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ABSTRACT 

During the Miocene, the Earth's climate transitioned from an extended phase of 

global warmth (Miocene climatic optimum) into a colder mode with the establishment 

of a permanent and stable East Antarctic Ice Sheet (EAIS). The mechanisms which 

drove this extreme climate shift are still poorly understood, because continuous, well-

dated Miocene sedimentary archives are still scarce. Reliable sea surface temperature 

estimates are crucial to any reconstruction and modelling of past ocean salinity and 

density, water column stratification, thermohaline circulation, and ice volume. Despite 

extensive studies of benthic foraminifera, existing planktonic foraminiferal records for 

this interval are extremely scarce and of low resolution. Consequently, the impact of 

global warming and cooling on tropical surface waters and the propagation of orbital 

cycles in the Earth System are unknown. 

The overarching aim of this thesis is to investigate the nature and variability of 

early-middle Miocene climate and the relationship to orbital variations in solar 

insolation, in order to better understand the extent and magnitude of the global middle 

Miocene Climate Transition (MMCT) and the subsequent cooling/EAIS events. 

Furthermore, this study aims to investigate changes in the thermal structure of the 

Pacific Ocean during the development of MMCT to examine Pacific Ocean circulation 

across the middle Miocene climatic events.  

This is achieved through high resolution planktonic foraminiferal stable isotope 

analysis, spectral analysis and wavelet transform analysis. The first ever high-resolution 

(3 kyr) astronomically-tuned record of δ
18

O and δ
13

C from planktonic foraminifera for 

the eastern equatorial Pacific Ocean (15.56–13.35 Myr) is presented here. These data 

provide vital new information on sea surface temperatures and primary productivity 

changes at the tropics during the middle Miocene, at a resolution not achieved in any 

previous study, which sheds new light on the extent and magnitude of the MMCT and 

associated carbon-isotope excursion. In order to assess the reliability of these new 

records this thesis also goes on to document the taxonomy and palaeobiology of 

Miocene tropical planktonic foraminifera and their response to times of climatic stress. 

Finally the data from Site U1338 is compared to Site 1146 in the western equatorial 

Pacific Ocean, to reconstruct bottom and surface water conditions and changes in ocean 

dynamics across the equatorial Pacific during this highly complex interval of climate 

history. 
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Sphearoidinellopsis disjuncta, 5 Praeorbulina sp., 6 Globigerinoides subquadratus, 7 

Turborotalita sp. 

PLATE 22. Dentooglobigerina sp. from the Cipero Fm; test broken to reveal internal 

wall structure. 

PLATE 23. Dentooglobigerina sp. from the Brasso Fm; test broken to reveal internal 

wall structure. 
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1. Introduction 
 

1.1 Rationale 

Despite recent advances in our understanding of Miocene climate some fairly 

significant gaps persist. Reliable seawater temperature estimates are crucial to any 

reconstruction and modelling of past ocean salinity and density, water column 

stratification, thermohaline circulation, and ice volume (Bemis et al., 1998). A primary 

measure of (past) ocean water temperatures lies in the chemical analysis of calcite shells 

of marine organisms called foraminifera. Foraminifera are single-celled protists that 

secrete calcium carbonate shells; the chemistry of these calcite shells provides 

information about the chemical and physical conditions in which they grew (Murray, 

1995).  

This thesis applies a range of geochemical palaeoceanographic proxies to 

planktonic foraminifera of middle Miocene age (15.6–13.3 Ma) including stable isotope 

and trace metal analysis. The ratio of oxygen isotopes (δ
18

O) in biogenic calcite is 

perhaps the best established geochemical proxy for quantifying climate change 

throughout the Cenozoic and is utilised in the following chapters to investigate changes 

in sea surface temperatures and global ice volume at a resolution never approached 

before. There are many detailed benthic foraminiferal isotope records for the Miocene 

(Billups and Schrag, 2002; Holbourn et al., 2007; Lear et al., 2010) which provide 

insight to deep water conditions and high latitudes. However, research into the 

planktonic foraminiferal isotope record and conditions at the tropics over this interval 

are extremely scarce. Existing records are of low resolution with samples representing 

time intervals of 2x10
5
and 5x10

5
 years (e.g., Gasperi & Kennett 1993). Therefore at 

present we cannot ascertain whether deep ocean and surface ocean waters warmed at the 

same rate or magnitude which is critical to understanding forcing and feedback in the 

Earth system.  

The sediments recovered by Integrated Ocean Drilling Program (IODP) 

Expedition 320/321 at Site U1338 provide the opportunity to document climate 

variability from a planktonic foraminiferal perspective in the early to middle Miocene 

for the first time at an eastern equatorial Pacific Site. The aim of this study is threefold; 

firstly to produce the first ever detailed multispecies record of planktonic foraminiferal 

geochemistry in the early to middle Miocene and provide constraints on the surface to 

benthic δ
13

C and δ
18

O gradient through a major climatic cooling interval. Secondly, to 
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investigate the influence of orbital variations on Miocene climate through a combination 

of spectral and wavelet analyses, and thirdly, to examine planktonic foraminiferal 

evolution during times of climatic stress. 

 

1.2 Biological characteristics of the foraminifera 

Foraminifera are an important order of unicellular protists, which secrete calcium 

carbonate shells and inhabit marine environments from tropical to polar latitudes (Bé, 

1977; Hemleben et al., 1989). Foraminifera differ from other eukaryotes because they 

possess granular and reticulose (netlike) pseudopodia; fibrillar extensions used for 

feeding which emanate from the ectoplasm that engulfs the test.  

The planktonic taxa are members of the zooplankton and live free-floating in the 

water column, with the greatest concentration of species and individuals in the upper 

100-150 m. Many species living within the photic zone host photosynthesising algal 

symbionts (Hemleben et al, 1989), whilst others predate on larval arthropods and other 

plankton. Those specialised for living at depth typically graze on sinking phytodetritus.  

The tests, which can have one or more chambers, have very diverse 

morphologies with varying degrees of ornamentation. Traditionally, classification of 

foraminifera has been based primarily on characteristics of the shell or test. Wall 

composition and structure, chamber shape and arrangement, the shape and position of 

any apertures, surface ornamentation and other morphologic features of the shell are all 

used to define taxonomic groups of foraminifera (Hemleben et al., 1989). 

 

1.3 The use of planktonic foraminifera as indicators of past 

environmental conditions and climatic change 

When planktonic foraminifera die their calcitic shells slowly sink in the water column 

forming a component of “marine snow” (Bishop et al., 1977; Wefer et al., 1982), which 

settles on the seabed forming a layer of sediment in which the shells eventually become 

fossilised. The steady accumulation of such sediments, particularly in stable settings, 

makes it common for millions of years of evolutionary history to be captured in a single 

location and for morphospecies to be preserved continuously throughout their existence 

(Aze et al., 2011). It is this continuous and exceptional fossil record that has afforded 

planktonic foraminifera great utility in reconstructing past climate, ecological conditions 
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and geological history (Berger, 1979; Boersma et al., 1987; CLIMAP, 1976; Ruddiman 

et al., 1986; Vincent et al., 1981). 

Planktonic foraminifera have often been used as biostratigraphic markers 

(Leckie et al., 1993; Wade et al., 2011) or to provide geochemical proxies of oceanic 

and atmospheric temperatures and chemistry. Shell chemical composition, particularly 

stable isotopes (e.g. the ratio of 
18

O/
16

O), is also widely employed to estimate water 

temperatures where the planktonic foraminifers grew (Anderson and Arthur, 1983; 

Berger, 1979; Hemleben, 1989; Vincent et al., 1981). When calcification of 

foraminiferal shells occurs the relative amounts of the two isotopes incorporated is 

dependent on temperature, and thus the ratio of the common isotope 
16

O to the heavier 

isotope 
18

O may be used to estimate the water temperature at the time that the calcite of 

the shell was deposited. Carbon isotopic records are also of interest in 

palaeoclimatology because they provide information on water mass movement, 

palaeoproductivity and the temperature dependent air-sea exchange of CO2 (ventilation) 

(Lynch-Stieglitz et al., 1995). The δ
13

C in marine calcite is controlled by the dissolved 

inorganic carbon (DIC) of the seawater from which it precipitates (Keith and Webber, 

1964). Stable isotope and trace metal analysis of foraminiferal calcite has been used in 

the construction of long-term climate records that highlight important periods in the 

development of Earth’s climate system, such as the onset of glaciation at the Eocene- 

Oligocene transition approximately 34 Ma (Coxall et al., 2005). 

 

1.4 Miocene biotic and climatic changes 

1.4.1 Continental configuration and Orography  

By the Middle to Late Miocene the continental distributions were largely similar to the 

present day with the following exceptions; North and South America remained 

separated until the Pliocene, the Arctic Circle had greater landmass and the Paratethys 

Sea was still present in Europe. There was also more land in Southeast Asia, and in 

southern South America a seaway was present until ~9 Ma (Aceñolaza and 

Sprechmann, 2002; Markwick, 2007; Potter and Szarmari, 2009). 

All of the world’s major mountain ranges uplifted during the Middle Miocene 

with intensification after 10 Ma (Pound et al., 2012). The Tibetan Plateau and the 

Himalayas experienced rapid uplift during the Middle and Late Miocene as suggested 

by a dramatic increase in sedimentation into the Indian Ocean after 15 Ma (Potter and 

Szarmari, 2009; Rea, 1992). The mean maximum altitude of the region at 15 Ma is 
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estimated to be between 3775 m and 6570 m (Currie et al., 2005; Spicer et al., 2003). 

Between 16 and 14 Ma the alps reached 1600 to 3000 m above sea level and rose 

steadily to 2500–3500 m at around 8 Ma (Jiménez-Moreno et al., 2008; Kuhlemann et 

al., 2001). The Andes are also estimated to have had a steady uplift of 0.2–0.3 mm/year 

from around 1800 m at 10.7 Ma (Gregory-Wodzicki, 2000). 

1.4.2 Ocean circulation during the middle Miocene 

Plate tectonic developments during the Miocene gave rise to the modern oceanic 

currents. During the Paleogene, ocean circulation was dominated by a circum-equatorial 

current (Potter and Szatmari, 2009). Restriction of the Indonesian Gateway between 

Borneo and New Guinea, which connected the Pacific to the Indian Ocean, began 

during the latest Oligocene (~25 Ma) when the Australian tectonic plate collided with 

south east Asia (Hall et al., 2011). Benthic foraminiferal isotope records from the 

western Pacific, South China Sea and eastern Indian Ocean indicate this was closed to 

deep water exchange between the Pacific and Indian Oceans, and deep water movement 

along the circum-equatorial current was restricted by the end of the early Miocene 

(~15.97 Ma)  (Kuhnt et al., 2004; Potter and Szarmari, 2009).  

During the middle Miocene the connection between the Mediterranean Sea with 

the Indian Ocean was intermittent until the Arabian plate–Eurasian plate collision 

caused complete closure at 11–10 Ma (Allen and Armstrong, 2008; Potter and Szarmari, 

2009; Rögl, 1999). Finally, collision of North and South America at 12.8 Ma (Coates et 

al., 2004) resulted in the shallowing of the Central American Seaway (CAS) and 

restricted exchange between the Atlantic and Pacific Oceans until its final closure at 

3.5–2.7 Ma (Coates et al., 2004; Coates and Obando, 1996; Webb, 2006). This final 

closure shut down global equatorial flow and initiated the modern Gulf Stream current. 

In sum, the closure of low latitude gateways produced steeper pole-to-equator gradients 

leading to the world's present “conveyor belt” system of oceanic circulation (Potter and 

Szatmari, 2009). 

 

1.4.3 Miocene vegetation 

In the terrestrial record palaeobotanical changes from ~16 Ma to ~7 Ma and the 

expansion of grasslands are correlated to a drying of continental interiors and a global 

cooling of the planet, linked to falling atmospheric CO2 concentrations (Favre et al., 

2007; Pound et al., 2012; Utescher et al., 2007). At ~16 Ma there is evidence for a warm 
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biome distribution with greatly reduced desert regions, boreal – temperate mixed forests 

at the high northern latitudes, extensive subtropical to warm temperate mixed forests in 

the middle latitudes and tundra on Antarctica (Pound et al., 2012; Wolfe, 1985). 

Continental climates underwent major changes in the middle Miocene and by 

~13.8 Ma vegetation was no longer present on Antarctica (Wolfe, 1985). The warm 

temperate evergreen broadleaf and mixed forests were partly replaced by cooler and 

drier temperate biomes, suggesting significant cooling had occurred. During the late 

Miocene boreal forests and dryer vegetation types continued to expand, and major 

deserts began to appear. Increased aridity is inferred at this time for mid-latitude 

continental regions including Australia (Robert et al., 1986; Stein and Robert, 1986), 

Africa (Retallack, 1992), North America and South America (Pascual and Jaureguizar, 

1990) which may have fostered the development of grasses and the consequent 

evolution of grassland- adapted biota (Pound et al., 2012). 

 

1.5 Climate events 

The middle Miocene represents a time of major changes in the evolution of the Earth’s 

climate with major uplift of modern mountain chains, the origin of modern ocean 

currents, the overall cooling trend of the global climate and the reduction in atmospheric 

CO2 levels (Beerling, 2011; Potter and Szarmari, 2009; Zachos et al., 2008). The 

Earth’s climate changed from the warm Miocene Climate Optimum (17–15 Ma) to an 

interval of global climatic cooling between ~15 Ma and 13.7 Ma with an associated 

increase in the latitudinal temperature gradient. The rapid expansion of the East 

Antarctic Ice Sheet (EAIS) around 13.8 Ma, referred to as the Mi3 event in oxygen 

isotope records (Miller et al., 1991), is one of the major cooling steps in Cenozoic 

climate (Abels et al., 2005; Flower and Kennett, 1994; Holbourn et al., 2005; 2007; 

Shackleton and Kennett, 1975; Shevenell et al., 2004; Woodruff and Savin, 1991; 

Zachos et al., 2001).  

The cause of the middle Miocene cooling has been attributed to increased burial 

of organic carbon (e.g., Vincent and Berger, 1985) and weathering of silicate rocks due 

to uplift in the Himalayan-Tibetan region (e.g., Raymo and Ruddiman, 1992); both 

leading to the withdrawal of CO2 from the atmosphere and hence a reduction of the 

greenhouse capacity. However, existing CO2 reconstructions based on different proxies 

do not show convincing evidence for lower atmospheric CO2 values after or during 

middle Miocene cooling (Badger et al., 2013; Foster et al., 2012; Pagani et al., 1999; 
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Pearson and Palmer, 2000; Royer et al., 2001). Further, changes in ocean circulation 

patterns, for example, due to tectonic closure of basins, may have increased moisture 

transport or reduced heat transport to the Antarctic region (Shevenell et al., 2004). 

Additionally, orbital parameters may have played an important role in Cenozoic climate 

change by punctuating longer-term trends or by positive feedback mechanisms that 

pushed climate into a new state. The sequence of climate events and the processes 

which drove this profound climate transition are still poorly understood, because 

continuous, well-dated Miocene sedimentary archives and records of sea surface 

conditions are still extremely scarce. 

 

1.5.1 The Mid Miocene Climate Optimum 

The Middle Miocene Climate Optimum (MMCO) occurred at approximately 17 - 15 

Ma and was the warmest interval of the Neogene punctuating the overall cooling trend 

that has characterised the last 50 million years (Fig.1.1). The MMCO is associated with 

rapid global sea-level fluctuations during an interval of high eustatic levels (Haq et al., 

1987), terrestrial and marine faunal changes, and plate tectonic activity affecting global 

ocean currents. Flower and Kennett (1994) estimate that the MMCO was associated 

with a mid-latitude warming of about 6°C relative to the present. The warming of the 

climate during this period is suggested to be driven by tectonic and physical 

oceanographic changes rather than changes in CO2 (Holbourn et al., 2014; Shevenell et 

al., 2004). 

 

 

 

Figure 1. 1. Updated stacked deep-sea benthic foraminiferal oxygen isotope curve for 0–65 Ma. Updated 

from Zachos et al. (2008) and converted into Gradstein timescale (Gradstein et al., 2012). 
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1.5.2 Middle Miocene Climate Transition 

The Antarctic ice sheets are a major component of the Earth's climate system, strongly 

influencing ocean and atmospheric circulation. The expansion of the East Antarctic Ice 

Sheet (EAIS) and transition into cooler climates at around 13.9 Ma marks the Middle 

Miocene Climatic Transition (MMCT) which led to major environmental changes (e.g., 

Flower and Kennett, 1994; Zachos et al. 2001; Shevenell and Kennett, 2004).  

During the early to middle Miocene, benthic foraminiferal oxygen isotope 

records reveal several prominent positive excursions (Fig. 1.1) (Miller et al., 1991; 

1996; Woodruff and Savin, 1991) which reflect brief periods of increased glaciations. 

The Mi3a and Mi3b events defined by Miller et al. (1991) and Woodruff and Savin 

(1991), together mark the major shift in δ
18

O between ~14.1 and ~13.7 Ma (Abels et al., 

2005; Holbourn et al., 2005; Tian et al., 2013). However, because the δ
18

O of 

foraminiferal calcite (CaCO3) is a function of both seawater δ
18

O (δ
18

Osw) and the 

temperature of the waters in which the foraminifers calcify, fundamental questions 

remain concerning the magnitude and phasing of middle Miocene Antarctic ice growth 

and global cooling (Shevenell et al., 2008). The benthic foraminiferal carbon isotope 

record displays a shift to heavier δ
13

C values (the CM6 event) coincident with the Mi3b 

event (Holbourn et al., 2014; Woodruff and Savin, 1991).  

The MMCT has been  linked to variations in atmospheric CO2, the global carbon 

cycle, opening and closure of oceanic gateways and uplift of mountain ranges (Hay et 

al., 2002; Vincent and Berger, 1985), but to date no clear consensus on the exact cause 

has been reached. A further mechanism to explain the MMCT is a favourable orbital 

configuration (Holbourn et al., 2005; 2007). Like other major Cenozoic climate shifts 

the timing of the major cooling step is supposedly controlled by long-period orbital 

forcing (Abels et al., 2005; Holbourn et al., 2007). Minima in the amplitude variation of 

Earth’s tilt (obliquity) and minima in the ellipsoidal shape of the Earth’s orbit around 

the sun (eccentricity), which modulates the amplitude of climatic precession (the 

rotational movement of the Earth’s axis relative to the elliptical orbit), might have 

suppressed summer insolation maxima for a prolonged interval of time, thereby 

favouring ice sheet growth. However, orbital forcing alone cannot explain the long-term 

cooling trend from the MMCO onwards. 
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1.5.3 The Monterey Carbon Excursion 

The long-lasting positive “Monterey carbon-isotope excursion” between ~17 and 13.5 

Ma (Vincent and Berger, 1985) is a prominent feature in Miocene oceanic stable isotope 

records (Fig. 1. 2) (Woodruff and Savin, 1991). Bulk carbonate and benthic 

foraminiferal stable isotope records reveal that this prolonged δ
13

C excursion is 

characterised by low-frequency fluctuations (∼ 1‰) which appear to approximate long 

(400 kyr) eccentricity cycles (Holbourn et al., 2007; Woodruff and Savin, 1991). The 

apparent co-variance between δ
13

C and δ
18

O together with the large sedimentary 

deposits of organic rich carbon along the circum-Pacific margins and the phosphatic 

deposits of the south eastern U.S (Compton et al., 1990; 1993) gave support to the 

hypothesis that increased burial rates of organic carbon led to atmospheric CO2 

drawdown and global cooling in the middle Miocene via a series of positive feedback 

mechanisms (Flower and Kennett, 1993; Vincent and Berger, 1985) as the largest 

carbon isotope maxima (“CM6”(Woodruff and Savin, 1991)) immediately follows the 

major ice expansion event of the middle Miocene (“Mi-3”;(Miller et al., 1991)). The 

“Monterey Excursion” has also been linked to the tectonic uplift of the Himalaya 

mountain range and Tibetan Plateau as a result of enhanced chemical weathering of 

silicate minerals. This hypothesis is based on the monotonically increasing trend in the 

marine 
87

Sr/
86

Sr record through the Neogene, and increased marine productivity due to 

excess influx of nutrients into oceans and the subsequent organic carbon burial (Raymo 

and Ruddiman, 1992; Raymo, 1994; Raymo et al., 1988). 

Alternatively, it has been suggested that carbon isotope maxima associated with 

glacial transitions may be evidence of a negative feedback in the climate system 

(Shevenell et al., 2008). Under this scenario, ice sheet expansion blankets an area of 

silicate basement that was previously a sink for atmospheric CO2
 
via silicate weathering 

(Pagani et al., 1999; Shevenell et al., 2008; Tian et al., 2009). Thus, resulting in a 

positive carbon isotope excursion by lowering buried organic matter δ
13

C values 

through increased photosynthetic isotopic fractionation due to higher concentrations of 

dissolved carbon dioxide. However, these scenarios involve opposite changes in 

atmospheric CO2 concentration.  

While an alkenone based CO2 record displays little variation through this 

interval (Pagani et al., 2009), boron isotope ratios and a leaf stomatal record do point to 

a decrease in CO2 at the MMCT (Badger et al., 2013; Kürschner and Kvacek, 2009; 
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Pearson and Palmer, 2000). pCO2 levels for the middle Miocene are discussed further in 

the following section. 

 

 

 

Figure 1. 2. Updated Cenozoic stacked deep-sea benthic foraminiferal carbon isotope curve for 0–65 Ma. 

Updated from Zachos et al. (2008) and converted into the Gradstein timescale. (Gradstein et al., 2012). 
Figure 1 

1.6 Mechanisms for Miocene cooling 

1.6.1 Atmospheric pCO2 

Miocene pCO2 levels have been reconstructed using numerous techniques and each 

differs in both atmospheric concentration and in trend through time. Estimates of 

Middle Miocene pCO2 based on alkenones (Pagani et al., 2005), boron isotopes 

(Pearson and Palmer, 2000), the B/Ca ratio of planktonic foraminifera (Tripati et al., 

2009), pedogenic carbonates (Ekart et al., 1999; Retallack, 2009) and stomatal indices 

(Beerling et al., 2009; 2008; Stults et al., 2011; Wagner et al., 1996) range from glacial 

levels to nearly twice the modern value (Henrot et al., 2010).  

On the basis of stomatal indices from fossil leaves, Royer et al. (2001) and 

Kürschner et al. (2008) estimate mean mid-Miocene atmospheric pCO2 concentrations 

ranging from 270 to 564 ppmv with a peak at ~16 Ma of between 460 and 564 ppmv. In 

contrast, reconstructions based on marine pCO2 proxy records indicate much lower 

values through the middle Miocene. For example, the alkenone based reconstructions 

place atmospheric pCO2 levels between 190 and 360 ppmv reaching a peak at around 6–

7 Ma of approximately 360 ppmv, while atmospheric pCO2 concentrations 

reconstructed from boron isotopic ratios of planktonic foraminiferal shells show a range 

from 137 to 305 ppmv with a peak in pCO2 at ~16 Ma and ~6 Ma (Pearson and Palmer, 

2000). The B/Ca ratio of planktonic foraminifera shows a peak of 433 ppmv at 15 Ma 
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which then drops to concentrations of between 206 and 304 ppmv by 10 Ma (Tripati et 

al., 2009).  

A number of models have attempted to test the sensitivity of the climate system 

to changes in the atmospheric CO2 level and other variables during the Miocene. These 

models show that an increase in pCO2 levels results in greater warming at high latitudes 

(Henrot et al., 2010; Tong et al., 2009; You, 2010). Simulations run by Henrot et al. 

(2010) revealed that a warmer climate at both high and low latitudes during the middle 

Miocene can only be achieved with CO2 levels higher than present, and that warm and 

humid conditions might have been maintained and intensified by changes in vegetation 

cover (Henrot et al., 2010). Modelling experiments by You (2010) over the MMCO 

showed that northern and southern polar temperatures are driven by different 

mechanisms. The model also supports the hypothesis that higher than modern CO2 

levels were necessary to cause the global temperature rise during the MMCO. 

 Overall, the time scales on which CO2 drawdown and climate change occurred, 

as well as the locations of major carbon sinks in the Miocene, remain unclear (Holbourn 

et al., 2013). The low CO2 estimates have led to disagreements over how much Miocene 

climate was influenced by this greenhouse gas and raises the possibility of a CO2-

temperature decoupling during other times in Earth history (Kürschner et al., 2008; 

Mosbrugger et al., 2005; Pagani et al., 2005; Shevenell et al., 2004).  

 

1.6.2 Ocean Circulation 

In the absence of pCO2 control on the middle Miocene global climate variability, 

changes in oceanic heat and atmospheric water vapour transport driven by changes in 

ocean gateway configurations are considered to have played important roles (Pagani et 

al., 1999; Zachos et al., 2001). 

Changes in ocean circulation patterns are considered to be an important factor in 

controlling the global climate and have been hypothesised as another potential cause of 

middle Miocene cooling and Antarctic Ice Sheet growth. In 1980, Schnitker argued that 

subsidence of  Iceland/the Faeroe Ridge accelerated Antarctic cryosphere expansion by 

increasing moisture flux to Antarctica via increased production and circum-Antarctic 

upwelling of warm, saline Northern Component Water (NCW; Analogous to North 

Atlantic Deep Water). It has also been suggested that closure of the Indonesian Seaway 

in the western equatorial Pacific triggered intensification of gyral circulation and 

western boundary currents resulting in northward migration of tropical planktonic 
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foraminiferal assemblages into the north-west Pacific in the middle Miocene (Kennett et 

al., 1985), although the timing of such events is ambiguous.  

Alternatively, Woodruff and Savin (1989, 1991) suggested that, prior to 14 Ma, 

global thermohaline circulation was controlled by influx of relatively warm, Tethyan-

Indian Saline Water to the Indian Ocean, transporting heat from low-latitudes to the 

Southern Ocean intermediate waters. They proposed that the closure of the Tethys 

seaway, linking the Atlantic and the Indian Ocean, could have decreased meridional 

heat transport to high southern latitudes. Thus, allowing cooling of Antarctic surface 

waters and expansion of the EAIS (Flower and Kennett, 1995; Ramsay et al., 1998). 

However, a direct relationship between the MMCT and the closure of the Tethys 

seaway has so far not been proven (e.g. Hüsing, 2008; Smart et al., 2007).  

The lack of datable sediments and complex processes involved in the 

convergence of the Eurasian and Arabian plates have complicated attempts to date the 

closure accurately, and the precise timing of the closure of the Tethys seaway remains 

elusive. Estimates range from the late Oligocene to the late Miocene, however, mammal 

migrations from ~18 Ma onwards suggest that the connection was closed well before 

the onset of the MMCT (Rögl, 1999; Wessels, 2009). An alternative group of 

hypotheses focuses on orbital variations as drivers of climatic change. 

 

1.6.3 Milankovitch cycles 

The external insolation forcing controlled by the shape of the Earth’s orbit (eccentricity) 

(Fig. 1.3), the tilt of its axis (obliquity) (Fig. 1.4) and the direction of its axis 

(precession) (Fig 1.5) has played an important role in regulating global climate changes. 

These orbital perturbations are named after the Serbian mathematician, Mulitin 

Milankovitch, who used them to explain the advance and retreat of polar ice caps.  

A few studies have revealed the astronomical imprints from the obliquity (40 

kyr) and eccentricity (100 kyr and 400 kyr) cycles in the middle Miocene deep sea 

benthic foraminiferal δ
18

O and δ
13

C (Holbourn et al., 2005, 2007, 2013; Shevenell et al., 

2004; Tian et al., 2013). Some modelling results also highlight the dominant long 

eccentricity (400 kyr) forcing on the middle Miocene climate change (DeConto and 

Pollard, 2003; Ma et al., 2011). However, prior to this study, astronomical cyclicity had 

not been examined in Miocene planktonic foraminiferal records from the open ocean, 

thus, demonstrating this study’s original contribution to our understanding of Miocene 

climate. 
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1.6.3.1 Eccentricity 

Eccentricity e is a measure of how elliptical an orbit is (Milankovitch, 1941). It is the 

only orbital parameter that controls the total amount of solar radiation received by the 

Earth when averaged over the course of one year. A planet’s closest approach to the sun 

is called the perihelion (p) and the furthest distance is the aphelion (a) (Fig. 1.3). The 

eccentricity is a measure of how different these are; 

 

Eq.1.1       

e = (a-p) / (a+p) 

 

When e = 0, the orbit is circular. As e gets close to 1, the orbit becomes more elongated. 

The eccentricity for the orbit of the Earth varies from a minimum of e = 0.0005 to a 

maximum of e = 0.0607. The larger the eccentricity, the greater the difference in solar 

radiation that reaches the Earth at the perihelion versus aphelion. At its current value of 

e = 0.017, given by the astronomical calculation of Laskar et al. (2004), this difference 

is 6.7%. It is thought that, over the long term, the changes in eccentricity can affect the 

Earth’s climate through modulation of the precession cycle.  

 

 

3 

Figure 1. 3. The orbit of the Earth is shown here in a simplified perspective drawing. The horizontal grey 

plane contains the Earth's orbital plane at an arbitrary date and comprises the reference plane. 

Abbreviations are: prec., general precession (wobble) of the Earth's rotational axis; obliq., obliquity of the 

Earth's axis (tilt); I, inclination of the plane of the Earth's orbit relative to the reference frame; P, point of 

perihelion. Inset: Earth’s orbital eccentricity from 0–400kyr. 
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The eccentricity of the Earth’s orbit follows a long 400,000 year cycle, with additional 

“short” eccentricity cycles with periods clustered around ~96 and ~127 kyr. These arise 

mainly from the interactions of the planets Venus and Jupiter due to their close 

approach and large mass, respectively. This component is called the “long” eccentricity 

cycle, and of all of Earth’s orbital frequencies it is considered to be the most stable. 

 

1.6.3.2 Obliquity 

Obliquity refers to the tilt of the Earth’s axis relative to the plane of its orbit, which 

follows a ~40,000 year cycle (Berger, 1988). The obliquity varies from a minimum of 

22.1 degrees to a maximum of 24.5 degrees (Fig. 1. 4). The present day obliquity is 

approximately 23.45 degrees. The main climatic effect of variations in the Earth’s 

obliquity is its control of the seasonal contrast. While the total annual energy received 

on Earth is not affected, the obliquity controls the distribution of heat as a function of 

latitude and is strongest at high latitudes. 

 

 

2 

Figure 1. 4. Schematic diagram of the 22.1–24.5° range of the Earth’s obliquity (not to scale). Inset: 

Earth’s obliquity from 0–400kyr. 
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1.6.3.3 Precession 

The precession of the equinoxes occurs as a result of the torque exerted on the solid 

Earth, which has the shape of an oblate spheroid, by the moon and the sun. Of the 

secular motions associated with the Earth's orbit, the interpretation of precession is the 

most complex. Precession changes the direction of tilt of the Earth’s axis relative to its 

aphelion and perihelion (Fig. 1. 5). Currently the Northern Hemisphere experiences 

winter when the Earth is closest to the sun, as opposed to 13,000 years ago when winter 

occurred in the Northern Hemisphere when it was furthest from the sun. Since most of 

the Earth’s land mass is in the Northern hemisphere, these changes are believed to have 

an effect on the accumulation of ice and snow at the poles and may play a role in the 

Earth’s long term climatic cycles and ice ages (Berger, 1988). 

With respect to the stars, the precessional movement of the Earth’s spin axis 

traces out a cone with a period of ~25.8 kyr. However, due to the precession of the 

perihelion within the orbital plane, the period of precession, measured with respect to 

the Sun and the seasons, is shorter. The motion of the perihelion is not steady but 

caused by a superposition of the different frequencies. For this reason the precession of 

the equinoxes with respect to the orbital plane lurches with a superposition of three 

periods around ~19 kyr, 22 kyr and 24 kyr. 

 

 

 

Figure 1. 5. Schematic diagram of procession of the equinoxes (not to scale). Inset: Earth’s precession 

from 0–400 kyr. 

3 
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Recent research by Holbourn et al. (2013) describes three distinct climate phases 

with different imprints of orbital variations in the middle Miocene benthic foraminiferal 

stable isotope records of the West Pacific Ocean (Sites 1146 and 1237 δ
18

O, δ
13

C; 1237 

XRF Fe, fraction 63μm). Firstly, during the MMCO (prior to 14.7 Ma) benthic 

foraminiferal oxygen isotope records are characterised by minimum ice volume and 

prominent 100 and 400 kyr variability. Then prior to the MMCT (14.7 to 13.9 Ma), 40 

kyr obliquity cycles dominate the isotope records and appear to be driving long term 

cooling. Finally, after 13.9 Ma the Earth enters “Ice house” conditions (Holbourn et al., 

2005) with distinct 100 kyr variability and improved ventilation of the deep Pacific. The 

benthic foraminiferal carbon data consists overall of nine 400 kyr cycles over the 

“Monterey” carbon-isotope excursion (16.9–13.5 Ma) which show high coherence with 

the long eccentricity period. Superposed on these low-frequency variations are 100 kyr 

oscillations which closely track the amplitude modulation of the short eccentricity 

period. These results suggest that eccentricity was driving middle Miocene climate 

evolution through the modulation of long-term carbon budgets, and that obliquity-paced 

changes in high-latitude seasonality created favourable conditions for ice growth and 

hence global cooling. 

 

1.7 Aims of this study 

The overarching aim of this thesis is to investigate the nature and variability of early-

middle Miocene climate and the relationship to orbital variations in solar insolation, in 

order to better understand the extent and magnitude of the global MMCT and the 

subsequent cooling/EAIS events. 

Furthermore, this study aims to investigate changes in the thermal structure of 

the Pacific Ocean during the development of MMCT to examine Pacific Ocean 

circulation across the middle Miocene climatic events. This is achieved through high 

resolution planktonic foraminiferal stable isotope analysis, spectral analysis and wavelet 

transform analysis. In order to assess the reliability of these new records this thesis also 

goes on to document the taxonomy and palaeobiology of Miocene tropical planktonic 

foraminifera and their response to times of climatic stress. 

 

1.8 Thesis layout 

Chapter 1: Sets out the current understanding of both the proxies and the climatic 

events that are the focus of this study. 
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Chapter 2: Includes detailed explanations of the core material, sample selection, 

geochemical analyses, numerical analyses, and also cleaning methods in order to avoid 

any undue repetition in the following Chapters.  

Chapter 3: Presents an overview of the planktonic foraminiferal taxonomy of Site 

U1338, and includes 20 plates of high resolution scanning electron microscope images. 

The taxonomy of planktonic foraminifera is the foundation for understanding 

palaeoclimate proxy measurements. To reconstruct Miocene palaeoclimate records with 

any certainty, planktonic foraminifera must be studied at the species level. In this 

section the preservation of the foraminifera and their suitability for geochemical 

analysis are discussed.  

Key questions addressed: 

(Q. 1) What is the state of planktonic foraminiferal preservation at Site U1338? 

 

Chapter 4: Presents a high resolution (3 kyr) planktonic foraminiferal δ
18

O and δ
13

C 

record spanning the period of 15.6–13.3 Ma from IODP Site U1338 in the eastern 

equatorial Pacific Ocean, in addition to the first planktonic foraminiferal record of trace 

metal ratios for this interval. Separation of the components of the δ
18

O signal is required 

to improve understanding of the processes and feedbacks involved in this dynamic 

climate reorganization. Therefore, in this chapter Mg/Ca ratios are used as a 

palaeotemperature proxy to provide an independent temperature record necessary to 

reveal the ice volume component of the middle Miocene δ
18

O signal. 

 This Chapter further investigates the Middle Miocene astronomical imprints in 

the planktonic foraminiferal isotopic records and develops the discussions on the impact 

of orbital forcing on Miocene ice sheet expansion.  

Key questions addressed: 

(Q. 2) How does the timing and magnitude of stable isotope events in the 

planktonic foraminiferal record compare with the deep ocean? 

 (Q. 3) Were fluctuations in tropical surface water conditions driven by orbital 

forcing? 

 

Chapter 5: Examines the bioevents over the middle Miocene climate transition, paying 

particular attention to changes in coiling direction in Paragloborotalia siakensis, its use 
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as a biostratigraphic tool and the timing of this event in relation to changing surface 

water conditions in the Miocene Equatorial Pacific Ocean. This chapter presents 

multispecies stable isotope and Mg/Ca results, and investigates the palaeoecology of 

several species of planktonic foraminifera. 

 Key questions addressed: 

(Q. 4) What is the biotic response to inferred major shifts in ice volume during 

the middle Miocene? 

(Q. 5) What are the key bioevents during the middle Miocene? 

 

Chapter 6: Examines changes at Site U1338 in the context of the global ocean, 

discusses the data in terms of implications for the global climate across the MMCT, and 

goes on to question the validity of the “Permanent El Nino” hypothesis (Watanabe et 

al., 2011). The planktonic and benthic (Holbourn et al., 2013) δ
18

O and δ
13

C records of 

IODP Site U1338 are compared with previously published records from ODP Site 1146 

from the South China Sea (Holbourn et al., 2007). Their significance within the context 

of palaeoclimate research is discussed and a new model for middle Miocene Pacific 

Ocean dynamics is proposed.  

Key questions addressed: 

(Q. 6) To what extent was there and east west temperature contrast in the 

Miocene equatorial Pacific Ocean? 

(Q. 7) What are the implications of east-west temperature contrasts across the 

equatorial Pacific Ocean? 

 

Chapter 7: Summarises the key conclusions from this research and identifies future 

work. 
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2. Methodology 
 

In the course of this PhD I have used a number of different analytical methods. Some of 

these techniques are applicable to more than one science chapter, while others are only 

relevant to one. To avoid undue repetition between chapters all of the analytical 

methods are presented here. 

 

2.1 Site locations  

2.1.1 IODP Site U1338 

This study is based on Miocene marine sediments recovered at IODP Site U1338 

(2°30.4699N, 117°58.1789W, 4200 m water depth) in the equatorial Pacific Ocean (Fig. 

2.1). Four holes (A–D) were drilled at Site U1338 on 18 Ma crust using the APC/XCB 

coring systems. A 415 m thick succession of biogenic carbonate sediments of early 

Miocene–Recent age was recovered with high sedimentation rates averaging 30 m/Myr 

(Lyle et al., 2009). The sediments are divided into four major lithological units; Unit I 

(~50 m mcd (meters composite depth); middle Pliocene to Pleistocene) consists of an 

alternating sequence of multi-coloured nannofossil ooze, diatom nannofossil ooze, and 

radiolarian nannofossil ooze; Unit II (~194m thick; upper Miocene to middle Pliocene) 

is mainly composed of light green and light grey nannofossil ooze with varying amounts 

of diatoms and radiolarians; Unit III (~171m thick; lower to upper Miocene) 

predominantly consists of white, pale yellow, and very pale brown nannofossil ooze and 

chalk, with generally low but sometimes common abundances of siliceous microfossils. 

Unit IV is composed of lower Miocene aphanitic basalt. 

 

2.1.2 ODP Site 1146 

In Chapter 7 the results of this study are compared to data collected by Holbourn et al. 

(2007) from Miocene marine sediments recovered at ODP Site 1146 (19° 27.40′N, 116° 

16.37′E; water depth: 2092 m, Fig. 2.1) in order to examine palaeoceanographic 

changes across the Pacific ocean. Detailed site locations, core recovery and lithological 

descriptions can be found in Wang et al. (2000). 

Coring with the Extended Core Barrel (XCB) system at Site 1146 recovered a 

continuous Miocene sequence of carbonate-rich hemipelagic sediments, which grade 

from unlithified green nannofossil clay in the lower Miocene to light brownish grey 

foraminifers and nannofossil clay in the upper Miocene (Wang et al., 2000). 
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Foraminifers and nannofossil clays were sampled at ∼10 cm intervals (∼4 kyr time 

resolution) in Hole 1146A (463.05–568.47 m below seafloor). 

 

 

 

Figure 2. 1 Map showing location of Integrated Ocean Drilling Program Site U1338 and ODP Site 1146. 

Map adapted from NOAA, larger version can be viewed in Appendix B. 

 

2.2 Sampling Strategy 

The samples used in this research are taken from an 80 m section of lower–middle 

Miocene sediments from 350–430 m composite depth (mcd) (Fig. 2. 2), following the 

shipboard splice of the B hole and the C Hole cores to ensure a complete and 

continuous sedimentary record. The transition from ooze to chalk occurs at 378 mcd. 

Core sample notation follows the standard IODP format, with designation for site, hole, 

core number, section number and centimetre interval. 

 

2.3 Sample preparation 

Sediment volumes of ~10 cc were collected at 10 cm intervals and washed with 

distilled/tap water over a 63 µm sieve; the residues were dried in an oven at 40°C. All 

samples (Appendix A, Table 1) were examined under a binocular light microscope. 

Species identifications of the planktonic foraminifera were generally made on the 315–

250 µm and 250–150 µm size fractions. The 150–63 µm fraction was scanned for 

distinctive taxa.  

Selected specimens were mounted on SEM stubs, coated with gold, and 

inspected in a FEI Quanta 650 SEM at the University of Leeds, UK. After imaging their 
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external surfaces at low and high resolution, several tests were broken using moderate 

pressure under a glass slide, and the fragments were used for the investigation of 

internal surfaces and test walls in cross-section. 

 

 

 

Figure 2. 2. Shipboard Lithostratigraphy summary, Site U1338. Biostratigraphic zones mainly based on 

Hole U1338A. Magnetostratigraphy represents a spliced record from all holes and is plotted relative to 

Core Composite depth below Sea Floor (CCSF-B) depth (Lyle et al., 2009). 

 

2.4 Age model 

The age model for the depth interval 350–425 mcd from the spliced section of Site 

U1338 was developed by Holbourn et al. (2014), by correlating the benthic 

foraminiferal δ
18

O record to computed variations of the Earth's orbit (Laskar et al. 

2004). An eccentricity-tilt-precession composite was constructed as a tuning target, with 

no phase shift and with equal weight of eccentricity and obliquity and only 1/3 

precession. The δ
18

O minima were correlated to eccentricity-tilt-precession maxima, 
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following a minimal tuning approach to preserve original spectral characteristics and 

avoid artificial changes in sedimentation rates (Muller and MacDonald, 2002).  

Astronomical tuning depends on an initial age model that constrains the time 

interval of the depth profile. The initial age model of Site U1338 is derived from 

planktonic foraminiferal datum events, nannofossil datum events, radiolarian datum 

events, and magnetostratigraphic events (Fig. 2. 2) (Lyle et al., 2009). Palaeomagnetic 

data from shipboard measurements of the natural remnant magnetisation (NRM) of the 

core archive-half sections shows the studied interval extends from Chron C5AAr (13.36 

Ma) to Chron C5Br (~15.2 Ma), however magnetostratgraphy below 400 mcd is 

unreliable (Pälike et al., 2010). This interval belongs to planktonic foraminiferal Zones 

N12–N5 of Kennett and Srinivasan (1983) and M9–M2 of Wade et al., (2011). The 

planktonic foraminiferal biostratigraphic zonation is discussed further in Chapter 5. 

The results of this study are plotted against the Holbourn et al., 2014 age model, 

as this allows direct comparison between the planktonic and benthic data sets, and the 

independently tuned Site U1338 isotope data correlate well with astronomically tuned 

δ
18

O and δ
13

C records from the southeast and northwest subtropical Pacific (Holbourn 

et al., 2007). 

 

2.5 Stable isotope mass spectrometry 

In Chapters 4 and 6, long term stable isotope records are reported across the middle 

Miocene (15.6–13.3 Ma). This section addresses the systematics of oxygen and carbon 

stable isotopes and how they were measured.  

 

2.5.1 Oxygen isotope systematics 

Oxygen has three stable isotopes: 
16

O (99.76%), 
17

O (0.04%) and 
18

O (0.20%) that 

occur naturally in Earth’s water and air. These isotopes share identical chemical 

characteristics as they contain the same number and arrangement of protons and 

electrons. However, they exhibit differing chemical-physical properties due to their 

difference in mass (due to varying numbers of neutrons) (Craig, 1957). 

Molecules consisting of light isotopes react more easily than those consisting of 

heavy isotopes. This is because the energy of a bond formed between lighter isotopes is 

weaker compared to heavier isotopes of the same element, and is therefore more likely 

to break when energy is applied. Seawater δ
18

O is directly linked with the hydrological 
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cycle, consisting of evaporation atmospheric vapour transport and return of freshwater 

to the ocean via precipitation and runoff, or ice sheet melting (Ruddiman, 2001).  

When seawater evaporates, the water vapour is enriched in 
16

O and the water left 

behind becomes enriched in 
18

O, this partitioning of isotopes between substances is 

called “fractionation”. The abundance of 
18

O compared to 
16

O is displayed in a ratio of 

the two isotopes and expressed as the following:  

 

 Eq. 2.1 

𝛿 𝑂 =18

(

 
 
(
𝑂18

𝑂16
)  𝑠𝑎𝑚𝑝𝑙𝑒 (

𝑂18

𝑂16
)  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

(
𝑂18

𝑂16
)  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

)

 
 
∗ 1000 

 

The oxygen isotope composition of foraminiferal calcite (δ
18

Ocarb) reflects the isotopic 

composition of the seawater at the time of calcification, which is primarily influenced 

by the ambient water temperature, global ice volume and local salinity (Craig, 1965).  

 

2.5.2 Oxygen isotope palaeothermometry 

Temperature and δ
18

O have an inverse relationship where a change in temperature of 

1ºC will give a ~0.23‰ change in the δ
18

O of the biogenic calcite (Bemis et al., 1998; 

Epstein and Mayeda, 1953). The relationship between temperature and the oxygen 

isotope composition of carbonate was first empirically derived by McCrea (1950): 

 

 Eq. 2.2 

 

𝑇(℃) = 𝑎 + 𝑏(𝛿18𝑂𝑐𝑎𝑟𝑏 − 𝛿
18𝑂𝑠𝑤) + 𝑐(𝛿

18𝑂𝑐𝑎𝑟𝑏 − 𝛿
18𝑂𝑠𝑤)

2 

 

Where T is temperature, δ
18

Ocarb the oxygen isotopic composition of the solid 

carbonate, δ
18

Osw the oxygen isotopic composition of the seawater in which the 

carbonate precipitated, and a, b and c empirically derived constants. These constants 

have been subsequently revised based on laboratory studies of biologically and 

inorganically precipitated CaCO3 (Bemis et al., 1998; Craig, 1965; Epstein and Mayeda, 

1953; Erez and Luz, 1983; Kim and O'Neil, 1997; O'Neil et al., 1969). The quadratic fit 

is based on theoretical predictions of the nature of isotopic fractionation at low vs. high 
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temperatures. Though, linear (c=0) and quadratic (c≠0) fits have proven to fit 

experimental data equally well at warm oceanic temperatures, within a precision of 

0.2°C (Erez and Luz, 1983). Standard errors of various palaeo-temperature equations 

are estimated to be ±0.4-0.7ºC (Ruddiman, 2001). However, during times of changing 

ice volume δ
18

Osw cannot easily be estimated, and an independent proxy is required for 

either temperature or ice volume in order to deconvolve the δ
18

O signal. Mg/Ca 

palaeothermometry provides one such method to test the accuracy of reconstructions 

(e.g. Lear et al., 2000). 

Planktonic foraminifera are known to be highly susceptible to post-depositional 

diagenetic alteration, which can significantly alter the geochemistry of the tests, and in 

turn, stable isotope measurements. In this study, a detailed analysis of the state of 

preservation and degree of recrystallization was conducted on Site U1338 planktonic 

foraminifera prior to geochemical analyses. This study found the state of preservation to 

be generally excellent, the results are discussed in detail in Chapter 3. 

 

2.5.3 Carbon isotopes systematics 

There are two stable isotopes of carbon, namely 
12

C (98.9%) and 
13

C (1.1%). As with 

oxygen, the carbon isotope ratio (δ
13

C) is calculated according to Equation 2.3 and 

reported against the VPDB standard as permil (‰). Carbon isotopic records from 

carbonates are of interest in palaeoclimatology because they provide information on 

how the carbon cycle functions (Emiliani, 1955). 

The δ
13

C in marine calcite is controlled by the dissolved inorganic carbon (DIC) 

of the sea water from which it precipitates (equation 2.4). The biological carbon pump 

redistributes DIC and nutrients within the ocean via the phytoplankton, which 

preferentially use 
12

C opposed to the heavier 
13

C during photosynthesis (Park and 

Epstein, 1960; Wefer et al., 1999). This fractionation leaves the surrounding water 

enriched in 
13

C and the organic matter enriched in 
12

C. As this material falls through the 

water column it is remineralised and leaves the deeper waters enriched in 
12

C relative to 

the depleted waters in the photic zone. As a result, surface waters tend to have high 
13

C 

values, whereas deep waters are generally low in 
13

C. Therefore, during periods of high-

productivity in the ocean surface waters, the 
13

C gradient from surface to deep 

increases. 
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Eq. 2.3 

 𝛿 𝐶 =13
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Eq. 2.4 

𝐷𝐼𝐶 = 𝐶𝑂2(𝑎𝑞) + 𝐻2𝐶𝑂3 + 𝐻𝐶𝑂3
− + 𝐶𝑂3

2− 

2.5.4 Mass spectrometry 

At the outset, δ
18

O and δ
13

C was measured on 10 to 12 shells of G. subquadratus from 

the >250 and >150 μm size fraction from 350 mcd until its extinction at 390 mcd. 

