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Abstract

This thesis presents an investigation into large sets and large set axioms in the context of

the constructive set theory CZF.

We determine the structure of large sets by classifying their von Neumann stages and

use a new modified cumulative hierarchy to characterise their arrangement in the set

theoretic universe. We prove that large set axioms have good metamathematical prop-

erties, including absoluteness for the common relative model constructions of CZF and

a preservation of the witness existence properties CZF enjoys. Furthermore, we use

realizability to establish new results about the relative consistency of a plurality of inac-

cessibles versus the existence of just one inaccessible. Developing a constructive theory

of clubs, we present a characterisation theorem for Mahlo sets connecting classical and

constructive approaches to Mahloness and determine the amount of induction contained

in the assertion of a Mahlo set. We then present a characterisation theorem for 2-strong

sets which proves them to be equivalent to a logically simpler concept.

We also investigate several topics connected to elementary embeddings of the set theo-

retic universe into a transitive class model of CZF, where considering different equiva-

lent classical formulations results in a rich and interconnected spectrum of measurability

for the constructive case. We pay particular attention to the question of cofinality of

elementary embeddings, achieving both very strong cofinality properties in the case of

Reinhardt embeddings and constructing models of the failure of cofinality in the case

of ordinary measurable embeddings, some of which require only surprisingly low con-

ditions. We close with an investigation of constructive principles incompatible with

elementary embeddings.
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Chapter 1

Introduction

Large cardinals play a pivotal role in classical set theory, both as useful tools to be

applied in other set theoretic pursuits and as worthy objects of study in their own right,

and even as ways to bolster ZFC’s strength in order to handle mathematical challenges

outside of set theory (e.g. by supplying Grothendieck universes). There is little reason

to believe that in the context of constructive set theory, similar axioms would prove

less fruitful. On the contrary, due to the more modest strength claimed by predicative

systems of constructive set theory such as CZF, which has achieved a prominent role

as foundation for constructive mathematics since its introduction in [Acz78], it seems

that mathematicians working in these systems might be forced to revert to an axiom

of infinity more often than their classical colleagues if they want to achieve general

results. Thus the advantage of adopting axioms of largeness might be even greater than

in classical set theory. And indeed in the context of CZF, axioms like REA (which can

be considered to be a principle of largeness) are commonly used e.g. in the development

of formal topology or for general induction.

Furthermore, systems which strive to preserve some level of predicativity like CZF

present avenues of investigation which are closed for systems of as yet unmanageable

strength like ZFC. Most prominently, the much praised linearity of consistency strengths

of different large cardinal axioms becomes a quantifiable commodity in constructive set



1 INTRODUCTION 2

theory in the sense that the proof theoretic ordinal can be exactly determined for the sys-

tem of CZF enhanced by large set axioms. Indeed, the research connected to constructive

analoga for large cardinals in the context of CZF has in large part been focussed on their

ordinal analysis (see e.g. [Rat98, Gib02, CR02, GRT05]).

In contrast, the theory of what could roughly be called the more set theoretic properties

and consequences of principles of largeness has perhaps not been quite as thoroughly

developed (at least above the level of what we will call “tiny” large sets, i.e. beyond reg-

ularity and its variants), and this thesis aims at making some contributions to remedy this

situation. For this, we aspire to develop the theory of large sets in CZF in as systematic a

way as can reasonably be expected for such an as yet untamed field, posing and answer-

ing basic questions about their characteristic features and exploring the realm of axioms

of infinity from smaller infinities like those implied by the existence of regular models

of set theory towards the enormous infinities asserted by elementary embeddings.

In this endeavour, we will mostly investigate concepts of largeness which in the presence

of the excluded middle correspond to well known classical large cardinal axioms. How-

ever, large cardinal axioms can not be directly lifted from classical set theory without

modification, as the very concept of a cardinal number does not seem to mesh well with

constructive thought, and depending on its exact formulation is either very awkward to

handle in a theory like CZF or implies the excluded middle outright. Instead, it has

become standard procedure to focus on sets exhibiting the appropriate closure proper-

ties which could be expected from the von Neumann stage corresponding to the large

cardinal. These properties will be detailed in Chapter 2, as well as general notational

conventions and preliminaries about the system of constructive set theory we use.

We start our investigation in Chapter 3 by what can be figuratively seen as slicing large

sets according to von Neumann rank and examining the individual slices. This would be

a futile exercise in classical set theory as every slice from an inaccessible would either

be empty or identical to the corresponding slice from any other inaccessible. This is not

the case in the context of CZF, although it turns out that all the variation can be captured
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in the third and fourth slice1: If those are identical, then the rest of the inhabited slices

are as well. In case the Subcountability axiom holds, the third slice alone can even be

used to determine the whole set.

We continue in Chapter 4 by analysing desirable properties of large set axioms, in par-

ticular absoluteness for realizability and Heyting models as well as witness existence

properties like the disjunction property and numerical existence property. This involves

relative model constructions for CZF, namely models based on applicative topologies

for the absoluteness results and models based on realizability with truth for the witness

existence properties.

The following two chapters are concerned with the number and order of inaccessible sets

in the set theoretic universe. In Chapter 5, we develop a variation of the classical von

Neumann hierarchy which retains its potency even in the absence of the excluded middle

and the Powerset axiom. This not only allows us to deduce the arrangement of large sets

as ordinally ordered, but also serves to reconnect large sets to the ordinals they corre-

spond to in classical set theory. The number of large sets on the other hand behaves very

differently than in classical set theory, where it is tied directly to consistency strength.

In Chapter 6, we will use a realizability model with an inaccessible pca to demonstrate

how to obtain proper classes of inaccessibles with just one inaccessible assumed to exist

in the background universe.

Chapter 7 turns to what is usually considered to be the next important concept of large-

ness after inaccessibility and α-inaccessibility, namely Mahlo’s second hierarchy of in-

finities. While the established approach in a constructive context is via the reflection of

total relations, we first develop a constructive theory of clubs to investigate the classical

definition via ordinals and then use the modified von Neumann hierarchy from Chap-

ter 5 to establish an equivalence of the constructive and classical definitions even in the

absence of the excluded middle. The chapter is rounded off by an investigation of the

amount of induction contained in Mahloness and the characterisation of the claim that

the universe is Mahlo by a nondeterministic induction principle.

1i.e. I ∩ V2 and I ∩ V3
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Next in Chapter 8 we address weakly compact cardinals, which can be characterised

in many different ways in ZFC. After exploring some of these formulations in a setting

devoid of the excluded middle, we turn our focus to the variant which has been developed

most extensively in a constructive context, namely 2-strongness. It turns out that it is

possible to characterise 2-strong sets by a considerably simpler definition, which like 2-

strongness itself corresponds to the indescribability facet of classical weak compactness.

The last but also most extensive chapter deals with elementary embeddings2 and the very

large sets which constitute their critical points. In Section 9.1 we revisit a distinction

made by Friedman and Ščedrov in the context of IZF, namely that it makes quite a

difference which large set condition one imposes on a critical point. We delve into the

spectrum of measurability generated by this distinction and show how to enhance the

largeness properties of critical points using induction. In Section 9.2 we unlock the

power of a different weakening of measurability, namely ∆0-elementary embeddings.

We show that with care, these too can be made to imply all the usual large set principles

below measurability, although even in the presence of classical logic they need cofinality

as an extra assumption to imply full measurability.

The cofinality of elementary embeddings is the topic of Section 9.3, where we show that

while the ordinary proof of cofinality using classical logic fails utterly in CZF, in the

case j : V → V it is still possible to establish very strong cofinality properties which

even transcend the ones possible in the classical case, using a newly defined ordering

relation on the set theoretic universe. The next two sections however show that in the

general case, elementary embeddings need not be cofinal in CZF. Chapter 9.4 constructs

a relative model with a map j : V → M outright without any extra assumptions on

the background universe, where however the elementarity scheme only holds as impli-

cation, not as equivalence (i.e. Φ(−→a ) → ΦM(j(−→a )). While classically equivalent to

a measurable cardinal, the fact that this is relatively consistent with CZF shows that

constructively, it constitutes a much more contained concept. We show that this model
2To be precise, we investigate elementary embeddings j : V →M such that the axiom schemes of set

theory also hold for formulae that contain j and M — elementary embeddings fulfilling this condition are

equivalent to the existence of measurable cardinals in ZFC.



1 INTRODUCTION 5

refutes cofinality. In Chapter 9.5 we construct a model refuting cofinality for a fully

elementary embedding using the existence of such an embedding as assumption on the

background universe. We develop some new tools to prove that certain sets lie outside a

transitive class model.

This investigation closes in Section 9.6 with a result that seems limiting and yet also

constitutes a bridge from the inherently constructive axiom of Subcountability back to

the classical axiom V = L: It turns out that these two axioms from very different back-

grounds have a very similar effect on elementary embeddings, namely they both deny the

possibility of their existence. This has some fundamental consequences for the search

of models for CZF with elementary embeddings and depending on one’s branch of con-

structivism also has critical implications for the very status of elementary embeddings

as constructively admissible concepts.
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Chapter 2

Preliminaries

2.1 Notations and Conventions

Background and Metatheory

The subject theory of the investigations presented in this thesis is the constructive set

theory CZF. While we will never reason directly in the metatheory, any theory capable

of basic primitive recursive reasoning can serve as metatheory, e.g. PRA [Sko23].

When a result in the (possibly extended) language of set theory is presented without ref-

erence to an axiom system of set theory, this is to be read as the claim that the statement

is a theorem of CZF (possibly after all used definitions have been translated back into

the language of pure set theory). If the result is stated with the name of a different axiom

system in brackets directly after the type of result (e.g. “Theorem (ZF)” or “Lemma

(IZF)”), then this is to be read as the claim that the statement is a theorem of that ax-

iom system. When working in an extension of CZF, we will usually write “([Axiom])”

instead of “(CZF + [Axiom])”.

Where the existence of a class with certain properties is claimed, this is to be read that

the metatheory proves the existence of a specific class term (which can be extracted from



2 PRELIMINARIES 8

the proof). Where something is claimed for all classes, this is to be read as a scheme of

statements.

Order of Operations

In order to suppress brackets and increase readability, the order of operations for logical

symbols in formulae is listed in Table 2.1.

∀x,∃x,∃!x, ∀x ∈ a,∃x ∈ a,∃!x ∈ a quantifiers

∧,∨ monotone junctors

→,←,↔ nonmonotone junctors

∀x.,∃x.,∃!x.,∀x ∈ a.,∃x ∈ a.,∃!x ∈ a. quantifiers with full stops

,� model relations

:↔ definitional equivalence

` logical implication

Table 2.1: Orders of Precedence for Logical Symbols

A colon before a equivalence (:↔) has no logical meaning except the above mentioned

bearing on the order of precedence. It is used solely for readability and is meant to stress

that the integral part of the left equivalent is defined by this equivalence (we will employ

:= with the analogous usage), e.g. defining unique existence with the formula

∃!xΦ(x) :↔ ∃xΦ(x) ∧ ∀x, y.Φ(x) ∧ Φ(y)→ x = y (2.1.1)

A full stop after the bound variable of a quantifier has no logical meaning except the

above mentioned bearing on the order of precedence. Thus ∀x.Φ → Ψ is parsed as

the same formula as ∀x(Φ → Ψ) while ∀xΦ → Ψ is parsed as the same formula as

(∀xΦ)→ Ψ.

Bounded quantifiers are to be read as
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∀x ∈ aΦ :↔ ∀x.x ∈ a→ Φ (2.1.2)

∃x ∈ aΦ :↔ ∃x.x ∈ a ∧ Φ (2.1.3)

∃!x ∈ aΦ :↔ ∃!x.x ∈ a ∧ Φ (2.1.4)

Terms and Class Terms

Formally, the language of CZF only contains the symbols ∈ and =, but we will use the

usual set theoretic symbols to make up terms, in the knowledge that formulae containing

them can be unwound and translated into formulae in the pure language. This will not

clash with concepts such as bounded formulae, as per [AR10], Proposition 9.6.2, terms

for globally definable functions can be conservatively added to CZF (and allowed to

appear in the axiom schemata).

We will also use common abbreviations for formulae, e.g. a ⊆ b :↔ ∀x ∈ a.x ∈ b. Such

defined relation symbols can always be used in axiom schemes like Subset Collection

and Strong Collection, but only in certain cases in the axiom scheme of ∆0-Collection.

Also, for any two place relation symbol R like ∈ or ⊆, we write aRbRc to signify that

aRb ∧ bRc. Similarly, we will use a 3 b for b ∈ a and a ⊇ b for b ⊆ a.

Following the common traditions of set theory, we will also liberally use class terms of

the form {t(x)|Φ(x)} which do not necessarily denote an element of the universe but

which can be compared to them and to each other via the definitions listed in Table 2.2.
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{t(x)|Φ(x)} ⊆ a :↔ ∀x.Φ(x)→ t(x) ∈ a

{t(x)|Φ(x)} ⊇ a :↔ ∀y ∈ a∃x.y = t(x) ∧ Φ(x)

{t(x)|Φ(x)} = a :↔ {t(x)|Φ(x)} ⊆ a ∧ {t(x)|Φ(x)} ⊇ a

{t(x)|Φ(x)} ⊆ {s(x)|Ψ(x)} :↔ ∀x.Φ(x)→ ∃y.Ψ(y) ∧ t(x) = s(y)

{t(x)|Φ(x)} = {s(x)|Ψ(x)} :↔ {t(x)|Φ(x)} ⊆ {s(x)|Ψ(x)}

∧{s(x)|Ψ(x)} ⊆ {t(x)|Φ(x)}

{t(x)|Φ(x)} ∈ a :↔ ∃b.b = {t(x)|Φ(x)} ∧ b ∈ a

{t(x)|Φ(x)} 3 a :↔ ∃x.Φ(x) ∧ t(x) = a

{t(x)|Φ(x)} ∈ {s(x)|Ψ(x)} :↔ ∃a.a = {t(x)|Φ(x)} ∧ a ∈ {s(x)|Ψ(x)}

Table 2.2: Atomic Formulae containing Class Terms

As usual, we will write {t(x) ∈ a|Φ(x)} and {t(x) ⊆ a|Φ(x)} as an abbreviation for

{t(x)|x ∈ a ∧ Φ(x)} and {t(x)|x ⊆ a ∧ Φ(x)} respectively and when appropriate, we

will identify an object a of the universe with the class term {x|x ∈ a} which is equal to

a.

In a slight abuse of notation, we will also use terms which operate on class terms. When

unwinding their definitions, one arrives at a class term in each concrete instance. For

example, for each class Γ, we can define its powerclass P(Γ), which means that for

every concrete class term, we find a class term for its powerclass in a primitive recursive

way.

Examples for such terms are presented in Table 2.3.
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Symbol Name Definition

∅, 0 empty set {x|⊥}

V universe {x|>}

P(a) powerclass {b|∀x ∈ b.x ∈ a}

a ∩ b binary intersection {x|x ∈ a ∧ x ∈ b}

a ∪ b binary union {x|x ∈ a ∨ x ∈ b}⋃
a union {x|∃y ∈ a.x ∈ y}⋃
x∈a t(x) union

⋃
{t(x)|x ∈ a}⋂

a intersection {x|∀y ∈ a.x ∈ y}⋂
x∈a t(x) intersection {y|∀x ∈ a.y ∈ t(x)}

{a, b} unordered pair {x|x = a ∨ x = b}

{a} singleton {a, a}

a+ 1 successor a ∪ {a}

ω natural numbers
⋂
{a|0 ∈ a ∧ ∀x ∈ ax+ 1 ∈ a}

(a, b) ordered pair {a, {a, b}}

a× b Cartesian product {(x, y)|x ∈ a, y ∈ b}

dom(f) domain {x|∃y.(x, y) ∈ f}

im(f) range {y|∃x.(x, y) ∈ f}

f(a) application {x|∃y ∈ f∃b ∈
⋃⋃

f.y = (a, b) ∧ x ∈ b}

f ′′a function image {f(x)|x ∈ a ∩ dom(f)}

f−1(a) function preimage {x|∃y ∈ a.(x, y) ∈ f}

f � a restriction {(x, y) ∈ f |x ∈ a}

Table 2.3: Defined Terms

Total Relations and Functions

Different types of binary relations play an important role in CZF. Define the following

concepts:
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Symbol Description Definition

R : A⇒ B total ∀a ∈ A∃b ∈ B.(a, b) ∈ R

R : A⇔ B ∀b ∈ B∃a ∈ A.(a, b) ∈ R

R : A⇔⇒ B bitotal R : A⇒ B ∧R : A⇔ B

f : A→p B partial function ∀(a, b), (a, b′) ∈ f ∩ (A×B).b = b′

f : A→ B functional f : A⇒ B ∧ f : A→p B

f : A ↪→ B injective, 1:1 f : A→ B

∧ ∀(a, b), (a′, b) ∈ f ∩ (A×B).a = a′

f : A→→ B surjective, onto f : A→ B ∧ ∀b ∈ B∃a ∈ A.(a, b) ∈ f

f : A ↪→→→ B bijective f : A ↪→ B ∧ f : A→→ B

Table 2.4: Types of Relations

Note that in this definition, f : A → B does not imply that f ⊆ A × B. We will

however only call f a function from A to B if that is indeed the case and define the class

of functions as

AB := {f ⊆ A×B|f : A→ B} (2.1.5)

Analogously, the class of multivalued functions is defined as

mv(A,B) := {R ⊆ A×B|R : A⇒ B} (2.1.6)

2.2 CZF, Similar Constructive Set Theories and Related

Axioms

During the last century, classical set theory, in particular ZF set theory, has established

itself as a good candidate for a possible framework in which to develop all of clas-

sical mathematics, adding choice principles or large cardinal axioms as needed. For

constructive mathematics, set theoretic foundations seem to work similarly well, even

though other avenues like type theories (e.g. [MLS84]) are also being pursued very
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successfully. The system CZF as developed by Aczel in [Acz78] has both the advan-

tage of being a subsystem of classical ZF set theory and thus affording the possibility

of developing large parts of mathematics in an established way and the advantage of

being canonically interpretable into type theory and thus being able to draw from the

philosophical justifications of type theory. It is a generalized predicative theory with a

rich and interesting metatheory [AR10] and admits a host of useful model constructions

[Rat03b, Gam06, Zie12].

A comprehensive reference for CZF is [AR10].

The Axioms of CZF

CZF uses intuitionistic logic with equality and a binary relation symbol ∈. It uses the

following axioms (formulated using abbreviations and conventions from the previous

section), consisting of two general axioms:

Extensionality.

∀a, b.a ⊆ b ⊆ a→ a = b (2.2.7)

Set Induction. For all formulae Φ(x)

((∀x ∈ aΦ(x))→ Φ(a))→ ∀xΦ(x) (2.2.8)

Several basic (explicit) set existence axioms:

Pairing.

∀a, b∃c.c = {a, b} (2.2.9)

Union.

∀a∃b.b =
⋃

a (2.2.10)
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Infinity.

∃a.a = ω (2.2.11)

Emptyset.

∃a.a = ∅ (2.2.12)

Binary Intersection.

∀a, b∃c.c = a ∩ b (2.2.13)

Instead of the axioms of Emptyset and Binary Intersection, the scheme of ∆0-Collection

could have been used as an axiom as it is equivalent to them on the basis of the other

axioms of CZF [AR01]:

∆0-Collection. For any ∆0 formula Φ(x) not containing b,

∀a∃b.b = {x ∈ a|Φ(x)} (2.2.14)

Furthermore, CZF includes two non-explicit set existence axiom schemes:

Strong Collection. For any class Γ,

∀a.Γ : a⇒ V → ∃b.Γ : a⇔⇒ b (2.2.15)

Subset Collection. For any class family of classes1 (Γ(u))u∈V ,

∀a, b∃c∀u.Γ(u) : a⇒ b→ ∃b′ ∈ c.Γ(u) : a⇔⇒ b′ (2.2.16)
1i.e. class with a free variable



2 PRELIMINARIES 15

On the basis of the other axioms of CZF, the axiom scheme of Subset Collection is

equivalent to the single axiom of Fullness:

Fullness.

∀a, b∃c∀R.R : a⇒ b→ ∃R′ ∈ c.R′ ⊆ R ∧R′ : a⇒ b (2.2.17)

Such a c is said to be full in mv(a, b).

