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Abstract
This thesis is concerned with the efficient numerical solution of nonlinear partial dif-

ferential equations (PDEs) of elliptic and parabolic type. Such PDEs arise frequently in
models used to describe many physical phenomena, from the diffusion of a toxin in soil
to the flow of viscous fluids. The main focus of this research is to better understand the
implementation and performance of nonlinear multigrid methods for the solution of el-
liptic and parabolic PDEs, following their discretisation. For the most part finite element
discretisations are considered, but other techniques are also discussed.

Following discretisation of a PDE the two most frequently used nonlinear multigrid
methods are Newton-Multigrid and the Full Approximation Scheme (FAS). These are
both very efficient algorithms, and have the advantage that when they are applied to prac-
tical problems, their execution times scale linearly with the size of the problem being
solved. Even though this has yet to be proved in theory for most problems, these methods
have been widely adopted in practice in order to solve highly complex nonlinear (systems
of) PDEs.

Many research groups use either Newton-MG or FAS without much consideration
as to which should be preferred, since both algorithms perform satisfactorily. In this
thesis we address the question as to which method is likely to be more computationally
efficient in practice. As part of this investigation the implementation of the algorithms
is considered in a framework which allows the direct comparison of the computational
effort of the two iterations. As well as this, the convergence properties of the methods are
considered, applied to a variety of model problems. Extensive results are presented in the
comparison, which are explained by available theory whenever possible. The strength and
range of results presented allows us to confidently conclude that for a practical problem,
discretised using a finite element discretisation, an improved efficiency and stability of a
Newton-MG iteration, compared to an FAS iteration, is likely to be observed. The relative
advantage of a Newton-MG method is likely to be larger the more complex the problem
being solved becomes.
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Chapter 1

Introduction

Partial differential equations (PDEs) are frequently used for the modelling of many phys-
ical processes. They provide an estimation of continuous phenomena arising in physical
and engineering processes. Their solution is known in analytic cases for only few model
problems, and when applied to real world problems their exact solution is most often not
known. In this case the solution must be estimated. The most useful way in which an
approximation can be gained is by solving a PDE (or system of PDEs) for the value of the
unknown function(s) at discrete points, which can be done with the aid of a computer.

In order that the discussion given in this thesis may be kept concise it is assumed
that the reader is familiar with the following topics. From calculus, it is assumed that
the reader is familiar with differentiation on the real numbers, Riemann integration, and
the numerical approximation of derivatives and integrals. A basic knowledge of function
spaces is required, in particular knowledge of inner products and norms to measure func-
tions, as well as basic concepts such as open/closedness, boundedness, compactness, etc.
Knowledge of Hilbert spaces and Sobolev spaces is advantageous, although these are not
required in depth in order to understand the main content of the thesis. From linear algebra
the concept of a matrix and vector is required, and spectral properties of a matrix (such as
eigenvalues, eigenvectors, spectral radius, etc.) are also required. For readers unfamiliar
with these topics we suggest some introductory texts to read. For an introduction to the
calculus required for the description of numerical methods see [46]. An introduction to
functional analysis is given in [152], and a discussion of applied functional analysis can
be found in [83]. A good introductory text on linear algebra is [168] and a more complete

1



Chapter 1 Introduction 2

reference is [78]. Most of the mathematics used in this thesis can be found in the excellent
reference book on PDEs by Evans [71].

1.1 Subject of the Thesis

In this thesis partial differential equations of the form

−∇ · (a(u,∇u, ~x)∇u(~x)) = f(~x), (1.1)

and

∂

∂t
b(u, ~x, t)−∇ · (a(u,∇u, ~x, t)∇u(~x, t)) = f(~x, t), (1.2)

are considered for unknown function u; (non-)linear functions a and b of u and its gradient
∇u; known function f ; spatial variable ~x; and time variable t. Equations (1.1) and (1.2)
are examples of PDEs of elliptic and parabolic type, respectively. A class of algorithms
which are often used in practice for these types of problems are so-called multigrid meth-

ods (see Chapter 4). When function a in (1.1) or (1.2) depends on u or ∇u, the PDE is
nonlinear, for which there are two main variants of multigrid – Newton-Multigrid or Non-

linear Multigrid (in particular the Full Approximation Scheme - FAS). Chapter 4 gives
an introduction to these. It is the performance of these algorithms applied to nonlinear
problems of the form (1.1) and (1.2) which is the subject of this thesis. An introduction
to the discretisation of PDEs and their solution is given in later chapters. For an outline
of the content of the thesis see Section 1.3 below.

1.2 Main Achievements of the Thesis

The achievements of this thesis can be summarised as follows:

• A novel framework is developed in Chapter 6 which allows for the direct compari-
son of the computational effort required in Newton-Multigrid and Nonlinear Multi-
grid methods. Estimations of running times are sharp for simple model problems,
and the framework serves to highlight the expected performance of the methods,
relative to each other, when applied to increasingly complex problems.

• Application of Newton-Multigrid and Nonlinear Multigrid methods to an elliptic
model problem in Chapter 7 shows important implementational considerations for
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each of the algorithms which serve to highlight weaknesses and strengths of the
iterations.

• A relation between the Newton-Multigrid and Nonlinear Multigrid methods is high-
lighted in Subsection 4.2.3, which is supported by results given in Section 7.6, and
leads to the proposition that the asymptotic convergence of a Nonlinear Multigrid
method is dependent upon the convergence of a Newton iteration.

• Application of Newton-Multigrid and Nonlinear Multigrid methods to an elliptic
problem with discontinuous coefficients in Section 7.7 shows the robustness in con-
vergence of Newton-Multigrid and Nonlinear Multigrid with respect to the position-
ing of coefficient functions which are not aligned on coarse grids. The results are
tied in with existing linear theory, and this is the first time that an investigation of
discontinuous coefficients has been performed in the case of a nonlinear PDE.

• Extensive results on the robustness of Newton-Multigrid and Nonlinear Multigrid
with respect to initial estimates, time-step parameters and discontinuities in coeffi-
cient functions are given in Chapters 7 and 8. These allow for us to be confident
in the statement that Newton-Multigrid is likely to be a much more robust and
computationally efficient algorithm, compared to Nonlinear Multigrid, for practical
problems. Results also highlight the necessity for assumptions to be made a priori

regarding the solution of a nonlinear problem, before any qualitative estimate for
the convergence behaviour of a nonlinear iteration can be made.

1.3 Outline of the Thesis

This thesis is split into several chapters, which aim to give a contained discussion of
distinct topics of interest. Chapters 2 to 5 together give a background of the numerics and
mathematics involved in the solution of discrete nonlinear PDEs using multigrid methods.
Chapter 2 begins with common discretisations of PDEs onto spatial grids, with particular
focus on finite element methods. A brief note regarding discretisation in time is also
given. Chapter 3 discusses common techniques for the solution of PDEs discretised on
grids and introduces important components of a multigrid iteration. Chapter 4 gives an
introduction to multigrid methods by first considering linear multigrid methods, and then
their application in a nonlinear setting. Chapter 5 outlines relevant components of the
known convergence theory of multigrid methods.

The remaining Chapters 6 to 8 are related to the comparison of Newton-Multigrid and
Nonlinear Multigrid methods. The main novel contribution is given in Chapter 6, in which
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a framework for the direct comparison of the relative execution time of Newton-Multigrid
and Nonlinear Multigrid methods is developed. This is a more in-depth discussion of
the framework introduced in [22]. Quantitative estimates of the execution time of the
iterations are made, and a qualitative discussion of the expected behaviour, in terms of
computational efficiency of the methods, is made for increasingly complex problems.

Results are given in Chapters 7 and 8 comparing the execution time and robustness
of the iterations for different model problems. These results are more extensive than
results given in [22]. An elliptic type model problem of the form (1.1) is given in Chap-
ter 7. This includes an investigation of the use of different initial estimates, discontinuous
coefficients and stabilisation methods of the algorithms. The discussion in Section 7.6
is interesting as it highlights a connection between Newton-MG and Nonlinear Multi-
grid methods, which suggests that the asymptotic convergence of a Nonlinear Multigrid
method will depend on the convergence of a Newton iteration.

Chapter 8 gives results for Newton-Multigrid and Nonlinear Multigrid methods ap-
plied to the solution of discretised PDEs of parabolic type. In particular, results demon-
strate the robustness of the methods with respect to a time-step parameter. The model
problems considered in this chapter are presented in order of their complexity, the most
complex problem being presented last. The results for the execution time of the iterations
supports predictions made using the theory in Chapter 6. At the beginning of each of the
Chapters 6 to 8 the outline of the chapter is briefly introduced, and a summary of the main
results and possible extensions and future work are included at the end of each chapter.
These conclusions are summarised and repeated in Chapter 9.



Chapter 2

The Discretisation of PDEs

Partial Differential Equations (PDEs) are used in science and engineering to create (ap-
proximate) models of some physical process or processes. For many practical applica-
tions an analytic solution of a PDE, or system of PDEs, is not known. Hence the solution
must be approximated numerically. The solution can most easily be approximated on a
computer, where arbitrary continuous functions must be approximated by some discrete
counterpart. The process of moving from a continuous to a discrete problem is known as
discretisation. In discretising, care must be taken that important underlying properties of
the solution to the continuous problem are preserved. In particular a discretisation should
allow for a solution to be found, which is convergent. That is, the discrete solutions should
approach the continuous solution as the number of unknowns in an approximation is in-
creased. Discretisation schemes can be chosen to preserve properties such as continuity
of mass, momentum or flux and/or continuity of derivatives of the solution.

There are many different choices for discretisation schemes. Sections 2.2, 2.3 and 2.4
give an introduction to several choices for discretisation methods. Two methods that are
especially popular in practice are finite difference methods and finite element methods,
which are discussed in Sections 2.2 and 2.3, respectively. Other methods are useful, but
beyond the scope of this thesis. In Section 2.4 some other possible discretisation meth-
ods are briefly introduced and the interested reader is directed to the literature for more
information. Before discussing different discretisation schemes, necessary mathematical
preliminaries are introduced in the next section.

5
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2.1 Discretising on a Grid

In the scope of this thesis a problem is solved on a domain Ω ⊂ Rd for d ∈ {1, 2, 3}.
It is assumed that Ω is polygonal with boundary ∂Ω. There are a number of ways to
discretise a function on Ω. Spectral methods (described in more detail in Section 2.4)
take a finite combination of functions defined globally on Ω. Another approach is to
consider Ω partitioned into smaller components and to define a function on Ω as a sum of
functions defined locally on these components. To this end a grid Ωh ⊂ Ω is defined as a
finite set of points Nh ∈ Rd connected by a set of edges Eh, as depicted in Figure 2.1.

(a) Example of a rectangular grid (b) Example of a triangular grid

Figure 2.1: Examples of different types of grid

Ωh may also be referred to as a mesh, and both grid and mesh will be used syn-
onymously in this thesis. Figure 2.1a gives an example of a rectangular grid and Fig-
ure 2.1b gives an example of a structured triangular grid, although arbitrary polygons
may be formed on a set of nodes. The nodes in Nh need not be connected by edges in a
structured manner, giving rise to an unstructured grid. Grids can also be formed in three
dimensions, in which case the edges are the boundaries of faces, which enclose three-
dimensional volumes. The set of faces of a grid Ωh (where a face of a two-dimensional
grid is an edge) is given by Fh. We denote by #Nh, #Eh and #Fh the number of nodes,
edges and faces on a grid, respectively. A grid is called uniform in Rd if the spacing be-
tween neighbouring nodes is uniform in each of the component directions. Both of the
grids in Figure 2.1 are examples of uniform two-dimensional grids.

A triangulation Th on Ωh is a set of pairwise disjoint open polygons {Ti} such that
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the intersection

Ti ∩ Tj =



∅, or

f ∈ Fh, or

e ∈ Eh, or

~x ∈ Nh,

for i 6= j. As presented here, a triangulation need not be defined on a triangular grid
and the above definition holds in the case of arbitrary polygons. The polygons T ∈
Th are known as elements and #Th gives the number of elements on a grid Ωh. The
elements in Figure 2.1a are rectangles, and the elements in Figure 2.1b are triangles. For
the purposes of this thesis we are most interested in a simplicial grid, which is triangular
in two-dimensions and tetrahedral in three.

For an element the value h(T ) is the diameter of element T ∈ Th, which is defined
as the longest distance between two points on the element. For a triangle this is the
magnitude of the longest edge. We also define

h ≡ max
T∈Th

h(T ) (2.1)

and let ρ(T ) be the diameter of the largest ball contained in T ∈ Th. A triangulation is
said to be shape regular if there exists some κ > 0 such that

ρ(T )

h(T )
≥ κ, ∀T ∈ Th. (2.2)

A triangulation is quasi-regular if condition (2.2) is changed to

ρ(T )

h
≥ κ, ∀T ∈ Th. (2.3)

There are two main ways in which a grid is used to describe a discrete function. Using
a finite difference (see Section 2.2) or a finite volume (see Section 2.4) discretisation a
discrete function is approximated using point-wise values on the grid. This may be the
grid nodes, the mid-points between edges or the centres of gravity of the elements. For
a finite element approximation (see Section 2.3) the approximation is formed by taking a
combination of functions with support on a finite number of neighbouring elements. The
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functions can be defined using a finite number of values of the function or its derivatives
at unique points on an element, which are called the degrees of freedom of the function.
The degrees of freedom may be defined at grid points, edges or faces on the element or
the element itself, or combinations of the above.

In the next sections we describe in more detail the way in which a function may be
discretised on a grid in the case of finite difference and finite element schemes. Section 2.4
outlines some other methods used for discretising PDEs.

2.2 Finite Difference Methods

In this section the finite difference method is introduced by considering the one-dimensional
discretisation of the equation

−a∇ · [∇u(~x)] + bu(~x) = f(~x), (2.4)

where constants a, b > 0. The function u is the unknown in (2.4) and for the remainder of
this section and the remainder of the thesis the explicit dependence on ~x of the functions
is dropped whenever the notation is clear. Discretisation in two and three dimensions
follows using the same principles discussed here. For this brief discussion boundary
values are ignored, but some difficulties in dealing with boundary values are discussed
below.

Consider that the uniform grid Ωh shown in Figure 2.2 has been given and that the
values of the solution u are sought at the nodesNh. As mentioned previously it is possible

. . . . . .

x0 δx

0 1 i N + 1

Figure 2.2: Example one-dimensional grid

to use other points on the grid at which to find the value of the solution and discretisation
at these points is performed in a similar manner to that described below. Let δx be the
spacing between the grid nodes, xi = x0 + iδx be a nodal value, N = #Nh, ui = u(xi),
{∇ · ∇u}i = ∇ · ∇u(xi) and fi = f(xi). Applying (2.4) at each grid point individually
gives the following system of equations to solve

−a {∇ · ∇u}i + bui = fi, i = 1, . . . , N. (2.5)
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The nodal values ui ∈ R may be considered constants to solve for, even though they
are function evaluations at a given point in space. Equation (2.5) also contains values
{∇ · ∇u}i, which are not known, and which we do not wish to solve for as we are inter-
ested in the function values ui. It is possible, using a divided difference approximation,
to estimate the values of the derivatives of the function u in terms of the nodal values on
the grid. Using a Taylor series expansion in one dimension about grid node xi a second
order accurate approximation (with respect to the grid spacing) to the second derivative is
given by the centred difference formula [166, pg. 7]

{∇ · ∇u}i =

{
d2

dx2
u

}
i

≈ ui+1 − 2ui + ui−1

δx2
. (2.6)

Substituting (2.6) into (2.5) gives the system of equations

a
(2ui − ui−1 − ui+1)

δx2
+ bui = fi, i = 1, . . . , N, (2.7)

which can be solved for {ui}Ni=1, as there are N equations for N unknowns. Equation
(2.7) gives the equations to be solved on the interior of the domain. On or close to the
boundary the equation to solve may be a little different, and care must be taken that
the boundary conditions are treated correctly. For a more detailed discussion on finite
difference methods see [166]. The approximation to the derivative given in (2.6) is not
unique. Divided differences can be taken using more nodes on the grid to give more
accurate approximations to the derivatives. It is possible to approximate derivatives of
any order to any degree of accuracy [73] using finite differences on a regular grid. This
only makes sense when it is known that high order derivatives exist for the solution to the
PDE. Also, the more nodes that are used in an approximation to the derivative the more
the boundary effects come into consideration. For complex boundary conditions this can
be a problem.

The discretisation of a nonlinear problem, or of a problem that is in two or three
dimensions, follows by taking appropriate divided difference formulas and substituting
them into the original equations. As can be seen, formulating a finite difference discreti-
sation is simple and a benefit of a finite difference scheme is that it is cheap to set up
the system of algebraic equations to solve. However, a large restriction for finite differ-
ence schemes is the requirement that the grid used be topologically rectangular. Some
simple non-rectangular meshes can be used in conjunction with a finite difference dis-
cretisation, so long as the grid may be transformed into a rectangular grid, which is not
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generally possible (and rarely easy) in practical applications. Difficulties also arise on or
close to boundaries (internal and external) where the geometry is more complicated. The
treatment of the boundary conditions then becomes difficult, especially if higher order
difference schemes are used.

Finite difference schemes are useful in science and engineering in industrial and re-
search applications (see, amongst others, [6], [63], [75], [82], [151], [163], [192]) and are
a powerful tool in obtaining approximations to problems in scientific computing. How-
ever, major drawbacks include difficulties in modelling complicated or curved boundaries
and also that uniqueness and existence results for solutions require a lot of smoothness of
the solution [89]. Finite element methods address some of the shortcomings of finite dif-
ference methods. In particular they provide a very powerful framework for the analysis of
discrete problems and allow for boundaries to be discretised more easily. Finite element
methods are explored in more detail in the next section.

2.3 Finite Element Methods

In order to describe the finite element method the weak formulation of a boundary value
problem is introduced.

2.3.1 Weak Formulation

Given a domain Ω ⊂ Rd, where d ∈ {1, 2, 3}, let ΓD ⊂ ∂Ω, with ΓD 6= ∅, be the part of
the boundary on which a Dirichlet boundary condition is specified and let ΓN ⊂ ∂Ω be the
part of the boundary on which a Neumann condition is specified such that ΓD ∩ ΓN = ∅
and Γ̄D ∪ Γ̄N = Ω. Let the (linear) boundary value problem to be solved be given by

−∇ · [a∇u] + bu = f, ~x ∈ Ω,

u = gD, ~x ∈ ΓD,

∇u · ~ν = gN , ~x ∈ ΓN ,

(2.8)

where a(~x), b(~x) > 0, and ~ν is the outward facing normal on ΓN . The function u is
unknown and is to be solved for, and f is given data. We consider, for ease of discussion,
that gD ≡ 0. The case of a non-homogeneous Dirichlet boundary is trivial to deal with,
as it is possible to solve for function ũ = u − uD where uD is an extension by zero into
the interior of the domain of function gD. Let v be a function such that v = 0 for ~x ∈ ΓD.
Instead of looking for the solution of (2.8) directly it is possible to consider the solution
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of the weak formulation. To form this the first equation in (2.8) is multiplied by a trial

function v, after which the entire expression is integrated. Making use of the divergence
theorem [71, pg. 627] the following is obtained:

∫
Ω

a∇u · ∇v d~x+

∫
Ω

buv d~x =

∫
Ω

fv d~x+

∫
ΓN

agNv dS. (2.9)

In this case the assumption has been made that the trial function v is zero on ΓD and has
bounded first derivative such that the application of the divergence theorem is possible.
Given an appropriate function space V (in this case V ⊂ H1

0 (Ω), see (2.16)), a function
u ∈ V is said to be a weak solution of (2.8) if it satisfies Equation (2.9) for all v ∈ V . The
known function f is in the dual space [23] V ′. In the case where gN = 0 on ΓN in (2.9),
it is common to write (2.9) in the dual form given by

(u, v)A = 〈f, v〉 (2.10)

with 〈v, w〉 the duality pairing between V and V ′, and

(v, w)A ≡
∫

Ω

a∇v∇w d~x+

∫
Ω

bvw d~x, (2.11)

in the case of Equation (2.9). In the case that ( · , · )A defines an inner product (as in
(2.11)) the Riesz representation theorem [71, pg. 639] can be used to define a bounded
linear operator A : V → V ′ such that

(v, w)A = 〈Av,w〉. (2.12)

This notation is useful when discussing general partial differential equations, and will be
used in this thesis, excepting the brief discussion given below.

2.3.2 Discretisation of the Weak Formulation

Let V be a space in which a weak solution to (2.9) is known to exist, and let V ⊂ V be
a finite dimensional subspace with basis {ϕi}ni=1 where n = dimV . A function w ∈ V
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may then be written as a linear combination of basis functions

w =
n∑
i=1

wiϕi, (2.13)

for wi ∈ R. We now are interested in finding an appropriate finite dimensional subspace
V of V . To do this we partition the domain Ω into a grid Ωh with triangulation Th and
nodes Nh. In the finite element method the basis functions for the set V have compact
support on a small subset of neighbouring elements. The definition of the functions can
be given in terms of functions over the elements. A standard family of finite element
subspaces is given by

Sk(Ω) = {ϕ ∈ C0(Ω) | ϕ|T ∈ Pk+1(T ), ∀ T ∈ T }, (2.14)

where Pk(T ) is the space of polynomials of degree k on element T . Letting ND
h be the

Dirichlet boundary nodes on Ωh and δij the Kronecker delta, a typical basis for the space
Sk is taken from the set

{ϕi ∈ Sk(Ω) | ϕi(~xj) = δij, ~xj ∈ Nh/ND
h }. (2.15)

An example of a two-dimensional basis function in space S0 is shown in Figure 2.3.

1

~xi

Figure 2.3: Linear basis function ϕi ∈ S0 centred at node ~xi

A weak solution of (2.9) is known to be unique in the space

H1
0 (Ω) = {w | (w,w) + (∇w,∇w) <∞, w|ΓD = 0} , (2.16)

for ( · , · ) the L2 inner product on Ω. H1
0 is the space of functions with L2 measurable

weak first partial derivatives. We note that S0 ⊂ H1
0 [52, Theorem 2.1.1] as S0 is a linear
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combination of piecewise H1 functions. Therefore Equation (2.9) may be discretised by
taking u, v ∈ S0 such that v ∈ {ϕi} and

u =
n∑
i=1

uiϕi, (2.17)

where n = dimS0. This then gives

∫
Ω

a

(
n∑
j=1

uj∇ϕj
)
∇ϕi d~x+

∫
Ω

b

(∑
j

ujϕj

)
ϕi d~x =∫

Ω

fϕi d~x+

∫
ΓN

agNϕi dS, i = 1, . . . , n. (2.18)

Taking the sum outside of the integral, gives

n∑
j=1

Aijuj = fi, i = 1, . . . , n, (2.19)

where

Aij =

∫
Ω

a∇ϕi∇ϕj d~x+

∫
Ω

bϕiϕj d~x,

fi =

∫
Ω

fϕi d~x+

∫
ΓN

agNϕi dS.

This is a system of algebraic equations which can be solved for [ui] ∈ Rn, which are the
nodal values of the function u ∈ S0. The integrals required to calculate Aij and fi can be
performed on an element-by-element basis, counting the contributions to the global linear
system of equations. For example, the calculation of Aij is performed as

∫
Ω

a∇ϕi∇ϕj d~x+

∫
Ω

bϕiϕj d~x =
∑
T∈Th

(∫
T

a∇ϕi∇ϕj d~x+

∫
T

bϕiϕj d~x
)
. (2.20)

The integral on the right-hand side is non-zero only for a small number of elements T ⊂
supp(ϕi). Thus Aij is non-zero for indices j where supp(ϕi) ∩ supp(ϕj) 6= ∅. Noting
that Equation (2.19) describes a vector-vector multiplication for i = 1, . . . , n, (2.19) can
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be written as

A~u = ~f (2.21)

for matrix A =
[
Aij
]n
i,j=1

, vector ~u = [ui]
n
i=1 and vector ~f = [fi]

n
i=1, such that the

solution of the discretised formulation (2.18) can be found by inverting the sparse matrix
A. There is, in fact, a one-to-one correspondence between linear operators and matrices,
which is described more formally in Section 2.5. In this case the matrix A is the matrix
representation of the linear operator given in (2.12).

Setting up the linear system of equations to solve requires integration over each ele-
ment of a grid Ωh. Depending on the complexity of the operator, and on the number of
degrees of freedom defined for a basis function, this can be an expensive operation. This
is in contrast to the finite difference method, where the creation of the linear system of
equations to solve is fast. An advantage of the finite element method, though, is flexibility
in application. In particular it is simple to define an algorithm on an unstructured mesh,
once a suitable ordering of the unknowns on the grid has been chosen. This in itself may
be a very difficult problem (see [89]).

In this section an example finite element discretisation of a simple linear operator was
given in order for the fundamentals of a finite element discretisation to be introduced.
Using the same methods outlined above, finite element discretisations can be gained for a
nonlinear operator, in which case a system of nonlinear equations is gained. Other basis
functions may also be used in a similar manner. For an application of the finite element
method to some nonlinear problems see Chapter 7 and 8. In Chapter 7, functions are
discretised using S0, whereas in Chapter 8 the lowest order Raviart-Thomas space RT0 is
also used (see [135, 148]).

For more detail on the finite element method, including sample applications and anal-
ysis, the reader is directed to [23], [39], [52], [169] and [208].

Whilst finite element and finite difference methods are very popular, there are also
many other discretisation methods, a selection of which are outlined in the next section.

2.4 Other Discretisation Methods

A popular alternative discretisation scheme to finite differences and finite elements is
the finite volume method. In this method a solution is approximated on a grid using a cell
averaged integral. That is, the function is approximated by a constant on an element which
is equal to the average of the integral over that element. This approach is very popular for
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the solution of hyperbolic problems, such as wave propagation and advective flows [114]
due to the fact that they can easily be used to satisfy integral conservation laws, which
often arise in the discretisation of hyperbolic PDEs [114]. These methods can also be used
in the solution of elliptic and parabolic type PDEs, e.g. [119, 200], although for elliptic
and parabolic problems finite element discretisations are much more prevalent. For a
detailed introduction to finite volume methods we direct the reader to [114] and [183].

Discretisation methods also exist without the need for a grid. One example is the col-

location method [95]. In this method collocation points are sought in a spatial or temporal
domain at which the approximation should satisfy a given PDE. The basis for the space
used will give a different discretisation. A popular choice is the space of polynomials,
such that solving at m collocation points will give a polynomial of order m − 1 [95].
These methods are not used widely to solve problems on a large multi-dimensional do-
main, and are most widely used in the form of implicit Runge-Kutta schemes [95, §3] for
discretising a PDE in time (see [111] for an application).

Another class of discretisation schemes are spectral methods, which may or may not
make use of a grid. In this family of methods a weak solution is sought, similarly to the
case of finite elements. Early variants used infinitely differentiable basis functions defined
globally, which are (nearly) orthogonal [47], leading to very sparse systems of equations
to solve. In the case that an orthogonal basis is used the resulting system of equations is
diagonal [47]. However, the construction of these systems requires the integration of a set
of global functions, which can become very expensive for complex nonlinear problems.
The time required to set up the system of equations increases with the complexity of
the problem also in the case of finite element methods, but the increase is much more
severe for spectral methods. More sophisticated (pseudo-)spectral methods are available,
and the investigation of these methods is an active research area today. For a thorough
introduction to the matter we direct the reader to [47].

2.5 Matrix Representations of Linear Operators

The previous sections describe how to form a discretisation of a given PDE. In the case
that a PDE is linear, once a set of basis functions has been chosen, there is a one-to-
one correspondence between an operator representation and a matrix representation of
the discretisation. This was shown for a specific example in Section 2.3. In this section
the equivalence is shown for a general finite element discretisation, as discussions in the
rest of the thesis will switch between discrete linear operators and matrices, depending
on which is most appropriate in a given context. It is straightforward to obtain the equiv-
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alence of discrete linear operators and matrices also in the case of a finite difference or
finite volume discretisation.

We consider the general continuous linear operator equation given by

Au = f, (2.22)

for u ∈ V , and its weak form

(u, v)A = (f, v), ∀v ∈ V . (2.23)

Given a finite dimensional subspace V ⊂ V we choose a basis {ϕi}#V
i=1 such that u ∈ V

can be expanded as

u =

#V∑
i=1

uiϕi.

The discrete weak formulation then reads

(u, ϕi)A = 〈f, ϕi〉, i = 1, . . . ,#V. (2.24)

Using the expansion of u in terms of basis functions and the linearity of the inner product,
(2.24) can be written as

A~u = ~f (2.25)

with

~f = [f1, . . . , fN ]T , fi = 〈f, ϕi〉,
A =

[
Ai,j
]N
i,j=1

and Ai,j = (ϕj, ϕi)A.

Using this equivalence discussions in the rest of the thesis will refer to matrix A as an
operator or as a matrix, without confusion.
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2.6 Discretising in Time

The discussion so far has been for problems which do not vary over time. In this thesis
discussion will also include problems in which the solutions are time-dependent. Since it
is not possible to store a solution at every point in time, some discrete time points need to
be chosen at which an approximation to the solution is to be obtained. There is a wealth
of time-discretisation methods to choose from, but the details of these are outside of the
scope of this thesis. For a more complete introduction the reader is directed to [95, §1]
and [46, §5].

To demonstrate the application of a common type of discretisation procedure a prob-
lem of the form

∂

∂t
u = A(u, t),

u = u(0), t = t0,
(2.26)

is considered, where A is some operator (linear or nonlinear) that involves only spatial
derivatives of u = u(~x, t). Boundary conditions are not salient in this section and are
therefore ignored. Before (2.26) is discretised in space we choose an appropriate discreti-
sation in time. Assume that the solution is known at time tk, and that the solution at time
tk+1 > tk is sought. Let δt be the constant time step such that

tk = t0 + kδt, u(k) = u(~x, tk).

It is possible to use variable time-step sizes in an application to improve the accuracy
or stability of a method, but for the current introduction only a constant time step is
considered. In order to approximate the values of the solution at discrete times (2.26) is
integrated between tk and tk+1 to give

u(k+1) − u(k) =

∫ tk+1

tk

A(u, t) dt. (2.27)

In order to complete the discretisation the right-hand side of (2.27) is approximated using
values of the solution at the discrete time-steps. Two simple time discretisation schemes
are the explicit Euler and implicit Euler method [46, §5]. The explicit Euler method uses
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the approximation

A(u, t) ≈ A(u(k), tk), t ∈ [tk, tk+1]

to give the scheme

u(k+1) − u(k) = δtA(u(k), tk). (2.28)

The implicit Euler method uses the approximation

A(u, t) ≈ A(u(k+1), tk+1), t ∈ [tk, tk+1]

to give the scheme

u(k+1) − u(k) = δtA(u(k+1), tk+1). (2.29)

Note that the right-hand side of (2.29) depends on the unknown solution at time tk+1,
whereas (2.28) depends only on the known values of the solution at time tk. The term
explicit in the explicit Euler method refers to the fact that the solution at the unknown
time step is determined by known values, and can be calculated by the application of op-
erators at previous time-steps. In an implicit time-stepping procedure, such as the implicit
Euler scheme (2.29), the solution of a system of equations at each time-step is required
in order to obtain the solution at the latest time. The advantage of implicit time-stepping
procedures are that they are often more stable than explicit methods [46,92] and therefore
permit the use of larger time steps.

Implicit time-stepping procedures are used in this thesis. We consider the implicit
Euler method, which is a first order accurate scheme [46, §5]. We also consider a second
order scheme, in which the integral in (2.27) is approximated using a trapezium rule to
give the scheme

u(k+1) − u(k) =
δt

2

(
A(u(k), tk) + A(u(k+1), tk+1)

)
. (2.30)

This is referred to as the Crank-Nicolson method in the remainder of this thesis. These
are not the most sophisticated methods available, but are sufficient for this work in order
to highlight the differences in nonlinear multigrid methods, as introduced in Chapter 4.



Chapter 2 The Discretisation of PDEs 19

For a discussion of more sophisticated time discretisation methods the reader is directed
to [46, 77, 95, 112].

In this chapter some of the most widely used methods for the discretisation of PDEs are
discussed. It is shown that each discretisation method leads to a system of equations to
solve, whether the PDE is linear or nonlinear. The solution of these systems of equations
has not been discussed yet, though. There is a wealth of methods available to solve a
discretised system. In the next chapter some of these methods are outlined, with particular
attention being paid to iterative methods. The focus of this thesis is multigrid methods,
which, although they are examples of iterative methods, are left to Chapter 4 to discuss,
as these will be treated in more detail.



Chapter 3

The Solution of Discretised Systems of
Equations

This chapter gives an introduction to some of the multitude of ways of solving a system
of discrete equations. There is no single ‘best’ solver for a system of equations, as a good
solver depends on the properties of the discrete system. As well as introducing different
methods, a brief outline into which situations each method is most effective is also given.

In this section the notation

Au = f (3.1)

is used for a linear system of equations, and

A(u) = f or F (u) = 0 (3.2)

is used for a nonlinear system of equations where F (u) = A(u)− f for known f . When
usingA on its own it will be made clear whether this represents a linear or nonlinear oper-
ator. The methods introduced in this chapter give some background regarding the different
techniques without going into much detail. The solution methods which are of most in-
terest in this thesis are multigrid methods and Chapter 4 is devoted to the introduction of
this family of methods.

20
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The chapter is organised as follows. Section 3.1 introduces direct solvers for linear
systems of equations. These methods do not exist in the nonlinear case. In Section 3.2 the
concepts behind an iterative procedure are introduced in a general setting, which covers
the linear and nonlinear case. Explicit examples of linear iterations important for this the-
sis are introduced in Section 3.3. Finally, in Section 3.4 we introduce the most important
nonlinear iteration – Newton’s method – as well as giving an introduction to some basic
nonlinear iterations which will be useful in the rest of the thesis.

3.1 Direct Solvers for Linear Systems

As mentioned in the introduction a direct solver is only applicable for a linear system of
equations

Au = f.

Direct methods represent the operation of the inverse matrix A−1 such that u = A−1f is
found. The matrix A−1 is not generally explicitly formed [79, pg. 111], but the action
of the matrix is sought in an efficient manner. Here we assume that the matrix A is
non-singular, such that a unique solution u does exist. Gaussian elimination – which,
in effect, involves an LU -decomposition [95, §9], [166, pg. 258] – is applicable to any
non-singular matrix, and guarantees to find the answer inO(n3) running time, in the case
that exact arithmetic is used [79, §3]. In practice problems may arise when a matrix is ill-
conditioned, where it is possible for division by small numbers to take place, which can
lead to significant rounding errors on a computer [95]. Rows in an ill-conditioned matrix
can be swapped (known as row pivoting) to try to reduce the effect of these rounding
errors. Since Gaussian elimination is an established algorithm there are many software
libraries that efficiently perform Gaussian elimination in serial and parallel. Two popular
libraries (amongst many others) are LAPACK [2] and ScaLAPACK [19].

The Gaussian elimination described above does not take advantage of any special
properties that a matrix may possess. We note that the discretisation of linear PDEs
most often leads to a large sparse matrix that needs to be inverted. In this case there are
many operations that need not be calculated as they involve multiplication by zero. There
are direct methods that take advantage of this sparsity, and are described in [79, §11.1]
and [153, §3.6]. The most popular algorithms used are based upon Cholesky, QR and
LU factorisations. Sparse matrices are desirable to be used in practice, as they can be
stored on a computer with much reduced storage requirements over a dense matrix. This



Chapter 3 The Solution of Discretised Systems of Equations 22

is because the zero values, which have no effect on a matrix-vector or matrix-matrix
multiplication, need not be stored. However, it is not generally true that a sparse matrix
will have a sparse inverse or a sparse factorisation [79, pg. 601]. Care must be taken to
order the rows in such a way as to reduce fill-in, which is where a zero entry is replaced by
a non-zero entry in the process of factorisation. This is not a simple problem. As well as
this, since numerical stability of the method needs to be taken into account a reordering of
unknowns typically needs to be performed to balance the amount of fill-in along with the
stability of the factorisation [79]. For a complete introduction to direct methods for sparse
matrices see [56]. For a matrix arising from the discretisation of a PDE on a regular grid
the running time of a sparse direct method can be expected to be O(n3/2) (O(n2)) in two
(three) dimensions [56], where n is the number of unknowns on the grid. However, for an
unstructured grid where a ‘good’ ordering of the unknowns is not known, or is difficult to
find, the worst case time complexity of the sparse direct solvers is O(n3), which quickly
becomes impractical for large n. Again there are software libraries that provide efficient
implementations of direct methods for sparse systems, such as [57, 62, 129].

As an alternative to direct methods, iterative methods are presented in the next section.

3.2 Iterative Solvers

An iterative method may be applied to a linear or a nonlinear problem. Therefore we
consider that the operator A may be either linear or nonlinear in the operator equation

A(u) = f. (3.3)

Let u∗ be the exact solution to (3.3), and u0 some initial approximation to u∗. The desired
output of an iterative method is a sequence of approximations u(i), i = 1, . . . such that
limi→∞ u

(i) = u∗. Many iterative methods, including those investigated in more detail in
this thesis, can be described as the correction procedure

u(i) = u(i−1) + Ã(i)
(
f − A(u(i−1))

)
(3.4)

for some linear operator Ã(i) which may depend on the current iteration. In the literature
it is more common to write the linear iteration as

u(i) = Â(i)u(i−1) + b(i) (3.5)
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with

b(i) = Ã(i)f,

Â(i) = (I − Ã(i)A).

A linear iteration in the form (3.5) is said to be a stationary linear iteration if Â(i) is
independent of the iteration number i. This gives an important class of iterations, and will
be studied in Section 3.3.

A fixed point of an iteration is a function v such that

v = v + Ã(i) (f − A(v)) . (3.6)

Inspection of (3.4) shows that the exact solution u∗ is a fixed point of the iteration, using
A(u∗) = f . Assume that the exact solution u∗ ∈ V and let Bv be a neighbourhood of a
function v in V . The function v is said to be a point of attraction of an iteration in Bv

if, for all u0 ∈ Bv it holds that limi→∞ u
(i) = v. To determine whether u∗ is a point of

attraction of the iteration (3.4) we require to know more information about the operators
A(·) and Ã(i), which will be discussed for specific algorithms in the next sections. Letting
e(i) = u∗ − u(i) be the error in approximation at step i, the convergence of a method is
characterised by limi→∞

∥∥e(i)
∥∥ = 0 and divergence by limi→∞

∥∥e(i)
∥∥ = ∞. The linear

convergence factor of an iteration is defined as

lim
i→∞

∥∥e(i)
∥∥

‖e(i−1)‖ . (3.7)

This measures the speed at which an iteration converges if convergence is linear, i.e. in the
case that the error at a given iteration is directly proportional to the error at the previous
iteration. A convergence factor of zero indicates that an iteration achieves super-linear
convergence such that

∥∥e(i)
∥∥ ∝ ∥∥e(i−1)

∥∥p for p > 1.
In order to discuss the concepts introduced here in more detail some popular iterative

methods are introduced in the next sections. Section 3.3 outlines classical iterative meth-
ods such as Jacobi and Gauss-Seidel [95, §10] and also the powerful Krylov subspace
methods [153]. Nonlinear iterations are introduced in Section 3.4, in which it is shown
how Newton’s method can be used in the definition of classical nonlinear iterations [139].
These concepts will be useful in the definition of multigrid methods in the next chapter.
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3.3 Linear Iterative Methods

In the next subsections the classical Jacobi and Gauss-Seidel iterations are introduced.
These are most easily described in terms of an operator on a vector ~u, whereas the Krylov
subspace methods described in Subsection 3.3.3 are most easily described using func-
tions. Using the discussion in Section 2.5 the descriptions are actually equivalent, and the
different notation is used to simplify the discussion of the different iterations.

Before describing specific instances of linear iterations we introduce some important
results for stationary linear iterations. Consider the stationary linear iteration

u(i+1) = Âu(i) + b. (3.8)

The operator Â is called the error propagation operator, as the error e(i) = u(i) − u(i−1)

satisfies

e(i) = Âe(i−1). (3.9)

The following lemma then holds.

Lemma 3.1. Given an arbitrary linear system Au = f a linear iteration of the form (3.8)
converges for arbitrary u0 if and only if ρ(Â) < 1, where ρ(·) denotes the spectral radius.

The iterates converge to the solution of the linear system if b = (I − Â)A−1f .

Proof. See [95, Lemma 10.1].

It is also possible to say something about the speed of convergence of a stationary
linear iteration.

Lemma 3.2. Let Â be a full rank square matrix which is the error propagation operator

in a convergent stationary linear equation such that ρ(Â) < 1. Then the convergence

factor of the iteration is given by ρ(Â).

Proof. The fact that the spectral radius gives the convergence factor follows from the
recursion for the error e(i) = u∗ − u(i) given by e(i) = Âe(i−1) and that there is a unique
eigenvalue of largest magnitude. See [166, pg. 270] for a full description.

Using Lemma 3.1 it can be seen that a convergent linear iteration is given by a choice
of

Â =
1

C
I (3.10)
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where I is the identity operator, and constant C > ρ(A), assuming that the eigenvalues of
A are positive and real. More sophisticated choices for the operator Â give iterations with
some interesting properties. Some of the most important iterations used in the multigrid
literature are the linear Jacobi and Gauss-Seidel methods, and weighted versions thereof,
as described in the next section.

3.3.1 Jacobi and Gauss-Seidel as Solvers

Let ~u = [u1, . . . , un]T for n > 1 and uj ∈ R and consider the linear operator A =

[A1, . . . , An]T where

Aj : Rn → R, j = 1, . . . , n. (3.11)

Let the system of equations to be solved be given by

A~u = ~f. (3.12)

Each equation in the system is of the form

Aj(u1, . . . , un) = fj, j = 1, . . . , n. (3.13)

Let ~u(i) be the approximation to the solution after the ith iteration of some iterative method.
The Jacobi and Gauss-Seidel iterations can then be defined as follows. For the Jacobi
iteration let v be the solution to the equation

Aj(u
(i)
1 , . . . , u

(i)
j−1, v, u

(i)
j+1, . . . , u

(i)
n ) = fj, (3.14)

where the u(i)
j values are all known. The iterate u(i+1)

j is given by

u
(i+1)
j = u

(i)
j + ω(v − u(i)

j ), (3.15)

for some ω ∈ (0, 1). The weighting parameter ω may be used to improve the robustness of
the algorithm, and is discussed in [95, 166], although its discussion is not of importance
here. Application of Equations (3.14) and (3.15) for each j = 1, . . . , n gives a single
sweep of a Jacobi iteration.
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The Gauss-Seidel iteration is defined very similarly, excepting that (3.14) is replaced
by

Aj(u
(i+1)
1 , . . . , u

(i+1)
j−1 , v, u

(i)
j+1, . . . , u

(i)
n ) = fj, (3.16)

where it is assumed that the u(i+1)
k are known for k < j. The Gauss-Seidel iteration

allows a weighting parameter ω ∈ (0, 2) [95, Theorem 10.9] in the update step (3.15) and
this weighted version is often called successive over-relaxation (SOR). Some textbooks
reserve this term for ω ∈ [1, 2), but in this thesis we allow ω ∈ (0, 2) for SOR. Gauss-
Seidel is a special case of SOR where ω = 1.

Another formulation of the Jacobi and Gauss-Seidel iterations which is of use is the
matrix representation of the operators. Let A ∈ Rn × Rn and represent A as

A = D − L− U (3.17)

where D is the strictly diagonal part of A, and L (U ) is strictly lower (upper) triangu-
lar. Let SJ (SSOR) be the matrix representation of a single linear Jacobi (Gauss-Seidel)
iteration. It is possible to show that [166, pg. 266-8] for the Jacobi iteration

u(i+1) = u(i) + ωD−1(f − Au(i)) = SJu
(i) + ωD−1f, (3.18)

and for the SOR iteration

u(i+1) = u(i) + (D − ωL)−1ω
(
f − Au(i)

)
= SSORu

(i) + (D − ωL)−1ωf. (3.19)

This representation of the linear iterations will be useful later in the thesis. The conver-
gence of Jacobi and SOR iterations depend on the properties of matrix A in the linear
operator Equation (3.3). We are not interested in the technicalities of the proofs here, but
make a note that for a symmetric positive definite matrix A (where the eigenvalues are all
necessarily positive and real) which is diagonally dominant then both the Jacobi iteration
and the SOR iteration (with ω ∈ (0, 2)) converge. For a proof see [95, Theorem 10.3]
and [95, Theorem 10.9]. This result is important as symmetric positive definite matri-
ces arise often in the discretisation of linear elliptic PDEs. Hence Jacobi and SOR type
iterations appear often in the literature. For the interested reader it is possible to formu-
late these linear iterations for symmetric positive definite operators as subspace correction
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methods [165, 196], in which the proofs of the above statements become simple.
The algorithms described above are known as point Jacobi and Gauss-Seidel itera-

tions, as they solve an equation at a single ‘point’ or entry in the vector. The concepts
used to formulate the Jacobi and Gauss-Seidel iterations can easily be carried over to the
case that a block iteration instead of a point iteration is to be performed, as is outlined
below.

Consider that the matrix A ∈ Rn×n is split up into sub-matrices as follows

A =


A11 A12 . . . A1p

A21 A22 . . . A2p

... . . . ...
Ap1 Ap2 . . . App

 , (3.20)

where Ajk ∈ Rnj×nk . Let the linear system of equations to solve be given by

A~u = ~f (3.21)

where ~u = [~u1, . . . , ~up]
T for ~uj ∈ Rnj . Let ~u(i) be the approximation at the ith iteration

and let

Aj(~u1, . . . , ~up) ≡
p∑

k=1

Ajk~uk. (3.22)

The Jacobi iteration is then formed by solving the linear system of equations

Aj(~u
(i)
1 , . . . , ~u

(i)
j−1, ~v, ~u

(i)
j+1, . . . , ~u

(i)
p ) = ~fj (3.23)

for ~v, and setting

~u
(i+1)
j = ~u

(i)
j + ω(~v − ~u(i)

j ). (3.24)

The block Gauss-Seidel iteration is formed similarly. Block forms of the Jacobi and
Gauss-Seidel iterations may be useful when the matrix is derived from a PDE including
strong anisotropies [190].