Analyses then continue with Globigerinoides spp until 425 mcd.  In few samples, where 

foraminiferal density was low, only 5–7 specimens were analysed. Analyses were made 

with a VG Optima mass spectrometer at the British Geological Survey (BGS), 

Keyworth, UK. When picking shells care was taken to exclude individuals with visible 

signs of dissolution such as broken or missing chambers and/or fragile shells, although 

preservation of specimens was generally excellent (Fox and Wade, 2013). The standard 

deviation of external measurements is ±0.07‰ and ±0.05‰ for δ
18

O and δ
13

C 

respectively. To examine the reproducibility of the results duplicate measurements were 

made on 35 samples (5%), which indicate mean reproducibility better than ±0.12‰ and 

±0.14‰ for δ
18

O and δ
13

C, respectively. All isotope data are reported as per mil on the 

VPDB scale by reference to an internal laboratory working standard Keyworth 

carbonate marble (KCM). Reproducibility was further estimated from repeat 

measurements of KCM and was <0.1‰. All taxa and isotopic measurements for the 

U1338 samples are listed in Appendix A. 

 

2.6 Trace metal/calcium ratio proxies in planktonic 

foraminifera 

2.6.1 Mg/Ca 

The elemental ratio of Mg to Ca in foraminiferal calcite is commonly used as a proxy 

for determining past ocean temperatures (Badger et al., 2013; Elderfield and Ganssen, 

2000; Evans and Müller, 2012; Lear et al., 2000; Nürnberg et al., 1996; Rosenthal et al., 

1997). The incorporation of Mg
2+

 into the calcite lattice of CaCO3 (by substituting for 
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the Ca
2+

 ion) is temperature dependent, i.e., requires energy in the form of heat for the 

reaction to proceed. Therefore with increasing water temperature, Mg content in calcite 

also increases (Chilingar, 1962; Katz, 1973). The temperature sensitivity of Mg uptake 

in foraminiferal calcite is in the order of 9% increase per 1°C rise in temperature 

(Elderfield and Ganssen, 2000; Lea et al., 1999; Nürnberg et al., 1996), but only 3% per 

1°C increase in inorganic carbonate (Katz, 1973). 

Since the δ
18

O value of planktonic foraminiferal calcite is controlled by both sea 

surface temperature and the isotopic composition of the ambient seawater  (δ
18

Osw) 

(Rohling and Cooke, 2003), Mg/Ca in the same biotic carrier can be used to subtract the 

temperature effect on δ
18

O in order to gain information on past sea water δ
18

O, which is 

directly related to variables like salinity and global continental ice volume (Elderfield 

and Ganssen, 2000; Groeneveld et al., 2008; Lear et al., 2000; Rosenthal et al., 2000). 

 

2.6.2 Sr/Ca 

Sr/Ca measurements are routinely obtained as a bi-product of Mg/Ca analysis and can 

be used to reconstruct long term changes in seawater Sr/Ca, reflecting relative changes 

in contributions from continental and hydrothermal sources (Graham et al., 1982; Lear 

et al., 2003), although other environmental factors such as seawater temperature, 

dissolution may also be important (Elderfield and Ganssen, 2000; Stoll and Schrag, 

1998; Stoll et al., 1999). 

 

2.6.3 Trace element cleaning procedure 

We selected 25–35 specimens of Globigerinoides quadrilobatus (350–500 μg) from the 

250–315 μm size fraction; the same species and size fraction as used for δ
18

O analysis, 

to minimize size-related intraspecific elemental variation (Elderfield et al., 2002). The 

tests were gently crushed between two glass plates in order to open all chambers, and 

subsequently cleaned according to the protocol of Martin and Lea (2002) to remove 

clays. The foraminiferal fragments were rinsed 5 times with ultrapure water and twice 

with methanol, including ultrasonic treatment after each rinse.  

For the removal of metal oxides, a cleaning solution was prepared consisting of 

750 μl Hydrazine, 15 ml NH4OH and 15 ml ammonium citrate. 100 μL of this solution 

was added to each vial, which were then placed in a hot water bath for 30 minutes 

briefly flipping and ultrasonicating every 2 minutes. The samples were then rinsed 3 

times with ultrapure water. Next, in order to remove any organic matter, 250 μL of a 
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NaOH/H2O2 reagent (30 mL NaOH (analytical grade); 100 μL H2O2) was added, and 

the vials were placed in a hot water bath for 10 minutes briefly flipping and 

ultrasonicating twice. Remaining oxidizing solution was removed by three rinsing steps 

with ultrapure water. After transferring the samples into clean vials, a weak acid leach 

with 250 μL 0.001 M nitric acid (HNO3, sub-boiled distilled) was applied with 30 

seconds ultrasonic treatment, followed by two rinses with ultrapure water.  

Finally, the samples were dissolved in 500 μL of 0.1 HNO3, ultrasonicated for 

25 minutes and then placed in a centrifuge for 2 minutes at 13.4 rpm. Samples were 

checked for smectite or ash and 400 uL of the supernatant was transferred to 

polypropylene tubes. Samples were finally diluted with 0.1 HNO3 as follows: 

 

If sample weight between: Add: Dilution factor 

0.100-0.200mg 1200 µl HNO3 3 

0.200-0.500mg 1600 µl HNO3 5 

0.500-0.700mg 2000 µl HNO3 6 

 

Samples were measured on an ICP-AES device at Christian-Albrechts-Universität zu 

Kiel, Germany. Analytical error for Mg was ~0.45%, for Ca ~0.15%; Spectro 

CirosCCDSOP at fG, Kiel: Analytical error for Mg/Ca was ~0.1%). Replicate Mg/Ca 

measurements revealed an average standard deviation of ~0.1 mmol/mol and ~ 0.08 

mol/mol, respectively (Appendix A, Table 2; Regenberg et al., 2006 ). Adequate 

cleaning is indicated by very low Fe/Ca and Mn/Ca ratios (Appendix B, Fig. 2). 

The conversion of foraminiferal Mg/Ca ratios into SSTs was carried out by applying the 

multispecies calibration equation of Anand et al. (2003):  

Eq. 2.5 

SST = (log (Mg/Ca) – log 0.38) / 0.09 

 

2.6.4 Uncertainties in Mg/Ca ratio analysis 

The largest uncertainty in estimating Miocene palaeotemperature using Mg/Ca, relates 

to temporal variations in seawater Mg/Ca (Billups and Schrag, 2002; Lear et al., 2000). 

Hydrothermal alteration of basalts, variations in continental weathering rates, and 

changes in CaCO3 sedimentation, all have the potential to alter seawater Mg/Ca (Lear et 

al., 2000; Lear et al., 2010), hence the long term evolution of Mg/Ca in seawater is 

poorly understood. Recent reconstructions based on modelling experiments and low 
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resolution analyses of evaporite fluid inclusions have produced vastly differing results 

(Sime et al., 2007).  However, oceanic Mg
2+

 and Ca
2+

 have long residence times of 13 

Ma and 1 Ma respectively (Broecker et al., 1982), which suggests that while absolute 

values of SST’s may be affected by changing water Mg/Ca, the magnitude of 

temperature change across rapid (<1 Ma) climate transitions should remain unchanged 

(Lear et al., 2010). Therefore, due to the limitations of current Mg/Casw reconstructions, 

uncorrected SST values are presented in this study. The interpretations and conclusions 

are based on relatively short-term changes in planktonic δ
18

O and SST, which occur on 

suborbital to orbital timescales and are beyond the temporal variability of Mg/Casw. 

Additionally, diagenetic alteration of foraminiferal tests after they have settled 

on the seafloor can significantly alter the Mg/Ca signature and palaeotemperature 

estimates (Barker et al., 2003; Lorens et al., 1977; Regenberg et al., 2007). The Mg/Ca 

values obtained from Site U1338 do not appear to be significantly altered by dissolution 

and the data appear to represent a primary signal. This is supported by the excellent 

preservation of the foraminifera as illustrated in Chapter 3, owing to the high clay 

content of the sediments from which the foraminifera were recovered, which helped to 

reduce the corrosiveness of pore waters and prevented post deposition diagenesis. 

Secondly, Middle Miocene Mg/Ca values and temperature estimates are realistic, when 

compared to present day.  

 

2.7 Spectral analysis 

In order to detect cyclic patterns in the isotope record and distinguish them from 

background noise, spectral analysis was carried out on the δ
18

O and δ
13

C records to test 

the palaeoclimatic series in the frequency domain. The Lomb-Scargle Fourier transform 

method (Lomb, 1976; Scargle, 1982) was initially used because the stable isotope 

record contains unevenly spaced data points due to fluctuations in the sedimentation 

rate and planktonic foraminiferal abundance (Pälike et al., 2010; Schulz, 2002). This 

method does not interpolate the data to an equal sample interval, which can bias results 

because data points become somewhat dependent after interpolation (Schulz and 

Stattegger, 1997). 

Analysis was carried out using “PAST” software (Hammer et al., 2004). 

Spectral analysis (Lomb-Scargle Fourier transform method - REDFIT) was used to 

statistically test a null hypothesis of red (autocorrelated) noise in our data because red-

noise backgrounds pose a particular problem in the analysis of palaeoclimate time series 
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(Schwarzacher, 1993). Statistical significance of spectral peaks was tested using a 

parametric approach (90%, 95%, and 99% false-alarm levels). 

 

2.7.1 Wavelet analysis 

In order to track the spectral characteristics and frequency behaviour in the time domain 

in more detail, wavelet analysis is also applied. Wavelet analysis provides a way to 

assess the presence and relative strength of orbital rhythms in stable isotope records, 

and to identify pivotal transitions in the global climate (Lau and Weng, 1995). 

A wavelet is a function that represents a waveform where the oscillations die 

away to zero rather than going on indefinitely as in Fourier analysis (Graps, 1995). A 

finite domain allows wavelets to more accurately approximate sudden shifts in data, like 

that typical of δ
18

O during warming and cooling events, and retains the spatial context 

of the data (Torrence and Compo, 1998). 

The stable isotope data were interpolated to an equal interval (1 kyr) for wavelet 

analyses to detect non-stationary periodicities. Continuous wavelet analysis using a 

Morlet wavelet was applied to δ
18

O and δ
13

C to test time series in the frequency domain 

(Grossmann and Morlet, 1984; Morlet, 1983; Morlet et al., 1982; Torrence and Compo, 

1998).  

 

2.7.2 Cross Wavelet Transform 

In palaeoclimate data, common features in wavelet power of two time series can occur, 

but at times can be mere coincidence (Maraun and Kurths, 2004). Cross Wavelet 

Transform (XWT) permits the detection of cross-magnitude, phase differences (= lag 

time), and coherency between signals from different palaeoclimate records that may 

exhibit large stratigraphic uncertainties and noise (Prokoph and El Bilali, 2008). 

A cross wavelet transform of the planktonic data and benthic data (Holbourn et 

al., 2014) from Site U1338 was performed to identify and test the significance of 

common power, using the Cross Wavelet package in MatLab (Grinsted et al., 2004; 

Hudgins et al., 1993; Maraun and Kurths, 2004; Torrence and Compo, 1998). The phase 

arrows show the relative phasing of two time series under investigation. This can also 

be interpreted as a lead/lag.  

 

Phase arrows pointing: 

 right: in-phase 
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 left: anti-phase 

 down: X leading Y by 90° 

 up: Y leading X by 90° 

It should be noted that interpreting the phase as a lead (/lag) should always be done with 

care. A lead of 90° can also be interpreted as a lag of 270° or a lag of 90° relative to the 

anti-phase (opposite sign) (Torrence and Compo, 1998). 
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3. Taxonomy of early-middle Miocene planktonic 

foraminifera from the equatorial Pacific Ocean 
 

3.1 Introduction 

The taxonomy of planktonic foraminifera is the foundation for understanding 

palaeoclimate proxy measurements. To reconstruct Miocene palaeoclimate records with 

any certainty, planktonic foraminifera must be analysed at the species level. 

Foraminifera are classified primarily on the composition and morphology of the test, i.e. 

chamber arrangement and aperture style. However, the test of individual planktonic 

foraminifera can be extremely variable and large collections of specimens are needed to 

understand the variation within a species. High-resolution scanning electron microscope 

(SEM) analyses of well-preserved planktonic foraminifera can reveal primary wall 

fabrics that have not previously been observed. Detailed taxonomic studies are critical 

to understanding the phylogeny and evolution of planktonic foraminifera through the 

Miocene. In this chapter well preserved early-middle Miocene planktonic foraminifera 

from Integrated Ocean Drilling Program (IODP) Site U1338 are illustrated through 

detailed SEM analysis, to document taxonomic variability, wall textures and provide 

insights into the phylogeny of extinct species. Furthermore, comparison of the 

preservation state at Site U1338 is made with specimens of planktonic foraminifera 

from the Brasso and Cipero Fm. type sections of Trinidad, West Indies, were many of 

the species illustrated in this chapter were first described.  

 

3.1.1 Summary evolutionary history of the Miocene planktonic 

foraminifera 

Morphospecies diversity of planktonic foraminifera increased in two phases during in 

the  Miocene (Aze et al., 2011). The first was a gradual increase in diversity between 

17–14 Ma with the proliferation of spinose Globigerinoides and smooth-walled, 

nonspinose globorotaliform species (Aze et al., 2011; Wei and Kennett, 1986). The 

second, much larger expansion occurred at the Miocene/Pliocene transition (7–4 Ma). 

After the evolution of major lineages in the middle Miocene (Globigerinoides, 

Orbulina, and Globorotalia), planktonic foraminiferal populations are structured like 

the modern with all the extant species or their direct ancestors present. 
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3.2 Classification of the foraminifera 

3.2.1 Criteria for the classification of the foraminifera 

The foraminifera are numerous and varied in their shell morphology and biology, 

making the task of compiling a single informative classification extremely difficult. 

Traditional foraminiferal classification is based almost exclusively on the characteristics 

of the test, primarily its chemical composition, ultrastructure, mode of formation, and 

mode of growth (continuous or periodic) (Loeblich and Tappan, 1992). Supraordinal 

classification is usually based on numerous combinations of a diverse range of 

morphological features including wall pores, wall passages, principal apertural features 

(separating superfamilies), free or fixed nature of the test, mode of chamber addition, 

simple or divided nature of the chamber interior and apertural modifications (separating 

families) (Loeblich and Tappan, 1987). Other factors, such as geological history, and 

some biological characters may also be taken into account (Loeblich and Tappan, 1987). 

 

3.2.2 Current classification of the foraminifera 

The classification revised in this chapter is a modified version of Loeblich and Tappan 

(1992), with morphological criteria taken from Kennett and Srinivasan (1983). Figure 1 

shows the amended classification of the genera illustrated in this thesis. The Phylum 

Globigerinida, which represents the planktonic foraminifera, includes 3 superfamilies 

(the Heteroheilicacea, Globorotaliacea, and Globigerinacea), and 5 families 

(Globorotaliidae, Pulleniatinidae, Candeinidae, Globigerinidae, and Hastigerinidae). 
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ORDER: FORAMINIFERA 

Phylum: Globigerinida [Planktonic foraminifera] 

 Superfamily: Hererohelicacea              ] Non-spiral test 

 Superfamily: Globigerinacea 

  Family: Globigerinidae  

   Genus: Clavatorella 

Genus: Dentoglobigerina 

Genus: Globigerinoides 

Genus: Globoquadrina 

Genus: Globorotaloides  

Genus: Globoturborotalita   Macroperforate trochospiral  

Genus: Paraglobotalia                           or planispiral test 

Genus: Praeorbulina 

Genus: Sphaeroidinellopsis 

Family: Pulleniatinidae 

Family: Globorotaliidae 

    Genus: Fohsella 

    Genus: Globorotalia 

Family: Hastigerinidae 

  Superfamily: Candeinacea 

   Family: Globigerinitidae 

    Genus: Globigerinatella    Microperforate trochospiral  

    Genus: Globigerinita    or planispiral or streptospiral  

    Genus: Tenuitella                         test. 

    

 

Figure 3. 1. Modified and abridged classification of Miocene planktonic foraminifera, based on the 

morphological characteristics of the test. Adapted from Loeblich & Tappan (1992). The families; 

Globigerinidae, Globorotaliidae, and Globigerinitidae, are expanded to show genera illustrated in this 

chapter. 

 

3.3 Results  

3.3.1 Foraminifera 

All samples yielded abundant planktonic foraminifera; dominant genera included 

Paragloborotalia and Globigerinoides, with common Dentoglobigerina. Specimens of 

Clavatorella bermudezi were also unusually abundant. Using insights gained through 

SEM studies, the range charts for extinct taxa have been revised. Globorotaloides 

hexagonus and Globorotaloides sp. are commonly found in many of the middle 

Miocene samples. However, further work is required to constrain their biostratigraphic 

range. Light microscope and SEM investigation also allowed the identification of 

Dentoglobigerina juxtabinaiensis (Plates 4–5), a new species named in Fox and Wade 

(2013). Test preservation is excellent throughout the sampled interval, with open pore 
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spaces, little calcitic overgrowth, and in many cases spines, though fragmentation 

occurs in some samples. Specimens show little evidence of diagenetic alteration in 

transmitted light, and their test walls are optically translucent (Plates 16–19). 

  

3.3.2 Dentoglobigerina juxtabinaiensis (Fox & Wade, 2013) 

Dentoglobigerina binaiensis is used as a secondary biostratigraphic marker within Zone 

M2 (Wade et al., 2011). However, four-chambered forms referred to as Globoquadrina 

cf. binaiensis were found at Sites U1337 and U1338 (Pälike et al., 2010). To retain the 

utility of D. binaiensis as a bioevent a strict species concept was applied and D. 

binaiensis was confined to the three chambered forms, consistent with the original 

description (Plate 2, Fig. 3a). This, therefore, necessitates describing the common four-

chambered forms that are found in the early Miocene and earliest middle Miocene as a 

new species (Fox and Wade, 2013).  

D. juxtabinaiensis is distinguished from its ancestor D. binaiensis by its greater 

number of chambers (4 rather than 3) in the final whorl, which are also more wedge 

shaped. It differs from Globoquadrina dehiscens by its more circular periphery and lack 

of umbilical shoulders. Specimens commonly show evidence of a broken ultimate 

chamber as seen in Plate 6, Figures 2 and 5. The lip is highly variable and can appear 

tooth-like in some specimens. 

Spezzaferri (1994) recognised these forms as the more evolved D. binaiensis in 

the early Miocene from the eastern tropical Atlantic Ocean (Site 667) and equatorial 

Indian Ocean (Site 709). Chaisson and Leckie (1993) also distinguished between the 

three- and four-chambered specimens of D. binaiensis in their study from the western 

equatorial Pacific Ocean (Site 806). Significantly many of our specimens show 

evidence of spine holes, indicative of a spinose wall texture. Previously, 

Dentoglobigerina and Globoquadrina have been considered non-spinose (e.g., Pearson 

et al., 2006). 

 

3.4 Discussion 

3.4.1 Foraminiferal Assemblages 

Fifty-five planktonic foraminiferal species were identified in this study and a range of 

specimens are illustrated in Plates 1–19. These Miocene planktonic foraminiferal 

assemblages are characterised by high occurrences of mixed-layer, warm-water taxa 
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such as Globigerinoides and eutrophic, thermocline-dwelling taxa such as 

Paragloborotalia (Wade et al., 2007).  

The range chart in Pälike et al. (2010) identifies several taxa which were absent 

in this study, including Catapsydrax unicavus (Bolli, 1957) and Mutabella miriablis 

(Pearson et al., 2001). Post-cruise SEM examination of wall textures revealed that 

specimens previously identified shipboard as M. miriablis are not microperforate, and 

many specimens of Catpsydrax may in fact be bullate Dentoglobigerina tripartita. The 

absence of primary marker species Catapsydrax dissimilis and Globigerinatella sp. 

prevented the differentiation between Zones M3 and M4. Zones M6 and M7 appear 

reduced due to the proximity of the lowest occurrence of marker species Orbulina 

suturalis (Bronnimann, 1954) and Fohsella peripheroacuta. 

 

3.4.2 Preservation 

After burial, the preservation of foraminiferal tests can be affected by a variety of 

diagenetic processes; these can be loosely categorised as dissolution, overgrowth, and 

recrystallisation, although the processes are interrelated. Foraminiferal tests are prone to 

diagenetic alteration by overgrowth, changes in the shell crystal structure at the micron 

scale, and/or infilling of the original shell, all of which can significantly affect their 

geochemical composition (Pearson and Burgess, 2008). Therefore, it is important to 

identify fossil material that is well-preserved. 

Dissolution results from the action of migrating pore waters. The process begins 

by stripping the outer layers of calcite from the test, thus weakening and destroying the 

relatively thin, latest chambers first (Collen and Burgess, 1979). Partial dissolution or 

“etching” of test surfaces has been observed on a number of specimens of thin-walled 

Clavatorella, causing test surfaces that were originally smooth to appear roughened and 

pores to be enlarged. Species-specific fragmentation was also observed, resulting in 

chamber holes (e.g., Plates 13 and 16) and missing ultimate chambers (e.g., Plates 3–6, 

9, and 10), which may explain the wide variation in test size of Dentoglobigerina 

altispira.  

Overgrowth occurs when inorganic calcite crystals are precipitated from solution 

onto the outer or internal surface of the test, where they then progressively increase in 

size and merge (Pearson and Burgess, 2008). Overgrowths can obscure ornamentation 

and prevent identification; however, almost no overgrowth has been observed in the 

U1338 samples during this study, with the exception of some rare individual specimens 

exhibiting minor to moderate overgrowth.  
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Recrystallisation develops when the internal microgranular structure of the test 

is replaced by larger crystals (Pearson and Burgess, 2008). In contrast to glassy 

preservation in clay-rich facies, recrystallized specimens appear opaque in reflected 

light (Bown et al., 2008; Pearson et al., 2001; 2007). Tests also crumble much more 

easily under moderate compressive stress and they are less able to withstand ultrasonic 

cleaning (Pearson and Burgess, 2008). 

Pearson and Burgess (2008) presented four criteria for distinguishing 

foraminiferal shells that are not significantly recrystallised: 1) shells should be glassy or 

translucent in reflected light; 2) ultrafine features such as spines should survive (e.g., 

Plate 10, Fig. 3c); 3) smooth parts of the shell such as the apertural lips, sutures, outer 

surface (in some species), and inner surface (in most species) should appear smooth at 

the submicron scale in high resolution SEM images (e.g., Plates 18, 20, 21); and 4) in 

cross-section, the original submicron microgranular wall texture should be clear when 

the shell is broken (Pl. 18, 19). The U1338 specimens from Hole A (Pl. 3–21) were 

recorded as having poor to moderate preservation during the expedition (Table 5.3); 

however, post-cruise studies found that preservation of foraminiferal tests (see Plates 

18–21) satisfied criteria 2–4 of Pearson and Burgess (2008). The lithological transition 

at ~378 mcd from ooze to chalk has no obvious effect on preservation.  

In Plates 20–23, Miocene aged specimens collected from the Cipero and Brasso 

Formations of Trinidad are illustrated for comparison. The preservation is extremely 

variable and although spines are preserved on some specimens (Pl 20, Fig. 5b), many 

exhibit overgrowth of pyrite crystals (Pl 20, Fig. 5, Pl 21, Fig. 6–7). In addition to SEM 

examination of whole specimens (Pl. 3-17), the wall structures of 4 crushed specimens 

(Pl. 16–19) were analysed, which indicate that foraminifera from Site U1338 have not 

undergone substantial recrystallisation. Previous studies of well-preserved calcareous 

microfossils have attributed excellent preservation to shallow burial depth and 

impermeable clay-rich facies that restricted pore water movement and post-depositional 

recrystallisation (Bown et al., 2008; Pearson et al., 2001). In contrast, these well-

preserved specimens come from >400 m burial depth in low clay sediment, averaging 

~90% combined CaCO3 and SiO2. Good preservation is rare in these conditions, and the 

preservation at Site U1338 is distinctly superior to nearby Site U1337. The enhanced 

preservation at Site U1338 is attributed to the relatively high sedimentation rates (30 

m/Myr (Lyle et al., 2009) in comparison to a linear sedimentation rate of 17–21 m/Myr. 

during the middle Miocene at Site U1337 (Pälike et al., 2010).  
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These observations suggest that Site U1338 is ideal for the establishment of 

tropical sea-surface temperatures in the Miocene. Stable isotope studies presented in 

Chapter 4 provide a new eastern equatorial Pacific Ocean climate record for the middle 

Miocene that is of higher resolution than those currently in existence. 

 

3.4.3 Diversity 

The diversity of foraminiferal assemblages at Site U1338 is relatively high compared to 

Miocene sections drilled at other sites. Site 806 on the northeastern margin of the 

Ontong Java Plateau identified <45 species for the same interval (Chaisson and Leckie, 

1993). In middle Miocene sediments at Site 1126 (western Great Australian Bight), <30 

species were found, and planktonic foraminifera were rare and poorly preserved in 

sediments from shallower locations, especially Sites 1127, 1129, and 1131 (Li et al., 

2003b). At Site U1337, a slightly higher diversity was recorded (58 species) over the 

same interval. However, assemblages are dominated by large dissolution-resistant forms 

such as Dentoglobigerina venezuelana (Pälike et al., 2010). 

 

3.4.4 Biogeography and palaeoecology 

In the modern ocean, upwelling of nutrient rich subsurface water in the equatorial 

Pacific Ocean sustains a band of high primary productivity, where distinctive planktonic 

foraminifera such as Globigerinita glutinata thrive (Cayre et al., 1999). The planktonic 

foraminiferal assemblages found in the Miocene sediments of Site U1338 can be 

compared with those that characterise present-day upwelling waters, due to the high 

abundance of Globigerinoides ruber and presence of G. glutinata and G. menardii (d' 

Orbigny, 1826) (Watkins et al., 1996, 1998). 

 

3.5 Systematic palaeontology 

The systematic descriptions in this study follow the existing understanding of early-

middle Miocene planktonic foraminiferal taxonomy (Chaisson and Pearson, 1997; 

Chaisson and Leckie, 1993; Kennett and Srinivasan, 1983; Spezzaferri, 1994; 

Spezzaferri and Premoli Silva, 1991). The primary classification is based on the wall 

structure, and principally spinose or non-spinose ornamentation (Fleisher, 1974; Olsson 

et al., 1992). 

In this study, all species are documented to provide a database of planktonic 

foraminiferal taxon ranges for the early–middle Miocene at Site U1338. The original 
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reference for each species is given, as are subsequent references relevant to the 

progression toward the currently used species concept. Synonymies are limited to the 

original descriptions; additional references are included when needed to support the 

species concept. Taxa are listed alphabetically by genus and species name within 

individual families. Full systematic details are given for our new species. 

The SEM images (Plates 1–19) illustrate the morphologic criteria that were used 

to distinguish between ancestral and descendant forms in some important lineages. In 

many instances, the individual images have been arranged “stratigraphically” on the 

figures to help illustrate size and morphologic changes between phylogenetically related 

species. Short comments are included in order to clarify the taxonomic concepts 

followed in this study and to note significant morphological features. IODP material is 

held at the University of Kiel, Germany, except for the type specimens of D. 

juxtabinaiensis held at the Natural History Museum, London. 
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Order FORAMINIFERIDA d'Orbigny, 1826 

Superfamily GLOBIGERINACEAE Carpenter, Parker and Jones, 1862 

Family GLOBIGERINIDAE Carpenter, Parker and Jones, 1862 

Genus Clavatorella Blow, 1965 

Type species: Hastigerinella bermudezi Bolli, 1957 

 

Clavatorella bermudezi (Bolli, 1957) 

Plate 1, Figures 1–6. 

 

Hastigerinella bermudezi Bolli, 1957, p. 112, pl. 25, Figs. 1a–c. 

Clavatorella bermudezi (Bolli). Kennett and Srinivasan, 1983, p. 218, pl. 54, Figs. 2, 6–

8. 

 

Stratigraphic range: U1338A-37X-CC → U1338C-39H-6, 140–142 cm. 

Remarks: This species was found in only one core-catcher sample during shipboard 

studies (Pälike and others, 2010); however, during the examination of Holes B and C 

for this study, it was found present in most samples between U1338B-37H-4–U1338C-

39H-4 (370–387 mcd). Specimens exhibit a broad spectrum of morphologic variation as 

demonstrated in Figure 3. 

 

Genus Dentoglobigerina Blow, 1979 

Type species: Globigerina galavisi, Bermudez, 1961 

 

Dentoglobigerina altispira (Cushman and Jarvis, 1936) 

Plate 2, Figures 1–6. 

 

Globigerina altispira Cushman and Jarvis, 1936, p. 5, pl. 1, figs. 13a–c. 

Dentoglobigerina altispira altispira (Cushman and Jarvis). Kennett and Srinivasan, 

1983, p. 188, pl. 46, Figs. 4–6. 

Dentoglobigerina altispira (Cushman and Jarvis). Chaisson and Leckie, 1993, p.177, pl. 

9, Fig. 8. 

 

Stratigraphic range: U1338A-5X-CC → U1338A-43X-2, 18–20 cm. 
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Remarks: This species is abundant in samples above U1338A-38X-CC. 

Dentoglobigerina altispira varies widely in test size, trochospire height, and chamber 

embracement. Spine holes were not evident on any specimens, suggesting this species is 

non-spinose or that a gametogenic crust prevents the identification of the spinose wall. 

All examined specimens exhibited fragmentation of the final chamber. 

 

Dentoglobigerina baroemoenensis (LeRoy, 1939) 

Plate 3, Figures 1–2. 

 

Globigerina baroemoenensis LeRoy, 1939, p. 263, pl. 6, Figs. 1, 2.  

Dentoglobigerina baroemoenensis (LeRoy). Kennett and Srinivasan, 1983, p. 186, pl. 46, 

Figs. 1–3. 

 

Stratigraphic range: U1338A-8H-5, 106–108 cm → U1338A-44X-3, 102–104 cm. 

Remarks: Typical specimens exhibit a wide umbilicus and slightly flattened chambers, 

which increase rapidly in size in the final whorl. These features distinguish it from “D.” 

venezuelana, which has a more closed umbilicus and more embracing chambers. 

 

Dentoglobigerina binaiensis (Koch, 1935) 

Plate 3, Figures 3–4. 

 

Globigerina binaiensis Koch, 1935, p. 558; Kennett and Srinivasan, 1983, p. 183, pl. 

45, Figs. 1–3. 

Globoquadrina binaiensis (Koch). Chaisson and Leckie, 1993, p. 159, pl. 9, Fig. 13; 

Spezzaferri, 1994, p. 42, pl. 42, Figs. 3a–c. 

 

Stratigraphic range: U1338A-38X-2, 35–37 cm → U1338A-44X-CC. 

Remarks: Dentoglobigerina binaiensis evolved from D. sellii in the latest Oligocene 

(Spezzaferri and Premoli Silva, 1990). It is distinguished by 3 chambers in the final 

whorl with a flattened, commonly pustulose apertural face. The final chamber is large 

and occupies about half of the test. It gave rise to D. juxtabinaiensis in the early 

Miocene. 
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Dentoglobigerina globosa (Bolli, 1957) 

Plate 3, Figures 5–6. 

 

Globoquadrina altispira subsp. globosa Bolli, 1957, p. 111, pl. 24, Figs. 9a–c, 10a–c.  

Dentoglobigerina altispira globosa (Bolli). Kennett and Srinivasan, 1983 p. 189, pl. 46, 

Figs. 7–9. 

 

Stratigraphic range: U1338A-7H-CC → U1338A-44X-CC. 

Remarks: This species was present in most samples; D. altispira was distinguished from 

D. globosa by the higher number of chambers in the final whorl, with D. altispira 

possessing 4 and D. globosa, 5–6. The latter also differs in having more rounded 

chambers and a more circular outline compared to D. altispira, which is slightly lobate. 

 

Dentoglobigerina juxtabinaiensis 

Plate 4, Figures 1-5; Plate 6, Figures 1–6. 

 

Globoquadrina dehiscens Chapman, Parr, and Collins. Chaisson and Leckie, 1993, pl. 

9, Fig. 14. Not Globoquadrina dehiscens Chapman, Parr, and Collins, 1934, p. 

569, pl. 11, Figs. 36a–c. 

Globoquadrina binaiensis (Koch). Spezzaferri, 1994, p. 42, pl. 38, Figs. 1a–d, pl. 42, 

Figs. 4a–c.  

Not Globoquadrina binaiensis (Koch). Chaisson and Leckie, 1993, p. 159, pl. 9, 

Fig. 13; Spezzaferri, 1994, p. 42, pl. 42, Figs. 3a–c. 

 

Stratigraphic range: U1338A-38X-2, 35–37 cm → U1338A-44X-3, 102–104 cm. The 

highest occurrence is not currently well constrained. It is abundant up to Zone M5a at 

Site U1338, with intermittent occurrences to the top of Zone M5b (recorded as 

Globoquadrina cf. binaiensis in Pälike et al., 2010). The lowest occurrence is in Zone 

M2 at Site U1337. 

 

Type specimens: Deposited in the Natural History Museum, London (NHMUK). 

Holotype: PM PF 70870 (Site U1337-42X-CC). Paratypes: PM PF 70871, 70872 (Site 

U1338B-41H-3, 30–32cm), 70873, 70875–70877 (Site U1338A-42X-CC), 70879, (Site 
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U1337A-38CX-CC), 70880 (Site U1337-42X-CC), 70874 (Site 871-15H-1, 124–

126cm), and 70878, 70881 (Site 871-12H-2, 59–61cm). 

 

Etymology: Derived from juxta referring to its close relationship to its ancestor D. 

binaiensis. 

 

Description: “Test wall macroperforate, spinose; chambers arranged in a moderate 

trochospiral; test tightly coiled with 3 whorls, 4 chambers in the final whorl, increasing 

slowly then rapidly in size with the arched final chamber accounting for half of the test; 

peripheral outline rounded in umbilical and spiral view, semi-circular to major circular 

sectoral in edge view; chambers on umbilical side, wedge shaped, with final chamber 

semi-circular and flattened; dense and fused pustules concentrated around the periphery; 

sutures distinct, incised, straight to slightly curved; deep umbilical aperture bordered by 

a thin to broad lip, sometimes pustulose, with an imperforate area on the umbilical face; 

on spiral side chambers ovoid; sutures weakly depressed, curved.” (Fox and Wade, 

2013). 

 

Remarks: D. juxtabinaiensis is distinguished from its ancestor D. binaiensis by its 

greater number of chambers (4 rather than 3) in the final whorl, which are also more 

wedge shaped. It differs from G. dehiscens by its more circular periphery and lack of 

umbilical shoulders. Specimens commonly show evidence of a broken ultimate chamber 

as seen in Plate 6, Figures 2 and 6. The lip is highly variable and can appear tooth-like 

in some specimens. 

Significantly many of the specimens under investigation show evidence of spine 

holes, indicative of a spinose wall texture. Previously, Dentoglobigerina and 

Globoquadrina have been considered non-spinose (e.g., Pearson et al., 2006).  

 

Phylogeny: Dentoglobigerina juxtabinaiensis evolved from D. binaiensis in the early 

Miocene by developing four chambers in the final whorl and a more open aperture. 

 

Distribution: Probably restricted to low latitudes; known from the equatorial regions of 

the Indian Ocean, Atlantic Ocean (Spezzaferri, 1994), and Pacific Ocean (Chaisson and 

Leckie, 1993; this study). 
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Dentoglobigerina tripartita (Koch, 1926) 

Plates 6, Figures 1–3. 

 

Globigerina bulloides d’Orbigny var. tripartita Koch, 1926, p. 742, text-figs. 21a, b.  

Globigerina tripartita Koch. Blow and Banner, 1962, p. 96, pl. 10, Figs. A–C 

(reillustrated holotype). 

Dentoglobigerina tripartita (Koch). Pearson et al., 2006, p.409, pl. 13.3, Figs. 1–3 

(reillustrated holotype), 4–8, 12, 13, 15, 16. 

 

Stratigraphic range: U1338A-29X-2, 136–138 cm → U1338A-44X-CC. 

Remarks: Dentoglobigerina tripartita is characterised by its large size, with three 

chambers in the final whorl. Specimens of D. tripartita commonly have pustules around 

the umbilicus and appear to intergrade with Globoquadrina dehiscens. Many specimens 

have a bulla of variable size. In Plate 6 three specimens are illustrated which appear 

very different morphologically but fit the taxonomic description of D. tripartita in 

Kennett and Srinivasan, (1983). The extensive morphological variability has also been 

noted by Leckie et al. (1993). Catapsydrax unicavus was recorded as abundant during 

shipboard studies at Site U1338 (Pälike et al., 2010), but post-cruise investigation 

suggests many of the forms are bullate D. tripartita.  

 

Dentoglobigerina sp. 

Plate 7, Figure 4. 

 

Stratigraphic range: U1338B-41H-3, 30–32 cm. 

Remarks: Although referred to here as Dentoglobigerina sp., the specimen resembles 

Dentoglobigerina aff. D. larmeui in Spezzaferri and Premoli Silva (1991, pl. 17, Fig. 3).  

 

“Dentoglobigerina” venezuelana (Hedberg, 1937) 

Plate 6, Figures 4–6; Plate 11, Figure 4. 

 

Globigerina venezuelana Hedberg, 1937, p. 681, pl. 92, Fig. 72b; Kennett and 

Srinivasan, 1983, p. 180, pl. 44, Figs. 5–7. 

 

Stratigraphic range: U1338A-7H-CC → U1338A-44X-CC. 
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Remarks: This species is abundant in most samples. The shape of the chambers in the 

final whorl can vary noticeably from specimen to specimen. Stewart et al. (2012) 

separate “D.” venezuelana into three distinct morphotypes: 1) specimens with a 

kummerform, flattened, final chamber, and rectangular aperture; 2) individuals 

possessing kummerform, flattened, final chambers, and low arched (often asymmetrical) 

apertures; and 3) specimens with a large, embracing final chamber and rectangular 

aperture. The specimens illustrated here fall into the first and second categories. The 

specimen illustrated in Plate 11, Fig.4 is referred to as “D.” venezuelana but has been 

illustrated separately with other unusual specimens found in the U1338 samples on 

Plate 11. 

 

Genus Globigerinella Cushman, 1927 

Type species: Globogerinella aequilateralis Brady 1879  

 

Globigerinella praesiphonifera (Blow, 1969) 

Plate 9, Figure 1. 

 

Hastigerina siphonifera praesiphonifera Blow, 1969, p. 408, pl. 54, Figs. 7–9. 

Globigerinella praesiphonifera (Blow). Kennett and Srinivasan, 1983, p. 239, pl. 60, 

Figs. 4–6. 

 

Stratigraphic range: U1338A-25H-CC → U1338A-40X-CC. 

Remarks: This species is very rare. Only single specimens were found, appearing 

intermittently in samples throughout its range, many of which have spines preserved 

around the aperture (Plate 9, Fig. 1c). 

 

Genus Globigerinoides Cushman, 1927 

Type species: Globigerina ruber (d’Orbigny) 1839 

 

Globigerinoides bisphericus Todd, 1954 

Plate 10, Figure 1. 

 

Globigerinoides bisphericus Todd, 1954, p. 681, pl. 1, Figs. 1a–c, 4; Jenkins and others, 

1981, p. 265, pl. 1, Fig. 1a–c. 
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Stratigraphic range: U1338B-35H-5, 50–52 cm → U1338C-41H-4, 30–32 cm. 

Remarks: Specimens of Globigerinoides bisphericus in many samples tend to grade 

toward G. trilobus. The former is distinguished by its more enveloping final chamber 

and more reduced umbilicus. Further work is required to constrain its stratigraphic 

range. 

 

Globigerinoides diminutus Bolli, 1957 

Plate 10, Figure 6. 

 

Globigerinoides diminutus Bolli, 1957, p. 114, pl. 25, Figs. 11a–c; Kennett and 

Srinivasan, 1983, p. 74, pl. 16, Figs. 4–6. 

 

Stratigraphic range: Presently unconstrained.  

Remarks: Globigerinoides diminutus is smaller than G. subquadratus and has a 

distinctly more compact test. This small and easily recognisable species is abundant in 

the <150 µm fraction of the Site U1338 samples. 

 

Globigerinoides aff. G. grilli Schmid, 1967 

Plate 11, Figure 1. 

 

Stratigraphic range: U1338B-42H-2, 40–42 cm. 

Remarks. This specimen has a cancellate and spinose wall texture and possesses sutural 

apertures on the spiral side comparable to the type examples of Globigerinoides grilli 

illustrated by Schmid (1967). However, the illustrated specimen differs in having a high 

arched aperture and much lower trochospire. 

 

Globigerinoides quadrilobatus (d'Orbigny, 1846) 

Plate 9, Figure 4. 

 

Globigerina quadrilobatus d'Orbigny, 1846, p.164, pl. 9, Figs. 7–10. 

Globigerinoides quadrilobatus (d'Orbigny). Kennett and Srinivasan, 1983, p. 66, pl. 14, 

Figs. 1–3. 
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Stratigraphic range: U1338A-8H-2, 43–45 cm → U1338A-44X-3, 102–104 cm. 

Remarks: Globigerinoides quadrilobatus is very common throughout its range at Site 

U1338, and many specimens were found with spines preserved around the primary 

aperture. This species is closely related to G. sacculifer (Brady, 1879), which differs 

from G. quadrilobatus in its stronger cancellate wall texture and possession of an 

elongate sack like terminal chamber. It is distinguished from G. trilobus by its greater 

number of chambers (4 rather than 3) in the final whorl.  

 

Globigerinoides sp. 

Plate 9, Figure 2. 

 

Stratigraphic range: U1338C-41H-4, 30–32 cm. 

Remarks: Globigerinoides sp. appears intermittently in our samples, and further work is 

required to constrain its stratigraphic range. The test is small and compact in size with 3 

high trochospiral whorls.  

 

Globigerinoides subquadratus Brönnimann, 1954 

Plate 9, Figure 3; Plate 20, Figure 6. 

 

Globigerinoides subquadrata Brönnimann, 1954, p. 680, pl. 1, Figs. 8a–c.  

Globigerinoides subquadratus Brönnimann. Kennett and Srinivasan, 1983, p. 74, pl. 16, 

Figs. 1–3. 

 

Stratigraphic range: U1338C-39H-7, 40–42 cm → U1338A-42X-CC. 

Remarks: Globigerinoides subquadratus is the most common species in the early 

Miocene samples. Specimens display a distinct rim around the primary aperture, and 

possess two or more supplementary apertures. Many specimens also have spines. Wall 

cross-sections are illustrated in Plate 18.  

The extinction of G. subquadratus has previously been located within the 

Globorotalia mayeri Zone (M11). However, at Site U1338 this event is recorded in the 

far older planktonic foraminferal Zone M5b. A thickness of 23 m (~750 kyr) was 

measured between the last occurrence of G. subquadratus and the first occurrence of its 

homeomorph G. ruber (d'Orbigny, 1839). This non-overlapping interval has been 

mentioned by various authors (Blow, 1969; Bolli, 1957; Liska, 1985; Martinotti, 1990; 
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Stainforth et al., 1975), with the length of the interval varying between sites. Therefore, 

further high resolution biostratigraphic research is needed to determine the diachronism 

of this event. 

 

Globigerinoides trilobus (Reuss, 1850) 

Plate 10, Figures 2–3, 5.  

 

Globigerina triloba Reuss, 1850, p. 374, pl. 447, Figs. 11a–c. 

Globigerinoides triloba triloba (Reuss). Bolli, 1957, p. 112, pl. 25, Figs. 2a-c; Blow, 

1959, p. 187, pl. 11, Figs. 60a, b. 

Globigerinoides trilobus (Reuss). Bermudez, 1961, p. 1244, pl. 12, Fig. 6; Kennett and 

Srinivasan, 1983, p. 62, pl. 13, Figs. 1–3. 

Globigerinoides trilobus trilobus (Reuss). Gibson, 1983, p. 371, pl. 4, Fig. 12. 

 

Stratigraphic range: U1338A-4H-5, 56–58 cm → U1338A-44X-3, 102–104 cm. 

Remarks: Globigerinoides trilobus is common in most samples and abundant in samples 

U1338A-36X-1, 36–38 cm and U1338A-41X-4, 9–11 cm. The species is distinguished 

from all other Globigerinoides by its low arched slit-like primary and supplementary 

apertures. Typical specimens are coarsely cancellate and have a more compact test 

compared to G. subquadratus and G. primordius.  

 

Genus Globoquadrina Finlay, 1947 

Type species: Globorotalia dehiscens Chapman, Parr, and Collins, 1934 

 

Globoquadrina dehiscens (Chapman, Parr, and Collins, 1934) 

Plate 7, Figures 1–3. 

 

Globorotalia dehiscens Chapman, Parr, and Collins, 1934, p. 569, pl. 11, Figs. 36a–c. 

Globoquadrina dehiscens (Chapman, Parr, and Collins). Kennett and Srinivasan, 1983, 

p. 184, pl. 44, fig. 2, pl. 45, Figs. 7–9. 

 

Stratigraphic range: U1338A-4H-5, 56–58 cm → U1338A-44X-CC. 
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Remarks: Globoquadrina dehiscens is characterised by its flattened umbilical face, 

pronounced umbilical shoulders, and “v”-shaped tooth. In spiral view, the early sutures 

are poorly incised. This species was common in most samples. 

 

Genus Globorotaloides Bolli 1957 

Type species: Globorotaloides variabilis Bolli, 1957 

 

Globorotaloides cf. G. hexagonus (Natland, 1938) 

Plate 11, Figure 2. 

 

Globigerina hexagona Natland, 1938, p.149, pl. 7, Figs. 1a–c.  

Globorotaloides hexagonus (Natland). Kennett and Srinivasan, 1983, p. 216, Figs. 1, 3, 

5.  

 

Stratigraphic range: U1338B-37H-6, 30–32 cm → U1338B-41H-3, 30-32 cm. 

Remarks: This specimen possesses inflated globular chambers, slightly curved to radial 

sutures, and cancellate wall texture typical of G. hexagonus; however, it exhibits an 

unusually high trochospire and apertural tooth. 

 

Globorotaloides sp. 

Plate 12, Figures 3–6. 

 

Stratigraphic range: U1338B-37H-6, 30–32 cm → U1338C-39H-4, 140–142 cm. 

Remarks: The genus Globorotaloides includes forms with a low trochospiral test, ovate 

to spherical chambers and cancellate wall texture. The spiral side of the specimen 

illustrated in Figure 14.3b is flattened, with radial sutures and rapidly increasing 

chamber size in the final whorl. Similar to Figure 14.5, its final chamber is much larger 

than the penultimate chamber and the aperture is bordered by an unusually large lip. 

The specimen illustrated in Plate 11, Fig. 4 also exhibits a pronounced lip, but has 

slightly curved sutures. It is more compact than the other illustrated specimens. The 

specimen illustrated in Plate 11, Fig. 6 has a low trochospire and a more open aperture 

bordered by a thin lip. 
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Genus Globoturborotalita Hofker, 1976 

Type species: Globigerina rubescens Hofker, 1956 

 

Globoturborotalita sp.  

Plate 11, Figure 3. 

 

Stratigraphic range: U1338A-40X-1, 115–117cm → U1338A-40X-3, 27–29cm. 

Remarks: This small form has a compact test, moderate trochospire, and subglobular 

chambers. In shape and size it is comparable to Globoturborotalita rubescens illustrated 

by (Li et al., 2003a), but is distinguished by its lower arched aperture which does not 

possess a lip. 

 

Genus Paragloborotalia Cifelli, 1982 

Type species: Globorotalia opima opima, Bolli, 1957 

 

Paragloborotalia continuosa (Blow, 1959) 

Plate 12, Figure 1. 

 

Globorotalia opima continuosa Blow, 1959, p. 218, pl.19, Figs. 125a–c. 

Globorotalia continuosa Blow. Bolli and Saunders, 1985, p. 204, Figs. 26.8–26.14.  

Paragloborotalia continuosa Blow. Spezzaferri, 1994, p. 54, pl. 20, Figs. 7a–c. 

 

Stratigraphic range: U1338A-26H-CC → U1338A-44X-CC. 

Remarks: Paragloborotalia continuosa differs from P. siakensis in having a more 

subquadrangular profile with fewer chambers in the final whorl. Wall texture is 

cancellate and no spines were found on the studied specimens. The species is very rare 

throughout its range. 

 

Paragloborotalia siakensis (LeRoy, 1939) 

Plate 13, Figures 1–5: Plate 21. 

 

Globorotalia siakensis LeRoy, 1939, p. 262, pl. 4, Figs. 20–22. 

Globorotalia (Jenkinsella) siakensis LeRoy. Kennett and Srinivasan, 1983, p. 172, pl. 

42, Figs. 1, 6–8. 
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Paragloborotalia siakensis (LeRoy). Zachariasse, 2012, Figs. 5.1–5.3, 6.1–6.13. 

 

Stratigraphic range: U1338A-25H-6, 5–7 cm → U1338A-44X-CC. 

Remarks: In many samples, P. siakensis was the dominant species and represented a 

large proportion of the assemblage. The Site U1338 specimens are consistent with new 

SEMs of the holotype in Zachariasse (2012). Plate 9 illustrates a well preserved 

specimen which has been broken to reveal the wall structure. 