Variations of CZF

An explicit variant of Strong Collection which is only slightly weaker is Replacement:

Replacement. For any class Γ,

∀a.Γ : a→ V → ∃b.Γ : a→→ b (2.2.18)

Another slightly weaker varaint is Collection:

Collection. For any class Γ,

∀a.Γ : a⇒ V → ∃b.Γ : a⇒ b (2.2.19)

An explicit variant of Fullness is the only slightly weaker ([Lub05], [RT06]) axiom of

Exponentiation:

Exponentiation. For any class Γ,

∀a, b∃c.c = ab (2.2.20)
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There is a host of interesting axioms between Exponentiation and Fullness ([CIS05],

[ACI+06], [Zie10]).

Myhill’s Constructive Set Theory CST [Myh75] can be obtained from CZF by replacing

Strong Collection by Replacement, Fullness by Exponentiation and adding Dependent

Choice (see below).

On the other hand, it is also interesting to strengthen some of the axioms of CZF. Fullness

can be strengthened to the Powerset axiom:

Powerset.

∀a∃b.b = P(a) (2.2.21)

The Powerset axiom is equivalent to the statement that the one element set 1 := {0} has

a powerset [AR01].

Bounded Separation can be strengthened to full Separation:

Separation. For any class Γ,

∀a∃b.b = a ∩ Γ (2.2.22)

Adding any one of these axioms to CZF increases the proof theoretic strength of the the-

ory dramatically [AR01]. Adding them both yields the system known as IZF [Myh73],

which is equiconsistent with classical ZF set theory. Adding the scheme of the excluded

middle to CZF yields classical ZF set theory outright [AR01].

Choice

There are various choice principles which can be added to CZF. Of particular interest are

the following, the first of which is implied by any of the two others:
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Dependent Choice (DC).

∀a∀x0 ∈ a∀R : a⇒ a∃f : ω → a.f(0) = x0∧∀n ∈ ω.(f(n), f(n+ 1)) ∈ R (2.2.23)

Relativized Dependent Choice (RDC). For any classes Γ and ∆,

∀x0 ∈ ∆.Γ : ∆⇒ ∆→ ∃f : ω → ∆.f(0) = x0 ∧ ∀n.(f(n), f(n+ 1)) ∈ Γ (2.2.24)

Presentation Axiom (PAx).

∀a∃f, b.f : b→→ a ∧ ∀R : b⇒ V ∃r : b→ V.r ⊆ R (2.2.25)

All three are weakenings of the classical Axiom of Choice, which however implies the

principle of the excluded middle for bounded formulae on the basis of the other axioms

of CZF ([AR01]).

Arguably not a choice principle but often useful to circumvent choice ([Acz08]) is the

following scheme designed by Aczel to be a useful consequence of RDC but still prov-

able in ZF:

Relation Reflection Scheme (RRS). Let Γ and ∆ be classes and d0 ∈ ∆. If

Γ : ∆⇒ ∆ (2.2.26)

Then there is a set D ⊆ ∆ such that d0 ∈ D and

Γ : D ⇒ D (2.2.27)

There is the following slight variation:
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Strong Relation Reflection Scheme (SRRS). Let Γ and ∆ be classes and d0 ∈ ∆. If

Γ : ∆×∆⇒ ∆ (2.2.28)

Then there is a set D ⊆ ∆ such that d0 ∈ D and

Γ : D ×D ⇒ D (2.2.29)

This is also called RRS2 in the literature, which would however clash with our naming

conventions for axioms — in this thesis, RRS2 refers to the second order variant of RRS.

It might be noted that RRS implies not only that every relation is reflected in a set but

that every set of relations is reflected in a set:

Proposition 2.1. (RRS) Let Γi and ∆ be classes for each i ∈ I and d0 ∈ ∆. If

∀i.Γi : ∆⇒ ∆ (2.2.30)

Then there is a set D ⊆ ∆ such that d0 ∈ D and

∀i.Γi : D ⇒ D (2.2.31)

Proof. Let ∆′ := P(∆) and d′0 := {d0} ∈ ∆′. Define Γ′ as

(a, b) ∈ Γ′ :↔ ∀i ∈ I∀x ∈ a∃y ∈ b.(x, y) ∈ Γi (2.2.32)

By Strong Collection,

Γ′ : ∆′ ⇒ ∆′ (2.2.33)

So by RRS, there is a D′ ⊆ ∆′ with d′0 ∈ D′. Set

D :=
⋃

D′ (2.2.34)

Then d0 ∈ D and for each x ∈ D and i ∈ I , there is a with x ∈ a ∈ D′. So by totality

of Γ′ on D′, there is a b ∈ D′ with a y ∈ b and (x, y) ∈ Γi. Thus y ∈ D′. So

∀i.Γi : D ⇒ D (2.2.35)
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Subcountability

We will have occasion to use the Subcountability axiom during these investigations. This

simply states that every set is subcountable, where

Definition 2.2. A set a is called subcountable if there is some A ⊆ ω and f : A→→ a.

Adding Subcountability to CZF does not increase its proof theoretic strength ([Rat02]).

However, it does contradict the Powerset axiom and thus the principle of the excluded

middle, which makes it a specifically constructive axiom.

Second Order Set Theory

We will have occasion to employ second order set theories, which are theories in a two

sorted language with one sort indicated by using lower case and the other sort using

upper case, the former corresponding to first order variables and the latter to second order

variables, which are typed with positive natural numbers to express tuples of subsets.

When not omitted, the type is indicated by an upper index. We are not concerned with a

calculus of inference for theories but merely with their semantics. A (full) model of such

a theory is defined in the usual way as follows (all cases but the second order quantifiers

are omitted):

Definition 2.3. For any set M and formula Φ with free variables −→x and
−→
X , and for all

elements −→a ∈ M and sets
−→
A where An is a subset of Mm if Xn has type m, define a

model relation

M �−→x :=−→a ,
−→
X :=

−→
A

Φ (2.2.36)

by structural recursion on Φ, including the cases:

If Xm is of type m, free for Φ and does not appear in
−→
X , then

M �−→x :=−→a ,
−→
X :=

−→
A
∀XmΦ :↔ ∀A ⊆Mm.M �−→x :=−→a ,

−→
X :=

−→
A,Xm:=A

Φ (2.2.37)

M �−→x :=−→a ,
−→
X :=

−→
A
∃XmΦ :↔ ∃A ⊆Mm.M �−→x :=−→a ,

−→
X :=

−→
A,Xm:=A

Φ (2.2.38)
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Note that the case where −→a and
−→
A are empty, i.e. M � Φ, can then only hold if there

are no free variables in Φ.

All set theories under consideration in this thesis have a canonical corresponding second

order set theory where single axioms are unchanged (the usual variables being inter-

preted as first order variables) and schemes are transformed into a single axiom, where

the scheme consisting of the formulae of the form Φ(Ψ) for all formulae Ψ correspond

to the second order statement ∀X.Φ(X).

We will designate the canonical second order version of a theory or an axiom scheme by

a lower index 2.

Example 2.4. 1. Set Induction2, the canonical second order version of Set Induction,

is equivalent to

∀X.∀a(∀x ∈ a X(x)→ X(a))→ ∀a.X(a) (2.2.39)

2. Strong Collection2, the canonical second order version of Strong Collection,, is

equivalent to

∀R2∀a.∀x ∈ a∃y R(x, y)→

∃b.∀x ∈ a∃y ∈ b R(x, y) ∧ ∀y ∈ b∃x ∈ a.R(x, y) (2.2.40)

3. The canonical second order version of CZF, i.e. CZF2, is equivalent to the non-

scheme axioms of CZF as given above plus Fullness and the axioms Set Induction2

and Strong Collection2. The scheme of ∆0 collection does not have a canonical

second order version, which is one of the reasons that we used Binary Intersection

instead, which is a first order statement.

2.3 The Concepts of Largeness under Consideration

Classically, large cardinals are certain ordinals fulfilling very strong closure properties

(usually properties which the class of all ordinals can be thought to share as well) such
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that the claim of their existence increases the proof theoretic strength of the theory. How-

ever, while classical ZF set theory is very well versed in reasoning about properties of

cardinals, they do not seem to be a concept that meshes in well with constructive set

theory and it seems to be difficult to even define the concept of cardinal in any useful

way in the context of CZF.

Thus, it has become established practice to instead investigate large sets, i.e. transitive

sets with strong closure properties (usually properties which the class of all sets can

be thought to share as well) such that the claim of their exisistence increases the proof

theoretic strength of the theory. These correspond to the large cardinals of ZFC via the

von Neumann hierarchy - classically if κ fulfills a certain large cardinal property, then

the κ-th iteration of the powerset operator x 7→ P(x), i.e. Vκ, fulfills the corresponding

large set property2. Conversely, if A fulfills a certain large set property, then the set of

ordinals it contains fulfills the corresponding large cardinal property3.

In classical set theory, large cardinals properties are sometimes split into small large

cardinal properties (those which are consistent with V = L) and large large cardinal

properties (those which are not)4. In the context of CZF it makes sense to distinguish a

third category of properties: Tiny large sets, those which can not be proved to be models

of CZF2.

2.3.1 Tiny Large Sets

All of the properties in this section concern transitive sets, as defined for example in

[AR01] as:

2This relation holds at inaccessibility and larger cardinals. When analyzing the smaller concepts of

regularity and similar, instead of Vκ the set Hκ needs to be employed, defined as the set of hereditarily

smaller sets than κ, which is equal to Vk for inaccessible κ.
3This relation holds at

⋃
-regularity and larger concepts (so in particular at inaccessible). When ana-

lyzing the smaller concept of regularity, instead of A ∩ On, the set rk(A) needs to be employed, which is

equal to A ∩ On for
⋃

-regular A.
4Of course, V = L is not the most common of axioms in a constructive setting. However, Theorem

9.93 suggests that its role might be taken up by another axiom instead.
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Definition 2.5. A set A is called transitive, if

∀a ∈ A∀x ∈ a.x ∈ A (2.3.41)

One of the most basic properties a transitive set can have is that of regularity:

Definition 2.6. A transitive set A is called regular if

A � Strong Collection2 (2.3.42)

This is equivalent to demanding

∀a ∈ A∀R : a⇒ A∃b ∈ A.R : a⇔⇒ b (2.3.43)

Often it is demanded that a regular set be inhabited, but as all relevant examples are

inhabited in any case, this condition would have no bearing on the following.

The main large set axiom related to regularity is the Regular Extension Axiom REA:

REA. Every set is an element of some regular set.

REA was proposed by Peter Aczel and is eminently useful when dealing with induc-

tive definitions. In particular, bounded (monotone) inductive definitions always yield

sets when assuming REA [AR01]. In fact, this is already implied by one of its several

weakenings:

Definition 2.7. A transitive set A is called weakly regular if

A � Collection2 (2.3.44)

A transitive set A is called functionally regular if

A � Replacement2 (2.3.45)

wREA. Every set is an element of some weakly regular set.

fREA. Every set is an element of some functionally regular set.

Functional regularity is enough for several basic set operations. The following lemma is

a reformulation of the results from [AR01]:
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Lemma 2.8. If A 3 2 is functionally regular, then A  Pairing. In particular, A is

closed under the formation of ordered pairs.

On the other hand, it is possible to strengthen REA by imposing stronger closure condi-

tions:

Definition 2.9. A regular set A is called
⋃

-regular if

A  Union (2.3.46)

This is equivalent to demanding

∀a ∈ A.
⋃

a ∈ A (2.3.47)

A
⋃

-regular set A is called strongly regular if

A  Exponentiation (2.3.48)

This is equivalent to demanding

∀a, b ∈ A. ab ∈ A (2.3.49)

⋃
REA. Every set is an element of some

⋃
-regular set.

sREA. Every set is an element of some strongly regular set.

Another direction to go into is demanding some measure of relation reflection from the

regular set. The following concepts are useful:

Definition 2.10. A
⋃

-regular set A is called ∗-regular if A  RRS2. It is called ∗2-

regular if A  SRRS2.5

∗REA. Every set is an element of a ∗-regular set.

5These concepts are also known as RRS
⋃

-regular or union-closed RRS-regular, and RRS2

⋃
-regular

or union-closed RRS2-regular respectively [AR01],[AINS12].
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∗2REA. Every set is an element of a ∗2-regular set.

These concepts make sense when trying to avoid choice and while logically weaker than⋃
REA+DC, they are implied by it and have been used to obtain several theorems which

previously relied on choice [Acz08, AINS12, AR10].

All the tiny set axioms discussed in this subsection have the same proof theoretic strength

when added to CZF, namely that of the classical theory KPi or equivalently that of the

subsystem of second order arithmetic with ∆1
2-comprehension and bar induction [GR94,

Rat03a, Rat05c].

When added to classical set theory however, none of the discussed axioms increases

the consistency strength at all except for sREA which is equivalent to the existence of

unboundedly many inaccessibles [RL03, AR10].

2.3.2 Small Large Sets

A central large set property in this thesis is that of inaccessibility, which in the context

of classical ZFC corresponds to the large cardinal property of (strong) inaccessibility as

introduced by [ST30].

Definition 2.11. A transitive set I is called inaccessible if

A  CZF2 (2.3.50)

IEA. Every set is a member of an inaccessible set.

This definition differs slightly from others given in the literature, but it is equivalent to

most.

Proposition 2.12. Let A be a transitive set. The following are equivalent:

1. A is inaccessible.
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2. A is regular and A  CZF.6

3. A is regular, for all a, b ∈ I ,

(a) ω ∈ I

(b)
⋃
a ∈ I

(c) x inhabited→
⋂
x∈a x ∈ I

(d) ∃c.∀R : a⇒ b∃R′ ∈ c.R′ ⊆ R ∧R′ : a⇒ b, i.e. c full in mv(a, b).7

Proof. 1→ 2 is immediate as any model of CZF2 is a model of CZF. 2↔ 3 is Corollary

10.27 from [AR01]. For 2 → 1, let A be a regular model of CZF. To show that A 

CZF2, we need to show that the axioms of Strong Collection2 and Set Induction2 are

fulfilled in A (noting that Subset Collection2 and ∆0 − Collection2 are equivalent to the

first order axioms of Fullness and Binary Intersection on the basis of the other axioms).

A  Strong Collection2 by definition of A being regular. Set Induction2 holds in A as

for any X ⊆ A,

(∀a ∈ A(∀x ∈ ax ∈ X)→ a ∈ X)→ A = X (2.3.51)

by Set Induction on the outside.

For any class of sets Γ, the following two forms of derivatives of Γ can be considered:

Definition 2.13. Let Γ be a class. Then the class I(Γ) is defined by

A ∈ I(Γ) :↔ ∀a ∈ A∃c ∈ Γ ∩ A.a ∈ c (2.3.52)

The class M(Γ) is defined by

A ∈M(Γ) :↔ ∀R : A⇒ A∃c ∈ Γ ∩ A.R : c⇒ c (2.3.53)

6This is used as defining inaccessibility in [Gib02] or [CR02] and (with minor variations) [AR01] and

[GRT05]
7This is considered in [AR01].
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The class M ′(Γ) is defined by

A ∈M ′(Γ) :↔ ∀B ⊆ A∀b ∈ B∀R : B ⇒ B∃c ∈ Γ ∩B.b ∈ c ∧R : c⇒ c (2.3.54)

In slight abuse of notation, write V ∈ I(Γ) for the statement

∀a∃c ∈ Γ.a ∈ c (2.3.55)

And let V ∈M(Γ) be the scheme that for all classes R,

R : V ⇒ V → ∃c ∈ Γ.R : c⇒ c (2.3.56)

Also let V ∈M ′(Γ) be the scheme that for all classes R,B with b ∈ B

R : B ⇒ B → ∃c ∈ Γ.b ∈ c ∧R : c⇒ c (2.3.57)

Example 2.14. Many axioms can be cast using these derivatives of classes:

1. REA is equivalent to V ∈ I({x|x regular}).

2. IEA is equivalent to V ∈ I({x|x inaccessible}).

3. RRS is equivalent to V ∈M ′(V ).

4. Assuming AC(ω, ω)8, RDC is equivalent to V ∈M ′({x|x countable}).

Classically, these operations on classes can be iterated transfinitely by taking the in-

tersection at limit cases. In the constructive case, this iteration can be cast as follows,

leading to what corresponds to Mahlo’s hierarchies of large cardinals.

Definition 2.15. Let Γ be a class. Then define by recursion over a set a

Ia(Γ) := Γ ∩
⋂
x∈a

Ix(Γ) (2.3.58)

Ma(Γ) := Γ ∩
⋂
x∈a

Mx(Γ) (2.3.59)

8This is the statement that ωω is full in mv(ω, ω).
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M ′a(Γ) := Γ ∩
⋂
x∈a

M ′x(Γ) (2.3.60)

Call a set I a-inaccessible if I ∈ Ia({x|x inaccessible}).

Call a set I Mahlo if I ∈M({x|x inaccessible}).

Call a set I a-Mahlo if I ∈Ma({x|x inaccessible}).

Note that according to this definition, inaccessible is the same as 0-inaccessible (not

1-inaccessible as e.g. in [AR01]), while Mahlo is the same as 1-Mahlo (with 0-Mahlo

being inaccessible again).

These concepts give rise to large cardinal axioms in a similar vein to those considered

before, e.g.:

MEA. Every set is an element of some Mahlo set, or in other words,

V ∈ I(M({x|x inaccessible})) (2.3.61)

The following slightly weaker axiom stating that the universe is Mahlo has been featured

prominently in [Gib02].

(M). V ∈M({x|x inaccessible})

Remark 2.16. Some authors (e.g. [Gib02] or [RGP98]) require that an inaccessible set

needs to model REA. This is only a small difference and disappears when using inacces-

sibility as a starting point to define larger concepts. In fact, if we call an inaccessible set

inaccessible’ if it models REA and define α-inaccessible’, Mahlo’ and α-Mahlo’ analo-

gously, then

A inaccessible← A inaccessible’← A 1-inaccessible← A 1-inaccessible’← ...

(2.3.62)

At stage ω and later, the notions have caught up with each other:

ω ⊆ α→ (A α-inaccessible↔ A α-inaccessible’ ) (2.3.63)
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A Mahlo↔ A Mahlo’ (2.3.64)

α inhabited→ (A α-Mahlo↔ A α-Mahlo’ ) (2.3.65)

Similarly, the axiom (M) is equivalent to its analogon (M’) which states that every total

relation on the universe is reflected in some inaccessible’ set.

α-inaccessible sets or α-Mahlo sets correspond to the classical concept of (strongly)

α-inaccessible cardinals and (strongly) α-Mahlo sets via the functions I 7→ rk(I) and

κ 7→ Vκ respectively [GRT05].

Climbing further up the ladder of large cardinal concepts, the classical notion of weak

compactness can be fruitfully expressed through the concept 2-strong, which was in-

troduced by Rathjen in [Rat98] and has the following definition capturing a version of

Π1-indescribability:

Definition 2.17. An inaccessible set K is called 2-strong if for any set S, if

∀R : K ⇒ K∀u ∈ K∃x ∈ K, v ∈ K.x ⊆ R ∧ (x, u, v) ∈ S (2.3.66)

Then there is some inaccessible I ∈ K such that

∀R : I ⇒ I∀u ∈ I∃x ∈ I, v ∈ I.x ⊆ R ∧ (x, u, v) ∈ S (2.3.67)

Reasoning in ZFC, a set is 2-strong if and only if it is the κth von Neumann stage Vκ

for some weakly compact cardinal κ [Gib02]. This is however not the only way to cast

weak compactness in CZF, as addressed in Chapter 8.

2.3.3 Large Large Sets

Measurable cardinals can be cast in different ways in classical set theory. In a construc-

tive context, the avenue that seems most promising is presenting them as the critical

point of a nontrivial elementary embedding, first considered for IZF in [FŠ84]. The ex-

istence of such an embedding (which is a proper class) can not be stated in the language
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of pure set theory, which is why we need to extend the language from {=,∈} by a unary

relation symbol M and a unary function symbol j.

When talking about CZF in this extended language, it should be noted that we imply

that the schemes of Strong Collection and Set Induction are extended to also hold for

formulae containing j and M (likewise for Subset Collection and ∆0-Collection, but as

they are equivalent to the single axioms of Fullness and Binary Intersection, this follows

automatically).

This theory, call it CZF’ for the remainder of this paragraph, is a conservative extension

of CZF as can be seen quite easily: If CZF ′ ` Φ with j and M not appearing in

Φ, then also CZF ′ + ∀x.M(x) + ∀x.j(x) = x ` Φ. This latter theory can however

be trivially and isomorphically interpreted into CZF by using the interpretation arising

from replacing terms of the form jn(x) by x and subformulae of the form M(x) by >.

So also CZF ` Φ.

Thus it is reasonable to call the theory in the extended language with the axiom schemes

admitting formulae containing the new symbols also CZF (in a slight abuse of notation).