From Lemma 3.2 we see that the convergence factor of a linear iteration depends on
the spectral radius of the underlying matrix. It turns out that this feature makes these
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methods unsuitable as solvers for large systems of equations arising from the discretisa-
tion of PDEs. As an illustrative example we consider the case that the linear operator
comes from the discretisation of a linear elliptic PDE on a grid Ω with quasi-regular trian-
gulation T . As is often the case for elliptic PDEs we assume that the matrix representation
of the operator is symmetric positive definite. Let the notation Ωh and Th denote the grid
and triangulation where the size of the elements is proportional to h, which is defined in
(2.1) to be the largest diameter of an element T ∈ T . For a finite element discretisation
let

Ah~u = ~f (3.25)

represent the system of equations arising from discretising on a grid Ωh. Let AJ,h (AGS,h)
be the error propagation matrix for the Jacobi (Gauss-Seidel) iteration on grid Ωh (see
Equation (3.8)). Explicit forms of these may be found in, for example [95,139,166,196].
It can be shown that for a linear finite element discretisation of a Poisson equation [162,
§3.1]

lim
h→0

ρ(AJ,h) = 1, (3.26)

and similarly for Gauss-Seidel. This behaviour is observed for a large class of elliptic
problems, and is typical of a finite element discretisation. In two dimensions it is the case
that

1− ρ(AJ,h) = O(h2). (3.27)

Since the grid spacing is inversely proportional to the number of unknowns on a grid
the amount of computational effort required to reduce the residual in approximation to a
required degree of accuracy is O(n3) for these methods. This is the same as for the direct
linear methods introduced in the previous chapter, which are unsuitable for large systems
of equations.

There are other linear iterations that have better convergence properties than these
stationary linear iterations, which are described in later sections. However, in the next
section we discuss again the Jacobi and Gauss-Seidel iterations and in particular their
use as smoothers, where the etymology of this term is made clear in the discussion that
follows.
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3.3.2 Jacobi and Gauss-Seidel as Smoothers

As discussed in the previous section Jacobi and Gauss-Seidel type iterations are not suit-
able to be used as solvers for systems arising from typical PDE discretisations. However,
their use is widespread in practice due to the fact that they act very well as smoothers

[32, 177], which means that they are good at ‘smoothing’ the error in an approximation.
The meaning of the term ‘smooth’ will be made clear in the discussion in this subsection.
Before beginning the discussion some necessary notation is introduced. Let

Au = f (3.28)

denote the discrete linear operator equation to solve, and let u∗ be the exact solution of
(3.28) and let u(i) be the approximation to u∗ after i iterations of either Jacobi or SOR, and
let e(i) = u∗−u(i) be the error at iteration i. Define a linear operator S called the smooth-
ing operator. Jacobi and Gauss-Seidel iterations are smoothing operators themselves, so
that the linear operator S can be identified with the matrix representation of the Jacobi
or SOR iterations, as given in (3.18) and (3.19), respectively. These representations will
be useful in this thesis and are therefore denoted by SJ and SSOR, respectively. Returning
to a general smoothing discussion, assume that S has full rank and that its eigenbasis is
given by {ψi}, which is partitioned into ‘low’ and ‘high’ frequency functions. The error
is represented in this eigenbasis as

e(i) =
n∑
j=1

c
(i)
j ψj (3.29)

for c(i)
j ∈ R and n the number of nodes on grid Ω. To support the discussion we consider

what a ‘high’ and a ‘low’ frequency function may look like in a one-dimensional setting.
Figure 3.1 gives an example of a high and low frequency function on a grid with n =

16. Note that the function in Figure 3.1b is the highest frequency function that can be
represented on the grid shown, as it changes sign at every grid point. This demonstrates
that the definition of low and high frequency, for a discrete function, will depend on
the grid on which a function is represented. As previously mentioned the linear Jacobi
and Gauss-Seidel iterations are good smoothers, which means that they are effective at
removing high frequency components of the error. For now we simply assume that Ihf is
the index set of basis functions which are effectively removed by a Jacobi (Gauss-Seidel)
iteration, and define these to be the high frequency components. It is then expected that
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(a) Example of a low frequency function (b) Example of a high frequency function

Figure 3.1: High and low frequency functions on a one-dimensional grid

the error will be well represented by the expansion

e(i) ≈
∑
j /∈Ihf

c
(i)
j ψj, (3.30)

when i > C for some small integer C, as c(i)
j ≈ 0 for j ∈ Ihf. The smoothing property

becomes important in the discussion of multigrid iterations in Chapter 4. The smoothing

factor can be measured as

max
j∈Ihf
{λj | Sψj = λjψj} (3.31)

which is simply the largest eigenvalue associated with a high frequency function [177, pg.
31]. The smaller this value the more effective a smoother is.

We will return to the smoothing operators in Chapter 4 where these become more
useful. For now we return to other linear iterations which are popular in practice - the
Krylov subspace methods.

3.3.3 Krylov Subspace Methods

Krylov subspace methods can be considered as belonging to various families of iterative
methods. They fit into the framework of domain decomposition and subspace correction
methods [165, 196] and also into projection methods [153]. The subspace correction
framework is usually reserved for describing the methods in the case that an operator is
symmetric positive definite. Krylov subspace methods are very powerful and are easy to
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implement and are the focus of many active research projects (e.g. [65,106,122,145,174,
209] amongst many others) as well as being very well established in the literature [108,
164]. Before describing the Krylov subspace methods some useful preliminary material
is presented below, related to projection methods. The discussion given will follow the
outline in [153], although there are many other excellent resources available for Krylov
subspace methods (e.g. [69] and [105]).

We consider again the solution to the linear equation

Au = f, (3.32)

where the exact solution is given by u∗ ∈ V , where V is a suitable discrete function space.
Assume that u∗ is unique in V and for approximation u define the residual as

r(u) = f − Au. (3.33)

Note that the residual is orthogonal to the space V , i.e.

(f − Au∗, v) = 0, ∀v ∈ V . (3.34)

The inner product ( · , · ) is taken to be the L2 inner product. The solution in space V
with dimV = N for large N can be difficult to obtain. It is easier to approximately solve
(3.32) on a smaller space U ⊂ V under the condition that the residual be orthogonal to
some spaceW ⊂ V , i.e.

(f − Aũ, w) = 0, ∀w ∈ W , (3.35)

with ũ ∈ U . Equation (3.35) permits a solution ũ ∈ U . However, it may be useful to
make use of an initial approximation u0 ∈ V to u∗, in which case we write

ũ = u0 + δ (3.36)

for δ ∈ U . Using that

r0 = f − Au0 (3.37)
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Equation (3.35) can be written as

(r0 − Aδ,w) = 0, ∀w ∈ W . (3.38)

The condition (3.38) (equivalently (3.35)) is known as a Petrov-Galerkin condition [153,
§5] in the case that U 6= W and a Galerkin condition otherwise. A projection method
based on the Galerkin condition is called an orthogonal projection method, and a projec-
tion based on a Petrov-Galerkin condition is called an oblique projection method. Two
optimality results are introduced that will be useful in the discussion of Krylov subspace
methods, which first require the following definition.

Defintion 3.1. Let A be a symmetric positive definite matrix. The A-norm is given by

‖u‖2
A = (u, u)A = (Au, u). (3.39)

Using this definition of the A-norm the following holds true

Proposition 3.3. Assume that A is symmetric positive definite and that U = W . A func-

tion ũ is the result of an orthogonal projection method onto U with starting value u0 if

and only if it minimises the A-norm of the error over u0 + U , i.e.

‖u∗ − ũ‖A = min
u∈u0+U

‖u∗ − u‖A . (3.40)

Proof. See [153, Proposition 5.2].

There is also an optimality result for oblique projections. Using the notation AU to
denote the range of the operator A with domain in U this is stated as:

Proposition 3.4. Let A be an arbitrary discrete linear operator, and let W = AU . A

function ũ is the result of an oblique projection method onto U orthogonally to W with

initial value u0 if and only if it minimises the L2 norm of the residual over u0 + U , i.e.

‖f − Aũ‖2 = min
u∈u0+U

‖f − Au‖2 (3.41)

Proof. See [153, Proposition 5.3].
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Projection methods are widespread and an important class of these are the one-dimensional
projection methods. That is, we have that dimU = dimW = 1. Jacobi and Gauss-Seidel
iteration methods fit into the framework of one-dimensional projection methods. Con-
sider that a problem has been discretised on grid Ωh with nodes Nh where #Nh = N .
We then define a set of subspaces

Uj = span {ϕj} , j = 1, . . . , N (3.42)

with ϕj (for example) a nodal basis function in space S0 as shown in Figure 2.3. Letting
Wj = Uj and u(i) be the approximation after the ith Gauss-Seidel iteration, a single sweep
of the Gauss-Seidel iteration is defined as

u(i+j/N) = u(i+(j−1)/N) + δj, j = 1, . . . , N, (3.43)

where δj ∈ Uj satisfies the orthogonality condition

(r(i+(j−1)/N) − Aδj, w) = 0, ∀w ∈ Wj. (3.44)

The Jacobi iteration is defined by replacing r(i+(j−1)/N) with r(i) in (3.44).
More sophisticated choices of one-dimensional subspaces U and W give iterations

with improved convergence results over Gauss-Seidel and Jacobi iterations. However, we
are more interested in the case where the subspaces are multidimensional. In particular we
are interested in Krylov subspaces. Letting u0 be the initial approximation to the solution
of problem (3.32) the corresponding Krylov subspaces are defined as [153]

Km = span
{
r0, Ar0, A2r0, . . . , Am−1r0

}
, m = 1, 2, 3, . . . (3.45)

for r0 = f − Au0. In the mth step of a Krylov subspace method the problem is projected
in to the space Km and a solution is sought there using an orthogonal or oblique projec-
tion. Below we outline two of the most popular Krylov subspace methods - Generalised
Minimum RESidual (GMRES) and Conjugate Gradients (CG). There are other Krylov
subspace methods, an introduction to which is given in [153, §6]. It is worth noting that as
a result of the Cayley-Hamilton theorem [69] and the optimality result in Proposition 3.3
(Proposition 3.4) a CG (GMRES) method is guaranteed (neglecting rounding errors) to
give the exact solution in n = dimA steps. In practice it is not practical to perform
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this many steps, though, and Krylov subspace methods also give good approximations in
many situations with m� n.

An important process necessary for Krylov subspace methods is the construction of
an orthonormal basis. This is done using Arnoldi’s method [153, §6.3], in which some
orthogonalisation procedure is performed. Popular choices are Gram-Schmidt [168],
Householder [153] and Lanczos [153] orthogonalisation. Householder orthogonalisa-
tion is numerically more stable than Gram-Schmidt, but is algebraically equivalent. For
brevity only the Arnoldi-Gram-Schmidt method is presented, as the implementation is
faster. Lanczos orthogonalisation is used when an operator is symmetric positive definite
and is used in conjunction with CG.

Although the GMRES algorithm is the more general solver it is more natural to begin
with the description of this method before briefly describing the CG algorithm. The GM-
RES algorithm will be used more extensively in this thesis and so is described in more
detail.

3.3.3.1 GMRES

GMRES is an oblique projection method from the space Km to AKm = Km+1. We
first give the algorithm and then describe what is being performed at each step. Let u0

be the initial approximation to the solution of Equation (3.32), and let e1 be the first
canonical basis vector. The GMRES iteration is then given in Algorithm 3.1 (see [153,
Algorithm 6.9]). Lines 4 to 6 perform the orthogonalisation of the function wj ∈ AKj =

Algorithm 3.1 GMRES
Require: The number of steps to perform m ≤ n

1: r0 ← f − Au0, β ← ‖r0‖2, v1 ← r0/β
2: for j = 1, 2, . . . ,m do
3: wj ← Avj
4: for i = 1, . . . , j do . Orthogonalise using modified Gram-Schmidt
5: hij ← (wj, vi)
6: wj ← wj − hijvi
7: hj+1,j ← ‖wj‖2

8: vj+1 ← wj/hj+1,j

9: Set Hm ← [hij]1≤i≤m+1, 1≤j≤m
10: Set ym to minimise ‖βe1 −Hmy‖2 . Solve least squares problem Hmy = βe1

11: ũ← u0 + Vmym

Kj+1 with respect to the spaces Ki, i ≤ j. Hence the vj , j = 1, . . . ,m + 1 will be
orthonormal vectors, and Vm (being the matrix of column vectors vj , j = 1, . . . ,m) is
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also orthonormal. The entries in the Hessenberg matrixHm are set in lines 5 and 7. In line
10 an (m+1)×m least squares problem is solved, which will be a small system provided
that the number of steps m taken is small. It is assumed that wj 6= 0 in Algorithm 3.1
such that the least squares problem in line 10 is well defined. The case that wj = 0

is not a problem, and in fact if this condition arises the GMRES iterate uj will be the
exact solution of (3.32) [153, Proposition 6.10]. Under the assumption that wj 6= 0 for
j = 1, . . . ,m the following lemma (which is adapted from arguments given in [153, §6])
gives an optimal result for the GMRES iteration:

Lemma 3.5. Let ũ = u0 + Vmym be the approximation gained from taking m steps of the

GMRES iteration from initial guess u0 to problem (3.32). Then

ũ = arg min
u∈u0+Km

‖f − Au‖2 . (3.46)

Proof. From lines 3-6 of Algorithm 3.1 we see that

wj = Avj −
j∑
i=1

hijvi. (3.47)

Combining this with the representation of vj+1 in line 8 we get

Avj =

j+1∑
i=1

hijvi

= Vj+1Hj+1,j

(3.48)

where Vj+1 is the matrix of the column vectors vi, i = 1, . . . , j + 1, and Hj+1,j is the j th

column of the Hessenberg matrix Hj+1, as defined in Algorithm 3.1. Since (3.48) holds
for all j = 1, . . . ,m it follows that

AVm = Vm+1Hm. (3.49)
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Using the representation ũ = u0 + Vmym we get

f − Aũ = f − A(u0 + Vmym)

= r0 − AVmym
= r0 − Vm+1Hmym

= Vm+1 (βe1 −Hmym) .

(3.50)

Using the fact that Vm+1 is orthonormal and that v1 = r0/β the equality

‖f − Aũ‖2 = ‖βe1 −Hmym‖2 (3.51)

follows. As Vm is invertible ũ ∈ u0 +Km is identified by ym, so that if ym minimises the
right-hand side of (3.51) then ũ minimises the left hand side. This holds since ym is the
solution of the least squares problem Hmy = βe1.

The convergence analysis of GMRES is too involved to include in this thesis, and a
general approximation of the convergence is only available in the case that the matrix
A is diagonalisable. We note, however, that in practice the GMRES iteration converges
similarly to the CG iteration, where the convergence properties of CG are described in
the next subsection. A complete discussion of the convergence of GMRES can be found
in [153, §6.11.4]. There are implementational issues that may arise, which have not been
discussed here. For a full discussion regarding a robust and efficient implementation of
GMRES the reader is directed to [153, §6.5.3].

3.3.3.2 CG

The conjugate gradient method is an orthogonal projection method defined on the Krylov
subspace Km, but is defined only for symmetric positive definite operators. The concepts
used are very similar to those of the GMRES iteration, in that an orthogonalisation step is
performed to create an orthonormal basis, and the minimiser is found by solving an equiv-
alent (small) linear system of equations. Using properties specific to symmetric positive
definite matrices the CG method obtains the solution without the need to store the basis
vectors, as is the case for GMRES, and it inverts the small linear system of equations
implicitly in the construction. The method is therefore less memory intensive and com-
putationally less expensive than GMRES for symmetric positive definite matrices. For a
description of the algorithm see [153, §6.7]. Let um be the approximation obtained from
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performing m steps of the CG algorithm (see [153, Algorithm 6.18]), then

um = arg min
u∈u0+Km

‖u∗ − u‖A . (3.52)

The proof of this statement follows from the formulation of the CG algorithm and the
optimality result in Proposition 3.3. A full discussion is given in [153, §6.7].

The convergence factor of the CG iteration is given by a relation of the error before
and after m steps of the CG iteration are performed as

‖u∗ − um‖A ≤ 2

(√
κ− 1√
κ+ 1

)m ∥∥u∗ − u0
∥∥
A
, (3.53)

where

κ =
λmax

λmin
(3.54)

is the spectral condition number of symmetric positive definite operator A. We consider
what this means for practical problems. Consider the case that Ah is symmetric positive
definite and represents the discretisation of a second order linear elliptic PDE on a grid
Ωh, where h is the characteristic grid spacing on grid Ωh. Let n = #Nh be the number of
unknown points on grid Ωh. In two dimensions the spectral condition number κh of the
matrix Ah typically grows like [162]

κh = O(n2). (3.55)

Hence, the convergence factor of CG will be O(n), and the overall running time of the
algorithm will be O(n2) to reach a desired accuracy. This is a large improvement over
the direct methods and simple iterative solvers that we have encountered previously, but
is still not optimal and the running times for large problems soon become problematic.

Although GMRES and (in particular) CG have a low cost per iteration the convergence of
the methods depends on the spectrum of the operator A. As mentioned above, for many
physical problems the spectrum of the arising discrete linear operator becomes more ill-
conditioned as the grid resolution is increased. What this means is that the eigenvalues
are not clustered into distinct sets as the dimension n increases. The reason why it is
important to have the eigenvalues clustered into distinct sets is a technical result which is
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part of the convergence analysis of Krylov subspace methods. The result is outside of the
scope of this thesis, but the interested reader may see [153, §6.11.3] for a justification.

If a well-conditioned matrix is used in a GMRES or CG iteration the convergence fac-
tor will be of order O(1) with respect to the number of unknowns in the system. In order
to take advantage of this fact it is possible to transform a problem into an equivalent one,
where the matrix in the transformed problem is better conditioned. This transformation
process is commonly known as preconditioning, and is discussed in the next section.

3.3.4 Preconditioning

Consider again the linear system (3.32). Preconditioning transforms the system of equa-
tions to solve into an equivalent system which has the same solution, but the properties of
the operators are (ideally) better suited to an iterative algorithm. Preconditioning can be
used to improve the robustness and/or efficiency of an iterative method, and is popular in
practice in conjunction with Krylov subspace methods, e.g. [64, 125, 158, 182] amongst
many others. Instead of the system (3.32) we consider the transformed system

P−1
L AP−1

R PRu = P−1
L f, (3.56)

where the matrix PL is known as a left preconditioner and PR is known as a right precon-
ditioner. It is possible to perform both left and right preconditioning, although it is more
common to perform one or the other. In this thesis we consider right preconditioning only,
as the norm in which a residual is calculated remains unchanged [153, Proposition 9.1].
The right preconditioned system is written as

AP−1
R PRu = f. (3.57)

The problem

AP−1
R v = f (3.58)

is solved, where u = P−1
R v. Clearly PR should be invertible. As mentioned previously, a

problem with CG and GMRES iterations is that the convergence of the methods depends
on the spectrum of the operator A. We say that a matrix A is poorly-conditioned if the
spectrum is not bounded or if the eigenvalues are not clustered into groups. It is well
known that for many discretisations of PDEs the conditioning of the arising matrix dete-
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riorates as the resolution on a grid is increased. It is this deterioration in the conditioning
that we seek to eliminate through the use of a preconditioner. To be considered a good
preconditioner the operator PR should satisfy the following conditions

I The matrix PR should be a good approximation to A and the eigenvalues of AP−1
R

should be bounded away from zero and infinity and should be grouped into distinct
small sets.

II The action of P−1
R should be easy to compute, i.e. the memory and computational

time required to invert PR should be small.

The discussion of what makes a good preconditioner is outside of the scope of this thesis
other than in the case of multigrid methods, which are discussed separately. An effective
preconditioner is often tailored to a specific application and the formulation and analysis
of preconditioners is an active research topic (see, for example, [14, 68, 115, 170, 194]).
We do note that linear multigrid methods are widely used in many applications as pre-
conditioners for Krylov subspace methods. This approach has enjoyed success in many
application areas, the reasons for which should be made clear in the discussion of linear
multigrid methods in Chapter 4.

As an example of how to precondition a Krylov subspace method we consider the
case in which preconditioning is used in conjunction with a GMRES iteration. As before
right preconditioning is used. Algorithm 3.2 gives a realisation of a right preconditioned
GMRES iteration. This variant of GMRES is known as flexible GMRES (FGMRES)

Algorithm 3.2 Flexible GMRES (FGMRES)

Require: Number of steps m to perform ; Preconditioners {Mj}, j = 1, . . . ,m
1: r0 ← f − Au0, β ← ‖r0‖2, v1 ← r0/β
2: for j = 1, . . . ,m do
3: zj ←M−1

j vj . Perform preconditioning
4: w ← Azj
5: for i = 1, . . . , j do
6: hi,j ← (w, vi) . Orthogonalise using modified Gram-Schmidt
7: w ← w − hi,jvi
8: hj+1,j = ‖w‖2

9: vj+1 = w/hj+1,j

10: Set Zm ← [z1, . . . , zm]
11: Set Hm ← [hij]1≤i≤m+1, 1≤j≤m
12: Set ym to minimise ‖βe1 −Hmy‖2 . Solve least squares problem Hmy = βe1

13: Set xm = x0 + Zmym

as it is noted that in line 3 the preconditioner used may depend on the current step in
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the iteration. This allows for the preconditioning operator to change in each GMRES
iteration. In a practical application the preconditioning matrix Mj is often not available,
or it is not desirable to explicitly form this operator. Instead the effect of Mj is performed
by implicitly applying the preconditioning operator, which is often an iterative procedure
(such as Gauss-Seidel or Jacobi) applied to the system

Azj = vj. (3.59)

Applying an iterative process a number of times to Equation (3.59) is equivalent to ap-
plying the inverse of the preconditioning operator in line 3 of Algorithm 3.2. Since the
preconditioner depends on the right-hand side (in this case vj) the preconditioner is likely
to be different in each iteration. Therefore FGMRES is no longer a Krylov subspace
method, but we do have the following optimality result:

Proposition 3.6. LetZm be defined as in line 10 of Algorithm 3.2. Then, afterm FGMRES

iterations, the approximation ũ = u0 + Zmym satisfies

ũ = arg min
u∈u0+span{Zm}

‖f − Au‖2 (3.60)

when Zm is a full rank matrix.

Proof. A proof of the above result can be found in [153, Proposition 9.2].

FGMRES requires the extra storage of the vectors zj , j = 1, . . . ,m. In the case when
multigrid is used as a preconditioner the extra storage requirements are usually modest as
m is typically small. The convergence properties of FGMRES are beyond the scope of this
thesis, but the same principle applies as in the case of GMRES - so long as the matrices
AM−1

j are well-conditioned then the convergence of FGMRES will be independent of the
spectrum of the matrix A.

The introduction to linear iterations in this section is far from complete, and we direct
the reader to the extensive literature on this area (e.g. [23,69,153] and references therein).
The concepts introduced here are sufficient to follow the rest of this thesis, and many
of the ideas introduced here are used in nonlinear and multigrid iterations. Nonlinear
iterations are covered in the next Section 3.4 and multigrid methods are described in more
detail in Chapter 4.
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3.4 Nonlinear Iterations

In this section the solution of nonlinear equations is considered. A nonlinear operator F
is characterised by the fact that the output does not scale with the input, i.e. that in general
the condition

F (αu+ βv) 6= αF (u) + βF (v) (3.61)

holds true for nonlinear operator F . As is standard in the literature the general nonlinear
equation given by

F (u) = 0 (3.62)

is considered, where

F : V → W and u ∈ V .

There exists no general direct solver for a nonlinear problem, as the properties of the
operator F depend also on the current approximation u. Assuming that there exists a
u∗ ∈ V that satisfies Equation (3.62) we are then left to find an iterative procedure to
move from an initial approximation u0 to the solution u∗. In general u∗ may not be
unique in V , but we do assume that it is unique in the open ball

Bu∗(δ) ≡ {u ∈ V | ‖u− u∗‖ < δ} (3.63)

for some suitable norm ‖ · ‖. Clearly Bu∗(δ) is a subset of V . If u∗ is not unique in V then
F is in general not invertible. However, it is possible to find subsets of V on which F
is invertible. The first assumption that we make is that F is differentiable at the solution
u∗. There are two definitions of differentiability of which we will make use in this thesis
- Gateaux and Frèchet differentiability. The Gateaux derivative of F at u ∈ V is a linear
operator F ′(u) ∈ V → W such that

lim
h→0

‖F (u+ hv)− F (u)− hF ′(u)(v)‖
h

= 0 (3.64)
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for all v ∈ V . The Frèchet derivative of F at u ∈ V is defined by a linear operator
F ′(u) : V → W satisfying

lim
‖h‖→0

‖F (u+ h)− F (u)− F ′(u)(h)‖
‖h‖ = 0 (3.65)

for all h ∈ V . In the remainder of this thesis we assume that a nonlinear operator is
Frèchet differentiable and note that whenever a function is Frèchet differentiable that it is
also Gateaux differentiable [139, §3]. The Gateaux derivative will be explicitly used in
the formulation of a variant of nonlinear multigrid in Chapter 4. We note that, in the case
that F (u) = 0, Fréchet differentiability (3.65) immediately implies

F (u+ h)− F ′(u)(h) = o(h), as ‖h‖ → 0, (3.66)

such that as the perturbation becomes smaller the linearisation approximates the action
of the nonlinear operator locally. This is an important property, especially for Newton’s
method, which is given in the next subsection. In the remainder of this thesis we assume
that a nonlinear operator is continuously Fréchet differentiable. We may then make use
of the following proposition.

Proposition 3.7. Assume that a nonlinear operator F : V → W is continuously Frèchet

differentiable at u∗ ∈ V . Then there exists a δ such that F is a homeomorphism (i.e. F

and F−1 are continuous) on Bu∗(δ). If F ′ exists and is continuous on Bu∗(δ) then F ′−1

exists and is continuous.

Proof. This is the inverse mapping theorem, a full statement and proof of which is given
in [139, 5.2.1].

Assuming that u∗ is unique and F is invertible in Bu∗(δ) we are interested in finding
an iterative method of the form

u(i+1) = u(i) −
(
A(i)
)−1

F (u(i)) (3.67)

for operatorsA(i) (which may or may not depend on the iteration count i) with the property
that

u(i) ∈ Bu∗(δ), i = 1, 2, 3, . . . and lim
i→∞

u(i) = u∗. (3.68)
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It is very common to let A(i) be some linear operator, which is much easier to find and
apply than a nonlinear operator. There are many choices for the linear operator. We start
by describing the most popular choice - taking the derivative of F at u(i). This gives rise
to Newton’s method, which is introduced in more detail below.

3.4.1 Newton’s Method

Consider that we are solving Equation (3.62). For approximation u = u∗ − δ a Taylor
expansion [15, Theorem 2.1.33] neglecting higher order terms reads

F (u+ δ) = F (u) + F ′(u)(δ) +O(δ2) (3.69)

which gives rise to the approximation

δ ≈ −F ′(u)−1F (u) (3.70)

and hence the Newton iteration given in Algorithm 3.3.

Algorithm 3.3 Newton’s Method

u(i+1) = u(i) − F ′(u(i))−1F (u(i))

Newton’s method is one of the first iterative methods conceived. It is very well estab-
lished, a brief history of which can be found in [59]. The modern formulation, as given in
Algorithm 3.3, for general operators on Banach spaces dates back to Kantorovich [103]
and Mysovskikh [132]. The method is very popular due to its local quadratic convergence
properties, which are hinted at in the Taylor expansion (3.69) where the error term is pro-
portional to the square of the correction. The monograph [58] splits Newton methods into
different classes. For the purposes of this thesis we are interested in the class of affine

contravariant methods [58], which use the residual norm of an approximation to control
the termination of an iteration.

A Newton iteration for (3.62) will converge in the residual norm under the following
conditions:

Theorem 3.8. Let F : V → W be Frèchet differentiable on open and convex V , and

assume that F ′(u) is invertible for all u ∈ V . Assume that the Lipschitz condition

‖(F ′(u)− F ′(v))(u− v)‖ ≤ ω ‖F ′(v)(u− v)‖2
, u, v ∈ V (3.71)
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holds for some positive ω ∈ R. Define

Lω ≡ {u ∈ V | ‖F (u)‖ < 2/ω} (3.72)

and assume L̄ω is bounded. Choose u0 to be in Lω. Then the Newton iterates {u(i)}
obtained from Algorithm 3.3 converge to a fixed point u∗ ∈ Lω with F (u∗) = 0. The

residuals {F (u(i)} are related by

∥∥F (u(i+1))
∥∥ ≤ 1

2
ω
∥∥F (u(i))

∥∥2
. (3.73)

Proof. See the proof of [58, Theorem 2.12].

The above result states that given a differentiable and invertible nonlinear C1 function
F the Newton iteration will converge, given that an initial guess is ‘good enough’. This
type of result is known as a local convergence estimate, and it depends on the quality of
the initial estimate. For the implicit solution of initial value problems such as parabolic
PDEs, for example, the initial condition is known, and successive approximations can
be chosen ‘close enough’ to the solution at the next time step by controlling the size of
the time stepping parameter. However, for boundary value problems, where an initial
approximation is often not given, it may be difficult to find a good initial estimate. It may
also be that an initial approximation is outside of a ball of guaranteed convergence, so that
Algorithm 3.3 diverges. In this case a global Newton method may be more appropriate,
as given in Algorithm 3.4. The only difference in this algorithm is that there is a damping

Algorithm 3.4 Global Newton Method

u(i+1) = u(i) − γ(i)F ′(u(i))−1F (u(i))

factor γ(i) that should be chosen such that

∥∥F (u(i+1))
∥∥ ≤ ∥∥F (u(i))

∥∥ . (3.74)

If limi→∞ γ
(i) = 1 then quadratic convergence will be achieved for i ≥ n for some n ∈ N.

Note that Algorithms 3.3 and 3.4 require the inversion of the derivative F ′(u(i)) in
each step. The derivative is a linear operator, and in a finite-dimensional setting this is
equivalent to inverting a matrix, known as the Jacobian matrix. Assuming that dimV =

N and {ϕi}Ni=1 is a basis for V , then we identify u ∈ V with ~u = [u1, . . . , uN ]T , as
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in Section 2.5. It is assumed that a finite element discretisation is used, and that F (u)

represents a system of nonlinear equations posed in a weak form (see Subsection 2.3.2).
That is, there exists a function F̃ : V → V ′ such that in the finite dimensional setting F (u)

can be written as the vector of dual pairings

F (u) = [〈F̃ (u), ϕj〉]Nj=1.

Denoting Fj = 〈F̃ (u), ϕj〉 the Jacobian matrix is then given by

F ′(u) =


∂F1

∂u1

∂F1

∂u2
. . . ∂F1

∂uN
∂F2

∂u1

∂F2

∂u2
. . . ∂F2

∂uN... . . . ...
∂FN

∂u1

∂FN

∂u2
. . . ∂FN

∂uN

 . (3.75)

If F is obtained through the discretisation of a partial differential equation it is often the
case that the Jacobian matrix is sparse. Therefore, sparse direct solvers may be applied
in order to obtain a standard Newton method that executes in less time than using a dense
solver. However, it is possible to perform an inexact solve of the linear system to obtain
an inexact Newton method, as given in Algorithm 3.5. In this algorithm it is required

Algorithm 3.5 Inexact Newton Method

δ = (A(i))−1F (u(i))

u(i+1) = u(i) − δ

that A(i) ≈ F ′(u(i)). Convergence results similar to Theorem 3.8 are available for inex-
act Newton methods, assuming that the linear system of equations is solved accurately
enough (see [58, Theorem 2.17] for a proof of convergence of a Newton-GMRES iter-
ation). The exact definition of ‘sufficient accuracy’ will depend on the problem being
solved. The Newton iteration here is termed the outer iteration, and the linear iterative
procedure used to find an approximate update is termed the inner iteration.

Another important result for Newton methods is that of mesh independent conver-
gence. That is, for a discrete problem arising from a PDE, the convergence of a Newton
method can be shown to be independent of a mesh on which a problem is discretised for
sufficiently fine meshes. The theory for mesh independent convergence is most developed
in the case of elliptic problems in which the derivative F ′ is positive definite [58, §8], [61],
although analysis does exist for other problems [45,104,107]. Experimentally mesh inde-
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pendent convergence can be observed for much more complex problems than the theory
covers (e.g. [13, 99, 100, 108, 184] and many others).

This combination of mesh independent and local quadratic convergence make New-
ton methods very popular and widely used. There is another family of nonlinear iterations
which also displays a mesh independent convergence property, and performs very simi-
larly to Newton’s method when applied to elliptic model problems - Nonlinear Multigrid
Methods. These are discussed in more detail in Chapter 4. Before moving on to the non-
linear multigrid methods we present some simple nonlinear iterations, which are used as
part of the multigrid algorithm.

3.4.2 Jacobi and Gauss-Seidel Type Iterations

Nonlinear Jacobi and Gauss-Seidel iterations are the nonlinear counterpart of their lin-
ear versions introduced in Section 3.3. Using the notation introduced in Section 3.3 we
consider the nonlinear system of equations

F (u) = 0 (3.76)

with u ∈ Rn, and F = [F1, . . . , Fn]T with Fj : Rn → R. Given an approximation
u(i) to the exact solution u∗ to (3.76) the iteration u(i+1) is gained by solving, for each
j = 1, . . . , n the equation

Fj(u
(i)
1 , . . . , u

(i)
j−1, v, u

(i)
j+1, . . . , u

(i)
n ) = 0 (3.77)

for the unknown v and setting

u
(i+1)
j = u

(i)
j + ω(v − u(i)

j ) (3.78)

for damping parameter ω ∈ R. This is exactly the same iteration as given in Equations
(3.14) and (3.15) except that (3.77) is now a nonlinear equation to solve. This nonlinear
equation may be solved using Newton’s method, giving rise to a Jacobi-Newton iteration.
It is usual to use only a single Newton iteration at a point to give an appropriate update,
although the nonlinear equation may be solved more accurately if desired, but this does
not improve the asymptotic converge rate [139, pg. 327]. The nonlinear SOR iteration is
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given by replacing (3.77) with

Fj(u
(i+1)
1 , . . . , u

(i+1)
j−1 , v, u

(i)
j+1, . . . , u

(i)
n ) = 0. (3.79)

Some useful insight into the value of these nonlinear iterations can be gained from a
consideration of the convergence properties of the methods. To this end we compare
the Jacobi-Newton method with a Newton-Jacobi method, where linear Jacobi iterations
are performed as an approximate solve of a Newton iteration. A first useful result is the
following

Lemma 3.9. A Jacobi-Newton iteration with a single Newton step per unknown is equiva-

lent to a Newton-Jacobi iteration with a single linear Jacobi iteration (using a zero initial

guess) per Newton iteration when applied to the nonlinear Equation (3.76).

Proof. The proof is formed by construction of both of the iterations. Let J = F ′(u(i)) be
the Jacobian matrix represented as the sum

J = D − L− U

for D the diagonal part, and L (U ) the strictly lower (upper) triangular part of J . First
the Jacobi-Newton iteration is formed. For this the solution of each of the nonlinear
equations given in (3.77) is approximated using a single Newton iteration. Hence, the
updated approximation v in the Jacobi update (3.78) is calculated as

v ≈ u
(i)
j −

(
∂Fj

∂u
(i)
j

)−1

Fj(u
(i)
1 , . . . , u

(i)
N ).

Inspection of (3.75) shows that the term ∂Fj/∂u
(i)
j is simply the diagonal on the j th row

of the Jacobian matrix for the current iterate u(i). The term Fj is the j th right-hand side
term in the nonlinear system of equations. Therefore a full Jacobi-Newton sweep over all
unknowns can be described by

u(i+1) = u(i) − ωD−1F (u(i)). (3.80)

The representation of the Newton-Jacobi iteration is gained from the Newton iteration

u(i+1) = u(i) + δ(i)
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where the correction δ(i) is gained by approximating the solution of Jδ = −F (u(i)) using
a single linear Jacobi iteration with a zero initial guess. Using (3.18) the representation of
the correction is

δ(i) = −ωD−1F (u(i)), (3.81)

and the Newton-Jacobi iteration is written the same as the Jacobi-Newton iteration in
(3.80).

Lemma 3.9 may be used in the proof of the following lemma:

Lemma 3.10. For problem (3.76) let F be continuously differentiable and assume that

(F ′)−1 exists on convex and bounded D ⊂ Rd. Assuming that u∗ is a unique solution of

(3.76) in D then the asymptotic convergence rate σ of a Jacobi-Newton iteration is given

by

σ = lim
i→∞

∥∥F (u(i+1))
∥∥

‖F (u(i))‖ = ρ(H(u∗)) (3.82)

where H is the error propagation matrix for the linear Jacobi iteration applied to the

equation

F ′(u∗)δu = F (u). (3.83)

Proof. See the proof of [139, Lemma 10.3.1].

A similar result holds also in the case of an SOR iteration [139, Lemma 10.3.3]. Hence
the nonlinear Jacobi and Gauss-Seidel type iterations converge at the same asymptotic rate
as their linear counterparts. The iterations work best when the Frèchet derivative is sym-
metric positive definite, and in this case the condition given in (3.27) holds. As discussed
in Subsection 3.3.1, the spectral radius of the error propagation matrices for linear Jacobi
and Gauss-Seidel iterations is O(1 − ρ(H(u∗))), and the running time of the methods is
O(N3), for N the number of unknowns in the system. As the nonlinear iterations have
the same asymptotic rate of convergence, the order of the running time of the methods is
also O(N3). Hence a Jacobi-Newton iteration is not well suited as a solver. However, the
nonlinear stationary Jacobi and Gauss-Seidel iterations can be used as smoothers, as they
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are in the linear case. This makes these iterations an important part of nonlinear multigrid
methods, which are described in detail in the next chapter.

The methods introduced in this chapter give a grounding in the field of iterative
solvers, and provide a basis upon which to discuss some of the most powerful classes
of algorithms for solving systems of equations arising from the discretisation of linear
and nonlinear PDEs of elliptic type - multigrid methods. These methods are introduced in
more detail in the next chapter. Theory relevant to their convergence is given in Chapter 5.



Chapter 4

Introduction to Multigrid Methods

Multigrid methods are a very powerful class of iterative solvers for PDEs discretised
by a local mesh-based scheme. They are most often used for the iterative solution of
PDEs modelling some physical phenomenon that is diffusion dominated. Most commonly
this involves second order PDEs, although fourth order and higher PDEs may also be
dealt with by multigrid methods (see [204, 205] and references therein). The reason that
multigrid methods are so popular is that when they are applicable to a problem they often
display optimal convergence behaviour. What this means is that the convergence rate
of a multigrid method is mesh-independent and the amount of computational effort per
iteration is directly proportional to the number of unknowns N on a grid. Hence, the
amount of computational effort required to solve a problem on a grid Ω withN unknowns
to a desired degree of accuracy is O(N). Multigrid methods are most easily applicable to
diffusion-dominated PDEs of elliptic and parabolic type. Advection dominated PDEs of
hyperbolic type may be treated using multigrid techniques, although great care is required
in the formulation of the algorithms (e.g. [17, 138, 146, 187]). The reasons why multigrid
methods are so effective should be made clear in the discussions given in the following
sections.

There are two main types of multigrid methods - geometric and algebraic. This
thesis is concerned with geometric multigrid methods, in which geometric information
regarding a problem is used to form a solution algorithm. Algebraic multigrid meth-
ods are very popular and their development and analysis forms an active research area
( [40, 117, 175, 180, 198] are just a handful of recent publications). They use algebraic

50
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information about a matrix associated with the discrete system of equations, rather than
geometric information on a sequence of grids, and are therefore more general algorithms
than the geometric variants. However, in cases where geometric information is salient,
a geometric multigrid algorithm will be a very competitive choice of solver. Hence we
concentrate on the cases in which geometric multigrid is desired as a solver. In this thesis
we also make a comparison between Newton-Multigrid and Nonlinear Multigrid methods
(to be introduced in Section 4.2). There exists no general algebraic variant of the Nonlin-
ear Multigrid iteration, so that a fair comparison of these algorithms should be performed
using the geometric algorithms.

Before introducing linear and nonlinear geometric multigrid methods some common
notation is outlined here. As the name multigrid suggests, multiple grids are required in
the formulation. Let {Gj}Jj=1 be a set of grids such that

Ωj ⊂ ΩJ , j 6= J, (4.1)

where ΩJ is a fine grid on which a solution is sought. It is common to choose the grids
such that they form a hierarchy

Ω1 ⊂ Ω2 ⊂ . . . ⊂ ΩJ (4.2)

although multigrid methods can be defined for sequences of non-nested grids (e.g. [18,
60]). The discussion presented here is for the much more common case that the sequence
of grids is nested. An example of a two-dimensional sequence of nested grids is shown in
Figure 4.1.

Let Nj , Ej and Tj represent the set of nodes, edges and elements on a grid Ωj . The
characteristic grid spacing on Ωj , as defined in (2.1), is given by hj . Let VJ represent
the space of functions in which the solution to an algebraic problem of the form (3.1) or
(3.62) is sought on grid ΩJ . Associate with each grid Ωj , j = 1, . . . , J a space Vj , which
for the purposes of this thesis is a space of finite element functions (see Subsection 2.3.2)
defined using geometrical information of grid Ωj , j = 1, . . . , J . Note that even though
we assume that Ωj ⊂ Ωj′ for j < j′ it is not necessary for Vj to be a subspace of Vj′ . In
order to move functions between the different function spaces the interpolation operators

Rj−1
j : Vj → Vj−1, j = 2, . . . , J

P j
j−1 : Vj−1 → Vj, j = 2, . . . , J

(4.3)
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Figure 4.1: Example of a two-dimensional hierarchy of nested grids. All nodes on a
coarse grid are also present on the finer grids. Each coarse grid element is the union of
four fine grid elements.

are used. These operators may be suited to a specific problem, and are described in more
detail in Subsection 4.1.2. Rj−1

j will be termed a restriction operator, and P j
j−1 will be

termed a prolongation operator.
We are now ready to start the discussion of multigrid methods. Section 4.1 gives an

introduction to linear multigrid methods. The concepts introduced are directly used in the
formulation of the nonlinear multigrid methods described in Section 4.2. The convergence
theory required for the methods is left for Chapter 5.

4.1 Linear Multigrid

Consider the solution of the discrete operator equation

AJuJ = fJ (4.4)

for AJ : VJ → VJ where VJ is defined above. Associate with VJ a grid ΩJ . Consider
that ΩJ is the finest grid in a hierarchy of nested grids, as given in (4.2), and that we are
given interpolation operators (4.3). The multigrid algorithm can be split into two parts
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- smoothing and coarse grid correction. The process of smoothing has been mentioned
already, but is explained in more detail in Subsection 4.1.1. Simply put the smoothing
step seeks to remove high frequency components from the error. Coarse grid correction
involves solving for a correction term on a coarser grid, and this process is described in
more detail below. Let u∗j ∈ Vj , j = 1, . . . , J be the exact solution to the system of
equations

Ajuj = fj (4.5)

for Aj : Vj → Vj . In order to gain an accurate solution the operators Aj , j = 1, . . . , J

should be an accurate approximation of the continuous differential operator restricted to
spaces Vj , j = 1, . . . , J . Let uj ∈ Vj represent some approximation to the exact solution.
The error ej and residual rj are defined by

ej ≡ u∗j − uj, rj ≡ fj − Ajuj (4.6)

and satisfy the residual equation

Ajej = rj (4.7)

by the substitution of fj = Aju
∗
j . The linear multigrid algorithm solves the residual

equation on a coarse grid in order to calculate an approximate update term on the fine
grid, i.e. let uj represent an approximation to (4.5) on grid Ωj , and e∗j−1 represent the
exact solution to the residual equation on grid Ωj−1. The coarse grid correction step then
defines an updated approximation ũj to u∗j to be

ũj = uj + P j
j−1e

∗
j−1. (4.8)

This type of update is called an exact coarse grid correction, as e∗j−1 is the exact correction
on the coarse grid. However, an approximate solution on the coarse grid may also be
sufficient to get a good update on the fine grid. This concept is used in the linear multigrid
algorithm, which we give after the introduction of some notation. Let Sj represent a
smoothing operator such that

Sj : Vj × Vj → Vj. (4.9)
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Using this notation the Jacobi iteration, for example, would be given by (see (3.18))

Sj(fj, uj) = uj + ωD−1(fj − Ajuj), (4.10)

although Sj may be any smoother. Multiple smooths are given by the recursion

Sνj (fj, uj) = Sν−1
j (fj, Sj(fj, uj)), ν > 1

S1
j (fj, uj) = Sj(fj, uj).

(4.11)

Linear multigrid is then given by Algorithm 4.1. Lines 2 and 11 perform the smoothing

Algorithm 4.1 Linear Multigrid

Require: Operators Aj Sj , j = 1, . . . , J and Rj−1
j , P j

j−1, j = 2, . . . , J
1: function LIN-MG(j, uj, fj, γ, ν1, ν2)
2: uj ← Sν1j (fj, uj) . Perform ν1 smooths
3: rj ← fj − Ajuj
4: ej−1 ← 0, rj−1 = Rj−1

j rj
5: if j = 2 then
6: ej−1 ← A−1

j−1rj−1

7: else
8: for i = 1, . . . , γ do . Approximate correction on coarse grid
9: ej−1 ← LIN-MG(j − 1, ej−1, rj−1, γ, ν1, ν2)

10: uj ← uj + P j
j−1ej−1

11: uj ← Sν2j (fj, uj) . Perform ν2 smooths
12: return uj

and lines 5-10 perform coarse grid correction. The coarse grid correction will be exact
if there are only two grids in the hierarchy. This case will be referred to as the two-grid
iteration. For an elliptic PDE discretised on a hierarchy of quasi-regular grids it can be
shown that the two-grid and multigrid iterations converge independent of mesh parameters
so long as the discrete operator is symmetric positive definite [23, 42, 156, 177, 196] or
‘close to’ symmetric positive definite [26]. Non-symmetric and indefinite operators may
be treated so long as the smoothing property and approximation property [85, §6.5] are
satisfied. These properties are difficult to show, and a discussion of the convergence of
multigrid methods is left until Chapter 5. In the next sections we explain the smoothing
and coarse grid correction step of Algorithm 4.1 and then move on to describe the grid
transfer operators in more detail.
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4.1.1 Smoothing and Coarse Grid Correction

The concept of a smoother has been introduced without a clear definition of what a smooth
or oscillatory function should be. In a multigrid context a smooth function on a grid Ωj

is a function that may be well represented on the next coarsest grid in the hierarchy Ωj−1.
As demonstrated in Subsection 3.3.2 there is a limit on the frequency of a function that
can be represented on a given grid. For ease of representation the one-dimensional case
is considered, although the following arguments apply directly to the two- and three-
dimensional cases as well.

Consider that a one-dimensional grid Ωj has Nj + 1 equally spaced points on the
range [a, b]. Let L = b− a and assume homogeneous Dirichlet boundary conditions. The
highest frequency function that can be represented on Ωj is one that changes sign at most
Nj − 1 times, such as the Fourier mode e(i(Nj−1)πx)/L, for i =

√
−1. The same reasoning

shows that the highest frequency function on grid Ωj−1 has frequency Nj−1 − 1. From
this we gain a simple definition of high and low frequency functions. Let

ϕjk,x = e(ikπx)/L, i =
√
−1. (4.12)

Then the set of high frequency functions on grid Ωj are given by the set Φj
hf, which is

defined as (in one dimension)

Φj
hf =

{
ϕjk,x | k ≥ Nj−1

}
. (4.13)

In d dimensional space, where the coordinate directions are given by xl, l = 1, . . . , d,
the high frequency functions on a square grid with equal number of points in each grid
direction and side length L are given by

Φj
hf =

{
d∏
l=1

ϕjkl,xl | ∃l, kl ≥ Nj−1

}
(4.14)

Any function that is not high frequency is low frequency. The exponential functions used
above are just an example of periodic oscillatory functions that can form a basis for the
functions defined on a space. However, any oscillatory functions can be used. In order
to use Fourier analysis (see Chapter 5) it is typical for the exponential functions to be
defined in the range k ∈ [−Nj/2, Nj/2), which would require a simple redefinition of the
above set of oscillatory functions. The exact definition of high and low frequency depends
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on the relationship between grids Ωj and Ωj−1, in particular the way in which a grid is
coarsened. Thus we now consider the way in which a grid is typically coarsened.

