scale which has 24 items. A 

shorter scale was preferred to reduce respondent fatigue and attrition rates. 
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Construct validity has been demonstrated, and the chosen scale has been found 

to be reliable, unidimensional,  and to have nomological validity in several 

studies, as shown in Table 14. International validity has been shown in the US, 

Canada and France, though internal reliability failed in Israel (Nyeck et al. 1996). 

The scale had not previously been used in the UK, therefore this study 

incidentally serves as an internal validity test for Goldsmith and Hofacker’s scale 

in the UK. However, validation in other Western countries suggested that the 

scale would also be suitable for use in the UK.  

 

The only validated way to measure opinion leadership is by using a construct 

scale consisting of several questions. Since two versions of the DSI scale were 

included in the questionnaire, it was judged that adding another scale would 

increase respondent fatigue and attrition, so opinion leadership was not 

measured in this study.   
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Table 14. Validation of Goldsmith and Hofacker's (1991) measure of DSI 

Study Sample(s) Country Domain Reliability Construct validity Nomological validity Unidimensional 

Goldsmith 

& 

Hofacker 

(1991) 

146 men, 129 

women, mean 

age = 21.5 

years 

(students) 

US Rock 

music 

Yes 

 

Alpha 

coefficient = 

0.83 

 

Correlation 

between 

positively and 

negatively 

scored items =  

-0.67 

(p<0.001) 

Scale positively correlated 

(p=0.001) with six criterion 

measures: 

 Awareness of eight selected 

records. 

 Purchase of eight selected 

records. 

 Reading and subscribing to 

rock music magazines. 

 Number of record store 

visits. 

 Listening to rock music ‘Top 

40’ chart. 

 Watching MTV. 

Scale positively 

correlated (p=0.001) with 

King and Summers 

(1970) opinion 

leadership scale. 

Yes 
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97 women, 

mean age = 

22.1 

(students) 

US Fashion Yes 

 

Alpha 

coefficient = 

0.82 

 

Correlation 

between 

positively and 

negatively 

scored items =  

-0.70 

(p<0.001) 

Scale positively correlated 

(p=0.001) with the six criterion 

measures above. 

Scale positively 

correlated (p=0.001) with 

King and Summers 

(1970) opinion 

leadership scale. 

Yes 

225 men, 237 

women,(age 

range 24 – 60 

US Fashion Yes 

 

Alpha 

Correlation with sum of new 

fashions owned = 0.41 

(p=0.001) 

- Yes 
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coefficient = 

0.79 

 

225 men, 237 

women, age 

range 24 – 60 

US Electronic 

equipment 

Yes 

 

Alpha 

coefficient = 

0.81 

Correlation with sum of new 

electronic products owned = 

0.46 (p not given) 

- Yes 

Goldsmith 

& Flynn 

(1992) 

135 women, 

age range 20 – 

77, mean age = 

39.1 

US Fashion Yes 

 

Alpha 

coefficient = 

0.73 

- - - 

Flynn & 

Goldsmith 

(1993a) 

98 women, 82 

men, age 

range 21 – 80, 

US Holidays Yes 

 

Alpha 

- - Yes 
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mean age = 

48.3 

coefficient = 

0.79 

Flynn & 

Goldsmith 

(1993b) 

129 men, 118 

women, age 

range 19 – 27, 

mean age = 21 

(business 

undergraduate 

students) 

US Rock 

music 

Yes 

 

Alpha 

coefficient = 

0.84 

 

Correlation 

between 

positively and 

negatively 

scored items =  

-0.72 (p not 

given) 

Scale positively correlated with 

a three item perceived product 

knowledge scale adapted from 

Beatty and Smith (1987) and 

Ventakraman (1990), two item-

matching tests measuring actual 

product knowledge, a 

generalised measure of item 

search behaviour adapted from 

Beatty and Smith (1987), 

monthly amount spent on rock 

records and estimated weekly 

time spent listening to rock 

music. 

Scale positively 

correlated with purified 

(three item) King and 

Summers (1970) opinion 

leadership scale as 

revised by Childers 

(1986) and Zaichowsky’s 

(1987) revised Personal 

Involvement Inventory.  

Yes 
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Nyeck et 

al. (1996) 

275 university 

students: 53% 

male, mean 

age 21.5 

France Cinema Yes 

 

Alpha 

coefficient = 

0.7 

Correlation with measure of 

frequency of cinema visits = 

0.427 (p<0.0001)- 

Strong positive 

correlation between scale 

and measures of:  

 Tendency to seek out 

new and unknown 

sensations. 

 Variety seeking. 

 

Weak positive correlation 

between scale and 

measure of ‘openness’. 

Yes 

268 university 

students: 51% 

male, mean 

age 24 

Canada Cinema Yes 

 

Alpha 

coefficient = 

0.77 

Correlation with measure of 

frequency of cinema visits = 

0.375 (p<0.0001) 

Strong positive 

correlation between scale 

and measures of tendency 

to seek out new and 

unknown sensations. 

Yes 
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Weak positive correlation 

between scale and 

measure of ‘openness’. 

 

Correlation between scale 

and measure of variety 

seeking was not 

significant. 

296 university 

students: 60% 

male, mean 

age 23.8 

Israel Cinema No 

 

Alpha 

coefficient = 

0.634 

- - Unconfirmed 
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An additional consideration in using the DSI scale was the chosen domain of 

interest. Since the questionnaire is about hypothetical decisions to do with 

microgeneration, and few if any of the respondents were likely to already own or 

use microgeneration technologies, applying to the scale specifically to 

microgeneration was inappropriate. A judgement therefore had to be made 

about the domain in which consumer innovativeness was likely to have an 

impact on attitudes to microgeneration. From a review of existing literature, it is 

apparent that microgeneration is nearly always framed in terms of a 

‘technological innovation’, a ‘green innovation’ or both – the two are not 

mutually exclusive. In an investigation into resistance to innovation in Northern 

Ireland, Claudy et al. (2010b; 2010c) describe microgeneration as a green 

innovation and “[an] innovation which help[s] promote ‘green values’”. Similarly, 

Watson et al. (2006) and Fischer (2004) suggest that early adopters of 

microgeneration technologies may do so as an outward expression of green 

values. The Zero Carbon Hub’s (Zero Carbon Hub) document on marketing 

strategy also focuses heavily on perceptions of microgeneration as sustainable 

‘green’ technologies. Elsewhere, microgeneration is framed more as a cluster of 

complex technologies: Boait (2009) for example, emphasises consumer distrust 

of ‘new technologies’ in general as a possible reason for resistance to adoption; 

and Watson (2004) characterises likely early adopters as people with high levels 

of technical knowledge.    

 

In light of this, two versions of Goldsmith and Hofacker’s scale were included in 

the questionnaire: one measuring innovativeness in the consumer electronics 

domain and one measuring it in the ‘green products’ domain. Consumer 

electronics was chosen as a proxy for ‘technology’ as it provided a sufficiently 

narrow focus, and met the criteria of being available and not prohibitively 

expensive for the majority of consumers (Flynn and Goldsmith 1993b). When 

completing the DSI scale, respondents were told to “think about products that 

are relevant to YOU and your interests”. This was included to ensure that 

participants did not have difficulty generalising about what could be two very 

wide ranges of products, and that they responded according to their preferences 

rather than their financial means: one of the conditions for the use of the scale as 

recommended by Flynn and Goldsmith (1993b). 
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 Dissemination 5.2.7

Two versions of the questionnaire were disseminated: a web-based version and 

a hard copy. The web version was initially sent to appropriate professional and 

personal contacts, along with a request to pass the link onto anyone who might 

be willing to complete it – a form of ‘snowball’ sampling. Colleagues in the field 

of renewable energy were asked to pass on the link without completing the 

questionnaire themselves, to avoid gaining a sample with unusually high 

technical and environmental knowledge. The link was also displayed on posters 

around the university, and disseminated to a patient focus group affiliated with 

the university. The group has a diverse membership, with the only common 

characteristics being chronic illness and residence in or near Leeds. 

 

 Hard copies were also produced to avoid excluding people without access to a 

computer or the internet: people who may well represent the less ‘innovative’ 

portion of the sample in some cases. Hard copies were given to members of three 

groups: an art club in North London (primarily adult female membership, 

resident in or near North London), a walking group in rural Bedfordshire 

(primarily elderly village residents) and a freemasonry group in Central London 

(all male membership, most over 35). 
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 Statistical analysis 5.2.8

 

Table 15 shows the variables used in the analysis and their descriptions. 

 

Table 15. List of variable names and descriptions 

Variable name Description Format/coding 

Age Age in years Positive integer 

Gender Gender 1 = Female 

0 = Male 

Missing = Other/Prefer not to say 

Income Net monthly income in British 

Pounds Sterling (£). 

Positive integer 

Education Highest level of respondent’s 

education. 

1 = School to age 16 or younger 

2 = GCSEs or equivalent 

3 = A levels or equivalent 

4 = Bachelor’s degree 

5 = Master’s degree 

6 = Doctoral degree 

Urbanisation Ranked variable computed 

using Experian Mosaic 

urbanisation ranking for 

postcode given by respondent 

1 = Most urbanised 

15 = Least urbanised 

NC Choice Choice made between Option 

1 and Option 2 on five point 

scale in the absence of cost 

information. 

1 = Strongly prefer Option 1 

2 = Slightly prefer Option 1 

3 = No preference either way 

4 = Slightly prefer Option 2 

5 = Strongly prefer Option 2 

C Choice Choice made between Option 

1 and Option 2 on five point 

scale with cost information. 

1 = Strongly prefer Option 1 

2 = Slightly prefer Option 1 

3 = No preference either way 

4 = Slightly prefer Option 2 

5 = Strongly prefer Option 2 

Dichotomised NC 

Choice 

NC Choice recoded as a 

dichotomous categorical 

variable 

0 = Either strongly or slightly prefer 

Option 1 

1 = Either strongly or slightly prefer 

Option 2 

Missing = No preference either way 

Dichotomised C 

Choice 

C Choice recoded as a 

dichotomous categorical 

0 = Either strongly or slightly prefer 

Option 1 
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variable 1 = Either strongly or slightly prefer 

Option 2 

Missing = No preference either way 

Sceptic* “I'm sceptical about newer 

energy technologies: I'd prefer 

not to invest my own money 

in them” 

1 = Extremely unimportant 

5 = Extremely important 

Own* “I would prefer to own my 

own energy generation 

technologies rather than have 

a company own them” 

1 = Extremely unimportant 

5 = Extremely important 

Effort* “I would prefer not to have the 

effort involved in maintaining 

my own energy generation 

technologies” 

1 = Extremely unimportant 

5 = Extremely important 

Using* “I'd be worried about using 

newer energy technologies 

myself: I'd rather have an 

expert do it” 

1 = Extremely unimportant 

5 = Extremely important 

Spread* “I would prefer to spread the 

cost of the energy 

technologies over monthly 

payments rather than pay the 

full cost upfront” 

1 = Extremely unimportant 

5 = Extremely important 

Control* “I want to have control over 

how my energy generation 

technologies operate” 

1 = Extremely unimportant 

5 = Extremely important 

Space* “Not having a boiler in the 

home increases the space 

available for me to use (e.g. 

more kitchen cabinet space)” 

1 = Extremely unimportant 

5 = Extremely important 

Share* “I don't like the idea of sharing 

my boiler with other people” 

1 = Extremely unimportant 

5 = Extremely important 

GreenDSI Sum of the six items on the 

DSI scale for ‘Green Products’ 

Min = 6 

Max = 30 

TechDSI Sum of the six items on the 

DSI scale for ‘Household 

Technologies’ 

Min = 6 

Max = 30 

Demographic 

variables 

Collective term for Income, 

Age, Gender, Education, 
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Urbanisation and Children. 

Reason variables Collective term for Sceptic, 

Own, Effort, Using, Spread, 

Control, Space and Share. 

 

DSI scores Collective term for GreenDSI 

and TechDSI. 

 

Choices Collective term for 

Dichotomised NC Choice and 

Dichotomised C Choice 

 

* All Reason variables were recoded to be negatively scored for the analysis. 

 

Asterisks next to test statistics: 

* = Significant at p < 0.05 (i.e. less than 5% probability of the result occurring 

when the null hypothesis is true) 

** = Significant at p < 0.01 (i.e. less than 1% probability of the result occurring 

when the null hypothesis is true) 

 

*** = Significant at p < 0.001 (i.e. less than 0.1% probability of the result 

occurring when the null hypothesis is true) 

 

Significance values in italics refer to one-tailed significance. All other significance 

values are two-tailed1. 

 

The statistical analysis presented here was carried out using IBM SPSS Version 

21. Where manual calculations were used, this is indicated in the text. The 

parametric statistical tests used in this analysis assume a normal distribution of 

sample means. This can be assumed if the collected data are normally 

distributed, and some of the variables in this dataset are not. However for 

sample sizes over 200, the consensus is that parametric tests are robust even if 

the data are not normally distributed, and a normal sampling distribution can be 

assumed in these cases (Fagerland 2012; Field 2009a). In addition, Central Limit 

Theorem states that when group (bin) size exceeds 10 (as it does in cases here 

                                                        

1 One-tailed significance is used when there is a directional hypothesis in place 
(i.e. the ‘direction’ of the effect has been predicted). 
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where the data are not normally distributed), the means will be approximately 

normally distributed regardless of the distribution of the data. As a result, a 

normal sampling distribution was assumed for all variables in this dataset. 

 

The treatment of Likert scales as interval data for the purposes of statistical 

analysis is contentious, with ongoing debate and arguments made both for and 

against. The issues relevant to this dataset are: 

 Debate is ongoing over whether Likert scales should be treated as ordinal 

or interval: see for example Jamieson (2004) and the response from 

Carifio and Perla (2007).  

 However, Norman (2010) inter alia states that although a Likert question 

is ordinal, Likert scales, consisting of sums across items, are interval. 

 Parametric tests that compare means and central tendency (e.g. the t-

test) are sufficiently robust to be effective even when the assumption of 

interval data is violated (Norman 2010). 

 Using non-parametric tests reduces statistical power in some cases, 

increasing the risk of overlooking significant results. 

 

Given the arguments outlined above regarding assumptions of normality and the 

use of Likert scales as interval data, the following decisions were made regarding 

their use: 

 

 The two DSI scales were treated as interval data for the purposes of 

statistical analysis. 

 The five point preference scales could not be treated as interval data as 

they do not measure ‘most to least’, but rather a dichotomous choice 

(Option 1 or Option 1). The five point scales were reported descriptively. 

For the purpose of correlations and regression analysis they were 

recoded into the dichotomous categorical variables ‘Dichotomised NC 

Choice’ and ‘Dichotomised C Choice’. Only 8.9% of the sample for NC 

Choice and 4.8% of the sample for C Choice expressed no preference, and 

were recoded as missing values.  
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However, it is argued that the difference between the two preference scales can 

be treated as interval, as it is a measure of change and arguably qualifies as a 

‘sum of ranks’ measure (c.f. Norman, 2010). The t-test, which as discussed is 

robust for large samples even when the interval assumption is violated, was 

therefore used to assess the difference in responses using the five point scales. 

However as this is a contentious area, in the interest of thoroughness a non-

parametric test (Wilcoxon signed-rank) was also conducted. 

 

5.3 Results 

 Data quality control 5.3.1

5.3.1.1 Sample characteristics, validity and quality control 

316 questionnaire responses were returned, 280 online and 36 by post. 

Incomplete online responses were automatically rejected by the collection 

system. One postal response was unusable as the respondent had not ticked to 

consent to the use of their data, bringing the total number of responses to 315. 

This exceeded the minimum of 68 responses for a 90% confidence interval 

calculated in Section 5.2.1.  

 

Prior to statistical analysis, boxplots were produced to check for outlying data 

points. In one case, a single item from the TechDSI scale was missing, and the 

scale is not valid with missing items. Since the sample size was sufficiently large, 

the TechDSI score was deleted from this case, rather than imputed (which can 

introduce inaccuracy). 

 

Sample characteristics compared with the reference population are shown in 

Table 16. Where available, the most relevant table from the 2011 Census was 

used as the reference. Gender balance and mean income were fairly well 

matched with the reference population, but the sample population was younger, 

less likely to have children at home, and more highly educated than the reference 

population. These differences must be borne in mind when interpreting the 

results: if demographic factors have a significant effect on preferences, then the 
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percentage of respondents preferring a particular deployment model is likely to 

differ somewhat from the population as a whole. 

 

Table 16. Descriptive statistics on sample and reference population 

Variable Sample Reference population 

Age1 𝑥 37.87 

SD 16.3 

𝜇  47.7 

SD  18.7 

Income2 

 

𝑥 £2,123.68 

SD £1,477.82 

𝜇  £2,608 

SD not available 

Gender3   Male 44.3% 

Female 55.7% 

Male   49.1%  

Female  50.9%  

Education4 No qualifications  5.1% 

GCSEs or A levels  25.2% 

BSc or higher  69.7% 

No qualifications  2.01% 

GCSEs or A levels  47.14% 

BSc or higher  28.85% 

Presence of children in 

household5 

14.0% 29.1% 

1 Reference population = population of England and Wales aged 18 – 99 (inclusive) on census day 27th March 2011 

(Office for National Statistics) 

2 Reference population = all UK households, 2011/2012 (Office for National Statistics 2013) 

3 Reference population = entire population of UK on census day 27th March 2011 (Office for National Statistics) 

4 Reference population = population of England and Wales aged 16 or over on census day 27th March 2011 (Office for 

National Statistics) 

5 Reference population = all households in England and Wales on census day 27th March 2011 (Office for National 

Statistics) 

 

 

5.3.1.2 Validity of DSI scales 

As previously discussed, the internal validity of the DSI scale can be measured 

using Cronbach’s α. This is a measure of internal consistency of the items in a 

scale, to check that they are all measuring the same construct. Cronbach’s α 

scores greater than 0.70 are considered to show good internal validity. 

