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Abstract 

 

The increasing occurrence of multi drug resistant bacterial infections has 

underlined the urgent need for the development of new and more potent 

antibiotics. Bacterial RNA polymerase (RNAP) is a validated target that allows 

efficacy and selective toxicity. Unfortunately the efficacy of clinically used RNAP 

inhibitors (rifamycins) is threatened by the emergence of bacterial resistance. 

The recent identification of the binding region of myxopyronin (Myx), a natural 

product antibiotic, coupled with the availability of crystal structural data, offers 

the possibility of using a ligand- and structure-based design approach for the 

identification of new drug-like RNA polymerase inhibitors.  

Validation studies of different docking algorithms were performed on the 

available X-ray co-crystal structures of Thermus thermophilus RNAP and 

several ligand- and structure-based virtual screening protocols on the Myx 

binding region were applied to identify hits for SAR-based exploration. 

A combined ligand- and structure-based protocol identified two 

compounds which showed selective inhibitory activity towards E. coli RNAP in 

the micromolar range of concentration. A SAR expansion programme based 

upon one of these active molecules was conducted via the synthesis of a 

chemical library of acylhydrazones in order to identify the factors determining 

potency and to validate the putative binding mode. Similarity-based virtual 

screening and docking studies were also applied to explore the close chemical 

space of the initial hit and to prioritize the synthesis of analogs. Some of the 

designed compounds showed better inhibitory activity than the initial hit and 

moreover, one derivative possessed moderate activity towards S. aureus 

SH1000.  

A structure-based virtual screening protocol was then conducted on an 

in-house chemical database, applying a preliminary library filtering approach  

based on physico-chemical descriptors. The identification of a hit active in the 

micromolar range of concentration underlined the predictive power of this 

approach and offered useful ideas for future RNAP inhibitor design. 
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1. Introduction 

1.1  Antibiotics 

 Antibiotics (literally ‘against life’) are substances produced by 

microorganisms and can be classified on the basis of their target and 

additionally on their capability of inducing cell death (bactericidal drugs) or 

inhibiting cell growth (bacteriostatic drugs).1 Cell death caused by bactericidal 

drugs results from the interaction of the drug molecule with a specific target in 

the microorganism leading to alterations in the biochemistry of the bacterium 

both at the molecular and ultrastructural level.1 

Common mechanisms of cell death induced by antibiotics include DNA 

damage via breaking double stranded DNA with inhibitors of topoisomerase II 

(DNA gyrase),2 arrest of DNA-dependent RNA synthesis (rifamycins),3  damage 

of the cell wall and alteration of its structural integrity (inhibitors of cell wall 

synthesis),
4
 or impairment of cellular energetics, ribosome binding and protein 

translation using inhibitors of protein synthesis.1, 5 Recently it has been 

discovered that the mode of action of all classes of bactericidal antibiotics 

features drug-induced stress including the production of free radicals which are 

responsible for oxidative damage and alteration of  bacterial metabolism.1, 6, 7, 8 

Since the discovery of penicillin other more effective antibiotics have been 

discovered and designed using chemical modification and often via an 

understanding of the interactions of the drugs with their target.1 The successful 

clinical use of these new molecules lead to widespread optimism and 

confidence in the fight of modern medicine against infectious diseases during 

the ‘era of antibiotics’ between 1940 and 1970. However since that period, the 

increasing prevalence of drug-resistant bacteria9 has underlined the importance 

of exploring and finding new antibacterials.1,10  

1.2 Bacterial multi drug resistance 

1.2.1  Current situation 

 Bacterial multi drug resistance is a global healthcare problem and despite 

the successful use of antibiotics for decades, bacterial infectious diseases are 
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the main cause of death worldwide, killing 13-17 million people per year and 

causing 25% of deaths according to the World Health Organization.11, 12, 13, 14 

The mortality and the socio-economical impact of infectious disease is 

enormous and the fight against multidrug resistant microorganisms is one of the 

most challenging global health problems.11, 12, 13, 14 Paul Ehrlich said ‘Drug 

resistance follows the drug like a faithful shadow’.15 Resistance has developed 

within 1-4 years after the clinical introduction of the major classes of antibiotics 

and thanks to the consistent increase in international trade and travel, 

multidrug-resistant pathogens are representing a global problem.15 In addition, 

about 50% of antibiotics are used for prophylaxis, chemotherapy and growth 

promotion in animals and this is worsening the problem.10 Antibiotic resistance 

in Gram-positive and Gram-negative pathogens is growing rapidly and only six 

new antibiotics have been approved since 2003.13 This reflects the challenge of 

identifying new drug classes and the low level of interest from pharmaceutical 

and biotechnology companies in antibacterial drug discovery for economic 

reasons.
11, 12, 13, 14

 Among Gram-positive pathogens, Staphylococcus aureus, 

Streptococcus pneumoniae, Mycobacterium tubercolosis and Enterococci 

constitute a significant public health concern while in Gram-negative pathogens,  

the opportunistic healthcare infections caused by Pseudomonas aeruginosa, 

Acinetobacter baumannii, Stenotrophomonas maltophilia, and Burkholderia 

cepacia are of particular concern.11, 12, 13, 14 There is an urgent need to discover 

new therapeutic agents and the main strategies are the search for antibiotics 

with novel mechanisms of action, the identification of new molecular target 

sites, and the chemical modification of known effective molecules to override 

the mechanisms of resistance.11, 12, 13, 14 

1.2.2  Molecular mechanisms of resistance 

Antibacterial resistance can be classified as intrinsic, where bacteria are 

naturally resistant to the antibiotic without any previous exposure, or acquired 

from environmental organisms by horizontal gene transmission (HGT).16 

An example of intrinsic resistance is that utilised by Pseudomonas 

aeruginosa, whose low membrane permeability is the main reason for its innate 

resistance to many antibiotics. Acquired resistance is caused by acquisition of a 
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genetic element like a plasmid and/or transposon or by a chromosome 

mutation.10 Mutations of DNA occurs randomly during its replication at a 

frequency of 10-9-10-10 per base pair and copying errors may lead to the partial 

or complete deletion of individual genes.17 Classical experiments have shown 

that production of pre-existing variants and not the emergence of new mutants 

occurs under the administration of antibiotics but the presence of bacterial 

strains which are hypermutable, as a consequence of the inactivation of the 

proofreading and DNA mismatch-repair system, make the mutation rate 200-

fold higher than normal cells.17 Specific resistance mechanisms include: I) 

chemical inactivation of the drug molecules by enzymes, II) decreased drug 

accumulation within the pathogen by decreasing uptake or increasing efflux, III) 

alteration of binding sites which reduces the affinity for antibiotics, IV) 

development of alternative metabolic pathways.15 

1.2.3  Antibiotics: timeline, challenges and discovery strategy 

Most of the antibiotics used today were discovered before 1970 during the 

‘golden age’ of discovery which started in 1945 and declined in 1965 where 

antibiotics were isolated from natural sources like soil Streptomycetes and 

fungi.18 Since 1970 only three new classes of antibiotics reached the market: 

oxazolidinones (discovered in 1978 and introduced in 2003), lipopeptides 

(discovered in 1986 and introduced in 2003) and carbapenems (discovered in 

1975 and introduced in 1985) although this latter class has close chemical 

similarity with β-lactams and its novelty is debateable.18 Most of the advances in 

antibacterial drug discovery since 1970 came via improvements of already 

known antibiotic classes with chemical analogues bearing increased potency 

and greater ability to overcome existing resistance, but during the last two 

decades this strategy has not delivered a sufficient number of antibiotics in 

particular against Gram-negative bacteria related infections.18 The reasons for 

this discovery void are the partial withdrawal of ‘Big Pharma’ from this area of 

research which is mainly linked with regulatory and commercial challenges, the 

concomitant unsuccessful discovery strategy, and the simultaneous rise of 

multi-drug resistant bacteria.18 
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From an economic point of view, the development of new antibiotics is also 

facing some considerable challenges. These include difficulties in licensing and 

relatively low economical income following the launch of molecules used for 

short-course treatments which attack multiple target species developing 

resistance in short time scales.16, 18 In addition, an antibiotic requires the ability 

to reach multiple body compartments and not to show toxicity for daily dosages 

which are usually higher than for other pharmaceuticals.16, 18 

With regard to the discovery strategy, during the ‘Golden Age’ of discovery 

of antibiotics, the approach consisted of empirical screening of synthetic 

chemicals, natural compounds from fermentation broths, and extracts of 

microorganisms with no regard to mechanism of action, and selectivity was only 

tested later in assays or on animals.16 Empirical screening from synthetic 

chemicals delivered important antibacterials like salvarsan, sulphonamides, 

nitrofurans, chloramphenicol, and quinolones, while many important antibiotic 

classes were discovered from natural products isolated from fermentation 

broths and extracts of microorganisms such as β-lactams, aminoglycosides, 

ansamycines and tetracyclines.16 To avoid redundancy in the chemical diversity 

of the discovered scaffolds, in the early 1960s, a ‘de-replication’ strategy was 

attempted which focussed on targets or pathways (cell wall or protein synthesis 

inhibition) but the output of novel antibiotic classes started decreasing in 1977 

and gradually moved into the ‘genomic era’ in the 1990s which mostly failed to 

deliver results.16 This change was necessary because mining natural sources 

became less productive and did not offer good chemical diversity within the 

discovered scaffolds.16 

During the ‘genomic era’, the ability to clone genes and to produce purified 

proteins to be used for in vitro screening and assays allowed genomic-based 

and target-directed screening.16 The systematic sequencing of pathogen 

genomes identified many targets not present in mammalian counterparts and an 

intense high-throughput screening of in-house synthetic chemical libraries was 

performed leaving apart natural compounds.16 The compound libraries yielded 

very few hits when compared to other therapeutic areas and even fewer leads.16 

No antibiotic was developed using this approach during a 20 year time.16 
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One reason for this failure of discovery could be ascribed to the chemical 

composition of compound libraries. These libraries are generally biased towards 

molecules compliant with Lipinski’s ‘rule of five’ with consequently good oral 

absorption but many existing antibiotics do not conform to this rule especially 

the ones which are administered via the parenteral route.16, 18 According to 

some authors,19 antibacterial agents reside within a unique physicochemical 

property space when compared to other therapeutics. Another problem is that a 

compound binding to a target does not necessarily show antibiotic activity 

because it may not be able to penetrate the bacterial membranes or to 

overcome removal from the cell by efflux processes mediated by membrane 

transporters.18 

1.2.4 Antibiotics in the pipeline and the future of antibacterial 

discovery 

Over the past 20 years (from 1983 to 2002) FDA approvals of new 

antibacterial agents decreased. Comparing the period from 1998 to 2008 with 

the period from 1983 to 1987, the approvals of antibacterial agents decreased 

by 56%.20 During this period, forty compounds were under evaluation in clinical 

trials at various phases with an equal distribution between natural products and 

synthetically derived molecules.21 Some new strategies were adopted by the 

companies for the compounds in the pipeline which included: (i) the search for 

new classes of molecules that bind well-established targets such as the non-

quinolone topoisomerase inhibitors GSK299423 1.1 (Figure 1.1), non β-lactam 

inhibitors of β-lactamases such as NXL104 1.2, MK7655 1.3 and ME1071 1.4 

(Figure 1.1); (ii) inhibitors for multidrug efflux mediated mechanisms which could 

restore the activity of known antibiotics like quinolones towards bacterial 

species relying on this resistance mechanism such as P. aeruginosa; (iii) 

screening of unconventional chemical classes to overcome the limitations of 

classical compound libraries like the boron-based Leu-tRNA synthetase inhibitor 

GSK2251052 1.5 (Figure 1.1).18 A rediscovered interest in natural products has 

recently occurred which involves two main strategies: screening of various 

organism groups different from soil Streptomycetes such as plants, deep sea 

bacteria and antifungal Actinomycetes which colonize the nests of ants or 
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manipulating the non-expressed regulatory gene clusters in Streptomycetes 

since many existing antibiotics are only growth-phase dependent regulatory 

products.18 Combinatorial synthesis through Diversity-Oriented Synthesis 

(DOS), and Biology-Oriented Synthesis (BIOS) will enhance the diversity of 

HTS libraries, while Fragment-Based Drug Discovery (FBDD), thanks to the 

growing number of solved crystallographic and nuclear magnetic resonance 

structures of bacterial targets with bound ligands, will deliver small molecules 

which are more likely to bind to selected targets when compared to larger 

molecules and will constitute a valuable starting point for optimization.16 

 

Figure 1.1 Structures of new classes of antibiotics18 

1.2.5  Requirements for an optimal antibacterial target and the 

problem of bacterial cell penetration 

An antibacterial target should be considered amenable if it is (i) essential 

for the organism function to allow inhibition of bacterial growth or death; (ii) 

conserved among different bacterial species to provide a good spectrum of 

activity; (iii) lacking structural homology with the mammalian host in order to 

avoid toxicity, (iv) ‘druggable’ since it should possess a site or a structure where 
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small drug-like molecules can bind.16 Additional desirable criteria are: (v) good 

solubility and stability of the enzyme in terms of delivering good quality and 

highly resolved X-ray crystallography data, (vi) an intrinsic low frequency of 

mutations to allow inhibitors to be effective for a reasonable time when used as 

monotherapeutic agents.16 Unfortunately, in the field of antibacterials, the 

generally observed rapid development of resistance by single target enzymes 

constitutes a big challenge.16 Developing inhibitors for multiple enzymes like 

fluoroquinolones (inhibition of DNA gyrase and topoisomerase IV) or targets 

encoded by multiple genes (such as rRNA inhibitors) could be advantageous 

with respect to single target-based antibacterial agents.16  

The spectrum of activity of antibacterials is crucially dependent on cell 

permeability and the target distribution16 within the bacterium. Targets can be 

external to the cell or in the cytoplasm and most antibiotics inhibit one among 

the several cellular targets.16 Bacteria are prokaryotic cells with high intracellular 

pressure and are protected from osmolysis by a rigid peptidoglycan layer, 

constituted by strands of glycan and peptide covalently cross-linked, which 

contributes to cell wall rigidity.16, 22, 23 Bacterial cells can be classified according 

to their ability to retain the violet Gram-staining and Gram-positive bacteria have 

a thicker peptidoglycan layer (30-100 nm thick) when compared to Gram-

negative strains (20-30 nm thick).10, 16, 23 An additional lipopolysaccaride outer 

membrane (OM) is present in Gram-negative bacteria and this represents an 

additional barrier to the cytoplasmatic membrane (CM) present in all bacteria16 

(Figure 1.2). 

 

 

 

 

 

 

 

Figure 1.2  Structure of Gram-positive and Gram-negative bacteria. 
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 Uncharged and lipophilic molecules can readily diffuse through the CM 

while charged hydrophilic molecules can rely on active transport via solute-

specific carriers and permeases.16 The OM is globally impermeable but 

molecules can transit through porins, water-filled channels which are selective 

for hydrophilic and charged solutes with a size exclusion for high molecular 

weight molecules (in E. coli the upper limit is 600 Daltons).16 Porins can be 

bypassed thanks to solute-specific facilitated diffusion channels and some 

natural antibiotics exploit these solute-specific routes.16 The presence of 

specific efflux pumps in Gram-negative organisms contributes to the difficulties 

in the discovery of specific drugs for this class of bacteria.16 Another important 

aspect of antibacterial agents is target-specific selectivity. When an inhibitor is 

discovered via empirical (phenotypic) screening for growth inhibition, it should 

not possess non specific antibacterial activity via cytotoxicity such as detergent 

action, alkylation or ‘energy poisoning’.16 This is equally important also for 

compounds identified via in vitro enzyme inhibition but a linkage between 

enzyme-based inhibitory potency and minimum inhibitory concentration (MIC) is 

not obvious for many compound classes because of the inability to cross the 

bacterial membranes or to concentrate inside the cell avoiding removal by efflux 

pumps.16 

Possible approaches to overcome the problem of bacterial cell penetration 

include the alteration of the physicochemical properties of inhibitors to enhance 

uptake and limit efflux, but these modifications may reduce binding affinity to the 

molecular target.24 The use of docking methodologies could help to predict 

whether the modifications are tolerated within the binding site.24 Another 

approach is to exploit bacterial iron uptake through siderophores as a ‘Trojan 

horse’ strategy for drug delivery. Bacterial cells require iron as an essential 

element in a variety of metabolic pathways and high-affinity iron uptake is 

mediated by siderophore-dependent processes.25 Some siderophore 

conjugates have already been made with existing drug classes, such as β-

lactam antibiotics25 and in some cases antibacterial activity was better when 

compared to the non-conjugated drugs. However, not all inhibitors will be 

chemically amenable to coupling with siderophores and drug release is then 
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necessary within the bacterial cytoplasm. Moreover good pharmacokinetic 

properties are required for systemic administration.24 

To conclude, the choice of a suitable target can be considered a rate-

limiting step of any antibacterial drug discovery program.16 

 

1.3 Bacterial DNA-dependent RNA polymerase 

1.3.1 Structure 

RNAP is a nucleotidyl transferase enzyme with a molecular mass of about 

400kDa and is responsible for the transfer of genetic information from DNA to 

RNA in a process called transcription which is the first step of the expression of 

genetic information26 (Figure 1.3).  

 

  

 

 

Figure 1.3 Expression of genetic information 

 

The DNA-dependent RNA polymerase (RNAP) in prokaryotic cells is 

responsible for the biosynthesis of all types of RNAs (r-RNA, mRNA, t-RNA) 

while in eukaryotic cells this enzyme is present in three different forms (RNAP-I, 

RNAP-II, RNAP-III) where each of these is respectively involved in the 

biosynthesis of r-RNAs, m-RNAs and t-RNAs.27 Eukaryotic RNAPs contain 14 

subunits in RNAP-I, 12 subunits in RNAP-II and 17 subunits in RNAP-III and all 

of these three enzymes are similar from a structural and functional point of view 

while prokaryotic core RNAPs consists of five subunits (α2 β β′ ω) in association 

with the σ factor to form an holoenzyme which can bind a promoter27 (Figure 

1.4). In the eukaryotic cell the specific binding of a promoter is performed by 

transcription factors in association with the RNAPs.27  
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Transcription Translation 
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RNAP (Figure 1.4) is a ‘crab claw’-shaped molecule and the large β and β′ 

subunits form the ‘pincers’ with a large channel between them which locates the 

3′ hydroxyl of the RNA within the active site, the 8-9 base pair long RNA-DNA 

hybrid at the growing end of the transcript, a DNA duplex downstream of the 

hybrid and a 6-nucleotide long single-stranded RNA upstream of the hybrid.28 

The active site is directly connected to the surface of the enzyme by a 

secondary channel which is a passageway for the incoming nucleotide 

triphosphate substrates. This channel is required as the presence of the nucleic 

acids blocks access from the main channel.28 The two ‘pincers’ of the ‘crab 

claw’ are bridged by a bridge helix (Figure 1.5), a long α helix that spans the 

main channel near the active site.28 

 

 

 

Figure 1.4 Various subunits of the T. aquaticus RNA polymerase (PDB 1I6V) 

(see colour code) and the positions of the Cleft, Pore and RNA exit channel.  
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Figure 1.5 Structural elements of RNAP in the region of the DNA-RNA hybrid 

(PDB 1I6V). 

 

The active site of the RNAP is located on the floor of the cleft formed by 

the β and β′ subunits.26 The RNA-channel and the secondary channel for 

nucleotide triphosphate (NTP) substrates are the two access channels that 

connect the inner part of the enzyme with the external surface.26 Three 

aspartate residues in the active centre coordinate a catalytic Mg2+ ion while 

another Mg2+ ion is bound to the incoming NTP.26 The bridge helix (also called 

the F helix) and the trigger loop (also called G/G loop) (Figure 1.5), together 

with various other loops are important for the loading of NTPs and for catalysis 

and translocation and all these flexible structures are in the downstream face of 

the active centre.26 

 

1.3.2  Catalytic reaction mechanism 

The process of transcription consists of three main stages (Figure 1.6): 

initiation, elongation and termination.
26
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Figure 1.6 Intermediates in the transcription cycle. RNAP in grey, DNA in blue, 

nascent RNA in red, multidomain σ factor in purple. Adapted from Mooney et 

al.29 

 

The process begins when the σ initiation factor binds to the core enzyme 

and starts the recognition and melting of promoter sequences on DNA making 

possible the synthesis of the RNA transcript.26 The initiation of transcription can 

be divided into several sub-steps and the first is the binding of a promoter 

which, after structural rearrangement, melts the double helix at the promoter 

site and forms the secondary complex.26 Once the first nucleotide is associated 

with the nascent RNA chain, the first ternary complex is formed which evolves 

to an early ternary complex after the incorporation of the second nucleotide of 

the RNA chain with the subsequent formation of the first phosphodiester bond.26 

This complex can undergo abortive initiation via the release of its dinucleotide 

component or it can undergo elongation of the dinucleotide.26 The abortive 

initiation stops after the incorporation of 9-11 nucleotides into the emerging 

RNA chain and at this stage the ternary complex is stabilised, the initiation has 
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ended and the elongation process can begin via the formation of a stable 

transcription elongation complex following a significant conformational 

change.26 This complex is very stable and upon its formation the initiation factor 

σ is released allowing the enzyme to decouple from the promoter.26 The highly 

efficient transcription cycle ends when a stop signal is recognized with the 

subsequent dissociation of the transcribing complex and release of the RNA 

polymerase which is readily available for a new round of transcription.26 

 As indicated earlier, two magnesium ions are involved in the mechanism of 

phosphodiester bond formation catalysed by RNA polymerase.27 As indicated 

previously, the first Mg2+ ion is coordinated by three conserved aspartates 

included in the NADFDGD motif of the β′ subunit and this ion catalyses the 

nucleophilic attack of the 3′-oxygen of the growing RNA chain on the 5′ α-

phosphate of the incoming nucleotide (Scheme 1.1), whilst the second Mg2+ ion 

is chelated to the incoming NTP and is also coordinated by three aspartates 

(two from the β′ and one from the β subunit located in a conserved ED motif).27 

After phosphodiester bond formation, the enzyme is translocated along the 

nucleic acid template for the addition of the next nucleotide.27 The enzyme's 

active site is one of the regions which is highly conserved between prokaryotes 

and eukaryotes.27 The nucleic acids are accommodated into the positively 

charged cleft formed by the β and β′ subunits.27 The ‘wall’ domain contained 

within the β subunit closes the upstream extremity of this cleft and the ‘flap’ 

element contained within this domain is a binding site for transcription factors 

and may have a role in obstructing the RNA exit channel via the σ factor.27 
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Scheme 1.1 Mechanism of ribonucleotide addition to the RNA chain. 

 

1.4 RNAP inhibitors and their mechanism of action 

1.4.1 Rifamycins  

1.4.1.1 Chemistry and biological activity 

The ansamycin antibiotics are characterized by a basket-like molecular 

shape which comprises an aromatic moiety bridged by an aliphatic chain (ansa) 

in two nonadjacent positions.3 The aromatic portion can be a naphthalene or a 

naphthoquinone (naphthalenic ansamycins) or a benzene or benzoquinone ring 

(benzenic ansamycins). The rifamycins are members of the ansamycins family 

and were isolated from Amicolatopsis mediterranei as a complex mixture of 

cognate compounds in 1959 by Sensi and co-workers at Lepetit SA in Italy.30 



15 

 

The rifamycins have a broad spectrum of antibiotic activity against Gram-

positive and, to a lesser extent, against Gram-negative bacteria.31 The lower 

activity with Gram-negative strains is due to the diminished penetration of the 

antibiotic through the outer cell membrane.31 Interestingly, ansamycins are also 

active against the transcription machinery of the eukaryotic parasite 

Plasmodium falciparum.32, 33, 34 Rifamycin SV 1.9 was the first rifamycin in 

clinical use and is a biosynthetic precursor of rifamycin B 1.6 which, in 

comparison has relatively modest activity.35, 36, 37, 38, 39 However rifamycin B 1.6 

can be easily converted to rifamycin SV 1.9 in various ways (chemically, 

microbiologically and by biotransformations).35, 36, 37 With regards to the 

chemical transformation route (Scheme 1.2) rifamycin B 1.6 is converted 

spontaneously and reversibly to rifamycin O 1.7 in an aqueous oxygenated 

solution and the latter is hydrolysed with concomitant loss of glycolic acid to 

rifamycin S 1.8. Rifamycin SV 1.9 is obtained using a mild reduction of rifamycin 

S3 1.8. 

 

Scheme 1.2 Conversion of rifamycin B 1.6 into rifamycin SV 1.9. 
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Figure 1.7 3-formylrifamycin SV 1.10 with numbering. 

 

 

 

Figure 1.8 Structures of rifampicin 1.11 and rifabutin 1.12. 

 

 

  

 

Figure 1.9 Structure of rifapentine 1.13. 
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Starting from the easily accessible intermediate 3-formylrifamycin SV 1.10 

(Figure 1.7), many derivatives functionalised at the C-3 position have been 

prepared using semisynthesis and among these, rifampicin 1.11 (Figure 1.8) 

has a particularly pronounced activity towards Gram-positive bacteria (such as 

multidrug resistant Staphylococcus aureus) and in particular against 

mycobacteria. Moreover it has a weaker activity against Gram-negative 

bacteria.40, 41, 42, 43 Rifampicin 1.11 exhibits good oral bioavailability and is one of 

the most important drugs for the treatment of tuberculosis, leprosy and 

mycobacterial infections associated with AIDS.3, 44 Rifabutin 1.12 (Figure 1.8) 

and rifapentine 1.13 (Figure 1.9) are other semisynthetic derivatives introduced 

later to clinical use and rifabutin 1.12 has showed activity against a number of 

rifampicin-resistant clinical pathogens.34 Nowadays the ansamycins currently in 

therapeutic use are rifampicin 1.11, rifabutin 1.12, 34 rifapentine 1.13, rifalazil 

1.14 and rifaximin 1.15 (Figure 1.10). 

 

 

 

Figure 1.10 Structure of rifalazil 1.14 and rifaximin 1.15. 
45

 

 

Rifampicin 1.11 exhibits its antibacterial activity by strongly binding the 

prokaryotic DNA-dependent RNA polymerase and inhibiting RNA synthesis.3, 46, 

47 This inhibition mechanism is shared by all the antibacterially active rifamycins 

despite the many structural modifications made in these molecules to alter the 

pharmacokinetics and the selectivity for the prokaryotic enzyme. The eukaryotic 
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DNA-dependent RNA polymerase has a weaker affinity to rifampicin 1.11 

compared to prokaryotic RNAP allowing in this way selective toxicity towards 

bacteria.3 

 

1.4.1.2 Mechanism of action 

 Following genetic analysis of rifamycin resistant strains and the X-ray 

crystallographic based structure elucidation of the core enzyme in complex with 

various inhibitors, much information has been obtained concerning the mode of 

action of the rifamycins. In particular, it has been determined that rifampicin 

1.11 binds to a site in the β subunit 12 Å away from the active site in the path of 

the nascent RNA. Twelve residues from the β subunit are involved in hydrogen 

bonds or van der Waals interactions with rifampicin 1.11. 26, 48 Interestingly, the 

substituent in the C3 position of rifampicin 1.11 does not interact with the 

protein and this suggests that the rifampicin 1.11 is sterically blocking the 

synthesis of an RNA product longer than three nucleotides. Indeed, mutation of 

some residues confers resistance to rifampicin by altering the binding pocket 

geometry.48 According to the crystal structure of rifampicin 1.11 in complex with 

the Thermus aquaticus core DNA dependent RNAP,48 rifampicin 1.11 binding 

(Figure 1.11) involves hydrogen bonding interactions between the hydroxyl 

groups at C-1, C-8, C-21 and C-23 and the carbonyl oxygen of the C-25 

acetoxy group with the amino acid residues Arg409, Ser411, Gln393, His406, 

Asp396 and Phe394. The binding of the antibiotic is reinforced by additional 

hydrophobic interactions with Glu445, Ile452, Gly414, Leu413, Leu391 and 

Gln390. The orientation of the bound antibiotic interferes sterically with the 

nascent oligonucleotide chain after the first or second chain elongation step and 

it is evident that there is no effect on the initiation or translocation step.49 

Unfortunately this steric model is not able to account for several amino acid 

substitutions that confer resistance to rifampicin 1.11 but not to rifabutin 1.12 

and also in close analogues which have a fused ring in C3 and C4. Following 

analysis of crystal structures of rifabutin 1.12 and rifapentine 1.13 co-crystal 

structures (T. Thermophilus RNAP holoenzyme which includes the σ-subunit in 

addition to the α2ββ′ω assembly), an allosteric mechanism of action for 
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rifampicin 1.11, rifabutin 1.12 and rifapentine 1.13 was recently proposed.50, 51 

While in rifapentine 1.13 there is no contact between the C3 substituent and the 

σ-subunit, in rifabutin 1.12 the C3/C4 substituent is able to interact with the σ-

subunit.50, 51 

 

 

Figure 1.11 Schematic diagram of RNAP β subunit interactions with rifampicin 

indicated in green (PDB 1I6V) 1.11. 

 

Regarding rifampicin 1.11, according to a recent study,50, 51 the binding of 

this molecule to RNAP results in the propagation of an allosteric signal for 19 Å 

up to the active site inducing a decrease in affinity of the major catalytic Mg2+ 

ion with a consequent decrease in speed of the catalytic reaction and 

dissociation of the short DNA/RNA duplex. This mechanism of action has been 

called the β-pathway (Figure 1.12) and stops the transcription process in vitro at 

the second phosphodiester bond when the process starts from a dinucleotide. 
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This mechanism is activated by the interactions of the ansamycin core 

(aromatic ring and ansa) with the residues in the β-subunit and this mechanism 

is shared by all the rifamycins.50, 51 The C-3/C-4 substituted rifamycins like 

rifabutin 1.12 can affect the formation of the first phosphodiester bond via the σ-

pathway (Figure 1.12) thanks to the contacts between the aromatic substituent 

and the σ-subunit, with the same effect on the major catalytic Mg2+ and 

consequent decrease in speed of the catalytic reaction and dissociation of the 

short DNA/RNA duplex.50, 51 This last mechanism is a unique characteristic of 

C3/C4 substituted rifamycins which are also able to act within the β-pathway at 

the same time. A recent study52 has shown that this allosteric modulation for the 

binding affinity of the major catalytic Mg2+ is not possible and these researchers 

have cast doubt on the allosteric modulation mechanism.  

 

 

Figure 1.12 Two-pathway mechanism of rifamycins action. (A) The β pathway, 

induced fit mechanism shown with the cyan lightning, RNA in yellow, DNA 

template in red and blue. (B) The σ pathway, induced fit mechanism shown with 

the purple lightning, RNA in yellow, DNA template in red and blue.51 
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1.4.1.3 Structure activity relationships 

Several rifamycin analogues have been prepared with the purpose of 

improving bioavailability and antimicrobial activity. 

Rifamycin SV 1.9 (Scheme 1.2) was modified at various positions and 

these reveal that changes in the ansa chain generally negatively affect the 

activity and in particular, substitution and elimination of the two hydroxyl groups 

at C-21 and C-23 results in a large decrease of activity.26, 53, 54, 55 All the 

modifications which leave hydroxyl groups unmodified but which alter the 

conformation of the ansa chain are also unfavourable.26, 53, 54, 55 Alterations in 

the ansa rings are unfavourable with the exception of deacetylation at C-25 and 

the inversion of configuration at this stereocenter which have no negative 

influence upon activity. The hydroxyl group at C-8 is essential for antimicrobial 

activity while keto groups in the chromophoric moiety can be modified to 

hydroxyl groups in position C-1 and C-4 with no loss of activity.26 

 Many rifamycin derivatives with substitutions at position C-3 and/or 

position C4 have been prepared.56, 57, 58, 59, 60 Among the C3/C4 position 

derivatives the most important are rifaximin 1.15 61, 62 and rifabutin 1.12. 62 

 Rifapentine 1.13 is more active than rifampicin 1.11 against 

Mycobacterium tuberculosis and has a longer half-life which allows once weekly 

administration. It is approved for the treatment of tuberculosis but unfortunately 

some bacterial strains which are resistant to rifampicin 1.11 usually are also 

cross-resistant to rifapentine 1.13. 63 

 Rifaximin26 1.15 is active against bacterial enteropathogens and it is 

approved for this use while rifabutin 1.12 is active against certain rifampicin-

resistant clinical pathogens and it is also in clinical use since 1994. 

 Rifalazil26 1.14, a benzoxazino derivative, shows better pharmacokinetic 

properties and less side effects like interaction with liver microsomial enzymes 

compared to rifampicin 1.11 even if some rifampicin-resistant strains show 

cross-resistance with rifalazil 1.14. 

Some 25-hydroxyl analogues were synthesised and showed better efficacy 

than the 25-O-acetyl derivatives on some bacterial strains.26 
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Finally new rifabutin 1.12 analogues (Figure 1.13) such as 

spiropiperidylrifamycins64 1.16, spirorifamycins65 1.17, C-11 oxime66 derivatives 

and C-25 carbamates, were also prepared and generally showed activity on 

certain wild type strains of S. aureus and improved activity on some mutant 

strains. In particular, the C-25 carbamates diminish susceptibility to rifamycin-

specific ADP-ribosyl transferases which are responsible for resistance by 

inactivation on some opportunistic pathogens including Mycobacterium 

smegmatis and Pseudomonas aeruginosa.67 

 

 

 

Figure 1.13 Spiro-piperidyl-rifamicin 1.16 and spirorifamycin analogues45
 1.17. 

 

1.4.1.4 Resistance to rifamycins 

Bacteria and fungi exist in communities and they both need to 

communicate with each other and to compete as well. These organisms 

synthesize low molecular weight compounds to favour symbiosis or to inhibit the 

growth of competitors and bacteria have developed various strategies to survive 

in the presence of such antibiotics.34 

Rifampicin 1.11 blocks transcription initiation by binding to conserved 

amino acids near the active centre of RNAP and one of the main causes of 

bacterial resistance are the mutations of these amino acids.34,48 The rate of 

resistance of pathogens to rifampicin 1.11 is 10-8 to 10-9 per bacterium per cell 

division. Many bacterial strains resistant to rifampicin 1.11 such as Escherichia 
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coli, Staphylococcus aureus, Bacillus subtilis, Mycobacterium tuberculosis etc. 

have mutations in the RNAP active centre located in the β-subunit which is 

encoded by the rpoB gene.34,48,3 This binding site is highly conserved among 

bacteria.48 Generally the binding of molecules to RNAP involves twelve residues 

and in most cases mutagenesis of each of these generates a spontaneous 

resistant phenotype. Single point mutations of amino acids are more common 

than insertions and deletions and 95% of these are located in four regions in the 

N-terminal half of the β-subunit.68 In E. coli the mutations which confer 

resistance are located in the central region and in the N-terminus of the β-

subunit while in M. tuberculosis, these are located in a ‘hot-spot’ within the 

central region where the mutation of Ser411, His406, Asp396 (according to the 

Thermus aquaticus numbering) account respectively for 41%, 36% and 9% of 

the clinically isolated resistant phenotypes.68,69,70 High levels of resistance to 

rifampicin 1.11 have been reported in more than 1% of rifampicin resistant 

strains with the (V176F) mutation (M. tuberculosis numbering).71 Following 

studies on the rpoB gene in Thermus aquaticus, it has been reported that 

twelve amino acids are involved in hydrogen bonding or van der Waals 

interactions with the bound rifampicin and all of them are susceptible to 

mutation with the mutation of Glu445 being lethal for the microorganism.3,34 

Interestingly, twelve of the twenty-three sites that can confer rifampicin 1.11 

resistance when mutated do not make direct interactions with the bound 

antibiotic but are able to alter the overall conformation of the rifampicin binding 

site.3,34 Other mutations which occur at high rate have been reported but most 

of them do not lead to clinical isolates due to reduced fitness of the 

microorganisms.34 Duplication of the rpoB gene in Nocardia sp. seems to be a 

novel resistance mechanism confirmed using knockout studies.34 In addition to 

the mutation of the target strategy other resistance mechanisms have been 

reported such as the expression of RNAP binding proteins induced by exposure 

to low concentration of rifampicin in Streptomyces coelicolor, Corynebacterium 

diphtheriae, M. tuberculosis and M. leprae confers resistance.3, 34,
 
67, 72 Covalent 

modifications that neutralise rifampicin are also possible in a variety of ways 

such as glycosylation, ribosylation, phosphorylation. Finally and equally 

important, an additional strategy of resistance is the modification of membrane 
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permeability that prevents the entry of the antibiotic inside the cell or the over-

expression of membrane-associated energy-driven efflux pumps.34 Some 

examples of reduced efficacy resulting from the presence of efflux pumps have 

been reported in some species of Mycobacteria which are generally intrinsically 

resistant to many antibiotics thanks to the lipid-rich character of their cell wall 

but are susceptible to rifampicin 1.11. 34,73 

 

1.4.2  Lipiarmycin 

 

Lipiarmycin 1.18 (Figure 1.14) is a natural compound mixture of four 

factors (B3, B4, A3, A4) from Actinoplanes decanensis74, 75 and is active only 

against Gram-positive bacteria.34 This antibiotic mixture interferes with the 

initiation step of RNA biosynthesis. As for rifampicin 1.11, at much higher 

concentrations, lipiarmycin affects chain elongation during DNA synthesis.34 

Lipiarmycin is more effective in inhibiting the transcription of the core enzyme 

rather than the holoenzyme.34 An important mutation within the RNAP, located 

in the DNA channel opposite to the rifampicin binding site and proximal to the σ-

subunit, confers high lipiarmycin resistance.34 Tiacumicin B, also known as 

fidaxomicin (OPT-80),76 the major component of the tiacumicin complex from 

Dactylosporangium auranticum, is identical to lipiarmycin A3 1.18 and is active 

against Gram-positive bacteria including Clostridium difficile.77, 78 It has a low 

propensity to select for resistant mutants and showed no cross resistance with 

rifampicin 1.11 and other antibiotics.77, 78 Fidaxomicin resistance-mutants have 

been mapped within the switch-2 region into the β′ subunit and the σ70 subunit 

region 3.2.77 fidaxomicin acts by blocking the initiation process only if added 

before the formation of the open promoter complex in which DNA strands are 

separated but RNA synthesis has not yet started.77 These observations led to 

the conclusion that fidaxomicin operates with a mechanism distinct from the 

other known transcription initiation or elongation inhibitors.77, 78 Fidaxomicin was 

recently approved by the US Food and Drug Administration for the treatment of 

Clostridium difficile infections.
78
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Figure 1.14 Lipiarmycin A3 1.18 structure.34 

 

1.4.3  GE23077 

 

GE2307779, 80, 81
 (Figure 1.15), a cyclic heptapeptide containing four 

unnatural amino acids, is a potent and selective inhibitor of bacterial RNAP both 

from Gram-positive and Gram-negative derived enzymes. It is a mixture of four 

major components (A1 1.19, A2, B1 1.20 and B2) and has a similar mechanism 

of action to rifampicin 1.11 but acts at a different binding site to that of rifampicin 

since it does not show any cross-resistance with the latter. Recent studies,82 

using a combination of genetic, biochemical, and structural approaches, 

showed that GE23077 binds directly to the RNAP active centre nucleotide 

binding site preventing transcription initiation. Notably, GE23077 resistance was 

unusually small, reflecting the fact that its binding site on RNAP includes 

residues of the RNAP active centre which are essential for RNAP activity.82 

Unfortunately, GE23077 shows only modest antimicrobial activity against some 

strains of Moraxella catharralis, Neisseria gonorrhoeae and Mycobacterium 

smegmatis  in spite of its potent in vitro activity.81 This is probably due to its 

hydrophilic nature that prevents crossing of bacterial membranes.  
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Figure 1.15 GE23077-A1 1.19 and GE23077-B1 1.20 structures.
79

 

 

1.4.4  Streptolydigin 

 

Streptolydigin 1.21 83, 84
 (Figure 1.16), isolated from Streptomyces lydigus, 

is a tetramic acid antibiotic which binds to a site adjacent (20 Å away) to, but not 

overlapping, the RNAP active site. Binding of streptolydigin stabilises the 

straight-bridge-helix conformational state as revealed via X-ray structure 

analysis of its complex with RNAP of T. thermophylus.85 Biochemical, 

mutagenesis and modelling studies have revealed that the RNAP active site 

can exist in two alternative conformational states: straight-bridge-helix and bent-

bridge-helix. This unique inhibition mechanism results in a lack of cross-

resistance with the other RNAP inhibitors.86 Streptolydigin 1.21 is not as 

medically important as rifampicin 1.11 because it is not able to cross bacterial 

membranes and its Ki is 104-105 times higher when compared with that for 

rifampicin 1.11. Streptolydigin 1.21 is a non-competitive allosteric inhibitor 

because it interacts directly with the bridging helix and nearby structures, 
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probably inducing conformational changes, during the nucleotide addition 

cycle.28 

 

 
                                                                                                                    

Figure 1.16 Structure of streptolydigin 1.21. 

 

1.4.5  Sorangicin 

 

Sorangicin 1.22 (Figure 1.17) is a selective bacterial RNAP inhibitor that 

acts mainly on Gram-positive bacteria. It is a macrolide polyether and was 

isolated from a Sorangium cellulosum strain.87 Following the determination of 

the crystal structure of sorangicin 1.22 in complex with the T. aquaticus core 

RNAP enzyme88 it was established that the antibiotic binds to a site located in 

the same RNAP β-subunit pocket as that for rifampicin 1.11, partially 

overlapping its binding site and for this reason, sorangicin 1.22 shows partial 

cross-resistance with rifampicin 1.11. Sorangicin 1.22 inhibits transcription by 

blocking the transcript at the length of 2-3 nucleotides and has an increased 

conformational flexibility when compared to rifampicin 1.11, this can allow to 

sorangicin 1.22 to better adapt to conformational changes in the mutated 

targets.88 
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Figure 1.17 Structure of sorangicin 1.22. 

 

1.4.6  Microcin J25 

 

Microcin J25 1.23 (Figure 1.18) is a cyclic peptide composed of twenty-one 

amino acid residues89, 90 and is derived from the microcins, a miscellaneous 

group of antibiotics produced mostly by strains of E. coli. Microcin J25 binds 

inside the RNAP secondary channel blocking access to NTPs and halting 

transcription. It has a good range of bactericidal activity against Gram-negative 

bacteria although resistant strains with amino acidic substitutions both in the β 

and β′ subunits have been isolated.28  
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Figure 1.18 Structure and sequence of microcin J25 1.23  (PDB 1PP5). 

 

1.4.7  Capistruin  

 

Capistruin91 1.24 (Figure 1.19) is a cyclic peptide (threaded lasso 

peptide) consisting of nineteen amino acid residues, is ribosomally synthesized 

and post-translationally modified by Burkholderia thailandensis E264.91 Its 

structure is similar to that of Microcin J25 and it inhibits wild type E. coli RNAP 

but not mutant Microcin J25 resistant E. coli RNAP bearing a substitution in the 

RNAP secondary channel.91 Despite the low sequence similarity between 

Capistruin and Microcin J25, in view of their similar three-dimensional structures 

and their inhibition of bacterial RNAP through possibly identical or overlapping 

binding sites within the RNAP secondary channel, it is possible to conclude that 

bacterial RNAP is the functional target of capistruin.91 
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                                                                                                         1.23                              1.24   

 

Figure 1.19 Capistruin 1.24 structure and its comparison with Microcin J25 

1.23. Aminoacids reported in blue and red are highly mutable, in particular, the 

red ones are detrimental for the antibiotic activity. Adapted from Kuznedelov et 

al. 91  

 

1.4.8  ‘Switch region’ inhibitors 

The recent discovery of myxopyronin B (MyxB) 1.26 (Figure 1.20), an α-

pyrone natural product antibiotic that inhibits bacterial RNAP and the 

determination of its X-ray co-crystal structure with Thermus thermophylus 

RNAP92, 93 allowed the identification of the ‘switch region’, a new ligand binding 

site within the RNAP enzyme.94 This highly mobile structural element, 

composed of five segments denominated ‘switch 1’ through ‘switch 5’, mediates 

the conformational changes and the interactions required for loading DNA into 

the RNAP during transcription initiation.92, 94 The ‘switch region’ is located at the 

base of the RNAP β′ subunit, known as the clamp, and operates as a ‘hinge’ 

mediating the opening and the closure of the clamp required respectively for 

loading the double-stranded DNA into the active centre cleft and to retain it 

during transcription.92, 94 The ‘switch region’ residues are conserved in Gram-

positive and Gram-negative RNAP allowing a broad spectrum antibacterial 

activity moreover they are not conserved in eukaryotic RNAPs.92, 94 It has also 

been found that the structurally related natural antibiotic Corallopyronin A and 

the macrocyclic-lactone antibiotic Ripostatin are binding the ‘switch region’ and 

together with MyxB they do not exhibit cross-resistance with rifamycins since 
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this region is distinct and remote from the rifamycin binding site.92, 94 All these 

three natural antibiotics will be discussed in detail below. 

1.4.8.1 Myxopyronins 

The myxopyronins 1.25-1.27 
95

 (Figure 1.20), produced by the 

Myxobacterium Myxococcus fulvus, are polyketide-derived α-pyrone antibiotics 

which inhibit transcription initiation by interacting with the RNAP ‘switch region’ 

and preventing the formation of a catalytically competent RNAP-promoter open 

complex.  

 

 

 

Figure 1.20 Structures of Myxopyronins.95 

 

These inhibitors are active against many Gram-positive and some Gram-

negative bacteria26 with MICs lower than 12.5 µg/mL and inhibited the 



32 

 

transcription and growth of S. aureus with an IC50 of 14 µM (7-

desmethylmyxopyronin B 1.27) (Figure 1.20).92,96 Previous studies97 have 

shown that these compounds lack in vivo efficacy in a mouse model as a 

consequence of the high affinity to serum albumin whilst no acute toxicity was 

exhibited at doses of up to at least 100 mg/kg. Two different mechanisms of 

action were proposed for MyxB 1.26. Mukhopadhyay92 et al. suggested that 

MyxB 1.26 prevents the interaction of RNAP with promoter DNA by locking the 

clamp in a closed conformation thus halting transcription initiation and does not 

efficiently inhibit the subsequent steps involving interaction of RNAP with 

promoter DNA. Belogurov93 et al. proposed that MyxB 1.26 stabilizes the 

refolding of ‘switch 2’ impeding the accommodation of the melted template DNA 

near the transcription start site in the RNAP-promoter open complex during 

transcription initiation. Crystal structures,92, 93 of myxopyronin A (MyxA) 1.25 

and its 7-desmethyl analogue (dMyxB) 1.27 in complex with T. thermophylus 

(Figures 1.21a and 1.21b) have been determined and these reveal that binding 

occurs predominantly within a nearly completely enclosed hydrophobic 

crescent-shaped pocket.98  

 

 

 

 

Figure 1.21a Crystal structure of T. thermophylus RNAP-dMyx B 1.27 complex 

(PDB 3EQL). dMyx B indicated in green. 
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Figure 1.21b Schematic diagram of T. thermophylus RNAP-dMyx B 1.27 

complex (PDB 3EQL). H-bonds in red dashed lines, van der Waals interactions 

in black. 

 

The α-pyrone ring is close to the active-centre cleft while the two lipophilic 

side chains are stretched into two different hydrophobic pockets. Whilst 

hydrophobic interactions are prevalent in binding, specific hydrogen bond 

interactions are performed by polar groups on the α-pyrone ring and ene-

carbamate group.  

Interestingly, in the co-crystal structure proposed by Mukhopadhyay92 et al. 

the ene-carbamate moiety is involved in a specific network of hydrogen bonds 

centred on an ordered water molecule while in the co-crystal structure obtained 

by Belogurov
93

 et al. the water molecule is absent because the ene-carbamate 

moiety is rotated by 180 degrees along the axis perpendicular to the carbonyl 

group establishing direct hydrogen bond interactions with the nearby amino-

acidic residues (Figure 1.22).  

Those differences between the two co-crystal structures could be a 

consequence of the slightly dissimilar structures of MyxA 1.25 and dMyxB 1.27 

or could reflect fitting uncertainties in the X-ray co-crystal structures.98 
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Figure 1.22 Overlay of the co-crystal structure proposed by Mukhopadhyay92 et 

al. in cyan (PDB 3DXJ) with the co-crystal structure obtained by Belogurov93 et 

al. in green (PDB 3EQL). 

The first total syntheses of MyxA 1.25 and MyxB 1.26 were reported95 in 

1998 and since then several MyxB analogues have been synthesized99,100 

without any knowledge of the structure within the binding site and the majority of 

them resulted less potent on E. coli RNAP with a decreased antibacterial 

activity when compared to the biological activity of the parent compound. MyxB 

1.26 structure resulted very sensitive to structural modification and only a close 

analogue, dMyxB 1.27 possessed comparable biological activity.99 

A recent report101 has evaluated the resistance properties (frequency, 

spectrum, and fitness costs) of MyxB 1.26 in Staphylococcus aureus. The 

authors
101

 located six substitutions in the RNAP β subunit and five in the RNAP 

β′ subunit which conferred resistance to MyxB 1.26 and observed that the 

resistance rate for MyxB is comparable to the resistance rate for rifampicin 1.11. 

Notably, all substitutions conferring MyxB resistance exhibit significant fitness 

costs (4 to 15% per generation) while at least three substitutions conferring 

rifampicin resistance exhibit no fitness costs.101 These observations, together 

with the previously established inverse correlation between fitness cost and 

clinical prevalence, lead to the conclusion that MyxB resistance is likely to have 
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lower clinical prevalence than rifampicin resistance and suggest that the ‘switch 

region’ is a viable starting point for drug discovery.101 The difference in fitness 

costs of MyxB resistance and rifampicin resistance presumably relates to the 

fact that the binding site on RNAP for MyxB (the RNAP ‘switch region’) is 

responsible for critical functions in opening and closing the RNAP active-centre 

cleft and in DNA binding whereas the binding site on RNAP for rifampicin 

performs no critical functions.101 

1.4.8.2  Corallopyronins 

The corallopyronins, isolated from Corallococcus coralloides,97 are α-

pyrone antibiotics structurally related to myxopyronin B (MyxB).102 

Corallopyronin A (CorA) 1.28 (Figure 1.23), has been found to inhibit bacterial 

RNAP in vitro (IC50  0.73 μM) and is active against Gram-positive bacteria.102 A 

recent total synthesis of CorA 1.28 has been reported.103 Resistant mutants of 

S. aureus to CorA 1.28 were easily selected and the mutations were located in 

the β and β′ subunits of RNAP.102 Cross-resistance to the related α-pyrone 

antibiotic MyxB 1.26 but not with the other known bacterial RNAP inhibitors was 

observed and therefore it is possible to conclude that CorA shares the same 

binding site of MyxB102 within RNAP. 