Note that we have assumed that the grids are nested such that all of the points on grid
Ωj−1 are also on Ωj . Nested grids are often constructed through refinement of a coarse
grid rather than coarsening of a fine grid, and the most common way to do this is to join
the mid-points of edges on an element. We call this regular refinement and Figure 4.2

(a) Refinement of a one-dimensional
element. Coarse grid nodes (�) and
fine grid nodes (�,×) are shown

(b) Refinement of a two-dimensional
element. Coarse grid nodes (�) and
fine grid nodes (�,×) are shown

Figure 4.2: Regular refinement of one- and two-dimensional simplicial elements

shows the refinement of elements in one and two dimensions. Regular refinement in three
dimensions follows the same principle, although extra considerations need to be taken
(see [16, 172]) which are outside of the scope of this thesis. A naı̈ve refinement may
lead to triangulations with undesirable qualities, especially when the grid is unstructured
[161, 203]. However, for the purposes of this thesis we assume that regular refinement
will give a usable mesh. Using this refinement strategy it is noted that in one dimension

Nj = 2Nj−1 (4.15)

holds, and so the set of high frequency functions in one dimension is given by

Φj
hf = {ϕk,x | k ≥ Nj/2} . (4.16)

Figure 4.3 demonstrates that low frequency functions on a fine grid are well approximated
on a coarse grid, whilst high frequency functions are not well represented. Let Ωj repre-
sent the fine grid in Figure 4.3. In this case Nj = 16 and Nj−1 = 8 and a high frequency
function on Ωj has an index greater than or equal to 8. Figure 4.3a shows the representa-
tion of a low frequency function with index 4, and Figure 4.3b shows the representation
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of a high frequency function with index 12. For ease of presentation the representation of

(a) Smooth function represented on fine and
coarse grid. Coarse grid nodes (�) and fine
grid nodes (�,×) are shown.

(b) Oscillatory function represented on fine and
coarse grid. Coarse grid nodes (�) and fine
grid nodes (�,×) are shown.

Figure 4.3: Representations of a smooth and oscillatory function on a fine and coarse grid

a sine function has been shown, although the same concept holds for the functions (4.12).
As can be seen the low frequency function is well represented and the high frequency
function is not well represented at all. This is due to an effect known as aliasing in which
different fine grid functions appear to have the same frequency on a coarse grid, as in
Figure 4.3. The relation

sin(πi/L)|Ωj−1
= − sin(π(Nj − i)/L)|Ωj−1

, i = 1, . . . , Nj/2 (4.17)

can be observed in the representation of the coarse grid functions in Figure 4.3, where
f |Ωj−1

is the natural inclusion of function f in the space of piecewise linear functions on
grid Ωj−1. Hence high frequency data must be removed from a function before it is trans-
ferred to a coarser grid. A smoothing operator removes high frequency components from
the error in an approximation, as is demonstrated in Figure 4.4. The error in approxima-
tion is shown for the first 5 SOR iterations applied to a random initial guess for the linear
Laplacian problem

−∇ · ∇u = f, ~x ∈ Ω

u = 0, ~x ∈ ∂Ω,
(4.18)

with exact solution u∗ = sin(πx) sin(πy) for a finite element discretisation using con-
tinuous piecewise linear elements. As can be seen the high frequency components are
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(d) Error after 5 SOR iterations

Figure 4.4: Demonstration of smoothing of the error of an approximation to a discrete
linear Laplacian equation using SOR iterations with a weighting factor 0.8
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quickly removed from the error, leaving only the low frequency error components. These
low frequency components are not damped very well by successive applications of the
smoothing operator, and in fact the rate at which the smoother converges deteriorates as
more smoothing iterations are performed, as shown in Figure 4.5. To understand why this

1 3 5 7 9 11 13 15 17 19
0.2

0.4

0.6

0.8

1

||
r
i
||
\
||
r
i
−
1
||

Iteration

Figure 4.5: Convergence factors plotted against iteration number for an SOR smoothing
operator. The convergence factor is much better for the first few smoothing iterations.

should be, we consider the case of a Jacobi or Gauss-Seidel smoothing operator in two
dimensions. In this case a linear equation is solved over the support of a basis function
for each node on the grid. Figure 4.6 shows the support of a basis function on a fine and
coarse grid centred at a node present on both. It can be seen that the support of a basis
function is directly proportional to the grid spacing, and that the basis function on the
coarser grid has a lower frequency. In Equations (3.42) - (3.44) we show that a smoothing
iteration uses a high frequency subspace in order to calculate a point-wise correction. It is
therefore sensible that the high frequency data is captured more easily in a smoothing iter-
ation than the low frequency data. In order to capture lower frequency data a smoother can
be applied with lower frequency basis functions, which can be achieved by performing a
smoothing iteration on a coarser grid. Another way of considering this is that functions
that are smooth on grid Ωj contain components that are high frequency on the coarser
grid Ωj−1. Hence moving to a coarser grid and performing smoothing will remove these
components. This is what is performed in the coarse grid correction step (lines 5-10) of
linear multigrid (Algorithm 4.1).

Once a correction term has been transferred to the fine grid from the coarse grid it is
expected that the approximation to the error on the coarse grid nodes is close to the exact
solution, whereas the correction at fine grid nodes which are not on the coarse grid are
further from the true correction. This causes the error after the correction to contain high
frequency data, as illustrated in Figure 4.7. Hence the post-smoothing step in line 11 in
Algorithm 4.1 is performed to remove these high frequency components, and the error
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i

Figure 4.6: The support of a basis function centred at node i on a fine grid (solid black
line) and a coarse grid (broken black line). The diameter of the support of a basis function
is directly proportional to the grid spacing.

after a single multigrid iteration is greatly reduced compared to performing smooths on a
single level only.

To increase the accuracy to which a coarse grid problem is solved the number of
multigrid iterations performed per level may be increased. This is done in the loop in line
5 of Algorithm 4.1, which is controlled by the scalar γ. Varying γ gives rise to different
patterns in which each grid is visited and the algorithm is named differently for different
values of γ. The case that γ = 1 is called the V-cycle and γ = 2 the W-cycle, as the
order in which the grids are visited resembles a V and a W, respectively (see Figure 4.8).
It is also possible to vary γ to produce other cycles. For example, a popular cycle is the
F-cycle in which a W-cycle is performed the first time a grid is visited and a V-Cycle the
second time. However, the most popular implementations of multigrid use either the V- or
W-cycle. In this thesis we are particularly interested in the V-cycle, as this is often more
efficient to use than the W-cycle. This is because the improvement in convergence using
the W-cycle is not generally sufficient to offset the increase in execution time relative to
the V-cycle, unless the latter is particularly slow to converge.

As yet the grid transfer operators given in (4.3) have not been defined, and we have
assumed that the transfer operators are appropriate for any given problem. A suitable
choice of grid transfer operators depends on the underlying properties of the grids, the
finite element function spaces, and the PDE being solved. In the next section a discussion
of how to choose an appropriate grid transfer operator is given. This discussion ties in
with the importance of an appropriate choice of coarse grid linear operators Aj , j 6= J

which should approximate the action of the fine grid operator AJ on the coarse grids Ωj ,
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Figure 4.7: Progression of the error through a single multigrid iteration.

Fine

Coarse

(a) Multigrid V-Cycle (b) Multigrid W-Cycle

Figure 4.8: Order in which grids are visited for multigrid V- and W-cycles.
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j 6= J .

4.1.2 Grid Transfer and Coarse Grid Operators

The convergence of a multigrid iteration is sensitive to the grid transfer operators that are
used. Transfer operators should be chosen such that an approximation property (see [85,
§6.1.3]) is satisfied, which gives a bound for the error in the solution transferred from a
fine to a coarse grid. This gives a condition in which a correction made on a coarse grid is
appropriate to be used on a fine grid. Considering the solution of (4.5) the approximation
property requires a bound for the value

∥∥A−1
j − P j

j−1A
−1
j−1R

j−1
j

∥∥ . (4.19)

In this estimate the operator on a coarse grid is used, which is not defined as part of
problem (4.4). The coarse grid operator may be defined in different ways. If the discrete
operator is defined by a discretisation on a given grid, it is possible to simply re-discretise
the operator on all grids in a hierarchy. Another option is to use the Galerkin coarse grid
operator (see [42, pg. 75], [177, §7.7.4]) defined by

Aj−1 ≡ Rj−1
j AjP

j
j−1, (4.20)

where typically Rj−1
j is the adjoint of P j

j−1. This is useful in particular in the case when
the operatorAJ is symmetric positive definite [23,160,196], in which case the coarse grid
operator is symmetric positive definite in the energy norm

‖ · ‖2
Aj

= ( · , · )Aj
(4.21)

for ( · , · )Aj
as defined in (2.10). This is easily verified. The usefulness of this fact is

made clear in the convergence theory discussed in Chapter 5. The coarse grid operators
are stored separately in an implementation, since to apply an operator on the coarsest grid
using the definition (4.20) would require the application of the operator on the finest grid.
In this thesis both the Galerkin coarse grid operator and re-discretised operators are used,
and it will be stated when which one is used.

As part of the Galerkin coarse grid operator we again make use of the grid transfer
operators. It is plain to see that the transfer operators used will change the coarse grid
operator, and so appropriate transfer operators need to be chosen. It is desirable for a grid
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transfer operator to be ‘optimal’ in some norm, i.e. it should be a projection operator. As
an example we consider a hierarchy of two-dimensional grids as given in (4.2) with Vj the
space of piecewise linear C0 nodal functions S0(Ωj) (see (2.14)). Note that Vj−1 ⊂ Vj .
This simplifies the definition of the grid transfer operators, but it is also possible to find
transfer operators for the non-nested case (see Chapter 8 for an example and [60] for a
more detailed treatment).

We start with the definition of the prolongation operator. We want this to satisfy the
orthogonality condition

(uj, P
j
j−1wj−1) = (uj, wj−1), ∀uj ∈ Vj, wj−1 ∈ Vj−1, (4.22)

for ( · , · ) the L2 inner product. Since wj−1 ∈ Vj−1 ⊂ Vj the prolongation is just the nat-
ural inclusion operator. Hence the mathematical representation is just the identity trans-
formation. The matrix representation of the prolongation operator performs a change of
basis from Vj−1 to Vj . Recalling the representation of the functions expanded in a nodal
basis as

uj =

Nj∑
i=1

uj,iϕj,i, wj−1 =

Nj−1∑
i=1

wj−1,iϕj−1,i (4.23)

where Vj = span {ϕj,i}Nj

i=1. Let ~uj = [uj,1, . . . , uj,Nj
]T be the vector representation of the

function uj on grid Ωj , and define ~wj−1 similarly. Using the matrix P j
j−1 : RNj × RNj−1 ,

P j
j−1wj−1 then gives the vector representation of function wj−1 ∈ Vj−1 in Vj , i.e.

P j
j−1 ~wj−1 = ~wj = [wj,1, . . . , wj,Nj

]T (4.24)

such that wj =
∑Nj

i=1wj,iϕj,i. The wj,i, i = 1, . . . , Nj are simply the nodal values of wj−1

on grid Ωj . For any nodes ~x ∈ Ωj ∩ Ωj−1 the prolongation operator is the identity. For
any node ~x ∈ Ωj \ Ωj−1 the prolongation operator gives the average of co-linear coarse
grid nodes, as the functions in Vj , j = 1, . . . , J are continuous and piecewise linear. As
an example consider the set-up in Figure 4.9. The result of applying the prolongation
operator at nodes marked 10 and 11 is given by

wj,10 = wj−1,10

wj,11 =
1

2
(wj−1,10 + wj−1,12).

(4.25)
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Figure 4.9: Example coarse grid elements with nodes on on fine (×) and coarse (�) grid

The restriction operator is the transpose of the prolongation, such that

Rj−1
j ~vj =

(
P j
j−1

)T
~vj = ~vj−1 = [vj−1,1, . . . , vj−1,Nj−1

]. (4.26)

The result of applying the restriction operator at node labelled 10 in Figure 4.9 is given
by

vj−1,10 = vj,10 +
1

2
(vj,5 + vj,6 + vj,9 + vj,11 + vj,14 + vj,15). (4.27)

The restriction operator defined in this way may be used as part of a Galerkin coarse
grid operator. However, if the operator is re-discretised on a coarser grid the rows in the
restriction matrix need to be normalised in order to give an appropriate transfer operator.

Note that a grid transfer operator may be easier to obtain in a finite element setting,
as the inner product is used as part of the variational formulation. For finite difference
approximations it is not directly obvious which grid transfer operators should be used as
a basis for the underlying space is not explicitly constructed. There does exist theory
which gives simple heuristics for the choice of restriction and prolongation operators
(see [42, 134, 177]) which relates the accuracy of the grid transfer operators to the order
of the PDE to solve.

We have now given a description of the different components of the linear multigrid
iteration in a heuristic manner, without much emphasis on the theory of multigrid methods
which is given in Chapter 5. Before a discussion of the theory a justification for the
statement that a multigrid iteration is of optimal order (O(NJ)) running time is given.
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4.1.3 Characterisation of Running Time

In this section we present a characterisation for the running time of a linear multigrid iter-
ation under the assumption that the number of iterations required to reach a convergence
criterion is independent of the grid level. This simply shows that the computational effort
required to perform a single multigrid iteration is proportional to the number of unknowns
in the system. To do this we break down the computational cost of the linear multigrid
algorithm in terms of constituent parts, taking advantage of the recursive definition of the
algorithm. We summarise the characterisation as presented in [177, §2.4.3], assuming that
a regular coarsening as introduced in Subsection 4.1.1 is used.

The cost per linear multigrid iteration is a combination of the cost of performing
smoothing, grid transfers and multigrid on a coarser grid. Letting WJ denote the compu-
tational cost for performing smoothing and grid transfer operations on grid ΩJ , and let CJ
be the cost of a multigrid iteration on grid ΩJ . Then the cost per multigrid iteration can
be defined recursively as

Cj = Wj + γCj−1, C2 = W2 + C1. (4.28)

where γ is the number of times a multigrid iteration is to be performed on each level
(see Algorithm 4.1) and C1 is the cost to perform a solve on the coarsest grid level. It is
assumed that

Wj ≈ CNj (4.29)

for Nj the number of nodes on grid Ωj and C some small integer constant bounding the
number of operations performed per node on the grid in the grid transfer and smoothing
processes. It is clear that this should be the case for the grid transfer as this is performed
as a sparse matrix-vector product where the number of non-zero entries in a row of the
matrix is bounded by a small constant. For a point-wise smoothing operator such as
the Jacobi or Gauss-Seidel a small number of calculations are required to solve a linear
equation at each point on the grid. The same is true if a block smoother is used, so long
as the size of the blocks is fixed, i.e. does not grow with the size of the grid.

It is also assumed that the cost of solving on the coarsest grid level is negligible, i.e.
C1 ≈ 0. For a regular refinement of a two-dimensional grid we have

Nj ≈ 4Nj−1 (4.30)
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and so

Wj ≈ 4Wj−1. (4.31)

Using this and expanding the recursion (4.28) the cost of a linear multigrid iteration is
given by

CJ = WJ + γCJ−1

= WJ + γ (WJ−1 + γCJ−1)

= . . .

=
J∑
j=2

Wjγ
J−j + γJ−1C1

≈WJ

J∑
j=2

γJ−j

4J−j

≈ CNJ

J∑
j=2

γJ−j

4J−j
.

(4.32)

For the multigrid V-cycle (γ = 1) and the W-cycle (γ = 2) the cost per iteration is
bounded by

CJ ≤

4
3
CNJ , γ = 1

2CNJ , γ = 2,
(4.33)

which is linear with respect to the number of nodes on a grid. Larger values of γ are not
common, and for large enough γ the running time per iteration is no longer linear (see
[177, pg. 51]). For the purposes of this thesis we are mainly interested in the multigrid V-
cycle which is clearly of linear order running time per iteration. A similar characterisation
of running time in higher spatial dimensions is a simple extension of the characterisation
given here. For example, in three dimensions, we simply require to know that, for regular
refinement, the relation

Nj ≈ 8Nj−1

holds. The expansion of the recursion is left to the reader, but the result is that in d
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dimensions for a regular refinement strategy the computational cost per V-cycle is given
by

CJ ≤ CNj
2d

2d − 1
. (4.34)

The result in (4.33), when combined with a grid independent convergence result,
demonstrates that a multigrid iteration is of optimal cost O(Nj) on grid Ωj . Grid in-
dependent convergence is discussed in more detail in Chapter 5. Before then we provide
a note on a common use of multigrid methods in practice and then introduce nonlinear
multigrid methods, which are the main focus of this thesis.

4.1.4 Linear Multigrid as a Preconditioner

In practice linear multigrid is often used as a preconditioner for a Krylov subspace method.
The use of a linear multigrid iteration is described briefly in conjunction with the flexible
GMRES iteration outlined in Algorithm 3.2. Preconditioning is performed in line 3 of
Algorithm 3.2 in which the quantity of interest is the vector

zj = M−1
j vj

using a preconditioning matrix Mj at iteration j. In the case of multigrid methods the
multigrid iteration matrix is not formed explicitly. Instead a multigrid iteration is applied
to the operator equation to be solved, i.e. to (see Algorithm 3.2)

Azj = vj.

The resulting vector is assigned as zj in the FGMRES iteration. The application of multi-
grid to CG and GMRES is performed in a similar manner, but, in the latter case, the
resulting algorithm is not as stable as when an FGMRES iteration is used (see Subsec-
tion 3.3.4).

As a preconditioner for a CG method the convergence of the multigrid iteration is
typically accelerated [153, §6.11.3]. However, as part of a GMRES iteration multigrid
may be used in a more interesting way. GMRES is an iterative solver applicable for non-
symmetric and indefinite systems of equations, which a standard multigrid iteration may
struggle to solve. It is not necessary, though, for a preconditioner to be applied to the full
problem for GMRES to be an optimal algorithm [70, 124, 153]. For example, it may be
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that a linear operator A may be split into a symmetric part As and a non-symmetric part
Ans such that

A = As + Ans.

In this case it is possible that applying the multigrid iteration to the equation

Aszj = vj

in line 3 of Algorithm 3.2 will give a good preconditioner [63, 158].
It may also be the case that a non-convergent multigrid iteration will be suitable as a

preconditioner for a GMRES iteration [153]. The use of multigrid as a preconditioner is
a popular approach for solving problems of parabolic and elliptic type in both the linear
(e.g. [4, 35, 116, 137, 145, 207]) and nonlinear case (e.g. [44, 63, 64, 99, 106, 142]), and is
investigated as part of this thesis.

This concludes the discussion of linear multigrid methods, and provides a good basis
for the discussion of nonlinear multigrid methods presented in the next section, which use
the same principles introduced here.

4.2 Multigrid in a Nonlinear Setting

Nonlinear multigrid methods are based upon generalisations of the linear multigrid paradigm
to a nonlinear setting. The idea that a fine scale problem can be efficiently solved by solv-
ing problems in spaces with low dimension is very appealing, especially as operations
involved in the solution of nonlinear problems are often more computationally expensive
than in the linear case. There are two main approaches to apply a multigrid method in a
nonlinear context: Newton-Multigrid (Newton-MG) and Nonlinear Multigrid. There are
various methods that can be used in both of these approaches and these will be introduced
in Subsections 4.2.1 and 4.2.2.

In the next sections the solution of the discrete nonlinear equation

Fj(uj) = 0, j = 1, . . . , J (4.35)



Chapter 4 Introduction to Multigrid Methods 69

or

Aj(uj) = fj, j = 1, . . . , J (4.36)

is considered on a hierarchy of grids as defined in (4.2). Fj (Aj) represents the discretisa-
tion of the same arbitrary nonlinear PDE on a sequence of grids Ωj , j = 1, . . . , J . Note
that (4.35) is equivalent to (4.36) setting Fj(uj) = fj−Aj(uj). It is assumed that a unique
solution u∗j , j = 1, . . . , J , exists for the above equations in some ball Bu∗(δ) (see (3.63)).
The residual rj and error ej in an approximation uj on grid Ωj are then defined as

rj ≡ fj − Aj(uj), ej ≡ u∗j − uj. (4.37)

4.2.1 Newton-Multigrid (Newton-MG)

The most obvious application of a multigrid method in the nonlinear setting is as part of
a Newton (or more commonly an approximate Newton) iteration. The Newton iteration,
as introduced in Subsection 3.4.1, requires a linear problem to be solved per Newton
step. This may be done approximately with any appropriate iterative method. The term
Newton-Multigrid will be used in this thesis to refer to any Newton iteration that uses
a multigrid iteration as part of the linear solve. This includes the cases where linear
multigrid is used as a solver, or as the preconditioner for a Krylov subspace solver for the
linear system of equations. The method is presented in Algorithm 4.2 assuming that an
approximation at Newton step i is given. This approach is popular in practice (e.g. [44,76,

Algorithm 4.2 Newton-MG

1: Set δ(i) to be the approximate solution of F ′(u(i))δ(i) = F (u(i)) from an iterative
method using multigrid

2: u(i+1) ← u(i) + γδ(i)

84,90,100,108]) where observed results show mesh-independent convergence. This is due
to the mesh-independent properties of both the Newton and linear multigrid methods. For
the Newton iteration it is difficult to prove the mesh-independent convergence, although it
has been done for certain model problems (e.g. [107]). A discussion of the existing theory
and the difficulties in proving convergence for general nonlinear problems is discussed
in more detail in Chapter 5. Now we turn our attention to another approach to utilise
multigrid principles in the nonlinear setting which leads to methods termed nonlinear

multigrid methods in this thesis.
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4.2.2 Nonlinear Multigrid Methods

This section introduces nonlinear multigrid methods applied to Equation (4.36), which use
the same principles introduced for linear multigrid methods and apply them directly in a
nonlinear setting. As such we seek to perform both smoothing and coarse grid correction.
Typical nonlinear smoothing operators are introduced in Subsection 3.4.2 so we are left
to describe the coarse grid correction step. In the linear case the error in approximation
satisfies the residual Equation (4.7). This is not the case in the nonlinear setting and the
nonlinear residual equation in space Vj reads

Aj(u
∗
j) = Aj(uj) + rj (4.38)

for the residual rj defined as in (4.37). From the definition of the error in (4.37) we see
that u∗j = ej +uj . Since the current approximation uj is known, if we can solve for u∗j we
can calculate the error in approximation. Using the residual equation on grid Ωj does not
change the definition of the problem. However, solving the nonlinear residual Equation
(4.38) on a coarser grid gives rise to the equation

Aj−1(u∗j−1) = Aj−1

(
Rj−1
j uj

)
+Rj−1

j rj (4.39)

to solve for the approximation on grid Ωj−1. The value that is solved for on the coarse grid
is the approximation to the exact solution and the first variant of nonlinear multigrid - the
Full Approximation Scheme (FAS) [32] - takes its name from this fact. FAS is presented in
Algorithm 4.3. Note that in line 10 of Algorithm 4.3 the error is calculated on the coarse
grid before interpolating to the fine grid. This is a necessary step to take, and in general,
interpolating the approximation to the fine grid does not give a convergent iteration [177].
This is due to the fact that a smoothing iteration smooths the error in approximation, so
that the error is well represented on the coarse grid, and it should therefore be the error
that is transferred back to the fine grid. In Algorithm 4.3 the same restriction operator is
used to restrict the approximation as well as the residual. However, it may be desirable to
restrict the approximation with a higher accuracy than the residual (see [42,177]). This is
not necessary for the problems considered in this thesis, though.

To complete the description of Algorithm 4.3 the definition of the grid transfer and
coarse grid operators are required. The grid transfer operators are formed in the same
way as in the linear case as their definition depends only on the inner products and basis
chosen for the finite-dimensional spaces. The coarse grid operator is a different matter,
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Algorithm 4.3 FAS

Require: Aj, Aj−1, Sj, P
j
j−1, R

j−1
j

1: function FAS(j, uj, fj, γ, ν1, ν2)
2: uj ← Sν1j (fj, uj) . Perform ν1 pre-smooths
3: uj−1 ← Rj−1

j uj, ũj−1 ← uj−1

4: fj−1 ← Aj−1(uj−1) +Rj−1
j (fj − Aj(uj))

5: if j = 2 then
6: ũj−1 ← A−1

j−1(fj−1)
7: else
8: for i = 1, . . . , γ do . Approximate correction on coarse grid
9: ũj−1 ← FAS(j − 1, ũj−1, fj−1, γ, ν1, ν2)

10: ej−1 ← ũj−1 − uj−1

11: uj ← uj + P j
j−1ej−1

12: uj ← Sν2j (fj, uj) . Perform ν2 post-smooths
13: return uj

though. This can no longer be stored as a matrix as the operator depends on the current
approximation. Although a Galerkin coarse grid operator can be written mathematically
it is not clear how to implement the method in practice without performing transforma-
tions to finer grids. There is limited research in which an algebraic coarse grid operator
has successfully been applied for model problems in the nonlinear setting [66], but this
process is not widespread and is not generally applicable. Consequently, the coarse grid
operators in Algorithm 4.3 are assumed to be consistent discretisations of the differential
operator on the coarse grids.

FAS was first presented in [32] and has been used effectively in research projects for
the implementation of solution algorithms for complex systems of nonlinear equations
(e.g. [74, 75, 82, 102, 125, 151, 159]). For a large number of applications grid indepen-
dent convergence is observed, although a mathematical theory to support this does not
exist, even for simple model problems. The convergence does not display the favourable
quadratic convergence of the Newton method, and has similar linear convergence prop-
erties as the linear multigrid method. Justification for this is given in Subsection 4.2.3 as
well as Chapter 5.

FAS is a common implementation of a nonlinear multigrid method and will be the
focus of this thesis, as the implementation of FAS is one of the simplest of a nonlinear
multigrid method and the results obtained are often optimal. A generalisation of FAS is
the Nonlinear Multilevel Method (NMLM) of Hackbusch [85] given in Algorithm 4.4,
where a scalar parameter sj is introduced. This parameter is chosen depending on the
current the right-hand side, as some function σ(j, fj). The choice of this is not of impor-
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tance here and is discussed in more detail in Section 7.6. The interested reader may find
a discussion of an appropriate choice of sj in [87]. Strictly speaking Algorithm 4.4 is not

Algorithm 4.4 NMLM

Require: Aj, Aj−1, Sj, P
j
j−1, R

j−1
j

1: function NMLM(j, uj, fj, γ, ν1, ν2)
2: uj ← Sν1j (fj, uj) . Perform ν1 pre-smooths
3: uj−1 ← Rj−1

j uj, ũj−1 ← uj−1

4: fj−1 ← Rj−1
j (fj − Aj(uj))

5: sj−1 ← σ(j − 1, fj−1)
6: fj−1 ← Aj−1(uj−1) + sj−1fj−1

7: if j = 2 then
8: ũj−1 ← A−1

j−1(fj−1)
9: else

10: for i = 1, . . . , γ do . Approximate correction on coarse grid
11: ũj−1 ← NMLM(j − 1, ũj−1, fj−1, γ, ν1, ν2)
12: ej−1 ← (ũj−1 − uj−1) /sj−1

13: uj ← uj + P j
j−1ej−1

14: uj ← Sν2j (fj, uj) . Perform ν2 post-smooths
15: return uj

the method presented by Hackbusch, which requires a sequence of approximations ûj−1,
j = 2, . . . , J and corresponding sj which serve as an initial approximation to take on
each coarse grid and an appropriate scaling parameter sj such that an appropriate coarse
grid correction is obtained. The significance of the parameter sj will be made clear in the
next section, which discusses similarities between a Newton-MG and Nonlinear Multigrid
method.

4.2.3 Similarity between Nonlinear Multigrid and Newton’s Method

In this section we establish a connection between nonlinear multigrid methods and New-
ton’s method that aids in considering how a nonlinear multigrid iteration can be ex-
pected to perform. The ideas in this subsection are developed from a discussion of
NMLM in [150, §3]. The discussion here focuses on the comparison between Newton
and NMLM, and extends the result to also cover FAS. As far as we are aware this is the
first time a discussion of this form has been given.

We consider again the solution of nonlinear Equation (4.36) with solution u∗j ∈ Vj
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unique in the ball Bu∗j
(δ). Let

rj−1 = Rj−1
j rj = Rj−1

j (fj − Aj(uj))
uj−1 = Rj−1

j uj.
(4.40)

In order for the notation to be clearer let DA(u) represent the Frèchet derivative of A at
function u. As in the previous section the operator Sj(fj, uj) represents the action of a
nonlinear smoothing iteration.

First we consider the calculations that are made in a two-grid FAS iteration, in which
the coarse grid problem is solved exactly. Let Cj(fj, uj) represent the FAS coarse grid
correction operator, which is a combination of the non-smoothing steps in Algorithm 4.3.
In the case of a two-grid iteration the coarse grid correction operator is given by

Cj(fj, uj) = uj +
[
A−1
j−1 (Aj−1(uj−1) + rj−1)− uj−1

]
. (4.41)

For the NMLM (see Algorithm 4.4) the exact coarse grid correction operator is given by

Cj(fj, uj) = uj +
1

sj−1

[
A−1
j−1(Aj−1(uj−1) + sj−1rj−1)− uj−1

]
. (4.42)

In this form it is difficult to see a connection with a Newton iteration. To make the
connection clearer the Newton iteration is presented in a form given in [150]. We note
first of all that an application of the chain rule to A−1(A(u)) = u gives

(DA(u))−1 = DA−1(A(u)). (4.43)

Using (4.43) a single iteration of a Newton iteration reads

u
(i+1)
j = u

(i)
j +

(
DAj(u

(i)
j )
)−1 (

fj − Aj(u(i)
j )
)

= u
(i)
j +DA−1

j (Aj(u
(i)
j ))(r

(i)
j ).

(4.44)

To see the connection to the nonlinear multigrid methods we consider that instead of
performing the linearisation in the second line of (4.44) we approximate the derivative
DA−1

j using a divided difference. This may be done using either a Frèchet or a Gateaux
difference, as described below.
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A Frèchet difference uses the definition of the Frèchet derivative (see (3.65)) to ap-
proximate

DA−1(A(u))(r) ≈ A−1(A(u) + r)− A−1(A(u))

= A−1(A(u) + r)− u,
(4.45)

with equality in the limit as ‖r‖ → 0. Inspection of (4.45) and (4.41) shows that the
two-grid FAS method uses a correction term that approximates a Newton correction on
the coarse grid. The more accurate the approximation to the nonlinear problem, and the
smaller the residual, the more accurately the coarse grid correction approximates a New-
ton correction. This demonstrates that for approximations close to the exact solution, in
a ball of guaranteed convergence of the Newton iteration, the FAS iteration will perform
very well. For an approximation further from the exact solution it is not clear mathe-
matically what effect this should have on the convergence, although there will not be
an approximate linearisation of the nonlinear equation in the Newton sense. Results in
Chapters 7 and 8 suggest that for an approximation far away from the exact solution the
method will not perform well. It is also clear that FAS cannot gain the same quadratic
convergence as a Newton iteration. This is due to the fact that an FAS iteration is a gen-
eralisation of the linear multigrid method, in the sense that algebraically the formulations
are equivalent for a linear problem. Linear multigrid converges linearly so it is not possi-
ble for the nonlinear method to converge super-linearly, as what is true for the nonlinear
method must be true for the linear method. The convergence rate of a multi-grid FAS
iteration is bounded by the two-grid FAS convergence rate [88, 150]. For a more detailed
discussion of the convergence of FAS see Chapter 5.

An alternative to approximating the derivative of the nonlinear operator using a Fréchet
difference is to use a Gateaux difference. This uses the definition of the Gateaux derivative
(see (3.64)) to approximate

DA−1(A(u))(r) ≈ 1

s

[
A−1(A(u) + sr)− A−1(A(u))

]
=

1

s

[
A−1(A(u) + sr)− u

]
.

(4.46)

Using this approximation of the derivative in the coarse grid correction leads to the
NMLM two-grid iteration (see Algorithm 4.4 and (4.42)). As can be seen, the choice
of s is important in determining the accuracy with which the derivative is approximated,
and depends on the value of the right-hand side on the coarse grid (which is also depen-
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dent on the current approximation). Given a suitable choice for the parameter s it can
be seen that the approximation to the derivative should be better for the NMLM than for
the FAS iteration. This leads to increased robustness of the method as shown in [86]. As
mentioned previously, though, the calculation of an appropriate scalar s is non-trivial and
hence we prefer the FAS iteration. The FAS iteration is especially useful when the initial
approximation is close to the exact solution, as is often the case for implicit time-stepping
applied to time-dependent problems. In fact an improved convergence behaviour of the
FAS iteration is observed for time-dependent problems when smaller time-steps are used
compared to larger time-steps.

In this chapter we have given an introduction to the standard linear and nonlinear
multigrid methods. There are many variants of both linear and non-linear multigrid meth-
ods which take advantage of properties for specific problems (e.g. the hierarchical basis
method [9]; monotone multigrid [80, 109, 110]; p-multigrid [5]; cascadic multigrid [20];
and algebraic multigrid, and variants thereof [98, 117, 136, 180], in the linear case, and
non-smooth Newton-MG [81] and algebraic nonlinear multigrid [66] in the nonlinear
case). These methods all use coarser spaces (not necessarily geometric spaces) to capture
information not approximated well in fine spaces. Whilst these variants are useful, their
application tends to be for problems for which the standard multigrid algorithms presented
in this section are unsatisfactory. As previously noted the multigrid methods outlined here
provide an active research topic and give optimal results for the solution of many PDEs of
elliptic and parabolic type. This thesis will use problems for which the standard multigrid
algorithms are appropriate, so a discussion of the wide range of variants will not be given.
In the next chapter an outline of the convergence theory for standard linear and nonlinear
multigrid iterations is presented. A comparison of the theory for the nonlinear multigrid
methods is made, and in Chapter 6 a more detailed, and novel, comparison of the imple-
mentations of Newton-MG and FAS is given before demonstrating results applied to a
sample of nonlinear problems in Chapters 7 and 8.



Chapter 5

Convergence of Multigrid Iterations

Since the inception of multigrid methods, starting with geometric multigrid due to Fe-
dorenko [72] and Bakhvalov [7], multigrid methods have enjoyed a lot of success in re-
search. The basic concept is powerful, and many variants of multigrid methods have been
developed that take advantage of being able to solve a problem in a space with (much)
reduced dimension. Often a multigrid method will have an observed rate of convergence
which is independent of any mesh parameters. Convergence proofs should confirm this
behaviour, which requires demonstrating that the contraction number

γJ ≡ ‖MJ‖ (5.1)

or the spectral radius ρ(MJ) for the multigrid error propagation operator MJ on grid ΩJ

is uniformly bounded away from one as hJ → 0 in a suitable norm, where

hJ = max
T∈TJ

h(T ),

as defined in Section 2.1. Then grid independent convergence is characterised by

lim
hJ→0

γJ ≤ C < 1 or lim
hJ→0

ρ(MJ) ≤ C < 1. (5.2)

76
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Here, and in the following, C will denote a generic positive constant independent of
mesh parameters, which is not necessarily the same each time it is used. Convergence
proofs that try to approximate the quantity γJ or ρ(MJ) are called quantitative, and proofs
that focus on characterising the conditions under which (5.2) holds are called qualitative.
Results from both methods of proof give valuable information for a multigrid practitioner.
A quantitative analysis is valuable from an implementation point of view, where it can
be observed what effect changing a component in the multigrid iteration will have on the
speed of convergence of the overall method. Qualitative analyses indicate which problems
are appropriate to be solved using a multigrid iteration, but importantly also characterise
when a particular multigrid solver is unsuitable for a problem. In this case proofs may
indicate which multigrid components need to be changed in order to obtain a convergent
iteration.

In this chapter an outline of the theory for the convergence of linear and nonlinear ge-
ometric multigrid algorithms is given. We are most interested in qualitative convergence
proofs, although a brief discussion of quantitative analyses will be given. Qualitative
proofs are of more interest as these results are more general, and give an idea in which
situations a multigrid iteration can be expected to converge, which is more useful for
this study than an estimation of the convergence factors. The convergence factors for
Newton-MG and FAS are compared in numerical experiment in Chapters 7 and 8. The
first sections in this chapter outline the convergence theory for linear multigrid methods,
which is much better understood than the nonlinear case. The linear theory presented
may be re-used in the proofs of convergence of Newton-MG methods. The chapter con-
cludes with a presentation of convergence theory for nonlinear multigrid methods and a
comparison of the theory for nonlinear and Newton-MG methods.

5.1 Linear Multigrid

There exists a wealth of literature for the convergence of linear geometric multigrid meth-
ods (e.g. [28,30,32,33,42,133,134,160,177,196], amongst many others). In this section
we do not seek to present a detailed description of all of this literature. Instead key results
from selected papers are presented. In practice when a multigrid method works well it is
usually sufficient to use a V-cycle to gain convergence, and it is often the most computa-
tionally efficient algorithm to use. Therefore the results presented will mostly concern the
convergence of the V-cycle. We also concentrate on the case of a finite element discreti-
sation, as this allows for the use of powerful theoretical tools from Hilbert space theory.
Where appropriate it will be stated where the theory also applies to different discretisation
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methods.
Unless otherwise stated the convergence theory presented here is for symmetric pos-

itive definite operators arising from the discretisation of (typically) elliptic second order
PDEs. In d dimensions these generally take the weak form

∫
Ω

[
d∑

i,j=1

aij(~x)
∂u

∂xi

∂v

∂xj
+ b(~x)uv

]
d~x =

∫
Ω

fv d~x, ~x ∈ Ω

u = 0, ~x ∈ ∂Ω

(5.3)

where it is assumed aij, b ∈ C1(Ω), aij = aji and b ≥ 0. The tensor A = [aij]
d
i,j=1

is called the coefficient function and is assumed to be symmetric positive definite. The
analysis is much simplified in this case as the energy inner product

a(u, v) ≡
∫

Ω

[
∇uTA(x)∇v + b(x)uv

]
dx (5.4)

induces a norm. The case of homogeneous Dirichlet boundary conditions is investigated
for simplicity and the extension to non-homogeneous conditions is simple. Neumann con-
ditions may also be considered, but some Dirichlet condition is required for a solution to
be unique. Under the given assumptions the Lax-Milgram theorem [39, §2.7] guarantees
that a unique solution u∗ exists. Letting

F (v) =

∫
Ω

fv dx (5.5)

the solution is in the space H1
0 ∩ H1+α when F ∈ H−1+α for α ∈ (1/2, 1] [38]. Early

multigrid proofs of the V-cycle needed to assume full elliptic regularity, i.e. α = 1. Ge-
ometrically this confines the domain to being convex [38]. These regularity assumptions
were dropped due to the work by Oswald, Bramble, Pasciak, Wang and Xu [30, 140, 141,
196], which develops the fundamental theory for the convergence of multigrid methods.
The review by Yserentant [202] is a good overview of this fundamental theory. A brief
discussion of this fundamental theory is given in Subsection 5.1.3 which includes some
more recent technical advances. Before that a discussion of other methods of proof of
convergence for multigrid methods is presented in Subsections 5.1.1 and 5.1.2 below.
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5.1.1 Local Fourier Analysis (LFA)

Local Fourier analysis (LFA), also called local mode analysis, was the first method de-
veloped to perform the analysis of the convergence of linear multigrid methods. It was
first introduced by Brandt [32] and remains popular (e.g. [94, 118, 133, 134]) due to its
quantitative estimation properties. Local Fourier analysis is a tool that is used to aid
in the investigation of multigrid methods, rather than a rigorous mathematical frame-
work [177, 190]. It arose from rigorous Fourier analysis, in which it is found that Fourier
modes forming a basis for functions defined on a grid coincide with the eigenfunctions of
certain discrete operators [177, §3]. With a suitable choice of smoothing and grid transfer
operators (see [33, 34, 42, 177]) low dimensional subspaces of basis functions are found
to be invariant under the multigrid operator. Functions in a single subspace are known as
harmonics [177, pg. 86] and correspond to functions that are indistinguishable (up to a
change of sign) on a coarse grid (for an example see Figure 4.3).

Using the spaces of harmonics a multigrid operator can be represented in block diag-
onal form [34,177]. Therefore, an investigation of the spectral properties of the multigrid
cycle is performed by analysing low dimensional spaces (in the case of a two-grid cycle),
see [177, §3]. In the rigorous analysis the Fourier basis must conform to the bound-
ary conditions, which only occurs for very restricted cases. For example, mixed bound-
ary conditions, non-constant coefficient operators and non-rectangular domains cannot be
treated in general by the rigorous analysis. LFA allows Fourier analysis to be applied in
more general cases. An assumption is made that an operator is linear, constant-coefficient
and defined on an infinite domain (i.e. boundary effects are ignored). Ignoring bound-
ary effects does not have such a large impact on the accuracy of the analysis, and can
be considered as an assumption that boundary conditions have been captured sufficiently
accurately by a solution method. LFA then gives the asymptotic convergence factor for
the two-grid iteration [177, §4]. Convergence of the W-cycle follows immediately from
this using a simple recursion formula [177, pg. 78], whereas it is not necessarily true that
the V-cycle will converge ( [130] gives an example), although situations in which V-cycle
convergence will occur can be characterised [133]. To consider multigrid convergence it
is possible to perform more than a two-grid analysis. However, the amount of work re-
quired to perform the analysis grows quickly, and the complexity of the problem becomes
impractical, although some analyses have been performed in this case [191].

In the constant coefficient linear case the convergence estimates may be sharp [123,
134] and in the variable coefficient and non-linear case repeated LFA for multiple constant
coefficient cases can give an approximation to the convergence rate [177, 190]. Systems
of equations may also be analysed [118]. However, it is suggested that LFA be used
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by practitioners implementing multigrid rather than mathematicians analysing multigrid
[177, 190]. This is in particular because LFA is not a rigorous theory, but it also requires
elliptic regularity of the solutions, which is not the case for other qualitative methods of
proof. These are discussed in the next sections.

5.1.2 Hackbusch’s Method

Hackbusch has been an influential member of the multigrid community since the early
1980’s. His 1985 manuscript [85] remains one of the comprehensive texts on multi-
grid methods, in which linear and nonlinear iterations are discussed. The convergence
theory introduced in [85] involves proving two properties - the smoothing property and
the approximation property [85, §6.1.3]. This method of proof is often called the gen-
eral multigrid theory, but is called Hackbusch’s method in this thesis without confusion.
Hackbusch’s method has proved useful and many proofs use the theoretical tools pre-
sented, although the exact definition of the smoothing and approximation properties varies
depending on the proof performed, (see [24, 36–38, 85, 123, 202]). However, every defi-
nition of the smoothing property formalises the requirement that the smoother should be
effective at removing high frequency error components, and every definition of the coarse
grid correction property formalises the requirement for the correction on the coarse grid
error to approximate the fine grid error. The quality of grid transfer and coarse grid opera-
tors are implicitly contained in this property. The theory is presented in a general Banach
space setting [85, §§6-9] and applies equally to linear [85, §§6-7] and nonlinear [85, §9]
problems. However, the assumptions to be satisfied are difficult to prove for individual
problems if the function spaces considered are not Hilbert spaces.

Results for the convergence of the W-cycle for general symmetric positive definite
operators and the V-cycle for problems with full elliptic regularity have existed in this
framework since the early ‘80s (see [24, 201] and the closely related [10]). Convergence
results for the V-cycle without any regularity assumptions were gained in [36,37]. All the
proofs include the case of mildly varying diffusion coefficients on the domain. To the best
of our knowledge the case of highly varying and discontinuous coefficients has not been
properly studied within this framework. However, this generic method of proof is applica-
ble to problems where the function spaces are not nested and the coarse grid operators are
not Galerkin operators (see (4.20)) [27]. Although the proofs using Hackbusch’s method
are mostly qualitative, convergence bounds derived in this framework can be directly used
also in LFA and it can be shown that the bounds cannot be improved upon [123, 134].
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5.1.3 Subspace Correction Theory

Subspace correction and domain decomposition methods (see [165, 176]) began to gain
in popularity during the 1990’s. Due to the work by Bramble, Pasciak, Wang and Xu
[30, 31] it was demonstrated that multigrid methods are part of the wider class of domain
decomposition and subspace correction methods. From this it was possible to analyse the
multigrid iteration in the same abstract framework as other subspace correction methods
(including the Jacobi and Gauss-Seidel iterations, and variations thereof). The review by
Xu [196] is the standard reference on the matter, although [202] gives a description of the
theory applied to multigrid methods only.

The analysis requires that the operator be symmetric positive definite (spd), or be
dominated by the symmetric part of the operator. This is in contrast to the previous meth-
ods of analysis which can theoretically deal with non-symmetric and indefinite operators,
although these are difficult to analyse. LFA allows for quantitative estimates to be gained
for non-symmetric and indefinite forms without a qualitative insight into why the methods
should converge.