Also, we will write x ∈ M instead of M(x) and treat M as a class. The critical axiom

is that j is an embedding from V into the class M .

j : V
≡
↪→M . M is transitive and for any formula Φ(−→x ) which does not contain j or M

and has all free variables displayed

∀−→x .Φ(−→x )↔ ΦM(
−−→
j(x)) (2.3.68)

Here ΦM is the formula obtained from Φ by replacing all unbounded quantifiers of the

forms ∀x, ∃x by quantifiers ∀x ∈M , ∃x ∈M .

Note that this behaves well with regards to bounded quantification:

Lemma 2.18. (j : V
≡
↪→ M ) Let M be transitive. To each formula Φ assign a formulae

ΦM by recursion over Φ:



2 PRELIMINARIES 30

ΦM :≡ Φ if Φ is quantifier free

(ΦJΨ)M :≡ ΦMJΨM for any junctor J

(∀x ∈ aΦ(x))M :≡ ∀x ∈ aΦ(x)M

(∃x ∈ aΦ(x))M :≡ ∃x ∈ aΦ(x)M

(∀xΦ(x))M :≡ ∀x ∈MΦ(x)M if

Φ(x) is not of the form x ∈ a→ Ψ

(∃xΦ(x))M :≡ ∃x ∈MΦ(x)M if

Φ(x) is not of the form x ∈ a ∧Ψ

Then if Φ(−→x ) displays all free variables in Φ,

∀−→x .Φ(−→x )↔ ΦM(
−−→
j(x)) (2.3.69)

Proof. The proof is done by induction over Φ with the critical cases being the bounded

quantifications, which will be the only ones we present.

Let Φ(−→y ) be ∀x ∈ aΨ(x,−→y ) and have all free variables displayed (with a being one of

the variables in −→y ). By induction hypothesis,

∀x,−→y .Ψ(x,−→y )↔ ΨM(j(x),
−−→
j(y)) (2.3.70)

By elementarity, this leads to

∀−→y .(∀x.x ∈ a→ Ψ(x,−→y ))↔ (∀x ∈M.x ∈ j(a)→ ΨM(j(x),
−−→
j(y))) (2.3.71)

As x ∈ j(a) implies x ∈ M by transitivity, the right side of the biconditional is equiva-

lent to ΦM(
−−→
j(y)).

Alternatively, let Φ(−→y ) be ∃x ∈ aΨ(x,−→y ) and have all free variables displayed (with a

being one of the variables in −→y ). By induction hypothesis,

∀x,−→y .Ψ(x,−→y )↔ ΨM(j(x),
−−→
j(y)) (2.3.72)

By elementarity, this leads to

∀−→y .(∃x.x ∈ a ∧ Ψ(x,−→y )) ↔ (∃x ∈ M.x ∈ j(a) ∧ ΨM(j(x),
−−→
j(y))) (2.3.73)

As x ∈ j(a) implies x ∈ M by transitivity, the right side of the biconditional is equiva-

lent to ΦM(
−−→
j(y)).



2 PRELIMINARIES 31

Similarly, elementarity behaves well with regards to recursively ∆0-definable concepts:

Lemma 2.19. (j : V
≡
↪→ M ) Let Φ(R,−→x ) be a ∆0 formula (possibly containing other

free variables). Then extending the language of CZF by a unary symbol A and the

axiom9

∀−→a .A(−→a )↔ Φ({−→x ∈ −→a |−→x ∈ A},−→a ) (2.3.74)

is a conservative extension and for any formula Φ(−→x ) which does not contain j or M ,

but may contain A and has all free variables displayed

∀−→x .Φ(−→x )↔ ΦM(
−−→
j(x)) (2.3.75)

is provable in that conservative extension.

Proof. The conservativity works just as for the corresponding results from [AR01].

To show elementarity, consider tc(x), i.e. the transitive closure of x, the smallest tran-

sitive set containing x as an element. The formula tc(a) = b can be viewed as a ∆0-

formula10 [AR01].

By set induction, we get that for all sequences of sets−→a the formula A(−→a ) is equivalent

to

∀B ⊆ tc(a1)× ...× tc(an).

∀−→x ∈ tc(a1)× ...× tc(an)(−→x ∈ B ↔ Φ({−→y ∈ −→a |−→y ∈ B},−→x ))

→ Φ({−→x ∈ −→a |−→x ∈ B},−→a )

It is also equivalent to
9Note that this axiom refers to what appears to be a class. Using the conventions established in section

2.1 however, this is not a problem. In this particular instance, the class actually turns out to be a set in any

case.
10To be precise, enriching the language of CZF by a relation sign for this formula and adding the

instances of axiom schemes where the new sign appears yields a conservative extension, in which all

relevant procedures can be carried out. It is a simple matter of induction over the complexity of the

formula (with set induction in the base case) to see that tc may appear in the elementarity scheme as well.
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∃B ⊆ tc(a1)× ...× tc(an).

∀−→x ∈ tc(a1)× ...× tc(an)(−→x ∈ B ↔ Φ({−→y ∈ −→a |−→y ∈ B},−→x ))

∧Φ({−→x ∈ −→a |−→x ∈ B},−→a )

Thus A(−→a ) is a ∆1 formula11 and thus by elementarity for appropriate ∆0 formulae Φ,

Ψ,

A(−→a ) ↔ ∃B.Φ(B,−→a )

↔ ∃B ∈M.Φ(B,
−−→
j(a))

→ ∃B.Φ(B,
−−→
j(a))

↔ A(
−−→
j(a))

And also

A(
−−→
j(a)) ↔ ∀B.Ψ(B,

−−→
j(a))

→ ∀B ∈M.Ψ(B,
−−→
j(a))

↔ ∀B.Ψ(B,−→a )

↔ A(−→a )

This shows that the elementarity scheme holds for atomic formulae containing A, the

rest follows by a direct structural recursion.

Example 2.20. The rank function is recursively ∆0-definable:

rk(a) :=
⋃
x∈a

rk(x) + 1 (2.3.76)

11i.e. a formula equivalent to both a formula of the form ∃B.Φ(B) with Φ being ∆0 and to a formula

of the form ∀B.Ψ(B) with Ψ being ∆0.
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As rk(a) = b is equivalent to the ∆0 formula

∀x ∈ a∃y ∈ b rk(x) = y ∧ ∀y ∈ b∃x ∈ a.rk(x) = y ∨ rk(x) 3 y (2.3.77)

On its own, j : V
≡
↪→ M is no large cardinal axiom and in fact carries no strength

at all, as there is nothing to prevent M from being V and j from being the identity in

which case the elementarity scheme becomes trivial. However, there are a number of

interesting large cardinal axioms expressible with j : V
≡
↪→M being a starting point:

There is a measurable set. j : V
≡
↪→M and there is an inaccessible12 set K such that

K ∈ j(K) ∧ ∀x ∈ K.j(x) = x (2.3.78)

This was considered in [FŠ84] in the context of IZF, as well as:

There is a Reinhardt set. j : V
≡
↪→M and there is an inaccessible set K such that

K ∈ j(K) ∧ ∀x ∈ K.j(x) = x (2.3.79)

Also, V = M .

The latter axiom is known to be inconsistent with ZFC [Kun71]. However, there is no

reason to believe that it should also be inconsistent with CZF. Nevertheless, it can be

shown to be quite strong.

There is a spectrum of sensible variations of these axioms which shall be considered

later in this thesis.

12As will transpire later, such a set then also fulfills stronger conditions like Mahloness or 2-strongness.
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Chapter 3

What do Large Sets look like?

3.1 Introduction and Results

Classically, full models of second order set theory (i.e. inaccessible sets) are quite one-

dimensional: They may differ in height, but even if one model contains larger ordinals

than another, it is simply an extension and the two models are identical on the stages1

that they share:

Observation 3.1. (ZF) If I and J are inaccessibles and α ∈ I ∩ J , then

Vα ∩ I = Vα ∩ J (3.1.2)

This is because classically for α ∈ I we have that Vα∩I = Vα. However, the constructive

case is vastly different: There is no reason to suppose that two inaccessible sets even

share the same truth values (i.e. that V2 ∩ I = V2 ∩ J). And even if they do share the

same truth values, it is absolutely unclear whether they contain the same sets of truth

1The von Neumann stages Vα are recursively defined as

Vα :=
⋃
β∈α

P(Vβ) (3.1.1)

They will be introduced in more detail during the chapter adapting the von Neumann hierarchy to con-

structive set theory, in particular see Definition 5.4.
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values (i.e. V3 ∩ I = V3 ∩ J) — for example, it seems plausible that one might model

the powerset axiom (and thus V2 ∩ I ∈ I ∩ V3), while the other might not (which is

equivalent to V2 ∩ J /∈ J ∩ V3).

So two inaccessibles can diverge pretty quickly in CZF, starting at von Neumann stage

2. However, if they did not diverge by stage 3, then they never do:

Theorem 3.2. Let I, J be inaccessibles. If I ∩ V3 = J ∩ V3, then

∀α ∈ I ∩ J. I ∩ Vα = J ∩ Vα (3.1.3)

In particular, the finite stages of an inaccessible depend only on the first three stages.

3.2 Proof of Theorem 3.2

In the following, for a bounded formula Φ use the abbreviation JΦK defined by:

JΦK := {0|Φ} (3.2.4)

This is a set by ∆0-Collection and is inhabited iff Φ holds. We will revisit this construc-

tion in Definition 5.3.

We make use of the following central lemma:

Lemma 3.3. Let I, J be inaccessibles with I ∩ V3 = J ∩ V3 and X ∈ I . If
⋃
X ∈ J ,

then also X ∈ J .

Proof. Note that X ∈ P(P(
⋃
X)).

For all y ∈
⋃
X , define

Ay := {Jy ∈ xK|x ∈ X} ∈ I ∩ V3 = J ∩ V3 (3.2.5)
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Recall the definition of dependent products as sets of functions and note that inaccessi-

bles are closed under them, so that

Πy∈
⋃
XAy ∈ J (3.2.6)

For every element F ∈ Πy∈
⋃
XAy, define

ϑF := J{y ∈
⋃

X|0 ∈ F (y)} ∈ XK ∈ I ∩ V2 = J ∩ V2 (3.2.7)

Note that by regularity, the mapping F 7→ ϑF with domain Πy∈
⋃
XAy is in J , and thus

so is its support, i.e. the set

Y := {F ∈ Πy∈
⋃
XAy|0 ∈ ϑF} ∈ J (3.2.8)

Finally, we claim the equality

X = {{y ∈
⋃

X|0 ∈ F (y)}|F ∈ Y } ∈ J (3.2.9)

To prove ⊆, let x ∈ X . Let F be the function mapping y ∈
⋃
X to Jy ∈ xK, which is a

well defined element of Πy∈
⋃
XAy ∈ J . Then F ∈ Y , as

ϑF = J{y ∈
⋃

X|0 ∈ F (y)} ∈ XK = 1, (3.2.10)

which holds because the set {y ∈
⋃
X|0 ∈ F (y)} is just x.

To prove ⊇, let F ∈ Y . Then

ϑF = J{y ∈
⋃

X|0 ∈ F (y)} ∈ XK = 1 (3.2.11)

And thus there is an x ∈ X with {y ∈
⋃
X|0 ∈ F (y)} = x.

As X is thus proved to be equal to a set in J , it is an element of J .

Now we can prove Theorem 3.2:

Proof of Theorem 3.2. Let I, J be inaccessibles with I ∩ V3 = J ∩ V3. By induction on

α, prove that Vα ∩ I = Vα ∩ J .



3 WHAT DO LARGE SETS LOOK LIKE? 38

Let x ∈ Vα ∩ I . For y ∈ x, there is a β ∈ α with y ∈ Vβ (as generally, there is a β ∈ α

with x ⊆ Vβ). Descending one step further this becomes:

∀z ∈ y ∈ x∃γ ∈ β ∈ α.z ∈ Vγ (3.2.12)

So
⋃
x can be split over the different stages as follows:

⋃
x =

⋃
γ∈

⋃
α

(Vγ ∩
⋃

x) (3.2.13)

The sets Vγ ∩
⋃
x are elements of I ∩Vβ for some β ∈ α by I modelling ∆0-Seperation.

By induction hypothesis, they are thus also in J , and by J being regular and noting that⋃
α ∈ J , so is their union.

So
⋃
x ∈ J , and by lemma 3.3, this implies x ∈ J .

Corollary 3.4. If two inaccessibles contain the same sets of ordinals, then they are equal.

This corollary is however weaker than the statement that will later be obtained using

the modified von Neumann hierarchy, namely that if two inaccessibles contain the same

ordinals, then they are equal.

3.3 Why 3?

It is a well known result that whether any Vα is a set for α > 1 is equivalent to the

Powerset axiom and this is equivalent to the question whether V2 = P(1) is a set (or

equivalently whether V2 ∈ V3). The main theorem in this section can be read as a logical

extension of this: The set approximations of the powerclass of 1 (i.e. the contents of V3)

determine the set approximations of all powerclass operations (and thus all the Vαs).
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3.4 A much stronger Classification Theorem in case of

Subcountability

The previous results show that the stages of an inaccessible Vα∩I for α ∈ I are uniquely

determined by the fourth stage V3 ∩ I . In the presence of the Subcountability axiom

however, it is even possible to not only determine the stages for α ∈ I , but the whole of

I just by fixing the set V2 ∩ I of truth values in I:

Theorem 3.5. (Subcountability) Let I, J be inaccessible. If I∩V2 = J∩V2, then I = J .

In fact, even the following holds:

Proposition 3.6. (Subcountability) Let A,B be regular with ω ∈ A,B, let A be closed

under the binary operation x, y 7→ Jx ∈ yK and B be closed under the operation x 7→⋃
x. If A ∩ V2 ⊆ B ∩ V2, then A ⊆ B.

To prove this, we will take advantage of the following useful lemma:

Lemma 3.7. (Subcountability) Let A be regular with ω ∈ A. Then A models the Sub-

countability axiom.

Proof. Let a ∈ A and by Subcountability, let N ⊆ ω and f : N →→ a. Then for all

x ∈ a, there is an n ∈ ω ∈ A such that (n, a) ∈ f . By regularity, collect such n into a

set N ′ ∈ A. As the n are all in N , we have N ′ ⊆ N , so

f � N ′ : N ′ → a (3.4.14)

This function is also surjective, as for every element of a there is such an n by the

instance of regularity invoked to get N ′. Also it holds that the function is in A, i.e.

f � N ′ ∈ A (3.4.15)

This is because f � N ′ is the uniquely determined set whose existence is implied by the

instance of regularity owing to the relation

∀n ∈ N ′∃!z ∈ A.z = (n, f(n)) (3.4.16)
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So f � N ′ : N ′ →→ a and both function and domain are elements of A.

Proof of Proposition 3.6. Let A,B be regular with ω ∈ A,B and V2 ∩A ⊆ V2 ∩B, i.e.,

for every truth value ϑ ⊆ 1, it holds that ϑ ∈ A implies ϑ ∈ B. Let A also be closed

under the truth value operation x, y 7→ Jx ∈ yK and B be
⋃

-regular.

We will prove A ⊆ B by set induction. So let a ∈ A and for all x ∈ a, x ∈ B. We need

to show a ∈ B also.

By Lemma 3.7, there are N, f ∈ A with N ⊆ ω and f : N →→ a. Then for each n ∈ ω,

the truth value ϑn := Jn ∈ NK ∈ A, so they are also elements of B. For any n ∈ ω, it

holds that

∀x ∈ ϑn∃!y ∈ B.y = f(n) (3.4.17)

Applying regularity demonstrates that for this fixed n ∈ ω, the set {f(n)|∃n ∈ ϑn ∧n ∈

ω} = {f(n)|n ∈ N}, which has at most one element, is in B. As this is true for each

n ∈ ω, it is possible to collect them in a set in B:

{{f(n)|n ∈ N}|n ∈ ω} ∈ B (3.4.18)

So also in B is the set

A =
⋃
{{f(n)|n ∈ N}|n ∈ ω} ∈ B (3.4.19)

A possibly more elegant way to formulate the proposition would be the following:

Corollary 3.8. (Subcountability) If A,B 3 ω are regular, A is closed under binary

intersection and B is closed under union, then

V2 ∩ A ⊆ V2 ∩B → A ⊆ B (3.4.20)

Proof. We show that for all x, y ∈ A, the truth value Jx ∈ yK ∈ A. For let x, y ∈ A and

A be closed under binary intersection, then {y} ∩ {x} ∈ A and for each element in this

set, there is an element ofA which is equal to 0. Collecting these in a set yields precisely

the truth value Jx ∈ yK.
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Thus the axiom of Subcountability can be observed once more performing an antipodal

role to the axiom of the Excluded Middle: While the latter enforces a classical world

where the finite stages of the von Neumann hierarchy are the same for any inaccessible

and the inaccessibles differ only in height, in the inherently constructive world of Sub-

countability, the crucial stage is the very lowest conceivably nontrivial finite stage of the

von Neumann hierarchy (i.e. V2), and the whole inaccessible is completely determined

from there.
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Chapter 4

How Constructive are Large Set

Axioms?

Classical set theorists can draw from a cornucopia of justifications for adopting large car-

dinal axioms, their reasoning ranging from pragmatic through aesthetic to onthological

(e.g. [Kan03, Rat98]), and many of these can also be applied to large sets in a con-

structive context. However, it is easy to be tempted to leave the realm of constructively

admissible reasoning by unreflectedly adding principles which are a lot less innocuous

than they appear (see e.g. [AR01]), so that it is a reasonable question to ask of any new

axiom whether it preserves the general constructive character of the theory.

There are several ways to approach that concern. One is to satisfy oneself that adding

large sets still yields a theory that can be analyzed with generalized predicative methods

of proof theory, an avenue that was successfully pursued in [Gib02, CR02]. Another is

to specify metatheoretic properties that constructive set theories should have and prove

them for the extensions of CZF with large set axioms. This is the route we will present

here.

One hallmark for reasonable candidates for axiom systems for constructive set theories

has been proposed by Aczel in [Acz07]: They should be absolute for Heyting models,

reasoning that this is a fundamental set theoretic model construction under which any
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reasonable class of standard models should be closed. In the same vein, one can demand

absoluteness for realizability models as in [Rat03b], this being the other principal model

construction commonly used in constructive set theory. We will analyse absoluteness

for both models in one stroke by proving absoluteness for their common generalisation

as presented in [Zie07, Zie12]. Testing for this will also confirm a conjecture by Peter

Aczel on ∗REA presented in [Acz07].

A second type of criteria might be the consistency with typically constructive state-

ments such as Church’s Thesis (advocated e.g. in [Bee82]), the FAN Theorem or con-

tinuity principles. Conveniently, this is already directly implied by the absoluteness

for realizability models, as these statements hold in appropriate realizability models

[Rat03b, Rat05a], so that this will be shown automatically by establishing good ab-

soluteness properties.

The third group of tests of constructivity we will undertake consists of properties related

to the existence property. While the existence property itself is arguably not a hallmark of

constructive set theories and does in fact not even hold for CZF itself [Swa14] (although

it does hold if Fullness is replaced by the more innocuous axiom of Exponentiation, see

[Rat05c]), it can be considered a reasonable demand that a theory aspiring to capture

the spirit of constructive thought should be able to specify which disjunct of a provable

disjunction is provable (the disjunction property), provide a witness for a provable state-

ment of the form ∃n ∈ ω.Φ(n) (the numerical existence property) and ideally supply a

Turing machine able to compute a function that witnesses a provable statement of the

form ∃f : ω → ω.Φ(n) (Church’s rule).

4.1 Models of Constructive Set Theory

The two main relative model constructions available to and developed in CZF are realiz-

ability models [Rat03b] and Heyting models [Gam06]1. They have a common general-

1In the inpredicative context of IZF, such models have been developed before in e.g. [Fri73] and

[Gra79] respectively. However, the predicative case requires some new ideas in both cases.
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ization, which in the context of CZF has been developed as models based on applicative

topologies in [Zie07]. We will work with this model construction, as this makes it more

economical to prove absoluteness results for both realizability and Heyting models at

the same time. We will quickly review the description of models based on applicative

topologies from [Zie12].

4.1.1 Applicative Topologies

Definition 4.1. A partial order2 (S,≤) together with a class C ⊆ S × P(S) is called a

formal topology3 if the following hold:

a ∈ p→ aC p

a ≤ bC pC q → aC q

aC p ∧ aC q → aC {b|∃c ∈ p, d ∈ q. b ≤ c ∧ b ≤ d}

Here the expression p C q is to be understood pointwise, i.e. as an abbreviation for

∀a ∈ p.aC q.