When compared to rifampicin 1.11, CorA 1.28 has a limited spectrum of 

antibacterial activity, low activity both as an RNAP inhibitor and as an 

antibacterial agent and, like rifampicin, a high propensity for selection of 

resistance.102 For these reasons, CorA is of limited interest for development as 

a future drug candidate.102 However, the eventual synthesis of derivatives of 

CorA with improved physicochemical features could represent a viable starting 

point for future antibiotic candidates.102 

 

Figure 1.23 Structure of CorA 1.28. 97 
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1.4.8.3  Ripostatins 

Ripostatins104,105 A 1.29 and B 1.30 (Figure 1.24) are two polyketide-

derived macrocyclic lactones from a strain of Sporangium cellulosum with a 

narrow antibiotic spectrum on S. aureus and some E. coli strains due to their 

limited ability to cross membranes. Ripostatins (Rip) are structurally different to 

MyxB 1.26 and CorA 1.28 but share similar size and hydrophobic character.92 

The high levels of cross resistance with MyxB 1.26 and CorA 1.28 and the 

location of Rip resistant mutants in the switch region suggest that they probably 

share the same binding site to that of MyxB 1.26 and CorA 1.28 although no X-

ray co-crystal structures have been reported.
92

 Ripostatin A 1.29 selectively 

inhibits the initiation step of bacterial RNA synthesis (IC50  0.8 μM), preventing 

interaction of RNAP with the promoter DNA.92 Several total synthesis 

approaches have been reported for these molecules.106,106b,107,108,109 

 

 

Figure 1.24 Ripostatin A 1.29 and B 1.30 structure.105 

1.4.8.4  Synthetic inhibitors of the ‘switch region’ 

1.4.8.4.1  Pyridyl-Benzamides 

A recent structure-based drug design approach (SBDD), and in particular a 

fragment based drug design (FBDD) strategy using the de-novo design 

SPROUT software, has been applied to the dMyxB 1.27 binding site.110 Using 

the co-crystal structure of the Thermus thermophylus RNAP Myxopyronin 
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complex (PDB: 3EQL),93 a weak E. coli in vitro inhibitor 1.31 (IC50 151 µM) 

(Figure 1.25) was identified and then chemically optimized.110 Subsequently, 

SAR studies were performed to deliver some selective inhibitors of RNAP in the 

low micro-molar range but disappointingly none of these compounds exhibited 

antibacterial activity.24, 110  

 

Figure 1.25 Structure of pyridyl-benzamide 1.31. 110 

1.4.8.4.2  Myxopyronin based synthetic hybrids 

A recent report111 described the use of a hybrid strategy involving 

incorporating the antibiotic holomycin 1.32 (Figure 1.26) into a myxopyronin-

type skeleton in order to improve antimicrobial activity, reduce lipophilicity and 

improve stability of the antibiotic myxopyronin A 1.25. Holomycin 1.32 shows a 

moderate broad spectrum antibacterial activity against Gram-positive and 

Gram-negative bacteria, inhibits RNA synthesis and in addition, has a 

favourable CLogP value (2.0).111 Two types of hybrid derivatives were designed 

based on the reported X-ray crystal structure of RNA polymerase bound with 

MyxA (PDB: 3DXJ)92 and derivative 1.33 (Figure 1.26) showed moderate 

antibacterial activity on B. subtilis (MIC 16 µg/µL) and in vitro inhibition of E. coli 

RNAP (14 µM) whilst it was ineffective in terms of antibacterial activity against 

E. coli due to its low penetration ability in Gram-negative bacteria.111 

Subsequent docking studies on RNAP complex with MyxA (PDB: 3DXJ)92 

predicted the RNAP switch region as a putative binding site for 1.33. 111 
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Figure 1.26 Structures of holomycin 1.32 and its derivative 1.33. 111 

 

1.4.8.4.3  Squaramides 

Following high-throughput screening for novel inhibitors of a transcription-

coupled translation assay using E. coli S30 extracts, a series of E. coli RNAP 

inhibitors with a squaramide core 1.34 (Figure 1.27) were discovered by 

AstraZeneca.112 The observation that this series had antibacterial activity 

against efflux-negative strains of E. coli and H. influenzae was exploited to 

show that squaramides exhibit their inhibitory activity within the ‘switch region’ 

of RNAP via the location of resistance mutations and the lack of cross 

resistance with the other known classes of RNAP inhibitors like rifampicin 1.11. 

112 Docking studies on homology models of the ‘switch region’ bearing the 

experimentally observed mutations delivered a binding mode consistent with the 

MIC profile on mutants.112 Despite the low micro molar activity (IC50 = 0.3 µM) 

observed with some analogues, no antimicrobial activity was observed against 

several wild type bacterial strains.112 

 

 

 

Figure 1.27 Structure of squaramide 1.34. 112 
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1.4.9  Tagetitoxin 

The phytotoxin Tagetitoxin 1.35 113,114,115
 (Figure 1.28) produced by 

Pseudomonas syringae pv. Tagetis is a non-selective RNAP inhibitor due to its 

evolutionary conserved binding site. It was co-crystallized with the T. 

thermophylus RNAP116 which revealed that tagetitoxin 1.35 binds to the base of 

the RNAP secondary channel, close to the active site and interacts with the 

incoming NTPs by altering the substrate loading or by stabilizing the enzymatic 

complex in an inactive state. Tagetitoxin 1.35 does not inhibit the growth of any 

bacteria despite having activity with a broad range of RNAP from different 

species.
117

 

 

 

 

Figure 1.28 Tagetitoxin 1.35 structure.117 

 

 

1.4.10  Other synthetic RNAP inhibitors 

1.4.10.1  CBR703 and analogues 

CBR703 1.36 118
 (Figure 1.29) is the progenitor of a synthetic class of 

selective bacterial RNAP inhibitors identified by Cumbre Pharmaceuticals from 

a high-throughput screen of a library of ~300,000 compounds with the aim of 

inhibiting E. coli RNAP. The hit molecule, CBR703, showed selective inhibition 

of E. coli RNAP with an IC50 value of 10 μM but did not show any antibacterial 

activity against Gram-positive or Gram-negative species. However, the 
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observation that CBR703 possessed antibacterial activity against E. coli tolC 

mutant strains led to the conclusion that the compound is specifically effluxed 

out from the cell. Synthetic variants of CBR703, like CBR9379 1.37 and 

CBR9393 1.38 (Figure 1.29), led to improved potency against the enzymatic 

target with no significantly improved antibiotic activity. Following studies on 

mutations which confer resistance, it has been proposed that these inhibitors 

bind to a surface-exposed groove at the junction of the β′ bridge helix and the β 

subunit preventing the β′ bridge helix to adopt the correct conformation for 

nucleotide addition by allosterically altering its conformation. A systematic SAR 

exploration has been performed by Cumbre Pharmaceuticals and reported in a 

patent119 in 2002. Further development on this class was recently attempted by 

Zhu et al.120 by synthesizing thirty analogues but the compounds which showed 

antibacterial activity correlated with a significant cytotoxicity toward HEK293 

cells. Furthermore, the reported effects on biofilm formation by a previous 

study,121 which were among the main reasons for synthesizing CBR703 

analogues, were suspected to be artefacts due to compound precipitation. 

Finally, these authors120 concluded that this class of compounds is unattractive 

for development as antibacterial agents. 

 

 

 

Figure 1.29 CBR703 1.36, CBR9379 1.37 and CBR9393 1.38 structures.118 
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1.4.10.2  Ureidothiophenes 

Ureidothiophenes122 are a class of bacterial RNAP inhibitors identified 

following high-throughput screening of a commercial library of compounds 

against S. aureus RNAP holoenzyme. The progenitor of this synthetic class is 

compound 1.39 (Figure 1.30), which displayed low micro-molar IC50 value and 

potent selective antibacterial activity against some S. aureus strains but not on 

Gram-negative strains.122  

 

 

 

Figure 1.30 Structure of 1.39. 122 

 

Antibacterial activity was abolished upon addition of human and mouse 

serum to the growth medium suggesting that the hydrophobic nature of these 

compounds results in poor pharmacokinetic properties.122 The SAR exploration 

led to many analogues with in vitro nanomolar potency but very stringent 

structural requirements were needed to retain antibacterial activity which were 

not compatible with the need for derivatives with improved pharmacokinetic 

properties.122 Ureidothiophenes showed good antibacterial activity against 

rifampicin-resistant strains of S. aureus, suggesting an alternate mechanism of 

action or binding site on the RNAP holoenzyme.122 Macromolecular synthesis 

assays122 concluded that the mode of action of these compounds is the 

inhibition of both RNA and protein biosynthesis. Studies conducted by our 

collaborators (unpublished data123) showed a preference for the inhibition of 

protein biosynthesis, suggesting off-target inhibition in the cell. We concluded 

that this scaffold is not a viable starting point for further development of potential 

RNAP inhibitors. 
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1.4.11  Peptides as protein-protein interaction inhibitors 

 

A recent study,124 considered the interface between the E. coli RNAP core 

enzyme and σ70 factor as a potential binding site for inhibiting the assembling of 

the RNAP holoenzyme which is essential for transcription inhibition. The lack of 

homology between the bacterial σ70 subunit and the mammalian homologues 

permits selective inhibition of bacterial RNAP with a broad spectrum of antibiotic 

activity due to its essential role in transcription.124 A peptide approach was 

undertaken for generating new inhibitors of this crucial protein-protein 

interaction and sixteen peptides covering different regions of E. coli core 

enzyme and the σ70 interface were designed and some of them, derived from 

the σ70 2.2 region, showed strong RNAP inhibition with IC50 values in the low 

micromolar range.124 ELISA-based binding experiments and the observation 

that transcription initiation was inhibited strongly supported the σ70-core enzyme 

interface as a target site.124 These data could lead to the generation of novel 

RNAP inhibitors targeting RNAP with a new mode of action.124 

 

1.4.12  Small molecules as protein-protein interaction inhibitors125 

 

Following the flexible alignment of structurally similar selected synthetic 

molecules that were known to inhibit bacterial RNAP, a pharmacophore model 

was developed by Hinsberger et al.125 Despite the fact there were no empirical 

data confirming those molecules share the same binding region, this 

pharmacophore model was subsequently used to perform virtual screening. 

Three hit compounds bearing an anthranilic acid core, 1.40, 1.41 and 1.42 

(Figure 1.31), were identified.  
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Figure 1.31 Structures of 1.40, 1.41 and 1.42. 

 

 Hit compounds were then chemically optimised yielding novel derivatives 

with improved in vitro potency. In particular, the most potent compound, 1.43 

(Figure 1.32), showed an IC50 of 9 μM on E. coli RNAP and fair antibacterial 

activity on Gram-positive strains (S. aureus MIC = 6 μg / mL). The authors125 

demonstrated that the new inhibitors acted via a dual target effect via 

preventing the protein-protein interaction between σ70 and the RNAP core 

enzyme and inhibiting bacterial lipid biosynthesis. This dual target effect could 

account for the relatively low MIC values and the significantly lower resistance 

rate compared to the clinically used inhibitor Rifampicin 1.11. 

 

 

Figure 1.32 Structure of 1.43. 
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1.5  Thesis aims and objectives 

The work presented in this thesis describes the application of in silico 

techniques to design rationally novel inhibitors of bacterial RNAP targeting the 

myxopyronin binding region of the enzyme. An iterative process has been 

devised which comprised in silico techniques to identify putative inhibitors, 

chemical synthesis and biological evaluation. 

Within these categories, the aims and objectives of the project are: 

Objective 1: To use in silico techniques to identify putative RNAP 

inhibitors 

The aims under this objective are: 

a) To learn and understand the principles of ligand and structure-based 

virtual screening including all the computational techniques required 

such as docking. 

b) To validate the software and the computational protocols. 

c) To formulate hypotheses for rational design on the basis of 

computational predictions and refine them after biological evaluation 

results. 

 

Objective 2: To use synthetic chemistry to produce putative 

inhibitors 

The aims under this objective are: 

a) To apply modern organic synthesis techniques to prepare compound 

libraries corresponding the in silico designed molecular scaffolds. 

b) To conduct Structure Activity Relationship exploration and analysis 

using the synthesized analogues in an iterative process together with 

the in silico techniques. 
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c) To ensure a high level of purity for the synthesized compounds to 

enable biological evaluation. 

d) To ensure full chemical characterization for all synthesized 

compounds to publication standard. 

Objective 3: To subject the synthesised molecules to preliminary 

biological evaluation 

The aims under this objective are: 

a) To measure in vitro percentage inhibition against E. coli RNAP at 

100μM and then to select compounds with more than 50% inhibition 

for chemical optimization.  

b) To determine in parallel, for the most potent analogues, IC50 values, 

MICs against a panel of representative Gram-positive and negative 

bacterial strains, and the potential for promiscuous inhibition on 

unrelated enzymes such as malate dehydrogenase and 

chymotrypsin.  

c) To progress promising compounds to further biological evaluation 

including membrane integrity assessment and specificity for inhibition 

of RNA biosynthesis. 
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2. Computational Methodologies 

2.1 Virtual Screening approaches 

High-throughput screening (HTS) of chemical libraries is a well-established 

method in drug discovery1 but its main drawback is represented by the cost of 

randomly screening increasingly large databases.2 Virtual screening (VS) is a 

computational technique capable of selecting the most promising compounds 

from an electronic chemical database for experimental screening.3 VS 

approaches can be both ligand-based and structure-based.4,5 Structure-based 

virtual screening (SBVS) involves the docking of molecules within the active site 

of target proteins for hit identification and is a complementary methodology to 

HTS allowing a higher hit rate and, at the same time, reducing the cost and 

duration of a screening campaign.6 A SBVS protocol can be summarized in 

three main steps: 1) database preparation (filtering, protonation states, charges, 

most stable tautomers), 2) docking, 3) post-docking analysis (clustering of 

poses, consensus scoring,7 visual inspection).  

 

2.2 Docking 

The availability of several techniques (X-ray crystallography, NMR, 

homology modeling) providing structural information about biological targets has 

opened up a vast field of drug discovery, Structure Based Drug Design (SBDD), 

which mainly relies in docking techniques.  

All docking software are composed of two basic modules: a search 

algorithm and an evaluating algorithm (scoring function). The search algorithm 

identifies all possible interactions between the ligand and the biological target 

while the scoring function estimates the free energy of binding of the ligand 

poses generated within the binding site. The main uses of docking in drug 

discovery are:8,9 1) predicting the binding mode of a ligand with known 

biological activity, 2) identification of potential new ligands via SBVS, 3) 

predicting binding affinity of structurally related ligands with the same biological 

activity. 
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2.2.1 Challenges in docking  

The success of docking techniques depends on the correct sampling of a 

flexible molecule within its biological target via the search algorithm and from 

the precise energetic evaluation of generated poses via the scoring function.8 

Any possible error deriving from those two algorithms will generate ‘hard’ and 

‘soft’ errors in evaluating the energy of ligand-protein interactions when 

compared to the empirical data derived from the analysis of co-crystals 

structures of ligands with proteins.8 A ‘soft’ error is generated when the 

predicted binding energy is underestimated while a ‘hard’ error comes from the 

opposite situation.
8
 The consequence of ‘soft’ and ‘hard’ errors are the 

generation of false negatives and false positives in a virtual screening protocol 

respectively.  

Docking can be visualized as a multi-step process where any consecutive 

step introduces additional degrees of complexity.10  

 

2.2.2 Search algorithms 

Generating ligand poses is challenging even for small molecules due to the 

presence of many conformational degrees of freedom. Conformational sampling 

must be performed rapidly for a large database of molecules and at the same 

time needs to be accurate.10 Several strategies for solving this problem are 

adopted11 and docking algorithms can be differentiated as stochastic or 

deterministic and are described in detail in the following Sections for each 

software evaluated in this thesis. Stochastic algorithms include a random factor 

and their results are not always reproducible while for deterministic algorithms, 

reproducible results are always given.11 The main drawback of deterministic 

algorithms when compared with stochastic ones is the fact that they can 

generate a conformation which is trapped in a local minima of the potential 

energy surface.11 With regard to protein flexibility, it is not feasible from a 

computational point of view and several approximations are needed (partial 

flexibility of selected amino acidic side chains, soft docking potentials,12 

ensemble docking
11,13

). 
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2.2.3  Scoring functions 

Scoring functions are used for two purposes:11 1) to aid the generation of 

ligand poses via their optimization during conformational sampling, 2) to rank 

each solution of docked ligands included in a database.  

The aim of a scoring function is to give a fast and possibly accurate 

estimation of the free energy of binding when protein-ligand complexes are 

generated during docking.11 

The free energy of binding is expressed by the Gibbs-Helmholtz equation 

(2.1): 

 

ΔG = ΔH - TΔS  (2.1) 

 

where ΔG represents the free energy of binding, ΔH the enthalpy, T the 

temperature in Kelvin and ΔS the entropy. 

Scoring functions can be divided into three main classes:10 

Force-field based: molecular mechanics force fields are used to quantify 

the receptor-ligand interaction which is generally the sum of two energies, the 

receptor-ligand interaction energy and the internal ligand energy. In most cases 

only a single conformation of the protein is considered in order to omit the 

calculation of internal protein energy.10 Van der Waals and electrostatic energy 

terms are used to describe the interaction between ligand and receptor.10 

Empirical scoring functions: are a sum of several parameterized functions 

for reproducing experimental data such as binding energies.10 Coefficients of 

various terms are obtained from regression analysis of empirical data.10 

Knowledge-based scoring functions: are designed to reproduce 

experimental structures rather than binding energies.10 They are essentially 

based on data like defined atomic interaction pair potentials found in limited sets 

of protein-ligand complex structures.10 

 

2.2.4  Main limitations of scoring functions 

In order to give a fast evaluation of results, most of the scoring functions 

omit or simplify some of its energetic terms such as calculating enthalpic 



57 

 

contributions but neglecting entropic factors (often limited to loss of torsional 

entropy of ligands only) and solvation effects.10 Other limitations are constituted 

by their dependence on molecular data sets used to gather coefficients of the 

terms used in functions for regression analysis and fitting.10 As a consequence 

of those simplifications and limitations, a fast, robust and accurate scoring 

function for all biological targets does not exist.10 In order to overcome the 

imperfections of current scoring functions, consensus scoring7 is applied in 

docking and VS approaches. Consensus scoring consists of combining different 

and unrelated scoring functions (e.g. combining a force-field based with a 

knowledge-based scoring function) with the aim of reducing and balancing 

errors of the individual scoring functions and consequently, improving the 

chances of identifying ‘true’ ligands.10  

 

2.3 Glide (Grid based ligand docking with energetic)
14

 

Glide is a protein-ligand docking program which approximates a complete 

systematic search over ligand positions, orientations and conformations in the 

receptor site.14 A series of hierarchical filters are used to identify the possible 

locations of the ligand into the active site of the receptor which is represented 

as a grid derived by different sets of fields for the accurate scoring of any ligand 

pose.14
 To summarize, the search algorithm performs an initial rough positioning 

and scoring to reduce the search then a torsionally flexible energy optimization 

using the OPLS-AA15 force field for a few hundred surviving candidate poses.14 

Only the best candidates are further refined via Monte Carlo sampling of pose 

conformation.14 The best docked poses are selected by the scoring function 

(Glide Score) that combines empirical and force-field based terms.14 

Glide XP
16

 represents an extra precision mode in Glide which consists of 

an optimized search algorithm and scoring function. The goal of this 

methodology is to semi-quantitatively rank the ability of a candidate ligand to 

bind to a specified conformation of the protein receptor.16 

The scoring function in Glide XP16 is shown below (Equation 2.2): 
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XP Glide Score = Ecoul + EwdW + Ebind + Epenalty  (2.2) 

 

Ebind = Ehyd_enclosure + Ehb_nn_motif + Ehb_cc_motif + EPI + Ehb_pair + Ephobic_pair 

Epenalty = Edesolv + Eligand_Strain 

 

Where Ehyd_enclosure = hydrophobic enclosure interaction; Ehb_cc_motif = charged-

charged hydrogen bond interaction motif; Ehb_nn_motif = neutral-neutral hydrogen 

bond interaction motif; EPI = reward for pi-stacking and pi-cation interactions. 

  The key features of this scoring function16 are:  

1) the application of large desolvation penalties to both ligand and protein 

polar and charged groups. 

2) the identification of specific structural motifs which contribute to binding 

affinity. 

 

2.4 F.R.E.D. (Fast Rigid Exhaustive Docking) 
17,18 

F.R.E.D. is a protein-ligand docking program which: a) takes a multi-

conformer database and receptor file as input, b) performs a systematic, 

exhaustive, non-stochastic evaluation of all possible ligand poses within the 

protein active site, c) filters for shape complementarity and pharmacophoric 

features (if a known inhibitor is prompted) d) and finally select and optimize 

poses using the Chemgauss3 scoring function.17,18,19 The protein is held rigid 

during the docking process as well as the conformers of the ligand. Ligand 

flexibility, however, is implicitly taken into account by docking the conformer 

ensemble of each molecule.17,18
  

The protein receptor is represented as the complementary image of the 

active site and it is created by contouring a shape potential field that 

complements the active site.17,18 

The Chemgauss3 scoring function uses Gaussian smoothed potentials to 

measure the complementarity of ligand poses within the active site and it is 

shown below (Equation 2.3):18,19 

 

Chemgauss3 scoring function = Eshape + Ehblp + Ehbs + Emetal  (2.3) 
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Where Eshape = shape interaction between the negative image of the 

protein and the ligand; Ehblp = Hydrogen bonding interaction between ligand and 

protein; Ehbs = Hydrogen bonding interactions with implicit solvent; Emetal = 

Metal-chelator interactions. 

 

2.5 Autodock
20,21

  

AutoDock is a suite of automated docking tools and consists of two main 

programs: AutoDock performs the docking of the ligand to a set of grids 

describing the protein while autogrid pre-calculates these grids.20,21 AutoDock 

combines an empirical free energy force field with a Lamarckian Genetic 

Algorithm, giving a prediction of poses and free energies of binding.20,21,22 The 

Lamarckian genetic algorithm provides the conformational search of the ligands 

creating a population of trial conformations, then genetic operators (mutations, 

crossovers etc.) are applied to exchange conformational parameters and to 

select conformations with the lowest binding energy.22 The ‘Lamarckian’ feature 

allows individual conformations to search their local conformational space, 

finding local minima, and then to pass this information to later generations.22  

The target protein is embedded in a grid representing the energy of 

interaction between a probe placed at any grid point and the target protein.22 

The scoring function consists of a semi-empirical free energy force field 

designed to predict binding free energies of small molecules to macromolecular 

targets.22 The free energy of binding is estimated to be equal to the difference 

between the energy of the ligand and the protein in a separated unbound state 

and the energy of the ligand–protein complex.22 The force field includes six pair-

wise evaluations (V) and an estimate of the conformational entropy lost upon 

binding (ΔSconf) as shown below (Equation 2.4):22 

 

ΔG = (VL-L bound – V L-L unbound) + (VP-P bound – V P-P unbound) +  

(VP-L bound – V P-L unbound + ΔSconf)  (2.4) 

 

In the above equation L refers to the ligand and P refers to the protein in a 

protein–ligand complex and the pair-wise atomic terms (V) include evaluations 

for dispersion/repulsion, hydrogen bonding, electrostatics, and desolvation. 
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2.6 eHiTS
23,24,25,26

 (electronic high-throughput screening) 

eHiTS is a docking program performing an exhaustive conformational and 

positional search of the space of the ligand, compatible with steric and chemical 

constraints, at a speed practical for virtual high-throughput screening.23,24 A 

statistically derived empirical scoring function evaluates the score of each ligand 

pose during the docking sequence.23,24 

A steric grid is built within the binding pocket, identifying pockets and 

possible interaction sites using thousands of geometric shapes (polyhedra) to 

describe cavities.23,24  

The ligand is broken into rigid fragments while connecting flexible chains 

and all rigid fragments are docked independently.23,24 A fast graph-matching 

algorithm identifies all matching solutions and reconstructs the original molecule 

by fitting flexible chains between the rigid fragments and satisfying all the 

sterical constraints.23,24 The resulting poses are refined by a local energy 

minimization in the active site of the receptor and ranked by the scoring function 

which is constituted by the following terms:  

 Hydrogen-bonding (distance and angle dependent energy function) 

 Hydrophobicity (applied to surface contact points) 

 Aromatic pi-stacking (applied to surface contact points) 

 Electrostatic potential (based on Coulomb’s law) 

 Van der Waals contact energy (Lennard–Jones potential) 

 Metal ion interactions (distance and angle dependent energy function) 

 Penalty for incompatible contacts (e.g. polar–hydrophobic or same charge) 

 Interaction energy of exposed surface atoms with solvent properties 

 Intra-molecular interactions (both ligand and receptor) 

 

2.7 GOLD
27,28

 (Genetic Optimization for Ligand Docking) 

 GOLD27,28 uses a genetic algorithm for identifying the global minimum of 

the energy of interaction between the ligand and the protein receptor.27 

 A genetic algorithm mimics the natural evolution process where the 

conformation of a ligand and the mapping of interaction points between ligand 

and receptor atoms are codified into a chromosome.27,29 After the application of 
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genetic operators (mutations, crossovers and migrations), only the individuals 

with the best fitness are conserved.27,29 The population of individuals is divided 

into smaller groups employing an island model and the fitness of each individual 

is assessed using the available scoring functions present in the software.27,29  

 The placing of the ligand in the binding site is based on fitting points which 

are generated on hydrogen bonding groups of protein and ligand where 

acceptor or donor points are mapped.27,29 Additionally, hydrophobic fitting points 

in the protein cavity and ligand CH groups are mapped.27,29  

 For the purposes of this thesis, two out of the four available scoring 

functions were considered: GoldScore27 and ChemScore.27, 30 

 The Goldscore27 is a molecular mechanics–like scoring function 

with four terms (Equation 2.5): 

 

Goldscore Fitness = Shb_ext + Svdw_ext + Shb_int + Svdw_int  (2.5) 

 

where Shb_ext is the protein–ligand hydrogen bond score, Svdw_ext is the 

protein-ligand van der Waals score, Shb_int is the contribution to the Fitness due 

to intramolecular hydrogen bonds in the ligand and Svdw_int is the contribution to 

the Fitness due to intramolecular ligand van der Waals score. 

 The Chemscore14,17 is an empirical based scoring function and estimates 

the free energy of binding of a ligand to a protein as follows (Equation 2.6): 

 

Chemscore Fitness = ΔGbinding + ΔGhbondShbond + ΔGmetalSmetal + ΔGlipoSlipo + 

ΔGrotHrot  (2.6) 

 

where Shbond, Smetal, and Slipo are scores for hydrogen bonding, acceptor-metal, 

and lipophilic interactions, respectively. Hrot is a score representing the loss of 

conformational entropy of the ligand upon binding to the protein. 

 The Chemscore14,17 scoring function is up to three times faster than 

Goldscore14 to dock molecules, but the latter is more accurate in predicting 

binding modes with big ligands.27 Combining both scoring functions has been 

shown to give better results than using a single function thanks to the 

complementarity of their parameters.27 No case study has ever identified the 
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superiority of Goldscore14,17 over Chemscore14,17 and vice versa for all the 

biological targets.27 

 

2.8 DOCK Blaster
31

 

 DOCK Blaster,31 is a fully automated docking system which includes self-

assessment. The software has been tested for reproducing experimental 

observed poses and for enrichment, defined as the ability to find active 

molecules included in a database of decoys. A decoy is a member of the 

database that does not bind to the target but shares similar physico-chemical 

properties with active molecules.31 DOCK Blaster is accessible via a web-

enabled user interface32 and the docking program used is DOCK 3.6.33 The 

DOCK Blaster pipeline is composed of six modules:31 a) the parser, which 

identifies the receptor and ligand from a PDB file, b) the scrutinizer, which 

attempts to correct structural problems of supplied pdb structures, c) the 

preparer which assigns atomic parameters, calculates protonation states, ‘hot 

spots’ and grids, d) the calibrator, which assess docking performance and 

suggests optimal docking parameters, e) the docker, which performs the 

screening f) the assessor, which interprets and give results as a spreadsheet.  

 The docking is based on an incremental construction algorithm where the 

ligand is decomposed into single fragments and incrementally reconstructed 

inside the active site.34 The shape characteristics of the protein active site are 

described as a series of overlapping spheres filling the available volume and an 

anchor fragment of the ligand is oriented independently from the other rigid 

fragments by matching its atoms with sphere centers.34 The best scored anchor 

fragments are then used for subsequent growing of the ligand and the final 

conformation is scored.
34

  

The DOCK blaster scoring function33 is force field based and it is expressed as 

shown below (Equation 2.7) : 

 

Escore = EVdW + Eelec + ΔGL
desol  (2.7) 

 

where EVdW represents the van der Waals term based on the AMBER united-

atom force field35, and Eelec is the electrostatics term that is based on Poisson 
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Boltzmann calculations performed by DELPHI software36 and ΔGL
desol is the 

polar and apolar desolvation term for each ligand atom. 

 

2.9 Ligand-based virtual screening 

Ligand-based approaches are complementary to structure-based methods 

and are often applied when structural information on the protein target is 

missing or scarce and are focused on the biological and chemical properties of 

ligands.37,38  

Ligand-based methods often use explicit parameters reflecting molecular 

properties and rely on the principle that ligands similar to an active molecule are 

more likely to be active than random ligands.37,38  

Ligand-based approaches generally start from a series of active molecules 

targeted at a specific biological target which are then used to generate a query 

for ranking databases of molecules with a lower computational cost when 

compared with structure-based methods.37,38 They include pharmacophores, 

quantitative structure activity relationship (QSAR) models as well as 3D or 2D 

similarity calculations based on physicochemical properties and molecular 

shapes.37  

One of the advantages of shape-based approaches used for this thesis is 

that multiple active compounds and explicit parameters are not strictly required, 

resulting in limited computational time for screening large databases.37,38 The 

most common drawbacks of ligand-based methods are derived from the fact 

that they 1) do not take into account the protein structure; 2) are biased towards 

existing ligands; 3) chemical and shape descriptors are dependent on input 

conformation; 4) results rely on the quality of training sets; 5) in shape-based 

approaches the problem of the false negatives is not uncommon since 

compounds showing unforeseen binding modes but structurally dissimilar to a 

known active molecule in terms of shape and chemistry could be easily 

missed.37 

 

 

 

 



64 

 

2.9.1  ROCS38 (Rapid Overlay of Chemical Structures) 

 ROCS is a shape similarity ligand-based software which evaluates the 

molecular shape and the chemical features of one or more active molecules 

defined as a query.38 Molecules are described as atom-centered Gaussian 

functions and the searching algorithm overlays molecular shapes by 

overlapping the centers of mass of the query molecule with a screening 

database of conformers.38 After this preliminary overlay, the principal moments 

of inertia are aligned and the final overlapping is evaluated by the combined 

shape and chemistry (color) score defined as the combo score.38 This score is 

expressed as the sum of the Tanimoto
19

 coefficients for shape and chemical 

(color) similarity and it is a number between 0 and 2 of which 2 represents the 

ideal matching of shape and chemical features (self overlay of the query 

molecule). 
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3. Critical assessment of the available docking software 

 The priority for developing a VS protocol and, more generally, for ligand-

protein docking, is to critically assess, amongst the available docking software 

implementing different search and evaluating algorithms, which are the ones 

capable of reproducing co-crystal structures, when available, of a ligand with its 

protein. In particular, the success of a docking program is usually measured by 

the root-mean-square deviation (RMSD) between the predicted and the 

experimentally observed heavy atom positions.1 Generally a successful result is 

obtained when docking solutions have RMSD < 2 Å but other authors2,3 

consider RMSDs which lie between 2 and 3 Å as a partial success.4 Another 

important aspect is to consider the reproducibility of the protein-ligand 

interactions and in fact, an acceptable RMSD that lacks this requirement is not 

considered as a good result according to some authors.5 Typically, no single 

docking algorithm works best for all targets and it is necessary to establish the 

optimal docking algorithm on the specific target of interest.1  

For the purposes of this thesis, an RMSD < 3 Å was used as a ‘rule-of-

thumb’ for evaluating docking performance and in addition, the reproducibility of 

the protein-ligand interactions limited to conserved hydrogen bond networks 

between protein-ligand H-Bond donors and acceptors was considered. 

In this thesis, the following software were evaluated: GLIDE,6 F.R.E.D,7,8 

Autodock,9,10 eHiTS,11,12,13,14 GOLD15,16 and Dockblaster.17 

 

3.1 Protein and ligand preparation protocol 

Two crystal structures of the T. thermophilus RNA polymerase (RNAP) 

holoenzyme in complex with the antibiotic myxopyronin 1.25 (PDB id: 3DXJ18 

and PDB id.: 3EQL19) were available from the Protein Databank20 and were 

both evaluated in the docking software assessment.  

In particular, two different chemical forms of myxopyronin were present in 

the two crystal structures: myxopyronin A 1.25 for PDB id: 3DXJ18 and 7-

desmethylmyxopyronin B 1.27 for PDB id.: 3EQL.19 
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The binding site within the RNAP for both myxopyronin A and 7-

desmethylmyxopyronin B was defined as a 20 Å spherical cut of the protein 

surrounding the co-crystallized ligand from the two previously mentioned crystal 

structures. 

The two antibiotic molecules were manually built using Maestro 

(Schrödinger, LLC, New York, NY) and the resulting molecular structures were 

geometrically optimized and energy minimized using the software module 

Macromodel by applying the OPLS2005 force field in a simulated water 

dielectric. Ionization states were defined for a neutral pH using the Epik module 

and partial charges were assigned by applying the OPLS2005 force field.  

Protein structures were prepared using the ‘Protein preparation wizard’ 

module included in Maestro. Preparation consisted of assigning bond orders, 

deleting water molecules, adding hydrogen atoms and optimizing hydrogen 

bond networks assuming neutral pH, using PROPKA. Finally, protein structures 

were subjected to a restrained energy minimization using the OPLS2005 force 

field with heavy atoms allowed to deviate up to 0.3 Å from their experimental 

positions. 

 

3.2 Docking protocol used with Glide
6
  

From the previously prepared ligand and protein structures, a 10 Å3 box 

centered on the mass-center of the crystallographic ligand was considered for 

calculating the docking grid. A fully flexible torsional geometry was allowed for 

the ligand, and 100 poses were generated using the Glide XP scoring function. 

Cluster analysis with an average linkage method was performed using 

clustering scripts implemented within Maestro. The docking conformations were 

clustered on the basis of RMSD applying a cutting rule at 1.5 Å between the 

cartesian coordinates of the ligand atoms. 

The best ranked pose of the most populated cluster was selected as a 

result and RMSD values between predicted and the experimentally observed 

heavy atom positions were calculated using Maestro. 
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3.3 Docking protocol used with eHiTS
11,12,13,14

 

eHiTS v9.0 automatically evaluates all of the possible protonation states 

for ligand and enzyme and for this reason, previously prepared structures were 

not used. Active-site detection was carried out using the ‘-complex’ parameter 

and docking was performed using the highest accuracy setting (set to 6). For 

allowing a more accurate scoring and conformational sampling of the known 

inhibitors myxopyronin A 1.25 and 7-desmethylmyxopyronin B 1.27, the ‘-

bindener’ parameter was used for scoring with the eHiTS scoring function. The 

best ranked pose of the most populated cluster was selected as a result. 

Cluster analysis with an average linkage method was performed using 

clustering scripts implemented in Maestro. The docking conformations were 

clustered on the basis of RMSD applying a cutting rule at 1.5 Å between the 

cartesian coordinates of the ligand atoms. The best ranked pose of the most 

populated cluster was selected as a result and RMSD values between the 

predicted and the experimentally observed heavy atom positions were 

calculated using Maestro. 

 

3.4 Docking protocol used with Autodock
9,10

 

Autodock v.4.2.5.1 was used for docking calculations while ligand and 

protein structures were prepared with Autodock Tools v. 1.5.6 module. The 

docking area was defined using a box, centered on the cartesian coordinates of 

crystallographic myxopyronin A 1.25 and 7-desmethylmyxopyronin B 1.27. A 

grid point box of 60 × 60 × 60 with 0.375 Å spacing was calculated around the 

docking area for all the ligand atom types using AutoGrid4. For each ligand, 100 

separate docking calculations were performed using the Lamarckian Genetic 

Algorithm. All the other docking parameters were applied with the default 

settings. The docking conformations were clustered using Autodock Tools v. 

1.5.6 module applying an average linkage rule on the basis of RMSD using a 

cutting rule at 1.5 Å between the cartesian coordinates of the ligand atoms and 

were ranked based on the AutoDock scoring function. RMSD values between 
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the predicted and the experimentally observed heavy atom positions were 

calculated using Maestro. 

 

3.5 Docking protocol used with F.R.E.D
7,8

 

F.R.E.D v.2.2.5 was used for docking calculations. The receptor file was 

set up interactively using a GUI supplied with the software, specifying the 

location of the active site as a box of 20 Å3 centered on the cartesian 

coordinates of crystallographic myxopyronin A 1.25 and 7-

desmethylmyxopyronin B 1.27. Ligand conformers were generated using 

OMEGA version 2.3.2 prior to running the docking and applying the default 

settings. All the default docking parameters were used with the only exception 

of the number of poses generated, which were set to 100. The Chemgauss 

scoring function was used for the exhaustive search, optimization, and final 

scoring. Cluster analysis with an average linkage method was performed using 

clustering scripts implemented in Maestro. The docking solutions were clustered 

on the basis of RMSD applying a cutting rule at 1.5 Å between the cartesian 

coordinates of the ligand atoms. The best ranked pose of the most populated 

cluster was selected as a result and RMSD values between the predicted and 

the experimentally observed heavy atom positions were calculated with 

Maestro. 

 

3.6 Docking protocol used with GOLD
15,16

 

 From the previously prepared ligand and protein structures as described in 

Section 3.1, the docking area was defined using a sphere of 20 Å diameter 

centered on the Cartesian coordinates of crystallographic myxopyronin A 1.25 

and 7-desmethylmyxopyronin B 1.27. Docking was performed using GOLD 

v4.0.1 applying 200% of accuracy for the genetic algorithm and 100 poses of 

the ligand were generated and ranked separately with both scoring functions, 

Goldscore and Chemscore. 
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Cluster analysis with an average linkage method was performed using a 

module implemented in GOLD. The docking solutions were clustered on the 

basis of RMSD applying a cutting rule at 1.5 Å between the cartesian 

coordinates of the ligand atoms. The best ranked pose of the most populated 

cluster was selected as a result and RMSD values between the predicted and 

the experimentally observed heavy atom positions were calculated with 

Maestro. 

 

3.7 Docking protocol used with DOCK Blaster
17

 

The graphical interface of DOCK Blaster was accessed online and the 

PDB id of the enzyme (3DXJ18 and 3EQL19) were submitted specifying the 3-

letter code of the ligand (NE6 and MXP respectively). A job query number was 

assigned for the docking runs and results of the best docked poses with scoring 

values were generated automatically. No cluster analysis is available for this 

automated docking interface. RMSD values between the predicted and the 

experimentally observed heavy atom positions were automatically calculated.  

 

3.8 Critical evaluation of results 

 With regard to the docking of myxopyronin A 1.25 inside its native co-

crystal complex with PDB id: 3DXJ,18 the results in terms of RMSD between the 

predicted and the experimentally observed heavy atom positions and 

reproducibility of original protein-ligand interactions are summarized in Table 

3.1 and docking poses are reported in Figures 3.1-3.7. 
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Table 3.1 Results for the docking of myxopyronin A 1.25 inside its native co-

crystal complex with PDB id: 3DXJ.18 

Docking software RMSD 
Conserved 

interactionsC 

Autodock 6.44 Å 1 out of 4 

Dockblaster 5.38 Å 2 out of 4 

eHiTS 3.00 Å 1 out of 4 

F.R.E.D 5.91 Å 2 out of 4 

GLIDE 8.60 Å 0 out of 4 

GOLDA 
1.28 Å  3 out of 4 

GOLDB 
1.40 Å 3 out of 4 

 

A Goldscore scoring function 

B Chemscore scoring function 

C Conserved interactions intended as polar contacts of docked ligand with same amino-

acidic   residues contacted in native co-crystal complex.  

 

 

Figure 3.1 Overlay between crystallographic myxopyronin A 1.25 (C atoms in 

green) and docking solution obtained with Autodock (C atoms in yellow). 
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Figure 3.2 Overlay between crystallographic myxopyronin A 1.25 (C atoms in 

green) and docking solution obtained with Dockblaster (C atoms in yellow). 

     

Figure 3.3 Overlay between crystallographic myxopyronin A 1.25 (C atoms in 

green) and docking solution obtained with eHiTS (C atoms in yellow). 
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Figure 3.4 Overlay between crystallographic myxopyronin A 1.25 (C atoms in 

green) and docking solution obtained with F.R.E.D (C atoms in yellow). 

 

 

Figure 3.5 Overlay between crystallographic myxopyronin A 1.25 (C atoms in 

green) and docking solution obtained with GLIDE (C atoms in yellow). 
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Figure 3.6 Overlay between crystallographic myxopyronin A 1.25 (C atoms in 

green) and docking solution obtained with GOLD (C atoms in yellow) using 

Goldscore as a scoring function. 

   

Figure 3.7 Overlay between crystallographic myxopyronin A 1.25 (C atoms in 

green) and docking solution obtained with GOLD (C atoms in yellow) using 

Chemscore as a scoring function. 
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 With regard to the docking of 7-desmethylmyxopyronin B 1.27 inside its 

native co-crystal complex with PDB id.: 3EQL,19 the results in terms of RMSD 

between the predicted and the experimentally observed heavy atom positions 

and reproducibility of the original protein-ligand interactions are summarized in 

Table 3.2 and docking poses are reported in Figures 3.8-3.14. 

 

Table 3.2 Results for the docking of 7-desmethylmyxopyronin B 1.27 inside its 

native co-crystal complex with PDB id.: 3EQL.19 

Docking software RMSD 
Conserved 

interactionsC 

Autodock 6.30 Å 0 out of 5 

Dockblaster 8.87 Å 1 out of 5 

eHiTS 3.26 Å 1 out of 5 

F.R.E.D 8.96 Å 2 out of 5 

GLIDE 6.80 Å 2 out of 5 

GOLDA 
1.76 Å 3 out of 5 

GOLDB 
2.29 Å 4 out of 5 

 

A Goldscore scoring function 

B Chemscore scoring function 

C Conserved interactions intended as polar contacts of docked ligand with same amino-

acidic residues contacted in native co-crystal complex.  
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Figure 3.8 Overlay between crystallographic 7-desmethylmyxopyronin B 1.27 

(C atoms in green) and docking solution obtained with Autodock (C atoms in 

yellow). 

 

 

Figure 3.9 Overlay between crystallographic 7-desmethylmyxopyronin B 1.27 

(C atoms in green) and docking solution obtained with Dockblaster (C atoms in 

yellow). 
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Figure 3.10 Overlay between crystallographic 7-desmethylmyxopyronin B 1.27 

(C atoms in green) and docking solution obtained with eHiTS (C atoms in 

yellow). 

 

     

Figure 3.11 Overlay between crystallographic 7-desmethylmyxopyronin B 1.27 

(C atoms in green) and docking solution obtained with F.R.E.D (C atoms in 

yellow). 
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Figure 3.12 Overlay between crystallographic 7-desmethylmyxopyronin B 1.27 

(C atoms in green) and docking solution obtained with GLIDE (C atoms in 

yellow). 

 

 

Figure 3.13 Overlay between crystallographic 7-desmethylmyxopyronin B 1.27 

(C atoms in green) and docking solution obtained with GOLD (C atoms in 

yellow) using Goldscore as a scoring function. 
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Figure 3.14 Overlay between crystallographic 7-desmethylmyxopyronin B 1.27 

(C atoms in green) and docking solution obtained with GOLD (C atoms in 

yellow) using Chemscore as a scoring function. 

 

3.9 Conclusions 

 From the analysis of the docking results, it was possible to conclude that 

GOLD is the most suitable docking software for both crystal structures in terms 

of RMSD values and reproducibility of original hydrogen bond interactions, with 

a slightly better performance observed for the Goldscore scoring function over 

the Chemscore. Redocking of myxopyronin A 1.25 inside its native co-crystal 

complex (PDB id: 3DXJ18) has delivered slightly better results. 

eHiTS can be considered as a second choice software in terms of RMSD 

values but as a consequence of the low reproducibility of the original hydrogen 

bond interactions, a different binding orientations are suggested for 

myxopyronin A 1.25 and 7-desmethylmyxopyronin B 1.27 to that observed in 

the co-crystal structures. 

Interestingly, following comparison of RMSD values for both co-crystal 

structures, the majority of the tested software are performing better with 

myxopyronin A 1.25 co-crystal complex (PDB id: 3DXJ18) which has a slightly 
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lower resolution (3.0 Å) when compared to that for the 7-desmethylmyxopyronin 

B 1.27 co-crystal complex with PDB id.: 3EQL19 (resolution 2.7 Å). 

On the basis of these considerations, GOLD was used for performing 

docking studies and structure-based virtual screening protocols. Both scoring 

functions (Goldscore and Chemscore) were used alone or in combination for 

consensus scoring approaches and the crystal structure of the T. thermophilus 

RNA polymerase (RNAP) holoenzyme in complex with the antibiotic 

myxopyronin A18 1.27 (PDB id: 3DXJ18) was predominantly utilized. 
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4.  Design of small molecule libraries as putative bacterial 

RNAP inhibitors  

 

4.1 Reported inhibitors of bacterial RNAP 

A high-throughput screen designed to discover novel inhibitors of E. coli 

RNA polymerase has been reported on Pubchem1 by Penn Center for 

Molecular Discovery.2  

The screen was based on an end-point assay monitoring the release of 

umbelliferone (Um), a fluorescent molecule. RNA polymerase catalyses the 

polymerization of RNA on a DNA template by incorporating nucleotide 

triphosphates, ATP, CTP, GTP, and UTP, with concomitant release of 

pyrophosphate (pp). For this assay, GTP was replaced with Um-pppp-G, which 

releases Um-ppp upon incorporation of guanosine into RNA. The subsequent 

addition of alkaline phosphatase cleaves Um-ppp to release the Um fluorophore 

which is fluorometrically detected.  

A total of 62,232 compounds were screened and seventeen active 

molecules were reported. No putative binding site on RNAP was proposed for 

the active compounds and no synthetic chemistry has been developed to 

assess structure activity relationships. 

It was envisaged that these inhibitors were attractive in terms of forming 

the basis of a study directed towards identifying the potential binding site within 

RNAP and therefore the development of more potent inhibitor scaffolds. Within 

this small set of reported inhibitors, the compound 4.1 (Figure 4.1) was selected 

on the basis of the RNAP in vitro inhibitory activity (18 µM), synthetic 

accessibility, drug-likeness and suitability for designing small libraries to 

understand structure activity relationships and for analogue design. 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=pccompound&dbfrom=pcassay&cmd=link&linkname=pcassay_pccompound&IdsFromResult=559
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Figure 4.1 Structure of 4.1. 

 

In order to probe the potential binding region of the reported inhibitor 4.1 

and to eventually allow structure-based rational design based upon its structure, 

docking studies were performed using the available X-Ray crystal structures of 

RNAP for the identification of its putative binding site. Two small libraries based 

on sulphonamide and urea scaffolds were designed, docked and synthesized 

as described below. 

 

4.2  In Silico docking studies of reported inhibitors 

In order to identify the putative binding site of molecule 4.1, an extensive 

docking study using GOLD was performed focussing on all the known inhibitor 

binding sites of RNAP and in particular, on the ansamycins,3 streptolydigin,4 

myxopyronin,5 tagetitoxin6 and CBR7 binding regions respectively. An X-Ray co-

crystal structure is available for all these binding sites with the exception of the 

CBR703 class of inhibitors, where the putative binding site was hypothesized on 

the location of amino acid changes that yield altered sensitivity to CBR703 on E. 

coli tolC mutants.7 The choice of docking parameters reflected the validation 

studies reported in Chapter 3. 

 

4.3  General docking protocol 

The crystal structures of the T. thermophilus RNA polymerase holoenzyme 

in complex with the antibiotics streptolydigin (PDB id: 2A6H), myxopyronin (PDB 
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id: 3DXJ), and tagetitoxin (PDB id: 2BE5) were downloaded from the Protein 

Databank (www.rcsb.org).   

The binding sites within the RNAP for streptolidydigin, myxopyronin, 

tagetitoxin respectively were defined as a 20 Å cut of the protein surrounding 

the co-crystallised ligand from the structures with PDB code 2A6H, 3DXJ and 

2BE5. 

The binding site for the ansamycins is included within the 20 Å cut of the 

protein surrounding the streptolydigin molecule while the binding region for the 

CBR703 based inhibitors was specified as a 20 Å cut of the protein surrounding 

the amino acid residue 720 into the X-ray crystal structure with PDB code 

2A6H.  

The hit molecule 4.1 was manually built using Maestro and the resulting 

molecular structure was geometrically optimised and energy minimised using 

the software module Macromodel by applying the OPLS2005 force field in a 

simulated water dielectric. 

The docking runs were performed using GOLD8 v4.0.1 (CCDC, 

Cambridge, UK) docking software by using the default settings for the genetic 

searching algorithm generating 100 poses for each compound and these were 

ranked with the Chemscore and rescored with Goldscore scoring function. 

Due to the relatively large volumes of all the chosen binding regions as 

expected, the docking software gave plausible solutions for each binding site 

investigated and therefore in order to discriminate between the various 

possibilities  a post-docking analysis was performed in each case. 

Among the different docking solutions, a cluster analysis using an average 

linkage rule was performed using an internal command within the software. 

Only the best ranked poses of the most populated cluster were considered as 

the most likely and representative ones. In addition, the docked poses within 

each considered binding pocket were analysed in terms of overall score, shape 

complementarity to the cavity, possibility to establish specific H-bonds to the 

protein in addition to the less specific hydrophobic contacts, minimal exposure 

of hydrophobic groups to solvent and absence of an excessive torsional strain 

into the docked conformer. Following post-docking analysis of the results, it was 
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concluded that the predicted binding site for compound 4.1 is within the 

myxopyronin binding region of RNAP. The predicted binding mode of compound 

4.1 within this region is shown in Figure 4.2 . 

 

 

 

 

Figure 4.2 Predicted binding mode of compound 4.1. 

 

In particular, the following interactions between the ligand and the 

myxopyronin binding site were predicted: the NH group belonging to the 

sulphonamide moiety is predicted to H-bond to the Leu619 backbone carbonyl, 

the two sulphonamide oxygen atoms interact via H-bonds with the Gln1019 side 

chain and Gly620 backbone; the oxygen belonging to the methoxy group is 

predicted to make an H-bond with the hydroxyl of Ser1084, and the phenolic 

OH is predicted to form an H-bond with the side chain of Lys610. Additionally, 

the 4-amino-1-naphthol group is predicted to be involved in hydrophobic 

interactions with Val1087, Ile606 and Leu618 side chains.  