The subspace correction theory is that which is of most interest in this thesis. We
point the reader to proofs of the main results, while giving these without the technical
theory since the implications of the proofs are of greater interest within the scope of
this work. The most important results in this field are those by Bramble, Pasciak, Wang
and Xu [30, 31, 196]. These were the first to demonstrate grid-independent convergence
of the multigrid V-cycle without full elliptic regularity for operators of the form (5.3)
with constant or mildly varying coefficients [202, Theorem 5.1], [196, Theorem 6.10].
The grids in the hierarchy are assumed quasi-regular with respect to the triangulations
and the function spaces are nested. Implicit in the proofs are that some Sobolev type
inequalities [196, §5] hold on the domain, and the operators and functions involved in the
multigrid iteration are required to satisfy strengthened Cauchy-Schwarz inequalities [202,
Equations (5.3), (5.4)], which give an important relationship between the smoothers and
projection operators on each grid level (see [196, §6.1]). These assumptions are satisfied
for standard piecewise linear nodal basis finite element functions, and a large class of
other discretisations. The Cauchy-Schwarz estimates are satisfied in the case that an spd
smoother is used. Optimal convergence results can be extended to the convergence of
indefinite and non-symmetric operators so long as the symmetric positive definite part of
a problem dominates [26, 49, 51]. To the best of our knowledge further advancements in
the convergence theory for indefinite and non-symmetric operators have not been made
within the subspace correction framework. However, the result of [26] using a compact

perturbation is useful and one that will be used in Chapter 7. The proof is not recreated
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here, but the reader is directed to [26, Theorem 5.2].
In the years since [196] the convergence theory has been advanced to include highly

varying coefficients and different families of elements, as well as mesh adaptation. Mesh
independent convergence can be gained in the case of adaptively refined meshes quite
easily [29, 30], although development of optimal order algorithms is a lot more technical
see [193, 199]. Mesh adaptation is not considered in this thesis as this is a problem de-
pendent, not solver dependent, enhancement. Thus a comparison of different solution
algorithms, as presented in this thesis, is simplified by not considering this enhance-
ment. What is of interest is the case of a highly varying, or discontinuous, coefficient
on a domain which we present in some detail below. We return to this in a discussion
of results in Chapter 7. For ease of presentation we consider only the case of a dis-
tribution of piecewise constant functions on a domain, although the results are trivially
extended to piecewise smooth functions satisfying a necessary assumption, called quasi-

monotonicity [143, 144, 156], which is discussed below.
We consider the application of multigrid to the operator equation

∫
ΩJ

α(~x)∇u∇v d~x =

∫
ΩJ

fv d~x (5.6)

where ΩJ is a discrete domain split into a triangulation T , and α(~x) ≥ C > 0 is piecewise
constant, with finite number s of different coefficient values. Let γi, i = 1, . . . , s be
the regions of different coefficient values on the domain. Assume that these regions are
polygonal, and that any discontinuities between two sub-domains are aligned with the
triangulation T . It is assumed that γi∩γj = ∅ for i 6= j and that Ω =

⋃
i γi. An example of

this is shown in Figure 5.1 for s = 5. Practical experiments demonstrate optimal multigrid

γ1

γ2

γ4

γ5
γ3

Figure 5.1: Square domain separated into polygonal sub-domains γi, i = 1 . . . 5, of dif-
ferent coefficient value.
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convergence for certain arrangements of coefficients [156]. Convergence proofs for this
case have received recent interest - see [197, 206, 207] in which quasi-optimal results are
proved. Here quasi-optimal refers to the fact that there is a mild dependence on mesh
parameters and an O(N log(N)) running time. An algebraic treatment is given in [181],
which can be useful in the cases where a geometric proof fails. In the following we
summarise the geometric result proved in [156], which will be used in the discussion of
results in Chapter 7. It is assumed that standard conforming linear finite element spaces
are used. The finest space must resolve all discontinuities in α for the discrete solution
to appropriately approximate the continuous solution, although coarse grids need not be
aligned with discontinuities. The technical details of the proof are left to [156] and we
give the conditions that need to be satisfied in order to prove optimal and quasi-optimal
convergence bounds. The most important condition to be satisfied is quasi-monotonicity,
which is defined below after some introductory notation. Let {ϕk}, k = 1, . . . , N for
N = #N (with N the set of nodes on grid ΩJ ) be the standard continuous piecewise
linear nodal basis on grid ΩJ . We define

ωk ≡ supp(ϕk) and ωT ≡
⋃

{k:ωk∩T 6=∅}

ωk (5.7)

for T ∈ T an element on grid ΩJ . Let ωT be partitioned into regions (γT1 , . . . , γ
T
s ) of

different constant coefficient such that α|γTi ≤ α|γTj for i < j. Consider a directed graph
GT = (PT , ET ) for vertex set PT = {γT1 , . . . , γTs } and edge set ET = {(γTi , γTj ) | γTi ≤
γTj and γTi ∩ γTj 6= ∅}. Then we have the following definition of quasi-monotonicity:

Defintion 5.1. The coefficient α is type m (m = 0, 1) quasi-monotone on ωT if for every

γTi 6= γTs ∈ PT there exists a path p ∈ GT from γTi to γTs such that the interface γTi ∩ γTj
for each edge (γTi , γ

T
j ) ∈ p is an m-dimensional manifold.

This definition simply states that there exists a path from every region of constant
coefficient in ωT to the region of highest coefficient γTs which passes through regions of
increasing coefficient. To aid in the understanding of the definition examples of quasi-
monotone coefficient in two dimensions on an entire domain (rather than restricted to ωT )
are given in Figure 5.2. Letting Γ denote the Dirichlet boundary of Ω then the related con-
cept of Γ-quasi-monotonicity is satisfied if there exists a path from any γTi to the Dirichlet
boundary whenever ω̄T ∩ Γ 6= ∅. The following result (under standard assumptions) is
proved in [156, Theorem 6.1] and will be referred to in the discussion of the convergence
of nonlinear multigrid methods in Chapter 7.
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γ1 γ2

γ3γ4

(a) Type 1 quasi-monotonicity
conditions satisfied. All paths
to γ4 pass through interfaces
of dimension 1

γ3

γ2

γ1

(b) Type 0 quasi-monotonicity
condition satisfied. The inter-
face between γ2 and γ3 is a
zero-dimensional manifold

γ3

γ1

γ2

(c) Quasi-monotonicity condi-
tion not satisfied

Figure 5.2: Examples of domains which do or do not satisfy a quasi-monotonicity condi-
tion. m-dimensional manifolds are shown in bold.

Theorem 5.1. Let Equation (5.6) be defined on a hierarchy of grids Ω1, . . . ,ΩJ . The

energy norm of the multigrid error propagation operator MJ is bounded by

‖MJ‖ ≤ 1− 1

Jc
(5.8)

where c is: a) constant when the support of the basis functions on every level satisfy

either a type 1 quasi-monotone or Γ-quasi-monotone condition; b) O(1 + log(HT/hT ))

for HT = diam(ωT ) and hT = maxT∈ωT
diam(T ) when a type 0 quasi-monotone or

Γ-quasi-monotone condition holds; c) dependent on maxT maxx,y∈ωT
α(x)/α(y) when

no quasi-monotonicity is satisfied, where maxT is taken over all elements in the grid

hierarchy.

Proof. See proof of [156, Theorem 6.1]

This theorem simply states in which situations a multigrid iteration can be expected to
converge independently of the size of the jumps in coefficient as well as of mesh param-
eters, and should be used as a tool for practitioners to be able to justify why a multigrid
iteration may or may not perform well for varying arrangements of coefficient. Note that,
although Figure 5.2 shows arrangements of coefficient in which the entire domain is not
quasi-monotone, Theorem 5.1 only requires that quasi-monotonicity holds locally over an
extended support of each basis function (i.e. ωT ).

The material covered here is enough to read the rest of this thesis, although many
other technical results do exist. We now give a background of convergence theory for the
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nonlinear iterations in the next section before moving on to a detailed comparison of the
algorithmic properties of Newton-MG and FAS in Chapter 6.

5.2 Nonlinear Problems

In this thesis we are particularly interested in the convergence properties of nonlinear
methods related to the general elliptic problem in weak form given by

∫
Ω

f(~x, u,∇u)∇u∇v d~x =

∫
Ω

gv d~x, ~x ∈ Ω

u = 0, ~x ∈ ∂Ω

(5.9)

and the linearisation

F (u)(v, w) =

∫
Ω

Df(~x, u,∇u)(w)∇u∇v + f(~x, u,∇u)∇w∇v d~x (5.10)

where Df is the derivative of operator f with respect to u, and ∇u is taken as dependent
on u. We assume that f is bounded in terms of ~x, and is C1 in u. In the case that f
is a function solely of ∇u and is monotone increasing F (u) gives a symmetric positive
definite bi-linear form. Otherwise the operator will contain some component that acts like
a convective term. For some examples of model problems see Chapters 7 and 8.

To the best of our knowledge there exists no valid theory that demonstrates mesh
independent convergence for either Newton-MG methods or for nonlinear multigrid vari-
ants for problem (5.9). This is because the natural setting for the problem (5.9) is in the
space W 1,p, p > 2 [39, pg. 235], [107], which is not a Hilbert space. W 1,p is the usual
Sobolev space of functions with first derivative bounded in Lp norm. In the context of
Newton iterations this is a problem as the convergence of linear iterations, required to
demonstrate that the linear system of equations arising from the linearisation is solved
accurately enough, is performed in a Hilbert space setting. In [107] a novel iterative
method is designed to converge in the W 1,p, p > 2 norm to establish a mesh independent
approximate Newton iteration. As far as we know this is the only paper demonstrating
a mesh independent convergence of a problem with high order nonlinearity, but it is not
applicable to Newton-MG. Recently Karátson [104] demonstrated that problems with a
high order nonlinearity cannot satisfy assumptions that are necessary for current theory to
demonstrate mesh independent quadratic convergence (see [104, Remark 4.4]). Therefore
the convergence analysis is not currently possible for a Newton-MG method for (5.9), al-
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though results in Chapters 7 and 8 show that at least linear mesh independent convergence
of Newton-MG (and FAS) iterations is possible. Note that a necessary, but not sufficient,
condition for the convergence of a Newton iteration is that the linear iteration should con-
verge. This allows for predictions to be made when a nonlinear iteration will not converge
as we can characterise the situations in which the linear inner iteration will not converge,
given the solution method to be used.

There are no valid convergence proofs for the case of a nonlinear multigrid iteration
for (5.9). Results for the convergence in the nonlinear case are restricted to semi-linear
problems of the form

∫
Ω

f(~x)∇u∇v + b(~x, u)uv d~x =

∫
Ω

gv d~x (5.11)

with many assumptions not applicable to most application areas [88, 149, 150, 195]. The
most sophisticated results are from 1989 due to Hackbusch and Reusken [88]. The method
of proof is technical and it is difficult to see how the method of proof can be applied in a
more general situation. In fact, there appears to have been no advance in the convergence
theory since this time. Results for the convergence of Newton methods for (5.11) are
much stronger than those for nonlinear multigrid methods (e.g. [1, 45, 58, 189]) and have
the advantage that the analysis of the convergence of the inner iteration is completely
separate from the analysis of the convergence of the outer iteration under the assumption
that the inner iteration is solved ‘accurately enough’. This allows for any suitable linear
iteration to be used as part of a Newton iteration without the nonlinear analytical tools
needing to be changed.

Note that an implicit assumption that has been made here, which is standard, in that
we assume that some initial guess u0 to the solution of (5.9) has been given which is
‘close enough’ to the exact solution. This is an essential part of any proof of convergence
for nonlinear problems, although the choice of a suitable u0 can be a non-trivial problem
for an implementation of a nonlinear solution algorithm.

Using the material presented so far in this thesis we are ready to begin a direct com-
parison of Newton-MG and FAS iterations applied to second order nonlinear differential
operators. Note that much of the discussion presented is independent of the specific prob-
lem being solved. Chapter 6 introduces a theoretical bound on the computational effort
per multigrid V-cycle for each nonlinear iteration, which is verified to be sharp using
numerical experiments. The performance in terms of robustness and efficiency of the
multigrid iterations is demonstrated for a model nonlinear scalar equation in Chapter 7,
and is extended to more complex time dependent nonlinear equations in Chapter 8.



Chapter 6

Running Time: FAS vs Newton-MG

In this chapter a new theoretical bound on the running time of an implementation of a
Newton-MG and FAS iteration is presented which allows for a direct comparison of the
time complexity of a single V-cycle iteration. The framework in which the comparison is
performed is novel and aids in highlighting the computational benefits in solving linear,
instead of nonlinear, problems as part of an iterative solution method. The focus will be
on a finite element discretisation scheme, although the framework is independent of the
discretisation method used. The discussion in this chapter considers the implementation
of each algorithm in order to derive bounds of the computational complexity. Care has
been taken to ensure that the implementation is efficient, and where appropriate sufficient
information is given for the reader to recreate an implementation that achieves the same
results as presented in this thesis. In this respect it should be noted that all grids used are
assumed simplicial. In order for a reader to compare their own implementations we also
specify the hardware on which numerical experiments were performed. All experiments
were run in a single thread on a CPU, and were all on the same desktop machine using
a 64-bit architecture. The hardware used was the following: Intel Xeon E3-1270 CPU
(3.4GHz, 8M Cache, 4 core, 8 thread); 8GB RAM (1333MHz); 1TB SATA hard drive
(Seagate Barracuda, 7200RPM). No GPUs were used.

There are several papers in which FAS multigrid is compared against Newton-MG for
individual application areas with a particular discretisation [86, 120, 121, 127, 167]. Most
of these compare the running times as well as the convergence factors of the iterations,
and come to the same conclusion - that the execution time for Newton-MG methods is less

87
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than for FAS multigrid [120, 121, 127, 167]. For a finite difference discretisation the run-
ning times of the algorithms are shown to be much closer [91], which is also highlighted
in Section 6.4. Previous comparisons have considered problems that are quite complex,
including systems of equations, within a single finite element discretisation. Results in
Chapter 8 are similar to those in previous papers, but the more useful results are obtained
for model problems, which allow for an upper bound on the running times to be gained
and give a quantitative estimate of the minimum increase in performance to be gained
from an efficient implementation of Newton-MG over FAS. In this chapter we introduce
the framework for comparing the running times without giving any quantitative results,
which are left for Chapters 7 and 8. The framework presented is independent of the dis-
cretisation scheme used and the number of dimensions in which an operator is set. In the
next section a characterisation of the running time for each algorithm is given, followed
by a comparison of the bounds for the case of the standard piecewise linear finite element
nodal basis. These bounds hold directly in the case of lowest order Raviart-Thomas ele-
ments, and extensions to other finite elements is possible. The estimates obtained in this
chapter are demonstrated to be sharp using model problems in Chapter 7. To finish the
chapter it is shown how the framework extends to other discretisation schemes by consid-
ering a model problem discretised using a finite difference method. The bounds gained
for the finite difference discretisation are not tight and no results are presented, although
it should be clear that the theory will still be valid for this case.

6.1 Characterisation of Running Time

In this section we consider the Newton-MG and FAS iterations applied to a general non-
linear problem. A theoretical bound on the running time is developed that allows a direct
comparison between the two methods and makes it clear why Newton-MG methods exe-
cute faster than FAS multigrid methods. A note to make is that [86] finds that the Nonlin-
ear Multilevel Method (NMLM) of Hackbusch performs better than a standard Newton-
MG iteration due to an increased stability of the method. This is to be expected, though,
as NMLM is a global algorithm. However, the NMLM is not a practical algorithm, and
this is discussed in more detail in Section 7.6.

The amount of computational effort required to perform each of the algorithms is
characterised in terms of a work unit. One work unit (denoted Wj) is the amount of time
required to calculate the nonlinear residual on grid Ωj . The amount of work required de-
pends on the number of dimensions in which we are working, as well as the discretisation
and choice of smoothers. In this section we derive a formula for calculating the amount
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of computational time required for a single linear or nonlinear multigrid γ-cycle, γ ≥ 1,
when using a generic finite element discretisation. Here γ = 1 gives a V-cycle, γ = 2 a
W-cycle, etc. We conclude the chapter by giving a quantitative estimate on the running
time of the algorithms for a two-dimensional piecewise linear nodal finite element basis.

Consider that a nonlinear problem has been discretised on a hierarchy of grids (see
(4.2)) Ωj ⊂ Rd, j = 1, . . . , J , d = 1, 2, 3. We consider a finite element discretisation with
basis {ϕji}

Nj

i=1 such that span{ϕji}
Nj

i=1 = Vj , j = 1, . . . , J on a quasi-regular triangulation
Tj on grid Ωj . Vj is the finite element subspace associated with grid Ωj . The superscript
j for the basis functions is dropped when it is apparent from the context which grid is
referred to. Nj now refers to the number of unknowns on the grid, rather than the num-
ber of non-Dirichlet nodes on the grid, as was previously introduced. The two numbers
coincide when a piecewise linear nodal basis is used. We do not assume that a regu-
lar refinement strategy is used, but do assume that the refinement is such that there is a
geometric progression for the number of nodes on each grid, i.e.

Nj+1 ≈ sNj, (6.1)

for scalar s > 1. We assume that a discrete nonlinear problem, given in weak form as

Fj(uj, ϕi) = 0, i = 1, . . . , Nj (6.2)

on grid Ωj , is discretised using finite elements. We letNT be the number of unknowns per
element T ∈ Tj , which is assumed equal for all T . The application of Fj can be calculated
as a sum over the elements T ∈ Tj as follows:

Fj(uj, ϕi) =
∑

T∈supp(ϕi)

F
(T )
j (uj, ϕi), (6.3)

where F (T )
j is the discrete operator restricted to element T ∈ Tj . Let the Frèchet derivative

of Fj(u, ϕ) at u be denoted by

Fu,j(ψ, ϕ) = D [Fj(u, ϕ)] (ψ) (6.4)

and assume that this exists and is invertible for all u ∈ Vj , j = 1, . . . , J . Then the
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Jacobian matrix

[
Fu,j(ϕk, ϕi)

]Nj

i,k=1
(6.5)

exists and is invertible. For practical purposes we assume that the entries in the Jacobian
matrix are calculated using numerical differentiation, as for complex problems this re-
quires less computational time to calculate than using exact formulae for the derivatives1.
The entry in row i, column k of the Jacobian matrix is constructed as follows:

Fu,j(ϕk, ϕi) ≈
∑

T∈supp(ϕi)∩supp(ϕk)

F
(T )
j (uj + εϕk, ϕi)− F (T )

j (uj, ϕi)

ε
. (6.6)

The value F (T )
j (uj, ϕi) is used in the calculation of the nonlinear residual, and can be

re-used when calculating the entries in the Jacobian matrix. Hence, per simplex, when
calculating the residual we can perform an extra local function evaluation at each of the
NT unknowns to obtain the element-wise contribution to the Jacobian matrix. For ex-
ample, in d dimensions with a piecewise linear nodal finite element basis we require one
local function evaluation to calculate the residual and an extra d+1 local function evalua-
tions (per simplex) to calculate the contribution to the Jacobian matrix. Therefore the cost
of calculating the Jacobian matrix and the residual is approximately (d + 2)Wj . Using
similar reasoning we see that calculating the diagonal entries of the Jacobian matrix re-
quires just one extra local function evaluation per node on each element. Hence the cost to
calculate the nonlinear residual and the diagonals of the Jacobian matrix is approximately
2Wj . The diagonals of the Jacobian matrix are used in the nonlinear smoothing operator.
In the general case, assuming that a forward or backward difference is used to approxi-
mate the numerical derivative, as in (6.6), the cost of calculating the Jacobian matrix and
nonlinear residual is approximated by (NT + 1)Wj , whereas the cost of calculating the
nonlinear residual and the diagonals of the Jacobian matrix remains at 2Wj .

In the case that a central difference formula is used two extra local function evaluations
are required per unknown on an element, and so the cost of calculating the residual and
the Jacobian is approximated by (2NT + 1)Wj and the cost of calculating the nonlinear
residual and the diagonals of the Jacobian matrix is approximated by 3Wj . The case of
using a forward difference is used in the following discussion, although the extension to
the central difference case simply requires a substitution of appropriate timing estimates.

1Whilst using a numerical derivative is common in practice issues may arise if large relative errors are
introduced in the approximation of the derivative. This is investigated in more detail in Chapter 7.
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We finally note that using (6.1) we can characterise the cost of calculating the nonlin-
ear residual on grid Ωj−1 as

Wj−1 ≈
1

s
Wj, (6.7)

assuming that the amount of work is proportional to the number of nodes. This simply
states that per node a fixed number of operations is performed, which is generally the
case. Using the information presented so far we obtain a bound for the computational
effort per V-cycle in the next section. From this, bounds on the other types of multigrid
iteration (e.g. W-cycle) can be obtained.

6.1.1 Computational Cost per V-Cycle

In this section we present a characterisation of the computational effort required to per-
form a single linear or nonlinear V-cycle in a Newton-MG or FAS iteration. Let C(j)

NMG

be the cost of performing a single Newton iteration on grid Ωj where the coarse grid
operators are re-discretised; let C̄(j)

NMG be the cost for a single Newton iteration where
Galerkin coarse grid operators are used; and let C(j)

FAS be the cost of performing a single
FAS V-cycle. In the characterisation of the running times we will make the assumption
that (excepting the execution time of the linear multigrid iteration) nonlinear operations
dominate the running time of an iteration. Therefore, by inspection of Algorithms 4.2
and 4.3 it can be seen that

C
(j)
NMG ≈ C

(j)
RJ +

j−1∑
i=1

C
(i)
J + pC

(j)
LMG (6.8)

C̄
(j)
NMG ≈ C

(j)
RJ + C

(j)
G + pC

(j)
LMG (6.9)

C
(j)
FAS ≈ C

(j)
S (ν1 + ν2) + C

(j)
RHS + C

(j−1)
FAS (6.10)

for C(j)
RJ the cost of calculating the nonlinear residual and Jacobian; C(j)

J the cost of cal-
culating the Jacobian; p the number of linear V-cycles to perform per Newton iteration;
C

(j)
LMG the cost of performing a linear V-cycle without the calculation of the coarse grid op-

erators included; C(j)
G the cost of calculating the Galerkin coarse grid operators; C(j)

S the
cost of a nonlinear smoothing operation; ν1 and ν2 the number of pre- and post-smoothing
iterations, respectively; and C(j)

RHS the cost of calculating the perturbed right-hand side for
FAS. The assumption that the nonlinear operations dominate the execution time is a fair
assumption, as demonstrated by the sharpness of the results in Chapter 7. In fact, the
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more complicated an operator becomes the more expensive the calculation of the nonlin-
ear terms becomes in comparison to the linear operations, such as grid transfer operations.
Results confirming this behaviour are presented in Chapter 7.

In (6.8) the cost of the Newton iteration is given as the cost of calculating the resid-
ual and Jacobian matrix on the current grid level plus the cost of performing the linear
multigrid iterations. The cost of calculating the Jacobian matrix on the coarser grid levels
is included under the assumption that the Jacobian is re-discretised on each grid level. In
the case that a Galerkin coarse grid operator is used we need to take into consideration
whether the number of non-zero entries per row in the coarse operators grows. Under
the assumption that the number of non-zeros per row does not grow (as is the case for
the piecewise linear basis functions), or that the rate of growth is controlled such that the
calculation of the coarse grid matrices has linear order running time, then the cost of the
calculation of the coarse grid operators is linear. It is typical in an implementation to
ensure that the coarse grid matrices do not become too dense, as otherwise multigrid is
no longer an optimal iteration. In (6.10) the cost of the FAS iteration is given as the cost
of smoothing on the current grid, calculating the perturbed right-hand side for the next
coarsest grid, and performing an FAS V-cycle on the next coarsest grid.

Before approximating the running times we require estimates for the computational
effort to calculate the Jacobian matrix, perform a nonlinear smooth and to calculate the
perturbed right hand side for FAS. The cost of calculating the Jacobian matrix is the same
as the cost of calculating the residual and the Jacobian, as the residual is calculated as part
of the Jacobian calculation. Hence we get

C
(j)
RJ = C

(j)
J = (NT + 1)Wj. (6.11)

To calculate the cost of the nonlinear smoother we need to know which nonlinear smoother
we are using. Assuming that we are performing a point-wise nonlinear smooth, such as
nonlinear Jacobi (see [139]) we have to calculate the nonlinear residual in each iteration,
as well as the diagonals of the current Jacobian matrix. Using previous discussion the
cost of this is

C
(j)
S = 2Wj. (6.12)

This cost is accurate if we are performing a point-wise nonlinear Jacobi iteration. A point-
wise Gauss-Seidel iteration requires the recalculation of the operator over the support of a
basis function every time that a point-wise value is updated [167]. Hence a full point-wise
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nonlinear Gauss-Seidel iteration is considerably more expensive than the Jacobi iteration.
If some block smooth is performed we need to calculate at least some off-diagonal en-
tries in the Jacobian matrix. This means that the cost of a block smooth will also be
considerably higher than the cost of the point-wise Jacobi smoother. In this investigation
we consider the case of a pointwise Jacobi smoother, as this gives the smallest cost per
iteration whilst the algorithm remains robust.

Finally the cost of calculating the perturbed right-hand side for the next coarsest grid
level is estimated. From Algorithm 4.3 we see that to calculate the perturbed right-hand
side we calculate the residual on the current grid level, and apply the nonlinear operator
to the restricted approximation on the coarser grid. The cost of applying the nonlinear
operator is approximately the cost of calculating the residual on a given grid, i.e. the cost
is approximated by

C
(j)
RHS = Wj +Wj−1 = (1 + s−1)Wj. (6.13)

Using the values in (6.11), (6.12) and (6.13) we are able to estimate the running times
(6.8), (6.9) and (6.10). We first consider Newton-MG, leaving the estimation of the com-
putational effort for the linear multigrid iteration and the calculation of the Galerkin coarse
grid operators until later. We find that

C
(j)
NMG = (NT + 1)Wj +

j−1∑
i=1

(NT + 1)Wi + pC
(j)
LMG

= (NT + 1)

j∑
i=1

1

sj−i
Wj + pC

(j)
LMG

= (NT + 1)

j−1∑
i=0

1

si
Wj + pC

(j)
LMG

≤ (NT + 1)
s

s− 1
Wj + pC

(j)
LMG

(6.14)

in the case that the operator is re-discretised on each grid level, and

C̄
(j)
NMG = (NT + 1)Wj + C

(j)
G + pC

(j)
LMG (6.15)

in the case that the Galerkin operator is used. The Galerkin coarse grid matrix is calculated
using sparse matrix multiplication of the representations of the restriction, prolongation
and Jacobian operator, utilising the method given in Bank and Douglas [8], for example.
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In order to perform a comparison of relative efficiency with the FAS iteration we are
interested in the cost per V-cycle iteration. Hence we introduce the scaled variables

C̃
(j)
NMG ≡

C
(j)
NMG

p
, Ĉ

(j)
NMG ≡

C̄
(j)
NMG

p
(6.16)

to be the cost per linear V-cycle of the Newton-MG algorithm.
Now consider the FAS multigrid iteration, where the cost of an FAS V-cycle is ap-

proximated as

C
(j)
FAS = 2Wj(ν1 + ν2) + (1 + s−1)Wj + C

(j−1)
FAS

=
(
2(ν1 + ν2) + 1 + s−1

)
Wj + C

(j−1)
FAS

=
(
2(ν1 + ν2) + 1 + s−1

)(
Wj +

Wj

s

)
+ C

(j−2)
FAS

= · · ·

=
(
2(ν1 + ν2) + 1 + s−1

)( j−1∑
i=1

Wj

s(i−1)

)
+ C

(1)
FAS

≤
(
2(ν1 + ν2) + 1 + s−1

) s

s− 1
Wj,

(6.17)

where, in the last step, we have assumed that the time taken to solve on the coarsest
grid level C(1)

FAS is negligible compared to Wj . This is usually the case, but can lead to
a potential conflict since FAS requires that the solution of the nonlinear equation is well
approximated on the coarsest grid. If this is not the case then higher dimensional coarse
spaces are required and the cost of the coarsest grid solve may start to have an adverse
effect on the overall execution time.

Before a quantitative estimate can be gained from approximations (6.14) and (6.15)
the costs of the linear multigrid iteration and calculation of the Galerkin operators need to
be approximated in terms of a work unit. An accurate estimation of these values depends
on the dimension of the problem as well as the complexity of the nonlinear problem to
be solved. In Section 6.2 an upper bound for the two-dimensional case is presented (see
Equation (6.24)), after which the theoretical estimates are compared. Results indicate that
the upper bound is sharp for simple model problems and is pessimistic in the case of more
complex problems. Hence, the theory introduced here describes the worst case running
times for the Newton-MG iteration. We also note that we have restricted the smoothing
iteration in the FAS iteration to be a pointwise Jacobi iteration. It may be necessary to use
a different smoother in practice, in which case the execution of the algorithm will take
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considerably longer. Hence the results presented here are for the best case running time
for an FAS iteration. In the next section we introduce the extension of the estimate of
the running times to the case that a non-V-Cycle iteration is used, before gaining some
quantitative estimates of execution times for a more specific problem setting.

6.1.2 Estimates for W-Cycles and Higher

In the previous section a bound was gained for the case that a V-cycle iteration was per-
formed as part of a Newton-MG or FAS iteration. These estimates can be used directly
to approximate the running times of other types of multigrid cycles. Consider first the
FAS iteration. Performing γ multigrid iterations on each coarse grid level instead of the
recursion (6.10) we have

C
(j)
FAS,γ =

(
2(ν1 + ν2) + 1 + s−1

)( j−1∑
i=1

(γ
s

)(i−1)
)
Wj + C

(1)
FAS

≤
(
2(ν1 + ν2) + 1 + s−1

) s

s− γWj.

(6.18)

Here γ = 1 gives a V-cycle, γ = 2 a W-cycle, and so on. The assumption made in
(6.18) is that γ < s. In this case the running time of the iteration is linear, which is the
case in which we are interested. If regular refinement (see Subsection 4.1.1) is used in a
d-dimensional setting we have that s = 2d. Hence in two dimensions we are restricted
to a cycle where γ < 4, which is typical in implementations anyway. By definition
C

(j)
FAS = C

(j)
FAS,1. It is possible to use the estimate C(j)

FAS to obtain estimates for C(j)
FAS,γ by

noting that

C
(j)
FAS,γ

C
(j)
FAS

≈ s− 1

s− γ ≡ rγ. (6.19)

The same ratio of running times holds in the linear case as well. Letting C(j)
LMG,γ denote

the cost of performing a γ-cycle linear multigrid iteration, and letting C(j)
LMG = C

(j)
LMG,1 the

ratio

C
(j)
LMG,γ

C
(j)
LMG

≈ s− 1

s− γ = rγ (6.20)
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holds. This gives the more general estimates

C
(j)
NMG,γ ≤ (NT + 1)

s

s− 1
Wj + prγC

(j)
LMG (6.21)

C̄
(j)
NMG,γ ≈ (NT + 1)Wj + C

(j)
G + prγC

(j)
LMG (6.22)

and

C
(j)
FAS,γ ≈ rγC

(j)
FAS, (6.23)

where the inequality in (6.21) and (6.18) can be replaced by an approximately equal to
under the assumption that there are sufficiently many levels in the multigrid hierarchy and
γ < s. In the next section we consider these bounds for a piecewise linear nodal finite
element basis in two dimensions, and discuss the values obtained. A brief discussion is
also given with regards to the use of other bases.

6.2 Comparison of Theoretical Bounds

In this section the cost of a single nonlinear γ-cycle is compared to the cost of a linear
γ-cycle for a general two-dimensional problem discretised using a piecewise linear nodal

finite element basis. As we have assumed a simplicial grid, the number of unknowns per
element is given by the number of vertices, i.e. d+1 = 3 in two dimensions. The integer γ
is as introduced in the previous section. Before a quantitative estimate for a Newton-MG
iteration can be obtained we require an estimate of the computational costs of a linear
multigrid V-cycle and the calculation of Galerkin coarse grid operators in terms of a work
unit. From empirical experiment we have found that an upper limit for a single V-cycle
and the amount of time required to calculate the Galerkin coarse grid operators is given
by

C
(j)
LMG ≤

3

2
Wj, C

(j)
G ≤ Wj. (6.24)

These upper bounds are very good estimates for a simple model problem (see discussion
of the p-Laplacian in Chapter 7), and are more pessimistic the more complex the nonlin-
ear operator becomes. This is because the cost of the linear operations remains constant
as the complexity of the nonlinear operator increases. Hence, the more complicated the
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problem the less time a linear V-cycle takes compared to the cost of calculating the nonlin-
ear residual and the results presented here are for a worst-case scenario for Newton-MG.
These estimates will also be pessimistic if a finite element basis with an increased number
of unknowns per simplex is used, as the time taken to calculate the nonlinear residual will
increase more than the time taken for the multigrid iteration on a more dense matrix. The
estimates for the FAS iteration are more likely to be sharp for more complex problems,
as all calculations counted are related with the nonlinear operator. However, in an im-
plementation the bounds for the FAS iteration are also likely to become pessimistic as
the complexity of the nonlinear operator increases. The reasons for this are discussed in
Chapters 7 and 8 alongside the results supporting these claims.

In the following we consider the case that equal numbers of pre- and post-smoothing
iterations are performed. This is common in practice and reduces the size of the parameter
space to consider. The number of pre- and post-smoothing iterations per linear multigrid
iteration is kept constant at three iterations throughout. This number may be reduced, but
our empirical evidence suggests that this number strikes a good balance between stability
and efficiency of the linear multigrid iteration. To simplify the notation in the nonlinear
case let ν1 = ν2 = ν in the FAS iteration. In a two-dimensional setting the running times
of the FAS and Newton-MG cycles can then be approximated as

C̃
(j)
NMG,γ =

1

p
CNMG,γ ≈

1

p
(NT + 1)

s

s− 1
Wj + rγC

(j)
LMG

≤
(

1

p
(3 + 1)

4

3
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3

2

)
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=

(
16

3p
+

3

2
rγ

)
Wj,

(6.25)

when the Jacobian is re-discretised on each grid in a Newton-MG iteration;

Ĉ
(j)
NMG,γ =

1

p
C̄NMG,γ ≈

1

p
(NT + 1)Wj +

1

p
C

(j)
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≤
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5

p
+ rγ
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2

)
Wj,

(6.26)
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when Galerkin coarse grid operators are used in a Newton-MG iteration; and

C
(j)
FAS,γ = rγC

(j)
FAS ≤ rγ

(
2(ν1 + ν2) + 1 + s−1

) s

s− 1
Wj

=

(
4ν +

5

4

)
4

3
rγWj,

(6.27)

for an FAS iteration. Tables 6.1a to 6.1c present these approximations for varying γ, vary-
ing smoothing and varying linear multigrid iterations. These approximations show that

γ p = 1 p = 2 p = 3 p = 4

1 246
36

150
36

118
36

102
36

2 273
36

177
36

145
36

129
36

3 354
36

258
36

226
36

210
36

(a) Estimated running times C̃(j)
NMG,γ in multi-

ples of work units Wj

γ p = 1 p = 2 p = 3 p = 4

1 234
36

144
36

114
36

99
36

2 261
36

171
36

141
36

126
36

3 342
36

252
36

222
36

207
36

(b) Estimated running times Ĉ(j)
NMG,γ in multi-

ples of work units Wj

γ ν= 1 ν= 2 ν= 3 ν= 4

1 252
36

444
36

636
36

828
36

2 378
36

666
36

954
36

1242
36

3 756
36

1332
36

1908
36

2484
36

(c) Estimated running times C(j)
FAS,γ in multi-

ples of work units Wj

Table 6.1: Estimated running times for nonlinear multigrid iterations.

the most expensive cost per V-cycle for a Newton-MG iteration is almost equal to the least
expensive FAS iteration, when only a single non-linear pre- and post-smoothing iteration
is performed. Empirical experiments suggest that performing more than a single pre- and
post-smoothing iteration gives a more efficient solution algorithm as the number of cycles
performed overall is reduced, even though the cost per FAS cycle is increased. The ro-
bustness of the method also increases with increasing numbers of pre- and post-smoothing
iterations. We have found that performing three pre- and post-smoothing iterations is often
a close to optimal number in order to strike a balance between efficiency and robustness
of an FAS iteration (in the case of a V-cycle). Although for each problem it is possible to
find an optimal value the comparison here will not be performed for an optimal FAS and
Newton-MG iteration, as we consider the iterations applied to time-dependent problems.
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In this case optimal parameters may change at every time-step and trying to determine op-
timal parameters dynamically would take extra computational considerations, which may
be ignored if a generally close to optimal method is used. We have found that a balance
between robustness and efficiency of the method occurs for FAS when γ = 1 and ν = 3,
and for Newton-MG when γ = 1 and p = 3. If we compare the running time per V-cycle
at these values it is predicted that a single V-cycle as part of a Newton-MG iteration will
be a factor of

C
(j)
FAS

C̃
(j)
NMG

=
318

59
≈ 5.4 (6.28)

faster to execute. This does not necessarily mean that the overall FAS algorithm will be
slower, but as long as less than 5.4 times as many linear V-cycles are used than nonlinear
V-cycles the Newton-MG will be the faster iteration. Results in Chapters 7 and 8 demon-
strate that Newton-MG is always likely to be the more computationally efficient, often by
a large margin.

Inspection of Tables 6.1a and 6.1b show that the use of the Galerkin coarse grid opera-
tor gives a slight improvement in terms of the running time. Furthermore, as the process of
calculating this operator is independent of the nonlinear operator, the upper bound given
here on the cost of calculation of the coarse grid operators will get more pessimistic as the
nonlinear operator gets more complex. Hence for complex problems the Galerkin coarse
grid operator will be preferable, which is clearly demonstrated in the results in Chapter 8.
The approximations in Tables 6.1a and 6.1b also highlight the advantages of performing
increased numbers of linear iterations as part of the nonlinear Newton iteration. This is
well known, and heuristics for deciding on the number of multigrid iterations to perform
per Newton iteration are given in [177, §5.3.3]. Simply speaking the closer an approxima-
tion to the exact solution, the more effort should be invested in solving the linear system
of equations exactly. This allows the quadratic convergence of the Newton method to be
recovered. An acceptable alternative is to use a constant number of linear iterations per
Newton step, in which case only a linear convergence rate per Newton iteration can be
expected. In this thesis the computational efficiency of dynamically choosing the num-
ber of linear iterations to perform is not considered. This is because the efficiency of the
resulting algorithm will depend on the criteria used to determine the number of V-cycles
to perform, as well as an initial estimate and problem dependent parameters. The discus-
sion of this would distract from the comparison of the different methods, although it is
noted that a Newton-MG algorithm may be made more efficient if appropriate criteria for
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determining the number of linear iterations are chosen.
An enhancement to the Newton-MG iteration is considered in this thesis by using

a multigrid preconditioned GMRES as the inner iteration for the Newton method. The
execution time of this iteration will necessarily be longer than for the multigrid iteration
alone. However the extra work required is a matrix-vector product and a small number of
vector inner products (this can be read directly from Algorithm 3.2). In this section we
have assumed that linear operations of this form are of negligible cost for an algorithm,
and so the estimate of the running time per multigrid preconditioned GMRES iteration can
be approximated as the same as the non-preconditioned version. It may even be the case
that a multigrid preconditioned GMRES iteration can be made more efficient than just
the multigrid iteration, as when multigrid is applied as a preconditioner it does not need
to solve the system of linear equations. As such computational expense may be spared
by performing very few smoothing iterations as part of the multigrid iteration. Results in
Chapter 8 support this claim.

Before concluding the chapter we give a discussion of the effect on the execution time
of using different bases and higher dimensions for each iteration, as well as a brief note
on the extension and implication of the framework for different discretisation schemes.

6.3 Higher Dimensions and Different Bases

This subsection gives a brief discussion about what can be said regarding the execution
times of the FAS and Newton-MG iterations applied to finite element problems discretised
using higher than linear order bases and higher spatial dimensions. Only the V-cycle is
considered because the theory introduced in the previous section can be used to obtain
estimates for other cycles. We start with a discussion of the performance of multigrid
in higher dimensions. Let d = 3, and assume that the estimates (6.24) hold. These are
likely to be pessimistic for the three-dimensional case but we can be confident that these
bounds will hold since they hold in the less computationally expensive two-dimensional
case. This is under the assumption that the nonlinear operations are more expensive (per
unknown) than the linear operations. Therefore, the increase in the number of unknowns
going to three dimensions will cause a larger increase in the time required to perform the
nonlinear operations than the linear ones.

The current discussion aims to give only a qualitative insight into the running time of
the algorithms. We again consider the case of a piecewise linear nodal finite element basis
and regular refinement. Therefore we have that s = 2d = 8 and NT = d + 1 = 4. Using
these values in estimates (6.16) and (6.17) the estimates of the execution time per V-cycle
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are given by
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(6.29)

for the Newton iteration when the coarse operators are re-discretised and

C
(j)
FAS ≤

(
2(ν1 + ν2) + 1 + s−1

) s

s− 1
Wj

=

(
4ν +

9

8

)
8

7
Wj

(6.30)

for the FAS iteration. Now comparing the execution times when 3 pre- and post-smoothing
iterations are performed for the FAS iteration and 3 linear multigrid iterations are per-
formed as part of the Newton iteration the ratio is approximated as

C
(j)
FAS

C̃
(j)
NMG

=
107

7
×
(

143

42

)−1

≈ 4.5 (6.31)

which is significantly lower than the two-dimensional estimate (6.28). This helps to high-
light that the FAS iteration becomes less expensive (relative to the calculation of the resid-
ual) as the dimension increases, whereas the Newton iteration becomes more expensive.
However, the approximation (6.31) is likely to be at least a little pessimistic, and still
represents a significant improvement in running time for Newton-MG. Also, the estimate
of the FAS running time (6.17) is independent of the number of unknowns on an element
only because we restrict the smoother to a nonlinear Jacobi iteration. As previously men-
tioned, this may not be a favourable smoother to use, and using a different smoother will
have a significant negative impact on the running time. Hence the estimate (6.31) is for a
worst case scenario, if we are considering the estimate from the point of view of a Newton
iteration.

The discussion of the execution time for higher order elements follows similarly to
the discussion above, as a higher order element introduces a larger number of unknowns
per element. For increasing order of approximation the relative execution time of the FAS
iteration remains constant (for a fixed dimension), while the relative execution time of a
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Newton-MG iteration is increased. Theoretically, therefore, for a sufficiently high accu-
racy approximation in three dimensions the FAS iteration may outperform a Newton-MG
iteration on a per V-cycle basis, but this is unlikely to occur in a practical implementation
as at least a fourth order basis should be used for this to be the case.

6.4 Application to Other Discretisation Methods

The framework introduced in this chapter may be used to evaluate the execution time
for discretisation methods other than finite elements. All that is required is an estimate
of the cost of the different parts of the algorithms related to the cost of calculating the
nonlinear residual, which is denoted by Wj . As an illustrative example a finite difference
discretisation is considered, although the extension to a finite volume discretisation is
performed similarly.

To evaluate the cost of the nonlinear iterations it is assumed that a difference stencil is
applied, and, for simplicity, boundary effects are ignored. The number of points used in
the stencil is denoted by NS. The case of re-discretising the coarse grid operators as part
of the inner iteration for Newton-MG is now compared to the FAS iteration.

Recall that the running times of Newton-MG and FAS are approximated in (6.8) and
(6.10) as

C̃
(j)
NMG ≈

1

p

(
C

(j)
RJ +

j−1∑
i=1

C
(j)
J

)
+ C

(j)
LMG

and

C
(j)
FAS ≈ C

(j)
S (ν1 + ν2) + C

(j)
RHS + C

(j−1)
FAS .

The assumption is again made that the derivative is approximated using a divided differ-
ence. The cost of performing an FAS iteration for a finite difference approximation is the
same, relative to the residual calculation, as the cost for a finite element discretisation, i.e.

C
(j)
FAS ≈

(
2(ν1 + ν2) + 1 + s−1

) s

s− 1
Wj. (6.32)

The estimate for Newton-MG iteration for a finite difference discretisation varies
slightly from that for a finite element discretisation. In order to calculate the entries in
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the Jacobian matrix the derivative is approximated at every point in the difference stencil,
meaning that (NS + 1) local function evaluations are required at each grid node in order
to calculate the Jacobian matrix. Hence

C
(j)
RJ = C

(j)
J ≈ (NS + 1)Wj,

The cost of re-discretising the coarse grid operators has the same cost relative to the
calculation of the residual as in the previous sections, but now the relative cost of the linear
multigrid iteration C

(j)
NMG will be considerably higher. This is because the calculation

of the residual does not require contributions to an integral to be calculated over each
element, and only a pointwise calculation needs to be performed. Assume that it takes
a factor µ times longer to calculate the residual in a finite element discretisation than it
does in a finite difference discretisation. We are not interested in an exact value in this
thesis, and simply highlight how the FAS iteration becomes more competitive in terms of
computational efficiency in the case of a finite difference discretisation. Then we have the
estimate (see (6.24))

C
(j)
LMG ≤

3µ

2
Wj

so that overall

C
(j)
NMG ≈

(
1

p
(NS + 1)

s

s− 1
+

3µ

2

)
Wj. (6.33)

In two dimensions consider a regular refinement of the grid such that s = 4, and consider
a 5-point stencil such that for 3 pre- and post-smooths the computational cost of an FAS
iteration is

C
(j)
FAS ≈

(
2× 6 + 1 +

1

4

)
4

3
Wj =

53

3
Wj, (6.34)

and for 3 linear multigrid iterations per Newton step the computational cost of the Newton-
MG iteration per linear V-cycle is

C̃
(j)
NMG ≈

(
1

3
(5 + 1)

4

3
+

3µ

2

)
Wj =

16 + 9µ

6
Wj. (6.35)
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Using this approximation suggests that if µ > 10, the computational cost per V-cycle
would be higher for the Newton-MG than for FAS. Whilst it is unlikely that the cost of
calculating the residual for a finite element discretisation will be more than 10 times the
cost for a finite difference discretisation, we do expect to see a large increase in the time.
For example, if the residual calculation were to cost 5 times more in the finite element
setting (i.e. µ = 5) we have that a single V-cycle would take only twice as long for
FAS as for Newton-MG, which is a large improvement over the factor 5.4 estimated in
Section 6.2.

The advantage of using FAS becomes even more apparent if we consider the three
dimensional case. In three dimensions the standard 7-point stencil is often insufficient to
give good convergence, and an improvement is observed if a 19-point stencil is used. In
this case we have that NS = 19. Therefore the execution time of an FAS iteration will be
approximated as

C
(j)
FAS ≈

(
2× 6 + 1 +

1

8

)
8

7
Wj =

105

7
Wj, (6.36)

and the execution time of a Newton-MG iteration as

C
(j)
NMG ≈

(
1

3
(19 + 1)

8

7
+

3µ

2

)
Wj =

320 + 63µ

42
Wj. (6.37)

From these estimates we see that if µ ≈ 5 or greater that the cost of an FAS V-cycle
will actually be less than a V-cycle as part of a Newton iteration. In this case, if similar
numbers of V-cycles are performed the FAS iteration will be the more computationally
efficient.

From (6.32) it can be seen that the execution time of FAS, relative to Wj , is inde-
pendent of the number of non-zero entries in the stencil, whereas (6.33) shows that a
Newton-MG iteration becomes relatively more expensive the more non-zero entries there
are in the stencil. The number of entries in the stencil increases when a higher accuracy is
sought from the solution, and also by going to higher dimensions. Therefore, in a three-
dimensional setting FAS is much more competitive in terms of execution time compared
to the Newton-MG iteration for a finite difference discretisation than for a finite element
discretisation.

Although it is more likely that an FAS iteration will be more competitive in terms of
execution time per V-cycle in the finite difference setting, there are many shortcomings of
using a finite difference discretisation – as discussed in Section 2.1 – especially the fact
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that a regular grid is required for an efficient implementation. However, if a finite differ-
ence discretisation is applicable then the FAS is likely to be a competitive algorithm. A
more detailed investigation of nonlinear multigrid methods for finite difference discreti-
sation methods would be required before a conclusions could be drawn as to which is
the most suitable, as convergence behaviours of the methods for realistic problems need
to be taken into account in a thorough comparison. The discussion for the rest of the
thesis returns to a finite element discretisation, in which it was shown in Section 6.2 that
Newton-MG is likely to be a more efficient algorithm. A thorough investigation of the
convergence and algorithmic properties of the algorithms for a finite element discretisa-
tion demonstrates the superiority of a Newton-MG iteration.

