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Abstract

The most common product of the storage industry is the well known hard disk, based

on the magnetic recording and reading of data. The research of magnetic materials is

enhanced by the establishment of hard disks as a recording media. Given the current

trend toward nanostructured materials and complex materials design, the understanding

of the origins of magnetic phenomenology at the atomistic level has become necessary.

In this thesis, we focus on the aging effects of magnetic materials. The systems that are

investigated are bilayer thin films comprised of two materials with different magnetic order.

The so called exchange bias systems are comprised of a ferromagnetic layer in contact

with an antiferromagetic layer. Exchange bias systems are part of the current read-heads,

which utilise the phenomenon of Giant Magnetoresistance discovered by A. Fert and P.

Grünberg, who were awarded a Nobel prize in 2007 for this discovery. The most well-

known characteristic of the exchange bias systems is the shift of the hysteresis loop along

the horizontal axis. The reduction of this shift with consecutive hysteresis cycles is called

the training effect.

The current research focused on the dependence of the training effect on various ex-

change bias system parameters using the well established domain state model. A novel

analysis was developed for the study of the antiferromagnet during consecutive hysteresis

loops. A special focus was given to the response of training effect on temperature. Several

characteristics of the system were varied to investigate the physics of the training effect,

such as the antiferromagnetic thickness and dilution with non-magnetic defects. The rever-

sal modes of the ferromagnet were also investigated varying the anisotropies of the system

as well the angle of the magnetic field.

New characteristics were added to the domain state model increasing the realism of

this model. The interface roughness was introduced in the model, as more representative

of realistic exchange bias systems. Furthermore, different crystallographic structures such

as body-centered cubic and hexagonal-close packed, were investigated as in these struc-

tures the coupling between the ferromagnet and the antiferromagnet increases. In these

structures, in addition to the interface roughness, the enhance coupling is shown to give

rise to complex trends of the exchange bias and the training effect.
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Chapter 1

Introduction

In recent years, material science has become one of the most dominant sciences in the

commercial sector. New materials are being developed with amazing properties and capa-

bilities. Using these materials in commercial products enhance their efficiency and reduce

their volume. The miniaturization of the electronic, magnetic or mechanical parts of de-

vices has reached the region of the nanoworld where DNA molecules or even single atoms

can be manipulated, as shown in Fig. 1.1. The characteristics of nanostrustures- especially

their electronic and magnetic ones- are often significantly different from the same material

in the bulk. Nanostructures are, in a sense, a unique state of matter with particular promise

for new and potentially very useful products. Exploring the science of nanostructures has

become a new theme common to many disciplines; Extensive studies and investigations

are undertaken in the field of Condensed Matter Physics, as well as in Statistical Physics.

The combination of descriptive theories with advanced experimental techniques leads to a

deeper understanding of the materials’ physics of the materials.

Figure 1.1: The scale of things.[1]
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1.1. Magnetism in materials: Ferromagnets, antiferromagnets and hysteresis loops

One of the fields that has taken advantage of material science is information technology.

This discipline today includes every kind of computer as well as consumer electronic devices.

The huge development of information technology has lead to a exponential growth in the

semiconductor and data storage industries. The latter especially continues to grow at a

rapid pace, fueled by the explosion of content being created and consumed. The most

common product of this industry is the well known hard disk based on the magnetic

recording and reading of data.

In general, magnetic materials constitute a very important category in material science,

which is an extremely well developed field. This is due to the huge commercial application,

mainly, in storage of digital and analogue information as mentioned above; but also in the

aviation industry, for the creation of strong motors and aviation sensors, as well as in the

medical industry for the creation of diagnostic imaging devices e.g. magnetic resonance

imaging (MRI). Also, superconducting magnets are used for the directioning of rays in the

accelerators, as well as magnetic bottles used for the containment of plasma. Spintronics

is a new field which exploits magnetic materials. It involves the development of integrated

circuits using the flux of spins rather than the flux of the electric charge as in the case of

electronics. More futuristic applications include trains that levitate above the train rack, an

application already used in the MAGLEV train route in Japan, and the creation of magnetic

fields proper for shielding from cosmic rays, in possible space missions to other planets. A

great effort is paid for the experimental and theoretical investigation of these applications.

The main purpose of the present research is the theoretical investigation of magnetic

materials that can be used in industry for commercial applications. Especially, we inves-

tigate theoretically the properties of magnetic systems that consist of two materials with

different magnetic order, called exchange bias systems. Atomistic simulations will be used

to gain a theoretical understanding of the physics of these systems.

1.1 Magnetism in materials: Ferromagnets, antiferro-

magnets and hysteresis loops

According to Aristotle, the concept of magnetism was first discussed scientifically by Thales

around 5th century BC. However, the existence and use of magnetism was known earlier

by Indian and Chinese ancient scientists. Magnetism can be considered the attractive force

between two bodies. When a magnetized body is dipped in iron filings, they align along

the direction of the field created by it; these lines converge in places close to the ends of

the body, called poles. The concepts of poles is useful for the definition of the two basic

quantities of magnetism, the magnetic field and the magnetization.

The magnetic field H may be defined in terms of magnetic poles: a unit of magnetic
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1.1. Magnetism in materials: Ferromagnets, antiferromagnets and hysteresis loops

field is the field produced from a magnetic unit pole in a length unit distance. A magnetic

field may be produced by a current of electricity as well as by a magnet. The magnetization

M may be defined the same way as the magnetic field: a unit of magnetization is the

magnetization produced from a magnetic unit pole in a unit area or volume. Magnetization

is a quantitative measure of the magnetic property in a material. In general, the root of

the magnetization of a material arises from electric currents or moving electric charges

(electrons orbital angular motion around the nucleus) and from the intrinsic magnetic

moments (“spin”) of many particles (especially electrons). Materials can be categorized

according to the ordering of the net magnetic moment of each atom as ferromagnetic

and antiferromagnetic ordered materials (the most well known forms). In ferromagnetic

materials, the magnetic moments are aligned in the same direction as each other and

are named after iron with which have similar properties (nickel, cobalt). In contrast, in

antiferromagnetic materials each magnetic moment is “anti-aligned” to its neighbors, as

shown in Fig. 1.2a).

Figure 1.2: a) Ferromagnetic and antiferromagnetic order (ideal) in a bulk material. b)
A ferromagnetic hysteresis loop. ① The material follows a non-linear magnetization curve
beginning from zero field value. ② Material magnetized to saturation by alignment of the
magnetic moments of atoms or of regions of atoms (“domains”). ③ When the magentic
field is zero, the material retains a considerable magnetization. ④ The magnetic field is now
reversed and increased to a large value to drive the magnetization to zero. That actually
means that the magnetic moments of the atoms or the domains have net magnetization
zero. ⑤ Material magnetized to saturation in the opposite direction.

The behavior of a material can be described by its permeability curve and hysteresis

loop. Permeability µ is the magnetization-magnetic field ratio (M/H) and represents

the increase of flux caused by the presence of a magnetic material inside a magnetic

field. Usually, a hysteresis loop can be generated from systems that have memory[2].

The hysteresis loop is a magnetization curve as function of magnetic field and shows the
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1.2. Exchange bias phenomenon and the training effect

“history dependent” nature of magnetization. As shown in Fig. 1.2, a hysteresis loop is

created by first increasing the magnetic field from zero (point 1) to a high value (point 2)

and then decreasing it to its opposite value (point 5). It is observed that the original curve

is not retraced; the induction “lags behind” the field. When the material has been driven

to its saturation value (maximum value of magnetization), the magnetic field can then be

dropped to zero and the material will retain most of its magnetization (remembering its

history). This general phenomenon is called hysteresis, it was originally named by Ewing.

Hysteresis loops occur predominantly in ferromagnets but not in antiferromagnets as their

magnetization is always zero.

1.2 Exchange bias phenomenon and the training effect

Exchange bias (EB) is the phenomenon in which the hysteresis loop of a system, consisting

usually of two magnetic materials with different magnetic order, is shifted along the mag-

netic field axis. The most common EB system is a multilayer consisting of a ferromagnet

(FM) in contact with an antiferromagnet (AFM). The term EB is established because the

hysteresis loop is shifted with a bias field, in addition to the applied field, which is created

from the exchange interaction between the two different materials[3, 4].

This phenomenon was first discovered in 1956 from Meiklejohn and Bean [5, 6, 7],

in a system consisting of fine particles which have a core of Co and a shell CoO. The

existence of this oxide layer surrounding the particles of Co was considered to be the cause

of the displacement of the hysteresis loop. The Co is the FM and the CoO the AFM.

They reported their discovery as new exchange anisotropy. The procedure they used was

to firstly cool the system below the Néel temperature, TN , of the AFM in an external

magnetic field. The Néel temperature of an AFM material and the Curie temperature of a

FM material is the temperature above which the magnetic materials is in a paramagnetic

state. This cooling process begins above the Néel temperature of the AFM but below

the Curie temperature of the FM. The final fixed temperature where we observe the EB

phenomenon must be below the so-called blocking temperature TB above which EB is not

observed. The shift and width are quantified as the EB field and coercivity of hysteresis

loop, respectively.

Initially, it was concluded that the shifted hysteresis loop was an effect created by

the existence of an oxide layer surrounding the Co particles, implying that the magnetic

interaction along the interface is responsible for this effect. So, being considered as an

interfacial effect, the investigation of exchange bias are carried out on thin films, usually

consisting of a bilayer structure with an AFM part in contact with an FM one.

The shift of the hysteresis loop of Co − CoO particles is shown in Fig. 1.3a). The
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1.2. Exchange bias phenomenon and the training effect

Figure 1.3: a) The shifted hysteresis loop of the Co particles at 77oK after cooling in a
field of 10kOe (solid line) and the hysteresis loop of Co particles after cooling in zero field
(dashed lines) and b) The torque magnetization of a material with uniaxial anisotropy (grey
line) and of the Co− CoO with the unidirectional anisotropy as measured for decreasing
(circles) and increasing (boxes) angle θ.[5, 6]

cooling process was started from room temperature, which is higher than the Néel tem-

perature of the CoO, and decreased to 77oK. When the above procedure happens in zero

field, the hysteresis loop is symmetrically centered around zero value of magnetic field, a

behavior corresponding to FM materials. But, when a positive field is applied during the

cooling process, the hysteresis loop is shifted to the left, even when very high magnetic

fields were applied.

Fig. 1.3b) shows the torque curves of this system in comparison to a system with

uniaxial anisotropy. In general, torque magnetometry is used to measure the magnetocrys-

talline anisotropy of ferromagnets. The anisotropy energy for the system of Co − CoO
particles is described from the term Kdcos

2β rather than from Kacos
2(2β) for uniaxial

anisotropy, where β is the angle between the FM magnetization and the FM easy axis

and Ka, Kd are the uniaxial and unidirectional anisotropy constants, respectively. This

expression clearly shows that for 0o the particles are in a stable state. Typically, in a case

of uniaxial anisotropy there are two stable states, one at 0o and the other at 180o angle.

In conclusion, the shift of the hysteresis loop is caused by the produced anisotropy of

the system, called unidirectional anisotropy. Thus, instead of uniaxial anisotropy, where

the magnetization is, energetically favorable to two opposite directions (easy axis), the net

magnetization of an EB system is energetically favorable to only one direction. Meiklejohn

and Bean [5, 6, 7] connected the loop shifting with the explanation for the unidirectional

anisotropy.

The training effect is the decrease of the shift, coercivity and the change of the shape
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1.3. Applications of exchange bias systems

of a hysteresis loop after several consecutive hysteresis loops for a fixed temperature. The

training effect was discovered by Paccard et al.[8] in 1966 in three systems exhibiting FM-

AFM coupling with uniaxial anisotropy. Fig. 1.4 shows the consecutive hysteresis loops of

a Co−CoO system. The first loop appears to be shifted more than the others. Also, this

decrease in the shift is more significant on the left-hand branch of the loop than on the

right hand, causing a decrease of the hysteresis loop’s coercivity.

Figure 1.4: Consecutive hysteresis loops of a Co − CoO system measured with torque
balance. The observed overshoot is an instrumental effect.[8]

It is common for the training effect to be separated into two categories: the effect

between the first and the second loop, and the other between consecutive hysteresis loops.

Especially during the first cycle the system behaves in irreversible way, because of the

non-equilibrium state of the AFM that is gained during the cooling process. The second

type of training effect show that the shifting decreases with the increase of the number of

consecutive hysteresis loops and follows a inverse power law, as proved by Paccard et al.[8].

The cause of this is suggested to be the reconfiguration of the spins or of the domain state

of the AFM during the consecutive cycles, causing fluctuations in the FM-AFM coupling.

Lastly, the importance of the training effect rests on the stability of exchange bias bilayer

which is inside many devices.

1.3 Applications of exchange bias systems

Exchange bias systems are used in the read-head of the magnetic hard disk drives of

personal computers for reading the stored information. The mechanism of the sensor is

called Giant Magnetoresistance (GMR), discovered by A. Fert and P. Grünberg, who were

awarded a Nobel prize in 2007 for this discovery. Despite the fact that the first commercial

use of exchange bias was in the anisotropic magnetoresistance (AMR) used in IBM disk

drive recording heads around the 1970s, it did not displace the inductive readback head

until the 1990s, as shown in Fig. 1.5.
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1.3. Applications of exchange bias systems

Figure 1.5: Progress of read head sensor technologies.[9]

A typical GMR is shown in Fig. 1.5, consists of a FM layer (free layer) separated by

a non-magnetic spacer from an exchange biased bilayer (hard layer). The role of the free

layer is to “read” the bit of the magnetic media, so it gains the magnetization of the

trace field. The hard layer is used as a reference layer of the sensor, meaning that its

magnetization is pinned to a specific direction. Consequently, this magnetization does not

change its direction under the change of the trace field, as the one of the free layer does.

The angle between the magnetization direction of the free layer and hard layer changes

the resistance of the non-magnetic spacer, which causes the read signal. This sensing

mechanism is called the GMR effect and was discovered by Baibich et al. in 1988 [10].

The above sensor is usually referred to as spin-valve and is mounted on a lever arm

suspended some nanometres above a lubricant layer that covers the recording media. This

sensor is shielded from the magnetic field of the bits other than the one being read. Fig.

1.5b) shows a cross-section TEM picture of a real read-head sensor. Other GMR-based

applications include automotive and aviation sensors, non-votalite magnetic memory, solid

state compasses as well as landmine detectors.

Another application of exchange bias is in recording media because of the increase

of coercivity, without the decrease of saturation magnetization, caused by the AFM. The

AFM acts as a domain stabilizer for the FM through the exchange interaction between the

FM and the AFM, because some of the AFM spins are frozen to a specific direction after

the cooling process. This leads the FM magnetization to stabilize in a desired direction. In
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Figure 1.6: a) A typical giant magnetoresistance with the trace field pointing to the one
or the opposite direction. b) Structure of a spin-valve head, similar to the ones used on
hard disks.[11]

total, the interaction between the two materials induces an extra source of anisotropy to

the FM, helping it to overcome the superparamagnetic limit[12]. The superparamagnetic

limit is caused, in this case, by thermal fluctuations when the miniaturization of magnetic

elements exceed a specific limit, leading to magnetization instability. The density of the

recording media can be increased by decreasing the size of the magnetic elements without

losing their stable magnetic state by implementing the exchange coupling with an AFM

[12].

One of the most promising applications of the spin valve is the magnetic random access

memory (MRAM), which will use an array of GMR elements or a tunnel magnetoresistance

(TMR). The TMR is similar to the GMR except in the spacer which is replaced by an

insulator. The advantages of MRAM are that there are no moving parts, no reading head

and the ability to access information in a random way (random access).

Despite the many advantages, the applications of exchange bias systems are limited by

the fact that the blocking temperature observed in most of the systems is much lower than

room temperature. However, there is active research seeking new applications of exchange

bias and it is very likely that GMR and TMR will find a large number of applications in the

future due to their cost-effective sensing capabilities.

1.4 Related phenomena

EB systems also exhibit several other phenomena e.g. asymmetric reversal modes, en-

hanced coercivity, non vanishing rotational hysteresis, blocking temperature, memory and

perpendicular exchange bias effect. The blocking temperature TB of an EB system is the

temperature above which the EB field vanishes.

The asymmetric reversal mode during a hysteresis loop observed in some exchange bias
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1.4. Related phenomena

systems is an important characteristic of these systems. It is usually observed directly as an

asymmetry of the shape of the hysteresis loop, but many experimental investigations have

obtained a more detailed view of the phenomenon using neutron scattering techniques[13]

or polarized neutron reflectometry [14]. They show that the first reversal is a result of

domain wall movement and the second reversal results from magnetization rotation.

Enhanced coercivity is another characteristic of exchange bias systems. More specifi-

cally, the coercivity of the FM in an exchange bias system is larger than when the FM is

alone. This phenomenon is present even if the temperature is above the Néel temperature

of the AFM[15].

By rotational hysteresis we mean the work done on rotating a specimen 360o in a

magnetic field, as a result of the irreversible changes of magnetization. Usually, for systems

of a single domain FM particle, the rotational hysteresis as function of magnetic field has

a finite value for a range of magnetic field and zero elsewhere[7]. But for exchange bias

systems, the rotational hysteresis has a finite value above a certain value of magnetic

field[7, 5]. This feature is more general than the shifted hysteresis loop for these systems.

Actually, a unidirectional anisotropy results in no hysteresis at any value of the magnetic

field. The non vanishing rotational hysteresis was attributed to the irreversible changes

of the magnetic state of the sample taking place during the rotation of the sample in the

magnetic field. Such irreversible changes occurred in the AFM.

The memory effect[16, 17] is a characteristic that EB systems exhibit when they are

heated above the initial temperature TI , where TI is the temperature at which the cooling

process began. When the EB system is cooled from an TI and then heated above the this

TI the EB phenomenon disappears, even though the blocking temperature TB is greater

than the initial temperature TI . Usually when we make a temperature investigation of the

EB, for every temperature we carry out the cooling process from the TI to the temperature

at which we desire to find the hysteresis loop shift each time. This is how the blocking

temperature TB is found. But when we only carry out the cooling process from the TI once

and then we increase the temperature, the system “remembers” this TI and the hysteresis

loop shift becomes zero at that temperature although this temperature is lower than the

blocking temperature TB.

As mentioned above the blocking temperature is the temperature at which exchange

bias ceases to exist. The most common method for determining the blocking temperature

is to measure the shift of hysteresis loop, increasing the temperature until the shift be-

comes zero and remains zero with further increases in temperature. For granular systems,

each AFM grain has its own blocking temperature creating a distribution of blocking tem-

peratures in the AFM. This can give false estimation of the blocking temperature due to

thermal activation during measurement. An alternative method has been suggested [18]

that the blocking temperature is defined when equal fractions of the AFM are oriented in
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1.5. Important quantities of exchange bias systems

opposite directions, as shown in Fig. 1.7.

Figure 1.7: Distribution of energy barriers to reversal in a AFM layer a) following the
common method of determining the blocking temperature and b) following the alternative
method. [18]

Finally, by perpendicular exchange bias we mean the exchange bias phenomenon when

a magnetic field is applied perpendicular to the plane of the system. Because of the

reduced spin dimensionality, perpendicular exchange bias systems are considered easier to

understand than conventional exchange bias systems. Their applications are expected to

become important in future perpendicular recording and sensing devices[19].

1.5 Important quantities of exchange bias systems

Two important properties of EB systems are the exchange bias field and the coercivity. The

coervivity Hc of a hysteresis loop is the distance between the two points of a hysteresis

loop where the magnetization is zero, as shown in Fig. 1.8. Usually, these two points are

referenced as the negative and positive coercive field or (HC− , HC+
respectively). So, the

coercivity is Heb = (HC− −HC+
)/2 . The exchange bias field Heb is the displacement of

the hysteresis loop from zero magnetic field and it is used to quantify the intensity of the

exchange bias. Thus, the EB field is Heb = (HC−+HC+
)/2. In experiments and numerical

simulations it is very difficult to have exact points for the two coercive fields (usually we

have points which are very close to zero of magnetization). Often, we use an interpolation

method (linear is satisfactory) between the two points where the magnetization goes from

positive to negative and vice versa.
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Figure 1.8: Exchange bias hysteresis loop with the important quantities.

1.6 Experimental findings and system behaviour

1.6.1 Exchange bias systems

There are several different systems where the exchange bias phenomenon is exhibited. It is

usually observed in systems involving two different magnetic orders: a FM, a ferrimagnet

or an AFM, with the most common system being that of AFM and FM. Also there is a

great variety of materials where EB has been observed [3, 4]. The most common types are

microfilms, nanoparticles and coated monocrystalline AFM which clearly have an AFM-FM

interface. Microfilms are multilayers consisting usually of one layer of AFM and one layer

of FM, as shown in Fig. 1.9, and nanoparticles are particles, the core of which is AFM and

the shell is FM, like the system of Co/CoO, which Meiklejohn and Bean [5] investigated.

Microfilms are also divided into two sub-categories: epitaxial films and sputtered films, the

latter having granular structure. Coated monocrystalline AFM is a very unusual system

where a single AFM crystal, cut in a specific crystallographic orientation, is coated with

an FM material. Another category of EB systems is inhomogeneous materials in which

there is no clear AFM-FM interface. Spin glasses are included in this category. Finally,

inhomogeneous materials consist of metals like Fe,Co,Ni,Mn,Ag, Cu, oxidized metals

and more occasionally sulfides, fluorides and nitrides.

Figure 1.9: Exchange bias thin film, consisting of a FM and an AFM.
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1.6.2 Exchange bias and coercivity

To better understand the behavior of an EB system, the dependence of EB field as well

as coercivity is discussed, as measured by experimental apparatus. For the measurement

of the EB field and coercivity a device such as semiconductor quantum interference device

(SQUID) is used in order to get a hysteresis loop of a sample along the axis of the

magnetization field. Torque magnetometry is also used to measure the anisotropy. Several

other methods exist for the measurement of other properties of magnetic materials, which

are useful for the investigation of EB systems [3, 4].

Obviously, EB field and coercivity decrease with increasing temperature of the system.

The EB field decreases to zero at the blocking temperature TB. The EB field trend

on temperature and subsequently TB changes with different system characteristics e.g.

dilution with non-magnetic defects [20]. Furthermore, EB field and coercivity depend on

the cooling field during the cooling process to the desired temperature. Experimentally it

is observed that the EB field decreases with increasing magnetic cooling field[21] and in

some systems becomes positive[22].

Figure 1.10: a) EB field (filled circles) and coercivity (open circles) dependence on FM
layer thickness for a Fe80Ni20/FeMn bilayer[23]. b) EB field (squares) and coercivity
(triangles) dependence on AFM layer thickness for a Fe80Ni20/FeMn bilayer[24].

The thickness of the two materials has a very important role. Firstly, the EB field and

the coercivity are roughly inversely proportional to the the thickness of the FM tFM , for all

the systems e.g. for a Fe80Ni20/FeMn bilayer, as shown in Fig. 1.10a) [23]. This relation

holds, as long as the thickness of the FM is bigger than the FM domain wall size, and

this varies from system to system. Secondly, the dependence of EB field and coercivity on

AFM thickness is non-monotonic and changes from epitaxial to grain structured systems.
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In epitaxial systems the EB field decreases with increasing AFM thickness. On the other

hand, for grain structured systems, with thick AFM layers, the EB field is independent of

the AFM thickness. For thin AFM layers, the EB field is proportional to the thickness of the

AFM, beginning from zero exchange bias field for a very thin AFM layer, as shown in Fig.

1.10b) [24]. This general behavior presents discrepancies with other experimental findings.

Finally, another important effect in the behavior of the system is that the AFM thickness

changes the Néel temperature of the AFM and consequently the blocking temperature of

the system.

The spin orientation of the AFM is crucial for the configuration of the interface of

the system. The orientation of AFM spin can be separated into two categories. Firstly,

based on the compensation at the interface and secondly, on the plane where the AFM

spins lie. In general, a compensated AFM interface is considered to exist when the total

magnetization averaged over a microscopic length-scale is zero, as shown in Fig. 1.11a).

On the other hand, when the spin configuration results in non-zero magnetization, the

interface is uncompensated, as shown in Fig. 1.11b). Although it is expected that the

spins pinning the FM self-cancel, giving rise to a net zero exchange bias field, this does not

happen. It was found that all the exchange bias systems with compensated interfaces that

were investigated experimentally, exhibit exchange bias. Especially, some of them exhibited

very large hysteresis loop shifts, even larger than the uncompensated configurations of the

same AFM material.

Figure 1.11: a) Exchange bias system with AFM having compensated spins on the inter-
face, b)Exchange bias system with AFM having uncompensated spins on the interface.

In the second category, the spin configurations can be separated according to the plane

of the pointing direction, so they can be in-plane or out-of-plane AFM spins. Usually, when

the AFM spins are in the plane, EB field is maximum, but when they are out-of-plane, the

EB field is zero. For an intermediate angle, the EB field is about half of the value for the

case of in-plane spins. Finally, the shape anisotropy of the FM plays a crucial role in this

dependence.

Also, the AFM spin configuration depends on the initial temperature TI of the system

before the cooling process[25] and on the dilution (non-magnetic defect concentration)[20]

of the AFM material, as recently shown. The crystalline structure (e.g. fcc, bcc, etc.)

and the magnetocrystalline anisotropy effects the behavior of the system e.g. for low AFM

26



1.6. Experimental findings and system behaviour

anisotropy we have very low or zero EB field Heb but increase in coercivity Hc[26].

Various structural factors can also affect the exchange bias field, e.g. interface rough-

ness, crystalline structure, dilution of the AFM, grain size and crystallinity. Interface

roughness is not very easy to quantify or measure experimentally. Many models [27] con-

sider the percentage of FM spins inside the AFM interface layer to be related to interface

roughness. Experimentally, interface roughness is quantified by considering the thickness

of the mixed layers. In general, EB systems are sensitive to interface roughness with some

of them having decreasing EB field with increasing roughness; however, in other systems

the contrary occurs.

Secondly, the crystalline structure of the material, as well as its orientation in the

interface plane plays an important role in EB systems. Usually, epitaxial systems have the

same kind of crystalline structure i.e. an fcc AFM and fcc FM, but sputtered systems can

have a different crystalline structure in each of the materials. There is strong dependence

of EB field on crystalline structure because of the change in the number of neighbors of

each spin in the bulk and interface of each material. The crystallographic orientation is

connected with the structure of AFM spins on the AFM. For systems, where the spins

are oriented along [001] or [110] directions, a larger training effect is seen compared with

the [101] or [001] directions [26]. Blachowicz et al. [28] showed that exchange bias

is dependent on the crystallographic symmetry of the two layers, the lattice mismatch

between layers, the sequence of layers upon deposition and the quality (roughness) of the

FM/AFM interface.

AFM dilution in the bulk, as well as in the interface, can enhance the exchange bias

field and the coercivity. Dilution can be created by non-magnetic defects or vacancies in

the AFM. As shown in Fig. 1.12, dilution can enhance the exchange bias and coercivity up

to a limit, after which a decrease is observed. This trend is connected with the formation

of volume domain walls, which prefer to pass through the defects [20].

Crystallinity is another important factor in the exchange bias systems. The crystallinity

can be determined as the percentage of the volume of the material that is crystalline,

compared with the volume that is amorphous. As expected, the increasing texture of the

sample increases the exchange bias field, although there isn’t a clear method measuring

the crystallinity[29]. The crystallinity is connected with the grain size, although the role

of grain size is complicated because it changes other parameters of the system, such as

AFM anisotropy, spin structure, etc. EB is reported to increase with increasing grain size

for some systems and with decreasing grain size in other systems.

Anisotropy is one the most important factors in the exchange bias systems. Although

most investigations do not focus on FM anisotropy, experimental findings for the AFM

anisotropy dependence of EB field show that it increases with larger AFM anisotropy

[30, 31]. It is difficult to extract quantitative conclusions about anisotropy dependence due
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Figure 1.12: Dilution dependence of absolute exchange bias field (a) and of coercivity
(b) in the Co1−xMgxO layer for various temperatures. The x denotes the percentage of
the spins replaced by the non-magentic Mg ions. [20]

to the lack of the absolute value of the anisotropy.

1.6.3 Training effect

The training effect is affected by the factors mentioned in the previous section like dilution

and thickness of the AFM, and cooling field. Keller et al. [20] investigated the influence

of dilution on the training effect in a Co/Co1−xMgxO system where x denotes the AFM

dilution. They found that the magnitude of the relative training effect behaves non-

monotonically with dilution. Furthermore, they found that the magnitude of the training

effect and the exchange bias field are closely related to their dilution dependence. That

means at optimum dilution the exchange bias is strongest with the smallest training effect,

while at high and low dilution the exchange bias decreases with the training effect being

increased.

Temperature is an important factor that influences the training effect. Khapikov et

al. examined the temperature dependence of the exchange bias field and coercivity of a

NiO/Ni81Fe19 bilayer for several consecutive hysteresis loops, as shown in Fig. 1.13.

They showed that the EB and the training effect increases as the temperature decreases.

At high temperatures both phenomena disappear. Also, the appearance of exchange bias

is accompanied by a decrease of the equilibrium coercivity. The cooling field during the

process of cooling to the desired temperature effects also the EB, coercivity and reversal

modes training[25]. It is found that cooling in zero field results zero training effect.

The training effect is strongly influenced by the AFM thickness as showed by Zhang et

al. [33] for NiFe/IrMn bilayers. They separated the training effect into two types. Type

I is when the hysteresis loop shrinks from both sides with the cycle of the applied field,

meaning that the two branches of the loop move in opposite directions. Type II is when
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Figure 1.13: Temperature dependence of the first hysteresis loop and equilibrium values
of the EB, coercivity, positive and negative coercive field of NiO/Ni81Fe19 bilayer. [32]

both branches move in the same direction towards the positive pinned direction. They

found that the type of the training effect changes from type I to type II with increasing

AFM thickness.

Another important factor that influences the training effect is the cooling field. Paul

et al. [25] investigated the dependence of the training effect considering two different

magnetic configurations. They considered a system in a remanent state without an external

cooling field and a system which was field cooled. The first system did not exhibit a training

effect while the second one showed a clear training effect.

Finally, a strong dependence of the training effect on a material’s structure has been

observed. More specifically, Fecioru-Morariu et al. [34] investigated the effect of crystalline

structure on the training effect. They used [001] and [110] epitaxial samples for comparison

it with a polycrystalline thin film. The training effect was found to be strongest in the

polycrystalline sample. Manzoor et al. [35] compared the training effect for different sizes

of grains in a polycrystalline thin film. They found that the smallest grains give rise to a

larger training effect of the EB field due to the fact that larger AFM grain-volumes give

rise to thermally stable bias fields and consequently smaller training effects.

1.7 Motivation

EB system is a very important part of the giant magnetoresistance device used as a reading

head in hard disks. For the consistent operation of the giant magnetoresistance device, a

thorough analysis of the aging effects of the EB systems is needed. The training effect is

the most important aging effect of EB systems. In general, for the commercialization of

an EB system, it is necessary to maximize the EB field and minimize the training effect.

Thus, we have studied this effect, using the domain state model [36] and systematically

varying different characteristics of the EB system.

The main focus is on the AFM characteristics and behavior, using a novel analysis of the
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AFM to connect the AFM phenomenology with the training effect. The macroscopic AFM

magnetization is compensated due to the balance of the magnetic spins in all sublattices. It

is widely accepted that a break of the in-plane translational symmetry is needed to explain

EB and the training effect. This break in symmetry can occur through defects, interface

roughness, magnetic domains, granular structural or a combination of these four[37]. In

this thesis, the dilution and the magnetic domain effects in th EB and the training effect

will be investigated. Also, the effect of interface roughness will be investigated using a

more general framework. The granular structure dependence will be investigated in the

future.

1.8 Thesis Outline

The thesis can be separated into three parts. The first part has two chapters and discusses

modeling EB systems. The second chapter gives a short review of the literature considering

the model and simulations of exchange bias systems and the training effect. In this chapter

the models are divided into five categories according to their scale and the structure they

describe.

Chapter 3 will start with an introduction to theoretical description of magnetism in

solids at the atomic level. A detailed analysis of the Hamiltonian used in magnetism will

be given.

The second part consists of three chapters and will discuss the results using an ideal

FM/AFM interface. In Chapter 4 first a thorough description of the domain state model,

which is used in the current thesis, will be given. Also, will be presented the first results

of the thesis.

Chapter 5 will present the dependence of the training effect on the AFM and temper-

ature. A detailed analysis of the AFM spin behavior will be presented. Chapter 6 will then

extend this work to investigate the effect of anisotropy of both materials in the training

effect, using a large set of anisotropy combinations and constants.

The third part which consists of Chapter 7 will discuss the results using non-ideal

AFM/FM interface. In this chapter, the dependence of the training effect on the interface

coordination number (the number of closest-neighbors which belong to the other material)

will be presented. This number is varied by changing the interface roughness of the system

as well as the crystalline structure of the materials.