4.4  Design of analogues of compound 4.1 

In order to probe the validity of the predicted binding mode of compound 

4.1 within the myxopyronin binding pocket of RNAP, a series of analogues of 

4.1 was designed to probe these potential interactions.  
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In particular, following careful analysis of the predicted binding mode, it 

was reasoned that, although the sulphonamide moiety of the inhibitor is 

predicted to make a number of interactions with the protein, it may be possible 

to replace this moiety with other groups such as an urea and still maintain at 

least some of the predicted interactions with the protein. Additionally, inclusion 

of a thiourea spacer in place of the sulphonamide would test the importance of 

the oxygen atom predicted to act as an H-bond acceptor (Figure 4.3).  

The hydroxyl group present in molecule 4.1 is not predicted to be essential 

and it can be removed or modified into an alkyl or phenyl ether which could 

establish additional interactions with the hydrophobic side chains of Val1087 

and Ile1016. The two aromatic rings in 4.1 are predicted to be important for the 

binding although the naphthalene ring could be partially reduced to give a 

tetrahydro-derivative or simplified into a single aromatic ring. With regard to the 

two methoxy groups, modelling indicated that it is possible to vary their number 

or position within the ring or to substitute them with bioisoteres for obtaining 

useful structure activity relationships. This general analogues design strategy 

based upon compound 4.1 is summarised in Figure 4.3. 

 

 

 

Figure 4.3 Analogue design strategy for compound 4.1. 
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Following the above analysis and with reference to the ease of synthesis, 

two small libraries of sulphonamide and urea derivatives of 4.1 (Table 4.1) were 

designed. In order to obtain rapid SAR exploration, the composition of the 

planned libraries was fine-tuned following docking-based prioritization of a 

designed combinatorial library generated from selected commercially available 

starting materials (Figures 4.4 and 4.5). 

 

4.4.1  Design of the library and docking studies 

A library of 40 compounds was designed from starting materials reported 

in Figures 4.4 and 4.5 and each molecule in the library was docked into the 

myxopyronin binding site following a similar docking protocol and post-docking 

analysis as reported above (Section 4.3). In particular, the docking protocol in 

the present case was more accurate than that used earlier in order to prioritize 

the synthesis of the more promising candidates. The docking runs were 

performed using GOLD8 v4.0.1 (CCDC, Cambridge, UK) docking software by 

using the best accuracy settings for the genetic searching algorithm which 

corresponded to the 200% of the default parameter values in order to get a 

more exhaustive search inside the binding cavity. 100 poses were generated for 

each compound and these were ranked using independently both the available 

scoring functions, Goldscore and Chemscore. Only compounds predicted to 

form at least two hydrogen bonds with binding site residues were progressed for 

visual inspection. A summary of the best ranked molecules selected for 

synthesis with relative score values and predicted H-bonds is reported in Table 

4.1. 
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Figure 4.4 Available starting materials for sulphonamide derivatives 

 

 

Figure 4.5 Starting materials for urea and thiourea derivatives 
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Among the designed structural analogues, compounds 4.20 and 4.30 

appeared to be the most representative and promising ones in terms of overall 

score (Table 4.1) and binding mode analysis. 

 

Table 4.1 Overall score values and number of H-bonds of the best ranked 

compounds selected for synthesis. 

Comp. 
number 

Structure Chemscore Goldscore 

Number of 
aminoacids 

contacted with 
H-bonds 

4.16 

 

26 47 3 

4.17 

 

28 46 2 

4.18 

 

29 43 2 

4.19 

 

24 45 3 



 

93 
 

Table 4.1 continued 

4.20 

 

29 58 3 

4.219 

 

25 42 3 

4.22 

 

25 44 3 

4.239 

 

23 45 3 

4.24 

 

26 41 2 
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Table 4.1 continued 

4.25 

 

28 49 3 

4.26 

 

28 50 3 

4.2710 

 

26 53 3 

4.28 

 

25 51 3 

4.2911 

 

24 46 3 

4.30 

 

26 56 3 

4.3112 

 

24 48 2 

4.3213 

 

26 45 2 
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Table 4.1 continued 

4.33 

 

25 43 3 

4.34 

 

25 49 3 

 

Interestingly, after visual inspection of the docked molecules it was 

possible to conclude that all the sulphonamide-based analogues are binding 

into a region close to that predicted for the binding of molecule 4.1 while the 

urea and thiourea derivatives are predicted to bind within a region which is 

distinct from that for compound 4.1 and the sulphonamide derivatives. An 

overlay within the myxopyronin binding site of the most promising sulphonamide 

and urea compounds, 4.20 and 4.30 respectively, along with the sulphonamide 

hit 4.1 is shown in Figure 4.6.  

 

Figure 4.6 Overlay of compound 4.1 (green sticks), 4.20 (purple sticks) and 

4.30 (orange sticks) within myxopyronin binding site. 
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4.4.2  Putative binding mode of compound 4.20 

From the analysis of the proposed binding mode of compound 4.20 (Figure 

4.7), the following interactions between the ligand and the myxopyronin binding 

site were predicted: the NH group belonging to the sulphonamide moiety H-

bonded to Ser1084 side chain, the sulphonamide oxygen interacts via an H-

bond with the Lys621 side chain; the aromatic ring belonging to the sulphonyl 

group is establishing hydrophobic interactions with the side chains of Val1466, 

Val1037 and Leu1053. The oxygen atom belonging to the benzyloxy moiety is 

H-bonding with the side chain of Gln611, while the aromatic portion of the 

benzyloxy group is establishing hydrophobic interactions with the side chains of 

Ile1467, Leu1088, Leu607 and Ala1438. The central aromatic ring bearing the 

benzyloxy substituent is establishing hydrophobic interactions with the side 

chain of Ile1467. 

 

 

 

Figure 4.7 Predicted binding mode of 4.20. 
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4.4.3  Putative binding mode of compound 4.30 

From the analysis of the proposed binding mode of compound 4.30 (Figure 

4.8), the following putative interactions between the ligand and the myxopyronin 

binding site of RNAP were predicted: the NH groups belonging to the urea 

moiety are H-bonded to Glu1034 side chain, the carbonyl oxygen interacted via 

H-bond with the Lys1463 and Ser1439 side chains while the aromatic ring 

belonging to the 3,5-dichlorophenyl moiety is establishing hydrophobic 

interactions with the side chains of Val1466, Val1037, Trp1038 and Leu619. 

The other phenyl ring is establishing cation-π interactions with the positively 

charged side chains of Arg1096 and Lys1463 and additionally, it is predicted to 

be involved in a T-shaped π-stacking interaction with the side chain of Phe614. 

 

 

 

Figure 4.8 Predicted binding mode of 4.30. 

 

4.5  Synthesis of the sulphonamide-based library 

Sulphonamides 4.16―4.23 were synthesized in good yield by adding 

dropwise the appropriate sulphonylchloride (4.6―4.9) to an excess of amine 
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(4.2―4.5) in presence of pyridine keeping the reaction mixture at 0 °C for 2h 

and then allowing it to warm at room temperature (Scheme 4.1 and Table 4.2). 

 

 

 

Scheme 4.1 Synthesis of sulphonamides 

 

Table 4.2 Sulphonamide-based library 

Compound Ar Ar' Yield % 

4.16 

 

 

59 

4.17 

 
 

62 

4.18 

 
 

60 

4.19 

  

70 

4.20 

 

 
58 
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Table 4.2 Continued 

4.219 

 

 
72 

4.22 

 
 

51 

4.239 

 

 
56 

 

 

4.6  Synthesis of the urea-based library 

The urea derivatives 4.24―4.32 and 4.34 were obtained in good yields by 

adding dropwise a dichloromethane solution of appropriate amine (4.2, 4.3, 4.5, 

4.10) into a solution of aryl isocyanate (4.11―4.15a) in dichloromethane using a 

slight excess of the latter at room temperature (Scheme 4.2 and Table 4.3). 

 

 

 

Scheme 4.2 Synthesis of ureas 
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Table 4.3 Urea-based library 

Compound Ar Ar' Yield % 

4.24 

 
 

82 

4.25 

 
 

90 

4.26 

  

81 

4.2710 

  

92 

4.28 

  

94 

4.2911 

  

65 

4.30 

  

51 

4.3112 
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Table 4.3 Continued 

4.3213 

  

69 

4.34 
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4.7  Synthesis of the thiourea analogue 

The thiourea 4.33 was obtained in moderate yield by adding dropwise a 

dichloromethane solution of amine 4.3 into a solution of aryl isothiocyanate 

4.15b in dichloromethane using a slight excess of the latter at room temperature 

(Scheme 4.3). 

 

Scheme 4.3 Synthesis of thiourea analogue 4.33. 

 

4.8  Biological evaluation of small molecule inhibitors 

The synthesized analogues derived from 4.1 were evaluated for their in 

vitro RNAP activity against isolated E. coli RNAP using the SYBR Green assay 

(please see Appendix I for details) and the inhibitory activity is summarized 

below (Table 4.4). Disappointingly none of the molecules in this initial series of 
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derivatives were active against RNAP with the only exception being weak 

activity displayed compounds 4.19, 4.22 and 4.32.13 

 

Table 4.4 RNAP percentage inhibition of the synthesised small molecule 

inhibitors 

Compound 
number 

% of inhibition of RNAP 
at the concentration of 

100 µM 

Compound 
number 

% of inhibition of 
RNAP at the 

concentration of 100 
µM 

4.16 0 4.26 0 

4.17 0 4.2710 3.4 

4.18 0 4.28 4.0 

4.19 7.7 4.2911 2.9 

4.20 0 4.30 0 

4.219 0 4.3112 3.2 

4.22 5.1 4.3213 5.1 

4.239 0 4.33 0 

4.24 0 4.34 0 

4.25 3.2   

 

These negative preliminary results may reflect the intrinsic limitations of 

the docking software algorithms used and the limited resolution within the 

available X-ray crystal structure of E. coli RNAP, which may lead to predictions 

affected by a significant margin of error. Therefore it was decided to re-

synthesize the original hit molecule 4.1 and to evaluate it in the assay. It should 

also be noted that the original hit molecule 4.1 was identified using a different 

assay14 to that used at Leeds, which differs in several aspects when compared 

to the SYBR Green assay15 and this may also account for differences in the 

biological activity. 
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4.9  Synthesis and biological evaluation of the sulphonamide 

hit 

Compound 4.1 was synthesised in low yield by drop-wise addition of the 

aromatic sulphonylchloride 4.8 to an excess of amine 4.35 at 0 °C in the 

presence of pyridine (Scheme 4.4). 

 

 

Scheme 4.4 Synthesis of 4.1 from 4.35 and 4.8. 

 

Following the biological evaluation of compound 4.1 with the SYBR Green 

assay15 (please see Appendix I for details) surprisingly, no inhibition activity of 

RNAP at the concentration of 100 µM was observed. This is consistent with the 

lack of any inhibitory activity observed for the two synthesized analogue 

libraries and confirms the dependency of inhibitory activity for this compound 

series on the precise assay used. Specifically, the SYBR Green assay,15 as 

opposed to the assay reported14 for the RNAP inhibitory activity of compound 

4.1, utilizes core RNAP in the absence of promoter sequences, primers and 

sigma factors and for these reasons, this assay has a limited capacity to 

evaluate inhibitors acting on the initiation step of the transcription or inhibitors 

interfering with the protein-protein interactions between the core enzyme and 

the sigma factor to form an holoenzyme which can bind a promoter. This may 

lead to the conclusion that literature hit 4.1 is potentially an initiation or protein-

protein interaction inhibitor. 

Unfortunately, the previously reported assay was not available to us for 

evaluation of the library of analogues of compound 4.1.  
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4.10  Conclusions 

As a direct result of the ability to very rapidly generate analogues, a SAR 

study on a reported RNAP inhibitor was performed using a combination of in 

silico studies followed by synthesis. Although the in silico studies have predicted 

a putative binding site for the original hit molecule, compound 4.1, the two 

synthesized libraries obtained by combining docking studies with classical 

medicinal chemistry approach unfortunately did not possess significant 

biological activity in the Leeds RNAP inhibition assay. Following synthesis of the 

original hit molecule 4.1 and its biological evaluation revealed the absence of 

inhibitory activity in our assay which may be explained by the fact that the 

original hit molecule 4.1 was identified using a different assay14 which differs in 

several aspects when compared to the SYBR Green assay.15 Whilst both 

assays were validated for HTS studies on the same biological target, 

surprisingly their results were not comparable.  
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5. Scaffold-hopping and ligand-based virtual screening to 

assist the design and synthesis of small molecule 

inhibitors of the myxopyronin binding region 

5.1  Physico-Chemical limitations of myxopyronin A 

Myxopyronin A (Myx) 1.251 (Figure 5.1) is a naturally occurring antibiotic 

which inhibits the initiation of transcription by interacting with the RNAP ‘switch 

region’, a hinge mediating the opening and the closure of the RNA ‘clamp’ 

which determines the open or closed state of the active centre cleft of the 

enzyme. 

 

Figure 5.1 Structures of 1.25 and 1.27. 

 Myx 1.25 does not share cross-resistance with rifamycins. Unfortunately 

Myx 1.25 is not a viable drug lead because it does not possess suitable 

physicochemical properties. In particular, the dienone terminal side chain 

portion of the molecule which binds in a large hydrophobic pocket in the 

enzyme (Figure 5.2) results in poor pharmakokinetic properties due to the high 

LogP value and consequent strong binding to plasma proteins.2 A previous 

study3 revealed that binding to serum proteins significantly reduces the 

antibacterial activity of these compounds in vivo. The same authors3 also 

underline issues with compound stability, in fact the Myx structure contains a 
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reactive Michael acceptor and a metabolically unstable carbamate group. The 

chemical synthesis of Myx analogues reported to date,1,4,5 with the only 

exception of 7-desmethylmyxopyronin B derivative 1.27 (Figure 5.1), did not 

lead to more potent analogues and the design of more potent molecules has, 

until recently, been hampered  by the lack of a high resolution structure of the 

RNAP-Myx complex.6   

 In the current project, in order to address the physico-chemical limitations 

of Myx, a scaffold hopping strategy was explored and the derived 

pharmacophoric hypothesis was used for a ligand-based virtual screening of 

commercial and in-house chemical libraries. The top ranking compounds were 

selected for biological evaluation on the basis of visual inspection and docking 

studies.  

5.1.1  Scaffold-hopping strategy 

 Analysis of the X-ray co-crystal structure of 7-desmethylmyxopyronin B 

1.27 in complex with RNAP (PDB id: 3EQL7) reveals that 7-

desmethylmyxopyronin B 1.27 is bound within an almost completely enclosed, 

predominantly hydrophobic crescent-shaped binding pocket (Figure 5.2). 

 

Figure 5.2 Co-crystal structure of 1.27(PDB 3EQL). 
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 Globally, there is a prevalence of hydrophobic interactions with the only 

exception being the α-pyrone ring of 7-desmethylmyxopyronin B 1.27, which is 

involved in key interactions near the cavity entrance via hydrogen bonds with 

Ser1084 and Gly620, while the carbonyl of the ene-carbamate side-chain is 

contacting Trp1038, Glu1041 and Lys1463 (Figure 5.2). 

 The scaffold-hopping strategy adopted in this project involved the 

preservation of the key specific hydrogen bonds at the level of the α-pyrone ring 

and ene-carbamate side-chain and the replacement of the dienone side-chain 

with other suitable lipophilic residues. The key interaction points of the hydrogen 

bond network of 7-desmethylmyxopyronin B 1.27 (Figure 5.3) involve the 

hydroxyl group of the α-pyrone which could be replaced by an hydrogen bond 

donor and/or acceptor and by the ring oxygen where an alternative hydrogen 

bond acceptor could be tolerated. With regard to the ene-carbamate moiety, it 

was reasoned that carbonyl oxygen could be replaced by any other suitable 

hydrogen bond acceptor as well as the methoxy group while the carbamate 

nitrogen could be substituted with any other suitable hydrogen bond donor 

capable of interacting with Glu1041 (Figure 5.2). 

 

 

Figure 5.3 Key interaction points of the hydrogen bond network of 1.27. 

 

 A plausible scaffold-hopping strategy could involve the replacement of the 

α-pyrone core with an alternative aromatic or heteroaromatic moiety derived 
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from the ring fusion of the α-pyrone at position 2 or alternatively, at position 4 

with the concurrent substitution of the carbonyl belonging to the dienone with a 

carbon atom (Figure 5.4). 

 

 

Figure 5.4 Design strategy based on 1.27. 

 

 As an example of this strategy, ring fusion at position 2 of the α-pyrone 

could result in a 4H-benzo[d][1,3]oxazin-4-one or a quinazolin-4(3H)-one based 

heterocyclic core as shown in 5.1 and 5.2 (Figure 5.5). In particular, the ring 

nitrogen replaced the ring oxygen of 7-desmethylmyxopyronin B 1.27. 

 

 

Figure 5.5 Structures of 5.1 and 5.2, original α-pyrone core shown in blue, 

closure points and modified atoms in red. 

 

 Alternatively, following ring fusion at the position 4 of the α-pyrone, a 4H-

pyrido[2,3-d][1,3]oxazin-4-one or a pyrido[2,3-d]pyrimidin-4(3H)-one based 

heterocyclic core as shown in 5.3 and 5.4 could replace the α-pyrone core 

(Figure 5.6) where a nitrogen atom replaced the hydroxyl of 7-

desmethylmyxopyronin B 1.27. 
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Figure 5.6 Structures of 5.3 and 5.4, original α-pyrone core shown in blue, 

closure points and modified atoms in red. 

 

 In order to apply the previously outlined scaffold-hopping strategy, a 

pharmacophore and shape-based query was elaborated within the graphical 

interface of ROCS software, vROCS as shown below (Figure 5.7 and Figure 

5.8). 

 

 

Figure 5.7 Shape query elaborated in vROCS represented as a grey cloud, 

structure of 7-desmethylmyxopyronin B 1.27 structure represented as sticks. 
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Figure 5.8 Pharmacophore query elaborated in vROCS represented as 

coloured spheres centred on 7-desmethylmyxopyronin B 1.27 structure 

represented as sticks. 

5.1.2  Ligand-based virtual screening protocol 

 Ligand-based virtual screening was performed for the specified chemical 

query taking in account the overall shape and volume of 7-

desmethylmyxopyronin B 1.27 in addition to matching the pharmacophoric 

points. 

 The in-house medicinal chemistry and chemical biology technology group 

database (MCCB database) comprising 26,493 molecules from Albany 

Molecular Research Inc. (AMRI), Chembridge and Asinex commercial 

databases along with another two commercial databases, the Peakdale (15,339 

molecules) and the Specs diversity set (17,520 structures with molecular 

similarity expressed as Tanimoto coefficient not greater than 0.7), were 

downloaded from the ZINC database.8 

 A library of conformers was generated from the previously downloaded 

databases using OMEGA software version 2.3.2, limiting the maximum number 

of conformers per molecule to 50 using the default settings. 
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 The biologically active conformation of 7-desmethylmyxopyronin B was 

extracted from its crystallographic complex with RNAP (PDB id: 3EQL7) and 

atom types and bond orders were amended when necessary with Maestro 

software. The molecular structure was imported into vROCS version 3.1.2 

where the pharmacophoric features were manually specified over the key atoms 

identified from the previous analysis (Section 5.1.1), and the overall shape and 

volume were automatically perceived by the software.  

 The previously prepared library of conformers was screened on the 

generated query using an Explicit Mills Dean9 colour force field and leaving all 

the other settings to their default values. ROCS automatically ranked the top 

500 molecules using the TanimotoCombo scoring function and the result was 

visually inspected using vROCS to assess the quality of overlapping to the 

shape and chemical features of the query molecule. 

 A short list of around 100 molecules was selected for further analysis and 

filtering via docking studies. The aim of these studies was to verify that 

compounds with good chemical and shape complementarity were also 

predicted to adopt a reasonable binding mode inside the targeted site, avoiding 

steric clashes and reproducing as much as possible the 7-

desmethylmyxopyronin B interaction pattern. 

5.1.3  General docking protocol 

The crystal structure of the T. thermophilus RNA polymerase 

holoenzyme in complex with the antibiotic 7-desmethylmyxopyronin B (PDB id: 

3EQL7) was downloaded from the Protein Databank (www.rcsb.org). 

The binding site within the RNAP for Myx was defined as a 15 Å cut of 

the protein surrounding the co-crystallised ligand. 

The dockings runs were performed using GOLD10 v4.0.1 (CCDC, 

Cambridge, UK) docking software by using the default settings for the genetic 

searching algorithm generating 100 poses for each ligand and the compounds 

were ranked with the Chemscore scoring function. 

A post-docking analysis was performed on the different docking solutions 

for each ligand. Cluster analysis using an average linkage rule was performed 
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using an internal module within the software. Only the best ranked poses of the 

most populated cluster were considered as the most likely and representative 

ones. In addition, the docked poses were analysed in terms of overall score, 

good shape complementarity to the cavity, possibility to establish specific H-

bonds to the protein in addition to the less specific hydrophobic contacts, 

minimal exposure of hydrophobic groups to solvent and absence of an 

excessive torsional strain into the docked conformer. 

5.1.4  Results 

 The list of selected compounds for biological evaluation along with 

predicted properties and docking score is reported in Table 5.1. Interestingly, 

the results are, in part, concordant with the previously mentioned scaffold 

hopping considerations (Section 5.1.1) and the number of 4H-

benzo[d][1,3]oxazin-4-one and quinazolin-4(3H)-one-based scaffolds in the 

best-ranked virtual hits list could not be ignored when prioritizing the 

compounds for biological evaluation. 

 Compounds 5.15―5.21 were not available for purchase but because of 

their fair synthetic accessibility, good final ranking and relevant putative binding 

mode, were synthesized (Section 5.2). 

 

Table 5.1 Compounds selected for biological evaluation 

Comp. 
number 

Structure M.W. 
ALogP 

(A) 

Chem
score 

Rule of 5 
violations 

(B) 

5.5 

 

336 3.23 36.4 0 

5.6 

 

364 2.36 30.9 0 
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Table 5.1 Continued 

5.7 

 

335 2.97 33.1 0 

5.8 

 

363 3.90 32.9 0 

5.9 

 

376 2.49 31.8 0 

5.10 

 

420 4.04 32.1 0 

5.11 

 

431 4.09 30.4 0 

5.12 

 

440 2.70 30.2 0 
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Table 5.1 Continued 

5.13 

 

378 4.48 34.3 0 

5.14 

 

451 2.92 35.6 0 

5.1511 

 

206 -0.42 29.5 0 

5.1612 

 

238 1.72 23.7 0 

5.1713 

 

207 2.09 25.5 0 

5.1814 

 

257 3.49 29.7 0 

5.1915 

 

202 2.22 24.3 0 
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Table 5.1 Continued 

5.2014 

 

213 2.41 27.2 0 

5.21 

 

269 1.75 28.9 0 

5.22 

 

417 3.02 26.1 0 

5.23 

 

349 2.21 24.2 0 

5.24 

 

326 1.96 24.6 0 

5.25 

 

388 4.14 30.4 0 

5.26 

 

293 0.63 24.6 0 
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Table 5.1 Continued 

5.27 

 

313 4.93 30.7 0 

5.28 

 

330 2.91 27.3 0 

5.29 

 

359 2.81 36.3 0 

 

 (A) ALogP calculated with ALOGPS 2.1 software
16

  

(B) Rule of five defined as reported in Lipinski’s paper,
17

 parameters calculated with Molsoft Drug Likeness 

Prediction:
18

 

150 ≤ M.W. ≤ 500 

ALogP ≤ 5 

Hydrogen bond donors ≤ 5 

Hydrogen bond acceptors ≤ 10 

Rotatable bonds ≤ 7 

Polar surface area ≤ 150 

  

 Examples of predicted binding mode for the most relevant and best ranked 

compounds are shown below. 

 The predicted binding mode of compound 5.8 is shown in Figure 5.9. The 

following interactions between the ligand 5.8 and the myxopyronin binding site 

were identified: the NH of the indole ring is predicted to form an H-bond with the 

side chain of Glu1041 while the carbonyl of the amide bond is interacting via an 

H-bond with the backbone NH of Gly620. The nitrogen of the pyridyl ring is 

predicted to form an H-bond with the side chain of Gln1019 while the oxygen of 

the methoxy group is interacting via an H-bond with the side chain of Gln1019. 
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The side chains of Leu1049, Leu1053, Val1466, Ile1467, Val1037 and Trp1038 

are predicted to be involved in hydrophobic interactions with the indole and the 

piperidine ring. Notably, H-bond interactions with Glu1041 and Gly620 are also 

present in the X-ray co-crystal structure of 7-desmethylmyxopyronin B 1.27 in 

complex with RNAP (PDB id: 3EQL7) (Figure 5.2) at the level of the α-pyrone 

ring. 

 

 

Figure 5.9 Predicted binding mode of 5.8. 

 

 The binding mode of compound 5.1511 was predicted as shown in Figure 

5.10. The following interactions between the ligand 5.1511 and the myxopyronin 

binding site were identified: the carboxylate is predicted to form an H-bond with 

the side chain of Ser1084, the carbonyl of the semicarbazide moiety is 

predicted to make an H-bond with the side chain of Gln1019 and Lys621 while 

the amidic nitrogen and the neighbouring azomethine nitrogen of the same 

moiety are interacting via H-bonds with the backbone carbonyl of Lys621 and 

the backbone NH of Gly620. The aromatic ring is predicted to be involved in 

hydrophobic interactions with the side chains of Val1466, Val1037 and 
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Leu1619. Interestingly the previously mentioned H-bond interactions with 

Ser1084 and Gly620 are also present in the X-ray co-crystal structure of 7-

desmethylmyxopyronin B 1.27 in complex with RNAP (PDB id: 3EQL7) (Figure 

5.2). 

 

 

Figure 5.10 Predicted binding mode of 5.15.11 

 

 The binding mode of compound 5.1814 was predicted as shown in Figure 

5.11. The following interactions between the ligand 5.1814 and the myxopyronin 

binding site were identified: the carbonyl of the pyrimidinone ring is predicted to 

establish an extended H-bond network with the side chains of Lys621, Ser1084 

while the nitrogen of the same moiety is interacting via H-bond with the 

backbone NH of Gly620. The pyrimidinone and the 2-chlorophenyl moieties are 

involved in hydrophobic interactions with the side chains of Val1466, Leu1053, 

Val1037, Lys621 and Lys610. Interestingly, the two previously mentioned H-

bond interactions are also present in the X-ray co-crystal structure of 7-

desmethylmyxopyronin B 1.27 in complex with RNAP (PDB id: 3EQL
7
) (Figure 

5.2) at the level of the α-pyrone ring. 
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Figure 5.11 Predicted binding mode of 5.18.14 

 

 The binding mode of compound 5.29 was predicted as shown in figure 

5.12. The following interactions between the ligand 5.29 and the myxopyronin 

binding site were identified: the carbonyl of the pyrimidinone ring is predicted to 

establish an H-bond network with the side chains of Ser1439 and Lys1463. 

Notably, the carbonyl of the pyrimidinone ring is mimicking the H-bond of the 

ene-carbamate carbonyl with Lys1463 present in the X-ray co-crystal structure 

of 7-desmethylmyxopyronin B 1.27 in complex with RNAP (PDB id: 3EQL7) 

(Figure 5.2). The nitrogen of the pyridyl ring is predicted to form an H-bond with 

the backbone carbonyl of Leu607; a T-shaped stacked interaction between  the 

side chain aromatic ring of the Phe614 and the pyridyl group is observed while 

the other aromatic rings are predicted to be involved in very extended 

hydrophobic interactions with the side chains of Leu1088, Leu1092, Leu607, 

Leu1447, Leu1435, Val1466, Leu619, Leu1053 and Val1037.  
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Figure 5.12 Predicted binding mode of 5.29. 

 

5.2 Synthesis 

 Compound 5.1511 was prepared in high yield following the procedure 

reported by Kumar,19 reacting carboxybenzaldehyde 5.30 with semicarbazide 

hydrochloride 5.31 in a aqueous solution of sodium acetate (Scheme 5.1):  

 

 

Scheme 5.1 Synthesis of 5.15.11 

 The reaction between anthranilic acid 5.32 with an excess of butyryl 

chloride 5.33 in pyridine at room temperature afforded the formation of 5.1713 in 

good yield (Scheme 5.2): 
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Scheme 5.2 Synthesis of 5.17.13 

 

 With regard to benzo[e][1,2,4]thiadiazine 1,1-dioxide derivative 5.16,12 this 

was prepared in good yield by reacting a solution of sulphonamide 5.34 in DMA 

with aldehyde 5.35 in presence of an excess of sodium bisulphite under reflux 

as reported by Imai et al20 (Scheme 5.3). 

 

 

Scheme 5.3 Synthesis of 5.16.12 

 

 The synthesis of 2-aryl-4H-benzo[d][1,3]oxazin-4-one derivatives 5.1814 

and 5.2014 was performed (Scheme 5.4) following the literature procedure as 

reported by Bain and Smalley.21  

 The one-pot reaction between equimolar quantities of anthranilic acid 5.32 

with aroylchloride 5.36 or aroylchloride 5.37 in a solution of pyridine and toluene 

under reflux gave, respectively, the benzoxazinones 5.1814 and 5.2014 in 

moderate yields (Scheme 5.4): 
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Scheme 5.4 Synthesis of 5.1814 and 5.20.14 

 

 Quinazolinone 5.1915 was prepared in good yield following the procedure 

reported by Imai et al.20 by refluxing a solution of anthranilamide 5.38 in DMA 

and aldehyde 5.35 in the presence of an excess of sodium bisulphite (Scheme 

5.5).  

 

 

 

Scheme 5.5 Synthesis of 5.19.15 

 

 The nucleophilic substitution reaction by heating an acetone solution of 

equimolar quantities of 2-mercaptoquinazolin-4(3H)-one 5.39 and 4-

(bromomethyl)pyridine hydrobromide 5.40 in presence of triethylamine afforded 

the quinazolinone 5.21 in good yield (Scheme 5.6). 
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Scheme 5.6 Synthesis of 5.21. 

5.3 Biological results 

 Compounds 5.5―5.29 were evaluated in the RNAP SYBR green assay22 

(please see Appendix I for details) and weak or no inhibition activity was found 

(Table 5.2). 

 

Table 5.2 In vitro RNAP percentage inhibition at 100 μM of the purchased and 
synthesised molecules. 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

5.5 7.4 5.1814 Insoluble 

5.6 7.1 5.1915 0 

5.7 10.2 5.2014 0 

5.8 13.1 5.21 0 

5.9 1.5 5.22 0 

5.10 0.9 5.23 11.8 

5.11 5.2 5.24 7.2 

5.12 2.6 5.25 5.1 

5.13 4.2 5.26 0 

5.14 0 5.27 0 

5.1511 0 5.28 0 

5.1612 0 5.29 12.3 

5.1713 0   
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5.4  Conclusions 

 Following the analysis of the X-ray co-crystal structure of 7-desmethyl-

myxopyronin B 1.27 in complex with RNAP (PDB id: 3EQL7) (Figure 5.2), a 

scaffold-hopping strategy has been elaborated and a pharmacophore- and 

shape-based virtual screening approach followed by docking studies has been 

performed in order to overcome the unfavourable pharmacokinetic and 

chemical properties of myxopyronin A (Myx) 1.25.1  

 A series of molecules was selected from commercial databases or 

synthesized for biological evaluation. Whilst all the virtual hits were predicted to 

have improved physicochemical properties, good binding mode and better 

synthetic accessibility when compared to Myx, unfortunately no active 

molecules were identified. A possible reason for the lack of biological activity of 

the selected virtual hits could derive from the nature of the designed protocol. In 

fact, selection of compounds relied mainly on the ligand-based stage while 

docking studies confirmed shape, chemical complementarity and quality of 

binding mode within the targeted site on a narrow number of candidates. Whilst 

the shape screen and the matching of selected pharmacophoric points allowed 

the restriction of the number of candidates, the binding site sampling performed 

at this stage was limited to selected specific interactions of 7-desmethyl-

myxopyronin B 1.27 within RNAP and, for this reason, underestimated the 

possibility of alternative binding modes for chemically dissimilar molecules 

within a large binding site.  

 

 

 

 

 

 

 

 



126 
 

 5.5  References 

1. Hu, T.; Schaus, J. V.; Lam, K.; Palfreyman, M. G.; Wuonola, M.; 

Gustafson, G.; Panek, J. S., J. Org. Chem. 1998, 63, 2401-2406. 

2. Mukhopadhyay, J.; Das, K.; Ismail, S.; Koppstein, D.; Jang, M. Y.; Hudson, 

B.; Sarafianos, S.; Tuske, S.; Patel, J.; Jansen, R.; Irschik, H.; Arnold, E.; 

Ebright, R. H., Cell 2008, 135, 295-307. 

3. Moy, T. I.; Daniel, A.; Hardy, C.; Jackson, A.; Rehrauer, O.; Hwang, Y. S.; 

Zou, D.; Nguyen, K.; Silverman, J. A.; Li, Q.; Murphy, C., FEMS Microbiol. 

Lett. 2011, 319, 176-179. 

4. Doundoulakis, T.; Xiang, A. X.; Lira, R.; Agrios, K. A.; Webber, S. E.; 

Sisson, W.; Aust, R. M.; Shah, A. M.; Showalter, R. E.; Appleman, J. R.; 

Simonsen, K. B., Bioorg. Med. Chem. Lett. 2004, 14, 5667-5672. 

5. Lira, R.; Xiang, A. X.; Doundoulakis, T.; Biller, W. T.; Agrios, K. A.; 

Simonsen, K. B.; Webber, S. E.; Sisson, W.; Aust, R. M.; Shah, A. M.; 

Showalter, R. E.; Banh, V. N.; Steffy, K. R.; Appleman, J. R., Bioorg. Med. 

Chem. Lett. 2007, 17, 6797-6800. 

6. Srivastava, A.; Talaue, M.; Liu, S.; Degen, D.; Ebright, R. Y.; Sineva, E.; 

Chakraborty, A.; Druzhinin, S. Y.; Chatterjee, S.; Mukhopadhyay, J.; 

Ebright, Y. W.; Zozula, A.; Shen, J.; Sengupta, S.; Niedfeldt, R. R.; Xin, C.; 

Kaneko, T.; Irschik, H.; Jansen, R.; Donadio, S.; Connell, N.; Ebright, R. 

H., Curr. Opin. Microbiol. 2011, 14, 532-543. 

7. Belogurov, G. A.; Vassylyeva, M. N.; Sevostyanova, A.; Appleman, J. R.; 

Xiang, A. X.; Lira, R.; Webber, S. E.; Klyuyev, S.; Nudler, E.; Artsimovitch, 

I.; Vassylyev, D. G., Nature 2009, 457, 332-335. 

8. Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G., J. 

Chem. Inf. Model. 2012, 52, 1757-1768. 

9. Mills, J. E. J.; Dean, P. M., J Computer-Aided Mol Des 1996, 10, 607-622. 

10. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D., 

Proteins 2003, 609-623. 

11. Andersen, R. A.; Coates, G. E., J. Chem. Soc., Dalton Trans. 1974, 1171-

1180. 

12. Raffa, L.; Pecorari, P., Farmaco-Edizione Scientifica 1966, 21, 196-198. 

13. Duffield, A. M.; Jefferies, P. R., Aust. J. Chem. 1963, 16, 292-294. 



127 
 

14. Bain, D. I.; Smalley, R. K., J. Chem. Soc. C 1968, 1593-1594. 

15. Dabiri, M.; Salehi, P.; Mohammadi, A. A.; Baghbanzadeh, M., Synth. 

Commun. 2005, 35, 279-287. 

16. Tetko, I. V.; Tanchuk, V. Y., J. Chem. Inf. Comput. Sci. 2002, 42, 1136-

1145. 

17. Lipinski, C. A., J. Pharmacol. Toxicol. Methods 2000, 44, 235-249. 

18. O'Neill, A.; Oliva, B.; Storey, C.; Hoyle, A.; Fishwick, C.; Chopra, I., 

Antimicrob. Agents Ch. 2000, 44, 3163-3166. 

19. Kumar, S., Turk. J. Chem. 2011, 35, 99-108. 

20. Imai, Y.; Sato, S.; Takasawa, R.; Ueda, M., Synthesis 1981, 1981, 35-36. 

21. Bain, D. I.; Smalley, R. K., J. Chem. Soc. C 1968, 13, 1593-1594. 

22. Ohmichi, T.; Maki, A.; Kool, E. T., Proc. Natl. Acad. Sci. USA 2002, 99, 54-

59. 

 

 



128 
 

6. Critical reassessment of a previously reported 

computational study
1
 and development of a combined 

ligand and structure-based virtual screening protocol  

6.1 Limitations of a previously reported computational study
1
 

 A pharmacophore modelling and structure-based virtual screening study 

on the RNAP ‘switch region’ has been recently reported.1 Although a list of 27 

virtual hits out of the 321,374 compounds within the screened database were 

selected and underlined for further study by the authors1 but no biological data 

were reported to support this suggestion or test the validity of the protocol. 

Following detailed inspection of this paper1, several questionable points and 

inaccuracies were found in addition to the lack of a biological validation, and 

these are summarized below: 

A) The screened database, according to the given protocol, was filtered prior 

to hit selection following the Lipinski Rule of five but several selected virtual 

hits have at least one or more violations of this rule. 

B) The developed pharmacophoric query did not include any hydrophobic   

features despite these interactions being important within the targeted 

binding site. 

C) The authors claimed a crystallographic water molecule close to the 

antibiotic molecule was conserved and this was included in the 

crystallographic protein structure used for docking calculations. Following 

analysis of the crystal structure of the T. thermophilus RNAP holoenzyme in 

complex with the antibiotic myxopyronin A 1.25 (PDB id: 3DXJ2), a water 

molecule interacting with the ene-carbamate group is found only in one 

biological assembly out of the two present in the asymmetric unit, while in 

the case of the crystal structure of the T. thermophilus RNAP holoenzyme in 

complex with the antibiotic 7-desmethylmyxopyronin 1.27 (PDB id.: 3EQL3) 

no water molecules are in proximity of the antibiotic molecule.   
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6.2 Critical reassessment of the protocol 

 A critical reassessment of this theoretical study1 has been performed by 

elaborating a new and more rigorous virtual screening protocol which combined 

ligand and structure-based techniques and summarized in Figure 6.1.  

 

 

Figure 6.1 Virtual screening protocol 

 

A conformer database was generated using OMEGA software and an 

initial ligand-based virtual screening run with ROCS was applied with the aims 

of: 

A) reducing the computational time required for docking a relatively large  

database, and: 

29 
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B) prioritizing molecules with similar shape and chemical features to 

myxopyronin, in order to maximize the chance of finding active molecules by 

mimicking the interactions of myxopyronin with RNAP. 

The ligand-based virtual screening strategy was elaborated starting from 

the previously reported analysis (please see Chapter 5, Section 5.1.1) of the X-

ray co-crystal structure of 7-desmethylmyxopyronin B 1.27 in complex with 

RNAP (PDB id: 3EQL3). In summary, pharmacophoric features in terms of 

donor/acceptor and lipophilic atoms were identified and a scaffold hopping 

strategy implying the preservation of key specific hydrogen bonds and 

hydrophobic interactions of 7-desmethylmyxopyronin B 1.27 was formulated, 

with the addition of two more features at the level of the carbonyl group (both at 

the level of the dienone and α-pyrone ring) (Figure 6.2). These two additional 

features were included in order to bias any resulting virtual hits towards 

molecules that contain similar functionality to that within 7-

desmethylmyxopyronin B 1.27, and so to decrease dramatically the number of 

molecules to be docked in the subsequent step. 

 

 

 

Figure 6.2 Scaffold hopping strategy 
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Docking was performed using GOLD docking software inside the 

myxopyronin binding region defined from the crystal structures of the T. 

thermophilus RNAP holoenzyme in complex with the antibiotic myxopyronin A 

(PDB id: 3DXJ2). The highest possible accuracy parameters with regard to the 

searching algorithm were used and consensus scoring was applied to rank the 

molecules. The Chemscore scoring function was used initially for ranking the 

compounds as it was found to be faster than Goldscore in terms of energetic 

evaluation during pose generation and it was even more appropriate because of 

its energetic terms for dealing with a predominantly hydrophobic binding site.6 

The Goldscore scoring function was then applied to re-rank the top scoring 

compounds in order to prioritize the best hydrogen bond network between the 

docked poses, given its superiority in identifying polar contacts when compared 

to Chemscore.6 A post-docking analysis followed the consensus scoring 

strategy and consisted in cluster analysis and visual inspection. 

 

6.2.1  General ligand-based virtual screening protocol 

 The Specs database (206,615 structures) was downloaded from ZINC 

database.4 

 A library of conformers was then generated from the previously 

downloaded databases using the OMEGA software version 2.3.2 limiting the 

maximum number of conformers per molecule to 50 using the default settings. 

 The biologically active conformation of 7-desmethylmyxopyronin B 1.27 

was extracted from its crystallographic complex with RNAP (PDB id: 3EQL3) 

and atom types and bond orders were amended as necessary using Maestro 

software. The molecular structure was imported into vROCS version 3.1.2 

where the pharmacophoric features were manually specified over the key atoms 

identified from the previous analysis (Chapter 5, Section 5.1.1) and the overall 

shape and volume of the molecule were automatically perceived by the 

software (Figures 6.3 and 6.4).  
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Figure 6.3 Shape query elaborated in vROCS represented as a grey coloured 

volume. Structure of 7-desmethylmyxopyronin B 1.27 represented as sticks. 

 

 

Figure 6.4 Pharmacophore query elaborated in vROCS represented as 

coloured spheres centred on 7-desmethylmyxopyronin B 1.27 structure 

represented as sticks. 



133 
 

 The previously prepared library of conformers was screened on the 

generated query using an Explicit Mills Dean5 colour force field and leaving all 

the other settings to their default values. The top 10% of molecules ranked by 

ROCS using the TanimotoCombo scoring function were selected and after the 

elimination of duplicate conformers, a short list of 5,785 molecules was 

designated for structure-based virtual screening.  

6.2.2  General docking protocol 

Docking settings for the structure-based virtual screening protocol were 

chosen according to the docking validation studies reported in Chapter 3. 

 The crystal structure of the T. thermophilus RNAP holoenzyme in 

complex with the antibiotic myxopyronin A (PDB id: 3DXJ2), was downloaded 

from the Protein Databank (www.rcsb.org). 

All water molecules, cofactors and ions were manually removed using 

Maestro and the binding site within the RNAP was defined as the protein 

comprised in a sphere with a 15 Å radius surrounding the co-crystallised ligand. 

The docking runs were performed using GOLD6 v4.0.1 (CCDC, 

Cambridge, UK) docking software by using the best accuracy settings for the 

genetic searching algorithm which corresponded to the 200% of the default 

parameter values of the genetic algorithm in order to get a more exhaustive 

search inside the binding cavity. Compounds were ranked with the Chemscore 

scoring function generating 100 poses for each ligand. The final docked poses 

were re-ranked using the Goldscore scoring function after energetic 

minimization performed using the simplex algorithm implemented in the GOLD 

docking software.     

A shortlist of 578 compounds corresponding to 10% of the top ranked 

molecules was selected for post-docking analysis which was performed for 

each ligand among its different docking solutions. Cluster analysis using an 

average linkage rule was performed using an internal module within the 

software. Only the best ranked poses of the most populated cluster were 

considered as the most likely and representative ones. In addition, the docked 

poses within the binding pocket were analysed in terms of overall score, shape 

complementarity to the cavity, possibility to establish specific H-bonds to the 
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protein in addition to the less specific hydrophobic contacts, minimal exposure 

of hydrophobic groups to solvent and absence of excessive torsional strain 

within the docked conformer. 

 

6.2.3  vHTS results 

After the post-docking analysis which included the selection of the potential 

virtual hits on the basis of their chemical diversity, 29 molecules were 

purchased for biological evaluation (please see Section 6.2.4 for the biological 

results). Interestingly, 10 out of the 27 virtual hits, 6.1—6.10, reported in the 

previous study,1 were present in the list of the purchased molecules (Table 6.1) 

and some compounds presented one or more violations of the Lipinski rule of 

five. The decision to include such non-Lipinski compliant molecules as part of 

the purchase selection reflected the observation that many existing clinically 

used antibiotics do not conform to this rule.7,8 Moreover, subsequent exploration 

of SAR followed by hit optimization can be used to overcome the initial limitation 

of low oral bioavailability which may be associated with non-Lipinski 

compliance.   

 

Table 6.1 Virtual hits selected for the in vitro percentage inhibition 

Comp. 

number 
Structure M.W. 

ALogP 
(A) 

Chem
score 

Rule 
of 5 

viola- 
tions 

(B) 

6.1 

 

453 5.50 38.7 1 
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Table 6.1 Continued 

6.2 

 

450 7.19 41.8 1 

6.3 

 

543 5.73 42.2 2 

6.4 

 

495 2.52 42.3 1 

6.5 

 

470 7.45 40.4 1 

6.6 

 

544 5.53 41.1 3 
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Table 6.1 Continued 

6.7 

 

636 5.97 48.4 3 

6.8 

 

522 4.89 40.9 2 

6.9 

 

476 5.28 37.2 2 

6.10 

 

456 5.06 37.3 2 
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Table 6.1 Continued 

6.11 

 

466 2.80 33.6 1 

6.12 

 

427 3.07 35.2 0 

6.13 

 

364 3.89 34.5 0 

6.14 

 

458 4.07 35.0 0 

6.15 

 

333 2.04 35.4 0 

6.16 

 

386 3.52 29.0 0 
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Table 6.1 Continued 

6.17 

 

418 3.71 30.9 0 

6.18 

 

351 3.95 34.9 0 

6.19 

 

395 3.25 38.1 0 

6.20 

 

352 2.86 31.0 0 

6.21 

 

392 1.76 37.3 0 

6.22 

 

455 2.62 37.5 1 

6.23 

 

306 1.47 33.7 1 

6.24 

 

336 2.62 28.3 0 
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Table 6.1 Continued 

6.25 

 

326 3.81 28.0 0 

6.26 

 

351 2.37 37.3 0 

6.27 

 

338 2.26 37.1 0 

6.28 

 

472 4.03 29.9 0 

6.29 

 

386 5.09 32.1 1 

 

 (A) ALogP calculated with ALOGPS 2.1 software
9
  

(B) Rule of five defined as reported in Lipinski’s paper,
10

 parameters calculated with Molsoft Drug Likeness 

Prediction:
11

 

150 ≤ M.W. ≤ 500 

ALogP ≤ 5 

Hydrogen bond donors ≤ 5 

Hydrogen bond acceptors ≤ 10 

Rotatable bonds ≤ 7 

Polar surface area ≤ 150 
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6.2.4 Biological results 

 Compounds 6.1―6.29 were evaluated in the SYBR Green assay12 (please 

see Appendix I for details) and the results are summarized in Table 6.2. 

 Compounds 6.3 and 6.10 were found to possess moderate inhibitory 

activity at the concentration of 100 µM on E.coli RNAP core enzyme (compound 

6.10 was not completely soluble under the assay conditions). To probe the 

selectivity of enzyme inhibition, compounds 6.3 and 6.10 were subjected to 

specificity assay analysis using malate dehydrogenase and chymotrypsin 

respectively, as unrelated enzymes, to identify promiscuous activity13 (Table 

6.3). Pleasingly, both compounds did not significantly inhibit these enzymes at 

the concentration of 100 µM (please see Appendix I for details).  

 

Table 6.2 In vitro RNAP percentage inhibition at 100 μM of the virtual hits. 

Compound number 
In vitro RNAP % 

inhibition at 100 μM 
Compound number 

In vitro RNAP % 
inhibition at 100 μM 

6.1 21.7 6.16 0 

6.2 0 6.17 0 

6.3 56.4 6.18 0 

6.4 5.9 6.19 0 

6.5 0 6.20 0 

6.6 0 6.21 0 

6.7 16.4 6.22 0 

6.8 0 6.23 0 

6.9 2.8 6.24 0 

6.10 54.3† 6.25 0 

6.11 0 6.26 0 

6.12 0 6.27 0 

6.13 0 6.28 0 

6.14 0 6.29 17.1 

6.15 0   
 

(†) Compounds showing solubility issues under the assay conditions. 
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Table 6.3 Specificity assay on the selected hits on Malate Dehydrogenase and 
Chymotrypsin. 

Compound number 
In vitro Malate Dehydrogenase 

% inhibition at 100 μM 

In vitro Chymotrypsin 

% inhibition at 100 μM 

6.3 2.9 4.3 

6.10 0.3 21.4 

 

From these two hits, acylhydrazone 6.3 was selected for SAR studies on 

the basis of its inhibitory activity, synthetic amenability, chemical stability, 

solubility properties and suitability for analogue design.  

6.2.5 Synthesis of the acylhydrazone hit 

In order to confirm the biological activity of the purchased compound 6.3, 

this acylhydrazone was synthesized as shown below (Scheme 6.1): 

  

Scheme 6.1 Synthesis of 6.3. 
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A DMF solution of ester 6.30 was treated with an excess of benzylbromide 

in presence of an excess of potassium carbonate under reflux to give tri-ether 

6.3114 in low yield. Intermediate hydrazide 6.3215 was obtained in excellent yield 

following the addition of excess hydrazine hydrate to ester 6.3114 and heating to 

reflux in ethanol. Finally, acylhydrazone 6.3 was obtained in good yield by 

reacting an ethanolic solution of hydrazide 6.3215 with aldehyde 6.33 under 

reflux. 

 

6.2.6 Putative binding mode of the acylhydrazone hit 

 From the above mentioned docking studies (Section 6.2.2), the binding 

mode of acylhydrazone 6.3 was predicted as shown in Figure 6.5. 

 

 

 

Figure 6.5 Predicted binding mode of 6.3. 

 

The following interactions between the ligand 6.3 and the myxopyronin 

binding site were identified: the carbonyl oxygen belonging to the acylhydrazone 
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moiety is predicted to H-bond to the side chain of Ser1439 while the nitrogen of 

the pyridyl unit interacts via H-bonding with the side chain NH of Trp1038. The 

protonated nitrogen belonging to the side chain of Lys1463 is performing a 

cation-pi interaction with the pyridyl ring which is also establishing hydrophobic 

interactions with the side chains of Val1466 and Val1037 respectively. The 

aromatic ring of one of the benzyloxy moieties is predicted to establish a OH-pi 

interaction with the hydroxyl moiety belonging to the side chain of Thr1443. All 

three benzyloxy groups are predicted to be involved in extensive hydrophobic 

interactions with the lipophilic side chains of Ala1438, Leu1088, Leu607, 

Leu619, and Leu1053 respectively. 

As reported in Figure 6.6, acylhydrazone 6.3 is partially overlapping 

myxopyronin A 1.25 and the three benzyloxy groups are occupying three 

distinct lipophilic pockets inside the myxopyronin binding site (Figure 6.7). 