6.5 Summary

In this chapter we have developed and presented a framework for estimating the computa-
tional effort involved in a single multigrid cycle for both Newton-MG and FAS. In the next
chapters we present results mainly for the V-cycle. Results for simple model problems are
presented for the W-cycle and higher, but these are presented to demonstrate that, qualita-
tively, the running time of the methods can be determined by considering only the V-cycle
iteration. Hence the investigation concentrates primarily on the V-cycle. In Chapter 7 a
stationary model problem, known as the p-Laplacian is introduced, and the application of
Newton-MG and FAS to this problem is discussed. This problem is chosen as it is simpler
to highlight different convergence behaviours of the methods, which may be more difficult
to isolate, or are less apparent, in more complex applied problems. Chapter 8 considers
an application of the methods to time-dependent problems which are used to model some
complex physical phenomena. The results in Chapter 8 demonstrate the advantages of
Newton-MG over FAS as a flexible and robust method for solving practical PDEs.



Chapter 7

Application to the p-Laplacian

In this chapter, and the next, results are presented backing up the theory introduced in
Chapter 6 for two-dimensional model problems discretised using a piecewise linear nodal
finite element basis. The grids on which the problems are discretised are regular sim-
plicial grids and a regular refinement strategy (see §4.1.1) is employed. For the study at
hand, where we are interested in the computational effort in performing a V-cycle itera-
tion, the extra complexity of solving on a domain with complex geometry, or performing
some adaptive mesh refinement or other adaptive meshing would only serve to obscure
the results, and so are not considered here. Some more technical results are discussed, es-
pecially the convergence of the nonlinear iterations in the case that a coefficient function
is highly varying on the domain, for which the regular grids are adequate to highlight the
behaviour of the methods.

The model problem considered in this chapter – the p-Laplacian – is a stationary
scalar equation, and is a standard nonlinear model problem. The p-Laplacian, which is a
generalisation of the well-known linear Laplacian problem, is introduced in Section 7.1.
This is followed by a detailed investigation of how Newton-MG and FAS perform for
this method. Results are presented demonstrating the sharpness of the bounds gained
on the running time of the algorithms, as outlined in Chapter 6. We also present results
demonstrating the qualitative behaviour of each of the algorithms and draw parallels with
the well-known linear iterations, as the lack of theory prevents any definitive mathematical
statements being made regarding the nonlinear iterations.

The discussion in this chapter serves to show that the Newton-MG iteration is superior

106
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to FAS in almost every respect for the p-Laplacian, and highlights implementation issues
required to gain an efficient realisation of the Newton-MG iteration. This behaviour is
verified for applications to time-dependent problems, which are also more complex than
the p-Laplacian, in Chapter 8. It is also demonstrated that the qualitative behaviour ob-
served for the p-Laplacian holds in the case of more complex nonlinear operators too,
and heuristics are given, linked to linear multigrid methods, that describe the qualitative
convergence behaviour of nonlinear multigrid methods.

7.1 The p-Laplacian

In this section the problem statement, as well as the weak formulation, is given for the
p-Laplacian. The domain on which the equation is to be solved is the unit square

Ω ≡ (0, 1)2 (7.1)

and the solution is assumed to exist and be unique in the space V . For this chapter the
basis functions are given by the piecewise linear nodal finite element basis functions of
space S0 (see (2.14)) and we assume that S0 ⊂ V . A hierarchy of grids

Ω1 ⊂ Ω2 . . . ⊂ ΩJ ⊂ Ω (7.2)

is given. With each Ωj , j = 1, . . . , J we associate a node setNj; regular triangulation Tj;
characteristic grid spacing hj (see (2.1)); and finite element space Vj ⊂ S0(Ωj). Since a
regular refinement is used hj = 2hj+1. Again, Nj = #Nj is the dimension of Vj .

The p-Laplacian is the generalisation of the well-known linear Laplacian operator
equation and it is given by

−∇ ·
(
|∇u|p−2∇u

)
− f = 0, ~x ∈ Ω,

u = 0, ~x ∈ ∂Ω
(7.3)

where

|∇u|2 =
d∑
i=1

(
∂

∂xi
u

)2

. (7.4)

For p 6= 2 this equation is one of the simplest examples of a nonlinear second order
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operator, and is of the form

−∇ · (g(∇u)∇u) = f (7.5)

with g ≡ |∇u|p−2 in this case. Note that p = 2 reduces to a linear Laplace’s equation. The
form given in (7.5) is of particular interest because, for g strictly positive, the linearisation
is a symmetric positive definite bilinear form when there exists a set ΓD ⊆ ∂Ω such that
u|ΓD = 0. This means that the weak form

∫
Ω

g(∇u)∇u∇v d~x =

∫
Ω

fv d~x+

∫
∂Ω\ΓD

g(∇u)∇u · νv d~x (7.6)

corresponds to an Euler-Lagrange equation on Ω, and solving it is therefore equivalent
to minimising a nonlinear functional. In the case of (7.3) with homogeneous Dirichlet
boundary the functional to be minimised is given by

Jv =
1

p

∫
Ω

|∇v|p d~x−
∫

Ω

fv d~x. (7.7)

Existence and uniqueness are well known for p ∈ (1,∞) in the continuous case [12], and
also for a piecewise linear nodal finite element discretisation (see [52, Theorem 5.3.3],
[12] and, in a much more general setting, [61]) in the case that u ∈ W 1,p

0 (Ω) and f ∈
Lp
′
(Ω) with 1

p
+ 1

p′
= 1. In the case that p 6= 2 (i.e. the nonlinear case) the operator

is degenerate [12], and care must be taken in how a solution algorithm is implemented,
especially in the case p < 2. In this thesis data has been chosen such that a convergent
iteration is gained with a basic implementation of a Newton-MG and FAS iteration. For
this we let f ∈ L∞(Ω), p = 4 and, since Ω is the unit square, the domain is convex
with Lipschitz boundary. In order to highlight some of the characteristics of the nonlinear
multigrid methods under investigation we consider the following 4-Laplacian:

−∇ ·
(
α(~x) |∇u|2∇u

)
− f = 0, (7.8)

with homogeneous Dirichlet boundary conditions and α > 0 a piecewise constant func-
tion on Ω. In the next section we give the weak form and discretisation of the problem, and
discuss how a Newton-MG and an FAS method can be expected to perform as iterative
solvers for the 4-Laplacian.
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7.2 Weak Formulation and Discretisation

The weak form of (7.8) is given by

F (u)(v) ≡
∫

Ω

α |∇u|2∇u∇v d~x−
∫

Ω

fv d~x = 0, ~x ∈ Ω

u = 0, ~x ∈ ∂Ω,

(7.9)

for all v ∈ V = W 1,4
0 (Ω). It is known that the solution may have limited regularity even

for infinitely smooth boundary data or right-hand-side data and for convex polygonal
Ω [12]. Hence using a higher order basis than linear may not be advantageous. Therefore
we assume, in this case, that the most suitable discretisation is a low order one such as S0

(see (2.14)). The Fréchet derivative of (7.9) is given by

Fu(v, w) =

∫
Ω

α |∇u|2∇w∇v d~x+

∫
Ω

2α(∇u∇w)(∇u∇v) d~x. (7.10)

Inspection of (7.10) shows that the Fréchet derivative is a symmetric positive definite
bilinear form (using homogeneous Dirichlet boundary conditions). The application of the
operator and Jacobian matrix is calculated on an element-by-element basis, as outlined in
Equations (6.3) and (6.6). The discrete system of nonlinear equations to solve on grid Ωj

is given by

F (uj)(ϕi) = 0, i = 1, . . . , Nj (7.11)

where the {ϕi}Nj

i=1 forms a basis of the space Vj = S0(Ωj) ⊂ W 1,4
0 (Ω), as outlined at the

start of this chapter. Therefore an approximation uj ∈ Vj is represented as

uj =

Nj∑
i=1

uiϕi. (7.12)

Let the Newton iteration be defined as

u
(k+1)
j = u

(k)
j + δ(k)
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for u(k)
j , δ(k) ∈ Vj , k = 0 . . .. Then the discrete system of linear equations to solve at each

Newton iteration is given by

F
u
(k)
j

(ϕi, δ
(k)) = −F (u)(ϕi), i = 1, . . . , Nj, (7.13)

where δ(k) is also represented in terms of the basis {ϕi}Nj

i=1 (see (7.12)).
As discussed in Chapter 5 it is not clear how to analyse the convergence of a Newton-

MG or FAS iteration for this problem. However, we can treat (7.13) as an independent
linear problem and use existing theory to approximate how a linear multigrid iteration will
perform. As the bilinear form is dependent on the nonlinear solution u it is not possible
to say, in general, the properties that the linear operator possesses without at least making
some assumptions on u. For the purposes of this chapter the following assumptions are
made regarding the solution of the problem:

Assumption 7.1.a. For a sequence (u(i)), i = 1, 2, 3, . . . of Newton iterates, each u(i) is

Lipschitz continuous. This implies that u(i) ∈ W 1,∞ [71, pg. 279].

Assumption 7.1.b. For some small constant C, independent of mesh parameters or coef-

ficient values

∥∥∇u(i)
∥∥
∞ ≤ C (7.14)

holds, which ensures that any oscillations over the domain are small, and that there aren’t

strong anisotropies in the term

∫
Ω

2α(∇u∇w)(∇u∇v) d~x. (7.15)

in (7.10).

Assumption 7.1.c. Any discontinuities in∇u(i) are aligned with discontinuities in coeffi-

cient α.

Note that discrete approximations uj ∈ Vj satisfy Assumption 7.1.a by construction.
Assumption 7.1.b implies that a point-wise smoother is likely to be appropriate for the
problem, as there are no strong anisotropies on the domain. Assumptions 7.1 are not so
restrictive, and in practice these are often satisfied. A typical example is when α represents
a material property for different materials defined on a domain. In this case some jump
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in the derivative of the function can be expected, although the function itself is assumed
continuous. Under Assumptions 7.1 the convergence behaviour will be dominated by the
coefficient function α, as demonstrated in Section 7.7.

In a linear setting the solution u may depend on the diffusion coefficient α, but it is
still possible to show when the convergence of a linear multigrid iteration is independent
of the coefficient α and the size of the jumps in α [156]. In the nonlinear case the solution
will generally depend upon α, but convergence of the method cannot be independent of
α unless the solution is independent of α. In this chapter we characterise the cases in
which this can be expected to happen. We also show that nonlinear multigrid methods
can achieve mesh independent linear convergence and show that the linear theory can
be used to predict when divergence of a nonlinear iteration will occur. Comparison of
the results demonstrates the superior computational efficiency of an implementation of
Newton-MG over FAS, but the theoretical considerations also demonstrate that the theory
is much more powerful and applicable in the case of a Newton-MG iteration. Results in
the next section demonstrate that the theory introduced in Chapter 6 gives sharp estimates
for the running time per V-cycle iteration for the p-Laplacian. After this the robustness
and running time of the nonlinear iterations are assessed when the iterations are employed
as solution algorithms.

7.3 V-Cycle Execution Time

This section presents results demonstrating the sharpness of the theoretical bounds devel-
oped in the previous section. The execution times are predicted in Chapter 6 relative to the
computational cost required to calculate the nonlinear residual, and so in this section we
compare computational results to verify these estimates. For brevity we restrict ourselves
to a 512× 512 uniform grid, which is a large enough problem for the asymptotic timings
to be observed. The calculation of the residual is timed for 1000 successive iterations, and
the average run time of the residual calculation is then taken. Our empirical experiments
suggest that

W512 ≈ 0.035 seconds (7.16)

is a good approximation for the execution time of a work unit for the p-Laplacian. The
measured time is the wall-clock time rather than CPU time. We adopt the slightly different
notation from the previous chapter, such that W512 indicates the amount of work required
on a regular 512× 512 mesh. Table 7.1 shows the predicted vs. actual execution times re-
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p C̃NMG Act. ĈNMG Act. ν CFAS Act.

γ = 1

1 23.92 21.30 22.75 22.11 1 24.5 23.76

2 29.17 27.69 28.00 27.69 2 43.17 40.21

3 34.41 33.26 33.25 33.08 3 61.83 57.09

4 39.67 38.62 38.5 38.43 4 80.5 73.78

γ = 2

1 26.54 24.68 25.38 25.14 1 36.75 47.27

2 34.41 30.85 33.25 31.25 2 64.75 69.21

3 42.29 37.86 41.13 37.74 3 92.75 90.68

4 50.17 43.12 49.0 43.50 4 120.75 111.34

Table 7.1: Predicted vs. actual execution time required to perform one hundred Newton /
FAS iterations for the 4-Laplacian. Timings are presented in seconds.

quired to perform one hundred Newton or FAS iterations for varying multigrid cycles and
numbers of inner iterations or smoothing iterations. In the table γ represents the number
of multigrid iterations performed per grid level such that γ = 1 gives a V-cycle and γ = 2

gives a W-cycle; p is the number of inner iterations performed per Newton iteration; and
ν is the number of pre- and post-smoothing iterations performed in an FAS iteration. As
discussed in the previous chapter the number of pre- and post-smoothing iterations used
as part of the linear multigrid iterations is kept constant at three. C̃NMG (see (6.16)) is
the predicted execution time of a Newton iteration when the coarse grid operators are
re-discretised on each grid, and ĈNMG (see (6.16)) is the predicted execution time of a
Newton iteration when the Galerkin coarse grid operators (see (4.20)) are used. CFAS is
the predicted execution time when an FAS iteration is used, and all columns labelled ‘Act.’
are the measured running times. The number of linear multigrid iterations performed is
100p as p multigrid iterations are performed in each of 100 Newton iterations.

The results clearly demonstrate that the running times are predicted well when using
W512 as a work unit in the theoretical bounds introduced in the previous chapter, especially
in the case of the Newton-MG iteration. The running times in this case are expected to be
predicted well, as it is for this model problem that the estimation of the execution times
for the linear multigrid and Galerkin coarse grid operator are taken. Results in Chapter 8
show that these estimates are realistic also when applied to other problems. It should
be noted that the execution time of the FAS W-cycles are initially optimistic, which is
interesting. If an accurate prediction is obtained for the V-cycle it should also be the case
for the W-cycle. The issue here is that computer code (in this case C) is compiled with
optimisation flags set. For the case of the W-cycle it does not seem to be very good at
optimising the code, so the iteration takes longer than expected. When compiled without
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automatic optimisation this behaviour is not observed. Results are presented here for the
optimised case, as this is what would be run in practice. The fact that the Newton-MG
is more suited to optimisations may be a result of our specific implementation. However,
the authors’ knowledge of compilers and optimisations is not sufficient to be able to state
whether this would be the case for another implementation. The same results are observed
for other model problems (see Chapter 8). The increase in the execution time for the W-
cycle with increasing numbers of smooths is predicted in a satisfactory manner, though,
even if the estimate for ν = 1 is optimistic.

In Table 7.1 a slight advantage in the use of the Galerkin coarse grid operator in
terms of the computational cost is observed in the case of the V-cycle (γ = 1). The
advantage is not so clear in the case of cycles with γ > 1, due to the fact that the amount of
computational time required to calculate the coarse grid operators becomes less significant
compared to the time required for the solution of the linear system. This effect is seen in
the estimates (6.8) and (6.9), as the calculation of the coarse grid operators is independent
of the number of linear iterations performed. Qualitatively the computational efficiency
of the iterations is clearly captured by the results, and the formulae for C̃NMG and ĈNMG,
as introduced in Chapter 6, predict the execution time well.

The estimates for the execution time of an FAS iteration are more pessimistic and less
sharp, the reasons for which were discussed briefly on the previous page. However, the
correct rate of growth when increasing smoothing iterations and γ is captured. Indeed, we
see that the ratio between the running time of a V- and W-cycle is appropriately captured.
As predicted by the theory, the execution time for a W-cycle should be 1.5 times that of a
V-cycle, which is closely mirrored by the ratios when performing 4 pre- and post-smooths.
This indicates that the estimates presented can be useful in characterising the execution
time, and the order of magnitude with which they are estimated is correct.

From the sharpness of the bounds the estimate of the ratio between the running time
of a single linear and nonlinear V-cycle, as given in (6.28), should be accurate. Equation
(6.28) gives the approximate ratio between the execution times when 3 pre- and post-
smooths are used in an FAS iteration, and 3 linear V-cycles are used as part of a Newton
iteration as ∼ 5.4. From Table 7.1 the ratio per V-cycle of the actual execution times is
given by

57.09

100
× 300

33.26
≈ 5.15, (7.17)

which is close to the predicted value, demonstrating that the order of magnitude increase
in performance is accurately captured in the framework presented.
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Although FAS is more computationally expensive per iteration it may still be a more
computationally efficient solver, depending on the rate of convergence per V-cycle itera-
tion. Using the above discussion we require the FAS convergence factor to be five times
smaller than that of the Newton-MG per multigrid iteration. Whilst the computational
complexity is important, the quality of an iterative method is also judged on robustness.
This could be robustness with respect to algorithmic details, or robustness with respect
to initial guesses. A presentation of the convergence factors and the robustness of the
methods is given in the following sections. We begin in Sections 7.4 and 7.5 with an in-
vestigation of the convergence when the exact solution is known. For this we consider that
the coefficient function α in (7.9) is constant. This is done so that control on a good and
poor initial approximation can be gained. Section 7.4 investigates the convergence prop-
erties of the methods when the initial guess is in a ball around the exact solution where
super-linear convergence can be expected. This is followed by Section 7.5 in which the
robustness of the methods with respect to poor initial estimates is investigated. Section 7.6
compares techniques used to extend so called trust regions, in which the nonlinear itera-
tions are convergent. Section 7.7 considers the more interesting case of a highly varying
coefficient α and results are compared to those for linear problems. The computational
efficiency of the methods is discussed where this is appropriate. Results are also pre-
sented in which FAS appears to perform better than Newton-MG, and a discussion clearly
demonstrates that this can be attributed to implementation rather than algorithmic issues.

7.4 Convergence for Good Initial Guesses

In this section we give results demonstrating the robustness of FAS and Newton-MG ap-
plied to Equation (7.8). The linearisation of this problem is given in (7.10). As previously
noted there is no current theory available to analyse the convergence of a Newton-MG
iteration when the solution u∗ of the weak form (7.9) and the exact Newton correction δ∗,
which solves,

Fu(v, δ) = −F (u)(v), ∀v ∈ V , (7.18)

are in the space V = W 1,4. Instead we consider the convergence of the linear problem
(7.18) under the assumption that the exact correction term δ∗ is in the space H1

0 . This is a
restrictive assumption, but allows for the standard linear multigrid theory (see [196, 202]
for a review) to be used to predict how the linear iteration will converge. These predictions
are compared to observed convergence behaviours to show that for model problems at the
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scales presented it seems as though the assumption on δ∗ is a useful one.
In order to be able to choose ‘good’ and ‘bad’ initial estimates the right-hand side is

set so that the solution u∗ to (7.9) is given by

u∗ = C1 sin(πx) sin(πy), (7.19)

for scalar C1 > 0. In this case the solution u obviously has no dependence on the param-
eter α, as the right-hand side changes with the coefficient function. As α is modified the
nonlinear operator and the Jacobian matrix are scaled by a constant factor, meaning that
the convergence behaviour is independent of α. Although this independence of α is man-
ufactured in this example, the right-hand side often depends on some scalar parameters
which may be highly varying on the domain. A typical example is when the coefficient
represents some material properties on a domain with several different materials.

To begin with we consider that the approximation is in a ball of guaranteed conver-
gence. Empirical evidence suggests that

u(0) = 0.95C1 sin(πx) sin(πy) (7.20)

satisfies this condition. As the convergence is independent of α for the nonlinear problem
we set α = 1.0 on the domain and consider varying the scalar C1. In this case, under
Assumptions 7.1, the symmetric positive definite bilinear form (7.13) has a continuous,
bounded coefficient, and hence the theory of Xu [196] says that convergence of the linear
iteration should occur for all values of u, so long as the coarsest grid represents the error in
approximation appropriately. From (7.10) we find that the entries in the Jacobian matrix
scale as C2

1 exactly, meaning that a change in the constant C1 should have no effect on the
convergence of either FAS or Newton-MG, as a re-scaling does not change the spectral
properties of the operators.

We first consider the results when C1 = 1.0, as given in Table 7.2. The results
presented give the number of multigrid V-cycles (nonlinear and linear) for the FAS and
Newton-MG iterations required to reduce the original residual in approximation by a fac-
tor 1e-7, where the coarsest grid used has 9 unknowns. Mesh independent convergence
is characterised by a constant number of V-cycle iterations required for convergence. The
results for the FAS iteration display this behaviour, although a significant number of iter-
ations are required to reach convergence. On the other hand, the convergence of Newton-
MG seems to deteriorate as the mesh spacing decreases, especially in the case that a nu-
meric approximation to the Jacobian is used. The results presented here are for the case
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Grid Size
FAS Newton-MG

Analytic Numeric Analytic Numeric

642 22 22 15 15

1282 26 26 15 15

2562 28 28 15 15

5122 29 29 15 15

10242 29 29 15 15

20482 29 29 18 27

Table 7.2: Number of V-cycles required to reduce the original residual, when C1 = 1,
by a factor 1e-7 for FAS and Newton-MG (with Galerkin coarse grid operators) using a
coarse grid with 9 unknowns (42 grid).

that the Jacobian is approximated using a forward difference formula. The perturbation
parameter used is ε = 4e-10, which was found to be the best value through experimen-
tation. A demonstration of the effect of the change in ε is shown in Figure 7.6, although
this ties in more closely with the discussion later in this chapter. We note, however, that
even in the case that the analytic Jacobian is used there seems to be a deterioration in the
convergence of the Newton method.

The explanation for the deterioration in the convergence of the Newton method in this
case is due to the fact that the coarsest grid is too coarse. Changing the coarsest grid to
have 225 unknowns gives the improved results shown in Table 7.3. As can be seen, using

Grid Size Analytic Numeric

642 12 12

1282 12 12

2562 12 12

5122 12 12

10242 12 12

20482 12 27

Table 7.3: Number of V-Cycles required to reduce the original residual, when C1 = 1, by
a factor 1e-7 for Newton-MG (with Galerkin coarse grid operators) using a coarse grid
with 225 unknowns (162 grid).

the analytic Jacobian the Newton-MG method displays mesh independent convergence,
which is characterised by a constant number of V-cycle iterations in Table 7.3. It is inter-
esting to note that the convergence of the FAS method does not improve when this finer
coarsest mesh is used. This suggests that for the FAS iteration and this model problem the
42 mesh provides a good enough representation of the solution for the method to display
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robust convergence. The same is not true for the Newton iteration, as we are not trying
to represent the exact solution on the coarsest grid, but some error in the approximation.
This is evidently poorly approximated on the 42 mesh, but appropriate data is captured
on a 162 mesh. This behaviour only becomes apparent when a fine enough resolution is
used, as using a 42 coarsest mesh does seem to display mesh independent convergence
for grids with resolution 10242 or less. Using the more appropriate coarse grid we also
see an improvement in the number of V-cycles required for convergence on all grid levels,
comparing Tables 7.2 and 7.3.

The number of V-cycles performed does not tell us the overall running time of the
algorithms. For this the execution time per V-cycle should also be taken into account.
The execution time per V-cycle was measured in Section 7.3, where it was demonstrated
that the Newton-MG iteration is a much more efficient iteration per V-cycle, so that a large
difference in execution times should be observed. The results are shown in Figure 7.8,
but the discussion of these is left until an investigation of the reasons for the deterioration
in the convergence of the Newton-MG iteration using a numeric approximation to the
Jacobian has been completed, which is performed below.

The results presented in Tables 7.2 and 7.3 are for when a forward difference approx-
imation to the entries in the Jacobian matrix is used, as per (6.6). From empirical exper-
iment it was found that for this problem the best results were obtained for a perturbation
size of

ε = 4e-10

in (6.6). To demonstrate that the convergence does deteriorate when a numeric approxi-
mation to the Jacobian is used the convergence histories for the first 7 Newton iterations
using the exact and numeric approximation is shown in Figure 7.1. The deterioration in
the convergence of the method for the 20482 grid is clear to see. What seems to be de-
terioration in the convergence at finer grid resolutions is actually just the exact solution
being approached: after the fourth Newton iteration the norm of the nonlinear residual is
∼1e-13, so that significant rounding errors will occur, and the convergence of the method
will necessarily slow down (see [92, §25.1], [173, §2.2]). Figure 7.1a shows that the con-
vergence should be independent of the mesh parameters for this problem when the exact
Jacobian matrix is used.

Using (3.66) and the definition of Fréchet differentiability (3.65), it is clear that, as the
nonlinear approximation approaches the exact solution, the Jacobian matrix approximates
the action of the nonlinear operator at the exact solution more and more closely. The
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Figure 7.1: Convergence history of Newton-MG applied to (7.9) with solution (7.19)
where C1 = 1.0, α = 1.0 using an analytic and numeric Jacobian with coarsest grid 162

deterioration in convergence near the exact solution therefore suggests that the numeric
Jacobian is a poor approximation to the actual Jacobian matrix at a fine grid resolution.
However, it is strange that this should be the case only at fine grid resolutions since the
same approximation is used to form the Jacobian matrix at lower grid resolutions, where
the convergence closely matches that of the exact Jacobian matrix. To investigate the
reasons why this could be some extra notation is introduced below.

Let a matrix A ∈ Rn×m be denoted as

A = [aik] , i = 1, . . . , n, k = 1, . . . ,m.

For matrices A,B,C ∈ Rn×m the difference C = A−B is given by

C = [aik − bik] , i = 1, . . . , n, k = 1, . . . ,m. (7.21)

Let F (uj) denote the analytic Jacobian matrix at approximation uj in space Vj on grid Ωj ,
i.e.

F (uj) ≡
[
Fuj(ϕ

(j)
k , ϕ

(j)
i )
]
, i, k = 1, . . . , Nj, (7.22)

and let F (uj)
FD denote the numeric Jacobian calculated using a forward difference approxi-

mation. We also introduce the error matrix

E
(uj)
FD = F

(uj)
FD − F (uj), (7.23)
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where

E
(uj)
FD =

[
e

(j)
ik

]
, i, k = 1, . . . , Nj. (7.24)

Using the above notation we are ready to prove the following lemma, which bounds
the size of the entries in the error matrix E(uj)

FD .

Lemma 7.1. Each entry in the error matrix E(uj)
FD is bounded by

∣∣∣e(j)
ik

∣∣∣ ≤ Cεh−1
j

(
εh−1

j + u
(ik)
j

)
, (7.25)

where u(ik)
j is the average of |∇u| over

ω
(j)
ik ≡

{
T ∈ Tj | T ∩ supp(ϕ

(j)
i ) ∩ supp(ϕ

(j)
k ) 6= ∅

}
.

Proof. For the 4-Laplacian each entry in the error matrix is given by

e
(j)
ik =

F (uj + εϕk)(ϕi)− F (uj)(ϕi)

ε
− Fuj(ϕk, ϕi). (7.26)

Using the representation of F (uj)(ϕi) from (7.9), Fuj(ϕk, ϕi) from (7.10) and setting
α = 1.0 we show that

F (uj + εϕk)(ϕi) =

∫
Ω

|∇(uj + εϕk)|2∇(uj + εϕk)∇ϕi d~x−
∫

Ω

fϕi d~x

=

∫
Ω

(
|∇uj|2 + 2ε∇uj∇ϕk + ε2 |∇ϕk|2

)
(∇uj + ε∇ϕk)∇ϕi d~x

−
∫

Ω

fϕi d~x,

(7.27)
which simplifies to

F (uj + εϕk)(ϕi) = F (uj)(ϕi) + εFuj(ϕk, ϕi) +

∫
Ω

ε22(∇uj∇ϕk)(∇ϕk∇ϕi) d~x

+

∫
Ω

ε2 |∇ϕk|2 (∇uj + ε∇ϕk)∇ϕi d~x. (7.28)
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Therefore we have

e
(j)
ik =

∫
Ω

ε |∇ϕk|2 (∇uj∇ϕi) d~x+

∫
Ω

2ε(∇uj∇ϕk)(∇ϕk∇ϕi) d~x+∫
Ω

ε2 |∇ϕk|2 (∇ϕk∇ϕi) d~x. (7.29)

We consider the absolute value
∣∣∣e(j)
ik

∣∣∣, bounded by

∣∣∣e(j)
ik

∣∣∣ ≤ ∣∣∣∣∫
Ω

ε |∇ϕk|2 (∇uj∇ϕi) d~x
∣∣∣∣+

∣∣∣∣∫
Ω

2ε(∇uj∇ϕk)(∇ϕk∇ϕi) d~x
∣∣∣∣+∣∣∣∣∫

Ω

ε2 |∇ϕk|2 (∇ϕk∇ϕi) d~x
∣∣∣∣ , (7.30)

and consider each term in (7.30) individually.
For a piecewise linear basis∇uj and∇ϕi, i = 1, . . . , Nj are constant vectors on each

element. Using standard finite element approximation properties [23, §II.6]
∣∣∣∇ϕ(j)

i

∣∣∣ ≤
Ch−1

j for some constant C independent of mesh parameters, for a quasi-regular triangu-
lation. Then ∫

Ω

ε |∇ϕk|2 (∇uj∇ϕi) d~x =
∑
T∈ωik

∫
T

ε
∣∣∇ϕ2

k

∣∣ (∇uTj ∇ϕi) d~x (7.31)

where the number of elements T satisfying T ∈ supp(ϕk) ∩ supp(ϕi) is small and in-
dependent of the mesh, and uTj is the function uj restricted to element T . Let ūTj be the
average value of uj on T and consider the integral over a single element

∣∣∣∣∫
T

ε |∇ϕk|2 (∇uTj ∇ϕi) d~x
∣∣∣∣ = ε |∇ϕk|2

∣∣(∇uTj ,∇ϕi)L2,T

∣∣
≤ ε |∇ϕk|2

∥∥∇uTj ∥∥L2,T
‖∇ϕi‖L2,T

≤ Cεh−2
j

∣∣uTj ∣∣1,T
≤ Cεh−1

j

∣∣∇uTj ∣∣
(7.32)

where the inner product ( · , · )L2,T is the L2 inner product over element T , with induced
norm ‖ · ‖L2,T . The H1 semi-norm on element T is denoted | · |1,T , and

∣∣∇uTj ∣∣ is the
absolute value of the gradient of uj on element T . In (7.32) we have used the Cauchy-
Schwarz inequality for functions and vectors, as well as the fact that for a piecewise linear



Chapter 7 Application to the p-Laplacian 121

finite element basis function

‖∇ϕi‖2
L2,T =

∫
T

|∇ϕi|2 d~x

= |∇ϕi|2
∫
T

d~x

≤ Ch−2
j A(T ) ≤ C

(7.33)

where A(T ) ≤ Ch2
j is the area of element T . Similarly we have

∣∣uTj ∣∣1,T =

(∣∣∇uTj ∣∣2 ∫
T

d~x
) 1

2

≤ Chj
∣∣∇uTj ∣∣ (7.34)

using the fact that uj is linear on each element T . Summing (7.32) over the elements
T ∈ ωik gives

∣∣∣∣∫
Ω

ε |∇ϕk|2 (∇uj∇ϕi) d~x
∣∣∣∣ ≤ ∑

T∈ωik

∣∣∣∣∫
T

ε |∇ϕk|2 (∇uTj ∇ϕi) d~x
∣∣∣∣

≤ C1εh
−1
j u

(ik)
j ,

(7.35)

recalling that u(ik)
j is the average of |∇uj| over ωik. Using similar reasoning

∣∣∣∣∫
T

2ε(∇uTj ∇ϕk)(∇ϕk∇ϕi) d~x
∣∣∣∣ ≤ ∫

T

2ε |∇uj∇ϕk| |∇ϕk∇ϕi| d~x

≤ 2ε |∇ϕk|2 |∇ϕi|
∣∣∇uTj ∣∣ ∫

T

d~x

≤ 2εCh−3
j

∣∣∇uTj ∣∣h2
j

= εCh−1
j

∣∣∇uTj ∣∣ .
(7.36)

Hence the integral over the entire domain is bounded as

∣∣∣∣∫
Ω

2ε(∇uj∇ϕk)(∇ϕk∇ϕi) d~x
∣∣∣∣ ≤ ∑

T∈ωik

∣∣∣∣∫
T

2ε(∇uTj ∇ϕk)(∇ϕk∇ϕi) d~x
∣∣∣∣

≤ C2εh
−1
j u

(ik)
j .

(7.37)
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For the final term in (7.30) we have

∣∣∣∣∫
T

ε2 |∇ϕk|2 (∇ϕk∇ϕi) d~x
∣∣∣∣ ≤ ∫

T

ε2 |∇ϕk|2 |∇ϕk| |∇ϕi| d~x

= ε2 |∇ϕk|3 |∇ϕi|
∫
T

d~x

≤ Cε2h−2
j ,

(7.38)

so that ∣∣∣∣∫
Ω

ε2 |∇ϕk|2 (∇ϕk∇ϕi) d~x
∣∣∣∣ ≤ ∑

T∈ωik

∣∣∣∣∫
T

ε2 |∇ϕk|2 (∇ϕk∇ϕi) d~x
∣∣∣∣

≤ C3ε
2h−2

j .

(7.39)

Each entry in the error matrix E(j)
FD is therefore bounded by

∣∣∣e(j)
ik

∣∣∣ ≤ εh−1
j

(
C3εh

−1
j + (C1 + C2)u

(ik)
j

)
≤ max{C1, C2, C3}εh−1

j (εh−1
j + 2u

(ik)
j ).

(7.40)

This shows that as the grids are refined the error in the Jacobian matrix increases, if
the perturbation ε is kept constant. In general ε cannot be scaled relative to hj , as there is a
limit on how small ε can be taken before the quality of approximation will be affected by
rounding errors [46]. This may have an effect on the quality of the approximation relative
to the exact Jacobian, unless the entries in the Jacobian matrix are also scaled by the grid
spacing. To investigate this we prove the following lemma.

Lemma 7.2. The entry in row i, column k of the exact Jacobian matrix Fuj is bounded by

∣∣Fuj(ϕk, ϕi)∣∣ ≤ C
(
u

(ik)
j

)2

(7.41)

for u(ik)
j the average of∇uj over ωik.

Proof. The absolute value of the entry in row i, column k of the exact Jacobian matrix is
given by

∣∣Fuj(ϕk, ϕi)∣∣ =

∣∣∣∣∫
Ω

|∇uj|2∇ϕk∇ϕi d~x+

∫
Ω

2(∇uj∇ϕk)(∇uj∇ϕi) d~x
∣∣∣∣ . (7.42)
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The bound of this is obtained by considering the sum of the integral over elements in ωik
for each of the two terms in (7.42) separately. Firstly

∣∣∣∣∫
T

∣∣∇uTj ∣∣2∇ϕk∇ϕi d~x
∣∣∣∣ ≤ ∫

T

∣∣∣∣∣∇uTj ∣∣2∇ϕk∇ϕi∣∣∣ d~x

≤ |∇ϕk| |∇ϕi|
∣∣uTj ∣∣21,T

≤ Ch−2
j

∣∣uTj ∣∣21,T
≤ C

∣∣∇uTj ∣∣2
(7.43)

such that ∣∣∣∣∫
Ω

|∇uj|2∇ϕk∇ϕi d~x
∣∣∣∣ ≤ ∑

T∈ωik

∣∣∣∣∫
T

∣∣∇uTj ∣∣2∇ϕk∇ϕi d~x
∣∣∣∣

≤ Cū(ik)
j

≤ C(u
(ik)
j )2,

(7.44)

where ū(ik)
j is the average of

∣∣∇uTj ∣∣2 over ωik. Let #ωik be the number of elements in ωik.
In the bound (7.44) we have used

#ωik(u
(ik)
j )2 = #ωik

[
1

#ωik

∑
T∈ωik

∣∣∇uTj ∣∣
]2

=
1

#ωik

∑
T∈ωik

∣∣∇uTj ∣∣2 +
1

#ωik

∑
T∈ωik

∑
T ′∈ωik
T ′ 6=T

∣∣∇uTj ∣∣ ∣∣∣∇uT ′j ∣∣∣
= ū

(ik)
j +

1

#ωik

∑
T∈ωik

∑
T ′∈ωik
T ′ 6=T

∣∣∇uTj ∣∣ ∣∣∣∇uT ′j ∣∣∣
≥ ū(ik)

j .

(7.45)

Using similar reasoning

∣∣∣∣∫
T

2(∇uTj ∇ϕk)(∇uTj ∇ϕi) d~x
∣∣∣∣ ≤ 2

∣∣∇uTj ∣∣2 |∇ϕk| |∇ϕi| ∫
T

d~x

≤ C
∣∣∇uTj ∣∣2 , (7.46)
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so that∣∣∣∣∫
Ω

2(∇uj∇ϕk)(∇uj∇ϕi) d~x
∣∣∣∣ ≤ ∑

T∈ωik

∣∣∣∣∫
T

2(∇uTj ∇ϕk)(∇uTj ∇ϕi) d~x
∣∣∣∣

≤ Cū(ik)
j

≤ C(u
(ik)
j )2.

(7.47)

Combining (7.43) and (7.47) gives the desired result

∣∣Fuj(ϕk, ϕi)∣∣ ≤ C(u
(ik)
j )2 (7.48)

Assume that ε is chosen constant. Under Assumption 7.1.b, u(j)
ik is independent of mesh

parameters, i.e.

∣∣∣e(j)
ik

∣∣∣ = O(h−2
j ),

∣∣Fuj(ϕk, ϕi)∣∣ = O(1), (7.49)

and asymptotically the relative error

∣∣∣e(j)
ik

∣∣∣∣∣Fuj(ϕk, ϕi)∣∣ = O(h−2
j ). (7.50)

This behaviour is likely to be seen only when hju
(j)
ik ≤ Cε for some small constant C.

When the gradient is large (i.e. u(j)
ik is large) hju

(j)
ik is likely to be much larger than ε, and

from Lemmas 7.1 and 7.2 we see that it is likely that
∣∣Fuj(ϕk, ϕi)∣∣ � ∣∣∣e(j)

ik

∣∣∣ unless hj is
extremely small. Therefore the relative error is likely to be small where the gradient is
large. However, around turning or inflexion points, where u(j)

ik � 1, it is likely that the
product hju

(j)
ik will be of a similar size to (if not smaller than) ε, and the relative error

will be large even at relatively modest mesh spacing such as spacings of the order 1e-3.
We note that this is more likely to occur for small curvatures where larger regions of the
solution have gradient close to zero, as is the case in the case of the example considered,
where solution u∗ = sin(πx) sin(πy). Although the relative error is likely to be large only
on small parts of the grid results are presented to demonstrate that this behaviour causes
the breakdown in convergence observed for Newton’s method.

In order to demonstrate that the relative error in few areas of the mesh has a large
detrimental effect on convergence of Newton’s method we seek to reduce the size of the
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relative error. This can be done in a number of ways. Firstly, a more accurate approxi-
mation of the derivative can be taken when calculating the Jacobian matrix. For example,
the central difference formula

Fuj(ϕk, ϕi) =
F (uj)(ϕi + εϕk)− F (uj)(ϕi − εϕk)

2ε
, (7.51)

could be used rather than a forward difference formula when approximating the deriva-
tive. The error in approximation is then proportional to ε2, rather than to ε, and the ap-
proximation will be much more accurate. Figure 7.2 shows the convergence history of
a Newton-MG iteration over the first 7 Newton iterations when a central difference for-
mula is used to approximate the entries in the Jacobian matrix. Comparison of Figure 7.2
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Figure 7.2: Convergence history of Newton-MG applied to (7.9) with solution (7.19)
where C1 = 1.0, α = 1.0 using a central difference formula to approximate entries in the
numeric Jacobian with coarsest grid 162.

with Figure 7.1a shows that the convergence with the more accurate numerical Jacobian
matches that of the analytic Jacobian.

This result does not demonstrate that the improvement in the convergence is due to a
reduction of the relative error, as the overall error is reduced by taking a more accurate
approximation to the derivative. Therefore we consider how the relative error may be
reduced for a forward difference approximation. In the discussion above it is noted that
the relative error is large due to the solution used. Hence, changing the solution should
change the convergence behaviour. Inspection of the bounds (7.25) and (7.41) shows that
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the relative error satisfies ∣∣∣e(j)
ik

∣∣∣∣∣Fuj(ϕk, ϕi)∣∣ ∝ 1

C1

(7.52)

for C1 as in (7.19) and fixed perturbation ε and grid spacing hj . The linear system arising
from the Newton linearisation is scaled by a factor C2

1 , so that the convergence proper-
ties of the iteration should not be affected by a change in C1. Hence, if the convergence
improves with increasing C1 and deteriorates with decreasing C1 this suggests that New-
ton’s iteration is sensitive to the size of the relative error in the Jacobian matrix. Figure 7.3
shows the convergence histories for Newton-MG with varying C1. The size of the pertur-
bation ε is kept constant to demonstrate that the improvement in convergence is attributed
only to a change in the parameter C1. We can clearly see the improvement in the con-
vergence of the method for increasing C1 (i.e. decreasing relative error), and that any
breakdown that does occur in the convergence occurs at later iterations when the defect is
already very small (i.e. close to machine precision). This supports the proposition that the
breakdown in convergence is caused by large relative errors on small parts of the domain.
Results from another example supporting this claim are shown in Figure 7.5. This exam-
ple is introduced after a note on a suitable choice of perturbation ε to use in the divided
difference formula.

IncreasingC1 indefinitely in (7.19) will not necessarily stabilise the convergence when
a forward difference approximation is used. Figure 7.4 shows the convergence when
C1 = 1e5 using different values for the perturbation to use in the calculation of the nu-
meric derivative. As can be seen the same value that is used for smaller values of C1 is no
longer appropriate for the larger parameter. A much larger perturbation is appropriate to
avoid rounding errors due to division by small numbers. This phenomenon is due to the
fact that numerical differentiation is an inherently unstable process [46, pg. 175].

As well as increasing the size of the gradient on the domain the relative error should be
reduced if the solution has no turning points. Consider that the exact solution to problem
(7.9) is given by u∗ = sin(πx) sin(πy) + 2(x + y), such that there are no turning points
of the solution in Ω. Figure 7.5 shows the convergence history of Newton-MG over the
first 7 iterations for this updated solution using a forward difference approximation to
entries in the Jacobian matrix. As can be seen the convergence is independent of mesh
parameters, again supporting the hypothesis that the decrease in the size of the relative
error in the Jacobian results in better convergence of the Newton iteration.

The results presented here are used to demonstrate the sensitivity of the Newton iter-
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(a) C1 = 0.01
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(b) C1 = 0.1
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(c) C1 = 10.0
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(d) C1 = 100.0

Figure 7.3: Convergence history of Newton-MG applied to (7.9) with solution (7.19)
where, α = 1.0 using a forward difference formula to approximate entries in the numeric
Jacobian with coarsest grid 162 and varying C1.
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(a) ε = 4e-10
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(b) ε = 1e-6

Figure 7.4: Convergence history of Newton-MG applied to (7.9) with solution (7.19)
where, α = 1.0, C1 = 1e5 using a forward difference formula to approximate entries in
the numeric Jacobian with coarsest grid 162.
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Figure 7.5: Convergence history of Newton-MG applied to (7.9) with exact solution
u∗ = sin(πx) sin(πy) + 2(x+ y) using a forward difference formula to approximate en-
tries in the numeric Jacobian with coarsest grid 162.
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ation to the numerical Jacobian matrix. For a general nonlinear problem it is not possible
to say whether or not problems may arise when a simple approximation to the entries in
the Jacobian matrix is taken. The discussion here serves to show that convergence may
deteriorate, especially in cases when entries in the exact Jacobian matrix are small on part
of the domain. We also demonstrate that a good choice of perturbation parameter de-
pends on the approximation to the problem. Hence, for time-dependent problems, where
the solution may evolve over time over a number of orders of magnitude, using a fixed
perturbation may cause numerical instabilities to adversely affect the convergence of the
Newton iteration. These instabilities can manifest themselves in slower convergence rates,
as depicted in Figure 7.1b, or can lead to individual steps in the iteration being divergent,
as in Figure 7.4a. In an extreme case the entire Newton iteration may be divergent. As
an example of how much of an effect a bad value for the forward difference can have on
the convergence, Figure 7.6 presents the convergence factors over the first 7 Newton iter-
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Figure 7.6: Convergence history of Newton-MG applied to (7.9) with solution (7.19)
where α = C1 = 1.0 using a forward difference method to approximate the Jacobian
matrix for various perturbation sizes ε on a 5122 grid.

ations for problem (7.9), with exact solution given by (7.19) (α = C1 = 1.0), for varying
sizes of perturbation used in a forward difference approximation. As can be seen only a
single value (1e-9) does not give a history where at least one iteration gives an increase
in the nonlinear residual, and the fact that the y-axis has a logarithmic scale shows the
orders of magnitude over which the convergence factor may increase. In many of these
situations the Newton iteration would be classified as divergent, although the convergence
is known to be good for a good approximation to the Jacobian matrix.

In order to avoid instabilities of the type described here a more accurate approxima-
tion to the Jacobian matrix should be taken in the Newton iteration. In many cases it
is possible to calculate the exact entries in the discrete Jacobian, especially when a low
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order basis is used. Generally, though, calculating the Jacobian matrix to a large degree
of accuracy may require more computational effort, but results for the running time of
Newton-MG and FAS methods show that a Newton-MG iteration will still be a more effi-
cient algorithm by some way (see Figure 7.8). Before discussing these results we contrast
the sensitivity of the FAS iteration to the quality of the Jacobian matrix. Figure 7.7 shows
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(c) C1 = 10.0
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(d) C1 = 100.0

Figure 7.7: Convergence history of FAS V-Cycles applied to (7.9) with solution (7.19)
where α = 1.0 using a forward difference formula to approximate derivative contributions
with coarsest grid 42 and varying C1.

the convergence of the first 21 FAS V-cycles for varying values of C1 using a forward
difference approximation to the local derivative. 21 V-cycles are used here as this is the
number of V-cycles performed in 7 Newton iterations, for which the results are presented
above. As can be seen the convergence histories are almost identical in Figures 7.7a
to 7.7d, which demonstrates that the FAS iteration is much more robust with respect to
inaccuracies in the Jacobian matrix. Hence much less effort is required when coding a so-
lution to find a robust iteration when the initial approximation is taken close to the exact
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solution. We also see mesh independent convergence, and a clear asymptotic convergence
factor of ∼ 0.6. However, this convergence rate is not very quick, and is not what would
one would wish for from an efficient linear multigrid iteration, in which a defect reduction
of the order 1e-1 per V-cycle can often be observed.