 

Genus Praeorbulina Olsson, 1964 

Type species: Globigerinoides glomerosa subsp. glomerosa, Blow, 1956 

 

Praeorbulina circularis (Blow, 1956) 

Plate 15, Figures 1–5. 

 

Globigerinoides glomerosa circularis Blow, 1956, p. 64, Figs. 2.3, 2.4; Kennett and 

Srinivasan, 1983, p.85, pl. 19, Figs. 1–5. 

 

Stratigraphic range: U1338A-37X-CC → U1338A-39X-2, 72–74 cm. 

Remarks: Praeorbulina circularis is distinguished from its ancestor P. glomorosa by 

having numerous apertures along the basal sutures and a more circular outline. It differs 

from the closely related Orbulina universa (d’Orbigny, 1839) in having the earlier 

chambers of the test breaking the outline of the sphere. Maximum numbers of this 

species were found in Sample U1338C-36H-2, 110–112 cm, and it was very common in 

Sample U1338B-36H-2, 40–42 cm. 

 

Genus Sphaeroidinellopsis Banner and Blow, 1959 

Type species: Globigerina seminulina Schwager, 1866 

 

Sphaeroidinellopsis disjuncta (Finlay, 1940) 

Plate 15, Figures 6–8; Plate 19. 

 

Sphaeroidinella disjuncta Finlay, 1940, p. 467, pl. 67, Figs. 224–228. 

Sphaeroidinellopsis disjuncta (Finlay). Kennett and Srinivasan, 1983, p. 206, pl. 51, 

Figs. 3–5. 
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Stratigraphic range: U1338A-25H-6, 5–7 cm → U1338A-42X-4, 114–116 cm. 

Remarks: Sphaeroidinellopsis disjuncta is a fairly persistent taxon throughout the 

middle Miocene sediments of Holes 1338B and C, and has intermittent bursts of high 

abundance in the middle Miocene. This species has a coarsely cancellate and thickened 

test wall, which can be observed in detail in Plate 17. 

 

Family GLOBOROTALIIDAE Cushman, 1927 

Genus Fohsella Bandy, 1972 

Type species: Globorotalia (Fohsella) praefohsi Blow and Banner, 1966 

 

Fohsella peripheroacuta (Blow and Banner, 1966) 

Plate 14, Figure 3. 

 

Globorotalia (Turborotalia) peripheroacuta Blow and Banner, 1966, p. 294, pl. 1, Figs. 

2a–c. 

Globorotalia (Fohsella) peripheroacuta Blow and Banner. Kennett and Srinivasan, 

1983, p. 96, pl. 22, Figs. 4–6. 

Globorotalia fohsi peripheroacuta Blow and Banner. Bolli and Saunders, 1985, p. 213, 

Figs. 29.5a–c, 29.13a–c. 

Fohsella peripheroacuta (Blow and Banner). Pearson and Chaisson, 1997, p. 58. 

 

Stratigraphic range: U1338C-35H-5, 90–92 cm → U1338B-36H-2, 40–42 cm.  

Remarks: This species differs from F. “praefohsi” in being noncarinate, and from its 

ancestor F. peripheroronda by having a more angular peripheral margin. 

 

Fohsella peripheroronda (Blow and Banner, 1966) 

Plate 13, Figure 6. 

 

Globorotalia (Turborotalia) peripheroronda Blow and Banner, 1966, p. 294, pl. 1, Figs. 

1a–c. 

Globorotalia (Fohsella) peripheroronda Blow and Banner. Kennett and Srinivasan, 

1983, p. 96, pl. 22, Figs. 1–3. 

Fohsella peripheroronda (Blow and Banner). Pearson and Chaisson, 1997, p. 58. 
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Stratigraphic range: U1338A-36X-1, 36–38 cm → U1338A-43X-CC. 

Remarks: This species is found intermittently throughout its range and has low 

abundance in the few samples where it is observed. Specimens tend to have poorly 

incised sutures and 5–6 chambers in the final whorl. Fohsella peripheroronda has a 

round to subround peripheral margin compared with the keeled edge of F. 

peripheroacuta. 

 

Genus Globorotalia Cushman and Stainforth, 1945 

Type species Pulvinulina menardii var. tumida Brady, 1877 

 

Globorotalia praemenardii Cushman and Stainforth, 1945 

Plate 15, Figures 1–2, 4–6; Plate 16. 

 

Globorotalia praemenardii Cushman and Stainforth, 1945, p. 70, pl. 13, Figs. 14a–c; 

Bolli and Saunders, 1985, p. 220, Figs. 32.7a–c; Chaisson and Leckie, 1993, p. 162, pl. 

5, Figs. 12–14.  

Globorotalia (Menardella) praemenardii Cushman and Stainforth. Kennett and 

Srinivasan, 1983, p. 122, pl. 28, Figs. 6–8. 

 

Stratigraphc range: U1338A-11H-5, 65–67 cm → U1338C-35X-2, 9–11 cm. 

Remarks: Globorotalia praemenardii was common in the uppermost samples from this 

section. The species is distinguished from its ancestor, G. archeomenardii, by being 

larger and possessing a peripheral keel, and from its descendent, G. menardii, by being 

smaller, more lobate, having a thinner keel, and having only five chambers in the final 

whorl. The wall structure is illustrated in detail on Plate 16. 

 

Superfamily CANDEINACEA Cushman, 1927 

Family GLOBIGERINITIDAE Bermudez, 1961 

Genus Globigerinatella Cushman and Stainforth, 1945 

Type species: Globigerinatella insueta Cushman and Stainforth, 1945 

 

Globigerinatella insueta Cushman and Stainforth, 1945 

Plate 8, Figures 1–2. 
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Globigerinatella insueta Cushman and Stainforth, 1945, p. 69, pl. 13, Figs. 7–9; 

Kennett and Srinivasan, 1983, p. 228, pl. 56, fig. 2, pl. 57, Figs. 4, 5. 

 

Stratigraphic range: U1338A-38X-CC → U1338A-43X-CC. 

Remarks: Globigerinatella insueta is found intermittently in samples from Site U1338. 

It differs from its ancestor Globigerinatella sp. in possessing numerous areal apertures 

bordered by a thick lip on one side of the large embracing final chamber (Pearson, 

1995). This species is very similar in shape to Praeorbulina but is distinguished by its 

microperferorate wall texture, largely covered by small crystallites. 

 

Genus Globigerinita Brönnimann, 1951 

Type species: Globigerinita naparimaensis, Brönniman, 1951 

 

Globigerinita glutinata (Egger, 1893) 

Plate 8, Figures 5–7. 

 

Globigerina glutinata Egger, 1893, p. 371, pl. 13, Figs. 19–21. 

Globigerinita glutinata (Egger). Kennett and Srinivasan, 1983, p. 224, pl. 56, Figs. 1, 

3–5. 

 

Stratigraphic range: U1338A-1H-CC → U1338A-42X-2, 31–33 cm. 

Remarks: This species was rare in most samples and many specimens lack bullae. 

 

Globigerinita uvula (Ehrenberg, 1861) 

Plate 8, Figs 3–4 

 

Pylodexia uvula Ehrenberg, 1861, p. 276, pl. 2, figs. 24, 25. 

Globigerinita uvula (Ehrenberg). Kennett and Srinivasan, 1983, p. 224, pl. 56, figs. 6–8. 

 

Stratigraphic range: U1338A-24H-2, 50–52 cm → U1338A-44X-3, 102–104 cm. 

Remarks: Globigerinita uvula is rarely seen in Holes U1338B and C; only two 

specimens were found in samples from Hole U1338A. This species is characterized by 
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its microperforate wall texture and high trochospire; the primary aperture is bordered by 

a thin lip. 

 

Genus Tenuitella Fleisher, 1974 

Type species: Globorotalia gemma (Jenkins, 1966) 

 

Tenuitella munda (Jenkins, 1966) 

Plate 12, Figure 2. 

 

Globorotalia munda Jenkins, 1966, p. 1121, Fig. 14, nos. 126–133, pl. 13, nos. 152–

156. 

Globorotalia (Tenuitella) munda Jenkins. Kennett and Srinivasan, 1983, p. 162, pl. 39, 

Figs. 5–7. 

Tenuitella munda (Jenkins). Li, 1987, p. 310, pl. 2, Fig. 13. 

 

Stratigraphic range: U1338A-42X-4, 114–116cm → U1338A-44X-CC. 

Remarks: Tenuitella munda was very rare and present in only two samples. This 

microperforate species is described in Kennett and Srinivasan (1983) as having 

subspherical chambers, but the specimens observed in the Site U1338 samples have 

moderately lobate ones. The wall texture is typically smooth, although pustules (Pl. 12, 

Fig. 2) surround the umbilical-extraumbilical aperture, which is bordered by a very thin 

lip. 
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PLATE 1 

 

 

 

Plate 1, Figures 1–6. Clavatorella bermudezi, U1338C-39H-6, 140–142cm. 7 Clavatorella sp., U1338B-

42H-2, 40–42cm. 
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PLATE 2 
 

 

 

Plate 2, Figures 1–6. Dentoglobigerina altispira, U1338C-37H-1, 130–132cm. 
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PLATE 3 
 

 

 

Plate 3, Figures 1, 2. Dentoglobigerina baroemoenensis, U1338B-41H-3, 30–32cm. 3, 4 

Dentoglobigerina binaiensis, U1338B-41H-3, 30–32cm. 5, 6 Dentoglobigerina globosa, U1338B-36H-2, 

40–42cm. 
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PLATE 4 
 

 

 

Plate 4, Figures 1–5. Dentoglobigerina juxtabinaiensis n. sp.: 1–3, 5, paratypes (NHMUK PM PF 

70875–70877,70873), U1338A-42X-CC; 4, paratype (70871), U1338B-41H-3, 30–32cm. 
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PLATE 5 
 

 

 

Plate 5, Figures 1–6. Dentoglobigerina juxtabinaiensis n. sp.: 1, holotype (NHMUK PM PF 70870), 

U1337A-42X-CC; 2, 6, paratypes (70878, 70881), 871-12H-2, 59–61 cm; 3, paratype (70879), U1337A-

38X-CC; 4, paratype (70874), 871-15H-1, 124–126 cm; 5, paratype (70880),U1337A-42X-CC. 
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PLATE 6 
 

 

  

Plate 6, Figures 1–3. Dentoglobigerina tripartita, U1338B-36H-2, 40–42cm. 4–6 ‘‘Dentoglobigerina’’ 

venezuelana, U1338B-41H-3, 30–32cm. 
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PLATE 7 
 

 

 

Plate 7, Figures 1–3. Globoquadrina dehiscens, U1338B-41H-4, 30–32cm. 4 Dentoglobigerina sp., 

U1338B-36H-2, 40–42cm. 5 Sphaeroidinellopsis sp., U1338B-41H-4, 30–32cm. 
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PLATE 8 
 

 

 

Plate 8, Figures 1, 2. Globigerinatella insueta, U1338B-41H-3, 30–32 cm. 3, 4 Globigerinita uvula, 

U1338A-44X-3. 5–7 Globigerinita glutinata U1338B-36H-2, 40–42 cm. 
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PLATE 9 
 

 

 

Plate 9, Figure 1. Globigerinella praesiphonifera, U1338B-42H-2, 40–42 cm. 2 Globigerinoides sp., 

U1338C-41H-4, 30–32 cm. 3 Globigerinoides subquadratus, U1338B-42H-2, 40–42 cm. 4 

Globigerinoides quadrilobatus, U1338A-38X-CC. 5 Globigerinoides cf. G. obliquus, U1338-41H-4, 30–

32 cm. 

 



Chapter 3. Taxonomy 

 

63 
 

PLATE 10 
 

 

 

Plate 10, Figure 1 Globigerinoides bisphericus, U1338C-41H-4, 30–32cm. 2, 3 Globigerinoides trilobus,  

U1338C-41H-4, 30–32cm. 4 Globigerinoides sp., U1338A-34X-2, 78–80cm, 5 Globigerinoides trilobus, 

U1338A-42X-CC. 6 Globigerinoides diminitus, U1338B-41H-4, 30–32cm. 
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PLATE 11 
 

 

  

Plate 11, Figure 1 Globigerinoides aff. G. grilli, U1338B-42H-2, 40–42cm. 2 Globorotaloides cf. G. 

hexagonus, U1338B-41H-3, 30–32cm. 3 Globoturborotalita sp., U1338A-40X-2, 78–80cm. 4 

‘‘Dentoglobigerina’’ venezuelana, U1338B-41H-4, 30–32cm. 
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PLATE 12 
 

 

 

Plate 12, Figure 1. Paragoborotalia continuosa, U1338B-41H-4, 30–32cm. 2 Tenuitella munda 

U1338B-38H-5, 20–22cm. 3–6 Globorotaloides sp., U1338B-38H-4, 0–2 cm. 
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PLATE 13 
 

 

 

Plate 13, Figures 1–5. Paragloborotalia siakensis, U1338C-37H-4, 130–132cm. 6 Fohsella 

peripheroronda, U1338A-38X-CC. 
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PLATE 14 
 

 

 

Plate 14, Figures 1, 2, 4–6 Globorotalia praemenardii, U1338C-35H-5, 90–92cm. 3 Fohsella 

peripheroacuta U1338B-36H-2, 30–32cm. 
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PLATE 15 

 

 

 

Plate 15, Figures. 1–5 Praeorbulina circularis, U1338B-42H-2, 40–42 cm. 6–8 Sphaeroidinellopsis 

disjuncta, U1338C-35H-5, 90–92 cm. 
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PLATE 16 
 

 

 

Plate 16. Globorotalia praemenardii, U1338B-36H-2, 30–32 cm; test broken to reveal wall structure.  
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PLATE 17 

 

 

 

Plate 17. Sphaeroidinellopsis disjuncta, U1338C-35H-5, 90–92 cm; test broken to reveal internal wall 

structure.  

 

 



Chapter 3. Taxonomy 

 

71 
 

PLATE 18 

 

 

 

Plate 18. Globigerinoides subquadratus, U1338B-42H-2, 40–42 cm; test broken to reveal wall structure. 
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PLATE 19 

 

 

  

Plate 19. Paragloborotalia siakensis, U1338C-37H-4, 130–132 cm; test broken to reveal internal wall 

structure. 
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PLATE 20 
 

 

 

Plate 20, Planktonic foraminifera from the Cipero Formation, Trinidad. 1 Catapsydrax dissimilis, 2 

Catapsydrax sp., 3 Dentoglobigerina tripartita, 4 Dentoglobigerina sp., 5 Paragloborotalia sp., 6 

Globigerinoides subquadratus, 7 Paragloborotalia siakensis, 8 Paragloborotalia sp. 
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PLATE 21 
 

 

 

Plate 21. Planktonic foraminifera from the Brasso Formation, Trinidad. 1 Globigerinoides sp., 2 

Paragloborotalia sp., 3 Paragloborotalia sp., 4 Sphearoidinellopsis disjuncta, 5 Praeorbulina sp., 6 

Globigerinoides subquadratus, 7 Turborotalita sp. 
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PLATE 22 
 

 

 

Plate 22. Dentoglobigerina sp. from the Cipero Fm; test broken to reveal internal wall structure. 
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PLATE 23 
 

 

 

Plate 23. Dentoglobigerina sp. from the Brasso Fm; test broken to reveal internal wall structure. 
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3.7 Summary 

This Chapter presents detailed taxonomic analysis of the U1338 planktonic foraminifera 

and focusses discussions upon the state of preservation. Fifty-five species are recorded, 

including Dentoglobigerina juxtabinaiensis. Dominant genera include Paragloborotalia 

and Globigerinoides with common Dentoglobigerina. Specimens from the classic 

Cipero Fm. of Trinidad are illustrated for comparison. The biostratigraphy f Site U1338 

is discussed in detail in Chapter 5. 

 

Key findings: 

(1) The middle Miocene planktonic foraminiferal assemblages from Site U1338 

exhibit exceptional preservation and diversity, which suggests they are ideal for 

the stable isotope analyses presented in Chapter 4. 
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4. Middle Miocene Climatic changes on orbital 

time scale recorded by planktonic foraminifera  
 

4.1 Introduction 

This Chapter examines the timing and magnitude of stable isotope events in the 

planktonic foraminiferal record with comparison to the deep ocean. A high resolution (3 

kyr) planktonic foraminiferal δ
18

O and δ
13

C record spanning the period of 15.6–13.3 Ma 

from IODP Site U1338 in the eastern equatorial Pacific Ocean is presented here, in 

addition to the first planktonic foraminiferal record of trace metal ratios for this interval. 

Separation of the components of the δ
18

O signal is required to improve understanding of 

the processes and feedbacks involved in this dynamic climate reorganization. Therefore, 

in this chapter Mg/Ca ratios are used as a palaeotemperature proxy to provide an 

independent temperature record necessary to reveal the ice volume component of the 

middle Miocene δ
18

O signal. This Chapter further investigates the Middle Miocene 

astronomical imprints in the planktonic foraminiferal isotopic records through spectral 

and wavelet analysis and develops the discussions on the impact of orbital forcing on 

Miocene ice sheet expansion.  

 

4.1.1 Miocene climate 

The middle Miocene (~16–13 Ma), was a time of major changes in the ocean–

atmosphere system, during which the global climate shifted from an interval of climatic 

warmth to a period of rapid cooling and major expansion of the East Antarctic Ice Sheet 

(EAIS) (Flower and Kennett, 1994; Holbourn et al., 2007; Shackleton and Kennett, 

1975; Shevenell et al., 2004; Westerhold et al., 2005). This cooling event termed the 

“mid Miocene Climate Transition” (MMCT) is recorded world-wide as a ∼1‰ increase 

in the oxygen isotopic composition (δ
18

O) of carbonates and forms a major step in the 

evolution of Cenozoic climate (Miller et al., 1987; Zachos et al., 2001).  

 There are several significant climatic and palaeoceanographic events related to 

the MMCT, most notably the long-lasting positive carbon-isotope excursion between 

~17 and 13.5 Ma (the “Monterey Excursion” of Vincent and Berger, 1985; described in 

Section 1.5.3).  Within this broad δ
13

C excursion, low-frequency fluctuations have been 

recognised with seven defined carbon isotope maxima (CM) (Woodruff and Savin, 

1991). These positive carbon isotope excursions, together with the deposition of large 
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amounts of organic rich sediments along the circum-Pacific margins (Compton et al., 

1990; Vincent and Berger, 1985) are typically interpreted as reflecting increased burial 

of organic matter leading to a drawdown of atmospheric carbon dioxide and subsequent 

global cooling and ice build-up (Flower and Kennett, 1993). However, this hypothesis is 

not supported by recent Miocene pCO2 reconstructions which indicate relatively low 

levels during both periods of inferred global warming and high latitude cooling (Badger 

et al., 2013; Pagani et al., 1999; 2005). 

  An alternative mechanism to explain the MMCT is a favourable orbital 

configuration. The amount of insolation received at the upper atmosphere is affected by 

changes to the Earth’s orbital eccentricity, obliquity and precession (see also Section 

1.6.3). These three components have played an important role in regulating global 

climate changes. Studies of benthic foraminiferal isotopic records across the MMCT 

reveal the astronomical imprints from the obliquity (40 kyr) and eccentricity (100 kyr 

and 400 kyr) cycles (Holbourn et al., 2005; Shevenell et al., 2004), and suggest orbital 

configurations across the MMCT resulted in relatively low summer insolation over 

Antarctica (Holbourn et al., 2005). 

Detailed planktonic foraminiferal geochemical records are crucial to any 

reconstruction and modelling of past ocean salinity and density, water column 

stratification, thermohaline circulation, and ice volume. Despite extensive studies of 

benthic foraminiferal isotopes (Holbourn et al., 2005; 2007; Shevenell et al., 2004; Tian 

et al., 2013) existing planktonic foraminiferal isotopic records of this interval are scarce 

and of low resolution (Badger et al., 2013; Gasperi and Kennett, 1993b), due to 

sedimentary successions spanning this interval having been strongly affected by 

carbonate dissolution or burial diagenesis (Holbourn et al., 2005), or proved incomplete 

due to hiatuses (ODP Leg 144, Pearson (1995)). Consequently, the impact of global 

warming and cooling on tropical surface waters and the propagation of orbital cycles in 

the Earth System are unknown. Thus, the data presented in this Chapter provides 

exciting new information on sea surface temperatures and primary productivity changes 

at the tropics during the middle Miocene at a resolution not achieved in any previous 

study, which sheds new light on the middle Miocene climatic transition (MMCT) and 

associated carbon-isotope excursion. 
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4.1.2 Modern oceanography 

4.1.2.1 Deep Pacific Ocean Basin 

The deep Pacific basin is supplied by Circumpolar Deep Water (CPDW), a mixture of 

Antarctic Bottom Water (AABW) generated by evaporative cooling off the coast of 

Antarctica, and North Atlantic Deep Water (NADW) produced where the surface ocean 

is cooled in the Norwegian Sea. This dense water body accumulates nutrients and loses 

oxygen as it flows northwards into the North Pacific before returning as a nutrient 

enriched, oxygen depleted southward flow (Pacific Central Water, PCW) at 1–3 km 

depth (Holbourn et al., 2013). 

4.1.2.2 Surface and subsurface currents 

In the modern Equatorial Pacific Ocean the trade winds drive surface waters from east to 

west generating the North and South Equatorial Currents (NEC and SEC) (Fig. 4.1). 

This causes warm water to “pile up” in the western Pacific where the sea surface is 0.5 

meters higher than in the east (Talley et al., 2011). This creates a pressure gradient that 

produces a strong eastward flow just beneath the surface layer (150–200 metres depth), 

known as the Equatorial Undercurrent (EUC) (Cromwell et al., 1954; 1963; Knauss, 

1960) (Fig. 4.1). The EUC is a major sub-surface ocean current that is present in all 

three equatorial oceans but is strongest in the Pacific. 

 

 

4. 1 

Figure 4.1. Schematic cross section of equatorial Pacific Ocean showing the depth and direction of the 

Equatorial undercurrent, and shoaling of the thermocline. 

 

Just north of the equator (5°N to 10°N), the intense North Equatorial Counter-current 

(NECC) is driven eastward by cyclonic wind stress curl associated with the Inter-

tropical Convergence Zone (ITCZ), and separates the broader westward flowing NEC 

and SEC (Kessler, 2006) (Fig. 4.2). The main flow of the counter current is 

concentrated in the shallow surface layer and velocities decrease rapidly with depth 

(Wyrtki, 1967). When the NEC reaches the western boundary it bifurcates into the 

Kuroshio and Mindanao Currents  (Nitani, 1972) and the SEC is broken up into many 
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branches and filaments whose structure and timescales remain poorly understood 

(Kessler and Gourdeau, 2006; Morris et al., 1996). 
 

4. 2 
Figure 4.2. Equatorial Pacific Map showing the position of IODP Site U1338 and ODP Site 1146, the 

general surface and subsurface currents and the mean annual sea surface temperatures across the Equator 

(data from NOAA). PC: Peru Current, NEC: North Equatorial Current, SEC: South Equatorial Current, 

EUC: Equatorial Under Current, NECC: North Equatorial Counter Current, WPWP: West Pacific Warm 

Pool, EPWP: East Pacific Warm Pool. 

 

4.1.2.3 Upwelling 

Surface waters in the equatorial Pacific Ocean are warmest in the west in the “Western 

Pacific-Warm Pool” (WPWP), where the mixed layer is deeper (Fig. 4.1). This is due to 

easterly Trade Winds driving a divergent Ekman transport near the equator. This 

upwelling of cool water in the central/eastern Pacific causes shoaling of the EUC and 

thermocline layer (Fig. 4.1), and gives rise to a “cold tongue” where normally there is 

much more rainfall than in the central and eastern Equatorial Pacific equator from the 

continental margins, and is surrounded by warmer surface water in both hemispheres. 

The cold tongue of the Pacific Ocean is considerably stronger than that of the Atlantic 

Ocean, and has major influence on global climate patterns (Wyrtki, 1967). 

4.1.2.4 Pacific Ocean sea surface salinity 

Under normal conditions, present day surface water salinities are low in the western 

tropical Pacific Ocean and increase towards the eastern part of the basin (Fig. 4.3) 

(Levitus et al., 2013). This is controlled by a combination of atmospheric convection, 

precipitation, evaporation and ocean dynamics (Cronin and McPhaden, 1998). Low 

salinities occur near the equator due to rain from rising atmospheric circulation.  High 

salinities are typical of the hot dry gyres flanking the equator (20-30 degrees latitude) 

where atmospheric circulation cells descend.  
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4. 3 
Figure 4.3. Equatorial Pacific Map illustrating modern average annual mean sea surface salinities. 

Adapted from Levitus world ocean atlas (Levitus et al., 2013). P.S.U = Practical Salinity Unit. 

 

4.1.2.5 El Niño-Southern Oscillation 

The El Niño-Southern Oscillation (ENSO) is a complex interaction between the ocean 

and atmosphere in the tropical Pacific. The key feature of ENSO is a positive feedback 

between trade winds and zonal sea surface temperature (SST) gradients known as 

Bjerknes feedback (Bjerknes, 1969). Under normal conditions warm moist air rises over 

the Western Pacific Warm Pool, which leads to low surface pressure. The rising air 

reaches the tropopause and returns eastward where it subsides. High pressure in the 

eastern Pacific reinforces the trade winds and completes the Walker circulation. El Niño 

occurs when anomalously high SSTs in the eastern equatorial Pacific reduces the east-

west SST gradient and hence the strength of the Walker circulation (Gill, 1980; Lindzen 

and Nigam, 1987), resulting in weaker Trade Winds around the equator. This in turn, 

drives ocean circulation changes that further reinforce the SST anomaly, as the Western 

Pacific Warm Pool moves eastward. This positive ocean-atmosphere feedback leads to a 

warm state in the equatorial Pacific, i.e., the warm phase of ENSO –El Niño (Fig. 4.4) 

(Wang et al., 2012), which results in drought in the western Pacific and increased 

precipitation and reduced upwelling in the eastern Pacific (Cane, 2005; Wang and 

Fiedler, 2006). When the ocean-atmosphere system returns to its normal state, it 

sometimes “overshoots”, resulting in a ‘La Niña’, a state of extreme east–west contrast 

(Batenburg et al., 2011). The El Niño/Southern Oscillation (ENSO) also causes large 

changes in salinity over the equatorial Pacific as the warm, low-salinity waters from the 

western tropical Pacific (WTP) are advected east into the central Pacific (Stott et al., 

2004). 
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Studies of ENSO dynamics and impacts in the modern demonstrate that the 

equatorial Pacific ocean-atmosphere system influences global climate on interannual to 

decadal time scales (Koutavas et al., 2002; Trenberth, 1997). Typically, one El Niño 

“cycle” occurs every 3-7 years, although the term ENSO includes the word oscillation, 

analysis of real climate ENSO showed that it behaves more like a series of single events 

rather than a cycle between positive and negative phases (Kessler, 2002).  

Modelling studies indicate that this system is sensitive to orbital forcing which 

regulates the annual insolation cycle and affects the seasonal strength of the trade winds 

and the intensity of upwelling (Clement et al., 1999). Orbital perturbations of the 

seasonal cycle are believed to be crucial factors determining the long-term behaviour of 

ENSO (Clement et al., 1999). Studies of primary production in nannoplankton, and 

Mg/Ca data from Quaternary planktonic foraminifera from the tropical Pacific region 

reveal significant spectral power at precessional periods (19 to 23 kyr) (Beaufort et al., 

2001; Lea et al., 2000), but the specific mechanisms by which precession affects basin-

scale ocean atmosphere dynamics and their interaction with global climate remains 

poorly understood (Koutavas et al., 2002).  

There is also evidence for persisting ENSO variability during past warmer 

climates. The δ
18

O record obtained from 3–5 million year old coral skeletons in the 

tropical Pacific reveals interannual variability on ENSO time scales (Watanabe et al., 

2011). In the late Miocene (~5.6 Ma), evaporite deposits from the Mediterranean have 

also recently been found to resemble the modern spectrum of ENSO (Galeotti et al., 

2010). The authors hypothesise ENSO teleconnections may have been stronger during 

the late Miocene due to a reduced meridional temperature gradient (Galeotti et al., 

 

4. 4 
Figure 4.4. Schematic diagram of Pacific Ocean sea surface temperatures during El Nino conditions. 

Adapted from Thompson (2007). 
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2010). A middle to late Miocene (10–13 Ma) stable isotope record from giant clams 

found in Indonesia, also shows ENSO-like interannual variability (Batenburg et al., 

2011). Palaeoclimatic evidence for middle Miocene (17–13 Ma) ENSO conditions is 

scarce because of a lack of detailed, well-dated climate records from this region. 

 

4.2 Results 

Down core high resolution planktonic foraminiferal δ
18

O and δ
13

C profiles versus age 

are shown in figure 4.5. Paired measurements in 113 samples indicate no significant 

offset in δ
18

O and δ
13

C between G. subquadratus and Globigerinoides spp.  

From 15.57 to 13.36 Ma mean planktonic foraminiferal δ
13

C values generally 

fluctuate between 3.2 and 2.2‰, except for two abrupt positive shifts reaching ~ 3.4‰ 

at 14.65 and 13.9 Ma (Fig. 4.5). Amplitude variability is generally between 0.2‰ and 

0.8‰, except during the positive shifts where it reaches >1.2‰. The planktonic 

foraminiferal δ
13

C record of Site U1338 displays a series of globally recognised carbon 

maxima (CM events, Vincent and Berger, 1985; Woodruff and Savin, 1991) the period 

of the Monterrey Carbon Isotope Excursion (16.5–13.5 Ma). Four CM events from 

CM5a to CM6b are identified in the δ
13

C record (Fig. 4.5), which recur every 400 kyr 

(Woodruff and Savin, 1991).  

Mean δ
18

O values generally fluctuate between approximately -0.2 and -1.8‰ 

(Fig. 4.5) and maximum and minimum values are recorded between 13.36–14.0 Ma and 

15.56–14.75 Ma respectively. There is a prominent short-term increase where oxygen 

isotope values shift by ~0.8‰ over a ~200 kyr interval beginning at ~14 Ma, which 

signifies the expansion of the East Antarctic Ice Sheet (EAIS). This is further discussed 

in Section 4.5.1. Based on the δ
18

O signal, three distinct phases of climate evolution are 

identified through the interval 15.57 to 13.36 Ma (Figs. 4.6–4.8). 
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Figure 4.5. High-

resolution (~3 kyr) 

planktonic isotopic 

records for IODP Site 

U1338 from 15.57 to 

13.36 Ma. (a) Core 

recovery; (b) digitized 

core photograph; (c) 

Chron data as per 

Gradstein et al. (2004); 

(d) Globigerinoides spp. 

(dark blue) and G. 

subquadratus (light 

blue) δ
18

O, the black 

lines denote 10-point 

moving average through 

the record; (e) 

Globigerinoides spp. 

(orange) and G. 

subquadratus (red) δ
13

C; 

(f) % CaCO3 curve 

comes from (Lyle et al., 

2010); (g) 

Sedimentation Rates.4. 5 
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4.2.1 Phase 1: 15.57 to 14.70 Ma 

From ~15.57 to 14.70 Ma (phase 1) δ
18

O values oscillate between approximately -1.8 

and -0.6‰ and reveal a succession of well-defined 100 kyr cycles between 15.2 and 

15.6 Ma with high amplitude variability (Fig. 4. 6). The δ
13

C values over this interval 

vary between 2.4 and 3.2‰, with lower amplitude variation compared to the δ
18

O.  

 

 

Figure 4.6. High-resolution (~3 kyr) planktonic foraminiferal isotopic records for IODP Site U1338 from 

15.57 to 14.7 Ma. (a) Globigerinoides spp. (dark blue) and G. subquadratus (light blue) δ
18

O; (b) 

Globigerinoides spp. (orange) and G. subquadratus (red) δ
13

C. 

 

4. 6 
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4.2.2 Phase 2: 14.7 to 14.0 Ma 

From 14.7 to 14.0 Ma (phase 2) the δ
18

O values fluctuate between approximately -1.8 

and -0.5 ‰ (Fig. 4. 7) and the 100 kyr cyclicity that was apparent in phase 1 is 

supressed. The δ
13

C record for this interval is characterised by two positive shifts at 

~14.43 and ~14.15 Ma, which correspond to carbon maxima events CM5a and CM5b of 

the globally recognised Monterey excursion.  

 

 

Figure 4.7. High-resolution (~3 kyr) planktonic foraminiferal isotopic records for IODP Site U1338 from 

14.7 to 14.0 Ma. (a) Globigerinoides spp. δ
18

O; (b) Globigerinoides spp. δ
13

C. 

 

4. 7  
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4.2.3 Phase 3: 14.0 to 13.36 Ma  

From 14.0 to 13.36 Ma the δ
18

O curve is marked by a positive trend of ~1‰ occurring 

over 200 kyr, beginning at ~13.9 Ma. This increase in δ
18

O is followed by a rapid 

increase in δ
13

C values that leads to the most pronounced of the CM events; the double 

peaked CM6 event (Fig. 4.8).  
 

 

Figure 4.8. Planktonic foraminiferal isotope records of Site U1338, 13.36 to 14.0 Ma. (a) 

Globigerinoides spp. δ
18

O; (b) Globigerinoides spp. δ
13

C. CM events denote the “Monterey Carbon 

excursion”.  

 

4. 8 
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4.2.4 Comparison of benthic and planktonic foraminiferal δ
18

O at Site 

U1338 

The benthic foraminiferal isotope record provided by Holbourn et al. (2014) based on 

stable isotope measurements performed on specimens of Cibicidoides spp. uses the 

same samples from Site U1338 as those used for the planktonic foraminiferal analyses 

in this study. This allows direct comparisons to be made between the two data sets. By 

comparing the planktonic and benthic foraminiferal δ
18

O records, the timing and 

magnitude of δ
18

O changes through the water column can be examined.  

The amplitude variation of the benthic foraminiferal δ
18

O record is slightly less 

than the planktonic foraminiferal record, with values fluctuating between 2.3‰ and 

0.7‰ (Fig. 4.9), and oscillations in δ
18

O (~0.8‰) with a period of ∼100 kyr are evident 

from 15.6 Ma to 15.0 Ma. Between 13.3 and 14.8 Ma, the benthic foraminiferal record 

is sampled at a higher resolution (~1.5 kyr) than the planktonic record (~3 kyr) and 

oscillations with a period of ~40 kyr become apparent from 14.6 Ma onwards. An 

abrupt positive shift of approximately 1‰ is observed at 13.9 Ma, where benthic 

foraminiferal values shift from ~1.2‰ to 2.2‰ over a 200 kyr interval. This feature is 

also seen in the planktonic isotope data set, but as a much more gradual trend.  

The vertical oxygen isotope difference between planktonic and benthic 

foraminifera (Δδ
18

O) was calculated and is also shown in figure 4.9c. The benthic-

planktonic foraminiferal δ
18

O difference removes the global ice volume effects and 

mainly reserves the temperature and salinity effects of bottom and surface waters. An 

increase in the difference between planktonic and benthic foraminiferal δ
18

O indicates 

cooling of the deep oceans. Calculated Δδ
18

O values oscillate between 1.8 and 3.8‰ in 

the early part of the record (15.6–15.0 Ma). This is followed by an abrupt shift of ~1.6 

at 13.9 Ma caused by the more rapid positive shift in the benthic foraminiferal δ
18

O 

relative to the planktonic foraminiferal δ
18

O, after which values remain lower, 

fluctuating between 1.9 and 2.8‰. The two oxygen isotope records appear 180 degrees 

out of phase in the earliest part of the record (between 15.6–15.1 Ma), where the lightest 

values in the benthic foraminiferal records occur at intervals of most positive planktonic 

foraminiferal isotope values. 
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4. 9 

Figure. 4.9. Comparison of planktonic and benthic foraminiferal δ
18

O records from IODP Site U1338; (a) 

Cibicidoides spp. δ
18

O (Holbourn et al., 2014); (b) Globigerinoides spp. δ
18

O; (c) ∆δ
18

O Site U1338. 

 

 

4. 10 

Figure 4.10. Close up of planktonic and benthic foraminiferal δ
18

O records from IODP Site U1338 

between 15.1 and 15.6 Ma; (a) Cibicidoides spp. δ
18

O (Holbourn et al., 2014); (b) Globigerinoides spp. 

δ
18

O. 
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4.2.5 Comparison of benthic and planktonic foraminiferal δ
13

C at Site 

U1338 

Comparison of the planktonic and benthic foraminiferal δ
13

C records (Fig. 4.11) reveals 

a strong correlation between the two data sets, both the long and short term trends, 

including amplitude and phase. Benthic foraminiferal δ
13

C values fluctuate between 

2.0‰ and 0.7‰ (Fig. 4.11a), and positive shifts of 0.8‰ and 1.0‰ are seen at 14.7 and 

13.9 Ma respectively. In both the planktonic and benthic foraminiferal records, intervals 

of lighter δ
13

C occur every 400 kyr. Higher frequency variability is also evident on 40 

kyr cycles. Maxima in planktonic (~3.6‰) and benthic foraminiferal δ
13

C (~2.0‰) 

occur at 13.7 Ma and coincide with an increase in δ
18

O. The vertical carbon isotope 

difference between planktonic and benthic foraminifera (Δδ
13

C) is relatively stable 

throughout the studied interval, with values fluctuating between -0.8 and -2.2‰. In 

general, trends in the planktonic foraminiferal δ
13

C record match those from the benthic 

foraminiferal δ
13

C record, but with higher degree of variability.  

 

 

4. 11 

Figure 4.11. Comparison of planktonic and benthic foraminiferal δ
13

C records from IODP Site U1338; 

(a) Cibicidoides spp. δ
13

C (Holbourn et al., 2014); (b) Globigerinoides spp. δ
13

C; (c) ∆δ
13

C Site U1338 
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4.2.6 Paragloborotalia siakensis stable isotope record 

High resolution δ
13

C and δ
18

O isotope records from shallow thermocline dwelling 

planktonic foraminifera Paragloborotalia. siakensis are shown in figure 4.12. A number 

of large gaps exist in the record due to insufficient numbers of specimens (>10) in the 

samples prior to 13.9 Ma. Mean P. siakensis δ
13

C values fluctuate between 2.2 and 

0.8‰. Amplitude variability is approximately 0.5‰ except during positive shifts where 

it reaches 1.0‰. The onset of the CM6 event is displayed in the record at 13.8 Ma 

where δ
13

C values reach a peak of 2.4‰. The P. siakensis δ
13

C record is consistently 

offset from the Globigerinoides spp. record by 1.0‰. Mean δ
18

O values fluctuate 

between -1.4 and 0.2‰. The amplitude variation in the P. siakensis δ
18

O record is 

slightly higher than that of mixed layer taxa Globigerinoides spp. and the two δ
18

O 

records are generally offset by ~0.4‰. However between 13.7 and 13.6 Ma, the two 

records appear congruent, i.e., during the peak of CM6. 

 

 

4. 12 

Figure 4.12 P. siakensis δ
18

O and δ
13

C records from IODP Site U1338 plotted against Globigerinoides 

spp. data. 
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4.3 Orbital Forcing 

Redfit spectral analysis, using the REDFIT program by Hammer et al. (2004), has been 

performed to reveal cyclicity in the planktonic foraminiferal δ
13

C and δ
18

O isotope 

records in the time domain which can potentially be linked to the astronomical 

parameters (See Section 2.7 for detailed methodology). Significant peaks in the δ
18

O 

spectrum are present (Fig. 4.13), which correspond to 100 kyr (eccentricity), and 22 kyr 

(precession) cycles, with confidence levels greater than 99%. Peaks corresponding to 

the 40 kyr obliquity and 26 kyr precession cycles are also present, with confidence 

levels between 90 and 95% (Fig. 4.13). The redfit power spectrum of δ
13

C shows a 

significant peak at 40 kyr with confidence levels greater than 99%, but eccentricity and 

precessional cycles appear dampened. 

 

 

 

Figure 4.13. Redfit spectral plots of entire unedited planktonic foraminiferal δ
18

O and δ
13

C data against 

age. 

4. 13 

Redfit spectral analysis of the benthic foraminiferal data set reveals a significant peak 

present in the δ
18

O spectrum (Fig. 4.14), which corresponds to 40 kyr (obliquity) cycles, 

with confidence levels greater than 99%. Peaks corresponding to the 100 kyr 

eccentricity and 22 kyr precession cycles are also present, with confidence levels 

between 90 and 95%. The redfit power spectrum of the benthic foraminiferal δ
13

C 

record does not show any significant peaks corresponding to orbital cycles. 
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Figure 4.14 Redfit spectral plots of entire benthic foraminiferal δ
18

O and δ
13

C data against age. 
4. 14 

4.3.1 Wavelet and Cross Wavelet analysis 

The high resolution stable isotope records of Site U1338 reveal the long-term 

relationship between astronomical forcing and the response of the ocean/climate, which 

is embedded in the planktonic foraminiferal isotope data set. Wavelet and cross-wavelet 

analyses were performed between the benthic and planktonic foraminiferal δ
18

O and 

δ
13

C measurements that were presented in figures 4.15–4.16. 

The wavelet plots revealed significant precession signal in both the δ
13

C and 

δ
18

O records (Fig. 4.5), and both long (400 kyr) and short eccentricity (100 kyr) are 

clearly imprinted on the δ
18

O record, however enhanced 40 kyr variability stands out 

between 14.6 and 14.1 Ma. The long eccentricity is a prominent feature in the δ
13

C 

record through most of the middle Miocene (13.3–15.5 Ma), and the obliquity cycle is 

especially prominent between 14.6 and 13.9 Ma.  

Cross-wavelet analysis reveals significant coherency between the stable isotope 

records and orbital forcing and indicates that middle Miocene climate was sensitive to 

orbital changes in solar insolation (Fig. 4.18–4.17). The phase relationships of the 

planktonic and benthic foraminiferal isotope series show significant coherence in both 

long and short eccentricity from 13.4 to 15.0 Ma, and in the 40 kyr band between 14.6 

and 14.1 Ma, however from 15.0 to 15.6 the response of planktonic foraminiferal δ18O is 

180 degrees out of phase. 
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4. 15 

Figure 4.15. (a) Wavelet spectra of Site U1338 planktonic foraminiferal δ
18

O time series; (b) Wavelet 

spectra of benthic foraminiferal δ
18

O time series; (c) Cross wavelet transform between planktonic and 

benthic foraminiferal δ
18

O. Warm colours indicate regions of high common spectral power between the 

two time series. Regions within bold black contours are significant at the 95% confidence level against 

red noise. Phase arrows pointing: right: in-phase, left: anti-phase, down: benthic leading planktonic by 

90°, up: planktonic leading benthic by 90. 



Chapter 4. Stable Isotopes 

96 
 

 

4. 16 

Figure 4.16. (a) Wavelet spectra of Site U1338 planktonic foraminiferal δ
13

C time series; (b) Wavelet 

spectra of benthic foraminiferal δ
13

C time series; (c) Cross wavelet transform between planktonic and 

benthic foraminiferal δ
13

C. Warm colours indicate regions of high common spectral power between the 

two time series. Regions within bold black contours are significant at the 95% confidence level against 

red noise Phase arrows pointing: right: in-phase, left: anti-phase, down: benthic leading planktonic by 

90°, up: planktonic leading benthic by 90. 



Chapter 4. Stable Isotopes 

97 
 

4.4 Trace metal analysis and sea surface temperatures 

Low resolution planktonic foraminiferal Mg/Ca ratios, Sr/Ca, and sea surface 

temperature estimates are presented in table 2 (Appendix A) and plotted against δ
18

O in 

figure 4.17. 

 

4.4.1 Mg/Ca ratios 

Measured Mg/Ca ratios for mixed layer dwelling species G. quadrilobatus range from 

approximately 2.80 to 3.80 mmol/mol, giving a mean value of ~3.20 mmol/mol (Fig. 

4.17). Peak values of 3.83 mmol/mol supported by multiple data points are seen at 

13.83 and 13.75 Ma. Average Mg/Ca values for G. subquadratus range between 3.5 and 

4.55 mmol/mol. Between 15.4 and 15.2 Ma values increase from 3.6 to peak values of 

4.55 mmol/mol, then gradually decrease to values of 3.5 mmol/mol at 14.6 Ma. Mg/Ca 

ratios are within the range of values observed in modern low-latitude planktonic 

foraminifera (Anand et al., 2003; Elderfield and Ganssen, 2000). Paired measurements 

in 10 samples reveal an offset of approximately 0.5 mmol/mol between specimens of G. 

subquadratus and G. quadrilobatus (Fig. 4.14) although no substantial offset exists in 

the Sr/Ca data set. 

 

4.4.2 Sr/Ca 

Sr/Ca values fluctuate between values of 1.17 and 1.35 mmol/mol (Fig. 4.17c). Between 

14.4 and 15.6 Ma values remain relatively constant; ranging between 1.20 and 1.25 

mmol/mol. Peak values of 1.39 and 1.35 mmol/mol are seen at 14.15 and 13.80 Ma 

respectively. Sr/Ca ratios are within the range of values (1.25–1.45) mmol/mol reported 

for low-latitude planktonic foraminifera by (Elderfield and Ganssen, 2000), and are 

consistent with excellent preservation and minimal recrystallization (e.g., Thomas et al., 

1999). No trend is observed between Mg/Ca and Sr/Ca ratios. 

 

4.4.3 Sea Surface Temperature estimates 

SST estimates (Fig. 4.17d) calculated following Anand et al. (2003) (see Chapter 2, Eq. 

2.5) based on Mg/Ca ratios from specimens of G. quadrilobatus (Fig. 4.17b), reveal 

SSTs of between 22 and 25°C for the middle Miocene eastern equatorial Pacific Ocean. 

Peak warmth is seen within the Mi3 excursion at 13.83 and 13.75 Ma with temperatures 

of 25.7 and 25.2°C respectively. Temperatures of 26°C are also seen at 13.47 Ma but 

are only supported by a single data point. SST estimates calculated from Mg/Ca values 
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from specimens of G. subquadratus reveal a warming trend from 25 to 27.6°C over a 

200 kyr interval at 15.4 Ma, after which sea surface waters cool to 25°C. The 2°C 

temperature offset between the two mixed layer dwelling species is discussed in section 

4.5. 

 

 

4. 17 

Figure 4.17. Records of δ
18

O, Mg/Ca, Sr/Ca, and reconstructed palaeotemperatures for the middle 

Miocene using planktonic foraminifera from Site U1338; (a) Globigerinoides spp. (dark blue) and G. 

subquadratus (light blue) δ
18

O; (b) Mg/Ca ratio of G. quadrilobatus (light purple) and G. subquadratus 

(dark purple); (c) Sr/Ca ratio of G. quadrilobatus (light grey) and G. subquadratus (dark grey); (d) Sea 

Surface Temperature estimates following the equation of Anand et al., (2003), from Mg/Ca ratio of G. 

quadrilobatus (light red) and G. subquadratus (dark red). Blue box highlights the interval of the Mi3 

glaciation event and East Antarctic Ice sheet Expansion. 
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4.5 Discussion 

The U1338 stable isotope stratigraphy is the highest resolution planktonic foraminiferal 

record for the middle Miocene currently available. The excellent preservation of the 

specimens and coherence with the benthic foraminiferal data set suggests these results 

are reliable and a good record of changing ocean conditions. The use of wavelet and 

cross-wavelet analysis is an innovative aspect of this study as it has not previously been 

attempted on a planktonic foraminiferal record from this interval, most likely due to the 

requirement for a high resolution and continuous data set. The oscillations apparent in 

the planktonic foraminiferal stable isotope record are interpreted to be related to 

Milankovitch cycles. These data are used to examine orbital variations in solar 

insolation through the middle Miocene and their effect on Antarctic ice volume, tropical 

productivity, and sea surface waters. 

4.5.1 Ice volume/temperature 

The U1338 planktonic foraminiferal stable isotope record, coupled with the benthic 

foraminiferal data and the astronomical time scale, allows documentation of the timing 

and magnitude of changes in past ocean conditions. The positive shift of ~ 1.2‰ in the 

benthic foraminiferal δ
18

O at 13.9 Ma (Fig. 4.9) is interpreted as the expression of the 

major middle Miocene ice sheet expansion, referred to as the Mi3 event (Miller et al., 

1991). Any change in the global ice volume should have an equal positive impact on the 

planktonic and benthic foraminiferal δ
18

O. However, between 13.9 and 13.7 Ma, the 

amplitude change in the benthic and planktonic δ
18

O are ~1.2‰ and ~0.8‰ 

respectively. As ice volume fluctuations cannot exceed the variation recorded in the 

planktonic foraminifera, the remaining 0.4‰ δ
18

O change has to be attributed to deep 

sea temperature changes and/or salinity variations. 

The timing of this glaciation event is consistent with the astronomical theory of 

climatic change, which predicts that ice sheet growth requires low polar summertime 

insolation and temperatures. Specifically, high amplitude in the obliquity cycle which 

leads to cool high latitude summers and an insolation minimum, which in turn hinders 

seasonal ice melt and promotes ice build-up (Berger, 1977; Hays et al., 1976). The 

planktonic foraminiferal isotope records clearly show the amplitude of obliquity cycles 

increased suddenly during the middle Miocene (between 14.6 and 14.0 Ma) (Figs. 4.15, 

4.16 and 4.18), which is suggested as a trigger for East Antarctic ice sheet expansion 

(Holbourn et al., 2005; 2007).  
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Between 15.6 and 15.0 Ma the benthic and planktonic foraminiferal δ
18

O records 

show a strong anti-phase relationship in the eccentricity cycles (Figs. 4.9, 4.10 and 4.15) 

implying high amplitude SST and bottom water temperature changes. This is discussed 

in detail in the context of the global ocean in Chapter 7. 