 

 

 

Figure 6.6 Overlay of predicted binding pose for acylhydrazone 6.3 represented 

in green sticks and myxopyronin A 1.25 in yellow sticks. 



144 
 

 

 

Figure 6.7 Myxopyronin binding site represented as a Connolly surface in 

yellow and acylhydrazide 6.3 in green sticks. 

6.2.7 General analogue design strategy 

Based on the above cited putative binding mode a SAR study was 

performed in order to probe the predicted potential interactions and to increase 

potency and drug likeness properties of acylhydrazone 6.3.  

The general analogue design strategy is summarized in Figure 6.8: 

 

 

 

Figure 6.8 General analogue design strategy. 
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In particular, it was reasoned that the partial replacement or complete 

removal of the three benzyloxy groups will help with improvement of the 

physicochemical properties and will also allow exploration of the importance of 

these extended hydrophobic interactions in term of potency. The substitution of 

the 3-pyridyl group with other aromatic or heteroaromatic groups will help the 

optimization and understanding of the hydrogen bonding network. 

In order to optimize the SAR exploration and to maximize the identification 

of biologically active analogues, a similarity searching protocol, based on the 

structure of the virtual hit 6.3, has been conducted using a focused library of 

acylhydrazones designed as shown in the next Section. 

 

6.2.8 Similarity searching on a focused library of acylhydrazones  

Two databases were considered for the preparation of the focused library, 

the ZINC4 and Reaxys16 databases. A chemical structure query was performed 

on both databases with the aim of selecting a chemical space composed of a 

central acylhydrazone scaffold substituted with aromatic or heteroaromatic 

moieties as shown in Scheme 6.2. 

 

 

 

Scheme 6.2 General analogue design strategy. 

 

With regard to the Reaxys16 database, additional filters were specified to 

this query and consisted of selecting only compounds for which a reported 

chemical preparation procedure was available. The above mentioned query 

retrieved 10,375 compounds derived from merging 4,932 compounds from the 
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ZINC database and 8,901 compounds from the Reaxys database after 

eliminating duplicates. The choice of these databases and the filtering criteria 

for creating the focused library satisfied the objective of short listing 

commercially available and synthetically accessible molecules. A similarity 

searching run using atom environment descriptors (MOLPRINT2D17) was then 

performed on this library using the Canvas module included in the Maestro 

software by using the structure of the acylhydrazone hit 6.3 as a reference 

structure and retrieving only molecules with a Tanimoto18 similarity index ≥ 0.3 

to the reference molecule. The resulting 321 compounds were docked following 

the same protocol reported in Section 6.2.2, using a more accurate post-

docking analysis which selected only compounds showing at least the same 

number of H-bond interactions to that predicted for the parent compound 6.3, 

and an overall Chemscore numerical value in the range of ±15 related to the 

scoring value from the initial hit structure. After the post-docking analysis 17 

molecules were selected and are reported in Table 6.4.  

 

Table 6.4 Selected compounds from the similarity searching. 

 

Comp. 
number 

Structure 
Tanimoto 
similarity 

Chem
score 

Number of 
H-bonds 

6.3419 

 

0.73 42.1 3 

6.35 

 

0.71 41.5 2 

6.36 

 

0.62 40.3 3 
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Table 6.4 Continued 

6.37 

 

0.60 42.8 3 

6.38 

 

0.58 43.1 2 

6.39 

 

0.58 44.9 3 

6.4019 

 

0.58 37.7 3 

6.4120
 

 

0.52 32.3 2 

6.4221 

 

0.65 28.3 2 

6.4322 

 

0.38 29.5 2 

6.4421 

 

0.46 28.2 2 
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Table 6.4 Continued 

6.4523 

 

0.46 28.1 2 

6.4621 

 

0.41 28.5 2 

6.4721 

 

0.44 28.2 2 

6.4824 

 

0.56 30.4 2 

6.4924 

 

0.33 30.0 2 

6.5024 

 

0.40 29.3 2 

 

 

Interestingly, the selected virtual hits are predicted to share a similar 

binding mode to molecule 6.3 which suggests that the position of the pyridyl ring 

nitrogen is not essential and both the benzyloxy and pyridyl moieties can be 

substituted with other aromatic or heteroaromatic groups. In order to validate 

the similarity searching results, the previously formulated hypothesis concerning 

the position of the pyridyl ring nitrogen and the putative binding mode of 6.3, the 

compounds in Table 6.4, along with other analogues (Table 6.5) bearing the 

generic formula reported in Scheme 6.3, were synthesized (please see Sections 
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6.4 and 6.5 for chemistry) also adopting the previously mentioned analogue 

design strategy (Section 6.2.7). 

 

 

Scheme 6.3 Generic formula of the additional synthesized analogues. 

 

Table 6.5 Additional synthesized analogues. 

Compound number Ar1 Ar2 

6.51  3,4,5-tris(benzyloxy)phenyl 2-pyridyl 

6.52  3,5-bis(benzyloxy)phenyl 2-pyridyl 

6.53  3,5-bis(benzyloxy)phenyl 3-pyridyl 

6.54  3,5-bis(benzyloxy)phenyl phenyl 

6.55  4-(benzyloxy)phenyl 2-pyridyl 

6.56  4-(benzyloxy)phenyl 3-pyridyl 

6.57  4-(benzyloxy)phenyl 4-pyridyl 

6.58  3,4,5-trimethoxyphenyl 2-pyridyl 

6.59  3,4,5-trimethoxyphenyl 3-pyridyl 

6.60  3,4-methylenedioxyphenyl 3-pyridyl 

 

6.2.9 Biological results 

 Compounds 6.34―6.60 were evaluated in the SYBR Green assay12 

(please see Appendix I for details) and results are summarized in Table 6.6. 
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Table 6.6 In vitro RNAP percentage inhibition of the synthesised analogues. 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

6.3419 46.3 6.4824 38.4 

6.35 14.8† 6.4924 65.5 

6.36 65.3† 6.5024 50.2 

6.37 4.8† 6.51 53.8 

6.38 0† 6.52 15.3‡ 

6.39 36.8† 6.53 31.2‡ 

6.4019 24‡ 6.54 14†‡ 

6.4120 7.2 6.55 2.4 

6.4221 0 6.56 24.3 

6.4322 0 6.57 11.9 

6.4421 0 6.58 2.7 

6.4523 0 6.59 0 

6.4621 3.1 6.60 7.6 

6.4721 4.7  

 

(†) Compounds showing solubility issues in the assay conditions 

(‡) Compounds showing auto-fluorescence in the assay conditions 

 

 Unfortunately compounds 6.35, 6.36, 6.37, 6.38 and 6.39 showed limited 

solubility in the assay conditions (please see Appendix I for details) moreover 

compounds 6.40,19 6.52, 6.53 and 6.54 showed auto-fluorescence. Solubility 

issues and auto-fluorescence exhibited by some compounds have a detrimental 

effect on the percentage of  inhibition at the specified concentration due to the 

nature of the assay.12  
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6.2.10 Design and synthesis of analogues with partial or total 

removal of benzyloxy groups  

 Solubility problems reported in the previous series of compounds (Tables 

6.4 and 6.5) were addressed by synthesizing structural analogues derived from 

partial or total removal benzyloxy groups (Table 6.7) bearing the generic 

formula reported in Scheme 6.4 (please see Sections 6.4 and 6.5 for 

chemistry). 

 

In vitro RNAP % inhibition at 100  

Scheme 6.4 Generic formula of the synthesized analogues with partial or total 

removal of benzyloxy groups. 

 

Table 6.7 Synthesized analogues with partial or total removal of benzyloxy 

groups. 

Compound number Ar
1

 Ar
2

 

6.61  3,4,5-tris(benzyloxy)phenyl 5-nitrofuran-2-yl 

6.62  3,5-bis(benzyloxy)phenyl p-hydroxyphenyl  

6.63  3,5-bis(benzyloxy)phenyl 1H-indol-3-yl 

6.6420  4-(benzyloxy)phenyl p-nitrophenyl  

6.65  4-(benzyloxy)phenyl p-dimethylaminophenyl  

6.66  4-(benzyloxy)phenyl 1H-indol-3-yl 

6.6725  2-naphthyl p-nitrophenyl 

6.68  2-naphthyl p-dimethylaminophenyl 

6.69  2-naphthyl 1H-indol-3-yl 
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6.2.11 Biological results 

 Compounds 6.61―6.69 were evaluated in the SYBR Green assay12 

(please see Appendix I for details) and the results are summarized in Table 6.8. 

 

Table 6.8 In vitro RNAP percentage inhibition of the synthesised compounds. 

Compound number In vitro RNAP % inhibition at 100 μM 

6.61  0† 

6.62  59.5†‡ 

6.63  2.2†‡ 

6.6420  9.8† 

6.65  9.4† 

6.66  13.3
†
 

6.6725  30.4 

6.68  13.2† 

6.69  33.1 

 

(†) Compounds showing solubility issues in the assay conditions 

(‡) Compounds showing auto-fluorescence in the assay conditions 

 

 Solubility issues and auto-fluorescence were observed for some 

compounds, which, for these cases, limited the accuracy of measurement of 

inhibition in the assay.  

 Disappointingly, the prediction of LogP and LogSw values using ALOGPS 

2.1 software9 (Table 6.9) for some representative compounds evaluated 

biologically (Tables 6.6, 6.7 and 6.8), was not able to explain why some 

compounds with better predicted solubility had limited solubility in the assay. 
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Table 6.9 Prediction of ALogP and LogSw values using ALOGPS 2.1 software9 

for some representative compounds. 

Compound 
number 

ALogP LogSw 
Solubility 

Issues 

6.3419 5.74 -6.63 No 

6.4019 4.51 -6.14 Yes 

6.51 5.95 -6.60 No 

6.52 4.74 -6.12 Yes 

6.53 4.50 -6.11 Yes 

6.62 5.54 -6.12 Yes 

6.68 4.00 -4.95 Yes 

6.69 4.45 -5.68 No 

 

6.2.12 SAR analysis 

 Considering the biological results reported in Sections 6.2.9 and 6.2.11, it 

was possible to conclude preliminary SAR considerations for this library 

(Schemes 6.3 and 6.4, Tables 6.4, 6.5 and 6.7). Replacement of the 3,4,5-

(trisbenzyloxy)phenyl groups with a naphthalene maintains or slightly improves 

activity while complete or partial removal or replacement with other alkyl ethers 

is detrimental to the activity; the position of the nitrogen in the pyridyl ring is not 

essential for the activity. Interestingly, analogues bearing a 3,5-

(bisbenzyloxy)phenyl moiety show auto-fluorescence and for this reason are 

unsuitable for further SAR studies. Whilst compounds 6.35, 6.37, 6.38 and 6.39 

were predicted to be promising compounds on the basis of their putative binding 

mode and overall score, solubility issues in the assay encountered also in their 

less hydrophobic analogues prevented comparison of activity to the parent 

compound 6.3, with the only exception of the soluble 2-naphthyl derivative 

6.67,25 where the presence of the p-nitrophenyl moiety does not impair 

biological activity when compared to analogue 6.4824 bearing a 3-pyridyl moiety. 

Compounds 6.36 and 6.62, despite their solubility problems, reveal that a 
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hydroxyl group in the para position bearing both electron donating properties 

and H-bond donor-acceptor features is tolerated.  

 Putative binding mode of the most active derivative, compound 6.4924 is 

reported in Figure 6.9. 

 

 

Figure 6.9 Predicted binding mode of 6.49.24 

 

 The following interactions between the ligand 6.4924 and the myxopyronin 

binding site were identified: the hydrazone nitrogen bound to the methinic 

carbon and the nitrogen belonging to the pyridyl ring are predicted to form an H-

bond reinforced by the charge with the protonated nitrogen of the side chain of 

Lys1463. The guanidinium moiety belonging to the side chain of Arg1096 is 

predicted to form a cation-pi interaction with the pyridyl ring which is also 

performing a T-shaped displaced pi-stacking interaction with the aromatic ring 

of the side chain of Phe1440. The naphthalenic ring is involved in hydrophobic 

interactions with the side chains of Phe614, Leu619, Leu1088 and Ile1467.      
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6.2.13 Design and synthesis of a new acylhydrazone library with 

improved solubility 

 A new acylhydrazone library (Table 6.10) bearing the generic formula 

reported in Scheme 6.5 was designed to further explore SAR in the light of the 

previous findings and to address some solubility issues encountered (please 

see Sections 6.4 and 6.5 for chemistry).  

 

 

Scheme 6.5 Generic formula of the synthesized analogues with improved 

solubility. 

 

Table 6.10 Synthesized hydrazone-based analogues with predicted improved 

solubility 

Compound number Ar
1

 Ar
2

 

6.70 3,4,5-tris(benzyloxy)phenyl 2-hydroxyphenyl 

6.71 3,4,5-tris(benzyloxy)phenyl 3-hydroxyphenyl 

6.72 3,4,5-tris(benzyloxy)phenyl 2,4-dihydroxyphenyl 

6.73 3,4,5-tris(benzyloxy)phenyl 2-carboxyphenyl 

6.74 3,4,5-tris(benzyloxy)phenyl 3-carboxyphenyl 

6.75 3,4,5-tris(benzyloxy)phenyl 4-carboxyphenyl 

6.76 2-naphthyl 2-carboxyphenyl 

6.77 2-naphthyl 3-carboxyphenyl 

6.7825 2-naphthyl 4-carboxyphenyl 
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Table 6.10 Continued 

6.79 3,4,5-tris(benzyloxy)phenyl 2-cyanophenyl 

6.80 3,4,5-tris(benzyloxy)phenyl 3-cyanophenyl 

6.81 3,4,5-tris(benzyloxy)phenyl 4-cyanophenyl 

6.82 3,4,5-tris(benzyloxy)phenyl 1H-pyrrol-2-yl 

6.83 2-naphthyl 1H-pyrrol-2-yl 

6.84 1-naphthyl 3-pyridyl 

6.85 quinolin-6-yl 3-pyridyl 

6.86 quinoxaline-6-yl 3-pyridyl 

6.87 1H-indol-3-yl 3-pyridyl 

6.88 1H-indol-5-yl 3-pyridyl 

6.89 1H-indol-6-yl 3-pyridyl 

6.90a 3-morpholinophenyl 3-pyridyl 

6.91a 4-(1H-imidazol-1-yl)phenyl 3-pyridyl 

 

 The following structural variations were probed: 

 As compound 6.36 showed good inhibitory activity despite its solubility 

problems, other positions for the placement of an hydroxyl group on the phenyl 

ring were explored via compounds 6.70 and 6.71, moreover a more soluble 

analogue, 6.72, was prepared.   

3,4,5-(Trisbenzyloxy)phenyl derivatives 6.73, 6.74, 6.75 and 2-naphthyl 

based analogues  6.76, 6.77, 6.7825 with the carboxylate group inserted in 

various positions of the phenyl ring were prepared with the aim of performing a 

bioisosteric replacement of the nitro group and to obtaining more soluble 

derivatives. 

Compounds 6.79, 6.80 and 6.81 were prepared to evaluate the inhibitory 

potency of derivatives bearing a substituent with electron withdrawing and H-

bond acceptor properties. 
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Substitution of the pyridyl group with a smaller ring was tested via 

synthesizing compounds 6.82 and 6.83.   

Compound 6.84 was prepared to assess whether a 2-naphthyl group is 

essential for the biological activity or if a 1-naphthyl substituent is tolerated. 

 Heteroaromatic derivatives 6.85, 6.86, 6.87, 6.88, 6.89, 6.90a, 6.91a were 

synthesized to improve solubility and to explore the effects of H-bond donors 

and acceptors on the putative binding region occupied by the 3,4,5-

(trisbenzyloxy)phenyl group of parent compound 6.3. 

Compounds 6.90a and 6.91a were specifically shortlisted from a series of 

possible structural analogues (Table 6.11) following prediction from docking 

studies that they may undergo favourable binding to RNAP following the 

protocol reported in Section 6.2.2. The overall score value, putative binding 

mode and number of H-bond interactions were considered in prioritizing the 

synthesis of 6.90a and 6.91a as reported in Table 6.11. 

 

Table 6.11 Designed acylhydrazone analogues with structural variations on the 

phenyl ring 

Comp. 
number 

Structure Chemscore 
Number of 
H-bonds 

6.90a 

 

35.2 3 

6.91a 

 

34.0 2 

6.90b 

 

31.6 2 
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Table 6.11 Continued 

6.91b 

 

28.8 1 

6.90c 

 

27.2 1 

6.91c 

 

27.6 1 

 

6.2.14 Biological results 

 Compounds 6.70―6.91a were evaluated in the SYBR Green assay12 

(please see Appendix I for details) and results are summarized in Table 6.12. 

Table 6.12 In vitro RNAP percentage inhibition of the designed acylhydrazone 
analogues. 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

6.70 0 6.81 17.1† 

6.71 15.1 6.82 9.7 

6.72 5.9† 6.83 0 

6.73 53.8 6.84 0 

6.74 18.7 6.85 7.9 

6.75 72.7 6.86 0 

6.76 11.8 6.87 13.3† 

6.77 16.4 6.88 0 
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Table 6.12 Continued 

6.7825 30.1 6.89 7.5 

6.79 0† 6.90a 0 

6.80 36.9 6.91a 0 

 

(†) Compounds showing solubility issues in the assay conditions 

 

 

Compounds 6.72, 6.79, 6.81 and 6.87 showed limited solubility in the buffer 

solution used for the assay, which would likely compromised their measured 

biological activity in the assay. As mentioned earlier, prediction of ALogP and 

LogSw values using ALOGPS 2.1 software9 for some representative 

compounds (Table 6.13) was again not able to account for why some 

compounds with better predicted solubility showed solubility issues in the assay. 

 

Table 6.13 Prediction of ALogP and LogSw values using ALOGPS 2.1 

software9 for some representative compounds. 

Compound 
number 

ALogP LogSw 
Solubility 

Issues 

6.70 6.45 -6.50 No 

6.71 6.46 -6.56 No 

6.72 6.36 -6.18 Yes 

6.79 6.42 -6.08 Yes 

6.80 6.43 -6.08 No 

6.81 6.44 -6.08 Yes 

6.87 2.37 -3.89 Yes 

6.88 2.37 -3.98 No 

6.89 2.37 -4.00 No 
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6.2.15 SAR analysis 

 In light of the biological results reported in Section 6.2.14, it was possible 

to make a number of deductions regarding SAR within this library (Scheme 6.5 

and Table 6.10): with regard to 3,4,5-(trisbenzyloxy)phenyl-based derivatives, 

introduction of the hydroxyl group in the phenyl ring belonging to the 

benzylidene moiety in positions other than para, as in compounds 6.70 and 6.71 

is detrimental for activity, while introduction of two hydroxyl groups somewhat 

surprisingly leads to solubility problems as in compound 6.72. Introduction of a 

carboxyl group in either the ortho or para positions of the benzylidene unit 

increases the biological activity (compounds 6.73 and 6.75 respectively), whilst 

the placement of carboxyl at the meta position as in compound 6.74 reduces 

the biological activity relative to the parent compound 6.3. Notably, introduction 

of a less strong H-bond acceptor and weaker electron withdrawing group 

relative to the carboxyl as in the cyano-substituted compounds 6.79, 6.80 and 

6.81, is negative for the biological activity. With regard to the 2-naphthyl based 

derivatives, introduction of a carboxyl group in the same previously mentioned 

positions does not lead to more potent analogues in comparison with the parent 

compound 6.3 but, by analogy with compounds 6.37, 6.38 and 6.39, substitution 

at the para position of the benzylidene moiety is the most favorable in terms of 

biological activity. Interestingly, the 1-naphthyl based derivative 6.84 is inactive 

and this suggests that this scaffold is not amenable in contrast with 2-naphthyl 

based isomer. Substitution of the pyridyl group with a smaller ring system as in 

compounds 6.82 and 6.83 is detrimental for biological activity in both the 3,4,5-

(trisbenzyloxy)phenyl and 2-naphthyl based derivatives. Substitution of the 

3,4,5-(trisbenzyloxy)phenyl group of the parent compound 6.3 with other 

heteroaromatic derivatives conferring higher predicted solubility and the 

possibility to establish additional H-bond interactions led to inactive molecules 

as observed for compounds 6.85, 6.86, 6.87, 6.88, 6.89, 6.90a, 6.91a. 

 The putative binding mode of the most active analogue, compound 6.75, is 

shown in Figure 6.10. 
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Figure 6.10 Putative binding mode of 6.75. 

 The following interactions between the ligand 6.75 and the myxopyronin 

binding site were predicted: the protonated nitrogen of the Lys1097 side chain is 

predicted to form an H-bond/ionic interaction with the carboxylate moiety of 

6.75, while the hydrazone carbonyl is establishing an H-bond reinforced by 

charge with the protonated nitrogen belonging to the side chain of Lys1463. 

Hydrophobic interactions are predicted between the benzylidene aromatic ring 

and the side chain of Phe1440. A T-shaped pi-stacking interaction is 

established between the side chain of Phe614 and one benzyloxy group while 

the side chains of Leu1447, Leu607, Leu1088, Leu619, Leu1053, Ile1466, Ile 

1467 and Val1037 are performing hydrophobic interactions with the three 

benzyloxy groups. 

 

6.2.16 Attempted evaluation of IC50 values and antibacterial activity 

for selected compounds. 

 As compounds 6.3, 6.36, 6.48,
24

 6.49,
24

 6.50,
24

 6.51 and 6.75 exhibited 

the best percentage inhibition activity at the concentration of 100 μM, attempts 

were made to establish IC50 values using E. coli RNA polymerase and also to 
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probe antibacterial activity on selected bacterial strains (please see Appendix I 

for details). 

 With regard to IC50, unfortunately a full dose response curve could not be 

determined for any of the compounds under study. This was due to the lack of 

100% inhibition when compounds reached the saturation concentration in the 

assay conditions. This observation may reflect the relative poor solubility of 

these compounds at higher concentrations as coupled with the rather modest 

inhibitory activity. 

 Antibacterial activity for selected compounds is summarized in Table 6.14. 

 

Table 6.14 MIC determination for selected compounds. a MIC values in μg/mL b 

E. coli TolC deficient strain. 

Compound number S. aureus SH1000
a 

E. coli SM1411
a,b 

6.3           >128 >128 

6.36 >128 >128 

6.4824 >128 >128 

6.4924 32 >128 

6.5024 >128 >128 

6.51 >128 >128 

6.75 >128 >128 

 Disappointingly, none of the compounds showed significant antibacterial 

activity with the only exception being compound 6.49,
24

 which showed 

moderate inhibitory activity with the Gram positive bacterial strain of S. aureus 

SH1000. 

6.3 Synthesis of intermediate 6.93 

 An acetone solution of ester 6.92 was treated with an excess of 

benzylbromide in presence of an excess of potassium carbonate under reflux to 

give di-ether 6.93
26 in good yield (Scheme 6.6). 
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Scheme 6.6 Synthesis of 6.93.26 

6.4 Synthesis of the hydrazides 

 The intermediate hydrazides were readily prepared in excellent yields by 

adding an excess of hydrazine hydrate to an ethanolic solution of an 

appropriately prepared (6.93)26 or commercially available ester (Table 6.15, 

Appendix II, Section A) and heating to reflux for 12 hours (Scheme 6.7). 

Recrystallization from a suitable solvent afforded the corresponding hydrazides 

(Table 6.16, Appendix II, Section B). 

 

 

Scheme 6.7 Synthesis of 6.103―6.111. 

 

6.5 Synthesis of the acylhydrazone library 

 A library of acylhydrazone analogues has been synthesized in good yield 

(Scheme 6.8) by heating to 50 °C for 8 hours an ethanolic solution of equimolar 

quantities of the prepared (6.94-6.111) or commercially available 6.112-6.116 

hydrazide (Table 6.17, Appendix II, Section C) and commercially available 

aldehyde (Table 6.18, Appendix II, Section D). Recrystallization from a suitable 

solvent or purification via mass-directed preparative HPLC afforded the 

corresponding acylhydrazones (Table 6.19, Appendix II, Section E). 
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Scheme 6.8 Synthesis of the hydrazones. 

6.6 Conclusions 

Following the application of a rigorous and accurate docking study, 

amongst the two discovered bacterial RNAP inhibitors, acylhydrazone 6.3 was 

selected on the basis of its RNAP inhibitor activity (56% of inhibition at the 

concentration of 100μM), synthetic amenability and suitability for analogue 

design. Based upon the predicted binding mode of this compound within RNAP, 

a SAR study was conducted in order to increase potency and drug likeness 

properties. A library of acylhydrazone analogues was synthesized after 

similarity searching and docking  studies which allowed the exploration of the 

chemical space around the initial hit and to prioritize the synthesis of analogues 

on the basis of the predicted binding mode. 

The biological results underlined the importance of hydrophobic 

interactions for the binding. In fact, any attempt to improve drug likeness by 

preparing compounds with predicted increased aqueous solubility, led 

systematically to inactive compounds or to derivatives with improved biological 

activity but which still suffered from poor solubility at higher concentrations 

which prevented the establishment of full IC50 determination. Notably, the 

calculation of physicochemical descriptors like LogP and LogSw during the 

analogue design failed in some cases to predict empirical solubility in the 

specific assay conditions. It was possible to conclude from the SAR studies that 

effectively targeting a highly lipophilic binding site via designing compounds with 

better physicochemical properties when compared to myxopyronin antibiotics is 

very challenging.  
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Interestingly, compounds 6.36, 6.49,24 6.62 and 6.75 showed better 

inhibition activity when compared to the parent acylhydrazone 6.3 but 

disappointingly none of them showed antibacterial activity with the only 

exception being derivative 6.49,24 which possessed moderate activity towards a 

Gram-positive bacterial strain of S. aureus SH1000. It is clear that inhibiting a 

whole bacterial cell implies crossing biological barriers and in the case of Gram 

negative strains, additional barriers and active mechanisms of resistance are 

operating and this explains why it is more easier to obtain inhibitors active in the 

isolated enzyme as opposed to also exhibiting cellular activity.  

With regard to the vHTS protocol, it was possible to conclude that this 

showed a reasonable hit identification ratio. The presence of false positives in 

the shortlist and the lack of correlation, in some cases, between the scoring 

values and the biological activity, underlined the actual limits of scoring 

functions in evaluating the free energy of binding. In addition, putative binding 

modes allowed to guide the design process and to explain the biological activity 

of some analogues, but the well known difficulties of search algorithms to 

sample a large binding site may lead to inaccuracies in the predictions. The lack 

of a potent inhibitor prevented the confirmation of binding modes with empirical 

data derived from X-ray diffraction studies of co-crystal structures of bound 

inhibitors. 

 In conclusion, none of the synthesized molecules possessed improved 

enzymatic inhibitory activity and antibacterial potency when compared to 7-

desmethylmyxopyronin B 1.27 despite of their improved synthetical amenability, 

better binding energy on the basis of the scoring function and more suitable 

chemical-physical properties as predicted by their descriptors.  
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7. Developing of a novel structure based virtual screening 

protocol  

7.1 Virtual screening strategy 

 As described previously, in the light of the solubility problems and the 

general lack of potency required for future optimisation encountered in the 

previous series of synthesized acylhydrazones (Chapter 6), it was decided to 

develop a novel RNAP inhibitor using a structure-based virtual screening 

protocol.  

 In order to maximise the solubility of the newly predicted virtual hits, a 

preliminary library filtering based on physico-chemical descriptors was 

performed to restrict the number of screening candidates. After this preliminary 

step, a docking was then performed using GOLD docking software focussed 

inside the myxopyronin binding region defined from the crystal structure of the 

T. thermophilus RNA polymerase holoenzyme in complex with the antibiotic 

myxopyronin A 1.25 (PDB id: 3DXJ1). 

 In contrast to the protocol reported in the previous Chapter (Sections 6.2.1 

and 6.2.2), no ligand-based stage was implemented in this virtual screening 

protocol. The definition of key pharmacophoric points based on the active 

conformation of 7-desmethyl-myxopyronin B 1.27 in the ligand-based virtual 

screening protocol reported in Section 6.2.1 permitted the prioritization of 

molecules showing similarity to the natural antibiotic in terms of pharmacophoric 

features and to decrease dramatically the number of molecules to be docked. 

The main disadvantage of this strategy was the identification of molecules 

sampling a limited number of interaction points present in a very large binding 

region. The full sampling of the binding site via docking allowed the selection of 

more structurally diverse molecules which also were predicted to interact with 

different residues when compared to the binding mode observed for the natural 

antibiotic 7-desmethylmyxopyronin B 1.27.     

 In order to counterbalance the increased computational time required for 

screening a database of molecules without a preliminary ligand-based 
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screening, the protocol was limited to a small sized compound library, the 

Medicinal Chemistry and Chemical Biology technology group (MCCB) in-house 

chemical database, composed of 26,493 molecules. With regard composition, 

the MCCB database  comprises selected collections of commercial compounds 

purchased from Albany Molecular Research Inc. (AMRI), Chembridge and 

Asinex databases.  

7.1.1  Database filtering protocol 

 The initial database of 26,493 molecules was filtered using Canvas v.1.6, a 

chemoinformatic module  included into Schrodinger Maestro software suite.  

 The specified parameters for filtering the database were calculated with 

Canvas v.1.6 with the exception of ALogP and LogSw (logarithm of the 

predicted solubility in water)  values which were calculated with ALOGPS 2.1 

software:2 

300 ≤ M.W. ≤ 500 

ALogP ≤ 4.0 

LogSw  ≥ -5.0 

Hydrogen bond donors ≤ 5 

Hydrogen bond acceptors ≤ 10 

Rotatable bonds ≤ 5 

Polar surface area ≤ 150 

 The choice of ALogP and LogSw parameters for filtering the database 

reflected the purpose of considering only molecules with good predicted 

solubility. Use of the specified M.W. range allowed the filtering of molecular 

fragments with a limited possibility to establish interactions within the binding 

site, while limiting the number of rotatable bonds allowed a significant reduction 

of the computational time spent by the searching algorithm for sampling the 

conformational space of the docked molecules.  

 Globally, the above specified physico-chemical parameters used for 

filtering the database were found to select a subgroup of 8,143 molecules which 

all satisfied the Lipinski’s rule of five3 and this database differed in more 
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restrictive range of values for the M.W., ALogP and the number of rotatable 

bonds. 

7.1.2  Docking protocol 

 Docking settings for the structure-based virtual screening protocol were 

used as described in the docking validation studies reported in Chapter 3. 

 The crystal structure of the T. thermophilus RNA polymerase 

holoenzyme in complex with the antibiotic myxopyronin A 1.25 (PDB id: 3DXJ1), 

was downloaded from the Protein Databank (www.rcsb.org). 

All water molecules, cofactors and ions were manually removed using 

Maestro and the binding site within the RNAP was defined as the protein 

comprised in a sphere with a 15 Å radius surrounding the cocrystallised ligand. 

The docking runs were performed using GOLD4 v4.0.1 (CCDC, 

Cambridge, UK) docking software by initially using accuracy settings for the 

genetic searching algorithm which corresponded to the 50% of the default 

parameters values of the genetic algorithm in order to get a quick and relatively 

accurate search inside the binding cavity. Compounds were ranked using the 

Chemscore scoring function generating 100 poses for each ligand. The top 10% 

of molecules, corresponding to 814 structures, were progressed to a further 

docking evaluation using the best accuracy settings for the genetic search 

algorithm  which corresponded to the 200% of the default parameters values in 

order to get a more exhaustive search inside the binding cavity. The final 

docked poses were re-ranked using Goldscore scoring function after energetic 

minimization performed using the simplex algorithm implemented in GOLD.     

A shortlist of 400 compounds which corresponded to around the 50% of 

the top-ranked molecules in this final step, was selected for post-docking 

analysis, which was performed for each ligand among its different docking 

solutions. Cluster analysis using an average linkage rule was performed using 

an internal module within the software. Only the best ranked poses of the most 

populated cluster were considered as the most likely and representative ones. 

In addition, the docked poses within the binding pocket were analysed applying 

the same post-docking criteria reported in Chapter 6, Section 6.2.2. 
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7.1.3  vHTS results 

 Following post-docking analysis, which included the selection of virtual hits 

on the basis of their chemical diversity, twenty molecules were selected for 

biological evaluation and are reported in Table 7.1 (please see Section 7.1.4 for 

biological results). 

 

Table 7.1 Virtual hits selected for biological evaluation 

Comp. 
number 

Structure M.W. 
 

ALogP 
(A) 

LogSw 
Chem
score 

7.1 

 

340 3.67 -3.86 26.8 

7.2 

 

325 3.24 -3.42 30.2 

7.3 

 

362 2.26 -3.50 30.0 

7.4 

 

371 2.31 -2.53 31.0 

7.5 

 

319 2.49 -3.51 33.6 
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Table 7.1 Continued 

7.6 

 

338 1.80 -3.30 33.8 

7.7 

 

445 2.69 -3.39 33.9 

7.8 

 

345 2.43 -3.32 28.3 

7.9 

 

406 3.62 -4.24 37.9 

7.10 

 

398 2.30 -3.55 35.5 

7.11 

 

356 2.88 -3.31 32.8 

 



173 
 

Table 7.1 Continued 

7.12 

 

392 2.95 -3.72 35.2 

7.13 

 

348 2.27 -3.75 29.0 

7.14 

 

360 2.05 -4.12 30.2 

7.15 

 

304 3.71 -3.71 33.5 

7.16 

 

352 2.53 -2.60 31.1 

7.17 

 

375 3.65 -3.48 40.7 

7.18 

 

371 1.98 -3.96 31.6
†
 

7.19 

 

350 4.38 -4.74 38.9 
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Table 7.1 Continued 

7.20 

 

341 4.00 -4.56 38.6 

 

(†)
 
Compound 7.18 was purchased as a racemic mixture and the Chemscore value is referred to its mean 

value of the two single docked enantiomers. 

 

7.1.4 Biological evaluation of the vHTS hits 

 Compounds 7.1―7.20 were evaluated in the SYBR Green assay5 (please 

see Appendix I for details) and the results are summarized in Table 7.2. 

 

Table 7.2 In vitro RNAP percentage inhibition of the vHTS hits 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

7.1 3.3 7.11 6.4 

7.2 5.2 7.12 6.4 

7.3 7.5 7.13 0 

7.4 0.9 7.14 11.6 

7.5 4.6 7.15 7.8 

7.6 3.0 7.16 3.6 

7.7 9 7.17 0 

7.8 9.8 7.18 57.1† 

7.9 12.1 7.19 1.8 

7.10 18.8 7.20 0 

 

(†) % inhibition value for Compound 7.18 refers to the racemic mixture. 



175 
 

 Disappointingly, most of the compounds showed only moderate inhibition 

activity with the only exception being 7.18 which was considered for further 

investigations and possible chemical optimization.  

 

7.1.5 Substructure query-based search and docking of structural 

analogues of compound 7.18 

 In order to explore the close chemical space of the identified hit from the 

previous virtual screening studies, a substructure query based search was 

performed both on the ZINC6 and MCCB database using ZINC substructure 

query tool and Canvas module included in Schrodinger Maestro software 

respectively. Substructure query based search on all atoms was based on a 

reference structure represented by the central scaffold of the hit 7.18 (Scheme 

7.1). 

 

 

Scheme 7.1 Central scaffold used for the substructure query based search 

 

 The substructure query based search of the MCCB library retrieved only 

fourteen compounds and they were all present within the Chembridge 

commercial library. Compounds were then docked following the same settings 

specified in Section 7.1.2 and it was observed that their predicted binding mode 

and overall score value was similar to those for compound 7.18 (Table 7.3). 

These compounds, were therefore all purchased for biological evaluation. 
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Table 7.3 Close structural analogues selected for biological evaluation 

Comp. 
number 

Structure M.W. 
 

ALogP 
(A) 

LogSw 

Chem

score
†
 

7.21 

 

355 2.43 -4.22 29.5 

7.22 

 

325 1.03 -2.78 28.6 

7.23 

 

273 0.51 -2.36 24.3 

7.24 

 

335 1.09 -3.32 28.1 

7.25 

 

311 0.82 -2.75 26.7 

7.26 

 

321 1.42 -3.42 28.5 
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Table 7.3 Continued 

7.27 

 

289 -0.05 -2.26 25.0 

7.28 

 

399 2.20 -3.43 28.4 

7.29 

 

355 0.71 -2.92 29.2 

7.30 

 

395 1.47 -3.75 29.3 

7.31 

 

391 1.72 -3.28 31.8 

7.32 

 

383 1.77 -3.51 28.5 
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Table 7.3 Continued 

7.33 

 

341 2.01 -4.06 30.6 

7.34 

 

365 1.40 -3.36 24.7 

 

(†)
 
All chiral compounds were purchased as a racemic mixture and the Chemscore value is referred as the 

mean value of the two single docked enantiomers. 

 

7.1.6 Biological results 

 Compounds 7.21―7.34 were evaluated in the SYBR Green assay5 

(please see Appendix I for details) and results are summarized in Table 7.4. 

 

Table 7.4 In vitro RNAP percentage inhibition of 7.18 close structural analogues 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

Compound 
number 

In vitro RNAP % 
inhibition at 100 μM 

7.21 27.8 7.28 30.4 

7.22 0 7.29 11.2 

7.23 0 7.30 11.5 

7.24 6 7.31 4.5 

7.25 8.2 7.32 28.7 

7.26 10.3 7.33 3.6 

7.27 23.5 7.34 7.1 
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 Unfortunately, none of the purchased analogues showed better biological 

activity than the original hit 7.18. In order to explore the potential for 

development of hit 7.18 and possible synthesis of novel analogues, this 

compound was further evaluated for antibacterial activity (Table 7.5) using 

selected bacterial strains (please see Appendix I for details).  

 

Table 7.5 MIC determination for 7.18. a MIC values in μg/mL b E. coli TolC 

deficient strain. 

Compound number S. aureus SH1000
a 

E. coli SM1411
a,b 

7.18            >128 >128 

 

 Unfortunately, compound 7.18 did not possess antibacterial activity with 

both Gram positive and Gram negative representative strains which probably 

reflects the poor penetration of bacterial membranes despite the good inhibition 

activity displayed by these compounds in the presence of the isolated enzyme. 

7.1.7 SAR analysis of the purchased analogues 

 On the basis of the previous biological results of the purchased analogues 

of hit 7.18 (Section 7.1.6), SAR were formulated. Globally, the thiophen-2-yl 

moiety along with the N-methoxyethyl chain are essential for the biological 

activity and no alternative moieties conferred better activity. In particular, the 

methoxy group at the level of the N-methoxyethyl chain is critical for the activity 

and N-alkyl derivatives are almost inactive, showing a negative trend of 

biological activity as the length of the chain is decreased as shown in 

compounds 7.21 and 7.33. Interestingly, substitution of the thiophen-2-yl moiety 

with bioisosteres as shown in compounds 7.29 and 7.34, is detrimental for the 

activity. Replacement of thiophen-2-yl moiety with groups showing increased 

steric hindrance in compounds 7.28, 7.30, 7.31 and 7.32 is negative for the 

activity, but the presence of a moderately electron withdrawing group in para 

position of the phenyl ring is better tolerated when comparing biological 
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activities of compounds 7.28 and 7.32 with 7.30 and 7.31. When comparing the 

importance for the biological activity of the thiophen-2-yl and N-methoxyethyl  

moieties in compounds 7.27 and 7.33 respectively, the N-methoxyethyl chain is 

more critical for the activity. Methylation of the NH between the two keto groups 

is detrimental for the activity as shown by compounds 7.24 and 7.26. 

 

7.1.8 Putative binding mode of the identified hit 

 A putative binding mode of the most active derivative, compound 7.18, is 

shown in Figures 7.1 and 7.2 for both the enantiomers, (S) and (R) respectively. 

Whilst compound 7.18 was available only as a racemic mixture from the vendor, 

a different binding mode was found for both enantiomers and a slightly better 

Chemscore value was found for the (R) enantiomer as shown in Table 7.6. 

 

Table 7.6 Chemscore value for both enantiomers of 7.18 

Compound number Enantiomer Chemscore
 

7.18    (S)            28.6 

7.18    (R)            34.6 

 

 The following interactions between the (S) enantiomer of 7.18 and the 

myxopyronin binding site were identified (Figure 7.1): a H-bond was predicted 

between the side chain of Gln1019 and one carbonyl of the pyrimidine ring 

while the carbonyl and the NH of Gly620 are forming a H-bond with the NH and 

the carbonyl of the pyrimidine ring respectively. The N-methoxyethyl chain is 

establishing hydrophobic interactions with the side chain of Val1087 while the 

side chains of Ile1467, Leu619 and Val1037 are performing the same 

interactions with the dihydroisoquinolinone ring and the thiophen-2-yl moiety of 

7.18. Notably, the predicted binding mode for this enantiomer, is able to explain 

some aspects of the previous SAR analysis. The importance of the N-

methoxyethyl chain and the thiophen-2-yl moiety in addition to the lower 

biological activity of shorter N-alkyl derivatives, may be explained by their 

predicted hydrophobic interactions. The detrimental effects upon biological 
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activity of moieties offering steric hindrance that is bigger than that predicted for 

the  thiophen-2-yl group, is predicted by the possible steric clash with the side 

chain of Trp1038. Finally the loss of activity following the methylation of the 

pyrimidine NH is explained by the loss of its hydrogen bond with the backbone 

of Gly620.  

 

 

Figure 7.1 Putative binding mode of the (S) enantiomer of 7.18 

 

 The following interactions between the (R) enantiomer of 7.18 and the 

myxopyronin binding site were identified (Figure 7.2): a H-bond was predicted 

between the side chain of Ser1084 and one carbonyl of the pyrimidine ring 

while the carbonyl and the dihydroisoquinolinone ring is forming H-bonds with 

the side chain of Ser1439 and Lys1463. The N-methoxyethyl chain is 

establishing hydrophobic interactions with the side chain of Val1087 while the 

side chains of Phe614, Val1466, Ile1467 and Val1466 are performing the same 

interactions with the dihydroisoquinolinone ring and the thiophen-2-yl moiety of 

7.18. A T-shaped pi-stacking interaction was predicted between the side chain 

of Trp1038 and the thiophen-2-yl moiety. Interestingly, the predicted binding 

mode for this enantiomer, is able to explain, by analogy with the previous 
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binding mode, some aspects of the previous SAR analysis. The importance of 

the N-methoxyethyl chain and thiophen-2-yl moiety in addition to the lower 

biological activity of shorter N-alkyl derivatives are explained by their predicted 

hydrophobic interactions. The detrimental effects on biological activity of 

moieties with bigger steric hindrance than the  thiophen-2-yl group is predicted 

by the possible clash with the side chain of Val1466. The T-shaped pi-stacking 

interaction between the side chain of Trp1038 and the thiophen-2-yl moiety 

could explain why analogue 7.29 has lower activity than 7.18, in fact, the 

electron rich furan ring could suffer from repulsion of the neighbouring electron 

rich indole ring while the thiophene moiety of 7.18, having a lower electron 

density, could establish a more favourable interaction with the side chain of 

Trp1038.    

 

 

Figure 7.2 Putative binding mode of the (R) enantiomer of 7.18 

 

 Overlay of the (R) enantiomer of compound 7.18 with myxopyronin A 1.25 

into its binding site (Figure 7.3) revealed that the pyrimidine ring is occupying 

the same region of the central α-pyrone ring performing a similar network of H-

bond interactions while the N-methoxyethyl chain and the thiophen-2-yl moiety 

is predicted to occupy the same hydrophobic regions of myxopyronin A. The 
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dihydroisoquinolinone ring system is involved in some important interactions 

within the binding site (Figure 7.3) and it is also providing the function of a rigid 

spacer for the thiophen-2-yl moiety. This putative binding mode could provide 

useful ideas for future analogue design based on a central N-substituted 

pyrido[2,3-d]pyrimidine-based scaffold linked to a suitable polar group 

mimicking the interactions of the ene-carbamate as shown in Scheme 7.2. 

 

 

Figure 7.3 Overlay between myxopyronin A  1.25 in yellow sticks and the (R) 

enantiomer of 7.18 in green.  

 

 

 

Scheme 7.2 General structure of potential analogues for future design 
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7.2 Conclusions 

 In order to avoid solubility problems in the assay, a structure-based virtual 

screening was conducted on the (MCCB) in-house chemical database applying 

a preliminary library filtering based on physico-chemical descriptors.  

 Application of this virtual screening protocol was successful and identified 

a hit between a short list of twenty molecules which did not show solubility 

issues.  

 In order to explore the close chemical space of the identified hit, a 

substructure query based search and docking studies were conducted on the 

on the ZINC6 and MCCB database, identifying fourteen analogues and SAR 

analysis was performed on these molecules. Interestingly, the putative binding 

modes for both enantiomers of 7.18 were able to explain SAR and this 

appeared to validate the putative binding mode and to confirm the good 

performance of the searching algorithm. On the contrary, the lack of biological 

activity of the selected hit analogues showing a similar score underlines the 

limitations of the scoring function in correlating the biological activity with the 

estimated binding energy.    

 Considering the absence of antibacterial activity showed by the most 

active inhibitor, compound 7.18, in addition to the inability to improve inhibitory 

activity via analysis of structural analogues, compound 7.18 is not a viable 

candidate for future optimisation by synthesis but its putative binding mode 

offers useful ideas for future design.  
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8. Conclusions and future work 

The work described in this thesis was directed towards the identification 

of novel bacterial RNAP inhibitors via the application of rational computational 

design, synthesis and biological evaluation. 

In particular, this research was focussed on the myxopyronin binding 

region, the ‘switch region’, a promising ‘hot spot’ which is essential for the 

conformational changes within RNAP required during DNA transcription.   

The computational rational design phase of the work involved the 

combined use of ligand- and structure-based techniques. Given the availability 

of different docking algorithms as well as X-ray co-crystal structures, a 

validation study was conducted in Chapter 3 to identify the optimal software 

parameters and the most appropriate crystal structure for use in the subsequent 

inhibitor design studies. 

Initially, the work was based around a small molecule RNAP inhibitor, 

4.1, reported on Pubchem.1 The absence of information on the putative binding 

site of this molecule and the lack of any SAR data required attempts to be made 

to identify the binding region of this molecule within RNAP via the use of 

extended docking studies on all the known inhibitor binding sites followed by 

SAR exploration. Unfortunately, the apparent inhibitory activity of this compound 

could not be reproduced using the assay system at Leeds which may result 

from differences between the Leeds-based biological assay2 and that reported 

in literature.3 

A scaffold-hopping strategy was then conducted (Chapter 5) on the basis 

of a pharmacophore hypothesis based upon structural elements of 

myxopyronin. Ligand-based virtual screening followed by docking studies were 

performed in order to attempt to identify putative RNAP inhibitors which may 

overcome the unfavourable pharmacokinetic and chemical properties of 

myxopyronin A (Myx) 1.25. Unfortunately, despite of the favourable 

physicochemical properties of the selected hits, no RNAP inhibition was 

observed. These results revealed the limitations of a virtual screening protocol 

relying mostly on ligand based techniques. 
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In Chapter 6, based upon a theoretical study described in the literature,4 

two bacterial RNAP inhibitors were identified via a rigorous and accurate 

combined ligand- and structure-based virtual screening protocol. Acylhydrazone 

6.3 was selected and a SAR study was conducted in order to increase its 

potency and drug likeness on the basis of its putative binding mode. A library of 

acylhydrazone analogues was synthesized after similarity-based virtual-

screening and docking studies, which allowed to explore the close chemical 

space of the initial hit and to prioritize the synthesis of analogues. Compounds 

6.36, 6.49,
5
 6.62 and 6.75 showed better inhibition activity when compared to 

the parent acylhydrazone 6.3 and moreover, derivative 6.49
5
 possessed 

moderate activity towards a Gram-Positive bacterial strain of S. aureus SH1000. 

Unfortunately, during IC50 determination studies, it was found that the most 

active compounds of this series had relatively poor aqueous solubility. 

Nonetheless, the results from the SAR study on this compound series underline 

the importance of hydrophobic interactions for the binding of these molecules to 

the myxopyronin binding site within RNAP and attempts to improve drug 

likeness by preparing compounds with predicted increased aqueous solubility 

(and corresponding decreased hydrophobicity) led systematically to inactive 

compounds or to derivatives with improved biological activity but which were 

poorly soluble. In addition, whilst a successful virtual screening protocol was 

conducted, this work showed that targeting effectively a highly lipophilic binding 

site via the design of compounds with better physicochemical properties than 

myxopyronin is very challenging. Furthermore, it was found that the use of 

physicochemical descriptors for predicting solubility is not always reliable when 

applied in circumstances different from model systems like the specific assay 

conditions. 

In Chapter 7, in order to prevent solubility problems previously 

encountered in the assay, structure-based virtual screening was conducted 

using an in-house (MCCB) chemical database, applying preliminary library 

filtering based on physico-chemical descriptors. Given the small size of the 

screened library, a new structure-based virtual screening protocol was 

successfully applied and a hit, compound 7.18, was identified. In order to 

explore the close chemical space of the identified hit, a substructure query 
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based search followed by docking studies were conducted identifying fourteen 

analogues and SAR analysis was performed on these molecules. Interestingly, 

the putative binding mode for 7.18 was generally able to explain the observed 

SAR in which appears to validate the modelling and design protocol. In contrast, 

the lack of biological activity of selected analogues showing a similar score to 

the original hit underlines the limitations of the scoring function in correlating the 

biological activity with the estimated binding energy. Compound 7.18 and its 

analogues did not show antibacterial activity and none of the analogues showed 

increased inhibition when compared with the parent molecule 7.18. For the 

previously cited reasons, no additional synthetic exploration was undertaken 

even if the putative binding mode of 7.18 offers useful ideas for future design. 

With the exception of compound 6.49,5 the lack of antibacterial activity 

among the synthesized enzyme inhibitors from this project underlines the 

challenge of crossing bacterial cell membranes and this explains why it is  

easier to obtain inhibitors active against the isolated enzyme as opposed to also 

exhibiting cellular activity.  

Whilst there is no conclusive evidence that the synthesized inhibitors bind 

to the myxopyronin binding region, future work could involve the synthesis of 

new analogues with increased potency for determining a X-ray co-crystal 

complex with bacterial RNAP. These crystallography data would provide 

increased reliability of the predictions via computational studies and will 

represent an excellent starting point for future structure-based design.  

Future analogue design could be based either on the ideas reported in 

Scheme 7.2 in Chapter 7 or applying the successful virtual screening protocols 

reported in Chapters 6 and 7 after preliminary library filtering based on physico-

chemical descriptors. 

 The myxopyronin binding region of bacterial RNAP is a highly lipophilic 

binding site and the design of a ligand with a favourable aqueous solubility 

profile represents a challenge for drug design. A possible strategy to overcome 

these intrinsic limitations could be represented by focussing attention on 

alternative known inhibitor binding regions of bacterial RNAP, e.g. 

streptolydigin6 and tagetitoxin7 binding sites, characterised by a lower 
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hydrophobicity of their key residues which are still unexplored in terms of drug 

design and synthesis.  