For the problem being investigated here, when a good initial approximation is taken, a
Newton iteration displays a better rate of convergence per V-cycle, on top of the faster ex-
ecution time per V-cycle. Hence, the advantage of the Newton-MG iteration over FAS is
very clear. Figure 7.8 shows the running times of the FAS iteration using a forward differ-
ence approximation to the derivative compared to a Newton iteration in which a forward
difference and a central difference are used. The empty squares in the graph represent the
running times for a forward difference, and the solid squares represent the running time
for a central difference method. There is little difference in using the central or the for-
ward difference method, although when a forward difference is appropriate it is slightly
faster. Therefore, if speed is of the most importance a forward difference approximation
should be preferred, bearing in mind that this method may lead to non-robust convergence
behaviours. If a more robust method is desired a central difference formula should be pre-
ferred. Relative to both cases the FAS takes considerably longer to run. The numbers of
V-cycles required for convergence, along with the exact running times are given in Ta-
ble 7.4. The running times of the algorithms are shown in Figure 7.8 in graphical form.

Grid Size
FAS Newton (FD) Newton (CD)

V-Cycles Time V-Cycles Time V-Cycles Time
1282 26 0.82 12 0.11 12 0.12
2562 28 3.52 12 0.46 12 0.50
5122 29 20.08 12 2.08 12 2.36
10242 29 86.25 12 8.36 12 9.56
20482 29 354.64 27 57.40 12 38.44

Table 7.4: Number of V-cycles and running times required to reduce the initial residual
by a factor 1e-7, which is depicted in Figure 7.8

From this the superiority of the Newton algorithm in terms of computational efficiency
is clear to see. On the finest grid level, even in the case when the Newton iteration does not
converge well, the Newton-MG iteration is 5.5 times faster than the FAS iteration. When
the more costly central difference formula is used, the running time of Newton-MG is
approximately 8 times faster than the FAS. Note that the running times presented include
the set up of various grid parameters, and so are not entirely defined by the number of
V-Cycles performed.
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Figure 7.8: Running times for Newton-MG and FAS for problem (7.9) with solution
(7.19) with α = 1.0, C1 = 1.0 using a numerical approximation to entries in the Jacobian
matrix.

Results presented in this section show that, for the 4-Laplacian, when an approxi-
mation is close to the exact solution, the Newton iteration is a much better algorithm to
use, provided that a sufficiently accurate approximation the Jacobian matrix is used. The
results are qualitatively the same for p > 4, but are not presented in this thesis. Fur-
thermore, a discussion has been given in order to show how, in cases when the Newton
iteration seems to be non-convergent, this behaviour can be caused by a number of im-
plementation, rather than theoretical, issues. This is an important note to make, since in
previous publications (see [86]) it is stated that the Newton iteration is less robust than
the FAS iteration. We do not believe this to be the case, and in Section 7.6 a discussion of
globalisation techniques provides strong evidence suggesting that the convergence of an
FAS iteration is dependent on the convergence of a Newton iteration. In the next section
we consider a comparison of the methods when the initial approximation is further away
from the exact solution, thus investigating the robustness of the methods with respect to
an initial approximation.

7.5 Convergence for Poor Initial Guesses

In this section, as in the previous section, we consider the convergence of nonlinear multi-
grid methods for (7.9) when the coefficient function α is constant and the exact solution
is known. Initial approximations are considered which are far from the exact solution, but
are similar in shape and also initial approximations which are near values at which the
Jacobian matrix is singular.
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Initial approximations are taken which are similar in shape to the exact solution, since
for a completely random initial guess it is likely that the nonlinear iterations will not
be convergent. Also, for time-dependent problems, if an initial approximation is taken
from a previous time step it is likely to be similar in shape to the solution at a current
time step provided that a small enough time step is used. Considering cases where the
problem is singular is also interesting, as it may be that a sequence of nonlinear iterates
may unintentionally pass close to approximations which are singular before reaching the
exact solution. A method should be as robust as possible in these cases.

The experiments undertaken demonstrate the superior robustness of Newton’s method
over FAS. Globalisation of the methods, which may increase the robustness, is not consid-
ered in this section, but is discussed in Section 7.6. The detailed discussion of the choice
of algorithm components, in particular the choice of the perturbation in the approxima-
tion of the numerical derivative as discussed in the previous section, is not repeated here.
Results presented are for best case executions of both algorithms. This makes the compar-
ison of the methods fairer as the best performing variants of each algorithm are compared.

For the remainder of this section we set the exact solution to (7.9) to be

u∗ = sin(πx) sin(πy). (7.53)

To begin with, initial approximations on grid Ωj of the form

u
(0)
j = C2 sin(πx) sin(πy) (7.54)

are considered for some constant C2. Results in the previous section are for C2 = 0.95,
which may be seen to be close enough to the exact solution that super-linear convergence
is gained for the Newton iteration. This convergence behaviour is expected only close
to the exact solution, and outside of a ball of guaranteed convergence at best linear con-
vergence of the Newton method can be expected, if at all [58]. It is not known what
convergence behaviour to expect far from the exact solution in the case of FAS, although
at best linear convergence is observed even close to the exact solution. Since there is no
theory to predict convergence behaviour of the FAS, results from empirical experiments
are presented and investigated below.

An initial approximation is considered far from the exact solution for values of C2

in (7.54) for which |C2 − 1| > 1. In this case the initial approximation is far from the
exact solution in the sense that the absolute values of the error in the initial approximation
are larger than the absolute values of the solution. Table 7.5 shows the number of V-
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cycles required for convergence for various |C2| ≥ 1. In all tables, an entry ‘div’ denotes

Grid
C2

−100 −10 −1 10 100

Newton-MG

642 51 33 30 27 39

1282 51 39 27 27 39

2562 51 39 27 27 39

5122 51 42 30 27 39

10242 51 45 33 27 39

20482 51 48 36 27 39

FAS

642 13 18 24 28 12

1282 26 20 28 19 20

2562 div 23 30 20 div

5122 14 div div 21 16

10242 div 28 >30 div div

20482 div >30 >30 div div

Table 7.5: Number of V-cycles required to reduce the initial residual in approximation by
a factor 1e-7 for FAS and Newton-MG for initial guesses u(0) = C2 sin(πx) sin(πy) with
varying C2.

divergence of the method.
It is now useful to recall the discussion from Subsection 4.2.3, in which the coarse grid

correction of FAS is shown to be close to a Newton correction on the coarse grid for an
approximation close to the exact solution. Using this theory, assuming convergence of the
nonlinear smoother (Lemma 3.10) and convergence of the Newton iteration (Theorem 3.8)
suggests that an FAS iteration will converge for a sufficiently good approximation. For an
approximation further from the exact solution the FAS coarse grid correction no longer
approximates a Newton correction, so convergence theory from Newton methods cannot
be used to predict how, or if, an FAS iteration will converge.

Results in Table 7.5 suggest that it is likely to be very difficult to predict the way
in which an FAS iteration will converge, if at all. There is no discernible pattern in the
number of iterations required for convergence and convergence does depend on mesh
parameters. It is clear that FAS is much more sensitive to a poor choice of initial guess, in
that the absolute value between the exact and approximate solutions should be small for
convergence to be guaranteed. To illustrate the variability in FAS convergence histories,
convergence rates on various grids, for the initial approximation with C2 = 100, are
shown in Figure 7.9. As previously noted there is no obvious pattern in the convergence
histories, and the ratios between one iteration and the next may vary over several orders
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Figure 7.9: Convergence history for FAS on varying grids with initial estimate u(0) =
100 sin(πx) sin(πy).

of magnitude.
In contrast Newton-MG performs very well. Results in Table 7.5 show that Newton-

MG converges for all values of C2 used. The convergence behaviour is different for
positive and negative values, though, which is worth discussing further. For positive C2

the convergence is robust and independent of mesh parameters, but not of C2. Figure 7.10
includes the convergence histories for a wider range of values of C2 than are included in
Table 7.5. A clear asymptotic regime of linear convergence and then super-linear con-
vergence can be observed. The line for C2 = 1e5 hints at the convergence behaviour
for larger values of C2, where convergence starts to deteriorate. However, even for large
C2 the convergence of the Newton iteration is very predictable. The more interesting be-
haviour is for C2 < 0. In this case a spike in the convergence history is observed. This
occurs at a later iteration the larger the absolute value of C2. Before this spike the conver-
gence is robust, and the rate is the same linear rate observed in Figure 7.10a for positive
values of C2. The issue here is that the approximation approaches the solution from be-
low, and must pass through a stage where the approximation is close to zero. Inspection
of Equation (7.9) shows that the Jacobian is singular when the approximation u = 0, and
is close to singular for u ≈ 0. This can cause problems for the Newton method, and may
cause a correction to be over approximated, in which case the residual norm may increase.
In order to stabilise the method some damping strategy may be employed. This approach
is discussed in Section 7.6. For now the convergence properties of the method without
any damping parameters are considered.

Both FAS and Newton-MG diverge in a single iteration when an initial approximation
of zero is used for problem (7.9). This is due to the fact that the Jacobian is singular (in
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Figure 7.10: Convergence history for Newton-MG for varying initial approximations with
similar shape to the exact solution.

fact all entries are zero), so that the Newton iteration and the smoother diverge immedi-
ately. For initial estimates where the Jacobian is almost singular it can be expected that
convergence of a Newton iteration will be poor, if it is successful at all. Results in Ta-
ble 7.6 show that FAS also does not converge well when the Jacobian is almost singular.
In practice it is possible that a sequence of iterates may pass close to an approximation
at which a problem is no longer well defined, such as in this case. A robust numerical
method should be able to pass close to one of these values without diverging.

Grid
C2

0.05 0.1 0.2 0.4 0.7

Newton-MG

642 div 42 33 21 15
1282 div 42 33 24 15
2562 div 45 33 24 15
5122 div 45 33 24 18
10242 div 54 42 30 18
20482 div 57 45 30 18

FAS

642 27 29 26 24 23
1282 >30 >30 >30 28 26
2562 >30 div 30 >30 29
5122 div div >30 >30 30
10242 div div >30 div 30
20482 div div div div 30

Table 7.6: Number of V-Cycles required to reduce the initial residual in approximation by
a factor 1e-7 for FAS and Newton-MG for initial guesses u(0) = C2 sin(πx) sin(πy) with
0 < C2 < 1.
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Table 7.6 shows the number of V-cycles performed for varying small C2. The results
clearly show that the Newton iteration is the more robust with respect to the initial ap-
proximation across all grid sizes. If an iteration is convergent on a coarse grid it will also
be convergent on a fine grid, which is not observed for FAS. Far away from the exact so-
lution, convergence is not independent of the mesh parameters, whereas for Newton-MG
the convergence histories, shown in Figure 7.11 for the case C2 = 0.1, are very similar.
It is clear from this figure that the problem with the Newton iteration is the very poor
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Figure 7.11: Convergence history of Newton-MG for C2 = 0.1

first iteration. The phenomenon of Newton’s iteration giving a correction which is too
large is well researched [58, §3.1.3], and it is for this reason that a damping strategy is
often employed in order to ensure that the iterates remain within a trust region [58, §3].
Damping strategies are available for both the Newton iteration and the FAS iteration and
their effectiveness is discussed in the next section.

7.6 Globalisation Techniques

In this section we look at techniques designed to stabilise convergence of Newton and FAS
methods. In practice convergence of a Newton iteration is known to be unpredictable out-
side of trust regions or balls of guaranteed convergence. Figure 7.9 shows that the same
can be true for an FAS iteration. In order to increase the size of trust regions, scalar damp-
ing parameters are used to control the size of a correction term. For Newton’s method
usually a single scalar parameter is introduced, as in Algorithm 3.4. One method of sta-
bilisation of FAS is given in Algorithm 4.4, in which a scaling parameter is introduced to
control the size of the coarse grid correction term (see lines 6-12 in Algorithm 4.4). An al-
ternative is the Damped Nonlinear Multilevel Method (DNMLM), introduced in [87, 88],



Chapter 7 Application to the p-Laplacian 138

which is outlined in its original form in Algorithm 7.1. This solves the discrete nonlinear
problem

AJ(uJ) = fJ .

Compared with the NMLM (see Algorithm 4.4) there are two additions to Algorithm 7.1.

Algorithm 7.1 Damped Nonlinear Multilevel Method

Require: Aj, Aj−1, ũj−1, Sj, P
j
j−1, R

j−1
j

1: function DNMLM(j, uj, fj, γ, ν1, ν2)
2: uj ← Sν1j (fj, uj) . Pre-smooth
3: fj−1 ← Rj−1

j (fj − Aj(uj))
4: s← σ(j − 1, fj−1) . Calculate scaling parameter
5: fj−1 ← Aj−1(ũj−1) + sfj−1 . Use pre-defined ũj−1 on coarse grid
6: if j = 2 then
7: uj−1 ← A−1

j−1(fj−1)
8: else
9: for i = 1, . . . , γ do

10: uj−1 ← DNMLM(j − 1, uj−1, fj−1, γ, ν1, ν2)
11: ej−1 ← (uj−1 − ũj−1)/s
12: ψ ← ψ(fj, uj−1, uj) . Calculate damping parameter
13: uj ← uj + ψP j

j−1ej−1

14: uj ← Sν2j (fj, uj) . Post-smooth

The first is the damping parameter ψ (see lines 12 and 13), and the second is the introduc-
tion of the coarse grid approximations ũj−1, j = 2, . . . , J (see line 5).

The coarse grid approximations ũj−1 are specified at the start of the algorithm and
are used to simplify the calculation of a ‘good’ scaling parameter s (see line 4). From
the discussion in Subsection 4.2.3 and study of the application of the method [85–88] we
see that a ‘good’ scaling parameter is one such that the coarse grid correction closely ap-
proximates a Newton correction. For a steady-state problem, using information regarding
current approximations, the right-hand side and expected solution, it is feasible that a set
of approximations ũj−1, j = 2, . . . , J may be chosen so that the parameter s becomes
easier to compute. However, for a time-dependent problem it is likely that a single set of
ũj−1 will not be appropriate at all time steps as the solution evolves. Therefore, as part
of a time-dependent solve some computational effort will be required to select a ‘good’
set of coarse grid approximations. To the best of our knowledge there exists no litera-
ture describing how a set of coarse approximations should be chosen, and there exists no
literature where this method is applied to a time-dependent problem. This suggests that
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this approach is either too complicated or too costly to be a competitive algorithm. In our
research we have found it difficult to select a good set of coarse approximations. Results
obtained did not show robust convergence behaviour, so they are not presented in this
thesis, where we restrict our comparisons to the use of FAS.

If the initial approximation on each grid varies, as in Algorithm 4.4, the choice of an
appropriate scaling parameter s in line 5 of Algorithm 4.4 becomes difficult. Again, as
far as we are aware, there exists no literature describing how an appropriate parameter s
can be chosen.

The choice of damping parameter ψ (see line 12 of Algorithm 7.1) is discussed in
[87,88]. The calculation is based on sound theory and, in combination with a good scaling
s, allows for a proof of convergence of the method to be obtained for simple nonlinear
problems (see [88]) where the nonlinearity is in a source term. Convergence has not been
shown for problems with a nonlinearity in the diffusion coefficient. In [88], the calculation
of ψ requires the calculation of the Jacobian matrix on the fine grid, and requires an extra
residual calculation on the fine grid. This adds considerable computational costs into
what we have already shown is an expensive iteration (see Chapter 6), and may require
the storage of the Jacobian matrix. The fact that FAS does not need to store the Jacobian
matrix is one of the few advantages of an FAS iteration over a Newton iteration that we
have observed so far, so that the storage of this is undesirable.

In contrast, there exist simple procedures for stabilising Newton’s method which are
computationally cheap compared to the method for stabilising DNMLM in [88]. For
this reason, as well as the fact that the DNMLM has not been adopted in practice, we
do not consider the application of the DNMLM. Results in the rest of this section also
demonstrate that the NMLM, as given in Algorithm 4.4, is a much less desirable iteration
than a global Newton method.

The damping strategy that is employed for the Newton iteration for the results pre-
sented in this section is the popular Armijo rule [3], which often works well in practice.
This is one of the most simple globalisation procedures available. Before stating the rule
some necessary notation is introduced. We recall from (7.11) that component i of the
residual is given by

F (u)(ϕi), i = 1, . . . , Nj.

For an approximation u to the exact solution u∗j ∈ Vj the residual vector F (u) is defined
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as

F (u) ≡ [F (u)(ϕi)]
Nj

i=1 , (7.55)

and the discrete L2 norm of the residual is given by

‖F (u)‖2 =
1

Nj

Nj∑
i=1

|F (u)(ϕi)|2 . (7.56)

Armijo’s rule is given in Algorithm 7.2 and provides a simple procedure for choosing an
appropriate Newton update once the correction term δ(k) has been calculated at the kth

Newton iteration. The choice of scaling factor, γ, is theoretically justified, see [3], but the

Algorithm 7.2 Armijo’s Rule

Require: Γ = {1, 1/2, 1/4, . . . , γmin}, F, u(k)
j

1: l← 1, γ ← Γl

2: while
∥∥∥F (u

(k)
j + γδ(k))

∥∥∥2

> (1− 1
2
γ)
∥∥∥F (u

(k)
j )
∥∥∥2

and γ 6= γmin do
3: l← l + 1, γ ← Γl

4: u
(k+1)
j ← u

(k)
j + γδ(k)

discussion of this is outside of the scope of the thesis.
In the following, Newton’s method damped with Armijo’s rule is compared to a

NMLM. We begin with an investigation of how the robustness of the algorithm is im-
proved for approximations where the Jacobian (7.22) is nearly singular. Results from the
previous section (see Figure 7.11) show that the Newton correction is over-approximated
(i.e. too large) for such approximations. Using Armijo’s rule to damp the correction sta-
bilises the correction term, and improved convergence can be observed in Figure 7.12a
when compared to Figure 7.11. The increase in robustness is clear. The iteration also
seems to give mesh independent convergence. The deterioration in the convergence on
finer grids can be attributed to rounding errors, as the residuals are of the order 1e-12

when the convergence deteriorates on the finer grids.
Figure 7.12b demonstrates that a stabilised Newton method is still not convergent

at every iteration for certain initial approximations. However, the stabilisation of the
method is clear. Convergence is obtained for an initial approximation u(0) = 0.01u∗ in
Figure 7.12b, whereas a divergent iteration occurs at u(0) = 0.05u∗ in Table 7.6. The non-
damped Newton method diverges after a single iteration when using the initial approxi-
mation shown in Figure 7.12b, but the damped variant is ultimately convergent on all grid
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(b) u(0) = 0.01u∗

Figure 7.12: Convergence histories for Newton-MG stabilised using Armijo’s rule for
problem (7.9) with exact solution u∗ = sin(πx) sin(πy) and varying initial approxima-
tions. γmin in Armijo’s rule is set to 2−10.

levels. Note that the convergence can be obtained for initial approximation u(0) = 0.01u∗

on every iteration if γmin is reduced to ∼ 1e-4. This comes at a computational expense
however, since the number of times the nonlinear residual needs to be recalculated is at
worst 14, as 2−14 ≈ 1e-4. This can be a considerable cost, and it may also be that a
small damping parameter can cause the method to converge unnecessarily slowly. There-
fore, small values of the damping parameter are often avoided in practice. Ultimately
convergent, rather than monotone convergent iterations, are acceptable.

For the NMLM it has not been possible, through a combination of looking for any the-
ory in the literature, or undertaking empirical experiment, to find a suitable s for problem
(7.9) so that convergence is stabilised in a predictable manner. However, for the purposes
of this discussion we assume a ‘good’ parameter has been chosen and consider what effect
this good scaling should have on the convergence of the method. From the discussion in
Subsection 4.2.3, as well as the literature in which NMLM is described [85–88], the scal-
ing parameter is used in order to make the coarse grid correction approximate a Newton
correction. The reason for this is made clear in the discussion in Subsection 4.2.3. There-
fore, an ideal s is defined as one that causes the NMLM coarse grid correction, calculated
in lines 6 to 12 of Algorithm 4.4, to be the actual Newton correction. To investigate the
convergence of an ideal correction Algorithm 7.3 is introduced, which is a hybrid of FAS
and Newton for solving the nonlinear problem

F (u) = 0.
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The procedure is called ideal NMLM, and is a combination of nonlinear smoothing on a
fine grid and an (approximate) Newton correction on the coarse grid. The solve in line 4

Algorithm 7.3 Ideal NMLM

Require: Sj , P j
j−1, Rj−1

j

1: function FAS-NEWTON(j, uj, γ, ν1, ν2)
2: uj ← Sν1j (0, uj) . Perform pre-smoothing
3: F ′j−1 ← Rj−1

j F ′jP
j
j−1 . Set the coarse grid Jacobian

4: δj−1 ← (F ′j−1)−1
(
Rj−1
j F (uj)

)
. Calculate the Newton coarse grid correction

5: uj ← uj − P j
j−1δj

6: uj ← Sν2j (0, uj) . Perform post-smoothing

may be replaced by an approximate solve, such as a fixed number of multigrid iterations.
The results presented in this section are for the case that the linear solve is performed
approximately using a fixed number (three) linear multigrid iterations. Figure 7.13 shows
some interesting behaviour of the ideal NMLM iteration. Firstly, in Figure 7.13a, the
convergence of the ideal NMLM and FAS are compared when the approximation is close
to the exact solution. The theory from Subsection 4.2.3 shows that in this case the FAS
iteration should be close to the ideal update. This behaviour is certainly observed, and the
convergence of both methods is asymptotically equal.

The convergence behaviour further away from the exact solution highlights some more
interesting behaviour. In Figures 7.13b to 7.13d we see that the ideal NMLM converges
like a Newton method further from the solution, but when the Newton iteration enters the
super-linear regime, the convergence of the ideal NMLM tends to the same convergence as
FAS. In Figure 7.13b the initial approximation is closer to a value for which the Jacobian
(7.22) is singular. Ideal NMLM displays the same over-approximation of the correction as
the Newton iteration. The convergence of the FAS iteration is less stable for the first few
iterations. The over-approximation of the Newton step can be damped using an Armijo
strategy, but it is not known how the FAS should be stabilised.

When an initial approximation far from the solution is taken (see Figures 7.13c and 7.13d)
the ideal NMLM again converges like a Newton method until the asymptotic super-linear
regime, when it then converges like FAS. As previously noted, the convergence of FAS
outside of a trust region is unpredictable. In Figure 7.13c the convergence is very good
for the first few iterations, and operates better than an ideal NMLM. However, there is no
theoretical justification as to when the FAS iteration should perform this well. It is just
as likely that the iteration may not monotonically decrease, as in Figure 7.13b, or that it
diverges, as in Figure 7.13d.
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(b) u(0) = 0.5 sin(πx) sin(πy).
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(c) u(0) = 5 sin(πx) sin(πy).
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(d) u(0) = 100 sin(πx) sin(πy).

Figure 7.13: Convergence of FAS, ideal NMLM and Newton-MG for problem (7.9) with
α = 1.0 on a 10242 grid for varying initial approximations.
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This section highlights that for a problem with a continuous right-hand side FAS lacks
the fast convergence of Newton’s method close to the exact solution, and lacks the robust-
ness, or an easy way to regain robustness, for approximations far from the exact solu-
tion. This, combined with the better computational efficiency demonstrated in Chapter 6,
makes Newton’s method by far the better choice for this problem. This behaviour is ob-
served also for other more complicated problems presented in Sections 7.7, 8.1 and 8.3.
We now turn our attention to the case in which there are large discontinuities in a diffusion
coefficient on the domain.

7.7 Convergence for Discontinuous α

In this section we consider the application of Newton-MG and FAS to the problem (7.9),
which is given again in (7.57) below:

F (u)(v) ≡
∫

Ω

α(x) |∇u|2∇u∇v dx−
∫

Ω

fv dx = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(7.57)

The linearisation is given in (7.10), and repeated in (7.58):

Fu(v, w) =

∫
Ω

α |∇u|2∇w∇v dx+

∫
Ω

2α(∇u∇w)(∇u∇v) dx. (7.58)

In the previous sections α was constant throughout the domain. Now we consider the case
that α > 0 is piecewise constant and discontinuous. The theoretical detail of the conver-
gence of linear multigrid methods applied to a problem with highly varying coefficients is
outside of the scope of this thesis, but a note is made as to how the theory can be adapted
for the current problem. The theory presented in [156] (summarised in Subsection 5.1.3)
is for a symmetric positive definite linear problem of the form

−∇ · (α∇u) = f, (7.59)

where boundary conditions are not specified. Any bounds obtained in the theory rely on
the equivalence of the energy norm

‖u‖2
α =

∫
Ω

α |∇u|2 dx (7.60)
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with the H1 norm. For (7.58) the energy norm is given by

‖v‖2
u,α =

∫
Ω

α |∇u|2 |∇v|2 dx+

∫
Ω

2α(∇u,∇v)2 dx. (7.61)

We introduce the notation A h B to mean that A ≤ CB and B ≤ cA for some benign
constants C, c. Taking α |∇u|2 as the coefficient function in (7.60) such that

‖v‖2
α|∇u|2 =

∫
Ω

α |∇u|2 |∇v|2 dx, (7.62)

the following lemma is simple to prove.

Lemma 7.3. The energy norm ‖v‖u,α is equivalent to ‖v‖α|∇u|2 , i.e.

‖v‖u,α h ‖v‖α|∇u|2 . (7.63)

Proof. From the definition of the two norms we immediately have

‖v‖α|∇u|2 ≤ ‖v‖u,α . (7.64)

To show the reverse inequality requires application of the Cauchy-Schwarz inequality for
vectors as follows

‖v‖2
u,α =

∫
Ω

α |∇u|2 |∇v|2 dx+

∫
Ω

2α(∇u,∇v)2

≤
∫

Ω

α |∇u|2 |∇v|2 dx+

∫
Ω

2α |∇u|2 |∇v|2 dx

= 3 ‖v‖2
α|∇u|2 .

(7.65)

Using the above lemma, letting v, w ∈ H1
0 and u 6= 0, as well as utilising the fact that∇u

is piecewise constant on Ω for a piecewise linear basis, the theory in [144,156] is directly
applicable to the linear system of equations

Fuj(ϕi, δ) = −F (uj)(ϕi), i = 1, . . . , Nj, (7.66)

on grid Ωj with Nj non-Dirichlet nodes. Note that the coefficient function for the linear
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problem (7.66) is not defined solely by α, but that it is influenced by the approximation u
to the exact solution u∗. The coefficient is given by α |∇u|2 and highlights that the conver-
gence of the iteration must consider a discontinuous coefficient function for a piecewise
linear finite element discretisation. This leads to some interesting convergence behaviour
of the Newton iteration.

In the following it is assumed that the Newton linearisation close to the exact so-
lution approximates closely the action of the nonlinear operator. This means that the
convergence behaviour of a Newton iteration will be determined by the convergence of
the linear inner iteration. Further from the exact solution it is not possible to say what
effect the coefficient function will have on the convergence of a Newton method, so we
concentrate on the case that an initial approximation is close to the exact solution.

In order to obtain an initial approximation close to the exact solution for the problems
presented, an iteration is performed until convergence on the finest grid level. Some con-
tinuation or damping strategies may need to be employed to achieve this. An iteration is
assumed to have converged when the nonlinear residual norm is not reduced by a Newton
iteration. The solution on each level is then scaled by a factor to move it away from the
exact solution. When results are presented this scaling factor is given.

Results presented in this section are for the case that the function α is not resolved
on some of the coarser grids, which should not affect the convergence of the linear multi-
grid iteration, or therefore the Newton iteration. As mentioned in Subsection 5.1.3, for
multigrid to converge independent of the size of jumps in the coefficient, the coefficient
function α |∇u|2 must satisfy a quasi-monotonicity (see Definition 5.1) property on all
meshes.

Figure 7.14 shows the distribution of the coefficient on the unit-square domain for
the results shown in Table 7.7. The scalar C3 is set such that α alone would not satisfy
some quasi-monotonicity conditions. Without a priori knowledge of the solution the exact
effect on the convergence of the inner iteration is difficult to predict. Observed results are
justified with an a posteriori investigation of the solution.

Results presented in Table 7.7 are for a 5122 grid with coarsest grid 162. Note the
inclusion of results for a preconditioned GMRES algorithm (see Subsection 3.3.3). This
has not been used so far, as the convergence of this method closely matches that of the
multigrid iteration in the constant coefficient case. However, for this problem a clear
improvement over the use of pure multigrid is observed in the results, which are included
to demonstrate that a simple change in the Newton iteration can give much improved
convergence behaviour. No corresponding improvements are known for the FAS iteration.
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Figure 7.14: Distributions of α satisfying, or not, quasi-monotonicity conditions.
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Quasi- and Γ-Quasi-Monotone Only Γ-Quasi-Monotone
C3 MG PGMRES FAS MG PGMRES FAS
101 15 12 27 15 12 28
102 15 12 30 21 15 44
103 18 12 84 27 18 >100
104 18 15 >100 45 21 >100
105 18 15 >100 60 24 >100

Only Quasi-Monotone Neither Quasi- nor Γ-quasi-monotone
C3 MG PGMRES FAS MG PGMRES FAS
101 15 12 27 12 12 26
102 15 12 82 21 15 82
103 24 12 >100 36 18 >100
104 48 15 >100 78 21 >100
105 102 18 >100 >150 33 >100

Table 7.7: Number of V-cycles / preconditioned GMRES iterations required to reduce the
residual by a factor 1e-7 from initial approximation u(0) = 0.9u∗ for varying C3 on a 5122

mesh.

For the distribution of α shown in Figure 7.14a the convergence of a linear multigrid
iteration is expected to be independent of the size of the jump in the coefficient. This
behaviour also holds true for coefficient α |∇u|2. The convergence is independent of the
size of the jump in the coefficients, but the convergence of the Newton iteration is not
independent of the mesh spacing for large values of C3 (see Figure 7.16). This is inves-
tigated in more detail after a discussion of the convergence results for the configurations
of α shown in Figures 7.14b to 7.14d. If α were to determine the coefficient function
it would be expected that the convergence would deteriorate as the size of the jump in
coefficient increases, as predicted in Theorem 5.1. The rate of deterioration is not known.
A dependence on the size of the jump in the coefficients is clear also in the case of the
Newton iteration.

For all of the configurations shown in Figure 7.14 the FAS iteration does not scale
well with the size of the jumps in coefficient. The convergence is dependent on the size
of the jump of the coefficient even in the case that quasi-monotonicity conditions hold,
and the deterioration of the convergence is much more rapid than that of the approximate
Newton iterations. The results clearly show that the Newton methods are better to use
in this situation. A preconditioned GMRES iteration is also superior to just a multigrid
algorithm. This is due to the spectral properties of the linear operator. The regions of high
coefficient add large eigenvalues to the operator (see [156]), which increases the size of
the condition number of the linear operator. However, a GMRES iteration is much less
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affected by individual large (or small) eigenvalues and convergence requires the spectrum
to be grouped into bounded intervals (see [153, §6.11]).

Results in Table 7.7 suggest that the convergence of a Newton-MG iteration for highly
varying coefficients can be predicted by the distribution of the function α. However, this
is true only for the examples shown. In general the product α |∇u|2 gives the coefficient
function, and good convergence can be observed in the nonlinear setting where the dis-
tribution of α on the domain does not satisfy quasi-monotonicity conditions, an example
of which is shown in Figure 7.15. The number of V-cycles required for convergence of

1
2

α = 1.0

1
64

α = 105

(a) Distribution of α over Ω is not
Γ-quasi-monotone.

1

10

100

Coefficient

0.129

394

(b) Distribution of coefficient α |∇u|2 is type 0 quasi-
monotone even on a 162 grid.

Figure 7.15: Distribution of α and coefficient α |∇u|2. Due to the shape of the solution
the coefficient is quasi-monotone, even when α is not.

Newton-MG and FAS are shown in Table 7.8. FAS does not converge well again, as the
coefficient is not resolved on the coarsest grid. On the other hand Newton-MG converges
very well, and is independent of the size of the jumps in the coefficient. Although not pre-
sented, results are very similar when using a multigrid preconditioned GMRES iteration
for the linear solve. As predicted in Theorem 5.1 the convergence depends logarithmically
on the size of the mesh around regions where the coefficient is type 0 quasi-monotone.
Table 7.8b shows that fewer iterations are required as the coarsest mesh is refined, and
when the coefficient is resolved on all grid levels the convergence improves drastically.
However, the computational effort starts to be dominated by coarse grid solves when the
grid is uniformly refined, but the same increase in performance should be observed for a
locally refined mesh [156].

The results presented so far suggest that the convergence of the Newton iteration may
be entirely defined in terms of how the linear iteration converges, which is not true. For
the distribution of α in the previous example (see Figure 7.15a) the solution does not
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Grid Size Newton-MG FAS
1282 27 >100
2562 27 >100
5122 27 >100
10242 27 >100
20482 27 >100

(a) Number of V-cycles required for conver-
gence using coarsest grid 162.

Grid Size
Coarsest Grid 1282 2562 5122 10242

82 30 30 30 30
162 27 27 27 27
322 24 24 24 24
642 12 15 15 15

(b) Number of V-cycles required for conver-
gence for Newton-MG for varying coarsest
grids. This displays dependence on the grid
spacing for type 0 quasi-monotone coefficient,
as predicted in Theorem 5.1.

Table 7.8: Number of V-cycles required for convergence for Newton-MG and FAS for the
distribution of α shown in Figure 7.15a on various grids.

depend on the value of α taken on the bulk of the domain. Hence, Assumptions 7.1 are
satisfied. In particular, ‖∇u‖∞ is uniformly bounded independent of the size of the jump
in the coefficient.

For a distribution of α where a region of high value is in the interior of the domain,
as in Figure 7.14a, the solution does depend on the size of the jump in α. The solution
grows as the size of jump in α grows. Therefore ‖∇u‖∞ is not bounded independent of
α and Assumptions 7.1 are not satisfied. That these assumptions are necessary for mesh
independent convergence is demonstrated in Figure 7.16. At relatively low C3 the conver-
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(b) C3 = 105

Figure 7.16: Convergence histories for varying mesh sizes for C3 = 102 and C3 = 105 for
distribution of α shown in Figure 7.14a. Convergence is not independent of mesh spacing,
as Assumptions 7.1 are not satisfied.

gence is independent of the mesh. However, for the larger value of C3 the convergence is
clearly dependent on the mesh.
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The results in this section show that the convergence of a nonlinear iteration depends
acutely on the value of the exact solution to the nonlinear problem. In this section vary-
ing convergence behaviours have been observed for the same nonlinear operator. This
highlights a difficulty in the convergence analysis of nonlinear operators, as it will be
difficult to predict convergence in general for a specific nonlinear problem without prior
knowledge of the exact solution.

7.8 Summary

In this chapter results have been presented to demonstrate that, for a non-time-dependent
nonlinear elliptic operator with nonlinearity in the diffusion coefficient, a Newton-MG
iteration is superior to an FAS iteration in terms of execution time and robustness. New-
ton’s method is much more robust with respect to a poor initial approximation, and is less
sensitive to changes in coefficient on the domain. As well as this there exist a number of
well researched methods for the stabilisation of Newton methods, whereas the stabilisa-
tion of an FAS iteration is difficult. It is also not necessary for the solution to be resolved
on coarse grid levels for Newton-MG to converge independent of mesh parameters. Dis-
cussion has been included to demonstrate situations in which a Newton iteration may
seem to be performing poorly, but simple algorithmic corrections restore expected fast
convergence of the method.

Although only a single nonlinear operator was considered the results clearly show
the significant effect that the exact solution to the problem has on the convergence of a
method. Therefore, a convergence theory for a nonlinear iterative method must include a

priori assumptions on the solution in order to be able to predict convergence behaviour.
Results also demonstrate that the linear iteration may have highly varying coefficients,
depending on the shape of the exact solution.

In the next chapter it is demonstrated that Newton-MG is also a better iteration when
applied to time-dependent problems, where the linearisation is not symmetric positive def-
inite. The discussion in this chapter helps to explain the observed convergence behaviour
also for these more challenging problems.



Chapter 8

Application to Time-Dependent
Problems

This chapter presents the comparison of Newton-MG and FAS iterations applied to time-
dependent problems with physical applications. Section 8.1 deals with the porous medium
equation (PME), and Sections 8.2 and 8.3 give different formulations of the Richards
equation. As in the previous section experiments are performed demonstrating the com-
putational efficiency and robustness of the algorithms. Robustness is considered in terms
of a time-step size, and results are explained using the discussion from the previous chap-
ter and the theory introduced in Chapters 4 and 5. All equations are solved in a two-
dimensional setting. In the previous chapter a nonlinear iteration was considered to have
completed successfully if a reduction of 1e-7 in the nonlinear residual was obtained. For
the time-dependent problems we consider that it is sufficient to reduce the residual by
a factor 1e-3 at each time step, as this is more computationally efficient. This stopping
criterion is also used in practice (e.g. [154]) and is valid under the assumption that the
initial residual at each time step will be small for a sufficiently small time step parameter.

152
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8.1 Porous Medium Equation

In this section the solution of the porous medium equation (PME) (see [97, 131]) is con-
sidered. The problem to solve is given by

∂

∂t
u = ∇ · (um∇u), ~x ∈ Ω

u = 0, ~x ∈ ∂Ω,

u = u(0), t = t0,

(8.1)

on domain Ω = (−1, 1)2 for (m > 0) ∈ N. This equation can be used to model various
diffusion processes, such as the diffusion of gases through porous media [55] or the intru-
sion of pollutants in monuments [63, 158]. A radially symmetric, exact solution for (8.1)
is known due to Barenblatt [11], given by

u(x, t) =
1

µ2

[
max

{
1−

(
r

r0µ

)2

, 0

}] 1
m

,

r =
√
x2

1 + x2
2, µ =

(
t

t0

) 1
2(1+m)

, t0 =
r2

0m

4(1 +m)

(8.2)

in two dimensions. Here xi, i = 1, 2 are the component directions in two-dimensions, t
is time and r is a radius from the origin. The solution is non-negative, and has compact
support, which grows as time progresses. This solution is only valid for as long as the
support is contained in the domain Ω. Here we have that r < 1, as Ω = (−1, 1)2, hence
using the definitions in (8.2) requires

t < t0

(
1

r0

)2(1+m)

,

and r0 < 1. For brevity results are only presented form = 2 in a two-dimensional setting.
The case m = 2 is challenging because the gradient of the solution at the boundary of its
support is unbounded (in theory). Therefore, the gradient near this boundary will increase
as a mesh is refined and it cannot be expected that the convergence of a nonlinear iteration
will be independent of the grid spacing. However, it is shown in [63,158] that if u satisfies
a local Lipschitz condition the convergence deteriorates in proportion to the grid spacing
for the porous medium equation solved using a finite difference scheme. There, taking
the time-step proportional to the grid spacing gives an optimal algorithm, in terms of the
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running time. The exact solution u∗ given in (8.2) is clearly not Lipschitz continuous
in the continuous case, but results demonstrate the same optimal convergence behaviour
(see Table 8.4 and Figure 8.1) for the discrete problem. Before giving empirical results in
Subsections 8.1.2 and 8.1.3, the discretisation of the problem is outlined in the following
subsection.

8.1.1 Discretisation and Weak Formulation

This subsection outlines the temporal and spatial discretisation of (8.1). As in Section 2.6,
let δt be a constant time-step parameter such that tk+1 − tk = δt, and let tk = t0 + kδt

for some given initial time t0. Let u(k) = u( · , tk) denote the solution u at time tk. The
results presented are for the case that (8.1) is discretised in time using the Crank-Nicolson
method (see Section 2.6) to give the time-discrete problem

u(k+1) − δt

2
∇ ·
[(
u(k+1)

)2∇u(k+1)
]

= u(k) +
δt

2
∇ ·
[(
u(k)
)m∇u(k)

]
. (8.3)

Assume that the solution exists, is unique, and that u(k) ∈ W 1,p, for some p > 2 at all time
steps k. To discretise in space let a hierarchy of grids be defined as in (7.2). With each
grid Ωj , j = 1, . . . , J , associate the finite element spaceWj ⊂ W 1,p, the basis of which is
the set of piecewise linear nodal basis functions of S0(Ωj) (see Equation (2.15)). A basis
function is denoted by ϕi, i = 1, . . . , Nj for Nj the number of non-Dirichlet boundary
nodes on Ωj . Taking test functions ϕi ∈ Wj and integrating (8.3) over Ω gives the weak
system of equations

∫
Ω

u(k+1)ϕi d~x+
δt

2

∫
Ω

(
u(k+1)

)2∇u(k+1)∇ϕi d~x = f(u(k), ϕi), i = 1, . . . , Nj, (8.4)

where

f(u, v) =

∫
Ω

uv d~x− δt

2

∫
Ω

u2∇u∇v d~x.

Defining

F (u)(v) ≡
∫

Ω

uv d~x+
δt

2

∫
Ω

u2∇u∇v d~x, (8.5)
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it is possible to write (8.4) as

F (u(k+1))(ϕi) = f(u(k), ϕi), i = 1, . . . , Nj. (8.6)

The Jacobian matrix is formed using the derivative of (8.5), given by

Fu(w, v) =

∫
Ω

wv d~x+
δt

2

[∫
Ω

2uw∇u∇v d~x+

∫
Ω

u2∇w∇v d~x
]
, (8.7)

which may be split into a symmetric and non-symmetric part F s
u and F ns

u , respectively.
These are given by

F s
u(w, v) =

∫
Ω

wv d~x+
δt

2

∫
Ω

u2∇w∇v d~x, (8.8)

F ns
u (w, v) =

δt

2

∫
Ω

2uw∇u∇v d~x. (8.9)

Let

r(k+1) =
[
F (u(k+1))(ϕi)− f(u(k), ϕi)

]Nj

i=1
(8.10)

be the vector of residual values of problem (8.6), and let

F(k+1) = [Fu(k+1)(ϕl, ϕi)]
Nj

i,l=1 (8.11)

be the Jacobian matrix at time k+ 1. The linear system of equations to solve in a Newton
iteration at time step k is given by

F(k+1)δu = r(k+1), (8.12)

for unknown correction δu. We assume that the inverse F−1
(k+1) exists at all times. Unlike

in the previous chapter, the linearisation contains a non-symmetric term, which can cause
problems if the non-symmetry becomes too large, as shown in the theory of Bramble,
Kwak and Pasciak [26].

We consider if the non-symmetric part of the PME will become large in the case of
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the self-similar solutions given in (8.2). Inspection of (8.2) shows that

∥∥u(k)
∥∥
∞ ≤ 1

for all times. However, the gradient is unbounded at the boundary of the support of the
function, such that as the mesh spacing h is decreased

∣∣∇u(k)
∣∣ → ∞. It is safe to as-

sume, therefore, that the non-symmetric term (8.9) will be significantly larger than the
symmetric term (8.8) near the boundary of the support of u(k), unless it is scaled by a
sufficiently small time-step parameter. Note that the symmetric part of the Jacobian in
(8.8) is composed of a mass matrix term, and a term that is scaled by the time-step.
Therefore the symmetric part of the Jacobian is bounded from below independent of the
time-step, and the non-symmetric part of the Jacobian can be made arbitrarily small by
making the time-step arbitrarily small. By choosing δt small enough it is possible to en-
sure the convergence of the linear multigrid iteration in each Newton iteration and results
in Subsection 8.1.3 show that the Newton iteration and the FAS iteration are convergent
at small time-steps. What is more interesting is the behaviour for larger time-steps, when
the non-symmetric term starts to impact on the convergence of the methods.

We note that this problem contains a mass matrix term. This is the matrix M obtained
by integrating the basis functions, i.e.

M =

[∫
Ω

ϕiϕl d~x
]Nj

i,l=1

. (8.13)

In order to stabilise the methods the mass matrix term is ‘lumped’, which means that
only diagonal terms exist, which are the sum of the remaining terms in the column of the
matrix, i.e. the diagonal entries in the lumped mass matrix ML are given by

ML
i,i =

Nj∑
l=1

Ml,i. (8.14)

For simple equations this is known to preserve a maximum principle [147] and evidence
suggests that the same is true for more complicated problems [21, 48]. In particular spu-
rious oscillations and non-physical values in a solution are often avoided using a lumped
mass matrix [53, pg. 383]. Results for the PME show that non-physical negative values of
the solution are prevented using the lumping of the mass matrix term. For small values of
the time-step the diagonal lumped mass matrix term dominates. It is therefore likely that
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the nonlinear Jacobi iteration will be a good solver as well as a good smoother at small
time scales, and it is expected that the FAS iteration will be a much more competitive
solution algorithm. Results in Subsection 8.1.3 support this claim.

The theory in [26] states that so long as a non-symmetric linear system is a ‘compact’
perturbation from a symmetric positive definite system that convergence of linear multi-
grid remains independent of mesh parameters (see Subsection 5.1.3). This property also
holds for the nonlinear PME (see Subsection 8.1.3) and Richards equation (see Subsec-
tions 8.2.3 and 8.3.3). There exists no analysis to state why this should be the case. The
results presented suggest that a good heuristic for predicting the convergence of the non-
linear Newton iteration is to use the linear theory to predict the convergence of the linear
inner iteration. This relies on the assumption that the Newton iteration is convergent, and
in particular that at the exact solution the action of the linearisation matches the action of
the nonlinear operator.

Before moving on to a comparison of the convergence behaviours of the methods
for the PME, results are presented in the next subsection to show that the theory from
Chapter 6 can be used to gain an accurate bound on the running times of Newton-MG
and FAS iterations for the PME. A discussion of how the results suggest the running time
of the algorithms is likely to evolve for more complex nonlinear problems is also given.
Results in Subsection 8.1.3 demonstrate the robustness of the methods with respect to
changes in the time-step parameter.

8.1.2 V-Cycle Execution Time

For a time-dependent problem, such as the PME, which is discretised implicitly in time,
the Newton-MG and FAS iterations are used to solve the system of nonlinear equations
arising, which are given in (8.6) for the PME. In order to assess the execution time per
V-cycle it is not necessary to consider the time-dependence of the problem, and we can
instead consider the execution time of the algorithm for a steady state problem of the same
form as (8.7). Therefore, we introduce

F̃ (u)(v) =

∫
Ω

uv d~x+ C

∫
Ω

u2∇u∇v d~x−
∫

Ω

fv d~x. (8.15)

where f is some known function. The steady state problem for which we present timing
results is given by

F̃ (u)(v) = 0. (8.16)
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The timing results presented ignore the time required for the set-up of time-dependent
parameters. Table 8.1 shows the actual vs. predicted timing results for the nonlinear it-
erations. Approximations for the running time are gained using the formulas derived in
Equations (6.25) to (6.27), once the size of a work unit has been measured. A work unit
is measured as Wj ≈ 0.028, which was established through empirical experiment. This
is considerably faster than the work unit for the p-Laplacian. Using the same estimate as
in (6.24) for the execution time of the linear multigrid (i.e. C(j)

LMG = 3/2Wj) will give an
optimistic estimate, likely to be smaller than the recorded execution time. This is because,
whilst the work unit grows, the amount of time required for the linear solve remains con-
stant – assuming that the same discretisation scheme is used. We therefore expect to see
under-approximation of the execution time of Newton-MG iterations. For such a small
work unit it is also expected that operations such as grid transfers will have a small effect
on the execution time. In the estimate of the FAS iteration the cost of grid transfers is
ignored, so that it is expected that the execution times will also be under-predicted. The
column C̃NMG gives the predicted time for a Newton-MG iteration in the case that the op-
erator is re-discretised on each grid; ĈNMG gives the running times of Newton-MG using
Galerkin coarse grid operators; and CFAS gives the execution times for the FAS iteration.
The columns labelled ‘Act.’ give the measured running times for each iteration. Recall

p/ν C̃NMG Act. ĈNMG Act. CFAS Act.