The thesis will then finish with a summary and conclusions, describing the main dis-

coveries of the thesis and some future plans for developing even more realistic EB models.
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Chapter 2

Models of exchange bias

The modeling of EB systems was always causing contradiction between the experimentalists

and the theoreticians of the field because of the controversial results. The main problem

is that there is not a single model that can explain the whole range of the experimental

results. So, although the EB phenomenon has been investigated for more than four decades

the microscopic origins remain controversial and under investigation. The models used for

the EB system can be separated into three categories according to the their length scale of

the area with the same magnetic momemt: Macroscopic, mesoscopic and microscopic[3].

2.1 Macroscopic models

2.1.1 The ideal model

A very simple qualitative model can be derived using the macroscopic observation of the

hysteresis loop shift due to unidirectional anisotropy[4]. A schematic of the model is shown

in Fig. 2.1, where TC is the Curie temperature of the FM layer, TN is the Néel temperature

of the AFM layer, below which AFM is on the long-range AFM state. EB system materials

must satisfy the condition TN < TC for a successful cooling process. At the beginning,

the system is at temperature lower than the Curie temperature and higher than the Néel

temperature (TN < T < TC). The AFM is an paramagnetic state with the spins randomly

oriented, while the FM spins are oriented according to the external magnetic field. The

hysteresis loop is centered around zero magnetic field without being affected by the AFM.

The cooling process involves the application of a strong external magnetic field while

decreasing the temperature to a desired value, which is smaller than the Néel temperature

of the AFM. At the end of the cooling process, the AFM, due to the exchange interaction

at the interface and the external magnetic field, will be in a long-range AFM state. This

state will consist of uncompensated layers, anti-parallel each other, and with the interface

layer to be aligned ferromagnetically or antiferromagnetically to the FM interface layer.

The interface, being uncompensated, will lead to a finite net magnetization in this layer.

Both the FM and the AFM are considered to be in the single domain state remaining like

that during the whole hysteresis loop.

As the magnetic field reverses, the spins of the FM begin to rotate, as shown in Fig. 2.1.
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Figure 2.1: Phenomenological model of EB. [3] i) The EB system before cooling process,
where the temperature is lower than the TC of the FM and higher than the TN of the AFM.
The AFM layer is in a long-range paramagnetic state and the FM layer is in ordered phase.
The hysteresis loop of this state is center around the zero value of the applied magnetic
field. ii) The spin configuration of the EB system after the cooling process of the system
below Néel temperature in a positive magnetic field. The interface spins of the AFM are
considered uncompensated. iii) The FM begins to reverse after saturation at the negative
fields. iv) The FM is fully reversed after an in-plane rotation of the FM spins. v) The spin
configuration when the reverse process begin, for negative magnetic field.[4]

Due to the exchange coupling between the AFM and FM, the AFM, which is considered

to be rigid, will exert a small torque on the spins of the FM, opposing to the change of

the direction from their original position. Consequently, an extra magnetic field is needed

to reverse the magnetization, meaning that only one direction is energetically favorable

(unidirectional anisotropy). In terms of the hysteresis loop, the negative coercive field will

be smaller than the one at temperatures higher than the Néel temperature. During the

reverse process, the small torque is exerted on the spins of the FM helping them to change

back to the original direction. So the positive coercive field will be smaller than the one

at temperatures higher than the Néel temperature. Finally, the resulting hysteresis loop

appears shifted to negative values of the magnetic field, with the shift called EB field and

being negative.

Based on the phenomenology of the previous description, Meiklejohn and Bean[6] de-

veloped a model with the following assumptions:

1. The FM rotates coherently, and has uniaxial anisotropy with the easy axis in-plane.

2. The AFM also has uniaxial anisotropy with the easy axis in-plane.

3. The AFM’s spins are rigid. They remain unchanged during the magnetization reversal

of the FM.
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4. The AFM layers are in uncompensated state, so the interface layer has a net magnetic

moment.

5. The interface of the FM and AFM are considered perfectly smooth.

6. Single domain state is assumed for both the AFM and FM

7. At the interface, the AFM and the FM are coupled with an exchange interaction.

The initial model was based on the Stoner-Wohlfarth model [38], for coherent rotation

of the FM magnetization. So the energy per unit area, before the cooling process can be

written as:

H = −µoHMFM tFMcos(β) +KFM tFMsin
2(β), (2.1)

whereH is the applied magnetic field,MFM is the magnetization of the FM spins during

the reversal, tFM is the FM’s thickness, KFM is the magnetocrystalline FM anisotropy

constant and β is the angle between the FM magnetization and the anisotropy. The

applied magnetic field is parallel to the easy axis of the FM. So, the first term describes

the Zeeman energy of the system and the second term the uniaxial anisotropy. The

above expression 2.1, using the stability condition give the familiar result for the coercivity:

Hc = 2KFM/µoMFM .

Figure 2.2: Phenomenological model with the schematic view of the vectors and angles.
KAFM and KFM is the easy axes of the uniaxial anisotropy of the AFM and the FM,
respectively. β is the angle between FM magnetizationMFM and the anisotropy easy axis
KFM . This angle is changing during the magnetization reversal. MAFM is the sub-lattice
magnetization of the AFM, which remains constant. The other sub-lattice magnetization
is pointing to the opposite direction as showed. H is the applied magnetic field which for
this model has direction parallel to the easy axis of the AFM and the cooling field (θ = 0).

In this model, they introduced another term for the interface exchange coupling between

the FM and the AFM. In Fig. 2.2 the EB system with the vectors involve in this model
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is shown schematically. KAFM and MAFM is the easy axis for the uniaxial anisotropy and

the sublattice magnetization of the AFM, respectively, β is the angle between the FM

magnetization and anisotropy axis and θ the angle between the applied magnetic field and

the easy axis of the AFM. It is assumed that the applied field is parallel to the easy axis of

the AFM, meaning θ = 0 and the AFM spins remain still with their orientation pointing

along the easy axis of the AFM. Also, the applied field is parallel to the cooling field. So

the energy per unit area, after the cooling process can be written as:

H = −µoHMFM tFMcos(β) +KFM tFMsin
2(β)− JINT cos(β), (2.2)

where JINT is the interfacial exchange coupling energy per unit area parameter. So, the

last term describes the exchange coupling between the FM and the AFM. Using the stability

condition ∂H/∂β = 0 and the condition for energy minimum ∂2H/∂2β > 0 , there are two

solutions: 1) β = cos−1[(−µoHMFM tF−JINT )/2KFM tFM ] for−µoHMFM tFM−JINT ≤
2KFM tFM and 2) β = 0, π for µoHMFM tFM + JINT < 2KFM tFM . The first one does

not fulfill the energy minimum condition and has no physical significance. The second one

corresponds to the energy minima of energy at that points. For finding the coercive fields,

in which the magnetization of the FM is zero across the easy axis, β = 0, π is taken:

HC− = (2KFM tFM − JINT )/µoMFM tFM (2.3)

HC+ = (−2KFM tFM − JINT )/µoMFM tFM . (2.4)

Using the expression for the coercivity and EB field, we take:

Hc = 2KF/µoMF (2.5)

Heb = −JINT/µoMF tF . (2.6)

Compared to the initial Stoner-Wohlfarth model [38], the coercivity remains the same,

but we take a shift along the negative x-axis. That means that the solution is the same as

the case prior to cooling with the substitution of an effective field :

H ′ = H − JINT/µoMF tF (2.7)

The Eq. 2.6 predicts correctly that the sign of the EB field is negative. The EB field

sign is produced from the sign of the interface exchange coupling parameter. So positive

EB can be reproduced by simply changing the sign of JINT in Eq. 2.2 from positive to

negative. Also, the real exchange coupling constant JINT isn’t evaluatable and as a real

interface isn’t atomically smooth, it is not known how this will affect this constant. As

Kiwi [39] nicely labeled as “a hard nut to crack”, the interface feature of EB systems is

complex regarding structure and magnetic properties. So, in general, the exchange coupling
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parameter is chosen to be equal with the exchange AFM constant (JAFM). Using these

values for the exchange coupling constant, the resulting EB field was several orders of

magnitude larger than the experimental value. Finally, Eq. 2.6 predicts that the variation

of the EB field is inversely proportional to the thickness of the FM, obeyed by a large

number of experimental investigations, as mentioned in the previous chapter. A similar

qualitative model was proposed by Goodman et al. [40], named the seven point model.

2.1.2 The Meiklejohn Model

A model was developed from Meiklejohn [7] based on the previous intuitive model. A new

degree of freedom for the AFM magnetization was introduced in order to account for the

measured non-vanishing rotational hysteresis at high fields. The AFM can rotate during

the magnetization reversal, as shown in Fig. 2.3, without losing the generalization of rigid

state of the AFM. This is because the AFM can rotate only as a whole.

Figure 2.3: Meiklejohn model of EB with the schematic view of the vectors and angles.
[7] KAFM and KFM is the easy axes of the uniaxial anisotropy of the AFM and the FM,
respectively. β is the angle between FM magnetization MFM and the anisotropy easy axis
KFM . This angle is changing during the magnetization reversal. MAFM is the sub-lattice
magnetization of the AFM. α is the angle between AFM magnetization MAFM and the
anisotropy easy axisKAFM . The other sub-lattice magnetization is pointing to the opposite
direction as shown. H is the applied magnetic field which for this model has a direction
parallel to the easy axis of the AFM and the cooling field (θ = 0).

So the energy per unit area, after the cooling process, for the previous model using the

new assumption, can be written as:

H = −µoHMFM tFMcos(θ−β)+KFM tFMsin2(β)+KAFM tAFMsin
2(α)−JINT cos(β−α),

(2.8)
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where α is the angle between the AFM magnetization and the KAFM uniaxial easy axis di-

rection and tAFM is the thickness of the AFM. The new term, in comparison to the previous

model is the AFM anisotropy energy. It considered again that the reversal field is parallel

to the AFM easy axis (θ = 0). Also, the anisotropy of the FM was neglected (KFM = 0)

in the above model, so the resulting coercivity is due to the exchange interaction between

the FM and the AFM. Using the stability conditions ∂H/∂β = 0 and ∂H/∂α = 0 leads

to a system of two equations. For finding the coercive fields β = θ + π/2 is used, which

gives HC− = HC+ = −JINT/µoMFM tFMcos(α− θ). The EB is given by:

Heb(θ) = −JINT/µoMFM tFMcos(α− θ). (2.9)

For the case of θ = 0, solution of the equations for the EB is calculated analytically

and reads:

Heb =











−JINT
µoMFM tFM

√

1− J2
INT

4K2
AFM

t2
AFM

KAFM tAFM/JINT ≥ 1

0 KAFM tAFM/JINT < 1
(2.10)

This equation is inversely proportional to the thickness of the FM, but the addi-

tional term considers the characteristics of the AFM. More specifically, the EB is finite

for KAFM tAFM/JINT ≥ 1 which means that during the magnetization reversal the mag-

netocrystalline anisotropy of the AFM is strong enough to hold the AFM order, although

there can be small rotations of the angle α. For this case no coercivity is predicted. When

KAFM tAFM/JINT < 1 the EB phenomenon disappears. This is due to the strong interfa-

cial coupling, meaning that the AFM spins follow the FM spins. An extended discussion

of this model is carried by Radu[41] and a similar result was gained from a grained model

by Fujiwara et al. (see Fig. 6a) in Ref.[42]), when the grains have the same anisotropy.

2.1.3 Planar AFM Domain wall model-Néel’s approach

Since, the previous models predicted EB several orders of magnitude higher than the

experimental values, and therefore new assumptions were made for this loss of coupling

energy. A novel theoretical approach was made firstly by Néel [43] in which he introduced

the concept of the planar domain wall in the AFM or FM layer, developed during the

magnetization reversal. Particularly, he considered coupling of the FM with a low anisotropy

AFM, leading to the creation of an AFM or a FM domain wall parallel to the interface.

Thus, the planar domain wall will absorb a fraction of the interface exchange coupling

energy, lowering the EB phenomenon. This is the so called Néel domain wall, having

the form of a partial domain wall because of the weak coupling. The model is based in

calculation of the orientation of magnetization of each layer through a differential equation,

predicting a minimum AFM thickness for producing of hysteresis loop shift.
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2.1.4 Mauri model-Partial domain wall

Based in the idea of a partial domain wall parallel to the interface in the AFM, Mauri

et al. [44] introduced a macroscopic model for the description of this domain wall which

is uniform in its volume, as shown in Fig. 2.4. As Néel’s model, the motivation of this

hypothesis was to explore a possible reduction of the EB field from Meiklejohn model. The

basic difference in the assumptions of this model with the Meiklejonh model is that the

AFM layer develops a domain wall parallel to the interface.

Figure 2.4: The partial domain wall developed at the interface of the AFM [44], for a
system with a thin FM film on a thick AFM substrate. The magnetization of only one
sublattice of the AFM is shown.

The AFM interface layer magnetization is oriented in different direction from the FM

orientation making an angle α with the AFM anisotropy easy axis. The next AFM layers

gradually form a magnetization perpendicular to the first one. Schematically in Fig. 2.4,

only the one sublattice is depicted, with the magnetization of the other sublattice being

oppositely oriented to complete the AFM order. It is assumed that the FM is at ξ distance.

They used it in the energy expression for the description of the tail of a domain wall of the

AFM, considering that the AFM is infinitely thick. The interfacial domain wall decreases

the energy of equilibrium state of the magnetic configuration and it is a 90o domain wall.

So the energy per unit area, after the cooling process, for the Meikljohn model using the

new assumption, can be written as:

H = µoHMFM tFM(1− cos(β)) +KFM tFM(1− sin2(β))

+A12/ξ(1− cos(α− β)) + 2
√

AAFMKAFM(1− cos(a)), (2.11)

where the fourth term represent the energy of the partial domain wall, which is parallel

to the interface. The parameter AAFM is the exchange stiffness of the bulk AFM and the

A12 is the exchange stiffness of the AFM interface with JINT defined as JINT = A12ξ.

The difference in some of the expressions is due to the easy axis lying perpendicular to the

applied magnetic field.

By numerical minimization of the energy Eq. 2.11, magnetization curves were calcu-
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Figure 2.5: Magnetization curves for magnetic field applied parallel to the AFM easy axis
for different values of the interface ratio λ. λ is denoted the (A12/ξ)/2

√
AAFMKAFM

ratio and µ = KFM tFM2
√
AAFMKAFM . The solid lines show the FM magnetization and

the dashed lines show the AFM’s interface magnetization.[44]

lated, considering different (A12/ξ)/2
√
AAFMKAFM ratio. As in the Meikljohn model, a

similar expression for the EB field was derived:

Heb =







−(A12/ξ)/µoMFM tFM (A12/ξ)/2
√
AAFMKAFM << 1

2
√
AAFMKAFM/µoMFM tFM (A12/ξ)/2

√
AAFMKAFM >> 1

(2.12)

When (A12/ξ)/2
√
AAFMKAFM << 1, meaning for strong exchange interface coupling,

the EB field is similar to the Meiklejohn model, with the exchange coupling parameter

dependent on the distance ξ between the two materials. For weak coupling, the EB field

is independent of the interfacial exchange coupling but it depends on the domain wall

of the bulk AFM. Fig. 2.5 shows magnetization curves for three different values of the

(A12/ξ)/2
√
AAFMKAFM ratio. When the ratio has a value of four, the steady state of

the system is reached with the EB field reaching a maximum value according to Eq. 2.12.

Also, the AFM’s interface magnetization is totally reversed, meaning that 180o domain

walls were created in the AFM.

Geshev [45] used the Mauri et al.[44] model considering analytical and numerical deriva-

tion for the EB field and the coercivity. The results show discrepancies with the results

of Mauri model but excellent agreement with the experimental results. These quantita-

tive discrepancies are claimed to result from the energy minimization methodology used in

each publication. The analytical derivation gave five different sets of expressions for the

hysteresis loop shift and coercivity.

The dependence of EB field as well as coercivity, obtained numerically for several

values of µ = −KFM tFM2
√
AAFMKAFM are depicted in Fig. 2.6. All curves of coercivity

versus exchange coupling ratio exhibit minima, which become deeper and sharper with

increasing FM uniaxial anisotropy (µ). On the other hand, EB field curves versus exchange

coupling ratio exhibit maxima which become similarly more pronounced for higher FM
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Figure 2.6: Dependence of the normalized EB field heb (a) and coercivity hc on the
(A12/ξ)/2

√
AAFMKAFM ratio for several µ = −KFM tFM2

√
AAFMKAFM . [45]

anisotropy. For weak and strong interface coupling ratio ((A12/ξ)/2
√
AAFMKAFM < 1

and (A12/ξ)/2
√
AAFMKAFM > 4), all the EB field curves coincide.

Xi et al. [46, 47] developed a model similar to Mauri’s model where they consider that

a helical structure (planar domain wall) is developed as the AFM moments at the interface

try to follow the magnetization of the FM during reversal. Specifically, when the AFM

moments at the interface reach the AFM hard axis, the helical structure becomes unstable

and the AFM moments rotate into the opposite direction. So the moments settled down

to a new stable state which still contains some twisted moments. This irreversible motion

was predicted by Mauri’s and Néel’s model.

Morosov et al. [48, 49, 50] presented a model based on Mauri’s but with uncompensated

AFM interface. Also, they considered rough and smooth interface using an analytical

expression for its description. It is the only EB model found in the literature that used

strictly analytical methods. For flat AFM interfaces they found similar domain wall behavior

as Mauri’s model and for rough AFM interfaces they found that EB field is caused by static

spin vortices at the interface.

2.1.5 Frozen canted interface spins-Kiwi model

Kiwi et al.[51, 52, 53, 39] introduced a new model for EB systems. This model is based

on the assumption that the AFM interface is fully compensated and freezes into a canted

spin state after the cooling process, keeping the AFM order, as shown in Fig. 2.7. Also,

the magnetization of the FM is orthogonal to the AFM easy axis. So the energy per unit
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area, after the cooling process, can be written as:

H = −JAFMMAFM tAFMcos(α1 − α2)−KAFM(cos2(α1) + cos2(α2)),

−µoHMAFM tAFM(cos(α1) + cos(α2)) (2.13)

−JINT (cos(β + γ − α1) + cos(β + γ − α2))

−JFM
N−1
∑

i

MiMi+1cos(βi − βi+1)−
N
∑

i

[KFM(cos2(βi − γ) + µoHMicos(βi))].

where JAFM < 0 is the AFM coupling between the two AFM sublattices, α1 and α2

are the angles between the AFM easy axis and the first and second sublattice, respectively

and MAFM is the magnetization of the AFM. Mi is the magnetization of the i layer of

the FM, with βi the angle of the magnetization of this layer with the FM easy axis. γ is

the angle between easy axis of the FM and the AFM, where in this case is equal to 90o

and β is the angle of the net FM magnetization from the FM easy axis. They found that

the energy is stored in an incomplete domain wall within the FM but no domain wall is

developed in the AFM. Specifically, an exchange-spring magnet results, with EB effect and

enhancement of the coercivity consistent with experimental results, as is claimed.

Figure 2.7: Spin configuration of the FM and the AFM layers. The AFM spins are canted
relatively to the cooling field Hcf . [52]

2.1.6 Partial domain wall-Kim-Stamps approach

Kim and Stamps [54, 55, 56, 57, 58, 59, 60] using the previous assumptions of Néel, Mauri

et al. and Kiwi et al., they introduced the concept of the partial domain wall. More

specifically, they used a bilinear and a biquadratic term for the description of exchange

coupling, a spin-flop configuration in the AFM interface. They investigated compensated,

partially compensated and uncompensated interfaces. A structure similar to that of Kiwi

et al. with canted spins is found.

The calculated magnetization curve for the FM/AFM system is shown in Fig. 2.8, with

the corresponding spin structure at three different values of the magnetic field. A partial

domain wall in the AFM twists as the FM rotates, an effect more favorable energetically
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Figure 2.8: Magnetization curve (a) and spin configuration (b) at three different points
of the magnetic field. A partial domain wall is created on the AFM in point (iii). Only the
spins close to the FM/AFM interface are shown. [58]

than the breaking of the interlayer coupling. Despite that, the hysteresis loop is reversible,

meaning that the coercivity is zero. To overcome this problem Kiwi ans Stamps [52] intro-

duced magnetic defects in the system, which lead to the pinning of the domain wall. They

argued that the wall pinning and depinning transitions, give rise to assymetric hysteresis

loops with irreversible rotation.

2.1.7 Hoffmann model-Training effect

A model used specifically for the training effect of EB was created by Hoffmann [61], similar

to that of Kiwi et al. The model, contrary to the planar domain wall model, considers

two independent magnetic sublattices for the AFM using the Stoner-Wolfarth model. The

model was modified for uniaxial and biaxial AFM anisotropy. So the energy per unit area,

after the cooling process, for the Stoner-Wolfarth model using the new assumption, can

be written as:

H = −µoHMFM tFMcos(β)− µoHMAFM tAFM(cos(α1) + cos(α2))

−JINT (cos(β − α1) + cos(β − α2)) (2.14)

−JAFMMAFM tAFMcos(α1 − α2) + EAN(MAFM),

where

EAN(MAFM) =







KAFM(sin2(α1) + sin2(α2)) uniaxial anis.

KAFM(sin2(2α1) + sin2(2α2)) biaxial anis.
(2.15)
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where JAFM < 0 is the AFM coupling between the two AFM sublattices, α1 and α2

are the angles between the AFM easy axis and the first and second sublattice, respectively

and MAFM is the magnetization of the AFM. So the first two terms represent the Zeeman

energy for the AFM and the FM, the third term the exchange coupling between the FM and

the AFM and the fourth the exchange coupling of the two AFM sublattices. The FM cou-

ples to both AFM sublattices which corresponds to both compensated or uncompensated

interface of the AFM. In this model no FM anisotropy is considered.

An analysis using the parameters of the above model plus an extra parameter describing

the cooling field was made. The author connected specific orientations of the AFM sublat-

tices with EB effect on consecutive hysteresis loops. They show that irreversible training

effects (first loop EB) can occur as a result of inherent frustration of the AFM interface

magnetic moments and symmetry of the AFM anisotropy.

2.1.8 Radu approach-The spin glass model

Radu [41] introduced the phenomenon of the frustration inside the Meiklejohn model, con-

sidering that the interface between FM and AFM layer is magnetically disordered behaving

similar to a spin glass system. More specifically, it is considered that the AFM can contain,

in a first approximation, two types of AFM state. One part has large anisotropy which

freezes the AFM spins and another part with low anisotropy which allows the spins to

rotate with the applied field. The latter kind of spins are frustrated (spin-glass state) and

give rise to an increased coercivity.

A spin glass system is comprised of a collection of magnetic moments whose low-

temperature state is a frozen disordered one, rather than e.g. a ferromagnetically ordered

state. Two main requirements need to be fulfilled: 1) competition among different interac-

tions between the moments, meaning that no single configuration of the spins is favored by

the interactions (frustration) and 2) these interactions must be “random”. In the specific

case, the spin glass region can be formed due to the non-ideal interfaces e.g. interface

roughness, non magnetic defects etc. So a new term is introduced to the energy expression.

The energy per unit area, after the cooling process, for the Meiklejohn model using the

new assumption, can be written as:

H = −µoHMFM tFMcos(θ − β) +KFM tFMsin
2(β)

+KAFM tAFMsin
2(α) +KeffSG sin(β − γ)2 − JeffINT cos(β − α), (2.16)

where KeffSG is the effective spin glass anisotropy at the AFM interface, γ is the average

orientation of the effective spin glass anisotropy and JeffINT is the effective interface coupling

between FM and AFM.

With this model, the dependence of EB field and coercivity on angle between easy
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axes and applied magnetic field and thickness of the AFM was investigated with excellent

agreement with CoFe/IrMn bilayers.

2.2 Mesoscopic models and micromagnetics

Mesoscopic models usually consider different spin configuration in the x-y plane, meaning

that now the x-y plane of the system is divided in smaller areas, each having different

magnetization direction. The most important approaches are those considering a granular

structure of the AFM and using finite element methods.

2.2.1 Non-interacting grained and thermal fluctuation aftereffect

models

Kouvel et al. [62, 63] developed first a model considering a grain distribution. They

modeled a system in which every magnetic unit was comprised of an ensemble of mutually-

interacting FM and AFM domains. In this model magnetic viscosity effects were observed.

Figure 2.9: Diagram of the Fulcomer-Charap model [64], with the non-interactive AFM
grains coupled with the underlying FM layer.

In 1972 a contribution was made by Fulcomer and Charap [64], who used a grain

model for the description of an EB system. The model is based in the theory of the

magnetic aftereffect of small particles. Specifically, they considered for the AFM small

uniaxial particles which do not interact magnetically and which are exchange coupled to

the FM. The particles follow a distribution for their size, shape and the angle between their

magnetization and the FM easy axis, as shown in Fig. 2.9 . So the total energy of the

system,after the cooling process, can be written as:

H = −µoHMFMVFM(cos(β) + sin(β)) +KFMVFMsin
2(β)

+
N
∑

i=1

[KAFMA
itiAFMsin

2(αi)− JINTAicicos(αi − β)], (2.17)

where VFM is the volume of the FM, Ai,tiAFM the area and the thickness of every

AFM grain, αi the angle between the magnetization of the AFM and each grain, and ci
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is the contact fraction of each grain. The sum goes over the total number of the AFM

grains. The magnetic field is applied in the direction of the easy and hard anisotropy axis.

The contact fraction reflects the idea of Néel [43] that the surface magnetic moment of

different grains with the same area may not be the same.

For calculating an hysteresis loop beyond the energy term given above, an expression

for the aftereffect is considered. Magnetic aftereffect (or viscocity) is relevant when the

magnetization of a material does not change instantaneously, but lags behind the magnetic

field changes. In an EB system the AFM can present magnetic aftereffect under the effective

field of the FM. Whenever the FM moment is reversed, the exchange coupling term changes

sign and switching the AFM grains is initiated by thermal fluctuations, the grains approach

a new equilibrium distribution of angles αi with a time constant t. Fulcomer and Charap

reported that the smaller grains of every distribution due to thermal fluctuations show

superparamagnetic behavior and also differently sized grains are coupled differently with

the FM. A comparison between experimental findings for a Co/CoO system and Fulcomer-

Charap model results, for the EB field and for the coercivity as function of temperature,

showed very good agreement in most of results except for low temperature coercivity, as

shown in Fig. 2.10.

Figure 2.10: Comparison between experimental findings for a Co − CoO system and
Fulcomer-Charap model results, for the EB field HD and for the coercivity HC as function
of temperature. [64]

Many models involving grains were developed through the years using Fulcomer-Charap

model as a initial idea. Fujiwara et al. [42] developed a similar model, including also the

idea of Néel for planar domain walls. So the AFM layer has an surface anisotropy term

as was presented on Mauri’s model[44], with the exchange stiffness. Hou et al.[65] used a

similar model with no interacting AFM grains to investigate the temperature dependence

of the EB field. The additional characteristic of this model is the distribution of exchange

coupling between FM and AFM, of anisotropy constant and of anisotropy kind. The
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previous ideas were used by Brems et al. [66] to examine the training effect and asymmetry

in exchange coupled polycrystalline bilayers. They showed that the training effect resulted

from misalignment between the FM magnetization and the uncompensated magnetization

of the granular AFM.

Stiles and McMichael[67, 68] proposed a grained EB model in which the AFM grains

are uncoupled and the AFM interface is coupled directly via spin-flop with the FM inter-

face. The spin-flop idea was first mentioned from Koon[69] and it will be described later

as being a microscopic model. Despite this, they found that actually the spin-flop does

not contribute to the EB phenomenon. Also, the grains are not changing easily their mag-

netization during the reversal of the magnetic field, causing the EB. The magnetization of

each grain, after a critical angle, changes irreversibly and points toward the FM magne-

tization, contributing to the enhancement of the coercivity. This model considers a very

good candidate model for the explanation of widespread results that appeared in different

EB systems.

Tsunoda and Takahashi [70, 71] used a similar grained EB model with non-interacting

AFM grains. They called this the single spin ensemble model, where the AFM magnetic

anisotropy easy axes of every grain lay in the film plane with two-dimensional random

distribution. The Meiklejohn model is applied between the FM layer and each AFM grain.

They used this model to show that changes in the exchange coupling do not necessarily

occur with changes of the microstucture or the intrinsic physical quantities of the system.

Saha and Victora [72] used a micromagnetic model with non-interacting AFM grains

which interact with FM grains. Each AFM grain has random orientation of the easy

axes and is considered rough interface. They investigated the reversal mechanisms of

magnetization and the training effect. They compare the training effect of a biaxial AFM

and of an uniaxial AFM. The case of biaxial AFM showed a steep reversal in the first

hysteresis loop, which is found in many experimental investigations.

Choo et al. [73] used a similar model with non-interacting AFM grains which interact

with strongly exchange coupled FM grains, considering also magnetostatic interactions.

The microstructure of each layer is created using a Voronoi construction and each grain

has different easy axis direction, assigned randomly from a log normal distribution. They

used Monte-Carlo simulations, where thermally activated magnetization reversal is allowed

with probability based on Arrhenius-Néel law 1. Investigations of the effect of the thermal

instability of the AFM as a function of temperature, layer thickness, grain size distribution

and diameter were carried out. It is claimed, that the calculations give good qualitative

1Arrhenius-Néel law considers that the magnetization of a grain flips with finite probability. The mean

time between two flips is called the Néel relaxation time τN and is given by the following Néel-Arrhenius

equation:τN = τoexp(KV/(KbT )) where τo is called the attempt time and is characteristic of the material,

V is the volume of the grain.
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agreement with experiment.

2.2.2 Interacting AFM grain model

In general, models that assume interacting AFM grains are controversial because the in-

teraction term between two grains involves their magnetization, which for an AFM grain is

close to zero. Thus, the interaction AFM grain term is always zero. Obviously, for grains

which have a volume that gives an definite magnetization (have uncompensated spins) this

term will be non-zero.

Figure 2.11: Hysteresis loop of an EB system with and without AFM intergrain exchange
coupling. [74] In the case of intergrain exchange coupling an enhanced coercivity and a
loop shift is produced.

Suess et al. [74, 75, 76] used a grained model for EB system where the AFM grains

are exchange coupled and are perfectly compensated. The easy axis for every grain is

set randomly. The model is simulating an IrMn(AFM)/FM system. They focus their

investigation in the effect of intergrain coupling in the EB field and coercivity, using a

finite element micromagnetic calculation. These new assumptions in addition to a spin-

flop coupling at a perfectly compensated interface resulted a shifted hysteresis loop, as

shown in Fig. 2.11. They observed partial domain walls along the interface as long as their

width is larger than the grains. So, the energy, unlike previous partial domain wall models,

is stored in lateral domain walls located between AFM grains. Also, they investigated

the dependence of EB field on the thickness of the AFM as well as the training effect.

They finally modeled a system, in which the easy axis follows a Gaussian distribution,

investigating the effect of distribution width in the EB field. Kirchner et al. [77] using the

same model, investigated the effect of uniaxial anisotropy constant and the thickness of

the AFM layer in the EB field and in the structure of the domain state. They found that

during reversal, 360o domain wall is created and annihilated in the FM, as shown in Fig.

2.12.

46



2.2. Mesoscopic models and micromagnetics

Figure 2.12: Formation and annihilation of a 360o domain wall (nucleation) in the FM.
[77] The images give the calculated spin configuration of the FM at different applied fields.
(a) Before reversal, (b) and (c) during reversal and (d) after the reversal.

Fujiwara et al. [78], expanding their model which came from Fulcomer-Charap’s model,

introduced direct exchange coupling between the AFM grains. In the AFM grain interac-

tion term they used the sublattice magnetization of each grain. They investigated the

unidirectional rotational hysteresis and the training effect dependence, where the latter is

attributed on the lock and release mechanism of spins. Zhang et al. [79] using the same

model also investigated the training effect. More specifically, they considered positive and

negative exchange coupling between AFM grains. The conclusions gained for the training

effect is the same with those of Fujiwara et al. [78].

2.2.3 Less-ideal models

A special category in models of all scales is the non-ideal models, which firstly occurred

in mesoscopic models. By non-ideal models we mean models which do not use idealistic

system structure, being more realistic. These models consider non-planar interface, as well

as, non-magnetic impurities in the entire volume of the AFM. Imry and Ma [80] first argued

that long-range magnetic order state such as AFM state can be unstable under a random

field created by some non-magnetic impurities in the system or by AFM site impurities in

a FM i.e. a non-smooth AFM-FM interface. This instability usually leads to the creation

of domains in the AFM. Especially, as shown by Nowak et al. [81], an AFM inside high

magnetic fields develops a domain state due to the inequality of two AFM sub-lattices sites

caused from the impurities. Consequently the creation of a domain wall lowers the energy

of the system as well as the passing of the domain wall from the non-magnetic impurities.

We must note that both authors used microscopic model in their work.