With regard to the lack of consensus between different biological assays 

encountered in Chapter 4, an interesting recent paper8 offered useful insights 

into this issue. In fact, the authors
8
 demonstrated that the template choice can 

influence the inhibitory potency of bacterial RNAP inhibitors. In particular, our 

assay, when compared with the other assays described in the paper,8 

underestimates the potency of myxopyronin while in the case of an another 

inhibitor of the same binding region, corallopyronin, gave comparable results. 

The authors8 recommended the use of a double-stranded, preferentially 

prokaryotic promoter-containing DNA template for the determination of inhibitory 

potencies of compounds targeting bacterial RNAP. In the light of these findings 

and considering that the template in our assay is a single strand of circular DNA 

lacking of promoter, it might be useful to develop an alternative assay in future 

for evaluating the synthesized molecules of this thesis which were designed and 

assumed as putative inhibitors of the myxopyronin binding region. 

. 
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9. Experimental section 

9.1  General Procedures and Instrumentation 

 

All reagents were obtained from Sigma-Aldrich chemical company and/or 

Acros and/or Alfa-Aesar and/or TCI UK and were not further purified before use.  

 All reactions, unless otherwise specified, were performed under a positive 

pressure of dry, oxygen-free nitrogen. 

 Glassware for reactions carried out under dry conditions was washed with 

acetone, dried overnight at 125 °C and cooled under a stream of dry nitrogen 

prior to use. 

 Solvents were removed under reduced pressure using a Buchi rotary 

evaporator connected to a diaphragm pump. This was followed by drying under 

high vacuum using a rotary oil pump at 0.5 mmHg. 

 Analytical thin layer chromatography (TLC) was performed on Merck 

aluminium backed TLC silica gel 60 F254 sheets and these were visualised using 

ultraviolet lamp (λmax = 254 nm) or other developing agents (potassium 

permanganate, 2,4-dinitrophenylhydrazine or bromo-cresol green) where 

appropriate. Silica gel 60 (particle size 37-70 μm) supplied by E.M. Merck was 

employed for flash chromatography. 

 1H and 13C NMR spectra were measured on a Bruker DPX300, Avance 

500 or on a Bruker DRX500 Fourier transform spectrometer and chemical shifts 

are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) 

in δ units and coupling constants (J) are given in Hertz (Hz). 

 TMS was defined at 0 ppm for 1H NMR spectra and the central peak of 

DMSO-d6 septet was also defined as 39.5 ppm for 13C NMR spectra. 

 The following abbreviations: s, singlet; br s, broad singlet; d, doublet; t, 

triplet; q, quartet; quint, quintet; sext, sextet; sept, septet; m, multiplet; dd, 

double doublet; dt, double triplet; ddd, double double doublet and apparent 

multiplicities (app., e.g. app. d denotes an apparent doublet); Ar, aromatic; qt, 

quaternary; are used when describing the 1H NMR spectra. Where appropriate, 
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proton and carbon assignment has been based on COSY, DEPT 135, DEPT 

90, HMQC, HMBC and NOESY spectra. 

 Infrared spectra (IR) were recorded on a Nicolet Avatar 300 Ft-IR or a 

Bruker Alpha Ft-IR Platinum ATR spectrophotometer. The vibrational 

frequencies are reported in wavenumbers (cm
-1

). 

 Mass spectra were recorded on a GTC Premier Micromass spectrometer 

for impact ionisation (EI) or fast atom bombardment (FAB) while for electron 

spray ionisation (ES), a Bruker Daltonics microTOF or a Micromass LCT-KA11 

spectrometer was used. Isotopic distributions in routine mass spectra were as 

expected. 

 HPLC analyses were carried out using:  

Method A; Agilent 1290 infinity LC system equipped with a column Ascentis 

Express C18 (5 x 2.1mm, 2.7μm) using a diode array detection system. 

Samples were eluted with a gradient of acetonitrile (5-95%) / water in the 

presence of 0.1% TFA at a flow rate of 0.5 ml/min over 5 minutes.  

Method B; Agilent 1290 infinity LC system equipped with a column Ascentis 

Express C18 (5 x 2.1mm, 2.7μm) using a diode array detection. Samples were 

eluted with a gradient of acetonitrile (5-95%) / water at a flow rate of 0.5ml/min 

over 5 minutes. 

Method C; Agilent 1290 infinity LC system equipped with a column Ascentis 

Express C18 (5 x 2.1mm, 2.7μm) using a diode array detection. Samples were 

eluted with a gradient of acetonitrile (50-95%) / water at a flow rate of 0.5 ml/min 

over 5 minutes.  

 Purifications via mass-directed preparative HPLC were carried out on 

Agilent 6100 series single quad mass spectrometer equipped with a XBridge 

Prep C18 (5μm OBD 19x100 mm) column at a flow rate of 20 ml/min using a 

mobile phase consisting of methanol / water at an appropriate gradient in the 

presence of 0.1% formic acid. 

HPLC purity was reported as % values. 

 Melting points were determined on a Reichert Hot Stage apparatus and 

are uncorrected. 
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 Combustion analyses were performed with a Carlo Erba elemental 

analyser MOD 1106 instrument. 

 

9.2  General experimental methods 

 

Method A: Synthesis of sulphonamide derivatives 

 A solution of the sulphonyl chloride (1 eq) in dichloromethane (2.5 mL) was 

added dropwise to a stirred solution of the amine (2 eq) in dichloromethane (2.5 

mL) and pyridine (5 mL) cooled in an ice bath. This solution was stirred at 0 °C 

for 2 hours and then allowed to warm to room temperature over 12 hours under 

constant stirring. The reaction mixture was poured into dichloromethane (50 

mL) and the organic layer washed successively with 1M HCl solution (3 x 50 

mL), water (50 mL), brine (50 mL), saturated aqueous NaHCO3 (2 x 50 mL) and 

brine again (50 mL). The resulting solution was dried (MgSO4) and the solvent 

removed in vacuo to give the corresponding sulphonamides, which were 

recrystallised from MeOH / water. 

 

Method B: Synthesis of urea derivatives 

 A solution of amine (1 eq) in dichloromethane (4 mL) was added dropwise 

to a solution of isocyanate (1.1 eq) in dichloromethane (4 mL) at room 

temperature and stirred for 7 hours. The resulting white slurry was cooled at 0 

°C, filtered and washed with cold dichloromethane. The resulting solid was 

recrystallised from dichloromethane.  

 

Method C: Synthesis of hydrazide derivatives 

 To a solution of an appropriate ester (1 eq) in ethanol (10 mL) was added 

an excess of hydrazine hydrate. The mixture was stirred and heated at reflux for 

12 hours unless otherwise specified. The reaction mixture was cooled to room 

temperature and the precipitate formed was removed via filtration and dried. 

The resulting residue was recrystallized from a suitable solvent to give the 

corresponding hydrazide. 
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Method D: Synthesis of acylhydrazone derivatives 

 To a solution of hydrazide (1 eq) in ethanol (10 mL) was added the 

corresponding aldehyde derivative (1 eq). The mixture was heated to 50 °C and 

stirred for 8 hours unless otherwise specified. The reaction mixture was cooled 

to room temperature and poured into water and the precipitate formed was 

removed via filtration and dried. The resulting residue was recrystallized from a 

suitable solvent or purified via mass-directed preparative HPLC to give the 

corresponding acylhydrazone. 
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N-(4-hydroxynaphthalen-1-yl)-2,5-dimethoxybenzenesulfonamide (4.1) 

 

A solution of 2,5-dimethoxybenzenesulphonyl 

chloride 4.8 (236 mg, 1.0 mmol) in dichloromethane 

(5 mL) was added dropwise to a stirred solution of 

4-aminonaphthalen-1-ol hydrochloride 4.35 (220 

mg, 1.1 mmol) in dichloromethane (5 mL) and 

pyridine (10 mL) cooled in an ice bath. This solution 

was stirred for 2 hours and then allowed to warm to 

room temperature over 12 hours under constant stirring. The reaction mixture 

was poured into dichloromethane (50 mL) and the organic layer washed 

successively with 1M HCl solution (3 x 50 mL), water (50 mL), brine (50 mL), 

saturated aqueous NaHCO3 (2 x 50 mL) and brine (50 mL). The resulting 

solution was dried (MgSO4) and the solvent removed in vacuo to give the 

corresponding dark red solid, which was purified using column chromatography 

on silica gel eluting with petroleum ether / EtOAc (80:20) and the resulting dark 

red solid was recrystallised from MeOH / water to give the title compound 4.1 ( 

270 mg, 0.75 mmol, 75%) as light pink plates m.p. 119—121 °C. Rf 0.60 (1:1 

petroleum ether—EtOAc); HPLC (Method B), R.t. 3.17 min, (100%); δH (300 

MHz, DMSO-d6); 10.24 (1H, s, NH or OH), 9.60 (1H, s, NH or OH), 8.04-8.09 

(2H, m, Ar-H5’,8’), 7.38-7.48 (2H, m, Ar-H), 7.12-7.14 (2H, m, Ar-H), 6.94-6.99 

(2H, m, Ar-H), 6.70 (1H, d, J = 8.1, Ar-H2’), 3.87 (3H, s, OCH3), 3.61 (3H, s, 

OCH3); δC (75 MHz, DMSO-d6); 152.2 (4′-C), 151.9 (2-C or 5-C), 150.4 (2-C or 

5-C), 131.7 (Ar-Cqt), 128.1 (Ar-Cqt), 126.1 (Ar-C), 125.2 (Ar-C), 124.7 (Ar-C), 

123.3 (Ar-Cqt), 123.2 (Ar-C), 122.0 (Ar-C), 119.4 (Ar-C), 114.6 (Ar-C), 113.8 (Ar-

C), 107.2 (2′-C), 104.5 (Ar-Cqt), 56.1 (OCH3), 55.5 (OCH3); vmax/cm-1 (neat); 

3404, 3287, 1610, 1510, 1310, 1280; m/z (ES) 382.1 (100%, MNa+); (Found 

MNa+, 382.0721. C18H17NO5S requires MNa, 382.0720).   
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2,5-dimethoxy-N-(5,6,7,8-tetrahydronaphthalen-1-yl)benzenesulfonamide 
(4.16) 

 

Prepared via general method A using 5,6,7,8-

tetrahydronaphthylamine 4.2 (0.280 mL, 2.0 mmol) and 2,5-

dimethoxybenzenesulphonylchloride 4.8 (238 mg, 1.0 mmol). 

Recrystallization from methanol / water gave the title 

compound 4.16 (205 mg, 0.59 mmol, 59%) as light-pink 

needles m.p. 108—109 °C. Rf 0.40 (40:10 petroleum ether—

EtOAc); HPLC (Method A), R.t. 3.39 min, (100%); δH (300 

MHz, DMSO-d6); 9.07 (1H, s, NH), 7.18-7.19 (2H, m, Ar-H 

benzene), 7.11-7.13 (1H, m, Ar-H benzene), 6.95 (1H, app. t, J = 7.6, Ar-H3′), 

6.88 (1H, app. d, J = 7.6, Ar-H4′), 6.76 (1H, app. d, J = 7.6, Ar-H2′), 3.82 (3H, s, 

OCH3), 3.70 (3H, s, OCH3), 2.60-2.70 (4H, m, 2H5′ and 2H8′), 1.61-1.64 (4H, m, 

2H6′ and 2H7′),δC (75 MHz, DMSO-d6); 152.0 (2-C or 5-C), 150.3 (2-C or 5-C), 

137.7 (1′-C), 134.8 (Ar-Cqt), 133.3 (Ar-Cqt), 128.9 (Ar-Cqt), 127.0 (Ar-C 

tetrahydronaphthalene), 125.2 (Ar-C tetrahydronaphthalene), 123.1 (Ar-C 

tetrahydronaphthalene), 119.4 (Ar-C benzene), 114.5 (Ar-C benzene), 114.0 

(Ar-C benzene), 56.2 (OCH3), 55.7 (OCH3), 29.0 (5′-C), 24.2 (8′-C), 22.3 (6′-C 

or 7′-C), 22.2 (6′-C or 7′-C); vmax/cm-1 (neat); 3309, 3287, 2945, 1584, 1490, 

1466, 1401, 1222, 1160, 1038; m/z (ES) 370.1 (100%, MNa+); (Found MNa+, 

370.1097. C18H21N4O4S requires MNa, 370.1083).   

 

N-(5,6,7,8-tetrahydronaphthalen-1-yl)benzenesulfonamide (4.17) 

 

Prepared via general method A using 5,6,7,8-

tetrahydronaphthylamine 4.2 (0.560 mL, 4.0 mmol) and 

benzenesulphonylchloride 4.7 (0.256 mL, 2.0 mmol). 

Recrystallization from methanol / water gave the title 

compound  4.17 (356 mg, 1.24 mmol, 62%) as orange platelets 

m.p. 151—153 °C. Rf 0.52 (40:10 petroleum ether—EtOAc); 

(Found: C, 76.5; H, 6.75; N, 10.4; C17H18N2O requires C, 76.7; 

H, 6.81; N, 10.5%). HPLC (Method A), R.t. 3.36 min, (100%); δH (300 MHz, 

DMSO-d6); 9.42 (1H, s, NH), 7.63-7.68 (2H, m, Ar-H benzene), 7.54-7.58 (3H, 
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m, Ar-H benzene), 6.98 (1H, app. t, J = 7.6, Ar-H3′), 6.92 (1H, dd, J = 7.6, 1.1,  

Ar-H4′), 6.75 (1H, dd, J = 7.6, 1.1, Ar-H2′), 2.66 (2H, t, J = 6.3, H5′), 2.39 (2H, t, J 

= 6.3, H8′), 1.49-1.60 (4H, m, 2H6′ and 2H7′), δC (75 MHz, DMSO-d6); 140.7 (1-C 

or 1′-C), 137.9 (1-C or 1′-C), 134.4 (Ar-Cqt), 133.4 (Ar-Cqt), 132.6 (Ar-C), 129.1 

(Ar-C), 127.3 (Ar-C), 126.4 (Ar-C), 125.3 (Ar-C), 123.6 (Ar-C), 29.0 (5′-C), 24.2 

(8′-C), 22.2 (6′-C or 7′-C), 22.1 (6′-C or 7′-C); vmax/cm-1 (neat); 3262, 2940, 1911, 

1783, 1580, 1455, 1397, 1323, 1158, 1090; m/z (ES) 310.1 (90%, MNa+); 

(Found MNa+, 310.0873. C16H17NO2S requires MNa, 310.0872).   

 

2,5-dichloro-N-(5,6,7,8-tetrahydronaphthalen-1-yl)benzenesulfonamide 
(4.18) 

 

Prepared via general method A using 5,6,7,8-

tetrahydronaphthylamine 4.2 (0.28 mL, 2.0 mmol) and 2,5-

dichlorobenzenesulphonylchloride 4.9 (491 mg, 1.0 mmol). 

Recrystallization from methanol / water gave the title 

compound 4.18 (214 mg, 0.60 mmol, 60%) as orange-yellow 

platelets m.p. 190—191 °C dec. Rf 0.48 (40:10 petroleum 

ether—EtOAc); HPLC (Method A), R.t. 3.88 min, (100%); δH 

(300 MHz, DMSO-d6); 9.90 (1H, br s, NH), 7.78-7.77 (1H, m, Ar-H benzene), 

7.75-7.70 (2H, m, Ar-H benzene), 6.95 (1H, app. t, J = 7.3, Ar-H3′), 6.88 (1H, 

app. d, J = 7.3, Ar-H4′), 6.76 (1H, app. d, J = 7.3, Ar-H2′), 2.61-2.70 (4H, m, 2H5′ 

and 2H8′), 1.61-1.67 (4H, m, 2H6′ and 2H7′), δC (75 MHz, DMSO-d6); 142.5 (2-C 

or 5-C), 141.2 (2-C or 5-C), 137.8 (Ar-Cqt), 133.5 (Ar-C benzene), 133.2 (Ar-C 

benzene), 131.7 (Ar-Cqt), 129.8 (Ar-C benzene), 129.6 (Ar-Cqt), 128.4 (Ar-C 

tetrahydronaphthalene), 126.2 (Ar-Cqt), 125.3 (Ar-C tetrahydronaphthalene), 

122.6 (Ar-C tetrahydronaphthalene), 29.1 (5′C or 8′-C), 24.5 (5′C or 8′-C), 22.4 

(6′-C or 7′-C), 22.1(6′-C or 7′-C); vmax/cm-1 (neat); 3736, 3325, 1738, 1586, 1450, 

1343, 1145, 1043; m/z (ES) 378.0 (75%, MNa+); (Found MNa+, 378.0097. 

C16H15Cl2NO2S requires MNa, 378.0093).   
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2,5-dimethoxy-N-(4-methoxyphenyl)benzenesulfonamide (4.19) 

Prepared via general method A using p-anisidine 4.3 (246.3 

mg, 2.0 mmol) and 2,5-dimethoxybenzenesulphonylchloride 

4.8 (236.7 mg, 1.0 mmol). Recrystallization from methanol / 

water gave the title compound 4.19 (236.4 mg, 0.70 mmol, 

70%) as light-pink needles m.p. 119—121 °C. Rf 0.44 (40:10 

petroleum ether—EtOAc); HPLC (Method A), R.t. 2.69 min, 

(100%); δH (300 MHz, DMSO-d6); 9.63 (1H, s, NH), 7.10-7.17 

(3H, m, Ar-H3,4,6), 7.02 (2H, d, J = 9.0, Ar-H2′,6′), 6.78 (2H, d, J = 9.0, Ar-H3′,5′), 

3.86 (3H, s, OCH3 benzenesulfonamide), 3.69 (3H, s, OCH3 

benzenesulfonamide), 3.65 (3H, s, OCH3 in C4′), δC (75 MHz, DMSO-d6); 156.2 

(4′-C), 152.0 (2-C or 5-C), 150.2 (2-C or 5-C), 130.2 (Ar-Cqt), 126.8 (Ar-Cqt), 

122.7 (Ar-C), 119.6 (Ar-C), 115.0 (Ar-C), 114.1 (Ar-C), 113.9 (Ar-C), 56.3 

(OCH3), 55.6 (OCH3), 55.0 (OCH3); vmax/cm-1 (neat); 3249, 2939, 2840, 1888, 

1612, 1582, 1434, 1273, 1153, 1016; m/z (ES) 324.1 (60%, MH+); (Found MH+, 

324.0914. C15H17NO5S requires MH, 324.0900).   

 

N-(4-phenoxyphenyl)benzenesulfonamide (4.20) 

Prepared via general method A using 4-benzyloxyanilin 

hydrochloride 4.4 (472 mg, 2.0 mmol) and 

benzenesulphonylchloride 4.7 (0.128 mL, 1.0 mmol). 

Recrystallization from methanol / water gave the title compound 

4.20 (273 mg, 0.58 mmol, 58%) as colourless platelets m.p. 98—

100 °C. Rf 0.46 (40:10 petroleum ether—EtOAc); HPLC (Method 

A), R.t. 3.45 min, (100%); δH (300 MHz, DMSO-d6); 9.95 (1H, s, 

NH), 7.68-7.71 (2H, m, Ar-H2,6), 7.59-7.63 (1H, m, Ar-H4), 7.52-

7.56 (2H, m, Ar-H3,5), 7.30-7.42 (5H, m, Ar-H2′′,3′′,4′′,5′′,6′′), 6.98 (2H, 

d, J = 9.0, Ar-H2′,6′), 6.89 (2H, d, J = 9.0,  Ar-H3′,5′), 5.00 (2H, s, 

OCH2), δC (75 MHz, DMSO-d6); 155.6 (4′-C), 139.4 (1-C), 136.9 

(1′-C), 132.7 (4-C), 130.2 (1′′-C), 129.1 (Ar-C), 128.4 (Ar-C), 127.8 (Ar-C), 126.6 

(Ar-C), 123.3 (2′-C, 6′-C), 115.1 (3′-C, 5′-C), 69.3 (OCH2); vmax/cm
-1 

(neat); 

3273, 3063, 2886, 1894, 1610, 1510, 1326, 1157; m/z (ES) 362.1 (100%, 

MNa+); (Found MNa+, 362.0840. C19H17NO3S requires MNa, 362.0821).   
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N-(4-methoxyphenyl)benzenesulfonamide (4.21)1 

Prepared via general method A using p-anisidine 4.3 (246 mg, 2.0 

mmol) and benzenesulphonylchloride 4.7 (0.256 mL, 1.0 mmol). 

Recrystallization from methanol / water gave the title compound 

4.21 (189 mg, 0.72 mmol, 72%) as pink needles m.p. 91—92 °C 

(Lit.1 91—92 °C). Rf 0.13 (40:10 petroleum ether—EtOAc); 

(Found: C, 59.2; H, 4.90; N, 5.2; S 12.2; C13H13NO3S requires C, 

59.3; H, 4.98; N, 5.3; S, 12.2%).  HPLC (Method A), R.t. 2.64 min, 

(100%); δH (300 MHz, DMSO-d6); 9.91 (1H, s, NH), 7.67-7.70 (2H, m, Ar-H 

benzenesulphonamide), 7.58-7.63 (1H, m, Ar-H benzenesulphonamide), 7.52-

7.56 (2H, m, Ar-H benzenesulphonamide), 6.97 (2H, d, J = 9.0, Ar-H2′,6′), 6.80 

(2H, d, J = 9.0,  Ar-H3′,5′), 3.67 (3H, s, OCH3 in C4′), δC (75 MHz, DMSO-d6); 

156.4 (4′-C), 139.4 (1-C), 132.7 (Ar-C benzenesulphonamide), 130.0 (1′-C), 

129.1 (Ar-C benzenesulphonamide), 126.6 (Ar-C benzenesulphonamide), 123.4 

(2′-C, 6′-C), 114.2 (3′-C, 5′-C), 55.1 (OCH3); vmax/cm-1 (neat); 3259, 3004, 1613, 

1506, 1466, 1445, 1333, 1289, 1147; m/z (ES) 286.0 (100%, MNa+); (Found 

MNa+, 286.0510. C13H13NO3S requires MNa, 286.0508).   

 
N-benzyl-2,5-dimethoxybenzenesulfonamide (4.22) 

Prepared via general method A using benzylamine 4.5 

(0.22 mL, 2.0 mmol) and 2,5-

dimethoxybenzenesulphonylchloride 4.8 (236 mg, 1.0 

mmol). Recrystallization from methanol / water gave the 

title compound 4.22 (157 mg, 0.51 mmol, 51%) as light-

yellow platelets m.p. 88—90 °C. Rf 0.82 (40:10 petroleum 

ether—EtOAc); (Found: C, 58.7; H, 5.50; N, 4.4; 

C15H17NO4S requires C, 58.6; H, 5.57; N, 4.6%). HPLC (Method A), R.t. 2.82 

min, (100%); δH (300 MHz, DMSO-d6); 8.19 (1H, t, J = 6.3, NH), 7.16-7.25 (6H, 

m, Ar-H), 7.12 (1H, dd, J = 9.0, 3.1, Ar-H4), 7.06 (1H, app. d, J = 9.0, Ar-H3), 

4.05 (2H, d, J = 6.3, CH2), 3.78 (3H, s, OCH3), 3.75 (3H, s, OCH3); δC (75 MHz, 

DMSO-d6); 152.1 (2-C or 5-C), 150.1 (2-C or 5-C), 137.8 (6′-C), 128.9 (1-C), 

127.9 (Ar-C benzyl), 127.4 (Ar-C benzyl), 126.9 (Ar-C benzyl), 119.3 (Ar-C 

benzenesulphonamide), 114.1 (Ar-C benzenesulphonamide), 114.0 (Ar-C 
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benzenesulphonamide), 56.2 (OCH3), 55.7 (OCH3), 46.2 (CH2); vmax/cm-1 (neat); 

3326, 1969, 1895, 1446, 1324, 1151, 1092, 687; m/z (ES) 308.1 (70%, MH+); 

(Found MH+, 308.0964. C15H17NO4S requires MH, 308.0951).   

 

N-benzylbenzenesulfonamide (4.23)1 

Prepared via general method A using benzylamine 4.5 

(0.220 mL, 2.0 mmol) and benzenesulphonylchloride 4.7 

(0.128 mL, 1.0 mmol). Recrystallization from methanol / 

water gave the title compound 4.23 (138 mg, 0.56 mmol, 

56%) as colourless needles m.p. 87—88 °C (Lit.
1
  87—88 

°C) Rf 0.75 (40:10 petroleum ether—EtOAc); (Found: C, 

63.2; H, 5.25; N, 5.6; S 13.0; C13H13NO2S requires C, 63.1; 

H, 5.30; N, 5.7, S 13.0%). HPLC (Method A), R.t. 2.81 min, (100%); δH (300 

MHz, DMSO-d6); 8.17 (1H, t, J = 6.3, NH), 7.81-7.83 (2H, m, Ar-H 

benzenesulphonamide), 7.63-7.66 (3H, m, Ar-H benzenesulphonamide), 7.57-

7.60 (5H, m, Ar-H benzyl), 4.00 (2H, d, J = 6.3, CH2); δC (75 MHz, DMSO-d6); 

140.7 (1-C), 137.6 (6′-C), 132.3 (Ar-C benzenesulphonamide), 129.1 (Ar-C 

benzenesulphonamide), 128.2 (Ar-C benzenesulphonamide), 127.5 (Ar-C 

benzyl), 127.1 (Ar-C benzyl), 126.4 (Ar-C benzyl), 46.1(OCH2); vmax/cm-1 (neat); 

3338, 2930, 1969, 1896, 1447, 1320, 1150; m/z (ES) 270.1 (100%, MNa+); 

(Found MNa+, 270.0574. C13H13NO2S requires MNa, 270.0559).   

 
1-(4-methoxyphenyl)-3-(5,6,7,8-tetrahydronaphthalen-1-yl)urea (4.24) 

Prepared via general method B using 5,6,7,8-

tetrahydronaphthylamine 4.2 (0.240 mL, 1.68 

mmol) and 4-methoxyphenylisocyanate 4.11 

(0.240 mL, 1.80 mmol). Recrystallization from 

dichloromethane gave the title compound 4.24 

(408 mg, 1.38 mmol, 82%) as colourless needles m.p. 213—214 °C. Rf 0.52 

(40:10 petroleum ether—EtOAc); (Found: C, 73.0; H, 6.70; N, 9.4; C18H20N2O2 

requires C, 73.0; H, 6.80; N, 9.4%). HPLC (Method A), R.t. 3.21 min, (100%); δH 

(300 MHz, DMSO-d6); 8.83 (1H, s, NH1′′′), 7.69 (1H, s, NH3′′′), 7.66 (1H, app. d, J 

= 7.8, Ar-H2), 7.37 (2H, d, J = 9.0, Ar-H2′,6′), 7.03 (1H, app. t, J = 7.8, Ar-H3), 
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6.88 (2H, d, J = 9.0, Ar-H3′,5′), 6.76 (1H, app. d, J = 7.8, Ar-H4), 3.87 (3H, s, 

OCH3), 2.72 (2H, t, J = 6.2, H8), 2.58 (2H, t, J = 6.2, H5), 1.78-1.83 (2H, m, H6), 

1.69-1.73 (2H, m, H7); δC (75 MHz, DMSO-d6); 154.3 (4′-C), 152.8 (C=O), 137.1 

(4a-C or 1-C), 137.0 (4a-C or 1-C), 133.0 (1′-C), 126.5 (8a-C), 125.1 (Ar-C 

tetrahydronaphthalene), 123.4 (Ar-C tetrahydronaphthalene), 119.6 (Ar-C), 

118.4 (Ar-C), 114.0 (3′-C, 5′-C), 55.1 (OCH3), 29.4 (5-C), 24.2 (8-C), 22.4 (6-C 

or 7-C), 22.1 (6-C or 7-C); vmax/cm-1 (neat); 3854, 3326, 3272, 1873, 1644, 

1560, 1509, 1246; m/z (ES) 319.1 (100%, MNa+); (Found MNa+, 319.1428. 

C18H20N2O2 requires MNa, 319.1417).   

 
1-(3,5-dimethoxyphenyl)-3-(5,6,7,8-tetrahydronaphthalen-1-yl)urea (4.25) 

Prepared via general method B using 5,6,7,8-

tetrahydronaphthylamine 4.2 (0.240 mL, 1.68 

mmol) and 3,5-dimethoxyphenylisocyanate 

4.12 (331 mg, 1.85 mmol). Recrystallization 

from dichloromethane gave the title compound 

4.25 (483 mg, 1.51 mmol, 90%) as colourless needles m.p. 192—193 °C. Rf 

0.72 (40:10 petroleum ether—EtOAc); HPLC (Method A), R.t. 3.38 min, (100%); 

δH (300 MHz, DMSO-d6); 9.01 (1H, s, NH1′′′), 7.75 (1H, s, NH3′′′), 7.64 (1H, app. 

d, J = 7.8, Ar-H2), 7.04 (1H, app. t, J = 7.8, Ar-H3), 6.78 (1H, app. d, J = 7.8, Ar-

H4), 6.69 (2H, d, J = 2.2, Ar-H2′,6′), 6.14 (1H, t, J = 2.2, Ar-H4′), 3.73 (6H, s, 

OCH3 in 5′ and 3′), 2.73 (2H, t, J = 6.2, H8), 2.57 (2H, t, J = 6.2, H5), 1.67-1.84 

(4H, m, H6,7); δC (75 MHz, DMSO-d6); 160.6 (3′-C, 5′-C), 152.5 (C=O), 141.6 

(4a-C or 1-C), 137.1 (4a-C or 1-C), 136.8 (1′-C), 126.8 (8a-C), 125.1 (Ar-C 

tetrahydronaphthalene), 123.7 (Ar-C tetrahydronaphthalene), 118.7 (Ar-C 

tetrahydronaphthalene), 96.2 (2′-C, 6′-C), 93.8 (4′-C), 55.0 (OCH3 in 3′-C and 5′-

C), 29.4 (5-C), 24.2 (8-C), 22.4 (6-C or 7-C), 22.3 (6-C or 7-C); vmax/cm-1 (neat); 

3852, 3736, 3350, 3294, 1744, 1650, 1605, 1564, 1208, 1151; m/z (ES) 349.1 

(100%, MNa+); (Found MNa+, 349.1539. C19H22N2O3 requires MNa, 349.1523).   
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1-phenyl-3-(5,6,7,8-tetrahydronaphthalen-1-yl)urea (4.26) 

Prepared via general method B using 5,6,7,8-

tetrahydronaphthylamine 4.2 (0.240 mL, 1.68 

mmol) and phenylisocyanate 4.13 (0.220 mL, 1.85 

mmol). Recrystallization from dichloromethane 

gave the title compound 4.26 (362 mg, 1.36 mmol, 

81%) as colourless needles m.p. 194—195 °C. Rf 0.75 (40:10 petroleum 

ether—EtOAc); HPLC (Method A), R.t. 3.28 min, (100%); δH (300 MHz, DMSO-

d6); 9.03 (1H, s, NH1′′′), 7.79 (1H, s, NH3′′′), 7.66 (1H, app. d, J = 7.4, Ar-H2), 

7.46 (2H, app. d, J = 7.9, Ar-H2′,6′), 7.28 (2H, app. t, J = 7.9, Ar-H3′,5′), 7.03 (1H, 

app. t, J = 7.4, Ar-H3), 6.95 (1H, app. t, J = 7.9, Ar-H4′), 6.77 (1H, app. d, J = 

7.4, Ar-H4), 2.72 (2H, t, J = 6.0, H5), 2.58 (2H, t, J = 6.0, H8), 1.77-1.83 (2H, m, 

H6), 1.71-1.75 (2H, m, H7); δC (75 MHz, DMSO-d6); 152.6 (C=O), 139.9 (1′-C), 

137.1 (4a-C or 1-C), 136.9 (4a-C or 1-C), 128.8 (3′-C, 5′-C), 126.7 (Ar-Cqt), 

125.1 (2′-C, 6′-C), 123.6 (Ar-C tetrahydronaphthalene), 121.6 (Ar-C 

tetrahydronaphthalene), 118.6 (4′-C), 117.9 (2-C), 29.4 (5-C), 24.2 (8-C), 22.4 

(6-C or 7-C), 22.1 (6-C or 7-C); vmax/cm-1 (neat); 3309, 2935, 1638, 1560, 1310, 

1244; m/z (ES) 289.1 (100%, MNa+); (Found MNa+, 289.1315. C17H18N2O 

requires MNa, 289.1311).   

 
1,3-bis(4-methoxyphenyl)urea (4.27)2 

Prepared via general method B using p-

anisidine 4.3 (246 mg, 2.0 mmol) and 4-

methoxyphenylisocyanate 4.11 (0.290 mL, 2.2 

mmol). Recrystallization from dichloromethane 

gave the title compound 4.27 (551 mg, 1.84 mmol, 92%) as colourless needles 

m.p. 237—238 °C (Lit.2 238 °C). Rf 0.38 (40:10 petroleum ether—EtOAc); 

(Found: C, 66.2; H, 5.92; N, 10.3; C15H16N2O3 requires C, 66.0; H, 5.90; N, 

10.4%). HPLC (Method A), R.t. 2.47 min, (100%); δH (300 MHz, DMSO-d6); 

8.36 (2H, s, NH1′′′,3′′′), 7.35 (4H, d, J = 9.0, Ar-H2,2′,6,6′), 6.86 (4H, d, J = 9.0, Ar-

H3,3′,5,5′), 3.72 (6H, s, OCH3); δC (75 MHz, DMSO-d6); 154.3 (4-C, 4′-C), 152.9 

(C=O), 132.9 (1-C, 1′-C), 119.8 (2-C, 2′-C, 6-C, 6′-C), 113.9 (3-C, 3′-C, 5-C, 5′-

C), 55.1 (OCH3); vmax/cm-1 (neat); 3325, 3289, 2959, 2837, 1876, 1643, 1609, 
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1247, 825, 652, 527; m/z (ES) 295.1 (100%, MNa+); (Found MNa+, 295.1055. 

C15H16N2O3 requires MNa, 295.1053).   

 

1-(3,5-dimethoxyphenyl)-3-(4-methoxyphenyl)urea (4.28) 

Prepared via general method B using p-

anisidine 4.3 (246 mg, 2.0 mmol) and 3,5-

dimethoxyphenylisocyanate 4.12 (394 mg, 2.2 

mmol). Recrystallization from dichloromethane 

gave the title compound 4.28 (568 mg, 1.9 

mmol, 94%) as colourless needles m.p. 174—175 °C. Rf 0.46 (40:10 petroleum 

ether—EtOAc); (Found: C, 63.2; H, 5.95; N, 9.0; C16H18N2O4 requires C, 63.5; 

H, 6.00; N, 9.2%). HPLC (Method A), R.t. 2.69 min, (100%); δH (300 MHz, 

DMSO-d6); 8.57 (1H, s, NH3′′′), 8.42 (1H, s, NH1′′′), 7.35 (2H, d, J = 9.0, Ar-H2′,6′), 

6.87 (2H, d, J = 9.0, Ar-H3′,5′), 6.67 (2H, d, J = 2.2, Ar-H2,6), 6.13 (1H, t, J = 2.2, 

Ar-H4), 3.73 (3H, s, OCH3 in 4′), 3.72 (6H, s, OCH3 in 3 and 5); δC (75 MHz, 

DMSO-d6); 160.6 (3-C, 5-C), 154.5 (4′-C), 152.6 (C=O), 141.6 (1-C), 132.5 (1′-

C), 120.1 (2′-C, 6′-C), 114.0 (3′-C, 5′-C), 96.3 (2-C, 6-C), 93.7 (4-C), 55.1 

(OCH3), 55.0 (OCH3); vmax/cm-1 (neat); 3306, 3255, 1634, 1601, 1567, 1208, 

815; m/z (ES) 325.1 (100%, MNa+); (Found MNa+, 325.1169. C16H18N2O4 

requires MNa, 325.1159).   

 
1-(4-chlorophenyl)-3-(4-methoxyphenyl)urea (4.29)3 

Prepared via general method B using p-

anisidine 4.3 (123 mg, 1.0 mmol) and 4-

chlorophenylisocyanate 4.14 (194 mg, 1.1 

mmol). Recrystallization from dichloromethane 

gave the title compound 4.29 (180 mg, 0.65 mmol, 65%) as colourless needles 

m.p. 254—255 °C (Lit.3 250—255 °C). Rf 0.28 (40:10 petroleum ether—EtOAc); 

HPLC (Method A), R.t. 2.99 min, (100%); δH (300 MHz, DMSO-d6); 8.74 (1H, s, 

NH1′′′), 8.52 (1H, s, NH3′′′), 7.47 (2H, d, J = 8.9, Ar-H2,6), 7.34 (2H, d, J = 9.0, 

H2′,6′), 7.31 (2H, d, J = 8.9, Ar-H3,5), 6.87 (2H, d, J = 9.0, Ar-H3′,5′), 3.71 (3H, s, 

OCH3); δC (75 MHz, DMSO-d6); 154.5 (C=O), 152.6 (4′-C), 138.9 (1-C), 132.5 

(4-C), 128.5 (2-C, 6-C), 125.0 (1′-C), 120.1 (3-C, 5-C), 119.5 (3′-C, 5′-C), 113.9 
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(2′-C, 6′-C), 55.1 (OCH3); vmax/cm-1 (neat); 3302, 1637, 1560, 1509, 1244, 828; 

m/z (ES) 277.1 (100%, MH+); (Found MH+, 277.0725. C14H13ClN2O2 requires 

MH, 277.0738).   

 
1-(3,5-dichlorophenyl)-3-phenylurea (4.30) 

Prepared via general method B using 3,5-

dichloroaniline 4.10 (162 mg, 1.0 mmol) and 

phenylisocyanate 4.13 (0.240 mL, 1.1 mmol). 

Recrystallization from dichloromethane gave the 

title compound 4.30 (143 mg, 0.51 mmol, 51%) as 

colourless needles m.p. 200—201 °C. Rf 0.56 (40:10 petroleum ether—EtOAc); 

(Found: C, 55.6; H, 3.50; N, 9.9; C13H10Cl2N2O requires C, 55.5; H, 3.59; N, 

10.0%). HPLC (Method A), R.t. 3.63 min, (100%); δH (300 MHz, DMSO-d6); 

9.04 (1H, s, NH1′′′), 8.87 (1H, s, NH3′′′), 7.54 (2H, d, J = 1.9, Ar-H2,6), 7.46 (2H, 

app. d, J = 8.0, Ar-H2′,6′), 7.31 (2H, app. t, J = 8.0, Ar-H3′,5′), 7.17 (1H, t, J = 1.9, 

Ar-H4), 7.02 (1H, app. t, J = 8.0, Ar-H4′); δC (75 MHz, DMSO-d6); 152.2 (C=O), 

142.3 (1-C), 139.1 (1′-C), 134.1 (3-C, 5-C), 128.8 (3′-C, 5′-C), 122.3 (4-C), 

120.8 (4′-C), 118.6 (2′-C, 6′-C), 116.3 (2-C, 6-C); vmax/cm-1 (neat); 3325, 3183, 

1650, 1606, 1588, 1544, 1448, 1310, 1216; m/z (ES) 303.0 (100%, MNa+); 

(Found MNa+, 303.0048. C13H10Cl2N2O requires MNa, 303.0062).   

 
1-benzyl-3-phenylurea (4.31)4 

Prepared via general method B using benzylamine 

4.5 (0.22 mL, 2.0 mmol) and phenylisocyanate 

4.13 (0.24 mL, 2.2 mmol). Recrystallization from 

dichloromethane gave the title compound 4.31 

(385 mg, 1.7 mmol, 85%) as colourless needles 

m.p. 173—175 °C (Lit.4 173—175 °C). Rf 0.20 (40:10 petroleum ether—EtOAc); 

(Found: C, 73.8; H, 6.25; N, 12.6; C14H14N2O requires C, 74.3; H, 6.24; N, 

12.4%). HPLC (Method A), R.t. 2.52 min, (100%); δH (300 MHz, DMSO-d6); 

8.55 (1H, s, NH3′′′), 7.21-7.42 (9H, m, Ar-H), 6.89-6.92 (1H, m, Ar-H), 6.62 (1H, 

t, J = 5.9, NH1′′′), 4.32 (2H, d, J = 5.9, CH2); δC (75 MHz, DMSO-d6); 155.2 

(C=O), 140.4 (Ar-Cqt), 140.3 (Ar-Cqt), 128.6 (Ar-C), 128.3 (Ar-C), 127.1 (Ar-C), 
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126.7 (Ar-C), 121.0 (Ar-C), 117.6 (Ar-C), 42.7 (CH2); vmax/cm-1 (neat); 3307, 

3030, 1952, 1686, 1599, 1556, 1309, 696; m/z (ES) 249.1 (100%, MNa+); 

(Found MNa+, 249.0990. C14H14N2O requires MNa, 249.0998).   

 
1-benzyl-3-(4-chlorophenyl)urea (4.32)5 

Prepared via general method B using 

benzylamine 4.5 (0.22 mL, 2.0 mmol) and 4-

chlorophenylisocyanate 4.14 (338 mg, 2.2 

mmol). Recrystallization from dichloromethane 

gave the title compound 4.32 (360 mg, 1.7 

mmol, 69%) as colourless needles m.p. 200—201 °C (Lit.5 201 °C) . Rf 0.31 

(40:10 petroleum ether—EtOAc); (Found: C, 64.2; H, 4.95; N, 10.8; 

C14H13ClN2O requires C, 64.5; H, 5.03; N, 10.7%). HPLC (Method A), R.t. 2.97 

min, (100%); δH (300 MHz, DMSO-d6); 8.71 (1H, s, NH3′′′), 7.44-7.47 (2H, m, Ar-

H), 7.24-7.36 (7H, m, Ar-H), 6.67 (1H, t, J = 5.9, NH1′′′), 4.31 (2H, d, J = 5.9, 

CH2); δC (75 MHz, DMSO-d6); 155.0 (C=O), 140.2 (Ar-Cqt), 139.4 (Ar-Cqt), 128.4 

(Ar-C), 128.3 (Ar-C), 127.1 (Ar-C), 126.7 (Ar-C), 124.5 (Ar-Cqt), 119.1 (Ar-C), 

42.7 (CH2); vmax/cm-1 (neat); 3289, 1629, 1594, 1567, 1397, 1241, 810; m/z (ES) 

261.1 (100%, MH+); (Found MH+, 261.0790. C14H13ClN2O requires MH, 

261.0789).   

 
1-(4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)thiourea (4.33) 

A solution of p-anisidine 4.3 (62 mg, 0.50 

mmol) in dichloromethane (4 mL) was added 

dropwise to a solution of 3,4,5-

trimethoxyphenylisothiocyanate 4.15b (124 

mg, 0.55 mmol) in dichloromethane (4 mL) at 

room temperature and stirred for 7 hours. The resulting yellow-white slurry was 

concentrated in vacuo and recrystallized from ether to give the title compound 

4.33 (119 mg, 0.34 mmol, 62%) as white-yellow platelets m.p. 100—102 °C. Rf 

0.40 (40:10 petroleum ether—EtOAc); HPLC (Method A), R.t. 2.41 min, (100%); 

δH (300 MHz, DMSO-d6); 9.53 (1H, s, NH1′′′), 9.51 (1H, s, NH3′′′), 7.29 (2H, d, J = 

8.9, Ar-H2′,6′), 6.90 (2H, d, J = 8.9, Ar-H3′,5′), 6.83 (2H, s, Ar-H2,6), 3.76 (3H, s, 
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OCH3 in 4), 3.75 (6H, s, OCH3 in 3 and 5), 3.65 (3H, s, OCH3 in 4′); δC (75 MHz, 

DMSO-d6); 179.6 (C=O), 156.6 (3-C, 5-C), 152.4 (4-C), 135.0 (1-C), 134.5 (1′-

C), 132.1 (4′-C), 126.2 (2′-C, 6′-C), 113.6 (3′-C, 5′-C), 101.7 (2-C, 6-C), 60.0 

(OCH3), 55.8 (OCH3), 55.2 (OCH3); vmax/cm-1 (neat); 3276, 2995, 1598, 1505, 

1234; m/z (ES) 371.1 (100%, MNa+); (Found MNa+, 371.1051. C17H20N2O4S 

requires MNa, 371.1036).   

 
1-(4-methoxyphenyl)-3-(3,4,5-trimethoxyphenyl)urea (4.34) 

Prepared via general method B using p-

anisidine 4.3 (123 mg, 1.0 mmol) and 3,4,5-

trimethoxyphenylisocyanate 4.15a (230 mg, 

1.1 mmol). Recrystallization from 

dichloromethane gave the title compound 4.34 

(286 mg, 0.86 mmol, 86%) as colourless needles m.p. 196—197 °C. Rf 0.31 

(40:10 petroleum ether—EtOAc); (Found: C, 61.0; H, 5.95; N, 8.2; C17H20N2O5 

requires C, 61.4; H, 6.07; N, 8.4%). HPLC (Method A), R.t. 2.33 min, (100%); δH 

(300 MHz, DMSO-d6); 8.53 (1H, s, NH1′′′), 8.40 (1H, s, NH3′′′), 7.34 (2H, d, J = 

9.0, Ar-H2′,6′), 6.86 (2H, d, J = 9.0, Ar-H3′,5′), 6.78 (2H, s, Ar-H2,6), 3.74 (6H, s, 

OCH3 in 3 and 5), 3.71 (3H, s, OCH3 in 4), 3.60 (3H, s, OCH3 in 4′); δC (75 MHz, 

DMSO-d6); 154.4 (Ar-Cqt), 152.8 (Ar-Cqt), 152.7 (Ar-Cqt), 136.0 (Ar-Cqt), 132.6 

(Ar-Cqt), 132.2 (Ar-Cqt), 120.1 (2′-C, 6′-C), 113.9 (3′-C, 5′-C), 95.7 (2-C, 6-C), 

60.1 (OCH3 in 3 and 5), 55.6 (OCH3 in 4), 55.1 (OCH3 in 4′); vmax/cm-1 (neat); 

3271, 2952, 1626, 1614, 1573, 1511, 1411, 1230, 1132; m/z (ES) 355.1 (100%, 

MNa+); (Found MNa+, 355.1256. C17H20N2O5 requires MNa, 355.1264).   

 

(E)-2-((2-carbamoylhydrazono)methyl)benzoic acid (5.15)6 

 
A solution of semicarbazide hydrochloride 5.31 (223 mg, 

2.0 mmol) and sodium acetate (164 mg, 2.0 mmol) in water 

(20 mL) was stirred at room temperature for 30 minutes. 2-

carboxybenzaldehyde 5.30 (300 mg, 2.0 mmol) was added 

to this solution and stirred for 12 hours. The resulting 

colourless slurry was filtered and the colourless solid 

washed with water (50 mL) and petroleum ether (50 mL) and recrystallized from 
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methanol / water to give the title compound 5.15 (381 mg, 1.8 mmol, 92%) as 

colourless plates m.p. 200 °C dec. (Lit.6 202 °C). Rf 0.13 (1:1 petroleum ether—

EtOAc); HPLC (Method B), R.t. 1.39 min, (100%); δH (500 MHz, DMSO-d6); 

13.24 (1H, br s, COOH), 10.43 (1H, s, N-H), 8.57 (1H, s, C-H1′), 8.18 (1H, app. 

d, J = 7.9, Ar-H5), 7.81 (1H, dd, J = 7.9, 1.0, Ar-H2), 7.54 (1H, app. td, J = 7.9, 

1.0, Ar-H4), 7.43 (1H, app. td, J = 7.9, 1.0, Ar-H3), 6.50 (2H, br s, NH2); δC (125 

MHz, DMSO-d6); 168.3 (COOH), 156.7 (C=O), 138.1 (1′-C), 134.7 (6-C), 131.5 

(4-C), 130.0 (1-C), 129.9 (2-C), 128.5 (3-C), 126.5 (5-C); vmax/cm-1 (neat); 3477, 

2505, 1704, 1566, 1482, 1429, 1283; m/z (E-H-) 206.1 (100%, M-H-); (Found M-

H-, 206.0563. C9H9N3O3 requires M-H-, 206.0571).   

 

3-butyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (5.16)7 

 
Sodium hydrogen sulphite (784 mg, 7.5 mmol) was 

added to a solution of 2-aminobenzenesulfonamide 

5.34 (861 mg, 5.0 mmol) and pentanal 5.35 (0.520 mL, 

5.0 mmol) in dimethylacetamide (10 mL). This mixture 

was heated with stirring at 170 °C for 2 hours and then poured into water (40 

mL). The light brown precipitate formed was filtered off and washed with water 

(100 mL) and recrystallized from petroleum ether / EtOAC to give the title 

compound 5.16 (836 mg, 3.5 mmol, 70%) as light brown needles, m.p. 148—

149 °C (Lit.7 150—151 °C); Rf  0.31 (1:1 petroleum ether—EtOAc); HPLC 

(Method A), R.t. 1.74 min, (100%); δH (500 MHz, DMSO-d6); 11.93 (1H, s, N-H), 

7.77 (1H, app. d, J = 8.0, Ar-H8), 7.65 (1H, app. t, J = 8.0, Ar-H7), 7.42 (1H, app. 

t, J = 8, Ar-H6), 7.31 (1H, app. d, J = 8.0, Ar-H5), 2.53 (2H, t, J = 7.5, H1′), 1.65 

(2H, quint, J = 7.5, H2’), 1.35 (2H, sext, J = 7.5, H3’), 0.90 (3H, t, J = 7.5, H4’); δC 

(75 MHz, DMSO-d6); 160.3 (3-C), 135.1 (4a-C), 133.0 (7-C), 126.2 (6-C), 123.4 

(8-C), 121.1 (8a-C), 117.3 (5-C), 34.9 (1′-C), 28.1 (2′-C), 21.4 (3′-C), 13.57 (4′-

C); vmax/cm-1 (neat); 3185, 2958, 1941, 1824, 1616, 1479, 1274; m/z (ES) 239.1 

(100%, MH+); (Found MH+, 239.0848. C11H14N2O2S requires MH+, 239.0849). 
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2-butyramidobenzoic acid (5.17)8 

 
Butanoyl chloride 5.33 (0.42 mL, 4.0 mmol) was added 

dropwise to a stirred solution of anthranilic acid 5.32 (274 mg, 

2.0 mmol) in pyridine (10 mL) at room temperature. This 

solution was stirred at room temperature for 12h. The reaction 

mixture was poured into EtOAc (10 mL) and the organic layer 

washed successively with 2M HCl (3 x 50 mL), water (50 mL) 

and brine (50 mL). The resulting solution was dried (MgSO4) and the solvent 

removed in vacuo and the colourless solid was recrystallised from MeOH / 

water to give the title compound 5.17 (373 mg, 1.8 mmol, 89%) as colourless 

plates m.p. 119—120 °C (Lit.8 117—118 °C); Rf 0.08 (1:1 petroleum ether—

EtOAc); (Found: C, 63.8; H, 6.25; N, 6.8; C11H13NO3 requires C, 63.8; H, 6.32; 

N, 6.8%). HPLC (Method A), R.t. 2.24 min, (100%); δH (300 MHz, DMSO-d6); 

13.62 (1H, br s, COOH), 11.13 (1H, s, N-H), 8.50 (1H, app. d, J = 9.0, Ar-H6), 

7.97 (1H, app. d, J = 9.0, Ar-H3), 7.58 (1H, app. t, J = 9.0, Ar-H4), 7.14 (1H, app. 

t, J = 9.0, Ar-H5), 2.36 (2H, t, J = 7.5, H2′), 1.64 (2H, sext, J = 7.5, H3′), 0.93 (3H, 

t, J = 7.5, H4′); δC (75 MHz, DMSO-d6); 174.1 (1′-C), 169.5 (COOH), 140.9 (2-C), 

134.0 (4-C), 131.0 (3-C), 122.5 (5-C), 119.8 (6-C), 116.2 (1-C), 39.4 (2′-C), 18.3 

(3′-C), 13.5 (4′-C); vmax/cm-1 (neat); 3171, 2961, 1947, 1842, 1682, 1606, 1537, 

1414; m/z (EI) 207.1 (100%, M); (Found M, 207.0898. C11H13NO3 requires M, 

207.0895).   