The formal topology is called set-presented if there is a function R : S → P(P(S))

such that

aC p⇔ ∃u∈R(a) u ⊆ p (4.1.1)

A set-presented formal topology depends only on set parameters, i.e. S, ≤ and R as C

can be defined from R. Thus the set-presented formal topologies form a class, while the

collection of all formal topologies is a hyperclass. We will only use set-presented formal

topologies in these investigations.

Definition 4.2. A set-presented formal topology (S,≤,C, R) with an application ◦ :

S × S →p S, a subset ∇ ⊆ S and two constants k ∈ ∇ and s ∈ ∇ is called an

applicative topology if the following hold for all a, b, c ∈ S:
2i.e. ≤ is a binary relation on S and it always holds that a ≤ a and a ≤ b ≤ c→ a ≤ c
3This is the definition used e.g. in [Gam06]. It differs from the common alternatives in the vein of

[Sam87] in that it uses less structure, i.e. no binary meets or positivity predicate.
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1. (∀x ∈ p, y ∈ q xy↓ ∧(aC p ∧ bC q))→ (ab↓ ∧abC {xy|x ∈ p, y ∈ q})

2. ab↓ ∧ a, b ∈ ∇ → ab ∈ ∇

3. kab↓ ∧kabC {a}

4. sab↓

5. ((ac)(bc)↓ ∨ sabc↓)→ (sabc↓ ∧ (ac)(bc)↓ ∧sabcC {(ac)(bc)})

6. @e ∈ ∇ eC ∅

In the following, fix an applicative topology.

We use applicative terms in the usual manner:

Definition 4.3. 1. A first order term t in the language S ∪ {·} with a constant for

each element in S, countably many free variables and a binary function is called

an applicative term. For readability, we will omit brackets when the leftmost op-

eration is meant to be carried out first, i.e. xyz is to be read as (xy)z. A term with

no variables is called closed. If σ is a function assigning a member of S to each

free variable of a term t, then t[σ] is the result of substituting each free variable in

t by its value under σ.

2. Define by induction the (possibly undefined) value tS of a closed term t:

aS = a for a ∈ S

st = c if ∃a, b ∈ S.sS = a ∧ tS = b ∧ a ◦ b = c

3. A closed term t denotes (written as t↓) if ∃a ∈ S.tS = a.

4. A term t convinces (written as t!) if for all substitutions σ of elements of∇ for the

free variables, we have: t[σ]↓ → t[σ]S∈∇

5. We write t E t′ if whenever one of the terms denotes, then both do and tS C {t′S}.

Like ordered pcas [HvO03], applicative topologies only have a one sided form of com-

binatorial completeness, which is however sufficient for our purposes:
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Lemma 4.4. For any applicative term t and variable v, there is an applicative term λv.t

with λv.t ↓ such that its free variables are exactly the free variables of t minus v (if v is

free in t) and

(λv.t)v E t (4.1.2)

If all constants in t are elements of∇, then λv.t!.

If v was free in t or if t′ ↓, then

(λv.t)t′ E t[v := t′] (4.1.3)

Proof. See [Zie12].

From there, it is possible to obtain a one sided form of the fixed point lemma. Unlike the

fixed point element one obtains in partial combinatory algebras, only a fixed point term

is found here:

Lemma 4.5. Let v be a variable and for all a ∈ S, write v := a for the substitution σ

mapping v to a.

Then there is an applicative term τ fix with τ fix! and

∀a∈S. τ fix[v := a] E a(τ fix[v := a]) (4.1.4)

Proof. See [Zie12].

Remark 4.6. There are a number of useful definable constants we will consider fixed, in

particular p, l, r,D ∈ S for pairing, left and right projection and case distinction. They

fulfill:

p!, l!, r!, D!

l(pxy) E x

r(pxy) E y

Dlxy E x

Drxy E y
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We will use these constants as well as τ fix[v := a] as from Lemma 4.5.

4.1.2 Models of Set Theory Based on Applicative Topologies

We define a model of set theory on the following inductively defined class domain:

Definition 4.7. Let V (S) be the smallest class such that

∀a ⊆ S × V (S).a ∈ V (S) (4.1.5)

This can also be presented in stages analogous to the von Neumann stages as V (S) =⋃
α∈V Vα(S), where

Vα(S) =
⋃
β∈α

{X ⊆ S × Vβ(S)} (4.1.6)

We consider the following realizability relation for formulae with parameters in V (S):

Definition 4.8. Let Φ be a formula in the language∈, ∈̇with equality. Define the formula

e  Φ inductively as e ∈ S and the appropriate clause from below:

1. e  ⊥ if eC ∅

2. e  x∈̇y if eC {e|(e, x) ∈ y}

3. e  x ∈ y if eC {f ∈ S|∃z ∈ tc(y).lf  z∈̇y ∧ rf  x = z}

4. e  x = y if ∀(f, z) ∈ x.lef  z ∈ y and

∀(f, z) ∈ yref  z ∈ x

5. e  Φ ∧Ψ if le  Φ ∧ re  Ψ

6. e  Φ ∨Ψ if eC {f ∈ S|(lf E l ∧ rf  Φ) ∨ (lf E r ∧ rf  Ψ)}

7. e  Φ→ Ψ if ∀f ∈ S.f  Φ→ ef  Ψ
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8. e  ∃x∈y Φ(x) if eC {f ∈ S|∃(lf, a)∈y. rf  Φ[a]}

9. e  ∀x∈y Φ(x) if ∀(f, a)∈y. ef  Φ[a]

10. e  ∀xΦ(x) if ∀a ∈ V (S). e  Φ[a]

11. e  ∃xΦ(x) if eC {f ∈ S|∃a ∈ V (S). f  Φ[a]}

Use  Φ as shorthand for ∃e ∈ ∇.e  Φ and call such a formula Φ realized.

Here, the atomic formulae of type x∈̇y are merely a technical convenience to define

the other cases more easily. The clauses 8 and 9 are not actually necessary as bounded

quantifiers can just be treated as defined concepts, but they are convenient to use, as has

been considered to be the case in the literature about realizability [Rat03b] as well as

Heyting models [Gam06].

The central result about this model is:

Theorem 4.9. The realized formulae are a consistent4 theory closed under intuitionistic

implication5 containing all the axioms of CZF6.

Proof. See [Zie12].

As detailed in [Zie12], realizability models are a special case of the models considered

here, where a pca (A, k, s◦) can be considered as an applicative topology by choosing

the discrete topology on it, i.e. defining a ≤ b iff a = b, a C p iff a ∈ p, R(a) as

{{a}} and ∇ as the whole of A. Similarly, Heyting models are a special case of these

models, where a set-presented formal topology S,≤,C, R) which w.l.o.g. contains a top

element > and is closed under meets ∩ can be considered an applicative topology by

defining a ◦ b as a ∩ b, choosing s and k as equal to > and ∇ as {>}.
4When spelled out as a theorem in CZF, this statement is just ¬  ⊥.
5This statement even holds when spelled out in the strong formulation as a scheme of formulae of the

form (Φ→ Ψ)→ (� Φ)→ ( Ψ).
6When spelled out as a theorem in CZF, this statement is a scheme of formulae of the form  Φ for all

Φ axioms of CZF.
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4.1.3 The Consistency of Tiny Large Set Axioms

The consistency of REA under realizability models has been proved by Rathjen in

[Rat03b]. For Heyting models, this has been proved in [Zie07] through the model con-

struction described above. The central lemma in this case was:

Lemma 4.10. If A is regular and R′′S ∈ A, then A′ := S× (V (S)∩A) is a set in V (S)

and  A′ is regular.

Proof. See [Zie07].

Looking at the proof in [Zie07], it becomes obvious that when proving the part that A is

realizedly weakly regular, only the weak regularity of A was needed, so that we also get:

Lemma 4.11. If A is weakly regular and R′′S ∈ A, then A′ := S × (V (S) ∩A) is a set

in V (S) and  A′ is weakly regular.

This can be extended to
⋃

-regular sets:

Lemma 4.12. If A is
⋃

-regular and R′′S ∈ A, then A′ := S × (V (S) ∩ A) is a set in

V (S) and  A′ is
⋃

-regular.

Proof. By Lemma 4.10 it is already realized that A′ is regular, what is left is to show

that A′ � Union. This is realized in a similar way as it is realized that V(S) itself models

the Union Axiom. A possible realizer for the formula

∀a ∈ A′∃b ∈ A′.∀c ∈ a∀d ∈ c d ∈ b ∧ ∀d ∈ b∃c ∈ a d ∈ c (4.1.7)

would be

e := λx.pk(p(λyz.p(pyz)er)(λx.p(lx)(p(rx)er)) (4.1.8)

where as usual er is a realizer for reflexivity of equality. Indeed, for each (f, a) ∈ A′ ⊆

A, there is the set

b := {(pxy, d)|∃c.(x, c) ∈ a ∧ (y, d) ∈ c} (4.1.9)
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We want to show that b ∈ A. Consider for each element (x, c) ∈ a with c ∈ V (S) (and

as (f, a) ∈ A′, all elements of a are of that form), consider the mapping

fx,c : c→ a, f((y, d)) := (pxy, d) (4.1.10)

As every element of c is of the form y, d, this is defined on c ∈ A and so its image is also

in A:

˜(x, c) := im(fx,c) ∈ A (4.1.11)

Thus the map (x, c) 7→ ˜(x, c) is defined on a and has codomain A, so its image is also in

A:

ã := { ˜(x, c)|(x, y) ∈ a} ∈ A (4.1.12)

By the union property of A, its union is an element of A as well, but this is just b:

b =
⋃

ã ∈ A (4.1.13)

So (k, b) ∈ A′. By construction

λyz.p(pyz)er  ∀c ∈ a∀d ∈ cd ∈ b (4.1.14)

and

λx.p(lx)(p(rx)er)  ∀d ∈ b∃c ∈ ad ∈ c (4.1.15)

and thus e truly realizes the Union Property.

We can also obtain a similar result for ∗REA:

Lemma 4.13. If A is ∗-regular and R′′S ∈ A, then A′ := S × (V (S) ∩ A) is a set in

V (S) and  A′ is ∗ -regular.

Proof. By Lemma 4.12 it is already realized that A′ is
⋃

-regular, what is left is to show

that  A′ � RRS2.

To realize this, let e0 � D ⊆ A′, e1 � G ⊆ A′ (and as per [Zie07], w.l.o.g. take G ⊆ A),

(e2, a) ∈ G and e3 � ∀x ∈ G∃y ∈ G(x, y) ∈ D.
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From these, we have to construct a realizer for ∃g ∈ A′.g ⊆ G ∧ a ∈ g ∧ ∀x ∈ g∃y ∈

g(x, y) ∈ D.

Consider the following relation R′ between elements b and b′ of A′ which is defined to

hold iff b ⊆ b′ ∈ A′ and

∀(f, x) ∈ b∃u ∈ R′′S∃c ∈ b′.

e3f C u ∧ ∀g ∈ u∃(lg, y) ∈ c.rg � (x, y) ∈ D ∧ (lg, y) ∈ G (4.1.16)

Let PA(X) := {Y ∈ A|Y ⊆ X} and note that this operation maps subsets of A to

subsets of A. From the perspective of A this appears to be the powerclass operation

(while viewed from the outside, it actually maps sets to sets).

We claim that R′ : PA(G) ⇒ PA(G). Indeed, from our knowledge about e3, we know

that

∀(f, x) ∈ G∃u ∈ R′′S∀g ∈ u∃(lg, y) ∈ G.rg  (x, y) ∈ D (4.1.17)

So let b ∈ A, b ⊆ G. We have

∀(f, x) ∈ b∃u ∈ R′′S∀g ∈ u∃(lg, y) ∈ G.rg  (x, y) ∈ D (4.1.18)

Thus by (weak) regularity of A (of which the us are elements) we can collect the (lg, y)s

in a set b′′:

∀(f, x) ∈ b∃b′′ ⊆ G.b′′ ∈ A ∧ ∃u ∈ R′′S∀g ∈ u∃(lg, y) ∈ b′′.

(lg, y) ∈ G ∧ rg  (x, y) ∈ D (4.1.19)

Using the (weak) regularity of A yet again, we can collect all neccessary b′′ in a single

set B′′ ∈ A – but the union b′ := b ∪
⋃
B′′ is then just as desired a set in A and a subset
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of G which stands in the R′-relation with b. Note that the union-regularity is used here

to obtain b′ ∈ A.

Using the ∗-property of A we can now find a set g′ ∈ A and subset of PA(G) with

{(e2, a)} ∈ g′ such that R : g′ ⇒ g′. The set g := {(k, h)|h ∈ g} is then as desired for

the ∗-property:

It is realized by pe2er that a ∈ g′. It is trivially realized that g′ ⊆ G. Furthermore,

the same realiser e3 that realizes D : G ⇒ G also realizes D : g ⇒ g, which is direct

consequence of R′ : g′ ⇒ g′. As all these realizers depended only in an easy way7 on

e0, e1, e2 and e3, we have shown the realizedness of ”‘A is ∗-regular”’.

It does not seem surprising that the same technique also works for the ∗2 property:

Lemma 4.14. If A is ∗2-regular and R′′S ∈ A, then A′ := S × (V (S) ∩ A) is a set in

V (S) and  A′ is ∗2 -regular.

Proof. By Lemma 4.12 it is already realized that A′ is
⋃

-regular, what is left is to show

that  A′ � SRRS2.

To realize this, chose D, G, e0, e1 and e2 as above with e0 � D ⊆ A′, e1 � G ⊆ A′,

(e2, a) ∈ G and e3 � ∀x, y ∈ G∃z ∈ G(x, y, z) ∈ D.

From these, we have to construct a realizer for ∃g ∈ A′.g ⊆ G ∧ a ∈ g ∧ ∀x, y ∈ g∃z ∈

g(x, y, z) ∈ D.

Consider the following relation R′ between elements b, b′ and b′′ of A′ which is defined

to hold iff b ∪ b′ ⊆ b′′ ∈ A′ and

∀(f, x) ∈ b∀(f ′, x′) ∈ b′∃u ∈ R′′S∃c ∈ b′′.e3ff
′ C u ∧ ∀g ∈ u∃(lg, y) ∈ c.

rg � (x, x′, y) ∈ D ∧ (lg, y) ∈ G (4.1.20)

7namely by application of another fixed realizer
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Similarly to before, we claim that R′ : PA(G) × PA(G) ⇒ PA(G). Indeed, from our

knowledge about e3, we know that

∀(f, x) ∈ G∀(f ′, x′) ∈ G∃u ∈ R′′S∀g ∈ u∃(lg, y) ∈ G.

(lg, y) ∈ G ∧ rg  (x, y) ∈ D (4.1.21)

So let b, b′ ∈ A, b, b′ ⊆ G. We have

∀(f, x) ∈ b∀(f ′, x′) ∈ b′∃u ∈ R′′S∀g ∈ u∃(lg, y) ∈ G.

(lg, y) ∈ G ∧ rg  (x, x′, y) ∈ D (4.1.22)

Thus by (weak) regularity of A (of which the us are elements):

∀(f, x) ∈ b∀(f ′, x′) ∈ b∃b′′ ⊆ G ⊆ B.b′′ ∈ A ∧ ∃u ∈ R′′S∀g ∈ u∃(lg, y) ∈ b′′.

(lg, y) ∈ G ∧ rg  (x, x′, y) ∈ D (4.1.23)

Using the (weak) regularity of A yet again, we can collect all neccessary b′′ in a single

set B′′ ∈ A – but the union b′′′ := b∪
⋃
B′′ is then just as desired a set in A and a subset

of G which stands in the R′-relation with b and b′. Note that the union-regularity is used

here to obtain b′′′ ∈ A.

Using the ∗2-property of A we can now find a set g′ ∈ A and subset of PA(G) with

{(e2, a)} ∈ g′ such that R : g′ × g′ ⇒ g′. The set g := {(k, h)|h ∈ g} is then as desired

for the ∗-property:

It is realized by pe2er that a ∈ g′. It is trivially realized that g′ ⊆ G. Furthermore, the

same realiser e3 that realizes D : G × G ⇒ G also realizes D : g × g ⇒ g, which is

direct consequence of R : g′ × g′ ⇒ g′. As all these realizers depended only in an easy

way8 on e0, e1, e2 and e3, we have shown the realizedness of ”‘A is ∗2-regular”’.
8namely by application of another fixed realizer
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This leads to the main theorem in this subsection:

Theorem 4.15. The following statements are absolute for realizability models, Heyting

models and models based on applicative topologies:

• wREA

• REA

•
⋃

REA

• ∗REA

• ∗2REA

Proof. Let A ∈ V (S). By wREA, REA,
⋃

REA, ∗REA or ∗2REA respectively, there is

a set A′ such that A ∈ A′ and S,R′′S ∈ A′ and A′ is weakly regular, regular,
⋃

-regular,

∗-regular or ∗2-regular respectively.

Use Lemma 4.11, Lemma 4.10, Lemma 4.12, Lemma 4.13 or Lemma 4.14 respectively

to see that S × (V (S)∩A) ∈ V (S) is realized to have the same regularity property, and

for all e we have e  A∈̇S × (V (S) ∩ A).

It might be noted which tiny large set axioms are absent from Theorem 4.15: fREA

and sREA, those which do not deal with total relations but with functions instead. This

seems to be one more indication that in the constructive context of CZF, total relations

are much easier to handle than functions (and indeed, CZF’s axioms themselves include

Strong Collection and Fullness, not Replacement and Exponentiation).

Of course, these axioms are still realized if stronger axioms like REA or IEA respectively

hold in the background theory, so they are still consistent with constructive statements

like Church’s Thesis or continuity principles even if fREA and sREA are not absolute

for realizability models themselves.
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4.1.4 The Absoluteness of Inaccessibility

Like for the tiny large set axioms, we aim to show that if a certain set containing R′′S

enjoys a certain largeness property, then the intersection of this set with V (S) is realized

to enjoy the same property.

Lemma 4.16. Let A be inaccessible and S,R′′S ∈ A. Then

 S × (V (S) ∩ A) is inaccessible. (4.1.24)

Proof. By Lemma 4.12, A′ is realized to be
⋃

-regular, so it is only left to show that

A′ := S × (V (S) ∩ A) is realized to contain the natural numbers and to model Subset

Collection and Binary Intersection.

The natural numbers

A variant of the natural numbers in V (S) is ω̄, the set defined by:

n̄ := {lll...lll︸ ︷︷ ︸
m times

r, m̄)|m ∈ n} (4.1.25)

ω̄ := {lll...lll︸ ︷︷ ︸
n times

r, n̄)|n ∈ ω} (4.1.26)

As A is inaccessible and contains S, this is an element of A, so  ω ∈ A′.

Subset Collection

We will prove Subset Collection rather than Fullness, which allows us to run the proof

parallel to [Zie12], where it was shown that V models Subset Collection. This can be

seen as the relativized version.

Let Φ be a formula with all quantifiers bounded byA′. We need a realizer for the formula
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∀a, b ∈ A′∃c ∈ A′∀u ∈ A′.

∀x∈a∃y∈bΦ(x, y, u)→ ∃d∈c.

∀x∈a∃y∈dΦ(x, y, u) ∧ ∀y∈d∃x∈aΦ(x, y, u) (4.1.27)

We claim that such a realizer would be

j := λx.λy.pk(λz.i) (4.1.28)

With i being defined as:

i := λv.pk(p(λx.p(px(vx))(r(vx)))(λx.p(lx)(r(rx)))) (4.1.29)

The reason why the variables x, y and z do not play any significant role in j (all the

λ-terms describe constant functions) and all the complexity of the realizer manifests in

the subterm i is that the actual realizers for a∈̇A′ do not matter — in fact, by definition

of A′, if (e, a) ∈ A′, then also (f, a) ∈ A′ for any f ∈ S.

Let (x0, a), (x1, b) ∈ A′. Define

b̃ := {(g, d)|∃(g′, d) ∈ b.l(rg)C g′} ∈ A′ (4.1.30)

As A models Subset Collection and Strong Collection, there is a B ⊆ P(b̃) with B ∈ A

such that for all (f, x) ∈ a, u ∈ A′, e ∈ S and v ∈ R′′S, if

∀j ∈ v∃(h, y) ∈ b̃.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  Φ[x, y, u] (4.1.31)

then there is a b̃′ ∈ A for which Ψ(f, x, u, v, e, b̃′) holds, where Ψ is the conjunction of

the following two formulas:

∀j ∈ v∃(h, y) ∈ b̃′.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  Φ[x, y, u] (4.1.32)
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and

∀(h, y) ∈ b̃′∃j ∈ v.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  Φ[x, y, u] (4.1.33)

For each e ∈ S we use again the fact that A models Subset Collection, so that for all

e ∈ S we obtain a set C ∈ A with C ⊆ P(B) such that if

∀(f, x) ∈ a∃b̃′ ∈ B∃v ∈ R′′S.pf(ef)C v ∧ Φ(f, x, u, v, e, b̃′) (4.1.34)

Then there is a B′ ∈ C such that the following two hold:

∀(f, x) ∈ a∃b̃′ ∈ B′∃v ∈ R′′S.pf(ef)C v ∧ Φ(f, x, u, v, e, b̃′) (4.1.35)

and

∀b̃′ ∈ B′∃(f, x) ∈ a∃v ∈ R′′S.pf(ef)C v ∧ Φ(f, x, u, v, e, b̃′) (4.1.36)

While we obtain such a set C ∈ A for each e ∈ S, this is not necessarily a functional

relationship. Nevertheless we can use that A is regular by finding a set C∗ ∈ A such that

for each e ∈ S there is a set C ∈ C∗ with C specified as above and each C ∈ C∗ acts as

a C as above for some e ∈ S.