Cronbach’s α was 0.71 for GreenDSI and 0.78 for TechDSI. 

 

This is the first demonstration of the internal validity of this scale in this domain 

in the UK, adding to the evidence base for its use as discussed in Section 5.2.6. 
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 Descriptive statistics 5.3.2

5.3.2.1 Choice of deployment model 

 

Figure 26. Frequency of choices (five point scale) 

 

 

Figure 27. Frequency of choices (three point scale) 

 

 

In both cases, people’s choices were split between the two deployment options. 

If cost were not an issue, 48% of the sample would prefer Option 2, 43% would 
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expressed about Option 1, with 54% of those choosing Option 1 ‘strongly’ 

preferring Option 1, while 29% of those choosing Option 2 ‘strongly’ preferred it. 

 

When the cost information was presented, there was still a split but the majority 

– 66% of the sample -  now preferred Option 1, 29% preferred Option 2, and 5% 

had no preference. There was an almost even split for Option 1 between those 

‘strongly’ preferring it and those ‘slightly’ preferring it. For Option 2, 74% 

‘slightly’ preferred it.  

 

5.3.2.2 Attitudes affecting the choice 

 

Respondents reported the importance of different reasons for their choices on a 

five point Likert scale. In the questionnaire, 1 = very important and 5 = very 

unimportant. For the analysis, the scores were inverted so that 5 = very 

important and 1 = very unimportant, i.e. the higher the score, the greater the 

importance. The mean score for each reason is shown in Figure 28. 

 

Figure 28. Mean scores of factors considered in respondent choice 

  

 

The Control and Own reasons ranked highest on average, and the Sceptic reason 

ranked lowest on average. In particular, Sceptic scored lower than the 2.5 out of 

5, showing that on average respondents considered it to be unimportant. A 
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clearer picture of the variation within and between the scores can be seen in 

Figure 29.  

 

5.3.2.3 Additional reasons given 

61 respondents (19% of the sample) gave additional reasons for their choices in 

the optional text box in the survey. The responses are shown in Table 17. Some 

of the responses were already covered by the rating scale: for example, “…due to 

the current economic situation, I cannot afford a large upfront fee”, is arguably 

covered by the Spread variable.  However, the additional detail provided by 

respondents shows some of the nuances of their decision making processes, and 

it may be that the choice to repeat or expand upon a reason already given reveals 

its importance in the mind of the respondent. 

 

Since the question was optional, the responses come from a self-selected sample 

within the wider sample; and the answer format was not standardised. As a 

result, the responses should not be generalised to the population as a whole, or 

even to this sample as a whole. However, to provide some qualitative insights 

into the responses, the answers were analysed using the same inductive 

thematic approach used in Chapter 3. The results of this analysis are shown in 

Table 18. The frequencies in Table 18 do not add up to 61, as some responses 

contained more than one statement or reason. 
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Figure 29. Histograms of scores for each Reason variable    
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Table 17. Text entered in the 'other reasons' box 

Age Gender NC Choice C Choice Reason given (verbatim) 

21 Female 1 1 If there's any outage for the company I have to wait for them to dispatch somebody and everybody is without 

heating/electricity. I'd rather not be too dependent on them. Furthermore, in the long term I'd make the 

investment back more easily whereas I'd cost me more to pay the company to service it. 

21 Not 

given 

1 2 If the grid goes down, I still have my own means of power generation 

22 Female 2 2 More efficient to have a larger system shared between a community. 

22 Male 2 2 If there are more people using a CHP the system will have to be large resulting in a better efficiency of 

equipment 

22 Male 2 1 I like the idea of sharing energy needs across a neighbourhood community 

23 Female 2 1 Maintenance quality and frequency provided by the company plays into account. If they are good and efficient 

then everything would run smoothly and a shared unit would be fine. However, if there was a problem, then 

someone needs to call the services and who then takes responsibility? 

23 Female 2 1 Cost vs. return over time (if it is generating money rather than costing it) 

24 Female 2 1 The savings don't seem as good in option 2 

24 Male 2 2 Insurance purposes (e.g. breakdowns) 

24 Female 1 2 For the own your own technology option, it would make the deposit required & overall mortgage amount 
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needed to buy a house more expensive as the price would increase for the house. If money were no object, I 

would find the owning your own option & getting more revenue back a year more appealing, but due to the 

current economic situation, I cannot afford a large upfront fee 

24 Female 2 1 Energy savings/income generated from energy created when owning this technology is very attractive to me. 

25 Male 1 1 Work for [redacted: one of the ‘Big Six’ energy companies] in their CHP and renewable division. Strongly believe 

that power should be generated and held on a micro site level, owned and operated by individual operators. 

benefits would be greater than stated. 

25 Male 1 1 Not wanting to work with a private company.  Co-operatively owned/organised/maintained I would much 

prefer the more community based approach. 

25 Male 1 1 Not being able to control prices set by external company, and not being able to switch, puts me off an external 

company running the boiler. 

25 Male No 

preference 

1 In the long term you make significantly more savings by owning the system. 

25 Male 1 1 If the price of my home would be higher this will also boost its resale value AND the increased mortgage cost 

would be offset by the extra money from the feed-in tariff. 

25 Female 1 1 If I was to sell the house it would be easier to take them off/upgrade them etc. if I wished 

25 Female 1 1 I wouldn't trust the stability of prices if an energy company operated the renewable energy units. At the moment 

I live in an unconventional home, where renewable energy through solar panels is something I already have, the 
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prospect of cleaning and maintain renewable energy units, therefore doesn't worry me. I have more faith in my 

ability to maintain the systems and make repairs quickly than a larger corporation operating a system for a 

neighbourhood. 

25 Not 

given 

2 1 After ten years, I'll have paid off the extra costs for having the boiler in my house and will make an extra 

1000/month for at least another 10 years. In comparison to that, a company owned boiler hardly gives me any 

financial benefit. 

26 Male 2 1 Option 2 only saved £25 per year, option 1 pays back in less than 10 years then savings of £1000+ thereafter. 

26 Female 1 1 If everyone shared a boiler then perhaps less people would be cold in the winter as there would always be heat. 

My sister living in Sweden has a similar set up with communal heating and hot water. there is a maximum 

temperature for each individual flat but everyone has the heat. I know this isn’t exactly the point of the survey 

but it is an interesting point?! 

26 Female 2 2 Currently buying first home, and the extra 10 grand to start with would make getting onto the housing ladder 

even harder than it already is. I imagine my parents, to whom 10 grand is not nearly as significant a chunk of 

their budget, would be keener on Option 1, but that extra 10 grand would seriously limit the sort of property I 

could buy. 

26 Female 2 2 Collective resources allow more people to benefit, and as a collective, people have power to make sure energy 

companies do what they have promised re maintenance/price 

27 Male 2 2 Strongly in favour of district-level systems - much more cost and energy efficient to have larger CHP and heat 
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network 

27 Female 2 2 It seemed more energy efficient to share the boiler 

28 Female 2 No 

preference 

The savings made in the second option are not as much as you think considering the monthly payment to the 

energy company. Although I like the idea of sharing energy, I'm also quite sceptical it would work OK. I don't 

know… 

28 Male 1 1 People are less responsible with communal technology 

28 Female 1 1 Over time option 1 is more financially profitable 

28 Male 2 2 I like the idea of them being shared among the community 

28 Female 2 2 I don't the house to cost more. 

28 Male 1 2 Although long-term the £10k is a better bet, I want to buy a house and can't afford the extra 

29 Male 1 2 If the system breaks I would like to be able to fix it, or pay to have it fixed, rather than rely on a service provider. 

29 Male 2 1 I would expect greater efficiency from a large central operation. 

29 Female 2 1 I like the idea of shared community energy generation 

29 Female No 

preference 

1 Financial savings compared to conventional fuel. A guarantee that it could be less than or equal to could mean I 

pay the same AND a maintenance fee. 

30 Male 2 1 After 10 years I would be making money 

31 Male 2 2 I'm not confident in making a large investment which takes over 10 years to pay back 

31 Male 1 1 I don't trust energy companies, before you know it the buggers are dictating terms and they've got you over a 
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barrel because they know there's not much you can do. 

32 Female 2 1 It's a better investment having your own boiler as the yearly income means you would pay off the extra cost of 

your home within 10 years and then would be making money. However, I do like the idea of energy being shared 

33 Male 2 2 Sharing and making use of what's available is better than wasting unused energy 

33 Female 1 1 I am sceptical of a company responsible for maintenance of equipment and the impact of selling a property on 

when a third party owns fixtures on the building. 

34 Male 2 No 

preference 

You didn't detail any information about maintenance costs. It's impossible to make an informed decision without 

that. 

35 Male 1 1 Unsure whether option 2 provides enough of a significant departure from the current model, but also sceptical 

of the benefits of CHP compared with other generation or energy saving alternatives. 

35 Female 2 2 The lack of ability to switch between service companies makes option 2 less attractive, rather than cost issues. 

35 Not 

given 

1 1 An outage or service interruption in a neighbourhood-centred Combined Heat and Power system would be more 

disruptive to remedy. 

37 Female 1 1 The upfront costs are prohibitive but if I had the money I would spend it on sourcing my own renewable energy 

(option 1) 

39 Female 2 1 Maintenance:- unsure due to lack of workable knowledge in maintaining equipment 

40 Female 2 2 Sharing is good 

49 Female 1 1 Do not trust the company not to share profits with shareholders 
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50 Male 1 1 The monthly benefit from government can be reinvested on inverter energy. 

50 Female 1 1 Prefer to have personal control of energy technology as service provider could delay in response to energy 

service interruption 

55 Female 1 1 The house would have extra value if I sold the house rather  than just paying out £10 a month forever 

59 Male 1 1 Assuming this technology will improve significantly in the next few years, having control of it would be better 

than having to negotiate with a company about any changes. 

62 Male 2 2 £10,000 is a lot of upfront cost compared with interest considerations over say 10 years comparison. 

65 Male 2 1 Sharing energy would help people on lower income 

65 Male 1 1 I'll never trust any energy company; all rogues. 

66 Female 1 1 You may benefit by managing your own usage against what is generated by having control of your own boiler. 

67 Male 1 1 Do not trust energy companies 

67 Female 1 1 Distrust of large energy companies, which tend to be in private and foreign ownership. Energy service would 

focus on shareholder investments and profits. 

68 Male 1 1 If the energy company goes bust who owns the solar panels if I wanted to remove them? 

70 Male 1 1 I prefer to be totally independent and self-sufficient. 
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Table 18. Categorisation of additional reason responses 

Category Number of responses in this 

(sub)category 

Desire for independence or individual control 23 

Concern about quality/timeliness of service from 

ESCO 

(7) 

General distrust or dislike of energy companies (6) 

Concern about inability to switch company and/or 

terms of contract changing 

(4) 

Desire for self-sufficiency (2) 

Concern over inability to remove or change 

installed technologies 

(2) 

Lack of trust in other users to use communal 

resources responsibly 

(1) 

Specific reason not stated (1) 

Favourable opinion of sharing energy 17 

Ideological reasons or belief in social benefits (10) 

Belief that neighbourhood scale systems are more 

efficient 

(7) 

Option 1 makes or saves more money over time 15 

Aversion to upfront cost 7 

Miscellaneous concerns about Option 2 3 

Concern that it would be more difficult to sell the 

house 

(1) 

Option 2 is too similar to the ‘status quo’ (1) 

Specific reason not stated (1) 

Prior positive experiences with or knowledge of 

microgeneration 

3 

Favourable opinion of having company deal with costs, 

maintenance or insurance 

2 

Belief that resale value of home would increase with 

presence of microgeneration 

2 

Sceptical about CHP specifically compared with other 

renewables 

1 

Not enough financial information provided to make a 

decision 

1 
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 Mean comparison tests 5.3.3

Figure 26 and Figure 27 seem to indicate that the provision of cost information 

has an effect on people’s preferences, with more people preferring Option 2 in 

the absence of cost information, and more people preferring Option 1 when it is 

provided. The significance of this effect was tested using a dependent means 

(repeated measures) t-test and the Wilcoxon signed-rank test, based on the five 

point choice scale, where 1 = strong preference for Option 1, and 5 = strong 

preference for Option 2. Effect size (r) for the t-test was calculated manually 

using the following formula: 

 

𝑟 =  √
𝑡2

𝑡2 + 𝑑𝑓
 

 

Effect size for the Wilcoxon signed-rank test was calculated using the following 

formula: 

 

𝑟 =  
𝑧

√𝑁
 

 

From the t-test: on average, respondents had a greater preference for Option 1 

when cost information was presented (M = 2.37, SE = 0.75) than when no cost 

information was presented (M = 2.96, SE = 0.8), t(314) = 7.506, p < .001, r = 

0.39). The result was statistically significant. 

 

The Wilcoxon signed-rank test gave the same result: on average, respondents 

had a greater preference for Option 1 when cost information was presented 

(Mdn = 2) than when no cost information was presented (Mdn = 3), z = -6.837, p 

< .001, r = -0.39. The result was statistically significant. 
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 Associations 5.3.4

Correlation analyses were conducted to test the associations between selected 

respondent characteristics, choice of microgeneration deployment model and 

stated importance of the Reason variables. 

 

The parametric test for bivariate correlation, Pearson correlation, assumes a 

normal sample distribution and that all variables are measured at the interval 

level.  As discussed in Section 5.2.8, all ordinal and interval data in this sample 

can be assumed to have normal sampling distributions for the purpose of 

statistical analysis. If some variables are not measured at the interval level, but 

are dichotomous and have an underlying continuum (the  C Choice and NC 

Choice variables), biserial correlation can be used. Biserial correlation was 

calculated manually by conducting a point-biserial correlation in SPSS then 

applying the formula: 

 

𝑟𝑏 =  
𝑟𝑝𝑏√𝑝𝑞

𝑦
 

 

Where rb is the biserial correlation coefficient, rpb is the point-biserial correlation 

coefficient, p  is the proportion of cases in the larger of the two categories, q is 

the proportion of cases in the smaller category, and y is the ordinate of the 

normal distribution at point at which X = p (fromn a reference table of values for 

the normal distribution). 

 

The significance of rb was identified from its Z score using a reference table of 

values for the normal distribution. The Z score was calculated from the standard 

error using the formulae: 

𝑆𝐸𝑟𝑏 =  
√𝑝𝑞

𝑦√𝑁
 

 

𝑍𝑟𝑏 =  
𝑟𝑏 −  𝑟�̅�

𝑆𝐸𝑟𝑏

   

 

Where 𝑟�̅� = 0   assuming the null hypothesis that there is no correlation.  
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The Education and Urbanisation variables are ranked (ordinal) variables and 

violate the assumptions of the Pearson correlation and biserial correlation tests. 

Non-parametric tests were therefore selected for use with these variables. For 

association tests between the ranked variables and continuous (interval) 

variables, Kendall’s tau was used as it gives a better estimate of correlation than 

Spearman’s rho when data include a large number of tied ranks, as is the case 

here. However for the association tests between ranked variables and 

categorical variables, Spearman’s rho was used, as the biserial correction 

described above can be applied to Spearman’s rho but not Kendall’s tau. 

 

For ease of interpretation, the test outcomes have been tabulated in Excel. 

Correlation coefficients shown in bold have been manually corrected for biserial 

correlation using the method described above.  Significance values shown in 

italics have been measured at the one-tailed level, all others at the two-tailed 

level.  
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5.3.4.1 Relationships between reason variables and choices 

Figure 30 and Figure 31 present the results of biserial correlation calculations testing the relationships between the Reason variables and 

the two choices (without cost information and with cost information). 

 

Figure 30. Results of biserial correlation calculations for Dichotomised NC Choice and Reason variables 

 

 

Figure 31. Results of biserial correlation calculations for Dichotomised C Choice and Reason variables 

 

 

Sceptic Own Effort Using Control Space Share

Correlation coefficient .048 -.413*** .387*** .130* -.401*** .224** -.432***

Sig. .261 .000 .000 .041 .000 .001 .000

N 286 286 286 286 286 286 286

Dichotomised 

NC Choice

Sceptic Own Effort Using Spread Control Space Share

Correlation coefficient .176* -.306*** .269*** .236** .180** -.274*** .143* -.261***

Sig. .010 .000 .000 .001 .009 .000 .030 .000

N 299 299 299 299 299 299 299 299

Dichotomised 

C Choice
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NC Choice was significantly correlated with (order of effect size) Share (rb = -.43, 

p  < .001), Own (rb = -.41, p < .001), Control (rb = -.40, p  < .001),  Effort (rb = .39, p  

< .001), Space (rb = .22, p  < .01) and Using (rb = .13, p  < .05). With no cost 

information, a tendency towards Option 1 was associated with higher desire to 

own the microgeneration, higher desire to control the microgeneration, and a 

higher aversion to sharing the technology. A tendency towards Option 2 was 

associated with higher aversion to the effort involved in using the 

microgeneration, higher  concern over using microgeneration and higher  

approval of the space provided by not having a boiler in the household. 