The most known mesoscopic non-ideal model is that of Malozemoff [82, 83, 84] which

uses the ideas of Imry and Ma [80] in an EB system with a non-sharp interface. In this

model, he used domain walls that are perpendicular to the interface and more energetically

favorable by the roughness of the interface between AFM and FM. In this case the interface

roughness produces the random field which leads to the creation of domains walls in the

AFM. Specifically, it is considered a rough interface on the atomic scale of a compensated
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Figure 2.13: Possible spin configurations for a non-ideal interface in an EB system. The
atomic step should be visualized on a two-dimensional interface. (a)Spin configuration
before FM reversal, (b) after the FM reversal. The x signs denote frustrated bonds. [82]

AFM which can lead to uncompensated spins required for the hysteresis loop shift, as shown

in Fig. 2.13. The random field, is created by atomic scale randomness of the interface,

and considering that the FM is in a single-domain state, it is energetically favorable for

the AFM to break up into domains to minimize the net random unidirectional interfacial

anisotropy. Consequently, perpendicular domain walls are created in the interface and the

bulk of the AFM, which are permanently present in the AFM layer, in contrast to the Mauri

model where the parallel partial domain wall to the interface is created temporarily during

the FM reversal.

The EB field according to this model is given by

Heb =
2z
√
AAFMKAFM
π2MFM tFM

(2.18)

where the symbols are the same as before and z is a number of order unity, which is

dependent from the degree of roughness of the interface. The EB field formula is very close

to the one of Mauri et al. [44]. This similarity is due to the fact that both models have

characteristic domain wall energies at the interface. Despite that, the parameters used in

this model are different and based on different picture of the phenomenon. In addition,

this model explains the observed coercivity and remanent phenomena which appear during

hysteresis cycling. A comparison of the EB field value with experimental data shows a very

good agreement.

2.3 Microscopic models

In microscopic models, we use the exact spin configuration of each atom. So, from now on

with spin we mean the total magnetic moment of the atom. This is happening for all the

directions of the system i.e., x, y and z. Usually the model is derived using Monte Carlo

simulations for minimisation of the energy or stochastic equation of motion i.e. Langevin

equations for the numerical derivation of the arising Landau-Liftshitz equation. Although

these models are being used to describe microscopic systems, they are not being described
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from quantum mechanical laws but from classical ones.

2.3.1 Spin flop - Koon’s model

A well-known contribution in the category of microscopic models is the one of Koon [69].

Koon considered a system with compensated spins at the interface and investigated the

energy per area for multiple angles between the two outer monolayers (one of the AFM and

one of the FM). It is found that the angle between the two outer layers (with the minimum

energy) was 90o and the internal layers had frustrated spins. So he concluded that the

spins at the interface between AFM and FM must be perpendicular in order to minimize

the energy. This 90o coupling of the AFM and FM spins was called spin-flop state. This

state is described by the biquadratic term: JINT (SAFMSF cos(a−b))2, where is SAFM , SF

is the spins of AFM and FM at the interface, and a, b the angles of the AFM and FM spins,

respectively. In addition, for reproducing an EB system he used the above conditions plus a

restriction of the AFM spins to move in the plane of the interface during field reversal. At

the end, it was concluded that domain walls parallel to the interface do appear, following

an argument similar to that of Mauri et al. [44]. The produced magnetization curve was

reversible i.e. no hysteresis loop, and was shifted by a quantity quite close to experimental

EB field.

Figure 2.14: EB with reversible cycling is exhibited when the spin motion is restricted on
the interfacial plane (solid line) but when the spins are free (dashed line) to move in any
direction, the EB disappears showing a hysteresis cycling. [85]

At 1998, Schulthess and Butler[85], proved that Koon’s model does not present EB.

They used a microscopic Heisenberg model using the Landau-Lifshitz-Gilbert equation of

motion, applying Koon’s arguments about the spin-flop coupling. They did not consider

restrictions to the movement of the interface spins as Koon did (movement only at the

interface plane). The result was that EB disappears under this assumption and no domain
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wall is created parallel to the AFM-FM interface. Particularly, when they used Koon’s spin

restriction, they found the same results as Koon, i.e. a shifted reversible magnetization

loop, as shown in Fig. 2.14. When they used the unrestricted spins, they found a non

shifted hysteresis loop showing that the energy of this configuration is smaller that the one

for the creation of domain wall in the AFM parallel to the interface i.e. Koon argument.

On the other hand, Schulthess and Butler showed that this model is very promising for

the explanation of the enhancement of coercivity of EB systems as well as that the model

transformed to have interface roughness gives EB field with the correct order of magnitude.

2.3.2 Various improved microscopic models

Interface roughness and dilution of AFM are very important parameters for the behavior of

an EB system. Many publications investigated the effect of different configurations of this

characteristic on the EB field and coercivity. Dantas et al. [86] considered an EB system

where the AFM interface have small square “islands” penetrating inside the interface of

the FM in order to represent the interface roughness. They used a Heisenberg model with

every spin to represent the magnetic moment per unit cell. Their investigation of EB field

and coercivity in function of the size of “islands” showed that the EB field is increasing

and the coercivity is decreasing when the size of the islands is increasing from zero to the

half of the size of the interface. Also they showed that for islands of half the size of the

interface the magnetization curve consists of two minor loops, effect of the nucleation of

domains walls at the islands edges.

Tsai et al.[87] used a Monte Carlo simulation of a Heisenberg model of the EB system

to thermally investigate the magnetic order of the system using flat and rough interfaces

and do a comparison between the two systems. The flat interfaces are fully uncompensated

and the rough interfaces are compensated. On the latter, they found that the FM spins

are oriented in a direction perpendicular to the AFM easy axis. Lederman et al. [88] using

a similar model with different parameters for every sub-lattice of the AFM, investigate the

result of different parameters on the system. More specifically, they came to the same result

as previously about the orthogonal orientation of the FM spin for large values of interface

exchange coupling. Contradictory results were obtained from single crystals and epitaxial

films for low temperatures. The single crystals presented a perpendicular anisotropy in the

FM with low EB, whereas epitaxial crystals presented longitudinal anisotropy with large

EB.

Mitsumata et al.[89] considered a more complex Heisenberg model, using interaction

up to the second nearest neighbor for every spin. The model also consider some special

structure for the non-magnetic defects: collinear and noncollinear spin structure. For the

numerical experiment, Monte-Carlo calculations are used for the cooling process and then
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a numerical derivation of Landau-Lifshitz equation was used for the magnetization process.

They showed that the noncollinear spin structure exhibits a hysteresis loop shift but the

collinear spin structure exhibits only the enhancement of the coercivity of the EB system. In

the system with the noncollinear spin structure, was related with the formation of domain

wall in the AFM parallel to the interface. On the other hand, for the second system they

needed to introduce the multidomain state at the EB structure to observe a hysteresis loop

shift.

2.3.3 Domain state model

Miltenyi et al.[90] first showed experimentally that EB phenomenon is magnified by dilution

of the AFM. Using a simple model and through Monte Carlo calculations, they proved the

existence of domain states boosted from dilution of the AFM, which exhibits a phase

diagram like the one which is shown in Fig. 2.15a). A phase transition in zero magnetic

field from the paramagnetic state to the long-range AFM state is shown at the dilution

dependent Néel temperature. For higher magnetic fields, at low temperatures the AFM

develops a domain state. The formation of the AFM domains originates from the statistical

imbalance of the non-magnetic defects of the two sublattices. Hence, the formation of a

domain wall can be minimized when it passes through the non-magnetic defects.

In 2001 Nowak et al. [36] used an Ising model for the diluted AFM and a Heisenberg

model for the simulation of a system similar to Co/CoO. The dependence of the EB

field on the thickness and the dilution of the AFM were shown. Also, it was shown that

formation of domains with a surplus magnetization, which causes the exchange bias, is

boosted from the dilution of AFM. The creation of small domains for small thickness leads

to large surplus magnetization, causing larger EB field and vice versa, as Imry and Ma[80]

showed. The tendencies are in qualitative agreement with experimental findings [20]. The

same writer[81] in a later publication showed that the creation of domains in the AFM

is a result of the Imry-Ma argument, as mentioned before and shown in Fig. 2.15b). An

extensive investigation of EB carried out using a Heisenberg model for both materials, with

showing the dependence of EB on the dilution, the thickness of AFM, the temperature,

where hysteresis loop is acquired, the cooling field as well as the number of consecutive

hysteresis loop i.e. training effect. Also, they found that EB has a non-trivial dependence

on the anisotropy of the AFM [91].

Energies were calculated using the appropriate Ising or Heisenberg Hamiltonians, con-

sidering only nearest neighbor exchange interactions and disregarding the magnetostatic
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Figure 2.15: a) Schematic phase diagram of a three dimensional diluted AFM. DS is the
domain state, PM is the paramagnetic state and AFM is AFM long-range state of an AFM.
b) Schematic illustration of Imry-Ma argument. [81]

ones. So, the Hamiltonian of the system is given by :

H = −JFM
∑

<i,j>
∈FM

Si ·Sj −
∑

i∈FM

(dxS
2
ix+dzS

2
iz)−

∑

i∈FM

µB·Si

−JAFM
∑

<i,j>
∈AFM

ǫiǫjσi ·σj−
∑

i∈AFM

µB·ǫiσi (2.19)

−JINT
∑

(i∈FM,
j∈AFM)

Si · ǫjσj

where Si and σi are the classical spin vectors of the ith site of the FM and the AFM,

respactively. Only FM anisotropy is considered with dx the anisotropy constant of the easy

axis and dz is the anisotropy constant for the hard axis, used keeping the spins oriented

in the plane of the FM and for simulating the shape anisotropy. Monte-Carlo simulations

were performed in order to obtain the hysteresis loop of the system.

Misra at al.[92] using the domain state model, investigated the structure of interface

domains as a function of the thickness and anisotropy of the AFM. They found that the

size distribution of the domains of the interface follows a power law. Also, they showed

that the interface magnetization after the cooling as well as its stability is crucial for the

EB effect. The quantification of stability is introduced by the stability factor which is

calculated from the average value of the stability of individual spin at the interface. The

stability of spin is defined as the time average of z component of spin during the hysteresis

loop divided by the initial value of the spin. Thus, using the above quantity they showed

that the interface magnetization is due to an irreversible domain causing the upward shift

of the hysteresis loop of the interface. Also, using a similar model [93] with a secondary

dilution caused after the cooling process and taking the hysteresis loop, showed that this

characteristic enhances further the EB field. This procedure simulates the experimental
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method of enhancement of dilution of FeNi/FeMn system using irradiation of the sample

with He ions in presence of magnetic field [94, 95].

Beckmann et al.[96] used a Monte Carlo simulation for the explanation of asymmetric

reversal modes, within the context of the domain state model for EB. The asymmetric

reversal mode is the phenomenon in which different reversal modes on the descending and

the ascending branches are observed, during the hysteresis loop. They investigated the

effect of different angles between the easy axes of the AFM and the magnetic field. As

they showed, for a range of angles the reversal was asymmetric, with a coherent rotation of

the spin for the descending branch and a non-uniform reversal for the ascending branch. On

the other hand, for the rest of the angles, spins rotated coherently both for the descending

and ascending branch of the hysteresis loop.

Scholten et al.[97] using the same model, performed mean-field-type calculations. They

focused their interest on the behavior of coercivity around Néel temperature of the AFM,

where coercivity appeared significantly enhanced. This was attributed in the coupling of

FM to the AFM interface magnetization. In addition, qualitative agreement was found

with the previous investigations on the domain state model using Monte-Carlo simulations.

Spray et al.[27] investigated the influence of a rough interface on EB field and ceorcivity

within the framework of the domain state model. More specifically, they quantified the

interface roughness as the proportion of AFM interface layer spins which are replaced by

FM spins. They found that the EB as well as coercivity are strongly dependent on the

interface roughness. This dependence is affected by the dilution of the AFM. It is showed

that the interface roughness leads to EB even without any dilution in the AFM, result

which is in agreement with Malozemoff’s model. Finally, the thickness dependence of the

EB field is influenced significantly by the roughness of the interface.

2.4 Multiscale models

A special category of models is those that mix microscopic and mesoscopic ideas at the final

simulation. More specifically, grain models is considered to have non-coherent magnetiza-

tion e.g. spins. Papusoi et al. [98] used domain state model considering a granular AFM

structure in which the grains are cuboid and non-interacting. Furthermore, the grains have

the same easy axis direction. They investigated the role of the nonmagnetic defect con-

centration and of the temperature on the dependence of coercivity and EB field, showing

that the latter presents a maximum as a function of this concentration. They also found

that for increasing concentration the temperature dependence of the coercivity changes

from a monotonic decrease to a nonmonotonic dependence, exhibiting a maximum near

the blocking temperature.
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Figure 2.16: Spin configuration of an AFM. The lights colors indicate easy axis aligned
along y axis and dark colors, along z axis. The black line indicates the direction of the
easy axis of the FM. [99]

Beckmann et al. [99] extrapolated the domain state model introducing cuboid grains

with perpendicular easy axes into the AFM, as shown in Fig. 2.16. Therefore, a checker-

boardlike twin structure is created in the AFM. They investigated the effect of cooling field

direction on the reversal modes of the system. Assymetric reversal modes was found for

the decreasing and increasing branch of the hysteresis loop.

Usov and Gudoshnikov [100] developed a model using a classical Heisenberg Hamilto-

nian for atomic magnetic moments with a dipolar interaction term and dividing the AFM

layer to grains with random easy axis. Also, a perpendicular exchange coupling is considered

in the FM/AFM interface. They used this model to compare the case of a uniform AFM

with the case of a granular one, which was the only one that exhibited non-symmetrical

hysteresis loop, with finite EB field.

Takano et al. [101, 102, 103] considered a model with a FM layer being in the single

domain state and an AFM being granular with atomic spins and interfacial roughness. The

interfacial plane of their model consists of a periodic pattern, as shown in Fig. 2.17a). To

simulate roughness, they superimposed elliptical “islands” of monatomic thickness on the

spin map, as shown in Fig. 2.17b), where the sampling region consists of a grain. The

adding of one atomic layer, reverses the direction of the spin at each site covered by the

island. Islands were superimposed sequentially, allowing overlap between them, as shown

in Fig. 2.17c). They investigated the dependence of EB field on the grain size, where the

correct magnitude (same as the experimental one) of the EB field is found.

2.5 Modelling nanoparticles and other structures

A special category of models is the one that describes nanoparticles. The mean feature

of this kind of models is that they are quite realistic due to the very small dimensions of

the nanoparticles. Therefore the number of the simulated magnetic moments is very close

to the one in real system. Zianni et al.[104] simulated a nanoparticle consisting from a

FM core and from an AFM shell, as shown in Fig. 2.18a). They study the dependence

of coercivity on the size and on the temperature of the nanoparticle, concluding that the
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Figure 2.17: a) Topographical representation of a smooth interface plane with periodic
pattern and with a sample region representing a model grain. b) Elliptical islands of a
monoatomic layer were superimposed on the spin map to simulate roughness. Adding one
atomic layer reverses the direction of the underlying spin. c) Topographical map containing
overlapping islands. The legend correlates the different shades of gray with the height of
interfacial elevation. The FM is on the top of this islands. [101]

steep temperature dependence of coercivity can be attributed to the strong temperature

dependence of the AFM anisotropy. Eftaxias et al. [105] using the same model found

that coercivity depends mainly on interface size and EB field on the structure of the

interface. A decrease of the core radius for a given particle size results in an increase

of both EB and coercivity while an increase of the shell thickness reduces the coercivity.

At low temperatures, an increase of the FM/AFM exchange coupling, increases the EB

field and reduces the coercivity. In all cases the EB field has a stronger temperature

dependence than the coercive field. Trohidou et al.[106] using the same model investigated

the training and aging effects of an EB nanoparticle. They conclude that the training

effect is an effect of contributions of both core and shell, and interface. Furthermore,

it is demonstrated that with decreasing defect concentration the EB field increases and

the coercivity decreases. Finally, Iglesias et al.[107, 108] used Monte Carlo simulations

for the study of the microscopic origin of the EB phenomenon in a nanoparticle as the

previous writers. It is found that different reversal mechanisms are ruling the two branches

of the hysteresis loop, as Beckmann et al.[96] found for the FM/AFM system of film.

They related their findings with the existence of net magnetization on the interface which

dependence on the exchange coupling constant.

Givord et al.[109] simulated a ferromagentic nanoparticle inside an AFM matrix using

a macroscopic model similar to Meiklejohn’s model, as shown in Fig. 2.18b),c). They

showed that the energy barrier, which works against reversal is due to the AFM anisotropy.

Furthermore, they showed that pre-existing canting of the AFM moments at the interface

cause EB phenomenon. Another special EB system is the circular FM/AFM dots, in which

a FM dot is in contact with a AFM substrate. Mejia-Lopez et al.[110] investigate this kind

of system, considering a microscopic model including a dipolar energy term. They found

that spin configuration form a vortex state. Vortex domains is very common is systems
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Figure 2.18: a) Spin configuration of an equatorial cut of a nanoparticle. FM core spins
are colored in dark blue, AFM shell spins are colored in green while interface spins have been
colored in light blue and yellow. [108] Spin configuration of Co nanoparticles embedded in
CoO with b) uncompensated-parallel coupling and c) compensated- perpendicular coupling.
[109]

with cylindrical shape. Moreover, they found non-uniform distribution of the magnetization

in the FM, perpendicular to the interface, giving rise to different magnetization reversals

in the two branches of the hysteresis cycle
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Chapter 3

Theory of magnetism in solids

3.1 Magnetism in solids

According to the behavior of materials under the influence of a magnetic field and the type

of magnetic order, they can be separated into five categories: Diamagnetic, paramagnetic,

the ferromagnetic (FM), antiferromagnetic (AFM) and the ferrimagnetic.

Magnetism in solids is closely connected with quantum mechanics, as a classical de-

scription of the atoms leads to no magnetic moments, even in a magnetic field. The main

sources of the magnetic moment of an atom are: the spin of the electron, the orbital

angular momentum of the electron around the nucleus and the deviation of this angular

momentum induced by an applied magnetic field. Nuclear magnetic moments are around

10−3 times smaller than the moments of the electron and give rise to nuclear paramag-

netism. In general, nuclear magnetization is ignored from the theoretical models.

Consider the orbital angular momentum number l of the electron which describes the

total angular momentum which is given by h̄
√

l(l + 1). This number takes values l =

0, 1, ..., (n − 1) where n is the principal quantum number which describes the energy

of a particular shell. We also consider the spin quantum number ms which determines

the component of the spin s along the direction of an applied field. This number takes

values ms = ±1/2 and thus the spin angular momentum s take values ±h̄/2. The

l vectors add to form a resultant orbital angular momentum L, and the s vectors, a

resultant S. For forming the atomic momentum, we need to combine the orbital and the

spin momenta of the electrons of an atom. In magnetism, the Russel-Saunders coupling

is used for the combination of the two electron momenta. Thus, the resultants L and

S are combined to form the atomic momentum J= L + S, with the quantum number

j = (l− s), (l− s+ 1), ...(l + s+ 1), (l+ s) and total atomic magnetic quantum number

mj = ml +ms.

For a general atomic system the spin-orbit interaction energy is written as Hs−o =

ξ(r)L·S, where ξ(r) is a function of the distance of the electron from the nucleus. Knowing

that J
2 = L

2 + S
2 + L · S, as L and S commute, we obtain L · S = (J2 − L

2 − S
2)/2.

Thus using the above Hamiltonian for spin-orbit interaction the total magnetic moment is

µtotal = µo
h̄
gJ, where µo is the Bohr magneton and g is the Landé factor which is given
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3.1. Magnetism in solids

by

g = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
∼ 2.04 (3.1)

A similar discussion relates to the interaction of magnetic moment of the nucleus with

the magnetic moment produced by the electrons, called the hyperfine interaction. 1 This

interaction though too small to be important for the current investigation and many solid

state applications, is of great importance in nuclear magnetic resonance studies.

The spin and the angular momentum of the electron give rise to the paramagnetic

contributions of the magnetization and the change of this angular momentum induced

by an applied magnetic field gives rise to the diamagnetic contribution. For example,

the hydrogen atom has zero orbital moment, so the magnetic moment is comprised of

the electron spin and a small induced diamagnetic moment. Helium, with both spin and

orbital moment zero, there is only the induced diamagnetic moment. In general atoms with

filled electron shells are diamagnetic due to the fact that they have zero spin and orbital

moment. Finally, in this thesis we refer to the magnetization of the spin at the atomic

lattice sites, which is just essentially this atomic magnetic moment. For many FM materials

is a very accurate description, but the considerable contribution of the electron orbits

should not be neglected. E.g. the magnetic moment coming only from spin contributions

(l = 0, j = 0, g = 2) is twice as much as for the case of magnetic moment of a pure orbit

(s = 0, j = l, g = 1).

The spin and angular momentum of the electron is responsible for paramagnetic be-

havior of the atom as well as for the atomic magnetic ordering e.g. ferromagnetism. The

effect of the interaction of an external magnetic field on the electrons is responsible for

the diamagnetic behavior. This can be understood qualitatively by considering Lenz’s law

for magnetism. According to this law, when the magnetic flux enclosed by a current loop

is changed, a current whose magnetic field is opposite to the external field, is induced.

Considering the electron’s orbit as a current loop, it will be changed in a such sense that

the magnetic moment will be induced in a direction opposite to that of the applied field.

Thus, this diamagnetic moment will persist as long as the external field is applied.

1Similarly to the electron magnetic moment, the nuclear magnetic moment is µspin−nucleus = µN
h̄
gII,

where gI is the g-factor with constant value for a particular nucleus and I is the angular momentum of

the nucleus. µN is the nuclear magneton. Thus, the new total angular momentum F is the sum of the

nuclear and electronic angular momenta: F = I + J, and the hyperfine interaction is Hhf = −αI · J,

where α is constant.
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3.2. The exchange interaction

3.2 The exchange interaction

The magnetic order in magnetic materials is caused mainly by the exchange interaction.

The direct exchange interaction is between spins of the ions at the lattice sites and it is

caused by the overlap of the electronic wave functions.

Consider a system of N electrons which are bound to a grid of atoms. The eigenfunc-

tions φi(rj) of an electron bound to atom j isolated from the rest of the system, where rj is

the coordinates of the electron and its spin components. Since all the atoms are identical,

the electron will have the same set of eigenfunctions, only at different coordinates. The

function φi(rj) describes not only the function of the spatial coordinates but also the spin.

Considering the orbital motion of the electron quenched, the electron eigenfunction may be

written as φi(rj) = ϕi(ρj)χi,j, where ϕi(ρj) is the solution of Schrödinger equation for an

electron positioned at the (ρj) without spin and χi,j is a function of the spin coordinates

only. Thus the antisymmetrical eigenfunction may have either of two forms:

φIi (rj) = ϕsym
i (ρj)χ

anti
i,j or φII

i (rj) = ϕanti
i (ρj)χ

sym
i,j (3.2)

where ϕsymi and ϕantii are the symmetrical and antisymmetrical eigenfunctions that

are dependent only on the spatial coordinates, respectively, whereas χantii,j and χsymi,j are

antisymmetrical and symmetrical spin functions, respectively.

Consider now the case of the spin function of a two electron system in which every

electron has spin ±1/2. The tensor of the net spin is s = s1 + s2 with eigenstates basis

the : (s1, s2) = 1/2{(1, 1), (−1,−1), (1,−1), (−1, 1)}. Using the eigenvalues basis of the

net spin (s, sz), where s = 0, 1 the two possible values of the net spin of the system and

sz is the eigenvalue of the projection of the net spin on the z axis, where −s ≤ sz ≤ s.
Thus the basis is the: (s, sz) = {(0, 0), (1, 1), (1, 0), (1,−1)}.

Next, suppose that there is an interaction between the two electron systems, given by

a Hamiltonian H12, which may be written

H12 =
Ze2

|ρ1 − ρ2|
+

Ze2

|R1 −R2|
+
∑

i=1,2

[
p2i
2m
− Ze2

|ρi −R1|
− Ze2

|ρi −R2|
] (3.3)

where R1,R2 is the coordinates of the nucleus 1 and 2, respectively. Thus the first term

is describing the electrostatic interaction between the two electron and the second term

the interaction between the two nuclei. The summation over the two electrons, describes

the momentum and the interaction of each electron with every nuclei. For finding the

energy, we applied the equation:
∫

φ∗H12φdτ . The energies for the states of Eq. 3.2 are,

respectively EI = A2(K12 + J12) and EII = B2(K12 − J12), where

K12 =
∫

ϕ∗+(ρ1)ϕ
∗
−(ρ2)H12ϕ+(ρ1)ϕ−(ρ2)dτ1dτ2 (3.4)
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3.2. The exchange interaction

and

J12 =
∫

ϕ∗+(ρ1)ϕ
∗
−(ρ2)H12ϕ−(ρ1)ϕ+(ρ2)dτ1dτ2. (3.5)

A and B are normalizing factors, ϕ+(ρ1) is the eigenfunction of spatial coordinated

of the electron 1 at the spin up state and similarly the others. Also, K12 is the average

electrostatic energy, J12 is the so called exchange integral and is a direct result of the

requirement that the electrons are indistinguishable.

Thus the energies EI , EII may be written in the operator form E = K12 − 1/2J12 −
2J12s1s2. The last term it is called the direct exchange interaction between spins. For two

atoms, i and j, that have one electron each the so called exchange Hamiltonian is

H = −2Jijsisj (3.6)

where Jij is the exchange integral of the two electrons. For the case of atoms of an

entire crystal with more than one electron with an unpaired spin and the exchange integral

isotropic, equal to Je, the Hamiltonian will be:

H = −2Je
∑

i6=j

SiSj (3.7)

where Si =
∑

si,Sj =
∑

si are the total spins of atoms i and j, respectively. It was

considered that the exchange energy between electrons of the same atom is constant, thus

can be omitted. The summation is over the nearest neighbors of each atom i of the

crystal. This coupling depends only on the relative orientation of the two spins, but not

on their directions with respect to R1 −R2. This is due to the spin independence of the

Hamiltonian Eq.3.3 which holds without any assumption about its spatial symmetry. In

order to break the rotational symmetry in spin space, extra terms, e.g. dipolar interactions

or spin-orbit coupling, must be included in the Hamiltonian Eq. 3.3. Thus, the produced

spin Hamiltonian will describe anisotropic coupling, an important characteristic for the

existence of easy or hard directions of magnetization and for the formation of domains

(see section about anisotropy). Finally, when N atoms of total spin S are widely separated

(considering for simplicity that for each atom J = S,L = 0), the ground state will be

(2S+1)N -fold degenerate. Thus the spin Hamiltonian describes the splitting of this vastly

degenerate ground state when the atoms are close together.

A second order term can be also extracted of the form H∈ = −Jb
∑

i6=j(SiSj)
2.

If the z- axis is the axis of quantization then the Hamiltonian Eq.3.7 becomes H =

−2Je
∑

i6=j SizSjz, which is called the Ising model.

The exchange integral Je is crucial for the magnetic ordering of the materials. When

Je is positive, the Hamiltonian Eq. 3.7 favors parallel spins and FM order, whereas Je is

negative, it favors antiparallel spins and AFM order. The sign of the the exchange integral

Je depends on the eigenfunctions ϕ(ρ) and especially on the terms of the Hamiltonian for
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3.3. The indirect exchange and the super-exchange

Figure 3.1: Schematic variation of the exchange integral as a function of the interatomic
distance rab, usually referred as the Bethe-Slater curve. [111]

electrons (Ze2/|ρ1−ρ2|) and atoms (Ze2/|R1−R2|) electrostatic interaction. Bethe and

Slater [112, 113, 114] measured the interatomic distances and the radius of the incompletely

filled d subshell, to calculate the exchange integral. As shown in Fig. 3.1, the so called

Bethe-Slater curve, they obtain the exchange integral as a function of the ratio of the

interatomic distance divided by the radius of d orbitals. For large values of this ratio the

exchange integral was positive and for small values it was negative, thus separating the

FM 3d elements from the AFM 3d elements. Only 3d elements e.g. manganese, iron,

cobalt and nickel were investigated. Finally, the classical atomistic model which we use in

this thesis assumes no redistribution of energies and no interaction with the band structure

- essentially the fermi energy for each atom is fixed. This gives a difference in the spin

up and spin down (ideally) populations which is constant and consequently the exchange

integral Je will be constant.

3.3 The indirect exchange and the super-exchange

The direct exchange, as described in the previous section, arises from the direct electro-

static interaction among electrons from two different atoms. In addition to this exchange

interaction, there are more complicated exchange interactions with the most important

being the indirect exchange and superexchange. Superexchange interaction appears in ma-

terials when the two magnetic moments are separated by a nonmagnetic moment. Then,

the magnetic interaction is mediated by the electrons in their common nonmagnetic neigh-

bors. This mechanism was first introduced by Kramers[115] and Anderson[116] for AFM

rocksalts, e.g. metallic alloys, oxides such as CoO,NiO,MnO. As shown in Fig. 3.2a),

for the M2+ ions only, the nearest neighbors in each plane are parallel and antiparallel to

the magnetic moments in the other planes. The planes are too far away for direct exchange

coupling and an indirect coupling is mediated by the oxygen anions.

More specifically the nonmagnetic anions can be seen as two superimposed states with
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bL

0

rab

J e

Figure 3.2: a) Schematic representation of the spin arrangement of the Mn2+ ions in
MnO. The lattice for MnO is a rocksalt structure, though the O2− ions are not shown
in the figure. The different colors indicate the planes of closest neighbors with the same
spin direction, interacting with direct coupling b)Dependence of indirect exchange integral
on the separation between atoms.

one spin up electron and one with spin down, the net moment being zero. As shown in

Fig. 3.3b) for a general case, when e.g. a Mn atom with spin up is brought close to the

nonmagnetic anion O, its spin down state is attracted more closely to the Mn atom and

the spin up is repelled away as being parallel to each other. Then a second Mn atom is

brought close to the nonmagnetic anion O, being forced to have spin down. Hence, the

MnO crystal has an AFM configuration.

Figure 3.3: Schematic representation of a) direct exchange, in which the magnetic mo-
ments are coupled because of their spatial electron distribution overlap, b) superexchange,
in which the magnetic moments are coupled because of both spatial electron distribution
overlap with the same nonmagnetic atom and c) indirect exchange, in which the magnetic
moments are coupled by interactions with the conduction electrons.

The indirect exchange is usually referred to RKKY interaction, named by Ruderman,

Kittel [117], Kasuya[118] and Yosida[119], who first studied the exchange coupling in the

rare earth metals. This interaction is based on the coupling of the magnetic moment of the

partially filled f electrons of neighbouring atoms not directly but through the conduction

electrons, as shown in Fig. 3.3c). It is considered the metallic analogue of superexchange in

insulators and is stronger than the direct coupling, because f electrons overlap very little in

general. This interaction can lead to both FM or AFM spin configurations. The exchange

integral in this case has different dependence on the interatomic distance compared to

direct coupling, as shown Fig. 3.2b), and can have positive or negative peaks giving rise
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to FM or AFM coupling.

3.4 The anisotropy

As mentioned before, the exchange coupling is considered without any assumption about

the spatial symmetry of the electron spin. This is not quite realistic, as magnetization tends

to lie along certain crystallographic axes e.g. as shown in Fig. 3.4 for the magnetite, giving

different values of saturation. Thus, an extra term must be introduced in the exchange

Hamiltonian to describe this spatial anisotropy, an important characteristic for the existence

of easy or hard directions of magnetization and for the formation of domains. This kind

of anisotropy is the magnetocrystalline anisotropy. There are several kinds of anisotropy,

like the shape anisotropy originating from magnetostatic properties, surface anisotropy or

strain anisotropy.

Figure 3.4: Magnetization curves of magnetite (Fe3O4) for different crystallographic
orientation. [120]

3.4.1 Magnetocrystalline anisotropy

They are many ways to express the magnetocrystalline anisotropy such as power series of

trigonometric functions of the angles the magnetization vector makes with the principal

axes of the crystal. In the current thesis, a power series of the spin coordinates is used,

thus the anisotropy term is direction-dependent. The magnitude of magnetization along the

applied field is determined by the exchange interaction with contributions of the anisotropy

is being negligible for FM materials. In contrast, the direction of the magnetization is

determined by the anisotropy, as the exchange is in general indifferent to the direction

in space. Consequently, the direction of the quantization is the direction for which the

anisotropy energy is minimal. This direction is usually referred as easy axis and for the
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3.4. The anisotropy

case where the anisotropy energy is maximum, is referred to as the hard axis. In this thesis

we consider one, two (parallel to the plane) or three easy axis which are referred usually as

uniaxial, biaxial or cubic anisotropy, respectively.

The most common anisotropy which is presented mainly in hexagonal crystals is the

uniaxial or twofold anisotropy. It has one easy axis and is described by one parameter, the

angle between the easy axis and the direction of magnetization. Usually the easy axis is

parallel to a crystallographic axis, so in terms of spin, the uniaxial anisotropy is described

Han = −K1uS
2
x +K2uS

4
x + ..., (3.8)

where x is parallel to a crystallographic axis, Sx the x component of spin and K1u, K2u are

the anisotropy constants. The values of the anisotropy constants for certain materials have

been calculated using ab-initio calculations [121, 122]. The second term and the higher

order terms are usually neglected. As shown in Fig. 3.5a) and b), the energy has minimum

when the magnetization is along the x axis.