Define

c := {(k, {(l, y)|∃b̃′ ∈ B′.(l, y) ∈ b̃′})|B′ ∈
⋂

C∗} ∈ A′ (4.1.37)

We claim that this c is the desired witness9 for the instance of Subset Collection with the

formula Φ applied to a and b.

For let (x3, u) ∈ A′ and e  ∀x ∈ a∃y ∈ b Φ(x, y, u). In other words, for all (f, x) ∈ a

there is a v ∈ R′′S such that
9Unlike realizability models, models based on applicative topologies do not always need to decide on

a single witness to realize existential statements. In this case however, this is what happens.
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ef C v ∧ ∀j ∈ v∃(lh, y) ∈ b.j = h ∧ (lh, y) ∈ b ∧ rh  Φ[x, y, u] (4.1.38)

So there is a v ∈ R′′S with pf(ef)C v and

∀j ∈ v∃(h, y) ∈ b̃.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  Φ[x, y, u] (4.1.39)

By the choice of B, we get

∃v ∈ R′′S.pf(ef)C v ∧ ∃b̃′ ∈ B.Ψ(f, x, u, v, e, b̃′) (4.1.40)

So that in total, we have

∀(f, x) ∈ a∃b̃′ ∈ B∃v ∈ R′′S.pf(ef)C v ∧ Φ(f, x, u, v, e, b̃′) (4.1.41)

By choice of C, this implies that there is some B′ ∈ C such that

∀(f, x) ∈ a∃b̃′ ∈ B′∃v ∈ R′′S.pf(ef)C v ∧Ψ(f, x, u, v, e, b̃′) (4.1.42)

And

∀b̃′ ∈ B′∃(f, x) ∈ a∃v ∈ R′′S.pf(ef)C v ∧Ψ(f, x, u, v, e, b̃′) (4.1.43)

Define

b′ := {(l, y)|∃b̃′ ∈ B′.(l, y) ∈ b̃′} (4.1.44)

Then (l(ef), b′) ∈ c. We want to show:

r(ie)  ∀x ∈ a∃y ∈ b′Φ(x, y, u) ∧ ∀y ∈ b′∃x ∈ a Φ[x, y, u] (4.1.45)
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To prove 4.1.45, take (f, x) ∈ a. By choice of B,

∃v ∈ R′′S∃b̃′ ∈ B′.pf(ef)C v ∧Ψ(f, x, u, v, e, b̃′) (4.1.46)

Thus

∀j ∈ v∃(h, y) ∈ b̃′.j = h ∧ (lh, x) ∈ a ∧ (l(rh), y) ∈ b ∧ r(rh)  Φ[x, y, u] (4.1.47)

This implies

pf(ef)C {j|∃(j, y) ∈ b′. r(r(j))  Φ[x, y, u]} (4.1.48)

And this in turn brings us to

r(r(ie))f E p(pf(ef))(r(ef))  ∃y ∈ b′Φ[x, y, u] (4.1.49)

This establishes the first conjunct of 4.1.45.

For the second part, take (g′, y) ∈ b′, so there is some b̃′ with (g, y) ∈ b̃′ and g′ C

{g′′|(g′′, y) ∈ b̃′}. We claim that

∀g.(g, y) ∈ b̃′ → l(r(ie))g  ∃x ∈ aΦ[x, y, u] (4.1.50)

So let (g, y) ∈ b̃′, then by choice of B′

∃(f, x) ∈ a, v ∈ R′′S.pf(ef)C v ∧ ∀(h, y′) ∈ b̃′∃j ∈ v.Θ(a, b, u, j, h, x, y) (4.1.51)

Where
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Θ(a, b, u, j, h, x, y) :↔ j = h ∧ (lh, x) ∈ a ∧ (l(rh′), y) ∈ b ∧ r(rh)  Φ[x, y, u]

(4.1.52)

If we set h = g and y = y′, we arrive at

(lg, x) ∈ a ∧ r(rg)  Φ[x, y, u] (4.1.53)

And this allows us to infer

l(r(ie))g E p(lg)(r(rg))  ∃x ∈ aΦ[x, y, u] (4.1.54)

Thus for all g with (g, y) ∈ b̃′, we get

l(r(ie))g  ∃x ∈ aΦ[x, y, u] (4.1.55)

And in particular

l(r(ie))g′  ∃x ∈ aΦ[x, y, u] (4.1.56)

This shows the second conjunct of 4.1.45.

Binary Intersection

We make use of the following useful fact:

∀a, b ∈ A′.{e ∈ S|e  a ∈ b} ∈ A (4.1.57)

We want to show this by simultaneous set induction10 over a and b. The induction only

goes through if we prove at the same time the statement
10To be precise: Over the ordering of pairs of sets where (x, y) < (u, v) if x ∈ u ∧ y ∈ v. This admits

induction as an easy consequence of Set Induction.
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∀a, b ∈ A′.{e ∈ S|e  a = b} ∈ A (4.1.58)

So let a, b ∈ A′ and let by induction hypothesis 4.1.57 and 4.1.58 hold for all (x, y) with

x ∈ a, y ∈ b. Then the class11 from equation 4.1.57 is equal to

{e ∈ S|eC {f ∈ S|∃y ∈ tc(b).lf  z∈̇b ∧ rf  x = y} (4.1.59)

Using the set-presentedness of the formal topology, this is equal to

{e ∈ S|∃q ∈ R(e).q ⊆ {f ∈ S|∃y ∈ tc(b).lf  z∈̇b ∧ rf  x = y}} (4.1.60)

Note that z∈̇b can be written equivalently as a ∆0 formula with parameters in A′:

z∈̇b↔ ∃q′ ∈ R(z).∀e ∈ q′.(e, z) ∈ b (4.1.61)

This is a ∆0 formula with parameters in A′ as R : S → R′′S is an element of A by

regularity.

Combining this with the induction hypothesis and A modeling ∆0 collection yields that

the inner class from 4.1.60 is in A, i.e.

{f ∈ S|∃y ∈ tc(b).lf  z∈̇b ∧ rf  x = y} ∈ A (4.1.62)

And so by again using that A models ∆0-Separation, we get that the whole class 4.1.60

is an element of A.

It remains to show that A also contains the class12 from equation 4.1.58, i.e.

{e ∈ S|(∀(f, z) ∈ a.lef  z ∈ b) ∧ (∀(f, z) ∈ b.ref  z ∈ a)} (4.1.63)

11Actually, this class is a set by the results of [Zie12].
12Again, this is a set by the results of [Zie12].
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But this is clear from the induction hypothesis and A modelling ∆0-Separation.

This proves 4.1.57. We can now show the following statement which implies that A′

models the Binary Intersection axiom.

 ∀a ∈ A′∀b ∈ A′∃c ∈ A′.∀x ∈ a(x ∈ b→ x ∈ c) ∧ ∀x ∈ c(x ∈ a ∧ x ∈ b) (4.1.64)

Let er be any realizer for reflexivity, then a realizer for the formula above is:

eSep := λuv.pk(p(λxy.p(pxy)er)(λx.p(p(lx)er)(rx))) (4.1.65)

For let (x0, a), (x1, b) ∈ A′. We claim that the existential we need to realize can be

realized with a single witness, e.g.

c := {(pef, x)|(e, x) ∈ a ∧ f  x ∈ b} (4.1.66)

For let (e, x) ∈ a and f  x ∈ b. Then

l(r(eSepuv))ef E p(pef)er (4.1.67)

And indeed, as (pef, x) ∈ c, we have

p(pef)er  x ∈ c (4.1.68)

Conversely, take an arbitrary element of c, it is of the form (pef, x) ∈ c with e, x ∈ a

and f  x ∈ b.

Then

r(r(eSepuv))(pef) E p(peer)f (4.1.69)
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And indeed peer  x ∈ a and f  x ∈ b.

This proves that A′ models the Binary Intersection axiom, which was the last part of

Inaccessibility we needed to show.

4.1.5 The Consistency of Small Large Set Axioms

Inaccessibility is absolute by the results of the last subsection, but what about its gener-

alisation α-inaccessibility? In a certain sense, absoluteness of this notion seems a moot

point seeing that α does not necessarily have a direct representative in V (S). However,

we can still define a sensible injection from V to V (S) and this will actually preserve

the notion of α-inaccessibility.

Definition 4.17. Define recursively a function a 7→ ak : V ↪→ V (S) by

ak := {(k, xk)|x ∈ a} (4.1.70)

Define a left inverse a 7→ aS : V (S)→→ V recursively by

aS := {xS|∃e ∈ S.(e, x) ∈ a} (4.1.71)

Then we get the following:

Lemma 4.18. Let α ∈ V (S). Let A be αS-inaccessible and S,R′′S ∈ A. Define

A′ := S × (V (S) ∩ A), then

 A′ is α-inaccessible. (4.1.72)

Proof. We will prove that there is a uniform realizer einacc ∈ ∇ for the desired state-

ment which does not depend on α by induction over αS . Let ei ∈ ∇ be the realizer

whose existence the proof of Lemma 4.16 showed, i.e. whenever B is inaccessible and

S,R′′S ∈ B, then ei realizes that S × (V (S)∩B) is inaccessible. Let by the fixed point

theorem einacc ∈ ∇ be such that

leinacc C ei ∧ ∀ef.reinaccef C pkeinacc (4.1.73)
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We will show by induction on αS that whenever A is αS-inaccessible and S,R′′S ∈ A,

then einacc is a realizer for S × (V (S) ∩ A) being α-inaccessible.

So let by induction hypothesis for all (e, β) ∈ α, and for all B which are βS-inaccessible

einacc  S × (B ∩ V (S)) is β-inaccessible. (4.1.74)

Let A be αS-inaccessible and S,R′′S ∈ A and A′ := S × (V (S) ∩ A).

To show the desideratum, we need to show two things: Firstly, leinacc needs to realize the

inaccessibility of A′ (which it does by Lemma 4.16 as A is αS-inaccessible and thus also

inaccessible), and secondly we need

reinacc  ∀x ∈ A′∀β ∈ α∃B′ ∈ A′.x ∈ B′ ∧B′ is β-inaccessible. (4.1.75)

So let (x0, x) ∈ A′ and (x1, β) ∈ α. Then there is a B ∈ A which is βS-inaccessible and

contains x, S and R′′S ∈ A as βS ∈ αS . So by induction hypothesis, einacc realizes that

B′ := B ∩ V (S) ∈ A is β-inaccessible. As (k,B′) ∈ A′, we are done.

Corollary 4.19. Let α ∈ V (S). If A is rk(α)-inaccessible and S,R′′S ∈ A, then

A′ := S × (V (S) ∩ A) fulfills

 A′ is α-inaccessible. (4.1.76)

The result above can also be extended to the Mahlo-hierarchy:

Lemma 4.20. Let α ∈ V (S). If A is αS-Mahlo and S,R′′S ∈ A, then A′ := S ×

(V (S) ∩ A) fulfills

 A′ is α-Mahlo. (4.1.77)
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Proof. Under the specified assumptions, it is realized that A′ := S × (V (S) ∩ A) is

inaccessible by Lemma 4.16.

Like in the proof of Lemma 4.18, the α-Mahlo property needs an induction over αS to

show the existence of a uniform realizer which does not depend on A′ or α.

So let the statement above hold for all B which are xS-Mahlo for any (x0, x) ∈ α. Let

e  ∀a ∈ A′∃b ∈ A′.(a, b) ∈ R (4.1.78)

This means that for all (x1, a) ∈ A′

∃q ∈ R(ex1).q ⊆ {f |∃(lf, b) ∈ A′.rf  (a, b) ∈ R} (4.1.79)

For any such q with q ⊆ {f |∃(lf, b) ∈ A′.rf  (a, b) ∈ R}, we can collect the necessary

b into a single set by A′ modelling Strong Collection (note that q ⊆ ... is a statement of

the form ∀f ∈ q∃...). Also note that (lf, b) ∈ A′ ↔ b ∈ A∩V (S). So for all (x1, a) ∈ A′

∃B ∈ A.∃q ∈ R(ex1).q ⊆ {f |∃b ∈ B ∩ V (S).rf  (a, b) ∈ R} (4.1.80)

This does not quite amount to a total relation from A to A, but only to a total relation

from A′ to A, as such a b ∈ A only exists for each (x1, a) ∈ A′. So we cannot apply the

Mahlo property directly — however, we can apply it indirectly, as there is a surjective

function from A to A′, e.g. the function H : A→→ A′ defined by

H(a) := a ∩ S × V (S) (4.1.81)

So there is a total relation T : A⇒ A defined by
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(a′, B) ∈ T :↔

∃a, x1.H(a′) = (x1, a) ∧ ∃q ∈ R(ex1).q ⊆ {f |∃b ∈ B ∩ V (S).rf  (a, b) ∈ R}

(4.1.82)

For any (x2, x) ∈ α, this relation T is reflected in a xS-Mahlo set B ∈ A with S,R′′S ∈

B13 (as A is αS-Mahlo). Then by realizers obtainable from the induction hypothesis and

e, it is realized that B′ := B ∩ V (S) is x-Mahlo and

∀a ∈ B′∃b ∈ B′.(a, b) ∈ R (4.1.84)

Which is a direct consequence of T : B ⇒ B.

The realizer itself can again be constructed from the fixed point property Lemma 4.5,

which is not especially complicated, but tedious (and depends on the exact definition of

Mahloness).

This has an obvious Corollary:

Corollary 4.21. If A is Mahlo and S,R′′S ∈ A, then

 S × (V (S) ∩ A) is Mahlo. (4.1.85)

Proof. Note that being Mahlo is equivalent to being 1-Mahlo. A version of 1 in V (S)

is {(k, ∅)} and (k, ∅)S = 1. So applying Lemma 4.20 to α := {(k, ∅)} yields the

desideratum.
13It is an easy lemma that Mahlo sets reflect the totality of any relation not just anywhere, but also in

sets with specified members, i.e. for all m ∈ αS :

z ∈ A ∧ U : A⇒ A→ ∃V.z ∈ V ∧ U : V ⇒ V ∧ V m−Mahlo (4.1.83)
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This leads to the main theorem in this subsection:

Theorem 4.22. The following statements are absolute for realizability models, Heyting

models and models based on applicative topologies:

1. There is an inaccessible set.

2. IEA

3. There is a Mahlo set.

4. MEA

5. Axiom M

6. For all α, there is an α-inaccessible set.

7. For all α,A, there is an α-inaccessible set I with A ∈ I .

8. For all α, there is an α-Mahlo set.

9. For all α,A, there is an α-Mahlo set I with aA ∈ I .

10. For all A, there is an I-inaccessible set I with A ∈ I .

11. For all A, there is an I-Mahlo set I with A ∈ I .

Proof. 1. This is the same proof as for the next point except we only consider the

special case A = 0.

2. Let A ∈ V (S). By IEA, there is an inaccessible set A′ such that A ∈ A′ and

S,R′′S ∈ A′.

Use Lemma 4.16 to see that S × (V (S) ∩ A′) is realized to be inaccessible, and

for all e we have e  A∈̇A′ ∩ V (S).

3. Analogous to the above (use Corollary 4.21 instead of Lemma 4.16).

4. Analogous to the above (use Corollary 4.21 instead of Lemma 4.16).
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5. Let e  ∀x∃yΦ(x, y). Then for all a ∈ V (S) there is a set q ∈ R(e) such that

q ⊆ {f |∃b.f  Φ(a, b)} (4.1.86)

By Collection, these b can be found in some set B, so that we have

∀a ∈ V (S)∃x.x = (B,R′′S) ∧ ∃q ∈ R(e).q ⊆ {f |∃b.f  Φ(a, b)} (4.1.87)

Using the function H : V →→ V (S) as above, this yields a total relation on V

which is then reflected in some inaccessible set A. Then A′ = S × (A ∩ V (S)) is

inaccessible by Lemma 4.16 and  ∀x ∈ A′∃y ∈ A′.Φ(x, y).

6. This is the same proof as for the next point except we only consider the special

case A = 0.

7. Let α,A ∈ V (S). By the statement holding in the background, there is an αS-

inaccessible A′ such that A ∈ A′ and S,R′′S ∈ A’.

Use Lemma 4.18 to see that S × (V (S)∩A′) is realized to be α-inaccessible, and

for all e we have e  A∈̇A′ ∩ V (S).

8. This is the same proof as for the next point except we only consider the special

case A = 0.

9. Analogous to the point two above (use Lemma 4.20 instead of Lemma 4.18).

10. Let A ∈ V (S). By the statement holding in the background, there is an A′-

inaccessible A′ such that A ∈ A′ and S,R′′S ∈ A′.

We need to show that the following is (uniformly) realized:

 ∀a, α ∈ S× (V (S)∩A′)∃b ∈ A′ ∩V (S).a ∈ b∧ b is α-inaccessible. (4.1.88)

So let (x0, a), (x1, α) ∈ A′, then αS ∈ A′ as A′ is inaccessible and contains

S and thus closed under x 7→ xS . As A′ is A′-inaccessible, there is a b ∈ A′
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with S,R′′S ∈ b and b is αS inaccessible. So S × (b ∩ V (S)) is realized to

be α-inaccessible by Lemma 4.18 (with a fixed realizer), and for all e we have

e  a∈̇S × (b ∩ V (S)).

11. Analogous to the above (use Lemma 4.20 instead of Lemma 4.18) and argue as in

the proof of Lemma 4.20.

4.1.6 The Consistency of Large Large Set Axioms

This subsection is meant to investigate the absoluteness of axioms dealing with elemen-

tary embeddings under models based on applicative topologies (and thus realizability

and Heyting models). However, as these axioms are cast in an enriched language, this

requires an extension of the realizability definition for the new symbols of that language

j (a unary function symbol) and M (a unary relation symbol).

Throughout this subsection, work in the language containing j and M and assume the

axiom j : V
≡
↪→ M . Also assume that j is constant on all elements of S and R and

j(S) = S, j(R) = R. As all standard applicative topologies (in particular the Kleene

algebra or the usual Heyting algebras) are a member of every inaccessible, this is a

reasonable assumption when investigating measurable or Reinhardt sets.

Definition 4.23. Let Φ be a formula in the language ∈, ∈̇, j,M with equality. Define the

fomula e  Φ inductively as e ∈ S and the appropriate clause from below:

1. e  ⊥ if eC ∅

2. e  jn(x)∈̇jm(y) if eC {e|(e, jn(x)) ∈ jm(y)}

3. e  jn(x) ∈ jm(y) if eC{f ∈ S|∃z ∈ tc(jm(y))lf  z∈̇jm(y)∧rf  jn(x) = z}

4. e  jn(x) = jm(y) if ∀(f, z) ∈ jn(x).lef  z ∈ jm(y) and

∀(f, z) ∈ jm(y).ref  z ∈ jn(x)
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5. e M(jn(x)) if eC {f ∈ S|∃z ∈M ∩ V (S).f  jn(x) = z}

6. e  Φ ∧Ψ if le  Φ ∧ re  Ψ

7. e  Φ ∨Ψ if eC {f ∈ S|(lf E l ∧ rf  Φ) ∨ (lf E r ∧ rf  Ψ)}

8. e  Φ→ Ψ if ∀f ∈ S.f  Φ→ ef  Ψ

9. e  ∃x∈y Φ(x) if eC {f ∈ S|∃(lf, a)∈y. rf  Φ[a]}

10. e  ∀x∈y Φ(x) if ∀(f, a)∈y. ef  Φ[a]

11. e  ∃x∈M Φ(x) if eC {f ∈ S|∃(lf, a)∈S ×M ∩ V (S). rf  Φ[a]}

12. e  ∀x∈M Φ(x) if ∀(f, a)∈S ×M ∩ V (S). ef  Φ[a]

13. e  ∀xΦ(x) if ∀a ∈ V (S). e  Φ[a]

14. e  ∃xΦ(x) if eC {f ∈ S|∃a ∈ V (S). f  Φ[a]}

As usual, use  Φ as shorthand for ∃e ∈ ∇.e  Φ and call such a formula Φ realized.