 

C Choice was significantly correlated with Own (rb = -.31, p  < .001), Control (rb = 

-.27, p  < .001),  Effort (rb = .27, p  < .001), Share (rb = -.26, p  < .001), Using (rb = 

.24, p  < .01), Spread (rb = .18, p  < .01), Sceptic (rb = .18, p  = .01) and  Space (rb = 

.14, p  < .05). With cost information, a tendency towards Option 1 was associated 

with higher desire to own the microgeneration, higher desire to control the 

microgeneration, and higher aversion to sharing the technology. A tendency 

towards Option 2 was associated with higher scepticism about renewable 

energy, higher aversion to the effort involved in using the microgeneration, 

higher concern over using microgeneration, higher desire to spread out the cost 

of the technology, and higher approval of the space provided by not having a 

boiler in the household. 
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5.3.4.2 Relationships between demographic variables and choices 

Figure 32 and Figure 33 present the results of correlation calculations (biserial 

correlation or Spearman’s rho) testing the relationships between the choices and 

demographic factors. 

 

Figure 32. Results of biserial correlation calculations for age, income and choices 

 

 

Figure 33. Results of Spearman’s rho calculations for choices and demographic variables 

 

 

NC Choice was significantly correlated with age (rb = -.25, p < .001), education (rs 

= .12, p < .05), and urbanisation (rs = .22, p < .01). Higher age, lower level of 

education and lower urbanisation ranking were associated with a tendency 

towards Option 1. 

 

C Choice was significantly correlated with age (rb = -.14, p < .05)  level of 

education (rs = .16, p < .05) and urbanisation (rs = .20, p < .05). Higher age, lower 

level of education and lower urbanisation were associated with a tendency 

towards Option 1.  

Dichotomised 

NC Choice

Dichotomised 

C Choice

Correlation coefficient -.254*** -.144*

Sig. .000 .029

N 287 300

Correlation coefficient .124 .044

Sig. .051 .288

N 274 286

Age

Income

Dichotomised 

NC Choice

Dichotomised 

C Choice

Spearman's rho .12* .16*

Sig. .048 .020

N 286 299

Spearman's rho .22** .20*

Sig. .006 .014

N 205 213

Urbanisation

Education
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5.3.4.3 Relationships between DSI scores and Choices 

Figure 34 presents the results of correlation calculations testing the 

relationships between the choices and domain specific innovativeness. 

 

 

Figure 34. Results of biserial correlation calculations for Choice and DSI variables 

 

 

There were no significant correlations between DSI and choice, with or without 

cost information. 

GreenDSI TechDSI

Correlation coefficient .020 .025

Sig. .366 .337

N 287 283

Correlation coefficient -.052 -.056

Sig. .184 .169

N 300 296

Dichotomised 

NC Choice

Dichotomised 

C Choice
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5.3.4.4 Relationships between demographic variables and reason variables 

Figure 35 and Figure 36 present the results of correlation calculations (Pearson correlation or Kendall’s tau) testing the relationships 

between demographic factors and the Reason variables. 

 

Figure 35. Results of Pearson correlation calculations for Age, Income and Reason variables 

 

 

Figure 36. Results of Kendall’s tau calculations for Demographic and Reason variables 

 

Sceptic Own Effort Using Spread Control Space Share

Correlation coefficient .092 .174** .038 .007 -.036 .190** .014 .156**

Sig. .104 .002 .498 .905 .522 .001 .804 .006

N 314 314 314 314 314 314 314 314

Correlation coefficient -.019 -.047 -.028 -.075 -.033 -.025 -.036 -.084

Sig. .749 .415 .625 .198 .566 .669 .536 .148

N 300 300 300 300 300 300 300 300

Age

Income

Sceptic Own Effort Using Spread Control Space Share

Correlation Coefficient -.084 -.141** -.014 -.016 -.009 -.165*** .026 -.112*

Sig. .069 .002 .762 .727 .836 .000 .571 .014

N 313 313 313 313 313 313 313 313

Correlation Coefficient -.037 -.140** .013 .028 .020 -.140** .062 -.126*

Sig. .485 .007 .803 .595 .701 .007 .235 .016

N 224 224 224 224 224 224 224 224

Education

Urbanisation

Kendall's 

tau
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Age was significantly correlated with Control (r = .19 , p < .05), Own (r = .17, p < 

.01) and Share (r = .16, p < .01). Higher age was associated with greater desire to 

own and control the microgeneration and a greater aversion to sharing the 

technology. 

 

Education was significantly correlated with Control (τ = -.17, p < .001), Own (τ = 

-.14, p < .01) and Share (τ = -.11 , p < .05 ). More highly educated respondents 

tended to have less desire to own and control the microgeneration and less of an 

aversion to sharing the technology. 

 

Urbanisation was significantly correlated with Own (τ = -.14, p < .01), Control (τ 

= -.14, p < .01) and Share (τ = -.13, p < .05). Less urban respondents tended to 

have a greater desire to own and control the microgeneration and a greater 

aversion to sharing the technology. 

 

Income was not significantly correlated with any of the Reason variables. 



200 
 

 

5.3.4.5 Relationships between DSI scores and reason variables 

Figure 34 presents the results of Pearson correlation calculations testing the relationships between the Reason variables and domain 

specific innovativeness. 

 

Figure 37. Results of Pearson correlation calculations for DSI and Reason variables 

 

GreenDSI was correlated with Sceptic (r = -.14, p < .05). Higher scores on the GreenDSI scale were associated with lower scepticism about 

renewable energy technologies. The effect size was small: r2 = 0.02. 

 

TechDSI was correlated with Sceptic (r = -.12, p < .05) and Using (r = -.14, p < .05). Higher scores on the TechDSI scale were associated with 

lower scepticism about renewable energy technologies and lower concern about using microgeneration. 

 

 

Sceptic Own Effort Using Spread Control Space Share

Correlation coefficient -0.135* -.072 .088 .026 -.033 -.098 .054 -.065

Sig. .017 .205 .122 .648 .557 .082 .336 .250

N 314 314 314 314 314 314 314 314

Correlation coefficient -0.118* .084 -.077 -0.142* -.020 .013 .030 -.055

Sig. .038 .138 .174 .012 .727 .815 .599 .334

N 310 310 310 310 310 310 310 310

GreenDSI

TechDSI
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5.3.4.6 Relationships between demographic variables and DSI scores 

Figure 38 and Figure 39 present the results of correlation calculations (Pearson 

correlation or Kendall’s tau) testing the relationships between demographic 

factors and domain specific innovativeness. 

 

Figure 38. Results of Pearson and point-biserial correlation calculations for Demographic and DSI 

variables 

 

 

Figure 39. Results of Kendall’s tau correlation calculations for Demographic and DSI variables 

 

 

GreenDSI was significantly correlated with Gender (rpb = -.15, p < .05) and level 

of education (τ = .10, p < .05). Female respondents tended to score more highly 

on the GreenDSI scale than male respondents. Higher levels of education were 

associated with higher scores on the GreenDSI scale. 

 

TechDSI was significantly correlated with Age, (r = -.10, p one-tailed < .05), 

Gender (rpb = .19, p < .01) and Income (r = .10, p < .05). Male respondents tended 

to score more highly on the TechDSI scale than female respondents. Higher 

scores on the TechDSI scale were associated with higher income and lower age. 

GreenDSI TechDSI

Correlation coefficient -.063 -.099*

Sig. .133 .041

N 315 311

Correlation coefficient -.145* .192*

Sig. .011 .001

N 307 303

Correlation coefficient -.073 .099*

Sig. .102 .045

N 301 297

Correlation coefficient -.015 .045

Sig. .787 .427

N 315 311

Age

Gender

Income

Children

GreenDSI TechDSI

Correlation Coefficient .100* .000

Sig. .010 .498

N 314 310

Correlation Coefficient .078 -.025

Sig. .114 .608

N 225 222

Education

Urbanisation

Kendall's 

tau_b
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 Regression analysis  5.3.5

The correlations reported in Section 5.3.4 shed some light on the 

interrelationships between householder characteristics and their chosen 

deployment models in this sample. However, correlation coefficients alone do 

not tell us whether accurate predictions of people’s deployment model choices 

can be made from demographic information. Having identified the 

characteristics which correlate with deployment model choice, logistic 

regression analysis was conducted to find out whether the choice between 

Option 1 and Option 2 could be predicted using these characteristics. A forced 

entry regression method was used, as stepwise methods are less likely to give 

replicable results.  

 

5.3.5.1 NC Choice 

5.3.5.1.1 Model 1: all attributes 

Respondent characteristics were entered into the logistic regression model in 

two blocks. Block 1 contained attributes which correlated with NC Choice in this 

sample: age, education and urbanisation. Block 2 contained those which didn’t: 

GreenDSI and TechDSI. Income was excluded as no cost information was 

presented in this scenario. 

 

After Block 1 the model predicted 62.2% of cases correctly compared with 

52.7% for the baseline model. Block 1 χ2 = 13.65 (3) p < .01, indicating that 

including age, education and urbanisation in the model improved its predictive 

power at a statistically significant level. 

 

After Block 2 the model predicted 62.2% of cases correctly compared with 

52.7% for the baseline model1. Block 2 χ2 = .624 (2) p = .73, indicating that 

                                                        

1 Identical percentages to Block 1 are coincidental. 
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including GreenDSI and TechDSI did not improve the predictive power of the 

model at a statistically significant level. 

 

Diagnostics for the model are shown in Table 19. Eight cases had a leverage 

value more than three times the expected value (0.02), but in all these cases 

Cook’s distance was well under 1 and the standardised residuals were within 

one standard deviation, so none was considered to be exerting undue influence 

on the model. 

 

Table 19. Diagnostics for NC Choice logistic regression Model 1 

Item Expected value(s) Notes 

Cook’s distance < 1 Maximum in sample = 0.20 

Leverage ≤0.06 8 cases > 0.06 

Cook’s distance for these cases 

all ≤0.11 

Standardised residuals all within 

|1.96| 

Standardised residual 95% within |1.96| 

99% within |2.58| 

All cases within |1.96| 

DFbeta for constant <1 Maximum in sample = 0.25 

DFbeta for age <1 Maximum in sample = 0.003 

Tolerance >0.1 Minimum = 0.644 

VIF <10  Maximum = 1.553 

 

As shown in Table 20, age was the only variable significant at the individual 

level. None of the other variables was a statistically significant predictor. 

Additionally, all variables except age had 95% confidence interval ranges for 

odds ratios which crossed the boundary between <1 and >1. This means that 

their direction of influence cannot be predicted with confidence. 
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Table 20. Results of NC Choice logistic regression Model 1 

 

 

5.3.5.1.2 Model 2: age only 

A second logistic regression model was run, including only the Age variable. 

Diagnostics for the model are shown in Table 21. 35 cases had a leverage value 

more than three times the expected value (0.01), but again in all cases Cook’s 

distance was well under 1 and the standardised residuals were within one 

standard deviation, so none was considered to be exerting undue influence on 

the model. 

 

Table 21. Diagnostics for NC Choice logistic regression Model 2 

Item Expected value(s) Notes 

Cook’s distance < 1 Maximum in sample = 0.09 

Leverage ≤0.03 35 cases > 0.03 

Cook’s distance for these cases 

all ≤0.09 

Standardised residuals all within 

|1.96| 

Standardised residual 95% within |1.96| 

99% within |2.58| 

All cases within |1.96| 

DFbeta for constant <1 Maximum in sample = 0.16 

DFbeta for age <1 Maximum in sample = 0.002 

 

Model 2 predicted 63.2% of cases correctly compared with 52.7% for the 

baseline model. Model χ2 = 14.05 (1) p < .001, indicating that including age 

improved the predictive power of the model at a statistically significant level.  

B S.E. Wald Sig.

Odds 

ratio Lower Upper

Constant 0.678 1.274 0.283 .595 1.969

Age -0.031 0.011 7.149** .008 0.970 0.948 0.992

Education -0.082 0.130 0.395 .530 0.922 0.714 1.189

Urbanisation 0.020 0.036 0.318 .573 1.020 0.951 1.095

GreenDSI 0.029 0.039 0.533 .465 1.029 0.953 1.112

TechDSI 0.008 0.031 0.070 .792 1.008 0.949 1.071

95% Confidence interval for odds ratio
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Table 22. Results of NC Choice logistic regression Model 2 

 

 

As age increases, the likelihood of a respondent choosing Option 2 decreases 

(conversely, the likelihood of them choosing Option 1 increases). 9% of the 

variance in choice is accounted for by the age of the respondent (R2N = .089). 

 

Adjusted R2, calculated using the formula below, takes account of shrinkage and 

provides an indicator of how well the model can be generalised to the population 

as a whole. 

 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − [(
𝑛 − 1

𝑛 − 𝑘 − 1
) (

𝑛 − 2

𝑛 − 𝑘 − 2
) (

𝑛 + 1

𝑛
)] (1 − 𝑅𝑁

2 ) 

 

Where k  = the number of predictors. 

 

Adjusted R2N = 0.075. In the UK population, it is estimated that 7.5% of the 

variance in choice will be accounted for by age (compared with 9% for this 

sample). 

 

5.3.5.2 C Choice: Model 3 

Respondent characteristics were entered into the logistic regression model in 

two blocks. Block 1 contained attributes which correlated with C Choice in this 

sample: age, education and urbanisation. Block 2 contained those which didn’t: 

income, greenDSI and techDSI.  

 

After Block 1 the model predicted 66.8% of cases correctly compared with 

67.8% for the baseline model. Block 1 χ2 = 8.714 (3) p < .05, indicating that 

including age, education and urbanisation in the model actually reduced its 

predictive power at a statistically significant level. 

B S.E. Wald Sig.

Odds 

ratio Lower Upper

Constant 1.366 0.376 13.171 .000 3.918

Age -0.033 0.009 13.171*** .000 0.968 0.950 0.985

95% Confidence interval for odds ratio
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After Block 2 the model predicted 68.8% of cases correctly compared with 

66.8% for the baseline model. Block 2 χ2 = 1.410 (3) p = .70, indicating that 

including income, greenDSI and techDSI did not improve the predictive power of 

the model at a statistically significant level. 

 

Table 23. Results of logistic regression model for C Choice 

 

 

As shown in Table 23, no variables were statistically significant predictors of 

choice at the individual level. The variables were not significant predictors 

collectively. Additionally, all variables except income (which had an odds ratio of 

1.000: no influence on preference) had 95% confidence interval ranges for odds 

ratios which crossed the boundary between <1 and >1. This means that their 

direction of influence cannot be predicted with confidence. 

 

Diagnostics for the model are shown in Table 24. Three cases had a leverage 

value more than three times the expected value (0.035), but in all these cases 

Cook’s distance was well under 1 and the standardised residuals were within 

one standard deviation, so none was considered to be exerting undue influence 

on the model. 

 

 

 

 

 

B S.E. Wald Sig.

Odds 

ratio Lower Upper

Constant -1.587 1.410 1.266 .26 0.205

Age -0.001 0.013 0.006 .94 0.999 0.975 1.024

Education 0.269 0.149 3.276 .07 1.309 0.978 1.751

Urbanisation 0.067 0.040 2.763 .10 1.069 0.988 1.175

Income 0.000 0.000 0.159 .69 1.000 1.000 1.000

Green DSI -0.019 0.042 0.201 .65 0.981 0.903 1.066

TechDSI -0.033 0.033 0.994 .32 0.968 0.907 1.032

95% Confidence interval for odds ratio
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Table 24. Diagnostics for C Choice logistic regression model 

Item Expected value(s) Notes 

Cook’s distance < 1 Maximum in sample = .33  

Leverage ≤0.11 3 cases >0.11 

Cook’s distance for these cases 

all ≤.28 

Standardised residuals all within 

|1.96| 

Standardised residual 95% within |1.96| 

99% within |2.58| 

All cases within |1.96| 

DFbeta for constant <1 Maximum in sample = 0.43 

DFbeta for age <1 Maximum in sample = 0.003 

Tolerance >0.1 Minimum = 0.633 

VIF <10  Maximum = 1.579 

 

 

5.4 Discussion  

 Overall choice split 5.4.1

One of the questions investigated in this chapter was whether one particular 

deployment model was likely to prove more popular with UK residents. 

Assuming equal costs, while the ESCO model was preferred by the largest 

proportion of people (48%), the proportion preferring plug and play was not 

much smaller (43%), indicating that neither option can be assumed to be the 

‘favourite’ in the majority of cases. The relatively even split was not an indicator 

of overwhelming ambivalence, as 91% of respondents had a clear preference one 

way or the other. This result alone shows that people are not indifferent to the 

features of different deployment models, and that these features should form 

part of a developer’s marketing strategy.     
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 Effect of price and contract information 5.4.2

It was hypothesised in Chapter 4 that the higher upfront cost associated with the 

plug and play model would induce a preference for the ESCO model. However, 

when respondents were presented with cost and contract information, the 

proportion of respondents choosing the ESCO model decreased from 48% to 

29%  (statistically significant at p < .001, medium effect size), suggesting that for 

most people the considerations of higher revenues over time outweighed the 

issue of upfront costs. This is somewhat surprising in light of the evidence for 

hyperbolic discounting discussed in Section 4.4. This result may be due to the 

fact that participants in this study considered the cost in the context of a house 

purchase, rather than as a standalone expense. The phenomenon of proportion 

dominance, whereby people tend to base purchase decisions on relative rather 

than absolute costs (Azar 2011; Bartels 2006), could therefore cause the upfront 

cost of £10,000 to be perceived less unfavourably when compared to the total 

cost of a house. Some respondents also stated as an additional reason for their 

choice that they believed that the presence of microgeneration would add to the 

resale value of a house, which would provide an additional perceived financial 

incentive. 