γ = 1

1 15.03 17.62 14.23 18.66 15.40 18.29

2 18.33 24.84 17.60 24.63 27.13 30.86

3 21.63 30.79 20.90 30.03 38.86 42.97

4 24.93 34.83 24.20 34.92 50.60 53.93

γ = 2

1 16.68 19.80 15.95 21.16 23.10 40.18

2 21.63 29.29 20.90 28.80 40.69 58.10

3 27.34 35.95 25.85 35.17 58.30 75.80

4 31.53 41.96 30.80 41.00 75.90 91.25

Table 8.1: Predicted and actual timing results required to perform 100 Newton / nonlinear
V-cycles.

that in Chapter 6 the theory predicted that when 3 pre- and post-smoothing iterations are
used in the FAS iteration and 3 linear MG iterations are performed per Newton itera-
tion, that Newton-MG will be ≈ 5.4 times more efficient than FAS. From the results in



Chapter 8 Application to Time-Dependent Problems 159

Table 8.1 we see that the computed ratio is

42.97

100.0
× 300

30.79
≈ 4.19, (8.17)

which is as large an improvement as previously. The difference here is that the cost of the
linear multigrid iteration is under-predicted. However, the speed up is still significant.

The results in Table 8.1 are for when the integrals over elements are calculated using
an analytic formula. For a simple problem such as the porous medium equation it is
possible to use an analytic formula, but for more complex problems it may be necessary to
use a numerical quadrature on the elements. The effect of the use of numerical quadrature
on the execution times of the algorithms is interesting, results for which are presented
below. The quadrature for which results are presented in Table 8.2 is a Simpson’s rule on
a triangle given by

∫
T

F (x) dx ≈ AT

(
3∑
i=1

[
1

20
F (x

(T )
i ) +

2

15
F (m

(T )
i )

]
+

9

20
f(c(T ))

)
, (8.18)

where x(T )
i , i = 1, 2, 3, are the nodal values on element T ; m(T )

i , i = 1, 2, 3, are the mid-
points of the edges; and c(T ) is the centroid of the element. This formula is not the most
sophisticated, and other formulae may give more accurate results, see [54]. We are only
interested in the effect the use of quadrature has on the execution times of the algorithms,
so that accuracy is not of much concern.

Table 8.2 shows the actual vs. predicted timing results using the above Simpson’s
rule to approximate integrals over an element. Advantage is taken of the fact that basis
functions are zero on some of the quadrature points to make the implementation more
efficient. It can be seen in Table 8.2 that the FAS execution times are under-predicted
to a larger extent in this case, whereas the estimated execution times for Newton-MG are
much more accurate. This can be explained by considering the results in Table 8.3, which
show the predicted vs. the recorded execution times of the individual components used in
the FAS and Newton-MG iterations.

The timings of the algorithm components are shown when using the analytic formula
and numeric integration to evaluate integrals over an element. Columns with heading
‘Predict.’ show the theoretically predicted running times, where the theory in Chapter 6 is
used. The other columns show the recorded execution times. The calculation of the coarse
grid right-hand side (which involves a calculation of the residual on the current grid and
the calculation of the residual on the coarse grid) is accurately predicted, since this is di-



Chapter 8 Application to Time-Dependent Problems 160

p/ν C̃NMG Act. ĈNMG Act. CFAS Act.

γ = 1

1 19.13 19.23 18.20 19.23 19.60 25.90

2 23.33 24.91 22.4 24.05 34.53 43.49

3 27.53 28.82 26.60 28.35 49.46 61.15

4 31.73 32.65 30.80 31.45 64.40 78.19

γ = 2

1 21.23 20.04 20.30 21.76 29.40 57.03

2 27.53 26.49 26.60 28.96 51.80 82.93

3 33.83 32.46 32.90 35.78 74.20 107.08

4 40.13 39.90 39.20 40.22 96.60 130.96

Table 8.2: Predicted and actual timing results required to perform 100 Newton / nonlinear
V-cycles when using quadrature to calculate integrals.

rectly related to the calculation of the residual. There are more significant deviations from
the expected value for the calculations involving all or part of the Jacobian matrix. For
these calculations the timings are over-predicted. This can often be expected in practice,
as in an implementation advantage can be taken of re-using previously calculated values.
It can be seen that better advantage is taken of this when calculating the diagonals of the
Jacobian compared to the entire Jacobian, when the analytic integrals are used, and that
the converse is true when using quadrature.

This behaviour can be explained by considering the calculations performed on each
element as part of the quadrature. From (8.18) it can be seen that function evaluations are
required at several points on an element. These function evaluations are performed at all
quadrature points when calculating the diagonals of the Jacobian matrix. The same values
may be re-used when calculating off-diagonal entries in the Jacobian matrix. Therefore,
a relative saving is made when calculating the entire Jacobian matrix as previously calcu-
lated values are re-used more often.

Component Calculation Analytic Predict. Numerical Predict.
Residual 0.022 0.022 0.028 0.028
Residual + RHS 0.029 0.027 0.037 0.035
Residual + Jacobian 0.087 0.088 0.086 0.108
Residual + Jacobian Diagonals 0.041 0.044 0.055 0.056

Table 8.3: Actual vs. predicted execution times (s) for the individual components used in
the solution of the PME. Times are given in seconds correct to 3 decimal places.

Extrapolating, using the above reasoning, we see that if a quadrature formula is used
with more quadrature points per element, the relative speed of the calculation of the entire
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Jacobian matrix will decrease compared to the calculation of the diagonals of the Jaco-
bian matrix. Since for complex problems it is often necessary to perform a numerical
quadrature, the results suggest that Newton-MG will give a better performance the more
accurately quadrature approximates the integrals over each element. For more accurate
quadrature see the summary of Gauss-Legendre quadrature on triangles of Cowper [54].

For the Simpson’s rule in (8.18) the ratio of the execution times of a V-cycle in the
FAS and Newton-MG iterations, as performed in (8.17) grows to approximately

61.15

100
× 300

28.82
≈ 6.36, (8.19)

which is larger than the predicted value of 5.4 (see Equation (6.28)), and demonstrates the
relative increase in efficiency of Newton-MG using numerical quadrature.

In this subsection we have shown that the framework for approximating the execution
time of the algorithms, as given in Chapter 6, is sharp and useful also for the PME. The
theory also helps to highlight that the relative efficiency of Newton-MG compared to
FAS will increase as the amount of work per element is increased. The next subsection
demonstrates the robustness of the methods, for the PME, with respect to a time-stepping
parameter.

8.1.3 Robustness

In this subsection the robustness of Newton-MG and FAS for the PME with exact solution
given in (8.2) is considered with respect to a time stepping parameter δt. The Crank-
Nicolson scheme is used to discretise in time and the arising discrete system of equations
to solve at each time step is given by (8.6). The initial approximation for the solution at
time step k+ 1 is taken to be the computed solution at time step k. It was demonstrated in
the previous chapter that the convergence of a nonlinear iteration is sensitive to an initial
approximation. In particular, the convergence is better the closer the initial approximation
is to the exact solution. For a theoretical justification of why this should be the case see
Subsection 3.4.1. Therefore, convergence should be best for a small time step. For a time
step too large the convergence may deteriorate or divergence of a nonlinear method may
occur due to a poor initial guess.

For an increasing time step it was shown in Subsection 8.1.1 that the influence of a
non-symmetric term in the linearisation (8.7) begins to grow. A standard linear multigrid
implementation, as considered in this thesis, does not perform well for a problem with a
‘large’ non-symmetric part [26]. Hence, not only is it possible that the initial approxima-
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tion to the nonlinear problem becomes poor with increasing time step, but the linearisation
becomes more challenging for a standard multigrid iteration to solve. Based on heuristics
from the linear multigrid convergence theory it is therefore expected that the convergence
of a Newton-MG iteration will deteriorate with increasing time step either because an
initial approximation becomes poor, or because the inner linear multigrid iteration is no
longer convergent. We investigate which one of these is the case in this subsection. There
is no theory to suggest how an FAS iteration will perform, and we are required to draw
conclusions from empirical results.

Often, when an implicit-in-time discretisation is used, taking a large time-step is de-
sirable, as very small scale changes are not of interest. Therefore, a solution method may
be considered ‘good’ if a large time step is permissible. Table 8.4 shows the maximum al-
lowable time step such that an FAS or approximate Newton iteration reduces the residual
norm by a factor 1e-3 at each time step, over the first 5 time steps. The solution is given
by (8.2) and the initial condition is set with r0 = 0.3 (see (8.2)). In theory the gradient of
the solution is infinite at the boundary of the support of the function. In practice, because
the function is represented as a piecewise linear continuous function, there is no infinite
gradient. Numerical diffusion also serves to smooth out the gradient at the boundary such
that the most extreme gradient is found in the initial condition, which represents the most
difficult situation for the Newton-MG and FAS iterations to solve. Therefore, a maximum
allowable time step can be found by considering whether the iterations converge for the
first 5 time steps. If the iterations converge for these then they converge for the remaining
time steps, if the time step is kept constant. This maximum allowable time step is shown
in Table 8.4 for different grid sizes.

Results are also included for a Newton method where the linear system is solved
using a multigrid-preconditioned GMRES iteration. Since it is known that the multigrid
iteration is most suitable for symmetric problems the preconditioning is applied to the
symmetric part of the Jacobian (8.8) only. The preconditioning procedure is also not a
solution procedure, and is intended to make the system better conditioned. As such a
single pre- and post-smooth are performed to make the iteration more efficient.

From Table 8.4 we see that a larger maximum time-step is permitted using a Newton-
MG rather than an FAS iteration at all grid levels. A much larger time-step may be
taken using a preconditioned GMRES iteration, and in fact the Newton-preconditioned
GMRES iteration is convergent for even larger time-steps than are given in Table 8.4. The
results show the maximum allowable time-step in which 20 or less nonlinear iterations are
required to achieve the desired 1e-3 reduction in the residual.

The fact that the Newton-GMRES iteration converges when the Newton-MG does not
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Grid Size MG FAS GMRES
32× 32 0.348 0.111 >10.0
64× 64 0.0828 0.0560 6.74

128× 128 0.0215 0.0158 0.544
256× 256 0.00968 0.00702 0.138
512× 512 0.00452 0.00311 0.0423

1024× 1024 0.00193 0.00134 0.0145
2048× 2048 0.000924 0.000702 0.00568

Table 8.4: Maximum allowable time-step (s) for FAS and inexact Newton iterations for
the PME with exact solution given by (8.2) with r0 = 0.3

demonstrates that the reason for divergence of the Newton-MG methods is the failure of
the linear multigrid iteration to converge, rather than that the initial approximation is out-
side of a ball of guaranteed convergence. It is also clear that the FAS iteration is sensitive
to non-symmetries in the linearisation, and to a larger (although marginally) extent than
Newton-MG. For the approximate Newton iteration, using an appropriate linear solver
gives a much more robust iteration. It is not known how to modify the FAS iteration in
a simple manner to improve the convergence properties. The only obvious change is to
take a different nonlinear smoother, but as previously discussed (see Subsection 6.1.1)
this adds considerable computational cost to the solution procedure [167] and is not con-
sidered here.

In the introduction to this chapter it was mentioned that [63,158] show that for a PME
discretised using finite differences, where the solution is locally Lipschitz continuous, that
the convergence for a Newton-preconditioned GMRES iteration deteriorates linearly with
the mesh spacing. Using a finite element discretisation and a non-Lipschitz continuous
solution we see the same asymptotic deterioration in the convergence in Table 8.4 for
all solution methods. Figure 8.1 shows that the execution times of the iterations scales
linearly with the number of unknowns when the time-step is taken proportional to the
grid spacing. Note that this is a reasonable scaling when using second order schemes in
both space and time.

The execution time of the Newton-MG iteration is slightly quicker than the execution
time of the FAS. The speed-up is not so pronounced for this problem as the number of
linear V-cycles required are much higher than the number of FAS V-cycles, as shown in
Figure 8.2. The overall number of V-cycles performed for Newton-MG is approximately
5.3 times as many as for FAS. Using the measured ratio of execution times per V-cycle
iteration in (8.19) the FAS iteration should take approximately 1.16 times longer to run
than Newton-MG, which is what is observed. Interestingly, the multigrid-preconditioned
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Figure 8.1: Execution time for FAS and Newton-MG for the PME with time-step δt = h
for grid spacing h.

GMRES iteration is the most efficient in this case. This is due to the fact that a single pre-
and post-smooth are sufficient in the preconditioner to gain a convergent iteration. The
fact that this method is also the most robust demonstrates that the linear solver may be
changed easily without large penalties in terms of execution time.
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Figure 8.2: Number of linear / nonlinear V-cycles required per time-step for the PME
with solution (8.2) and r0 = 0.3 on a 20482 grid.

It was noted at the start of this subsection that for small time steps the nonlinear
system of equations will be dominated by the diagonal lumped mass matrix. Hence, off-
diagonal entries in the Jacobian have a small effect on the convergence of the iteration.
The nonlinear Jacobi iteration uses information from the diagonal of the Jacobian matrix,
which in this case will closely match the mass matrix term. This explains the increase
in performance of the FAS iteration, relative to Newton-MG, in comparison to the 4-
Laplacian considered in the previous chapter. This increase in performance comes simply
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because performing a whole Newton step is not required for the almost diagonal system
of equations to solve. However, a large advantage of a Newton method over FAS is ob-
served when larger time steps are taken in conjunction with a Newton-GMRES iteration,
as demonstrated in Table 8.4.

Results in this subsection have shown that for a time dependent problem a Newton-
MG still seems to be a better iteration than FAS. Robustness is greater for a Newton-MG
iteration, and a much more robust algorithm can be gained by replacing the inner iteration
of the Newton method by a multigrid-preconditioned GMRES iteration. For small time
steps there is little to choose between the two methods, however. In the next section
we show that the same advantages are observed for a more complicated problem - the
Richards equation - which models the flow of an incompressible fluid through a porous
medium.

8.2 Richards Equation as a Single Equation

This section evaluates the application of nonlinear multigrid methods to different for-
mulations of the Richards equation. The section is ordered as follows. We start with a
brief introduction to the Richards equation. Section 8.2 considers the discretisation of
the Richards equation posed as a single nonlinear diffusion equation. Estimates of the
execution time and robustness with respect to a time-step parameter are considered, as in
the previous section for the PME. Section 8.3 considers the discretisation of an equivalent
saddle-point problem involving mixed finite elements. The results demonstrate the large
advantage that can be expected in terms of execution time by performing a Newton-MG
rather than an FAS iteration for more complicated nonlinear operators.

The Richards equation models the flow of water through an unsaturated porous medium
(typically soil) [93, §8]. It is a special case of a two-phase flow problem in which one
phase is air and the other an incompressible fluid (often taken to be water). The phases
are assumed immiscible, and the air phase is assumed to be under constant pressure and
in constant contact with the surface of a porous medium [93, pg. 158]. Under these
conditions the only unknown becomes the flux (flow per unit volume) of the incompress-
ible fluid. The flux of the incompressible fluid phase can be modelled using a nonlinear
Darcy’s law [43, 93] as

~q = −K(ψ)∇(ψ + z), (8.20)

where ~q is the flux, ψ a pressure (or suction) head, and z the z-coordinate in a two- or
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three-dimensional space representing a gravitational force. Here z is assumed positive
downward. In one dimension z is the component direction in which the flux is measured,
and gravity is aligned with the flow. In two-dimensions the xz-plane is used. The func-
tion K(ψ) is termed the hydraulic conductivity, and represents the rate at which water
may flow through a soil given the pressure head. The pressure head ψ is negative in
an unsaturated regime, and a soil is saturated when ψ ≥ 0. In order to form Richards
equation the following continuity equation is required:

∂

∂t
θ(ψ) = −∇ · ~q (8.21)

where θ is termed the volumetric wetness and represents the volume fraction of water in
the soil. The continuity equation is based on conservation of mass and states that the
change in volume of water in a soil matrix is equal to the net flux into and out of the
soil [93, pg. 155-7].

Combining the nonlinear Darcy law (8.20) with the continuity equation (8.21) gives
Richards equation

∂

∂t
θ(ψ)−∇ · (K(ψ)∇(ψ + z)) = 0. (8.22)

Note that in general K(ψ) is a tensor representing the hydraulic conductivity in the com-
ponent directions [113]. In the current study we consider an isotropic flow in all compo-
nent directions such that K(ψ) is represented as a scalar function.

In order to solve the Richards equation for an unknown pressure field ψ, explicit
forms of the functions θ and K are required. There are several models available for the
estimation of these functions with respect to a pressure head, see [43, 96, 126, 128, 179].
The difficulty in accurately measuring different soil properties has meant that early models
have not been improved upon, to the best of our knowledge. One of the early models
combining work by van Genuchten and Mualem [179] has remained popular in recent
years (see for example [67,102,184,188]). Most works use a modified version of the van
Genuchten-Mualem model, given in [185, 186], which introduces a modification in order
to simplify the numerical solution of Richards equation. It is this model which we use in
this section, and introduce below.

Let ψs < 0 be some pressure above which a soil is considered saturated. This is termed
the bubbling or air entry pressure [186]. Let θs be the volumetric wetness at saturation,
and let θr < θs be the residual volumetric wetness, which is the amount of water retained
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in a ‘dry’ soil. The effective saturation Se is then defined as

Se(θ) =
θ − θr
θs − θr

, (8.23)

which gives a volume fraction of the amount of water in a soil vs. the water storage
capacity of the soil.

As per the modification in [185] the parameter θm ≥ θs is introduced to avoid infinite
gradients of the function θ(ψ) near saturation. The volumetric wetness is then modelled
by [186]

θ(ψ) =

θr + θm−θr
[1+(−αψ)n]m

, ψ < ψs

θs, ψ ≥ ψs.
(8.24)

for n > 1 and m = 1− 1/n [179]. Let

Se = Se(θ(ψ)).

The hydraulic conductivity is described as a product

K(ψ) = KsKr(Se) (8.25)

for Ks the conductivity at saturation and Kr ∈ (0, 1] the relative hydraulic conductivity
given by

Kr(Se) = S1/2
e

[
1− F (Se)

1− F (1)

]2

, (8.26)

where

F (Se) = (1− S∗1/me )m, (8.27)

and

S∗e =
θs − θr
θm − θr

Se. (8.28)
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The parameters n, α, θr, θs and Ks are material properties that depend on the type of soil
being modelled. For a list of approximate parameterisations of different soils see [186],
from which the data in this thesis are taken.

The discussion so far gives enough information to be able to define a problem to
solve using the Richards equation in the continuous case. In the following subsections
results and discussion are presented for two discretisations of the Richards equation. Sub-
section 8.2.1 gives the discretisation of Richards equation using a continuous piecewise
linear finite element discretisation, for which results are presented in Subsections 8.2.2
and 8.2.3. An alternative formulation and discretisation of Richards equation using mixed
finite elements is presented in Subsection 8.3.1. The results presented demonstrate the su-
periority of Newton-MG over FAS also for this more complex nonlinear problem. Due to
the complexity of the nonlinear problem considerations of software implementation also
have an effect on the running time, and the effect of these are discussed.

8.2.1 Linear Finite Element Discretisation

In this section the discretisation of Richards equation (8.22) is given in the case that
a continuous piecewise linear finite element discretisation is used. Although this is a
low order method there has been research to show that using a higher order Lagrangian
element can lead to spurious oscillations in a solution [101], especially at small time
scales. It is therefore possible that the low order scheme will give the most accurate
solution. It is usual for the discretisation to use a lumped mass matrix (see for example
[13,48,101]), as it is found that spurious oscillations may arise in a solution if a consistent
mass matrix is used. All results presented are for a lumped mass matrix. For simplicity
the model is presented in two dimensions, but an extension to three dimensions follows a
similar reasoning.

Define the computational domain as

Ω ≡ (0, 100)× (−100, 0).

Let Ωj ⊂ Ω be a grid with an associated simplicial triangulation Tj and continuous piece-
wise linear function space Vj ⊂ S0(Ωj) (see (2.14)), the basis of which is the standard
linear nodal basis (denoted by {ϕi}Nj

i=1). As in previous chapters let Nj be the number of
non-Dirichlet-boundary nodes on grid Ωj . The unknown function to solve for in Richards
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equation (8.22) is the pressure head ψ = ψ(~x, t). Let δt be a fixed time step such that

tk = t0 + kδt,

where t0 is some initial time. Then

ψ(k) = ψ( · , tk). (8.29)

Define

θ(k) ≡ θ(ψ(k)). (8.30)

K(k) is defined similarly.
The problem which will be solved in this section is given by

∂

∂t
θ(ψ)−∇ · (K(ψ)∇(ψ + z)) = 0, ~x ∈ Ω,

K(ψ)∇(ψ + z) · ~ν = 0, x = 0, 100, or z = −100,

ψ = 0, z = 0,

ψ = ψ0, t = t0,

(8.31)

where ~ν is the outward facing normal. This models the infiltration of water into a column
of soil where impermeable boundaries are assumed on left, right and bottom boundaries.
The boundary condition at the top sets the soil at saturation at the surface.

The first step in the discretisation is to discretise (8.31) in time. This is done using an
implicit Euler scheme as follows:

θ(k) − δt∇ ·
(
K(k)∇(ψ(k) + z)

)
= θ(k−1). (8.32)

To increase the efficiency of the method the nonlinear functions θ(ψ) and K(ψ) are
approximated using a continuous piecewise linear finite element basis as well as the func-
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tion ψ as in [48], i.e.

ψ ≈
Nj∑
i=1

ψ(~xi, t)ϕi =

Nj∑
i=1

ψiϕi (8.33)

θ(ψ) ≈
Nj∑
i=1

θ(ψ(~xi, t))ϕi =

Nj∑
i=1

θiϕi (8.34)

K(ψ) ≈
Nj∑
i=1

K(ψ(~xi, t))ϕi =

Nj∑
i=1

Kiϕi, (8.35)

where ~xi are nodal values on grid Ωj . Taking test functions from the set of basis functions
and integrating (8.32) gives the discrete system of equations to solve at each time step as

≡F (ψ(k))(ϕi)︷ ︸︸ ︷∫
Ω

θ(k)ϕi d~x+ δt

∫
Ω

K(k)∇(ψ(k) + z)∇ϕi d~x =

≡f (k−1)(ϕi)︷ ︸︸ ︷∫
Ω

θ(k−1)ϕi d~x, i = 1, . . . , Nj.

(8.36)
Note that the mass matrices arising in the discretisation of the integrals of θ(k) are lumped.
As outlined in Subsection 2.3.2, the integrals above can be evaluated as sums of integrals
over elements T ∈ Tj on each grid. Let

F (ψ(k)) = [F (ψ(k))(ϕi)]
Nj

i=1 and f (k−1) = [f (k−1)(ϕi)]
Nj

i=1.

The final stage of the discretisation requires the linearisation of (8.36). An entry in
row i, column l of the Jacobian matrix is given by

Fψ(k)(ϕl, ϕi) =

∫
Ω

Dθ(ψ(k))ϕlϕi d~x+ δt

[∫
Ω

DK(ψ(k))ϕl∇(ψ(k) + z)∇ϕi d~x

+

∫
Ω

K(k)∇ϕl∇ϕi d~x
]
, (8.37)

where Dθ(ψ(k))ϕl is the derivative of θ(k) with respect to ψ(k) at ϕl, and similarly for
DK(ψ(k))ϕl. These derivatives are approximated using a forward divided difference for-
mula (see Equation (6.6)). The Jacobian matrix is then formed as

Fψ(k) =
[
Fψ(k)(ϕl, ϕi)

]Nj

i,l=1
. (8.38)
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Note that Fψ(k) has symmetric part F S
ψ(k) and non-symmetric part FNS

ψ(k) with entries given
by

F S
ψ(k)(ϕl, ϕi) =

∫
Ω

Dθ(ψ(k))ϕlϕi d~x+ δt

∫
Ω

K(k)∇ϕl∇ϕi d~x, (8.39)

FNS
ψ(k)(ϕl, ϕi) = δt

∫
Ω

DK(ψ(k))ϕl∇(ψ(k) + z)∇ϕi d~x. (8.40)

The corresponding matrices F S
ψ(k) and FNS

ψ(k) are defined similarly to Fψ(k) in (8.38).
The Newton iteration for the Richards equation reads

ψ(k,p) = ψ(k,p−1) + δ(p)

where

Fψ(k,p−1)δ(p) = −(f (k−1) − F (ψ(k,p−1))). (8.41)

Using the above linearisation gives a globally mass conservative scheme. If only the
symmetric part of the Jacobian matrix is taken as the linearisation, i.e. instead of solving
(8.41) the equation

F S
ψ(k,p−1)δ

(p) = −(f (k−1) − F (ψ(k,p−1)))

is solved for δ(p), the scheme remains mass conservative (see Celia et al [48]). The use
of this linearisation will be referred to as Celia’s model. Using the symmetric part of
the Jacobian means that the linear system of equations to solve is symmetric positive
definite, which makes its solution appropriate for methods such as geometric multigrid
and conjugate gradients [48, 101].

As discussed in Chapter 7 the Newton iteration converges rapidly only when an accu-
rate approximation of the Jacobian matrix is taken. This implies that Newton-MG may
not converge very quickly if F S

ψ(k,p−1) is taken as the linearisation. On the other hand,
convergence of FAS was shown to be much less sensitive to inaccuracies in the Jacobian
matrix, and FAS could converge quickly even if only the diagonals in the symmetric part
of the Jacobian are used in a smoothing operator.

Results in Subsection 8.2.3 show that this behaviour is indeed observed. A Newton
iteration converges much better when applied to the non-symmetric linearisation, so long
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as a non-symmetric iterative method, such as a GMRES iteration, is applied to it. The FAS
iteration converges better in the case that the symmetric approximation to the Jacobian is
used. Before these results are presented, the execution time per V-cycle of the iterations
are evaluated using the framework introduced in Chapter 6.

8.2.2 V-Cycle Execution Time

Results presented in this section show the predicted execution time of a V-cycle iteration
vs. the measured execution time for Newton-MG and FAS on a 5122 mesh. Before a
prediction can be made a measure of the time required to calculate the nonlinear residual
is required, which was empirically determined to be W512 = 0.082, where the subscript
indicates that the mesh used is a 5122 mesh.

As the time to calculate the residual is larger than for the model problems presented
previously, it is expected that the approximation of the execution time of the linear multi-
grid iteration will be over-estimated. Hence, if the approximations for the execution times
of the individual components of the algorithms are sharp, the predicted execution time
should be larger than the observed time for a Newton-MG iteration. The predicted execu-
tion time of the FAS iteration should be accurate if the predicted execution times of the
components of the algorithm are sharp.

Table 8.5 shows the predicted vs. actual execution times of V-cycles when Celia’s
model is used (i.e. the linearisation is approximated with the matrix F S

ψ given in (8.39)).
The linearisation in Celia’s model has fewer terms than the actual Jacobian, which ex-
plains the over-estimation of the execution time of the Newton-MG iterations. For this
more complex problem the advantage of using Galerkin coarse grid operators is apparent,
with large savings in time (∼ 15.83% for the V-cycle with 1 pre- and post-smooth).

The results that are observed for the FAS iteration are more interesting. The theory
does not predict the actual running time well at all, and the observed increase in exe-
cution time with an increase in the number of smooths performed is not uniform, as it
is expected to be and as it was observed for previous problems. This suggests that the
smoothing iteration does not have a linear order execution time. Theoretically, however,
the smoothing operator is of linear complexity. Results for previous problems support this
claim as well. The cause of the increase in the execution time in this case is a code specific
issue. From the equations used in the Richards equation (see (8.23)-(8.28)) it can be seen
that the calculations involve many floating point numbers being raised to the power of
other floating point numbers. It is known in the programming community that the library
libc implementation of the power function (especially on 64-bit systems) is not a constant
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p/ν C̃NMG Act. ĈNMG Act. CFAS Act.

γ = 1

1 56.03 41.38 53.3 34.83 57.4 74.16

2 68.33 45.52 65.60 39.52 101.13 129.94

3 80.63 50.18 77.90 44.65 144.87 188.07

4 92.93 54.75 90.20 48.84 188.6 245.61

γ = 2

1 62.18 42.53 59.45 38.04 86.10 244.88

2 80.63 49.08 77.90 44.63 151.70 271.99

3 101.91 55.64 96.35 52.15 217.30 350.71

4 117.53 62.29 114.80 55.43 282.90 435.16

Table 8.5: Predicted and actual timing results required to perform 100 Newton iterations
when using Celia’s model to obtain the linear operator to use in the inner iteration.

time operation [171]. Some inputs may require more time to execute than others, and
large variations in execution time can occur for very similar numbers. Certain compil-
ers are able to deal with this shortcoming better than others. The Intel C Compiler (icc)
has been used here, which is a vast improvement on the GNU Compiler Collection (gcc)
compiler. Another alternative would be to change the mathematics library to which the
code is linked, as implementations differ from library to library. A 32-bit implementation
may also be used.

Regardless of the implementation used, however, the ‘pow’ function remains expen-
sive. This can be checked by executing the code and manually inspecting the stack (using
a tool such as Cachegrind [178]) where it is found that a large amount of time is spent
processing the ‘pow’ function. It is known in the computing community [171] that this
function should be avoided where possible. It is difficult to see how the use of this would
be avoided in the case that a floating point power is required. One way to avoid extensive
use of the ‘pow’ function is to use a majority of linear calculations, as is done as part of
the inner iteration of a Newton iteration. This is another advantage of Newton’s method,
as only a single nonlinear residual needs to be calculated per Newton iteration. Therefore
the execution time of a Newton iteration is affected to much less an extent by the poor per-
formance of the expensive nonlinear calculations. This shows that from a computational
point of view nonlinear operations should be avoided in an efficient implementation. The
extent to which the performance is affected for the FAS (in which the nonlinear opera-
tions are performed on every grid level) is shown by the fact that the ratio of the V-cycle
execution time when performing 3 pre- and post-smooths and 3 inner iterations for the
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Newton iteration is given by

188.07

100
× 300

50.18
≈ 11.24, (8.42)

if the operator is re-discretised on each grid as part of a Newton-MG iteration, and

188.07

100
× 300

44.65
≈ 12.64 (8.43)

if the Galerkin coarse grid operator is used. This demonstrates that for the more compli-
cated nonlinear problem the Newton-MG iteration becomes significantly more competi-
tive, as was claimed in the previous chapter. The measured ratios are much larger than the
estimated 5.4 times speed up, but the framework outlined in Chapter 6 has been useful in
helping to identify bottlenecks or speed-ups in performance encountered by the methods.
This is done by breaking the timing of the methods up into manageable pieces which can
be analysed and timed individually.

Results in the next subsection show that the convergence of the FAS iteration is sat-
isfactory when using Celia’s model. However, an improvement can be gained for the
Newton iterations when the actual Jacobian is used. In this case a faster convergence per
Newton iteration is gained for approximations close to the exact discrete solution, making
the method more efficient overall despite the higher computational cost of calculating the
full Jacobian matrix. Results are presented later when Newton-MG uses the full Jacobian
matrix, so the timing results for the use of the full Jacobian are given in Table 8.6.

p C̃NMG Act. ĈNMG Act.

γ = 1

1 56.03 70.54 53.3 58.29

2 68.33 75.02 65.60 63.12

3 80.63 79.43 77.90 68.04

4 92.93 86.61 90.20 73.07

γ = 2

1 62.18 73.80 59.45 60.36

2 80.63 79.76 77.90 68.86

3 101.91 86.38 96.35 74.03

4 117.53 94.41 114.80 78.62

Table 8.6: Predicted and actual timing results required to perform 100 Newton iterations
when using the actual Jacobian matrix in the inner iteration.

The advantage of using the Galerkin coarse grid operators is again clear. The ex-
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ecution times are larger than for the Celia model presented in Table 8.5, as the actual
Jacobian contains an extra term compared to the symmetric part of the matrix. However,
the increase in time is unexpectedly large. Inspection of the form of the residual in (8.36),
as well as comparing the linearisation (8.37) with that of the Celia model (8.39), show
that the calculation of the term DK(ψ(k)) is required in the full Jacobian. Using numeric
integration, this requires extra function calculations of the hydraulic conductivity K (see
(8.25)), which involves many powers of floating point values. It has been shown that
the cost of performing this is not necessarily linear, so that the unexpected increase in
execution time can be attributed to this.

The execution of a Newton method is still efficient compared to an FAS iteration
when the more expensive Jacobian is used in the linearisation. Comparing the execution
time of 3 pre- and post-smooths of the FAS with the Celia model to 3 inner iterations for
Newton-MG gives the ratio

188.07

100
× 300

79.43
≈ 7.10 (8.44)

when the Jacobian is re-discretised on each grid, and

188.07

100
× 300

68.04
≈ 8.29 (8.45)

when the Galerkin coarse grid operator is used. This is again much larger than the pre-
dicted 5.4 increase from the theory in Chapter 6, and shows just how much an advantage
computation of linear operations can have on the performance, as well as the improve-
ment due to the linear solve becoming cheaper the more complex the nonlinear problem
becomes.

In the next subsection the robustness of the most efficient of both methods is pre-
sented, so we concentrate on the use of the Galerkin coarse grid operators only. Results
are presented in the next subsection to show the efficiency of the iterations, as well as
investigating the robustness with respect to a time step parameter.
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8.2.3 Robustness

In this subsection the robustness of the Newton-MG and FAS iterations is considered for
the solution of the following Richards equation

∂

∂t
θ(ψ)−∇ · (K(ψ)∇(ψ + z)) = 0, ~x ∈ Ω = (0, 100)× (−100, 0),

K(ψ)∇(ψ + z) · ~ν = 0, x = 0, 100, or z = −100,

ψ = 0, z = 0,

ψ = −1000, t = t0, ~x ∈ Ω.

(8.46)

This models the infiltration of a steep wetting front into (relatively) dry soil. The do-
main to solve on is given in Figure 8.3. The shaded region is a clay soil (A), and the

~q · ~ν = 0

ψ = 0

~q · ~ν = 0

~q · ~ν = 0

75

25

75

25A

B

Figure 8.3: Distribution of soils on domain Ω = (0, 100) × (−100, 0) for which to solve
(8.46)

rest of the domain is loam (B). The soil properties are defined using the parameters given
in Table 8.7, which are taken from [186, Table 2]. The parameter ψs in Equation (8.24)
is taken as −10.0(−6.0) for the clay (loam) soil, respectively. This value is known to
change the shape of the hydraulic conductivity function and, in experimentation for which
the Richards equation should give accurate results, these values should be determined by
fitting curves to recorded data. This was not done for the current investigation, as the com-
parison between nonlinear multigrid methods, rather than obtaining improved results for
the Richards equation, is of primary interest. The parameter n is termed the tortuosity of
the soil [186], and gives a relation for how far water travels through a soil matrix for every
unit distance along the component axes. The experimental set up in Figure 8.3 is chosen
for numeric reasons, so that the wetting front does not enter uniformly and that there will
be regions of saturated and unsaturated soils as time progresses. Also, the varying speeds
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of filtration may lead to fine level variation of the pressure head as it infiltrates the soil.
In this case, using a coarsest grid which does not capture this information may lead to a
non-convergent FAS iteration, as the solution on the coarsest grid does not resemble the
solution on finer grids, which may produce incorrect coarse grid corrections.

Soil A: Clay Soil B: Loam
θr (m3/m3) 0.068 0.078
θs (m3/m3) 0.380 0.430
α (cm−1) 0.008 0.036
n (−) 1.09 1.56

Ks (cm/day) 4.80 24.96

Table 8.7: Soil properties for the soils used in Figure 8.3, listed with the units in which
they are measured. These are taken from [186, Table 2].

The different regions of soil are resolved on all grid levels, and we do not seek to
perform experiments where the regions are not resolved on all grid levels. This is because
a transfer function from a fine to a coarse grid for the parameters given in Table 8.7, as
well as the parameter ψs, would be required for an FAS iteration. This is a non-trivial
task and detracts from the comparison of the methods. We do note, however, that such a
transfer function is not required for the Newton-MG iteration. This is because the linear
coarse grid operators are determined using the Galerkin product, where a coarse grid
operator is determined purely algebraically from a fine grid operator. In the case that a
symmetric operator is taken (or the symmetric part of the operator) the Galerkin coarse
grid product gives the projection in energy norm of the fine grid operator onto the coarse
grid (see Subsection 4.1.2). So long as the soils are resolved on the finest grid level the
Galerkin product does not require information regarding the underlying soil structure to
form the coarse grid linear operators.

As discussed in Section 7.7 the coefficient of the linearised problem is piecewise con-
stant. For problem Equation (8.46) there are large changes in pressure and a steep wetting
front so that the gradients and function values are highly varying. The varying soil proper-
ties also contribute to jumps in coefficient. However, for this complex problem, for which
the linearisation is non-symmetric, it is not known how the variation in the coefficient will
affect the convergence of the methods. Results in Section 7.7 suggest that the Newton it-
eration is less susceptible to changes in the coefficient function. Results are investigated
to see if this has an effect on any of the methods.

In order to demonstrate robustness of the methods in this subsection, instead of re-
peating a similar experiment as was performed for the porous medium equation (see Ta-
ble 8.4), where the maximum allowable time step is given, we present the performance of



Chapter 8 Application to Time-Dependent Problems 178

the methods in conjunction with a simple adaptive time stepping strategy. An experiment
is run from time t0 = 0 days to time tend = 1 day. An initial time step size of 1e-6 is given
to ensure that the nonlinear iterations converge for the first time step. The adaptation
strategy is described in Algorithm 8.1 and follows a similar strategy put forward in [101].
In Algorithm 8.1 the choice of subscripts used for the different parameters are chosen as
follows: ηs is the number of nonlinear iterations considered too (s)mall; ηl is the number
of nonlinear iterations considered too (l)arge; ηmax is the (max)imum number of nonlinear
iterations to perform per time step; βu is the factor used to scale the time step (u)p; βd is
the factor used to scale the time step (d)own; and δtmin and δtmax are the (min)imum and
(max)imum time steps to use.

Algorithm 8.1 Adaptive Time Stepping
Require: ηs, ηl, ηmax, βu, βd, δtmin, δtmax

1: function ADAPTTIMESTEP(δt, η)
2: if η > ηmax then
3: if δt = δtmin then
4: Fail
5: else
6: δt← βdδt
7: Repeat current time step
8: else if η ≥ ηl then
9: δt← βdδt

10: else if η ≤ ηs then
11: δt← βuδt

12: Ensure δt ∈ [δtmin, δtmax]

For each of the iterations the number of nonlinear iterations performed is taken as
an indicator of whether the time step parameter should be increased or decreased, as
is performed in other works (e.g. [101, 188]). This comes from the desire to minimise
the number of nonlinear iterations performed. The fewer time steps that are performed
the fewer nonlinear iterations need to be performed, so that taking a large time step is
desirable. On the other hand, the number of iterations performed per time step is likely to
be lower for smaller time steps, so that fewer nonlinear iterations are performed overall
if more time steps are taken at lower time scales. Also, discussion of the results for the
porous medium equation (see Subsection 8.1.3) suggest that when FAS converges fast it
is due to the fact that the diagonal mass matrix term is dominant. Therefore the problem
being solved is close to linear, and an increase in the time step is desirable to be able
to take advantage of the fact that the solvers can deal with nonlinear problems. The
parameters used in the time-stepping are presented in Table 8.8. The row with heading
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‘Inexact Newton’ refers to both the Newton-MG and preconditioned Newton-GMRES
iterations. As it has been shown in previous discussion that the Newton method is more
robust and more efficient than FAS, the number of iterations performed for increasing and
decreasing the time step is larger than for FAS.

Method ηs ηl ηmax βu βd δtmin δtmax

Inexact Newton 6 12 20 1.2 0.85 1e-6 1e-1
FAS 5 10 20 1.2 0.85 1e-6 1e-1

Table 8.8: Parameters used in the adaptive time-step procedure (see Algorithm 8.1) for
FAS and Newton-MG

From the previous discussion it is expected that the Newton iteration will allow a
larger time step parameter than the FAS iteration, and hence that the Newton iteration
will reach the target time in fewer time steps. This, combined with the much greater
efficiency of the Newton method, suggests that a large reduction in the execution time
should be expected compared to the FAS iteration.
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(a) Progression of time-step size for a Newton-
GMRES iteration where multigrid is used to
precondition the symmetric part of the Jaco-
bian.
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Figure 8.4: Progression of time step size for inexact and global-inexact Newton iterations.
Armijo’s rule (see Algorithm 7.2) with minimum scaling fact γmin = 2−7 is used as the
globalisation method. The Jacobian matrix is used in the linearisation.

Figures 8.4 and 8.5 show the progression of the size of the time step for a problem
discretised on a 5122 grid. The sharp drop at the final iteration is so that the target time
is reached exactly. Curves in Figure 8.4 show global as well as non-global Newton itera-
tions. As we have not been able to stabilise the convergence of the FAS in a predictable
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Figure 8.5: Progression of time step size for an FAS iteration using different linearisations
and different coarse grids.

manner (see Section 7.6) no global version of the FAS is used. As predicted, the time step
for a Newton-MG iteration is significantly larger than that taken in an FAS iteration. The
number of time steps performed is therefore much less, and the overall execution time
(shown in Table 8.9) is significantly lower.

Figure 8.5a shows the progression of the time step size for an FAS iteration using the
Celia model (see Subsection 8.2.2). The solid line is when an 82 coarsest grid is used in
the multigrid hierarchy, and the dotted line is for a 322 grid. It is found that at some point
in time the hierarchy with the coarser grid fails to converge, even for extremely low time
scales. This is because the solution contains fine scale detail for which the 82 grid is too
coarse for the solution to be well represented. Moving to a 322 grid resolves this issue,
but comes at a computational expense. The extra work required to solve on the finer grid
means that a V-cycle takes an extra 10% longer to complete. This can be found by taking
the average amount of time per V-cycle for the iterations from the data given in Table 8.9.
It is also clear to see that as time progresses a steady time step size is reached for the FAS
iteration. The problem then does not get any more or less difficult for the FAS iteration to
solve, so that the number of iterations required for convergence at each time step stays in
the interval [6, 9].

Figure 8.5b shows the progression of the time step size when the model by Celia is
used (with a 322 coarsest grid), compared to using the full Jacobian matrix in the lin-
earisation. Results in Chapter 7 showed that the convergence of the FAS iteration is less
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sensitive to changes or errors in the linearisation than the Newton iteration. In fact we
see an improvement in the nonlinear convergence when the ‘worse’ linearisation is taken
in the Celia model. This is because the terms in the linearisation for the Celia model are
symmetric positive definite, for which the FAS iteration works well. As was shown in
Section 8.1, the FAS does not converge well for problems where a non-symmetric term
arises in the linearisation. Using only the symmetric part of the linearisation improves
the convergence of the nonlinear iteration, demonstrated by the faster rate of increase in
time step, as well as the larger maximum time step, in Figure 8.5b. A saving is made
in terms of computational expense as well, as the derivative of the hydraulic conductivity
function does not need to be calculated in the linearisation (see (8.39)). The timing shown
in Table 8.9 shows that the Celia model requires half the amount of time as when the full
Jacobian is used in the linearisation. This suggests that computational savings may be
made in the FAS iteration by dropping unnecessary or undesirable terms from a lineari-
sation. However, the iteration will still likely take a lot longer to execute than an inexact
Newton iteration.

Method Time Steps V-Cycles Time (s)
Newton-MG 516 11382 2902
Newton-MG (Glob) 114 1995 596
Newton-GMRES 291 6081 1413
Newton-GMRES (Glob) 285 6102 1483
FAS (82) 671 5270 8985
FAS (322) 1009 6940 13028
FAS (Jacobian) 1203 8119 26622

Table 8.9: Time steps and V-cycles performed, as well as the execution time for the
nonlinear iterations applied to (8.46). The Newton iterations use a coarsest grid 82.

In contrast to the FAS, the time step size for an inexact Newton iteration may increase
beyond 1e-3, and many fewer time steps are required to reach the target time of 1 day.
From Figure 8.4 and Table 8.9 it seems as though the best algorithm to use here would
be a global Newton-MG iteration. However, this is not advisable. Although this method
requires fewer time steps – and hence less time – to reach the target time, the convergence
of the linear multigrid iteration is not guaranteed for larger time steps. The nonlinear
iteration does not converge unless it is stabilised for some larger time steps. This can be
seen in Figure 8.4b as reduction of the time step is required much more often, which is
shown by regular drops in the graph. At time steps when a reduction in the size of the step
is required, it is found that a multigrid iteration may be non-convergent and an increase
in the linear residual is observed. Without a stabilisation of the Newton correction this
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leads to a poor nonlinear correction term being calculated and the nonlinear iteration
diverges. This results in the time step being reduced, and the iteration repeated, giving
a convergent linear multigrid iteration. However, even with a poor convergence of the
linear iteration it is found, for this example, that using a stabilisation parameter gives a
reduction in the nonlinear residual from one iteration to the next. This allows for a much
larger time step to be taken compared with the non-global iteration, and the iteration
seems to be efficient. However, the fact that the linear iteration does not converge means
that convergence behaviour is not predictable, and even though the method works well in
this example, it may not do so for another.