For formulae not containing M and j, this is the usual realizability as presented before.

Note that treating the quantifiers ∀x ∈ M and ∃x ∈ M as quantifiers in their own right

in this way conforms to intuitionistic logic with the exact same proof as for bounded

quantification as presented in [Zie07] and analogous to [Rat03b].

Note that a priori it is not clear whether this definition even realizes j to be a function

(i.e. whether  ∀a, b.a = b→ j(a) = j(b), and if j : V
≡
↪→ M had not be assumed, this

would indeed not be provable.

Remark 4.24. (Abuse of Notation) This entails an abuse of notation as it is not clear

whether e.g. the j in e  j(a) = b is to be read as ”e realizes the formula j(v1) = v2

where v1 has been substituted by the parameter a ∈ V (S) and v2 has been substituted

by the parameter b ∈ V (S)”, or rather as ”e realizes the formula v1 = v2 where v1

has been substituted by the parameter j(a) ∈ V (S) and v2 has been substituted by the

parameter b ∈ V (S)”. This could be avoided by choosing a different symbol in each
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case, however we will refrain from this as the definition above interprets both formulae

equivalently.

First, we need to establish that the definition integrates well into our set theory:

Lemma 4.25. For any set a:

a ∈ V (S)↔ j(a) ∈ V (S) (4.1.89)

And

a ∈M ∩ V (S)↔ a ∈M ∧ (a ∈ V (S))M (4.1.90)

Proof. As V (S) was introduced in a recursively ∆0 definition (and the one parameter,

S, is unchanged under j), the first part of the statement is a direct consequence from

Lemma 2.19 and the second part follows directly by induction over a.

Then the elementarity of j extends to  for bounded formulae:

Lemma 4.26. For any bounded formula Φ(−→x ) with all free variables displayed in the

language ∈ with equality (but without j and M ):

∀−→a ∈ V (S), e ∈ S.e  Φ(−→a )↔ e  Φ(
−−→
j(a))↔ (e  Φ(

−−→
j(a)))M (4.1.91)

Proof. Note that the second equivalence follows directly from the definition, as there is

no unbounded quantification in the formula e  Φ(j(−→a )) and all parameters are in M

(in particular, S andR). The first equivalence is proved by induction over the complexity

of Φ.

• For the atomic cases ⊥, ·∈, ∈ and =, note that these were again introduced in a

recursively ∆0 definition (and the parameters, S and R, are unchanged under j

and elements of M ), so the statement is again a direct consequence from Lemma

2.19. Note that the atomic case concerning M is precluded by the condition that

Φ not contain M or j.
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• e  Φ(−→a )∧Ψ(−→a ) iff le  Φ∧re  Ψ which by induction hypothesis is equivalent

to le  Φ(
−−→
j(a)) ∧ re  Ψ(

−−→
j(a)) which is equivalent to e  (Φ ∧Ψ)(

−−→
j(a)).

• e  Φ(−→a )∨Ψ(−→a ) if eC{f ∈ S|(lf E l∧rf  Φ(−→a ))∨(lf E r∧rf  Ψ(−→a ))}.

By induction hypothesis, this is equivalent to

eC {f ∈ S|(lf E l ∧ rf  Φ(
−−→
j(a)) ∨ lf E r ∧ rf  Ψ(

−−→
j(a))} (4.1.92)

And thus to e  (Φ ∨Ψ)(
−−→
j(a)).

• e  Φ(−→a ) → Ψ(−→a ) iff ∀f ∈ S.f  Φ(−→a ) → ef  Ψ(−→a ). By induction

hypothesis, this is equivalent to

∀f ∈ S.f  Φ(
−−→
j(a))→ ef  Ψ(

−−→
j(a)) (4.1.93)

And thus to e  (Φ→ Ψ)(
−−→
j(a)).

• e  ∃x∈y Φ(x,−→a ) if e C {f ∈ S|∃(lf, b)∈y. rf  Φ(−→x , b)}. By elementarity

and induction hypothesis14, this is equivalent to

eC {f ∈ S|∃(lf, b)∈j(y). rf  Φ(−→x , j(b))} (4.1.94)

And thus to e  (∃x ∈ yΦ(x))(
−−→
j(a)).

• e  ∀x∈ y Φ(−→a , x) if ∀(f, b)∈ y. ef  Φ(−→a , b). By elementarity and induction

hypothesis, this is equivalent to

∀(f, b)∈j(y). ef  Φ(
−−→
j(a), b) (4.1.95)

And thus to e  (∀x ∈ yΦ(x))(
−−→
j(a)).

14Note that this proof can be read as an induction over Φ that formulae of the form e  Φ(−→a ) can be

included in the elementarity scheme — as these formulae are equivalent to formulae in the language ∈,=,

for this it suffices to prove that (e  Φ(−→a )) ↔ (j(e)  Φ(
−−→
j(a))) and the more complex instances of the

elementarity scheme follow.
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This has one direct consequence we can not do without:

Proposition 4.27. The realizer skk = λx.x realizes that j is functional, i.e.

skk  ∀x, y.x = y → j(x) = j(y) (4.1.96)

The realizer er which realizes reflexivity also realizes that j maps V to M , i.e.

er  ∀x.M(j(x)) (4.1.97)

Also, M is realized to be transitive, i.e.

 ∀x.M(x)→ ∀y ∈ x.M(y) (4.1.98)

Proof. If e  x = y then by Lemma 4.26 also e  j(x) = j(y), so skk realizes j to be

functional.

Let x ∈ V (S). For the second statement, we want to show that there is a y ∈ M with

er  j(x) = y, but as j(x) ∈M , defining y := j(x) is as required.

Let x be such that e1 M(x), i.e. there is some q ∈ R(e1) with

q ⊆ {f ∈ S|∃z ∈M ∩ V (S).f  x = z} (4.1.99)

Let (e2, y) ∈ x. Then as M is transitive, also

q ⊆ {f ∈ S|∃z ∈M ∩ V (S).lfe2 ` y = z} (4.1.100)

For the set on the right hand side of 4.1.99 is just a subset of the set on the right hand

side of 4.1.100.

Thus λxy.lxy is a realizer for the transitivity of M .

Then j is realized to be an elementary embedding:
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Lemma 4.28.

 j : V
≡
↪→M (4.1.101)

In particular for any formula Φ(−→x ) with all free variables displayed and not containing

M or j,

 ∀−→a .Φ(−→a )↔ ΦM(
−−→
j(a)) (4.1.102)

Proof. Building on Proposition 4.27, all that is left to prove is that the elementarity

scheme is realized. This is done by induction on Φ. The atomic cases follow directly

from Lemma 4.26. The junctor cases and bounded quantification work exactly the same

as in the proof of Lemma 4.26. We still need to present unbounded universal and exis-

tential quantification:

Let Φ(−→x ) be ∀yΨ(y,−→x ). Then e ∈ S realizes this if

∀y.e  Ψ(y,−→x ) (4.1.103)

By elementarity and induction hypothesis, this is equivalent to

∀y ∈M.e  Ψ(y,
−−→
j(x)) (4.1.104)

And this is just ΦM(
−−→
j(a)).

Alternatively, let Φ(−→x ) be ∃yΨ(y,−→x ). Then e ∈ S realizes this if

eC {f |∃y.f  Ψ(y,−→x } (4.1.105)

By elementarity and induction hypothesis, this is equivalent to

eC {f |∃y ∈M.f  Ψ(y,
−−→
j(x)} (4.1.106)

And this is just ΦM(
−−→
j(a)).

Remark 4.29. Not only is j any elementary embedding, but symbols for j and M can

also appear in the axiom schemes of set theory and they still hold. The reason for this is

that j and M can appear in the axiom schemes in the background universe, so the exact

same proof that Strong Collection and Set Induction (and Subset Collection if one should

chose not to work with Fullness instead) are absolute for models based on applicative

topologies goes through when the schemes are allowed to contain j and M .
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To imbue j : V
≡
↪→ M with any strength at all, we need statements about a critical point

of the embedding. These are mirrored in the realizability model:

Lemma 4.30. Let K be an inaccessible set, K ∈ j(K) and ∀x ∈ K.j(x) = x. Let

K ′ := S × (K ∩ V (S)). Then

 K ′ inaccessible ∧K ′ ∈ j(K ′) ∧ ∀x ∈ K ′.j(x) = x (4.1.107)

Proof. K ′ is realized to be innaccessible by Lemma 4.16. As j(K) is inaccessible and

K ∈ j(K), also K ′ ∈ j(K) as V (S) has a recursive ∆0 definition and intersections of

such classes with a set are again sets, a fact which is reflected in inaccessible sets like

j(K).

As K ′ ∈ j(K) and also K ′ ∈ V (S), we have (k,K ′) ∈ j(K ′) = S × (j(K) ∩ V (S))

and so for er a realizer for reflexivity,

pker  K
′ ∈ j(K ′) (4.1.108)

Also if (e, x) ∈ K ′, then by K being regular, (e, x) ∈ K and thus j(x) = x. So in this

case,

er  j(x) = x (4.1.109)

So the universal statement is realized by λx.er.

The route to Reinhardt sets is given by

Lemma 4.31. Let V = M . Then  V = M .

Proof. If V = M then for all x ∈ V (S), any realizer er for reflexivity also realizes

the equality of x to an element of M , i.e. itself, and thus M(x). So in this case er 

∀x.M(x).

Thus we arrive at the conclusion:
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Theorem 4.32. The following statements are absolute for realizability models, Heyting

models and models based on applicative topologies:

• j : V
≡
↪→M .

• There is a measurable set.

• There is a Reinhardt set.

Proof. Lemmata 4.28, 4.30 and 4.31.

4.2 The Existence of Witnesses

A number of pleasing metamathematical properties of constructive set theories can be

proved using a modified realizability structure due to Rathjen [Rat05b], who employed

it to prove these properties for CZF and CZF + REA. The properties we will consider

are:

Definition 4.33. • A theory T is said to have the disjunction property if whenever

T ` Φ ∨Ψ, then either T ` Φ or T ` Ψ.

• A theory T is said to have the numerical existence property if whenever T ` ∃n ∈

ωΦ(n), then there is a natural number n such that T ` Φ(n̄)15.

• A theory T is said to be closed under Church’s rule if whenever T ` ∀n ∈ ω∃m ∈

ωΦ(n,m) then there is some natural number e such that T proves that the Turing

machine with number ē maps all numbers n to a number m which fulfills Φ(n,m).

• A theory T is said to be closed under the extended Church’s rule if for any for-

mula Ψ(x) such that T ` ∀n.Ψ(n) ↔ ¬¬Ψ(n), whenever T ` ∀n ∈ ω.Ψ(n) →

∃m ∈ ωΦ(n,m) then there is some natural number e such that T proves that the

15In CZF, numerals are not an explicit part of the language, but they can be defined via 0̄ := 0 and

n+ 1 := n̄ ∪ {n̄}
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Turing machine with number ē maps all numbers n which fulfill Ψ to a number m

which fulfills Φ(n,m).

• A theory T is said to be closed under the variant of Church’s rule if whenever

it proves the existence of a function f : ω → ω with a certain property (defin-

able without parameters), there is a natural number e such that T proves that the

function computed by the Turing machine with number ē enjoys said property.

• A theory T is said to fulfill Unzerlegbarkeit16 if whenever

T ` ∀x.Φ(x) ∨Ψ(x) (4.2.110)

then either T ` ∀x.Φ(x) or T ` ∀x.Ψ(x).

• A theory T is said to fulfill Uniformity if whenever

T ` ∀x∃n ∈ ω.Φ(n, x) (4.2.111)

then T ` ∃n ∈ ω∀x.Φ(n, x).

The first four items are ordered by strength and all are properties that might reasonably be

expected from a constructive theory with the collection of all sets as objects of discourse,

especially the disjunction property and the numerical existence property.

4.2.1 Realizability with Truth

The following definition will help introduce the variant of usual realizability called re-

alizability with truth. We will present it in a slightly different, but equivalent way to

[Rat05b].

Definition 4.34. Let b ∈ V (S). Then a pair (l, a) is called a labeling of b with label l if

there is a bijection from b to a such that an element (e, y) ∈ b is mapped to a pair (e, x)

with x being a labeling of y with label in l.

16This is a slightly different definition than in [Rat05b], yet still goes through in all of the proofs.
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If x is a labeling, then the first component of x (the label) is refered to as x0 and the

second component as x∗.

The class of all labelings is called V ′(S). In other words, V ′(S) is the smallest class

such that

∀b ⊆ S × V ′(S)∀a.(∀(n, c) ∈ b∀(a′, b′) ∈ c.a′ ∈ a)→ (a, b) ∈ V ′(S) (4.2.112)

Proof. If (l0, a0) is a labeling of b, then we prove by induction over bS that (l0, a0)

belongs to every class Γ fulfilling

∀b ⊆ S × Γ∀a.(∀(n, c) ∈ b∀(a′, b′) ∈ c.a′ ∈ a)→ (a, b) ∈ Γ (4.2.113)

Unraveling the definition of (l0, a0) being a labeling of b, it follows that each element of

a0 is of the form (e, x) with x being a labeling of some y with (e, y) ∈ b and x0 ∈ y. As

yS ∈ bS , the induction hypothesis implies that x ∈ Γ.

So a0 is a subset of ω × Γ and for any (n, c) ∈ a0 and (a′, b′) ∈ c, it follows that a′ ∈ l0
as (l0, a0) is a labeling. Thus (l0, a0) ∈ Γ.

On the other hand, let x be in the smallest class Γ such that

∀b ⊆ S × Γ∀a.(∀(n, c) ∈ b∀(a′, b′) ∈ c.a′ ∈ a)→ (a, b) ∈ Γ (4.2.114)

We prove by induction over the definition of Γ that there is a b ∈ V (S) such that x is a

label of b. So let by induction hypothesis x be of the form (a, b) with b ⊆ ω × Γ and

(∀(n, c) ∈ b∀(a′, b′) ∈ c.a′ ∈ a) such that for all (n, c) in b, the set c is a labeling of

some set in V (S). By Lemma 4.35 part 1 (which does not build on the characterization

that is being proved here), there is a function f : b → V (S) such that for all (n, c) ∈ b,

the second component c is a labeling of f(n, c). According to the premise above, this

labeling must have a label in a, which means that (a, b) is a labeling of the set

{(n, f(n, c))|(n, c) ∈ b} ∈ V (S) (4.2.115)
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Lemma 4.35. 1. Every labeling (l, a) has a unique set s((l, a)) of which it is the

labeling, namely

s((l, a)) = {(e, s(x))|(e, x) ∈ a} (4.2.116)

2. Every b ∈ V (S) has a canonical labeling l(b) with label bS , namely

l(b) := (bS, {(e, l(y))|(e, y) ∈ b}) (4.2.117)

3. With l : V (S) → V ′(S) and s : V ′(S) → V (S) as above, s is a left inverse of l,

i.e.

s ◦ l = idV (S) (4.2.118)

Proof. 1. This is proved by induction over the label l. If (l, a) is a labeling of some

b ∈ V (S), then by the definition of labelings,

b = {(e, y)|∃(e, x) ∈ a.x is a labeling of y} (4.2.119)

Thus by induction hypothesis,

b = {(e, y)|∃(e, x) ∈ a.y = s(x)} (4.2.120)

And this means that b = s(l, a).

2. This follows immediately by induction over bS , as by induction hypothesis and

definition, all elements of l(b)∗ are of the form (e, l(y)) with (e, y) ∈ b and l(y)0 =

yS ∈ bS . Note that the 1:1 correspondence of (e, y)s and (e, l(y))s requires part 1

of this lemma.

3. Using rank induction over b, direct calculation shows that

s(l(b)) = s(bS, {(e, l(y))|(e, y) ∈ b}) =

{(e, s(x))|(e, x) ∈ {(e, l(y))|(e, y) ∈ b}} = b (4.2.121)

The last equality uses that for all relevant y, s(l(y)) = y by induction hypothesis.
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Realizability with truth defines a realizability relation for formulae with parameters from

V ′(S). For such a formula Φ, define Φ0 as the corresponding statement about the labels,

i.e. let

1. ⊥0 :↔ ⊥

2. (a ∈ b)0 :↔ a0 ∈ b0

3. (a = b)0 :↔ a0 = b0

4. (ΦjΨ)0 :↔ Φ0jΨ0 for any binary connective j.

5. (Qx.Φ)0 :↔ Qx.Φ0 for any quantifier Q.

The following definition is the adaption of the corresponding definition from [Rat05b]

for applicative topologies:

Definition 4.36. Let Φ be a formula in the language ∈ with equality. Define the formula

e rt Φ inductively as e ∈ S and the appropriate clause from below:

1. e rt ⊥ if ⊥

2. e rt x∈̇y if eC {e|(e, x) ∈ y∗}

3. e rt x ∈ y if (x ∈ y)0 and eC {f ∈ S|∃z ∈ tc(y∗)lf rt z∈̇y ∧ rf rt x = z}

4. e rt x = y if (x = y)0 and ∀(f, z) ∈ x∗.lef rt z ∈ y and

∀(f, z) ∈ y∗ref rt z ∈ x

5. e rt Φ ∧Ψ if le rt Φ ∧ re rt Ψ

6. e rt Φ ∨Ψ if eC {f ∈ S|(lf E l ∧ rf rt Φ) ∨ (lf E r ∧ rf rt Ψ)}

7. e rt Φ→ Ψ if (Φ→ Ψ)0 and ∀f ∈ S.f rt Φ→ ef rt Ψ

8. e rt ∃x∈y Φ(x) if eC {f ∈ S|∃(lf, a)∈y∗. rf rt Φ[a]}

9. e rt ∀x∈y Φ(x) if (∀x ∈ a.Φ(x))0 and ∀(f, a)∈y∗. ef rt Φ[a]
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10. e rt ∀xΦ(x) if ∀a ∈ V ′(S). e rt Φ[a]

11. e rt ∃xΦ(x) if eC {f ∈ S|∃a ∈ V ′(S). f rt Φ[a]}

While only explicitely demanded for the clauses for ∈,=,→ and ∀x ∈ a.Φ, it follows

that the theory of realized formulae is a subtheory of the theory of true formulae, or in

other words:

Lemma 4.37. Let e ∈ ∇. Then:

(e rt Φ)→ Φ0 (4.2.122)

Proof. [Rat05b]

While realizability with truth might also be fruitfully employed with other applicative

topologies, for the metamathematical properties considered here it suffices to consider

only the case S = Kl where Kl is the Kleene pca of natural numbers with application

e ◦ f = g if the Turing machine with number e applied to the input f̄ terminates with

output ḡ for a suitable representation n 7→ n̄ of natural numbers on Turing tape. The

topology can be chosen to be the discrete topology with e C q :↔ e ∈ q and ∇ =

ω. In such a case, realizability with the applicative topology becomes just the usual

realizability with a pca ([Zie12]) while the above definition for realizability with truth

becomes just what is described in [Rat05b].

In the rest of this chapter, we only consider S := Kl.

Then the main method from [Rat05b] can be described as:

Fact 4.38. If T is an extension of CZF and

T `rt Φ for each axiom Φ of T (4.2.123)

Then T has all the properties from Definition 4.33.

Proof. [Rat05b].
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Using this, all that is left to do is to demonstrate absoluteness for the different concepts of

largeness, which will then automatically establish the good metamathematical properties

of the large set axioms.

4.2.2 Absoluteness Proofs

Lemma 4.39. If A is regular and ω ∈ A, then

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.124)

is a set in V ′(Kl) and rt A
′ is regular.

Proof. This is proved in [Rat05b].

Note that in analogy to the previous subsections, we could also have defined A′ as

(A, ω × (V ′(Kl) ∩ A)), however, those two sets are realizedly equal.

Looking at the proof in [Rat05b], it becomes obvious that when proving the part that A

is realizedly weakly regular, only the weak regularity of A was needed, so that we also

get:

Lemma 4.40. If A is weakly regular and ω ∈ A, then

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.125)

is a set in V ′(Kl) and rt A
′ is weakly regular.