 

However, this result does not mean that none of the respondents were averse to 

the upfront costs. Indeed, 12 respondents specifically mentioned this issue when 

volunteering additional reasons for their choice, and a significant t-test statistic 

could still occur even if a minority of respondents switched their choice from 

plug and play to ESCO. Additionally, the ability to spread the cost of 

microgeneration technologies over monthly payments to an ESCO (rather than 

paying upfront) was ranked the second most important consideration by 

respondents when asked what factored into their choice. The importance 

ascribed to this by respondents is perhaps surprising given that the majority of 

respondents opted for a plug and play scenario when cost information was 

presented. It may be that, while people favour the option of spreading the cost, 

other considerations were collectively  more important. Acquiescence bias – the 

tendency of survey respondents to agree with a statement, regardless of its 

sentiment (Messick and Jackson 1961) – may also have been a factor.  
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It is also important to note that since contract information was included in the 

second scenario, it cannot be determined whether the change in preferences was 

primarily due to financial considerations or a desire not to be bound by a 

contract. There is some evidence for the latter in a recent study by Upham and 

Jones (2012): a questionnaire on waste heat district heating completed by 323 

residents of Neath Port Talbot (Wales) showed that 32% of respondents viewed 

being tied into a heating/hot water contract for 12 months unfavourably, rising 

to 59% for a 24 month contract. In the present study, four respondents indicated 

that they did not like the idea of not being able to switch contracts when giving 

additional reasons for their choice. If this desire for flexibility in suppliers or 

contracts outweighs other considerations, it could be a significant obstacle to the 

acceptability of ESCOs for UK consumers. Any future studies should differentiate 

between attitudes towards upfront costs and attitudes towards contracts to gain 

a clearer picture of their relative importance.  

 

Another factor that could have affected this result is hypothetical bias: 

respondents stating that they are willing to pay more in hypothetical situations 

(when no real money is at stake) than they actually would be in reality. 

Hypothetical bias can have a substantial effect (List and Gallet 2001; Little and 

Berrens 2004; Murphy et al. 2005), and could have operated in this case to 

reduce the effect of the upfront cost on people’s decisions. A hypothetical study 

in this case was unavoidable, given the barriers to a post-hoc study discussed in 

Section 5.2.8, and the impracticality of asking respondents to make a real-world 

choice.  

 

Nonetheless, the statistically significant change in preferences shows that 

financing arrangements and costs and revenue are, unsurprisingly, likely to be 

important determinants of people’s opinions of deployment model options. The 

‘direction’ of the effect was unexpected, although it points to a degree of 

economic rationality in people’s decision-making about investments in 

microgeneration, given that the preferred scenario generates more revenue once 

the initial investment has been paid back. Clear and accurate cost and revenue 
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information should therefore be presented to prospective buyers of homes 

incorporating microgeneration. 

 

 Attitudes towards different deployment models 5.4.3

Most of the attitudinal statements in the questionnaire were scored quite highly 

(means between 2.37 and 3.34, out of a maximum of 5). While the differences in 

scores between the statements are instructive, the scores themselves should not 

necessarily be treated as reliable indicators of the absolute importance ascribed 

to them, due to the possibility of acquiescence bias. 

5.4.3.1 Ownership, control, and sharing microgeneration 

On average, respondents ranked the desire to own their own microgeneration 

technology, and the desire to control it, highest of all the possible reasons given 

in the questionnaire. As may be expected, scores for both reasons were also 

correlated with a tendency to choose the plug and play option (medium effect 

size), both with and without cost information. Of the additional reasons given by 

respondents for their choice, wanting to have ownership and control was the 

most frequently mentioned. This is surprising given that in the absence of cost 

information, 54%of respondents preferred the ESCO option. However, the 

spread of the scores shown in Figure 29 shows that while the majority of 

respondents ranked these reasons at 3/5 or lower, a relatively high number of  

4/5 and 5/5 rankings raised the average. In other words, while a minority of 

respondents felt that this issue was important, those that did felt quite strongly 

about it. 

 

The statements made in the ‘additional reasons’ text box provide some valuable 

insights into the different reasons people may have for wanting to retain 

ownership and control over the technologies. The majority related to issues 

around dealing with a company: some respondents were concerned that an 

ESCO’s response to technical faults or blackouts would be inadequate, and some 

stated a general distrust or dislike of energy companies. Regarding the former, it 

is interesting to consider that under a conventional energy supply arrangement, 

responsibility for repairs and restoring power is also under the control of a 
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company. Respondents’ unwillingness to transfer that responsibility to an ESCO 

could simply indicate that given the choice, they would prefer not to deal with a 

company at all. Alternatively, it could signal scepticism or distrust of unfamiliar 

systems and technologies, giving rise to fears that blackouts or faults could 

become more common. Regarding the former, it reflects the generally poor 

perception of energy companies among UK consumers. It should be noted that 

the dissemination of the questionnaire (November 2013) coincided with 

announcements of price rises from several UK energy companies, which received 

a large amount of media coverage. The issue may therefore have been more 

prevalent in respondents’ minds than it would be usually. However, even before 

this event energy companies were generally unpopular with UK consumers. In a 

survey by YouGov published in February 2013, 56% of respondents agreed with 

the statement, “energy companies treat people with contempt”, and 45% stated 

that their trust in energy companies had declined in the last two years, while 

only 10% stated that their trust had increased (YouGov 2013).  Given these 

issues, it may be that smaller, local or co-operatively owned ESCOs would not be 

subject to the same objections from householders. 

 

In a different vein, some respondents indicated a general desire for self-

sufficiency in their answers, while others indicated unwillingness to be tied into 

a contract (discussed above in Section 5.4.2). In some cases concerns over being 

‘locked in’ related not to the contract but to what would happen if they wanted to 

upgrade or remove the technology, or sell the house. Some people pointed out 

concerns over ‘freeloading’ – people using communal resources irresponsibly. 

The latter could be one facet of an unwillingness to share a boiler with other 

people, which (in the absence of cost information) correlated more strongly than 

any of the other Reason variables with preference for the plug and play model. 

However, many respondents indicated in the optional textbox that they had a 

favourable opinion of sharing energy. Some believed that a neighbourhood scale 

scheme would be more efficient, and some expressed an ideological preference 

for sharing (“Sharing is good”). One respondent was specific: “Not wanting to 

work with a private company… I would much prefer the more community based 

approach”.  
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The survey results show empirically that, as previously predicted in qualitative 

studies, owning and controlling one’s own energy generators is appealing to 

many UK consumers. Including messages about self-sufficiency and ‘taking 

control’ in marketing for developments using the plug and play model could 

therefore make it more desirable for many people. Conversely, if an ESCO 

arrangement is being used, concerns over sharing resources and giving control 

to the ESCO will need to be overcome. Some of the statements from respondents 

suggest that some people may prefer a co-operatively owned ESCO as opposed to 

control by a private company.  Forming a community project is problematic for 

new developments, as discussed in Chapter 33. One possible solution would be 

to start with an ESCO, then offer residents the option of ‘buying-in’ once they 

have moved in: either by becoming shareholders, or by taking over entirely as a 

co-operative. This does however require the potentially risky assumption that 

sufficient numbers of residents would be interested in becoming stakeholders in 

a neighbourhood scheme. 

 

5.4.3.2 Using and maintaining microgeneration 

As expected, scores for the statements “I would prefer not to have the effort 

involved in maintaining my own energy generation technologies”, and “I'd be 

worried about using newer energy technologies myself: I'd rather have an expert 

do it” both correlated with a tendency to prefer the ESCO model (medium and 

small effect size respectively). Developers using an ESCO arrangement could 

therefore emphasise its convenience aspects and provide assurances about 

service levels in order to make it appealing to prospective buyers. 

  

5.4.3.3 Scepticism about microgeneration 

Scepticism about microgeneration was the lowest scoring of the Reason 

variables. It did not correlate with deployment model preference in the absence 

of cost information, but when costs were provided it correlated (small effect size) 

with a preference for the ESCO option. This suggests, unsurprisingly, that those 

who are sceptical about the benefits of microgeneration are happier to let a 

private company bear the upfront costs and financial risks. This must be viewed 
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in the context of the overall choice split however: despite sceptics having a 

greater tendency towards the ESCO option, only 29% of the sample favoured 

that option when costs were presented, whereas 66% preferred the plug and 

play option. 

 

5.4.3.4 Space 

The statement about having more space without a boiler in the home was ranked 

second least important, but was correlated with a tendency to prefer the ESCO 

option, as expected (small effect size). While this may not be a particularly 

important factor in most people’s decisions about an ESCO scheme, it would 

perhaps be worth pointing out as an advantage when marketing an ESCO 

arrangement. 

 

 Effect of householder attributes on choice and attitudes 5.4.4

5.4.4.1 Demographics 

Three demographic attributes correlated with choice of deployment model: age, 

education and urbanisation. All were statistically significant for both the choice 

without cost information and the choice with cost information. However when 

logistic regression analysis was carried out, only age was a significant predictor, 

and only when cost information was not presented (NC Choice). 

 

The absence of a predictor effect for some of the variables in the logistic model, 

despite their correlation with choice, could be due to sample size or collinearity. 

If effect size is small (as indeed the Pearson correlation indicates), a minimum 

sample size of 400 is usually required to detect it using regression analysis (Field 

2009b; Miles and Shevlin 2001), whereas the sample sizes here were ≤315. 

Additionally, while tolerance and VIF values were within acceptable limits for all 

the regression models, inspection of the variance proportions on the smallest 

eigenvalue for Models 1 and 3 suggested collinearity between age, education and 

urbanisation. Age was the only significant predictor of NC Choice, showing that 

urbanisation and education do not covary significantly with choice when age is 

held constant. This suggests that the covariance of education and urbanisation 
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with NC Choice shown by the Pearson correlation is in fact due to their 

covariance with age.  

 

Therefore only age can be said with confidence to have a bearing on choice of 

deployment model, when cost and contracting information is not presented. 

While considerations of payback and contracting evidence take precedence, the 

older someone is, the more likely they are to prefer the plug and play model. This 

could indicate either that people’s preferences change as they get older 

(individual change), or that social trends and attitudes are changing over time 

(individual preferences don’t change, but aggregate societal attitudes do). If the 

former, it could be that as people become older they are more likely to own large 

or complicated systems such as houses and cars, and therefore become more 

used to the idea of owning them and taking responsibility for their maintenance. 

If the latter, it may be that as an increasing number of technical or time-

consuming processes have been facilitated or automated by technology, and 

ownership of household appliances has increased, people have become more 

used to having less personal control over them.  

 

Contrary to the expectation that income would positively correlate with 

preference for the plug and play option, income was not significantly correlated 

with the choice in either case. The reasons suggested for the unexpected 

direction of the effect of price and contract information on choice (hypothetical 

bias and the dominance effect) would also apply here. In particular, regarding 

hypothetical bias, respondents with low income asked to imagine purchasing a 

house may imagine a situation in which they have sufficient capital to do so, and 

could therefore afford the additional upfront cost of the plug and play option. 

Indeed, one of the respondents to the “additional reasons” question stated: “The 

upfront costs are prohibitive but if I had the money I would spend it on sourcing 

my own renewable energy (Option 1)” (emphasis added). This respondent 

indicated a preference for the plug and play option (Option 1) after price 

information had been presented, suggesting that she was answering as if she 

could afford it, rather than basing the decision on her actual current income. 
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5.4.4.2 DSI 

DSI in both the green products and consumer electronics domains was not 

correlated with a deployment model preference at a statistically significant level. 

This indicates that DSI is not likely to be a useful predictor of someone’s 

preference for a particular deployment model. It should be noted that a lack of 

correlation between DSI and preference does not mean that innovative 

behaviour is definitely not related to preference. However, given the strong 

correlations between DSI and innovative behaviour found in other studies, it 

does provide some potentially contradictory evidence to this theory.  

 

DSI did correlate with some attitudinal variables however, with higher scores on 

the GreenDSI scale associated with lower scepticism about renewable energy 

technologies, and higher scores on the TechDSI scale associated with lower 

scepticism about renewable energy technologies and lower concern about using 

microgeneration. It is interesting to note that neither DSI scale correlated 

significantly with the attitudinal variables relating to ownership and control of 

the technology. Sauter and Watson (2007) and Fischer (2004, 2006) theorised 

that innovators’ financial assets, their tendency to desire autonomy, and their 

high levels of knowledge about and interest in technology, would cause a desire 

to own and control microgeneration technologies. However, the results of this 

survey do not provide supporting evidence for these theories. Unsurprisingly, 

those with higher DSI scores are less sceptical of newer energy technologies, but 

this does not translate into a preference for the plug and play model. It may be 

therefore that householders’ circumstances, ideologies and perceptions of the 

different characteristics of the deployment models are more important than 

personality attributes related to innovativeness. 

 

Indeed, the demographic variables found to correlate with a preference for the 

ESCO model (younger age, higher level of education and more urban location) 

are those which have correlated with higher levels of innovativeness in previous 

studies. Additionally, scepticism about renewables was not highly scored as a 

factor in the decision for most respondents, and comments from participants on 

the ESCO model were frequently phrased as questions (“Who takes 
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responsibility?”) or referred to the arrangement as an ‘idea’. Taken together, this 

evidence suggests that rather than an ESCO arrangement representing the 

‘status quo’ and plug and play the innovative arrangement (as suggested by the 

studies discussed in Section 4.4), many participants felt the opposite. It is argued 

therefore that the ‘innovation’ in question here is not microgeneration 

technologies, but the new business models which have grown around it; and that 

the focus of research into consumer adoption of microgeneration technologies 

may need to shift away from technological attributes and towards the attributes 

of different ownership and maintenance arrangements. This is likely to be due in 

part to consumers’ increased familiarity with microgeneration (in particular PV) 

due to its rapid uptake since the introduction of the FIT. As shown in  Figure 1 

(Chapter 1), when Watson and colleagues made their predictions regarding 

innovativeness and householders’ choices there were very few microgeneration 

installations in the UK. By the time this study was conducted (2013 – 2014), 

there were thousands.  

 

 

 Alignment of preference with dwelling characteristics and 5.4.5

tenure 

Since age has been shown to the only reliable predictor of preference for 

different deployment models, predicting the alignment of preference with 

dwelling type is not straightforward. Dwelling type is a function of several 

factors including personal preferences and priorities, income/assets, family 

composition, job location and region. However, the 2011 UK Census provides 

data on dwelling types and age of residents in England and Wales, which can be 

used to illustrate general trends as shown in Figure 40 and Figure 41. Children 

have been excluded from the figures as it is assumed that they do not make 

decisions over dwellings.  
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Figure 40. Residents of England and Wales: age of resident and number of bedrooms in dwelling in 

2011 

 

Data source: (Office for National Statistics) 

 

Figure 40 shows that occupancy of three and four bedroom dwellings is 

dominated by people in their forties and fifties, while occupancy of one and two 

bedroom dwellings is dominated by people in their twenties and thirties. This 

likely reflects family and career development throughout these periods, with 

average salary and family size rising with age, and home size increasing 

accordingly. Occupancy of four and five bedroom dwellings shows two peaks: 

one in the 20 – 24 age bracket, which is likely due to student and young 

professionals renting shared houses, and one in the 45 – 49 age bracket, which is 

likely to reflect occupancy by affluent family groups. Figure 41 shows that in 

general, younger people are more likely to live in flats or maisonettes, while 

older people are more likely to live in houses or bungalows. 
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Figure 41. Residents of England and Wales: age of resident and type of dwelling in 2011 

 

Data source: (Office for National Statistics) 

 

Broadly then, there is a general trend towards larger dwellings and houses 

(rather than flats) as resident age increases, with the exception of people in their 

early twenties, who may be living in large rented shared houses. As shown in 

Figure 42, younger people are also more likely to be private renters than older 

people, although residence in an owner-occupied house is still slightly more 

common even at younger ages. The number of people in social housing is 

roughly constant across age groups.  
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Figure 42. Residents of England and Wales: age of resident and type of tenure in 2011 

 

Data source: (Office for National Statistics) 

 

In general, younger people are more likely to rent, live in a flat, and live in 

smaller dwellings. Older people are more likely to be in larger houses which they 

own. As discussed in Chapter 3, flats are particularly suitable for ESCO 

arrangements as they are dense developments, the fees could be bundled with 

other service fees, and the arrangement could help to overcome the landlord-

tenant incentive divide. Larger dwellings with higher heat demand may be more 

suitable for plug and play arrangements, especially if they are on developments 

with lower dwelling density. Since, ceteris paribus, younger people are more 

likely to prefer Option 2 , while older people are more likely to prefer Option 1, 

householder preference may well be in alignment with dwelling suitability for 

the different deployment models in the majority of cases. 

 

Another factor with particular relevance here is that younger buyers tend to be 

more attracted to new build homes (Leishman et al. 2004). This is partly because 

new builds tend to be more affordable, and partly due to the government’s help 

to buy schemes, the first of which launched in April 2013 and allowed first-time 

buyers to take out a 20% equity loan from the government for a new build home. 

As discussed in Section 5.4.5, current trends in new builds mean that increasing 

numbers are likely to be suited to ESCO arrangements. Here again, consumer 
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preference is slightly more likely to align with a dwelling’s suitability for a 

particular deployment model. 

 

The results of this survey have not identified a reliable way to use demographic 

information to predict which deployment model people are likely to prefer. 

However, they have provided evidence showing that for many new 

developments which could benefit from the services of an ESCO, prospective 

buyers are likely to be open to the arrangement. However, developers wishing to 

deploy microgeneration using an ESCO on developments where prospective 

buyers are likely to be older may have to put more effort into marketing the 

arrangement to make it attractive to consumers. 