A contraction in the linear residual is observed at every iteration when a multigrid-
preconditioned GMRES iteration is used in the inner iteration of the Newton method.
The preconditioner is applied only to the symmetric part of the Jacobian matrix (8.39),
as it was found that the multigrid iteration may not be convergent for a given time step.
The Newton correction calculated does not give as good a nonlinear convergence as in the
case of the linear multigrid iteration, but we can be confident that the nonlinear and the
linear iteration are performing predictably and stably. In the case that a non-global method
is used the advantage of the preconditioned GMRES iteration is clear over the use of a
Newton-MG iteration, as the size of the time step does not need to be reduced, and a time
step is not repeated. This demonstrates the greater robustness of the method. The timing
results in Table 8.9 show that almost an order of magnitude reduction in the execution
time is still gained over the FAS iteration for this problem. An interesting behaviour
can be seen in the comparison of the global and non-global iterations in Figure 8.4a. At
early time steps the advantage of using the globalisation method can be seen, as a better
correction term is chosen, and a larger time step may be taken. However, at later time
steps we see that a larger time step is allowed for the non-global iteration. This highlights
a problem with the globalisation procedure, as discussed in Section 7.6. By forcing a
contraction in the nonlinear residual the correction term ends up being too small at the
later iterations for the Newton method to converge quickly. What is better here is to not
damp the correction term. This may cause an increase in the nonlinear residual, but causes
the solution to change more significantly from its previous value, allowing a different
(in this case better) Newton correction to be calculated, so that overall fewer nonlinear
iterations are required for convergence. A more sophisticated stabilisation procedure that
calculates a damping parameter based on properties of the nonlinear problem being solved
may give an improved performance (see [58, §3]), and the discussion here highlights that
whilst the simple Armijo strategy (see Algorithm 7.2) gives a convergent iteration it may
not be the best stabilisation algorithm to use.
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Results for other grid levels are qualitatively the same, and are not presented here for
reasons of brevity. The experiments run previously should give confidence that the find-
ings are the same for finer and coarser grid resolutions. The results that have been pre-
sented clearly show that the Newton iteration is a much more computationally efficient
algorithm for this more complicated model problem. The time required for the linear
multigrid iterations decreases with respect to the time to calculate a nonlinear residual,
making the method more computationally efficient with respect to the FAS iteration. Re-
sults also show that Newton’s method is more likely to be able to resolve fine mesh detail
using coarse grids, as is backed up by results in Section 7.7. We again conclude that
Newton-MG is a superior algorithm to FAS, and results show that changing the inner
iteration to a preconditioned GMRES gives more robust and predictable results.

The formulation of the Richards equation given in this section is globally mass con-
servative [48]. Numerical inaccuracies will lead to a loss in mass in the system, which,
although small, is undesirable. A judge of the quality of a discretisation of the Richards
equation is the mass conservative properties of the discretisation [157]. Therefore we
present an alternative discretisation of the Richards equation in the next section, using a
mixed finite element formulation. This is taken from [13], and is locally mass conserva-
tive. This means that the loss of mass due to numerical and discretisation error is much
less pronounced. The discussion and results again serve to highlight the advantage in
reducing the number of nonlinear problems to solve as part of a solution procedure.

8.3 Richards Equation as a System of Equations

In this section the solution of the Richards equation is considered when the discretisa-
tion scheme used is locally mass conservative. Instead of a single equation to solve, the
equation is considered in saddle point form. The discretisation method is described in
detail in Subsection 8.3.1. This problem is investigated in particular to demonstrate the
advantage in execution time provided by the Newton method in removing as many non-
linear components from the solution process as possible. For the mixed finite elements
much of the linear multigrid convergence theory does not hold (such as a proof of con-
vergence for the V-cycle [13]) and, to the best of our knowledge, an investigation of how
FAS performs for a mixed finite element discretisation has not been conducted. Results
in Subsection 8.3.3 suggest that the Newton approach provides a viable solution method,
whilst the FAS performs poorly.

The section is structured as follows. Necessary notation is introduced in order to form
a mixed finite element discretisation of the Richards equation before the problem formu-
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lation and discretisation is outlined in Subsection 8.3.1. This is followed by a description
of necessary adjustments to a multigrid algorithm applied to the mixed formulation in
Subsection 8.3.2. The framework in Chapter 6 is not applicable for this problem, but the
investigation of the methods within the framework suggests that a Newton-MG iteration
will be more efficient in comparison to the FAS iteration for this more complex nonlinear
problem. This prediction is confirmed by the results presented in Subsection 8.3.3, which
investigates the execution time and the robustness of the nonlinear iterations.

The discretisation used in this section uses a space of finite elements which we have
not encountered so far, called Raviart-Thomas elements. This space is introduced, along
with some necessary notation, before the discretisation is outlined in Subsection 8.3.1.
The summary given here is adapted from [155, §2.2.2], which gives an excellent intro-
duction (including some of the theory) to Raviart-Thomas elements. A full description of
the Raviart-Thomas element, along with technical proofs, can be found in [41].

Assume that the continuous spatial domain Ω ⊂ R2 is polygonal with boundary ∂Ω =

ΓD ∪ΓN for ΓD the part of the boundary where a Dirichlet condition is specified, and ΓN

the part of the boundary where a Neumann condition is specified for some problem. Let
Ωj be a grid with associated quasi-regular triangulation Tj . Then E (I)

j is the set of edges
in the interior of Ωj , and E (D)

j and E (N)
j are the set of edges on the Dirichlet and Neumann

boundary, respectively. The edge set Ej = E (I)
j ∪ E (D)

j ∪ E (N)
j .

The following function spaces are required for the discussion in this section:

H(Ω; div) ≡ {~u ∈ (L2(Ω))d | ∇ · ~u ∈ L2(Ω)}, (8.47)

the space of d-dimensional vectors of L2 measurable functions for which the divergence is
L2 measurable; Pk(T ), the set of polynomials of degree less than or equal to k on T ∈ Tj;
and

RTk(T ) ≡ {~α + γ~x | ~x ∈ T, ~α ∈ (Pk(T ))d, γ ∈ Pk(T )}, (8.48)

the space of Raviart-Thomas elements of order k on T ∈ Tj . We consider only the case
d = 2. We also require the space

H0(Ω; div) = {~u ∈ H(Ω; div) | ~u · ~νΓN = 0}. (8.49)

For the purposes of this section we are interested in the lowest order Raviart-Thomas
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space RT0. For ~u ∈ RTk the following holds (see [155, Proposition 2.12])

~u · ~ν|∂T ∈ {u ∈ L2(∂T ) | u|E ∈ Pk(E) for E ∈ ∂T}. (8.50)

Therefore, the normal moment of a function in RT0(T ) on each edge E of element T is
constant.

In order to define the basis for RT0 it is useful to define the set

R+ ≡ {~x ∈ R2 | x > 0} ∪ {[0, 1]>}, (8.51)

such that a unique normal ~νE ∈ R+ can be associated with each edge on the mesh. A
basis function for RT0(T ) has three degrees of freedom, which are typically taken as
the constant normal moments on ∂T with respect to ~νE . A typical basis function has one
normal moment equal to one and the others equal to zero, i.e. basis function ~ϕE associated
with edge E satisfies

~ϕE · ~νE′ = δE,E′ , (8.52)

where δE,E′ is the Kronecker delta. Equation (8.52) is sufficient to define the basis func-
tions on the element. The normal with respect to an edge is used here so that basis func-
tions on different elements sharing the same edge will have the same normal component.

~νE

Figure 8.6: Normal vectors ~νE ∈ R+ on an element.

The Raviart-Thomas space RT0(T ) ⊂ H(T ; div), which can be seen from the defini-
tion of the space (8.48). In particular∇ ·RT0(T ) = P0(T ). In order to obtain a subspace
of H(Ωj; div) the space

RT 0(Ωj) = {~u ∈ H(Ωj; div) | ~u|T ∈ RT0(T ), T ∈ Tj} (8.53)
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is introduced. Note that the normal component over the edges of elements is continu-
ous for functions in RT 0(Ωj) due to the condition ~u ∈ H(Ωj; div). The homogeneous
Neumann boundary conditions are satisfied by the subspace

Vj ≡ {~u ∈ RT 0(Ωj) | ~u · ~ν|ΓN
= 0}. (8.54)

It can be shown that dim(Vj) = |E (I)
j ∪ E (D)

j | [155, §2.2.2], such that a function ~u ∈ Vj
can be identified by the vector [uE], which contains the sizes of the normal moments over
all edges E ∈ E (I)

j ∪ E (D)
j , i.e.

~u =
∑

E∈E(I)j ∪E
(D)
j

uE ~ϕE. (8.55)

This notation will be used in the mixed finite element discretisation of the Richards equa-
tion, as outlined in the next subsection.

8.3.1 Mixed Finite Element Discretisation

In this section we introduce the mixed finite element discretisation of the Richards equa-
tion. The domain on which to solve is given by Ω ≡ (0, 100) × (−100, 0), and is in the
xz-plane. The formulation used in the previous section (see (8.22)) is a single equation
involving different nonlinear functions of pressure head ψ. It is a direct combination of
the nonlinear Darcy law (8.20) and continuity of flux (8.21). If the equations are not
combined we are led to the following saddle point problem:

∂

∂t
θ(ψ) +∇ · ~q = 0,

~q +K(ψ)∇(ψ + z) = 0, ~x ∈ Ω, t > t0,

~q · ~ν = 0, ~x ∈ ΓN , t > t0,

ψ = ψD, ~x ∈ ΓD, t > t0,

ψ = ψ0, t = t0,

(8.56)

where ΓN ⊂ ∂Ω is the part of the boundary where a Neumann condition is specified,
and ΓD ⊂ ∂Ω is the part of the boundary where a Dirichlet condition is specified. The
unknown functions to solve for are now the flux ~q and pressure head ψ. For simplicity
we set ψD = 0, although non-homogeneous conditions are not complicated to include
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(see [13]).
To develop a mixed finite element formulation the regularity of the functions is re-

quired. Some necessary notation is introduced before giving the regularity estimates. Let
J = (t0, tmax) for given times t0, tmax. Then

Lp(J ;W r,q(Ω)) = {u(t) = u(t, ~x) | (
∫
J
‖u(t)‖pW r,q(Ω) dt)1/p <∞}. (8.57)

Regularity and existence results for (8.56) are summarised in [13]. These may be
relaxed under physically realistic assumptions in order to allow a discretisation of (8.56)
using mixed P0 and lowest order Raviart-Thomas elements [13]. The regularity estimates
are given by

θ(ψ) ∈ L∞(J ;L∞(Ω)), ~q ∈ L∞(J ;H0(Ω; div))

∂

∂t
θ(ψ) ∈ L2(J ; (L2)′(Ω)).

(8.58)

Although L2 is self-dual, the notation (L2)′ is kept to show that the derivative of θ is,
strictly speaking, in the dual space.

We first discretise (8.56) in time using an implicit Euler discretisation, as in the previ-
ous section, to give

θ(k) + δt∇ · ~q (k) = θ(k−1),

~q (k) +K(k)∇(ψ(k) + z) = 0, ~x ∈ Ω, t > t0,

~q (k) · ~ν = 0, ~x ∈ ΓN , t > t0,

ψ(k) = 0, ~x ∈ ΓD, t > t0,

(8.59)

where

θ(k) = θ(ψ(k)) = θ(ψ(~x, tk)),

and

tk = t0 + kδt

for constant time step δt and index k > 0. K(k) is defined similarly to θ(k), and ~q (k) =
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~q(~x, tk). We re-write the second equation in (8.59) as

(K(k))−1(~q (k)) +∇(ψ(k) + z) = 0. (8.60)

For the time discrete equations we have the following inclusions

ψ(k) ∈ L2(Ω), ~q (k) ∈ H0(Ω; div). (8.61)

Taking test functions w ∈ L2 and ~v ∈ H0(Ω; div) and integrating (8.59) over Ω gives the
weak form ∫

Ω

θ(k)w d~x+ δt

∫
Ω

∇ · ~q (k)w d~x =

∫
Ω

θ(k−1)w d~x,∫
Ω

(K(k))−1~q (k)~v d~x−
∫

Ω

ψ(k)∇ · ~v d~x+

∫
Ω

∇z~v d~x = 0,

(8.62)

for all w ∈ L2(Ω) and ~v ∈ H0(Ω; div). Here, the homogeneous boundary conditions have
been used to simplify the form. The final step in the discretisation is to integrate over
a grid Ωj instead of the continuous domain, and choose appropriate finite dimensional
function spaces. Let

Wj ≡ {w ∈ L2(Ωj) | w|T ∈ P0(T ), T ∈ Tj} (8.63)

and

Vj ≡ {~v ∈ H0(Ωj; div) | ~v|T ∈ RT0(T ), T ∈ Tj}. (8.64)

A basis for Vj is given by the Raviart-Thomas basis functions on the edges E (I)
j ∪ E (D)

j

(see (8.55)). A basis for Wj is given by the set of characteristic functions

χT =

1, ~x ∈ T,
0, otherwise.

(8.65)

Then the discretised system of nonlinear equations to solve at each time step is given by
(8.62), with ψ(k) ∈ Wj and ~q (k) ∈ Vj , for all w ∈ Wj and ~v ∈ Vj on grid Ωj . At this
point it is possible to solve the discrete system of equations using a nonlinear iteration.
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However, the system of equations to solve is of dimension |Wj|+ |Vj|, which may be very
large.

Instead of solving the entire system, the dimension of the nonlinear problem to solve
can be reduced by introducing Lagrange multipliers, as described in [13]. Let

V̂j ≡ {~v ∈ L2(Ωj) | ~v|T ∈ RT0(T ), T ∈ Tj, ~v · ~ν|ΓN
= 0}, (8.66)

which is similar to Vj , except that the continuity of the normal components across element
boundaries is not required. As such the normal component across an element boundary
(i.e. an edge) is not uniquely defined, and the basis of V̂j is taken as the set

{~ϕT,E}, for all T ∈ Tj, E ∈ E (I)
j ∪ E (D)

j , (8.67)

where, instead of satisfying condition (8.52) the condition

~ϕT,E · ~νT,E′ = δE,E′ (8.68)

is satisfied for ~νT,E′ the outward facing normal on edge E ′ with respect to element T .
Hence the representation of ~v ∈ V̂j is

~v =
∑
T∈Tj

∑
E∈∂T

vT,E ~ϕT,E. (8.69)

An explicit form of ~ϕT,E is given by

~ϕT,E(~x) =
~x− ~xN

2 |T | , (8.70)

where ~xN is the vertex of element T not incident to edge E. As well as V̂j , the space of
Lagrange multipliers

Mj ≡ {u ∈ L2(Ej) | u|E ∈ P0(E), E ∈ Ej, u|ΓD
= 0}, (8.71)

is introduced, where Ej is the set of all edges in Ωj and ∂Ωj . Note that due to the homo-
geneous Dirichlet conditions the Lagrange multipliers vanish on the Dirichlet boundary.
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For a function ~v ∈ V̂j the condition

∑
T∈Tj

∫
∂T

~v · ~νµ dS = 0, (8.72)

for all µ ∈Mj and ~ν the outward facing normal on ∂T , holds if and only if ~v ∈ Vj [41, pg.
179]. In other words (8.72) enforces the condition that the normal component across
element boundaries is continuous. Using this condition, and taking the basis functions of
Wj , V̂j and Mj as test functions, the discrete system of equations to solve becomes

∫
Ωj

θ(ψ(k))χT d~x+ δt

∫
Ωj

∇ · ~q (k)χT d~x =

∫
Ωj

θ(ψ(k−1))χT d~x, ∀T ∈ Tj,∫
Ωj

(K(ψ(k)))−1~q (k)~ϕE d~x−
∫

Ωj

ψ(k)∇ · ~ϕE d~x+

∫
Ωj

∇z~ϕE dx =

−
∑
T∈Tj

∫
∂T

λ(k)~ϕE · ~ν dS, E ∈ E (I)
j ∪ E (D)

j

∑
T∈Tj

∫
∂T

~q (k) · ~νχE dS = 0, E ∈ Ej \ E (D)
j ,

(8.73)

for (ψ(k), ~q (k), λ(k)) ∈ Wj × V̂j ×Mj . At first sight this may seem to only have increased
the size of the system. However, it is possible to eliminate internal degrees of freedom
in order that the solution can be gained by solving only for the Lagrange multipliers λ(k).
This follows the methodology in [13, 157], but in the following, mistakes in the presen-
tation of [13, 157] are corrected. All details of the derivation are not repeated here for
brevity, but the main calculations are shown in order for a reader to be able to reproduce
the discretisation. All quantities given in this subsection can be calculated by performing
the explicit integration of the terms above using the discrete representations

ψ(k) =
∑
T∈Tj

ψ
(k)
T χT , λ(k) =

∑
E∈Ej\E

(D)
j

λ
(k)
E χE

~q (k) =
∑
T∈Tj

∑
E∈∂T

q
(k)
T,E ~ϕT,E.

(8.74)

The following quantities are of particular interest. Define the local matrix

BT = [BT,EE′ ]E,E′∈∂T , (8.75)
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where

BT,EE′ =

∫
T

~ϕT,E · ~ϕT,E′ d~x (8.76)

on each element T ∈ Tj . The quantity

zT,E =

∫
T

∇z~ϕT,E d~x, (8.77)

is also useful. Let

ωE = {T ∈ Tj | ∂T ∩ E 6= ∅}. (8.78)

Using the representations of the functions in (8.74) and integrating the equations in (8.73)
exactly gives the system of equations

θ(ψ
(k)
T ) +

δt

|T |
∑
E∈∂T

q
(k)
T,E = θ(ψ

(k−1)
T ), ∀T ∈ Tj,∑

E′∈∂T

BT,EE′q
(k)
T,E′ = K(ψ

(k)
T )(ψ

(k)
T − λ

(k)
E − zT,E), ∀T ∈ Tj, E ∈ ∂T,∑

T∈ωE

q
(k)
T,E = 0, ∀E ∈ Ej \ E (D)

j .

(8.79)

Considering the second equation in (8.79) over all edges on an element we get

BT

 q
(k)
T,E

q
(k)
T,E′

q
(k)
T,E′′

 = K(ψ
(k)
T )

 ψ
(k)
T − λ

(k)
E − zT,E

ψ
(k)
T − λ

(k)
E′ − zT,E′

ψ
(k)
T − λ

(k)
E′′ − zT,E′′

 , (8.80)

and hence

 q
(k)
T,E

q
(k)
T,E′

q
(k)
T,E′′

 = K(ψ
(k)
T )B−1

T

 ψ
(k)
T − λ

(k)
E − zT,E

ψ
(k)
T − λ

(k)
E′ − zT,E′

ψ
(k)
T − λ

(k)
E′′ − zT,E′′

 . (8.81)
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The 3× 3 matrix B−1
T can be calculated as

B−1
T =

1

det(BT )
B̂>T , (8.82)

for B̂T the cofactor matrix of BT . For the two-dimensional case explicit values are given
by

det(BT ) =
∑
E∈∂T

|E|4

|E|2 − ∑
E′∈∂T
E′ 6=E

|E ′|2

− 6
∏
E∈∂T

|E|2 , (8.83)

B−1
T,EE′ =

16 |T |
det(BT )

δEE′ ∑
Ẽ∈∂T
Ẽ 6=E

∣∣∣Ẽ∣∣∣2 (
∣∣∣Ẽ∣∣∣2 − |E|2) +

(1− δEE′)

∑
Ẽ∈∂T

(δEẼ + δE′Ẽ + 0.5)
∣∣∣Ẽ∣∣∣4 + |E|2 |E ′|2

− ∑
Ẽ,Ê∈∂T
Ẽ 6=Ê

(∣∣∣Ẽ∣∣∣2 − ∣∣∣Ê∣∣∣2)
 ,

(8.84)

βT ≡
∑
E′∈∂T

B−1
T,EE′ = 48 |T |

( ∑
E′′∈∂T

|E ′′|2
)−1

, (8.85)

zT,E =
1

3
(zE − zO) (8.86)

for zE the z-coordinate of the mid-point of edge E, and zO the z-coordinate of the vertex
of element T not incident to edge E. Finally we note that

∑
E∈∂T

zT,E = 0. (8.87)
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From (8.81) the representation of qT,E can be written as

q
(k)
T,E = K(ψ

(k)
T )

∑
E′∈∂T

B−1
T,EE′(ψ

(k)
T − λ

(k)
E′ − zT,E′). (8.88)

Substituting (8.88) into the left-hand side of the first equation of (8.79) gives

θ(ψ
(k)
T ) +

δt

|T |
∑
E∈∂T

K(ψ
(k)
T )

∑
E′∈∂T

B−1
T,EE′(ψ

(k)
T − λ

(k)
E′ − zT,E′)

= θ(ψ
(k)
T ) +

δtK(ψ
(k)
T )

|T |
∑
E′∈∂T

(ψ
(k)
T − λ

(k)
E′ − zT,E′)

(∑
E∈∂T

B−1
T,EE′

)

= θ(ψ
(k)
T ) +

δtK(ψ
(k)
T )βT
|T | (3ψ

(k)
T −

∑
E∈∂T

λ
(k)
E ).

(8.89)

Including the right-hand side, and rearranging in terms of λ gives

∑
E∈∂T

λ
(k)
E = 3ψ

(k)
T +

|T | (θ(ψ(k)
T )− θ(ψ(k−1)

T ))

δtK(ψ
(k)
T )βT

= F (ψ
(k)
T ).

(8.90)

Equation (8.90) is a local function which relates the Lagrange multipliers to the pres-
sure head on each element. This is useful, as the pressure may be recovered, given the
Lagrange multipliers, by the relation

ψ
(k)
T = F−1

(∑
E∈∂T

λ
(k)
E

)
, (8.91)

which can be solved using a Newton iteration for the single equation (8.90). Note that
the invertibility of F may impose a restriction on the spatial and temporal step sizes
(see [13,157]), which means that the time steps we are able to use for this formulation may
be much smaller than for the continuous P 1 elements presented in the previous section.

To obtain the reduced nonlinear formulation, the representation of the flux unknown
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(8.88) and the pressure head (8.91) are substituted into the final equation in (8.79) to give

∑
T∈ωE

K

(
F−1(

∑
E′′∈∂T

λ
(k)
E′′)

) ∑
E′∈∂T

B−1
T,EE′

(
F−1(

∑
E′′∈∂T

λ
(k)
E′′)− λ

(k)
E′ − zT,E′

)
= 0,

(8.92)
for allE ∈ Ej , as the system of equations to solve for the Lagrange multipliers λ(k) = [λ

(k)
E ].

Let

G(λ(k)) = [gE(λ(k))]
E∈Ej\E

(D)
j
, (8.93)

where gE(λ(k)) is defined as the left hand side of (8.92). The final step in the discretisation
is to linearise (8.92). In order to do this we require the derivative of F−1(

∑
E∈∂T λ

(k)
E )

with respect to λ(k)
E′ . Note that

∂

∂λ
(k)
E′

∑
E∈∂T

λ
(k)
E = 1, E ′ ∈ ∂T. (8.94)

Then, using the representation of ψ(k)
T in (8.91)
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(8.95)

which implies that

∂

∂λ
(k)
E′

ψ
(k)
T =

(
∂

∂ψ
(k)
T

F (ψ
(k)
T )

)−1

. (8.96)

The derivative of F (ψ
(k)
T ) is given by

∂

∂ψ
(k)
T

F (ψ
(k)
T ) = 3 +

|T |
δtK(ψ

(k)
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(
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T )− (θ(ψ
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T )− θ(ψ(k−1)

T ))

K(ψ
(k)
T )

K ′(ψ
(k)
T )

)
.

(8.97)
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Writing

gE(λ(k)) =
∑
T∈ωE

K(ψ
(k)
T )

∑
Ẽ∈∂T

B−1

T,EẼ

(
ψ

(k)
T − λ

(k)

Ẽ
− zT,Ẽ

)
, (8.98)

the entries in the Jacobian matrix

G′(λ(k)) =

[
∂gE(λ(k))

∂λ
(k)
E′

]
E,E′∈Ej\E

(D)
j

, (8.99)

are then given by
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Ẽ∈∂T

B−1

T,EẼ
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(8.100)
which concludes the discretisation of the mixed finite element formulation. To recap, the
nonlinear system of equations to solve at each time step is given by

G(λ(k)) = 0, (8.101)

and the Newton iteration reads

λ(k,p+1) = λ(k,p) + δ(k,p) (8.102)
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where the correction δ(k,p) is the solution of

G′(λ(k,p))δ(k,p) = −G(λ(k,p)). (8.103)

The pressure head ψ(k) and the flux ~q (k) can be recovered from the Lagrange multipli-
ers using (8.91) and (8.88). Note that the pressure is required to be calculated whenever
the residual for the Lagrange multipliers is calculated. Hence, every time the nonlinear
residual is calculated, the solution of nonlinear equation (8.91) is required on every ele-
ment, which is an expensive operation. It is clear that the number of times this operation
is performed should be minimised in an efficient solution algorithm. It is therefore ex-
pected that the Newton-MG iteration will be much more efficient (per V-cycle) than the
FAS iteration, as only a single residual calculation is required. Results in Subsection 8.3.3
demonstrate this behaviour.

Before presenting results for the mixed finite element formulation of Richards equa-
tion a description of the multigrid method used in the solution must be given. The method
given so far is valid for piecewise linear continuous finite elements on triangles, but not
for the space of Lagrange multipliers on edges of the mesh. In this case the grid transfer
operators and the coarse grid operator must be changed in order to ensure that the method
works correctly.

8.3.2 Multigrid for the Mixed Formulation

For previous problems a piecewise linear continuous basis has been used, and the space
of piecewise linear continuous functions was required to be transferred between grids.
The transfer operator introduced in Subsection 4.1.2 is no longer valid for the space of
Lagrange multipliers on the edges of the elements. Therefore, before a multigrid method
can be implemented, appropriate grid transfer operators need to be defined, as well as
coarse grid operators. The subject of this subsection is the presentation of these grid
transfer and coarse grid operators.

Let a hierarchy of nested grids Ωj , j = 1, . . . , J be defined (see (4.2)). With each grid
we associate the space Mj (see Equation (8.71)) of functions that are piecewise constant
on the edges of Ωj , j = 1, . . . , J . We only have information regarding the functions on
the edges, so that the transfer function used for the P1 functions over entire elements is
no longer valid, and a different transfer operator is required. A detailed discussion of the
transfer operators used can be found in [25], and a summary of the operators follows. Our
presentation is simplified by considering only the case that a regular refinement of coarse
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grid triangles of equal size is used, in a two-dimensional setting.
The grid transfer operator used here is designed for nonconforming finite element

methods where the functions are defined on each element, rather than just the edges.
However, in the linear case, the equivalence of non-conforming and mixed finite element
methods condensed with Lagrange multipliers is known [50]. Therefore, the transfer
operator for the non-conforming method [25] is applicable also in the case of the La-
grange multipliers. This means that the transfer operator is valid when used with the
linear multigrid method applied to the inner iteration of a Newton method. To the best of
our knowledge there exists no literature detailing whether the transfer functions are valid
also for nonlinear problems, but we assume that the transfer operator will also be valid for
the nonlinear FAS. Results in Subsection 8.3.3 suggest that the transfer operator remains
valid for FAS.

Let

P j
j−1 : Mj−1 →Mj

be the transfer operator from a coarse to a fine space. As in the case of the linear inter-
polation operator derived in Subsection 4.1.2 the transfer operator should be a projection
in the L2 inner product. A mesh-dependent L2 inner product on Mj ⊕Mj−1 is defined
by [25]

(u, v)j =
∑
T∈Tj

QT (uv), (8.104)

where QT is the second order accurate Gaussian quadrature on a triangle [54] given by

∫
T

u d~x ≈ QT (u) =
|T |
3

3∑
i=1

u(~mi), (8.105)

for ~mi the mid-points of the edges on triangle T . In two-dimensions, if u and v are linear
on each element, (8.104) coincides with the L2 norm. The condition that P j

j−1 should
satisfy is

(P j
j−1vj−1, wj)j = (vj−1, wj)j, ∀vj−1 ∈Mj−1, wj ∈Mj. (8.106)

For a fine grid edge that is not also on the coarse grid (see point A in Figure 8.7) the
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transfer operator simply gives an average of neighbouring coarse grid edges, i.e. for edge
A in Figure 8.7

P j
j−1vj−1(~xA) =

1

2
(vj−1(~x1) + vj−1(~x2)). (8.107)

For a fine grid edge that lies on a coarse grid edge (see edge B in Figure 8.7) the transfer
operator is defined as

P j
j−1vj−1(~xB) = vj−1(~x1) +

1

4
(vj−1(~x2)− vj−1(~x3) + vj−1(~x4)− vj−1(~x5)), (8.108)

for elements of equal size.
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B

Figure 8.7: Numbers represent coarse-grid edges, and letters represent fine-grid edges

The restriction Rj−1
j is taken as the transpose of P j

j−1 with respect to ( · , · )j , i.e.

(P j
j−1vj−1, wj)j = (vj−1, R

j−1
j wj)j. (8.109)

The calculation of this is simple but tedious. There is only one case to consider, which is
that of edge A in Figure 8.8. The action of the restriction operator at A is given by

Rj−1
j vj(~xA) = vj(~x1) + vj(~x2) +

1

2
{vj(~x3) + vj(~x4) + vj(~x5) + vj(~x6)} +

1

4
{vj(~x7)− vj(~x8) + vj(~x9)− vj(~x10) + vj(~x11)− vj(~x12) + vj(~x13)− vj(~x14)} .

(8.110)

The coarse grid operators for the linear multigrid iteration are Galerkin coarse grid
operators. Note that, for the grid transfer operators given above, the number of non-zeros
per row in the coarse grid matrices will grow. To prevent this, any contribution from a
non-zero entry that is outside of the sparsity pattern of the operator on the finest grid is
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Figure 8.8: Numbers represent fine-grid edges and letters represent coarse grid edges

added to the diagonal of the current row in the matrix, as per [13]. For an FAS iteration
the problem is re-discretised on each coarse grid, where the grid transfer functions are
taken as the ones given above.

In the next subsection we compare a Newton-MG iteration with an FAS iteration for
the mixed finite element formulation of the Richards equation. Although previous results
have also considered a preconditioned GMRES iteration we do not do this here. This
is because results are sufficient to show the superiority of a Newton type iteration over
an FAS iteration without requiring a better solver. If a multigrid-preconditioned GM-
RES iteration were to be used, we expect to see the same advantages as for the previous
problems (see Chapter 7 and Section 8.1).

The next subsection investigates the execution time per V-cycle of the algorithms as
well as the robustness of the nonlinear multigrid methods with respect to an adaptive time
step.

8.3.3 Execution Time and Robustness

The formulation of the Richards equation outlined above, whilst locally mass conser-
vative, is much more challenging for nonlinear multigrid methods to solve. Previous
research has not yet considered infiltration into dry soils [13]. The problem given in
Equation (8.46) is too challenging for either nonlinear method to be able to solve due to
the steepness of the wetting front entering into the soil. An unreasonably small timestep
must be taken in order for the methods to converge. The problem we consider here takes
the same form as in the previous section, apart that the pressure head in the bulk of the
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soil is not as low, meaning that the infiltration front is less steep. Specifically we use

∂

∂t
θ(ψ)−∇ · (K(ψ)∇(ψ + z)) = 0, ~x ∈ Ω = (0, 100)× (−100, 0),

K(ψ)∇(ψ + z) · ~ν = 0, x = 0, 100, or z = −100,

ψ = 0, z = 0,

ψ = −100, t = t0, ~x ∈ Ω.

(8.111)

Initially we consider the infiltration of water into a single homogeneous soil. The soil
defined on the domain is soil type A (Clay) from Table 8.7. As in previous sections
we are interested in the execution time per V-cycle of each iteration. The theory from
Chapter 6 is no longer valid for the current problem, as the analytic derivative, rather than
a numerical approximation, is taken. As such we are left to measure the execution time
empirically. However, from previous discussion it is expected that the execution time of
the FAS iteration will be much larger than the execution time of the Newton-MG iteration.

Table 8.10 gives the time required to perform one-hundred nonlinear iterations for
Newton-MG and FAS for varying numbers of linear inner iterations and nonlinear smooth-
ing iterations. The finest grid in the multigrid hierarchy is 2562 grid, and the coarsest is
an 82 grid. Recall that p and ν in the first column heading stand for the the number of
linear multigrid iterations performed per Newton iteration, and the number of pre- and
post-smoothing iterations per FAS V-cycle, respectively. The dash in the final column in-
dicates that the method did not converge. This is the case even for very small time steps,
and is caused by the fact that a single nonlinear smooth on the fine grid is not sufficient to
remove high frequency components from the error, so that the correction calculated on the
coarse grid is inaccurate, regardless of the number of grids in the hierarchy. This is even
the case for a two grid iteration. Increasing the number of nonlinear smoothing iterations
gives a convergent FAS iteration, for which the execution times are given.

p/ν Newton-MG FAS
1 16.74 -
2 20.07 72.97
3 22.69 91.01
4 25.07 110.85

Table 8.10: Time required (s) to perform 100 nonlinear iterations (Newton or FAS) on a
2562 grid for the mixed finite element formulation of the Richards equation.

It is clear from Table 8.10 that the Newton iteration is much quicker than the FAS
for this problem. The framework in Chapter 6 shows that for a more complex nonlinear
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problem the relative efficiency of the Newton iteration compared to the FAS iteration will
increase, since the work involved in the linear multigrid iteration will be small compared
to a more expensive nonlinear residual calculation. We again compare the execution time
of a single V-cycle when three linear multigrid iterations are performed as part of the
Newton iteration, and three pre- and post-smoothing iterations are performed as part of
the FAS iteration. Using the values from Table 8.10 the measured ratio is

91.01

100
× 300

22.69
≈ 12.0 (8.112)

per V-cycle, which is considerably higher than for any of the previous problems consid-
ered (see Chapter 7 and Subsections 8.1.3 and 8.2.3). Results later in this subsection
suggest that, for the current problem, 4 pre- and post-smoothing iterations give an im-
proved performance of an FAS iteration. Three linear iterations per Newton iteration still
give a good convergence of the Newton iteration. In this case the ratio of execution time
per V-cycle is given by

110.85

100
× 300

22.69
≈ 14.7. (8.113)

The convergence of an FAS iteration must be much faster than for a Newton-MG iteration
in order for the method to be more computationally efficient. In order to assess this we
consider the growth of execution time with respect to decreasing mesh spacing, and also
the robustness with respect to a time step parameter.

Figure 8.9 gives the growth in execution time for the iterations when a fixed time step
is used, which is scaled with the square of the mesh spacing. The results are summarised
in Table 8.11. The results show that the growth of the execution time of a Newton-MG
iteration scales linearly with the decrease in time step size and quadratically with the
decrease in mesh spacing. Whereas for previous problems the qualitative behaviour of
the FAS iteration was the same, in this case we see a super-linear growth in execution
time.

Using 3 pre- and post-smooths gives a much more pronounced deterioration in the
execution time, and the average number of V-cycles required per time step increases dra-
matically. No timing is shown for the 5122 grid, as the number of V-cycles required per
iteration grew to > 40. The iteration was stopped after 123 time steps, at which point
3768 V-cycles had been performed in ∼ 13200 seconds. Extrapolating, the execution
time could be expected in the order of 27000s, which would be ∼ 34 times slower than
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Figure 8.9: Growth of execution time as grid spacing h is scaled successively by a factor
1/2, and the time step δt ∝ h2.

using a Newton-MG iteration. The growth in execution time is not so pronounced when
using 4 pre- and post-smooths, although a super-linear increase in time is still observed
(see Table 8.11). On the 5122 grid the iteration requires a factor of

20341.22

791.52
≈ 25.7 (8.114)

times longer to execute. Hence, for a fixed time step, a Newton-MG iteration is much
superior to the FAS iteration. Note that inspection of Table 8.11 shows that more than
three times as many nonlinear V-cycles are performed for the FAS iteration than for the
Newton iteration. Using the ratio of execution times per V-cycle given in (8.113) would
suggest that the ratio in (8.114) should be∼ 45. However, the ratio (8.113) only considers
the execution time of the solver. There is extra computational time required in setting up
the time dependent problem, which is common to both iterations. Hence the increase in
performance is not as large as (8.113) suggests.

Newton-MG FAS (3 Smooths) FAS (4 Smooths)
Grid Size Time Steps Time V-Cycles Time V-Cycles Time V-Cycles

322 1 0.02 12 0.19 8 0.14 5
642 4 0.31 52 4.14 56 3.12 32
1282 16 3.62 111 79.72 282 51.93 152
2562 64 53.63 399 1658.56 1658 991.01 841
5122 256 791.52 1392 - - 20341.22 4641

Table 8.11: Number of V-cycles required to reach a target time (t = 4e-4) using a fixed
time step scaled with the square of the mesh spacing h2.

We now turn our attention to the robustness of the methods with respect to a time step
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parameter by considering an adaptive time stepping strategy. In order to make the problem
more challenging multiple soils are defined on the domain, with the same arrangement as
in Figure 8.3. The properties for the two soils is given in Table 8.7. The adaptive time-
stepping strategy is the same as outlined in Algorithm 8.1. The same parameters in the
adaptive time stepping are used as given in Table 8.8, except that for Newton-MG the
number of iterations below which the time step is increased is given by ηs = 5 and the
number of iterations above which the time step is decreased is given by ηl = 12. For the
FAS iteration ηs = 4 and ηl = 10. The maximum number of iterations to perform per
time step is kept at ηmax = 20. A target time of 0.5 days is set for the problem given in
(8.111), with initial time step 1e-6, and minimum time step 1e-6.
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Figure 8.10: Progression of time step size for different nonlinear multigrid methods for
the mixed finite element formulation of the Richards equation (8.111).

Figure 8.10 shows the progression of the size of the time step for each of the iterations.
The advantage of the use of a Newton iteration is immediately apparent. The size of the
time step for the Newton-MG iterations is much (∼ 1e4 times) larger than that for the
FAS iterations. Note that the FAS iterations fail to converge within 20 iterations even for
the smallest time step at a very small time, so the execution is terminated. Increasing the
number of smooths performed per FAS V-cycle increases the robustness of the method,
but the iteration still fails to converge within the maximum number of iterations even at
the minimum time step. This could be due to the fact that the linearisation is not sym-
metric in the unsaturated zone. Results from the previous section (see Subsection 8.2.3)
show that an advantage can be obtained in the performance of the FAS iteration when an
approximate linearisation is taken. However, the increase in performance was small (see
Figure 8.5b). A substantial increase in the robustness is required for the method to be-
come competitive with the Newton-MG iteration, which likely will not occur by changing
the linearisation.
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In contrast to the FAS, the Newton-MG permits a large time-step, and a Newton-MG
iteration reaches the target time of 0.5 days in a small number of time steps. Interest-
ingly, we see that the global Newton iteration performs worse for this problem than the
standard implementation. This is explained similarly to the previous section, whereby
the non-global method gives a correction at the first Newton iteration which increases
the nonlinear residual, but the convergence for subsequent iterations is very good. For
the stabilised method small corrections are made in order to keep the convergence of the
Newton iteration monotonic. In this case the overall convergence is worse, as the correc-
tions calculated require some time to move the current approximation into a regime of
rapid convergence, as observed for the uncorrected method. This demonstrates that the
choice of globalisation method may be improved upon.

We note that the results in this section are given solely to compare the execution times
and robustness of FAS and Newton iterations. The detail is sufficient to demonstrate the
superiority of the Newton-MG iteration over the FAS iteration in the case of a complex
nonlinear problem, and for a discretisation method other than the continuous piecewise
linear basis. As expected, the Newton-MG iteration performs better than the FAS itera-
tion. This is in terms of execution time as well as robustness with respect to a time step
parameter. In particular the results are in line with the prediction that the Newton itera-
tion will perform more favourably in comparison to an FAS iteration the more complex a
nonlinear problem becomes. This does not mean that the Newton-MG iteration is a good
solver for the mixed formulation of the Richards equation. Newton’s iteration will also
fail to converge when the target time in Figure 8.10 is increased to 1 day. From inspection
of the approximation this appears to be due to the fact that the wetting front propagating
through a fine soil (type A in Figure 8.3) from above meets a faster moving steep wetting
front moving through soil B (see Figure 8.3) moving from the right. This creates a curved
wetting front, and at some point the front has a high curvature. It seems as though the
meshes used are not apt at capturing this high curvature, and so convergence is not ob-
tained. In order for the method to be useful from a soil physics perspective some adaptive
mesh refinement, as in [13], could be used to ensure that fine level detail is resolved accu-
rately. Improving the solution procedure by introduction of an adaptive mesh refinement
procedure, as well as an improved Newton globalisation procedure, and improved inner
linear iteration (for example preconditioned GMRES) would be an interesting investiga-
tion for future work.
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8.4 Summary

In this chapter results have been presented to demonstrate that, for a time-dependent non-
linear parabolic operator with nonlinearity in the diffusion coefficient (where the nonlin-
earity depends on the solution function rather than its gradient), the Newton-MG iteration
is again preferable to the FAS iteration. In Section 8.1 a problem was presented in which,
for small time steps, the FAS iteration is competitive in terms of computational efficiency
when compared to Newton-MG iteration. However, when considering robustness with
respect to a time-step parameter it was shown that a Newton iteration may easily be made
more robust by implementing a preconditioned GMRES iteration, at very little extra com-
putational cost.

A more complicated problem was considered in Sections 8.2 and 8.3 – the Richards
equation. In Section 8.2 the Richards equation is given as a single equation for a single
unknown function. For this more complicated nonlinear problem it was found that there
was a relative speed-up of a Newton-MG iteration compared to an FAS iteration, as pre-
dicted using the framework derived in Chapter 6. As well as being more computationally
efficient a Newton iteration is much more robust with respect to a time-step parameter.
This is demonstrated through the use of an adaptive time-stepping procedure, where a
larger robust time-step is selected for an inexact Newton iteration compared to an FAS
iteration. An advantage is also observed in the use of a global iteration for Newton’s
method and/or the use of a preconditioned GMRES iteration as an inner iteration. No
stabilisation method is known for the FAS iteration. As in Section 7.7, it is found that a
Newton iteration is better able to deal with a discontinuity in material properties on the
domain in Subsection 8.2.3.

Finally, in Section 8.3, a more complicated discretisation of the Richards equation is
presented, in which a small system of equations is solved. In this example the advantage
of Newton-MG is made very clear. The execution time is over an order of magnitude faster
for a Newton-MG iteration than for an FAS iteration, even at small time scales, when a
homogeneous soil type is used. When using heterogeneous soils on the domain the FAS
iteration is found to be unable to converge even for small time steps (see Subsection 8.3.3).
The Newton iteration, on the other hand, is much more robust in the case of heterogeneous
soils, and an adaptive time-stepping procedure finds a robust time step four orders of
magnitude larger for Newton-MG than for FAS.



Chapter 9

Conclusions and Future Work

This chapter briefly summarises the results and conclusions found in Chapters 6 to 8, and
gives a discussion of possible future work. The results and discussion from each of the
chapters can be summarised in the following sentence:

In a finite element setting, given sufficient computational resources, Newton-
MG is a more robust and more efficient (i.e. superior) algorithm to FAS.

As is suggested in the above comment, sufficient computational resources need to be
available for Newton’s method to be feasible. The main advantage of an FAS iteration
over a Newton iteration is that the large Jacobian matrix does not need to be stored, and
so the memory requirements are smaller. Hence, for a very large problem an FAS iteration
may be feasible when a Newton iteration is not. Except for this (large) advantage, results
suggest that Newton-MG will be a superior algorithm in terms of:

(i) Computational efficiency: In Chapter 6 the execution time of the iterations per V-
cycle is estimated through the development of a novel framework which allows
a direct comparison of Newton-MG and FAS methods. The predictions gained
suggest that a Newton-MG iteration will be more efficient per V-cycle relative to an
FAS iteration, and that this relative efficiency is likely to increase the more complex
a nonlinear problem is. Results are given in Chapters 7 and 8 supporting these
statements. When applied to a model problem, in the best case an FAS iteration
is comparable to Newton-MG in terms of running time, and in the worst case is a
factor of 25-30 times slower (see Subsection 8.3.3).

206
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(ii) Robustness: Chapter 7 shows the robustness of the iterations applied to a non-time-
dependent elliptic problem. For approximations close to the exact discrete solution
both methods converge in a predictable manner, with convergence of a Newton-
MG iteration being superior to that of an FAS iteration. Further from the solution,
robust convergence is more likely to be observed for a Newton iteration. In con-
trast, the convergence of an FAS iteration is difficult to predict for approximations
far from the exact discrete solution, and no (general) stabilisation techniques are
known for the FAS iteration. Robustness is also shown with respect to a discon-
tinuous coefficient on the domain, where the convergence of the Newton iteration
can be predicted with the use of linear multigrid convergence theory. Robust con-
vergence is observed even in the case that the coefficient is not resolved on coarse
grid levels (see Section 7.7) for a Newton-MG iteration, whereas the rate of conver-
gence deteriorates rapidly for an FAS iteration in such cases. Chapter 8 investigates
the robustness of the methods applied to time-dependent problems. The problems
considered include a non-symmetric term in the linearisation, and it is shown that
this has a negative impact of the convergence of both Newton-MG and FAS itera-
tions. This can be justified using theory for linear multigrid iterations in the case
of a Newton-MG iteration, but there is no theory to justify why this should be the
case for FAS. Using heuristics from the linear theory, it is predicted that the use of a
linear iterative solver for non-symmetric systems (in this case a multigrid precondi-
tioned GMRES iteration) will increase the robustness of a Newton iteration, which
is observed. No variant of an FAS iteration is known to stabilise the convergence
in the case that the linearisation also has non-symmetric components. Theoretical
discussion in Subsection 4.2.3 and results in Section 7.6 support a supposition that
the asymptotic convergence of an FAS iteration depends on the convergence of a
Newton iteration.

(iii) Flexibility: Globalisation techniques and the use of varied linear iterative solvers as
part of the Newton iteration are investigated in Sections 7.6 and 7.7 and Chapter 8.
These modifications of the Newton iteration lead to a more robust nonlinear itera-
tion, and improved convergence results. The modifications are simple to apply, and
are well researched. In contrast, there are no general stabilisation or globalisation
techniques known for an FAS iteration. Discussion in Chapter 6 mentions the large
additional cost in the FAS iteration using a known nonlinear smoother other than
the pointwise nonlinear Jacobi iteration. This demonstrates that an FAS iteration is
inflexible, and unless the standard implementation works well, it is not known how
the method should be improved in an efficient manner.
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The extensive results presented allow for us to confidently say that a Newton-MG
iteration is better than an FAS iteration in a finite element setting. The results presented
here are not exhaustive, but are varied enough to be able to be confident that the iterations
will display similar convergence behaviours for other problems. Whilst for completeness
it would be useful to have more results to strengthen the conclusion even further, this
would not constitute interesting further work. The work in this thesis can be considered
self-contained, and direct extension for similar PDEs would not add much qualitative
information. However, the results give a good basis for a project involving the efficient
solution of some complex nonlinear discrete PDEs. For example, as noted in Chapter 8,
the solution of the Richards equation in mixed form (see Subsection 8.3.1) is an interesting
problem which is receiving recent attention. It is found that although a Newton iteration
is superior to an FAS iteration for the solution of the mixed finite element formulation
that the solution method is substandard. In the future it would be interesting to make a
Newton iteration more efficient and more robust for the mixed formulation of the Richards
equation. This would be done through the use of adaptive mesh refinement in conjunction
with the use of a linear iteration for non-symmetric systems in the inner iteration of a
Newton iteration. In particular, results presented here show that it would be interesting
to use a multigrid-preconditioned GMRES iteration in which the symmetric part of the
Jacobian matrix is used as a preconditioner. It is expected that an improvement in the
robustness of the method would be brought about by using the preconditioned GMRES
iteration, and the use of an adaptively refined mesh would allow for fine level detail to be
captured, where necessary.
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