This can be extended to
⋃

-regular sets:

Lemma 4.41. If A is
⋃

-regular and ω ∈ A, then

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.126)

is a set in V ′(Kl) and rt A
′ is

⋃
-regular.
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Proof. By Lemma 4.39 it is already realized thatA′ is regular, what is left is to show that

A′ � Union. This is realized in a similar way as it is realized that V’(Kl) itself models

the Union Axiom. A possible realizer for the formula

∀a ∈ A′∃b ∈ A′.∀c ∈ a∀d ∈ cd ∈ a ∧ ∀d ∈ a∃c ∈ ad ∈ c (4.2.127)

would be

e := λx.pk(p(λyz.p(pyz)er)(λx.p(lx)(p(rx)er))) (4.2.128)

where as usual er is a realizer for reflexivity of equality. Indeed, the statement about the

labels, i.e. (Union Axiom)0, holds and for each (k, a) ∈ A′∗ ⊆ A, there is the set

b := (
⋃

a0, {(pxy, d)|∃c ∈ V ′(Kl).(x, c) ∈ a∗ ∧ (y, d) ∈ c∗}) ∈ V ′(Kl) (4.2.129)

with (k, b) ∈ A′∗: a∗ ∈ A by transitivity and for each (x, c) ∈ a∗, we have c∗ ∈ A and for

each (y, d) ∈ c∗ it holds that (pxy, d) ∈ A. So by Regularity {(pxy, d)|(y, d) ∈ c∗} ∈ A

and by Union-Regularity b∗ ∈ A. Thus b ∈ A. Note that b ∈ V ′(Kl) follows from the

fact that for (pxy, d) ∈ b∗, we have d0 ∈ c0 ∈ a0 for a c with (x, c) ∈ a∗ ∧ (y, d) ∈ c∗,

so d0 ∈ a0.

We need to show

λyz.p(pyz)er rt ∀c ∈ a∀d ∈ c.d ∈ b (4.2.130)

and

λx.p(lx)(p(rx)er rt ∀d ∈ b∃c ∈ a.d ∈ c (4.2.131)

Together, they imply that e truly realizes the Union Property.

To prove statement 4.2.130, first note that the statement is true about the labels: ∀c ∈

a0∀d ∈ c.d ∈ b0, because b0 was chosen as
⋃
a0. Let (f, c) ∈ a∗. Note that the inner

statement is true about the labels: ∀d ∈ c0.d ∈ b0 because c0 ∈ a0 and thus b0 =
⋃
a0.

Let (g, d) ∈ c∗. We need to show

p(pfg)er rt d ∈ b (4.2.132)
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But this is the case since (pfg, d) ∈ b∗ and d0 ∈ b0 =
⋃
a0.

To prove statement 4.2.131, first note that the statement is true about the labels: ∀d ∈

b0∃c ∈ a0d ∈ c, because b0 was chosen as
⋃
a0. Let (f, d) ∈ b∗. Then by definition of b,

there is a c ∈ V ′(Kl) such that (x, c) ∈ a∗ and there is a (y, d) ∈ c∗ such that f = pxy.

In particular, (lf, c) ∈ a∗ and (rf, d) ∈ c∗. As also d0 ∈ c0, we get

p(lf)(p(rx)er)  ∃c ∈ a.d ∈ c (4.2.133)

We can also obtain a similar result for ∗REA:

Lemma 4.42. If A is ∗-regular and ∅ ∈ A, then

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.134)

is a set in V ′(Kl) and rt A
′ is ∗ -regular.

Proof. First note that all ∗-regular sets containing ∅ also contain ω as an element. An

induction over n shows that ∀n ∈ ω.n ∈ A, for let this statement be true for all m < n

and n > 0, then consider the following relation defined on n ⊆ a:

R : n⇒ n,R(m1,m2) :↔ m2 = m1 + 1 ∨m2 = m1 = n− 1 (4.2.135)

This relaton is reflected in some element of A containing 0, but this can only be the set

n. Thus ω ⊆ A, and to see that also ω ∈ A, it suffices to consider the relation

R : ω ⇒ ω, R(m1,m2) :↔ m2 = m1 + 1 (4.2.136)

If this relation is reflected in a set containing 0, this set can only be ω, which is thus in

A.

This means that we can apply Lemma 4.41, which means it is already realized that A′ is⋃
-regular. What is left is to show that rt A

′ � RRS2.
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To realize this, first note that the statement (A′ � RRS2)0 is true about the labels, as well

as its pertinent substatements17, as A′0 = A is ∗-regular.

So let e0 rt D ⊆ A′, e1 rt G ⊆ A′ (and again w.l.o.g. take D,G ⊆ A with D,G ∈

V ′(Kl)), (e2, a) ∈ D∗ and e3 rt ∀x ∈ D∃y ∈ D.(x, y) ∈ G.

From these, we have to construct a realizer for ∃d ∈ A′.d ⊆ D ∧ a ∈ d ∧ ∀x ∈ d∃y ∈

d(x, y) ∈ G.

Consider the following relation R between elements b and b′ of A ∩ V ′(Kl) which is

defined to hold iff b ⊆ b′ ⊆ D and

e3 rt ∀x ∈ b∃y ∈ b′.(x, y) ∈ G (4.2.138)

Let

D′ := {c ∈ A′|λx.pxer rt c ⊆ D} (4.2.139)

Then R : D′ ⇒ D′ by choice of e3. Using the ∗-property of A we can now find a set

d′ ∈ A with R : d′ ⇒ d′ and {a} ∈ d′). Define

d := ({c0|c ∈ A′}, {(k, c)|c ∈ A′}) (4.2.140)

This set is realized to be in A′ and it is realized that its union is as desired for the ∗-

property, as R : d′ ⇒ d′ implies that it is realized that

17The statement (A′ � RRS2)0 is of the form

∀G∀D∀d ∈ D.Φ1 → Φ2 → ...→ Ψ (4.2.137)

The whole statement (∀G...)0 is true, as well as for all G ∈ V ′(Kl) the statement (∀D∀...)0[G := G0]

as well as for all G ∈ V ′(Kl), D ∈ V ′(Kl) the statement (Φ1 → ...)0[G,D := G0, D0], as well as for

all G ∈ V ′(Kl), D ∈ V ′(Kl) the statement Φ0
1[G,D := G0, D0] → (Φ2 → ...)0[G,D := G0, D0] and

so on, up until for all G ∈ V ′(Kl), D ∈ V ′(Kl) the statement Φ0
1[G,D := G0, D0] → Φ0

2[G,D :=

G0, D0]→ ...→ Ψ0[G,D := G0, D0].
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∀b ∈ d∃b′ ∈ d.∀x ∈ b∃x′ ∈ b′.(x, x′) ∈ G (4.2.141)

As A′ is realized to model the Union axiom, this finishes the proof of the lemma.

Again, the same technique works for the ∗2 property:

Lemma 4.43. If A is ∗2-regular and ∅ ∈ A, then

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.142)

is a set in V (Kl) and rt A
′ is ∗2 -regular.

Proof. As in the proof of Lemma 4.42, it is realized that A′ is
⋃

-regular. What is left is

to show that rt A
′ � SRRS2.

To realize this, first note that the statement (A′ � SRRS2)0 is true about the labels, as

well as its pertinent substatements, as A′0 = A is ∗2-regular.

So let e0 rt D ⊆ A′, e1 rt G ⊆ A′ (and again w.l.o.g. take D,G ⊆ A with D,G ∈

V ′(Kl)), (e2, a) ∈ D∗ and e3 rt ∀x, x′ ∈ D∃y ∈ D.(x, x′, y) ∈ G.

From these, we have to construct a realizer for ∃d ∈ A′.d ⊆ D∧a ∈ d∧∀x, x′ ∈ d∃y ∈

d(x, x′, y) ∈ G.

Consider the following relation R between elements b, b′ and b′′ of A∩ V ′(Kl) which is

defined to hold iff b ∪ b′ ⊆ b′′ ⊆ D and

e3 rt ∀x ∈ b∀x′ ∈ b′∃y ∈ b′′.(x, x′, y) ∈ G (4.2.143)

Let

D′ := {c ∈ A′|λx.pxer rt c ⊆ D} (4.2.144)

Then R : D′ ×D′ ⇒ D′ by choice of e3. Using the ∗-property of A we can now find a

set d′ ∈ A with R : d′ × d′ ⇒ d′ and {a} ∈ d′). Define
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d := ({c0|c ∈ A′}, {(k, c)|c ∈ A′}) (4.2.145)

This set is realized to be in A′ and it is realized that its union is as desired for the ∗-

property, as R : d′ × d′ ⇒ d′ implies that it is realized that

∀b, b′ ∈ d∃b′′ ∈ d.∀x ∈ b, x′ ∈ b′∃x′′ ∈ b′′.(x, x′, x′′) ∈ G (4.2.146)

As A′ is realized to model the Union axiom, this finishes the proof of the lemma.

Moving up the ladder of large sets, we arrive at

Lemma 4.44. Let A be inaccessible and define

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.147)

Then

rt A
′ is inaccessible (4.2.148)

Proof. By Lemma 4.41, A′ is realized to be
⋃

-regular, so it is only left to show that A

is realized to contain the natural numbers and to model Subset Collection and Binary

Intersection. This can be proved the same way as [Rat05b] proved that the existence of

natural numbers, Subset Collection and ∆0-Collection were realized in V ′(S), just with

the predicate “is a set” replaced by “is an element of A”. It is easy to check that all

witnesses used in [Rat05b] are indeed in A.

To deal with α-inaccessible and α-Mahlo sets, we need to employ the map x 7→ x0

instead of x 7→ xS here.

Lemma 4.45. Let α ∈ V ′(Kl). If A is α0-inaccessible, then

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.149)

is a set in V (Kl) and

rt A
′ is α-inaccessible. (4.2.150)
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Proof. This proof mainly mimics the proof of Lemma 4.18. Let ei be the realizer whose

existence the proof of Lemma 4.44 showed, i.e. whenever B is inaccessible, then ei

realizes that (B, {k} × (V ′(Kl) ∩B)) is inaccessible.

Let by the fixed point theorem einacc ∈ Kl be such that

leinacc = ei ∧ ∀ef.reinaccef = pkeinacc (4.2.151)

We will show by induction on α0 that whenever A is α0-inaccessible, then einacc is a

realizer for (A, {k} × (V ′(Kl) ∩ A) being α-inaccessible.

So let by induction hypothesis for all (e, β) ∈ α∗ (which implies x0 ∈ α0), and for all B

which are x0-inaccessible

einacc rt (B, {k} × (V ′(Kl) ∩B)) is β-inaccessible. (4.2.152)

Let A be α0-inaccessible and (A, {k} × (V ′(Kl) ∩ A)). Note that the statement we

want to realize and its pertinent substatements are true about the labels as A′0 = A is α0

inaccessible.

To complete the proof, we need to show two things: Firstly, leinacc needs to realize the

inaccessibility of A′ (which it does by Lemma 4.44 as A is α0-inaccessible and thus also

inaccessible), and secondly we need

reinacc rt ∀x ∈ A′∀β ∈ α∃B′ ∈ A′.x ∈ B′ ∧B′ is β-inaccessible. (4.2.153)

So let (x0, x) ∈ A′∗ and (x1, β) ∈ α∗. Then there is a B ∈ A which is β0-inaccessible

and contains x as β0 ∈ α0. So by induction hypothesis, einacc realizes that the set

B′ := (B, {k} × (V ′(Kl) ∩B)) ∈ A (4.2.154)

is β-inaccessible. It is an element of A as the definition of V ′(Kl) is a recursive ∆0

definition and as such is absolute for transitive models of CZF, CZF implies that the

intersection of V ′(Kl) with any set is again a set and A is a transitive model of CZF.
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As thus (k,B′) ∈ A′∗, we are done.

The result above can also be extended to the Mahlo-hierarchy:

Lemma 4.46. Let α ∈ V (S). If A is α0-Mahlo, and if

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.155)

Then

rt A
′ is α-Mahlo. (4.2.156)

Proof. Under the specified assumptions, it is realized that A′ is inaccessible by Lemma

4.44.

Like in the proof of Lemma 4.45, the α-Mahlo property needs an induction over α0 to

show the existence of a uniform realizer which does not depend on A′ or α.

So let the statement above hold for all B which are β0-Mahlo for any (x0, β) ∈ α∗

(then β0 ∈ α0). Note that the statement we need to realize (i.e. the statement that A′

is α-Mahlo) and its pertinent substatements are true about the labels by A′0 = A being

α0-Mahlo. These substatements are:

• The statement

∀R∀β ∈ α0.R : A′0 ⇒ A′0 → ∃B ∈ A′0.R : B ⇒ B ∧B is β Mahlo (4.2.157)

• For all R ∈ V ′(Kl) the statement

∀β ∈ α0.R0 : A′0 ⇒ A′0 → ∃B ∈ A′0.R0 : B ⇒ B ∧B is β Mahlo (4.2.158)

• For all R ∈ V ′(Kl), (n, β) ∈ α∗ the statement

R0 : A′0 ⇒ A′0 → ∃B ∈ A′0.R0 : B ⇒ B ∧B is β0 Mahlo (4.2.159)

• For all R ∈ V ′(Kl), (n, β) ∈ α∗ such that R0 : A′0 ⇒ A′0 the statement

∃B ∈ A′0.R0 : B ⇒ B ∧B is β0 Mahlo (4.2.160)
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For the realizability proof proper, let R ∈ V ′(Kl), (x2, β) ∈ α∗ and let

e rt ∀a ∈ A′∃b ∈ A′.(a, b) ∈ R (4.2.161)

Then in particular for each a ∈ A = A′0 there is a b ∈ A such that (a, b) ∈ R0.18 Also,

for each (k, x) ∈ A∗ there is a (l(ek), y) ∈ A∗ with r(ek) rt (a, b) ∈ R. This can

be made into a total relation A ⇒ A by using the function H : A →→ A∗, where H is

defined recursively as

H(a) :=

({x|∃y.a = (x, y)},
⋃
y

{(n, z) ∈ y ∩ (ω × V ′(Kl))|∃x.a = (x, y) ∧ z0 ∈ x})

(4.2.163)

Let B ∈ A be a β0-Mahlo set reflecting the totality of both relations19, i.e. R0 : B ⇒ B

and for each (k, x) ∈ B ∩ V ′(Kl) there is a (l(ek), y) ∈ B ∩ V ′(Kl) with r(ek) rt

(a, b) ∈ R.

By induction hypothesis it is realized that

B′ := (B, {k} ×B ∩ V ′(Kl)) (4.2.164)

is β-Mahlo and B′ is an element of A, so (k,B′) ∈ A′∗. By its totality properties, it is

also obviously the case that

e rt ∀a ∈ B′∃b ∈ B′.(a, b) ∈ R (4.2.165)
18This follows when unraveling the abbreviation (a, b) ∈ R to the more exact

∃x ∈ R∀y.y ∈ x↔ (∀z(z ∈ y ↔ z = x) ∨ ∀z(z ∈ y ↔ (z = x ∨ z = y))) (4.2.162)

This is preserved under the shift φ 7→ φ0.
19Obviously, two relations can be reflected at the same time — let R1, R2 : A ⇒ A, then the relation

{(x, y)|∃z1, z2.y = (z1, z2) ∧ (x, z1) ∈ R1 ∧ (x, z2) ∈ R2} is total on A and any inaccessible reflecting

its totality also reflects the totality of R1 and R2.
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This has a direct Corollary:

Corollary 4.47. If A is Mahlo, and if

A′ := (A, {k} × (V ′(Kl) ∩ A)) (4.2.166)

Then

rt A
′ is Mahlo. (4.2.167)

Proof. Note that being Mahlo is equivalent to being 1-Mahlo. A version of 1 in V ′(Kl) is

(1, {(k, ∅)}). So applying Lemma 4.46 to α := (1, {(k, ∅)}) yields the desideratum.

4.2.3 Realizing Elementary Embeddings

To deal with axioms concerning elementary embeddings, we amend the realizability

definition analogously to before in Definition by extra clauses concerning j and M .

Definition 4.48. Let Φ be a formula in the language ∈, ˙in, j,M with equality. Define

the fomula e  Φ inductively as e ∈ ω and the appropriate clause from below:

1. e rt ⊥ if ⊥

2. e rt j
n(x)∈̇jm(y) if (e, jn(x)) ∈ jm(y)}

3. e rt j
n(x) ∈ jm(y) if ∃(le, z) ∈ jm(y).re rt j

n(x) = z}

4. e rt j
n(x) = jm(y) if ∀(f, z) ∈ jn(x).lef rt z ∈ jm(y) and

∀(f, z) ∈ jm(y)ref rt z ∈ jn(x)

e rt M(jn(x)) if ∃y ∈M.e rt j
n = y

... The other clauses are as in Definition 4.36.

As usual, use rt Φ as shorthand for ∃e.e rt Φ and call such a formula Φ realized.
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Then realizability with truth is absolute by the same reasons as standard realizability:

Lemma 4.49. For any set a:

a ∈ V ′(Kl)↔ j(a) ∈ V ′(Kl) (4.2.168)

And

a ∈M ∩ V ′(Kl)↔ a ∈M ∧ (a ∈ V ′(Kl))M (4.2.169)

Proof. As for Lemma 4.25

Then the elementarity of j extends to rt for bounded formulae:

Lemma 4.50. For any bounded formula Φ(−→x ) with all free variables displayed in the

language ∈ with equality (but without j and M ):

∀−→a ∈ V ′(Kl), e ∈ S.e rt Φ(−→a )↔ e rt Φ(
−−→
j(a))↔ (e rt Φ(

−−→
j(a)))M (4.2.170)

Proof. This goes through exactly as the proof of Lemma 4.26, noting that the truth of

the statements about the labels is not affected by j.

Just like for normal realizability, this implies directly:

Proposition 4.51. The realizer skk = λx.x realizes that j is functional, i.e.

skk rt ∀x, y.x = y → j(x) = j(y) (4.2.171)

The realizer er which realizes reflexivity also realizes that j maps V to M , i.e.

er rt ∀x.M(j(x)) (4.2.172)

Also, M is realized to be transitive, i.e.

rt ∀x.M(x)→ ∀y ∈ x.M(y) (4.2.173)

And with this it is possible to prove that j is realized to be an elementary embedding:
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Lemma 4.52.

rt j : V
≡
↪→M (4.2.174)

In particular for any formula Φ(−→x ) with all free variables displayed and not containing

M or j,

rt ∀−→a .Φ(−→a )↔ ΦM(
−−→
j(a)) (4.2.175)

Proof. Just as for 4.28, noting that the truth of the statements about the labels is not

affected by j.

As for usual realizability, we obtain:

Lemma 4.53. 1. Let K be an inaccessible set, K ∈ j(K) and ∀x ∈ K.j(x) = x.

Let

K ′ := (K, {k} × (V ′(Kl) ∩K)) (4.2.176)

Then

rt K
′ regular ∧K ′ ∈ j(K ′) ∧ ∀x ∈ K ′.j(x) = x (4.2.177)

2. Let V = M . Then  V = M .

Proof. K ′ is realized to be regular by Lemma 4.44. As j(K) is inaccessible and K ∈

j(K), also K ′ ∈ j(K) as V ′(Kl) has a recursive ∆0 definition and intersections of such

classes with a set are again sets, a fact which is reflected in inaccessible sets like j(K).

AsK ′ ∈ j(K) and alsoK ′ ∈ V ′(Kl), we have (k,K ′) ∈ j(K ′∗) = {k}× (V ′(Kl)∩K)

and so for er a realizer for reflexivity,

pker rt K
′ ∈ j(K ′) (4.2.178)

Also if (e, x) ∈ K ′, then by K being regular, (e, x) ∈ K and thus j(x) = x. So in this

case,

er rt j(x) = x (4.2.179)
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So the universal statement is realized by λx.er.

For the second part, if V = M then for all x ∈ V ′(Kl), any realizer er for reflexivity

also realizes the equality of x to an element of M , i.e. itself, and thus M(x). So in this

case er rt ∀x.M(x).

4.2.4 Theories with Good Properties

Theorem 4.54. The following theories enjoy all the properties from Definition 4.33, in

particular the disjunction property and the numerical existence property:

1. CZF

2. CZF + wREA

3. CZF + REA

4. CZF +
⋃

REA

5. CZF + ∗REA

6. CZF + ∗2REA

7. CZF + There is an inaccessible set.

8. CZF + IEA

9. CZF + There is a Mahlo set.

10. CZF + MEA

11. CZF + Axiom M

12. CZF + For all α, there is an α-inaccessible set.

13. CZF + For all α, a, there is an α-inaccessible set containing a.

14. CZF + For all α, there is an α-Mahlo set.
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15. CZF + For all α, a, there is an α-Mahlo set containing a.

16. CZF + For all a, there is a I-inaccessible set I containing a.

17. CZF + For all a, there is a I-Mahlo set I containing a.

18. CZF + There is a measurable set.

19. CZF + There is a Reinhardt set.

Proof. As all these statements are absolute for realizability with truth (the proof uses

Lemmata 4.40, 4.39, 4.41, 4.42, 4.43, 4.44, 4.45, 4.46, 4.52, 4.53 and Corollary 4.21 in

the same way as the proof of theorems 4.22, 4.15 and 4.32), the methods from [Rat05b]

as recapped in Fact 4.38 yield the desired result.