Similarly to uniaxial anisotropy, biaxial or fourfold anisotropy has two easy axes, per-

pendicular to each other. Both of the easy axes are parallel to a crystallographic axis, so

in terms of spin, the biaxial anisotropy is described by

Han = −K1b(S
4
x + S4

y) + ..., (3.9)

where x, y is parallel to a crystallographic axis, Sx, Sy the x, y component of spin respec-

tively. The terms are quadrupole as the square term gives a easy plane (All the direction in

the plane x-y are easy directions ). As shown in Fig. 3.5c) and d), the energy has minimum

when the magnetization is along the x and y axis.

Finally, cubic anisotropy has three easy axes, perpendicular to each other. The square

terms S2
x + S2

y + S2
z are constant, thus, as in biaxial anisotropy, the quadrupole terms are

used. All of the easy axes are parallel to a crystallographic axis, therefore in terms of spin,

the biaxial anisotropy is described by

Han = −K1c(S
4
x + S4

y + +S4
z ) + ... . (3.10)

As shown in Fig. 3.5e) and f), the energy has minimum when the magnetization is along

the x,y or z axis, having 6 equivalent energy minima.

3.4.2 Shape anisotropy

The macroscopic shape of a structure can also be a source of anisotropy. For example,

an elliptical particle magnetizes easily along the long axis as the demagnetizing field is

stronger along the short axis. This is due to the formation of free poles at the boundary

of the particle consisting of a single domain, as described by Néel. It originates in the
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3.4. The anisotropy

Figure 3.5: a), b)Uniaxial , c), d) biaxial and e), f) cubic magnetocrystalline anisotropy.
The easy axes are represented with the blue vectors. The left 3D representations show the
energy E(θ, φ) as a function of the spherical coordinates of the spin S, considering the

r(=
√

S2
x + S2

y + S2
z ) coordinate equal to one and using the cartesian coordinate system.

The right 3D parametric representations show the sphrerical radius r = E(θ, φ) as a
function of the spherical coordinates of the spin S, using spherical coordinate system.
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3.5. Magnetostatic dipole interaction

magnetostatic energy, which can be written Hmagn = −1/2
∫

V dVM · H , where M is

the magnetization of the speciment and H the applied magnetic field. For a uniformly

magnetized specimen, using the proper boundary conditions at the surface, the energy be-

comes Hmagn = −VM2
s

2
SxD̂Sx, where Ms is the saturation magnetization of the material,

D̂ is the demagnetization tensor. For a particle, the D̂ is comprised of a parallel (D‖) and

perpendicular (D⊥) component to the symmetry axis. So the anisotropy energy can be

rewritten as
Hshape = −KsS2

x (3.11)

with Ks = VM2
s

2
(D⊥−D‖) > 0 having the role of an effective uniaxial anisotropy constant.

Thus, the shape of the particle creates an easy axis along the most elongated direction of

the particle. In the case of thin films, it is easier to consider a hard axis perpendicular to

the film plane , e.g. z-axis, and the energy is taking the form

Hshape = KsS
2
z (3.12)

The FM layers have a finite saturation magnetization but the AFM layers have around

zero saturation magnetization. Therefore it is considered that they do not have shape

anisotropy.

3.5 Magnetostatic dipole interaction

The atom can be very easily considered as a microscopic magnetic dipole. As mentioned

before, the magnetic moment of the atom is resulted by the orbital and spin angular

momentum of the electrons. Magnetic moment can be considered ideally as a point-like

source of strength M , comprised of a pair of magnetic poles of strength M , placed at

zero distance apart, such that the magnetization is constant in this limit. Furthermore, the

magnitude of this moment as we know is gµoS. Using Maxwell’s equation the magnetic

field generated by the dipole is :

Bdip =
M

r3
− 3(M · r)r

r5
(3.13)

Thus, the energy of a system of N dipoles can be obtained by adding the energy that each

dipole has due to the interaction with the dipolar fields created by the rest of dipoles:

Hdipol =
N
∑

i6=j

Mi ·Mj

r3
− 3(Mi · rj)(mj · ri)

r5
(3.14)

Dipole interaction is a long-ranged interaction which decreases slowly with the distance.

The first term represents a long-range AFM coupling, with rotational dependence. The

second one is an anisotropic term inducing an easy-plane anisotropy.

Now, if we consider a cubic lattice and assuming that the dipolar moments are aligned
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3.6. Domains and Domain walls

along the x direction the Eq.3.13 becomes

Bdip =Mx(
1

r3
− 3r2x

r5
) =Mx

r2 − 3r2x
r5

. (3.15)

But in a cubic lattice all spatial direction are equivalent, we have r
2
x

r5 =
r2y
r5 = r2z

r5 = 1
3r3 ,

and therefore Bdip = 0. Consequently, the energy Hdipol will be zero for cubic lattices

with uniform magnetization. For non-cubic lattices, this is not zero but it will be a linear

function of the magnetization depending on the crystalline symmetry.

3.6 Domains and Domain walls

Magnetic domains are regions where the magnetization has the same direction and mag-

nitude. The boundary between these regions is called a domain wall and is the transition

area from one direction to another direction of the magnetization, as shown in Fig. 3.6.

The domain theory was introduced in 1907 by Weiss[123]. Domains are formed due to the

minimisation of the magnetostatic energy. Actually, the competition between exchange

interaction, which favors thicker domain wall, and anisotropy energy, which favors thinner

domain wall reducing the number of spins pointing in non-easy directions, create domain

walls of certain width and structure. The most common structures of domain walls are the

Bloch walls and the Néel walls. Bloch walls appear in bulk specimens, where the rotation

of the magnetization lies parallel to the plane of the specimen, as shown in Fig. 3.6a).

Contrary to Bloch walls, in the Néel walls the rotation of the magnetization lies perpendic-

ular to the plane of the specimen, as shown in Fig. 3.6b). Usually, Néel walls are favored

when the thickness of the specimen is reduced and consequently the magnetostatic energy

of the wall is increased due to the free poles at the top and bottom of the specimen.

Figure 3.6: Domains with a a) Néel and b) Bloch domain wall in a FM.

According to the behavior of domain wall depending the thickness of the specimen,

the domain wall energy and width dependence on the film thickness for Bloch and Néel

domain walls is drawn in Fig. 3.7 a) and b), respectively. It is obvious that for thin films,

Néel walls are more stable, due to decrease of the domain wall energy and the width. On

increase of specimen thickness there occurs a transition from Néel to Bloch walls leading to

the formation of “cross-tie” walls. Finally, domain walls are present also in AFM materials,
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3.6. Domains and Domain walls

not in continuum form but in each sublattice.

Figure 3.7: a) Domain wall energy and b) width dependence on the film thickness for
Bloch and Néel domain walls. [124]
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Chapter 4

Atomistic Model-Methodology and

initial results

In this chapter, we will do a first simulation using only the FM Hamiltonian or the AFM

Hamiltonian. Then, will describe the domain state model presenting some initial results

for the cooling field dependence. In general, to create a hysteresis loop we begin from a

random state of the spins of the material and then slowly varying the magnetic field we

minimize the energy of the system. After that we calculate the relevant quantities e.g.

magnetization etc. For the minimisation of the energy of the system, this thesis uses the

heat-bath Monte Carlo method which is described thoroughly in Appendix A.

4.1 Modelling a FM

As mentioned before, in a ferromagnetic material the strongly coupled magnetic moments

tend to be aligned in parallel, resulting in a spontaneous magnetization, meaning that a

magnetic moment exists even without an applied magnetic field. Above a critical tem-

perature, called the Curie temperature, the spontaneous magnetization vanishes and the

material has a paramagnetic behavior. Ferromagnetic behavior can be described energeti-

cally very easily by two terms plus the Zeeman energy. Thus we have a Hamiltonian of the

form:

H = −JFM
∑

i6=j

SiSj − µo
N
∑

i

B · Si −
N
∑

i

(kxS
2
ix + dzS

2
iz), (4.1)

for the case of a ferromagnetic film with uniaxial anisotropy and including dipolar interaction

effects as a shape anisotropy. More specifically the first term is the exchange interaction

where JFM is the exchange integral, Si is the spin of each atom and the summation goes

over all the atoms of the material for only first nearest-neighbors of a simple cubic lattice.

The second term describes the Zeeman energy due to the interaction of the magnetic field

B with the magnetic moment Si of each atom, where µo is the Bohr magneton. The last

term describes the uniaxial magnetocrystalline anisotropy energy of kx with easy axis along

x axis and the uniaxial shape anisotropy energy of dz with hard axis along z axis. The sum

goes over all the N atoms of the FM. An numerical investigation of the above model is
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4.1. Modelling a FM

presented in the next sections, where its parameter of the simulation is investigated.

4.1.1 Investigation of trial step radius

For finding a proper trial step radius, we used a test system with 128 × 128 × 4 spins

and parameters to be kx = 0.1/JFM , dz = −0.1/JFM , |B| = 0.25/JFM with angle

of 20o from the x axis and close to zero temperature. The calculation begins with the

magnetic moment pointing along the positive x axis and the magnetic field has a negative

x component. Thus, the initial spin state is metastable and will reverse after some Monte-

Carlo steps. The number of Monte-Carlo steps, in which the total magnetization of the

thin film changes sign is considered the characteristic time.
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Figure 4.1: Dependence of characteristic time in Monte-Carlo steps on trial step radius
for a reversal of the magnetization of a ferromagnetic material.

As shown in Fig.4.1, the R presents minimum characteristic time at values around 0.2.

This is because large steps, due to exchange interaction, are not accepted. In general, the

large steps are energetically unfavorable and the algorithm rejects them, causing inefficiency.

In the current investigation, it is chosen R = 0.4 for the ferromagnet, so the system

magnetization to not reverse abruptly during magnetic field reversal.

4.1.2 Calculation of Curie temperature and hysteretic dependence

on temperature

The calculation of Curie temperature is important for the justification of the range of

temperatures that the numerical investigation of exchange bias will take place. The system

is the same as before but with no shape anisotropy (dz = 0) and no magnetic field (

|B| = 0). The material, from the long-range ferromagnetic state on zero temperature, was

heated up to kbT = 2.5/JFM , as shown in Fig. 4.2a). The temperature where the material

ceases to have magnetization, a phase transition takes place from the ferromagnetic state

to paramagnetic state and is close to kbT = 1.4/JFM .
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Figure 4.2: a) Phase transition of a ferromagnet. The colored points indicate the tem-
perature in which hysteresis loops were created in b), respectively.

To see the effect of the temperature in a ferromagnetic material, we calculate the

hysteresis loops at different temperatures, as shown in Fig. 4.2b). This system has shape

anisotropy dz = −0.1JFM and the applied magnetic field is |B| = 0.4JFM . Thus, when

the temperature increases the coercivity as well as the remanent magnetization decreases.

Obviously, this happens below the Curie temperature. Above TC the ferromagnet behaves

as a paramagnet without hysteretic behavior. The paramagnetic state of the ferromagnet

is manifested in Fig. 4.2b) as a linear response on magnetic field changes. When the

system is close to zero temperature, the coercivity approaches the value of coercivity of

Stoner-Wolfarth model, the so called Stoner-Wolfarth limit.

4.1.3 Exchange integral and coordination number dependence

Now, keeping the temperature constant at kbT = 0.5JFM , we investigate the effect of

exchange interaction in the system. The exchange interaction can be varied with two ways:

changing the exchange integral and changing the number of nearest neighbors. The second

can be achieved changing the crystal structure of the specimen. The dependence of the

hysteresis loop on the exchange integral is shown in Fig. 4.3a) and on the crystal structure

in Fig. 4.3b). The structures investigated are the simple cubic (sc), the hexagonal close

packed (hcp), the body-centered cubic (bcc) and the face-centered cubic (fcc). In the last

two ones, it is also used the [111] crystallographic orientation.When the exchange integral

increases the coercivity decreases. This occurs because increasing the exchange integral is

like decreasing the anisotropy constant as it is usual to have the units of the Hamiltonian

in units of JFM . Thus, with decreasing anisotropy constant we have decreasing coercivity

(this explained in more detail in the next section).

In the case of different crystal structures, the hysteresis loop dependence is not very

clear. But introducing the number of the first nearest-neighbors, the so called coordination

number, the dependence is more clear. In general, when the coordination number increases

the coercivity and the remanent magnetization increases. This is due to the increase of
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Figure 4.3: Hysteresis loop dependence on a) the exchange integral and b) the form of
nearest neighbors.

Crystal. structure Tot. Coord. Number Coord. Number x-y

sc 6 4
bcc[100] 8 0
bcc[111] 8 4
fcc[100] 12 4
fcc[111] 12 6

hcp[0001] 12 6

Table 4.1: Coordination number of crystal structures.

the effective anisotropy per volume unit. That means that since the number of closest-

neighbors increases per unit volume the anisotropy per volume (effectively) increases. Thus,

is like the anisotropy constant increases and consequently the coercivity increases.

The total coordination number and the one along the same x − y plane is shown in

Table 4.1. Thus, when the total coordination number and the one along the same x − y
plane increases then the coercivity and remanent magnetization increases. E.g. for the case

of bcc[100], although has larger total coordination number (8) than sc, the coercivity and

remanent magnetization are smaller than sc ones because the coordination number along

the same x − y plane is much smaller (0). But for bcc[111] the coercivity and remanent

magnetization are larger than sc ones. This occurs because in bcc[111] structure, the

coordination number along x − y plane is the same with the one in sc(4) and the total

coordination number is larger (8) than the sc one (6). The coordination number along

the x − y plane is important because the system has periodic conditions only along this

plane (not at the perpendicular direction). Thus, this trend is also a surface effect. Finally,

there is a difference between the fcc[111] and the hcp[0001] structure, although they have

the same coordination number, total and along x − y plane. We assume that this is an

effect of the different number of unit cells along z-axis between these structures. We mean

that in our thin film consisting of four layers, hcp[0001] has two units cells (AB|AB) along

z-axis but fcc[111] has one and one third unit cell (ABC|A).
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4.1. Modelling a FM

4.1.4 Lateral size effect

The effect of lateral size of a FM system is investigated. As shown in Fig. 4.4, the lateral

size does not effect the hysteresis loop. In all of our numerical investigations we used the

128× 128 grid in order to minimize the finite size effects, but still create sufficiently large

domain walls.
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Figure 4.4: Hysteresis loop dependence on lateral size of the thin film.

4.1.5 Magnetocrystalline anisotropy dependence

The effect of magnetocrystalline anisotropy in the system is investigated for the same

constant temperature as before and for a simple cubic structure with constant exchange

integral. As shown in Fig. 4.5a), the hysteresis loop for uniaxial anisotropy has larger

coercivity than in the case of biaxial and cubic anisotropy. This is due to the fact that

the energy barrier between the spin states (spin up and spin down) of uniaxial anisotropy

is larger than that of the biaxial and cubic anisotropy, as shown in the Section 3.4 in Fig.

3.5. Thus, the reversal is less energetically favorable in uniaxial anisotropy, consequently

it needs larger reversal field producing larger coercivity on the hysteresis loop.

The dependence of the hysteresis loop on the anisotropy constant k = dx (dy = 0, dz =

0.1) for uniaxial anisotropy is shown in Fig. 4.5b). The coercivity of the hysteresis loop

increases when the anisotropy constant increases because this constant controls the energy

barrier between the two spin states. Also, it is shown how the anisotropy constant controls

the Stoner-Wolfarth limit (Hc = 2k).

Finally, the dependence of the hysteresis loop on the angle between the easy axis of

the uniaxial anisotropy and the applied magnetic field is shown in Fig. 4.5c). Along

the easy axis (θ = 0) the hysteresis loop is squared shape and when the applied field

is perpendicular to the easy axis (parallel to the hard axis), the hysteresis loop has an
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netic field.

74



4.2. Modelling a diluted antiferromagnet

almost linear shape. This is the case where the magnetization curve loses its hysteretic

characteristic and becomes fully reversible.

4.2 Modelling a diluted antiferromagnet

In an AFM material the strongly coupled magnetic moments tend to be aligned antiparallel,

resulting in zero net magnetization. The lattice of an AFM can be split into two inter-

penetrating sublattices in which the magnetization is finite. This lattice is called bipartite

and the state in which every spin is surrounded by nearest neighbor spins pointing in the

opposite direction is called the Néel state. Above a critical temperature, called the Néel

temperature, the AFM behavior vanishes and the material has paramagnetic behavior. The

AFM behavior can be described energetically very easily by two terms plus the Zeeman

energy. Thus we have

HAFM = −JAFM
∑

i6=j

ǫiǫjσiσj − µo
N
∑

i

ǫiB · σi −
N
∑

i

kxǫiσ
2
ix, (4.2)

for the case of a AFM film with uniaxial anisotropy. There is no shape anisotropy due to

lack of net magnetization, thus no magnetostatic energy. More specifically the first term is

the exchange interaction where JAFM is the exchange integral, σi is the spin of each atom

and the summation goes over all the atoms of the material for only first nearest-neighbors

of a simple cubic lattice. We do not consider higher order energy terms and more than first

nearest-neighbors as they give negligible effects. Due to the dilution with non-magnetic

impurities not all AFM lattice sites have an associated spin. This is introduced using the

variable ǫi = 0, 1, with individual values determined such that p = N−1∑ ǫi is the packing

fraction of the AFM spins, where N is the total number of atomic sites. The second

term describes the Zeeman energy due to the interaction of the magnetic field B in the

magnetic moment σi of each atom. The last term describes the uniaxial magnetocrystalline

anisotropy energy of kx with easy axis along x axis.

As mentioned above, the net magnetization of an AFM is around zero and there is no

hysteretic behavior during field reversal. We used a test system with 128× 128× 2 spins

and parameters JAFM = −0.5, kx = 2|JAFM | and dilution of 40%. Due to high anisotropy

in AFM systems, the trial step is chosen with equal probability between a spin-flip, and

a trial step with maximum radius R = 0.9. This trial step is quite efficient for an AFM

because the spins tend to reverse quite abruptly, due to high anisotropy. An extensive

numerical investigation of diluted AFMs can be found in Ref. [125, 126, 127, 128].
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4.3. The domain state model

4.2.1 Calculating the Néel temperature of a diluted antiferromag-

net

Using the Hamiltonian presented in the Section 4.2, we will calculate the Neel temperature

of a diluted AFM. A phase diagram of a diluted AFM is shown before in Fig. 2.15a) in which

the phase of an diluted AFM can be paramagnetic, domain state or long ranged AFM. The

Néel temperature is a critical point for the behavior of the system. In order to calculate

the Néel temperature of an AFM we have to calculate the maximum of
∂M+

AFM

∂T
during field

heating for small magnetic field, where M
+
AFM the magnetization of the sublattice that

gives positive magnetization. This point marks the critical temperature in the crossover

regime from random exchange to random field behavior as showed from Kleemann et al.

[129]. Thus, as shown in Fig. 4.6, at the point where the second derivative of the M
+
AFM

is zero, the AFM starts to behave as a paramagnetic material and this gives the Néel

temperature.
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Figure 4.6: Phase transition of an AFM. The magnetization (red) and its second derivative
(blue) of a single sublattice as function of temperature is showed.

4.3 The domain state model

Now we will describe the exchange bias model which is used in this investigation, gathering

all the model characteristics that were discussed in the previous sections about the FM and

the AFM. Thus, the model consists of a FM mono layer exchange coupled with a diluted

AFM consisting of many layers. The overall system is a multi layered film of lateral size

128 sites per in-plane direction for all the cases of this study. In most investigations simple

cubic crystal packing is used (except for the investigation examining the exchange bias

dependence on the crystal packing) for the spins with periodic boundary conditions for the
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4.3. The domain state model

in-plane boundaries and open for the out-of-plane boundary.

In particular, FM and AFM consist of classical Heisenberg spins coupled with near-

est neighbor exchange constant JFM and JAFM = −JFM/2 which determines its Néel

temperature, respectively. Thus, the total Hamiltonian of our system will be

HTOT = HFM +HAFM +HINT , (4.3)

where HFM is the FM classical Heisenberg Hamiltonian which is given by

HFM = −JFM
∑

<i,j>
∈FM

Si · Sj +HAn.FM −
∑

i∈FM

µB · Si, (4.4)

where HAn.FM is the magnetocrystalline anisotropy of the FM which is given by either

HAn.FM =−
∑

i∈FM

(dxS
2
ix − dzS2

iz) or

−
∑

i∈FM

(dxS
4
ix + dyS

4
iy − dzS4

iz) or

−
∑

i∈FM

(dxS
4
ix + dyS

4
iy + dzS

4
iz). (4.5)

This is for uniaxial, biaxial or cubic anisotropy, respectively. In the case of uniaxial and

biaxial anisotropy, a hard axis is introduced which lies on the z axis with anisotropy con-

stant dz = 0.1JFM , simulating the shape anisotropy, corresponding to a magnetization

preference in the x − y plane, as shown in Fig. 4.7. In addition, the hard axis approxi-

mates the dipolar interaction between the Heisenberg spins, although its value does not

influence our results essentially because the FM magnetization lies in the plane. The easy

axes lies on the x, y axes with anisotropy constant dx = dy = 0.1JFM , which sets the

zero-temperature limit coercive field for magnetization reversal by coherent rotation, i.e.

the Stoner-Wohlfarth limit. In the case of cubic anisotropy dz = 0.1JFM .

The HAFM term is the AFM classical Heisenberg Hamiltonian which is given by

HAFM = −JAFM
∑

<i,j>
∈AFM

ǫiǫjσi · σj +HAn.AFM −
∑

i∈AFM

µB · ǫiσi (4.6)

where the term HAn.AFM is the AFM magnetocrystalline anisotropy energy which is given

by either

HAn.AFM =−
∑

i∈AFM

ǫikxσ
2
ix or

−
∑

i∈AFM

ǫi(kxσ
4
ix + kyσ

4
iy) or

−
∑

i∈AFM

ǫi(kxσ
4
ix + kyσ

4
iy + kzσ

4
iz) (4.7)

for the case of uniaxial, biaxial or cubic symmetry of the AFM anisotropy, respectively.
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Figure 4.7: The energy surfaces of a) uniaxial and b) biaxial anisotropy with easy axes
(blue vectors) and hard axis (red vector) due to shape anisotropy.

Equation 4.7 describes magnetocrystalline anisotropies with easy axes lying along the x,

y or z axes. kx, ky, kz are the anisotropy constants, with kx = ky = kz = JFM . In the

case where the number of easy axes of an material are more or less than that of the other

material, these easy axes are rotated by 45o (in one or two axes), hence to be bisected by

the easy axes of the FM. This is due to our requirement not to be favored any particular

direction because of the exchange interaction to the FM or AFM.

Finally, the HINT term is the interaction Hamiltonian between FM and AFM which is

given by HINT = −JINT
∑

(i∈FM,
j∈AFM)

Si · ǫjσj (4.8)

where JINT is assumed for simplicity to be equal to the absolute value of JAFM . The

quantities Si and σi are unit vectors which are accumulated with anisotropy and magnetic

field terms. The effective magnetic field B is applied at an angle of 20o from the x axis

and in x − y plane. This angle will be discussed further in the next chapter. The AFM

dilution is simulated leaving a proportion of the lattice sites without a spin, using the

variable ǫi = 0, 1.

As before, Monte-Carlo simulation techniques are used to investigate the system imple-

menting the heat-bath algorithm. The AFM spin trial step consists of a flip or of a random

vector constrained in a sphere of radius 0.9, chosen with equal probability. The trial step

for the FM spins consists of a random vector constrained in a sphere of radius 0.4.

The cooling process is performed using half a million Monte-Carlo steps from usually

kBT = 3.4JINT , to the desired temperature. A brief investigation of the cooling process is

presented in the Appendix A. Each hysteresis loop is calculated using the same number of

Monte-Carlo steps. For the investigation of the training effect, the consecutive hysteresis
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4.3. The domain state model

loops were taken using as initial state the state of the previous loop. Every numerical

calculation was performed 20 times with different initial conditions and dilution random

number realizations. This allows mean value of every quantity to be taken, calculating the

statistical error depicted in the error bars of the figures.

4.3.1 First simulation: Cooling process dependence

The cooling process of an exchange bias system is crucial for the stabilization of the AFM.

More specifically, when the exchange coupling between the AFM and FM is positive and

the sample is cooled with zero applied field the EB field is negative. When the cooling field

increases, the absolute EB field increases until a maximum value and it slightly decreases,

as shown in Fig. 4.8.
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Figure 4.8: Cooling field effect on the EB field of the first and subsequent hysteresis
loops for positive and negative value of the exchange interaction.

On the other hand, when the exchange coupling is negative and the cooling field

increases the exchange bias field decreases and above a certain value of cooling field, the

exchange bias field becomes positive. This value of cooling field, where there is no exchange

bias field, it close to the exchange coupling constant, thus the two terms cancel each other

and the FM is uncoupled for the AFM. Thus, positive exchange bias is exhibited in systems

with negative exchange coupling, a result which agrees with experimental findings for

Fe/FeF2 and Fe/MnFe2 bilayers[22]. This behavior is connected with the irreversible

domain state magnetization in the AFM interface[81]. Finally, for systems with negative

exchange coupling a strong training effect is exhibited while for positive coupling, there is

no training effect.
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Chapter 5

Influence of the AFM and

temperature on the training effect

In this chapter, we will search for the origins of the training effect developing an analysis

of collective phenomena of spins and applied in a case study, based on the temperature

dependence. The training effect is investigated in systems with uniaxial or biaxial AFM

anisotropy and with two or five layers thickness. More specifically we will investigate the

training effect in the FM discussing the fitting laws used for the cyclic variation of the

EB field. Then a novel analysis is proposed for the AFM: the grouping of interfacial AFM

spins in stable and unstable spins. The study of their behavior is directly connected with

the training effect. Finally, the aforementioned analysis is applied to systems with different

AFM dilution and thickness. Thus, a complete picture of the training effect dependence

on the AFM characteristics is formed.

5.1 Training effect and fitting laws

5.1.1 Hysteresis loops

In an exchange bias system, we have the ability to measure the hysteretic magnetization

of each layer. So, Fig. 5.1 shows the first and tenth hysteresis loop of the FM and the

AFM interface. The parallel, the transverse and the in-plane magnetization component are

drawn. Each of these pictures shows several characteristics of the system. From the parallel

component of the FM magnetization, we can calculated the positive and negative coercive

field and through them the exchange bias field and the coercivity. In the case of the AFM

interface magnetization, from its parallel component, we can calculate the vertical shift of

its hysteresis loop. This can happen using the coercive fields of the FM hysteresis loop as

shown in Fig. 5.1 or taking the total time average of the AFM interface loop. These two

quantities give the same effect with the difference that in case of non-standard shape of

the loop, the total time average measures more precisely the vertical shift of the loop. In

any case, this vertical shift of the AFM interface loop is called the domain state irreversible

magnetization [81].

The transverse component shows the hysteretic magnetization along the perpendicular
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Figure 5.1: First and tenth hysteresis loop of the FM (top) and the AFM interface
(bottom) of the parallel, transverse, in-plane component of magnetization. In the in-plane
magnetization picture, the green line is the magnetic field axis.

axis. The in-plane component can show the symmetry of reversal during each consecutive

hysteresis loop. The training effect in the parallel component appears as a movement

of the left-hand branch of the hysteresis loop. The training effect in the perpendicular

component is manifested as a decrease of the maximum of the left-hand magnetization

during reversal.
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Figure 5.2: First and tenth hysteresis loop of the bulk AFM of the a) parallel and b)
transverse component of magnetization.

These findings indicate a symmetrical first loop with predominantly coherent rotation

as the reversal mode. This gradually changes to less symmetrical loops with (only) the left

hand branch becoming less uniform. The symmetry of the hysteresis loop during reversal

was investigated thoroughly by Beckmann et al. [96, 99] and was shown to depend on

the angle between the easy axis of the AFM/FM and the magnetic field. As was shown,

even the first loop can be asymmetric for certain angles. Therefore, the transition from

a symmetric to an asymmetric mode is not a general effect, but it occurs for the specific

angle we used in the current investigations (20o). For other angles, the asymmetry can

exist from the first hysteresis loop onwards. The reason for this behavior can be found in
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5.1. Training effect and fitting laws

the change of the mean effective field acting in the FM during reversal[96]. This field has

three different contributions, namely, from the exchange field of the AFM, the external

magnetic field and the anisotropy FM field. The exchange field is the one which changes

during training causing the mean effective field to change. For the angle we used in

this chapter, during training the mean effective field becomes more aligned with the FM

magnetization, leading to a smaller torque on the FM magnetization. This consequently

favors less uniform reversal modes. An extensive study of the effect of the angle between

magnetic field and FM easy axis on EB systems is presented in the next chapter.

Figure 5.3: Snapshots of an EB system during the first two hysteresis loops. The number
on the left of every snapshot is indicating the respective point in the hysteresis loop. The
color scheme of the spins is indicated for the FM by the star (top) and for the AFM by the
cross (bottom). The left circle shows a region of spins which become stable after the first
reversal and the right circle shows a region of spins that are unstable during all reversals.

The hysteresis loops of the bulk AFM are drawn in Fig. 5.2. The magnetization of

these layers is quite low as can been seen from the range of the hysteresis loops, although
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5.1. Training effect and fitting laws

these magnetization cycles are hardly considered hysteretic. This is because they do not

interact directly with the FM but only with the interface, thus they behave like a standalone

AFM.

Finally, some snapshots of the EB system during the first two hysteresis loops are drawn

in Fig. 5.3. We can see that the FM is reversed through nucleation. Thus a temporary

domain wall is created which is parallel to the y-axis. The smaller domain which is created

inside the domain wall has magnetization parallel to the final one. The AFM is in more

stable condition, where nothing seems to change during consecutive reversals. But if we

focus on the right circle we will see that some spins are reversed with the magnetic field

in all reversals. In the left circle we will see spins which reverse during the first reversal

but remain stable during the subsequent reversals. We will discuss thoroughly these two

kinds of spins in the next sections. In the analysis of the results we keep in mind that

the behaviour during the first loop is qualitatively different from that of succeeding loops.

Thus we consider two fitting techniques, one of which allows to quantify this difference.

5.1.2 Analysis of the training effect

The training effect as aforementioned, is a phenomenon that involves an evolution of

magnetic properties during consecutive hysteresis loops. For a single set of parameters,

we have a series of exchange bias field values from the consecutive hysteresis loops. As

shown in Fig. 5.4, for several temperatures we have many curves of the exchange bias field

or the coercivity as function of the number of hysteresis cycles. It is very difficult from

this view to extract conclusions for the behavior of the training effect. Thus, for a better

understanding of the training effect and for further analysis of the results, two fitting laws

were applied to the data.
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Figure 5.4: Training effect of exchange bias field (left) and coercive field (right) for several
temperatures.
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5.1. Training effect and fitting laws

Firstly, the common empirical power law connecting Heb and the number of consecutive

loops N is given by

Heb(N) = Heeb + k/
√
N, (5.1)

where k is constant and Heeb is the equilibrium exchange bias, i. e. the remaining Heb after

an infinite number of loops. Introduced first by Paccard et al.[8], this law holds only for

(N > 1) and, consequently, cannot describe necessarily the steep training effect between

the first and the second loop.

A new law was deduced by Binek[130], using a relaxation model. This model came

from a discretized Landau-Khalatnikov equation used for the relaxation of an AFM toward

equilibrium. The resulting law is a recursive sequence which relates the (N + 1)th loop

with the Nth one and has the form

Heb(N + 1) = −γ(Heb(N)−He−rseb )3 +Heb(N), (5.2)

where γ is a constant and He−rseb is the equilibrium exchange bias. With a proper

rearrangement of the previous equation, It is obvious that large values of γ refer to small

absolute training effects meaning that the Heb(N)−He−rsex is small, consequently meaning

small deviations from the equilibrium EB field. Small values of γ correspond to large

absolute training effect. For γ close to zero means that the system remains in a frozen

state with Heb(N + 1) = Heb(N), unable to reach the equilibrium value of EB field in

finite N , due to lack of thermal excitations.
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Figure 5.5: Two examples of the fitting laws for two different temperatures with depiction
of equilibrium exchange bias field (purple line). The recursive sequence (r.s.) (blue line)
fits the numerical results (red symbols) of the EB field of first hysteresis loop in addition
to the subsequent EB fields which is only fitted using the power law (p.l.), fit (green line).

The difference between k and γ is that k corresponds to the behavior after the first loop
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5.2. Athermal and thermal training effect

and γ includes it. So e.g. for two values of temperature, as shown in Fig. 5.5, we applied

the two fitting laws and we draw also the equilibrium EB field. Firstly, if we use the power

law for the first loop in addition to the subsequent loops, although the fitting is working

very well for N > 1 , for N = 1 the fitting fails. On the other hand, the recursive sequence

fitting works very well for all loops. As we can see for the lowest temperature the training

effect is small, and the EB field seems to remain stable after a number of consecutive

hysteresis loops, meaning that is in a metastable state. In the highest temperature the

training effect is large, with the EB field moving toward the equilibrium state.

Although, the recursive sequence describes quite well the training effect, it does not

separate the behavior of the first loop. Therefore we additionally analyze the difference

DHeb of the power law as extrapolated to the first hysteresis loop and the actual simulation

result for exchange bias field of the first loop, as illustrated in Fig. 5.5,

DHeb = H1
eb − (Heeb + k). (5.3)

In general, the power law fitting and the difference dHeb will be used for the analysis

of the exchange bias field during consecutive hysteresis loops. For clarity, we used the

normalized quantities κ = k×10−3

JINT
and ∆Heb = DHeb×10−3

JINT
.