 

 

5.5 Conclusions and future work 

The aim of this chapter was to collect and analyse quantitative data to consider 

the empirical evidence supporting or contradicting some of the hypotheses 

formed in Chapter 34. While the correlations (or lack of correlations) identified 

cannot be assumed to indicate a direct relationship between variables, they do 

add to the evidence base relating to the hypotheses. 

 

We now return to the hypotheses to reassess the evidence for or against them in 

light of the results of this chapter, and to briefly discuss the opportunities for 

methodological improvements and  further investigation identified. 

 

 Attitudes toward deployment model attributes 5.5.1

 

Which attributes of the different deployment models have the greatest effect on 

householders’ attitudes, and which deployment model (if either) is likely to be more 

popular with people in the UK? 

 

This survey found that, if an ESCO arrangement and a plug and play arrangement 

are equal financially, there is an almost even split in preference, with neither 
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significantly more popular than the other. When the plug and play model has a 

high upfront cost but yields higher income compared with the ESCO model, the 

plug and play model is more popular.  The attributes judged most important to 

the decision were ownership and control (or otherwise) of microgeneration 

technologies. 

 

Original hypothesis: The following factors will cause householders to prefer the 

plug and play model: 

 

A desire for autonomy and control 

The correlation between desire to own and control microgeneration provides 

quantitative evidence for this hypothesis. Additional qualitative evidence for the 

importance of autonomy and self-sufficiency was present in statements from 

respondents. 

 

Interest in technology 

Mixed evidenced for this hypothesis was found. TechDSI did not correlate with 

preference for either option, but level of agreement with the statement “I'd be 

worried about using newer energy technologies myself: I'd rather have an expert 

do it” was correlated with a preference for the ESCO Option. 

 

Original hypothesis: The following factors will cause householders to prefer the 

ESCO model: 

 

The high upfront cost associated with the plug and play model 

Evidence here was mixed: respondents indicated that they gave some 

importance to the fact that the ESCO model allowed them to spread payments, 

but presenting them with cost information for the models in fact caused more 

respondents to choose the plug and play option.  

 

The ‘hassle factor’ of using and maintaining unfamiliar technology 

There was quantitative evidence for this hypothesis, as respondents’ level of 

agreement with statements about preferring not have the effort of maintaining 

or using microgeneration correlating with a tendency to prefer the ESCO model 
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(medium and small effect size respectively). Further qualitative evidence was 

seen in additional statements by respondents. 

 

Scepticism about renewable energy 

There was mixed evidence for this hypothesis. Scepticism was rated the least 

important consideration by respondents, and in the absence of cost information 

did not correlate with choice. However when respondents were informed of cost 

and contracting information there was a weak correlation with preference for 

the ESCO option. 

 

Increased availability of living space in the absence of a boiler 

There was quantitative evidence that this factor has a weak effect on preference. 

 

A potential methodological improvement identified here would be to ask 

respondents to rate the importance of the different considerations twice: once 

after the scenario with no cost information, and once after the costs had been 

presented. This would provide more insight into the relative weight accorded to 

them compared with pricing information. Additionally, having identified which 

of the hypothesised contract features and attitudes are most important to 

respondents, and additional reasons (such as a dislike of energy companies and 

ideological preference for communal facilities) which were not initially 

considered; the impact of each deployment model feature on willingness-to-pay 

for microgeneration could now be analysed. This could be achieved using a 

conjoint analysis experiment in which participants make choices between pairs 

of options covering different combinations of features. 

 

While the survey design was beneficial in allowing sufficient numbers of 

responses to be collected for statistical analysis, further detail on people’s 

attitudes could be obtained through interviews or focus groups. Given that a 

desire for control and ownership of generating technologies has been identified 

as particularly important, it would be interesting to investigate further the 

specific reasons for this preference: is it predominantly due to logistical 

concerns, fear of the unknown, or is a more abstract cultural preference? 

Insights into this phenomenon could help developers and marketers to 
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overcome consumer reluctance to sign up for ESCO or microgrid arrangements. 

Furthermore, if domestic ESCOs become more prevalent, there would be 

significant scope for interviewing and surveying ESCO customers to find out if 

such concerns persist after uptake, or indeed if a new set of benefits and 

concerns come to light. 

 

 Effect of householder characteristics on deployment model 5.5.2

preference 

 

Do people’s demographic characteristics or personal attributes affect their 

preferred choice of deployment model, and if so – how? 

 

Original hypothesis: DSI will positively correlate with a preference for the plug and 

play model over the ESCO model. 

No quantitative evidence for this relationship was found, as DSI did not correlate 

with choice in either the consumer electronics or the green products domain. 

 

Original hypothesis: Income will positively correlate with a preference for the plug 

and play model over the ESCO model. 

No quantitative evidence for this relationship was found, as income did not 

correlate with choice. 

 

Original hypothesis: Age will negatively correlate with a preference for the plug 

and play model over the ESCO model. 

Contrary to what was expected given the theoretical evidence examined in 

Chapter 3, age was found to positively correlate with a preference for the plug 

and play model.  

 

Original hypothesis: Level of education will positively correlate with a preference 

for the plug and play model over the ESCO model. 

Mixed evidence for this hypothesis was found: there was a weak positive 

correlation, but logistic regression analysis suggested that this was due to 

collinearity with other variables. 
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With the exception of the link between age and deployment model preference, 

the results of this chapter suggest that future explorations of attitudes to 

microgeneration deployment models should focus on political and social beliefs, 

and people’s perceptions of the characteristics of different options, rather than 

demographic differences between householders. Rather than a concentration on 

tailoring solutions to preferences which are hard to predict, the latter would 

allow the most important ‘sticking points’ for consumers to be identified and 

addressed through service adaptation and the provision of relevant information. 

Additionally it was argued that consumers’ perceptions of unfamiliarity, 

newness and ‘innovativeness’ in microgeneration are in many shifting towards 

the business models used for ownership and maintenance, rather than the 

technologies themselves. 

 

However, if further investigations into the relationships between householder 

characteristics and their preferred deployment model were to be conducted, 

there are some potential avenues of exploration. For reasons of parsimony this 

survey did not collect detailed information on respondents’ lifestage, family 

composition, socioeconomic status, or political attitudes. For example, people’s 

assets or debt levels could give a more accurate measure of socioeconomic status 

than income. Regarding attitudes, it may be that regional political trends have a 

bearing on attitudes: for example, do people on the left of the political spectrum 

favour ESCO involvement more due to the traditional liberal ideals of 

government intervention, as opposed to conservative emphasis on hands-off 

governance? Voting patterns are very predictable in many areas of the UK, so 

identifying relationships here if they exist would be useful. 

 

 Alignment of preference with dwellings 5.5.3

 

Do consumer groups’ preferences for a specific deployment model align with the 

physical suitability of the types of dwelling they are likely to buy? 

This chapter has provided some quantitative evidence that ESCOs are likely to be 

an ‘easier sell’ to younger people, who are more likely to buy dwellings suitable 
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for ESCO arrangements: on smaller, denser, new build developments. This is a 

generalisation however, and the pattern of new build purchase is complex, and 

will depend on a number of other factors apart from age.  Therefore another 

useful methodological development would be to link survey respondents or 

interviewees to a classification system such as Experian MOSAIC. Such consumer 

classification systems are valuable as they not only provide information on 

typical demographic and attitudinal characteristics, but also describe the 

geographical spread of different consumer categories across the United 

Kingdom. This would allow patterns of preference (if existing) to be compared 

with the locations of new residential developments. 
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6 Conclusions and recommendations 

The overarching conclusions of this thesis are that many of the drivers and 

barriers for microgeneration in new UK homes differ significantly from those for 

retrofitting: in particular the lack of economic incentives for developers and 

apathy or reluctance on the part of prospective home buyers. New business 

models, in particular ESCO arrangements, are likely to have a significant role in 

overcoming these barriers, by providing an ongoing revenue stream from 

microgeneration for developers, and by overcoming several of the antecedents 

to householders’ reluctance to adopt microgeneration. However, an ESCO option 

will not be financially feasible for all developments therefore the plug and play 

arrangement is likely to continue to play a role in the diffusion of the technology. 

This is particularly the case since a small majority of householders would still 

prefer the plug and play option over the ESCO option if given the choice. 

However, there is evidence to indicate that trends in new residential 

developments, the UK’s regulatory environment, and the attitudes of those most 

likely to purchase new homes, will collectively cause the ESCO arrangement to 

become more common in new build homes in the UK over the coming decades. 

 

This chapter brings together the detailed conclusions from three interlinked 

research chapters in this thesis, revisiting the research questions set out in the 

introduction, and summarising the novel contributions to knowledge that this 

thesis has made. A review of the research is presented, reflecting on the methods 

used and limitations of the thesis in order to inform future studies in this area. 

Finally, recommendations are made regarding how the research in this thesis 

could be extended and built upon in future studies. 

 

6.1 Conclusions  

This thesis sought to characterise the drivers and barriers to the inclusion of 

microgeneration in new homes, and to identify ways in which barriers could be 

overcome. A review of the literature revealed that existing studies on 

microgeneration largely focused on retrofit, particularly those concerned with 

consumer adoption of the technologies; and that studies of ‘eco-homes’ often did 
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not differentiate between microgeneration and other low carbon technologies. 

This provided the motivation for the focus on new homes. The review also 

identified that ESCO arrangements, despite being rare among domestic 

developments at present, may have a role to play in encouraging the use of 

microgeneration in new homes. This provided the motivation for a focus on 

different deployment models and consumer attitudes towards them. Five 

overarching research questions were addressed in the thesis: 

 

What are the drivers and barriers for microgeneration in new homes in the 

UK? In particular, do they differ significantly from those relating to 

retrofitting microgeneration? 

 

What interventions could be used to overcome barriers to microgeneration 

in new homes in the UK? 

 

Chapter 3 comprised a coevolutionary analysis of the drivers and barriers for 

microgeneration in new homes, using evidence from research interviews and 

existing literature. Significant differences between retrofitting microgeneration 

and incorporating it in new homes were identified, with respect to the factors 

affecting uptake and the actors involved. While for retrofit homeowners are the 

primary decision-makers and subsidies are the main drivers for uptake, for 

microgeneration in new build homes developers are the primary decision-

makers and regulations such as the Zero Carbon Homes target and the Building 

Regulations are the main drivers. In both cases capital cost is a significant 

barrier, but for new build this issue is also linked to property valuation, 

developers’ perceptions of consumer desires and priorities  and cultural issues 

within the building industry. The most significant barrier was found to be a lack 

of financial incentives for developers to include microgeneration in their 

developments. As a result, a suggested intervention was to introduce a financial 

incentive for developers to include microgeneration in developments, potentially 

by extending existing subsidies such as the FIT. 

 

New build also presents opportunities for an additional intervention: the 

expansion of developer activities to make use of energy service contracting 
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arrangements which may provide the financial incentive which has been lacking. 

Although relatively uncommon at present, evidence from the interviews 

suggested that these arrangements may become more important in future. 

 

How can different deployment models for microgeneration be used to 

overcome barriers to the technology in new homes in the UK? 

 

Building on this latter finding, Chapter 4 synthesised literature from several 

disciplines (diffusion of innovations, economic analysis of district heating, social 

science and psychology) to consider in more detail what role different 

deployment models for microgeneration could play in encouraging its use and 

uptake in new build housing. The effects of heat demand, house type, 

development size and householder characteristics on the optimal choice of 

deployment model were considered. A technoeconomic analysis was also 

conducted to measure the effects of electricity demand on householders’ energy 

bill savings/technology payback period under different deployment models. It 

was found that current trends in new residential developments, institutional 

factors and consumer attitudes could be predicted to favour the development of 

ESCO arrangements in the UK, but that this was not certain as some factors still 

favoured private ownership of microgeneration by householders. While 

householder electricity use was found to affect payback periods and savings 

from solar PV, it had little impact on the comparative profitability of the two 

deployment models. The theories that the ESCO model could overcome 

consumer reluctance to adopt microgeneration, and that more innovative 

householders would prefer private ownership while less innovative 

householders would prefer an ESCO arrangement were discussed. Finally the 

definition of ‘innovativeness’ was clarified, in order to develop a quantitative 

method for investigating the theories. 

 

What are consumers’ attitudes to different microgeneration deployment 

options, and how do they differ for different demographic groups? 

 

What effect will differences in attitude (if any) have on consumers’ choice 

of microgeneration deployment model in new builds in the UK? 
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Having identified the need for a quantitative investigation of householder 

attitudes towards different microgeneration deployment models and the role of 

innovativeness in householder preferences, Chapter 5 presented a method for 

quantitative analysis and its results. A questionnaire was used to measure UK 

adults’ preferences for the ESCO or the plug and play model of microgeneration 

ownership, and the relationships between respondents’ attributes and their 

choices and attitudes. Preferences were found to be mixed: if money were no 

object, respondents’ preferences were split very evenly between an ESCO or a 

plug and play arrangement, with slightly more people preferring the ESCO 

arrangement. Respondents were largely not apathetic to the choice, with only 

9% saying they did not care which arrangement was in place. Financial and 

contracting factors, ownership and control were most significant in respondents’ 

choice between the models; and younger age, higher level of education and living 

in an urban area were found to weakly correlate with a preference for the ESCO 

model. No correlation between respondents’ innovativeness and their 

preference for a particular model was measured. It was argued that new 

business models for the ownership and maintenance of microgeneration are 

now likely to be perceived as more innovative than the technologies themselves, 

and that marketing and research efforts should focus more on the attributes of 

these business models in order to increase the uptake of microgeneration 

technologies. Evidence of trends in new residential developments, UK 

regulations and policies, and the attitudes of those most likely to purchase new 

homes, suggests that the ESCO arrangement may become more common in new 

build homes in the UK over the coming decades. 

 

6.2 Contributions 

The importance of the conclusions stated above has been discussed in the 

relevant chapters. This section brings these discussions together and briefly 

summarises the contributions of this thesis, to highlight its novel contributions 

to microgeneration research: in terms of knowledge of the subject, and the 

techniques used to research it. 
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 Insight into unique drivers and barriers for microgeneration in 6.2.1

new build homes 

The coevolutionary analysis of drivers and barriers provided evidence that many 

of the social, economic, technical and institutional issues involved with 

incorporating microgeneration in new homes are substantially different from 

those involved with retrofitting the technologies. As such, it demonstrates the 

importance of considering new build domestic microgeneration as an issue in its 

own right, rather than subsuming it into analyses of retrofitting. The 

coevolutionary analysis also provides an updated appraisal of the drivers and 

barriers for microgeneration in the UK, being the first to explicitly focus on 

microgeneration (as opposed to ‘eco-homes’) since the introduction of the FIT. 

Identifying the barriers to the uptake of microgeneration in new homes may also 

inform decisions by policy-makers and developers who wish to encourage the 

diffusion of these technologies. 

 

 Demonstration of the application of Foxon’s coevolutionary 6.2.2

framework 

An additional contribution of Chapter 3 is as a demonstration of the use of 

Foxon’s coevolutionary framework to investigate the diffusion of a specific group 

of technologies in a certain sector. Since its development in 2010, the framework 

has been used to analyse the development of ESCO business models (Hannon et 

al. 2013), and to the development of energy efficiency strategies in the UK more 

broadly (Foxon and Steinberger 2013). This study has demonstrated the 

flexibility of the framework by applying it to a technology and sector specific 

research question, and by incorporating the concepts of ‘virtuous’ and ‘vicious’ 

cycles of evolution from the work of Hekkert et al.     

  

 New insights into the role of microgeneration deployment 6.2.3

models 

Chapter 4 brought together previously disparate strands of research to draw 

new insights: namely that the ESCO deployment model is likely to have a 

significant role to play in facilitating the uptake of microgeneration in new 
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homes, but that the plug and play arrangement will still be more suitable in some 

cases. This both informs decision-making in this area and demonstrates the 

value of considering results and techniques from disciplines outside those 

directly connected to the area of study. 

 

   Quantitative evidence on householder attitudes to 6.2.4

deployment models 

In Chapter 5, the first quantitative study of householder attitudes towards 

different microgeneration deployment models was conducted. In addition to 

providing previously unavailable quantitative data on householders’ attitudes 

and choices, this chapter also serves as a first demonstration of techniques for 

describing and measuring attitudes to the deployment models, and the 

challenges involved (discussed further in the following section). Additional to its 

contribution to the research questions in this thesis, the use of Goldsmith and 

Hofacker’s DSI scale with British participants was validated in the two domains 

of ‘green’ products and household technologies. The scale was shown to be 

internally consistent in both cases. This strengthens the case for its use in other 

studies of innovativeness in the UK. 

 

6.3 Research review  

Having considered the novel contributions of the research, it is useful to reflect 

on the challenges involved in conducting it, and the strengths and limitations of 

the methods used. This review serves as a statement of the context in which the 

conclusions set out above must be considered, a demonstration of the 

development of research skills by the author since the start of the study, and also 

to inform future studies which may use similar methods. 

 Developments since 2010 6.3.1

Given the timescales involved in producing a PhD, it was inevitable that political, 

social and technical changes would occur between its inception and completion. 

Since 2010, when this project started, many such changes have occurred which 

have impacted on the study’s context and subjects. 
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The most significant occurrence, discussed in several of the relevant sections of 

this thesis, has been the large and rapid increase in the number of 

microgeneration installations in the UK, in particular installations of PV. Since 

the start of this thesis, microgeneration has grown from a little-known niche 

technology to a familiar feature for many people. As uptake increased in 

response to the introduction of the FIT, new manufacturers and installers 

entered the market, and prices for many technologies (particularly PV) fell. As 

discussed in Section 5.5.2, this is likely to have had an effect on many of the 

issues discussed in this study, particularly those relating to householder 

attitudes to microgeneration. However, it is still far from a mainstream 

technology, and the majority of opinions expressed and results presented herein 

were collected after this change had come about. Despite increasing use of 

microgeneration, there is a long way to go before its potential – outlined in 

Section 1.2 – is fully realised. 