 

 

4. 18 

Figure 4.18. (a) Planktonic foraminiferal δ
18

O interpolated to 1 kyr spacing ; (b) benthic foraminiferal 

δ
18

O (Holbourn et al., 2014); (c) obliquity, with dashed horizontal line showing the present-day value; (d) 

precession and eccentricity as derived from the astronomical solution of Laskar et al. (2004), with 

horizontal dotted black line showing present-day values for eccentricity; (e) the variation in global mean 

insolation according to Laskar et al. (2004); (f) Continuous Wavelet Transform (CWT) analysis of 

planktonic foraminiferal δ
18

O from Site U1338. CWT analyses program is from (Torrence and Compo, 

1998). 
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4.5.2 Mg/Ca-based palaeotemperatures 

Previous to this study, no planktonic foraminifera based SST estimates existed for the 

mid-Miocene eastern Equatorial Pacific Ocean. Diagenesis and the preservation of 

foraminiferal tests are known to have a major impact on shell geochemistry (Brown and 

Elderfield, 1996; Rosenthal et al., 2000), however as discussed in detail in Chapter 3, 

preservation is generally excellent at Site U1338. Therefore, precipitation of secondary 

calcite is not considered to be significantly altering the Mg/Ca record. There is an 

interspecies offset between G. subquadratus and G. quadrilobatus in their Mg/Ca ratios 

of 0.5 mmol/mol, and hence the temperature estimates, which may be due to seasonality 

(i.e., summer and winter temperatures) or differences in habitat depth within the water 

column. Studies of interspecies offsets in test Mg/Ca in modern species of G. ruber and 

G. sacculifer reveal the average Mg/Ca values of G. ruber reflect seawater temperature 

of the surface water mixed layer (0–25 m), whereas those of G. sacculifer correlate best 

with temperatures at 50–75 m (Sadekov et al., 2009). Measurements of Sr/Ca and other 

trace metals (e.g., Fe, Al, Mn, Appendix B, Fig. 2) reveal no such trend or offset. 

Palaeoecology of selected species of Miocene planktonic foraminifera is investigated 

further in Chapter 5. 

Calculated palaeotemperatures based on Site U1338 foraminiferal Mg/Ca data 

range between 23 and 27°C (Fig. 4.17). Based on Mg/Ca values from specimens of G. 

subquadratus, temperatures rapidly warmed during the early middle Miocene from 15.4 

to 15.2 Ma, to 27°C, but remained relatively stable through the middle Miocene based 

on temperature reconstructions from G. quadrilobatus (23–25°C). For comparison, 

modern SST’s at similar equatorial Pacific sites are 26–28°C (Levitus et al., 2013), 

therefore, Site U1338 reveals average middle Miocene SSTs to be ~2°C cooler relative 

to modern mean annual conditions.  

Paired analyses of Mg/Ca and stable isotope measurements highlight 

discrepancies between the foraminiferal Mg/Ca and δ
18

O records (Fig. 4.17). The 

positive trend seen in δ
18

O between 13.9 and 13.7 Ma linked to East Antarctic Ice Sheet 

expansion corresponds to marked maximum in the Mg/Ca record. The increase in 

Mg/Ca ratios at 13.8 Ma accommodates a ~3°C increase in water temperature. Higher 

resolution (< 6kyr) Mg/Ca analysis was conducted over two 100 kyr cycles to test 

whether SST variations were coherent with orbital variations (Fig. 4.19), however, no 

trend is observed between the two data sets. The apparent lack of agreement between 

the planktonic foraminiferal Mg/Ca and δ
18

O records despite the excellent preservation 

of the specimens, suggests that ice volume and salinity must be a key components of the 
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planktonic foraminiferal δ
18

O record as the Mg/Ca record reveals relatively consistent 

tropical SSTs. 

 

 

4. 19 

Figure 4.19. (a) Globigerinoides subquadratus δ
18

O; (b) Sea Surface Temperatures calculated from 

Mg/Ca ratios from specimens of G. subquadratus. 

  

4.5.3 Carbon cycling/productivity 

The planktonic foraminiferal δ
13

C record from Site U1338 is characterised by high 

frequency variations (41 kyr), superimposed on lower frequency (400 kyr period) 

oscillations that exhibit a high degree of coherence with the benthic foraminiferal δ
13

C 

(Fig. 4.16). The synchronous positive δ
13

C (Fig. 4.11) excursions in the surface and 

deep ocean waters reflect major changes in the global carbon reservoir.  

These carbon maxima are traditionally interpreted as primary productivity 

phases, which promoted the sequestration of carbon in organic rich sediments (Flower 

and Kennett, 1993a; Vincent and Berger, 1985), leading to a drawdown of atmospheric 

CO2, and subsequent global cooling (Badger et al., 2013; Holbourn et al., 2005; 

Shevenell et al., 2008). At Site U1338, the argument for a more active biological pump 

is tentatively supported by recently published Si/Ti records for the eastern equatorial 

Pacific (Holbourn et al., 2014) which reveal large spikes in opal accumulation during 

the CM6, thus suggesting a substantial increase in EEP primary production. In addition, 

increased sedimentation rates during intervals of carbon maxima, in particular the CM6 

(Fig. 4.5), and low ∆δ
13

C values are recorded at the onset of Mi3 (Fig. 4.11). The record 

of δ
13

C gradient between near surface and deep waters (∆δ
13

C) provides a proxy of 

atmospheric CO2 levels with stronger gradients signifying increased productivity at the 
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surface and hence lower CO2. However, pCO2 reconstructions for the Miocene still 

present major challenges and require further investigation as the time scales on which 

CO2 drawdown occurred remain unclear. Furthermore, modelling studies and 

palaeoproductivity reconstructions from Atlantic sites (DSDP 608; ODP 925, 1265) do 

not show any relationship between marine palaeoproductivity and benthic foraminiferal 

δ
13

C excursions (Diester-Haass et al., 2009).  

Additionally, if increased productivity and consequently organic carbon burial in 

the tropical Pacific Ocean were driving CO2 drawdown and global cooling during the 

MMCT, we would expect to see δ
13

C leading δ
18

O in the foraminiferal stable isotope 

records. Yet at Site U1338 the reverse is true. Figures 4.5 and 4.8 reveal the onset of the 

positive trend in planktonic foraminiferal δ
18

O at 13.9 Ma predates that of the Carbon 

Maxima (CM6) at 13.8 Ma suggesting that increased productivity, and hence carbon 

burial, followed Antarctic ice volume changes and deep water cooling but contributed 

as a positive feedback. Based on these results it is hypothesised that increased Antarctic 

ice volume, due to favourable orbital configuration, resulted in increased meridional 

temperature gradients which strengthened global wind patterns and thus intensified 

upwelling and productivity in the eastern equatorial Pacific. The highly variable CaCO3 

content in the period immediately before 13.9 Ma, and the relatively stable CaCO3 

burial afterward (Fig. 4.5), are evidence for the switch in upwelling and carbon storage 

(Tian et. al., 2014). In addition, the negative δ
18

O values recorded by specimens of 

Paragloborotalia siakensis suggest a shallow thermocline in the east equatorial Pacific 

after the expansion if the EAIS (Fig. 4.12) 

It should also be noted that ocean circulation, which plays a key role in 

regulating the global climate through latitudinal heat transport and CO2 storage, is 

incredibly complex in the modern Pacific. For the Miocene, ocean currents and water 

mass distribution, though critical for understanding long term climate development, are 

poorly understood. In Chapter 7 modelled reconstructions of Miocene Pacific 

circulation are discussed with reference to Site U1338 and Site 1146 in the west Pacific 

Ocean. 
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4.6 Summary & conclusions 

This chapter presents the highest resolution (3 kyr) planktonic foraminiferal δ
18

O and 

δ
13

C record currently available for the interval of 15.6–13.3 Ma in the eastern equatorial 

Pacific Ocean. Wavelet analysis of this data reveals clear orbital frequencies, which are 

illustrated for the first time in a planktonic foraminiferal data set. This chapter 

additionally presents the first planktonic foraminiferal record of trace metal ratios for 

this interval. 

Key findings: 

(1) The planktonic foraminiferal δ
18

O record produced in this study reveals a 

positive excursion of ~0.8‰ at approximately ~14 Ma, which coincides with a 

~1.2‰ excursion in the benthic foraminiferal δ
18

O record, this is interpreted to 

reflect the Mi3 glaciation (Figs. 4.11 and 4.18).  

(2) The planktonic foraminiferal δ
13

C record is dominated by obliquity and displays 

a series of globally recognized carbon maxima (CM-events) associated with the 

Monterrey Carbon Isotope Excursion. Four CM events from CM5a to CM6b are 

identified in the δ
13

C record. There is a strong correlation between the 

planktonic and benthic δ
13

C data sets, which suggests they are recording changes 

in the global carbon reservoir (Figs. 4.5 and 4.11). 

(3) The onset of the Mi3 glaciation predates the onset of the CM6 event, the most 

significant among all the CM-events (Fig. 4.8) suggesting that increased 

productivity, and hence carbon burial, followed Antarctic ice volume changes 

and deep water cooling and contributed as a positive feedback.  

(4) Wavelet analysis of the foraminiferal stable isotope records reveal deep-water 

cooling and Antarctic ice-sheet expansion coincided with a transition from high 

amplitude in the 41 kyr band to high amplitude in the 100 kyr band (Fig. 4.18).  

(5) The negative δ
18

O values recorded by specimens of Paragloborotalia siakensis 

suggests a shallow thermocline in the east equatorial Pacific after the expansion 

if the EAIS (Fig. 4.12), which lends support to a hypothesis of increased 

upwelling during the Mi3 event. 

(6) Sea surface temperature estimates for the eastern equatorial Pacific Ocean 

during the interval of 13.3 and 15.6 Ma based on Mg/Ca estimates range 

between 22 and 25°C (Fig. 4.17). The SST record does not reflect major 

increases in benthic δ
18

O ca. 14.6 and 13.9 Ma, interpreted as ice volume 

growth. 
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5.  Calibration of planktonic foraminiferal 

bioevents and palaeoecology 
 

5.1 Introduction 

This chapter examines the key bioevents over the middle Miocene climate transition, 

paying particular attention to changes in coiling direction in Paragloborotalia siakensis, 

its use as a biostratigraphic tool and the timing of this event in relation to changing 

surface water conditions in the Miocene equatorial Pacific Ocean. This chapter also 

presents multispecies stable isotope and Mg/Ca results, and investigates the 

palaeoecology of several species of planktonic foraminifera as identifying the depth 

habitat of extinct species is critical in reconstructing past sea surface temperatures (SST) 

and thermal gradients through the water column.  

 

5.1.1 Biostratigraphy 

Biostratigraphy – or the use of fossils for correlation and relative age assignments of 

sediment sequences – is the backbone of geology. In marine biostratigraphic studies, 

microfossils are commonly used to constrain or construct age models as well as to 

reconstruct palaeoceanographic conditions. One of the major marine calcareous 

microfossil groups in palaeoceanographic studies is foraminifera. 

Planktonic foraminifera are highly important indicators of major global events, 

such as sea-level changes and ocean anoxic events, and their long term biological 

evolution is known to have been affected by many different kinds of environmental 

perturbation (Benton, 2009; Peters et al., 2013; Schulte et al., 2010). After the evolution 

of key lineages in the middle Miocene the planktonic foraminiferal population is 

basically structured like the modern. This means all the extant species or their direct 

ancestors are present and bio-provinces similar to the modern ones were established, 

including the low diversity or even single species dominating assemblages at high 

latitudes. Consequently, the climate signal can be directly derived from species 

distribution and abundance. 

In terms of biostratigraphy the evolution and extinction of distinctive "marker 

species" during the Cenozoic has allowed the development of a well-established 

biozonation (Wade et al., 2011). The sedimentary record at Site U1338 is ideal to 

document the timing of planktonic foraminiferal bioevents, due to high sedimentation 

rates (~30 m/myr), complete recovery for the Miocene and a well-defined astronomical 
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time scale (Holbourn et al., 2014). Additionally, the high resolution planktonic 

foraminiferal isotope stratigraphy generated for Site U1338 in this study creates the 

opportunity to identify links between biotic evolution and climate. The main focus of 

this project covers foraminiferal zones M5–M9 but extends to Zone M2. Several key 

lineages were identified: Praeorbulina, Clavatorella, Globigerinatella and Fohsella. 

However, the shipboard sampling was of low resolution with one sample taken every 3 

m (roughly equivalent to 90 kyr). Therefore further high resolution biostratigraphical 

sampling is needed to constrain the timing of events and calibrate the foraminiferal 

bioevents with the magneto- and astro-chronology. This permits the timing of biotic and 

oceanographic events to be determined and thus has the potential to significantly 

enhance our understanding of both evolutionary and palaeoceanographic processes.  

 

5.1.2 Coiling ratios 

Many species of planktonic foraminifera build their tests by adding individual chambers 

in a trochospire which may be left-coiled (sinistral) or right-coiled (dextral). Often, a 

given population will exhibit “random” coiling, with 50% dextral and sinistral 

individuals, occasionally with a slight bias for either direction (Norris and Nishi, 2001). 

Other species display a strong preference toward one coiling direction or have different 

coiling directions in different hydrographic or biogeographic settings (Winter and 

Pearson, 2001). Over geological time, some taxa switch coiling direction from random 

or dominantly dextral to sinistral (Fig. 5.1) (Bolli, 1971). These “coiling flips” have 

been widely used for stratigraphic correlation as well as to infer changes in water mass 

conditions and sea surface temperatures (Bandy, 1960; Ruddiman, 1977; Saito, 1976; 

Winter and Pearson, 2001; Xu et al., 1995). 
 

 

5. 1 

Figure 5.1. Coiling trends in selected Cenozoic taxa, adapted from Bolli (1971). 



   Chapter 5. Biostratigraphy 

107 
 

The coiling directions of foraminifera are one of the most studied morphological 

features for both palaeoclimate studies and local stratigraphic correlation (Darling et al., 

2006; Naidu and Malmgren, 1996; Ujiié and Asami, 2014; Winter and Pearson, 2001), 

however, many contradictory results exist. It was Bolli who first suggested in 1950 that 

some lineages of foraminifera are typically characterised by an initial phase of random 

coiling, which is often followed by the development of a preference for either direction. 

Unfortunately, the trends indicated by Bolli in his synoptic text-figures are not 

supported by published data counts or sample locations, hence, it is difficult to assess 

their significance and reliability. Winter and Pearson (2001) conducted a study of the 

coiling direction of Paragloborotalia mayeri using samples from the western Atlantic 

and western Pacific (ODP Sites 925 and 871) to assess whether the transitions in Bolli’s 

papers are as smooth and continuous as depicted. They found that the main transition to 

populations <20% dextral occurs within Zone M5. However, the study was of very low 

resolution and the results based upon 37 samples within a ~13.5 Myr interval (25.1–11.6 

Ma). Therefore, further high resolution biostratigraphic analysis is required to test the 

potential of coiling direction in specimens of Paragloborotalia as a biostratigraphic 

tool.  

 

 

 

Figure 5.2. Specimens of dextral and sinistral coiling Paragloborotalia siakensis from IODP Site U1338; 

(a) Hole U1338C 39H-6, 130–132 cm; (b) Hole U1338C 39H-6,140–142 cm. 

5. 2 
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5.1.3 Planktonic foraminiferal palaeoecology and depth habitats 

Planktonic foraminifera, although concentrated toward the surface, live over a range of 

depths in the upper part (~ top 500 m) of the oceanic water column with individual 

species showing depth preferences that are defined by their ecology, season of growth,  

local hydrographic conditions (Hemleben, 1989) as well as their life stage, as some 

planktonic foraminifera are known to migrate vertically during ontogeny (Deuser, 

1986). The surface waters of the Ocean are typically depleted in δ
18

O and enriched in 

δ
13

C but in the deep Ocean the reverse is true (Spero et al., 1997). Consequently, the 

depth habitat of extinct forms of planktonic foraminifera can be inferred by performing 

stable isotope analysis (Norris, 1996; Wade et al., 2007). “Vital effects” (effects related 

to biological processes) also need to be taken into consideration when reconstructing 

sea surface conditions as these can cause foraminifera to calcify out of equilibrium with 

seawater (e.g. Katz et al., 2003).  The focus of this PhD project has primarily been to 

reconstruct sea surface conditions in the eastern equatorial Pacific Ocean during the 

middle Miocene, but in order to assess the geochemical signal limited multispecies pilot 

data was generated. This project was challenged by finding sufficient numbers of 

different species and unfortunately a number of samples did not run due to small sample 

sizes. However, the data produced from this pilot study reveals the relative palaeo-depth 

habitats of a number of Miocene planktonic foraminifera.  

 

5.2 Results 

Almost all of the samples analysed contained abundant planktonic foraminifera. The 

fauna at Site U1338 is typical of tropical environments of the early and middle 

Miocene. The samples are commonly characterised by the presence of 

Dentoglobigerina binaeinsis and Globigerinatella insueta, Fohsella “praefohsi” and F. 

fohsi, indicating planktonic foraminiferal Zones M2 to M9 (early and middle Miocene) 

with Globigerinoides typically dominating the assemblages. Low-resolution shipboard 

biostratigraphic analysis was conducted during the Expedition (Pälike et al., 2010) at 

Hole U1338A using core catchers and supplemented by additional samples (usually two 

per core). The orbital chronology of Holbourn et al. (2013) and biostratigraphic analysis 

of assemblages from the B and C Holes, allowed a number of new and existing data to 

be constrained to within 3 kyr resolution (based on average sedimentation rates). The 

range chart in Pälike et al. (2010) identifies several taxa which were absent in this study, 

including Catapsydrax unicavus (Bolli, 1957) and Mutabella miriablis  (Pearson et al., 
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2001). SEM examination of wall textures during this study revealed that specimens 

previously identified shipboard as M. miriablis are not microperforate and many 

specimens of Catapsydrax may in fact be bullate Dentoglobigerina tripartita (Fox and 

Wade, 2013).  

Using insights gained through SEM studies, the shipboard range charts have 

been revised for extinct taxa and follows the planktonic foraminiferal zonal scheme 

presented in Wade et al. (2011). The biostratigraphic events have been calibrated to the 

orbital-chronology of Holbourn et al. (2013). The existing and revised biostratigraphic 

data and ranges of key planktonic foraminiferal species are shown in figure 5.3 and 

listed in table 5.2. Key planktonic foraminiferal species are illustrated in Chapter 3. The 

abbreviations LO and HO indicate the lowest and highest stratigraphic occurrence of 

taxa, respectively. A highest common occurrence (HCO) marks the highest sample in 

which a particular species is noticeably abundant, although it may occur above this level 

in much lower numbers.  

 

5.2.1 Biostratigraphy of Site U1338 

The absence of primary marker species Catapsydrax dissimilis and Globigerinatella sp. 

prevented the differentiation between Zones M3 and M4 at Site U1338. The HO of 

Globigerinoides subquadratus occurs at 390.40 mcd between samples U1338C-39H-7, 

40-42 cm and C-39H-7, 30-32 cm, constraining the extinction of this species to within a 

10 cm interval.  

Globigerinatella insueta occurs commonly throughout Zones M3–M5 at Site 

U1338. The HO of this taxon is found at 385.33 mcd within Chron C5ADn (samples 

U1338A-38X-1, 109-111 cm–U1338A-38X-CC). However,  (Pearson and Chaisson, 

1997) reported the first occurrence of G. insueta at ODP Site 871 close to the base of 

C5ADr. 

The boundary between Zones M5 and M6 is marked by the base of Orbulina 

spp. (Orbulina suturalis and Orbulina universa) within sample U1338A-37X-CC 

(368.78 mcd). This depth is based upon shipboard analysis of core-catcher samples as 

neither species was found during analysis of Holes U1338B and U1338C. The HO of 

Clavatorella bermudezi is located between samples U1338A-37X-CC and U1338B-

38H-4, 40-42cm (368.78 mcd) within Chron C5ACn. This species was reported in only 

one core-catcher sample during shipboard studies (Pälike et al., 2010); however, in the 
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post-cruise examination of Holes B and C it was present in most samples between 

U1338B-37H-4 and U1338C-39H-4 (369–387 mcd).  

The boundary between zones M6 and M7, marked by the base of Fohsella 

peripheroacuta, was found between samples U133A-36X-CC and U1338A-35X-CC 

(363.86 mcd) within Chron C5ABr. Zones M6 and M7 appear reduced due to the 

proximity of the lowest occurrence of marker species Orbulina suturalis (368.78 mcd) 

and F. peripheroacuta (363.86 mcd). The LO of Globigerinoides ruber is found at 

365.48 mcd between samples U1338B-36H-5, 140-142 cm and B-36H-5,150-152 cm. 

Fohsella praefohsi is rare in samples at Site U1338; the LO of this species, which marks 

the base of Zone M8, is recognised at 360.66 mcd between samples U1338A-36H-1, 

38-40 cm and U1338A-36X-CC within Chron C5ABr (Fig. 5.3). This differs from 

previous studies which place the boundary within Chron C5ACn (Wade et al., 2011). 

 The LO of Globorotalia praemenardii was found between samples U1338A-

35X-CC and U1338B-36H-2, 40-42cm (358.63 mcd) within Chron C5ABn. Above 358 

mcd keeled Globorotalia become a frequent component of assemblages and 

Paragloborotalia siakensis increase their number of chambers in the final whorl from 

six to seven. The LO of Fohsella fohsi, which marks the base of Subzone M9a, was 

found between samples U1338A-35X-2, 9-11 cm and U1338A-34X-4, 91-93 cm 

(353.49 mcd) within Chron C5AAr.  

The Tenuitella range into Subzone M5b, with a single specimen also recorded 

from Zone M8–M9/N12 in sample U1338-38H-5, 20-22 cm, (381.98 mcd), indicating a 

younger stratigraphic position than previously suggested by Huber et al. (2006) but 

consistent with Site U1337 and the southern Indian Ocean (ODP Site 744; Majewski, 

2003).  
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Figure 5.3. Composited foraminiferal ranges from U1338 cores A, B, and C, with taxonomic and zonal revisions (Wade et al., 2011). This study covers foraminiferal 

Zones M2–M9. MCD= meter composite depth. Preservation: VG 5 very good (no evidence of overgrowth, dissolution, or abrasion); G5 good (little evidence of 

overgrowth, dissolution, or abrasion); M 5 moderate (calcite overgrowth, dissolution, or abrasion are common but minor); P 5 poor (substantial overgrowth, 

dissolution, or fragmentation). (Adapted from Fox and Wade (2013)). 

5. 3 
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5.2.2 Coiling trends in Paragloborotalia siakensis 

Using samples from IODP Site U1338 in the equatorial Pacific Ocean, the coiling 

directions of Miocene planktonic foraminifera Paragloborotalia siakensis have been 

measured at 3 kyr resolution, on 300 samples between 355–424 mcd (13.3 and 15.6 

Ma). Figure 5.4 illustrates the percentage of dextral specimens of Paragloborotalia 

siakensis in samples with 10 or more specimens. The unedited data can be seen in 

Appendix A. 

 

 

 

Figure 5.4. Percentage dextral coiling direction in Paragloborotalia siakensis, plotted next to Bolli’s 

(1950) coiling data. Black line denotes 10 point moving average. 

5. 4 
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The initial coiling direction of P. siakensis appears random or slightly biased toward a 

dextral preference. The main transition to predominantly sinistral populations (<20% 

dextral) occurs over a 30 kyr interval between 15.37 and 15.34 Ma within planktonic 

foraminifera Zone M5a, Chron C5Br. With the exception of a brief resurgence of 

dextral specimens at 13.7 Ma populations remain predominantly dextral throughout the 

rest of the studied interval, although there are significant gaps in data coverage due to 

absence or low abundance of specimens. 

 

5.3 Multispecies planktonic foraminiferal geochemistry 

Multispecies geochemical data are shown in figures 5.5–5.7 and Appendix A and B. 

 

5.3.1 Multispecies planktonic foraminiferal stable isotope results 

On three samples representing 14.63 Ma, 13.60 Ma, and 13.58 Ma, measurements of 

δ
18

O and δ
13

C were made on 6 species of planktonic foraminifera from 3 different size 

fractions (>315μm, 250–315μm, and 150–250μm). This study was challenged by 

insufficient numbers of each species within the various size fractions from the same 

samples, and unfortunately some samples did not run. However, the multispecies stable 

isotope data does show a δ
18

O gradient through the water column. 

Globigerinoides quadrilobatus consistently records the most negative δ
18

O 

values between -0.6 and -1.1‰, and the most positive δ
13

C values which increase from 

approximately 2.5 to 3.2‰ as test size increases (Fig. 5. 6). Dentoglobigerina 

venezuelana reveals δ
18

O values between 0.57 and −0.33‰ and carbon isotope values 

between 1.5 and 2.4‰. Fohsella sp. consistently records the heaviest δ
18

O values and 

the lightest δ
13

C values. Dentoglobigerina altispira and Sphaeroidinellopsis disjuncta 

appear to cluster together in the largest size fraction with δ
18

O values between -0.4 and 

0.0‰ and δ
13

C values between 2.3 and 2.8‰. Both species show a slight trend towards 

decreasing δ
18

O and increasing δ
13

C values with increasing test size. 

The size-controlled isotopic data plots reveal variable relationships between test 

size and δ
18

O in the 6 species investigated (Fig. 5.6). For δ
13

C, there is evidence for 

positive correlations between test size and δ
13

C for all species except D. venezuelana, 

where no clear relationship can be seen, however this may be a function of the small 

sample size. 

 

http://www.sciencedirect.com/science/article/pii/S0377839813000145#f0025
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5. 5 

Figure 5.5. Multispecies stable isotope measurements from 3 size fractions (>315μm, 250–315μm, and 

150–250μm) of planktonic foraminifera from samples: U1338B-36H-4, 40-42 cm (358.84 mcd), 

U1338B-36H-5, 130-132 cm (361.24 mcd), U1338C-40H-4, 40-42 cm (395.78). See Appendix A for data 

table. 
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Figure 5.6. Variation in δ
18

O and δ
13

C compared with test size from samples: U1338B-36H-4, 40-42 cm 

(358.84 mcd), U1338B-36H-5, 130-132 cm (361.24 mcd), U1338C-40H-4, 40-42 cm (395.78). See 

Appendix A for data table. 
5. 6 
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5.3.1.1 Clavatorella bermudezi 

Clavatorella bermudezi was found to be unusually abundant throughout its range in the 

Site U1338 samples which allowed multiple stable isotope analyses to be performed. 

The data generated sheds light on the palaeoecology of this distinct taxa and provides 

additional information on water column conditions over the interval of the MMCT. 

The stable isotope results from Clavatorella bermudezi are so disparate from the 

multispecies data in the previous section that they are described here separately.  The 

δ
13

C values fall between ~1.37 and 2.20‰ (Fig. 5.7) which is consistent with the values 

recorded by the other sub-thermocline dwelling species such as Catapsydrax sp. (Wade 

et al., 2007) and D. venezuelana (Keller, 1985; Pearson et al., 1997). However, the δ
18

O 

data shows extreme variability (Table 6.1) with values recorded between ~0.8 and 

9.7‰. 

 

Core, Interval, Section (cm) MCD Age (Ma)   δ
13

C   δ
18

O 

B-37H-4, 110-112 369.98 13805096 
 

+1.68 
 

+2.09 

B-37H-4, 120-122 370.08 13807146 
 

+2.03 
 

+4.06 

B-37H-4, 130-132 370.18 13809196 
 

+1.81 
 

+3.65 

B-37H-5, 100-102 371.38 13833796 
 

+2.43 
 

+9.73 

B-37H-5, 110-112 371.48 13835846 
 

+1.70 
 

+3.19 

B-37H-5, 120-122 371.58 13837896 
 

+1.71 
 

+2.07 

B-37H-5, 130-132 371.68 13839946 
 

+1.67 
 

+2.27 

B-37H-6, 0-2 371.88 13845391 
 

+2.00 
 

+5.24 

B-37H-6, 10-12 371.98 13850078 
 

+1.78 
 

+2.30 

C-38H-1, 120-122 372.19 13859828 
 

+1.66 
 

+3.53 

C-38H-1, 140-142 372.39 13869203 
 

+1.62 
 

+2.15 

C-38H-2, 0-2 372.49 13873891 
 

+2.05 
 

+6.01 

C-38H-3, 30-32 374.29 13946464 
 

+1.95 
 

+2.92 

C-38H-4, 140-142 376.89 14025943 
 

+1.94 
 

+2.65 

C-38H-5, 10-12 377.09 14031000 
 

+1.54 
 

+2.02 

C-38H-5, 50-52 377.49 14045029 
 

+2.10 
 

+5.14 

C-38H-5, 70-72 377.69 14052061 
 

+1.88 
 

+2.73 

B-38H-3, 60-62 379.38 14111208 
 

+2.20 
 

+2.84 

B-38H-3, 90-92 379.68 14120552 
 

+1.64 
 

+1.44 

B-38H-3, 110-112 379.88 14126782 
 

+1.65 
 

+1.93 

C-39H-3, 30-32 384.30 14294389 
 

+1.68 
 

+2.10 

C-39H-4, 20-22 385.70 14344210 
 

+1.97 
 

+1.88 

C-39H-4, 40-42 385.90 14351854 
 

+1.93 
 

+1.66 

C-39H-4, 60-62 386.10 14359499 
 

+1.38 
 

+0.81 

C-39H-4, 70-72 386.40 14370965   +1.70   +1.56 

 

Table 5.1. IODP Site U1338 Clavatorella bermudezi stable isotope data 
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Figure 5.7. Stable isotope measurements from specimens of Clavatorella bermudezi. 

5. 7 

 
 

Figure 5. 8.  Stable isotope measurements from specimens of Clavatorella bermudezi (green line) plotted 

against Globigerinoides spp (Blue line δ
18

O, Orange line δ
13

C). 
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5.3.2 Multispecies Mg/Ca results 

Following the offset in Mg/Ca ratios between specimens of G. quadrilobatus and G. 

subquadratus highlighted in Chapter 4, Mg/Ca analyses were run on additional 

specimens of D. altispira and D.venezuelana to identify any further potential offsets in 

the fossil record. However, the Mg/Ca ratios for the 3 specimens shown in figure 5.9 

reveal Mg/Ca ratios for all 3 species range between 2.5 and 3.5 mmol/mol with no 

discernable trend. 

 

 

5. 8 

Figure 5.9. Mg/Ca ratios of selected planktonic foraminifera. Full table of results can be seen in 

Appendix A 

 

5.4 Discussion 

5.4.1 Recalibration of planktonic foraminiferal bioevents to the 

astrochronology 

Neogene planktonic foraminifera have been widely studied in the subtropical and 

tropical Pacific (Bronnimann and Resig, 1971; Chaisson and Pearson, 1997; Jenkins and 

Orr, 1972; Keller, 1981; Srinivasan and Kennett, 1981). However, Miocene 

biostratigraphic studies suffer from a lack of open ocean sections with continuous 

recovery, clearly defined magnetostratigraphy and abundant well preserved planktonic 

foraminifera (Berggren, 1995). Previous work by Miller et al. (1985) to produce a 



Chapter 5. Biostratigraphy 

119 
 

magneto-biostratigraphy for DSDP Sites 563 and 558 in the North Atlantic was 

hindered by unconformities in the record. Site 925 at Ceara Rise in the western tropical 

Atlantic achieved continuous recovery but foraminiferal preservation at this Site is 

extremely variable (Chaisson and Pearson, 1997). Therefore, Site U1338 offers a unique 

opportunity to produce an astro-magneto tuned biostratigraphic record for the middle 

Miocene (Fig. 5.11). The resulting ages for many of the bioevents (Fig. 5.6) are 

significantly younger than those recorded in Berggren (1995) and Wade et al. (2011).  

Diachrony is frequently reported for biostratigraphic datums in the geological 

record, however temporal discrepancies can reflect a number of factors. It is therefore 

important to distinguish between genuine and “apparent” diachrony. “Apparent” 

diachrony can arise in a number of ways; for example, through sampling artefacts. 

Biostratigraphic analysis is typically conducted on samples which are stratigraphically 

widely spaced, resulting in poor temporal and stratigraphic resolution of bioevents, thus 

creating potential offsets to bioevents when correlated between sites (Raffi, 1999). 

Furthermore, unreliable (or lack of) magnetostratigraphy at a number of sites limits the 

accuracy of the calibration of biostratigraphic datums to the GPTS (Edgar et al., 2010), 

and unrecognised unconformities in sample sections can distort species apparent ranges 

and give a false impression of diachrony (Aubry and van Couvering, 2005). A number 

of temporal offsets were found between the estimated first and last appearance datums 

at Site U1338 and the published datums for the Cenozoic time scale. These are 

discussed further in the following sections. 

 

5.4.1.1 LO Clavatorella bermudezi (14.51 Ma) 

At site U1338 the base of Clavatorella bermudezi is found at 387 mcd which places its 

lowest occurrence at ~14.51 Ma, revealing a much shorter range than previously 

recorded in the literature (Table 6.2) (Wade et al., 2011). This datum was found higher 

than expected in comparison with the Atlantic records of Sites 925 and 926 which 

places the first appearance datum (FAD) at ~15.73 Ma (Pearson and Chaisson, 1997; 

Wade et al., 2011). The consistent presence of this taxon in samples between 369–387 

mcd (13.78–14.51 Ma) suggests that the level of this datum is accurate for Site U1338, 

and is not being misrepresented due to other factors such as poor preservation. Thus 

implying diachronism of this event between the eastern Pacific and the western Atlantic 

at Ceara Rise (Chaisson and Pearson, 1997), or strong environmental controls on 

distribution.  
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For some lineages the LO of a species can be difficult to identify accurately, 

however, C. bermudezi evolved from Globorotaloides hexagonus apparently by rapid 

transition (Pearson and Chaisson, 1997) and the latter species was not found in the Site 

U1338 sediments. The 1.2 Myr offset in the LO of C. bermudezi between Site U1338 

and Ceara Rise (Chaisson and Pearson, 1997) exceeds the variability expected from 

methodological or age model inconsistencies. It is therefore interpreted to represent a 

case of geological diachrony, which suggests that C. bermudezi may have had its 

evolutionary first appearance in the western Atlantic and later expanded its 

biogeographic range. 

 

5.4.1.2 HO Clavatorella bermudezi (13.79 Ma) 

At Site U1338 C. bermudezi is found in almost every sample within its limited 

stratigraphic range. Its extinction at 369.28 mcd proved to be one of the most successful 

datums for correlation between the eastern Pacific Ocean and western Atlantic. In the 

most recent revision of the Cenozoic time scale (Wade et al., 2011) the datum was 

placed at 13.82 Ma based upon biostratigraphic analysis of samples from Ceara Rise, at 

a resolution of ~1.5 m (Site 925 (Pearson and Chaisson, 1997)). The high resolution 

study (10 cm intervals/3 kyr) presented here further refines this date to 13.79 Ma. The 

difference between the recalibrated age of 13.79 Ma at Site U1338 and 13.82 Ma at Site 

925 is minimal (only 30 kyr) and can be accounted for by the lower resolution 

biostratigraphic analysis at Site 925. This indicates that the extinction of this taxon is 

near synchronous in the tropics, and provides a robust bioevent for the middle Miocene.  

 

5.4.1.3 HO Globigerinoides subquadratus 

G. subquadratus is the most common species in the early Miocene samples. The 

extinction of G. subquadratus has previously been located within the Globorotalia 

mayeri Zone (M11) (Martinotti, 1990). However, at Site U1338 this event is recorded at 

14.41 Ma (387.35 mcd) in the far older planktonic foraminifera Zone M5b. A thickness 

of 23 m (750 kyr) was also measured between the last occurrence of G. subquadratus 

and the first occurrence of its homeomorph Globigerinoides ruber (d' Orbigny, 1839). 

This non-overlapping interval has been mentioned by various authors (Blow, 1969; 

Bolli, 1957; Chaisson and Leckie, 1993; Liska, 1985; Martinotti, 1990; Stainforth et al., 

1975) with the length of the interval varying between sites. Therefore, further high 
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resolution biostratigraphic research is needed to determine the diachronism of this 

event. 

 

5.4.1.4 HO Tenuitella munda  

The range of Tenuitella is poorly constrained for Site U1338 as the smallest size 

fraction (63–150 µm) was only scanned for distinctive taxa at low resolution. The 

highest occurrence however is recorded at 14.17 Ma (381 mcd, sample U1338B-38H-5, 

20–22 cm); significantly younger (6 Ma) than recorded at other oceanic settings 

(Berggren, 1995; Pearson and Chaisson, 1997). There is no evidence for bioturbidation 

or otherwise at Site U1338, therefore this occurrence level can be assumed to be in situ. 

Based on this study a preliminary new range for this species is suggested, but further 

work on the smallest taxa are required in order to accurately constrain the age. 

 

5.4.1.5 Praeorbulina lineage 

Praeorbulina acts as the diagnostic index genus for the lower middle Miocene interval. 

However, specimens were found to be rare in Site U1338 samples. Therefore the 

shipboard biostratigraphy of the core-catcher samples is retained for biomarkers 

Praeorbulina curva and P. glomerosa and remains poorly constrained for the eastern 

Pacific. Praeorbulina circularis was the most consistently present species of its genus 

and is well constrained for this site. 

 

5.4.1.6 Fohsella Lineage 

The Fohsella fohsi group represents one of the best documented evolutionary sequences 

in Neogene planktonic foraminifera (Turco et al., 2002) and forms the basis of the 

middle Miocene planktonic foraminiferal zonation. In the evolutionary model described 

by Blow and Banner (1966) the F. fohsi lineage is characterised by the acquisition and 

the development of imperforate keel. The earliest gradual morphological changes are 

recorded in the Site U1338 samples above 369 mcd (Fig. 5.3). Fohsella peripheroronda 

represents the earliest member of the F. fohsi lineage and is characterised by a rounded 

axial periphery; its highest occurrence is recorded in samples at 350 mcd which are 

dated at 13.31 Ma. This places it as ~500 kyr younger than previously recorded in Wade 

et al. (2011). F. “praefohsi” is the intermediate form between F. peripheroacuta and F. 

fohsi and becomes progressively more compressed in the final chambers with the 

development of a distinctive imperforate keel in the final two chambers. At Site U1338 
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the keel is not well developed. However, a clear morphological change within 

F. peripheroacuta population towards F. praefohsi occurs at 365.48 mcd (between 

samples U1338A–36X–1, 36-38 cm, and U1338A–36X-CC). The inhibited 

development of the peripheral keel suggests that at Site U1338 the environmental 

conditions were not optimal for the F. fohsi lineage (Chaisson and d'Hondt, 2000). The 

timing of Fohsella evolution is generally consistent with the literature but on average is 

200–500 kyr younger than recorded at other sites. However, the datums are defined by a 

gradual transition between two morphospecies which will be placed in subtly different 

places by different biostratigraphers, imparting a degree of uncertainty to the calibration 

of this datum (Pearson and Chaisson, 1997). This highlights the importance that all 

biostratigraphers adopt a strict species taxonomic concept and illustrate SEM images of 

specimens to enable accurate inter-site comparisons. 

 

 

 

Figure 5.10. Fohsella lineage from Site U1338; F. peripheroronda, U1338A-38X-CC; F. 

peripheroacuta, U1338B-36H-2, 30-32cm; F. praefohsi, U1338B-36H-2, 40-42 cm. 
5. 9 

5.4.1.7 Globigerinatella lineage 

Although never common, Globigerinatella insueta is present in sufficient numbers at 

Site U1338 to provide a reliable datum. The LO of G. insueta is found at 446.70 mcd 

which places the first appearance datum at 16.42 Ma, ~1.17 Ma younger than previously 

recorded in Wade et al. (2011) from samples in the western Atlantic, and 2.2 Ma 

younger than reported at Sites 1146 and 1143 in the South China Sea (Nathan and 

Leckie, 2003), indicating marked diachrony in first appearance datum. This species was 

originally described as the only member of its genus by Cushman and Stainforth (1945), 

who used its first occurrence as the marker of the G. insueta Zone. The evolution of G. 

insueta is described in detail in Chaisson and Pearson (1997) with the earliest forms 



Chapter 5. Biostratigraphy 

123 
 

lacking any supplementary apertures which then became known as Globigerinatella sp. 

Globigerinatella sp. was not present at Site U1338 which prevented planktonic 

foraminifera Zone M3 from being defined here. G. insueta becomes extinct at 385.22 

mcd, which places its last appearance datum at 14.33 Ma; ~300 kyr younger than the 

most recent calibration for this species at Ceara Rise (Wade et al., 2011). 

 

 

 

Figure 5. 11. Primary and secondary planktonic foraminiferal bioevents for the early-middle Miocene.  

5. 10
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Bioevent 

 

Core, Interval, Section (cm) Depth (mcd) Age (Ma) Age (Ma) 

This Study 

Published 

age (Ma) Top Bottom Top Bottom Midpoint Top Bottom Midpoint 

HO 
Clavatorella 

bermudezi 
U1338A-37X-CC U1338B-38H-4, 40-42 368.78 369.78 369.28 13.780 13.805 13.792 13.79 

±12.3 kyr 

13.82 

HO 
Globigerinatella 

insueta 
U1338A-38X-1, 109-111 U1338A-38X-CC 383.62 386.81 385.22 14.275 14.386 14.330 14.33 

±55.6 kyr 

14.66 

LO 
Clavatorella 

bermudezi 
U1338C-39H-6, 140-142 U1338A-39X-5, 89-91  389.9 393.30 391.60 14.475 14.561 14.518 14.51 

±43.3 kyr 

15.73 

LO 
Globigerinatella 

insueta 
U1338A-43X-CC U1338A-44X-2, 55-57  442.68 450.71 446.70 16.275 16.576 16.426 16. 42 

±150.6 kyr 

17.59 

HO 
Tenuitella 

munda 
U1338B-38H-4, 0-2 U1338B-38H-5, 20-22 380.28 381.98 381.13 14.139 14.207 14.173 14.17 

±34.2 kyr 

20.78 

HO 
Globigerinoides 

subquadratus 
U1338C-39H-7, 30-32 U1338C-39H-7, 40-42 387.30 387.40 387.35 14.405 14.409 14.407 14.41 

±1.9 kyr 

- 

LO 
Globigerinoides 

ruber 
U1338B-36H-5,140-142 

U1338B-36H-5, 150-

152 
365.48 366.78 366.13 13.716 13.721 13.719 13.72 

±2.3 kyr 

- 

X 
P. siakensis 

Coiling flip 
U1338B-41H-4,20-22 

U1338B-41H-4,140-

142 
415.57 416.77 416.17 15.344 15.376 15.360 15.36 

±32.8 kyr 

- 

            

 

Table 5.2.Key planktonic foraminiferal bioevents (lowest and highest occurrences of selected taxa) for the middle Miocene. Note: Biochronology is from Wade et al. (2011) 

and calibrated to the astronomical timescale of Lourens et al. (2004). 
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5.4.2 Biological meaning of coiling ratios 

 

 

 

Figure 5.12. Close up of coiling change in specimens of P. siakensis, samples with greater than 10 

specimens; (b) Site U1338 Cibicidoides spp. δ
18

O; (c) Site U1338 Globigerinoides spp. δ
18

O; (d) Site 

U1338 Globigerinoides spp. δ
13

C. Grey band highlights interval of coiling change. 

5. 11 
Many previous investigations of planktonic foraminifera have linked coiling directions 

and environmental conditions (Hemleben, 1989; Kennett, 1968; Naidu and Malmgren, 

1996). In figure 5.12 the coiling direction data from Paragloborotalia siakensis is 

plotted next to the planktonic and benthic foraminiferal stable isotope records of Site 

U1338 in order to identify any relationship between the coiling ratio of P. siakensis and 

changing sea surface conditions. During this interval a major transition from random to 

predominantly sinistral populations occurs at 15.4 Ma. However, the foraminiferal δ
18

O 

and δ
13

C records do not reveal any significant excursions over this event. 

 Figure 5.13 compares the P. siakensis coiling ratio data with the planktonic 

foraminiferal stable isotope records over the interval of the CM6 event and the EAIS 

expansion. Interestingly, there is close correspondence between carbon isotope 

variations in Globigerinoides spp. and the percentage of dextral specimens between 

13.9 and 13.6 Ma, suggesting that this species responded directly to productivity 

fluctuations. Unfortunately there were insufficient numbers to see if this pattern was 

repeated over the other Carbon Maxima in the record. 

Comparison of coiling signatures with δ
18

O data does not reveal any simple 

environmental relationship and stable isotope analysis of left and right coiling 

specimens of Paragloborotalia siakensis picked from the same samples (Appendix A, 

Fig. 5.14) reveals no statistically significant difference in values. This suggests that the 
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transition to predominantly sinistral populations at 15.4 Ma is not triggered by changes 

in sea water temperature or productivity changes. It would therefore appear that the 

coiling direction of P. siakensis is controlled by genetic mechanisms. Past research into 

DNA sequencing of modern planktonic foraminifera has suggested that morphospecies 

often comprise of multiple cryptic “species” (Darling et al., 2000; de Vargas et al., 

1999; Huber et al., 2010) that may have different characteristic coiling directions. It 

may be the case that changes in the coiling ratio through time could reflect changes in 

the relative abundance of cryptic species, through competitive exclusion or otherwise. 

This hypothesis could not be tested within the time constraints of this project beyond 

observing that there are no obvious morphological differences between right and left 

coiling specimens. 

 

 

5. 12 

Figure 5.13. Close up of coiling change over CM6, samples with greater than 10 specimens. 

 

 

5. 13 

Figure 5.14.  Stable isotope values for left and right coiling Paragloborotalia siakensis. Red circles 

denote sinistral specimens. Green squares denote dextral specimens. 
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5.4.3 Palaeoecology and depth habitat of some planktonic foraminifera 

Living planktonic foraminifera are most abundant in the upper 150 metres of the water 

column (Hemleben, 1989). Below this depth they show an approximately exponential 

decline in abundance (Bé, 1977) as a result of controlling factors such as temperature, 

salinity, oxygen concentration and food availability, which vary greatly with depth 

within the water column (Hemleben, 1989; Lombard et al., 2011; Spero et al., 2003). 

Although not originally the focus of this project, understanding the palaeoecology of 

planktonic foraminifera is crucial to determining SSTs and the structure of the water 

column.  

In the modern, the thermal gradient of the water column in tropical regions 

means that δ
18

O of foraminiferal calcite can change by as much as 4‰ between species 

that inhabit in the mixed layer and those which reside deeper in the water column 

(Biolzi, 1983). Many species of planktonic foraminifera migrate through the water 

column during their life cycle, but the bulk of test calcite tends to be secreted within a 

restricted depth range (Hemleben, 1989) with the preferred depth of calcification 

varying from species to species. Generally speaking, open ocean taxa can be divided 

into mixed layer, thermocline and sub-thermocline calcifiers (Pearson et al., 1997). 

Species that calcify in the mixed layer tend to have the most negative δ
18

O because they 

are in the warmest water (Emiliani, 1954), but often exhibit a range of δ
13

C values 

caused by either depth stratification or by the presence in some species of 

photosymbionts. Important information on the palaeobiology of Miocene planktonic 

foraminifera can be gained by comparing the stable isotope results of multiple species.  

The multispecies stable isotope data at Site U1338 (Figs. 5.5–5.7) reveal small but 

marked offsets in δ
18

O and δ
13

C between species.  

 

5.4.3.1 Globigerinoides quadrilobatus 

The stable isotope measurements of specimens of G. quadrilobatus presented in figures 

5.5 and 5.6 display a number of patterns generally consistent with those of extant 

species of planktonic foraminifera known or believed to harbour photosymbionts 

(Norris, 1996) (Figs. 5.5, 5.6, and 5.15). 

Firstly it records the most negative δ
18

O values of any coexisting species in a 

sample (Fig. 5.5), which does not change with increasing test size (Fig. 5.6). 

Photosymbiotic planktonic foraminifera must inhabit the photic zone of the ocean in 

order to maintain their symbionts (Norris, 1996). The warm surface water temperatures 

cause the shell calcite to be depleted in δ
18

O compared to deeper-dwelling, asymbiotic 
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taxa. G. quadrilobatus also generally records the most positive δ
13

C of any species 

(with the exception of a single data point from D. altispira). This is because 

phytoplankton and  foraminiferal photosymbionts preferentially take up 
12

C (Spero et al. 

1991) and leave the surrounding water enriched in 
13

C which is used in foraminiferal 

calcification resulting in the shell calcite having enriched δ
13

C relative to non-

photosymbiotic species or thermocline dwelling species (see section 2.5.3). Figure 5.6 

also demonstrates the δ
13

C values rise with increasing shell size (typically >0.5-1.0 ‰), 

compared to other species analysed. This partly reflects an increase in symbiont activity 

and density of photosymbionts with increasing volume of the host shell (Spero, 1992; 

Spero and Lea, 1993; Spero et al., 1991). Miocene planktonic foraminifera are 

considerably smaller (>200 μm) than their modern descendants; therefore such offsets 

in stable isotope values between the size fractions are also likely to be smaller. 