5.2 Athermal and thermal training effect

As shown by Hoffmann’s [61] model and supported by many experimental results, the

training effect can be divided into thermal and athermal effects. This distinction was

introduced firstly by Fernandez-Outon et al. [131] and is based in the behavior of the first

loop EB field. The athermal training is considered to be the large shift of the descending

branch of the first loop, which persists even at very low temperatures where the thermal

training, driven by thermally activated magnetization processes, ceases to exist.

The initial cooling procedure produces an AFM spin structure which may be in a

metastable state; the training effect can then be considered to be the macroscopic sig-

nature of configurational rearrangement of the spin structure toward equilibrium. Despite

that, because of the variety of results, coming from different EB systems and experimental

techniques[4, 3], the uniqueness of the mechanism has to be questioned. These reconfigu-

rations could be a reorientation of the AFM domains at the AFM/FM interface during field

reversal or domain wall movements. Certainly, the AFM domain state of 3-D systems is

metastable, giving rise to non-equilibrium phenomena, and consequently to training effects.

Some characteristic results are illustrated for three values of temperature in Fig. 5.6.

Here we show the original data (not normalized) along with the power law fits and the

resulting equilibrium EB field. Firstly, even if we use the power law from the first loop
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5.3. Temperature dependence: Behaviour of the ferromagnet
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Figure 5.6: Numerical results (symbols) and power law fits (dashed lines) for three dif-
ferent temperatures along with the equilibrium exchange bias fields (horizontal lines).

onwards the fits only work well for N > 1, for N = 1 the fitting fails. As we can see

for the lowest temperature the training effect is small, and the EB field seems to remain

stable after only a small number of consecutive hysteresis loops. The first hysteresis loop

deviates from the power law, a characteristic of athermal training. For higher temperatures

the training effect is large, with the EB field decaying toward a much lower equilibrium

value, but again with a bigger difference between first loop and the power law fit. Thus,

this characteristic of the athermal training, remains also in the thermal training regime.

Finally, for temperatures close to the blocking temperature the training effect is small with

the difference between first loop and power law also small, a characteristic of low or zero

training effect.

5.3 Temperature dependence: Behaviour of the ferro-

magnet

The atomistic model presented earlier has been applied to calculations of systems with

uniaxial and biaxial anisotropy for the AFM as well as different AFM thicknesses. For the

case of biaxial anisotropy, the easy axes are rotated by 45o, hence are bisected by the easy

axis of the FM, as shown in Fig. 5.7. This is due to our requirement not to favor any

particular direction because of the interface exchange interaction with the FM. The Néel

temperatures were calculated for each individual system separately, using a heating process

from almost zero temperature of the long-range ordered AFM state[128]. The inflection

point of the staggered magnetization was then calculated as a function of temperature,

estimating the Néel temperature for the uniaxial system to be kBTN = 0.93JINT and

1.14JINT, and for the biaxial system kBTN = 0.60JINT and 0.81JINT for 2 and 5 layers
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5.3. Temperature dependence: Behaviour of the ferromagnet

AFM thickness, respectively. Each hysteresis loop is calculated using the same number

of Monte-Carlo steps. For the investigation of the training effect, consecutive hysteresis

loops were calculated using each time the state of the previous loop as initial state. Also,

we calculated statistical averages of the EB field and other quantities over 20 different

realizations of random number sequences. The main effect of this for the simulations is

the different realizations of defect distributions in the AFM.

45o

20o

x

y

AFM
biaxial easy

axes

FM uniaxial easy axis

Magnetic field axis

Figure 5.7: Easy axes of an exchange bias system with biaxial AFM anisotropy.

5.3.1 Hysteresis loop of parallel and transverse component

A typical hysteresis loop calculated solely from the FM part of the system is shown in

Fig. 5.1. The exchange bias field (Heb) and the coercivity (Hc) were calculated for different

temperatures for every configuration. We investigated four different system configurations,

two with uniaxial AFM anisotropy and two with a biaxial anisotropy, both with two and

five AFM layers. The dependence of Heb, Hc on the number of consecutive hysteresis

loop cycles are presented in Fig. 5.8 for different temperatures and AFM thicknesses for

the case of uniaxial AFM anisotropy. The error bars indicate the statistical error due to

averaging over a set of 20 different realizations of the defect distribution in the AFM.

It is clear, that for all kind of parameters the largest decrease of EB field takes place

between the first and second hysteresis loops. The training effect becomes weaker for the

subsequent hysteresis loops. The coercivity shows a qualitatively similar training effect as

observed for the EB field. For temperatures as low as only 1% of the Néel temperature

(0.0075Jint) Heb is reduced by about 10-15% and Hc by about 1-2% after ten loops when

compared with its initial value. This is in good agreement with experimental findings for

epitaxial NiFe/FeMn EB bilayers [34] where for a temperature of 5K a corresponding

decrease of Heb of about 30-35% was found and 2-4% for Hc. This suggests that there is a

domain state in the bilayer which may arise from the interface roughness or non-magnetic

defects in the epitaxial film.
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Figure 5.8: Training effect of a) the exchange bias field and b) the coercivity for differ-
ent temperatures and AFM thicknesses. AFM with uniaxial anisotropy. The values are
normalized to the value of the first hysteresis loop.

5.3.2 Exchange bias field

Our results for the temperature dependence of the training effect for the four aforemen-

tioned systems are shown in Fig. 5.9. The results for the first and second loop are shown

as well as the equilibrium value obtained via the power law fit. The fitting parameters κ

and the difference ∆Heb are drawn in the upper graphs. The range of temperatures used is

according to the system blocking temperature, which is defined as the temperature where

the exchange bias field becomes zero. Due to the rescaling of the temperature range with

respect to the Néel temperature of each system, the real temperature range is different for

each of the systems.

For the case of AFM uniaxial anisotropy with low AFM thickness (Fig. 5.9a), the

strength of the training effect has a maximum for intermediate temperatures (T/TN ≈
0.4). This is because at very low temperatures, the system is easily frozen in metastable

states leading to a higher equilibrium EB field due to lack of thermal excitation. By

intermediate temperatures we mean temperatures in the center between zero and the

blocking temperature of the system, i. e. the temperature where the EB field becomes

zero. On the other hand for the highest temperatures the EB fields are rather small and

drop quickly to the equilibrium value which is equal to zero. In between is the temperature

range with the highest training effect. This behavior is also apparent from the graph of the

fitting parameter κ which shows a maximum at T/TN = 0.4 while the difference ∆Heb

remains constant for not too high temperatures. Only for the highest temperatures close

to the blocking temperature, ∆Heb decreases steeply. For the thicker AFM (Fig. 5.9b), the

strength of the training effect follows the same trend but with the maximum of the training

effect shifted towards higher temperatures. The main difference is that the additional AFM

layers offer more stability to the system as well as to the created domains so that the training

effect is smaller.

The EB systems with biaxial anisotropy of the AFM (Fig. 5.9c) and d) show some
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Figure 5.9: Temperature dependence of the training effect for systems with a) uniaxial
AFM anisotropy and tAFM = 2, b) uniaxial AFM anisotropy and tAFM = 5, c) biaxial AFM
anisotropy and tAFM = 2 and d) biaxial AFM anisotropy and tAFM = 5. The temperature
axis is scaled to the Néel temperature of every system. H1

eb and H2
eb: EB field of the first

and the second hysteresis loop, respectively. Heeb : Equilibrium EB field following the power
law fit. Upper graphs: Temperature dependence of the normalized fitting law parameter κ
and ∆Heb obtained as explained in the text.

significant differences in comparison to the uniaxial systems. Firstly, the EB effect appears

only for lower temperatures. The resulting lower blocking temperature results from a

lower energy barrier for reversal of AFM domains. As in the uniaxial case, the blocking

temperature is also affected by the thickness of the AFM. For higher AFM thickness the

blocking temperature increases, once again a result of the enhanced stability of the system

due to the increased AFM thickness. Secondly, for the case of biaxial AFM anisotropy, the

training effect shows a different dependence on temperature. This can be clearly seen from

the graphs of the fitting parameters. The power law parameter κ shows a maximum at

T/TN = 0.3 meaning that the training effect after the second loop is high. The difference

∆Heb has a monotonic decrease. In total, the difference between these two curves is in the

low temperature range, where we see large training effect for the first to the second loop

but much smaller for the subsequent loops. Similar effects exist for both of the thicknesses

of the AFM, but as previously, the EB persists at higher temperatures for the thicker AFM.

The behavior of the training effect can be compared with the experimental trend mea-
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5.3. Temperature dependence: Behaviour of the ferromagnet

sured by Khapikov [32] for a granular NiO/Ni81Fe19 bilayer. If we consider that the

blocking temperature of that system is around 250Ko, then the lower limit of temperature

range that is used is around T/TN = 0.16 in terms of our temperatures units for the

system with the uniaxial anisotropy and thickness equal to 2 layers. Thus, for this range,

the temperature dependence is the same and the relative decrease of the EB field due to

training is in very good agreement (both 30% for T/TN = 0.16).

In general, the behavior of EB field (where training exist), independently of the AFM

thickness and anisotropy, can be separated in two regions according to the temperature:

1. Athermal training. This is the region with low κ and high ∆Heb, usually in the low

temperature regime. As shown in Fig. 5.9 for kBT/JINT = 0.0075, the EB field of

the first loop is significantly higher than the EB field of the subsequent loops. After

the second loop the EB field remains constant.

2. Thermal training. This is the region with high κ and high ∆Heb, usually in the

higher temperatures regime, but not very close to blocking temperature. As shown

in Fig. 5.6 for kBT/JINT = 0.375, the EB field of the first loop is still much higher

than those of the subsequent loops. But here, after the second loop the EB field is

continuously decreasing with high parameter κ.

These two kinds of training effect are connected with the behavior of the AFM. Par-

ticularly, with the increase of the stability of the AFM interface and the decrease of its

magnetization. Our preliminary analysis suggests that the effect depends on the stability

of the FM/AFM interface structure. More specifically, the interfacial spins of the AFM

showed different behavior during cycling. The largest portion was frozen towards the easy

axes of the AFM anisotropy creating domains and a smaller portion, which is in the domain

walls, rotates with the external field causing domain wall motion. The training effect is

connected with the behavior of these spins which become frozen in a specific direction and

consequently increasing the surface of the domains. This analysis is discussed thoroughly

in the next sections.

A similar analysis was made by Radu et al. [132], where they showed that the training

effect is connected with both interfacial and bulk spins which move towards equilibrium

with different rate. Also, Roy et al.[133] and Fitzsimmons et al.[134] analyzed the pinned

and unpinned spins not only on the interface but also in the bulk, characterising them

as compensated and uncompensated. They proposed a model using the results of their

analysis which is consistent with our model and results. Finally, Morales et al. [135] using

a trilayer to eliminate the AFM/FM interlayer exchange coupling, showed that EB is not

a purely interfacial effect and the bulk AFM spins are important for the pinning of the

interfacial spins.
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5.3. Temperature dependence: Behaviour of the ferromagnet

5.3.3 Coercive fields

Because of the possible asymmetry of the hysteresis loops we also investigated the coercive

fields of every cycle. The positive and the negative coercive field 1 of the first and second

hysteresis loop are shown in Fig. 5.10 for each of the aforementioned systems. For simplicity

the absolute value of the negative coercive field is used. When the curves of the positive

and negative field coincide, the EB field vanishes.
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Figure 5.10: Temperature dependence of the training effect of the coercive fields for
systems with a) uniaxial AFM anisotropy and tAFM = 2, b) uniaxial AFM anisotropy and
tAFM = 5, c) biaxial AFM anisotropy and tAFM = 2 and d) biaxial AFM anisotropy and
tAFM = 5. H1

C+ and H2
C+: Positive coercive field of the first and the second hysteresis

loop, respectively. Similarly for the absolute value of the negative coercive field. The
temperature axis is scaled to the Néel temperature of every system and as previously, the
temperature range was adjusted according to the system blocking temperature (similar to
Fig. 5.9).

Firstly, for all cases we can conclude that the training effect occurs predominantly in

the negative coercive fields since there is hardly any difference in the subsequent curves for

the positive coercive fields. This means also that one finds a decrease of coercivity during

cycling over several loops. This is caused because during the initial cooling procedure an

1Negative coercive field is that occurs during the descending branch of the loop and the positive

coercive field is that occurs during the ascending branch of the loop. Although, they usually occur in the

negative and positive side of x-axis,respectively, many times occur in one only side. That’s why many

times are referred as first and second coercive field, respectively
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5.4. Temperature dependence: Behavior of the antiferromagnet

AFM domain state is formed with a spin structure optimized for the positive field and FM

magnetization direction. Obviously, this domain structure is less stable when field and FM

are reversed. Hence, more changes in the domain structure may occur on the opposite

side of the loop as compared to the initial side where this structure is stable. Also,

although non-monotonically, the negative coercive field always decreases with increasing

temperature. On the other hand, the positive coercive field has regional extrema. For the

case of uniaxial AFM anisotropy, the positive coercive field has a minimum at rather low

temperatures, T/TN = 0.08.

The asymmetry in the hysteresis loop is suggested to be an effect of increasing popula-

tion of the stable AFM spins. More specifically, the irreversible magnetization of the AFM

interface decreases. This is caused by the increase of the stable spin population which

results in a decrease of their net magnetization, during consecutive field cycling. Thus

the unstable spin population in the AFM, which is responsible for the coercivity, reduces;

causing the aforementioned behavior of coercivity. For lower temperatures, the behavior

of the coercive field changes rapidly. Experimentally [136] is was shown that the origin of

the striking difference between the first magnetization reversal and all subsequent reversals

is an effect of a metastable single domain state destroyed during the first reversal and

transformed into a stable multidomain state.

5.4 Temperature dependence: Behavior of the antifer-

romagnet

Now using the same model we examine the behavior of the AFM. The AFM magnetization

is usually zero macroscopically due to the balance of the magnetic moments in all spin

sublattices. It is generally accepted that when the AFM spins on the interface are compen-

sated, then a break of this symmetry is required to explain EB. As described by Scholl et al.

[37], the breaking of this symmetry can be associated with interface roughness[27], mag-

netic domain[82], defect[90], grain structure[101] or combinations of these four. Thus, a

clear view of the FM/AFM interface is needed for a clear microscopic description of the EB.

Recent experimental methods [137, 138] using x-ray resonant magnetic scattering, have

made possible direct observations of the AFM/FM interface allowing study of the behavior

of the interface spins, in particular their stability against reversal. Studies of the training

effect showed that it is related to the direction of the frozen AFM spins [139] although

neutron reflectivity experiments[136, 13] in the FM showed transition from a single-domain

state, for the first cycle, to a multi-domain state, for the subsequent cycles.

The spin structure of the AFM/FM interface after the initial cooling procedure is known

to differ from its equilibrium state. The training effect is considered to be the macroscopic
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5.4. Temperature dependence: Behavior of the antiferromagnet

signature of configurational rearrangement of the spin structure toward equilibrium. These

reconfigurations could be a reorientation of the AFM domains at the AFM/FM interface

during field reversal or domain wall movements. Thus, in this section we analyze the pop-

ulation of the pinned spins of the AFM interface as well as their magnetization, concluding

that these reconfigurations are domain wall movements.

5.4.1 Irreversible magnetization of AFM interface

As shown in Fig. 5.1, the magnetization of the AFM interface shows hysteresis, following

the coupling to the FM and its vertical shift acts as an additional effective field on the FM,

resulting in the EB. Another important characteristic of this loop is the change of mag-

netization before reversal. E.g. for the descending branch of the loop, the magnetization

from the initial state up to the point before the reversal sets in. This is in contrast to the

hysteresis loop of the FM in which the magnetization remains almost constant. This is due

to the frustrated spins of the AFM interface. This is studied further in the next section for

lower temperatures.

This vertical shift of the magnetization of the AFM interface as aforementioned is called

the irreversible domain state magnetization Mirr [81]. In this study we will use the total

time average of the hysteresis loop for the calculation of this shift.

Our results for the temperature dependence of the training effect for the four afore-

mentioned systems are shown in Fig. 5.11. For the detailed qualitative comparison of this

quantity, the simulation results for the first and second loop are shown for the EB field and

AFM irreversible magnetization. The range of temperatures used is limited by the max-

imum blocking temperature of each system, which is defined as the temperature where

the exchange bias field becomes zero. Due to the rescaling of the temperature range with

respect to the Néel temperature of each system, the real temperature range is different for

each of the systems.

When the AFM has uniaxial anisotropy, the irreversible domain state magnetization of

the AFM has the same qualitative trend as the EB field. The quantities are different by

a multiplying factor of around 0.6, which is the concentration of the spins in the AFM.

This can be explained by the usual estimate[81] of EB field lµHeb = JINT (0.6 · Mirr)

where l is the thickness of the FM, giving HEB/JINT = 0.6 ·Mirr. Although, this formula

establishes a good connection between the two quantities (Heb,Mirr), we see that there is

a significant difference in the values for some of the temperatures. This discrepancy can

be corrected if we consider the improved formula, established by Scolten et al. [97]. Thus

the aforementioned estimate becomes :

Heb/JINT =
0.6 ·Mirr

1 + JINTχ
(2)
AFM

< 0.6 ·Mirr, (5.4)
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Figure 5.11: Temperature dependence of the training effect for systems with a) uniaxial
AFM anisotropy and tAFM = 2, b) uniaxial AFM anisotropy and tAFM = 5, c) biaxial AFM
anisotropy and tAFM = 2 and d) biaxial AFM anisotropy and tAFM = 5. The temperature
axis is scaled to the Néel temperature of every system. H1

eb and H2
eb: EB field of the

first and the second hysteresis loop, respectively. M1
irr and M2

irr: Irreversible domain state
magnetization of the AFM interface of the first and the second hysteresis loop, respectively.
The colored arrows and markers show the temperatures that are going to be used in the
Fig.5.14, in which the athermal (lower temperature) and the thermal (higher temperature)
training effect are exhibited in each system.

where χ
(2)
AFM is the second approximation for AFM susceptibility considering dilution

into the AFM. This value will be always positive and temperature dependent. Thus, the

denominator of Eq. 5.4 is larger than one (JINT = 0.5JFM) and consequently the resulting

values for the EB field will be smaller than given by the previous formula.

The training effect of the EB field, in low and high temperatures is small, but high at

intermediate temperatures. The same trend is followed by the irreversible domain state

magnetization. For low AFM thickness, there is small difference between the EB field

and irreversible domain state magnetization of the second hysteresis loop in intermediate

temperatures which is due to thermal fluctuations.

Although the trend is the same for the case of biaxial AFM anisotropy, the EB field

and the irreversible domain state magnetization have small difference in the first half of

the temperature range. This difference is because the aforementioned formula is derived

for systems with uniaxial AFM anisotropy. The derivation of a similar formula for systems

with biaxial AFM anisotropy is very difficult due to the larger complexity of the energy

terms compared to the uniaxial case.
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5.4. Temperature dependence: Behavior of the antiferromagnet

5.4.2 Spin and Domain types

A domain state is formed in the AFM during the cooling process. This domain state consists

of domains and domain walls that penetrate the AFM layer. Some typical AFM interface

spin configurations before and after the first and second reversal are shown in Fig. 5.12

for the case of uniaxial (top) and biaxial (bottom) AFM anisotropy. For the uniaxial AFM

anisotropy, we see domains with staggered magnetization parallel or antiparallel to the easy

direction (x-axis). For the biaxial AFM anisotropy, we see domains oriented in orthogonal

directions: each domain lying along one of the easy axes of the biaxial anisotropy. Each

domain can have its staggered magnetization parallel or antiparallel to the easy direction.

Figure 5.12: AFM interfacial spin configuration snapshots of an uniaxial (top) and a
biaxial (bottom) AFM in an EB system. The snapshots are before the first reversal (a),d)),
after the first reversal (b),e)) and after the second reversal (c), f)). The colors are for
separating the different AFM domains. For the uniaxial AFM (top), the green and the
yellow separates domains pointing in the x direction. For the biaxial FM (bottom) the green
and the yellow separates domains pointing in the direction of first and third quadrant while
blue and red separates domains pointing in the direction of second and fourth quadrant.
The top circles show spins that become stable and the bottom circles show spins that are
unstable i.e. they change direction after each reversal.

As shown in Fig. 5.12 in the bottom circles, there are unstable spins, which are those

which change their state during the hysteresis cycle. These spins can be divided into two

categories. In the first category are spins which reverse only when the FM reverses, i.e.

they are strongly coupled to the FM and respond to the changes in the exchange field from
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5.4. Temperature dependence: Behavior of the antiferromagnet

the FM. In the second category we place spins which are able to follow the external field.

These spins are predominantly responsible for the magnetization decrease in the AFM layer

between positive saturation and reversal of the FM. These are spins which have zero or

small exchange coupling to neighboring spins, which arises due to geometric frustration.

Thus, we refer to these spins as frustrated. We note that this is a different definition to

that used in [132], but it will be used here consistently. Furthermore, the unstable spins are

mostly located at the edge of the domains, e.g. at the domain walls. Thus, their reversal

moves the domain walls making it likely that these spins are responsible for the training

effect.

Finally, there are spins in the case of the biaxial AFM anisotropy that do not reverse

completely, but change from one easy direction to the perpendicular easy direction during

a field reversal. These spins will be also considered as “unstable” ones for the following

analysis.

5.4.3 Analysis of stable spins

There are many ways of measuring the stability of a single spin. Misra et al. [92] suggested

to look at the time average of the x-component during a complete reversal. This average

will be close to the initial value for stable spins and close to zero for spins rotating with the

magnetic field. The problem with this quantification of the stability is its generalization

to more than one dimensions. Thus, in the current investigation, we examine the state

of each spin before and after each magnetization reversal and calculate the angle between

them. Next is to invent a criterion based in a cut-off angle which will separate the stable

from the unstable spins.

In Fig. 5.13 is shown the distribution of reversal angles of the first reversal for several

temperature and systems. The criterion which we will use is based on using as a cut-off

angle, the angle that separates the two main peaks of the distribution of the reversal angles.

This, of course, will work better when the peaks are quite high. As shown in Fig. 5.13, this

happen at 90o for the case of the uniaxial anisotropy and at 45o for the case of the biaxial

anisotropy. Thus, in general the cut-off angle is close to the initial angle, energy barrier.

As we can see, this criterion is working well for temperatures in the range of athermal

(i.e. uniaxial T/TN = 0.008) and thermal (i.e. uniaxial T/TN = 0.403) training but for

high temperatures (i.e. biaxial T/TN = 0.625) the two peaks in the distribution are very

low and are comparable to the midrange reversal angles. Thus in high temperatures the

criterion is not working very well but at these temperatures there is no EB and consequently

this range is of no interest.

Focusing now on temperatures of athermal and thermal training (the two lowest values

of temperature in Fig. 5.13) there is a significant difference between EB systems with
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Figure 5.13: Distributions of reversal angles of the first reversal for systems with a)
uniaxial AFM anisotropy and b) biaxial AFM anisotropy for several temperatures and 2
AFM layers. The lines show the cut-off angle between the stable and unstable spins.

uniaxial and biaxial AFM anisotropy. In systems with uniaxial AFM anisotropy, there are

spins that fully reverse (180o) during field cycling and are considered unstable (unfrozen)

spins while spins that are not reversed (0o) are considered stable (frozen) spins. Now, in

systems with biaxial AFM anisotropy, we observe three peaks in the distribution of reversal

angles, with two of them being quite high. These two main peaks represent the reversal

angles of the majority of the spins. Thus, again at 0o are the stable spins and at 90o and

180o are the unstable spin. Comparing the number of the spins reversed by 90o to the

number reversed by 180o (almost zero) it can be concluded that in in systems with biaxial

AFM anisotropy, the AFM interface hysteresis loop is created not by full reversals but by

90o reversal i.e. by aligning with the closest perpendicular easy axes.

We calculate then the percentage of the stable spins in the bulk and in the interface

of the AFM, as shown in Fig. 5.14a) and b), using one temperature for athermal and one

for thermal training, as shown in Fig. 5.11. We consider bulk AFM, all the layers of the

AFM except the interfacial one. In the bulk of the AFM all the spins were found to be

stable and to remain stable during the hysteresis cycling, for low temperatures. For higher

temperatures, there are more unstable spins in the bulk which population does not change

during hysteresis cycling. In both of the cases, the magnetization of the stable spins was

definite and constant during the consecutive hysteresis loops, as can be seen in Fig. 5.15a)

and b). This behavior is consistent with the description of the bulk AFM which is given in

many publications [133, 134, 132] .

A special focus is given to the spin behavior in the interface of the AFM. As we see

from Fig. 5.14c) for the uniaxial case, in general the system with thicker AFM has more

stable spins compared to the thinner AFM at the same temperature. This is because the

additional layer in the AFM, it is known to offer more stability to the interface and the

system. So more interfacial spins are pinned. Both systems, with different AFM thickness,

follow the same trend in the concentration of the stable interfacial spin as a function of
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Figure 5.14: Training effect of the concentration of the stable spins in the AFM bulk
(top) and interface (bottom) for a),c) uniaxial anisotropy and b),d) biaxial anisotropy for
several temperatures and AFM thicknesses.

temperature and number of consecutive loops. The concentration of the stable interfacial

spins increases with decreasing temperature, due to lack of thermal excitations. This is

causing the increase of EB field with decreasing temperature. Similar effects are observed

for the biaxial AFM anisotropy, as shown Fig. 5.14d).

The concentration of the stable interfacial spins increases steeply from the first to the

second hysteresis cycle. This is a result of the cooling process, after which many spins

achieve a metastable state. During the first loop these spins make irreversible transitions

into new, more stable states, exhibiting at most very small changes over subsequent cycles.

After the second hysteresis loop the concentration of the stable AFM interfacial spins

remains constant.

Thus, the concentration of the stable interfacial spins increases with increasing con-

secutive hysteresis loops. This trend is in contrast to the variation with temperature.

Specifically, the increase of the stability at low temperatures increases the EB field. How-

ever, the increase in the number of stable spins with hysteresis cycle leads to a decrease in

the EB field. This apparent contradiction arises from fact that it is possible that the more

stable state is more compensated, thus leading to smaller EB field. As a result we cannot

characterize the EB field with the concentration of stable spins alone. Thus, we need to

investigate the magnetization of these spins.

Fig. 5.15c) and d) shows the magnetization (MS.I.S.) of the stable AFM interfacial
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Figure 5.15: Training effect of the magnetization of the stable spins in the AFM bulk
(MS.B.S.)(top) and interface (MS.I.S.) (bottom) for a),c) uniaxial anisotropy and b),d)
biaxial anisotropy for several temperatures and AFM thicknesses.

spins as a function of the number of consecutive loops for the aforementioned systems and

temperatures. In all of the cases, the magnetization decreases with increasing number of

consecutive hysteresis loops. This decrease explains the decrease of the irreversible domain

state magnetization of the AFM interface and consequently the decrease of the EB field,

e.g. the training effect. Also, the dependence of the magnetization of the stable AFM

interfacial spins on the temperature is consistent with the temperature trend of EB field.

Systems with thicker AFM exhibit smaller magnetization of the stable AFM interfacial

spins due to different domain structures favored by the additional thickness.

For the athermal training, in all cases, the MS.I.S. magnetization decreases steeply

from the first to the second consecutive hysteresis loop, and after that it remains roughly

constant. This behavior explains the decrease of the irreversible domain state magnetization

of the AFM interface and consequently the decrease of the EB field, e.g. the athermal

training effect. Also, it shows that the spins that become stabilized after the first reversal,

were pointing to the positive magnetization axis and also to the cooling field direction.

Thus, during the first reversal, they flip and stabilize to the negative magnetization axis

causing a decrease in the total magnetization MS.I.S.. Furthermore, systems with thicker

AFM exhibit a smaller magnetization due to different domain structures favored by the

additional thickness. Furthermore, we can see that the bulk has a constant magnetization

during training with almost the same value for different AFM thicknesses, while theMS.I.S.
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5.4. Temperature dependence: Behavior of the antiferromagnet

has much bigger values which change during training and for different AFM thicknesses.

For the thermal training, the MS.I.S. magnetization decreases steeply from the first

to the second consecutive hysteresis loop, but after that it continues to decrease less

steeply. The first decrease of the MS.I.S. magnetization is explained as in the previous

case. But now after the second hysteresis cycle, we have a continuous decrease of the

MS.I.S. magnetization although the number of the stable spins remains constant. This is

due to the fact that the stabilized spins are not fully aligned in their corresponding easy

direction. It means that due to the thermal fluctuations the spins are rotated by a small

angle from the easy direction but not far to be considered unstable spins. This small angle

reduces during the consecutive hysteresis loop, aligning further these spins to the negative

magnetization axis, causing the reduction of the MS.I.S. magnetization. Furthermore, we

can see that the bulk has a zero magnetization during training while the MS.I.S. has much

bigger values which change during training and for different AFM thicknesses.
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Figure 5.16: Comparison of the magnetization of the stable interfacial spins (MS.I.S.)
and of irreversible domain state magnetization (Mirr) for systems with a) uniaxial AFM
anisotropy and tAFM = 2, b) uniaxial AFM anisotropy and tAFM = 5, c) biaxial AFM
anisotropy and tAFM = 2 and d) biaxial AFM anisotropy and tAFM = 5.

Finally, we show the irreversible domain state magnetization Mirr as a function of the

stable interfacial spins magnetization MS.I.S. for comparison in Fig. 5.16. It is clear that

these two magnetizations are connected because, in addition to the fact that they follow

the same trend, the values ofMS.I.S. magnetization are quite close or inside the error range

of the values ofMirr magnetization. Thus, this is a clear proof that theMirr magnetization
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5.4. Temperature dependence: Behavior of the antiferromagnet

and consequently the EB shift is a result of the magnetization of the stable spins.

In summary, the training effect of EB field is caused by the increase of stability of the

AFM interface which leads to the decrease of the magnetization of stable interfacial spins.

On the other hand, the EB field increase due to temperature decrease caused by the same

phenomenon when it leads to the increase of the magnetization of stable interfacial spins.

5.4.4 Low temperature effects

Diluted AFMs can present magnetic frustration due to the vacancies which can create a

triangular lattice symmetry. This situation is known as geometrical frustration and the

AFM interaction is incompatible to that. This lattice symmetry in the AFM interface can

be significant when there is only one, three or five nearest AFM neighbors. There will

always be one FM nearest neighbor which will be canceled by one AFM neighbor. As

shown in Fig. 5.1, the AFM interface has not constant magnetization before each reversal.

That means there are some spins that follow the external magnetic field. These spins are

behaving paramagnetically, which means that they are not strongly exchange coupled due

to geometric frustration; as a result we refer to these as frustrated spins. This effect is

more pronounced at low temperatures, as shown in Fig. 5.17, for uniaxial and biaxial AFM

anisotropy.
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low temperature for comparison. The cycle numbers in b) are for future reference.

For uniaxial AFM anisotropy, (as can be seen in Fig. 5.17a) there are two additional

reversals at close to zero magnetic field. This shows a paramagnetic characteristic in the

behavior of the AFM interface. The frustrated spins with zero net exchange coupling

behave paramagnetically and follow the applied field. This phenomenon is present in the

consecutive hysteresis loops.

In the case of biaxial AFM anisotropy (Fig. 5.17b)), there is a big step before the
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5.4. Temperature dependence: Behavior of the antiferromagnet

reversal of the external magnetic field which is not repeated in consecutive loops. The

frustration in this system is shown by the significant reversible magnetization component

before reversal, as in high temperatures. This reflects the paramagnetic behavior of the

frustrated spins. The large step only at the first hysteresis loop seem to be an effect of

the cooling process.

The above effect can be shown in Fig. 5.18, where the in-plane component of mag-

netization of the AFM interface for high and low temperature is depicted. For high tem-

perature, when the magnetic field is decreasing, the magnetization vector first contracts,

then rotates and finally expands. When the field is increased from negative saturation,

a symmetric magnetization response is observed and this is repeated for the subsequent

hysteresis loops. But this is not happening for the case of low temperature. As can be

seen, after the initial contraction of the magnetization vector, it only rotates during the

subsequent reversal. That means that the spins responsible for the contraction and the

expansion of the magnetization vector, after the cooling process, they are trapped by a

local minimum created by the biaxial easy axes.
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anisotropy. The green line is the magnetic field axis and points indicate the start and the
coercive fields of the hysteresis loop. The numbers indicate the points of the hysteresis
loop, as shown in Fig. 5.17.

The trapping of the spins to a local minimum can be shown with a plot of the energy

surface of the EB system. This can be done by considering a two spin model, one for

the FM and one for the AFM. The model has only terms for anisotropy and exchange

coupling between the AFM and the FM layers. Fig. 5.19a) shows the energy contour plot

as function of the FM and AFM spin angle, which presents four minima and four maxima.