 

2-(2-chlorophenyl)-4H-benzo[d][1,3]oxazin-4-one (5.18)9 

 
2-chlorobenzoyl chloride 5.36 (0.253 mL, 2.0 mmol) 

was added dropwise to a stirred solution of anthranilic 

acid 5.32 (274 mg, 2.0 mmol) in pyridine (10 mL) at 

room temperature. This solution was stirred at room 

temperature for 12h. The reaction mixture was poured 

into water (20 mL) and the colourless precipitate was filtered off. This colourless 

solid was washed with water (100 mL) and recrystallized from ethanol to give 

the title compound 5.18 (168 mg, 1.3 mmol, 65%) as colourless plates m.p. 

137—138 °C (Lit.9 138 °C). Rf 0.80 (1:1 petroleum Ether—EtOAc); (Found: C, 
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65.4; H, 3.10; N, 5.3; Cl, 13.6; C14H8ClNO2 requires C, 65.3; H, 3.13; Cl, 13.8; 

N, 5.4%). HPLC (Method A), R.t. 3.41 min, (100%); δH (500 MHz, CDCl3); 8.28 

(1H, dd, J = 7.8, 1.6, Ar-H5), 7.91 (1H, dd, J = 7.8, 1.6, Ar-H8), 7.86 (1H, app. t, 

J = 7.8, Ar-H6 or Ar-H7), 7.73 (1H, app. d, J = 8.1, Ar-H6′), 7.59 (1H, app. t, J = 

7.8, Ar-H6 or Ar-H7), 7.54 (1H, dd, J = 8.0, 1.3, Ar-H3′), 7.47 (1H, app. t, J = 8.0, 

Ar-H4′), 7.41 (1H, app. t, J = 8.0, Ar-H5′); δC (125 MHz, CDCl3); 158.7 (4-C), 

155.8 (2-C), 145.8 (Ar-C), 137.0 (Ar-C), 132.9 (Ar-C), 131.8 (2'-C), 131.7 (Ar-C), 

130.6 (Ar-C), 130.2 (8a-C), 129.4 (Ar-C), 128.0 (Ar-C), 127.5 (Ar-C), 127.1 (Ar-

C), 116.8 (4a-C); vmax/cm-1 (neat); 1767, 1625, 1605, 1475, 1316; m/z (ES) 

280.0 (100%, MNa+); (Found MNa+, 280.0126. C14H8ClNO2 requires MNa, 

280.0136).   

 

2-butylquinazolin-4(3H)-one (5.19)10 

 

Sodium hydrogen sulphite (784 mg, 7.5 mmol) was 

added to a solution of anthranilamide 5.38 (681 mg, 

5.0 mmol) and pentanal 5.35 (0.520 mL, 5.0 mmol) in 

dimethylacetamide (10 mL). This mixture was heated 

with stirring  at 150 °C for 4 hours and then poured into water (40 mL). The light 

brown precipitate formed was filtered off and washed with water (100 mL) and 

recrystallized from petroleum ether / EtOAC to give the title compound 5.19 

(158 mg, 3.9 mmol, 78%) as light brown needles m.p. 159—160 °C (Lit.10 159—

160 °C). Rf 0.40 (1:1 petroleum ether—EtOAc); HPLC (Method A), R.t. 1.62 

min, (100%); δH (300 MHz, DMSO-d6); 12.19 (1H, br s, NH), 8.09 (1H, dd, J = 

7.8, 1.4, Ar-H5), 7.77 (1H, app. t, J = 7.8, Ar-H7), 7.59 (1H, app. d, J = 7.8, Ar-

H8), 7.45 (1H, app. t, J = 7.8, Ar-H6), 2.61 (2H, t, J = 7.7, H1’), 1.72 (2H, quint, J 

= 7.7, H2’), 1.36 (2H, sext, J = 7.7, H3′), 0.96 (3H, t, J = 7.7, H4′); δC (75 MHz, 

DMSO-d6); 161.8 (4-C), 157.5 (2-C), 148.9 (8a-C), 134.2 (7-C), 126.7 (5-C), 

125.9 (6-C), 125.6 (8-C), 120.7 (4a-C), 34.1 (1′-C), 28.9 (2′-C), 21.7 (3′-C), 13.7 

(4′-C); vmax/cm-1 (neat); 2925, 1845, 1679, 1620, 1564, 1503, 1468; m/z (ES) 

225.1 (100%, MNa+); (Found MNa+, 225.0988. C12H14N2O requires MNa, 

225.0998).   
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2-(furan-2-yl)-4H-benzo[d][1,3]oxazin-4-one (5.20)9 

 
Furan-2-carbonyl chloride 5.37 (0.197 mL, 2.0 mmol) 

was added dropwise to a stirred solution of anthranilic 

acid 5.32 (274 mg, 2.0 mmol) in pyridine (10 mL) at 

room temperature. This solution was stirred at room 

temperature for 12h. The reaction mixture was poured 

into water (20 mL) and the colourless precipitate was filtered off. This colourless 

solid was washed with water (100 mL) and recrystallized from ethanol to give 

the title compound 5.20 (192 mg, 0.9 mmol, 45%) as colourless plates m.p. 

101—102 °C (Lit.9 102 °C). Rf 0.78 (1:1 petroleum Ether—EtOAc); (Found: C, 

67.9; H, 3.40; N, 6.3; C12H7NO3 requires C, 67.6; H, 3.31; N, 6.6%). HPLC 

(Method A), R.t. 2.58 min, (100%); δH (500 MHz, CDCl3); 8.14 (1H, dd, J = 7.8, 

1.2, Ar-H5), 7.74 (1H, app. t, J = 7.8, Ar-H6 or Ar-H7), 7.62-7.64 (2H, m, Ar-H), 

7.50 (1H, app. t, J = 7.8, Ar-H6 or Ar-H7), 7.29 (1H, dd, J = 3.5, 0.7, Ar-H3' or Ar-

H4'), 6.55 (1H, dd, J = 3.5, 0.7, Ar-H3′ or Ar-H4′); δC (125 MHz, CDCl3); 158.2 (4-

C), 149.2 (2-C), 147.9 (Ar-C), 146.3 (2′-C), 144.1 (8a-C), 136.9 (Ar-C), 128.3 

(Ar-C), 128.2 (Ar-C), 126.6 (Ar-C), 117.0 (3′-C or 4′-C), 116.9 (4a-C), 112.9 (3′-

C or 4′-C); vmax/cm-1 (neat); 1767, 1705, 1634, 1599, 1472, 1456, 1326, 1271; 

m/z (ES) 236.0 (100%, MNa+); (Found MNa+, 236.0311. C12H7NO3 requires 

MNa, 236.0318).   

 

2-(pyridin-4-yl-methyl)quinazolin-4(3H)-one (5.21) 

 

To a solution of 2-mercaptoquinazolin-4(3H)-one 

5.39 (89 mg, 0.50 mmol) and triethylamine (5.0 mL, 

0.50 mmol) in acetone (5 mL) at room temperature 

was added 4-(bromomethyl)pyridine hydrobromide 

5.40 (126 mg, 0.50 mmol). The mixture was heated 

at 55 °C for 24 hours and then cooled to room temperature. The resulting brown 

slurry was dried under vacuo and the brown oily residue was recrystallized from 

water to give the title compound 5.21 (62 mg, 0.35 mmol, 70%) as colourless 

plates m.p. 204—205 °C . Rf 0.40 (1:1 petroleum ether—EtOAc); HPLC 

(Method B), R.t. 1.30 min, (100%); δH (300 MHz, DMSO-d6); 12.67 (1H, br s, N-
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H), 8.50 (2H, dd, J = 4.5, 1.5, Ar-H2′,6′), 8.02 (1H, dd, J = 7.9, 1.2, Ar-H5), 7.71-

7.83 (1H, m, Ar-H7), 7.59 (1H, app. d, J = 7.9, Ar-H8), 7.51 (1H, dd, J = 4.5, 1.5 

Hz, Ar-H3′,5′), 7.37-7.49 (1H, m, Ar-H6), 4.48 (2H, s, H1′′); δC (125 MHz, DMSO-

d6); 161.1 (4-C), 154.6 (2-C), 149.6 (2′-C, 6′-C), 148.2 (8a-C), 146.9 (4′-C), 

134.7 (7-C), 126.0 (5-C, 6-C), 125.8 (8-C), 124.2 (3′-C, 5′-C), 120.0 (4a-C), 32.4 

(1′′-C); vmax/cm-1 (neat); 3061, 1682, 1579, 1562, 1455, 1241, 1117, 762; m/z 

(ES) 270.1 (100%, MH+); (Found MH+, 270.0689. C14H11N3OS requires MH, 

270.0696).   

 

(E)-3,4,5-tris(benzyloxy)-N'-(pyridin-3-yl-methylene)benzohydrazide (6.3) 

 
Prepared via general method D using 3,4,5-

tris(benzyloxy)benzohydrazide 6.32 (227 mg, 

0.5 mmol) and 3-pyridinecarboxyaldehyde 6.33 

(0.06 mL, 0.5 mmol). Recrystallization from 

ethanol gave the title compound 6.3 (215 mg, 

0.4 mmol, 79%) as colourless plates m.p. 

200—201 °C. Rf 0.36 (95:5 CH2Cl2—MeOH); 

(Found: C, 75.3; H, 5.10; N, 7.6; C34H29N3O4 

requires C, 75.1; H, 5.38; N, 7.7%). HPLC 

(Method B), R.t. 3.57 min, (100%); δH (300 MHz, DMSO-d6); 11.92 (1H, s, N-H), 

8.87 (1H, app. s, Ar-H2′), 8.63 (1H, app. d, J = 4.5, Ar-H6′), 8.54 (1H, s, C-H1′′), 

8.17 (1H, app. d, J = 7.9, Ar-H4′), 7.26-7.53 (18H, m, Ar-H), 5.22 (4H, s, OCH2 in 

3 and 5), 5.03 (2H, s, OCH2 in 4); δC (75 MHz, DMSO-d6); 162.5 (C=O), 152.1 

(3C, 5C), 150.7 (6′-C), 148.8 (2′-C), 145.0 (1′′-C), 140.1 (4-C), 137.4 (1b-C), 

136.7 (1a-C, 1c-C), 133.4 (4′-C), 130.2 (3′-C), 128.4 (Ar-C), 128.3 (1-C), 128.2 

(Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 124.0 (Ar-C), 

106.9 (Ar-C), 74.2 (OCH2 in 4), 70.4 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3231, 

3033, 1646, 1580, 1540, 1426, 1371, 1334; m/z (ES) 544.2 (100%, MH+); 

(Found MH+, 544.2217. C34H29N3O4 requires MH, 544.2231).   
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Methyl 3,4,5-tris(benzyloxy)benzoate (6.31)11 

 

Potassium carbonate (7.38 g, 54.3 mmol) and benzyl 

bromide (1.35 mL, 67.9 mmol) were added to a 

solution of 3,4,5-trihydroxybenzoate methyl ester 6.30 

(2.50 g, 13.6 mmol) in dry DMF (30 mL). This reaction 

mixture was stirred at 120 °C for seven hours, and 

then poured into water (90 mL). The mixture was 

extracted with EtOAc (4 x 60 mL). The organic layer was dried over Na2SO4 and 

concentrated under reduced pressure. The brown solid was purified using 

column chromatography on silica gel eluting with petroleum ether / ethylacetate 

(9:1) and recrystallized from hexane to give the title compound 6.3111 (1.85 g, 

4.08 mmol, 30%) as colourless needles m.p. 97—98 °C (Lit.11 99—100 °C). Rf  

0.95 (1:1 petroleum ether—EtOAc); HPLC (Method A), R.t. 4.48 min, (100%); 

δH (300 MHz, DMSO-d6); 7.45-7,47 (4H, m, Ar-H), 7.38-7.41 (4H, m, Ar-H), 

7.32-7.36 (6H, m, Ar-H), 7.24-7.28 (3H, m, Ar-H), 5.18 (4H, s, OCH2 in 3 and 5), 

5.04 (2H, s, OCH2 in 4), 3.82 (3H, s, OCH3); δC (75 MHz, DMSO-d6); 165.7 

(C=O), 152.1 (3C, 5C), 141.3 (4-C), 137.3 (Ar-Cqt), 136.7 (Ar-Cqt), 128.4 (Ar-C), 

128.2 (Ar-C), 128.1 (Ar-C), 127.89 (Ar-C), 127.88 (Ar-C), 127.6 (Ar-C), 124.8 (1-

C), 108.1 (2-C and 6-C), 74.2 (OCH2), 70.3 (OCH2), 52.2 (OCH3); vmax/cm-1 

(neat); 3411, 3066, 3031, 2949, 2879, 1967, 1715, 1587, 1495, 1428; m/z (ES) 

477.2 (100%, MNa+); (Found MNa+, 477.1681. C29H26O5 requires MNa, 

477.1672).   

 

3,4,5-tris(benzyloxy)benzohydrazide (6.32)12 

 
Prepared via general method C using methyl 3,4,5-

tris(benzyloxy)benzoate 6.31 (2.0 g, 4.4 mmol) and 

hydrazine hydrate (2.3 ml, 44 mmol). 

Recrystallization from acetone / water to give the 

title compound 6.3212 (1.7 g, 3.7 mmol, 85%) as 

colourless fluffy solid m.p. 134—135 °C (Lit.
12

 

137—137.5 °C). Rf 0.72 (90:10 CH2Cl2—MeOH); HPLC (Method A), R.t. 0.40 
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min, (100%); δH (500 MHz, DMSO-d6); 9.73 (1H, s, N-H), 7.49-7.23 (17H, m, Ar-

H), 5.17 (4H, s, OCH2), 4.99 (2H, s, OCH2), 4.49 (2H, s, NH2); δC (125 MHz, 

DMSO-d6); 165.2 (C=O), 151.9 (3-C, 5-C), 139.4 (4-C), 137.5 (1′-C, 1′′′-C), 

136.9 (1-C), 128.5 (1′′-C), 128.4 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-

C), 127.8 (Ar-C), 127.6 (Ar-C), 106.1 (2-C, 6-C), 74.2 (OCH2), 70.2 (OCH2); 

vmax/cm-1 (neat); 3278, 3065, 3032, 1951, 1630, 1583, 1499, 1345; m/z (ES) 

455.2 (90%, MH+); (Found MH+, 455.1968. C28H26N2O4 requires MH, 455.1965).   

 

(E)-3,4,5-tris(benzyloxy)-N'-(pyridine-4-yl-methylene)benzohydrazide 

(6.34)13 

 

Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(241 mg, 0.53 mmol) and 4-

pyridinecarboxyaldehyde 6.118 (0.09 mL, 

0.53 mmol). Recrystallization from ethanol 

gave the title compound 6.34 (271 mg, 

0.50 mmol, 94%) as colourless needles 

m.p. 206—207 °C (Lit.13 not available). Rf 0.28 (95:5 CH2Cl2—MeOH); HPLC 

(Method A), R.t. 3.47 min, (100%); δH (500 MHz, DMSO-d6); 12.00 (1H, s, N-H), 

8.67 (2H, d, J = 4.5, Ar-H2′,6′), 8.48 (1H, s, C-H1′′), 7.68 (2H, d, J = 4.5, Ar-H3′,5′), 

7.48-7.51 (4H, m, Ar-H), 7.34-7.44 (10H, m, Ar-H), 7.26-7.32 (3H, m, Ar-H), 

5.21 (4H, s, OCH2 in 3 and 5), 5.03 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 

162.7 (C=O), 152.1 (3-C and 5-C), 150.3 (2′-C and 6′-C), 145.3 (1′′-C), 141.5 

(4′-C), 140.4 (4-C), 137.4 (1b-C), 136.7 (1a-C and 1c-C), 128.44 (Ar-C), 128.43 

(1-C), 128.2 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 

121.0 (3′-C and 5′-C), 107.1 (2-C and 6-C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 3 

and 5); vmax/cm-1 (neat); 3219, 3029, 1648, 1578, 1531, 1452, 1424, 1370, 

1324, 1112, 680; m/z (ES) 544.2 (100%, MH+); (Found MH+, 544.2235. 

C34H29N3O4 requires MH, 544.2231).   
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(E)-N'-benzylidene-3,4,5-tris(benzyloxy)benzohydrazide (6.35) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(227 mg, 0.50 mmol) and benzaldehyde 

6.119 (0.05 mL, 0.50 mmol). 

Recrystallization from ethanol gave the 

title compound 6.35 (239 mg, 0.44 mmol, 

88%) as colourless needles m.p. 199—

200 °C. Rf 0.62 (95:5 CH2Cl2—MeOH); HPLC (Method C), R.t. 3.23 min, 

(100%); δH (300 MHz, DMSO-d6); 11.76 (1H, s, N-H), 8.49 (1H, s, C-H1′′), 7.74-

7.77 (2H, m, Ar-H), 7.09-7.57 (20H, m, Ar-H), 5.22 (4H, s, OCH2 in 3 and 5), 

5.03 (2H, s, OCH2 in 4); δC (75 MHz, DMSO-d6); 162.4 (C=O), 152.1 (3-C and 5-

C), 147.7 (1′′-C), 140.0 (4-C), 137.4 (1b-C), 136.7 (1a-C and 1c-C), 134.2 (1′-C), 

130.1 (Ar-C), 128.9 (Ar-C), 128.5 (1-C), 128.4 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-

C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 127.0 (Ar-C), 106.8 (2-C and 6-C), 

74.2 (OCH2 in 4), 70.4 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3209, 3033, 1640, 

1577, 1549, 1422, 1363, 1099, 752; m/z (ES) 565.2 (100%, MNa+); (Found 

MNa+, 565.2091. C35H30N2O4 requires MNa, 565.2098). 

 

(E)-3,4,5-tris(benzyloxy)-N'-(4-hydroxybenzylidene)benzohydrazide (6.36) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (300 mg, 0.66 mmol) and 4-

hydroxybenzaldehyde 6.120 (80.6 

mg, 0.66 mmol). Recrystallization 

from ethanol gave the title compound 

6.36 (295 mg, 0.53 mmol, 80%) as 

colourless needles m.p. 204—205 

°C. Rf 0.24 (95:5 CH2Cl2—MeOH); (Found: C, 75.2; H, 5.40; N, 5.0; C35H30N2O5 

requires C, 75.2; H, 5.41; N, 5.0%). HPLC (Method B), R.t. 3.92 min, (100%); δH 

(500 MHz, DMSO-d6); 11.49 (1H, s, N-H), 9.91 (1H, s, O-H in 4′), 8.36 (1H, s, C-

H1′′), 7.56 (2H, d, J = 8.5, Ar-H2′,6′), 7.47-7.50 (4H, m, Ar-H), 7.32-7.45 (10H, m, 
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Ar-H), 7.32-7.22 (3H, m, Ar-H), 6.84 (2H, d, J = 8.5, Ar-H3′,5′), 5.20 (4H, s, OCH2 

in 3 and 5), 5.01 (2H, s, OCH2 in 4); δC (75 MHz, DMSO-d6); 162.1 (C=O), 159.4 

(4′-C), 152.0 (3-C and 5-C), 148.1 (1′′-C), 140.0 (4-C), 137.4 (1b-C), 136.8 (1a-

C and 1c-C), 128.82 (2′-C and 6′-C), 128.79 (1-C), 128.4 (Ar-C), 128.2 (Ar-C), 

128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 125.3 (1′-C), 115.7 (3′-C 

and 5′-C), 106.9 (2-C and 6-C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 3 and 5); 

vmax/cm-1 (neat); 3486, 3419, 3030, 1648, 1596, 1510, 1424, 1233, 1073, 683; 

m/z (ES) 581.2 (100%, MNa+); (Found MNa+, 581.2034. C35H30N2O5 requires 

MNa, 581.2047).   

 

(E)-3,4,5-tris(benzyloxy)-N'-(4-dimethylamino)benzylidene)benzohydrazide 

(6.37) 

 

Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (119 mg, 0.26 mmol) and 4-

(dimethylamino)benzaldehyde 6.130 

(39 mg, 0.26 mmol). Recrystallization 

from ethanol gave the title compound 

6.37 (116 mg, 0.20 mmol, 76%) as 

light yellow plates m.p. 84—85 °C. Rf 0.84 (95:5 CH2Cl2—MeOH); (Found: C, 

75.7; H, 6.00; N, 7.2; C35H37N3O4 requires C, 75.9; H, 6.02; N, 7.2%). HPLC 

(Method B), R.t. 4.40 min, (100%); δH (300 MHz, DMSO-d6); 11.45 (1H, s, N-H), 

8.33 (1H, s, C-H1′′), 7.56 (2H, d, J = 8.8, Ar-H2′,6′), 7.46-7.50 (4H, m, Ar-H), 7.32-

7.45 (10H, m, Ar-H), 7.23-7.31 (3H, m, Ar-H), 6.77 (2H, d, J = 8.8, Ar-H3′,5′), 

5.21 (4H, s, OCH2 in 3 and 5), 5.02 (2H, s, OCH2 in 4), 2.98 (6H, s, CH3); δC 

(125 MHz, DMSO-d6); 161.9 (C=O), 152.0 (3-C and 5-C), 151.5 (4′-C), 148.7 

(1′′-C), 139.9 (4-C), 137.4 (1b-C), 136.8 (1a-C and 1c-C), 129.0 (2′-C and 6′-C), 

128.42 (Ar-C), 128.38 (1-C), 128.0 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-

C), 127.7 (Ar-C), 121.5 (1′-C), 111.8 (3′-C and 5′-C), 106.7 (2-C and 6-C), 74.2 

(OCH2 in 4), 70.4 (OCH2 in 3 and 5), 40.3 (NCH3); vmax/cm-1 (neat); 3223, 3031, 

2899, 1644, 1588, 1521, 1315, 1092; m/z (ES) 586.3 (100%, MNa+); (Found 

MNa+, 586.2680. C37H35N3O4 requires MNa, 586.2676).   

 



216 
 

(E)-N'-((1H-indol-3-yl)methylene)-3,4,5-tris(benzyloxy)benzohydrazide 
(6.38) 

 
Prepared via general method D using 3,4,5-

tris(benzyloxy)benzohydrazide 6.32 (156 

mg, 0.50 mmol) and indole-3-

carboxyaldehyde 6.132 (50 mg, 0.50 mmol). 

Recrystallization from ethanol / water gave 

the title compound 6.38 (238 mg, 0.41 mmol, 

82%) as colourless needles m.p. 231 °C 

(dec). Rf 0.48 (90:10 CH2Cl2—MeOH); HPLC 

(Method B), R.t. 4.09 min, (100%); δH (500 MHz, DMSO-d6); 11.61 (1H, s, N-H 

indole), 11.42 (1H, s, N-H hydrazide), 8.66 (1H, s, 1′′-C), 8.32 (1H, app. d, J = 

7.5, Ar-H4′), 7.85 (1H, d, J = 2.7, Ar-H2′), 7.26-7.57 (18H, m, Ar-H), 7.23 (1H, 

app. t, J = 7.5, Ar-H5′ or Ar-H6′),  7.18 (1H, app. t, J = 7.5, Ar-H5′ or Ar-H6′), 5.24 

(4H, s, OCH2 in 3 and 5), 5.05 (2H, s, OCH2 in 4); δC (75 MHz, DMSO-d6); 161.8 

(C=O), 152.0 (3-C and 5-C), 145.0 (1′′-C), 139.7 (4-C), 137.4 (1a-C and 1c-C), 

137.0 (Ar-Cqt), 136.8 (Ar-Cqt), 130.3 (2′-C), 129.2 (Ar-Cqt), 128.4 (1b-C), 128.2 

(Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 124.3 (Ar-Cqt), 

122.6 (4′-C), 122.0 (Ar-C), 120.4 (Ar-C), 111.9 (Ar-C), 111.6 (Ar-Cqt), 106.6 (Ar-

C), 74.2 (OCH2 in 4), 70.4 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3384, 3216, 

3029, 1636, 1577, 1555, 1525, 1321, 1095, 749; m/z (ES) 604.2 (100%, MNa+); 

(Found MNa+, 604.2198. C37H31N3O4 requires MNa, 604.2207).   

 

(E)-3,4,5-tris(benzyloxy)-N'-(4-nitrobenzylidene)benzohydrazide (6.39) 

 

Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (247 mg, 0.54 mmol) and 4-

nitrobenzaldehyde 6.131 (82.1 mg, 

0.54 mmol). Recrystallization from 

ethanol gave the title compound 6.39 

(289 mg, 0.49 mmol, 91%) as 

colourless plates m.p. 234—235 °C. Rf 0.34 (95:5 CH2Cl2—MeOH); (Found: C, 

71.5; H, 5.00; N, 7.2; C35H29N3O6 requires C, 71.5; H, 5.00; N, 7.2%). HPLC 
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(Method B), R.t. 4.38 min, (100%); δH (500 MHz, DMSO-d6); 12.00 (1H, s, N-H), 

8.57 (1H, s, C-H1′′), 8.31 (2H, d, J = 8.3, Ar-H3′,5′), 8.00 (2H, d, J = 8.3, Ar-H2′,6′), 

7.47-7.50 (4H, m, Ar-H), 7.32-7.44 (10H, m, Ar-H), 7.32-7.21 (3H, m, Ar-H), 

5.21 (4H, s, OCH2 in 3 and 5), 5.03 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 

162.7 (C=O), 152.1 (3-C, 5-C), 147.9 (4′-C), 145.3 (1′′-C), 140.6 (4-C or 1′-C), 

140.4 (4-C or 1′-C), 137.4 (1b-C), 136.7 (1a-C and 1c-C), 128.4 (Ar-C), 128.23 

(1-C), 128.17 (2′-C, 6′-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-

C), 127.7 (Ar-C), 124.1 (3′-C and 5′-C), 107.1 (2-C and 6-C), 74.3 (OCH2 in 4), 

70.5 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3216, 3062, 3038, 1650, 1541, 1466, 

1425, 1267, 1127, 694; m/z (ES) 610.2 (100%, MNa+); (Found MNa+, 610.1921. 

C35H29N3O6 requires MNa, 610.1949).   

 

(E)-3,5-bis(benzyloxy)-N'-(pyridin-4-yl-methylene)benzohydrazide (6.40)13 

 
Prepared via general method D using 3,5-

bis(benzyloxy)benzohydrazide 6.109 (174 

mg, 0.50 mmol) and 4-

pyridinecarboxyaldehyde 6.118 (0.047 mL, 

0.50 mmol). Recrystallization from ethanol 

gave the title compound 6.40 (192 mg, 0.44 

mmol, 88%) as colourless needles m.p. 

183—184 °C (Lit.13 not available). Rf 0.35 

(95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 4.12 min, (100%); δH (500 MHz, 

DMSO-d6); 12.01 (1H, s, N-H), 8.65 (2H, d, J = 4.5, Ar-H2′,6′), 8.44 (1H, s, C-

H1′′), 7.65 (2H, d, J = 4.5, Ar-H3′,5′), 7.30-7.49 (10H, m, Ar-H), 7.18 (2H, d, J = 

2.0, Ar-H2,6), 6.93 (1H, t, J = 2.0, Ar-H4), 5.16 (4H, s, OCH2 in 3 and 5); δC (125 

MHz, DMSO-d6); 162.8 (C=O), 159.5 (3-C and 5-C), 150.3 (2′-C and 6′-C), 

145.5 (1′′-C), 141.4 (4′-C), 136.7 (1aC), 135.0 (1-C), 128.5 (Ar-C), 127.9 (Ar-C), 

127.8 (Ar-C), 121.0 (3′-C and 5′-C), 106.8 (2-C and 6-C), 105.2 (4-C), 69.6 

(OCH2); vmax/cm-1 (neat); 3227, 3032, 1657, 1596, 1537, 1364, 1133, 729; m/z 

(ES) 438.2 (100%, MH+); (Found MH+, 438.1824. C27H23N3O3 requires MH, 

438.1812).   
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(E)-N'-benzylidene-4-(benzyloxy)benzohydrazide (6.41)14 

 

Prepared via general method D using 4-

(benzyloxy)benzohydrazide 6.106 (121 

mg, 0.50 mmol) and benzaldehyde 

6.119 (0.05 mL, 0.50 mmol). Recrystal-

lization from ethanol gave the title 

compound 6.41 (140 mg, 0.42 mmol, 85%) as colourless plates m.p. 186—187 

°C (Lit.14 m.p. 185). Rf 0.50 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 3.74 

min, (100%); δH (500 MHz, DMSO-d6); 11.70 (1H, s, N-H), 8.44 (1H, s, C-H1′′′), 

7.90 (2H, d, J = 8.9, Ar-H2,6), 7.70-7.72 (2H, m, Ar-H), 7.30-7.50 (8H, m, Ar-H), 

7.13 (2H, d, J = 8.9, Ar-H3,5), 5.19 (2H, s, OCH2); δC (125 MHz, DMSO-d6); 

162.5 (C=O), 161.1 (4-C), 147.2 (1′′′-C), 136.6 (1′-C), 134.4 (1′′-C), 129.9 (2-C 

and 6-C), 129.5 (Ar-C), 128.8 (Ar-C), 128.5 (Ar-C), 128.0 (Ar-C), 127.8 (Ar-C), 

127.0 (Ar-C), 125.6 (1-C), 114.6 (3-C and 5-C), 69.4 (OCH2); vmax/cm-1 (neat); 

3166, 2944, 1634, 1608, 1559, 1509, 1487, 1287, 1249, 1183, 691; m/z (ES) 

353.1 (100%, MNa+); (Found MNa+, 353.1274. C21H18N2O2 requires MNa, 

353.1260).   

 

(E)-N'-(pyridin-3-yl-methylene)benzohydrazide (6.42)15 

 
Prepared via general method D using benzoic 

hydrazide 6.112 (408 mg, 3.0 mmol) and 3-

pyridinecarboxyaldehyde 6.33 (0.366 mL, 3.0 mmol). 

Recrystallization from ethanol gave the title 

compound 6.42 (360 mg, 2.6 mmol, 88%) as colourless needles m.p. 185—186 

°C (Lit.15 m.p. 184—185 °C). Rf 0.34 (95:5 CH2Cl2—MeOH); HPLC (Method A), 

R.t. 1.46 min, (100%); δH (500 MHz, DMSO-d6); 12.01 (1H, s, N-H), 8.86 (1H, 

app. s, Ar-H2′), 8.61 (1H, app. d, J = 4.3, Ar-H6′), 8.52 (1H, s, C-H1′′), 8.14 (1H, 

app. d, J = 7.5, Ar-H4′), 7.92 (2H, app. d, J = 7.4, Ar-H2,6), 7.59 (1H, app. t, J = 

7.4, Ar-H4), 7.52 (2H, app. t, J = 7.4, Ar-H3,5), 7.48 (1H, dd, J = 7.5, 4.3, Ar-H5′); 

δC (75 MHz, DMSO-d6); 163.2 (C=O), 150.7 (6′-C), 148.7 (2′-C), 145.0 (1′′-C), 

133.4 (4′-C), 133.2 (1-C), 131.9 (4-C), 130.2 (3′-C), 128.5 (3-C, 5-C), 127.6 (2-

C, 6-C), 124.0 (5′-C); vmax/cm-1 (neat); 3180, 3015, 1671, 1602, 1591, 1274, 
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1137, 685; m/z (ES) 226.1 (100%, MH+); (Found MH+, 226.0981. C13H11N3O 

requires MH, 270.0975).   

 

(E)-N'-(pyridin-2-yl-methylene)benzohydrazide (6.43)16 

 
Prepared via general method D using benzoic 

hydrazide 6.112 (400 mg, 2.94 mmol) and 2-

pyridinecarboxyaldehyde 6.117 (0.28 mL, 2.94 

mmol). Recrystallization from ethanol gave the title 

compound 6.43 (452 mg, 2.01 mmol, 76%) as colourless needles m.p. 107—

108 °C (Lit.16 m.p. 108—109 °C). Rf 0.52 (95:5 CH2Cl2—MeOH); HPLC (Method 

A), R.t. 1.64 min, (100%); δH (500 MHz, DMSO-d6); 12.04 (1H, s, N-H), 8.61 

(1H, app. d, J = 4.2, Ar-H6′), 8.48 (1H, s, C-H1′′), 7.84-8.00 (4H, m, Ar-H), 7.52-

7.62 (3H, m, Ar-H), 7.31-7.46 (1H, m, Ar-H pyridyl); δC (125 MHz, DMSO-d6); 

163.4 (C=O), 153.3 (2′-C), 149.5 (6′-C), 148.0 (1′′-C), 136.8 (Ar-C), 133.2 (1-C), 

131.9 (Ar-C), 128.5 (Ar-C), 127.7 (Ar-C), 124.4 (Ar-C), 119.9 (Ar-C); vmax/cm-1 

(neat); 3646, 3182, 3004, 1656, 1558, 1468, 1280, 1182, 698; m/z (ES) 248.1 

(100%, MNa+); (Found MNa+, 248.0795. C13H11N3O requires MNa, 248.0794).   

 

(E)-N'-(pyridin-4-yl-methylene)benzohydrazide (6.44)15  

 
Prepared via general method D using benzoic 

hydrazide 6.112 (433 mg, 3.18 mmol) and 4-

pyridinecarboxyaldehyde 6.118 (0.30 mL, 3.18 

mmol). Recrystallization from ethanol gave the title 

compound 6.44 (572 mg, 2.54 mmol, 80%) as colourless needles m.p. 162—

163 °C (Lit.15 m.p. 162—163 °C). Rf 0.53 (95:5 CH2Cl2—MeOH); HPLC (Method 

A), R.t. 1.36 min, (100%); δH (500 MHz, DMSO-d6); 12.11 (1H, s, N-H), 8.65 

(2H, d, J = 4.5, Ar-H2′,6′), 8.45 (1H, s, C-H1′′), 7.92 (2H, app. d, J = 7.3, Ar-H2,6), 

7.69 (2H, d, J = 4.5, Ar-H3′,5′), 7.60 (1H, app. t, J = 7.3, Ar-H4), 7.53 (2H, app. t, 

J = 7.3, Ar-H3,5); δC (125 MHz, DMSO-d6); 163.4 (C=O), 150.3 (2′-C, 6′-C), 145.3 

(1′′-C), 141.5 (4′-C), 133.1 (1-C), 132.0 (4-C), 128.5 (3-C, 5-C), 127.7 (2-C, 6-

C), 121.0 (3′-C, 5′-C); vmax/cm-1 (neat); 3257, 3038, 1646, 1546, 1489, 1306, 
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1277, 1140, 627; m/z (ES) 226.1 (100%, MH+); (Found MH+, 226.0979. 

C13H11N3O requires MH, 226.0975).   

 

(E)-3,4,5-trimethoxy-N'-(pyridin-4-yl-methylene)benzohydrazide (6.45)17 

 
Prepared via general method D using 3,4,5-

trimethoxybenzohydrazide 6.113 (452 mg, 2.0 

mmol) and 4-pyridinecarboxyaldehyde 6.118 

(0.10 mL, 2.0 mmol). Recrystallization from 

ethanol gave the title compound 6.45 (385 mg, 

1.7 mmol, 85%) as colourless plates m.p. 174—175 °C (Lit.17 not available). Rf 

0.20 (95:5 CH2Cl2—MeOH); HPLC (Method A), R.t. 1.61 min, (100%); δH (500 

MHz, DMSO-d6); 12.01 (1H, s, N-H), 8.67 (2H, d, J = 4.9, Ar-H2′,6′), 8.46 (1H, s, 

C-H1′′), 7.68 (2H, d, J = 4.9, Ar-H3′,5′), 7.25 (2H, s, Ar-H2,6), 3.87 (6H, s, OCH3 in 

3 and 5), 3.74 (3H, s, OCH3 in 4); δC (125 MHz, DMSO-d6); 162.8 (C=O), 152.7 

(3-C, 5-C), 150.3 (2′-C, 6′-C), 145.2 (1′′-C), 141.5 (4′-C), 140.7 (4-C), 128.1 (1-

C), 120.9 (3′-C, 5′-C), 105.4 (2-C, 6-C), 60.1 (OCH3 in 4), 56.1 (OCH3 in 3 and 

5); vmax/cm-1 (neat); 3161, 3003, 1644, 1500, 1451, 1362, 1326, 1177, 1124; m/z 

(ES) 316.3 (100%, MH+); (Found MH+, 316.1302. C16H17N3O4 requires MH, 

316.1292).   

 

(E)-N'-(pyridin-2-yl-methylene)benzo[d][1,3]dioxole-5-carbohydrazide 

(6.46)15 

 
Prepared via general method D using 3,4-

methylendioxybenzhydrazide 6.114 (180 mg, 1.0 

mmol) and 2-pyridinecarboxyaldehyde 6.117 

(0.095 mL, 1.0 mmol). Recrystallization from 

ethanol gave the title compound 6.46 (172 mg, 0.64 mmol, 64%) as colourless 

plates m.p. 181—182 °C (Lit.15 m.p. 182—183 °C). Rf 0.26 (95:5 CH2Cl2—

MeOH); HPLC (Method A), R.t. 1.71 min, (100%); δH (300 MHz, DMSO-d6); 

11.92 (1H, s, N-H), 8.62 (1H, app. d, J = 4.8, Ar-H6′), 8.45 (1H, s, C-H1′′), 7.97 

(1H, app. d, J = 7.8, Ar-H3′), 7.89 (1H, app. t, J = 7.8, Ar-H4′), 7.54 (1H, dd, J = 

8.1, 1.4, Ar-H6), 7.47 (1H, d, J = 1.4, Ar-H2), 7.36-7.45 (1H, m, Ar-H5′), 7.08 (1H, 



221 
 

d, J = 8.1, Ar-H5), 6.15 (2H, s, OCH2O); δC (125 MHz, DMSO-d6); 162.4 (C=O), 

153.3 (4-C), 150.3 (2′-C), 149.5 (6′-C), 147.6 (1′′-C), 147.4 (3-C), 136.8 (4′-C), 

126.9 (1-C), 124.3 (2-C), 123.0 (6-C), 119.8 (3′-C), 108.1 (5-C), 107.7 (5′-C), 

101.9 (OCH2O); vmax/cm-1 (neat); 3224, 3079, 1644, 1498, 1434, 1365, 1257, 

1167, 1032; m/z (ES) 292.1 (100%, MNa+); (Found MNa+, 292.0693. 

C14H11N3O3 requires MNa, 292.0693).   

 
(E)-N'-(pyridin-4-yl-methylene)benzo[d][1,3]dioxole-5-carbohydrazide 
(6.47)15 

 

 
Prepared via general method D using 3,4-

methylendioxybenzhydrazide 6.114 (180 mg, 1.0 

mmol) and 4-pyridinecarboxyaldehyde 6.118 

(0.094 mL, 1.0 mmol). Recrystallization from 

ethanol gave the title compound 6.47 (215 mg, 0.8 mmol, 81%) as colourless 

plates m.p. 259—260 °C (Lit.15 m.p. 257—258 °C). Rf 0.36 (95:5 CH2Cl2—

MeOH); HPLC (Method A), R.t. 1.52 min, (100%); δH (300 MHz, DMSO-d6); 

12.00 (1H, s, N-H), 8.65 (2H, d, J = 4.9, Ar-H2′,6′), 8.41 (1H, s, C-H1′′), 7.66 (2H, 

d, J = 4.9, Ar-H3′,5′), 7.54 (1H, app. d, J = 8.1, Ar-H6), 7.47 (1H, app. s, Ar-H2), 

7.08 (1H, d, J = 8.1, Ar-H5), 6.15 (2H, s, OCH2O); δC (75 MHz, DMSO-d6); 162.4 

(C=O), 150.4 (3-C or 4-C), 150.3 (2′-C, 6′-C), 147.4 (3-C or 4-C), 144.9 (1′′-C), 

141.5 (4′-C), 126.8 (1-C), 123.0 (6-C), 120.9 (3′-C, 5′-C), 108.1 (2-C), 107.7 (5-

C), 101.9 (OCH2O); vmax/cm-1 (neat); 3236, 3028, 2904, 1645, 1538, 1497, 

1481, 1404, 1288, 1211, 1167; m/z (ES) 270.1 (100%, MH+); (Found MH+, 

270.0884. C14H11N3O3 requires MH, 270.0873).   

 

(E)-N'-(pyridin-3-ylmethylene)-2-naphthohydrazide (6.48)18 

 
Prepared via general method D using 2-

naphthohydrazide 6.105 (186 mg, 1.0 mmol) 

and 3-pyridinecarboxyaldehyde 6.33 (0.094 mL, 

1.0 mmol). Recrystallization from methanol / 

water gave the title compound 6.48 (201 mg, 0.73 mmol, 73%) as colourless 

needles m.p. 205—206 °C (Lit.18 not available). Rf 0.51 (95:5 CH2Cl2—MeOH); 
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HPLC (Method B), R.t. 2.93 min, (100%); δH (500 MHz, DMSO-d6); 12.18 (1H, 

s, N-H), 8.88 (1H, app. s, Ar-H2′), 8.62 (1H, app. s, J = 4.5, Ar-H6′), 8.56 (1H, s, 

C-H1′′), 8.55 (1H, app. s, Ar-H1), 8.17 (1H, app. d, J = 7.5, Ar-H4′), 7.91-8.10 (4H, 

m, Ar-H3,4,5,8), 7.57-7.68 (2H, m, Ar-H6,7), 7.50 (1H, dd, J = 7.3, 4.5, Ar-H5′); δC 

(125 MHz, DMSO-d6); 163.3 (C=O), 150.7 (6′-C), 148.8 (2′-C), 145.1 (1′′-C), 

134.4 (Ar-Cqt), 133.5 (4′-C), 132.0 (2-C), 130.5 (Ar-Cqt), 130.3 (Ar-Cqt), 128.9 (1-

C), 128.2 (Ar-C), 128.1 (6-C or 7-C), 128.0 (Ar-C), 127.7 (Ar-C), 126.9 (6-C or 

7-C), 124.3 (Ar-C), 124.0 (5′-C); vmax/cm-1 (neat); 3200, 3054, 1645, 1604, 1589, 

1242, 1114, 740; m/z (ES) 276.1 (100%, MH+); (Found MH+, 276.1124. 

C17H13N3O3 requires MH, 276.1131).  

 

(E)-N'-(pyridin-2-yl-methylene)-2-naphthohydrazide (6.49)18 

 
Prepared via general method D using 2-

naphthohydrazide 6.105 (186 mg, 1.0 mmol) 

and 2-pyridinecarboxyaldehyde 6.117 (0.094 

mL, 1.0 mmol). Recrystallization from methanol / 

water gave the title compound 6.49 (245 mg, 0.89 mmol, 89%) as colourless 

needles m.p. 186—187 °C (Lit.18 not available). Rf 0.45 (95:5 CH2Cl2—MeOH); 

HPLC (Method B), R.t. 2.58 min, (100%); δH (300 MHz, DMSO-d6); 12.27 (1H, 

s, N-H), 8.64 (1H, app. d, J = 4.5, Ar-H6′), 8.58 (1H, app. s, Ar-H1), 8.54 (1H, s, 

C-H1′′), 7.99-8.12 (5H, m, Ar-H4,5,8,3′), 7.91 (1H, app. t, J = 7.5, Ar-H4′), 7.52-7.74 

(2H, m, Ar-H6,7), 7.40-7.49 (1H, m, Ar-H5′); δC (75 MHz, DMSO-d6); 163.4 (C=O), 

153.2 (2′-C), 149.5 (6′-C), 148.0 (1′′-C), 136.9 (4′-C), 134.4 (Ar-Cqt), 132.0 (2-C), 

130.4 (Ar-Cqt), 128.9 (1-C), 128.20 (Ar-C), 128.17 (Ar-C), 128.0 (Ar-C), 127.7 

(6-C or 7-C), 127.0 (6-C or 7-C), 124.4 (5′-C), 124.3 (Ar-C), 119.9 (Ar-C); 

vmax/cm-1 (neat); 3186, 3002, 1684, 1585, 1504, 1484, 1284, 1136; m/z (ES) 

298.1 (100%, MNa+); (Found MNa+, 298.0943. C17H13N3O requires MNa, 

298.0951).  
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(E)-N'-(pyridin-4-yl-methylene)-2-naphthohydrazide (6.50)18 

 
Prepared via general method D using 2-

naphthohydrazide 6.105 (186 mg, 1.0 mmol) 

and 4-pyridinecarboxyaldehyde 6.118 (0.094 

mL, 1.0 mmol). Recrystallization from methanol / 

water gave the title compound 6.50 (217 mg, 0.79 mmol, 79%) as colourless 

needles m.p. 224—225 °C (Lit.18 not available). Rf 0.46 (95:5 CH2Cl2—MeOH); 

HPLC (Method B), R.t. 3.00 min, (100%); δH (300 MHz, DMSO-d6); 12.34 (1H, 

s, N-H), 8.68 (1H, d, J = 4.4, Ar-H2′,6′), 8.57 (1H, app. s, Ar-H1), 8.50 (1H, s, C-

H1′′), 7.96-8.14 (4H, m, Ar-H3,4,5,8), 7.71 (1H, d, J = 4.4, Ar-H3′,5′), 7.59-7.68 (2H, 

m, Ar-H6,7); δC (75 MHz, DMSO-d6); 163.4 (C=O), 150.3 (2′-C and 6′-C), 145.3 

(1′′-C), 141.5 (4′-C), 134.4 (Ar-Cqt), 132.0 (2-C), 130.3 (Ar-Cqt), 128.9 (1-C), 

128.23 (Ar-C), 128.21 (6-C or 7-C), 128.0 (Ar-C), 127.7 (Ar-C), 127.0 (6-C or 7-

C), 124.3 (Ar-C), 121.0 (3′-C and 5′-C); vmax/cm-1 (neat); 3402, 3197, 3003, 

1644, 1541, 1376, 965, 750; m/z (ES) 298.1 (100%, MNa+); (Found MNa+, 

298.0946. C17H13N3O requires MNa, 298.0951).  

 

(E)-3,4,5-tris(benzyloxy)-N'-(pyridin-2-yl methylene)benzohydrazide (6.51) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(241 mg, 0.53 mmol) and 2-

pyridinecarboxyaldehyde 6.117 (0.05 mL, 

0.53 mmol). Recrystallization from ethanol 

gave the title compound 6.51 (261 mg, 

0.48 mmol, 91%) as colourless plates m.p. 

166—167 °C. Rf 0.60 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 3.82 min, 

(100%); δH (300 MHz, DMSO-d6); 11.95 (1H, s, N-H), 8.64 (1H, app. d, J = 4.6, 

Ar-H6′), 8.52 (1H, s, C-H1′′), 8.00 (1H, app. d, J = 7.7, Ar-H3′), 7.90 (1H, app. t, J 

= 7.7, Ar-H4′), 7.21-7.56 (18H, m, Ar-H), 5.21 (4H, s, OCH2 in 3 and 5), 5.03 (2H, 

s, OCH2 in 4); δC (75 MHz, DMSO-d6); 162.6 (C=O), 153.2 (2′-C), 152.1 (3-C 

and 5-C), 149.6 (6′-C), 147.9 (1′′-C), 140.2 (4-C), 137.4 (1b-C), 136.9 (4′-C), 

136.7 (1a-C and 1c-C), 128.4 (Ar-C), 128.3 (1-C), 128.2 (Ar-C), 128.1 (Ar-C), 
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128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 124.4 (5′-C), 119.9 (3′-C), 107.0 (2-C 

and 6-C), 74.2 (OCH2 in 4), 70.4 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3209, 

3061, 1644, 1580, 1547, 1501, 1433, 1326, 1108, 655; m/z (ES) 566.2 (100%, 

MNa+); (Found MNa+, 566.2055. C34H29N3O4 requires MNa, 544.2050). 

 

(E)-3,5-bis(benzyloxy)-N'-(pyridin-2-yl-methylene)benzohydrazide (6.52) 

 
Prepared via general method D using 3,5-

bis(benzyloxy)benzohydrazide 6.109 (174 

mg, 0.50 mmol) and 2-

pyridinecarboxyaldehyde 6.117 (0.047 mL, 

0.50 mmol). Recrystallization from ethanol 

gave the title compound 6.52 (197 mg, 0.45 

mmol, 90%) as light yellow needles m.p. 

73—74 °C. Rf 0.34 (95:5 CH2Cl2—MeOH); HPLC (Method C), R.t. 1.95 min, 

(96%); δH (500 MHz, DMSO-d6); 11.94 (1H, s, N-H), 8.61 (1H, app. d, J = 4.6, 

Ar-H6′), 8.48 (1H, s, C-H1′′), 7.97 (1H, app. d, J = 7.7, Ar-H3′), 7.88 (1H, app. t, J 

= 7.7, Ar-H4′), 7.30-7.50 (11H, m, Ar-H), 7.18 (2H, d, J = 2.0, Ar-H2,6), 6.93 (1H, 

t, J = 2.0, Ar-H4), 5.17 (4H, s, OCH2 in 3 and 5); δC (125 MHz, DMSO-d6); 162.7 

(C=O), 159.5 (3-C and 5-C), 153.2 (2′-C), 149.5 (6′-C), 148.2 (1′′-C), 136.9 (4′-

C), 136.7 (1aC), 135.1 (1-C), 128.5 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 124.4 

(Ar-C), 119.9 (Ar-C), 106.8 (2-C and 6-C), 105.1 (4-C), 69.7 (OCH2); vmax/cm-1 

(neat); 3452, 3200, 3031, 1674, 1591, 1546, 1350, 1165, 735; m/z (ES) 460.2 

(100%, MNa+); (Found MNa+, 460.1647. C27H23N3O3 requires MNa, 460.1632).   