 

 

 

Figure 5.15. Model for oxygen/carbon isotopic variation in symbiotic and asymbiotic species adapted 

from Norris (1996). 

5. 14 

5.4.3.3 Dentoglobigerina altispira 

D. altispira evolved in the early Miocene, within Zone M1 and became extinct in the 

Pliocene. It is commonly used as an indicator of Miocene shallow water conditions 

(e.g., Hodell and Vayavananda, 1994; Nathan and Leckie, 1993; Norris et al., 1993). 

However, as it has no modern representative, isotopic data provides the only evidence 

for its depth ecology. D. altispira consistently records negative δ
18

O and positive δ
13

C 

relative to the other planktonic species in this study (Fig. 5.5), in line with findings 

reported by other authors (Pearson et al., 1993; Vincent et al., 1991) and supports a 

shallow-water habitat for D. altispira. 
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5.4.3.2 Paragloborotalia siakensis 

Paragloborotaliids have previously been documented in the literature as shallow-water 

dwellers (Gasperi and Kennett, 1993a; Keller, 1985) and as sub-thermocline dwellers by 

Douglas and Savin (1978). The results from this study find that specimens of P. 

siakensis are, in general, enriched in δ
18

O and depleted in δ
13

C relative to mixed layer 

species G. quadrilobatus and D. altispira (Fig. 5.5), which is indicative of the upper 

thermocline (Pearson et al., 1997) and consistent with interpretations of P. mayeri in 

Pearson et al. (1997) and P. opima in Wade et al. (2007). 

 

5.4.3.4 Dentoglobigerina venezuelana 

Temperature changes most rapidly with depth through the thermocline, therefore, 

planktonic foraminifera calcifying within the thermocline should record a greater 

change in δ
18

O than in δ
13

C with increasing depth (Pearson et al., 1993). D. venezuelana 

consistently records the highest δ
 18

O values of planktonic foraminifera throughout the 

Miocene within the analysed samples, suggesting it inhabits the deep thermocline. 

These findings are supported by a recent in-depth study into the palaeoecology of D. 

venezuelana (Stewart et al., 2012).  

 

5.4.3.5 Sphaeroidinellopsis disjuncta 

No isotopic data has previously been gathered for S. disjuncta, however, this species 

yields slightly more positive δ
18

O values (~0.4 ‰) than D. altispira, but in the 250 μm 

size fraction it yields very similar δ
13

C values to P. siakensis, and D. venezuelana. 

Based on this it is tentatively classed as a thermocline dwelling species, however, 

further data is required to confirm this. The increase in δ
13

C with sieved size fraction 

seen in figure 5.6 is well documented in other species of both living and fossil 

foraminifera (Elderfield et al., 2002; Franco-Fraguas et al., 2011; Spero et al., 1997). 

This increase is typically explained citing different rates of calcification, respiration and 

photosynthesis (in symbiotic species) along foraminiferal ontogeny. These factors 

influence the chemistry of the surrounding sea water of the foraminifera and hence the 

δ
13

C recorded in the tests (Franco-Fraguas et al., 2011; Zeebe et al., 1999). These results 

highlight the importance of evaluating size-related stable isotope variability in areas of 

paleoceanographic interest. 
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5.4.3.6 Fohsella sp. 

Previous work by Norris et al. (1993) proposed that the Fohsella lineage was initially a 

shallow-water dweller but shifted its habitat preference into deeper water between 13.0 

and 12.7 Ma. At Site U1338, in samples dated at ~13.6 Ma, it was found that Fohsella 

sp. oxygen isotope values fall between 1.2‰ and 1.47‰ in the 250 μm size fraction and 

are consistently heavier than D. venezuelana by 1.0 ‰ ±0.2‰. The enriched δ
18

O 

results in comparison to D. venezuelana suggest that these taxa occupy a deep-dwelling 

(sub-thermocline) habitat and do not support the conclusions of Norris et al. (1993) and 

perhaps shifted its habitat preference to deeper water earlier than previously thought. 

Unfortunately, there were insufficient numbers of specimens in the Site U1338 samples 

to investigate this further. 

 

5.4.3.7 Clavatorella bermudezi 

Clavatorella bermudezi was found to be unusually abundant throughout its range in the 

Site U1338 samples, which allowed the creation of a robust biostratigraphic calibration 

for this distinct clavate form and afforded the opportunity to perform multiple stable 

isotope analyses. The δ
18

O and δ
13

C of multiple species of planktonic foraminifera can 

be used to reconstruct the temperature structure of the upper water column (e.g., 

thermocline) and the productivity by establishing the isotopic gradients between species 

that live in the surface mixed layer and species that within or below the thermocline. It 

is well known that oceanic upwelling is accompanied by thermocline shallowing, 

thinning of the mixed layer, sea surface temperature decrease, and surface water nutrient 

enhancement (Calvo et al., 2011). These changes are recorded in the δ
18

O and δ
13

C of 

planktonic foraminiferal calcite (e.g., Prell and Curry, 1981; Sautter and Thunell, 1991; 

Ravelo and Fairbanks, 1992; Kroon and Darling, 1995; Thunell et al., 1999). Because 

upwelling may have a significant impact on surface productivity, and thus on the global 

carbon cycle, the identification of upwelling in fossil records is an important factor in 

understanding past climate change and the forcing mechanisms behind those changes 

(Pak and Kennett, 2002).  

However, the interpretation of down core planktonic foraminiferal isotopic re-

cords is dependent on understanding the calcification depths of the different planktonic 

foraminiferal species and how these depths may vary seasonally and inter-annually in 

response to hydrographic changes (Pak and Kennett, 2002). The δ
l3

C values recorded by 

C. bermudezi are consistent with a deep-water habitat, however, the δ
18

O values 

fluctuate wildly between values typical of benthic foraminifera to seemingly unrealistic 
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values of between 3.0 and 6.0‰ (Table 5.1, Fig. 5.7). Based upon its δ
l3

C values, C. 

bermudezi is interpreted as a sub-thermocline dweller, but unrelated to this there 

appears to be some unknown vital effect, which is radically altering the oxygen isotope 

signal. On close inspection maximum values in C. bermudezi δ
18

O do not correspond to 

enriched data points in the Globigerinoides spp. δ
18

O record and the magnitude of 

change seen in the C. bermudezi data set suggests caution is required when 

interpretating from this highly variable data set. The planktonic foraminiferal δ
13

C 

record from C. bermudezi at Site U133, despite being of low resolution, reveal 

(sub)thermocline δ
13

C values fall to approximately 1.6‰ at 13.86 Ma as the δ
13

C of 

Globigerinoides spp. increase to ~3.0‰ (Fig. 5.8). This results in increased vertical 

carbon isotope gradients (δ
13

C) between surface and deeper dwelling planktonic 

foraminifera, which signify intervals of increased productivity as 
12

C is preferentially 

removed from sea water during photosynthesis 

Intriguingly, the sharply defined extinction of C. bermudezi is near synchronous 

in the Pacific and Atlantic Oceans (Pearson and Chaisson, 1997) and broadly coincides 

with the end of the MMCT at 13.79 Ma, leading to the possibility that deep water 

cooling may have played a role in the extinction of C. bermudezi. Although currently 

there is no detailed benthic foraminiferal assemblage data for Site U1338 over the 

MMCT, a period of major faunal change is recorded in the Indian Ocean between ~14 

and 13 Ma (Smart et al., 2007),  which tentatively supports the hypothesis that deep 

water cooling affected species living at depth in the water column. DSDP Site 289 also 

records the extinction of many Oligocene-early Miocene species between 16 and 13 Ma 

but the timing of these events are poorly constrained (Woodruff and Douglas, 1981). 

 

5.4.3.8 Trace metal results 

An unexpected result of this study was finding that there is no offset between species in 

Mg/Ca ratios (Fig. 5.7) which conflicts with the δ
18

O values and interpretation of depth 

habitat. An interspecies offset in the Sr/Ca ratios would reveal if the values were being 

altered by vital effects as the Sr/Ca ratio should be consistent throughout the water 

column. However, no significant offset in Sr/Ca ratio is recorded between any of the 

species analysed (Appendix B). Unfortunately, there is no published multispecies 

planktonic foraminiferal trace element data available to compare. 
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5.5 Summary 

This chapter examines the planktonic foraminiferal bioevents and the palaeoecology of 

selected species at Site U1338 over the middle Miocene climate transition. High-

resolution biostratigraphic analysis of assemblages from the B and C Holes applied here 

allowed a number of new and existing data to be constrained to within 12 kyr 

resolution.  

 

Key findings: 

(1) New and more precise constraints are placed on the ranges of C. bermudezi, G 

insueta, T. munda, G. subquadratus, and G. ruber through high resolution 

biostratigraphy combined with the Holbourn et al. (2013) astronomically tuned 

time scale. The results of this study highlight the need for high resolution 

biostratigraphic work and integrated bio-chronologies in order to reduce the 

uncertainty of a number of events and study potential diachrony between the 

Atlantic and Pacific oceans. 

(2) The high-resolution biostratigraphic and multispecies stable isotopic analyses at 

Site U1338 reveal the rapid coiling change of Paragloborotalia siakensis 

identified at 15.37 Ma is potentially of use as a new biostratigraphic correlation, 

the trend appears to be genetically controlled rather than by temperature of 

productivity changes.  

(3) The life environment of a variety of planktonic foraminifera species have been 

inferred according to interspecies differences in their carbon and oxygen isotopic 

ratios: 

 

Mixed-layer dwellers: Globigerinoides quadrilobatus 

Dentoglobigerina altispira 
 

Shallow thermocline dwellers: Paragloborotalia siakensis 
 

Thermocline dwellers: Dentoglobigerina venezuelana 

 Sphaeroidinellopsis disjucta 
 

Sub-thermocline dwellers: Fohsella sp. 

 Clavatorella bermudezi 
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Table 5. 3. Subset of the samples used for biostrat studies. Refined species datums are highlighted. 
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Table 5. 3. Subset of the samples used for biostrat studies. Refined species datums are highlighted. 
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Table 5. 3. Subset of the samples used for biostrat studies. Refined species datums are highlighted. 
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6. Synthesis: Orbitally forced environmental and 

biotic changes across the Pacific Ocean during 

the middle Miocene 
 

The Pacific Ocean is a key component of the global climate system, as it represents the 

world’s largest oceanic source of water vapour and CO2 to the atmosphere. Today, 

surface water conditions in the equatorial Pacific Ocean are characterised by strong E-

W gradients in SST (~6 °C) and thermocline depth (~50 m in the EEP versus >150 m in 

the WEP), with the thermocline and nutricline usually tightly coupled in tropical 

systems (Bjerknes, 1969; Cane, 2005; Turk et al., 2001). 

To date, there have been few Miocene studies addressing sea surface conditions  

in both the Equatorial Pacific ‘warm pool’ and ‘cold tongue’ systems, therefore our 

understanding of both the mean oceanographic state and dominant forcing mechanisms 

during an interval of climate transition is limited. The orbitally tuned timescale and 

detailed stable isotope data sets for both planktonic and benthic foraminifera from Sites 

U1338 and 1146 provide a comprehensive analysis of oceanographic development 

during the middle Miocene, particularly with regards to temperature, palaeoproductivity 

and the influence of orbital forcing on Miocene climate. 

 

6.1 Comparison with previous studies across the MMCT 

High resolution (<5 kyr) planktonic foraminiferal stable isotope records during the 

middle Miocene period are sparse. In this chapter, the foraminiferal δ
18

O and δ
13

C 

records from the eastern equatorial Pacific Ocean produced in this study are compared 

with those from ODP Site 1146 from the northern South China Sea (Figs. 6.1 and 6.2). 

The similarities and differences between middle Miocene isotope records from marginal 

and open ocean settings are discussed as well as their potential causes. The aim of this 

chapter is to place the Site U1338 planktonic foraminiferal isotope record within the 

context of the global ocean. Comparison of the data from Site U1338 in the eastern 

equatorial Pacific with data from the western equatorial Pacific Ocean provides a unique 

opportunity to examine changes across the entire Pacific basin. Discussions are focused 

on the impact of orbital forcing on the equatorial Pacific Ocean. 
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6.1.1 Benthic foraminiferal stable isotope records 

Comparison of the δ
18

O records between Site U1338 and Site 1146 (Fig. 6.1) in the 

West Pacific Ocean reveals strong correlation between the two benthic δ
18

O data-sets, in 

terms of amplitude and timing of both the long-term trend and glacial-interglacial 

cycles. The timing of the “Mi-3 event”, highlighted on figure 6.1, is synchronous at 

both sites, displaying the same ~1‰ increase in the benthic foraminiferal δ
18

O. The 

high resolution benthic foraminiferal δ
13

C records of Site U1338 and Site 1146 also 

display similarities. The most significant CM6 event, which is synchronous with the 

Mi-3 event in the δ
18

O record, shows nearly identical amplitude and duration at both 

Site U1338 and Site 1146.  

 

 

6. 1 

Figure 6.1. (a) Benthic foraminiferal δ
18

O records of Site U1338 and 1146 (b) Benthic foraminiferal δ
13

C 

records. Green curve denotes Site 1146 (Holbourn et al., 2013). Black curve denotes Site U1338 

(Holbourn et al., 2014). The grey box highlights the intervals on the Mi-3 event and CM6 event. 

 

6.1.2 Planktonic foraminiferal stable isotope records 

Comparison of the planktonic foraminiferal δ
18

O records between Site U1338 and Site 

1146 reveals an offset of approximately 1.5‰ in δ
18

O and 0.8‰ in δ
13

C (Fig. 6.2a). The 

δ
18

O record of Site 1146 shows considerably higher amplitude variability than the Site 

U1338 data, with values fluctuating between approximately -3.8‰ and -2.0‰. The 

timing of the Mi-3 glaciation event is synchronous between the two sites, displaying the 

same ~0.8‰ increase in the planktonic foraminiferal δ
18

O records.  
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The high resolution δ
13

C records of Site U1338 and Site 1146 (Fig. 6.2b) also 

display similarities at 13.9 Ma, with the CM6 event showing nearly identical amplitude 

and duration. However, discrepancies exist between the two records. At 14.10 Ma the 

CM5 event, which is evident in the U1338 δ
13

C record as a ~0.8‰ positive trend, is not 

seen in the 1146 record due to the presence of extremely high amplitude variability 

(between ~0.8 and ~2.6‰) during this interval. Additionally a well-defined positive 

trend of 1.2‰ is seen over a 100 kyr interval at 14.5 Ma in the 1146 record, at which 

point a negative excursion of ~1.0‰ takes place in the U1338 planktonic foraminiferal 

δ
13

C record. 

 

 

6. 2 

Figure 6.2. (a) Planktonic foraminiferal δ
13

C records. Green line denotes Site 1146 (Holbourn et al, 

2007). Red line denotes Globigerinoides spp. δ
13

C, orange line G. subquadratus δ
13

C from Site U1338; 

(b) Planktonic foraminiferal δ
18

O records.  Dark blue line denotes Globigerinoides spp. δ
18

O, light blue 

line G. subquadratus δ
18

O from Site U1338. The grey box highlights the intervals on the Mi-3 event and 

CM6 event. 
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6.1.3 East-West sea surface temperature gradients  

Separation of the various components of the δ
18

O signal is required to improve 

understanding of the processes and feedbacks at work during this interval of dynamic 

climate reorganisation. The upper ocean temperature estimates are based on Mg/Ca 

ratios in foraminiferal calcite, which vary exponentially with temperature. The average 

temperature offset between the two records (Fig. 6.3) is approximately 4°C. This closely 

follows the modern SST gradient between the “warm pool” and “cold tongue”, which 

averages 4°C to 5°C  (Karnauskas et al., 2009) and varies in response to ENSO. 

Assuming a scale of 0.22‰ per °C (Kim and O'Neil, 1997), approximately 1‰ 

of the 1.5‰ offset in planktonic foraminiferal δ
18

O between the two sites can be 

explained by temperature. The remaining 0.5‰ must therefore relate to differences in 

sea surface salinity. On the basis of the modern δ
18

O–salinity relationship (Fairbanks et 

al., 1997; Morimoto et al., 2002), a change of 0.5‰ in the δ
18

O of sea water reflects a 

change in surface salinity of between 1 and 1.5 p.s.u (Stott et al., 2004). Present-day 

surface salinities at both sites are approximately 34 p.s.u, although generally surface 

water salinities are low in the western tropical Pacific Ocean and increase towards the 

eastern part of the basin. Hence, the salinity gradient across the tropical Pacific was 

likely significantly greater in the middle Miocene. 

In addition, both planktonic foraminiferal oxygen isotope records reveal 

enrichment in δ
18

Op that coincides with the benthic enrichment. This interval (Mi-3) has 

previously been interpreted as a major expansion of the EAIS (Holbourn et al., 2005; 

Shevenell et al., 2008). This is further supported by the Mg/Ca SST estimates, 

illustrated in figure 6.3, which show minimal cooling between 13.9 and 13.6 Ma. Thus 

implying that the increase in δ
18

Op is primarily a reservoir change due to increased ice 

volume. The observed divergence between the degree of positive δ
18

O enrichment 

observed at 13.9 Ma in the surface and deep water records suggests that deep sea 

temperature changes also had a significant impact on the benthic foraminiferal δ
18

O 

record. 
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6. 3 
Figure 6.3. SST records for the eastern and western equatorial Pacific Ocean from Mg/Ca ratios 

measured on planktonic foraminifera. Green line denotes ODP Site 1146. Light purple line denotes SST 

estimated from specimens of G. quadrilobatus. Dark purple line denotes SST estimated from specimens 

of G. subquadratus. 

 

6.1.4 Across the Pacific 

The sea surface temperatures of the equatorial Pacific Ocean substantially influence 

regional and global climates. The present day eastern Equatorial Pacific “cold tongue” 

is characterised by cold nutrient–rich waters that result from a shallow thermocline and 

intense upwelling rates, whereas in the western Pacific, the “warm pool” is home to 

some of the warmest surface water temperatures on Earth. The modern SST gradient 

between these two water masses averages 4°C to 5°C (Karnauskas et al., 2009) and 

varies in response to ENSO (Zhang et al., 2014). The absence of an equatorial 

temperature gradient, caused by weak Trade Winds and the eastward propagation of 

warm western Pacific equatorial waters, is thought to reflect a “permanent El Niño” 

state, which results in deeper thermocline depths and attenuated upwelling rates across 

the eastern equatorial Pacific (Wara et al., 2005). 

Such conditions are argued to have taken place during intervals of global 

warmth, for example during the early Pliocene when planktonic foraminiferal Mg/Ca 

data reveal that the east-west temperature gradient was nearly absent (Fedorov et al., 

2006; Wara et al., 2005). More recently, this hypothesis has been challenged as new 

SST reconstructions from TEX86
H
 and UK37 reveal a continued temperature gradient 

between the east and west Pacific extending back 12 million years (O'Brien et al., 2014; 

Zhang et al., 2014). 
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 Until now, no sea surface temperature records for the east and west Pacific 

extended to the middle Miocene, but the SST records generated for Sites U1338 and 

1146 (Fig. 6.3) reveal a clear and consistent temperature asymmetry across the 

Equatorial Pacific. From the MMCO (~15 Ma) to the end of the MMCT, the warmest 

interval of the Neogene, the east-west gradient never approached zero as implied for a 

permanent El Niño–like state. The findings of this study therefore suggest that the 

oceanographic processes that produce the modern “cold tongue”, such as a shallow 

thermocline in the eastern Pacific and active upwelling, were also present and active in 

the middle Miocene, providing the necessary conditions for ENSO- type interannual 

climate variability (Fig. 6.4).  

Several lines of evidence support an intensification of equatorial upwelling 

during the middle Miocene prior to and during the Mi-3 event at 13.9 Ma. In particular, 

massive spikes in biogenic opal accumulation at 14.04 and 13.84 Ma in the eastern 

equatorial Pacific Ocean (Holbourn et al., 2014). These coincide with transient 

decreases in benthic foraminiferal δ
13

C, suggesting a substantial increase in eastern 

equatorial Pacific primary production and hence a more active biological pump. In 

addition, high sedimentation rates during these intervals (Holbourn et al., 2014) further 

promote the argument of an intensified equatorial primary productivity. The 

aforementioned δ
13

C decreases are poorly defined in the planktonic foraminiferal data 

set, most likely due to the record being of lower resolution (3 kyr) than the benthic 

foraminiferal record (1.5 kyr) over this interval. 

 

 

6. 4 
Figure 6.4. Schematic diagram of hypothesised equatorial Pacific ENSO conditions during the middle 

Miocene. 
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6.2 Middle Miocene climatic response to orbital forcing 

The global and annual mean insolation changes only moderately in response to changes 

in Earth’s orbit, but the associated geographic and seasonal redistribution of solar 

radiation on Earth may dramatically affect global climate (Laskar, 1993; Milankovitch, 

1941; Paillard, 2001). Based on new geochemical records from Site U1338 three 

distinct phases of climatic evolution are identified for the interval of 15.56 Ma to 13.33 

Ma, each with distinct imprints of different orbital variations affecting climate signal. 

These are discussed in the following sections. 

 

6.2.1 Phase 1 

During Phase 1 (15.56–14.7 Ma), continuous wavelet analysis of the planktonic 

foraminiferal δ
18

O record reveals high variance in the precessional band (Fig. 6.7). 

Phase 1 is also characterised by high amplitude 100 kyr variability in both the 

planktonic and benthic foraminiferal δ
18

O records, which are 180 degrees out of phase 

over this interval; the lightest values in the benthic foraminiferal δ
18

O record occurring 

during intervals of heaviest planktonic foraminiferal isotope values (Fig. 6.5). Cyclic 

oscillations in the benthic foraminiferal δ
18

O records are usually interpreted to reflect 

the rapid waxing and waning of an unstable Antarctic sheet. However, the planktonic 

foraminiferal data do not support this. The observed shifts cannot be related to changes 

in global ice volume as the surface and bottom water records would respond in the same 

way (see Chapter 4).  

If the 100 kyr cycles were instead entirely related to temperature changes, then a 

1‰ shift would be interpreted as a 4°C shift in SST. In order to test this hypothesis, 

higher resolution Mg/Ca ratio analysis was conducted over two 100 kyr cycles to see if 

the cyclicity was also recorded by this proxy. Figure 6.6 shows planktonic foraminiferal 

δ
18

O plotted against Mg/Ca. Both data sets were obtained from specimens of G. 

subquadratus from the same samples. However, the analyses were performed 

independently. The Mg/Ca data does not appear to record any cyclicity, although a 

gradual positive trend of 1 mmol/mol can be identified over the 200 kyr interval. 

An alternative explanation for the isotopic shifts is that the planktonic 

foraminiferal signature (Fig. 6.5) reflects decreases in the oxygen isotope composition 

of seawater (δ
18

Osw), which would give rise to isotopically light δ
18

O values. However, 

significant changes in local δ
18

Osw are required for the isotopic fluctuations recorded at 

Site U1338. If a constant temperature is invoked, δ
18

Osw must have changed by 1‰, 
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equivalent to a 4 ppt shift in salinity (Broecker and Denton, 1989; Fairbanks et al., 

1992). 

In the modern, Site U1338 is located within the eastern equatorial Pacific (EEP) 

“cold tongue” (Levitus et al., 2013). Here, the Peru Current merges with the Southern 

Equatorial Current (see Chapter 4 Fig. 4.2) and cold SSTs result from the shoaling of 

the Equatorial Undercurrent and advection of water from the eastern boundary current 

along the Peru–Chile margin. The eastern boundary currents and the Southern 

Equatorial Current are strongly influenced by the changes in the atmospheric circulation 

of the Southern Hemisphere trade winds on seasonal and interannual timescales (Liu 

and Herbert, 2004). The prominence of the 22 kyr period prior to 14.7 Ma suggests a 

strong response to precession and eccentricity forcing, implying combined high- and 

low-latitude control on tropical wind and precipitation patterns. Given that modern 

salinity variations across eastern equatorial Pacific vary by 1.0 p.s.u within a few 

degrees latitude north to south it is conceivable that precession modulated latitudinal 

migrations of the ITCZ, and hence precipitation and sea surface temperature, could alter 

the Site U1338 δ
18

O values. During Phase 1 it is hypothesised that cyclic shifts in the 

boundaries between the equatorial currents and counter currents, caused by orbital 

modulation of wind patterns, caused the recorded changes in surface water δ
18

O. 

However the effect of an open Isthmus of Panama on the strength and position of 

Miocene equatorial ocean currents remains unclear and requires further investigation. 

These hypotheses could further be tested by a modelling study to see how the ITCZ and 

ocean currents respond to orbital forcing in the Miocene.  
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6. 5 

Figure 6.5. Close up of planktonic and benthic foraminiferal δ
18

O records from IODP Site U1338 

between 15.1 and 15.6 Ma; (a) Cibicidoides spp. δ
18

O (Holbourn et al., 2014); (b) Globigerinoides spp. 

δ
18

O. 

 

 

6. 6 

Figure 6.6. (a) G. subquadratus δ
18

O; (b) Mg/Ca ratios from specimens of G. subquadratus over two 100 

kyr cycles. 
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6.2.2 Phase 2 

During Phase 2 (14.7–13.9 Ma) continuous wavelet analysis of the U1338 benthic and 

planktonic foraminiferal δ
18

O records reveals a shortening of the dominant period from 

100 kyr to 41 kyr (Fig. 6.7). This 41 kyr obliquity cycle is especially prominent from 

~14.6 to 14.1 Ma during configurations of the Earth’s orbit occurring only every ~2.4 

Ma, when high-amplitude variability in obliquity is congruent with extremely low 

amplitude variability in short eccentricity (Holbourn et al., 2013). This transition 

marked a major turning point in middle Miocene climate evolution. 

Obliquity affects Earth’s climate by controlling the insolation contrast between 

low and high latitudes, which drives the atmospheric general circulation and the 

associated meridional heat and moisture fluxes (Trenberth and Caron, 2001). The 

equatorial Pacific records from Site U1338 are remarkable because in theory, local 

insolation forcing due to obliquity cycles is relatively small in the tropics, unlike at high 

latitudes: Mean annual insolation forcing at the equator differs by -3 Wm
-2 

between 

times of high (i.e. axial tilt of 24.5°), and low (i.e. axial tilt of 22.2°) obliquity, 

representing an annual change of approximately -0.4%. In comparison, mean annual 

insolation differs by 15.4 Wm
-2 

at 90° latitude, representing an increase of 9.3% (Lee 

and Poulsen, 2005). In light of the small influence of obliquity on low latitude 

insolation, the 41 kyr periodicities in planktonic δ
18

O and δ
13

C records from Sites 1146 

and U1338 are unlikely to have arisen as a direct climate response to obliquity forcing 

of local insolation. 

During this interval (14.7-13.9 Ma), the planktonic and benthic 41 kyr 

oscillations in the δ
18

O and δ
13

C records are in-phase with one another. In terms of the 

δ
18

O record this could be interpreted as a response to an already expanded Antarctic ice-

sheet fluctuating in response to obliquity forcing. This implies that Southern 

Hemisphere ice growth during this interval was most likely modulated by atmospheric 

heat and moisture transport rather than by changing oceanic circulation patterns 

(Holbourn et al., 2007). A further important result of this study is the strength of the 41 

kyr signal in the planktonic foraminiferal δ
13

C record (Fig. 6.8), which suggests that 

tropical climate may have been forced by additional factors. 

Climate model simulations for the last glacial period indicate that atmospheric 

CO2 concentrations are the dominant source of radiative forcing in the tropics (Broccoli, 

2000; 2006), and the strong coherence between the Miocene planktonic and benthic 

δ
13

C records are indicative of changes in the global carbon reservoir. However, pCO2 

reconstructions for the middle Miocene are currently of insufficient resolution to reveal 
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a CO2 feedback in response to obliquity changes (Badger et al., 2013; Tripati et al., 

2009).  

A second hypothesis capable of explaining the 41 kyr signal in the δ
13

C records 

at Site U1338 involves changes in the flux of nutrients from deep waters into the photic 

zone, resulting in obliquity paced productivity oscillations. A reduced vertical 

temperature gradient across the thermocline, associated with lower glacial SSTs, could 

result in an enhanced nutrient flux (Bolton et al., 2010; Fedorov and Philander, 2001). 

Weakened thermal stratification has been hypothesised to account for greater equatorial 

Pacific productivity during the late Pleistocene glacials (Beaufort et al., 2001). A similar 

mechanism may account for higher glacial biological productivity in the EEP during the 

middle Miocene. In order to better understand the effects of obliquity forcing on the 

tropics and global carbon cycle during the Middle Miocene, a systematic and detailed 

model study should be considered in the future. 

 

6.2.3 Phase 3 

During Phase 3 (13.9-13.36 Ma) both planktonic and benthic δ
18

O and δ
13

C records 

from Sites 1146 and U1338 show a marked transition of the dominant cycle from 41 kyr 

to 100 kyr around the time of the Mi-3 event (Figs. 6.7 and 6.8). Particularly in the 

benthic foraminiferal δ
18

O records, the 41 kyr cycle becomes very weak and almost 

negligible after 14 Ma, whereas the 41 kyr cycle is still notable in the 1146 planktonic 

record (Fig 6.7-6.8). The δ
13

C records display the highest values of the entire studied 

interval at 13.8–13.6 Ma (CM6), and the δ
13

C gradient between Sites U1338 and 1146 

remains relatively constant during this eccentricity-paced climate mode. It has been 

suggested that glaciations are enhanced during intervals of reduced amplitude variations 

in obliquity (Wade and Pälike, 2004), concurrent with low eccentricity (Holbourn et al., 

2007; Pälike et al., 2006; Zachos et al., 2001). Such conditions foster high latitude 

cooling, and prevents ice from melting during the summer, which thought to be 

instrumental during time periods when ice sheets are still highly dynamic (DeConto et 

al., 2008). The high resolution planktonic foraminiferal datasets generated for the 

equatorial Pacific Ocean show that the major δ
18

O excursion at ~13.9 Ma coincides with 

an obliquity node which would favour ice growth. However, as no positive δ
18

O trend 

corresponds with the obliquity node prior to 15.0 Ma, additional factors must be 

required to force the climate across critical thresholds. 
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6. 8 
Figure 6.8. (a) Wavelet spectra of Site 1146 planktonic foraminiferal δ

13
C time series; (b) Wavelet 

spectra of Site U1338 planktonic foraminiferal δ
13

C time series; (c) Wavelet spectra of Site 1146 benthic 

foraminiferal δ
13

C time series; (d) Wavelet spectra of Site U1338 benthic foraminiferal δ
13

C time series. 

Warm colours indicate regions of high common spectral power between the two time series. Regions 

within bold black contours are significant at the 95% confidence level against red noise. 
  

 

 

Figure 6.7. (a) Wavelet spectra of Site 1146 planktonic foraminiferal δ
18

O time series; (b) Wavelet 

spectra of Site U1338 planktonic foraminiferal δ
18

O time series; (c) Wavelet spectra of Site 1146 benthic 

foraminiferal δ
18

O time series; (d) Wavelet spectra of Site U1338 benthic foraminiferal δ
18

O time series. 

Warm colours indicate regions of high common spectral power between the two time series. Regions 

within bold black contours are significant at the 95% confidence level against red noise.  

6. 7 
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6.3 The Mi-3 event and ice volume estimates 

While the timing and duration of the benthic foraminiferal δ
18

O shift (Mi3 event) that 

characterizes the marine record of the middle Miocene is well constrained through 

astronomical tuning of ODP Site U1338 (Holbourn et al., 2013), its interpretation in terms 

of ice-volume and temperature effects is less clear. Any change in global ice volume 

should lead to a positive shift in both planktonic and benthic foraminiferal δ
18

O values 

(Tian et al., 2004). However, between 13.9 and 13.7 Ma the amplitude change in 

benthic and planktonic δ
18

O differ with ~1.2‰ and ~0.8‰ respectively. As ice volume 

fluctuations cannot exceed the variation recorded in the planktonic foraminifera, the 

remaining 0.4‰ benthic foraminiferal δ
18

O change has to be attributed to deep sea 

temperature changes and/or salinity variations. Estimates from other studies of the 

magnitude of Antarctic ice growth and temperature change during the middle Miocene 

also suggest that ~70% of the ~1‰ shift in the benthic foraminiferal δ
18

O is related to 

ice volume changes (Billups and Schrag, 2002; Holbourn et al., 2007). If this is the case 

then the residual ~0.4‰ shift in the benthic record would translate to a 2°C deep water 

temperature decrease.  

 

 

6. 9 

Figure 6.9. (a) IODP Site U1338 Benthic δ
18

O record; (b) Site U1338 Planktonic δ
18

O record; (c) Site 

U1338 Planktonic δ
13

C record. Yellow shading highlights interval of Mi-3 event. 
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The case for major ice growth at 13.9 Ma is supported by a coincident fall in 

global sea level. The Haq et al. (1987) sea-level curve for this interval shows a lowering 

of >100 m at ~13.9 Ma. However, the record is assembled from many basins around the 

world with different subsidence histories and poor biostratigraphic age control. To date, 

the New Jersey margin transect (ODP Legs 150, 174 and IODP Expedition 313) has 

recovered the longest stratigraphic record to help constrain eustasy, however, the 

estimates of sea-level amplitude from this section are poorly constrained for the 

Miocene (Kominz et al., 2008). More recent studies from the Marion Plateau carbonate 

system, drilled offshore northeast Australia, provide a stratigraphic record for precise 

sea-level reconstructions (John et al., 2004). A study by John et al. (2011) investigating 

the amplitude of glacio-eustatic fluctuation in the Miocene, combines back stripping 

with δ
18

O estimates and yields sea level fall amplitudes of 59 ± 6 m at 13.9 Ma. This is 

in close agreement with the Site U1338 data if the “δ
18

O vs sea level” calibration 

(0.11‰ per 10 m of change in sea level) derived by Fairbanks and Matthews (1978) is 

applied to the ~0.8‰ shift in δ
18

O. 

Previous palaeotemperature reconstructions over this interval have focused on 

the high-latitudes because regional climate there is thought to respond more sensitively 

to climate forcing than those at lower latitudes (Crowley and Zachos 2000). However, 

establishing the amount of temperature change at the tropics is vital for understanding 

the mechanisms behind the MMCT and other similar events. Sea surface temperature 

records from planktonic foraminiferal Mg/Ca from the Southern Ocean reveal sea 

surface cooling of 6-7°C (Shevenell et al., 2004; Verducci et al., 2007) between 14.2 

and 13.8 Ma. If the ice sheet growth were being driven purely by changes in 

atmospheric CO2 the entire globe would be expected to cool. However, the Mg/Ca ratio-

based SST records for both the west and east equatorial Pacific Ocean exhibit no clear 

signals of cooling in tropical surface waters (Figs. 6.3 and 6.10). The apparent lack of 

agreement between the planktonic foraminiferal Mg/Ca and δ
18

O records despite the 

excellent preservation of the specimens, suggests that ice volume and salinity must be a 

key components of the planktonic foraminiferal δ
18

O record. These results suggest an 

increase in the thermal gradient between high and low latitudes at 13.9 Ma, and 

challenge the notion that pCO2 drawdown was the primary control on middle Miocene 

climate variability. This suggests that other feedbacks such as orbital forcing and ocean 

circulation played a more significant role than pCO2 in this climate transition. 
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6. 10 

Figure 6.10. (a) Site U1338 Planktonic δ
13

C record; (b) Site U1338 Benthic- Planktonic δ
13

C record; (c) 

Site U1338 Planktonic δ
18

O record; (d) SST estimates from Mg/Ca ratios. Yellow shading highlights 

interval of Mi-3 event. 
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6.4 Miocene δ
13

C variations and ocean-atmosphere carbon 

transfer  

Accompanying the middle Miocene growth of the East Antarctic Ice Sheet (EAIS) are 

major perturbations in the global carbon system, represented by large fluctuations in 

marine carbonate δ
13

C values (Badger et al., 2013; Flower and Kennett, 1993; Zachos et 

al., 2008). The planktonic foraminiferal δ
13

C record from Site U1338 is characterised by 

high frequency variations (41 kyr), superimposed on lower frequency (400 kyr) 

oscillations that exhibit a high degree of coherence with the benthic foraminiferal δ
13

C 

(Fig. 4.12). The synchronous positive δ
13

C excursions (Figs. 6.1 and 6.2) in the surface 

and deep ocean waters reflect major changes in the global carbon reservoir.  

The 400 kyr cycle originates from the amplitude variation of the eccentricity of 

the Earth’s orbit, which affects the global climate via amplitude modulation of the 

precession cycles (Tian et al., 2013). Figure 6.7 reveals the strong 400-kyr long 

eccentricity cycles have been found to be dominant throughout the middle Miocene 

records of planktonic and benthic foraminiferal δ
13

C.  However, it should be noted that 

a short record length, such as the Site U1338 planktonic stable isotope record of 2.2 

Myr, may introduce an aliasing effect which can ultimately yield biased periodicities. 

 A box model study by Ma et al. (2011) simulated 400 kyr cycles in the surface 

waters and deep Ocean for the Miocene Climatic Optimum period (17–14 Ma). The 

results reveal that carbon input by orbitally-forced changes in weathering change the 

burial ratio of carbonates to organic carbon and result in periodic changes in the oceanic 

δ
13

C. Though the data gathered from Site U1338 more closely supports the 

interpretation of these carbon maxima as primary productivity phases, which promoted 

the sequestration of carbon in organic-rich sediments (Flower and Kennett, 1993; 

Vincent and Berger, 1985). At Site U1338 the argument for a more active biological 

pump is tentatively supported by increased sedimentation rates during intervals of 

carbon maxima, in particular the CM6, in addition to recently published Si/Ti records 

for the eastern equatorial Pacific (Holbourn et al., 2014), which reveal large spikes in 

opal accumulation during the CM6, thus suggesting a substantial increase in EEP 

primary production. Furthermore, the low ∆δ
13

C values recorded during and after the 

Mi3 (Fig. 6.10) reveal stronger gradients between the surface and deep Ocean δ
13

C 

signifying intervals of increased productivity as 
12

C is preferentially removed from sea 

water during photosynthesis. 
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However, rather than support the traditional interpretation of increased primary 

productivity causing drawdown of atmospheric CO2 and driving global cooling during 

the MMCT (Badger et al., 2013; Holbourn et al., 2005; Shevenell et al., 2008), the 

planktonic foraminiferal records reveal that the CM6 event actually follows the Mi3 

glaciation event rather than leading it. Figures 6.9 and 6.10 reveal the onset of the 

positive trend in planktonic foraminiferal δ
18

O at 13.9 Ma predates that of the Carbon 

Maxima (CM6) at 13.8 Ma suggesting that increased productivity, and hence carbon 

burial, followed Antarctic ice volume changes and deep water cooling. Based on these 

results it is hypothesised that increased Antarctic ice volume, due to favourable orbital 

configuration, resulted in increased meridional temperature gradients which intensified 

convective atmospheric circulation, thereby increasing the delivery of dust to the upper 

ocean and shoaling of the thermocline. This promoted upwelling of nutrient rich waters 

within the EEP which resulted in increased productivity in the eastern equatorial 

Pacific, further contributing as a positive feedback through the drawdown of 

atmospheric CO2. 

A new pCO2 record was reconstructed from planktonic foraminiferal δ
11

B found 

that the CM6 event was associated with a pCO2 decrease of 82 ±72 ppm (from δ
11

B 

Globigerinoides trilobus) or 59 ±63ppm (from δ
13

C
37

) (Badger et al., 2013). Both the 

magnitude and direction of the observed pCO2 change and isotopic shift and are 

consistent with an increase in organic carbon burial. However, the boron record consists 

of only 6 data points over a 100 kyr interval (13.7-13.8 Ma), and therefore lacks the 

resolution required to demonstrate changes in global pCO2 on orbital cycles. The 

estimated atmospheric pCO2 levels from this study of approximately 300 ppm are in 

agreement with other recently published long term records (Foster et al., 2012; 

Kürschner et al., 2008). However, accurate pCO2 reconstructions and the time scales on 

which CO2 drawdown occurred still remain unclear. 
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6. 11 

Figure 6.11. Summary figure of key data gathered from this study. Planktonic foraminiferal stable isotope records are plotted against the ranges of selected taxa. Shading 

= interval of the CM6 and Mi3 events. 
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6.5 Planktonic foraminiferal response to environmental 

changes during the MMCT 

The mixed layer dwelling planktonic foraminifera from Site U1338 appear to be largely 

unaffected by palaeoceanographic changes during the studied interval, with no major 

extinctions or speciation events recorded (see Chapter 5). Despite this, planktonic 

foraminifera inhabiting the thermocline and below are likely to have been affected by 

the 2°C deep water cooling associated with the MMCT. 

 Clavatorella bermudezi was identified in Chapter 5 as a subthermocline species, 

owing to its remarkably positive oxygen isotope signatures. In this respect, C. 

bermudezi is comparable with the Eocene clavate form, Clavigerinella eocanica, which 

is also thought to be a deep-water form (Pearson et al., 1993). The δ
18

O values recorded 

by C. bermudezi (between ~0.8 and 6.1‰) become more extreme (see table 5.1) after 

the positive benthic foraminiferal δ
18

O excursion at 13.9 Ma, which indicates that 

changes in water column temperature gradients during the MMCT likely contributed to 

the abrupt extinction of this species at 13.8 Ma. Although currently there is no detailed 

benthic foraminifera assemblage data for Site U1338 over the MMCT, a period of major 

faunal change is recorded in the Indian Ocean between ~14 and 13 Ma (Smart et al., 

2007),  which tentatively supports the hypothesis that deep water cooling affected 

species living at depth. DSDP Site 289 also records the extinction of many Oligocene-

early Miocene species between 16 and 13 Ma but the timing of these events are poorly 

constrained (Woodruff and Douglas, 1981). 

Shortly after the MMCT planktonic foraminiferal assemblages record the 

emergence of the Fohsella lineage (which consists of the successive overlapping 

morphospecies F. peripheroronda, F. peripheroacuta, F. praefohsi, and F. fohsi). These 

species have previously been described from west Pacific Ocean cores (ODP Hole 

806B, Ontong Java Plateau) as being mixed layer dwelling species during the middle 

Miocene until approximately 13 Ma, when they change their depth preference to deeper 

water (Norris et al., 1993). However, multispecies stable isotope data from specimens of 

Fohsella sp. at Site U1338 suggest these species were already living at depth within the 

thermocline prior to 13 Ma. Their first appearance in the fossil record shortly after the 

cooling event alludes to the possibility that the evolution of this species was influenced 

by changing palaeoceanographic conditions. However further species specific stable 

isotope data are required in order to confidently identify their preferred depth habitat. 



 Chapter 7. Future work 

154 
 

The data presented in chapter five indicate that some Miocene planktonic 

foraminifer bioevents, namely the lowest occurrence (LO) of Clavatorella bermudezi, 

the LO of Globigerinatella insueta (top of Zone M6, Berggren and Pearson 2005), the 

LO of Globogerinoides ruber, and the highest occurrence (HO) of Tenuitella Munda 

and HO of Globigerinoides subquadratus occur 0.3-1.2 Myr later in the eastern 

equatorial Pacific than at other tropical sites such as the western Atlantic Ocean (Wade 

et al., 2011). Analysis of the Site U1338 Core sediments and SEM analyses of 

planktonic foraminifera from the U1338 samples indicates that these discrepancies do 

not arise from poor fossil preservation, reworking, or inadequate sampling resolution. 

Whilst diachronism and poor or lack of magnetostratigraphy at other Sites is invoked to 

explain many of the apparent offsets, environmental controls must also be considered as 

a possible explanation. It is well established that modern planktonic foraminiferal 

species are limited in their distribution to certain water masses and latitudinal ranges 

(Be1977; Ruddimanetal.1970; Parker 1971), as foraminifera, and other plankton, have 

specific temperature and salinity tolerance ranges. At any time the biogeographic 

distribution of plankton in the ocean is controlled by prevailing circulation patterns, 

physical-chemical characteristics of surface water masses and ocean basin configuration 

(Watkins et al., 1998). 

Near the equator, strong winds and a shallow thermocline produce strong 

upwelling signatures in temperature and nutrients (Murray et al., 1994). The 

thermocline is a dynamic feature of the tropical Pacific Ocean that responds to, as well 

as influences, wind-driven circulation and tropical climatic conditions. As the most 

complex region of the tropical Pacific, with large seasonal and interannual variations 

and strong climatic asymmetries, the eastern equatorial Pacific (EEP) represents a 

sensitive diagnostic of coupled ocean-atmosphere dynamics across the entire Pacific 

basin. The middle Miocene was a time of rapidly changing palaeoceanographic 

conditions and the planktonic foraminiferal stable isotope record provides evidence for 

100 kyr forcing of the position of the “cold tongue”, (Fig. 6.5) it may therefore be the 

case that changes in Miocene biogeographic pattern occurred as a result of major 

changes in the boundary conditions of the Pacific tropical oceans and of global climates. 

In order to better assess the effect of changes in the palaeoenvironmental and 

palaeoceanographical parameters on the spatial distribution of middle Miocene 

foraminiferal provinces detailed assemblage counts of the Site U1338 samples are 

required for comparison with sites north and south of the equator. 
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6.6 Summary & conclusions 

Based on these new records from Site U1338 the initiations of new climatic phases 

appear to coincide with marked changes in the Earth’s orbital rhythm, which have been 

recorded for the first time in the isotopic signature of Miocene planktonic foraminifera. 

The long-term evolution of the Site U1338 stable isotope signal demonstrates that 

astronomical forcing has a major impact on climate development. They also shed light 

upon additional forcing factors with intricate feedback processes including latitudinal 

temperature distribution, equatorial circulation, primary productivity, and ice sheet 

dynamics. 

 

Key Findings: 

 The SST records generated for Sites U1338 and 1146 reveal a clear temperature 

asymmetry across the equatorial Pacific. This implies the oceanographic 

processes that produce the modern “cold tongue”, such as a shallow thermocline 

in the eastern Pacific and active upwelling, were present during the middle 

Miocene. There is no evidence for a “permanent El Nino” during the warmth of 

the early middle Miocene (Section 6.1.3, Figs 6.1–6.3).  

 Cyclic shifts in the boundaries between the equatorial currents and counter 

currents, caused by orbital modulation of wind patterns is suggested as an 

alternative explanation of the anti-phase 100 kyr cycles seen in the planktonic 

and benthic δ
18

O records (Section 6.2.1, Fig. 6.5). 

 High-resolution stable isotope studies from the east and west Pacific Ocean 

reveal a close correspondence of the MMCT and Mi-3 event with the transition 

of the dominant cycle from 41 kyr to 100 kyr. 

 The apparent lack of agreement between the planktonic foraminiferal Mg/Ca and 

δ
18

O records despite the excellent preservation of the specimens, suggests that 

ice volume and salinity must be a key components of the planktonic 

foraminiferal δ
18

O record as the Mg/Ca record reveals relatively consistent 

tropical SSTs. 

 The 0.4‰ offset in magnitude change between the planktonic and benthic 

foraminiferal δ
18

O records suggest that deep sea temperature changes also had a 

significant impact on the benthic foraminiferal δ
18

O record. 

 CO2 drawdown related to increased primary productivity at the tropics likely 

contributed to cooling across the MMCT, but is unlikely be the primary control 
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on Miocene climate variability as revealed by the absence of significant cooling 

at the equator at 13.9 Ma.  

 Orbital forcing and ocean circulation changes which altered meridional 

heat/vapour transport are tentatively suggested as the dominant drivers of ice 

growth and deep water cooling at the MMCT. 

 Planktonic foraminiferal populations were largely unaffected by 

palaeoceanographic changes in the East Pacific over the MMCT with the 

exception of deep dwelling species, which further supports the argument that 

substantial cooling was limited to the deep ocean. 
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7. Conclusions and recommendations 
In this thesis, I have presented new records of tropical planktonic foraminiferal 

distributions, stable isotopes, and trace metals, from the interval 15.56 to 13.33 million 

years ago that contribute to our understanding of middle Miocene climate variability 

and forcing. Specifically, I have focused in detail on palaeoceanographic conditions 

across the Middle Miocene Climate Transition in the eastern Equatorial Pacific Ocean, 

and constructed the highest resolution planktonic foraminiferal stable isotope record 

currently available for an eastern tropical Pacific Site. 

 

7.1 Key conclusions: returning to original questions 

 

(Q. 1) How does the timing and magnitude of stable isotope events in the planktonic 

foraminiferal record compare with the deep ocean? 

 

The planktonic foraminiferal δ
18

O data set differs noticeably from benthic δ
18

O, and 

even shows anti-phase behaviour prior to 15.0 Ma, although a similar ice volume 

component is embedded into the two records at 13.9 Ma. This divergence supports that 

changes in planktonic δ
18

O prior to 15 Ma are compensated by variations in local 

salinity, and the global cooling hypothesised for the MMCT is restricted to the deep 

ocean. The high resolution δ
13

C records of Site U1338 however, display great 

similarities. The most significant CM6 event, which follows the Mi3 event in the δ
18

O, 

shows nearly identical amplitude and duration in both records.  