 

In addition, the policy landscape for low carbon new homes and microgeneration 

in new homes has changed – particularly during the final stages of this research 

in 2013 and 2014, during which the Government commissioned a housing 

standards policy review. In March 2014, plans were announced to ‘wind down’ 

the Code for Sustainable Homes and incorporate more standards into the 

Building Regulations. This will inevitably have a bearing on the institutional 

issues discussed in Chapter 3. 

 

It is also important to note that for much of the duration of this research, the UK, 

and indeed most of Europe, was undergoing a recession. Unemployment, static 

or shrinking GDP and a rising cost of living tend to reduce spending by 

consumers and investors, and are likely to have had led to more cautious 

financial decision-making. While the impact of these circumstances on the 

interviews and questionnaires conducted in this study cannot be quantified from 

the available data, the results and conclusions must be considered in this 

context. In a more buoyant economy, respondents may have been more willing 

to take on (hypothetical) capital costs and financial risks. 
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 Interdisciplinary research 6.3.2

This thesis took an interdisciplinary approach to investigating the research 

questions posed. Drawing together previously disparate strands of research 

provided fresh insights into the role of different deployment models in 

encouraging the uptake of microgeneration in new homes, and applying 

techniques and theories from psychology, innovations research and social 

science provided quantitative data on householder attitudes. Using a previously 

validated psychological construct scale in Chapter 5 increased the reliability and 

accuracy of the data collected and the conclusions drawn. The use of this 

interdisciplinary approach in Chapter 4 could have been improved by 

conducting a more systematic search of the literatures of different disciplines: 

differentiating by discipline rather than searching by the topic of interest. While 

a topic-based approach was applied in order to maintain focus on the central 

research question, with the benefit of hindsight it is apparent that a more 

systematic approach would have allowed the following discussion to be 

structured in a way which signalled the value and contribution of the approach 

itself more clearly.  

 

Interdisciplinary research also carries the risk of investigations becoming too 

“broad and shallow”: touching on various important points without fully 

investigating any. This research has sought to avoid this by setting clear and 

detailed research questions throughout, and selectively narrowing the lines of 

enquiry throughout the thesis: from UK-wide drivers and barriers, to the subject 

of microgeneration deployment models, to householders’ attitudes to two 

specific deployment models. While this means that some of the questions raised 

by this research have not yet been answered (for example, a more detailed 

consideration of how the UK regulatory environment affects choice of 

deployment model) , it has avoided the pitfalls associated with attempting to 

address too many research questions in too short a time. The opportunities for 

future research studies to take on some of these unanswered questions are 

discussed in the relevant results chapters, and in Section 6.4 of this chapter. 
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 Interviews 6.3.3

The interviews conducted for Chapter 3 provided insights from stakeholders in 

the construction industry, government and researchers in microgeneration. 

However, of the three developers interviewed, only one was from a ‘mainstream’ 

housebuilding firm as opposed to specialists in eco developments. The under-

representation of mainstream housebuilders was due to difficulties encountered 

in contacting the firms, and a lack of responses to enquiries. It is not possible 

with the available data to determine whether this reluctance to engage was 

representative of mainstream homebuilders’ attitudes to microgeneration, or 

due to other factors such as workload and time constraints. A key learning point 

for future research interviews is to prioritise recruitment in the project timeline 

– beginning the approaches to potential participants alongside or prior to 

detailed preparation of the interview method. An additional strategy would have 

been to allocate more time after interviewing participants who did respond, so 

that any recommendations or contacts gained during the interviewing process 

could be followed up. 

 

An additional limitation of the interviews was that participants were not 

specifically asked to quantify the relative importance of different drivers and 

barriers, and certain key points were not followed up in detail. While the 

intention was to avoid bias by not pre-judging the opinions of interviewees; 

having heard their initial opinions, follow-up questions could have drawn out 

opinions on the importance of different factors. While the semi-structured 

approach was valuable in ensuring that researcher bias did not preclude the 

discussion of important topics, a slightly more structured approach, with more 

standardised questions, would have facilitated more detailed information-

gathering in some cases. 

 Surveys and statistical analysis 6.3.4

Following the researcher’s experiences with recruitment for the research 

interviews in Chapter 3, more time was allocated for recruiting participants for 

the questionnaire in Chapter 5. The sample size obtained (which although larger, 

was still limited by the time and resources available for research) was large 

enough for the purposes of most statistical tests, and with the exception of age 
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distribution the sample was adequately representative of the UK population. 

However, an even larger sample size (>1000) would open up additional 

possibilities: 

 

 The sample size for this study was not sufficient to ensure that the logit 

model used captured small effect sizes. In this case, time and resource 

constraints precluded a longer recruitment period or the use of other 

methods such as telephone or widespread postal surveys. However, if future 

studies in this area (see Section 6.4) have sufficient resources available, these 

methods would likely obtain a larger and potentially more representative 

sample, sufficient to detect smaller effect sizes for correlation between 

variables.  

 A larger sample size, coupled with additional computing power, would allow 

for testing of collinear variables (such as age, education and urbanisation) 

using more sophisticated computer models.  

 The Experian MOSAIC tool used in this study can assign people to one of 15 

groups and 66 sub-groups based on their postcode. These groups represent 

segments of UK society, and are richly detailed in terms of attitudes, lifestyle 

and demographic attributes. The sample size in this study meant that the 

resulting groups were too small to produce accurate or reliable conclusions 

from statistical analysis. Larger sample sizes would allow the use of this or 

other geodemographic tools. 

 

Obtaining a larger sample size could be achieved by allocating more time to 

recruitment, or by disseminating questionnaires through a third party with 

expertise in the area, such as a commercial call centre or a local authority. 

 

The questionnaire used in this study was piloted prior to being disseminated 

more widely. However, some flaws were discovered upon analysing the resulting 

data, which should be rectified in any future iterations or validations of this 

study: 
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 As discussed in Section 5.2.3, the questionnaire included a question on other 

household members, in order to apply a measure of equivalised income. 

However, after the dissemination of the questionnaire it became apparent 

that the question on income did not capture total household income in cases 

where occupants did not share finances. The equivalised measure was 

therefore invalid, and respondent income was therefore used in the final 

analysis instead. Future questionnaires wishing to capture a measure of 

respondents’ financial status should either request total household income to 

apply an equivalised measure, or request details of  respondents’ disposable 

income and assets. 

 After the first choice between an ESCO or plug and play arrangement, 

respondents were presented with cost information, then asked to make the 

choice again. The cost information included details on the contract entered 

into for the ESCO arrangement. It is unclear therefore how much of the 

difference between the two choices was down to the financial information, 

and how much was due to respondents’ attitudes to contracting 

arrangements. A solution to this issue would be to avoid mentioning any 

contract arrangements when presenting financial information, instead 

including the contract as one of the attributes/reasons to be scored in the 

next section of the questionnaire. 

 Due to the varying and uncertain nature of maintenance costs, no cost 

information was given regarding technology maintenance for the different 

scenarios. One respondent pointed out in the comments section that this 

made it difficult to make an informed choice between the two options. In 

future, this could be dealt with by including a statement saying that there 

would be no marginal maintenance costs for microgeneration technologies 

compared with ‘conventional’ technologies such as gas boilers, or by 

attempting to calculate an average for maintenance costs using quotes from 

different UK manufacturers/maintenance firms. 

 

A general learning point here is that with additional time available, a more 

comprehensive pilot study should be conducted before disseminating the 
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questionnaire, in which pilot results are analysed using the methods planned for 

the final results. 

 

6.4 Recommendations for future research 

One of the aims of this thesis (Chapters 4 and 5 in particular) was to identify 

possible avenues for future research into how different deployment models for 

microgeneration could facilitate its uptake. While time and resource constraints 

have prevented the use of certain techniques and the investigation of certain 

research questions, the process of conducting this research has highlighted areas 

which could be pursued in future studies. This final section suggests ways in 

which the research presented in this thesis could be extended and built upon in 

light of the conclusions and research review above. 

 Case studies of different deployment models 6.4.1

The literature synthesis and technoeconomic analysis in Chapter 4 provided 

insights into the effects of varying development and householder characteristics 

on the economics of different deployment models. In order to more accurately 

predict  outcomes such as internal rate of return, payback periods (for 

developers or householders) and carbon savings, a more detailed model 

including parameters such as development size, fabric efficiency standards and 

capital and operating costs for district heating could be constructed. Much of this 

data could be drawn from real-world case studies of ESCO contracts, district 

heating schemes and new developments incorporating microgeneration, which 

are likely to become more common (and hence available for study) in coming 

years. The ultimate goal of this research could be to produce a multi-criteria 

decision-making tool for planned developments, which would indicate whether 

an ESCO/district heat arrangement or a plug and play arrangement would be 

better suited. 

 Post-hoc study of householder attitudes to different 6.4.2

deployment models 

Section 5.2.6 set out the rationale for conducting a hypothetical choice study 

rather than a post-hoc study to measure attitudes to different deployment 
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models. However, with more time to dedicate to participant recruitment 

(particularly if residential ESCOs become more common in future), opinions and 

attitudes of householders under an ESCO contracting or district heating 

arrangement could be measured. This would have the advantage of removing the 

‘hypothetical’ aspect of enquiries, and ensuring that participants had a full 

understanding of the ESCO arrangement. It would also highlight any advantages, 

disadvantages or problems perceived by the service users, which may not have 

been thought of by the researcher or the participants in the present study. While 

direct comparison of individuals’ attitudes would not be possible, comparisons 

could be made with similar studies of householders using a plug and play 

arrangement. 

 Willingness-to-pay studies 6.4.3

In Chapter 5, the relative importance of different attributes of the two 

deployment models was measured by asking questionnaire respondents to score 

them. Additional attributes perceived as important by respondents were also 

identified in the ‘additional comments’ section of the questionnaire. A valuable 

addition here would be the use of a willingness-to-pay (WTP) study such as 

those carried out by Claudy et al. (Claudy et al. 2011; Claudy et al. 2010b) for 

technological attributes of microgeneration, to determine the utility or disutility 

ascribed to each attribute of the deployment models by householders. In 

addition to providing a less subjective measurement scale, this would also 

indicate to developers how much home buyers would be willing to pay either up 

front for microgeneration technologies, or for the provision of district heating or 

energy services: facilitating decisions about which scheme to implement. 

 

Further studies in this area using WTP techniques could also include deployment 

model attributes which were mentioned by participants in the ‘additional 

comments’ section of the questionnaire for this study but not included in the 

scoring section, such as distrust of energy companies and concern over other 

people’s use of shared resources. 
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 The effect of marketing messages for microgeneration on 6.4.4

different segments of the population 

 

The underlying motivation for investigating householders’ deployment model 

preferences and their correlates was to produce evidence which would assist in 

effective communication about microgeneration to encourage its uptake. A 

logical next step therefore would be to test the effects of different 

communication methods and messages on different segments of the population. 

This could be achieved using a similar questionnaire to the one used in Chapter 

5, varying the descriptions of the scenarios depending on the communication 

method to be tested, and bearing in mind the attributes rated as important by 

respondents in this study: ownership, control, spreading the cost and the effort 

involved in using or maintaining microgeneration. Householders’ opinions on 

their preferred information sources could also be sought, using focus groups or 

questionnaires. 

 

 

6.5 Concluding statements 

This research was motivated primarily by the need to increase the proportion of 

renewable energy used and reduce GHG emissions, in order to avoid the worst 

effects of anthropogenic climate change. The focus on microgeneration was due 

to its potentially large contribution to the decarbonisation of the UK’s energy 

supply, and the potential for paradigm shifts in the ways in which energy 

consumers view and use energy. However, this thesis does not seek to claim that 

microgeneration is the only, or the best, solution for decarbonising our energy 

supply and reducing our emissions. Achieving a step change in the way we 

generate and use energy will require the use of a variety of technologies and 

techniques, and the commitment of a diverse range of actors, from international 

agencies to individual householders. 

 

This thesis has provided new insights into a group of technologies which have 

significant potential to reduce GHG emissions, diversify energy sources and 
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increase energy security, which are nonetheless only part of a multi-faceted 

approach to combatting climate change. Applying these insights in isolation may 

achieve only incremental changes, but alongside inputs from the many 

researchers now tackling climate change from multiple disciplinary angles, it is 

hoped that they may contribute to a  turning of the tide. 
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Appendix A: Sample interview transcript 

HJ = Hannah James (interviewer) 

Identifying remarks have been redacted to preserve interviewee anonymity. 

 

 

Content Speaker 

So if you could just quickly say who you are and what you do at [redacted]? 

 

HJ 

My name's [redacted], I'm an associate in [redacted] and I work within the sustainability team. So 

that has two factions: basically two that are more sustainability assessment kind of work, and 

also sort of technology focused and design on more marginal newer technologies, which have 

been prevalent over the last couple of years. We also do computer simulations on new buildings 

and technological systems as well. 

 

Consultant 2 
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Ok. Are most of the projects in [redacted]- are they mainly commercial buildings rather than 

housing? 

 

HJ 

Yeah... I mean, I'd say commercial buildings, I mean we do mostly non-domestic, but when we 

work on large and mixed-use developments there's certainly an element of domestic property 

within that that we work on too. I think the real limitation from our point of view as a consultancy 

getting involved in domestic property is that a lot of it is fairly commoditised and most 

developers conjointly work with contractors, so a consultant's role - you know, there's not such a 

need for us to be involved at that kind of stage. So, for example Barratt Homes, they would 

probably work with an architect in the early stages, and they may even have in-house architects, 

and then the system design within each of those might be led then by a contractor working with 

them. So that's probably the reason why we don't really get too involved in a lot of domestic 

property work. But certainly aware of some of the lower-energy buildings that I've worked on - 

some of those have been more bespoke domestic property that maybe required a consultant to 

actually be taken on, because of the non-standardised approaches to designing a building.  

Consultant 2 
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So when you say 'commoditised', do you mean it's all being - it's all very standardised just to get a 

quick turnover, or...  

 

HJ 

Yeah, obviously a contractor, whether it be Bovis or Barratt, or whatever, they basically, they roll 

out similar building designs throughout the country, and when it comes round to system 

integration you may install some of the more leading technologies such as solar thermal, and 

potentially PV, or air source heat pumps, but they're very much commoditised in themselves 

anyway. I mean 10 or 15 years ago there was still very little awareness within the industry, but 

now a lot of them are pretty quick to install those technologies on an economic basis for a lot of 

their properties. Certainly driven by local planning, which is not always bad from a cost point of 

view. 

 

Consultant 2 

So how much does microgeneration feature in the types of projects that [redacted]gets involved 

with? 

HJ 
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I must say, probably up to about 2005, certainly I would say it was very much led by the client in 

terms of their aspirations. And the costs were quite prohibitive really to look at things on a purely 

economic point of view, i.e. in terms of simple payback for a technology. What we found with 

building regulations and local policy, such as the Merton Rule in London, that started to drove the 

absolute need to integrate low- or renewable energy technologies within buildings, so that was 

coming from... we focused on driving down demand through more passive measures, then you're 

adopting some of the more mainstream lower cost technologies within buildings. Interestingly, 

the really big restriction now that we've found is a bit of an unfortunate outcome, was that you 

may have a 10% renewables requirement, so a lot of technologies started being sized to meet 

10%of the renewables as opposed to being the optimum kind of engineering solution. And I think 

that caused a few... well, certainly from our perspective we were very keen to drive... you know, 

with PV you can size the number of panels to meet 10% and it doesn't really affect their 

performance, but maybe with a heat generation technology, you start to size technologies to meet 

10% and you think well actually, it's better that we size this from a controls perspective to 30 or 

Consultant 2 
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40%, or even peak load, and you start to... become a bit of an issue I think.  

 

It's actually less efficient isn't it, to have something that's not working at peak load? 

 

HJ 

It can be, I mean there's certain ways you can connect heat pumps and biomass boilers to buffer 

tanks and thermal stores, so you can run them at effectively full load, even though the secondary 

side kind of building demand is well below that. 

 

Consultant 2 

So, is it a case of just for cost reasons: meeting the minimum standards then not going any further 

because there's no point and there's no regulation to say that you have to? 

 

HJ 

Yeah that's exactly right, you've got Part L compliance, building regulations and then you've got 

maybe a requirement through BREAAM or Code for Sustainable Homes, and then maybe on top of 

that you've got some local policy legislative drivers that mean from a planning perspective you 

have to meet a certain percentage, but inevitably, I mean, if you strip away feed in tariff and 

Consultant 2 



- 267 - 

 

renewable heat incentive, then the driver's cost really, to size for compliance, as opposed to sizing 

from an engineering optimum point of view or indeed literally, you know, size to the maximum 

possible on a site, where they would be especially constrained... 

 

That's really interesting. So, you've mentioned cost - I mean, what - this is a bit of a broad 

question really - but what kind of cost impact does including microgeneration have on a building 

development, and how do developers try to recoup that cost, is it mainly through the feed in tariff 

or is it elsewhere? 

 

HJ 

On a domestic point of view, you have to really take a step back and think well, the developer-

stroke-contractor will build a house, and then sell that in its entirety to a home-owner. So, 

anything like the feed in tariff or renewable heat incentive will then only benefit the home-owner. 