Two of the maxima are bigger than the other maxima due to their collocation with the FM

maxima. Thus, an AFM spin “sees” an energy landscape of the form of Fig.5.19b). While

at high temperature the spins can pass the energy barrier in 90o and 270o (point ③ and

⑦) angle, at low temperature this has low probability. Thus, they stay oriented towards

that direction and can not contribute to the increase of the magnetization vector (point
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④ and ⑧ in Fig.5.19).
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Fig. 5.20 shows the distribution of the nearest neighbors for AFM interfacial spins at

high and low temperatures for systems with uniaxial and biaxial AFM anisotropy. The

spins with zero AFM neighbors interact with the FM only, so they behave like FM spins

and rotate with the FM. Thus, all of them are unstable. The spins with one AFM neighbor

are frustrated, so they rotate with the external magnetic field. As can be seen, for low

temperatures, there is a small percentage of the AFM interfacial spins that are unstable,

having two or more nearest AFM neighbors. Also, systems with biaxial AFM anisotropy

have more unstable spins compared to systems with uniaxial AFM anisotropy, as can be

seen for unstable spins with two or more nearest AFM neighbors. As explained before, this

is due to the lower energy barriers in the biaxial AFM anisotropy.

In order to examine which spins are rotated during the reversals, we construct a distri-

bution of the nearest neighbors of the interfacial AFM spins. This shows the distribution

of the nearest neighbors of the spins that change during the two reversals in the ascending

branch and the descending branch of the hysteresis loop. Fig. 5.21a) shows the case of

uniaxial anisotropy. As can be seen, firstly the spins that have no neighbors and conse-

quently are interacting only with the FM, reverse with the FM. The frustrated spins are the

ones shown in striped columns with one and three nearest neighbors. They reverse when

the magnetic field reverses, thus being totally paramagnetic. The number of frustrated

spins on the descending branch are fewer than on the ascending branch. This explains

the smaller paramagnetic reversal of the descending loop, in comparison to the ascending

branch.
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Fig. 5.21b) shows the distribution of the nearest neighbors for AFM interfacial spins

for biaxial FM anisotropy. The large decrease in the first AFM hysteresis loop is not an

effect of the frustrated spins, but of the spins with two AFM nearest neighbors. These spins

after the cooling process were pointing to one of the easy axes. But after the beginning

of hysteresis loop they change direction and they remain trapped in the other easy axes of

the AFM, which act as local minima.
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Figure 5.21: Distribution of the nearest neighbors for AFM interfacial spins for a) uniaxial
and b) biaxial AFM anisotropy. Blue color shows the total distribution. The other colors
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5.5 Influence of the AFM thickness

Using the same model, we will investigate the effect of different AFM thicknesses on the

EB field, coercivity and the training effect using constant temperature (kbT = 0.15JINT )

and dilution (40%). It is necessary to investigate the Néel temperature of the AFM as it is

changing with different AFM thicknesses. In the following sections an investigation of the
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Néel temperature and of the training effect as a function of AFM will be presented. Also,

a discussion about the Type I and Type II training effect of coercive fields will follow.

5.5.1 Néel temperature

The Néel temperatures were calculated for each individual system separately, using a heat-

ing process from almost zero temperature from the long-range ordered AFM state[128].

The inflection point of the staggered magnetization was then calculated as a function

of temperature, estimating the Néel temperature for every AFM thickness, as shown in

Fig. 5.22. Néel temperature increases with increase of AFM thickness, due to the increase

of stability offered for the extra layers. This trend seems to increase asymptotically to a

stable value for Néel temperature which is expected for a finite size analysis.

ô

ô

ô

ô
ô

ô
ô

ô
ô

2 3 4 5 6 7 8 9 10
0.9

1.0

1.1

1.2

tAFM

k b
T

N
�J

A
FM

Figure 5.22: Néel temperature dependence on the AFM thickness.

5.5.2 Exchange bias training effect

The dependence ofHeb, Hc on the number of consecutive hysteresis loop cycles is presented

in Fig. 5.23 for different AFM thicknesses for a system with uniaxial AFM anisotropy at

constant temperature. The error bars indicate the statistical error due to averaging over a

set of 20 different realizations of the defect distribution in the AFM.

For thickness up to 10 layers, Heb is reduced by about 10-20% and Hc by about 1-2%

after ten loops when compared with its initial value. Also, for high thicknesses, the error

bars are bigger and the EB field and coercivity fluctuated rapidly. This is due to low EB

field at high thicknesses, which cause the large decrease in the relative EB field and in its

error.

Our results for the thickness dependence of the training effect are shown in Fig. 5.24.

The results for the first and second loop are shown as well as the equilibrium value obtained

via the power law fit. The fitting parameters κ and the difference ∆Heb are drawn in the

upper graphs.
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Figure 5.23: Training effect of a) the exchange bias field and b) the coercivity for different
AFM thicknesses at constant temperature.

The EB field of the first loop as well as the second loop decreases with increasing AFM

thickness. The strength of the training effect has a maximum value for the smaller thickness

(tAFM = 2). This is due to the fact that additional AFM layers offer more stability to the

system as well as to the created domains so that the training effect is smaller. In addition,

the EB field for large values of thickness tends asymptotically to constant non-zero value.
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Figure 5.24: AFM thickness dependence of the training effect. H1
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eb: EB field of
the first and the second hysteresis loop, respectively. Heeb : Equilibrium EB field following
the power law fit. Upper graph: AFM thickness dependence of the fitting law parameter
κ and ∆Heb obtained as explained in the text.

From the graph of the fitting parameter κ, where κ decreases with increasing AFM

thickness, it is apparent that for low AFM thicknesses the EB field is continuously decreas-

ing after the second loop, while for the thickest AFM, κ is close to zero meaning that

EB field remains constant. The difference ∆Heb remains constant and finite showing that

the first loop EB always deviates from the fitting law. So, there is thermal to athermal
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5.5. Influence of the AFM thickness

training transition when the AFM thickness increases. This is because the maximum of

the training effect as function of temperature is shifted towards higher temperatures for

higher AFM thicknesses, as shown in the section 5.3 . As the temperature remains con-

stant with increasing thickness and this maximum shifts towards higher temperature, the

training effect strength, measured by κ, decreases coinciding to zero value.
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Figure 5.25: Training effect of a) the concentration of stable spins in the AFM interface
and b)their net magnetization MS.I.S. for different AFM thicknesses. Also, the irreversible
domain state magnetization of the AFM interface is drawn for comparison.

Fig. 5.25a) shows the concentration of stable AFM interfacial spins and in b) the

dependence of MS.I.S. and Mirr on the number of consecutive loops for systems with

different AFM thicknesses. The concentration of the stable AFM interfacial spins decreases

with decreasing AFM thickness but increases with increasing number of hysteresis cycles.

But the dependence of the magnetization of the stable AFM interfacial spins on the AFM

thickness, is consistent that of EB field. Specifically the MS.I.S. and Mirr have roughly the

same trend and values. We note that this is consistent with the trends with temperature.

Systems with thicker AFM exhibit smaller magnetization of the stable AFM interfacial spins

due to different domain structure favored by the additional thickness. Thermal training

exhibited in low AFM thickness with decreasing MS.I.S. and stable concentration of AFM

interfacial spins after the second loop. Athermal training is exhibited in high AFM thickness

with stable MS.I.S. after the second loop, but with smaller values of EB field.

5.5.3 Coercive fields: The Type I and Type II training effect

Finally, Fig. 5.26 shows the training effect of the positive and negative coercive field. For

simplicity the absolute value of the negative coercive field is used. It can be concluded that

the training effect occurs predominantly in the negative coercive fields since there is hardly

any difference in the subsequent curves for the positive coercive fields. This means also

that one finds a decrease of coercivity during cycling over several loops and with increasing

AFM thickness. But the negative coercive field tends to a constant value, which means

that coercivity remains constant as function of AFM thickness for a thick AFM.
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As is shown in the inset of Fig. 5.26a), for AFM thickness larger than six layers (tAFM =

6), the training effect of the positive coercive field changes behavior. For AFM thickness

values smaller than six, the positive coercive field of the first hysteresis loop (red points) is

smaller than that of the second hysteresis loop (blue points) while for larger values of AFM

thickness, is larger. More specific, according to Zhang et al.[33], when the positive branch

of the loop shifts toward the positive field direction during hysteresis cycling, we have Type

II training effect (tAFM < 6). When it moves toward the negative field direction, it is Type I

training effect (tAFM > 6). A schematic representation of Type I and Type II training effect

is shown in Fig. 5.26 b). Thus, we see a transition from Type II to Type I training effect at

AFM thickness of six layers. This occurs because for higher thicknesses, the stable spins

increase but their total magnetization decreases significantly. Thus, the magnetization of

the unstable spins become more significant in the hysteresis loop. Subsequently, during

consecutive hysteresis cycling, the decreasing of the enhanced coercivity (unstable spins

effect) is more apparent giving rising to Type I training effect.

5.6 Influence of the AFM dilution on training effect

Now, we will investigate the effect of different AFM dilutions on the EB field, coercivity

and the training effect using constant temperature (kbT = 0.15JINT ) and thickness (two

layers). The dilution in the AFM is implemented using non-magnetic defects (zero-spin

lattice sites) in a percentage p of the total AFM spins. As previously, it is necessary to

investigate the Néel temperature of the AFM as it is changing with different AFM dilutions.

In the following sections an investigation of the Néel temperature and of the training effect

as a function of AFM will be presented. Also, a more thorough discussion about the
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5.6. Influence of the AFM dilution on training effect

training effect in the AFM will follow.

5.6.1 Néel temperature

As before, the Néel temperatures were calculated for each individual system separately,

using a heating process from almost zero temperature from the long-range ordered AFM

state[128]. The inflection point of the staggered magnetization was then calculated as a

function of temperature, estimating the Néel temperature for every AFM dilution, as shown

in Fig. 5.27. For increasing AFM dilution, the Néel temperature decreases linearly since

the long-range ordered AFM state is less favored due to the lack of nearest-neighbors.
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Figure 5.27: Néel temperature dependence on the AFM dilution.

5.6.2 Exchange bias and coercive field training effect

The dependence ofHeb, Hc on the number of consecutive hysteresis loop cycles is presented

in Fig. 5.28 for different AFM dilutions for a system with uniaxial AFM anisotropy at

constant temperature. The error bars indicate the statistical error due to averaging over a

set of 20 different realizations of the defect distribution in the AFM.
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5.6. Influence of the AFM dilution on training effect

For AFM dilution up to 70%, Heb is reduced by about 0−40% and Hc by about 0−4%

after ten loops when compared with its initial value. Thus, for higher dilutions the training

effect of the EB field is more intense and seems to happen monotonically in contrast to

the the trend of the training effect of coercivity where the more intense training effect is

in the midrange dilution values (∼ 50%).
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Similarly for the absolute value of the negative coercive field.

Our results for the dilution dependence of the training effect are shown in Fig. 5.29.
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5.6. Influence of the AFM dilution on training effect

The results for the first and second loop are shown as well as the equilibrium value obtained

via the power law fit. Also, the relative training effect Hrel.
eb =

|H1
eb
−H10

eb
|

H1
eb

is calculated, for

a comparison with the experimental findings presented by Keller et al. [20].

The EB fields of the first loop as well as the second loop increase with increasing AFM

dilution until reaching an optimum dilution (∼ 50%). Afterward, the EB fields decrease.

The training effect becomes more apparent for dilution higher than 30%. The training

effect seems to be maximum when the EB field is maximum in its optimum value. The

relative training effect curve shows that the minimum training effect is around 20% and

increases for higher values. We compare our result with the experimental findings of Keller

et al. [20] and a similar trend for the EB field was found. Their optimum EB field occurs

in lower dilution than predicted here. This could be because the authors of Ref. [20] state

that their values of dilution are underestimated from the fact in a real thin film they are

other structural defects and vacancies beyond dilution that are unmeasurable.

As can been seen from the curve of fitting parameter κ, the training effect increases

with increasing dilution. Thus, for high dilutions, after the first loop the EB field continues

to reduce rapidly. Also, there is a small increase of the ∆Heb difference with increasing

dilution. In total, these characteristics show thermal training effect. This is due to the

reduction of the size and connectivity of the AFM spin lattice. Subsequently, the domain-

wall motion becomes easier upon FM magnetization reversal leading to an increase of the

training effect.

Fig. 5.29b) shows the dependence of training effect of the positive and negative coercive

field on the AFM dilution. As before, for simplicity the absolute value of the negative

coercive field is used. As in previous coercive fields trends, it can be concluded that

the training effect occurs predominant in the negative coercive fields since there is hardly

any difference in the subsequent curves for the positive coercive fields. This happens for

dilutions larger than 0.3. Both coercive fields, above 0.3 dilution, are increasing showing

a total increase of the coercivity of the FM.

5.6.3 Behavior of the AFM

Fig. 5.30a) shows, for systems with 0%, 40% and 70% AFM dilution, the dependence of

concentration of AFM interfacial stable spins on the number of hysteresis cycles. In general

systems with lower AFM dilution have more stable spins compared to higher AFM dilution

at the same temperature and AFM thickness. More specifically, for zero dilution the AFM

interface is totally stable even after several hysteresis cycles. So all the interfacial spins

are pinned. With higher AFM dilution, the concentration of the stable interfacial spins

increases with hysteresis loop cycles. This increase of the concentration is more intense for

70% dilution, which is the highest dilution. As for the thickness dependence, the increase
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5.6. Influence of the AFM dilution on training effect

of the stability increases the EB field. However, the increase in the number of stable spins

with hysteresis cycle leads to a decrease in the EB field. This apparent contradiction arises

from fact that it is possible that the more stable state is more compensated, thus leading

to smaller EB field. As a result we cannot characterize the EB field with the concentration

of stable spins alone. Thus, we need to investigate the magnetization of these spins.

In Fig. 5.30b), the dependence of the magnetization of the stable AFM interfacial spins

MS.I.S. on the number of consecutive loops along with the Mirr for comparison is shown.

For zero dilution, the magnetization of the stable AFM interfacial spins is zero and all the

spin are stable. This shows a fully compensated AFM interface, as all the spins are stable

independently of the number of the consecutive hysteresis loop, resulting in zero EB field

and no training effect. For 40% and 70% dilution, the concentration of the stable AFM

interfacial spins remains stable after the second loop. Despite that, the MS.I.S. for 70%

dilution decreases (thermal training) and for 40% dilution remain stable (athermal training)

after the second loop. As previously, the MS.I.S. and the Mirr are in very good quantitive

agreement.
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Figure 5.30: Training effect of a) the concentration of stable spins in the AFM interface
and b) their net magnetization MS.I.S. for different AFM dilutions. Also, the irreversible
domain state magnetization Mirr of the AFM interface is drawn for comparison.

Also, the remanent magnetization of the AFM interface is calculated i.e. the reversible

domain state magnetization Mrev, in Fig. 5.31a). This is the height of the AFM hysteresis

loop and is calculated from the magnetization values when the magnetic field is zero

(ideally). The reversible domain state magnetization for zero dilution is zero, meaning

that there is not a hysteresis loop and the interface is fully compensated, as shown in

Fig. 5.31b). For higher values of dilution, the interface becomes uncompensated with

quite high reversible domain state magnetization. With increasing dilution, up to 30%,

the reversible and irreversible domain state magnetization have the same value, meaning

that the hysteresis is shifted fully towards the positive AFM interfacial magnetization axis.

Thus, always after the first reversal of the magnetic field, the magnetization has almost

zero value.
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Finally, Fig. 5.32 shows an AFM interface spin configuration snapshot for a system with

40% and 20% AFM dilution. The system with 40% AFM dilution presents many small

AFM domains as the energetically favorable state due to the dilution. This means that their

domain walls are passing through the magnetic defects. In the case of 20% AFM dilution,

we see that we have only two large domains with their spins fully compensated. Also, their

domain walls reside mostly between spins, with very little use of the non-magnetic defects.

In total, the dilution leads to a more uncompensated interface which is less stable with

smaller domains.

Figure 5.32: AFM interface spin configuration snapshots for a system with a) 40% and
b) 20% AFM dilution. The colors are for separating the different AFM domains. The white
circles in a) show two AFM domains which their domain walls consist of magnetic defects
(gaps).
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5.7 Summary

In this chapter an extensive investigation of the dependence of the training effect on

temperature was presented. The EB field for consecutive hysteresis cycles was fitted by

a power law curve and the parameters of this curve were calculated. According to the

parameters of the fitting law for different temperatures, the training effect was separated

into two categories: the athermal training effect, where after the second hysteresis cycle the

EB field remains constant, and the thermal training effect, where the EB field decreases.

Always, we have s steep decrease of EB field between the first and the second hysteresis

loop. This steep decrease is an effect of meta-stable AFM spins, which were initially aligned

during the cooling process into energy minima. These energy minima have insufficiently

large barriers to retain these spins stable against change of sign of the exchange field during

reversal of the FM layer.

A novel analysis of the AFM interfacial spins showed that the steep decrease between

the first and second loop is an effect of the decrease of the population of the stable spins.

After the second loop, this population always stays constant. For the athermal training,

the magnetization of these stable spins stays constant except for a slow decrease caused

thermal activation (the thermal training effect). That means that the stable spins are

not absolutely oriented to the easy direction but rather they relax gradually to an easy

direction. The magnetization of the stable spins, has the same values and trends the

irreversible domain state magnetization which is equal to the EB field. Thus, this is a

direct proof that the behavior of the stable spins is causing the EB field and the training

effect.

For low temperatures, the hysteresis loop of the AFM interface shows some interesting

effects. For EB systems with AFM uniaxial anisotropy, the frustrated spins are shown

predominantly in the hysteresis loop, as a paramagnetic part around zero magnetic field.

Furthermore, for EB systems with AFM biaxial anisotropy, a reduction of the magnetization

is seen before the first reversal. This is due to the lack of thermal excitation which leads

to trapping of AFM spins in an easy direction due to a large energy barrier.

Although, the two kinds of training effects are connected with the temperature trend,

there is also strong dependence in AFM thickness and dilution. Thus, e.g. for high

temperatures with low AFM thickness, we have a thermal training effect but with extra

AFM layers or lower AFM dilution, we have predominantly athermal training. Furthermore,

with increasing AFM thickness, there is a transition from Type II to Type I training effect

for the positive coercive fields.
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Chapter 6

Magnetocrystalline anisotropy

dependence of the training effect

In this chapter, we will investigate a large range of EB systems varying the characteristics

of the anisotropy in both AFM and FM. The change of the anisotropy characteristics,

changes the position, the number as well as the value of the energy minima and barriers.

These changes affect the behavior of the EB, the training effect and the reversal modes.

We will then focus on the most interesting systems and we will categorize them according

to their behavior during consecutive hysteresis loop. More specifically, their reversal modes

will be analyzed and their dependence on the angle of the magnetic field from the FM easy

axis will be investigated. The training effect of the reversal modes is investigated where

mainly three types can be recognized.

6.1 Training effect dependence on anisotropy types and

parameters

The atomistic model presented earlier has been applied on systematic calculations of sys-

tems with different types and parameters of anisotropy of each material, using constant

temperature (kbT = 0.15JINT ), AFM thickness (2 layers) and dilution (40%). More

specifically, nine combinations of anisotropy types were combined with nine combinations

of anisotropy parameters, thus in total 81 different systems. Three magnetocrystalline

anisotropies were applied in each material: uniaxial, biaxial and cubic anisotropy and all

the combinations with the anisotropy constants are presented in Tab. 6.1.

For each case, we applied different orientations on the easy axes of anisotropy, so not

to favor any particular direction in cases of different numbers of easy axes in the AFM

and FM. So when we have the same kind of anisotropy in both of the materials, the angle

between them is zero. When we have biaxial in one material and uniaxial in the other, the

biaxial easy axes are rotated around the z-axis by 45o, e.g. as shown in Fig. 5.7. When

one of the materials has cubic and the other uniaxial or biaxial anisotropy, the cubic easy

axes are rotated twice: around the z-axis and around the y-axis by 45o, as shown in Fig.

6.1.
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6.1. Training effect dependence on anisotropy types and parameters

Anis. Comb. FM anis. FM anis. constants AFM anis. AFM anis. constants

1 uniaxial (kFM , 0.0, dz) uniaxial (kAFM , 0.0, 0.0)
2 uniaxial (kFM , 0.0, dz) biaxial (kAFM , 0.0, 0.0)
3 uniaxial (kFM , 0.0, dz) cubic (kAFM , 0.0, 0.0)
4 biaxial (kFM , kFM , dz) biaxial (kAFM , kAFM , 0.0)
5 biaxial (kFM , kFM , dz) uniaxial (kAFM , kAFM , 0.0)
6 biaxial (kFM , kFM , dz) cubic (kAFM , kAFM , 0.0)
7 cubic (kFM , kFM , kFM) cubic (kAFM , kAFM , kAFM )
8 cubic (kFM , kFM , kFM) uniaxial (kAFM , kAFM , kAFM )
9 cubic (kFM , kFM , kFM) biaxial (kAFM , kAFM , kAFM )

Table 6.1: Anisotropy combinations

Figure 6.1: Easy axes of an EB system with cubic and uniaxial anisotropy.

The anisotropy constants were varied to study the effects of different strengths of

anisotropy. Specifically, the values of anisotropy constant kFM , kAFM = 0.02JFM , 0.1JFM

and 1.0JFM represent weak,intermediate and strong anisotropy, respectively. For a FM,

the anisotropy is described in Chap. 4, by Eq. 4.5, where the anisotropy constants are

shown in Tab. 6.1 for each case and dz = 0.1JFM is for describing the hard axis. Similarly,

for an AFM the anisotropy is described by Eq. 4.7. Thus, we take nine combinations of

the above three values of the anisotropy constants.

The EB field and the coercivity as function of anisotropy combination and constants

is shown in the Fig. 6.2 for strong AFM anisotropy, in the Fig. 6.3 for intermediate AFM

anisotropy and in the Fig. 6.4 for weak AFM anisotropy. The error, due to averaging over

20 different realizations, is also depicted. For strong AFM anisotropy, the cases where the

anisotropy constants of the FM kFM is 0.1JFM and 0.02JFM (Fig. 6.2) are the more

interesting ones, as they exhibit the largest EB field and training effect. In the other cases,

the EB field is zero or quite small with large error bar. This is due to the large domain

size created at the AFM interface, as was discussed in Ref. [91] for different values of the

AFM anisotropy constants. The large error bar shows that there is a big fluctuation in

the EB field, and consequently there is not a reliable conclusion for the EB field for that
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Figure 6.2: Training effect of a) EB field and b) coercivity for strong AFM anisotropy
(kAFM = 1.0JFM) for several FM anisotropy constants and combinations. Anisotropy
combinations are explained in the text.
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Figure 6.3: Training effect of a) EB field and b) coercivity for intermediate AFM
anisotropy (kAFM = 0.1JFM) for several FM anisotropy constants and combinations.
Anisotropy combinations are explained in the text.

system. Most of the systems feature a very weak change in coercivity across the different

anisotropy combinations. The coercivity follows the Stoner-Wolfarth limit according to the

FM anisotropy constant and there is a small decrease in the non-uniaxial anisotropies due

to the smaller energy barrier between the spin states as explained in the Sec. 4.1.5.

From these results, we examined more thoroughly only the systems with the largest EB

field and the most intense training effect, which as mentioned previously, are the ones with

intermediate and low FM anisotropy. Fig. 6.5 shows the consecutive hysteresis loops for

these systems for intermediate FM anisotropy (kFM = 0.1JFM) and weak FM anisotropy
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Figure 6.4: Training effect of a) EB field and b) coercivity for weak AFM anisotropy
(kAFM = 0.02JFM) for several FM anisotropy constants and combinations. Anisotropy
combinations are explained in the text.

(kFM = 0.02JFM ). For a clearer view of the reversal mechanism of the FM, the in-plane

component of magnetization of the FM for kFM = 0.1JFM is shown in Fig. 6.6 and for

kFM = 0.02JFM in Fig. 6.7.

Firstly, for the case of the intermediate FM anisotropy (meaning kFM = 0.1JFM from

now on), it can be seen from the hysteresis loops, that when the FM has more than one

easy axes (biaxial or cubic anisotropy) the reversal is more steep (second and third line

in Fig. 6.5). In the graph of the in-plane component of FM magnetization, we can see

in the uniaxial FM anisotropy (first line in Fig. 6.6) that the negative y-component of

the magnetization increases before the reversal with a decrease of the x-component. On

the contrary, in the biaxial FM anisotropy (second line in Fig. 6.6), the y-component of

the magnetization does not increase much, with the x-component staying stable before

reversal. That is why during reversal the x and y-components change rapidly, i.e. steep

reversal. This is due to the size of the energy barriers, which are larger in the case of

uniaxial anisotropy. For the case of the weak FM anisotropy (meaning kFM = 0.02JFM

from now on), when the FM has more than one easy axes (biaxial or cubic anisotropy) the

reversal is similar to the one easy axis. This is due to the fact that the energy barriers are

lower and the reversal to the next local minimum happens less rapidly.

Now, we will focus on the reversal modes of each combination of anisotropy for the

intermediate FM anisotropy. We will separate the reversal modes into four different groups.

When the FM has uniaxial anisotropy (three top graphs in Fig. 6.6, group (I) and group (II),

the magnetization reversal is symmetrical and coherent in both sides of the hysteresis loop.

As mentioned before, on the descending branch of the hysteresis loop, the y-component

118



6.1. Training effect dependence on anisotropy types and parameters

-0.5

0.0

0.5

1.0

M
FM

AFM:
Uniaxial an.

FM:
Uniaxial an.

ç1
ç2

ç3

ç4ç5
ç6

ç7

ç8
AFM:

Biaxial an.
FM:

Uniaxial an.

-0.5

0.0

0.5

1.0

M
FM

AFM:
Cubic an.

FM:
Uniaxial an.

-0.5

0.0

0.5

1.0

M
FM

AFM:
Biaxial an.

FM:
Biaxial an.

AFM:
Uniaxial an.

FM:
Biaxial an.

-0.5

0.0

0.5

1.0

M
FM

AFM:
Cubic an.

FM:
Biaxial an.

-0.4-0.2 0.0 0.2 0.4

-0.5

0.0

0.5

1.0

H�JINT

M
FM

AFM:
Cubic an.

FM:
Cubic an.

-0.4-0.2 0.0 0.2 0.4
H�JINT

AFM:
Uniaxial an.

FM:
Cubic an.

-0.4-0.2 0.0 0.2 0.4

-0.5

0.0

0.5

1.0

H�JINT

M
FM

AFM:
Biaxial an.

FM:
Cubic an.

2nd
-10th

1st
kFM=0.1JFM

2nd
-10th

1st
Hyst. Loop

2nd
-10th

1st
kFM=0.02JFM

2nd
-10th

1st
Hyst. Loop

Figure 6.5: FM consecutive hysteresis loops for kFM = 0.1JFM (large coercivity) and
kFM = 0.02JFM (small coercivity) for 1st cycle dashed lines and 2th − 10th cycle (solid
lines). The number are for future reference. ①, ⑤: Start of the first and second reversal,
respectively. ④, ⑧:End of the first and second reversal,respectively. ②, ⑥: Zero magnetic
field. ③, ⑦: Zero magnetization.

of magnetization increases (absolute value) before the reversal, remains almost constant

during the reversal and decreases after the reversal. In the case of biaxial anisotropy in

both materials, the magnetization reversal is similarly symmetrical and coherent. But now

the y-component of magnetization remains almost constant before reversal, and increases

or decreases during reversal.

For the other cases, we see that an extra angle is presented on the trajectory of the

magnetization vector, meaning a large increase of the y-component, due to the extra easy

axis. More specific for the anisotropy combinations 6, 7, 9 and less intense in 4 (group (III)

we observe a decrease of this y-component after nine hysteresis cycles. This is connected

with the large training effect that is apparent in these cases, as shown in Fig. 6.5.

Finally, for the case of uniaxial AFM anisotropy and cubic or biaxial FM anisotropy

119



6.1. Training effect dependence on anisotropy types and parameters

ôô

àà

òò

èè

áá

éé

-1.0

-0.5

0.0

0.5

1.0

M
FMy

AFM:Uniaxial an.
FM:Uniaxial an.

1L

HIL

ôô

àà

òò

èè

áá

éé

AFM:Biaxial an.
FM:Uniaxial an.

2L

HIIL

ôô

àà

òò

èè

áá

éé

-1.0

-0.5

0.0

0.5

1.0

M
FMy

AFM:Cubic an.
FM:Uniaxial an.

3L

HIL

ôô

àà

òò

èè

áá

éé

-1.0

-0.5

0.0

0.5

1.0

M
FMy

AFM:Biaxial an.
FM:Biaxial an.

4L

HIIIL

ôô

àà

òò

èè

áá

éé

AFM:Uniaxial an.
FM:Biaxial an.

5L

HIVL

ôô

àà

òò

èè

áá

éé

-1.0

-0.5

0.0

0.5

1.0

M
FMy

AFM:Cubic an.
FM:Biaxial an.

6L

HIIIL

ôô

àà

òò

èè

áá

éé

-1.0 -0.5 0.0 0.5
-1.0

-0.5

0.0

0.5

1.0

MFM
x

M
FMy

AFM:Cubic an.
FM:Cubic an.

7L

HIIIL

ôô

àà

òò

èè

áá

éé

-1.0 -0.5 0.0 0.5
MFM

x

AFM:Uniaxial an.
FM:Cubic an.

8L

HIVL

ôô

àà

òò

èè

áá

éé

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

MFM
x

M
FMy

AFM:Biaxial an.
FM:Cubic an.

9L

HIIIL

1st hyst. loop asc.

1st hyst. loop desc.

10th hyst. loop asc.

10th hyst. loop desc.

Magnetic field
ô

Desc.

ò

Asc.

à è
á é

Start

1st hyst. rev.

10th hyst. rev.

Figure 6.6: In-plane component of magnetization of the first and tenth hysteresis loop
of the FM for kFM = 0.1JFM for several combinations of kind of anisotropy. The green
line is the magnetic field axis. The Roman numerals indicate the group number of each
system.

(combination 5, 8), one of the reversals has smaller y-component of magnetization compare

to the other (group (IV). Thus, we have a nonuniform reversal mode with vanishing total

magnetization in the anisotropy combination 8 and with rotation occurs via the same side

for both branches of the hysteresis loop (in 5 and partially in 8).

We will focus, now, on the reversal modes of each combination of anisotropy for the

weak FM anisotropy, as shown Fig. 6.7. In the case of the uniaxial FM and AFM anisotropy

(anisotropy combination 1), the reversal is coherent on both sides of the hysteresis loop.

Similar cases are given when the AFM has cubic anisotropy with uniaxial (2) or biaxial (3)

FM anisotropy (group (I). The difference between the aforementioned cases is in the rota-

tion of magnetization which occurs symmetrically on both sides or on one side. Obviously,

here the x and y-component of magnetization are having the same maximum value and

subsequently the total magnetization remains almost constant during the reversal.
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Figure 6.7: In-plane component of magnetization of the first and tenth hysteresis loop
of the FM for kFM = 0.02JFM for several combinations of kind of anisotropy. The green
line is the magnetic field axis. The Roman numerals indicate the group number of each
system.

The other cases which all of them are non symmetric can be divided into three more

categories. To the first category (group (III) belong the systems with the ascending branch

of the hysteresis loop having zero y-component on the first cycle but to be increased on

the next cycles up to the tenth one. This is the case of anisotropy combination 4 and

7, where both materials have biaxial or cubic anisotropy. To the second category (group

(II), in contrast to before, belong the systems with the descending branch of the hysteresis

loop having finite y-component on the first cycle to be decreased close to zero on the next

cycles up to the tenth one. This is the case of anisotropy combination 2 and 9, where the

system has AFM biaxial anisotropy with uniaxial or cubic FM anisotropy. Finally, to the

third category (group(IV), belong the systems with one of the branches of the hysteresis

loop having close to zero magnetization in every cycle and always on the same side with

the other branch. This is the case of anisotropy combination 5 and 8, where the system
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has FM uniaxial anisotropy with biaxial or cubic AFM anisotropy.

From the previous discussion, it is now more easy to focus in more specific cases.

These are the systems with uniaxial or biaxial FM anisotropy and uniaxial or biaxial AFM

anisotropy (anisotropy combinations 1,2,4,5). So, for intermediate FM anisotropy, we do

not investigate further the systems with anisotropy combination 3 because are similar to

combination 1 ones (group (I), in terms of reversal modes. Also, systems with anisotropy

combinations 6,7,9 are similar to combination 4 ones (group (III), and combination 8 ones

is similar to combination 5 ones (group (IV). For weak FM anisotropy, we do not investigate

further systems with anisotropy combinations 3,6 because are similar to combination 1 ones

(group (I). Also, systems with anisotropy combination 9 is similar to combination 2 ones

(group (II), and systems with combination 7 are similar to combination 4 ones (group (III).

Finally, systems with anisotropy combination 8 are similar to combination 5 ones (group

(IV).

6.2 Influence of angle between easy axis and magnetic

field

We will investigate the influence of angle between easy axis and magnetic field on the

reversal modes and the training effect of EB systems with uniaxial or biaxial FM anisotropy

and uniaxial or biaxial AFM anisotropy (one case from each group). Each time only one

anisotropy combination will be investigated for intermediate and weak FM anisotropy, i.e.

for the prementioned values of FM anisotropy constants.