 

(Q. 2) Were fluctuations in tropical surface water conditions driven by Orbital forcing? 

 

Initiation of new climatic phases appears to coincide with marked changes in the Earth’s 

orbital rhythm, which have been recorded for the first time in the comparison of the 

isotopic signature of Miocene planktonic and benthic foraminifera. Based on wavelet 

analysis of the benthic and planktic stable isotope records, three successive intervals of 

climate variability are identified between 15.6 and 13.3 Ma. During Phase 1 (15.6 to 

14.6 Ma), planktonic foraminiferal δ
18

O display oscillations that follow the 100 kyr 

eccentricity period. Phase 2 denotes the onset of a new pattern of climate variability 

with the shortening of the dominant rhythm from ~100 to ~40 kyr periods at 14.6 Ma. 

Finally, between 13.9 and 13.33 Ma, Phase 3 records a marked transition of the 



 Chapter 7. Future work 

157 
 

dominant cycle from 41 kyr to 100 kyr around the time of the Mi-3 event, and 

ultimately signalled entry into a more stable icehouse pattern in the late middle 

Miocene. In sum, the high resolution planktonic foraminiferal datasets generated for the 

equatorial Pacific Ocean shows that the middle Miocene climate system was paced 

mainly by obliquity at times with some evidence for the influence of eccentricity and 

precession pacing at other times.  

The onset of the positive trend in planktonic foraminiferal δ
18

O at 13.9 Ma 

predates that of the Carbon Maxima (CM6) at 13.8 Ma suggesting that increased 

productivity, and hence carbon burial, followed Antarctic ice volume changes and deep 

water cooling but contributed as a positive feedback. Based on these results it is 

hypothesised that increased Antarctic ice volume, due to favourable orbital 

configurations, resulted in increased meridional temperature gradients which 

strengthened global wind patterns and thus intensified upwelling and productivity in the 

eastern equatorial Pacific 

 

(Q. 3) To what extent was there an east-west sea surface temperature contrast in the 

Miocene equatorial Pacific Ocean? 

 

Planktonic foraminiferal stable isotope and trace element records from Integrated Ocean 

Drilling Program (IODP) Site U1338 in the eastern equatorial Pacific (EEP) and ODP 

Site 1146 in the western equatorial Pacific (WEP) during the middle Miocene were used 

to resolve temperature variations across the equatorial Pacific Ocean. The continuous 

and consistent offset between the two δ
18

O records and Mg/Ca records points towards a 

4°C sea surface temperature difference across the pacific, thus providing the necessary 

conditions for ENSO- type interannual climate variability. This finding is not consistent 

with the “Permanent El Nino” hypothesis which suggests permanent El Nino state in a 

warmer world. 

 

(Q. 4) What is the biotic response to inferred major shifts in ice volume and cooling 

during the middle Miocene? 

 

Planktonic foraminiferal populations were largely unaffected by palaeoceanographic 

changes in the East Pacific over the MMCT with the exception of deep dwelling 

species, which further supports that significant cooling was limited to the deep Ocean. 
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(Q. 5) What are the key bioevents during the middle Miocene? 

 

The rapid coiling transition of Paragloborotalia siakensis identified in this project at 

15.3 Ma may prove to be of use in biostratigraphic correlation. The extinction of 

Clavatorella bermudezi at 13.8 Ma following the MMCT has been refined to 12 kyr 

resolution in this study. This event is ubiquitous across the Pacific and in the equatorial 

Atlantic. The evolution of the Fohsella group is also a key event of this interval but low 

abundance of this species at Site U1338 suggests further work is required to constrain 

the timings of first and last occurrences. 

 

7.2 Future perspectives and recommendations 

Our understanding of Miocene climate dynamics has increased dramatically since the 

early 2000’s, in most part because of the increased recovery of more continuous and 

expanded deep sea sediments enabling the generation of palaeoceanographic records for 

the Miocene at temporal resolutions that in the past were rarely obtained beyond the 

Pliocene. Despite recent advances in our understanding of Miocene climatic behaviour 

some fairly significant gaps persist in our knowledge of short–term climate variability, 

the mechanisms responsible and the impacts of climate change on the environment. 

 

7.2.1 The importance of low-latitude planktonic foraminiferal records 

In Chapter 4, data from IODP Site U1338 in the EEP provide the first high-resolution 

study of past sea surface conditions in this important region for air-sea CO2 exchange. 

As a consequence of the relative paucity of planktonic records in the eastern tropical 

Pacific, the down-core reconstructions presented in this thesis are, in many cases, the 

first that span the MMCT. It is, therefore, entirely unsurprising that the analysis of the 

U1338 records has led to at least as many, if not more, future research directions than 

those addressed in the initial aims of the thesis. 

 It is suggested that generating further planktonic records for the Pacific Ocean 

will help clarify the position of the various ocean currents and further shed light on the 

effect of ice growth, CO2 exchange and orbital cyclicity on the tropics during the 

Miocene. 
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Key questions: 

 Did large amplitude orbital variability in planktonic foraminiferal δ
18

O occur in 

the middle Miocene at sites further north and South than site U1338? 

 Were foraminiferal populations more affected by global cooling at high latitude 

sites? 

 

7.2.2 The importance of productivity variations in forcing climate 

The subject of the Monterey Carbon excursion and associated productivity changes is 

touched upon in Chapters 4 and 6, via the investigation of planktonic foraminiferal δ
13

C 

variability across the studied interval. Additional work, for example determination of 

high-resolution nannofossil, organic carbon and opal mass accumulation rates (MARs), 

as well as detailed work on productivity and nutrient chemistry proxies at multiple sites 

in the Pacific Ocean over the middle Miocene would contribute to a global synthesis of 

productivity changes and nutrient distributions and changes at this time. 

 

Key questions: 

 What role did productivity variations in the equatorial upwelling areas play in 

forcing middle Miocene climate change? 

 

7.2.3 Assessing the reliability of SST reconstructions 

It is clear from this study that the planktonic foraminiferal δ
18

O signal is strongly 

influenced by local changes in salinity and temperature. Therefore it is suggested that 

future work should concentrate on generating high resolution SST records from multiple 

Sites for the middle Miocene. Not only using Mg/Ca ratio analysis, but also TEX86
H
 and 

UK37 as these have recently been used to great effect to reconstruct Pliocene Pacific 

Ocean temperatures (Dowsett and Robinson, 2009). More SST reconstructions from 

areas peripheral or outside the modern “cold tongue”, in both hemispheres, are needed 

in order to better describe this pattern and constrain its impact on the wider 

ocean/atmosphere system. 

Additionally, the Mg/Ca proxy system, especially the influence of salinity on the 

incorporation of Mg into foraminiferal calcite, is still not yet well enough understood. 

This situation, whilst improving rapidly, requires both more controlled condition culture 

studies and, crucially from a palaeoceanographic perspective, more single-core multi-
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proxy SST reconstructions, to allow better evaluation of the relative performances of the 

proxy systems. 

 

7.2.3 The effect of orbital forcing on the tropics 

More modelling studies are required to improve our understanding of the effects 

of obliquity forcing on the tropics, and global carbon cycle during the Middle Miocene. 

The high-resolution data from Site U1338 also reveal that the δ
18

O record carries a 

strong precessional signal, supporting a contributing role for insolation in modulating 

variations in the position of the ITCZ, and hence precipitation and sea surface 

temperature. This hypothesis could further be tested by a modelling study to see how 

the ocean currents respond to orbital forcing. 
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APPENDIX A: DATA TABLES 

TABLE 1: IODP Site U1338 planktonic foraminiferal stable isotope data. MCD = Metres 

composite depth. 

Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

B-35H-5, 50-52 350.68 13303336 - - 
 

- - 
 

-0.25 1.88 

B-35H-5, 60-62 350.78 13305965 - - 
 

- - 
 

-0.10 1.84 

B-35H-5, 70-72 350.88 13308595 - - 
 

- - 
 

-0.35 1.97 

B-35H-5, 80-82 350.98 13311225 - - 
 

- - 
 

-0.63 1.97 

B-35H-5, 90-92 351.08 13313855 - - 
 

- - 
 

-0.88 1.92 

B-35H-5, 110-112 351.28 13319114 - - 
 

- - 
 

-0.93 1.56 

B-35H-5, 120-122 351.38 13321744 - - 
 

- - 
 

-0.56 1.66 

B-35H-5, 130-132 351.48 13324374 - - 
 

- - 
 

-0.61 1.53 

B-35H-5, 140-142 351.58 13327003 - - 
 

- - 
 

-0.35 1.73 

C-36H-1, 120-122 351.04 13312750 - - 
 

- - 
 

- - 

C-36H-1, 130-132 351.14 13315380 - - 
 

- - 
 

- - 

C-36H-1, 140-142 351.24 13318010 - - 
 

- - 
 

- - 

C-36H-2, 0-2 351.34 13320639 - - 
 

- - 
 

- - 

C-36H-2, 10-12 351.44 13323269 - - 
 

- - 
 

- - 

C-36H-2, 20-22 351.54 13325899 - - 
 

- - 
 

- - 

C-36H-2, 30-32 351.64 13328529 - - 
 

- - 
 

- - 

C-36H-2, 40-42 351.74 13331158 - - 
 

- - 
 

- - 

C-36H-2, 50-52 351.84 13334040 - - 
 

- - 
 

- - 

C-36H-2, 60-62 351.94 13337040 - - 
 

- - 
 

- - 

C-36H-2, 70-72 352.04 13340040 - - 
 

- - 
 

- - 

C-36H-2, 80-82 352.14 13343040 - - 
 

- - 
 

- - 

C-36H-2, 90-92 352.24 13346040 - - 
 

- - 
 

- - 

C-36H-2, 100-102 352.34 13349040 - - 
 

- - 
 

- - 

C-36H-2, 110-112 352.44 13352040 - - 
 

- - 
 

- - 

C-36H-2, 120-122 352.54 13355040 - - 
 

- - 
 

- - 

C-36H-2, 130-132 352.64 13358040 - - 
 

- - 
 

- - 

C-36H-2, 140-142 352.74 13361040 - - 
 

- - 
 

- - 

C-36H-3, 0-2 352.84 13364040 -0.83 2.52 
 

- - 
 

-0.25 2.03 

C-36H-3, 10-12 352.94 13367040 -0.77 3.05 
 

- - 
 

-0.19 1.97 

C-36H-3, 20-22 353.04 13370040 -0.92 2.71 
 

- - 
 

-0.74 1.68 

C-36H-3, 30-32 353.14 13372654 -1.12 2.71 
 

- - 
 

-0.33 1.90 

C-36H-3, 40-42 353.24 13375086 -1.14 2.70 
 

- - 
 

-0.58 1.76 

C-36H-3, 50-52 353.34 13377519 - - 
 

- - 
 

-0.33 1.88 

C-36H-3, 60-62 353.44 13379951 - - 
 

- - 
 

-0.29 2.07 

C-36H-3, 70-72 353.54 13382384 -0.90 2.70 
 

- - 
 

-0.40 1.93 

C-36H-3, 80-82 353.64 13384816 - - 
 

- - 
 

-0.81 1.79 

C-36H-3, 90-92 353.74 13387249 - - 
 

- - 
 

-0.83 1.78 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-36H-3, 100-102 353.84 13389681 -0.77 2.37 
 

- - 
 

-0.72 1.69 

C-36H-3, 110-112 353.94 13392114 - - 
 

- - 
 

-0.81 1.66 

C-36H-3, 120-122 354.04 13394546 -0.91 2.73 
 

- - 
 

-0.69 1.64 

C-36H-3, 130-132 354.14 13396978 -0.77 2.58 
 

- - 
 

-0.72 1.73 

C-36H-3, 140-142 354.24 13399411 -0.96 2.59 
 

- - 
 

-0.56 1.56 

C-36H-4, 0-2 354.34 13401843 -1.18 2.42 
 

- - 
 

-0.91 1.58 

C-36H-4, 10-12 354.44 13404276 -1.32 2.40 
 

- - 
 

-0.78 1.55 

C-36H-4, 20-22 354.54 13406708 - - 
 

- - 
 

-0.57 1.80 

C-36H-4, 30-32 354.64 13409141 -0.83 2.59 
 

- - 
 

-0.87 1.77 

C-36H-4, 40-42 354.74 13411573 - - 
 

- - 
 

-0.71 1.84 

C-36H-4, 50-52 354.84 13414005 - - 
 

- - 
 

- - 

C-36H-4, 60-62 354.94 13416438 - - 
 

- - 
 

- - 

C-36H-4, 70-72 355.04 13418870 - - 
 

- - 
 

-0.48 1.74 

B-36H-1, 100-102 354.94 13416414 - - 
 

- - 
 

- - 

B-36H-1, 110-112 355.04 13418846 - - 
 

- - 
 

- - 

B-36H-1, 120-122 355.14 13421278 -1.87 2.20 
 

- - 
 

-0.98 1.88 

B-36H-1, 130-132 355.24 13423711 - - 
 

- - 
 

-1.37 1.54 

B-36H-1, 140-142 355.34 13426191 -0.99 2.59 
 

- - 
 

-0.59 1.79 

B-36H-2, 0-2 355.44 13428724 - - 
 

- - 
 

-0.94 1.58 

B-36H-2, 10-12 355.54 13431257 - - 
 

- - 
 

- - 

B-36H-2, 20-22 355.64 13433791 - - 
 

- - 
 

-1.06 1.45 

B-36H-2, 30-32 355.74 13436324 -1.28 2.56 
 

- - 
 

-0.84 1.59 

B-36H-2, 40-42 355.84 13438857 -0.77 2.59 
 

- - 
 

-0.85 1.81 

B-36H-2, 50-52 355.94 13441391 - - 
 

- - 
 

-0.60 1.81 

B-36H-2, 60-62 356.04 13443924 - - 
 

- - 
 

- - 

B-36H-2, 70-72 356.14 13446457 -1.12 2.58 
 

- - 
 

- - 

B-36H-2, 80-82 356.24 13448991 - - 
 

- - 
 

-0.58 1.77 

B-36H-2, 90-92 356.34 13451524 - - 
 

- - 
 

- - 

B-36H-2, 100-102 356.44 13454057 -1.12 3.01 
 

- - 
 

-0.75 1.51 

B-36H-2, 110-112 356.54 13456591 -0.68 2.71 
 

- - 
 

-0.53 1.97 

B-36H-2, 120-122 356.64 13459124 -0.85 2.75 
 

- - 
 

- - 

B-36H-2, 130-132 356.74 13461657 -0.49 2.59 
 

- - 
 

-0.77 1.84 

B-36H-2, 140-142 356.84 13464191 -1.03 2.83 
 

- - 
 

-1.08 1.66 

B-36H-3, 0-2 356.94 13466724 -0.77 2.76 
 

- - 
 

-1.02 1.71 

B-36H-3, 10-12 357.04 13469257 -0.95 2.73 
 

- - 
 

-0.58 1.83 

B-36H-3, 20-22 357.14 13471791 -1.07 2.40 
 

- - 
 

-0.44 1.81 

B-36H-3, 30-32 357.24 13474324 -0.77 2.75 
 

- - 
 

-0.47 1.96 

B-36H-3, 40-42 357.34 13476857 -0.82 2.51 
 

- - 
 

- - 

B-36H-3, 50-52 357.44 13479391 - - 
 

- - 
 

-0.25 1.83 

B-36H-3, 60-62 357.54 13481924 -0.72 2.69 
 

- - 
 

- - 

B-36H-3, 70-72 357.64 13484457 -1.04 2.93 
 

- - 
 

- - 

B-36H-3, 80-82 357.74 13486991 -0.90 2.78 
 

- - 
 

-0.38 2.00 

B-36H-3, 90-92 357.84 13489524 -0.78 2.67 
 

- - 
 

-0.54 1.90 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

B-36H-3, 100-102 357.94 13492057 -0.98 2.67 
 

- - 
 

-0.83 1.74 

B-36H-3, 110-112 358.04 13494591 -0.74 2.52 
 

- - 
 

-0.49 1.78 

B-36H-3, 120-122 358.14 13497124 -0.92 2.63 
 

- - 
 

-0.51 1.78 

B-36H-3, 130-132 358.24 13499657 -0.90 2.49 
 

- - 
 

- - 

B-36H-3, 140-142 358.34 13502446 - - 
 

- - 
 

- - 

B-36H-4, 0-2 358.44 13505523 -1.20 2.66 
 

- - 
 

-0.64 1.50 

B-36H-4, 10-12 358.54 13508600 - - 
 

- - 
 

- - 

B-36H-4, 20-22 358.64 13511677 -1.17 2.33 
 

- - 
 

-1.01 1.57 

B-36H-4, 30-32 358.74 13514754 - - 
 

- - 
 

-1.02 1.91 

B-36H-4, 40-42 358.84 13517831 -1.39 2.65 
 

- - 
 

-1.08 1.47 

B-36H-4, 50-52 358.94 13520908 -1.28 2.57 
 

- - 
 

-1.15 1.23 

B-36H-4, 60-62 359.04 13523985 -1.44 2.36 
 

- - 
 

-1.34 0.95 

B-36H-4, 70-72 359.14 13527062 - - 
 

- - 
 

- - 

B-36H-4, 80-82 359.24 13530138 -1.20 2.41 
 

- - 
 

-0.76 1.95 

B-36H-4, 90-92 359.34 13533215 -1.13 2.77 
 

- - 
 

-0.72 1.83 

B-36H-4, 100-102 359.44 13536292 -1.08 2.62 
 

- - 
 

-0.53 1.83 

B-36H-4, 110-112 359.54 13539369 -1.00 2.04 
 

- - 
 

-0.83 1.50 

B-36H-4, 120-122 359.64 13542277 - - 
 

- - 
 

-1.00 1.34 

B-36H-4, 130-132 359.74 13544995 - - 
 

- - 
 

-1.15 1.29 

B-36H-4, 140-142 359.84 13547713 -0.54 2.03 
 

- - 
 

- - 

B-36H-5, 0-2 359.94 13550431 -0.72 2.86 
 

- - 
 

-0.56 1.59 

B-36H-5, 10-12 360.04 13553149 - - 
 

- - 
 

- - 

B-36H-5, 20-22 360.14 13555867 -0.59 2.77 
 

- - 
 

- - 

B-36H-5, 30-32 360.24 13558585 -1.43 2.58 
 

- - 
 

- - 

B-36H-5, 40-42 360.34 13561303 -0.37 2.77 
 

- - 
 

- - 

B-36H-5, 50-52 360.44 13564021 -0.78 3.04 
 

- - 
 

- - 

B-36H-5, 60-62 360.54 13566739 -0.66 2.92 
 

- - 
 

- - 

B-36H-5, 70-72 360.64 13569457 -0.59 3.06 
 

- - 
 

- - 

B-36H-5, 80-82 360.74 13572175 -0.82 3.09 
 

- - 
 

-0.37 1.67 

B-36H-5, 90-92 360.84 13574893 -0.98 3.01 
 

- - 
 

- - 

B-36H-5, 100-102 360.94 13577611 -0.84 2.86 
 

- - 
 

-0.60 1.39 

B-36H-5, 110-112 361.04 13580329 -1.07 2.65 
 

- - 
 

- - 

B-36H-5, 120-122 361.14 13583047 -0.72 2.76 
 

- - 
 

-0.41 1.44 

B-36H-5, 130-132 361.24 13585765 -0.67 2.69 
 

- - 
 

-0.75 0.74 

B-36H-5, 140-142 361.34 13588483 -0.70 2.76 
 

- - 
 

-0.37 1.49 

B-36H-5, 150-152 361.44 13591201 -0.68 2.57 
 

- - 
 

-0.41 1.39 

B-36H-6, 0-2 361.44 13591201 -1.04 2.69 
 

- - 
 

-0.81 0.99 

B-36H-6, 10-12 361.54 13594000 -0.09 2.18 
 

- - 
 

- - 

B-36H-6, 20-22 361.64 13597861 -1.04 2.78 
 

- - 
 

- - 

B-36H-6, 30-32 361.74 13601842 -0.62 2.77 
 

- - 
 

-0.58 1.36 

C-37H-1, 80-82 361.77 13603036 -0.56 3.01 
 

- - 
 

-4.25 -0.66 

B-36H-6, 40-42 361.84 13605822 - - 
 

- - 
 

-0.35 1.51 

C-37H-1, 90-92 361.87 13607017 - - 
 

- - 
 

-0.49 1.44 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-37H-1, 100-102 361.97 13610997 - - 
 

- - 
 

- - 

C-37H-1, 110-112 362.07 13614978 - - 
 

- - 
 

- - 

C-37H-1, 120-122 362.17 13618958 - - 
 

- - 
 

- - 

C-37H-1, 130-132 362.27 13622939 - - 
 

- - 
 

-0.53 1.61 

C-37H-1, 140-142 362.37 13626919 - - 
 

- - 
 

- - 

C-37H-2, 0-2 362.47 13630900 -0.75 3.11 
 

- - 
 

- - 

C-37H-2, 10-12 362.57 13635000 -0.96 3.17 
 

- - 
 

- - 

C-37H-2, 20-22 362.67 13637832 - - 
 

- - 
 

- - 

C-37H-2, 30-32 362.77 13640752 -0.51 3.06 
 

- - 
 

- - 

C-37H-2, 40-42 362.87 13643672 -0.62 3.14 
 

- - 
 

-0.61 1.34 

C-37H-2, 50-52 362.97 13646592 -0.57 3.03 
 

- - 
 

-0.60 1.35 

C-37H-2, 60-62 363.07 13649512 -0.77 3.08 
 

- - 
 

-0.49 1.44 

C-37H-2, 70-72 363.17 13652432 -0.72 3.11 
 

- - 
 

-0.53 1.45 

C-37H-2, 80-82 363.27 13655352 -0.87 3.19 
 

- - 
 

- - 

C-37H-2, 90-92 363.37 13658272 -0.76 3.17 
 

- - 
 

-0.53 2.05 

C-37H-2, 100-102 363.47 13661192 -0.86 3.32 
 

- - 
 

- - 

C-37H-2, 110-112 363.57 13664112 -1.07 3.55 
 

- - 
 

-0.96 1.95 

C-37H-2, 120-122 363.67 13667032 -0.73 3.21 
 

- - 
 

- - 

C-37H-2, 130-132 363.77 13669952 -0.33 3.11 
 

- - 
 

- - 

C-37H-2, 140-142 363.87 13672872 -0.46 2.92 
 

- - 
 

-0.27 2.11 

C-37H-3, 0-2 363.97 13675792 -0.59 3.20 
 

- - 
 

0.05 2.11 

C-37H-3, 10-12 364.07 13678712 -0.60 3.07 
 

- - 
 

-0.48 2.13 

C-37H-3, 20-22 364.17 13681632 -0.81 3.24 
 

- - 
 

-0.91 1.97 

C-37H-3, 30-32 364.27 13684552 -0.75 2.95 
 

- - 
 

-0.10 2.10 

C-37H-3, 40-42 364.37 13687472 -0.84 2.91 
 

- - 
 

-0.29 1.90 

C-37H-3, 50-52 364.47 13690392 -0.60 3.07 
 

- - 
 

-0.81 2.08 

C-37H-3, 60-62 364.57 13693312 -0.93 3.16 
 

- - 
 

-0.97 1.96 

C-37H-3, 70-72 364.67 13696232 -0.95 3.31 
 

- - 
 

- - 

C-37H-3, 80-82 364.77 13699152 -0.85 3.14 
 

- - 
 

- - 

C-37H-3, 90-92 364.87 13702072 - - 
 

- - 
 

- - 

C-37H-3, 100-102 364.97 13704992 -0.81 3.24 
 

- - 
 

-0.63 2.10 

C-37H-3, 110-112 365.07 13708000 -0.72 3.12 
 

- - 
 

-1.04 2.02 

C-37H-3, 120-122 365.17 13709863 -0.92 3.15 
 

- - 
 

-0.45 2.15 

C-37H-3, 130-132 365.27 13711783 -0.81 2.74 
 

- - 
 

-0.67 1.90 

C-37H-3, 140-142 365.37 13713703 -0.95 3.22 
 

- - 
 

-1.35 1.89 

C-37H-4, 0-2 365.48 13715816 - - 
 

- - 
 

-0.80 1.78 

C-37H-4, 10-12 365.58 13717736 -0.82 3.19 
 

- - 
 

-0.64 1.98 

C-37H-4, 20-22 365.68 13719656 -0.59 3.02 
 

- - 
 

-0.70 2.07 

C-37H-4, 30-32 365.78 13721576 -0.71 3.18 
 

- - 
 

-0.68 2.34 

C-37H-4, 40-42 365.88 13723497 -0.77 3.15 
 

- - 
 

0.18 2.43 

C-37H-4, 50-52 365.98 13725417 -0.53 3.09 
 

- - 
 

-0.47 2.33 

C-37H-4, 60-62 366.08 13727337 - - 
 

- - 
 

-0.74 2.17 

C-37H-4, 70-72 366.18 13729258 -1.03 3.17 
 

- - 
 

-0.76 2.09 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-37H-4, 80-82 366.28 13731178 -1.19 3.46 
 

- - 
 

-0.84 2.01 

C-37H-4, 90-92 366.38 13733098 - - 
 

- - 
 

-0.60 2.06 

C-37H-4, 100-102 366.48 13735018 -0.83 3.00 
 

- - 
 

- - 

C-37H-4, 110-112 366.58 13736939 -0.82 2.96 
 

- - 
 

-0.01 2.31 

C-37H-4, 120-122 366.68 13738859 -0.74 2.86 
 

- - 
 

-0.06 2.06 

C-37H-4, 130-132 366.78 13740779 -0.84 3.12 
 

- - 
 

-0.33 2.03 

C-37H-4, 140-142 366.88 13742700 -0.43 3.03 
 

- - 
 

-0.33 1.92 

C-37H-5, 0-2 366.98 13744620 -0.98 2.93 
 

- - 
 

-0.40 2.03 

C-37H-5, 10-12 367.08 13746540 -0.49 3.02 
 

- - 
 

-0.31 2.04 

B-37H-2, 110-112 366.98 13744697 -0.69 3.12 
 

- - 
 

-0.17 2.10 

B-37H-2, 120-122 367.08 13746617 -0.40 2.97 
 

- - 
 

-0.17 2.20 

B-37H-2, 130-132 367.18 13748537 -0.40 3.23 
 

- - 
 

-0.12 2.16 

B-37H-2, 140-142 367.28 13750458 -0.97 3.09 
 

- - 
 

-0.62 2.02 

B-37H-2, 150-152 367.33 13751399 -0.12 3.41 
 

- - 
 

-0.60 2.14 

B-37H-3, 0-2 367.38 13752378 -0.92 3.21 
 

- - 
 

-0.48 2.06 

B-37H-3, 10-12 367.48 13754298 -5.28 0.82 
 

- - 
 

- - 

B-37H-3, 20-22 367.58 13756218 -1.11 3.20 
 

- - 
 

-0.89 2.00 

B-37H-3, 30-32 367.68 13758139 -0.67 3.01 
 

- - 
 

-0.35 2.13 

B-37H-3, 40-42 367.78 13760059 -0.73 2.99 
 

- - 
 

0.11 2.15 

B-37H-3, 50-52 367.88 13762046 -0.85 2.93 
 

- - 
 

0.02 2.08 

B-37H-3, 60-62 367.98 13764096 -0.87 3.35 
 

- - 
 

-0.33 2.04 

B-37H-3, 70-72 368.08 13766146 -0.97 3.22 
 

- - 
 

-0.52 2.07 

B-37H-3, 80-82 368.18 13768196 -0.71 3.07 
 

- - 
 

-0.46 2.07 

B-37H-3, 90-92 368.28 13770246 -1.08 3.36 
 

- - 
 

- - 

B-37H-3, 100-102 368.38 13772296 -0.82 3.09 
 

- - 
 

0.02 2.08 

B-37H-3, 110-112 368.48 13774346 -0.85 3.02 
 

- - 
 

-0.33 2.04 

B-37H-3, 120-122 368.58 13776396 -1.02 3.07 
 

- - 
 

-0.52 2.07 

B-37H-3, 130-132 368.68 13778446 -0.82 2.71 
 

- - 
 

-0.46 2.07 

B-37H-3, 140-142 368.78 13780496 -0.75 3.00 
 

- - 
 

-0.58 1.90 

B-37H-4, 0-2 368.88 13782546 -0.92 2.92 
 

- - 
 

-0.53 1.95 

B-37H-4, 10-12 368.98 13784596 - 
  

- - 
 

-0.28 2.01 

B-37H-4, 20-22 369.08 13786646 -0.90 2.59 
 

- - 
 

0.25 2.01 

B-37H-4, 30-32 369.18 13788696 -0.88 2.91 
 

- - 
 

-0.39 1.83 

B-37H-4, 40-42 369.28 13790746 - 
  

- - 
 

-0.33 1.65 

B-37H-4, 50-52 369.38 13792796 -0.79 2.61 
 

- - 
 

-0.32 1.79 

B-37H-4, 60-62 369.48 13794846 -0.82 2.89 
 

- - 
 

-0.80 1.64 

B-37H-4, 70-72 369.58 13796896 -1.24 2.58 
 

- - 
 

-0.55 1.87 

B-37H-4, 80-82 369.68 13798946 -1.10 2.90 
 

- - 
 

- - 

B-37H-4, 90-92 369.78 13800996 -0.87 2.69 
 

- - 
 

-0.65 1.79 

B-37H-4, 100-102 369.88 13803046 -1.06 2.73 
 

- - 
 

-0.88 1.87 

B-37H-4, 110-112 369.98 13805096 -0.70 2.98 
 

- - 
 

-0.25 1.81 

B-37H-4, 120-122 370.08 13807146 -0.47 2.82 
 

- - 
 

-0.22 1.85 

B-37H-4, 130-132 370.18 13809196 -0.83 2.92 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

B-37H-4, 140-142 370.28 13811246 -1.00 2.80 
 

- - 
 

-0.47 1.73 

B-37H-5, 0-2 370.38 13813296 - - 
 

- - 
 

- - 

B-37H-5, 10-12 370.48 13815346 - - 
 

- - 
 

- - 

B-37H-5, 20-22 370.58 13817396 - - 
 

- - 
 

- - 

B-37H-5, 30-32 370.68 13819446 - - 
 

- - 
 

- - 

B-37H-5, 40-42 370.78 13821496 - - 
 

- - 
 

- - 

B-37H-5, 50-52 370.88 13823546 - - 
 

- - 
 

- - 

B-37H-5, 60-62 370.98 13825596 - - 
 

- - 
 

- - 

B-37H-5, 70-72 371.08 13827646 - - 
 

- - 
 

- - 

B-37H-5, 80-82 371.18 13829696 - - 
 

- - 
 

- - 

B37H05,  85-88 371.23 13830721 -0.66 2.76 
 

- - 
 

- - 

B-37H-5, 90-92 371.28 13831746 - - 
 

- - 
 

- - 

B37H05,  95-97 371.33 13832771 -0.55 2.93 
 

- - 
 

- - 

B-37H-5, 100-102 371.38 13833796 - - 
 

- - 
 

-0.52 1.81 

B37H05,  105-107 371.43 13834821 -0.81 2.57 
 

- - 
 

- - 

B-37H-5, 110-112 371.48 13835846 - - 
 

- - 
 

-0.02 1.82 

B-37H-5, 120-122 371.58 13837896 - - 
 

- - 
 

-0.63 1.81 

B37H05,  125-127 371.63 13838921 -0.07 2.94 
 

- - 
 

- - 

B-37H-5, 130-132 371.68 13839946 - - 
 

- - 
 

-0.31 1.80 

B37H05,  135-137 371.73 13840971 -0.89 2.63 
 

- - 
 

- - 

B-37H-5, 140-142 371.78 13841996 - - 
 

- - 
 

- - 

B37H05,  145-147 371.83 13843000 -0.89 2.52 
 

- - 
 

- - 

B-37H-6, 0-2 371.88 13845391 - - 
 

- - 
 

-0.17 1.82 

B37H06,  5-7 371.93 13847734 -0.91 2.46 
 

- - 
 

- - 

B-37H-6, 10-12 371.98 13850078 - - 
 

- - 
 

-0.15 1.52 

B37H06,  15-17 372.03 13852422 -0.74 2.45 
 

- - 
 

- - 

B-37H-6, 20-22 372.08 13854766 - - 
 

- - 
 

- - 

B37H06,  25-27 372.13 13857109 -0.97 2.60 
 

- - 
 

- - 

B-37H-6, 30-32 372.18 13859453 - - 
 

- - 
 

- - 

B37H06,  35-37 372.19 13859641 -0.93 2.68 
 

- - 
 

- - 

C-38H-1, 120-122 372.19 13859828 -0.86 2.84 
 

- - 
 

-0.45 1.50 

C-38H-1, 130-132 372.29 13864516 -0.99 3.03 
 

- - 
 

-0.49 1.83 

C-38H-1, 140-142 372.39 13869203 -0.67 2.81 
 

- - 
 

- - 

C-38H-2, 0-2 372.49 13873891 -1.13 2.72 
 

- - 
 

- - 

C-38H-2, 10-12 372.59 13878578 -1.30 2.67 
 

- - 
 

- - 

C-38H-2, 20-22 372.69 13883266 -0.25 2.29 
 

- - 
 

- - 

C-38H-2, 30-32 372.79 13888000 -0.87 2.73 
 

- - 
 

- - 

C-38H-2, 40-42 372.89 13893148 -0.93 2.71 
 

- - 
 

- - 

C-38H-2, 50-52 372.99 13898348 -1.12 2.62 
 

- - 
 

- - 

C-38H-2, 60-62 373.09 13902784 - - 
 

- - 
 

- - 

C-38H-2, 70-72 373.19 13906424 -0.72 2.74 
 

- - 
 

- - 

C-38H-2, 80-82 373.29 13910064 -1.02 2.72 
 

- - 
 

- - 

C-38H-2, 90-92 373.39 13913704 -1.37 2.85 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-38H-2, 100-102 373.49 13917344 -0.61 2.62 
 

- - 
 

- - 

C-38H-2, 110-112 373.59 13920984 -1.34 2.47 
 

- - 
 

- - 

C-38H-2, 120-122 373.69 13924624 -1.44 2.55 
 

- - 
 

- - 

C-38H-2, 130-132 373.79 13928264 - - 
 

- - 
 

- - 

C-38H-2, 140-142 373.89 13931904 -1.38 2.76 
 

- - 
 

- - 

C-38H-3, 0-2 373.99 13935544 -1.37 2.84 
 

- - 
 

- - 

C-38H-3, 10-12 374.09 13939184 - - 
 

- - 
 

- - 

C-38H-3, 20-22 374.19 13942824 -1.11 2.95 
 

- - 
 

- - 

C-38H-3, 30-32 374.29 13946464 -1.17 2.85 
 

- - 
 

- - 

C-38H-3, 40-42 374.39 13950104 -0.97 2.69 
 

- - 
 

- - 

C-38H-3, 50-52 374.49 13953744 -1.05 2.64 
 

- - 
 

- - 

C-38H-3, 60-62 374.59 13968072 -1.04 2.59 
 

- - 
 

- - 

C-38H-3, 70-72 374.69 13970588 - - 
 

- - 
 

- - 

C-38H-3, 80-82 374.79 13973104 - - 
 

- - 
 

- - 

C-38H-3, 90-92 374.89 13975620 - - 
 

- - 
 

- - 

C-38H-3, 100-102 374.99 13978136 - - 
 

- - 
 

- - 

C-38H-3, 110-112 375.09 13980652 - - 
 

- - 
 

- - 

C-38H-3, 120-122 375.19 13983168 - - 
 

- - 
 

- - 

C-38H-3, 130-132 375.29 13985685 - - 
 

- - 
 

- - 

C-38H-3, 140-142 375.39 13988201 - - 
 

- - 
 

- - 

C-38H-4, 0-2 375.49 13990717 -1.07 2.90 
 

- - 
 

- - 

C-38H-4, 10-12 375.59 13993233 -1.38 2.85 
 

- - 
 

- - 

C-38H-4, 20-22 375.69 13995749 - - 
 

- - 
 

- - 

C-38H-4, 30-32 375.79 13998265 - - 
 

- - 
 

- - 

C-38H-4, 40-42 375.89 14000781 -1.28 2.88 
 

- - 
 

- - 

C-38H-4, 50-52 375.99 14003297 -1.50 2.78 
 

- - 
 

- - 

C-38H-4, 60-62 376.09 14005814 - - 
 

- - 
 

- - 

C-38H-4, 70-72 376.19 14008330 - - 
 

- - 
 

- - 

C-38H-4, 80-82 376.29 14010846 -1.38 2.76 
 

- - 
 

- - 

C-38H-4, 90-92 376.39 14013362 - - 
 

- - 
 

- - 

C-38H-4, 100-102 376.49 14015878 - - 
 

- - 
 

- - 

C-38H-4, 110-112 376.59 14018394 -1.41 2.87 
 

- - 
 

- - 

C-38H-4, 120-122 376.69 14020910 -1.48 3.08 
 

- - 
 

- - 

C-38H-4, 130-132 376.79 14023426 -1.60 2.95 
 

- - 
 

- - 

C-38H-4, 140-142 376.89 14025943 -1.35 2.94 
 

- - 
 

- - 

C-38H-5, 0-2 376.99 14028459 -1.14 2.64 
 

- - 
 

- - 

C-38H-5, 10-12 377.09 14031000 -1.31 2.57 
 

- - 
 

- - 

C-38H-5, 20-22 377.19 14034481 - - 
 

- - 
 

- - 

C-38H-5, 30-32 377.29 14037997 -0.99 2.84 
 

- - 
 

- - 

C-38H-5, 40-42 377.39 14041513 -1.06 2.86 
 

- - 
 

- - 

C-38H-5, 50-52 377.49 14045029 - - 
 

- - 
 

- - 

C-38H-5, 60-62 377.59 14048545 -0.84 3.05 
 

- - 
 

- - 

C-38H-5, 70-72 377.69 14052061 -0.87 3.19 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-38H-5, 80-82 377.79 14055577 -0.94 3.09 
 

- - 
 

- - 

C-38H-5, 90-92 377.89 14059093 -1.00 3.30 
 

- - 
 

- - 

C-38H-5, 100-102 377.99 14062609 - - 
 

- - 
 

- - 

B-38H-2, 60-62 377.88 14058882 - - 
 

- - 
 

- - 

B-38H-2, 70-72 377.98 14062398 -0.89 3.03 
 

- - 
 

- - 

B-38H-2, 80-82 378.08 14065914 -0.82 3.13 
 

- - 
 

- - 

B-38H-2, 90-92 378.18 14069430 -1.23 2.83 
 

- - 
 

- - 

B-38H-2, 100-102 378.28 14072946 -1.01 2.83 
 

- - 
 

- - 

B-38H-2, 110-112 378.38 14076462 -1.40 3.10 
 

- - 
 

- - 

B-38H-2, 120-122 378.48 14079978 - - 
 

- - 
 

- - 

B-38H-2, 130-132 378.58 14083494 -1.10 2.86 
 

- - 
 

-0.23 2.15 

B-38H-2, 140-142 378.68 14087010 -1.10 3.05 
 

- - 
 

- - 

B-38H-3, 0-2 378.78 14090526 -0.82 3.00 
 

- - 
 

- - 

B-38H-3, 10-12 378.88 14094042 -0.94 3.16 
 

- - 
 

- - 

B-38H-3, 20-22 378.98 14097558 -0.91 2.98 
 

- - 
 

- - 

B-38H-3, 30-32 379.08 14101074 -2.58 3.05 
 

- - 
 

- - 

B-38H-3, 40-42 379.18 14104589 -1.40 3.08 
 

- - 
 

- - 

B-38H-3, 50-52 379.28 14108000 -0.89 3.03 
 

- - 
 

- - 

B-38H-3, 60-62 379.38 14111208 -0.83 2.73 
 

- - 
 

- - 

B-38H-3, 70-72 379.48 14114323 -1.11 2.60 
 

- - 
 

- - 

B-38H-3, 80-82 379.58 14117438 -0.86 2.70 
 

- - 
 

- - 

B-38H-3, 90-92 379.68 14120552 -1.06 2.61 
 

- - 
 

- - 

B-38H-3, 100-102 379.78 14123667 -0.91 2.59 
 

- - 
 

- - 

B-38H-3, 110-112 379.88 14126782 -0.83 2.82 
 

- - 
 

-0.47 1.84 

B-38H-3, 120-122 379.98 14129897 -1.03 2.88 
 

- - 
 

- - 

B-38H-3, 130-132 380.08 14133011 -1.02 2.85 
 

- - 
 

- - 

B-38H-3, 140-142 380.18 14136126 -1.06 2.91 
 

- - 
 

- - 

B-38H-4, 0-2 380.28 14139241 -1.05 2.84 
 

- - 
 

-0.11 2.05 

B-38H-4, 10-12 380.38 14142356 -0.86 2.69 
 

- - 
 

- - 

B-38H-4, 20-22 380.48 14145470 -0.76 2.76 
 

- - 
 

- - 

B-38H-4, 30-32 380.58 14149454 -1.35 2.76 
 

- - 
 

- - 

B-38H-4, 40-42 380.68 14153615 -0.75 2.44 
 

- - 
 

- - 

B-38H-4, 50-52 380.78 14157776 -1.16 2.29 
 

- - 
 

- - 

B-38H-4, 60-62 380.88 14161938 -1.11 2.69 
 

- - 
 

- - 

B-38H-4, 70-72 380.98 14166099 -1.16 2.60 
 

- - 
 

- - 

B-38H-4, 80-82 381.08 14170260 -0.68 2.41 
 

- - 
 

- - 

B-38H-4, 90-92 381.18 14174422 -0.83 2.83 
 

- - 
 

- - 

B-38H-4, 100-102 381.28 14178583 -1.21 2.83 
 

- - 
 

- - 

B-38H-4, 110-112 381.38 14182744 -1.04 2.48 
 

- - 
 

- - 

B-38H-4, 120-122 381.48 14186905 -1.14 2.70 
 

- - 
 

- - 

B-38H-4, 130-132 381.58 14191067 -1.08 2.95 
 

- - 
 

- - 

B-38H-4, 140-142 381.68 14195228 -0.83 2.74 
 

- - 
 

- - 

B-38H-5, 0-2 381.78 14199389 -0.92 2.63 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

B-38H-5, 10-12 381.88 14203551 -0.99 2.89 
 

- - 
 

- - 

B-38H-5, 20-22 381.98 14207712 -1.04 2.89 
 

- - 
 

- - 

B-38H-5, 30-32 382.08 14211873 -0.95 2.68 
 

- - 
 

- - 

B-38H-5, 40-42 382.18 14216035 -0.96 2.59 
 

- - 
 

- - 

B-38H-5, 50-52 382.28 14220196 -0.89 2.51 
 

- - 
 

- - 

B-38H-5, 60-62 382.38 14224357 -1.21 2.81 
 

- - 
 

- - 

B-38H-5, 70-72 382.48 14228518 -1.16 2.55 
 

- - 
 

- - 

B-38H-5, 80-82 382.58 14232680 -1.77 2.90 
 

- - 
 

- - 

C-39H-2, 30-32 382.80 14241793 -1.24 2.64 
 

- - 
 

- - 

C-39H-2, 40-42 382.90 14245954 -0.97 2.41 
 

- - 
 

- - 

C-39H-2, 50-52 383.00 14250115 -1.11 2.64 
 

- - 
 

- - 

C-39H-2, 60-62 383.10 14254277 -1.17 2.86 
 

- - 
 

- - 

C-39H-2, 70-72 383.20 14258438 -0.63 2.71 
 

- - 
 

- - 

C-39H-2, 80-82 383.30 14262599 -0.94 2.86 
 

- - 
 

-0.54 2.41 

C-39H-2, 90-92 383.40 14266761 -1.29 2.91 
 

- - 
 

- - 

C-39H-2, 100-102 383.50 14270922 -1.33 2.96 
 

- - 
 

-0.60 2.10 

C-39H-2, 110-112 383.60 14275000 -1.50 2.84 
 

- - 
 

- - 

C-39H-2, 120-122 383.70 14277817 -1.42 2.55 
 

- - 
 

-0.59 2.05 

C-39H-2, 130-132 383.80 14280579 -0.98 2.55 
 

- - 
 

- - 

C-39H-2, 140-142 383.90 14283341 -0.95 2.58 
 

- - 
 

- - 

C-39H-3, 0-2 384.00 14286103 -1.09 2.72 
 

- - 
 

- - 

C-39H-3, 10-12 384.10 14288865 -1.11 2.75 
 

- - 
 

- - 

C-39H-3, 20-22 384.20 14291627 -1.14 2.70 
 

- - 
 

- - 

C-39H-3, 30-32 384.30 14294389 -1.02 2.74 
 

- - 
 

-0.79 2.04 

C-39H-3, 40-42 384.40 14297150 -0.84 2.70 
 

- - 
 

- - 

C-39H-3, 50-52 384.50 14299912 -1.12 2.81 
 

- - 
 

- - 

C-39H-3, 60-62 384.60 14302674 -1.31 2.79 
 

- - 
 

- - 

C-39H-3, 90-92 384.90 14313632 -1.24 3.02 
 

- - 
 

- - 

C-39H-3, 100-102 385.00 14317454 -1.17 2.69 
 

- - 
 

- - 

C-39H-3, 110-112 385.10 14321276 -1.25 2.63 
 

- - 
 

- - 

C-39H-3, 120-122 385.20 14325099 -1.10 2.51 
 

- - 
 

- - 

C-39H-3, 140-142 385.40 14332743 -1.36 2.72 
 

- - 
 

- - 

C-39H-4, 0-2 385.50 14336565 -0.82 2.67 
 

- - 
 

- - 

C-39H-4, 10-12 385.60 14340388 -1.17 2.70 
 

- - 
 

- - 

C-39H-4, 30-32 385.80 14348032 -1.06 2.88 
 

- - 
 

- - 

C-39H-4, 40-42 385.90 14351854 -0.83 2.75 
 

- - 
 

- - 

C-39H-4, 50-52 386.00 14355676 -0.89 2.78 
 

- - 
 

- - 

C-39H-4, 60-62 386.10 14359499 -1.19 2.80 
 

- - 
 

- - 

C-39H-4, 70-72 386.20 14363321 -1.47 2.51 
 

- - 
 

- - 

C-39H-4, 80-82 386.30 14367143 -1.12 2.47 
 

- - 
 

- - 

C-39H-4, 110-112 386.60 14378610 -1.37 2.44 
 

- - 
 

- - 

C-39H-4, 120-122 386.70 14382432 -1.66 2.90 
 

- - 
 

- - 

C-39H-4, 130-132 386.80 14386254 -1.12 2.61 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-39H-4, 140-142 386.90 14390000 -1.35 2.76 
 

- - 
 

- - 

C-39H-5, 0-2 387.00 14393910 -0.74 2.78 
 

- - 
 

- - 

C-39H-5, 10-12 387.10 14397743 -0.52 2.80 
 

- - 
 

- - 

C-39H-5, 20-22 387.20 14401577 -0.59 2.93 
 

- - 
 

- - 

C-39H-5, 30-32 387.30 14405410 -0.97 2.75 
 

- - 
 

- - 

C-39H-5, 40-42 387.40 14409243 -0.92 2.85 
 

- - 
 

- - 

C-39H-5, 50-52 387.50 14413077 -1.15 2.77 
 

- - 
 

- - 

C-39H-5, 80-82 387.80 14424577 -0.88 3.23 
 

- - 
 

- - 

C-39H-5, 90-92 387.90 14428410 - - 
 

- - 
 

- - 

C-39H-5, 100-102 388.00 14432243 -1.39 3.00 
 

- - 
 

- - 

C-39H-5, 110-112 388.10 14436000 -1.34 2.82 
 

- - 
 

- - 

C-39H-5, 120-122 388.20 14438318 - - 
 

- - 
 

- - 

C-39H-5, 130-132 388.30 14440591 -1.08 2.79 
 

- - 
 

- - 

C-39H-5, 140-142 388.40 14442864 -0.89 2.91 
 

- - 
 

- - 

C-39H-6, 0-2 388.50 14445136 -0.86 2.72 
 

- - 
 

- - 

C-39H-6, 10-12 388.60 14447409 -0.99 2.75 
 

- - 
 

- - 

C-39H-6, 20-22 388.70 14449682 -0.74 2.96 
 

- - 
 

- - 

C-39H-6, 30-32 388.80 14451955 -0.72 2.77 
 

- - 
 

- - 

C-39H-6, 40-42 388.90 14454227 -1.01 2.85 
 

- - 
 

- - 

C-39H-6, 60-62 389.10 14458773 -1.03 2.92 
 

- - 
 

- - 

C-39H-6, 70-72 389.20 14461045 -1.24 3.30 
 

- - 
 

- - 

C-39H-6, 80-82 389.30 14463318 -1.00 3.05 
 

- - 
 

- - 

C-39H-6, 90-92 389.40 14465591 -0.96 3.08 
 

- - 
 

- - 

C-39H-6, 100-102 389.50 14467864 -1.07 2.89 
 

- - 
 

- - 

C-39H-6, 110-112 389.60 14470136 -1.62 2.64 
 

- - 
 

- - 

C-39H-6, 120-122 389.70 14472409 -1.55 2.49 
 

- - 
 

- - 

C-39H-6, 130-132 389.80 14474682 -1.69 2.92 
 

- - 
 

- - 

C-39H-6, 140-142 389.90 14476955 -1.37 2.44 
 

- - 
 

- - 

C-39H-7, 20-22 390.20 14483773 -1.16 2.87 
 

- - 
 

- - 

C-39H-7, 30-32 390.30 14486045 -1.07 2.94 
 

- - 
 

- - 

C-39H-7, 50-52 390.50 14490591 -1.10 2.92 
 

- - 
 

- - 

C-39H-7, 60-62 390.60 14492864 -1.49 2.51 
 

- - 
 

- - 

C-39H-7, 70-72 390.70 14495136 -1.29 2.24 
 

- - 
 

- - 

C-40H-1, 10-12 390.98 14501500 -1.19 2.98 
 

- - 
 

- - 

C-40H-1, 20-22 391.08 14503773 -0.89 2.65 
 

- - 
 

- - 

C-40H-1, 30-32 391.18 14506000 -0.99 2.40 
 

- - 
 

- - 

C-40H-1, 40-42 391.28 14508720 -1.38 2.71 
 

- - 
 

- - 

C-40H-1, 50-52 391.38 14511387 -0.87 2.43 
 

- - 
 

- - 

C-40H-1, 60-62 391.48 14514053 - - 
 

- - 
 

- - 

C-40H-1, 70-72 391.58 14516720 - - 
 

- - 
 

- - 

C-40H-1, 80-82 391.68 14519387 -0.85 2.13 
 

- - 
 

- - 

C-40H-1, 90-92 391.78 14522053 -0.89 2.49 
 

- - 
 

- - 

C-40H-1, 100-102 391.88 14524720 -0.58 2.36 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-40H-1, 110-112 391.98 14527387 -0.65 2.55 
 