Unless they come up with a decentralised energy strategy for the site, which may be like a central 

energy centre with a biomass boiler district heating and then maybe they retain ownership, 

essentially, of anything that's installed on individual houses. And then they essentially sort of sell 

Consultant 2 
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energy, whether it be heat or electricity, to the homeowner, so there are obviously precedents of 

that, but if it's simply a developer building a hundred houses on a site and then selling each of 

those individual plots to a home-owner, there's no real benefit to him to install renewables is 

there? Other than, you know, probably a subjective kind of aspect to selling the house, which - 

you may think there's added value in terms of being PV on a roof and solar thermal, and there's 

obviously lots of discussions about that, but it's not really discrete or clear-cut how much value 

spending £10,000 to install PV on a house actually brings to the market value. And that's 

obviously been something that's been questioned quite a lot over the last couple of years, and I 

think a number of different estate agents have tried to approach it.  

 

So it's difficult to say how much it adds onto the value of the house? 

 

HJ 

Definitely, yup. 

 

Consultant 2 

Do you get any sense, maybe subjectively, of whether it - how much kind of consumer appetite HJ 
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there is for these houses which have got technologies - microgeneration technologies - on them? 

 

I think it was - certainly 10 years ago it would've been a quite marginal subset of the population 

who were kind of, obviously very passionate about green technologies and sustainable living, and 

the few examples you saw originally were co-operative kind of small-scale housing developments 

were literally collectives of people, who - you know - had read a lot in their own free time and 

perhaps even worked in the industry and knew - like, as an architect or maybe building services 

engineer. Those kind of people were driving the earlier market I would have said. But more 

recently, people are more aware about energy costs, and obviously rising gas and electricity bills, 

and you can obviously start to sell these technologies on that basis. You know, because gas prices 

are going up exponentially, and electricity, and if you extrapolate historical trends in electricity 

and gas prices forward 20 or 30 years, it's quite a compelling story for people. And people tend 

not to move around a lot from house to house, so they can look at a long term investment in a bit 

more of a positive way. 

 

Consultant 2 
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So emphasising the economic benefits is probably going to be the selling point? 

 

HJ 

Yeah... trying to sell carbon to people, it gives people like a fluffy feeling: nice happy feeling. But 

do people really know what a tonne of carbon looks like? You know, and what that means - I 

mean, it really is seriously a drop in the ocean compared to carbon reduction requirements in the 

country. But to give people that feeling that they're actually supporting that - now I'm sure some 

people would be driven maybe to spend a bit more money on their house because of that, but 

really I suppose what they'd be thinking about is reduced energy costs versus a conventional 

house, and that probably will always be the biggest driver I think.  

 

Consultant 2 

Just quickly going back to what you were saying about who retains ownership of the 

technologies: whether it's the developer or whether it gets sold onto the homeowner, have you 

noticed any trends in which of those options is the most prevalent at the moment, and how that's 

sort of developing? 

 

HJ 
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Yeah, depending on the procurement process, you may find that developers are starting to retain 

ownership, or at least partner with an energy supply company, whether that be an ESCO... and 

we've noticed that on one particular project which we worked on in [redacted], it was a large-

scale residential scheme, and that was very much focused right from the outset on a consultancy 

role for us guys, as taking it up to a point where the developer was happy with the technology and 

the integration strategy - district heating and heat exchangers in each of the houses, and things 

like air dispersal, carbon targets, policy-led... local policy-led targets, such as Code for Sustainable 

Homes, you know - we got to a position where it's like stage C, stage D from a RIBA stages at work 

kind of process, and then we act to help facilitate the ESCO coming on board and sort of taking 

that on. I don't think a lot of - traditionally developers are really... it's not their business 

necessarily to maintain a presence within a development once all the plots are sold on, you know 

- they'll be looking to hand it over to an energy supply company: if you do go down that 

decentralised route, where you are looking at a new energy centre, maybe with a CHP engine in 

there or a biomass boiler or whatever, but if it's PV on roofs then I wouldn't really see the model 

for that, because they're fairly low-maintenance, and the same with solar thermal as well, you'd 
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probably question whether those technologies would be retained in terms of ownership by 

anybody other than the house owner. Because it'd raise some questions, I mean certainly if you're 

selling a house, you've got the integrity of the roofing and everything else, and that'd be quite a 

difficult thing to split up I suppose, the liability in terms of who's... yeah, I don't know... 

 

You said stage C, stage D, I'm afraid I don't really know what you mean by that - is that different 

phases in the construction? 

 

HJ 

Yeah, well if you look at a traditional procurement process for a building, which might not 

necessarily be a domestic building, RIBA (which is the Royal Institute of British Architects), they 

basically come up with the procurement stages which reflect where the respective design team 

and construction team should be at, so you basically define from stage A to RIBA stage M, but you 

know detailed design [inaudible] and where you hand over the tender package can either be at 

stage C, stage D, which is seen as more of a design and build route. Or indeed if you take a more 

traditional route, you obviously take it up to detailed design which is kind of stage F and then 
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you're obviously retained and have detailed design liability during construction phases, whereas 

design and build route, you basically take up stage C and stage D, potentially, and at that point 

you've got basic schematics about how everything works, but you basically hand that over to a 

contractor, and you have performance criteria which enables them to take on board, so 

depending on which route you go can actually influence - because, as a consultant we're 

obviously independent designers, and we've got clients' desires and aspirations - that's our 

primary duty to obviously match those, whereas a contractor - wouldn't necessarily think they're 

out just to make money, but they'll be obviously looking to reduce costs wherever they can, to 

maximise their profit. So, while we put down requirement for solar PV panels and so much 

biomass and everything else, that might get questioned by the contractor, you know, for various 

different reasons, and they might like to try and reduce, so that can sometimes be a bit of a 

conflict, when you're looking at renewable energy technologies. 

 

So, given that it's a relatively new basket of technologies, does including microgeneration - does 

that kind of slow things down a bit and cause difficulties during the phasing? 

HJ 
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Yeah, it does really, from our perspective the fees haven't changed from where they were 10 or 

15 years ago [laughs], so there's a lot of added complication with integration with these 

technologies, but you know - as engineers we're all quite passionate about working with new 

technologies, and also making sure that they work sufficiently well that they don't cause more 

complication to the end user. Now, I'd certainly suggest that there's definitely - well yeah, maybe 

a bit of a conflict on some projects, with the client sort of saying well, "I don't want to pay x fees to 

actually design something that's more complicated when I don't really want it anyway." So, you 

know - you get to a point where you go through basic building services design, and work with the 

architect to reduce demand, but ultimately that can be a bit of a constraining factor, when you 

actually consider it, new technologies if you like. 

 

Consultant 2 

So would it be the architect and the consultants that really choose which technologies are going 

to go in and how they are going to operate? I mean obviously in consultation with the developer 

but... 

HJ 
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Yeah, and the client more to the point. I mean with domestic property you don't know who the 

client is really do you, necessarily. The developer knows - thinks they know - who the client is, 

and they're obviously designing something that they think the client's going to think's desirable 

and want to buy. Now, with a lot of the projects we work on, the end client has basically driven 

the procurement process right from the start, so it may be a local authority wanting social 

housing for example, they may actually sort of say "well we want certain buildings in this area to 

be code for sustainable homes, we want them to look like this, roughly, and these are the people 

that are probably going to be housed within these buildings. And, they may stay very visible 

during the early stages of design to help drive where we go and certain technologies and certainly 

the planning generally goes in - can go in -  at stage C, stage D, where you get to that point and you 

get a working design - outline design - and then everything has to be packaged up and you get 

planning approval for it. And it's at that point where the planning officers might start driving the 

design a little bit more. Ultimately, it's up to us as engineers and architects to actually take on the 

responsibility, and we do have a primary role I suppose in advising a client, whether that be a 
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developer or indeed local authority, whoever might be...  

 

This may be a bit after you've finished with the project, but is it difficult to find accredited 

installers for these technologies? Is there a shortage or is it relatively easy? 

 

HJ 

I think a few years ago it was quite difficult and there was a lot of people coming forwards saying 

they can install anything [laughs], and they have lots of experience, but I think, you know - there's 

been lots of start-up companies over the last 10 years, and it's been an age-old problem with new 

technologies in building, whether it be renewable energy technologies or anything else. There 

may be lots of precedents abroad, maybe in Scandinavia or mainland Europe but ultimately you 

know, having somebody who can install it correctly, commission it correctly and be there to 

maintain it is always a bit of a problem. But the MCS scheme has provided a condensed list of 

supposedly - contactors who have got experience and can install things to a sufficient standard, 

but I don't think we've really found more recently that there's a huge problem finding installers, 

certainly for mainstream technologies. I mean, some of the more marginal technologies such as 
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biomass CHP for example, or micro-scale CHP, you know - in domestic use, there probably aren't 

so many contractors who can actually install those.  

 

I know that different technologies are suited to different types of building and different demands, 

but are there any - speaking generally, are there any kind of clear winners emerging amongst the 

technologies or conversely any that don't seem to be quite fit for purpose? 

 

HJ 

Yeah, that's a leading question... well, in many ways if you're designing to meet a target then you'll 

probably look at certain technologies that can fulfil that. Now, you know - maybe if you're 

working to 10% renewables on a certain building you may put forward a strategy which includes 

kind of conventional technologies and then you may install solar thermal panels to meet 50% of 

the domestic hot water demand for examples. And that - if the passive design has been optimised 

- then you might find that 50% is equivalent to 10% of the total energy use for the building. So 

that's quite a nice discreet way of meeting legislative requirements. If you need something a bit 

more substantial in terms of percentage, then you need to start looking at space heating and small 
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power and electrical consumption, you can make small inroads into electrical consumption using 

photovoltaics, and certainly with the feed in tariffs they're a very competitive technology now. 

They're fit and forget as well, similar to solar thermal, they can basically be installed and there's 

no onerous operation for the building owner or residents. Now, in terms of heat generation: 

biomass - pellet, or indeed woodchip, generally isn't suited to single dwellings because I don't 

think developers are keen on the idea of trying to sell something which may require more 

maintenance in terms of servicing. But certainly from a decentralised point of view for a 

development as a whole, biomass is being seen as quite a strong technology because it's 

essentially carbon neutral, there's a small carbon coefficient which is used to calculate - 

nominally calculate - some of the transport and processing energy that's gone into bringing the 

chip to site, or the pellet to site. So yeah, air source heat pumps, ground source heat pumps are 

becoming a lot more popular now as people are realising there's very little maintenance required 

for those technologies. Ground source heat pumps are a lot more expensive generally to install, 

and air source heat pumps are not seen by some people as actually a low carbon technology 

anyway, so you actually need a  - if you're comparing the space heating of a building from 
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convention which may be a gas boiler, to an air source heat pump, which obviously uses grid 

electricity, then you need a minimum COP or efficiency of that air source heat pump to actually 

provide a saving versus what is convention. Now, that minimum COP - I think, it is 0.198 the latest 

Part L coefficient for gas, and the electricity's about 0.51 isn't it, or something like that I forget the 

new figure, but if you take efficiency of gas boiler, then for every unit of heat that you actually 

generate it's probably about 0.22 or something, or 0.21 the actual kilograms of CO2, now if you 

take an air source heat pump or a heat pump working at a COP of 3 or 2.5, you actually divide 

through that 0.51, you can quite quickly see you need quite a big COP, a relatively large COP and 

need to maintain that throughout the whole year to actually have the same versus a gas boiler. So, 

I think that's something we obviously like to try and put forward and make quite transparent, 

because some local authorities see air source heat pumps as a renewable energy technology. 

Now, whilst you're using grid electricity, they're not necessarily that at all, and it's quite difficult 

to convey that to a local authority or indeed a developer.  

 

[Pause] But the grid is supposedly going to be decarbonised in the next 20 to 30 years [laughs] so 
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you could sort of say - if you take the David McKay 'Without the hot air' approach, now he's 

professing how great heat pumps are because of decarbonisation, then there's a real big question 

marks over whether can actually - because electricity consumption in this country is relatively 

constant throughout the whole year - you get diurnal swings, but if you look at it on a bin basis 

month by month - it's quite similar throughout the whole year. Now if you're suddenly going to 

flip over to electrical heating, you're going to end up with a seasonal bias for electrical 

consumption, and also supply, so the grid infrastructure and the current capacity for electricity 

generation in the country's not really geared up for that, and we're going to have huge problems 

trying to meet that. So that was a bit of a - something that perhaps David McKay had overlooked a 

little bit, and I think quite a few commentators have brought that up as well. Sorry, that's a bit 

tangential. 

 

No, that's very useful actually, yeah, that's good. So you've been talking about how regulation is 

kind of driving these installations, and you've mentioned 10%, 50%, how likely is it that the 2016 

Zero Carbon Homes target is going to be met? Because that's talking about almost 100%... 

HJ 
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Yeah, there is a big question about whether we should be forcing developers to generate that 

energy on site. Legislation can drive things, but I suppose ultimately there's quite a lot of lobbying 

in industry at the moment to try and relax some of those targets. I think - as has been quite 

topical over the last few days - there's obviously, the housing market's kind of stalled - both in 

terms of selling and buying. But also from a developer point of view, obviously not looking to 

want to build houses while the value of those houses to be sold then on is kind of reduced at the 

moment. So I kind of, my feeling is that legislation - if the government stay strong, whether it be a 

coalition [inaudible]  the next government stay strong - will ultimately force developers to do 

that. Is it feasible to actually make a house zero carbon? Well it's been proven in various different 

examples in the UK, but it's going to take an awful lot of effort from a passive design point of view, 

now if you were to adopt more of a passivhaus kind of approach, you maximise insulation and 

everything else to an absolute limit that you can from a practical point of view, then ultimately 

your electricity and heat demand is radically reduced versus current Part L requirements. Then 

it's a lot easier to actually think about low and zero carbon technologies that you can actually 
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adopt and you know, the sizing of those technologies is relatively smaller than they would need to 

be if you were just designing to current building regulations. I think it is possible. Is there a 

market appetite? Probably not. But it's not necessarily up to the developer what they... [laughs]. If 

it was left to market forces then no, I don't think it would happen. Not at all.    

 

So given that it's going to take so much effort and there has been this lobbying, do you think 

there's likely to be a lot of non-compliance when 2016 comes around? 

 

HJ 

Um, I don't know, I mean... I don't think I could take a guess at that. I mean, if you think about 

requirements for EPCs and DECs now, and actually monitoring things from a compliance point of 

view post-construction, is there going to be the space for developers to actually get away with it? 

I mean, how are they going to get away with it? Each developer has to do a SAP calculation for 

each of the dwellings that he's going to build, now building control really, a lot of the emphasis is 

going to be on those guys. Or indeed if a consultant is retained by maybe the local authority or 

some kind of third party to actually oversee the quality of the workmanship and everything else 
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and then provide some independent monitoring post-construction to actually prove that the 

house is essentially zero carbon, then how can a contractor or developer or whoever actually get 

away with it? Maybe the challenge really is to put in a kind of checking procedure to actually 

make sure that they do actually meet their targets.  

 

I think finally, speaking about regulation and policies, do you have any predictions about how 

policies - I suppose on the national scale and on the local scale - how policies relating to 

microgeneration might develop over the next few years? I mean, would we see a 

microgeneration-specific target in the same way that we've got a renewables target, or is it 

mainly going to be through the building regulations? 

 

HJ 

I think you have to think about what you're trying to achieve. If you're trying to achieve a 

low/zero carbon house, now it doesn't matter if that energy or the ability to get to that point is 

from microgeneration or through passive measures. Does it really matter? I mean, of course it 

doesn't. So building regs will probably drive passive design to a certain point because they'll put 
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in minimum standards for U values, walls, floors, ceilings, roofs etc but ultimately there's always 

going to be a trade-off where you get to the point where you're thickening the wall to a certain 

point where the marginal benefit of increasing that by an extra 25mm versus the cost of installing 

a physical technology, there's going to be that crossover point. And a lot of people use MAC curves 

and marginal abatement cost curves to evaluate that on a very high level. So, what policy 

measures need to be brought into place? Should it drive microgeneration technologies? I don't 

think it should. I think really you should be setting an absolute target and then allow all 

developers, all the design teams, to actually come up with their own methodology or their own 

approach to different contexts and different applications. Because what we found with the 

Merton Rule and these 10 and 20% targets being set up by local authorities is that, as I said at the 

start of the discussion, that kind of drives sizing of technologies, which really shouldn't be the 

point. What you should be trying to do is - obviously you want to instigate the use of these 

technologies, but really you don't want to affect the sizing of them. You want to retain - the design 

teams need to be able to have a flexible approach, they don't want to be driven by an artificial 

target which can be seen as a bit arbitrary, versus - you've got the whole house which may use 
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1,000 or 2,000 kWh of heat or require 2,000 kWh of heat; now should you be setting a target on 

what percentage of that is by renewables, or should you just leave the design team to say, "well 

actually, we're going to spend a lot more money increasing the wall thicknesses and using a 

certain type of insulation, get that down to 1,200 and then we're going to start approaching 

maybe other technologies as well" ? That seems the better approach. And some local policy does 

actually inadvertently take you down that point, because they'll sort of say "10% of total energy 

of a new build should be from renewable energy", so ultimately if you improve the passive design 

to a point then 10% is obviously a lot smaller than if it was... 

 

So it's better almost to just set the desired outcome in terms of carbon reduction, and let the 

developers do it in their own way. 

 

HJ 

Yup. And that's what the zero carbon target's about - it's not about percentage targets, it's about 

how much energy the building uses and consumes. 

 

Consultant 2 



286 
 

 

That's about it in terms of questions, is there anything else you want to add - any general 

observations or comments? 