 

(E)-3,5-bis(benzyloxy)-N'-(pyridin-3-yl-methylene)benzohydrazide (6.53) 

 
Prepared via general method D using 3,5-

bis(benzyloxy)benzohydrazide 6.109 (174 

mg, 0.50 mmol) and 3-

pyridinecarboxyaldehyde 6.33 (0.047 mL, 

0.50 mmol). Recrystallization from ethanol 

gave the title compound 6.53 (184 mg, 0.42 

mmol, 84%) as colourless needles m.p. 
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154—155 °C. Rf 0.38 (95:5 CH2Cl2—MeOH); HPLC (Method C), R.t. 1.86 min, 

(100%); δH (500 MHz, DMSO-d6); 11.91 (1H, s, N-H), 8.84 (1H, app. s, Ar-H2′), 

8.61 (1H, dd, J = 4.6, 1.3, Ar-H6′), 8.50 (1H, s, C-H1′′), 8.13 (1H, app. d, J = 7.9, 

Ar-H4′), 7.30-7.52 (11H, m, Ar-H), 7.17 (2H, d, J = 2.0, Ar-H2,6), 6.92 (1H, t, J = 

2.0, Ar-H4), 5.16 (4H, s, OCH2 in 3 and 5); δC (125 MHz, DMSO-d6); 162.6 

(C=O), 159.5 (3-C and 5-C), 150.7 (6′-C), 148.7 (2′-C), 145.2 (1′′-C), 136.7 

(1aC), 135.2 (1-C), 133.4 (4′-C), 130.2 (3′-C), 128.5 (Ar-C), 127.9 (Ar-C), 127.8 

(Ar-C), 124.0 (Ar-C), 106.8 (2-C and 6-C), 105.1 (4-C), 69.6 (OCH2); vmax/cm-1 

(neat); 3191, 3029, 1651, 1590, 1547, 1416, 1299, 1158, 694; m/z (ES) 460.2 

(100%, MNa+); (Found MNa+, 460.1636. C27H23N3O3 requires MNa, 460.1632).   

 

(E)-N'-benzylidene-3,5-bis(benzyloxy)benzohydrazide (6.54) 

 

Prepared via general method D using 3,5-

bis(benzyloxy)benzohydrazide 6.109 (174 

mg, 0.50 mmol) and benzaldehyde 6.119 

(0.05 mL, 0.50 mmol). Recrystallization from 

ethanol gave the title compound 6.54 (166 

mg, 0.38 mmol, 76%) as colourless needles 

m.p. 100—101 °C. Rf 0.52 (95:5 CH2Cl2—

MeOH); HPLC (Method C), R.t. 2.54 min, (100%); δH (500 MHz, DMSO-d6); 

11.74 (1H, s, N-H), 8.45 (1H, s, C-H1′′), 7.67-7.76 (2H, m, Ar-H), 7.30-7.50 (13H, 

m, Ar-H), 7.17 (2H, d, J = 2.1, Ar-H2,6), 6.91 (1H, t, J = 2.1, Ar-H4), 5.16 (4H, s, 

OCH2 in 3 and 5); δC (125 MHz, DMSO-d6); 162.5 (C=O), 159.5 (3-C and 5-C), 

148.0 (1′′-C), 136.7 (1a-C), 135.4 (1-C), 134.3 (1′-C), 130.1 (Ar-C), 128.8 (Ar-C), 

128.4 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 127.1 (Ar-C), 106.7 (2-C and 6-C), 

105.0 (4-C), 69.6 (OCH2); vmax/cm-1 (neat); 3233, 3030, 1651, 1590, 1537, 1348, 

1164, 691; m/z (ES) 459.2 (100%, MNa+); (Found MNa+, 459.1697. C28H24N2O3 

requires MNa, 459.1679).   
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(E)-4-(benzyloxy)-N'-(pyridin-2-yl-methylene)benzohydrazide (6.55) 

 
Prepared via general method D using 4-

(benzyloxy)benzohydrazide 6.106 (121 

mg, 0.5 mmol) and 2-

pyridinecarboxyaldehyde 6.117 (0.047 

mL, 0.5 mmol). Recrystallization from 

methanol / water gave the title compound 6.55 (292 mg, 0.9 mmol, 88%) as 

colourless plates m.p. 161—162 °C. Rf 0.58 (95:5 CH2Cl2—MeOH); HPLC 

(Method B), R.t. 3.36 min, (98%); δH (500 MHz, DMSO-d6); 11.95 (1H, s, N-H), 

8.62 (1H, app. d, J = 4.8, Ar-H6′′), 7.81-8.00 (4H, m, Ar-H), 8.47 (1H, s, C-H1′′′), 

7.27-7.53 (6H, m, Ar-H), 7.16 (2H, d, J = 8.8, Ar-H3,5), 5.21 (2H, s, OCH2); δC 

(75 MHz, DMSO-d6); 162.6 (C=O), 161.2 (4-C), 153.3 (2′′-C), 149.5 (6′′-C), 

147.4 (1′′′-C), 136.8 (Ar-C), 136.6 (1′-C), 129.6 (Ar-C), 128.5 (Ar-C), 128.0 (Ar-

C), 127.8 (Ar-C), 125.3 (1-C), 124.3 (Ar-C), 119.8 (Ar-C), 114.6 (3-C, 5-C), 69.4 

(OCH2); vmax/cm-1 (neat); 3454, 3180, 3064, 1653, 1602, 1471, 1281, 1247, 

1021, 738; m/z (ES) 354.1 (100%, MNa+); (Found MNa+, 354.1219. C20H17N3O2 

requires MNa, 354.1213).  

 

(E)-4-(benzyloxy)-N'-(pyridin-3-yl-methylene)benzohydrazide (6.56) 

 
Prepared via general method D using 4-

(benzyloxy)benzohydrazide 6.106 (121 

mg, 0.5 mmol) and 3-

pyridinecarboxyaldehyde 6.33 (0.047 

mL, 0.5 mmol). Recrystallization from 

ethanol gave the title compound 6.56 (131 mg, 0.4 mmol, 79%) as colourless 

plates m.p. 210—211 °C. Rf 0.42 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 

3.34 min, (100%); δH (300 MHz, DMSO-d6); 11.93 (1H, s, N-H), 8.85 (1H, app. 

s, Ar-H2′′), 8.61 (1H, app. d, J = 4.2, Ar-H6′′), 8.49 (1H, s, C-H1′′′), 8.14 (1H, app. 

d, J = 7.5, Ar-H4′′), 7.92 (2H, d, J = 8.8, Ar-H2,6), 7.27-7.55 (6H, m, Ar-H), 7.16 

(2H, d, J = 8.8, Ar-H3,5), 5.21 (2H, s, OCH2); δC (75 MHz, DMSO-d6); 162.6 

(C=O), 161.1 (4-C), 150.6 (6′′-C), 148.6 (2′′-C), 144.3 (1′′′-C), 136.6 (1′-C), 133.3 

(4′′-C), 130.3 (3′′-C), 129.6 (2-C, 6-C), 128.5 (Ar-C), 128.0 (Ar-C), 127.8 (Ar-C), 
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125.4 (1-C), 124.0 (Ar-C), 114.6 (3-C, 5-C), 69.4 (OCH2); vmax/cm-1 (neat); 3410, 

3190, 3010, 1660, 1605, 1508, 1216, 1177, 844; m/z (ES) 354.1 (100%, MNa+); 

(Found MNa+, 354.1215. C20H17N3O2 requires MNa, 354.1213). 

 

(E)-4-(benzyloxy)-N'-(pyridin-4-ylmethylene)benzohydrazide (6.57) 

 
Prepared via general method D using 4-

(benzyloxy)benzohydrazide 6.106 (121 

mg, 0.5 mmol) and 4-

pyridinecarboxyaldehyde 6.118 (0.047 

mL, 0.5 mmol). Recrystallization from 

methanol / water gave the title compound 6.57 (272 mg, 0.8 mmol, 82%) as 

colourless plates m.p. 203—204 °C. Rf 0.39 (95:5 CH2Cl2—MeOH); HPLC 

(Method B), R.t. 3.39 min, (100%); δH (300 MHz, DMSO-d6); 11.97 (1H, s, N-H), 

8.65 (2H, d, J = 4.5, Ar-H2′′,6′′), 8.43 (1H, s, C-H1′′′), 7.92 (2H, d, J = 8.9, Ar-H2,6), 

7.66 (2H, d, J = 4.5, Ar-H3′′,5′′), 7.31-7.53 (5H, m, Ar-H2′,3′,4′,5′,6′), 7.16 (2H, d, J = 

8.9, Ar-H3,5), 5.20 (2H, s, OCH2); δC (125 MHz, DMSO-d6); 162.8 (C=O), 161.3 

(4-C), 150.2 (2′′-C and 6′′-C), 144.6 (1′′-C), 141.6 (4′-C), 136.6 (1′-C), 129.7 (2-

C, 6-C), 128.5 (Ar-C), 128.0 (Ar-C), 127.8 (Ar-C), 125.3 (1-C), 120.9 (3′′-C and 

5′′-C), 114.6 (3-C, 5-C), 69.4 (OCH2); vmax/cm-1 (neat); 3253, 3035, 1645, 1602, 

1487, 1247, 752; m/z (ES) 332.1 (100%, MH+); (Found MH+, 332.1386. 

C20H17N3O2 requires MH, 332.1394).   

 

(E)-3,4,5-trimethoxy-N'-(pyridin-2-yl-methylene)benzohydrazide (6.58) 

 

Prepared via general method D using 3,4,5-

trimethoxybenzohydrazide 6.113 (679 mg, 3.0 

mmol) and 2-pyridinecarboxyaldehyde 6.117 

(0.360 mL, 3.0 mmol). Recrystallization from 

ethanol gave the title compound 6.58 (605 mg, 

1.9 mmol, 64%) as colourless plates m.p. 193—194 °C. Rf 0.68 (90:10 CH2Cl2—

MeOH); (Found: C, 60.7; H, 5.45; N, 13.5; C16H17N3O4 requires C, 60.9; H, 

5.43; N, 13.3%). HPLC (Method B), R.t. 1.77 min, (96%); δH (500 MHz, DMSO-

d6); 11.89 (1H, br s, N-H), 8.62 (1H, app. d, J = 4.7, Ar-H6′), 8.49 (1H, s, C-H1′′), 
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7.98 (1H, app. d, J = 7.8, Ar-H3′), 7.88 (1H, app. t, J = 7.8, Ar-H4′), 7.40-7.43 

(1H, m, Ar-H5′), 7.25 (2H, s, Ar-H2,6), 3.86 (6H, s, OCH3 in 3 and 5), 3.73 (3H, s, 

OCH3 in 4); δC (75 MHz, DMSO-d6); 162.6 (C=O), 153.3 (3-C, 5-C), 152.7 (2′-C), 

149.6 (1′′-C), 147.9 (6′-C), 140.6 (4-C), 136.9 (4′-C), 128.2 (1-C), 124.4 (5′-C), 

119.9 (3′-C), 105.4 (2-C, 6-C), 60.1 (OCH3 in 4), 56.1 (OCH3 in 3 and 5); 

vmax/cm-1 (neat); 2940, 1860, 1680, 1582, 1548, 1499, 1323, 1215; m/z (ES) 

338.1 (100%, MNa+); (Found MNa+, 338.1104. C16H17N3O4 requires MNa, 

338.1111).   

 

(E)-3,4,5-trimethoxy-N'-(pyridin-3-yl-methylene)benzohydrazide (6.59) 

 
Prepared via general method D using 3,4,5-

trimethoxybenzohydrazide 6.113 (679 mg, 3.0 

mmol) and 3-pyridinecarboxyaldehyde 6.33 

(0.360 mL, 3.0 mmol). Recrystallization from 

ethanol gave the title compound 6.59 (681 mg, 

2.2 mmol, 72%) as colourless plates m.p. 195—196 °C. Rf 0.52 (90:10 CH2Cl2—

MeOH); HPLC (Method B), R.t. 1.50 min, (100%); δH (300 MHz, DMSO-d6); 

11.90 (1H, br s, N-H), 8.87 (1H, app. s, Ar-H2′), 8.63 (1H, dd, J = 4.7, 1.3, Ar-

H6′), 8.53 (1H, s, C-H1′′), 8.16 (1H, app. d, J = 7.9, Ar-H4′), 7.51 (1H, dd, J = 7.9, 

4.7, Ar-H5′), 7.25 (2H, s, Ar-H2,6), 3.87 (6H, s, OCH3 in 3,5), 3.73 (3H, s, OCH3 

in 4); δC (75 MHz, DMSO-d6); 162.6 (C=O), 152.7 (3-C, 5-C), 150.7 (6′-C), 148.7 

(2′-C), 144.9 (1′′-C), 140.5 (4-C), 133.4 (4′-C), 130.2 (3′-C), 128.3 (1-C), 124.0 

(5′-C), 105.2 (2-C, 6-C), 60.1 (OCH3 in 4), 56.1 (OCH3 in 3 and 5); vmax/cm-1 

(neat); 3472, 3212, 2975, 1992, 1653, 1584, 1560, 1504, 1466, 1414; m/z (ES) 

316.1 (100%, MH+); (Found MH+, 316.1289. C16H17N3O4 requires MH, 

316.1292).   

 

(E)-N'-(pyridin-3-ylmethylene)benzo[d][1,3]dioxole-5-carbohydrazide (6.60) 

 
Prepared via general method D using 3,4-

methylendioxybenzhydrazide 6.114 (180 mg, 1.0 

mmol) and 3-pyridinecarboxyaldehyde 6.33 (0.120 

mL, 1.0 mmol). Recrystallization from ethanol 
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gave the title compound 6.60 (215 mg, 0.8 mmol, 80%) as colourless plates 

m.p. 196—197 °C. Rf 0.43 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 1.42 

min, (100%); δH (300 MHz, DMSO-d6); 11.84 (1H, s, N-H), 8.84 (1H, app. s, Ar-

H2′), 8.60 (1H, dd, J = 4.7, 1.4, Ar-H6′), 8.47 (1H, s, C-H1′′), 8.12 (1H, app. d, J = 

7.9, Ar-H4′), 7.53 (1H, dd, J = 8.1, 1.4, Ar-H6), 7.48 (1H, dd,  J = 7.9, 4.7, Ar-H5′), 

7.45 (1H, app. s, Ar-H2), 7.05 (1H, d, J = 8.1, Ar-H5), 6.12 (2H, s, OCH2O); δC 

(75 MHz, DMSO-d6); 162.2 (C=O), 150.6 (6′-C), 150.3 (3-C or 4-C), 148.6 (2′-

C), 147.4 (3-C or 4-C), 144.6 (1′′-C), 133.4 (4′-C), 130.3 (3′-C), 126.9 (1-C), 

124.0 (5′-C), 123.0 (6-C), 108.1 (5-C), 107.6 (2-C), 101.8 (OCH2O); vmax/cm-1 

(neat); 3448, 3373, 3198, 3031, 1759, 1660, 1637, 1600, 1570, 1485, 1309, 

1262; m/z (ES) 270.1 (100%, MH+); (Found MH+, 270.0865. C14H11N3O3 

requires MH, 270.0863).   

 
(E)-3,4,5-tris(benzyloxy)-N'-((5-nitrofuran-2-yl)methylene)benzohydrazide 
(6.61) 

 

Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(150 mg, 0.33 mmol) and 5-nitrofuran-2-

carbaldehyde 6.134 (46.6 mg, 0.33 

mmol). Recrystallization from ethanol / 

water gave the title compound 6.61 (166 

mg, 0.29 mmol, 87%) as light yellow 

plates m.p. 229—230 °C. Rf 0.56 (95:5 CH2Cl2—MeOH); (Found: C, 68.9; H, 

4.75; N, 7.2; C33H27N3O7 requires C, 68.6; H, 4.71; N, 7.3%). HPLC (Method B), 

R.t. 4.13 min, (100%); δH (300 MHz, DMSO-d6); 12.13 (1H, s, N-H), 8.44 (1H, s, 

C-H1′′), 7.83 (1H, d, J = 3.9, Ar-H4′), 7.46-7.53 (4H, m, Ar-H), 7.33-7.45 (10H, m, 

Ar-H), 7.25-7.31 (4H, m, Ar-H), 5.22 (4H, s, OCH2 in 3 and 5), 5.04 (2H, s, 

OCH2 in 4); δC (125 MHz, DMSO-d6); 162.8 (C=O), 152.1 (3-C and 5-C), 151.9 

(5′-C or 2′-C), 151.7 (5′-C or 2′-C), 140.5 (4-C), 137.3 (1b-C), 136.7 (1a-C and 

1c-C), 135.5 (1′′-C), 128.44 (Ar-C), 128.40 (1-C), 128.2 (Ar-C), 128.1 (Ar-C), 

128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 115.4 (4′-C), 114.6 (3′-C), 107.2 (2-C 

and 6-C), 74.3 (OCH2 in 4), 70.6 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3140, 

3029, 1647, 1584, 1558, 1478, 1331, 1124, 732; m/z (ES) 600.2 (100%, MNa+); 

(Found MNa+, 600.1744. C33H27N3O7 requires MNa, 600.1741).   
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(E)-3,5-bis(benzyloxy)-N'-(4-hydroxybenzylidene)benzohydrazide (6.62) 

 

Prepared via general method D using 3,5-

bis(benzyloxy)benzohydrazide 6.109 (174 

mg, 0.50 mmol) and 4-

hydroxybenzaldehyde 6.120 (61 mg, 0.50 

mmol). Recrystallization from ethanol 

gave the title compound 6.62 (174 mg, 

0.38 mmol, 77%) as light yellow plates 

m.p. 171—172 °C. Rf 0.77 (100% EtOAc); 

HPLC (Method B), R.t. 3.51 min, (100%); δH (500 MHz, DMSO-d6); 11.54 (1H, 

s, N-H), 9.91 (1H, br s, O-H in 4′), 8.34 (1H, s, C-H1′′), 7.54 (2H, d, J = 8.6, Ar-

H2′,6′), 7.30-7.49 (10H, m, Ar-H), 7.15 (2H, d, J = 2.1, Ar-H2,6), 6.89 (1H, t, J = 

2.1, Ar-H4), 6.83 (2H, d, J = 8.6, Ar-H3′,5′), 5.15 (4H, s, OCH2 in 3 and 5); δC (125 

MHz, DMSO-d6); 172.0 (C=O), 162.2 (4′-C), 159.4 (3-C and 5-C), 148.3 (1′′-C), 

136.7 (1a-C), 135.6 (1-C), 128.8 (2′-C, 6′-C), 128.4 (Ar-C), 127.9 (Ar-C), 127.7 

(Ar-C), 125.2 (1′-C), 115.7 (3′-C, 5′-C), 106.6 (2-C and 6-C), 104.8 (4-C), 69.6 

(OCH2); vmax/cm-1 (neat); 3649, 3231, 3063, 1649, 1589, 1495, 1438, 1275, 

1149, 694; m/z (ES) 475.2 (100%, MNa+); (Found MNa+, 475.1629. C28H24N2O4 

requires MNa, 475.1628).   

 

(E)-N'-((1H-indol-3-yl)methylene)-3,5-bis(benzyloxy)benzohydrazide (6.63) 

 

Prepared via general method D using 3,5-

bis(benzyloxy)benzohydrazide 6.109 (174 

mg, 0.50 mmol) and indole-3-

carboxyaldehyde 6.132 (72 mg, 0.50 mmol). 

Recrystallization from ethanol / water gave 

the title compound 6.63 (178 mg, 0.38 

mmol, 75%) as colourless plates m.p. 84 °C 

(dec). Rf 0.41 (95:5 CH2Cl2—MeOH); HPLC 

(Method B), R.t. 3.72 min, (100%); δH (500 

MHz, DMSO-d6); 11.57 (1H, s, N-H indole), 11.41 (1H, s, N-H hydrazide), 8.61 

(1H, s, C-H1′′), 8.28 (1H, app. d, J = 7.9, Ar-H4′), 7.80 (1H, d, J = 2.8, Ar-H2′), 
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7.27-7.50 (12H, m, Ar-H), 7.11-7.23 (3H, m, Ar-H), 6.88 (1H, t, J = 2.2, Ar-H4), 

5.16 (4H, s, OCH2 in 3 and 5); δC (125 MHz, DMSO-d6); 161.8 (C=O), 159.4 (3-

C and 5-C), 145.1 (1′′-C), 137.0 (7′a-C), 136.8 (1a-C), 136.1 (3′a-C), 130.3 (2′-

C), 128.5 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 124.3 (1-C), 122.6 (4′-C), 122.0 

(Ar-C), 120.4 (Ar-C), 111.8 (Ar-C), 111.7 (3′-C), 106.6 (Ar-C), 104.6 (4-C), 69.6 

(OCH2 in 3 and 5); vmax/cm-1 (neat); 3408, 3224, 3033, 1643, 1589, 1300, 1154, 

741; m/z (ES) 498.2 (100%, MNa+); (Found MNa+, 498.1798. C30H25N3O3 

requires MNa, 498.1788).   

 

 (E)-4-(benzyloxy)-N'-(4-nitrobenzylidene)benzohydrazide (6.64)14 

 

Prepared via general method D using 

4-(benzyloxy)benzohydrazide 6.106 

(121 mg, 0.50 mmol) and 4-

nitrobenzaldehyde 6.131 (75.5 mg, 

0.50 mmol). Recrystallization from 

ethanol gave the title compound 6.64 (69.5 mg, 0.46 mmol, 92%) as yellow 

needles m.p. 232—233 °C (Lit.14 not available). Rf 0.28 (95:5 CH2Cl2—MeOH); 

HPLC (Method B), R.t. 3.30 min, (100%); δH (300 MHz, DMSO-d6); 12.06 (1H, 

s, N-H), 8.53 (1H, s, C-H1′′), 8.31 (2H, d, J = 8.3, Ar-H3′,5′), 7.99 (2H, d, J = 8.3, 

Ar-H2′,6′), 7.93 (2H, d, J = 8.8, Ar-H2,6), 7.30-7.52 (5H, m, Ar-H), 7.17 (2H, d, J = 

8.8, Ar-H3,5), 5.21 (2H, s, OCH2); δC (125 MHz, DMSO-d6); 162.7 (C=O), 161.2 

(4-C), 147.8 (4′-C), 145.3 (1′′-C), 140.8 (1′-C), 136.6 (1a-C), 129.7 (2-C, 6-C), 

128.7 (2′-C, 6′-C), 128.5 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 125.3 (1-C), 124.1 

(3′-C, 5′-C), 114.6 (3-C, 5-C), 69.4 (OCH2); vmax/cm-1 (neat); 3255, 3065, 1650, 

1606, 1587, 1538, 1463, 1316, 1144, 741; m/z (ES) 398.1 (100%, MNa+); 

(Found MNa+, 398.1110. C21H17N3O4 requires MNa, 398.1111).   

 

(E)-4-(benzyloxy)-N'-(4-(dimethylamino)benzylidene)benzohydrazide (6.65) 

 
Prepared via general method D using 4-

(benzyloxy)benzohydrazide 6.106 (121 

mg, 0.50 mmol) and 4-

(dimethylamino)benzaldehyde 6.130 
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(74.6 mg, 0.50 mmol). Recrystallization from ethanol gave the title compound 

6.65 (149 mg, 0.40 mmol, 80%) as light yellow needles m.p. 247—248 °C. Rf 

0.57 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 3.22 min, (100%); δH (300 

MHz, DMSO-d6); 11.45 (1H, s, N-H), 8.29 (1H, s, C-H1′′), 7.88 (2H, d, J = 8.8, 

Ar-H2,6), 7.27-7.61 (7H, m, Ar-H), 7.13 (2H, d, J = 8.8, Ar-H3,5), 6.76 (2H, d, J = 

8.8, Ar-H2′,6′), 5.20 (2H, s, OCH2), 2.97 (6H, s, CH3); δC (75 MHz, DMSO-d6); 

162.0 (C=O), 160.8 (4-C), 151.4 (1′-C), 148.0 (1′′-C), 136.6 (1a-C), 129.3 (2-C 

and 6-C), 128.4 (Ar-C), 128.3 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 126.0 (1-C), 

121.7 (4′-C), 114.4 (3-C, 5-C), 111.8 (2′-C and 6′-C), 69.3 (OCH2), 39.8 (NCH3); 

vmax/cm-1 (neat); 3189, 3031, 1634, 1606, 1593, 1454, 1359, 1248, 1183, 658; 

m/z (ES) 396.2 (100%, MNa+); (Found MNa+, 396.1681. C23H23N3O2 requires 

MNa, 396.1682).   

 

(E)-N'-((1H-indol-3-yl)methylene)-4-(benzyloxy)benzohydrazide (6.66) 

 
Prepared via general method D using 4-

(benzyloxy)benzohydrazide 6.106 (121 mg, 

0.50 mmol) and indole-3-carboxyaldehyde 

6.132 (72 mg, 0.50 mmol). Recrystallization 

from ethanol gave the title compound 6.66 

(151 mg, 0.41 mmol, 82%) as colourless 

plates m.p. 216—217 °C. Rf 0.64 (92:8 

CH2Cl2—MeOH); HPLC (Method B), R.t. 3.07 min, (100%); δH (300 MHz, 

DMSO-d6); 11.59 (1H, s, N-H indole), 11.43 (1H, s, N-H hydrazide), 8.60 (1H, s, 

1′′-C), 8.30 (1H, app. d, J = 7.6, Ar-H4′), 7.91 (2H, d, J = 8.8, Ar-H2,6), 7.82 (1H, 

d, J = 2.6, Ar-H2′), 7.29-7.55 (6H, m, Ar-H), 7.11-7.23 (4H, m, Ar-H), 5.20 (2H, s, 

OCH2 in 4); δC (125 MHz, DMSO-d6); 162.0 (C=O), 160.7 (4-C), 144.4 (1′′-C), 

137.0 (7′a), 136.7 (1b-C), 130.0 (2′-C), 129.3 (2-C and 6-C), 128.5 (Ar-C), 127.9 

(Ar-C), 127.7 (4′-C), 126.3 (3′a), 124.4 (1-C), 122.6 (Ar-C), 122.0 (Ar-C), 120.3 

(Ar-C), 114.5 (Ar-C), 111.8 (3′-C), 111.7 (Ar-C), 69.4 (OCH2); vmax/cm-1 (neat); 

3302, 3032, 1627, 1601, 1566, 1246, 1045, 744; m/z (ES) 392.1 (100%, MNa+); 

(Found MNa+, 392.1372. C23H19N3O2 requires MNa, 392.1369).  
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(E)-N'-(4-nitrobenzylidene)-2-naphthohydrazide (6.67)19 

 
Prepared via general method D using 2-

naphthohydrazide 6.105 (100 mg, 0.54 

mmol) and 4-nitrobenzaldehyde 6.131 (82 

mg, 0.54 mmol). Recrystallization from 

ethanol gave the title compound 6.67 (140 mg, 0.44 mmol, 88%) as colourless 

plates m.p. 242—243 °C (Lit.19 m.p. 244—246 °C). Rf 0.38 (95:5 CH2Cl2—

MeOH); HPLC (Method B), R.t. 3.03 min, (100%); δH (500 MHz, DMSO-d6); 

12.24 (1H, s, N-H), 8.60 (1H, app. s, Ar-H1), 8.56 (1H, s, C-H1′′), 8.31 (2H, d, J = 

8.2, Ar-H3′,5′), 7.97-8.10 (6H, m, Ar-H3,4,5,8,2′,6′), 7.58-7.69 (2H, m, Ar-H6,7); δC 

(125 MHz, DMSO-d6); 163.5 (C=O), 147.9 (4′-C), 145.3 (1′′-C), 140.6 (1′-C), 

134.4 (Ar-Cqt), 132.0 (2-C), 130.3 (Ar-Cqt), 129.0 (Ar-C), 128.23 (Ar-C), 128.22 

(Ar-C), 128.0 (6-C or 7-C), 127.7 (Ar-C), 127.0 (6-C or 7-C), 124.27 (2′-C, 6′-C), 

124.26 (3′-C, 5′-C), 124.1 (Ar-C); vmax/cm-1 (neat); 3491, 3423, 3047, 1645, 

1615, 1597, 1291, 1233, 696; m/z (ES) 342.1 (100%, MNa+); (Found MNa+, 

342.0848. C18H13N3O3 requires MNa, 342.0849).   

 

(E)-N'-(4-(dimethylamino)benzylidene)-2-naphthohydrazide (6.68) 

 
Prepared via general method D using 2-

naphthohydrazide 6.105 (93 mg, 0.50 mmol) 

and 4-(dimethylamino)benzaldehyde 6.130 

(75 mg, 0.50 mmol). Recrystallization from 

ethanol gave the title compound 6.68 (127 

mg, 0.40 mmol, 80%) as light yellow plates m.p. 212—213 °C. Rf 0.34 (5:95 

EtOAc—petroleum Ether); HPLC (Method B), R.t. 2.95 min, (100%); δH (500 

MHz, DMSO-d6); 11.70 (1H, s, N-H), 8.50 (1H, app. s, Ar-H1), 8.36 (1H, s, C-

H1′′), 7.92-8.09 (4H, m, Ar-H3,4,5,8), 7.58-7.66 (2H, m, Ar-H6,7), 7.56 (2H, d, J = 

8.8, Ar-H2′,6′),  6.77 (2H, d, J = 8.8, Ar-H3′,5′), 2.97 (6H, s, CH3); δC (125 MHz, 

DMSO-d6); 165.7 (C=O), 151.5 (4′-C), 148.7 (1′′-C), 134.2 (Ar-Cqt), 132.1 (2-C), 

131.1 (Ar-Cqt), 128.83 (Ar-C), 128.82 (Ar-C), 128.4 (2′-C, 6′-C), 128.0 (Ar-C), 

127.7 (Ar-C), 127.6 (Ar-C), 126.8 (Ar-C), 124.3 (Ar-C), 121.6 (1′-C), 111.8 (3′-C, 

5′-C), 40.3 (NCH3); vmax/cm-1 (neat); 3340, 3213, 3046, 2962, 1640, 1627, 1590, 
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1550, 1323, 757; m/z (ES) 340.1 (100%, MNa+); (Found MNa+, 340.1423. 

C20H19N3O requires MNa, 340.1420).   

 

(E)-N'-((1H-indol-3-yl)methylene)-2-naphthohydrazide (6.69) 

 

Prepared via general method D using 2-

naphthohydrazide 6.105 (186 mg, 1.0 mmol) 

and indole-3-carboxyaldehyde 6.132 (145 

mg, 1.0 mmol). Recrystallization from 

ethanol gave the title compound 6.69 (241 mg, 0.77 mmol, 77%) as colourless 

needles m.p. 238—239 °C. Rf 0.47 (95:5 CH2Cl2—MeOH); HPLC (Method B), 

R.t. 2.76 min, (100%); δH (500 MHz, DMSO-d6); 11.67 (1H, s, N-H amide), 

11.58 (1H, s, N-H indole), 8.67 (1H, s, C-H1′′), 8.52 (1H, app. s, Ar-H1), 8.33 

(1H, app. d, J = 7.7, Ar-H4′), 7.97-8.10 (4H, m, Ar-H), 7.83 (1H, d, J = 2.7, Ar-

H2′), 7.57-7.68 (2H, m, Ar-H6,7), 7.45 (1H, d, J = 7.9, Ar-H), 7.13-7.25 (2H, m, 

Ar-H indole); δC (125 MHz, DMSO-d6); 162.5 (C=O), 145.0 (1′′-C), 137.0 (7′a-C), 

134.2 (2-C), 132.1 (Ar-Cqt), 131.9 (Ar-Cqt), 131.4 (3′a-C), 130.3 (2′-C), 128.8 (1-

C), 128.0 (Ar-C), 127.7 (Ar-C), 127.6 (Ar-C), 127.5 (Ar-C), 126.8 (Ar-C), 124.4 

(Ar-C), 122.6 (4′-C), 122.0 (Ar-C), 120.4 (Ar-C), 111.8 (Ar-C), 111.7 (3′-C); 

vmax/cm-1 (neat); 3312, 3175, 2930, 1633, 1618, 1570, 1547, 1415, 1361, 1247, 

1146, 734; m/z (ES) 336.1 (100%, MNa+); (Found MNa+, 336.1119. C20H15N3O 

requires MNa, 336.1107).   

 

 (E)-3,4,5-tris(benzyloxy)-N'-(2-hydroxybenzylidene)benzohydrazide (6.70) 

 

Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(180 mg, 0.40 mmol) and 2-

hydroxybenzaldehyde 6.122 (0.03 mL, 

0.40 mmol). Recrystallization from ethanol 

gave the title compound 6.70 (165 mg, 

0.30 mmol, 74%) as creamy plates m.p. 

170—171 °C. Rf 0.39 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 1.16 min, 

(98%); δH (500 MHz, DMSO-d6); 11.94 (1H, s, N-H), 11.22 (1H, s, O-H), 8.66 
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(1H, s, C-H1′′), 7.56 (1H, dd, J = 7.7, 1.5, Ar-H6′), 7.47-7.50 (4H, m, Ar-H), 7.23-

7.44 (14H, m, Ar-H), 6.84-6.97 (2H, m, Ar-H hydroxybenzyl), 5.21 (4H, s, OCH2 

in 3 and 5), 5.03 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 162.1 (C=O), 

157.4 (2′-C), 152.1 (3-C and 5-C), 147.9 (1′′-C), 140.3 (4-C), 137.4 (1b-C), 

136.7 (1a-C and 1c-C), 131.4 (Ar-C), 129.2 (6′-C), 128.5 (1-C), 128.4 (Ar-C), 

128.2 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 119.3 (Ar-

C hydroxybenzyl), 118.8 (1′-C), 116.4 (Ar-C hydroxybenzyl), 106.9 (2-C and 6-

C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3213, 3057, 

1638, 1621, 1606, 1577, 1533, 1422, 1370, 1077; m/z (ES) 581.2 (100%, 

MNa+); (Found MNa+, 581.2049. C35H30N2O5 requires MNa, 581.2047).   

 

(E)-3,4,5-tris(benzyloxy)-N'-(3-hydroxybenzylidene)benzohydrazide (6.71) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (127 mg, 0.28 mmol) and 3-

hydroxybenzaldehyde 6.121 (34.1 

mg, 0.28 mmol). Recrystallization 

from ethanol gave the title compound 

6.71 (113 mg, 0.20 mmol, 72%) as 

colourless needles m.p. 167—168 °C. Rf 0.38 (95:5 CH2Cl2—MeOH); HPLC 

(Method B), R.t. 4.08 min, (100%); δH (500 MHz, DMSO-d6); 11.64 (1H, s, N-H), 

9.62 (1H, s, O-H), 8.38 (1H, s, C-H1′′), 7.46-7.50 (4H, m, Ar-H), 7.32-7.44 (10H, 

m, Ar-H), 7.22-7.30 (4H, m, Ar-H), 7.20 (1H, app. s, Ar-H2′), 7.10 (1H, app. d, J 

= 7.4, Ar-H6′), 6.83 (1H, app. dd, J = 7.4, 1.8, Ar-H4′), 5.20 (4H, s, OCH2 in 3 and 

5), 5.02 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 162.3 (C=O), 157.7 (3′-C), 

152.1 (3-C and 5-C), 147.8 (1′′-C), 140.1 (4-C), 137.4 (1b-C), 136.8 (1a-C and 

1c-C), 135.6 (1′-C), 129.9 (5′-C), 128.6 (1-C), 128.4 (Ar-C), 128.2 (Ar-C), 128.1 

(Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 118.8 (6′-C), 117.4 (4′-C), 

112.6 (2′-C), 106.9 (2-C and 6-C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 3 and 5); 

vmax/cm-1 (neat); 3669, 3627, 3211, 3032, 1626, 1605, 1554, 1497, 1451, 1336, 

1221, 1118, 732; m/z (ES) 559.2 (100%, MH+); (Found MH+, 559.2237. 

C35H30N2O5 requires MH, 559.2228).   
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(E)-3,4,5-tris(benzyloxy)-N'-(2,4-dihydroxybenzylidene)benzohydrazide 
(6.72) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (148 mg, 0.33 mmol) and 2,4-

dihydroxybenzaldehyde 6.123 (45.1 mg, 

0.33 mmol). A portion of the crude 

compound (60 mg out of 172mg) was 

purified via mass-directed preparative 

HPLC eluting with a gradient of methanol in water (50—95%) in presence of 

formic acid (0.1%) to give a solid which was recrystallized from water to give the 

title compound 6.72 (45 mg, 0.078 mmol, 75%) as colourless plates m.p. 135—

136 °C. Rf 0.37 (95:5 CH2Cl2—MeOH); HPLC (Method A), R.t. 4.03 min, 

(100%); δH (500 MHz, DMSO-d6); 11.74 (1H, s, N-H), 11.39 (1H, s, O-H in 4′), 

9.94 (1H, s, O-H in 2′), 8.51 (1H, s, C-H1′′), 7.47-7.50 (4H, m, Ar-H), 7.24-7.44 

(14H, m, Ar-H), 6.36 (1H, dd, J = 8.4, 2.3, Ar-H5′), 6.32 (1H, d, J = 2.3, Ar-H3′), 

5.20 (4H, s, OCH2 in 3 and 5), 5.02 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 

161.8 (C=O), 160.7 (4′-C), 159.4 (2′-C), 152.1 (3-C and 5-C), 148.9 (1′′-C), 

140.1 (4-C), 137.4 (1b-C), 136.8 (1a-C and 1c-C), 131.1 (Ar-C), 128.7 (1-C),  

128.4 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-

C), 110.6 (1′-C), 107.7 (5′-C), 106.9 (2-C and 6-C), 102.6 (3′-C), 74.3 (OCH2 in 

4), 70.5 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3578, 3422, 3210, 3231, 3031, 

1623, 1602, 1581, 1280, 1184, 1099; m/z (ES) 575.2 (100%, MH+); (Found 

MH+, 575.2193. C35H30N2O6 requires MH, 575.2178).   

 
(E)-2-((2-(3,4,5-tris(benzyloxy)benzoyl)hydrazono)methyl)benzoic acid 
(6.73) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(164 mg, 0.36 mmol) and 2-formylbenzoic 

acid 6.125 (54 mg, 0.36 mmol). 

Recrystallization from ethanol / water gave 

the title compound 6.73 (194 mg, 0.33 

mmol, 92%) as colourless plates m.p. 
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208—209 °C. Rf 0.29 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 4.00 min, 

(100%); δH (300 MHz, DMSO-d6); 13.39 (1H, br s, COOH), 11.97 (1H, s, N-H), 

9.21 (1H, s, C-H1′′), 8.08 (1H, app. d, J = 7.8, Ar-H6′), 7.92 (1H, app. d, J = 7.8, 

Ar-H3′), 7.67 (1H, app. t, J = 7.8, Ar-H4′ or Ar-H5′), 7.23-7.60 (18H, m, Ar-H), 5.22 

(4H, s, OCH2 in 3 and 5), 5.03 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 

168.1 (C=O carboxy), 162.6 (C=O hydrazono), 152.1 (3-C, 5-C), 146.4 (1′′-C), 

140.2 (4-C), 137.4 (1b-C), 136.8 (1a-C and 1c-C), 134.6 (2′-C), 132.0 (4′-C or 

5′-C), 130.6 (1′-C), 130.3 (3′-C), 129.6 (Ar-C), 128.44 (Ar-C), 128.43 (1-C), 

128.2 (Ar-C), 128.1 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 127.7 (Ar-C), 126.7 (6′-

C), 107.1 (2-C and 6-C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 3 and 5); vmax/cm-1 

(neat); 3133, 3026, 1681, 1628, 1582, 1496, 1315, 1226, 1124, 693; m/z (ES) 

587.2 (100%, MH+); (Found MH+, 587.2169. C36H30N2O6 requires MH, 

587.2177).   

 
 (E)-3-((2(3,4,5-tris(benzyloxy)benzoyl)hydrazono)methyl)benzoic acid 
(6.74) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (227 mg, 0.50 mmol) and 3-

formylbenzoic acid 6.124 (75 mg, 

0.50 mmol). Recrystallization from 

ethanol / water gave the title 

compound 6.74 (249 mg, 0.42 mmol, 

85%) as colourless fluffy solid m.p. 249—250 °C. Rf 0.52 (95:5 CH2Cl2—

MeOH); HPLC (Method B), R.t. 3.92 min, (100%); δH (300 MHz, DMSO-d6); 

13.23 (1H, br s, COOH), 11.87 (1H, s, N-H), 8.53 (1H, s, C-H1′′), 8.34 (1H, app. 

s, Ar-H2′), 8.00 (1H, app. d, J = 7.9, Ar-H4′ or Ar-H6′), 7.96 (1H, app. d, J = 7.9, 

Ar-H4′ or Ar-H6′), 7.61 (1H, app. t, J = 7.9, Ar-H5′), 7.20-7.54 (17H, m, Ar-H), 5.22 

(4H, s, OCH2 in 3 and 5), 5.03 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 

166.9 (C=O carboxy), 162.5 (C=O hydrazono), 152.1 (3-C, 5-C), 146.7 (1′′-C), 

140.2 (4-C), 137.4 (Ar-Cqt), 136.8 (Ar-Cqt), 134.8 (Ar-Cqt), 131.5 (Ar-C), 130.6 

(Ar-C), 129.2 (Ar-C), 128.7 (Ar-Cqt), 128.5 (Ar-Cqt), 128.4 (Ar-C), 128.2 (Ar-C), 

128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (2′-C), 127.2 (Ar-C), 107.0 (2-C 

and 6-C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3544, 
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3565, 3064, 1736, 1682, 1585, 1425, 1363, 1165; m/z (ES) 587.2 (100%, MH+); 

(Found MH+, 587.2155. C36H30N2O6 requires MH, 587.2177).   

 

(E)-4-((2-(3,4,5-tris(benzyloxy)benzoyl)hydrazono)methyl)benzoic acid 
(6.75) 

 

Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (198 mg, 0.44 mmol) and 4-

formylbenzoic acid 6.126 (65.5 mg, 

0.44 mmol). Recrystallization from 

ethanol / water gave the title 

compound 6.75 (235 mg, 0.40 mmol, 

91%) as colourless needles m.p. 

226—227 °C. Rf 0.38 (95:5 CH2Cl2—

MeOH); HPLC (Method B), R.t. 3.93 min, (100%); δH (500 MHz, DMSO-d6); 

13.06 (1H, br s, COOH), 11.86 (1H, s, N-H), 8.53 (1H, s, C-H1′′), 8.01 (2H, d, J = 

7.9, Ar-H2′,6′), 7.85 (2H, d, J = 7.9, Ar-H3′,5′), 7.46-7.50 (4H, m, Ar-H), 7.31-7.44 

(10H, m, Ar-H), 7.21-7.30 (3H, m, Ar-H), 5.21 (4H, s, OCH2 in 3 and 5), 5.03 

(2H, s, OCH2 in 4); δC (75 MHz, DMSO-d6); 166.9 (C=O carboxy), 162.6 (C=O 

amide), 152.1 (3-C and 5-C), 146.5 (1′′-C), 140.3 (4-C), 138.3 (1′-C), 137.4 (1b-

C), 136.8 (1a-C and 1c-C), 131.7 (4′-C), 129.8 (2′-C and 6′-C), 128.44 (Ar-C), 

128.37 (1-C), 128.2 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-

C), 127.1 (3′-C and 5′-C), 107.0 (2-C and 6-C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 

3 and 5); vmax/cm-1 (neat); 3512, 3031, 1694, 1581, 1552, 1499, 1423, 1331, 

1116, 639; m/z (ES) 587.2 (100%, MH+); (Found MH+, 587.2162. C36H30N2O6 

requires MH, 587.2177).   

 

(E)-2-((2-(2-naphthoyl)hydrazono)methyl)benzoic acid (6.76) 

 

Prepared via general method D using 2-

naphthohydrazide 6.105 (85 mg, 0.46 mmol) 

and 2-formylbenzoic acid 6.125 (69 mg, 0.46 

mmol). Recrystallization from methanol / water 

gave the title compound 6.76 (134 mg, 0.42 mmol, 92%) as colourless plates 

m.p. 213—214 °C. Rf 0.22 (95:5 CH2Cl2—MeOH); HPLC (Method A), R.t. 2.53 

min, (100%); δH (500 MHz, DMSO-d6); 13.38 (1H, br s, COOH), 12.23 (1H, s, N-
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H), 9.24 (1H, s, C-H1′′), 8.57 (1H, app. s, Ar-H1), 7.94-8.14 (5H, m, Ar-H), 7.91 

(1H, app. d, J = 7.5, Ar-H6′), 7.58-7.70 (3H, m, Ar-H), 7.53 (1H, app. t, J = 7.5, 

Ar-H5′); δC (125 MHz, DMSO-d6); 168.1 (C=O carboxy), 163.3 (C=O hydrazono), 

146.6 (1′′-C), 134.6 (Ar-Cqt), 134.4 (Ar-Cqt), 132.1 (Ar-Cqt), 132.0 (Ar-C), 130.7 

(Ar-Cqt), 130.6 (Ar-Cqt), 130.3 (6′-C), 129.6 (Ar-C), 128.9 (5′-C), 128.1 (1-C), 

128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 126.9 (Ar-C), 126.7 (Ar-C), 124.4 (Ar-

C); vmax/cm-1 (neat); 3601, 3266, 3073, 1675, 1653, 1621, 1548, 1480, 1421, 

1362, 1241, 1145, 751; m/z (ES) 341.1 (100%, MNa+); (Found MNa+, 341.0899. 

C19H14N2O3 requires MNa, 341.0897).   

 

(E)-3-((2-(2-naphthoyl)hydrazono)methyl)benzoic acid (6.77) 

 

Prepared via general method D using 2-

naphthohydrazide 6.105 (186 mg, 1.0 mmol) 

and 3-formylbenzoic acid 6.124 (150 mg, 1.0 

mmol). Recrystallization from ethanol / water 

gave the title compound 6.77 (274 mg, 0.86 

mmol, 86%) as colourless plates m.p. 249—250 °C. Rf 0.16 (95:5 CH2Cl2—

MeOH); HPLC (Method B), R.t. 3.01 min, (100%); δH (300 MHz, DMSO-d6); 

13.24 (1H, br s, COOH), 12.19 (1H, s, N-H), 8.56 (1H, app. s, Ar-H2′), 8.55 (1H, 

s, C-H1′′), 8.36 (1H, app. s, Ar-H1), 7.97-8.11 (6H, m, Ar-H), 7.49-7.79 (3H, m, 

Ar-H); δC (125 MHz, DMSO-d6); 166.9 (C=O carboxy), 163.3 (C=O hydrazono), 

146.8 (1′′-C), 134.8 (Ar-Cqt), 134.4 (Ar-Cqt), 132.1 (Ar-Cqt), 131.5 (Ar-C), 131.4 

(Ar-Cqt), 130.60 (Ar-C), 130.57 (Ar-C), 129.2 (Ar-C), 128.9 (2′-C), 128.14 (1-C), 

128.08 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 127.4 (Ar-C), 126.9 (Ar-C), 124.3 (Ar-

C); vmax/cm-1 (neat); 3208, 3054, 2837, 1801, 1685, 1643, 1548, 1269, 1064, 

689; m/z (ES) 341.1 (100%, MNa+); (Found MNa+, 341.0881. C19H14N2O3 

requires MNa, 341.0897).   
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(E)-4-((2-(2-naphthoyl)hydrazono)methyl)benzoic acid (6.78)19 

 
Prepared via general method D using 2-

naphthohydrazide 6.105 (186 mg, 1.0 

mmol) and 4-formylbenzoic acid 6.126 

(150 mg, 1.0 mmol). Recrystallization from 

ethanol / water gave the title compound 

6.78 (290 mg, 0.91 mmol, 91%) as colourless plates m.p. >250 °C (Lit.19 m.p. 

150—151 °C). Rf 0.36 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 2.49 min, 

(100%); δH (300 MHz, DMSO-d6); 13.15 (1H, br s, COOH), 12.22 (1H, s, N-H), 

8.56 (2H, br s, Ar-H1, C-H1′′), 7.94-8.15 (6H, m, Ar-H), 7.87 (2H, d, J = 7.8, Ar-

H3′,5′), 7.57-7.73 (2H, m, Ar-H); δC (125 MHz, DMSO-d6); 166.9 (C=O carboxy), 

163.30 (C=O hydrazono), 146.6 (1′′-C), 138.4 (4′-C), 134.4 (Ar-Cqt), 132.0 (Ar-

Cqt), 131.7 (Ar-Cqt), 130.5 (Ar-Cqt), 129.8 (Ar-C), 128.9 (Ar-C), 128.2 (Ar-C), 

128.1 (Ar-C), 128.0 (Ar-C), 127.7 (Ar-C), 127.1 (3′-C, 5′-C), 126.9 (Ar-C), 124.3 

(Ar-C); vmax/cm-1 (neat); 3206, 3042, 1828, 1677, 1504, 1385, 1239, 691; m/z 

(ES) 319.1 (70%, MH+); (Found MH+, 319.1065. C19H14N2O3 requires MH, 

319.1077). 

 

(E)-3,4,5-tris(benzyloxy)-N'-(2-cyanobenzylidene)benzohydrazide (6.79) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(106 mg, 0.23 mmol) and 2-

formylbenzonitrile 6.128 (30.6 mg, 0.23 

mmol). Recrystallization from ethanol gave 

the title compound 6.79 (115 mg, 0.20 

mmol, 88%) as colourless needles m.p. 

177—178 °C. Rf 0.50 (95:5 CH2Cl2—

MeOH); HPLC (Method A), R.t. 4.38 min, (100%); δH (300 MHz, DMSO-d6); 

12.15 (1H, s, N-H), 8.85 (1H, s, C-H1′′), 8.16 (1H, app. d, J = 7.6, Ar-H6′), 7.94 

(1H, app. d, J = 7.6, Ar-H3′), 7.82 (1H, app. t, J = 7.6, Ar-H4′), 7.64 (1H, app. t, J 

= 7.6, Ar-H5′), 7.47-7.53 (4H, m, Ar-H), 7.33-7.45 (10H, m, Ar-H), 7.24-7.31 (3H, 

m, Ar-H), 5.23 (4H, s, OCH2 in 3 and 5), 5.04 (2H, s, OCH2 in 4); δC (125 MHz, 
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DMSO-d6); 162.5 (C=O), 152.1 (3-C and 5-C), 142.8 (1′′-C), 140.4 (4-C), 137.4 

(1b-C), 137.1 (1′-C), 136.8 (1a-C and 1c-C), 133.6 (5′-C), 133.4 (3′-C), 130.4 

(4′-C), 128.44 (Ar-C), 128.39 (1-C), 128.2 (Ar-C), 128.1 (6′-C), 128.0 (Ar-C), 

127.9 (Ar-C), 127.7 (Ar-C), 127.5 (Ar-C), 117.2 (CN), 110.8 (2′-C), 107.2 (2-C 

and 6-C), 74.3 (OCH2 in 4), 70.5 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3213, 

3058, 3025, 2223, 1645, 1582, 1539, 1453, 1336, 1134, 730; m/z (ES) 568.2 

(100%, MH+); (Found MH+, 568.2243. C36H29N3O4 requires MH, 568.2231).   