6.2.1 Uniaxial FM anisotropy - Uniaxial AFM anisotropy (Group

(I)

FM reversal modes

We will focus, now, on the reversal modes of the FM for the case of uniaxial anisotropy in

both materials when we have intermediate (kFM = 0.1JFM) or weak (kFM = 0.02JFM )

FM anisotropy for different angles between the magnetic field and the FM easy axis. In

Fig. 6.8 the consecutive hysteresis loops are shown together with the in-plane magnetiza-

tion components for several angles between magnetic field and FM easy axis for the two

aforementioned systems. As we can see the hysteresis loop for intermediate FM anisotropy

has steep reversal which with increasing angle θ becomes less steep and the hysteretic

behavior also decreases i.e. the coercivity decreases. This trend is consistent with the

Stoner-Wolfarth model. On the other hand, for weak FM anisotropy the hysteresis loop
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Figure 6.8: Different components of magnetization for several angles between magnetic
field and FM easy axis. Left: Hysteresis loop of the first and subsequent cycles of the FM
for systems with (kFM) = 0.1JFM and (kFM) = 0.02JFM . Middle: In-plane component of
magnetization of the first and second cycle of the FM for systems with (kFM) = 0.1JFM .
Right: In-plane component of magnetization of the first and second cycle of the FM for
systems with (kFM) = 0.02JFM . The green line in the middle and left figures is the
magnetic field axis. The numbers correlate the pathway of the hysteresis loop (left) with
the in-plane magnetization component (right).

123



6.2. Influence of angle between easy axis and magnetic field

seems independent of θ, with quite low coercivity. This is due to low energy barriers which

allow spins to reverse freely.

Comparing now the in-plane magnetization for intermediate and weak FM anisotropy,

we see that the reversal modes are different. For intermediate FM anisotropy, when the

angle θ increases, the magnetization vector after and before reversal is pointing in a direc-

tion which is midway between the FM easy axis (x-axis) and the magnetic field direction.

More specifically, it is pointing closer to the magnetic field direction since the magnetic

field is stronger than the field created by the FM uniaxial anisotropy. The reversal shows

a feature indicated by the path between the points (③, ④, ⑤), in the case of θ = 75o.

This is observed in Stoner-Wolfarth type behavior for large angles and follows the complex

switching path indicated by these points. When the magnetic field is smaller than the

anisotropy field, the magnetization vector rotates up to the 45o angle where at that point

the two fields are equal (point ④). Then, the magnetic field is bigger than the anisotropy

field and consequently “pulls” the magnetization vector closer to its direction and increases

the angle from the easy axis (point ⑤).

For weak FM anisotropy, the magnetization vector before and after reversal is parallel

to the magnetic field. This is due to the small anisotropy field which does not effect the

magnetization reversal. Furthermore, the magnetization rotation occurs via the same path

(the lower half plane defined by the field direction) for both branches of the loop, as there

is not a sufficient field to transverse the magnetization to the other side. For small angles,

there is a smaller net contribution of the perpendicular magnetization on the descending

branch. Finally, the reversal occurs in both cases with coherent rotation.

Snapshots of the spin configuration of the FM are shown in Fig. 6.9 for the aforemen-

tioned systems. Although, before the reversal, the systems behave the same (point ① and

②) during and after reversal there are significant differences. We see that for the system

with intermediate FM anisotropy, during the reversal (point ③), the spins reverse steeply

90o from their last orientation before reversal. Thus, in the point ④, they are all oriented

along the 225o axis and then in point ⑤ reoriented close to the magnetic field axis (255o).

For systems with low FM anisotropy, the reversal is more gradual with spins directed to the

magnetic field axis (255o). Subsequently, they are rotated by a smaller angle from their

last orientation than those of intermediate FM anisotropy.

FM EB training effect

Our results for the angle θ dependence of the training effect for the aforementioned systems

are shown in Fig. 6.10. The results for the first and the second loop are shown as well

as the equilibrium value obtained via the power law fit for the EB field (Fig. 6.10a)

and the coercivity (Fig. 6.10b). The fitting parameters κ and the difference ∆Heb are
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6.2. Influence of angle between easy axis and magnetic field

Figure 6.9: FM spin configuration snapshots for systems with kFM = 0.1JFM (center)
and kFM = 0.02JFM (right). The number on every line of snapshots is indicating the
respective point in the hysteresis loop (left). See text for explanation.
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6.2. Influence of angle between easy axis and magnetic field

drawn in the bottom graphs. The EB field for systems with weak and intermediate FM

anisotropy decreases with increasing angle θ. For low values of angle θ systems with weak

FM anisotropy have larger EB field than intermediate ones but this behavior reverses for

larger angles (θ > 45o). Coercivity decreases with increasing angle θ, as is predicted form

the Stoner-Wolfarth model for systems with intermediate FM anisotropy. For weak FM

anisotropy, the coercivity remains almost stable and with quite small value compare to the

systems with intermediate FM anisotropy.
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Figure 6.10: Dependence of the training effect on magnetic field angle for a) EB field
and of b) coercivity for systems with kFM = 0.1JFM and kFM = 0.02JFM . Magnetic
field’s angle dependence of the normalized fitting law parameter κ and ∆Heb for systems
with c) kFM = 0.1JFM and d) kFM = 0.02JFM .

Now, as we can see from the Fig. 6.10, the training effect is larger for systems with

intermediate FM anisotropy. This can be seen from the trend of κ where it increases with

increasing angle θ while for weak FM anisotropy κ is zero for almost all the values of the

angle (except θ = 5o). This shows a more stable AFM state and athermal training effect

in systems with low FM anisotropy. For intermediate FM anisotropy, in low angles θ the

training effect is still thermal as κ is not zero, i.e. the AFM is still unstable after the second

hysteresis loop. ∆Heb for this case has small values except for high angle θ where it has

large negative value but this is due to the large error at that point as shown in Fig. 6.10a).

For weak FM anisotropy, it has a maximum at around 45o and negative large values at the

edges. This is not obvious in the Fig. 6.10a) because after the second hysteresis loop the

training effect is very small and thus even small difference of EB field between the first and
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6.2. Influence of angle between easy axis and magnetic field

the second cycle is appearing as large ∆Heb difference.

AFM interface reversal modes

We will focus, now, on the reversal modes of the AFM for the case of intermediate (kFM =

0.1JFM ) FM anisotropy for different angles between the magnetic field and the FM easy

axis. In Fig. 6.11 the in-plane magnetization component of the AFM for several angles

between magnetic field and FM easy axis is shown. As we can see the magnetization
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Figure 6.11: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.1JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.

vector of the AFM interface first contracts and then rotates on each reversal for low angles

θ. Reversals occurs in both sides. This mechanism changes for higher angles θ. On the

descending branch of the hysteresis loop, we have first rotation and then expansion. On

the ascending branch of the loop, we have first contraction and then rotation. This happen

in an asymmetric way, with the ascending branch having much smaller AFM magnetization

vector than the descending branch. Actually, it seems as if the hysteresis cycle of the
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6.2. Influence of angle between easy axis and magnetic field

magnetization vector is shifted along the x-axis. This is because the AFM interface spins

can not pass the energy barrier (h. a.) of the negative y-axis. This is due to the small

projection of the spin in the negative easy axis which reduces the exchange field. Finally, the

training effect is related to the reduced x-component of the AFM interface magnetization

on the descending branch of 10th hysteresis loop. This effect is reduced with increasing

angle θ, e.g. for θ = 75o the x-component of the AFM magnetization vector on the

descending branch of the 10th loop is the same as in the 1st loop.
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Figure 6.12: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.02JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.

In Fig. 6.12 the in-plane magnetization component of the AFM for several angles

between magnetic field and FM easy axis for systems with weak (kFM = 0.02JFM ) FM

anisotropy is shown. As we can see the magnetization vector of the AFM interface is

effected a lot from the behavior of the FM with superposition of the AFM anisotropy field.

For low angles, the fields created from the FM interaction and the AFM easy axis, help the

AFM interface magnetization vector to rotates and pass form the negative y-axis which is

a hard axis. The rotation occurs always in the same path for both branches of the loop
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6.2. Influence of angle between easy axis and magnetic field

for the following reason. For high angles θ, the magnetization vector can pass the energy

well on the positive x-axis but can not pass the energy barrier on the negative y-axis.

This is because the FM magnetization vector exerts smaller magnetic torque to the AFM

magnetization vector, as it is directed up to the magnetic field direction which is quite

close to the y-axis.

AFM EB training effect

The dependence of the concentration of stable AFM interfacial spins on the angle θ for

the aforementioned systems are shown in Fig. 6.13 for a) intermediate and b) weak FM

anisotropy. As we can see, there is always a steep increase of concentration from the first

to the second hysteresis cycle, due to fact that many spins were in metastable state after

the cooling process. Also in both systems, when the angle θ increases, the stable spins

increase. This is because at large angles, the x-component of the magnetic field decreases
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Figure 6.13: Angular dependence of the training effect of the (top) concentration and of
the (bottom) magnetization (MS.I.S.) of the stable spins in the AFM interface for a system
with a), c) kFM = 0.1JFM and b), d) kFM = 0.02JFM .

and subsequently the applied torque is smaller causing fewer spins to rotate. The increasing

stable spins favors smallerMS.I.S., as shown in Fig. 6.13 for c) intermediate and d) weak FM

anisotropy, meaning that the stable spins, which point to the negative direction, increase.

This is again an effect of the cooling process during which the magnetic field is oriented

close to the hard axis. Thus more AFM spins are oriented towards the negative direction

than if the magnetic field is oriented close to the positive easy direction.
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6.2. Influence of angle between easy axis and magnetic field

Furthermore, systems with weak FM anisotropy have more stable spins because the

torque created from the FM exchange field is smaller (especially for large angles). This is

due to the reversal only from the negative component of the FM magnetization (measured

parallel to the orientation of the magnetic field each time). E.g. for θ = 75o the FM

magnetization reverses almost only from the positive MxFM , thus there is no torque with

component in opposite direction for the AFM spins resulting in many stable spins.

6.2.2 Uniaxial FM anisotropy - Biaxial AFM anisotropy (Group

(II)

FM reversal modes

Now, we will focus our interest on systems in which have uniaxial AFM anisotropy, rather

than biaxial. Fig. 6.14 shows consecutive hysteresis loops and the in-plane magnetization

components for several angles θ for intermediate and weak FM anisotropy. As we can see

the hysteresis loop and the in-plane magnetization for intermediate FM anisotropy has the

same behavior as in the previous system (uniaxial anisotropy in both materials, see Fig.

6.8) with the only difference in the value of the coercivity. Thus, the reversal modes remain

the same but coercivity is increased which, as we explained in the previous chapter, is an

effect of lower energy barriers of the biaxial AFM anisotropy. This leads to reversal of the

AFM layer following the reversal of the FM.

For weak FM anisotropy, the reversal modes of the FM are quite different. Firstly, note

that the hysteresis loop is larger than for the previous system and now follows the Stoner-

Wolfarth model, where the hysteresis loop is becoming less steep with increasing angle θ.

The in-plane magnetization is quite different from the previous system and changes rapidly

with increasing angle. For large angles, the reversal is coherent with reversal occurring on

both sides. For small angles, we have a nonuniform reversal mode with vanishing total

magnetization (θ = 5o). Especially for the ascending branches of the loop, the first reversal

of the FM spins is coherent and then gradually is converted to incoherent reversal with

vanishing total magnetization. This can be seen in Fig. 6.15 in which during the reversal,

there are created domains with opposite magnetization leading to zero net magnetization.

The reason for this behavior must be found in the reversal modes of the AFM (Sec. 6.2.2)

because only the type of the AFM anisotropy is changing in comparison to the systems

with uniaxial anisotropy in both materials.

FM EB training effect

Our results for the angle θ dependence of the training effect for the aforementioned sys-

tems and quantities are shown in Fig. 6.16. The EB field for systems with weak and
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Figure 6.14: Different components of magnetization for several angles between magnetic
field and FM easy axis. Left: Hysteresis loop of the first and subsequent cycles of the FM
for systems with kFM = 0.1JFM and kFM = 0.02JFM . Middle: In-plane component of
magnetization of the first and second cycle of the FM for systems with kFM = 0.1JFM .
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Figure 6.15: FM spin configuration snapshots for a system with kFM = 0.02JFM for
θ = 5o and biaxial AFM anisotropy, where incoherent reversal with vanishing total magne-
tization is seen (②). The number on the top of every snapshot is indicating the respective
point in the hysteresis loop (top).
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Figure 6.16: Dependence of the training effect on magnetic field angle for a) EB field
and of b) coercivity for systems with kFM = 0.1JFM and kFM = 0.02JFM . Magnetic
field’s angle dependence of the normalized fitting law parameter κ and ∆Heb for systems
with c) kFM = 0.1JFM and d) kFM = 0.02JFM .
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intermediate FM anisotropy decreases with increasing angle θ, as previously. For low values

of angle θ, systems with weak FM anisotropy have larger EB field but this behavior reverses

for larger angles (θ > 45o). Coercivity decreases with increasing angle θ, as is predicted

from the Stoner-Wolfarth model and weak FM anisotropy systems are always have smaller

coercivity values in comparison to the systems with intermediate FM anisotropy.

As we can see from the Fig. 6.16, the training effect is always quite large in both

systems. This can be seen from the trend of κ where, in both cases, it remains almost

constant with large value (thermal training) independently of the angle θ. For the case of

intermediate FM anisotropy with θ = 75o, κ is negative showing that the hysteresis loop

is moving more to the left with consecutive cycles. ∆Heb for this case have large value

but in general for intermediate anisotropy its value remains low. For weak FM anisotropy,

it has a minimum at around 45o and large values at the edges.

AFM interface reversal modes

In Fig. 6.17 the in-plane magnetization component of the AFM for several angles be-
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Figure 6.17: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.1JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.
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tween magnetic field and FM easy axis for the case of intermediate (kFM = 0.1JFM) FM

anisotropy is shown. As we can see the magnetization vector of the AFM interface for

small angles reverses with almost vanishing magnetization, but with increasing angle θ the

reversal occurs more coherently with the vector of AFM magnetization having increasing

transverse (in respect to the magnetic field axis) component. This is due to the large

torque exerted by the FM as the FM easy axis is along the x-axis.
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Figure 6.18: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.02JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.

Fig. 6.18 shows the in-plane magnetization component of the AFM for several angles

between magnetic field and FM easy axis for systems with weak (kFM = 0.02JFM ) FM

anisotropy. For low angles the vector of the AFM interface magnetization during the first

reversal has a negative value but after that has zero value (vanishing magnetization). This

is because during the cooling process many spins are align along the 45o AFM easy axis

which is the closer one. Then during the first cycle, they rotate and stabilize in the next

easy axes they found (−45o and −135o). This is happening because along that easy

axis the torque created by the negative magnetic field is too small to rotate them due
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to large angle between negative magnetic field and the easy axis. For large θ angles, the

aforementioned angle is smaller and subsequently the torque is much bigger. Thus the

spins are not stabilized in these easy axes and thus coherent behavior is exhibited.

AFM EB training effect

The dependence of the concentration of stable AFM interfacial spins on the angle θ for

the aforementioned systems is shown in Fig. 6.19 for a) intermediate and b) weak FM

anisotropy. There is always a much larger steep increase of concentration from the first

to the second hysteresis cycle in comparison to the systems with uniaxial AFM anisotropy.

Again this an effect of the cooling process in addition to the fact that now the spins have

two more stable axes. During the cooling process most spins orient along the one of the

easy axes, however the energy barriers are too small to provide long-term stability since

many spins are switched irreversibly during the first cycle.
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Figure 6.19: Angular dependence of the training effect of the (top) concentration and of
the (bottom) magnetization (MS.I.S.) of the stable spins in the AFM interface for a system
with a), c) kFM = 0.1JFM and b), d) kFM = 0.02JFM .

6.2.3 Biaxial FM anisotropy - Biaxial AFM anisotropy (Group (III)

FM reversal modes

Now, will focus our interest in systems with biaxial anisotropy in both of the materials.

Fig. 6.20 shows consecutive hysteresis loops and the in-plane magnetization components
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Figure 6.20: Different components of magnetization for several angles between magnetic
field and FM easy axis. Left: Hysteresis loop of the first and subsequent cycles of the FM
for systems with kFM = 0.1JFM and kFM = 0.02JFM . Middle: In-plane component of
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Right: In-plane component of magnetization of the first and second cycle of the FM for
systems with kFM = 0.02JFM . The green line in middle and left figures is the magnetic
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for several angles θ for intermediate and weak FM anisotropy. As we can see, the hysteresis

loop becomes less steep with increasing angle θ up to 45o (hard axis). For larger angles,

the hysteresis loop becomes steep again.

For both weak and intermediate FM anisotropies, the reversal modes of the FM change

rapidly with the angle θ. When angle θ is smaller than 45o, the FM magnetization rotates

coherently, beginning and ending each reversal from the x-axis and always having definite

y-component (during the reversal). When angle θ is bigger than 45o, the aforementioned

procedure is rotated by 90o. This is due to the second easy axis along the y-direction.

Thus the reversal procedure is symmetrical along the 45o axis.

For weak FM anisotropy, another interesting effect occurs for magnetic fields oriented

close to the easy axes. The first or the second reversal is nonuniform with vanishing

total magnetization but then the reversal becomes gradually more coherent, with definite

transverse component. This is more apparent for angles away from 45o, e.g. for 20o for

the descending branch of the loop, the reversal is always coherent but for the ascending

branch, it is nonuniform with vanishing magnetization in the first loop. However, there is

a gradual transition to coherent rotation, as shown by the tenth cycle loop in Fig. 6.20.

The reason for this behavior must again be found in the reversal modes of the AFM (Sec.

6.2.2) as is considered a result of the training effect.

FM EB training effect

Our results for the angle θ dependence of the training effect for the aforementioned systems

and quantities are shown in Fig. 6.21. The EB field for systems with weak and intermediate

FM anisotropy, it seems, to have a minimum as a function of angle θ. Systems with weak

FM anisotropy have always smaller EB field as well as training effect. Coercivity also

seems to have a minimum as a function of angle θ along the hard axis , as is predicted

from the Stoner-Wolfarth model. Furthermore, weak FM anisotropy systems always have

smaller coercivity values in comparison to the systems with intermediate FM anisotropy.

The above results for the EB field and the coercivity have the same trend with the results

presented on Ref.[140], although their system had the hard axis in y direction and they

found positive EB for angles larger than the hard axis direction. Thus, similarly the data

satisfy the condition Heb(θ + π/4) = Heb(θ) and Hc(θ + π/4) = Hc(θ).

As we can see from the Fig. 6.21, the training effect is always quite large in both

systems and leads to zero EB field. This can be seen from the trend of κ, where both

cases have large value (thermal training) independently of the angle θ. For the case of

intermediate FM anisotropy, κ has a maximum in 45o angle but a minimum for the case

of weak FM anisotropy. ∆Heb for both cases have large value and minimum in 45o angle.
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Figure 6.21: Dependence of the training effect on magnetic field angle for a) EB field
and of b) coercivity for systems with kFM = 0.1JFM and kFM = 0.02JFM . Magnetic
field’s angle dependence of the normalized fitting law parameter κ and ∆Heb for systems
with c) kFM = 0.1JFM and d) kFM = 0.02JFM .

AFM interface reversal modes

In Fig. 6.22 the in-plane magnetization component of the AFM for several angles be-

tween magnetic field and FM easy axis for the case of intermediate (kFM = 0.1JFM )

FM anisotropy is shown. As we can see the magnetization vector of the AFM interface

has the same behavior as for systems with uniaxial FM and biaxial AFM anisotropy (Sec.

6.2.2) rotated in order to make the easy axes to coincide. Fig. 6.23 shows the in-plane

magnetization component of the AFM for several angles between magnetic field and FM

easy axis for systems with weak (kFM = 0.02JFM) FM anisotropy. The results for large

angles (θ = 60o, 75o) are the same as for intermediate FM anisotropy.

For low angles, the behavior of the AFM magnetization vector is more complicated.

While during the first reversal the magnetization rotates coherently with definite y com-

ponent, the second reversal is noncoherent with vanishing magnetization. This reversal is

gradually converted to coherent rotation with definite y component. For understanding

this procedure we will describe what happens in cooling process and in the first reversals

for θ = 20o as follows:

1. Cooling process: Most of the AFM spins are aligned along positive x-axis as being

the closest energy minimum. This orientation is quite energetically favorable as being
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Figure 6.22: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.1JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.

an easy axis for both AFM and FM.

2. 1st reversal: Many spins are aligned with the negative y-axis after a coherent rotation.

The increasing negative torque (negative magnetic field) which is exerted to the

initially positive x-axis oriented spins is not big enough to flip them to the negative

x-axis.

3. 2nd reversal: The increasing positive torque (positive magnetic field) which is exerted

to the negative y-axis oriented spins can not rotate them. Thus, there is a reversal

with vanishing magnetization.

4. 3rd reversal: Similar to first reversal but now the most of the spins are stabilized

pointing in positive x-axis and negative y-axis. The increasing negative torque which

is exerted to the negative y-axis spins rotate many of them to the negative x-axis.

5. 4th reversal (Yellow points in Fig. 6.23): Spins reverse through the negative x-axis

where one of the easy axes is.
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Figure 6.23: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.02JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.

The increasing positive torque which is exerted to the negative x-axis oriented spins, during

the ascending branch after the first cycle (4th, 6th, ... reversal), rotates even more spins

through the negative x-axis and the positive y-axis. After that, many spins are stabilized

along these axes. Thus, the reversal becomes coherent with definite y component. The

results for the stability of the AFM spins are similar with the previous case of biaxial AFM

anisotropy, thus are not presented.

6.2.4 Biaxial FM anisotropy - Uniaxial AFM anisotropy (Group

(V)

FM reversal modes

An EB system with biaxial FM and uniaxial AFM anisotropy is the last combination of

anisotropies that we will investigate. The reversal modes of the FM for this system when
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Figure 6.24: Different components of magnetization for several angles between magnetic
field and FM easy axis. Left: Hysteresis loop of the first and subsequent cycles of the FM
for systems with kFM = 0.1JFM and kFM = 0.02JFM . Middle: In-plane component of
magnetization of the first and second cycle of the FM for systems with kFM = 0.1JFM .
Right: In-plane component of magnetization of the first and second cycle of the FM for
systems with kFM = 0.02JFM . The green line in middle and left figures is the magnetic
field axis. The numbers correlate the pathway of the hysteresis loop (left) with the in-plane
magnetization component (right).
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we have intermediate (kFM = 0.1JFM) or weak (kFM = 0.02JFM ) FM anisotropy are

shown in Fig. 6.24. The easy axis of the AFM are at 45o from the FM easy axes. Similar

to the previous system, the reversal procedure is symmetrical along the 45o axis due to

the second easy axis long the y-direction. Also, the reversals, almost in all cases (all

angles, intermediate and weak FM anisotropy) occur on the same path as that of the first

reversal (descending branch of the loop). This is an effect caused from the AFM interface

magnetization and will be discussed in the next section.

As we can see in the hysteresis loop for intermediate FM anisotropy, there is a steep

increase (a step close to zero magnetization) in the positive coercive field in the ascending

branch of the hysteresis loop. This can be considered a two stage reversal, one before and

one after zero magnetization. Similarly, for the hysteresis loop for weak FM anisotropy,

there is a more gradual increase in the coercive field. This effect can be seen in the mag-

netization (in-plane) vector diagrams, as the angle in the trajectory of the magnetization

vector (after point ⑥ in Fig. 6.24). That means that during reversal the magnetization is

oriented along the transverse negative FM easy axis (y-axis) and finally along the positive

FM easy axis (x-axis). Again, this is an effect of the AFM interface magnetization and the

AFM easy axis.

FM EB training effect

Our results for the angle θ dependence of the training effect for the aforementioned systems

and quantities are shown in Fig. 6.25. The EB field for systems with weak and intermediate

FM anisotropy seems to have a minimum as a function of angle θ. Systems with weak

FM anisotropy have always smaller EB field as well as training effect. There is no clear

trend for coercivity as its calculation, is affected by the aforementioned steep increase

on the ascending loop branch. The training effect in systems with the aforementioned

anisotropies, is quite small for large angles. For small angles (θ = 5o), the training effect

is quite intense (thermal training), as can be seen from Fig. 6.25a), b).

AFM interface reversal modes

Fig. 6.26 shows the in-plane magnetization component of the AFM for several angles

between magnetic field and FM easy axis for the case of intermediate (kFM = 0.1JFM )

FM anisotropy. As we can see the magnetization vector of the AFM interface has similar

behavior to systems with uniaxial FM and AFM anisotropy (Sec. 6.2.1). The AFM reverses

from the same side as the FM during the descending branch of the loop but during the

ascending can not reverse through the opposite side as the magnetization vector can not

cross the energy barrier created by the AFM hard axis. Now, because of that, the AFM,

through the interface interaction, does not let the FM reverse from the other side. Further-
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Figure 6.25: Dependence of the training effect on magnetic field angle for a) EB field
and of b) coercivity for systems with kFM = 0.1JFM and kFM = 0.02JFM . Magnetic
field’s angle dependence of the normalized fitting law parameter κ and ∆Heb for systems
with c) kFM = 0.1JFM and d) kFM = 0.02JFM .

more, the AFM magnetization, during the tenth ascending reversal and when the magnetic

field becomes positive, reverses very “early”. This is because many AFM spins are oriented

along the AFM hard axis which is an unstable state. Thus, they need very small torque to

start rotating and subsequently rotate “earlier”. Through the FM/AFM interaction, they

subsequently affect the behavior of the FM. Similarly, for weak FM anisotropy, this occurs

more gradually, as is shown in Fig. 6.27. The results for the stability of the AFM spins are

similar with the previous case of uniaxial AFM anisotropy, thus are not presented.

6.3 Summary

We examined the training effect in a large set of anisotropies in EB systems. Uniaxial,

biaxial and cubic type of anisotropies were used in all the possible combinations in the

AFM and the FM. Furthermore, the anisotropy constants were varied to create strong,

intermediate and weak anisotropy in the materials. Comparing the results, we focus on

systems with strong EB field and training effect. These are for strong AFM anisotropy

and weak as well as intermediate FM anisotropy. Then according to the reversal modes

during consecutive hysteresis cycles, we focus only on systems with uniaxial and biaxial

anisotropies.
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Figure 6.26: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.1JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.

Each possible combination of uniaxial and biaxial anitropies is investigated solely for

different magnetic field angles. According to the behavior of the reversal modes during

consecutive hysteresis loops, they can be categorized in three types:

1. The reversal mode remains the same during consecutive hysteresis loops and usually

occurs with coherent or non-coherent rotation.

2. The reversal mode is with vanishing magnetization during the first hysteresis loop

but evolves gradually to a coherent rotation with increasing cycles.

3. The reversal mode is via coherent rotation during the first hysteresis loop but it is

converted to a non-coherent rotation with vanishing magnetization.

The above effects can occur under specific anisotropy conditions, which actually is

hidden in the topological characteristics (position, values) of the energy barriers and min-

ima. Specifically, the last two reversal modes are presented in systems with biaxial AFM
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Figure 6.27: In-plane component of magnetization of the first and tenth hysteresis loop
of the AFM for kFM = 0.02JFM for several angles between magnetic field and FM easy
axis. Inset shows the effective energy of an AFM spin as function of AFM spin angle.

anisotropy and with low FM anisotropy. These reversal modes favor large EB fields and

training effect. Also, the cooling field orientation is crucial to that behavior and plays an

important role in the AFM stable and unstable spin behavior. The combinations that favor

the highest EB field and coercivity are the ones having biaxial FM anisotropy. For all the

cases, high EB field and coercivity are favored when the magnetic field direction is closer

to the one of the FM easy axis. The training effect, in general is large for systems with

biaxial AFM anisotropy independently on the angle of the magnetic field direction. For

systems with uniaxial AFM anisotropy, the training effect is small when the magnetic field

direction is close to the AFM easy axis but it becomes quite large when the magnetic field

direction is close to AFM hard axis. Similar conclusions are found for the concentration of

stable AFM spins and their magnetization.
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Chapter 7

Influence of the FM/AFM

coordination number on the training

effect

In this chapter, we introduce some new characteristics in our model, to enhance the realism

of it. We will investigate the effect of the FM/AFM coordination number in the EB

quantities and in the training effect. More specifically the FM/AFM coordination number

is the maximum number of neighbors of one material in the interface that a spin of the

other material can have. This can not be controlled very easily but here we introduce

two ways to achieve that. First using interface roughness, which in the atomistic scale is

the mixing of the two materials in one or more layers. A second way is to use different

crystallographic structures e.g. fcc or hcp. We will consider, for simplicity, that the

crystallographic structure is always the same for both materials, although for epitaxial EB

systems the crystallographic structure can be varied for different material and layer. First,

we will discuss the effect of interfacial roughness in a simple cubic system with and without

AFM dilution. Then, in the next section, we will examine the effect of interfacial roughness

on other cubic structured EB systems. Also, we will focus on a bcc structured EB system

which has a fully uncompensated interface. Finally, in the last section, we will discuss the

effect of interfacial roughness in hexagonal structured systems.

7.1 Interface roughness dependence of the training ef-

fect

As a new aspect in our model, we now introduce the interface roughness, which is the in-

termixing of the FM and AFM sites at the interface, as shown in Fig. 7.1. This intermixing

represents the roughness of the AFM/FM interface which always exists in a real system, al-

though it is a vast simplification of a real interface, which usually will have larger roughness

with more than one layer involved. Furthermore, this roughness enhances the maximum

interface coordination number from one, which is for systems with sharp interface, to five,

for systems with rough interface (for simple cubic systems).
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7.1. Interface roughness dependence of the training effect

Figure 7.1: A sketch of an EB system with rough interface. The interface layer consists
of FM and AFM spins.

For the quantitative description of the interface mixing we will use the method described

in Ref.[27]. The aforementioned intermixing will be described by the mixing coefficient R.

This coefficient is considered to be the proportion of the spins which are FM and not AFM

or magnetic defects, in the interface AFM layer. Thus, is the concentration of the FM

spins in this interfacial mixed layer, excluding the non-magnetic defects. The dilution p still

acts in this layer. Thus, this layer consists of a total proportion of (1− p) magnetic sites,

with (1−p)R FM sites and (1−p)(1−R) of AFM sites. This method essentially produces

an interface layer which is entirely AFM for zero R and takes on the character of a system

of dilute (isolated) FM impurities in an AFM structure at low R. With increasing R the

FM impurities cluster and at large R the layer has the characteristic of AFM impurities in

a FM system.

We examine two different systems, one with dilution 40% and one without dilution.

The training effect of the EB field as well as the fitting parameters κ and ∆Heb are shown

in Fig. 7.2 for a system a) with 40% dilution b) without dilution. The trend of the EB field

is similar to the results obtained using an Ising model for the AFM by Spray and Nowak

[27], i.e. non-monotonic behavior exhibiting a peak at some value of R. The peak becomes

less pronounced at 40% dilution, which is consistent with the aforementioned model. The

maximal EB field is achieved for R = 0.3 i.e. for systems with small amount of FM spins

in the interface layer.

In case of no AFM dilution system, for low values of R, the EB field maximum may

be associated with “lone FM spins”. More specifically, starting from small R, a small

number of lone spins FM spins embedded in the AFM interface layer. This lone FM spins

have five AFM neighbor spins and one FM neighbor spins, thus are pinned by the AFM

(5JINT > JFM) and consequently enhance the EB field. The lone FM spins increase with

increasing R, giving an increase in EB field. But at large R, there is more chance of

FM atoms forming small clusters. That means that the embedded FM spins follow the

hysteresis loop due to strong coupling with the FM, which leads to decrease in EB field.

As shown in Fig. 7.2b), systems with no dilution exhibit very strong EB field and
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Figure 7.2: Interface roughness dependence of the training effect for systems with a) 40%
dilution and b) no dilution. H1

eb and H2
eb: EB field of the first and the second hysteresis

loop, respectively. Heeb : Equilibrium EB field following the power law fit. Upper graphs:
Interface roughness dependence of the normalized fitting law parameter κ and ∆Heb.

strong response in EB to the introduction of roughness. This is because the FM spins

in the interface enhance more the interface coupling than the defects. Consequently, the

FM spins act as domain wall pinning spins in the AFM enhancing the domain state. The

EB existence with no dilution and some interface roughness coincides with the model of

Malozemoff [83, 82, 84]. For higher dilutions, the interface mixing has a small effect as

now the number of AFM neighbors for a lone FM spin is fewer due to dilution. Thus, these

lone spins are not so tied with the AFM. Also,this is because the domain state of the AFM

is well formed due to dilution and consequently roughness can not improve it further.

The training effect, in both cases of dilution, exhibits a maximum at the point where

the EB field is maximum (R ≈ 0.35) but remains non zero for all R, meaning that is always

thermal training present. This is again an effect of the lone FM spins which are in the

interface AFM layer. Although the lone FM spins have a domain wall pinning action, they

also are in a metastable state, gained during the cooling process, as are the remaining AFM

interface spins. Thus, for low R, due to larger population of metastable spins (AFM and

lone FM interface spins) the training effect is more intense. As before this effect decreases

with higher dilution and higher R due to clustering of the FM spins.