 

HJ 

No, no that's very interesting and it's obviously a difficult thing to discuss in any objectivity 

[laughs]. 
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Appendix B: Techno-economic calculations 

 

Variable 

name 

Description Value Units Data source 

TFA Assumed total floor area of 

dwelling 

Attached: 118 

Detached: 76 

m2 Zero Carbon Huba 

PVsize Assumed capacity of PV 

installation 

TFA * 0.3 * 0.18 

 

0.3 = Assumption of 30% TFA available for 

PV 

 

0.11 = Conversion factor to convert m2 to 

kW capacity 

kW 30% TFA assumption: Zero Carbon 

Huba 

 

Conversion factor: Ownergyb and 

SunRun Homec 
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PVuse Proportion of PV generated 

used by household 

Variable (between 0.1 and 1), user defined Decimal n/a 

PVgen Assumed annual electricity 

generation from solar PV 

Attached: 2091 

Detached: 3252 

kWh Energy Saving Trust Solar 

Calculatord 

Inputs:  

System size = PVsize 

Orientation = south 

Postcode = SW1 2AA 

FITgen Annual FIT payment to 

household for generation 

ESCO: 0 

Plug and Play: 0.1 * PVgen * Generation tariff 

0.1 = convert pence to £ 

Generation tariff = 14.9p/kWh 

£ Ofgeme 

FITexp Annual FIT payment to 

household for export 

 

ESCO: 0 

Plug and Play: 0.1 * [(1 – PVuse)* PVgen] * 

Export tariff 

£ Ofgeme 
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0.1 = convert pence to £ 

Export tariff = 3.2p/kWh 

Elecdem Assumed annual electricity 

demand per household 

3300 kWh Zero Carbon Huba 

Eleccost UK average electricity unit 

cost (direct debit customers) 

0.139 £/kWh Confusedaboutenergy.co.ukf 

Elecdisc Assumed discount on 

electricity purchase from 

ESCO 

0.1 Decimal Heuristic, user defined (see 

discussion in Section 5.2.4.3) 

 

 

Capex Capital cost of PV technology ESCO: 0 

Plug and Play: 

    Attached: 6060 

    Detached: 6960 

£ Energy Saving Trust Solar 

Calculatord, inputs as above. 

a  Zero Carbon Hub, 2009. Defining a Fabric Energy Efficiency Standard for Zero Carbon Homes. 
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b Ownergy, 2013. About Solar Photovoltaics. Available from:  http://www.ownergy.co.uk/roof_solar/about/, Access date:  July 2012. 

c SunRun Home, 2012. Solar FAQ. Available from:  http://www.sunrunhome.com/solar-for-your-home/solar-faq/#3, Access date:  July 2012. 

d Energy Saving Trust, 2013. Solar Energy Calculator. Available from:  http://www.energysavingtrust.org.uk/Generating-energy/Getting-money-
back/Solar-Energy-Calculator, Access date:  July 2012. 

e Ofgem, 2013. Tariff tables. Available from:  https://www.ofgem.gov.uk/environmental-programmes/feed-tariff-fit-scheme/tariff-tables, Access date:  
August 2013. 

f Confusedaboutenergy.co.uk, 2013. Fuel Prices. Available from:  http://www.confusedaboutenergy.co.uk/index.php/domestic-fuels/fuel-prices, Access 
date:  August 2013. 

 

Model  calculations:  

 

£𝑁𝑒𝑡 𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤 𝑦𝑒𝑎𝑟 1 = { 𝑃𝑉𝑔𝑒𝑛 ∗ 𝑃𝑉𝑢𝑠𝑒 ∗ 𝐸𝑙𝑒𝑐𝑐𝑜𝑠𝑡}  +  {[𝐸𝑙𝑒𝑐𝑑𝑒𝑚−(𝑃𝑉𝑔𝑒𝑛 ∗ 𝑃𝑉𝑢𝑠𝑒) ∗ 𝐸𝑙𝑒𝑐𝑐𝑜𝑠𝑡] ∗ 𝐸𝑙𝑒𝑐𝑑𝑖𝑠𝑐} + 𝐹𝐼𝑇𝑔𝑒𝑛 + 𝐹𝐼𝑇𝑒𝑥𝑝 − 𝐶𝑎𝑝𝑒𝑥  

 

£𝑁𝑒𝑡 𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤 𝑦𝑒𝑎𝑟 𝑛 (𝑛 > 1) = { 𝑃𝑉𝑔𝑒𝑛 ∗ 𝑃𝑉𝑢𝑠𝑒 ∗ 𝐸𝑙𝑒𝑐𝑐𝑜𝑠𝑡}  +  {[𝐸𝑙𝑒𝑐𝑑𝑒𝑚−(𝑃𝑉𝑔𝑒𝑛 ∗ 𝑃𝑉𝑢𝑠𝑒) ∗ 𝐸𝑙𝑒𝑐𝑐𝑜𝑠𝑡] ∗ 𝐸𝑙𝑒𝑐𝑑𝑖𝑠𝑐} + 𝐹𝐼𝑇𝑔𝑒𝑛 + 𝐹𝐼𝑇𝑒𝑥𝑝   

£20 𝑦𝑒𝑎𝑟 𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤 = £𝑁𝑒𝑡 𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤 𝑦𝑒𝑎𝑟 1 +  ∑ £𝑁𝑒𝑡𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤 𝑦𝑒𝑎𝑟 𝑛 (𝑛 > 1)

20

𝑖=2

 

 

http://www.ofgem.gov.uk/environmental-programmes/feed-tariff-fit-scheme/tariff-tables
http://www.confusedaboutenergy.co.uk/index.php/domestic-fuels/fuel-prices
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Appendix C: Full questionnaire script  

Home Energy Preferences 

Welcome to this survey about home energy preferences. We really appreciate you taking the time to help us with our research. It is being 

carried out by Hannah James and two supervisors at the University of Leeds as part of a PhD project about home energy generation.  

 

We'll be asking for your opinions about different scenarios to do with generating energy at home, and about your shopping habits. We're 

interested in your personal preferences, so there are no right or wrong answers. The questionnaire takes around 10 minutes to complete. 

 

Once you have completed the questionnaire, you will have the opportunity to enter a prize draw to win £30 worth of Marks and Spencer 

vouchers. 

 

All the information you give in this questionnaire will be kept completely anonymous, and will never be used to identify you. The data we 

collect will be analysed in aggregate: we will not analyse your responses individually. The data will be entered into a statistical analysis 

program and kept on a secure server which can only be accessed by password (known only to Hannah). The hard copy of your response 

will then be destroyed by shredding. 
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Your data will never be passed onto anyone else. We will not use any of the information you give to contact you, apart from notifying you if 

you have won the prize draw. Once the study has finished your data will be kept securely for three years, and then destroyed. 

 

If you have any questions about this survey - before, during or after filling it in, please contact Hannah:  

 

Email: pmhcj@leeds.ac.uk 

Telephone: [redacted] 

 

ERI/SPEME        

University of Leeds 

Leeds 

LS2 9JT 
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Question 1 

I am over 18 and a resident of the UK. I am happy for you to use my answers to this questionnaire as described above. 

 

☐ Yes 

☐ No 

 

 

Question 2 

Please enter your postcode (e.g. LS2 9JT). If you are a student, please enter the postcode of your TERM TIME address. 

 

Your address will never be shared or used to contact you, and will not be used for anything except this research. However, if you would 

prefer not to enter the full postcode, please enter the first half (e.g. 'LS6' or 'S2') 
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Question 3 

Please enter your age in years 

 

 

 

Question 4 

What is your gender? 

☐ Female  

☐ Male 

☐ Other/prefer not to say 
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Question 5 

What is your net monthly income from all sources, after tax? For this question, include anyone who shares your income or who shares their 

income with you, such as a spouse or partner. Do not include any housemates whose finances are separate from yours.  

If you are not sure of your exact monthly income, or it varies, please enter your best guess or an average. Enter your answer as a number 

without a £ sign, e.g. 1000, not £1,000. 

 

 

 

Question 6 

What is the highest level of education you have achieved? If you have international qualifications, please choose the closest UK equivalent. 

☐ School to age 16 or younger 

 

☐ GCSEs/Scottish Standard Grade or equivalent 

 

☐ A levels/International Baccalaureate/Scottish Higher Grade/Scottish Advanced Grade/HND/Foundation Degree or equivalent 
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☐ Bachelors degree (e.g. BSc, BA, BEng etc) or equivalent 

 

☐ Masters degree (e.g. Msc, MA, MRes etc) or equivalent 

 

☐ Doctoral degree (e.g. PhD, EngD, PsyD etc) or equivalent 

 

Question 7 

How many of the following people do you live with? Please enter your answer as a number (e.g. 2, not 'two'). Enter 0 for those you don't 

have living with you. 

 

Spouse/partner  

Adult who is not a spouse/partner  

Child under 14  

Child aged 14 or over  
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Question 8 

In this question you are going to be presented with a scenario, followed by two options to choose from. We will then ask you a few 

questions about how you made your decision.  

 

The scenario:  

 

You are buying a new home, which is powered by renewable energy. 'Renewable energy' refers to energy from natural resources that do 

not run out, such as sunlight, wind and the Earth's heat.  

 

Your home is heated using a combined heat and power (CHP) unit, which operates in a similar way to a conventional gas or oil boiler to 

provide hot water and space heating. It is more energy efficient than a conventional boiler, and also generates some electricity alongside 

the heat. Your electricity is provided by solar panels which harvest the energy from the sun.  
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The renewable technologies on your home meet all of your heat and electricity needs.  

 

This could be arranged in one of two ways: see next page. 
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 Option 1 Option 2 

Description In this scenario, you buy the CHP unit and the solar 

panels along with your new home. You are given 

instructions on how to use them. 

In this scenario, an energy service company owns the CHP 

unit and solar panels. Your heating unit and solar panels are 

connected to a neighbourhood grid which allows heat and 

electricity to be shared between the homes.  

Where is the 

CHP unit 

located?  

In a suitable location in your home such as the kitchen 

or landing. 

A large CHP unit is located in your neighbourhood and 

supplies heat to all the homes. There is no unit in your house, 

just a thermostat. 

Where are 

the solar 

panels 

located?  

On your roof On your roof 
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Who operates 

the CHP unit?  

You and anyone else living in your home, in a similar 

way to a conventional boiler with a thermostat. 

The energy service company controls it remotely, in order to 

keep your home at the temperature you set with the 

thermostat. 

Who operates 

the solar 

panels?  

They are automated and don't require any additional 

action to work. 

They are automated and don't require any additional action to 

work. 

Do I need to 

do any 

maintenance?  

Yes: the CHP unit needs to be serviced occasionally. It 

costs the same as conventional boiler servicing. The 

solar panels require little maintenance, but they need to 

be cleaned occasionally. 

No, the energy service company deals with maintenance. 

Assume now that money is no object. Both options cost exactly the same and do not cost more than a home without renewable energy.  

In this scenario, there is no option not to have renewable energy: you must have one of the two options.  
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Which of these options would you prefer? 

 

Strongly prefer Option 1 Slightly prefer Option 1 No preference either way Slightly prefer Option 2 Strongly prefer Option 2 

□ □ □ □ □ 

 

 

Question 9 

Now we are going to add some information about costs to the two options: 

 
 

 Option 1 Option 2 

Recap You own the CHP unit and solar panels. 

You operate and maintain the CHP unit and solar panels. 

The CHP unit is in your home and the solar panels are on 

The energy service company owns the CHP unit and solar 

panels. 

The energy service company operates and maintains the CHP 
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your roof. unit and solar panels. 

The CHP unit is not in your home. The solar panels are on 

your roof. 

What are 

the 

financial 

benefits?  

The electricity generated is free for you to use and the boiler 

is very efficient, so you make savings on your energy bills. 

You receive a monthly payment (a ‘feed in tariff’) from the 

government for each unit of renewable energy you generate. 

These payments are guaranteed for 20 years. 

Due to these savings and payments, an average UK 

household would receive an extra £1043 per year under this 

arrangement. 

The energy service company sells you electricity and heat at a 

price that is guaranteed to be less than or equal to the prices 

charged by conventional energy companies. (You cannot 

switch providers while under this contract). 

Due to these savings, an average UK household would receive 

an extra £145 per year under this arrangement. 

What are 

the costs?  

Your home will cost more to buy due to the renewable 

energy technology installed.  

The cost of an average home would increase by £10,000 

The cost of your home is not increased. You make a monthly 

payment to the energy service company to cover the costs of 

maintenance and operation.  
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under this arrangement. An average monthly payment in the UK would be £10. 

 

In this scenario, there is no option not to have renewable energy: you must have one of the two options.  

In light of this additional information, which of these options would you prefer? 

 

 

 

Strongly prefer Option 1 Slightly prefer Option 1 No preference either way Slightly prefer Option 2 Strongly prefer Option 2 

□ □ □ □ □ 
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Question 10 

When you made your decisions in the previous question, how important were the following considerations on a scale from 1 to 5?  

Where 1 = Extremely Important and 5 = Extremely Unimportant. 

 

 1 2 3 4 5 

I would prefer to own my own energy generation 

technologies rather than have a company own them 
☐ ☐ ☐ ☐ ☐ 

I want to have control over how my energy generation 

technologies operate 
☐ ☐ ☐ ☐ ☐ 

I would prefer not to have the effort involved in maintaining 

my own energy generation technologies 
☐ ☐ ☐ ☐ ☐ 

I'm sceptical about newer energy technologies: I'd prefer not 

to invest my own money in them 
☐ ☐ ☐ ☐ ☐ 

I'd be worried about using newer energy technologies 

myself: I'd rather have an expert do it 
☐ ☐ ☐ ☐ ☐ 

Not having a boiler in the home increases the space 

available for me to use (e.g. more kitchen cabinet space) 
☐ ☐ ☐ ☐ ☐ 
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I don't like the idea of sharing my boiler with other people ☐ ☐ ☐ ☐ ☐ 

I would prefer to spread the cost of the energy technologies 

over monthly payments rather than pay the full cost upfront 
☐ ☐ ☐ ☐ ☐ 

 

 

Question 11 

If you had any other reasons which weren't mentioned, please enter them here:  
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Question 12 (this is the second last question)  

We would now like you to think about environmentally friendly products (shortened to 'green products'). By this we mean any products 

which are designed or produced to minimise impacts on the environment. Examples could include low energy lightbulbs, environmentally 

friendly cleaning products, sustainably produced food, re-usable nappies etc, but are not limited to these. Think about products that are 

relevant to YOU and your interests. 

 

Please say how much you agree or disagree with each statement: 

 Strongly 

disagree 

Somewhat 

disagree 

Neither agree 

nor disagree 

Somewhat 

agree 

Strongly agree 

I will not buy a new green product if I haven't been able to 

try it first 
☐ ☐ ☐ ☐ ☐ 

In general, I am the first in my circle of friends to know the 

brands of the latest green product 
☐ ☐ ☐ ☐ ☐ 

In general, I am among the first in my circle of friends to buy 

a new green product when it appears 
☐ ☐ ☐ ☐ ☐ 

I do not like to buy green products before other people do ☐ ☐ ☐ ☐ ☐ 
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Compared to my friends I own a lot of green products ☐ ☐ ☐ ☐ ☐ 

If I heard that a new green product was available in the 

store, I would not be interested enough to buy it 
☐ ☐ ☐ ☐ ☐ 

 

Question 13 (this is the last question)  

This time we would like you to think about household technologies. By this we mean technological products that you would buy to use at 

home. Examples could include sound systems, smart phones, games consoles, e-readers etc, but are not limited to these. Think about 

products that are relevant to YOU and your interests. 

 

 

 

Please say how much you agree or disagree with each statement: 
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 Strongly 

disagree 

Somewhat 

disagree 

Neither agree 

nor disagree 

Somewhat 

agree 

Strongly agree 

I will not buy a new household technology if I haven't been 

able to try it first 
☐ ☐ ☐ ☐ ☐ 

In general, I am the first in my circle of friends to know the 

brands of the latest household technology 
☐ ☐ ☐ ☐ ☐ 

In general, I am among the first in my circle of friends to buy 

a new household technology when it appears 
☐ ☐ ☐ ☐ ☐ 

I do not like to buy household technologies before other 

people do 
☐ ☐ ☐ ☐ ☐ 

Compared to my friends I own a lot of household 

technologies 
☐ ☐ ☐ ☐ ☐ 

If I heard that a new household technology was available in 

the store, I would not be interested enough to buy it 
☐ ☐ ☐ ☐ ☐ 

Thank you and prize draw 

Thank you very much for completing this questionnaire. We really appreciate you taking the time to help us with our research. 
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If you would like to be entered into the prize draw to win £30 Marks and Spencer vouchers, please enter your email address or phone 

number below and click 'Done' below. Your email address/phone number will not be associated with your answers, and it will never be 

used to contact you unless you have won the prize draw. 

 

If you do not wish to enter the draw, leave the box blank. 

 

 

 

If you have any questions or comments about this questionnaire please contact Hannah James: 

Email: pmhcj@leeds.ac.uk 

ERI/SPEME 

University of Leeds 

Leeds 

LS2 9JT
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Appendix D: Disclaimer from Experian 

The use of the Experian Mosaic tool in Chapter 5 was subject to the following 

disclaimer from Experian: 

 

“The information contained within this report is not intended to be used as the sole 

basis for any business decision, and is based upon data which is provided by third 

parties, the accuracy and/or completeness of which it would not be possible and/or 

economically viable for Experian to guarantee.  Experian's services also involve 

models and techniques based on statistical analysis, probability and predictive 

behaviour.  Accordingly, Experian is not able to accept any liability for any 

inaccuracy, incompleteness or other error in this report." 