- - 
 

- - 

C-40H-1, 120-122 392.08 14530053 -0.56 2.56 
 

- - 
 

- - 

C-40H-1, 130-132 392.18 14532720 -0.64 2.40 
 

- - 
 

- - 

C-40H-1, 140-142 392.28 14535387 -0.55 2.44 
 

- - 
 

- - 

C-40H-2, 0-2 392.38 14538053 -0.93 2.57 
 

- - 
 

- - 

C-40H-2, 10-12 392.48 14540720 - - 
 

- - 
 

- - 

C-40H-2, 20-22 392.58 14543387 -0.62 2.51 
 

- - 
 

- - 

C-40H-2, 30-32 392.68 14546053 -1.47 2.99 
 

- - 
 

- - 

C-40H-2, 40-42 392.78 14548720 -1.18 3.32 
 

- - 
 

- - 

C-40H-2, 50-52 392.88 14551308 - - 
 

- - 
 

- - 

C-40H-2, 60-62 392.98 14553825 -1.15 3.11 
 

- - 
 

- - 

C-40H-2, 70-72 393.08 14556341 -1.33 3.34 
 

- - 
 

- - 

C-40H-2, 80-82 393.18 14558857 -1.26 2.99 
 

- - 
 

- - 

C-40H-2, 90-92 393.28 14561373 -1.40 2.92 
 

- - 
 

- - 

C-40H-2, 100-102 393.38 14563889 -1.46 3.03 
 

- - 
 

- - 

C-40H-2, 110-112 393.48 14566405 -1.01 2.84 
 

- - 
 

- - 

C-40H-2, 120-122 393.58 14568921 -1.11 2.77 
 

- - 
 

- - 

C-40H-2, 130-132 393.68 14571437 -1.28 2.90 
 

- - 
 

- - 

C-40H-2, 140-142 393.78 14573954 -0.53 2.74 
 

- - 
 

- - 

C-40H-3, 0-2 393.88 14576470 -1.05 2.99 
 

- - 
 

- - 

C-40H-3, 10-12 393.98 14578986 -0.90 3.12 
 

- - 
 

- - 

C-40H-3, 20-22 394.08 14581502 -1.27 3.22 
 

- - 
 

- - 

C-40H-3, 30-32 394.18 14584018 -1.19 3.02 
 

- - 
 

- - 

C-40H-3, 40-42 394.28 14586534 -1.33 2.98 
 

- - 
 

- - 

C-40H-3, 50-52 394.38 14589000 -0.94 2.87 
 

- - 
 

- - 

C-40H-3, 60-62 394.48 14592551 -1.16 3.11 
 

- - 
 

- - 

C-40H-3, 70-72 394.58 14596033 -1.21 3.04 
 

- - 
 

-0.61 2.29 

C-40H-3, 80-82 394.68 14599514 -0.73 2.80 
 

- - 
 

- - 

C-40H-3, 90-92 394.78 14602996 -0.91 2.76 
 

- - 
 

-0.42 2.11 

C-40H-3, 100-102 394.88 14606477 -0.53 2.91 
 

- - 
 

- - 

C-40H-3, 110-112 394.98 14609959 -0.66 2.65 
 

- - 
 

-0.42 2.02 

C-40H-3, 120-122 395.08 14613440 -0.63 2.99 
 

- - 
 

- - 

C-40H-3, 130-132 395.18 14616921 -0.90 3.25 
 

- - 
 

-1.03 2.09 

C-40H-3, 140-142 395.28 14620403 -0.96 3.16 
 

- - 
 

- - 

C-40H-4, 0-2 395.38 14623884 -0.93 2.82 
 

- - 
 

- - 

C-40H-4, 10-12 395.48 14627366 -1.09 3.22 
 

- - 
 

- - 

C-40H-4, 20-22 395.58 14630847 -1.06 3.46 
 

- - 
 

-0.82 2.28 

C-40H-4, 30-32 395.68 14634329 -0.71 3.28 
 

- - 
 

- - 

C-40H-4, 40-42 395.78 14637810 -0.60 3.22 
 

- - 
 

-0.52 2.41 

C-40H-4, 50-52 395.88 14641292 -0.51 3.04 
 

- - 
 

- - 

C-40H-4, 60-62 395.98 14644773 -0.80 2.92 
 

- - 
 

0.24 2.40 

C-40H-4, 70-72 396.08 14648255 - - 
 

- - 
 

- - 

C-40H-4, 80-82 396.18 14651736 - - 
 

- - 
 

-0.08 2.27 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-40H-4, 90-92 396.28 14655218 - - 
 

- - 
 

- - 

C-40H-4, 100-102 396.38 14658699 - - 
 

- - 
 

-0.06 2.20 

C-40H-4, 110-112 396.48 14662181 - - 
 

- - 
 

- - 

C-40H-4, 120-122 396.58 14665662 - - 
 

- - 
 

2.27 2.44 

C-40H-4, 130-132 396.68 14669144 - - 
 

- - 
 

- - 

C-40H-4, 140-142 396.78 14672625 - - 
 

- - 
 

1.12 2.53 

C-40H-5, 0-2 396.88 14676107 - - 
 

- - 
 

- - 

C-40H-5, 10-12 396.98 14679588 -0.58 2.80 
 

- - 
 

- - 

C-40H-5, 20-22 397.08 14683070 -1.10 2.66 
 

- - 
 

- - 

C-40H-5, 30-32 397.18 14686551 -0.85 2.66 
 

- - 
 

- - 

C-40H-5, 40-42 397.28 14690033 -0.74 2.84 
 

- - 
 

- - 

C-40H-5, 50-52 397.38 14693514 -1.14 2.82 
 

- - 
 

- - 

C-40H-5, 60-62 397.48 14696996 -0.92 2.76 
 

- - 
 

- - 

C-40H-5, 70-72 397.58 14700477 -1.02 2.88 
 

- - 
 

- - 

C-40H-5, 80-82 397.68 14703959 -0.79 2.60 
 

- - 
 

- - 

C-40H-5, 90-92 397.78 14707440 -1.17 2.91 
 

- - 
 

- - 

C-40H-5, 100-102 397.88 14710921 -1.10 2.81 
 

-1.02 2.81 
 

- - 

C-40H-5, 110-112 397.98 14714403 -0.98 2.71 
 

-1.03 2.76 
 

- - 

C-40H-5, 120-122 398.08 14717884 -1.19 2.65 
 

-0.90 2.72 
 

- - 

C-40H-5, 130-132 398.18 14721366 -1.23 2.49 
 

-1.08 2.80 
 

- - 

C-40H-5, 140-142 398.28 14724847 -1.35 2.99 
 

-0.88 2.67 
 

- - 

C-40H-6, 0-2 398.38 14728329 -1.28 2.97 
 

-1.33 2.85 
 

- - 

C-40H-6, 10-12 398.48 14731810 -0.73 2.38 
 

-0.99 2.86 
 

- - 

C-40H-6, 20-22 398.58 14735292 - - 
 

-1.08 2.79 
 

- - 

C-40H-6, 30-32 398.68 14738773 - - 
 

-0.79 2.84 
 

- - 

C-40H-6, 40-42 398.78 14742255 -1.23 2.38 
 

-0.75 2.61 
 

- - 

C-40H-6, 50-52 398.88 14745736 -0.87 2.65 
 

-0.98 2.68 
 

- - 

C-40H-6, 60-62 398.98 14749218 -1.62 2.81 
 

-1.04 2.50 
 

- - 

C-40H-6, 70-72 399.08 14752699 - - 
 

-1.04 2.59 
 

- - 

C-40H-6, 80-82 399.18 14756181 -0.92 2.96 
 

- - 
 

- - 

C-40H-6, 90-92 399.28 14759662 -0.80 2.81 
 

-1.25 3.02 
 

- - 

C-40H-6, 100-102 399.38 14763144 -0.94 2.88 
 

-1.25 3.00 
 

- - 

C-40H-6, 110-112 399.48 14766625 - - 
 

-1.29 2.84 
 

- - 

C-40H-7, 0-2 399.48 14766625 -0.93 2.49 
 

- - 
 

- - 

C-40H-6, 120-122 399.58 14770107 - - 
 

- - 
 

- - 

C-40H-7, 10-12 399.58 14770107 -1.20 2.70 
 

- - 
 

- - 

B-40H-6, 130-132 399.68 14773588 - - 
 

- - 
 

- - 

B-40H-7, 20-22 399.68 14773588 -1.09 2.61 
 

- - 
 

- - 

B-40H-6, 140-142 399.78 14777000 - - 
 

- - 
 

- - 

B-40H-7, 30-32 399.78 14777076 - - 
 

- - 
 

- - 

B-40H-7, 40-42 399.88 14780892 -0.92 2.39 
 

- - 
 

- - 

B-40H-7, 50-52 399.98 14784708 -1.07 2.34 
 

-1.33 2.94 
 

- - 

B-40H-1, 0-2 400.10 14789058 -0.80 2.44 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

B-40H-1, 10-12 400.20 14792874 -0.89 2.31 
 

- - 
 

- - 

B-40H-1, 20-22 400.30 14796689 -1.19 2.67 
 

- - 
 

- - 

B-40H-1, 30-32 400.40 14800505 -1.24 2.45 
 

-1.07 2.77 
 

- - 

B-40H-1, 40-42 400.50 14804321 -0.76 2.84 
 

- - 
 

- - 

B-40H-1, 50-52 400.60 14808137 -1.04 2.92 
 

-0.93 2.60 
 

- - 

B-40H-1, 60-62 400.70 14811953 -1.14 3.01 
 

- - 
 

- - 

B-40H-1, 70-72 400.80 14815768 -1.11 2.87 
 

- - 
 

- - 

B-40H-1, 80-82 400.90 14819584 - - 
 

- - 
 

- - 

B-40H-1, 90-92 401.00 14823400 - - 
 

- - 
 

- - 

B-40H-1, 100-102 401.10 14827216 -1.02 2.83 
 

-0.84 2.65 
 

- - 

B-40H-1, 110-112 401.20 14831032 -1.21 2.70 
 

-1.12 2.55 
 

- - 

B-40H-1, 120-122 401.30 14835000 -1.38 2.57 
 

-1.23 2.76 
 

- - 

B-40H-1, 130-132 401.40 14837124 - - 
 

- - 
 

- - 

B-40H-1, 140-142 401.50 14839336 -1.33 2.69 
 

- - 
 

- - 

B-40H-2, 0-2 401.60 14841549 -1.32 3.11 
 

-1.24 2.91 
 

- - 

C-40H-2, 10-12 401.70 14843761 -1.02 2.91 
 

- - 
 

- - 

C-40H-2, 20-22 401.80 14845973 -0.74 2.91 
 

- - 
 

- - 

C-40H-2, 30-32 401.90 14848186 -0.87 2.84 
 

- - 
 

- - 

C-40H-2, 40-42 402.00 14850398 -0.83 2.83 
 

- - 
 

- - 

C-40H-2, 50-52 402.10 14852611 -0.69 2.56 
 

-1.24 3.11 
 

- - 

C-40H-2, 60-62 402.20 14854823 -1.13 2.71 
 

-1.21 2.73 
 

- - 

C-41H-1, 80-82 402.09 14852522 - - 
 

-1.54 2.81 
 

- - 

C-41H-1, 90-92 402.19 14854735 -1.02 2.99 
 

- - 
 

- - 

C-41H-1, 100-102 402.29 14856947 - - 
 

- - 
 

- - 

C-41H-1, 110-112 402.39 14859159 -1.07 2.66 
 

- - 
 

- - 

C-41H-1, 120-122 402.49 14861372 
   

-0.93 3.04 
 

- - 

C-41H-1, 130-132 402.59 14863584 -1.06 2.67 
 

-0.79 2.99 
 

- - 

C-41H-1, 140-142 402.69 14865796 - - 
 

-0.87 2.95 
 

- - 

C-41H-2, 0-2 402.79 14868009 - - 
 

-1.06 2.94 
 

- - 

C-41H-2, 10-12 402.89 14870221 -0.45 2.59 
 

-0.81 2.70 
 

- - 

C-41H-2, 20-22 402.99 14872434 - - 
 

-0.84 2.69 
 

- - 

C-41H-2, 30-32 403.09 14874646 -0.83 2.84 
 

-0.89 2.88 
 

- - 

C-41H-2, 40-42 403.19 14876858 - - 
 

-1.12 2.92 
 

- - 

C-41H-2, 50-52 403.29 14879071 -0.76 2.86 
 

-1.00 2.76 
 

- - 

C-41H-2, 60-62 403.39 14881283 - - 
 

-1.00 2.70 
 

- - 

C-41H-2, 70-72 403.49 14883496 -0.67 2.75 
 

-0.61 2.66 
 

- - 

C-41H-2, 80-82 403.59 14885708 - - 
 

-1.07 2.54 
 

- - 

C-41H-2, 90-92 403.69 14887920 -0.96 2.77 
 

-1.14 2.68 
 

- - 

C-41H-2, 100-102 403.79 14890133 -0.73 2.63 
 

-1.10 2.65 
 

- - 

C-41H-2, 110-112 403.89 14892345 -0.98 2.81 
 

-1.24 2.31 
 

- - 

C-41H-2, 120-122 403.99 14894558 -0.86 2.60 
 

-1.06 2.87 
 

- - 

C-41H-2, 130-132 404.09 14896770 -0.85 2.71 
 

-0.89 2.97 
 

- - 

C-41H-2, 140-142 404.19 14898982 -0.82 2.59 
 

-0.97 2.71 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-41H-3, 0-2 404.19 14898982 -0.80 2.52 
 

-0.97 2.92 
 

- - 

C-41H-3, 10-12 404.39 14903407 -0.68 2.71 
 

-0.68 2.79 
 

- - 

C-41H-3, 20-22 404.49 14905619 -1.02 2.85 
 

-0.97 2.83 
 

- - 

C-41H-3, 30-32 404.59 14907832 -0.94 2.78 
 

-0.48 2.57 
 

- - 

C-41H-3, 40-42 404.69 14910000 -0.86 2.69 
 

-1.07 2.73 
 

- - 

C-41H-3, 50-52 404.79 14913978 -1.33 2.71 
 

-0.88 2.85 
 

- - 

C-41H-3, 60-62 404.89 14917878 -1.13 2.91 
 

-1.12 2.86 
 

- - 

C-41H-3, 70-72 404.99 14921778 -1.11 2.89 
 

-0.90 2.70 
 

- - 

C-41H-3, 80-82 405.09 14925678 -1.02 2.78 
 

-1.14 2.85 
 

- - 

C-41H-3, 90-92 405.19 14929578 -1.39 2.62 
 

-0.54 2.55 
 

- - 

C-41H-3, 100-102 405.29 14933478 -1.23 2.48 
 

-0.88 2.64 
 

- - 

C-41H-3, 110-112 405.39 14937378 -1.22 2.58 
 

-0.91 2.65 
 

- - 

C-41H-3, 120-122 405.49 14941278 - - 
 

-1.11 2.64 
 

- - 

C-41H-3, 130-132 405.59 14945178 -0.80 2.82 
 

-0.95 2.75 
 

- - 

C-41H-3, 140-142 405.69 14949000 -1.17 3.03 
 

-1.10 2.67 
 

- - 

C-41H-4, 0-2 405.79 14952918 -1.33 2.88 
 

-1.08 2.77 
 

- - 

C-41H-4, 10-12 405.89 14956760 -1.33 2.86 
 

- - 
 

- - 

C-41H-4, 20-22 405.99 14960602 -0.81 2.81 
 

-1.27 2.84 
 

- - 

C-41H-4, 30-32 406.09 14964443 -0.93 2.99 
 

- - 
 

- - 

C-41H-4, 40-42 406.19 14968285 -1.15 2.87 
 

-0.83 2.63 
 

- - 

C-41H-4, 50-52 406.29 14972127 -0.95 2.90 
 

- - 
 

- - 

C-41H-4, 60-62 406.39 14975968 -1.01 2.84 
 

-1.26 2.53 
 

- - 

C-41H-4, 70-72 406.49 14979810 -0.80 2.80 
 

- - 
 

- - 

C-41H-4, 80-82 406.59 14983652 -0.81 2.91 
 

-0.72 2.84 
 

- - 

C-41H-4, 90-92 406.69 14987493 -0.81 2.63 
 

-1.24 2.87 
 

- - 

C-41H-4, 100-102 406.79 14991335 -0.99 2.55 
 

-1.37 2.80 
 

- - 

C-41H-4, 110-112 406.89 14995177 -0.86 2.73 
 

-0.91 2.65 
 

- - 

C-41H-4, 120-122 406.99 14999018 - - 
 

-1.04 2.91 
 

- - 

C-41H-4, 130-132 407.09 15002860 -0.88 2.76 
 

-0.70 2.89 
 

- - 

C-41H-4, 140-142 407.19 15006701 -0.99 2.88 
 

-0.88 2.98 
 

- - 

C-41H-5, 0-2 407.29 15010543 -1.22 2.82 
 

-0.88 2.99 
 

- - 

C-41H-5, 10-12 407.39 15014385 -1.67 2.41 
 

-1.16 2.94 
 

- - 

C-41H-5, 20-22 407.49 15018226 -0.99 2.69 
 

-0.88 2.80 
 

- - 

C-41H-5, 30-32 407.59 15022068 -1.05 2.53 
 

-0.62 2.69 
 

- - 

C-41H-5, 40-42 407.69 15025910 -1.05 2.55 
 

-0.75 2.85 
 

- - 

C-41H-5, 50-52 407.79 15029751 -0.86 2.59 
 

-1.18 2.80 
 

- - 

C-41H-5, 60-62 407.89 15033593 -1.26 2.67 
 

-1.00 2.82 
 

- - 

C-41H-5, 70-72 407.99 15037435 -1.60 1.98 
 

-0.68 2.68 
 

- - 

C-41H-5, 80-82 408.09 15041276 -1.27 2.66 
 

-0.97 2.91 
 

- - 

C-41H-5, 90-92 408.19 15045118 -1.26 2.80 
 

-0.63 2.86 
 

- - 

C-41H-5, 100-102 408.29 15048960 -0.82 2.61 
 

-0.89 2.65 
 

- - 

C-41H-5, 110-112 408.39 15052801 -1.03 2.76 
 

-0.88 2.63 
 

- - 

C-41H-5, 120-122 408.49 15056643 -1.33 2.65 
 

-0.87 2.84 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-41H-5, 130-132 408.59 15060484 -1.18 2.80 
 

-0.88 2.65 
 

- - 

C-41H-5, 140-142 408.69 15064326 -1.17 2.88 
 

-1.01 2.89 
 

- - 

C-41H-6, 0-2 408.80 15068552 -1.28 2.82 
 

-1.10 2.71 
 

- - 

C-41H-6, 10-12 408.90 15072394 - - 
 

-1.08 2.84 
 

- - 

C-41H-6, 20-22 409.00 15076235 - - 
 

-0.97 2.49 
 

- - 

C-41H-6, 30-32 409.10 15080000 - - 
 

-1.13 2.67 
 

- - 

C-41H-6, 40-42 409.20 15083978 - - 
 

-1.13 2.95 
 

- - 

C-41H-6, 50-52 409.30 15087878 -1.28 2.63 
 

-1.03 2.82 
 

- - 

C-41H-6, 60-62 409.40 15091778 -1.06 2.57 
 

-1.43 2.63 
 

- - 

C-41H-6, 70-72 409.50 15095678 - - 
 

-1.05 2.52 
 

- - 

C-41H-6, 80-82 409.60 15099578 - - 
 

-1.10 2.75 
 

- - 

C-41H-6, 90-92 409.70 15103478 - - 
 

- - 
 

- - 

C-41H-6, 100-102 409.80 15107378 - - 
 

- - 
 

- - 

C-41H-6, 110-112 409.90 15111278 - - 
 

- - 
 

- - 

C-41H-6, 120-122 410.00 15115178 - - 
 

- - 
 

- - 

C-41H-6, 130-132 410.10 15119000 - - 
 

- - 
 

- - 

C-41H-6, 140-142 410.20 15122370 - - 
 

- - 
 

- - 

C-41H-7, 0-2 410.31 15126004 - - 
 

-1.14 2.73 
 

- - 

C-41H-7, 10-12 410.41 15129308 - - 
 

-1.18 2.63 
 

- - 

B-41H-7, 20-22 410.51 15132612 - - 
 

- - 
 

- - 

B-41H-7, 30-32 410.61 15135916 - - 
 

- - 
 

- - 

B-41H-7, 40-42 410.71 15139220 - - 
 

- - 
 

- - 

B-41H-7, 50-52 410.81 15142524 - - 
 

-0.83 2.41 
 

- - 

B-41H-7, 60-62 410.91 15145828 - - 
 

-1.12 2.60 
 

- - 

B-41H-7, 70-72 411.01 15149132 - - 
 

-1.39 2.88 
 

- - 

B-41H-1, 0-2 410.87 15144341 - - 
 

- - 
 

- - 

B-41H-1, 10-12 410.97 15147645 - - 
 

-1.16 2.92 
 

- - 

B-41H-1, 20-22 411.07 15150949 - - 
 

-1.34 2.75 
 

- - 

B-41H-1, 30-32 411.17 15154253 - - 
 

-1.09 3.01 
 

- - 

B-41H-1, 40-42 411.27 15157557 - - 
 

-1.53 2.86 
 

- - 

B-41H-1, 50-52 411.37 15160861 - - 
 

-1.09 2.84 
 

- - 

B-41H-1, 60-62 411.47 15164165 - - 
 

-0.93 3.01 
 

- - 

B-41H-1, 70-72 411.57 15167469 - - 
 

-1.40 2.94 
 

- - 

B-41H-1, 80-82 411.67 15170773 - - 
 

-1.10 2.85 
 

- - 

B-41H-1, 90-92 411.77 15174077 - - 
 

-1.43 2.85 
 

- - 

B-41H-1, 100-102 411.87 15177381 - - 
 

-1.77 2.73 
 

- - 

B-41H-1, 110-112 411.97 15180685 - - 
 

-1.42 2.99 
 

- - 

B-41H-1, 120-122 412.07 15183989 - - 
 

-1.01 3.09 
 

- - 

B-41H-1, 130-132 412.17 15187293 - - 
 

-1.02 2.63 
 

- - 

B-41H-1, 140-142 412.27 15190597 - - 
 

-0.95 2.80 
 

- - 

B-41H-2, 0-2 412.37 15194000 - - 
 

-1.11 2.94 
 

- - 

B-41H-2, 10-12 412.47 15199543 - - 
 

-0.90 2.86 
 

- - 

B-41H-2, 20-22 412.57 15205257 - - 
 

- - 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

B-41H-2, 30-32 412.67 15210971 - - 
 

-0.64 2.51 
 

- - 

B-41H-2, 40-42 412.77 15216686 - - 
 

-1.25 2.81 
 

- - 

B-41H-2, 50-52 412.87 15222400 - - 
 

-1.02 2.77 
 

- - 

B-41H-2, 60-62 412.97 15228114 - - 
 

-1.51 2.45 
 

- - 

B-41H-2, 70-72 413.07 15234000 - - 
 

-1.18 2.53 
 

- - 

B-41H-2, 80-82 413.17 15239604 - - 
 

-1.40 2.50 
 

- - 

B-41H-2, 90-92 413.27 15245382 - - 
 

-1.41 2.76 
 

- - 

B-41H-2, 100-102 413.37 15251160 - - 
 

-1.65 2.76 
 

- - 

B-41H-2, 110-112 413.47 15256938 - - 
 

-1.40 2.86 
 

- - 

B-41H-2, 120-122 413.57 15262716 - - 
 

- - 
 

- - 

B-41H-2, 130-132 413.67 15268493 - - 
 

-1.13 2.66 
 

- - 

B-41H-2, 140-142 413.77 15274271 - - 
 

-1.18 2.62 
 

- - 

B-41H-3, 0-2 413.87 15280049 - - 
 

-1.45 2.69 
 

- - 

B-41H-3, 10-12 413.97 15286000 - - 
 

- - 
 

- - 

B-41H-3, 20-22 414.07 15290203 - - 
 

-1.34 2.79 
 

- - 

B-41H-3, 30-32 414.17 15294537 - - 
 

-0.68 2.68 
 

- - 

B-41H-3, 40-42 414.27 15298870 - - 
 

-0.77 2.96 
 

- - 

B-41H-3, 50-52 414.37 15303203 - - 
 

-1.02 3.10 
 

- - 

B-41H-3, 60-62 414.47 15307537 - - 
 

-1.23 2.97 
 

- - 

B-41H-3, 70-72 414.57 15311870 - - 
 

-0.94 2.92 
 

- - 

B-41H-3, 80-82 414.67 15316203 - - 
 

-0.86 2.88 
 

- - 

B-41H-3, 90-92 414.77 15320537 - - 
 

-1.00 2.99 
 

- - 

B-41H-3, 100-102 414.87 15325000 - - 
 

- - 
 

- - 

B-41H-3, 110-112 414.97 15327656 - - 
 

-1.57 2.83 
 

- - 

B-41H-3, 120-122 415.07 15330394 - - 
 

-1.20 3.06 
 

- - 

B-41H-3, 130-132 415.17 15333132 - - 
 

-1.25 2.92 
 

- - 

B-41H-3, 140-142 415.27 15335870 - - 
 

-1.27 2.89 
 

- - 

B-41H-4, 0-2 415.37 15338608 - - 
 

-1.22 2.76 
 

- - 

B-41H-4, 10-12 415.47 15341346 - - 
 

-1.67 2.65 
 

- - 

B-41H-4, 20-22 415.57 15344085 - - 
 

-1.51 2.76 
 

- - 

B-41H-4, 30-32 415.67 15346823 - - 
 

-1.23 3.15 
 

- - 

B-41H-4, 40-42 415.77 15349561 - - 
 

-1.24 3.01 
 

- - 

B-41H-4, 50-52 415.87 15352299 - - 
 

-1.48 3.21 
 

- - 

B-41H-4, 60-62 415.97 15355037 - - 
 

-1.14 3.11 
 

- - 

B-41H-4, 70-72 416.07 15357775 - - 
 

-1.17 3.16 
 

- - 

B-41H-4, 80-82 416.17 15360513 - - 
 

-0.99 3.26 
 

- - 

B-41H-4, 90-92 416.27 15363251 - - 
 

- - 
 

- - 

B-41H-4, 100-102 416.37 15365989 - - 
 

-0.87 2.94 
 

- - 

B-41H-4, 110-112 416.47 15368727 - - 
 

-1.01 3.07 
 

- - 

B-41H-4, 120-122 416.57 15371465 - - 
 

-0.94 2.96 
 

- - 

B-41H-4, 130-132 416.67 15374204 - - 
 

-0.90 2.90 
 

- - 

B-41H-4, 140-142 416.77 15376942 - - 
 

-1.21 3.03 
 

- - 

B-41H-5, 0-2 416.87 15379680 - - 
 

-1.14 3.16 
 

- - 



 Appendix A: Data tables 

208 
 

Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

B-41H-5, 10-12 416.97 15382418 - - 
 

-1.19 3.06 
 

- - 

B-41H-5, 20-22 417.07 15385156 - - 
 

- - 
 

- - 

B-41H-5, 30-32 417.17 15387894 - - 
 

- - 
 

- - 

B-41H-5, 40-42 417.27 15390632 - - 
 

-1.14 3.13 
 

- - 

B-41H-5, 50-52 417.37 15393370 - - 
 

-1.02 2.96 
 

- - 

B-41H-5, 60-62 417.47 15396108 - - 
 

-1.05 3.05 
 

- - 

B-41H-5, 70-72 417.57 15398846 - - 
 

-1.23 2.97 
 

- - 

B-41H-5, 80-82 417.67 15401585 - - 
 

- - 
 

- - 

B-41H-5, 90-92 417.77 15404323 - - 
 

-1.04 2.87 
 

- - 

B-41H-5, 100-102 417.87 15407061 - - 
 

-1.06 2.78 
 

- - 

B-41H-5, 110-112 417.97 15409799 - - 
 

-1.02 2.87 
 

- - 

B-41H-5, 120-122 418.07 15412537 - - 
 

-1.96 2.70 
 

- - 

B-41H-5, 130-132 418.17 15415275 - - 
 

-1.29 2.97 
 

- - 

B-41H-5, 140-142 418.27 15418013 - - 
 

-1.43 3.02 
 

- - 

B-41H-6, 0-2 418.37 15420751 - - 
 

-1.30 3.18 
 

- - 

B-41H-6, 10-12 418.47 15423489 - - 
 

-1.80 2.79 
 

- - 

B-41H-6, 20-22 418.57 15426227 - - 
 

-0.71 3.19 
 

- - 

C-41H-6, 30-32 418.67 15428965 - - 
 

-1.08 3.10 
 

- - 

C-41H-6, 40-42 418.77 15431704 - - 
 

-0.85 2.92 
 

- - 

C-41H-6, 50-52 418.87 15434442 - - 
 

-1.22 2.90 
 

- - 

C-41H-6, 60-62 418.97 15437180 - - 
 

-1.10 2.70 
 

- - 

C-41H-6, 70-72 419.07 15440000 - - 
 

-0.92 2.84 
 

- - 

C-41H-6, 80-82 419.17 15444003 - - 
 

-0.81 2.84 
 

- - 

C-43H-1, 130-132 418.95 15435130 - - 
 

-0.99 2.89 
 

- - 

C-43H-1, 140-142 419.05 15439257 - - 
 

-0.89 2.86 
 

- - 

C-43H-2, 0-2 419.15 15443384 - - 
 

-0.76 2.76 
 

- - 

C-43H-2, 10-12 419.25 15447511 - - 
 

-1.06 3.00 
 

- - 

C-43H-2, 20-22 419.35 15451638 - - 
 

- - 
 

- - 

C-43H-2, 30-32 419.45 15455765 - - 
 

-0.90 2.98 
 

- - 

C-43H-2, 40-42 419.55 15459892 - - 
 

-0.99 3.07 
 

- - 

C-43H-2, 50-52 419.65 15464019 - - 
 

- - 
 

- - 

C-43H-2, 60-62 419.75 15468146 - - 
 

-1.34 2.89 
 

- - 

C-43H-2, 70-72 419.85 15472273 - - 
 

-1.15 2.76 
 

- - 

C-43H-2, 80-82 419.95 15476400 - - 
 

- - 
 

- - 

C-43H-2, 90-92 420.05 15480527 - - 
 

-0.94 2.72 
 

- - 

C-43H-2, 100-102 420.15 15484654 - - 
 

-0.88 3.06 
 

- - 

C-43H-2, 110-112 420.25 15488781 - - 
 

-1.11 3.11 
 

- - 

C-43H-2, 120-122 420.35 15492908 - - 
 

-1.24 2.93 
 

- - 

C-43H-2, 130-132 420.45 15497035 - - 
 

-1.02 3.09 
 

- - 

C-43H-2, 140-142 420.55 15501162 - - 
 

-0.82 3.10 
 

- - 

C-43H-3, 0-2 420.66 15505702 - - 
 

-1.00 3.19 
 

- - 

C-43H-3, 10-12 420.76 15509829 - - 
 

-0.93 3.08 
 

- - 

C-43H-3, 20-22 420.86 15513956 - - 
 

-0.96 2.98 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-43H-3, 30-32 420.96 15518000 - - 
 

-1.22 3.05 
 

- - 

C-43H-3, 40-42 421.06 15519780 - - 
 

-1.11 2.78 
 

- - 

C-43H-3, 50-52 421.16 15521525 - - 
 

-1.32 2.87 
 

- - 

C-43H-3, 60-62 421.26 15523270 - - 
 

-1.03 3.02 
 

- - 

C-43H-3, 70-72 421.36 15525015 - - 
 

-1.22 2.98 
 

- - 

C-43H-3, 80-82 421.46 15526760 - - 
 

-0.96 2.77 
 

- - 

C-43H-3, 90-92 421.56 15528505 - - 
 

-1.74 2.68 
 

- - 

C-43H-3, 100-102 421.66 15530250 - - 
 

-1.17 2.93 
 

- - 

C-43H-3, 110-112 421.76 15531995 - - 
 

-0.92 3.08 
 

- - 

C-43H-3, 120-122 421.86 15533740 - - 
 

-0.87 3.00 
 

- - 

C-43H-3, 130-132 421.96 15535485 - - 
 

-1.03 3.02 
 

- - 

C-43H-3, 140-142 422.06 15537230 - - 
 

-1.06 2.87 
 

- - 

C-43H-4, 0-2 422.17 15539149 - - 
 

-1.02 2.89 
 

- - 

C-43H-4, 10-12 422.27 15540894 - - 
 

-1.16 2.92 
 

- - 

C-43H-4, 20-22 422.37 15542639 - - 
 

-1.16 2.84 
 

- - 

C-43H-4, 30-32 422.47 15544384 - - 
 

-1.12 2.81 
 

- - 

C-43H-4, 40-42 422.57 15546129 - - 
 

-0.93 2.74 
 

- - 

B-43H-4, 50-52 422.67 15547874 - - 
 

-0.90 2.98 
 

- - 

B-43H-4, 60-62 422.77 15549619 - - 
 

-0.79 3.01 
 

- - 

B-43H-4, 70-72 422.87 15551364 - - 
 

-0.99 3.03 
 

- - 

B-43H-4, 80-82 422.97 15553109 - - 
 

-1.00 2.96 
 

- - 

B-43H-4, 90-92 423.07 15554854 - - 
 

- - 
 

- - 

B-43H-4, 100-102 423.17 15556599 - - 
 

-0.94 3.09 
 

- - 

B-42H-2, 40-42 423.04 15554295 - - 
 

-0.71 3.04 
 

- - 

B-42H-2, 40-42 423.04 15554295 - - 
 

-0.89 3.13 
 

- - 

B-42H-2, 50-52 423.14 15556040 - - 
 

-0.86 3.00 
 

- - 

B-42H-2, 60-62 423.24 15557785 - - 
 

-1.02 2.88 
 

- - 

B-42H-2, 70-72 423.34 15559530 - - 
 

-1.01 2.87 
 

- - 

B-42H-2, 80-82 423.44 15561275 - - 
 

-0.78 2.76 
 

- - 

C-42H-2, 90-92 423.54 15563020 - - 
 

-0.90 2.92 
 

- - 

C-42H-2, 100-102 423.64 15564765 - - 
 

-0.82 2.85 
 

- - 

C-42H-2, 110-112 423.74 15566510 - - 
 

-0.70 2.65 
 

- - 

C-42H-2, 120-122 423.84 15568255 - - 
 

-1.28 2.43 
 

- - 

C-42H-2, 130-132 423.94 15570000 - - 
 

-1.11 2.60 
 

- - 

C-42H-2, 140-142 424.04 15575000 - - 
 

-1.06 2.73 
 

- - 

C-44H-1, 30-32 428.11 15728795 - - 
 

-1.16 2.78 
 

- - 

C-44H-1, 40-42 428.21 15732547 - - 
 

-1.13 2.68 
 

- - 

C-44H-1, 50-52 428.31 15736300 - - 
 

-1.20 2.67 
 

- - 

C-44H-1, 60-62 428.41 15740052 - - 
 

-1.21 2.74 
 

- - 

C-44H-1, 70-72 428.51 15743805 - - 
 

-1.34 2.78 
 

- - 

C-44H-1, 80-82 428.61 15747557 - - 
 

-1.18 2.81 
 

- - 

C-44H-1, 90-92 428.71 15751309 - - 
 

-1.15 2.61 
 

- - 

C-44H-1, 100-102 428.81 15755062 - - 
 

-1.29 2.78 
 

- - 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(ma) 

Globigerinoides 

sp. 
 Globigerinoides 

subquadratus 
 Paragloborotalia 

siakensis 
  

δ18O δ13C 
 

δ18O δ13C 
 

δ18O δ13C 

C-44H-1, 110-112 428.91 15758814 - - 
 

-1.54 2.65 
 

- - 

C-44H-1, 120-122 429.01 15762567 - - 
 

- - 
 

- - 
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TABLE X: IODP Site U1338 multispecies planktonic foraminiferal stable isotope data. 

MCD = Metres composite depth. 

 

Core,  section,  

interval (cm) 

Depth 

(mcd) 
Age (ma) Species 

Size 

fraction 

(µm) 

δ18O δ13C 

B-36H-4, 40-42 361.84 13605822 D. altispira 315 2.12 -0.65 

B-36H-4, 40-42 361.84 13605822 D. altispira 250 2.23 -0.37 

B-36H-4, 40-42 361.84 13605822 D. altispira 150 2.22 -0.46 

B-36H-4, 40-42 361.84 13605822 S. disjuncta 315 2.25 -0.07 

B-36H-4, 40-42 361.84 13605822 S. disjuncta 250 1.99 0.16 

B-36H-4, 40-42 361.84 13605822 D. venezuelana 315 1.65 0.57 

B-36H-4, 40-42 361.84 13605822 D. venezuelana 250 1.84 0.37 

B-36H-4, 40-42 361.84 13605822 D. venezuelana 150 1.77 -0.33 

B-36H-4, 40-42 361.84 13605822 G. quadrilobatus 315 3.07 -1.09 

B-36H-4, 40-42 361.84 13605822 G. quadrilobatus 250 - - 

B-36H-4, 40-42 361.84 13605822 G. quadrilobatus 150 2.23 -0.83 

B-36H-4, 40-42 361.84 13605822 fohsella sp. 250 1.54 1.19 

B-36H-4, 40-42 361.84 13605822 fohsella sp. 150 1.60 0.65 

B-36H-5, 130-132 361.24 13585765 fohsella sp. 250 1.83 1.44 

B-36H-5, 130-132 361.24 13585765 fohsella sp. 150 1.64 0.20 

B-36H-5, 130-132 361.24 13585765 D. venezuelana 315 1.55 0.52 

B-36H-5, 130-132 361.24 13585765 D. venezuelana 250 1.68 0.36 

B-36H-5, 130-132 361.24 13585765 D. venezuelana 150 - - 

B-36H-5, 130-132 361.24 13585765 D. altispira 315 2.74 -0.38 

B-36H-5, 130-132 361.24 13585765 D. altispira 250 2.60 -0.34 

B-36H-5, 130-132 361.24 13585765 D. altispira 150 2.23 -0.30 

B-36H-5, 130-132 361.24 13585765 G. quadrilobatus 315 - - 

B-36H-5, 130-132 361.24 13585765 G. quadrilobatus 250 2.57 -0.84 

B-36H-5, 130-132 361.24 13585765 G. quadrilobatus 150 2.27 -0.75 

B-36H-5, 130-132 361.24 13585765 S. disjuncta 315 2.37 -0.39 

B-36H-5, 130-132 361.24 13585765 S. disjuncta 250 2.06 -0.36 

B-36H-5, 130-132 361.24 13585765 S. disjuncta 150 1.78 -0.10 

C-40H-4, 40-42 395.78 14637810 G. quadrilobatus 315 3.53 -1.07 

C-40H-4, 40-42 395.78 14637810 G. quadrilobatus 250 3.11 -0.63 

C-40H-4, 40-42 395.78 14637810 G. quadrilobatus 150 2.65 -0.74 

C-40H-4, 40-42 395.78 14637810 D. altispira 315 3.97 -0.95 

C-40H-4, 40-42 395.78 14637810 D. altispira 250 3.18 -0.32 

C-40H-4, 40-42 395.78 14637810 D. altispira 150 2.90 -0.21 

C-40H-4, 40-42 395.78 14637810 D. venezuelana 315 2.21 0.57 

C-40H-4, 40-42 395.78 14637810 D. venezuelana 250 2.93 -0.35 

C-40H-4, 40-42 395.78 14637810 D. venezuelana 150 2.32 -0.18 
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TABLE 2: IODP Site U1338 stable isotope data from planktonic foraminifera 

Clavatroella bermudezi. MCD = Metres composite depth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Core,  section,  

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Clavatorella 

bermudezi 

δ13C δ18O 

B-37H-4, 110-112 369.98 13805096 1.68 2.09 

B-37H-4, 120-122 370.08 13807146 2.03 4.06 

B-37H-4, 130-132 370.18 13809196 1.81 3.65 

B-37H-5, 100-102 371.38 13833796 2.43 9.73 

B-37H-5, 110-112 371.48 13835846 1.70 3.19 

B-37H-5, 120-122 371.58 13837896 1.71 2.07 

B-37H-5, 130-132 371.68 13839946 1.67 2.27 

B-37H-6, 0-2 371.88 13845391 2.00 5.24 

B-37H-6, 10-12 371.98 13850078 1.78 2.3 

C-38H-1, 120-122 372.19 13859828 1.66 3.53 

C-38H-1, 140-142 372.39 13869203 1.62 2.15 

C-38H-2, 0-2 372.49 13873891 2.05 6.01 

C-38H-3, 30-32 374.29 13946464 1.95 2.92 

C-38H-4, 140-142 376.89 14025943 1.94 2.65 

C-38H-5, 10-12 377.09 14031000 1.54 2.02 

C-38H-5, 50-52 377.49 14045029 2.10 5.14 

C-38H-5, 70-72 377.69 14052061 1.88 2.73 

B-38H-3, 60-62 379.38 14111208 2.20 2.84 

B-38H-3, 90-92 379.68 14120552 1.64 1.44 

B-38H-3, 110-112 379.88 14126782 1.65 1.93 

C-39H-3, 30-32 384.3 14294389 1.68 2.1 

C-39H-4, 20-22 385.7 14344210 1.97 1.88 

C-39H-4, 40-42 385.9 14351854 1.93 1.66 

C-39H-4, 60-62 386.1 14359499 1.38 0.81 

C-39H-4, 70-72 386.4 14370965 1.70 1.56 
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TABLE 3: IODP Site U1338 planktonic foraminiferal trace metal data and SST 

estimates. MCD = Metres composite depth. 

 

Core,  section,  

interval (cm) 

Depth 

(mcd) 
Age (Ma) Species 

Spec 

no. 

Total 

(mg) 
Mg/Ca Temp. Sr/Ca 

C36H03, 20-22 353.04 13370040 G. quadrilobatus 25 - 2.76 22.03 1.23 

C36H03, 80-82 353.64 13384816 G. quadrilobatus 27 0.31 2.48 20.84 1.29 

C36H03, 140-142 354.24 13399411 G. quadrilobatus 28 0.30 2.95 22.76 1.33 

B36H02, 110-132 356.54 13456591 G. quadrilobatus 21 0.20 2.56 21.21 1.22 

B36H03, 10-32 357.04 13469257 G. quadrilobatus 14 0.15 4.00 26.15 1.19 

B36H05, 0-2 359.94 13550431 G. quadrilobatus 28 0.33 3.48 24.59 1.26 

B36H05, 70-92 360.64 13572175 G. quadrilobatus 29 0.31 2.84 22.36 1.25 

B36H05, 130-132 361.24 13585765 G. quadrilobatus 30 0.35 2.99 22.92 1.22 

B36H06, 40-42 361.84 13605822 G. quadrilobatus 25 0.37 2.88 22.49 1.24 

C37H01, 90-92 361.87 13607017 G. quadrilobatus 26 0.28 2.99 22.91 1.28 

C37H02, 40-42 362.87 13643672 G. quadrilobatus 24 0.28 3.09 23.29 1.22 

C37H02, 140-142 363.87 13672872 G. quadrilobatus 30 0.33 2.91 22.60 1.17 

C37H03, 50-52 364.47 13690392 G. quadrilobatus 34 0.37 3.11 23.36 1.22 

C37H04, 10-12 365.58 13717736 G. quadrilobatus 24 0.27 3.06 23.17 1.22 

C37H04, 60-72 366.08 13727337 G. quadrilobatus 21 0.22 3.00 22.95 1.28 

C37H05, 0-2 366.98 13744620 G. quadrilobatus 28 0.32 3.28 23.96 1.26 

B37H02, 130-132 367.18 13748537 G. quadrilobatus 29 2.32 3.38 24.29 0.94 

B37H03, 30-42 367.68 13758139 G. quadrilobatus 24 0.24 3.65 25.15 1.32 

B37H03, 80-82 368.18 13768196 G. quadrilobatus 20 0.24 3.75 25.44 1.25 

B37H03, 120-122 368.58 13776396 G. quadrilobatus 30 0.33 3.45 24.50 1.36 

B37H04, 20-22 369.08 13786646 G. quadrilobatus 30 0.33 2.94 22.73 1.29 

B37H04, 70-72 369.58 13796896 G. quadrilobatus 26 0.29 3.17 23.57 1.24 

B37H04, 140-142 370.28 13811246 G. quadrilobatus 30 0.36 3.15 23.51 1.24 

B37H05, 80-82 371.18 13829696 G. quadrilobatus 24 0.29 3.83 25.68 1.26 

C38H02, 10-42 372.59 13878578 G. quadrilobatus 28 0.30 3.44 24.48 1.24 

B37H05 130-142 371.68 13839946 G. quadrilobatus 27 0.31 3.54 24.80 1.17 

B37H06 20-32 372.08 13854766 G. quadrilobatus 32 0.38 3.19 23.64 1.26 

C38H01 120-132 372.19 13859828 G. quadrilobatus 28 0.34 2.89 22.55 1.25 

C38H03 30-42 374.29 13946464 G. quadrilobatus 28 0.32 3.26 23.88 1.23 

C38H04 140-142 376.89 14025943 G. quadrilobatus 28 0.29 3.30 24.00 1.27 

C38H05 30-32 377.29 14037997 G. quadrilobatus 29 0.36 3.14 23.47 1.27 

B38H02 70-92 377.69 14065914 G. quadrilobatus 27 0.33 3.35 24.20 1.21 

B38H02 130-142 378.58 14083494 G. quadrilobatus 26 0.29 3.09 23.28 1.25 

B38H03 50-62 379.28 14108000 G. quadrilobatus 23 0.26 3.09 23.27 1.26 

B38H02, 80-82 379.58 14117438 G. quadrilobatus 32 0.17 3.05 23.14 1.30 

B38H03 100-102 379.78 14123667 G. quadrilobatus 30 0.32 3.41 24.38 1.39 

B38H03 140-142 380.18 14136126 G. quadrilobatus 28 0.29 3.02 23.04 1.30 

B38H04 40-52 380.68 14153615 G. quadrilobatus 22 0.23 3.03 23.07 1.23 

B38H04, 80-92 381.08 14170260 G. quadrilobatus 25 0.29 2.90 22.60 1.25 

B38H04,120-142 381.48 14191067 G. quadrilobatus 20 0.20 3.17 23.57 1.25 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 
Age (Ma) Species 

Spec 

no. 