In Fig. 7.3, the trend of the coercive fields as function of the intermixing factor R

is shown for the two cases of AFM dilution. The coercive fields are enhanced by the

interface roughness. For low interface roughness, there are lone FM spins inside the AFM-

dominated interface layer, which are pinned in both directions of the AFM easy axis. These

spins which are directed opposite to the remaining FM spins, act as nucleation sites, leading

to reversal at smaller coercive fields, as shown in Fig. 7.4. As mentioned previously, for

high interface roughness, there are lone AFM spins inside the FM-dominated interface

layer, which reverse with the FM as the coupling with the AFM is quite small. Thus,

due to their large anisotropy, these lone AFM spins act like a highly anisotropic FM spins.

148



7.2. EB systems with sc, fcc and bbc structure

à
à

à
à

à
à à à

à

æ
æ

æ
æ

æ
æ æ æ

æ

á
á

á

á

á

á

á á á

ç
ç

ç

ç

ç

ç

ç ç ç

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05

0.10

0.15

0.20

0.25

Mixing Factor R

H
C

F
�J

IN
T

40% dilution

æ ÈHC-

2 È

à ÈHC-

1 È

ç HC+

2

á HC+

1

aL

à

à

à à à

à

à

à
à

æ

æ

æ æ
æ

æ

æ

æ
æ

á

á á
á

á

á

á

á

á

ç

ç ç
ç

ç

ç

ç

ç

ç

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00

0.05

0.10

0.15

0.20

Mixing Factor R

H
C

F
�J

IN
T

no dilution

æ ÈHC-

2 È

à ÈHC-

1 È

ç HC+

2

á HC+

1

bL

Figure 7.3: Interface roughness dependence of the training effect of the coercive fields
for systems with a) 40% dilution and b) no dilution. H1

C+ and H2
C+: Positive coercive field

of the first and the second hysteresis loop, respectively. Similarly for the absolute value of
the negative coercive field.

Consequently, this effect induces a higher effective uniaxial anisotropy in the FM, thereby

increasing the coercive fields.

Figure 7.4: Snapshots of the FM before (①) and during (②, ③) reversal showing only
the FM spins of the mixed layer. Snapshot ① shows the FM spins which act as nucleation
sites.

7.2 EB systems with sc, fcc and bbc structure

In this section we will discuss the effect of interface roughness in EB systems with sc,

bcc and fcc structure. The modeling of these systems can be done by translating the

index comprised of the closest neighbors to a cubic lattice. Using a cubic matrix for the

description of the system spins, we create for every atom a list of neighbors, appropriately

placed in this matrix. The neighbors are placed periodically in the appropriate places and

the construction of the matrix is completed using periodic conditions at the edges of the
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7.2. EB systems with sc, fcc and bbc structure

layers. Thus, a full layer consists of two mixed smaller layers which interact not directly

but via their boundaries.

Figure 7.5: Schematic representations of the EB systems that we used with a) bcc
structure with the [110] crystallographic orientation along the interface and b) fcc structure
with the [100] crystallographic orientation along the interface. The layers of the structures
(ABAB...) and the index coordinates of the neighbors of a central atom (ijk) are shown.

The EB system now consists of two layers of FM, three layers of AFM and one mixed.

The investigation carried out using constant temperature at kbT = 0.15JINT and 40%

AFM dilution. The systems that we investigate in this section have compensated inter-

faces and are presented in the Fig. 7.5. The bcc structured system has crystallographic

orientation [110], as this is the one with compensated interfacial spins. A bcc structured

system with [100] crystallographic orientation having fully uncompensated interfacial spins

is investigated in the next section, as a special case. The sc structured system for R = 0.0

or 1.0 has FM/AFM coordination number one, the bcc structured system has two and

the fcc structured system has four. With interface roughness the maximum FM/AFM

coordination number is five, six and eight, respectively.

The training effect of the EB field as well as the fitting parameters κ and ∆Heb are

shown in Fig. 7.6 for a) sc, b) bcc and c) fcc structured system. The sc structured system

has the same trend as the one we saw in the previous section with the only difference in the

values of the quantities, as here we have more layers of FM and AFM. Thus, the EB field

values are smaller but the trend remains the same. The same trend is also observed for

the bcc structured system with larger EB field values. This is because now the AFM/FM

coordination number is increased by one, meaning that a spin in the interface layer will
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Figure 7.6: Interface roughness dependence of the training effect for systems with a)
sc structure, b) bcc[110] structure and c) fcc structure. H1

eb and H2
eb: EB field of the

first and the second hysteresis loop, respectively. Heeb : Equilibrium EB field following the
power law fit. Upper graphs: Interface roughness dependence of the normalized fitting law
parameter κ and ∆Heb.

always (for any value of interface layer) have one more closest neighbor than for the sc

case. For example, when R = 0.0 an FM spin at the interface is coupled with two AFM

spins. This means the FM is more strongly coupled to AFM leading to a larger EB.

For a fcc structured system, one can expect that the EB effect will be stronger, with

the same trend as before, because the FM/AFM coordination number increases and also

the FM and AFM are more strongly coupled. But, as is shown in Fig. 7.6c), this does not

occur; in fact the EB is almost independent of the interface mixing. This is due to the

arrangement of the spins in the interface creating an AFM atomic compensation at the

interface for the FM spins. For example, for R = 0.0 an FM spin has four AFM spins as

closest neighbors which are fully compensated. Thus, the EB effect is due to the dilution

which is enhanced to a small extent by the interface roughness. For low values of the

interface roughness, where we have lone FM spins, the EB field is slightly increased as it

has four AFM (uncompensated) neighbors. Thus, the same mechanism as that described

in the first section of this chapter for the sc systems, occurs here.

The trend of the training effect remains the same as previously for the case of the sc

and bcc structured systems. For fcc structured systems κ increases slightly with R but
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7.2. EB systems with sc, fcc and bbc structure

always having a non-zero value, thus there is always thermal training. The training effect

is quite large in comparison to the previous systems. This may be because much more

AFM spins are metastable because each AFM spin is coupled with four FM spins. Thus,

during the cooling many AFM spins are oriented to the positive easy direction parallel to

the cooling field, because then are more strongly coupled to the FM. The small increase in

the training effect is due to the decrease of the AFM thickness, as is shown in the previous

chapters.
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Figure 7.7: Interface roughness dependence of the training effect of the coercive fields
for systems with a) sc structure, b) bcc[110] structure and c) fcc structure. H1

eb and H1
C+

and H2
C+: Positive coercive field of the first and the second hysteresis loop, respectively.

Similarly for the absolute value of the negative coercive field.

The training effect of the coercive fields is shown in Fig. 7.7 for a) sc, b) bcc and

c) fcc structured systems. The sc and the bcc structured systems have the same trend

as that shown previously. The bcc structured system has larger coercivity because, as

was explained in the previous chapter, the FM anisotropy per volume increases. Similarly,

the coercivity of the fcc structured system is larger although coercive fields decrease with

increasing interface mixing. This is not fully understood, but suggests a larger population

of AFM spins of the type which are reversed by the FM on each branch of the loop, due

to smaller AFM thickness with increasing R.
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7.3. A special case: A fully uncompensated interface

7.3 A special case: A fully uncompensated interface

A special case of cubic structured EB systems is the bcc structure with [100] crystal-

lographic orientation which has a fully uncompensated interface, as shown in Fig. 7.8.

Because of the dilution, domains will be created perpendicular to the interface and con-

sequently domain walls will be parallel to the interface. This is similar to the Mauri’s

model[23] described in the previous chapters.

Figure 7.8: Schematic representations of the EB systems that we used with bcc[100]
structure. The layers of the structures (ABAB...) and the index coordinates of the neigh-
bors of a central atom (ijk) are shown.

The training effect of the EB field as well as the fitting parameters κ and ∆Heb are

shown in Fig. 7.9a) for this system. In general, the EB field is quite large in comparison to

the previous systems, a result of the uncompensated interface. The first maximum in the

EB field as function of interface roughness is due to lone FM spins in a AFM environment,

similar the behavior of sc EB systems. The difference here is that the coupling is with AFM

spins not lying in the same x-y plane as the lone FM spin but in the next one. But the

lone FM spins are pinned by the domains perpendicular to the interface which are biased

in a certain direction during the cooling process, enhancing the coupling between the FM

and the AFM. Thus the EB field increases. Then, with increasing interface roughness a

balance between positive and negative FM/AFM interactions occurs. This means that the

number of FM spins coupled with only positive and only negative AFM spins is the same,

and consequently the FM is coupled to a fully compensated AFM causing zero EB field

(this corresponds to the value R = 0.4).

The second maximum in EB field for R ≈ 0.7 occurs because now the interface layer

consists mainly of FM spins. That leads the next layer, which is AFM, to magnetize in the
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Figure 7.9: Interface roughness dependence of the training effect a) of the EB field and
of b) of the coercive fields for systems with bcc structure. H1

eb and H2
eb: EB field of the

first and the second hysteresis loop, respectively. Heeb : Equilibrium EB field following the
power law fit. Upper graphs: Interface roughness dependence of the normalized fitting law
parameter κ and ∆Heb. H1

C+ and H2
C+: Positive coercive field of the first and the second

hysteresis loop, respectively. Similarly for the absolute value of the negative coercive field.

opposite direction during the cooling process. This AFM magnetization direction enhances

the EB field. Then for very high values of R (≈ 1.0) the EB field decreases to zero as now

we have an extra layer of FM and as it is known the EB field decreases with increasing FM

layer thickness. Also, this extra layer of FM has non-magnetic defects which reduce the

coupling with the AFM.

The training effect decreases with increasing interface roughness as shown in Fig.7.9a),

according to the behavior of the fitting parameter κ. For R = 0.0, the interfacial AFM

spins are quite unstable as during the cooling process all of them point to one direction

(fully uncompensated interface). Thus during the reversal of the magnetic field (which

corresponds to reversal of the FM layer), many of the interfacial AFM spins can reverse

as the non-magnetic defects make them less coupled with the AFM. Consequently, with

increasing hysteresis cycles the interface becomes less uncompensated. Then for higher

values the compensation in the interfacial spins is more common during the cooling process.

Thus, the AFM spins are more stable and the training effect is becoming smaller with

increasing roughness.

Finally, in Fig. 7.9b), the training effect of the coercive fields as function of interface

roughness is shown. The coercive fields have a minimum at the interface roughness value

(R = 0.4) where the EB field is zero. In that point there is the balance between positive

and negative FM/AFM interactions occurs and consequently positive and negative coercive

fields are the same. As before the FM spins act as nucleation points during both of the

reversals, causing reversals at lower coercive field and consequently lower coercivty.
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7.4. Hexagonal structured EB systems

7.4 Hexagonal structured EB systems

In this section we will discuss EB systems with hexagonal crystallographic structure. The

most common hexagonal systems are the hcp and fcc structures with interface along the

[110] crystallographic orientation, as shown in Fig. 7.10. The difference between the two

structures is that in hcp structures the atoms are positioned (on the angles and on the

center of a hexagon of the same layer) creating ABAB... layers, while in fcc structure are

positioned creating ABCABC.. layers.

Figure 7.10: Schematic representations of the EB systems that we used with a) hcp
structure and b) fcc structure with interface along the [110] crystallographic orientation.
The layers of the structures (ABCABC...) and the index coordinates of the neighbors of a
central atom (ijk) are shown.

The training effect of the EB field as well as the fitting parameters κ and ∆Heb are

shown in Fig. 7.6 for a) the hcp system and b) the fcc system. For the hcp structured

system, there is a smaller EB field compared to bcc systems for no interface roughness.

This is because the hcp system, although having larger FM/AFM coordination number

(three) than the bcc (two), two of the three AFM neighbors spins of an FM spin are self-

canceled (compensated interface). Thus an FM spin is effectively coupled with one AFM

spin.

The EB field of the hcp structured system decreases with increasing interface roughness.

For understanding the mechanism behind this trend, we will consider again the case of low

interface roughness with lone FM spins. The lone FM spins have nine AFM neighbors
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7.4. Hexagonal structured EB systems
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Figure 7.11: Interface roughness dependence of the training effect for systems with a)
hcp structure and b) fcc[110] structure. H1

eb and H2
eb: EB field of the first and the second

hysteresis loop, respectively. Heeb : Equilibrium EB field following the power law fit. Upper
graphs: Interface roughness dependence of the normalized fitting law parameter κ and
∆Heb.

which due to compensation, self-cancel leaving only one AFM spin effectively coupled to

the lone FM spin. This lone FM spin has three FM neighbors in the FM layer which each

of these have three neighbors in the interface layer, the lone FM spin and two AFM spins

which are self-canceled. Thus in total, without interface roughness these three FM spins

will effectively coupled with an AFM spin each but with interface roughness only the lone

spin below them is effectively coupled with an AFM spin. Thus, in the first case we have

three effective bonds between AFM and FM for three atoms but in the latter we have only

one bond for four atoms. This means that interface roughness lead to weaker coupling

between FM and AFM producing smaller EB field.
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Figure 7.12: Interface roughness dependence of the training effect of the coercive fields
for systems with a) hcp structure and b) fcc[110] structure. H1

C+ and H2
C+: Positive

coercive field of the first and the second hysteresis loop, respectively. Similarly for the
absolute value of the negative coercive field.

As can be seen from the fitting parameter κ, the training effect decreases with increasing

interface roughness. The training effect, similar to previous systems, is stronger for interface

roughness which causes stronger coupling between FM and AFM. Although, the fcc system
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7.5. Summary

differs very little from the hcp structure and there is a small decrease of the EB field with

increasing interface roughness, the training effect is quite high. The response of EB and

the training effect on changes of interface roughness seems quite small.

Finally, in Fig. 7.12, the training effect of the coercive fields as function of interface

roughness for the a) hcp and b) fcc EB system is shown. The coercive fields have a

maximum value when the interface roughness is equal to 0.5. That means that an AFM

spin will have on average six AFM and six FM neighbors (in the case of no dilution). The

coupling to the FM is stronger and thus, as previously, the AFM will behave as a highly

anisotropic FM spin increasing the coercive fields.

7.5 Summary

The FM/AFM coordination number in an EB system was varied using two new characteris-

tics in our model: the interface roughness and the various crystallographic structures. The

crystallographic structures which we used are the sc[100], bcc[100], bcc[110], fcc[100],

fcc[110] and hcp[0001] where the crystallographic orientations indicate those along the

interface. The different orientation of the structure as well as the interface roughness had

different result on the trends of the EB field, the training effect and the coercive fields.

The interface roughness was quantified as the percentage of FM spins in the interface

layer. The results showed a strong dependence on the interface roughness for systems with

40% dilution and no dilution. For the case of no AFM dilution the model exhibited strong

EB with finite training effect. Furthermore, due to lone FM spins which behave like AFM

spins, the EB field has a maximum for low interface roughness.

Coercivity exhibits a minimum and maximum value for low and high interface roughness,

respectively. This result is an effect of lone spins of the AFM and the FM. For low interface

roughness, there are lone FM spins in an AFM environment which act as nucleation sites

leading to reversal at smaller coercive fields. For high interface roughness, there are lone

AFM spins in a FM environment which act as highly anisotropic FM spins leading to

increase of coercive fields.

For systems with simple cubic structure and smooth interface, the EB field increases

with the FM/AFM coordination number as the exchange coupling between the FM and

AFM increases e.g. for systems with bcc and fcc structure. But this increase of the

FM/AFM coordination number does not, in all cases, result in an increase of the exchange

coupling. For example, although fcc systems have the higher FM/AFM coordination num-

ber (four), the AFM spins, to which a FM spin is exchange coupled, are compensated

giving zero effective exchange coupling and consequently quite small EB field.

Furthermore, bcc systems with [100] orientation in the interface have a fully uncom-
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7.5. Summary

pensated interface and the EB field has very high values. The domains, which are created

in the bcc system, are perpendicular to the interface. The EB field dependence on the

interface roughness is then more complicated, with two maxima and a minimum values.

The first maximum, as before, is due to lone FM spins. The minimum in mid-range value

of interface roughness is due to a balance between positive and negative FM/AFM inter-

actions. The second maximum, at large values of interface roughness, occurs because the

interface layer consists mainly of FM spins, which during the cooling process magnetize

the next layer (AFM) in the opposite direction, enhancing the EB field.

Hcp and fcc systems, with [110] orientation in the interface, were investigated. Al-

though the FM/AFM coordination number is quite large for these systems (12), the EB

field is small due to atomistic compensation. In these systems, the interface roughness

does not enhance at all the EB field. Without interface roughness three FM spins are

effectively coupled with an AFM spin each but with interface roughness only the lone spin

below them is effectively coupled with an AFM spin. Thus, in the first case we have three

effective bonds between AFM and FM for three atoms but in the latter we have only one

bond for four atoms.
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Chapter 8

Conclusions and further work

The current research focused on the dependence of the training effect on various EB system

parameters. A novel analysis was developed for the study of the AFM during consecutive

hysteresis loops. New characteristics were added to the domain state model increasing

the realism of this model. In the following we will summarize the results of the previous

chapters and refer to the central conclusions.

8.1 Model and analysis

Our atomistic calculations are based on the domain state model, using Monte-Carlo tech-

niques for the minimization of the energy. We calculated statistical averages of the quan-

tities over 20 different realizations of random number sequences. The training effect was

studied considering ten consecutive hysteresis loops after the initial cooling process.

The FM was studied using the EB field and coercivity. To study the training effect,

the values in each hysteresis loop cycle for every set of variables were calculated. For every

parameter set a sequence of values of the main parameters, for example the EB field, were

produced making this study quite difficult. To analyze the results, a fitting process was

applied, calculating the parameters of the resulting fitted curve for hysteresis loops from

the second hysteresis cycle onwards. These parameters show the strength of the training

effect and the equilibrium EB field. Furthermore, we studied the difference of the fitting

law as extrapolated to the first hysteresis loop and the actual simulation results for the EB

field of the first loop.

The AFM was studied using the irreversible magnetization of the interface AFM layer,

i.e. the vertical shift of the hysteresis loop. To study the training effect in the AFM, we

categorized the AFM spins according to their behavior. The spins were categorized in four

categories:

1. Stable Spins. The spins are always pointing towards the same direction with small

thermal fluctuations and are considered pinned to that direction.

2. Meta-Stable Spins. The spins are in a meta-stable state created during the cooling

process. During the first reversal, they reverse only once and they are pinned to a

new easy direction.
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8.2. Temperature effects

3. Unstable Spins. The spins reverse with the FM creating the AFM hysteresis loop.

4. Frustrated Spins. The spins reverse with the magnetic field. This behavior is a

result of geometric frustration created at the interface because of the dilution.

8.2 Temperature effects

The temperature dependence of the EB was investigated in four systems, with different

AFM anisotropy and thickness. These systems exhibit similar trends for increasing tem-

perature. The training effect, according to the temperature behavior, was categorized in

two kinds:

1. Athermal training effect. The EB field remains almost constant after the second

hysteresis loop. It is termed “athermal”, because it is exhibited at low temperatures

and the AFM spins always remain oriented to the easy axis due to lack of thermal

excitations.

2. Thermal training effect. The EB field decreases with increasing hysteresis cycling.

It is exhibited at mid-range temperatures and the AFM spins are not totally aligned

to the easy direction due to thermal fluctuations, but they precess-relax towards this

direction causing reduction of the total AFM magnetization.

In general, in both cases, the EB field decreases steeply from the first to the second

hysteresis loop, an effect of meta-stable spins. At low temperatures, the AFM exhibits

some extra characteristics. The frustrated spins are more apparent in the hysteresis loop,

where around zero field a paramagnetic behavior is exhibited. Furthermore, for biaxial

systems many spins , due to lack of thermal excitations, are trapped in specific orientations

by energy barriers that can not overcome.

8.3 AFM characteristics effects

The effect of the AFM characteristics in the EB field as well as the training effect were

investigated thoroughly. The effect of AFM dilution and thickness were examined for con-

stant temperature for EB systems with AFM uniaxial anisotropy. The Néel temperature

increases asymptotically to a stable value with increasing AFM thickness whereas it de-

creases with increasing dilution. The EB field also increases asymptotically to a stable

value with increasing AFM thickness. The training effect of the EB field decreases with

increasing AFM thickness. The training effect of the coercive fields changes behavior with

increasing AFM thickness and this behavior can be categorized to two types:
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8.4. Anisotropy effects

1. Type I training effect. The positive coercive field decreases with increasing hys-

teresis cycles, causing decrease of the coercivity of the loop from both branches.

This type of training effect is exhibited for high AFM thicknesses (> 6 AFM layers).

2. Type II training effect. The positive coercive field iincreases with increasing hys-

teresis cycles. This type of training effect is exhibited for low AFM thicknesses (< 6

AFM layers).

The negative coercive field always decreases with increasing hysteresis cycles. The AFM

dilution enhances the EB field up to a maximum value. The training effect is very low for

small values of AFM dilution but it increases with increasing dilution.

8.4 Anisotropy effects

The energy “landscape” created by the easy and the hard axes of the materials affects the

behavior of the EB system and especially its variation during consecutive hysteresis loops.

We varied the type (uniaxial, biaxial, etc.) of the anisotropy in the FM and AFM as well

as its magnitude, studying the effect on the reversal modes of the FM. Also, we varied

the angle of the magnetic field because, as is known from the literature, this parameter

affects the reversal modes of the FM. The training effect of the reversal modes of the FM

is categorized in three categories:

1. Unchanged symmetric reversal modes. The reversal modes during increasing

hysteresis remain unchangeable and symmetric with coherent or incoherent rotation.

2. Symmetric-asymmetric transitional reversal modes. The reversal modes are

symmetric with coherent rotation on the first loop and gradually are converted to

asymmetric rotation with vanishing magnetization.

3. Asymmetric-symmetric transitional reversal modes. The reversal modes are

asymmetric with vanishing magnetization on the first loop and gradually are con-

verted to symmetric with coherent rotation.

The last two reversal modes are presented in systems with biaxial AFM anisotropy and

with low FM anisotropy. These reversal modes favor large EB fields and training effect. In

general:

1. High EB field and coercivity are favored when the magnetic field direction is close

to the one of the FM easy axis.

2. The training effect is large for systems with biaxial AFM anisotropy independently

on the angle of the magnetic field direction.
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8.5. Rough interface effects

3. For systems with uniaxial AFM anisotropy, the training effect is small when the

magnetic field direction is close to the AFM easy axis but it becomes quite large

when the magnetic field direction is close to AFM hard axis.

8.5 Rough interface effects

A new characteristic introduced in our model is the interface roughness, which is more

realistic, as in real EB systems the interface will never be ideally smooth. Thus, we

introduce a layer that consists of both FM and AFM spins. We quantify the interface

roughness the percentage of FM spins in this layer. The results showed a strong dependence

on the interface roughness for systems with 40% dilution and no dilution. For the case of no

AFM dilution the model exhibited strong EB with finite training effect. Furthermore,due to

lone FM spins which behave like AFM spins, the EB field has a maximum for low interface

roughness.

Coercivity exhibits a minimum and maximum value for low and high interface roughness,

respectively. This result is an effect of lone spins of the AFM and the FM. For low interface

roughness, there are lone FM spins in an AFM environment which act as nucleation sites

leading to reversal at smaller coercive fields. For high interface roughness, there are lone

AFM spins in a FM environment which act as highly anisotropic FM spins leading to

increase of coercive fields.

8.6 Crystallographic structure effects

More complicated crystallographic structures were used to enhance the coupling between

the FM and AFM. In the interface of systems having sc, bcc and fcc structure, the number

of neighbors per atom is one, two and four, respectively (for smooth interfaces with no

dilution). Although, the coupling between the AFM and the FM increases, the EB does

not always increase. When we have systems with sc and bcc structure, a FM spin in the

interface is coupled to one and two AFM spins, respectively, oriented in the same direction.

These systems exhibit similar trends when the interface roughness is varied, with the bcc

structured system showing stronger EB fields. For the case of fcc structured systems, a

FM spin is coupled with four AFM spins in the interface, which are self-canceled. Thus,

the system exhibits an “atomistic compensation” effect. Thus, the AFM interacts very

weakly with the FM and the EB field is low.

A special case of bcc structure is the one in which the interface is fully uncompensated.

The EB field in this system is quite large and domains are created perpendicular to the

interface. The EB field dependence on the interface roughness is more complicated, with
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two maxima and a minimum value. The first maximum, as before, is due to lone FM

spins. The minimum at an intermediate value of interface roughness is due to balance

between positive and negative FM/AFM interactions. The second maximum, at high

value of interface roughness, occurs because the interface layer consists mainly of FM

spins, which during the cooling process magnetize the next layer (AFM) in the opposite

direction, enhancing the EB field.

Finally, hexagonal systems were investigated using the hcp and the fcc crystallographic

structures oriented to the interface as appropriate. Although the FM/AFM coordination

number is quite large for these systems (12), the EB field is small due to atomistic com-

pensation. In these systems, the interface roughness does not enhance at all the EB field.

Without interface roughness three FM spins are effectively coupled with an AFM spin each

but with interface roughness only the lone spin below them is effectively coupled with an

AFM spin. Thus, in the first case we have three effective bonds between AFM and FM for

three atoms but in the latter we have only one bond for four atoms.

8.7 Outlook and future prospects

The main purpose of the present research is the theoretical investigation of aging effects

in magnetic bilayers that are used in industry for commercial applications. Atomistic

simulations were used to gain a theoretical understanding of the physics of these systems.

The domain state model for EB systems is a well-established model which was used for

the explanation of the EB phenomenology. In this thesis, the domain state model is used

for the explanation and investigation of the training effect studying the effects of many

parameters of the system. Special attention was given to the AFM interface layer and

especially in the behavior of its spins. A direct connection of the behavior of these spins

with the training effect of the EB quantities was successfully established. The model was

further extrapolated using new characteristics, making it more realistic. The use of different

kinds of anisotropies beyond uniaxial, the introduction of interface roughness and the use

of different crystallographic structures beyond sc are some of them.

The current model can further developed and more characteristics, that are found in

realistic systems, should be included. The latest extrapolation of the model is the use

of “ab-initio” techniques for the calculation of the exchange integrals of the EB system.

The calculated exchange integrals can then be used in the domain state model. Different

EB structures should be also investigated such as core-shell nanoparticles and thin film

granular systems. Granular systems are quite numerous and many models were developed

using intergranular coupling. It is important to develop multiscale models for granular

systems, using atomistic calculations for the interior of the grain but also including some
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integranoular exchange. Also, different shapes of the grains were used considering some

randomness on that, like squares with dilution, elliptical with different quadrant radius,

Voronoi shapes etc. The use of these characteristics in calculations of the training effect

will further enhance our knowledge about the stability and aging effects of EB systems.
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Appendix A

Heat-Bath Monte Carlo

For the minimisation of the energy of the system, this thesis uses the heat-bath Monte

Carlo method. In general, Monte-Carlo methods are well established in the context of

equilibrium thermodynamics [141]. Contrary to the Langevin dynamics approach, where

the evolution of the system can easily correlated with the real time, Monte-Carlo methods

are not correlated with the real time, but represent states of the system at thermodynamic

equilibrium. Thus, in a Monte-Carlo simulation no precession of magnetic moments is

observed, but the random-walk like motion of the moments which is due to the coupling

to the heat bath.

The Monte-Carlo algorithm begins with selecting randomly a single spin form the lattice

randomly and a trial step is made in this spin. Then, the energy difference of the system

is calculated according to the Hamiltonian of the system. Thus, this trial step is accepted

with probability:

PS→S′ =
1

1 + exp(E(S′)−E(S)
kBT

)
(A.1)

where S and S
′ is the spin before and after the trial step, respectively, E the calculated

energy and T the temperature of the system. When a series of random trial steps is

attempted once per spin, scanning the whole lattice, then a Monte-Carlo step is completed.

The Monte-Carlo step defines the quasi-time scale of the simulation.

The trial step is very important for the efficiency of the algorithm as well as for the

physical interpretation of the dynamic behavior of the algorithm. E.g. in an Ising model

the trial step is a spin-flip, but in a Heisenberg model there are an infinite number of

degrees of freedom for the trial step. In the current investigation we use as a trial step to

be chosen from an uniform distribution in a sphere radius R from the initial position[142],

as shown in Fig. A.1. The selection of this step must fulfill two conditions: firstly the

time averages must yield identical results as ensemble averages, according to ergodicity.

Secondly, the trial step must by symmetrical to its reverse process. Here, for the selection

random vectors on a sphere with constant probability distribution, Marsaglia algorithm

[143] was used. Firstly a random vector is chosen with constant probability distribution

inside a sphere of radius R by use of the rejection method of Marsaglia algorithm. Then,

this random vector is added to the initial spin. Finally, the resulting spin is normalized.
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The R for FM and AFM materials can be significantly differ, so a test before choosing it,

is needed.

Figure A.1: Schematic representation of the selection of the new spin for the trial step
in a Monte-Carlo step. The spin S attempts to move inside a sphere of radius R around
its initial position, resulting the new spin S

′.
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Appendix B

Nomenclature

θ~SFM , θ~SAFM Angle of the FM and AFM spin

HCF Coercive field of hysteresis loop

HCool Cooling magnetic field

Mirr,Mrev Irreversible and reversible antiferromagnetic magnetization on the in-

terface

MS.B.S. Magnetization of stable spins in the bulk

MS.I.S. Magnetization of stable interfacial spins

α, α1, α2, αi Angle of the total, two sublattices and ith grain AFM magnetization

from the AFM easy axis

β, βi Angle of the total and ith layer FM magnetization from the FM easy

axis

B Magnetic field vector

F Total angular momentum of atom

I Angular momentum of nucleus

J Atomic angular momentum

L Orbital angular momentum of electron

MAFM,M
+
AFM Total and positive sublattice antiferromagnetic magnetization

MS Saturation magnetization

Si Spin vector of the ith site of the ferromagnet

χ
(2)
AFM Second approximation for AFM susceptibility

ǫi Dilution index for ith site
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γ Chapter 2: Angle between FM and AFM easy axis, Chapter 5: Re-

cursive sequence fit parameter

h̄ Planck constant

λ Interface exchange ratio

µ Anisotropy ratio

µo Bohr magneton

θ Angle between magnetic field and the FM easy axis

ξ Distance between AFM and FM

Ai Area of ith grain

A12 Antiferromagnetic exchange stiffness at the interface

AAFM Antiferromagnetic exchange stiffness in the bulk

ci Contact fraction of ith grain

DHeb,∆Heb Difference between power law and 1st hysteresis loop EB field, nor-

malized

dx, KFM , Ka Ferromagnetic (uniaxial) anisotropy constant for easy axis

dz Ferromagnetic anisotropy constant for hard axis

g Landé factor

HC+ Positive coercive field

HC− Negative coercive field

Hc Coercivity

Heb Exchange bias field

H1
eb, H

m
eb Exchange bias field of the first hysteresis loop and mean value of the

nine subsequent loops.

Heeb, H
e−rs
eb Equilibrium exchange bias field of power law and recursive sequence

fit

j Quantum number of atom
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JAFM Antiferromagnetic exchange interaction integral

JFM Ferromagnetic exchange interaction integral

JINT, J
eff
INT Interface exchange interaction (effective) integral between AFM and

FM

k, κ Power law fit parameter, normalized

kB, kb Boltzmann constant

Kd Unidirectional anisotropy constant for easy axis

kx, KAFM Antiferromagnetic anisotropy constant for easy axis

K1b Biaxial anisotropy constant for easy axes

K1c Cubic anisotropy constant for easy axes

K1u, K2u First and second order uniaxial anisotropy constant for easy axis

KeffSG Effective spin glass anisotropy in the AFM interface

KS Shape anisotropy constant

l Quantum number of orbital angular momentum of electron

mj Atomic magnetic momentum

ms Spin quantum number of electron

MFM ,Mi Total and ith layer FM magnetization

N Number of atomic sites, number of hysteresis loop

n Principal quantum number of electron

p AFM dilution with non-magnetic defects

R Chapter 3: Trial step radius, Chapter 7: AFM/FM mixing factor

s Spin angular momentum of electron

TB Blocking temperature of an exchange bias system

TC Curie temperature of a ferromagnet

TI Initial temperature of the cooling process
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TN Néel temperature of an antiferromagnet

tAFM Antiferromagnetic sample thickness

tFM Ferromagnetic sample thickness

VFM FM Volume

z Degree of interface roughness

H, H Magnetic field strength vector and amplitude

M,M Magnetization vector and amplitude inside a material

AFM Antiferromagnet/Antiferromagnetic

AMR Anisotropic Magnetoresistance

bcc Body-centered cubic

EB Exchange bias

fcc Face-centered cubic

FM Ferromagnet/Ferromagnetic

GMR Giant Magnetoresistance

hcp Hexagonal close packed

MRAM Magnetic random access memory

RKKY Indirect exchange or Ruderman, Kittel, Kasuya, Yosida interaction

SQUID Semiconductor quantum interference device

TMR Tunnel Magnetoresistance

σi Spin vector of the ith site of the ferromagnet
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