 

(E)-3,4,5-tris(benzyloxy)-N'-(3-cyanobenzylidene)benzohydrazide (6.80) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (106 mg, 0.23 mmol) and 3-

formylbenzonitrile 6.127 (30.6 mg, 

0.23 mmol). Recrystallization from 

ethanol gave the title compound 6.80 

(119 mg, 0.21 mmol, 90%) as 

colourless needles m.p. 230—231 °C. Rf 0.43 (95:5 CH2Cl2—MeOH); HPLC 

(Method A), R.t. 4.22 min, (100%); δH (300 MHz, DMSO-d6); 11.97 (1H, s, N-H), 

8.51 (1H, s, C-H1′′), 8.15 (1H, app. s, Ar-H2′), 8.11 (1H, app. d, J = 7.9, Ar-H6′), 

7.92 (1H, app. d, J = 7.9, Ar-H4′), 7.69 (1H, app. t, J = 7.9, Ar-H5′), 7.46-7.50 

(4H, m, Ar-H), 7.32-7.46 (10H, m, Ar-H), 7.18-7.32 (3H, m, Ar-H), 5.22 (4H, s, 

OCH2 in 3 and 5), 5.03 (2H, s, OCH2 in 4); δC (125 MHz, DMSO-d6); 162.6 

(C=O), 152.1 (3-C and 5-C), 145.4 (1′′-C), 140.3 (4-C), 137.4 (1b-C), 136.8 (1a-

C and 1c-C), 135.7 (1′-C), 133.3 (4′-C), 131.0 (6′-C), 130.7 (2′-C), 130.1 (5′-C), 

128.4 (Ar-C), 128.3 (1-C), 128.2 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-

C), 127.7 (Ar-C), 118.4 (CN), 112.0 (3′-C), 107.1 (2-C and 6-C), 74.3 (OCH2 in 

4), 70.5 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3171, 3062, 2230, 1684, 1644, 

1580, 1424, 1336, 1121, 736; m/z (ES) 568.2 (100%, MH+); (Found MH+, 

568.2245. C36H29N3O4 requires MH, 568.2231).   
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(E)-3,4,5-tris(benzyloxy)-N'-(4cyanobenzylidene)benzohydrazide (6.81) 

 

Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 

6.32 (167 mg, 0.37 mmol) and 4-

formylbenzonitrile 6.129 (48 mg, 0.37 

mmol). Recrystallization from ethanol 

gave the title compound 6.81 (183 

mg, 0.32 mmol, 87%) as colourless 

plates m.p. 223—224 °C. Rf 0.46 (95:5 CH2Cl2—MeOH); HPLC (Method A), R.t. 

4.22 min, (100%); δH (500 MHz, DMSO-d6); 11.94 (1H, s, N-H), 8.52 (1H, s, C-

H1′′), 7.92 (4H, app. br s, Ar-H2′,3′,5′.6′), 7.46-7.50 (4H, m, Ar-H), 7.32-7.44 (10H, 

m, Ar-H), 7.19-7.30 (3H, m, Ar-H), 5.20 (4H, s, OCH2 in 3 and 5), 5.03 (2H, s, 

OCH2 in 4); δC (125 MHz, DMSO-d6); 162.6 (C=O), 152.1 (3-C and 5-C), 145.7 

(1′′-C), 140.3 (4-C), 138.7 (4′-C), 137.3 (1b-C), 136.7 (1a-C and 1c-C), 132.8 

(2′-C and 6′-C), 128.5 (3′-C and 5′-C), 128.45 (Ar-C), 128.36 (1-C), 128.2 (Ar-C), 

128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 118.6 (CN), 111.9 (1′-C), 

107.0 (2-C and 6-C), 74.3 (OCH2 in 4), 70.4 (OCH2 in 3 and 5); vmax/cm-1 (neat); 

3655, 3203, 3027, 2223, 1645, 1582, 1539, 1453, 1336, 730; m/z (ES) 568.2 

(100%, MH+); (Found MH+, 568.2239. C36H29N3O4 requires MH, 568.2231).   

 

(E)-N'-((1H-pyrrol-2-yl)methylene)-3,4,5-tris(benzyloxy)benzohydrazide 
(6.82) 

 
Prepared via general method D using 

3,4,5-tris(benzyloxy)benzohydrazide 6.32 

(205 mg, 0.45 mmol) and 1H-pyrrole-2-

carbaldehyde 6.133 (42.9 mg, 0.5 mmol). 

Recrystallization from ethanol / water gave 

the title compound 6.82 (207 mg, 0.39 

mmol, 87%) as colourless plates m.p. 217 

°C (dec). Rf 0.32 (95:5 CH2Cl2—MeOH); (Found: C, 74.8; H, 5.55; N, 7.8; 

C33H29N3O4 requires C, 74.6; H, 5.50; N, 7.9%). HPLC (Method B), R.t. 4.12 

min, (100%); δH (500 MHz, DMSO-d6); 11.53 (1H, s, N-H pyrrole), 11.36 (1H, s, 

N-H amide), 8.29 (1H, s, C-H1′′), 7.46-7.50 (4H, m, Ar-H), 7.33-7.43 (10H, m, Ar-
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H), 7.24-7.30 (3H, m, Ar-H), 6.91 (1H, app. br s, Ar-H5′), 6.49 (1H, app. br s, Ar-

H3′), 6.14 (1H, dd, J = 5.2, 2.4, Ar-H4′), 5.20 (4H, s, OCH2 in 3 and 5), 5.01 (2H, 

s, OCH2 in 4); δC (125 MHz, DMSO-d6); 161.9 (C=O), 152.1 (3-C and 5-C), 

141.0 (1′′-C), 139.9 (4-C), 137.4 (1b-C), 136.8 (1a-C and 1c-C), 129.0 (1-C), 

128.4 (Ar-C), 128.2 (Ar-C), 128.1 (Ar-C), 128.0 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-

C), 126.9 (2′-C), 122.6 (5′-C), 113.4 (3′-C), 109.2 (4′-C), 106.8 (2-C and 6-C), 

74.3 (OCH2 in 4), 70.5 (OCH2 in 3 and 5); vmax/cm-1 (neat); 3435, 3218, 1641, 

1606, 1579, 1553, 1454, 1305, 1115, 728; m/z (ES) 554.2 (100%, MNa+); 

(Found MNa+, 554.2040. C33H29N3O4 requires MNa, 554.2050).   

 

(E)-N'-((1H-pyrrol-2-yl)methylene)-2-naphthohydrazide (6.83) 

 
Prepared via general method D using 2-

naphthohydrazide 6.105 (124 mg, 0.66 mmol) 

and 1H-pyrrole-2-carbaldehyde 6.133 (63.1 mg, 

0.66 mmol). Recrystallization from ethanol gave 

the title compound 6.83 (142 mg, 0.60 mmol, 91%) as light yellow plates m.p. 

243 °C (dec). Rf 0.33 (95:5 CH2Cl2—MeOH); HPLC (Method A), R.t. 2.59 min, 

(100%); δH (500 MHz, DMSO-d6); 11.66 (1H, s, N-H amide), 11.54 (1H, br s, N-

H pyrrole), 8.50 (1H, s, C-H1′′), 8.33 (1H, app. s, Ar-H1), 7.87-8.13 (4H, m, Ar-H 

naphthyl), 7.72-7.28 (2H, m, Ar-H4 naphthyl), 6.92 (1H, app. br s, Ar-H5′), 6.50 

(1H, app. br s, Ar-H3′), 6.15 (1H, dd, J = 5.2, 2.4, Ar-H4′); δC (75 MHz, DMSO-d6); 

162.6 (C=O), 140.8 (1-C), 134.2 (2-C), 132.1 (4a-C or 8a-C), 131.0 (4a-C or 8a-

C), 128.8 (Ar-C), 128.0 (Ar-C), 127.8 (Ar-C), 127.7 (1′′-C), 127.6 (Ar-C), 127.00 

(2′-C), 126.8 (Ar-C), 124.3 (Ar-C), 122.6 (5′-C), 113.4 (3′-C), 109.2 (4′-C); 

vmax/cm-1 (neat); 3445, 3359, 3224, 3059, 1619, 1562, 1435, 1286, 724; m/z 

(ES) 264.1 (100%, MH+); (Found MH+, 264.1134. C16H13N3O requires MH, 

264.1131).   
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(E)-N'-(pyridin-3-yl-methylene)-1-naphthohydrazide (6.84) 

 

Prepared via general method D using 1-naphthohydrazide 

6.108 (127 mg, 0.68 mmol) and 3-pyridinecarboxyaldehyde 

6.33 (0.064 mL, 0.68 mmol). A portion of the crude 

compound (60 mg out of 182 mg) was purified via mass-

directed preparative HPLC eluting with a gradient of 

methanol in water (5—95%) in presence of formic acid 

(0.1%) to give a solid which was  recrystallized from ethanol 

to give the title compound 6.84 (52 mg, 0.19 mmol, 87%) as light yellow plates 

m.p. 221—222 °C. Rf 0.33 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 2.01 

min, (100%); δH (500 MHz, DMSO-d6); 12.16 (1H, s, N-H), 8.87 (1H, d, J = 1.6, 

Ar-H2′), 8.63 (1H, dd, J = 4.7 Hz, 1.6, Ar-H6′), 8.40 (1H, s, C-H1′′′), 8.19-8.24 (1H, 

m, Ar-H), 8.17 (1H, app. dt, J = 7.9, 1.6, Ar-H4′), 8.10 (1H, d, J = 8.3, Ar-H), 8.02 

(1H, dd, J = 6.5, 2.8, Ar-H), 7.76 (1H, d, J = 6.5, Ar-H), 7.56-7.64 (3H, m, Ar-H), 

7.50 (1H, dd, J = 7.9 Hz, 4.7, Ar-H5′); δC (75 MHz, DMSO-d6); 164.8 (C=O), 

150.8 (6′-C), 148.8 (2′-C), 145.0 (1′′′-C), 133.5 (4′-C), 133.2 (Ar-Cqt), 132.6 (Ar-

Cqt), 130.6 (Ar-C), 130.2 (3′-C), 130.0 (Ar-Cqt), 128.4 (Ar-C), 127.1 (Ar-C), 126.4 

(Ar-C), 126.0 (Ar-C), 125.1 (Ar-C), 125.0 (Ar-C), 124.0 (5′-C); vmax/cm-1 (neat); 

3165, 3011, 1638, 1603, 1590, 1417, 1300, 698; m/z (ES) 276.1 (100%, MH+); 

(Found MH+, 276.1140. C17H13N3O requires MH, 276.1131).   

 

 (E)-N'-(pyridin-3-ylmethylene)quinoline-6-carbohydrazide (6.85) 

 
Prepared via general method D using quinoline-

6-carbohydrazide 6.107 (93.5 mg, 0.50 mmol) 

and 3-pyridinecarboxyaldehyde 6.33 (0.047 mL, 

0.50 mmol). Recrystallization from ethanol gave 

the title compound 6.85 (105 mg, 0.38 mmol, 76%) as colourless needles m.p. 

208—209 °C. Rf 0.40 (90:10 CH2Cl2—MeOH); HPLC (Method B), R.t. 1.29 min, 

(100%); δH (500 MHz, DMSO-d6); 12.24 (1H, s, N-H), 9.01 (1H, dd, J = 4.2, 1.7, 

Ar-H2), 8.89 (1H, app. s, Ar-H2′), 8.63 (1H, app. d, J = 4.3, Ar-H6′), 8.60 (1H, 

app. s, Ar-H5), 8.55 (1H, s, C-H1′′), 8.53 (1H, dd, J = 8.4, 1.7, Ar-H4), 8.08-8.29 

(3H, m, Ar-H4′, Ar-H7, Ar-H8), 7.64 (1H, dd, J = 8.2, 4.2, Ar-H3), 7.51 (1H, dd, J = 
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7.5, 4.3, Ar-H5′); δC (125 MHz, DMSO-d6); 162.8 (C=O), 152.4 (2-C), 150.8 (6′-

C), 148.8 (2′-C), 148.7 (8a-C), 145.4 (1′′-C), 137.1 (4-C), 133.5 (4′-C), 131.0 (Ar-

Cqt), 130.2 (5-C), 129.3 (3′-C), 128.6 (7-C or 8-C), 127.9 (7-C or 8-C), 127.1 (Ar-

Cqt), 124.0 (5′-C), 122.4 (3-C); vmax/cm-1 (neat); 3451, 3165, 3011, 1675, 

1621,1591, 1568, 1327, 701; m/z (ES) 277.1 (100%, MH+); (Found MH+, 

277.1091. C16H12N4O requires MH, 277.1084).   

 

(E)-N'-(pyridin-3-yl-methylene)quinoxaline-6-carbohydrazide (6.86) 

 
Prepared via general method D using 

quinoxaline-6-carbohydrazide 6.115 (103 mg, 

0.55 mmol) and 3-pyridinecarboxyaldehyde 6.33 

(0.05 mL, 0.55 mmol). A portion of the crude 

compound (50 mg out of 89 mg) was purified via mass-directed preparative 

HPLC eluting with a gradient of methanol in water (5—95%) in presence of 

formic acid (0.1%) to give a solid which was recrystallized from ethanol to give 

the title compound 6.86 (40 mg, 0.18 mmol, 80%) as colourless plates m.p. 

106—107 °C. Rf 0.18 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 1.35 min, 

(100%); δH (500 MHz, DMSO-d6); 12.37 (1H, s, N-H), 9.02-9.10 (2H, m, Ar-

H2,3), 8.90 (1H, app. s, Ar-H2′), 8.72 (1H, d, J = 1.6, Ar-H5), 8.63 (1H, app. d, J = 

4.7, Ar-H6′), 8.58 (1H, s, C-H1′′′), 8.33 (1H, dd, J = 8.7, 1.6, Ar-H7), 8.24 (1H, d, J 

= 8.7, Ar-H8), 8.18 (1H, app. d, J = 7.8, Ar-H4′), 7.51 (1H, dd, J = 7.8, 4.7, Ar-

H5′); δC (125 MHz, DMSO-d6); 162.2 (C=O), 150.9 (6′-C), 148.9 (2′-C), 147.3 (2-

C or 3-C), 146.9 (2-C or 3-C), 145.8 (1′′′-C), 143.6 (4a-C), 141.5 (8a-C), 134.3 

(6-C), 133.6 (4′-C), 130.1 (3′-C), 129.6 (8-C), 128.8 (7-C), 128.7 (5-C), 124.0 

(5′-C); vmax/cm-1 (neat); 3506, 3208, 3010, 1731, 1446, 1369, 1209; m/z (EI) 

277.1 (100%, M+); (Found M+, 277.0959. C15H11N5O requires M, 277.0964).   
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 (E)-N'-(pyridin-3-yl-methylene)-1H-indole-3-carbohydrazide (6.87) 

 

Prepared via general method D using 1H-indole-3-

carbohydrazide 6.116 (175 mg, 1.0 mmol) and 3-

pyridinecarboxyaldehyde 6.33 (0.094 mL, 1.0 mmol). 

Recrystallization from ethanol gave the title compound 

6.87 (196 mg, 0.74 mmol, 74%) as colourless needles 

m.p. 248 °C (dec.). Rf 0.37 (95:5 CH2Cl2—MeOH); 

HPLC (Method B), R.t. 2.04 min, (100%); δH (500 MHz, 

DMSO-d6); 12.05 (1H, s, N-H amide), 11.82 (1H, s, N-H indole), 8.89 (1H, app. 

s, Ar-H2′), 8.61 (1H, dd, J = 4.8, 1.6, Ar-H6′), 8.51 (1H, s, 1′′-C), 8.16 (1H, app. d, 

J = 7.8, Ar-H4′), 7.68 (1H, app. d, J = 7.8, Ar-H5′), 7.42-7.54 (2H, m, Ar-H), 7.34 

(1H, s, Ar-H2), 7.22 (1H, m, Ar-H), 7.07 (1H, m, Ar-H); δC (125 MHz, DMSO-d6); 

157.8 (C=O), 150.6 (6′-C), 148.7 (2′-C), 144.3 (1′′-C), 136.9 (Ar-Cqt), 133.5 (4′-

C), 130.3 (3′-C), 129.8 (Ar-Cqt), 127.0 (3-C), 124.0 (Ar-C), 123.99 (Ar-C), 121.8 

(5′-C), 120.00 (Ar-C), 112.4 (Ar-C), 103.9 (2-C); vmax/cm-1 (neat); 3279, 3048, 

1650, 1606, 1577, 1354, 1227, 745; m/z (ES) 265.1 (100%, MH+); (Found MH+, 

265.1074. C15H12N4O requires MH, 265.1084).  

  

 (E)-N'-(pyridin-3-ylmethylene)-1H-indole-5-carbohydrazide (6.88) 

                                                                  
Prepared via general method D using 1H-indole-

5-carbohydrazide 6.103 (175 mg, 1.0 mmol) and 

3-pyridinecarboxyaldehyde 6.33 (0.094 mL, 1.0 

mmol). Recrystallization from ethanol gave the 

title compound 6.88 (204 mg, 0.77 mmol, 77%) as light brown plates m.p. 151—

152 °C. Rf 0.32 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 1.55 min, 

(100%); δH (500 MHz, DMSO-d6); 11.90 (1H, s, N-H amide), 11.40 (1H, s, N-H 

indole), 8.84 (1H, d, J = 1.1, Ar-H2′), 8.59 (1H, dd, J = 4.7, 1.6, Ar-H6′), 8.51 (1H, 

s, 1′′-C), 8.22 (1H, app. s, Ar-H4), 8.13 (1H, app. d, J = 7.3, Ar-H4′), 7.70 (1H, 

dd, J = 8.5, 1.6, Ar-H6), 7.45-7.51 (3H, m, Ar-H2,7,5′), 6.57-6.59 (1H, m, Ar-H3); 

δC (125 MHz, DMSO-d6); 164.3 (C=O), 150.4 (6′-C), 148.6 (2′-C), 143.7 (1′′-C), 

137.7 (Ar-Cqt), 133.3 (4′-C), 130.5 (Ar-Cqt), 127.01 (Ar-Cqt), 126.97 (2-C or 7-C 

or 5′-C), 123.97 (2-C or 7-C or 5′-C), 123.95 (Ar-Cqt), 120.9 (6-C), 120.5 (4-C), 
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111.2 (2-C or 7-C or 5′-C), 102.2 (3-C); vmax/cm-1 (neat); 3177, 3033, 1648, 

1592, 1553, 1414, 1293, 1188, 700; m/z (ES) 265.1 (100%, MH+); (Found MH+, 

265.1073. C15H12N4O requires MH, 265.1084).   

 

(E)-N'-(pyridin-3-yl-methylene)-1H-indole-6-carbohydrazide (6.89) 

 

Prepared via general method D using 1H-indole-

6-carbohydrazide 6.104 (88 mg, 0.50 mmol) and 

3-pyridinecarboxyaldehyde 6.33 (0.047 mL, 0.50 

mmol). Recrystallization from ethanol gave the 

title compound 6.89 (108 mg, 0.41 mmol, 82%) as light pink plates m.p. 118 °C 

(dec). Rf 0.17 (95:5 CH2Cl2—MeOH); HPLC (Method B), R.t. 1.55 min, (100%); 

δH (500 MHz, DMSO-d6); 11.94 (1H, s, N-H amide), 11.46 (1H, s, N-H indole), 

8.85 (1H, d, J = 1.4, Ar-H2′), 8.60 (1H, dd, J = 4.7, 1.4, Ar-H6′), 8.52 (1H, s, C-

H1′′′), 8.13 (1H, app. d, J = 8.3, Ar-H4′), 8.04 (1H, app. s, Ar-H7), 7.59-7.65 (2H, 

m, Ar-H4,5′), 7.55 (1H, app. t, J = 2.8, Ar-H2), 7.48 (1H, dd, J = 7.9, 4.8, Ar-H5), 

6.52 (1H, m, Ar-H3); δC (125 MHz, DMSO-d6); 164.5 (C=O), 150.5 (6′-C), 148.6 

(2′-C), 144.0 (1′′′-C), 135.1 (7a-C ), 133.3 (4′-C), 130.5 (6-C), 130.3 (3′-C), 

128.52 (2-C), 125.7 (3a-C), 124.0 (5′-C), 119.6 (4-C), 118.3 (5-C), 111.8 (7-C), 

101.4 (3-C); vmax/cm-1 (neat); 3400, 3160, 3056, 1642, 1610, 1556, 1306, 1267, 

696; m/z (ES) 287.1 (100%, MNa+); (Found MNa+, 287.0904. C15H12N4O 

requires MNa, 287.0903).   

 

(E)-3-morpholino-N'-(pyridin-3-yl-methylene)benzohydrazide (6.90a) 

 

Prepared via general method D using 3-

morpholinobenzohydrazide 6.110 (75 mg, 

0.34 mmol) and 3-pyridinecarboxyaldehyde 

6.33 (0.32 mL, 0.34 mmol). Recrystallization 

from ether gave the title compound 6.90a (90 mg, 0.29 mmol, 85%) as light 

yellow plates m.p. 183—184 °C. Rf 0.13 (95:5 CH2Cl2—MeOH); HPLC (Method 

B), R.t. 1.61 min, (100%); δH (500 MHz, DMSO-d6); 11.88 (1H, s, N-H), 8.84 

(1H, app. s, Ar-H2a), 8.61 (1H, app. d, J = 4.8, Ar-H6a), 8.50 (1H, s, C-H1′′′), 8.13 

(1H, app. d, J = 7.6, Ar-H4a), 7.48 (1H, dd, J = 7.6, 4.8, Ar-H5a), 7.29-7.42 (3H, 
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m, Ar-H2,5,6), 7.17 (1H, app. d, J = 7.0, Ar-H4), 3.76 (4H, t, J = 5.0, CH2 in 2′ and 

3′), 3.18 (4H, t, J = 5.0, CH2 in 1′ and 4′); δC (125 MHz, DMSO-d6); 163.6 (C=O), 

151.0 (3-C), 150.7 (6a-C), 148.7 (2a-C), 144.9 (1′′′-C), 134.0 (1-C), 133.4 (4a-

C), 130.3 (3a-C), 129.14 (2-C or 5-C or 6-C), 124.0 (5a-C), 118.4 (4-C), 118.3 

(2-C or 5-C or 6-C), 113.9 (2-C or 5-C or 6-C), 66.0 (2′-C and 3′-C), 48.2 (1′-C 

and 4′-C); vmax/cm-1 (neat); 3461, 3220, 3068, 1668, 1607, 1554, 1271, 1114, 

691; m/z (ES) 311.2 (100%, MH+); (Found MH+, 311.1507. C17H18N4O2 requires 

MH, 311.1502).   

 

(E)-4-(1H-imidazol-1-yl)-N'-(pyridin-3-yl-methylene)benzohydrazide (6.91a) 

 

Prepared via general method D using 4-(1H-

imidazol-1-yl)benzohydrazide 6.111 (96 mg, 

0.47 mmol) and 3-pyridinecarboxyaldehyde 

6.33 (0.044 mL, 0.47 mmol). Recrystallization 

from ethanol gave the title compound 6.91a 

(116 mg, 0.40 mmol, 85%) as colourless needles m.p. 196—197 °C. Rf 0.30 

(95:5 CH2Cl2—MeOH); HPLC (Method A), R.t. 1.18 min, (100%); δH (500 MHz, 

DMSO-d6); 12.07 (1H, s, N-H), 8.87 (1H, app. s, Ar-H2a), 8.62 (1H, app. d, J = 

4.7, Ar-H6a), 8.53 (1H, s, C-H1′′′), 8.41 (1H, app. s, Ar-H5′), 8.15 (1H, app. d, J = 

7.6, Ar-H4a), 8.07 (2H, d, J = 8.3, Ar-H3,5), 7.88 (1H, t, J = 1.3, Ar-H2′), 7.86 (2H, 

d, J = 8.3, Ar-H2,6), 7.49 (1H, dd, J = 7.6, 4.7, Ar-H5a), 7.11-7.18 (1H, m, Ar-H4′); 

δC (125 MHz, DMSO-d6); 162.2 (C=O), 150.8 (6a-C), 148.8 (2a-C), 145.2 (1′′′-

C), 139.4 (4-C), 135.6 (5′-C), 133.5 (4a-C), 131.1 (1-C), 130.3 (4′-C), 130.2 (3a-

C), 129.5 (3-C and 5-C), 124.0 (5a-C), 119.7 (2-C and 6-C), 117.8 (2′-C); 

vmax/cm-1 (neat); 3451, 3240, 3090, 1652, 1513, 1426, 1367, 1105, 967; m/z 

(ES) 292.1 (100%, MH+); (Found MH+, 292.1203. C16H13N5O requires MH, 

292.1192).   
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Methyl 3,5-bis(benzyloxy)benzoate (6.93)20  

 
Potassium carbonate (2073 mg, 15 mmol) and 

benzyl bromide (1.55 mL, 13 mmol) were added to 

a solution of 3,5-trihydroxybenzoate methyl ester 

6.92 (1684 mg, 10 mmol) in acetone (30 mL). This 

reaction mixture was stirred at reflux for twenty-

four hours and then poured into water (90 mL). The 

mixture was extracted with EtOAc (4 x 60 mL). The organic layer was dried over 

MgSO4 and concentrated under reduced pressure. The light brown solid was 

purified using column chromatography on silica gel eluting with petroleum ether 

/ ethylacetate (8:2) and recrystallized from hexane to give the title compound 

6.93 (3100 mg, 8.9 mmol, 89%) as colourless plates m.p. 58—60 °C (Lit.20 m.p. 

69.2 °C). Rf 0.56 (1:1 petroleum ether—EtOAc); HPLC (Method A), R.t. 1.28 

min, (100%); δH (300 MHz, DMSO-d6); 7.26-7.50 (10H, m, Ar-H), 7.17 (2H, d, J 

= 2.3, Ar-H2,6), 6.97 (1H, t, J = 2.3, Ar-H4), 5.15 (4H, s, OCH2 in 3 and 5), 3.84 

(2H, s, OCH3); δC (75 MHz, DMSO-d6); 165.8 (C=O), 159.5 (3-C and 5-C), 136.6 

(1′-C), 131.6 (1-C), 128.4 (Ar-C), 127.9 (Ar-C), 127.6 (Ar-C), 107.9 (2-C, 6-C), 

106.9 (4-C), 69.5 (OCH2), 52.3 (OCH3); vmax/cm-1 (neat); 2947, 1711, 1498, 

1377, 1351, 1235, 1105, 1044, 729; m/z (ES) 371.1 (100%, MNa+); (Found 

MNa+, 371.1271. C22H20O4 requires MNa, 371.1254).   

 

1H-indole-5-carbohydrazide (6.103)21 

 
Prepared via general method C using  methyl 1H-indole-

5-carboxylate 6.94 (521 mg, 3.0 mmol) and hydrazine 

hydrate (1.44 mL, 30 mmol). Recrystallization from 

ethanol / water gave the title compound 6.103 (468 mg, 

2.7 mmol, 89%) as colourless needles m.p. 173—175 °C (Lit.21 m.p. 173—177 

°C). Rf 0.52 (90:10 CH2Cl2—MeOH); HPLC (Method B), R.t. 0.80 min, (96%); δH 

(300 MHz, DMSO-d6); 11.33 (1H, s, N-H indole), 9.59 (1H, s, N-H amide), 8.09 

(1H, app. s, Ar-H4), 7.60 (1H, dd, J = 8.5, 1.6, Ar-H6), 7.38-7.42 (2H, m, Ar-H2,7), 

6.50-6.52 (1H, m, Ar-H3), 4.54 (2H, br s, NH2); δC (75 MHz, DMSO-d6); 167.3 

(C=O), 137.3 (5-C), 127.0 (7a-C), 126.6 (2-C or 7-C), 124.2 (3a-C), 120.2 (6-C), 
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119.6 (4-C), 110.9 (2-C or 7-C), 102.0 (3-C); vmax/cm-1 (neat); 3296, 3213, 3028, 

1635, 1614, 1583, 1466, 1327, 755; m/z (ES) 198.1 (100%, MNa+); (Found 

MNa+, 198.0638. C9H9N3O requires MNa, 198.0638).   

 

1H-indole-6-carbohydrazide (6.104)21 

 
Prepared via general method C using methyl 1H-indole-

6-carboxylate 6.95 (800 mg, 4.6 mmol) and hydrazine 

hydrate (4.50 mL, 91 mmol). Recrystallization from 

ethanol gave the title compound 6.104 (713 mg, 4.1 mmol, 89%) as light yellow 

needles m.p. 190—191 °C (Lit.21 Not available). Rf 0.46 (90:10 CH2Cl2—

MeOH); HPLC (Method A), R.t. 1.06 min, (100%); δH (300 MHz, DMSO-d6); 

11.40 (1H, s, N-H indole), 9.66 (1H, s, N-H amide), 7.92 (1H, app. s, Ar-H7), 

7.55 (1H, app. d, J = 8.3, Ar-H4), 7.47-7.51 (2H, m, Ar-H2,5), 6.49-6.55 (1H, m, 

Ar-H3), 4.45 (2H, s, NH2); δC (125 MHz, DMSO-d6); 167.1 (C=O), 135.2 (7a-C), 

129.7 (6-C), 127.8 (2-C), 126.1 (3a-C), 119.4 (4-C), 117.6 (5-C), 110.9 (7-C), 

101.2 (3-C); vmax/cm-1 (neat); 3310, 3116, 3035, 1625, 1566, 1455, 1320, 1274, 

1106, 731; m/z (ES) 198.1 (100%, MNa+); (Found MNa+, 198.0633. C9H9N3O 

requires MNa, 198.0638).   

 

2-naphthohydrazide (6.105)
22

 

  
Prepared via general method C using methyl-2-

naphthoate 6.96 (1 g, 5.37 mmol) and hydrazine hydrate 

(6 mL, 123 mmol). Recrystallization from methanol gave 

the title compound 6.105 (0.9 g, 5.0 mmol, 93%) as 

colourless plates m.p. 146—148 °C (Lit.22 m.p. 147—152 °C). Rf 0.36 (95:5 

CH2Cl2—MeOH); HPLC (Method A), R.t. 1.68 min, (100%); δH (500 MHz, 

DMSO-d6); 9.95 (1H, s, N-H), 8.44 (1H, app. s, Ar-H1), 7.96-8.04 (3H, m, Ar-

H4,5,8), 7.92 (1H, dd, J = 8.6, 1.6, Ar-H3), 7.58-7.69 (2H, m, Ar-H6,7), 4.68 (2H, br 

s, NH2); δC (75 MHz, DMSO-d6); 165.8 (C=O), 134.0 (Ar-Cqt), 132.1 (2-C), 130.6 

(Ar-Cqt), 128.8 (4-C or 5-C or 8-C), 127.8 (6-C or 7-C), 127.6 (4-C or 5-C or 8-

C), 127.5 (1-C), 127.2 (6-C or 7-C), 126.7 (4-C or 5-C or 8-C), 123.8 (3-C); 

vmax/cm-1 (neat); 3311, 3177, 3036, 1650, 1571, 1506, 1267, 724; m/z (ES) 
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209.1 (100%, MNa+); (Found MNa+, 209.0690. C11H10N2O requires MNa, 

209.0685).   

 

4-(benzyloxy)benzohydrazide (6.106)23 

 
Prepared via general method C using methyl-4-

benzyloxybenzoate 6.97 (2000 mg, 8.25 mmol) 

and hydrazine hydrate (10 mL, 206 mmol). 

Recrystallization from ethanol gave the title 

compound 6.106 (1879 mg, 7.76 mmol, 94%) as 

colourless needles m.p. 139—140 °C (Lit.23 m.p. 140). Rf 0.42 (95:5 CH2Cl2—

MeOH); HPLC (Method B), R.t. 2.87 min, (100%); δH (300 MHz, DMSO-d6); 

9.63 (1H, s, N-H), 7.80 (2H, d, J = 8.9, Ar-H2,6), 7.27-7.52 (5H, m, Ar-H2′,3′,4′,5′,6′), 

7.06 (2H, d, J = 8.9, Ar-H3,5), 5.16 (2H, s, OCH2), 4.44 (2H, br s, NH2); δC (75 

MHz, DMSO-d6); 165.5 (C=O), 160.4 (4-C), 136.7 (1′-C), 128.7 (2-C, 6-C), 

128.4 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 125.6 (1-C), 114.3 (3-C, 5-C), 69.2 

(OCH2); vmax/cm-1 (neat); 3285, 3193, 1597, 1571, 1531, 1503, 1245, 1223, 834, 

652; m/z (ES) 265.1 (100%, MNa+); (Found MNa+, 265.0943. C14H14N2O2 

requires MNa, 265.0947).   

 

Quinoline-6-carbohydrazide (6.107)24 

 
Prepared via general method C using methyl quinoline-

6-carboxylate 6.98 (700 mg, 3.74 mmol) and hydrazine 

hydrate (3.70 mL, 74.8 mmol). Recrystallization from 

ethanol gave the title compound 6.107 (595 mg, 3.18 

mmol, 85%) as colourless plates m.p. 192—194 °C (Lit.24 m.p. 193—194 °C). Rf 

0.40 (90:10 CH2Cl2—MeOH); HPLC (Method B), R.t. 0.72 min, (100%); δH (500 

MHz, DMSO-d6); 10.04 (1H, s, N-H), 8.98 (1H, dd, J = 4.2, 1.7, Ar-H2), 8.44-

8.50 (2H, m, Ar-H4 and Ar-H5), 8.15 (1H, dd, J = 8.8, 1.9, Ar-H7), 8.06 (1H, d, J 

= 8.8, Ar-H8), 7.61 (1H, dd, J = 8.3, 4.2, Ar-H3), 4.77 (2H, br s, NH2); δC (125 

MHz, DMSO-d6); 165.3 (C=O), 151.9 (2-C), 148.6 (8a-C), 137.0 (4-C or 5-C), 

131.1 (Ar-Cqt), 129.0 (8-C), 127.7 (4-C or 5-C), 127.4 (7-C), 127.1 (Ar-Cqt), 

122.1 (3-C); vmax/cm-1 (neat); 3310, 3116, 3035, 1625, 1566, 1528, 1455, 1320, 
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1334, 731; m/z (ES) 188.1 (100%, MH+); (Found MH+, 188.0826. C10H9N3O 

requires MH, 188.0818).   

 

1-naphthohydrazide (6.108)25  

 
Prepared via general method C using ethyl 1-naphthoate 6.99 

(0.20 mL, 1.10 mmol) and hydrazine hydrate (1.1 mL, 22.0 

mmol). Recrystallization from ethanol gave the title compound 

6.108 (197 mg, 1.06 mmol, 96%) as colourless plates m.p. 159—

160 °C (Lit.25 m.p. 160—163 °C). Rf 0.78 (90:10 CH2Cl2—MeOH); HPLC 

(Method B), R.t. 1.44 min, (100%); δH (500 MHz, DMSO-d6); 9.71 (1H, s, N-H), 

8.19-8.24 (1H, m, Ar-H), 8.02 (1H, d, J = 7.4, Ar-H), 7.96-8.00 (1H, m, Ar-H), 

7.51-7.60 (4H, m, Ar-H), 4.61 (2H, br s, NH2); δC (125 MHz, DMSO-d6); 167.9 

(C=O), 133.3 (Ar-Cqt), 133.1 (Ar-Cqt), 130.0 (Ar-Cqt), 129.8 (Ar-C), 128.2 (Ar-C), 

126.6 (Ar-C), 126.2 (Ar-C), 125.4 (Ar-C), 125.3 (Ar-C), 125.0 (Ar-C); vmax/cm-1 

(neat); 3274, 3046, 1644, 1608, 1588, 1515, 1208, 939, 734; m/z (ES) 209.1 

(100%, MNa+); (Found MNa+, 209.0691. C11H10N2O requires MNa, 209.0685).   

 

3,5-bis(benzyloxy)benzohydrazide (6.109)13  

 
Prepared via general method C using methyl 3,5-

bis(benzyloxy)benzoate 6.100 (3.0 g, 8.6 mmol) 

and hydrazine hydrate (8.0 mL, 172 mmol). 

Recrystallization from ethanol gave the title 

compound 6.109 (2.8 g, 8.0 mmol, 93%) as 

colourless plates m.p. 118—119 °C (Lit.13 not 

available). Rf 0.40 (95:5 CH2Cl2—MeOH); HPLC (Method A), R.t. 2.70 min, 

(100%); δH (300 MHz, DMSO-d6); 9.75 (1H, s, N-H), 7.28-7.51 (10H, m, Ar-H), 

7.09 (2H, d, J = 2.2, Ar-H2,6), 6.81 (1H, t, J = 2.2, Ar-H4), 5.13 (4H, s, OCH2 in 3 

and 5), 4.51 (2H, br s, NH2); δC (75 MHz, DMSO-d6); 165.2 (C=O), 159.3 (3-C 

and 5-C), 136.8 (1′-C), 135.3 (1-C), 128.4 (Ar-C), 127.9 (Ar-C), 127.7 (Ar-C), 

105.9 (2-C and 6-C), 104.6 (4-C), 69.4 (OCH2); vmax/cm-1 (neat); 3276, 3031, 

1625, 1453, 1353, 1162, 1058, 693; m/z (ES) 371.1 (100%, MNa+); (Found 

MNa+, 371.1366. C21H20N2O3 requires MNa, 371.1366).   
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3-morpholinobenzohydrazide (6.110)26 

 

Prepared via general method C using methyl 3-

morpholinobenzoate 6.101 (256 mg, 1.16 mmol) and 

hydrazine hydrate (0.56 mL, 11.6 mmol). 

Recrystallization from ethanol gave the title 

compound 6.110 (239 mg, 1.08 mmol, 93%) as light yellow needles m.p. 109—

110 °C (Lit.26 not available). Rf 0.22 (90:10 CH2Cl2—MeOH); HPLC (Method B), 

R.t. 1.08 min, (95%); δH (300 MHz, DMSO-d6); 9.63 (1H, s, N-H), 7.13-7.32 (3H, 

m, Ar-H2,5,6), 6.96-7.03 (1H, m, Ar-H4), 4.42 (2H, br s, NH2), 3.66 (4H, t, J = 5.5, 

CH2 in 2′ and 3′), 3.05 (4H, t, J = 5.5, CH2 in 1′ and 4′); δC (75 MHz, DMSO-d6); 

166.1 (C=O), 150.9 (3-C), 134.0 (1-C), 128.9 (Ar-C), 117.7 (Ar-C), 117.6 (Ar-C), 

113.2 (Ar-C), 66.0 (2′-C and 3′-C), 48.2 (1′-C and 4′-C); vmax/cm-1 (neat); 3305, 

3200, 2835, 1668, 1623 1597, 1574, 1516, 1487, 1240, 1121, 926; m/z (ES) 

222.1 (100%, MH+); (Found MH+, 222.1235. C11H15N3O2 requires MH, 

222.1237).   

 

4-(1H-imidazol-1-yl)benzohydrazide (6.111)27 

 
Prepared via general method C using methyl 4-(1H-

imidazol-1-yl)benzoate 6.102 (323 mg, 1.6 mmol) and 

hydrazine hydrate (0.82 mL, 16 mmol). 

Recrystallization from ethanol gave the title compound 

6.111 (303 mg, 1.5 mmol, 95%) as colourless needles m.p. 225—227 °C (Lit.27 

m.p. 223—225 °C). Rf 0.16 (90:10 CH2Cl2—MeOH); HPLC (Method A), R.t. 0.65 

min, (100%); δH (500 MHz, DMSO-d6); 9.85 (1H, s, N-H), 8.36 (1H, app. s, Ar-

H5′), 7.95 (2H, d, J = 8.7, Ar-H3,5), 7.83 (1H, t, J = 1.1, Ar-H2′), 7.75 (2H, d, J = 

8.7, Ar-H2,6), 7.12 (1H, app. s, Ar-H4′), 4.73 (2H, br s, NH2); δC (75 MHz, DMSO-

d6); 164.8 (C=O), 138.7 (4-C), 135.6 (5′-C), 131.2 (1-C), 130.2 (4′-C), 128.6 (3-

C and 5-C), 119.6 (2-C and 6-C), 117.8 (2′-C); vmax/cm-1 (neat); 3318, 3276, 

3128, 3111, 1651, 1605, 1506, 1485, 1320, 1252, 1061, 651; m/z (ES) 203.1 

(100%, MH+); (Found MH+, 203.0931. C10H10N4O requires MH, 203.0927).   
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Appendix I  

A) The SYBR green assay
1
 

The Kool NC-45 RNAP Activity and Inhibitor Screening Kit was used 

for biological evaluation of the synthesized compounds. This assay is based on 

the Rolling Circle Transcription (RCT) Technology which takes advantage of the 

observations that certain small, circular, single-stranded DNAs are efficiently 

transcribed by RNAP in vitro through a rolling circle in the absence of promoter 

sequences, primers and sigma factors allowing to study the activity of inhibitors 

of the core RNAP. The kit is constituted of E. coli RNA Polymerase (core 

enzyme) and SYBR Green I dye (Molecular Probes) for real-time detection of 

RNA polymerase activity. The dye binds to RNA increasing the intensity of 

fluorescent emission and this signal is proportional to the quantity of RNA 

produced. Therefore in the presence of RNAP inhibitors this signal is decreased 

(Figure 1). 

 

Figure 1 The SYBR green assay1 
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The assay was run in the presence of a negative control constituted by the 

absence of ribunucleoside tri-phosphate (rNTPs) and a positive control 

represented by rNTPs. A known bacterial RNAP inhibitor represented by the 

antibiotic rifampicin, is also used to check the turnover of the assay. The full 

assay protocol is described in the next paragraph. A detergent, Triton X-100A, 

was present in the assay at the concentration of 0.01% to exclude aspecific 

inhibition activity due to aggregating compounds.2  

The assay was  developed by Prof. Ian Chopra and his collaborators3 at 

the University of Leeds to screen compounds in a 384-well plate format for 

inhibition of bacterial RNAP. 

Compounds showing good inhibition activity at 100 μM (beyond 50% for 

this specified concentration), were shortlisted for a full dose-response curve 

determination in order to obtain the IC50 value, the dose required for a 50% in 

vitro inhibition.  

B) Experimental procedure for E. coli RNA Polymerase Assay
4,5

 

The ability of compounds to inhibit E. coli RNAP was determined in a 384-

well plate (Greiner 781096) in vitro assay. Compounds, in a final concentration 

of 10% DMSO, were pre-incubated with buffer comprising 40mM TrisHCl, pH 

7.5, 50mM KCl, 10mM MgCl2, 8mM DTT, 0.01% Triton X-100 with 20U/ml E.coli 

core RNA polymerase and 125ng/ml KoolTM NC-45TM Universal RNA 

polymerase template (Epicentre, Madison, WI, USA).  The reaction was initiated 

with the addition of 0.5mM rNTPs (Roche Diagnostics Ltd., UK) and incubated 

for 2 h at 37˚C and stopped with the addition of 20mM EDTA.  RNA products 

were detected using SYBR Green I dye (Invitrogen Ltd., UK) in a PerkinElmer 

2103 Multilabel reader with excitation and emission at 485nm and 531nm 

respectively. Assays were performed in duplicate and the % activity of 

compounds at 100μM was determined after deduction of background (no 

rNTPs) and comparison with no compound/DMSO control, designated having 

100% activity.  The IC50 value against E. coli RNAP was determined using an 8-

point 1:2 dilution series of compound and analysed using GraphPad Prism 6. 
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IC50 values reported in this thesis are the mean value ± standard deviation of 

three independent measurements. 

C) Selectivity and whole cell assays
4,5

 

Two structurally unrelated enzymes to bacterial RNAP, malate 

dehydrogenase and chymotrypsin, were used to assess selective inhibition of 

bacterial RNAP and to exclude promiscuous activity.6 A detergent, Triton X-

100A, was present in the assay at the concentration of 0.01% to exclude 

aspecific inhibition activity due to aggregating compounds.2  

Antibacterial activity was then evaluated against a panel of Gram Positive 

and Gram Negative organisms. Minimum inhibitory concentration (MIC) was 

defined as the lowest concentration of a substance that inhibit visible growth of 

an organism after 18 hours of incubations at 37˚C. Compounds were 

progressed only if they possessed a minimum suitable threshold, represented 

by MIC values against one or more test organisms comprised in a range 

between 32 and 64 μg/ml. The above cited minimum suitable threshold was 

established on the basis of possible improvement through analog refinement.7 

D) General experimental procedure for the selectivity assays
4,5

 

Stocks of compounds were typically prepared at 10mM in 10% DMSO in 

malate deyhdrogenase (MDH) and chymotrypsin assays and the results were 

controlled for the effect of DMSO. 

Assays were performed in a 50 mM potassium phosphate solution 

containing 10% DMSO at pH 7.0. 100% activity control was constituted by 

absence of inhibitor into the above specified solution containing the enzyme 

while negative control consisted in no enzyme or inhibitor in the presence of 

0.01% Triton-X100 at 25˚C. All reactions were monitored on a Molecular 

Devices SPECTRAmax PLUS384 spectrophotometer.  

For MDH assays,
6
 compound and 2nM enzyme were incubated in 50mM 

KPO4 buffer (pH 7.35) containing 0.01% Triton-X100 for 5 minutes and the 

reaction initiated with 200nM oxaloacetic acid and 200nM NADH and progress 
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monitored at 340 nm. Oxaloacetic acid and NADH were each prepared as 2mM 

stocks in 50mM KPO4 buffer (pH 7.35) containing 0.01% Triton-X100.  

For chymotrypsin assays,
8
 compound and 50nM enzyme were incubated 

for 5mins and the reaction initiated with 150nM succinyl-Ala-Ala-Pro-Phe-p-

nitroanilide and the reaction progress was monitored at 410nm. Succinyl-Ala-

Ala-Pro-Phe-p-nitroanilide was prepared as a 50mM stock in DMSO. 

With regard to the MDH assay, oxaloacetic acid, NADH and MDH from 

porcine heart were purchased from Sigma-Aldrich. 

For the Chymotrypsin assay, α-chymotrypsin Type II from bovine pancreas 

and succinyl-Ala-Ala-Pro-Phe-p-nitroanilide were purchased from Sigma-

Aldrich. 

E) Bacterial strains
4,5

 

MIC determinations for compounds were performed by Liam Sharkey 

using the British Society for Antimicrobial Chemotherapy (BSAC) broth 

microdilution method9 on selected bacterial strains (Tab. 1). 

 

Table 1 Selected bacterial strains description 

Strain Description Reference/Source 

S. aureus SH1000 

rsbU+ derivative of 8325-4, 

common lab strain with 

genome sequenced 

Horsburgh et al, 10 

E. coli SM1411 

lacl3, lacZ118, proB, trp, 

nalA, rpsL, 

ΔacrAB::Tn903kanr  

1411 deficient in the AcrAB 

multidrug efflux pump 

component 

O’Neill et al, 11 
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Appendix II 

A) Commercially available esters 

 

 

 

Table 6.15 Commercially available esters 6.94―6.102. 

Compound 
number 

Ar1 
Compound 

number 
Ar1 

6.94 

 

6.99 

 

6.95 

 

6.100 

 

6.96 

 

6.101 

 

6.97 

 

6.102 

 

6.98 
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B) Synthesized hydrazides 

 

 

 

Table 6.16 Synthesized hydrazides 6.103―6.111. 

Compound 
number 

Ar2 Yield 

6.1031 

 

89% 

6.1041 

 

89% 

6.1052 

 

93% 

6.1063 

 

94% 

6.1074 

 

85% 

6.1085 

 

96% 

6.1096 

 

93% 
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Table 6.16 Continued 

6.1107 

 

93% 

6.1118 

 

95% 

 

 

C) Commercially available hydrazides 

 

 

 

Table 6.17 Commercially available hydrazides 6.112―6.116. 

Compound 
number 

Ar1 

6.112 

 

6.113 
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Table 6.17 Continued 

6.114 

 

6.115 

 

6.116 

 

 

 

D) Commercially available aldehydes 

 

 

 

Table 6.18 Commercially available aldehydes 6.33 and 6.117―6.134. 

Compound 
number 

Ar2 
Compound 

number 
Ar2 

6.33 

 

6.126 
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Table 6.18 Continued 

6.117 

 

6.127 

 

6.118 

 

6.128 

 

6.119 

 

6.129 

 

6.120 

 

6.130 

 

6.121 

 

6.131 

 

6.122 

 

6.132 

 

6.123 

 

6.133 

 

6.124 

 

6.134 

 

6.125 
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E) Library of synthesised hydrazones 

 

 

 

Table 6.19 Library of synthesised hydrazones. 

Compound 
number 

Ar1
 Ar2

 Yield 

6.346 

 
 

94% 

6.35 

 
 

88% 

6.36 

 
 

80% 

6.37 

  

76% 

6.38 

 
 

82% 
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Table 6.19 Continued 

6.39 

 
 

91% 

6.406 

 
 

88% 

6.419 

  

85% 

6.4210 

  

88% 

6.4311 

  

76% 

6.4410 

  

80% 

6.4512 

 

 

85% 

6.4610 

  

64% 

6.4710 

  

81% 

6.4813 

  

73% 
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Table 6.19 Continued 

6.4913 

  

89% 

6.5013 

  

79% 

6.51 

 
 

91% 

6.52 

 
 

90% 

6.53 

 
 

84% 

6.54 

 
 

76% 

6.55 

  

88% 

6.56 

  

79% 

6.57 

  

82% 
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Table 6.19 Continued 

6.58 

 

 

64% 

6.59 

 

 

72% 

6.60 

  

80% 

6.61 

  

87% 

6.62 

 
 

77% 

6.63 

 
 

75% 

6.649 

  

92% 

6.65 

 
 

80% 

6.66 

  

82% 
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Table 6.19 Continued 

6.6714 

  

88% 

6.68 

 
 

80% 

6.69 

  

77% 

6.70 

  

74% 

6.71 

 
 

72% 

6.72 

  

75% 

6.73 

  

92% 

6.74 

  

85% 

6.75 

  

91% 
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Table 6.19 Continued 

6.76 

 
 

92% 

6.77 

 
 

86% 

6.7814 

 
 

91% 

6.79 

  

88% 

6.80 

 
 

90% 

6.81 

 
 

87% 

6.82 

 
 

87% 

6.83 

  

91% 

6.84 

  

87% 
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Table 6.19 Continued 

6.85 

  

76% 

6.86 

  

80% 

6.87 

 
 

74% 

6.88 

  

77% 

6.89 

  

82% 

6.90a 

 
 

85% 

6.91a 

 
 

85% 
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