Total 

(mg) 
Mg/Ca Temp. Sr/Ca 

B38H05 40-52 382.18 14216035 G. quadrilobatus 26 0.28 3.73 25.37 1.22 

B38H05, 50-52 382.28 14220196 G. quadrilobatus 30 0.21 3.19 23.65 1.24 

C39H02 0-12 382.50 14228518 G. quadrilobatus 35 0.41 3.28 23.95 1.28 

C39H02 60-72 383.10 14302674 G. quadrilobatus 28 0.36 3.13 23.43 1.17 

C39H02 140-142 383.90 14283341 G. quadrilobatus 32 0.36 3.08 23.23 1.21 

C39H03 130-142 385.30 14332743 G. quadrilobatus 18 0.16 3.73 25.38 1.32 

C39H04 50-72 386.00 14359499 G. quadrilobatus 23 0.26 3.62 25.05 1.21 

C39H04 120-142 386.70 14386254 G. quadrilobatus 23 0.26 3.12 23.41 1.24 

C39H05 90-112 387.90 14432243 G. quadrilobatus 23 0.25 3.22 23.74 1.22 

C39H06 0-22 388.50 14447409 G. quadrilobatus 23 0.28 3.00 22.97 1.22 

C39H06 80-102 389.30 14465591 G. quadrilobatus 32 0.34 3.15 23.51 1.22 

C39H06 140-142 389.90 14476955 G. quadrilobatus 21 0.20 3.18 23.60 1.29 

C39H07 50-62 390.50 14490591 G. quadrilobatus 24 0.25 3.21 23.71 1.24 

C40H01 20-32 391.08 14503773 G. quadrilobatus 28 0.33 3.11 23.37 1.23 

C40H01 100-112 391.88 14524720 G. quadrilobatus 29 0.33 3.33 24.10 1.20 

C40H01 130-142 392.18 14532720 G. quadrilobatus 24 0.34 2.99 22.92 1.19 

C40H02 60-72 392.98 14553825 G. quadrilobatus 28 0.31 3.02 23.03 1.20 

C40H02 120-132 393.58 14568921 G. quadrilobatus 15 0.14 3.65 25.15 1.25 

C40H03 40-52 394.28 14586534 G. quadrilobatus 28 0.28 3.25 23.84 1.19 

C40H03 100-112 391.88 14606477 G. quadrilobatus 25 0.30 2.88 22.51 1.22 

C40H04 0-12 394.88 14623884 G. quadrilobatus 26 0.30 3.07 23.22 1.20 

C40H04 70-82 395.38 14648255 G. quadrilobatus 34 0.38 2.99 22.93 1.21 

C40H04, 140-142 396.78 14672625 G. quadrilobatus 31 0.55 3.05 23.15 1.24 

C40H05, 60-62 397.48 14696996 G. quadrilobatus 27 0.30 2.96 22.80 1.26 

C40H05, 60-62 397.48 14696996 G. quadrilobatus 31 0.49 3.24 23.80 1.25 

C40H06 0-12 398.38 14728329 G. quadrilobatus 27 0.28 3.10 23.32 1.20 

C40H06 80-92 399.18 14756181 G. quadrilobatus 27 0.27 3.06 23.19 1.20 

B40H01 0-22 400.10 14792874 G. quadrilobatus 28 0.34 3.18 23.61 1.22 

B40H01, 100-102 401.10 14827216 G. quadrilobatus 29 0.37 3.44 24.47 1.21 

B40H01 100-112 401.10 14827216 G. quadrilobatus 22 0.24 3.81 25.60 1.20 

C41H01 90-102 402.19 14854735 G. quadrilobatus 21 0.25 3.24 23.81 1.21 

C41H02 50-52 403.29 14879071 G. quadrilobatus 25 0.25 3.20 23.68 1.28 

C41H04, 20-22 405.99 14960602 G. quadrilobatus 19 0.21 2.79 22.15 1.18 

C41H04 20-32 405.99 14964443 G. quadrilobatus 24 0.32 3.57 24.90 1.18 

C41H04 80-92 406.59 14983652 G. quadrilobatus 23 0.27 3.14 23.48 1.20 

C41H04 130-142 407.09 15002860 G. quadrilobatus 25 0.28 3.06 23.19 1.24 

C41H05 40-52 407.69 15025910 G. quadrilobatus 30 0.36 3.13 23.44 1.21 

C41H05 90-102 408.19 15041276 G. quadrilobatus 26 0.30 3.19 23.65 1.35 

C41H06, 60-62 409.40 15091778 G. quadrilobatus 27 0.32 3.10 23.33 1.20 

B41H01, 20-22 411.07 15150949 G. quadrilobatus 29 0.43 2.87 22.46 1.24 

B41H03, 120-122 415.07 15330394 G. quadrilobatus 29 0.40 3.35 24.17 1.25 

B41H03, 130-132 415.17 15333132 G. quadrilobatus 32 0.28 3.55 24.83 1.28 

B41H04, 110-112 416.47 15368727 G. quadrilobatus 19 0.20 3.43 24.45 1.26 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 
Age (Ma) Species 

Spec 

no. 

Total 

(mg) 
Mg/Ca Temp. Sr/Ca 

B41H05, 50-52 417.37 15393370 G. quadrilobatus 25 0.37 1.83 17.46 n.d 

C43H02, 110-112 420.25 15488781 G. quadrilobatus 27 0.45 2.94 22.75 n.d 

C43H03, 10-12 420.76 15509829 G. quadrilobatus 27 0.20 3.28 23.96 1.21 

C43H03, 80-82 421.46 15526760 G. quadrilobatus 20 0.36 4.58 27.66 n.d 

C40H05, 0-12 396.88 14679588 G. subquadratus 32 0.35 3.48 24.59 1.25 

C40H05, 50-62 397.38 14693514 G. subquadratus 40 0.47 3.72 25.35 1.24 

C40H05, 100-112 397.88 14710921 G. subquadratus 28 0.31 3.45 24.50 1.22 

B40H01, 0-22 400.10 14789058 G. subquadratus 32 0.35 3.86 25.76 1.25 

B40H02, 20-32 401.80 14845973 G. subquadratus 30 0.28 3.63 25.07 1.22 

C41H01, 90-102 402.19 14854735 G. subquadratus 40 0.42 3.62 25.06 1.21 

C41H02, 40-52 403.19 14879071 G. subquadratus 28 0.29 3.64 25.10 1.21 

C41H02, 100-122 403.79 14892345 G. subquadratus 35 0.38 3.96 26.05 1.23 

C41H03, 0-12 404.19 14898982 G. subquadratus 36 0.38 3.75 25.43 1.21 

C41H04, 20-32 405.99 14960602 G. subquadratus 29 0.36 3.68 25.22 1.21 

C41H04, 80-92 406.59 14983652 G. subquadratus 31 0.39 3.78 25.52 1.24 

C41H05, 30-42 407.59 15022068 G. subquadratus 28 0.30 3.58 24.93 1.23 

C41H07, 10-22 410.41 15129308 G. subquadratus 30 0.31 3.77 25.49 1.25 

B41H01, 10-22 410.97 15147645 G. subquadratus 28 0.30 3.91 25.89 1.28 

B41H02, 30-32 412.67 15210971 G. subquadratus 32 0.42 4.07 26.35 1.18 

B41H02, 40-42 412.77 15216686 G. subquadratus 34 0.44 4.19 26.66 1.26 

B41H02, 50-52 412.87 15222400 G. subquadratus 33 0.41 4.55 27.60 1.28 

B41H02, 70-72 413.07 15234000 G. subquadratus 30 0.36 4.00 26.14 1.27 

B41H02, 80-82 413.17 15239604 G. subquadratus 31 2.35 4.42 27.26 1.20 

B41H02, 90-92 413.27 15245382 G. subquadratus 33 0.46 3.94 26.00 1.26 

B41H02, 100-102 413.37 15251160 G. subquadratus 30 0.34 3.87 25.79 1.28 

B41H02, 110-112 413.47 15256938 G. subquadratus 32 0.33 3.92 25.93 1.27 

B41H02, 120-132 413.57 15262716 G. subquadratus 24 0.27 3.74 25.41 1.25 

B41H02, 140-142 413.77 15274271 G. subquadratus 27 0.24 4.26 26.86 1.20 

B41H03, 0-2 413.87 15280049 G. subquadratus 25 0.34 4.02 26.22 1.28 

B41H03, 20-22 414.07 15290203 G. subquadratus 24 0.29 4.24 26.80 1.29 

B41H03, 30-32 414.17 15294537 G. subquadratus 35 0.37 5.33 29.35 1.16 

B41H03, 40-42 414.27 15298870 G. subquadratus 31 0.34 3.93 25.95 1.25 

B41H03, 50-52 414.37 15303203 G. subquadratus 28 0.31 4.00 26.14 1.24 

B41H03, 80-82 414.67 15316203 G. subquadratus 35 0.41 3.92 25.93 1.24 

B41H03, 90-92 414.77 15320537 G. subquadratus 29 0.23 3.76 25.48 1.26 

B41H03, 100-102 414.87 15325000 G. subquadratus 30 0.35 4.06 26.32 1.33 

B41H03, 110-112 414.97 15327656 G. subquadratus 28 0.31 3.84 25.69 1.28 

B41H03, 120-132 415.07 15330394 G. subquadratus 25 0.33 3.92 25.92 1.26 

B41H03, 140-142 415.27 15335870 G. subquadratus 35 0.26 3.87 25.78 1.29 

B41H04, 0-2 415.37 15338608 G. subquadratus 35 0.39 3.98 26.11 1.31 

B41H04, 10-12 415.47 15341346 G. subquadratus 34 0.42 3.93 25.96 1.30 

B41H04, 20-22 415.57 15344085 G. subquadratus 30 0.41 3.91 25.91 1.30 

B41H04, 50-52 415.87 15352299 G. subquadratus 30 0.44 3.80 25.59 1.28 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 
Age (Ma) Species 

Spec 

no. 

Total 

(mg) 
Mg/Ca Temp. Sr/Ca 

B41H04, 60-62 415.97 15355037 G. subquadratus 32 0.46 3.61 25.00 1.28 

B41H04, 70-72 416.07 15357775 G. subquadratus 33 0.46 3.74 25.42 1.29 

B41H04, 80-82 416.17 15360513 G. subquadratus 27 0.53 3.84 25.69 1.29 

B41H04, 90-92 416.27 15363251 G. subquadratus 34 0.60 3.72 25.35 n.d. 

B41H04, 100-102 416.37 15365989 G. subquadratus 33 0.36 4.02 26.20 1.31 

B41H04, 110-112 416.47 15368727 G. subquadratus 35 0.59 3.89 25.85 1.21 

B41H04, 110-112 416.47 15368727 G. subquadratus 30 0.34 3.66 25.16 1.27 

B41H04, 120-122 416.57 15371465 G. subquadratus 29 0.16 3.96 26.05 1.30 

B41H04, 140-142 416.77 15376942 G. subquadratus 34 0.32 3.77 25.50 1.30 

B41H05, 0-2 416.87 15379680 G. subquadratus 30 0.47 3.67 25.21 1.34 

B41H05, 10-12 416.97 15382418 G. subquadratus 34 0.40 3.68 25.22 1.25 

B41H05, 50-62 417.37 15393370 G. subquadratus 32 0.40 3.62 25.03 1.27 

B41H06, 20-42 418.57 15426227 G. subquadratus 33 0.43 3.70 25.28 1.24 

C43H01, 130-142 418.95 15435130 G. subquadratus 37 0.38 3.82 25.66 1.22 

C43H02, 110-122 420.25 15488781 G. subquadratus 29 0.30 3.91 25.91 1.23 

C43H03, 10-22 420.76 15509829 G. subquadratus 35 0.36 3.94 25.97 1.20 

C43H03, 80-92 421.46 15526760 G. subquadratus 27 0.28 4.21 26.71 1.26 

C43H04, 0-12 422.17 15539149 G. subquadratus 23 0.29 4.24 26.81 1.25 

C43H04, 80-92 422.97 15553109 G. subquadratus 36 0.37 3.87 25.79 1.27 

C41H04, 30-32 406.09 14964443 D. altispira 17 0.181 2.95 22.77 1.10 

B41H01, 20-22 411.07 15150949 D. altispira 18 0.160 3.18 23.61 1.17 

B41H03, 120-122 415.07 15330394 D. altispira 26 0.517 3.21 23.71 1.13 

B41H03, 130-132 415.17 15333132 D. altispira 20 0.282 3.06 23.17 1.17 

B41H04, 30-32 415.67 15346823 D. altispira 19 0.305 2.88 22.49 n.d. 

B41H04, 110-112 416.47 15368727 D. altispira 25 0.214 3.14 23.46 1.17 

C43H01, 130-132 418.95 15435130 D. altispira 24 0.248 1.40 14.49 n.d. 

C43H02, 110-112 420.25 15488781 D. altispira 21 0.256 3.22 23.75 n.d. 

C43H03, 10-12 420.76 15509829 D. altispira 21 0.262 3.03 23.06 1.10 

C43H03, 80-82 421.46 15526760 D. altispira 33 0.305 3.20 23.68 1.16 

C41H04, 30-32 406.09 14964443 D. venezuelana 18 0.268 2.66 21.62 1.13 

B41H01, 20-22 411.07 15150949 D. venezuelana 21 0.320 3.61 25.02 1.04 

B41H03, 120-122 415.07 15330394 D. venezuelana 21 0.236 2.81 22.25 1.16 

B41H03, 130-132 415.17 15333132 D. venezuelana 24 0.419 2.75 21.99 1.20 

B41H04, 30-32 415.67 15346823 D. venezuelana 30 0.415 2.92 22.64 1.16 

B41H04, 110-112 416.47 15368727 D. venezuelana 33 0.291 3.75 25.44 n.d. 

B41H05, 50-52 417.37 15393370 D. venezuelana 30 0.330 2.77 22.07 1.12 

B41H06, 20-22 418.57 15426227 D. venezuelana 26 0.494 4.35 27.09 n.d. 

C43H01, 130-132 418.95 15435130 D. venezuelana 27 0.428 4.15 26.56 n.d. 

C43H02, 110-112 420.25 15488781 D. venezuelana 28 0.399 3.70 25.28 n.d. 

C43H03, 10-12 420.76 15509829 D. venezuelana 32 0.342 3.10 23.31 1.13 

C43H03, 80-82 421.46 15526760 D. venezuelana 28 0.264 3.18 23.61 1.14 



 Appendix A: Data tables 

217 
 

TABLE 4: IODP Site U1338 planktonic foraminiferal trace metal data. MCD = Metres 

composite depth. 

 

Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(Ma) 
Species Mg/Ca Sr/Ca Fe/Ca Al/Ca Mn/Ca Fe/Mg 

C-36H-03, 20-22 353.04 13370040 G. quadrilobatus 2.76 1.23 0.17 0.23 1.25 0.06 

C-36H-03, 80-82 353.64 13384816 G. quadrilobatus 2.48 1.29 0.19 0.56 1.11 0.08 

C-36H-03, 140-142 354.24 13399411 G. quadrilobatus 2.95 1.33 0.13 0.62 0.93 0.04 

B-36H-05, 0-2 359.94 13550431 G. quadrilobatus 3.48 1.26 0.59 0.25 0.90 0.17 

B-36H-05, 70-92 360.64 13572175 G. quadrilobatus 2.84 1.25 0.16 0.05 1.22 0.06 

B-36H-05, 130-132 361.24 13585765 G. quadrilobatus 2.99 1.22 0.22 0.09 1.36 0.08 

B-36H-06, 40-42 361.84 13605822 G. quadrilobatus 2.88 1.24 0.19 0.19 1.20 0.07 

C-37H-01, 90-92 361.87 13607017 G. quadrilobatus 2.99 1.28 0.28 0.12 0.97 0.09 

C-37H-02, 40-42 362.87 13643672 G. quadrilobatus 3.09 1.22 0.20 0.17 1.25 0.07 

C-37H-02, 140-142 363.87 13672872 G. quadrilobatus 2.91 1.17 0.24 0.14 1.54 0.08 

C-37H-03, 50-52 364.47 13690392 G. quadrilobatus 3.11 1.22 0.19 0.13 1.18 0.06 

C-37H-04, 10-12 365.58 13717736 G. quadrilobatus 3.06 1.22 0.27 0.31 1.22 0.09 

C-37H-04, 60-72 366.08 13727337 G. quadrilobatus 3.00 1.28 0.27 0.46 1.05 0.09 

C-37H-05, 0-2 366.98 13744620 G. quadrilobatus 3.28 1.26 0.18 0.18 1.11 0.05 

B-37H-02, 130-132 367.18 13748537 G. quadrilobatus 3.38 0.94 0.55 0.62 0.58 0.07 

B-37H-03, 30-42 367.68 13758139 G. quadrilobatus 3.65 1.32 0.89 2.68 0.30 0.21 

B-37H-03, 80-82 368.18 13768196 G. quadrilobatus 3.75 1.25 0.47 2.07 0.52 0.11 

B-37H-03, 120-122 368.58 13776396 G. quadrilobatus 3.45 1.36 0.23 2.02 0.40 0.06 

B-37H-04, 20-22 369.08 13786646 G. quadrilobatus 2.94 1.29 0.29 0.73 0.96 0.10 

B-37H-04, 70-72 369.58 13796896 G. quadrilobatus 3.17 1.24 0.19 0.26 1.31 0.06 

B-37H-04, 140-142 370.28 13811246 G. quadrilobatus 3.15 1.24 0.22 0.23 1.07 0.07 

B-37H-05, 80-82 371.18 13829696 G. quadrilobatus 3.83 1.26 0.02 2.61 0.88 0.00 

B-37H-05, 130-142 371.68 13839946 G. quadrilobatus 3.54 1.17 0.34 2.03 0.70 0.08 

B-37H-06, 20-32 372.08 13854766 G. quadrilobatus 3.19 1.26 0.21 0.63 0.92 0.06 

C-38H-01, 120-132 372.19 13859828 G. quadrilobatus 2.89 1.25 0.21 0.48 0.95 0.07 

C-38H-03, 30-42 374.29 13946464 G. quadrilobatus 3.26 1.23 0.30 0.41 1.05 0.09 

C-38H-04, 140-142 376.89 14025943 G. quadrilobatus 3.30 1.27 0.36 0.43 0.94 0.11 

C-38H-05, 30-32 377.29 14037997 G. quadrilobatus 3.14 1.27 0.47 0.76 0.91 0.14 

B-38H-02, 70-92 377.69 14065914 G. quadrilobatus 3.35 1.21 0.33 0.49 0.69 0.10 

B-38H-02, 130-142 378.58 14083494 G. quadrilobatus 3.09 1.25 0.19 0.10 0.96 0.06 

B-38H-03, 50-62 379.28 14108000 G. quadrilobatus 3.09 1.26 0.33 0.03 0.96 0.11 

B-38H-03, 100-102 379.78 14123667 G. quadrilobatus 3.41 1.39 1.29 4.94 0.10 0.27 

B-38H-03, 140-142 380.18 14136126 G. quadrilobatus 3.02 1.30 0.36 0.44 1.00 0.12 

B-38H-04, 40-52 380.68 14153615 G. quadrilobatus 3.03 1.23 0.28 0.25 1.00 0.09 

B-38H-04,120-142 381.48 14191067 G. quadrilobatus 3.17 1.25 0.20 0.15 1.00 0.06 

B-38H-05, 40-52 382.18 14216035 G. quadrilobatus 3.73 1.22 0.24 0.04 1.18 0.07 

C-39H-02, 0-12 382.5 14228518 G. quadrilobatus 3.28 1.28 0.40 0.47 0.88 0.12 

C-39H-02, 60-72 383.1 14302674 G. quadrilobatus 3.13 1.17 0.20 0.13 1.00 0.06 

C-39H-02, 140-142 383.9 14283341 G. quadrilobatus 3.08 1.21 0.21 0.20 0.90 0.07 

C-39H-03, 130-142 385.3 14332743 G. quadrilobatus 3.73 1.32 1.22 1.13 0.42 0.30 
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Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(Ma) 
Species Mg/Ca Sr/Ca Fe/Ca Al/Ca Mn/Ca Fe/Mg 

C-39H-04, 50-72 386 14359499 G. quadrilobatus 3.62 1.21 0.36 0.35 0.78 0.10 

C-39H-04, 120-142 386.7 14386254 G. quadrilobatus 3.12 1.24 0.51 0.52 0.55 0.16 

C-39H-05, 90-112 387.9 14432243 G. quadrilobatus 3.22 1.22 0.24 0.35 0.76 0.08 

C-39H-06, 0-22 388.5 14447409 G. quadrilobatus 3.00 1.22 0.19 0.43 0.64 0.06 

C-39H-06, 80-102 389.3 14465591 G. quadrilobatus 3.15 1.22 0.18 0.08 0.93 0.06 

C-39H-06, 140-142 389.9 14476955 G. quadrilobatus 3.18 1.29 0.29 0.33 0.64 0.09 

C-39H-07, 50-62 390.5 14490591 G. quadrilobatus 3.21 1.24 0.29 0.25 0.60 0.09 

C-40H-01, 20-32 391.08 14503773 G. quadrilobatus 3.11 1.23 0.04 0.39 0.63 0.01 

C-40H-01, 100-112 391.88 14524720 G. quadrilobatus 3.33 1.20 0.31 0.25 0.87 0.09 

C-40H-01, 130-142 392.18 14532720 G. quadrilobatus 2.99 1.19 0.18 0.10 0.83 0.06 

C-40H-02, 60-72 392.98 14553825 G. quadrilobatus 3.02 1.20 0.18 0.12 0.69 0.06 

C-40H-02, 120-132 393.58 14568921 G. quadrilobatus 3.65 1.25 0.18 0.13 0.63 0.05 

C-40H-03, 40-52 394.28 14586534 G. quadrilobatus 3.25 1.19 0.19 0.08 0.60 0.06 

C-40H-03, 100-112 391.88 14606477 G. quadrilobatus 2.88 1.22 0.16 0.15 0.56 0.06 

C-40H-04, 0-12 394.88 14623884 G. quadrilobatus 3.07 1.20 0.18 0.13 0.59 0.06 

C-40H-04, 70-82 395.38 14648255 G. quadrilobatus 2.99 1.21 0.19 0.11 0.69 0.07 

C-40H-06, 0-12 398.38 14728329 G. quadrilobatus 3.10 1.20 0.03 0.24 0.01 0.01 

C-40H-06, 80-92 399.18 14756181 G. quadrilobatus 3.06 1.20 0.16 0.24 0.53 0.05 

B-40H-01, 0-22 400.1 14792874 G. quadrilobatus 3.18 1.22 0.16 0.14 0.66 0.05 

B-40H-01, 100-112 401.1 14827216 G. quadrilobatus 3.81 1.20 0.20 0.08 0.75 0.05 

C-41 H-01, 90-102 402.19 14854735 G. quadrilobatus 3.24 1.21 0.23 0.19 0.58 0.07 

C-41H-02, 50-52 403.29 14879071 G. quadrilobatus 3.20 1.28 0.36 0.92 0.60 0.10 

C-41H-03, 80-92 406.59 14983652 G. quadrilobatus n.d. 1.23 0.40 1.23 0.51 0.00 

C-41H-04, 20-32 405.99 14964443 G. quadrilobatus 3.57 1.18 0.25 0.10 0.59 0.07 

C-41H-04, 80-92 406.59 14983652 G. quadrilobatus 3.14 1.20 0.19 0.15 0.59 0.06 

C-41H-04, 130-142 407.09 15002860 G. quadrilobatus 3.06 1.24 0.26 0.23 0.64 0.09 

C-41H-05, 40-52 407.69 15025910 G. quadrilobatus 3.13 1.21 0.17 0.17 0.61 0.06 

C-41H-05, 90-102 408.19 15041276 G. quadrilobatus 3.19 1.35 0.65 2.12 0.30 0.17 

C-40H-05, 0-12 396.88 14679588 G. subquadratus 3.48 1.25 0.31 0.35 0.76 0.09 

C-40H-05, 50-62 397.38 14693514 G. subquadratus 3.72 1.24 0.19 0.06 0.83 0.05 

C-40H-05, 100-112 397.88 14710921 G. subquadratus 3.45 1.22 0.22 0.19 0.99 0.06 

B-40H-01, 0-22 400.1 14789058 G. subquadratus 3.86 1.25 0.25 0.25 0.94 0.07 

B-40H-02, 20-32 401.8 14845973 G. subquadratus 3.63 1.22 0.28 0.53 0.83 0.08 

C-41H-01, 90-102 402.19 14854735 G. subquadratus 3.62 1.21 0.18 0.02 0.84 0.05 

C-41H-02, 40-52 403.19 14879071 G. subquadratus 3.64 1.21 0.19 0.11 0.84 0.05 

C-41H-02, 100-122 403.79 14892345 G. subquadratus 3.96 1.23 0.23 0.15 0.96 0.06 

C-41H-03, 0-12 404.19 14898982 G. subquadratus 3.75 1.21 0.25 0.08 1.08 0.07 

C-41H-04, 20-32 405.99 14960602 G. subquadratus 3.68 1.21 0.27 0.29 0.71 0.07 

C-41H-04, 80-92 406.59 14983652 G. subquadratus 3.78 1.24 0.19 0.14 0.83 0.05 

C-41H-05, 30-42 407.59 15022068 G. subquadratus 3.58 1.23 0.24 0.26 0.90 0.07 

C-41H-07, 10-22 410.41 15129308 G. subquadratus 3.77 1.25 0.19 0.33 0.96 0.05 

B-41H-01, 10-22 410.97 15147645 G. subquadratus 3.91 1.28 0.22 0.20 0.77 0.06 

B-41H-02, 120-132 413.57 15262716 G. subquadratus 3.74 1.25 0.17 0.10 0.89 0.05 

B-41H-03, 120-132 415.07 15330394 G. subquadratus 3.92 1.26 0.18 0.10 0.78 0.05 



 Appendix A: Data tables 

219 
 

Core,  section,  

interval (cm) 

Depth 

(mcd) 

Age 

(Ma) 
Species Mg/Ca Sr/Ca Fe/Ca Al/Ca Mn/Ca Fe/Mg 

B-41H-04, 110-112 416.47 15368727 G. subquadratus 3.72 1.24 0.15 0.06 0.97 0.04 

B-41H-04, 110-112 416.47 15368727 G. subquadratus 3.66 1.27 0.14 0.05 0.90 0.04 

B-41H-05, 50-62 417.37 15393370 G. subquadratus 3.62 1.27 0.16 0.13 0.72 0.05 

B-41H-06, 20-42 418.57 15426227 G. subquadratus 3.70 1.24 0.15 0.06 0.77 0.04 

C-43H-01, 130-142 418.95 15435130 G. subquadratus 3.82 1.22 0.14 0.06 0.99 0.04 

C-43H-02, 110-122 420.25 15488781 G. subquadratus 3.91 1.23 0.16 0.07 0.98 0.04 

C-43H-03, 10-22 420.76 15509829 G. subquadratus 3.94 1.20 0.18 0.06 1.01 0.05 

C-43H-03, 80-92 421.46 15526760 G. subquadratus 4.21 1.26 0.20 0.49 0.90 0.05 

C-43H-04, 0-12 422.17 15539149 G. subquadratus 4.24 1.25 0.40 0.05 0.91 0.09 

C-43H-04, 80-92 422.97 15553109 G. subquadratus 3.87 1.27 0.29 0.71 0.98 0.07 
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TABLE 5: Paragloborotalia siakensis coiling data from IODP Site U1338. 

Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

B-35H-5,  50-52 350.68 13303336 56 1 57 98 

B-35H-5,  60-62 350.78 13305965 51 0 51 100 

B-35H-5,  70-72 350.88 13308595 72 1 73 99 

B-35H-5,  80-82 350.98 13311225 195 3 198 98 

B-35H-5,  90-92 351.08 13313855 50 0 50 100 

B-35H-5,  110-112 351.28 13319114 80 0 80 100 

B-35H-5,  120-122 351.38 13321744 56 1 57 98 

B-35H-5,  130-132 351.48 13324374 31 2 33 94 

B-35H-5,  140-142 351.58 13327003 17 0 17 100 

C-36H-3, 0-2 352.84 13364040 64 0 64 100 

C-36H-3, 10-12 352.94 13367040 134 1 135 99 

C-36H-3, 20-22 353.04 13370040 98 3 101 97 

C-36H-3,  30-32 353.14 13372654 261 7 268 97 

C-36H-3,  40-42 353.24 13375086 60 5 65 92 

C-36H-3, 50-52 353.34 13377519 122 2 124 98 

C-36H-3, 60-62 353.44 13379951 165 2 167 99 

C-36H-3, 70-72 353.54 13382384 30 0 30 100 

C-36H-3, 80-82 353.64 13384816 30 0 30 100 

C-36H-3, 90-92 353.74 13387249 29 1 30 97 

C-36H-3, 100-102 353.84 13389681 29 1 30 97 

C-36H-3, 110-112 353.94 13392114 30 0 30 100 

C-36H-3, 120-122 354.04 13394546 29 1 30 97 

C-36H-3, 130-132 354.14 13396978 30 0 30 100 

C-36H-3, 140-142 354.24 13399411 29 1 30 97 

C-36H-4, 0-2 354.34 13401843 37 1 38 97 

C-36H-4, 10-12 354.44 13404276 19 2 21 90 

C-36H-4, 20-22 354.54 13406708 16 0 16 100 

C-36H-4, 30-32 354.64 13409141 23 1 24 96 

C-36H-4, 40-42 354.74 13411573 11 0 11 100 

C-36H-4, 50-52 354.84 13414005 5 0 5 100 

C-36H-4, 60-62 354.94 13416438 5 0 5 100 

B-36H-1, 100-102 354.94 13416414 18 1 19 95 

B-36H-1, 110-112 355.04 13418846 1 0 1 100 

B-36H-1, 120-122 355.14 13421278 9 0 9 100 

B-36H-1, 130-132 355.24 13423711 12 0 12 100 

B-36H-1, 140-142 355.34 13426191 17 1 18 94 

B-36H-2, 0-2 355.44 13428724 10 0 10 100 

B-36H-2, 10-12 355.54 13431257 1 0 1 100 

B-36H-2, 20-22 355.64 13433791 8 0 8 100 

B-36H-2, 30-32 355.74 13436324 9 0 9 100 

B-36H-2, 40-42 355.84 13438857 79 0 79 100 
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Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

B-36H-2, 50-52 355.94 13441391 46 1 47 98 

B-36H-2, 60-62 356.04 13443924 2 0 2 100 

B-36H-2, 70-72 356.14 13446457 4 0 4 100 

B-36H-2, 80-82 356.24 13448991 10 0 10 100 

B-36H-2, 90-92 356.34 13451524 2 0 2 100 

B-36H-2, 100-102 356.44 13454057 8 1 9 89 

B-36H-2, 110-112 356.54 13456591 136 1 137 99 

B-36H-2, 120-122 356.64 13459124 41 1 42 98 

B-36H-2, 130-132 356.74 13461657 85 2 87 98 

B-36H-2, 140-142 356.84 13464191 10 1 11 91 

B-36H-3, 0-2 356.94 13466724 56 3 59 95 

B-36H-3, 10-12 357.04 13469257 76 5 81 94 

B-36H-3, 20-22 357.14 13471791 102 5 107 95 

B-36H-3, 30-32 357.24 13474324 13 0 13 100 

B-36H-3, 40-42 357.34 13476857 3 0 3 100 

B-36H-3, 50-52 357.44 13479391 6 0 6 100 

B-36H-3, 60-62 357.54 13481924 2 0 2 100 

B-36H-3, 70-72 357.64 13484457 54 4 58 93 

B-36H-3, 80-82 357.74 13486991 59 3 62 95 

B-36H-3, 90-92 357.84 13489524 28 1 29 97 

B-36H-3, 100-102 357.94 13492057 6 1 7 86 

B-36H-3, 110-112 358.04 13494591 30 1 31 97 

B-36H-3, 120-122 358.14 13497124 46 2 48 96 

B-36H-3, 130-132 358.24 13499657 10 0 10 100 

B-36H-3, 140-142 358.34 13502446 1 0 1 100 

B-36H-4, 0-2 358.44 13505523 8 0 8 100 

B-36H-4, 10-12 358.54 13508600 12 0 12 100 

B-36H-4, 20-22 358.64 13511677 11 3 14 79 

B-36H-4, 30-32 358.74 13514754 4 0 4 100 

B-36H-4, 40-42 358.84 13517831 10 0 10 100 

B-36H-4, 50-52 358.94 13520908 21 0 21 100 

B-36H-4, 60-62 359.04 13523985 7 0 7 100 

B-36H-4, 80-82 359.24 13530138 13 1 14 93 

B-36H-4, 90-92 359.34 13533215 9 0 9 100 

B-36H-4, 100-102 359.44 13536292 38 2 40 95 

B-36H-4, 110-112 359.54 13539369 19 0 19 100 

B-36H-4, 120-122 359.64 13542277 5 0 5 100 

B-36H-4, 130-132 359.74 13544995 21 0 21 100 

B-36H-4, 140-142 359.84 13547713 4 0 4 100 

B-36H-5, 0-2 359.94 13550431 38 0 38 100 

B-36H-5, 10-12 360.04 13553149 2 0 2 100 

B-36H-5, 20-22 360.14 13555867 2 2 4 50 

B-36H-5, 30-32 360.24 13558585 2 1 3 67 
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Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

B-36H-5, 50-52 360.44 13564021 12 0 12 100 

B-36H-5, 60-62 360.54 13566739 7 1 8 88 

B-36H-5, 70-72 360.64 13569457 9 1 10 90 

B-36H-5, 80-82 360.74 13572175 19 0 19 100 

B-36H-5, 90-92 360.84 13574893 14 0 14 100 

B-36H-5, 100-102 360.94 13577611 24 0 24 100 

B-36H-5, 110-112 361.04 13580329 11 0 11 100 

B-36H-5, 120-122 361.14 13583047 7 2 9 78 

B-36H-5, 130-132 361.24 13585765 90 3 93 97 

B-36H-5, 140-142 361.34 13588483 60 4 64 94 

B-36H-5, 150-152 361.44 13591201 0 0 0   

B-36H-6, 0-2 361.44 13591201 11 2 13 85 

B-36H-6, 10-12 361.54 13594000 4 0 4 100 

B-36H-6, 20-22 361.64 13597861 1 0 1 100 

B-36H-6, 30-32 361.74 13601842 46 2 48 96 

C-37H-1, 80-82 361.77 13603036 20 0 20 100 

B-36H-6, 40-42 361.84 13605822 79 7 86 92 

C-37H-1, 90-92 361.87 13607017 28 3 31 90 

C-37H-1, 100-102 361.97 13610997 2 0 2 100 

C-37H-1, 110-112 362.07 13614978 3 0 3 100 

C-37H-1, 130-132 362.27 13622939 24 2 26 92 

C-37H-1, 140-142 362.37 13626919 4 0 4 100 

C-37H-2, 10-12 362.57 13635000 2 0 2 100 

C-37H-2, 20-22 362.67 13637832 2 0 2 100 

C-37H-2, 30-32 362.77 13640752 1 0 1 100 

C-37H-2, 40-42 362.87 13643672 17 5 22 77 

C-37H-2, 50-52 362.97 13646592 16 2 18 89 

C-37H-2, 60-62 363.07 13649512 13 1 14 93 

C-37H-2, 70-72 363.17 13652432 10 2 12 83 

C-37H-2, 80-82 363.27 13655352 9 1 10 90 

C-37H-2, 90-92 363.37 13658272 6 1 7 86 

C-37H-2, 100-102 363.47 13661192 4 0 4 100 

C-37H-2, 110-112 363.57 13664112 10 1 11 91 

C-37H-2, 120-122 363.67 13667032 2 1 3 67 

C-37H-2, 130-132 363.77 13669952 6 0 6 100 

C-37H-2, 140-142 363.87 13672872 55 5 60 92 

C-37H-3, 0-2 363.97 13675792 6 1 7 86 

C-37H-3, 10-12 364.07 13678712 11 7 18 61 

C-37H-3, 20-22 364.17 13681632 4 5 9 44 

C-37H-3, 30-32 364.27 13684552 4 5 9 44 

C-37H-3, 40-42 364.37 13687472 19 3 22 86 

C-37H-3, 50-52 364.47 13690392 27 1 28 96 

C-37H-3, 60-62 364.57 13693312 21 4 25 84 
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Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

C-37H-3, 70-72 364.67 13696232 3 0 3 100 

C-37H-3, 80-82 364.77 13699152 15 3 18 83 

C-37H-3, 90-92 364.87 13702072 6 0 6 100 

C-37H-3, 100-102 364.97 13704992 14 1 15 93 

C-37H-3, 110-112 365.07 13708000 65 6 71 92 

C-37H-3, 120-122 365.17 13709863 20 3 23 87 

C-37H-3, 130-132 365.27 13711783 6 1 7 86 

C-37H-3, 140-142 365.37 13713703 14 2 16 88 

C-37H-4, 0-2 365.48 13715816 6 6 12 50 

C-37H-4, 10-12 365.58 13717736 6 7 13 46 

C-37H-4, 20-22 365.68 13719656 34 11 45 76 

C-37H-4, 30-32 365.78 13721576 22 2 24 92 

C-37H-4, 40-42 365.88 13723497 24 2 26 92 

C-37H-4, 50-52 365.98 13725417 44 4 48 92 

C-37H-4, 60-62 366.08 13727337 27 4 31 87 

C-37H-4, 70-72 366.18 13729258 12 0 12 100 

C-37H-4, 80-82 366.28 13731178 10 0 10 100 

C-37H-4, 90-92 366.38 13733098 50 7 57 88 

C-37H-4, 100-102 366.48 13735018 110 10 120 92 

C-37H-4, 110-112 366.58 13736939 40 3 43 93 

C-37H-4, 120-122 366.68 13738859 85 7 92 92 

C-37H-4, 130-132 366.78 13740779 51 3 54 94 

C-37H-4, 140-142 366.88 13742700 24 8 32 75 

C-37H-5, 0-2 366.98 13744620 27 20 47 57 

C-37H-5, 10-12 367.08 13746540 49 5 54 91 

B-37H-2, 110-112 366.98 13744697 45 6 51 88 

B-37H-2, 120-122 367.08 13746617 77 12 89 87 

B-37H-2, 130-132 367.18 13748537 116 13 129 90 

B-37H-2, 140-142 367.28 13750458 22 18 40 55 

B-37H-2, 150-152 367.33 13751399 13 10 23 57 

B-37H-3, 0-2 367.38 13752378 14 16 30 47 

B-37H-3, 10-12 367.48 13754298 1 3 4 25 

B-37H-3, 20-22 367.58 13756218 6 8 14 43 

B-37H-3, 30-32 367.68 13758139 20 4 24 83 

B-37H-3, 40-42 367.78 13760059 184 17 201 92 

B-37H-3, 50-52 367.88 13762046 51 5 56 91 

B-37H-3, 60-62 367.98 13764096 28 2 30 93 

B-37H-3, 70-72 368.08 13766146 28 3 31 90 

B-37H-3, 80-82 368.18 13768196 6 5 11 55 

B-37H-3, 90-92 368.28 13770246 0 1 1 0 

B-37H-3, 100-102 368.38 13772296 33 2 35 94 

B-37H-3, 110-112 368.48 13774346 120 16 136 88 

B-37H-3, 120-122 368.58 13776396 123 10 133 92 
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Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

B-37H-3, 130-132 368.68 13778446 29 1 30 97 

B-37H-3, 140-142 368.78 13780496 10 0 10 100 

B-37H-4, 0-2 368.88 13782546 8 0 8 100 

B-37H-4, 10-12 368.98 13784596 117 10 127 92 

B-37H-4, 20-22 369.08 13786646 27 3 30 90 

B-37H-4, 30-32 369.18 13788696 41 3 44 93 

B-37H-4, 40-42 369.28 13790746 7 0 7 100 

B-37H-4, 50-52 369.38 13792796 130 3 133 98 

B-37H-4, 60-62 369.48 13794846 29 1 30 97 

B-37H-4, 70-72 369.58 13796896 82 2 84 98 

B-37H-4, 80-82 369.68 13798946 6 0 6 100 

B-37H-4, 90-92 369.78 13800996 22 1 23 96 

B-37H-4, 100-102 369.88 13803046 6 0 6 100 

B-37H-4, 110-112 369.98 13805096 79 8 87 91 

B-37H-4, 120-122 370.08 13807146 29 1 30 97 

B-37H-4, 130-132 370.18 13809196 40 4 44 91 

B-37H-4, 140-142 370.28 13811246 10 0 10 100 

B-37H-5, 40-42 370.78 13821496 1 0 1 100 

B-37H-5, 60-62 370.98 13825596 2 0 2 100 

B-37H-5, 100-102 371.38 13833796 28 1 29 97 

B-37H-5, 110-112 371.48 13835846 10 0 10 100 

B-37H-5, 120-122 371.58 13837896 49 7 56 88 

B-37H-5, 130-132 371.68 13839946 31 6 37 84 

B-37H-5, 140-142 371.78 13841996 2 0 2 100 

B-37H-6, 0-2 371.88 13845391 36 1 37 97 

B-37H-6, 10-12 371.98 13850078 16 0 16 100 

C-38H-1, 120-122 372.19 13859828 10 1 11 91 

C-38H-1, 140-142 372.39 13869203 20 0 20 100 

C-38H-2, 0-2 372.49 13873891 3 0 3 100 

C-38H-2, 20-22 372.69 13883266 1 0 1 100 

C-38H-2, 40-42 372.89 13893148 2 1 3 67 

C-38H-2, 120-122 373.69 13924624 11 2 13 85 

C-38H-3, 0-2 373.99 13935544 1 0 1 100 

C-38H-3, 30-32 374.29 13946464 3 0 3 100 

C-38H-4, 20-22 375.69 13995749 3 0 3 100 

C-38H-5, 10-12 377.09 14031000 4 0 4 100 

C-38H-5, 50-52 377.49 14045029 1 0 1 100 

C-38H-5, 70-72 377.69 14052061 2 0 2 100 

B-38H-2, 120-122 378.48 14079978 8 0 8 100 

B-38H-2, 140-142 378.68 14087010 1 0 1 100 

B-38H-3, 90-92 379.68 14120552 1 0 1 100 

B-38H-3, 110-112 379.88 14126782 7 0 7 100 

B-38H-4, 0-2 380.28 14139241 9 1 10 90 
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Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

B-38H-4, 20-22 380.48 14145470 3 0 3 100 

B-38H-4, 30-32 380.58 14149454 3 0 3 100 

C-40H-4, 0-2 395.38 14623884 5 0 5 100 

C-40H-4, 20-22 395.58 14630847 10 1 11 91 

C-40H-4, 40-42 395.78 14637810 21 4 25 84 

C-40H-4, 60-62 395.98 14644773 16 2 18 89 

C-40H-4, 80-82 396.18 14651736 14 2 16 88 

C-40H-4, 100-102 396.38 14658699 13 4 17 76 

C-40H-4, 120-122 396.58 14665662 22 2 24 92 

C-40H-4, 140-142 396.78 14672625 28 5 33 85 

C-40H-5, 10-12 396.98 14679588 38 2 40 95 

C-40H-5, 30-32 397.18 14686551 14 1 15 93 

C-40H-5, 50-52 397.38 14693514 24 0 24 100 

C-40H-5, 70-72 397.58 14700477 8 0 8 100 

C-40H-5, 90-92 397.78 14707440 22 2 24 92 

C-40H-5, 110-112 397.98 14714403 4 1 5 80 

C-40H-6, 0-2 398.38 14728329 4 0 4 100 

C-41H-3, 70-72 404.99 14921778 3 0 3 100 

C-41H-3, 90-92 405.19 14929578 5 1 6 83 

C-41H-3, 110-112 405.39 14937378 1 0 1 100 

C-41H-4, 0-2 405.79 14952918 1 0 1 100 

C-41H-4, 20-22 405.99 14960602 1 0 1 100 

C-41H-4, 40-42 406.19 14968285 2 2 4 50 

C-41H-4, 60-62 406.39 14975968 2 1 3 67 

C-41H-4, 80-82 406.59 14983652 3 0 3 100 

C-41H-4, 100-102 406.79 14991335 1 0 1 100 

C-41H-4, 120-122 406.99 14999018 2 0 2 100 

C-41H-4, 140-142 407.19 15006701 7 0 7 100 

C-41H-5, 10-12 407.39 15014385 8 0 8 100 

C-41H-5, 30-32 407.59 15022068 6 0 6 100 

C-41H-5, 50-52 407.79 15029751 5 0 5 100 

C-41H-5, 90-92 408.19 15045118 4 1 5 80 

C-41H-5, 110-112 408.39 15052801 1 0 1 100 

C-41H-5, 130-132 408.59 15060484 5 0 5 100 

C-41H-6, 0-2 408.80 15068552 1 0 1 100 

C-41H-6, 60-62 409.40 15091778 5 1 6 83 

B-41H-1, 20-22 411.07 15150949 12 0 12 100 

B-41H-1, 30-32 411.17 15154253 14 3 17 82 

B-41H-1, 50-52 411.37 15160861 12 2 14 86 

B-41H-1, 70-72 411.57 15167469 10 1 11 91 

B-41H-1, 90-92 411.77 15174077 5 0 5 100 

B-41H-1, 130-132 412.17 15187293 16 2 18 89 

B-41H-2, 0-2 412.37 15194000 2 0 2 100 
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Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

B-41H-2, 20-22 412.57 15205257 22 5 27 81 

B-41H-2, 40-42 412.77 15216686 21 3 24 88 

B-41H-2, 100-102 413.37 15251160 0 2 2 0 

B-41H-2, 120-122 413.57 15262716 4 1 5 80 

B-41H-2, 140-142 413.77 15274271 21 9 30 70 

B-41H-3, 30-32 414.17 15294537 21 5 26 81 

B-41H-3, 50-52 414.37 15303203 19 1 20 95 

B-41H-3, 70-72 414.57 15311870 6 2 8 75 

B-41H-3, 90-92 414.77 15320537 5 2 7 71 

B-41H-3, 130-132 415.17 15333132 6 1 7 86 

B-41H-4, 20-22 415.57 15344085 10 1 11 91 

B-41H-4, 80-82 416.17 15360513 1 0 1 100 

B-41H-4, 90-92 416.27 15363251 1 0 1 100 

B-41H-4, 100-102 416.37 15365989 4 1 5 80 

B-41H-4, 110-112 416.47 15368727 20 25 45 44 

B-41H-4, 120-122 416.57 15371465 0 1 1 0 

B-41H-4, 130-132 416.67 15374204 5 8 13 38 

B-41H-4, 140-142 416.77 15376942 4 2 6 67 

B-41H-5, 0-2 416.87 15379680 1 1 2 50 

B-41H-5, 20-22 417.07 15385156 2 1 3 67 

B-41H-5, 60-62 417.47 15396108 2 0 2 100 

B-41H-5, 80-82 417.67 15401585 6 10 16 38 

B-41H-5, 100-102 417.87 15407061 5 7 12 42 

B-41H-5, 120-122 418.07 15412537 6 1 7 86 

B-41H-6, 10-12 418.47 15423489 1 0 1 100 

C-41H-6, 30-32 418.67 15428965 7 1 8 88 

C-41H-6, 40-42 418.77 15431704 3 5 8 38 

C-41H-6, 60-62 418.97 15437180 2 1 3 67 

C-41H-6, 80-82 419.17 15444003 9 5 14 64 

C-43H-1, 140-142 419.05 15439257 2 0 2 100 

C-43H-2, 10-12 419.25 15447511 0 1 1 0 

C-43H-2, 30-32 419.45 15455765 1 0 1 100 

C-43H-2, 50-52 419.65 15464019 1 4 5 20 

C-43H-2, 70-72 419.85 15472273 1 0 1 100 

C-43H-2, 90-92 420.05 15480527 0 1 1 0 

C-43H-2, 110-112 420.25 15488781 1 1 2 50 

C-43H-2, 130-132 420.45 15497035 5 8 13 38 

C-43H-3, 0-2 420.66 15505702 10 12 22 45 

C-43H-3, 20-22 420.86 15513956 0 1 1 0 

C-43H-3, 40-42 421.06 15519780 2 2 4 50 

C-43H-3, 60-62 421.26 15523270 2 5 7 29 

C-43H-3, 80-82 421.46 15526760 3 1 4 75 

C-43H-3, 100-102 421.66 15530250 5 10 15 33 
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Core,   section,   

interval (cm) 

Depth 

(mcd) 
Age (ma) 

Paragloborotalia 

siakensis Total 
% 

sinistral 

sinistral dextral 

C-43H-3, 120-122 421.86 15533740 8 12 20 40 

C-43H-3, 140-142 422.06 15537230 6 9 15 40 

C-43H-4, 10-12 422.27 15540894 10 14 24 42 

C-42H-2, 90-92 423.54 15563020 5 6 11 45 

C-42H-2, 110-112 423.74 15566510 6 6 10 60 

C-42H-2, 130-132 423.94 15570000 3 2 5 60 
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APPENDIX B: SUPPLEMENTARY FIGURES 

APPENDIX 1: IODP Site U1338 and ODP Site 1146 location map  
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APPENDIX 2: IODP Site U1338 planktonic foraminiferal trace metal data 
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APPENDIX 3: IODP Site U1338 unedited P. siakensis coiling direction data  
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APPENDIX 4: IODP Site U1338 Wavelet Analyses of planktonic and benthic δ
18

O data. 
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APPENDIX 5: IODP Site U1338 Wavelet Analyses of planktonic and benthic δ
13

C data. 
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APPENDIX 6: IODP Site 1146 Wavelet Analyses of planktonic and benthic δ
18

O data. 
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APPENDIX 7: IODP Site 1146 Wavelet Analyses of planktonic and benthic δ
13

C data. 
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APPENDIX 8: IODP Site U1336 Cross Wavelet Transfer planktonic δ
18

O and δ
13

C data. 

  



Final Thoughts 

The End. 
 

 

 

 

 

 

 

 

“IT WAS the best of times, it was the worst of times, it was the age of wisdom, it was 

the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was 

the season of Light, it was the season of Darkness, it was the spring of hope, it was the 

winter of despair, we had everything before us, we had nothing before us, we were all 

going direct to Heaven, we were all going direct the other way- in short, the period was 

so far like the present period, that some of its noisiest authorities insisted on its being 

received, for good or for evil, in the superlative degree of comparison only.” 

 

-Charles Dickens 

 