This theorem extends the results of [Rat05b], which focussed primarily on the theories

CZF and CZF + REA and also notes that the same methods can also be applied to deal

with theories containing axioms of largeness like CZF + IEA and CZF + MEA. The the-

orem also mirrors results of [FŠ84], who proved similar desirable properties for several

extensions of IZF with large cardinals.
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Chapter 5

How are Large Sets arranged in the

Universe?

In this chapter, we will introduce a new tool and apply it to obtain results about the

arrangement of large sets within the universe and in relation to each other. This tool will

in some aspects take on the role the cumulative hierarchy plays in classical set theory.

Classical set theory benefits greatly from John von Neumann’s cumulative hierarchy

which he originally used to prove the relative consistency of the axiom of Foundation

([vN29]), but which has since become almost omnipresent in set-theoretic proofs and

definitions. By iterating the powerset operation, one obtains a hierarchy of sets indexed

by the ordinals and spanning the whole universe and thus providing the set-theorist with

a Rosetta-stone-like link from the class V of all sets to the class On of ordinals, not

only unlocking more applications for what is already a powerful tool (reasoning with

ordinals), but also providing a sort of map to understand the structure of the set-theoretic

universe (Figure 5.1).

However, in the constructive case, this close connection breaks down at least partially,

as the absence of the Powerset axiom leads to CZF not proving that the von Neumann

hierarchy acts as a hierarchy of sets anymore, thereby removing the most direct connec-

tion between On and V . Coupled with the fact that ordinals seem to be more difficult to
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On

Vα

Figure 5.1: An Informal Map of the Universe (reproduced from [Zie14])

tame in the context of a constructive set theory, this may be one of the reasons why they

have not been studied as extensively as in classical set theory and are generally regarded

as less useful.

In this chapter however, we will propose an alternative hierarchy of sets that covers the

whole set-theoretic universe, which will at least to some extent unlock the power of

reasoning with ordinals for CZF. While the von Neumann hierarchy is based on iterating

applications of the Powerset axiom, its analogue in CZF is less well suited for this:

Fullness is not an explicit set axiom, i.e. it does not postulate the existence of a concrete

definable set, but rather the existence of some set with certain properties, which many

different sets might fulfill of which it is difficult to single one out ([Acz09]) and actually

impossible in the general case by the results of [Swa14]. As such, it can not iterated

quite so simply.

Instead, we will modify the powerclass operation by adding only some subsets by im-

posing a bound on the complexity of the subset relation as measured by the truth values

(Jx ∈ aK)x∈b for a ⊆ b, which will slow down the increases of the hierarchy in each step

to a constructively controllable speed. Without such a bound one obtains the original

von Neumann hierarchy (which does not provably consist of sets in CZF) while with a

constant bound one could never hope to cover more than a small fraction of V . Thus

we will choose a bound that increases with the stage of the hierarchy and depends on

what has already been covered, thus continuing to adhere to von Neumann’s basic idea
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of constructing the universe from below.

This method has several applications, including determining how large sets are arranged

in the universe.

Most of the results in this chapter have also been published by the author in [Zie14].

5.1 Ordinals and the Cumulative Hierarchy

In the context of CZF, it is very hard to obtain actual well-orderings in the classical

sense. Indeed, if even a two element set could be ordered so that it enjoys the minimal

element property, the excluded middle for all bounded formulae would immediately fol-

low (consider for a < b the inhabited class {b} ∪ {a|Φ}, which is a set if Φ is ∆0 and

whose minimal element determines whether Φ is true or false). Still, if one considers the

essence of ordinals to be rooted in induction rather than minimal elements, this can be

captured quite well by CZF.

Ordinals can then be generated inductively very simply: They should be transitively

ordered and for each set A of ordinals, there should be a least ordinal larger than all the

elements of A, which we will call next(A).

Definition 5.1. The ordinals are the members of the smallest class On such that for all

sets A ⊆ On, it follows that

next(A) ∈ On (5.1.1)

where

next(A) := A ∪
⋃

A (5.1.2)

Note that the definition of next(A) as A ∪
⋃
A is the minimal set which still guarantees

transitivity. It contains exactly the elements we can be sure of that they must be smaller

than the least element greater than anything in A: The elements of A itself, and their

elements because of transitivity. Had we forgone the transitivity and just set next(A) as
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A instead, we would arrive at a definition for the well founded sets (which, according to

Set Induction, are all the sets).

We usually refer to ordinals with lower case Greek letters from the beginning of the

alphabet. We also use these to refer to sets which might not be ordinals, but for which

their rank, i.e. their place in the von Neumann hierarchy, is the most important feature.

In the context of ordinals, the relations ∈ and ⊆ will also be written as < and ≤.

Our definition of On is equivalent to the usual way ordinals are introduced in CZF (see

e.g. [AR01]):

Lemma 5.2. A set α is an ordinal if and only if α is a transitive set all of whose elements

are also transitive.

Proof. Let α be a transitive set all of whose elements are also transitive. We prove by

set induction on α that α ∈ On. By induction hypothesis, α ⊆ On, so

On 3 next(α) = α ∪
⋃

α = α (5.1.3)

As being transitive implies that
⋃
α ⊆ α.

For the other direction, we prove by set induction on α the statement:

∀α ∈ On∀a ∈ α∀b ∈ a.b ∈ α ∧ ∀c ∈ b.c ∈ a (5.1.4)

So let α ∈ On. As On is chosen as the minimal class closed under x 7→ next(x), there

is some A ⊆ On with α = next(A). By the definition of next, the elements of A are

also elements of α, so the induction hypothesis applies to them: A is a set all of whose

elements are transitive and so are their elements. Let b ∈ a ∈ α. Then by α = next(A),

either a ∈ A or a ∈
⋃
A. As 5.1.4 holds for all elements ofA, in the first case b ∈ a ∈ A

implies b ∈ A and in the second case b ∈ a ∈ a′ ∈ A implies b ∈ a′ ∈ A. In either case,

b ∈
⋃
A and thus b ∈ α. Thus α is transitive.

To show that the elements of α are also transitive, let c ∈ b ∈ a ∈ α. Again, either a ∈ A

in which case a ∈ On is transitive and c ∈ a, or a ∈
⋃
A, in which case a ∈ a′ ∈ A

for some a′ ∈ A ⊆ On. By definition of next, also a′ ∈ α, so the induction hypothesis

implies that a′ and all of its elements are transitive — including a.
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Definition 5.3. For a formula Φ, the class 0 ≤ JΦK ≤ 1 is defined as {0|φ} and if Φ is a

∆0 formula it is the unique ordinal between 0 and 1 which is 1 exactly iff Φ holds. It is

also called the truth value of Φ.

The class P(1) is known as the class of truth values1 and each of its elements is a truth

value of a formula2.

Definition 5.4. The stages of the von Neumann hierarchy and the rank function are

defined recursively as follows:

1. For any set α, set

Vα =
⋃
β∈α

{x|x ⊆ Vβ} (5.1.5)

2. Set

V =
⋃
β∈On

Vβ (5.1.6)

3. For any set a, set

rk(a) = next(rk′′a) =
⋃
x∈a

rk(x) + 1 (5.1.7)

Note that the definition of V in part 2 of Definition 5.4 does not clash with our previous

definition of V := {x|>} by parts 1 and 4 of the following remark.

The following are basic facts about the cumulative hierarchy:

Remark 5.5. 1. Every set enters the hierarchy at some point, i.e.

∀x∃α.x ∈ Vα (5.1.8)

2. For α > 1, CZF does not prove that Vα is a set.

3. The hierarchy is cumulative in the sense that for α ≤ β we have Vα ⊆ Vβ and also

in the sense that we have P(Vα) ⊆ P(Vβ).

4. The hierarchy factors over rank, i.e. for all a we have Va = Vrk(a)

1although strictly speaking it only contains the truth values of bounded formulae
2as ∀a ∈ P(Ω). a = J0 ∈ aK
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Proof. 1. By set induction on a we prove

∀a.a ⊆ Va (5.1.9)

Let this be true for all b ∈ a. For any b ∈ a by definition of Va, the statements

b ⊆ Vb and b ∈ a imply that b ∈ Va. Thus also a ⊆ Va.

2. If 1 ∈ α, and a ∈ P(1), then a ⊆ V1 = 1 and thus a ∈ Vα. So P(1) = {ϑ ∈

Vα|ϑ ⊆ 1} and if Vα were a set, P(1) would be a set as well, which is not provable

in CZF ([AR01]).

3. Let α ≤ β, then for all a ∈ Vα, there is some γ ∈ α with a ⊆ Vγ . Then γ ∈ β and

thus a ∈ Vβ . For all x ⊆ Vα it follows that x ⊆ Vβ by transitivity of ⊆.

4. This is proved by set induction over a. The statement b ∈ Va is equivalent to

∃x ∈ a.b ⊆ Vb and by induction hypothesis, this is equivalent to ∃x ∈ a.b ⊆ Vrk(x).

As rk(a) =
⋃
x∈a rk(x) + 1, this is implies to ∃x ∈ rk(a).b ⊆ Vrk(x). It is actually

equivalent, for let x ∈ rk(a) and b ⊆ Vrk(x), then either x = rk(x′) for some x′ ∈ a,

in which case b ⊆ Vrk(x′), x
′ ∈ a or x ∈ rk(x′) for some x′ ∈ a, in which case

b ⊆ Vrk(x′), x
′ ∈ a by 3. In any case

b ∈ Va ↔ ∃x ∈ rk(a).b ⊆ Vrk(x) (5.1.10)

The left part is equivalent to ∃x ∈ rk(a).b ⊆ Vx by induction hypothesis, and this

is just the definition of b ∈ Vrk(x).

5.2 The Modified Hierarchy

As is the case with the classical von Neumann hierarchy, the modified version will also

consist of stages that are reached by iterating a step operator.
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Definition 5.6. 1. The modified powerclass operator X 7→ MP(X) is defined on

classes X ⊆ V by

MP(X) := {x ⊆ X|∀y ∈ X.Jy ∈ xK ∈ X ∪ {0, 1}} (5.2.11)

We will also call this the step operator of the modified hierarchy.

2. We define a collection of classes V̂α indexed by sets α ∈ V by

V̂α :=
⋃
β∈α

MP(V̂b) (5.2.12)

We will use the parlance ”a enters the hierarchy at α” for a ∈MP(V̂α), whether

α is the smallest such set or not.

3. Set

V̂ :=
⋃
β∈On

V̂a (5.2.13)

On the natural numbers, the modified von Neumann hierarchy exhibits the behaviour

which is well known for the usual von Neumann hierarchy in a classical context, al-

though in a constructive context the finite stages of the usual von Neumann hierarchy

itself are decidedly less orderly — in fact, the finite ranks starting from V2 contain so

many elements that they can not even be proved to be sets.

Example 5.7. (Behaviour at finite stages) For finite n ∈ ω, V̂n has 22·
·2︸︷︷︸

n−1

elements (where

by convention 22·
·2︸︷︷︸
−1

:= 0), namely exactly the hereditarily finite sets of rank < n.

Another important example is the very beginning of the modified hierarchy:

Example 5.8. (Behaviour for 0 ≤ α ≤ 1) The map α 7→ V̂α when restricted to the class

of all truth values P(1) is just the identity. In particular, for JΦK ∈ α, it follows that

JΦK ∈ V̂α.

Proof. A direct calculation yields V̂0 = 0, V̂1 = {0}. Let α ⊆ 1. Then V̂α ⊆ {0} and

this is inhabited iff α is.
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The following are basic facts about the modified hierarchy:

Remark 5.9. 1. The step operator MP(X) maps sets to classes containing them,

i.e.

∀a.a ∈MP(a) (5.2.14)

In particular, if V̂α is a set, then V̂α ∈ V̂β for α ∈ β.

2. Each ordinal stage V̂α for α ∈ On of the hierarchy is transitive. In fact, for any

transitive α, the class V̂α is transitive as well.

3. The hierarchy is cumulative in the sense that for α ≤ β we have V̂α ⊆ V̂β .

4. The hierarchy factors over rank, i.e. for all a we have V̂a = V̂rk(a)

Proof. 1. X ⊆ X and for each x ∈ X , the truth value Jx ∈ XK = 1 ∈ X ∪ {0, 1}.

2. This is proved by set induction over α. Let a ∈ b ∈ V̂α. Then for some β ∈ α,

b ∈ MP(V̂β). In particular b ⊆ V̂β and thus a ∈ V̂β , so for some γ ∈ β we have

a ∈ MP(V̂γ). As α is transitive it follows that γ ∈ α and so a ∈ V̂α. If α is an

ordinal, transitivity is guaranteed by Lemma 5.2.

3. Let α ≤ β, then for all a ∈ V̂α, there is some γ ∈ α with a ∈ MP(V̂γ). Then

γ ∈ β and thus a ∈ V̂β .

4. This is proved by set induction over a. Then b ∈ Va is equivalent to ∃x ∈ a.b ⊆ Vb

and by induction hypothesis, this is equivalent to ∃x ∈ a.b ⊆ Vrk(x). As rk(a) =⋃
x∈a rk(x) + 1, this is implies to ∃x ∈ rk(a).b ⊆ Vrk(x). It is actually equivalent,

for let x ∈ rk(a) and b ⊆ Vrk(x), then either x = rk(x′) for some x′ ∈ a, in

which case b ⊆ Vrk(x′), x
′ ∈ a or x ∈ rk(x′) for some x′ ∈ a, in which case

b ⊆ Vrk(x′), x
′ ∈ a by 3. In any case

b ∈ Va ↔ ∃x ∈ rk(a).b ⊆ Vrk(x) (5.2.15)

The left part is equivalent to ∃x ∈ rk(a).b ⊆ Vx by induction hypothesis, and this

is just the definition of b ∈ Vrk(x).
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Comparing Remarks 5.5 and 5.9, it might be noted that the cumulativity property of the

von Neumann hierarchy is stronger: If a set enters the hierarchy at one point, it does

so again and again at every later point. This is not the case for the modified hierar-

chy, a complication which arises from the non-monotonicity of the modified powerclass

operator:

Proposition 5.10. The statement that for all a, α, if a enters the modified hierarchy at

stage α, it also enters it at every stage β 3 α, implies the weak exluded middle for

∆0-formulae, i.e. the scheme ¬Φ ∨ ¬¬Φ for all bounded formulae Φ.

This is also true if α and β are restricted to ordinals.

Proof. Let Φ be a ∆0 formula. Direct application of the definition of the modified hier-

archy yields

VJΦK = JΦK

MP(VJΦK) = {∅, JΦK}

VJΦK+1 = MP(VJΦK) ∪ VJΦK = {∅, JΦK}

V(JΦK+1)∪2 = {0, JΦK, 1}

So JΦK ∈MP(VJΦK) and JΦK ∈ (JΦK + 1) ∪ 2, but if we assume

JΦK ∈MP(V(JΦK+1)∪2), (5.2.16)

then this would mean that for each element of V(JΦK+1)∪2, the truth value of the statement

that JΦK lies in that element is 0, 1 or in V(JΦK+1)∪2, which contains the truth values 0, 1

and JΦK.

In particular, for 1 ∈ V(JΦK+1)∪2, we have

JJΦK ∈ 1K ∈ {0, 1, JΦK} (5.2.17)

JJΦK ∈ 1K is just J¬ΦK, so we get



5 HOW ARE LARGE SETS ARRANGED IN THE UNIVERSE? 106

J¬ΦK = 0 ∨ J¬ΦK = 1 ∨ J¬ΦK = JΦK (5.2.18)

So either Φ is not not true, or it is not true, as the third case can not occur.

This means that while α 7→ V̂α is monotone, α 7→ MP(V̂α) can not proved to be

monotone.

5.3 The Modified Hierarchy as a Hierarchy of Sets

The modified hierarchy exhibits the desired central properties which the von Neumann

hierarchy enjoys in the classical case:

Theorem 5.11. 1. The stages of the hierarchy are sets, i.e.

∀α∃x.V̂α = x (5.3.19)

2. Every set enters the hierarchy at some ordinal point, i.e.

∀x∃α ∈ On.x ∈ V̂α (5.3.20)

Proof. 1. We will show that the step operator a 7→ MP(a) maps sets to sets, which

implies that the whole hierarchy consists of sets by transfinite recursion over the

index. So let a be a set and consider the following function f : a(a ∪ 2) → P(a)

defined by

f(g) := {x ∈ a|g(x) = 1} (5.3.21)

By exponentiation and replacement, the range of this function is a set, and the

range is a superset ofMP(a), as every X ∈MP(a) has the preimage

g : a→ a ∪ 2, x 7→ {0|x ∈ X} (5.3.22)

ThusMP(a) can by ∆0-Separation be seen to be the set of those X elements of

the range of f which fulfill the ∆0-formula

∀x ∈ a.Jx ∈ XK ∈ a ∪ 2 (5.3.23)
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2. We proceed by ∈-induction over x. By the induction hypothesis, take x to fulfill

∀y ∈ x∃α.y ∈ V̂α (5.3.24)

By Strong Collection, we obtain α0 with

x ⊆ V̂α0 (5.3.25)

While x ∈ P(V̂α0), we would need x ∈MP(V̂α0) to be done.

So define an increasing sequence (αi)1≤i∈ω with αi ⊆ αi+1 inductively by

αi = αi−1 ∪ {Jy ∈ xK|y ∈ V̂αi−1
} (5.3.26)

Finally set α :=
⋃
i∈ω αi. Now x ∈ MP(V̂α), because it is a subset (x ⊆ V̂α0 ⊆

V̂α) and for any y ∈ V̂α, we have y ∈ V̂αi for some i > 0 and then Jy ∈ xK ∈

αi+1 ⊆ α, so by the Example 5.8, Jx ∈ aK ∈ V̂α.

In fact, the second part of the proof achieves more than just proving the statement of

the theorem: It shows that every set enters unboundedly often3, and how to pinpoint the

place where it enters.

Definition 5.12. Let α ∈ On and i ∈ ω, then define by recursion on α and i functions

r̂k
i

α : V → On and r̂kα : V → On by

r̂k
0

α(a) := α ∪
⋃
x∈a

r̂kα(x) + 1 (5.3.27)

r̂k
i+1

α (a) := r̂k
i

α(a) ∪ {Jx ∈ aK|x ∈ V̂
r̂k
i
α
(a)} (5.3.28)

r̂kα(a) :=
⋃
i∈ω

r̂k
i

α(a) (5.3.29)

3In fact, Example 7.6 further on will be that the class of ordinals where it enters is a club.
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Finally define the modified rank of a set a as

r̂k(a) := r̂k∅(a) (5.3.30)

These functions return locations where sets enter the hierarchy:

Lemma 5.13.

∀a, α.a ∈MP(V̂r̂kα(a)) (5.3.31)

Proof. The definitions are crafted to make explicit the proof of Theorem 5.11.

So in analogy to the classical hierarchy we get:

Corollary 5.14.

For r̂k(a) ∈ α, we have a ∈ V̂α.

Classically, the converse direction holds as well for the usual von Neumann hierarchy,

i.e. if a is in some von Neumann stage, this stage is at least rk(a). This is not the case

in CZF. In fact, not only does the rank function fail to pinpoint a least point where a set

enters the hierarchy, such a least point fails to exist in the first place:

Proposition 5.15. 1. The statement that for all sets a there is a least ordinal α such

that a ∈ Vα implies the principle of excluded middle for ∆0-formulae.

2. The statement that for all sets a there is a least ordinal α such that a ∈ V̂α implies

the principle of excluded middle for ∆0-formulae.

3. The statement that for all sets a there is a least ordinal α such that a ∈ P(Vα)

implies the principle of excluded middle for ∆0-formulae.

4. The statement that for all sets a there is a least ordinal α such that a ∈ MP(V̂α)

implies the principle of excluded middle for ∆0-formulae.

Proof. Let Φ be a ∆0-formula.



5 HOW ARE LARGE SETS ARRANGED IN THE UNIVERSE? 109

1. 0 ∈ V1 and 0 ∈ VJΦK+1, so if there were a least α such that 0 ∈ Vα, this would

have to fulfill α ⊆ 1 ∩ (JΦK + 1) = {0|Φ ∨ ¬Φ} = JΦ ∨ ¬ΦK. As Vα needs to be

inhabited, α needs to be as well, so JΦ ∨ ¬ΦK = 1.

2. 0 ∈ V̂1 and 0 ∈ V̂JΦK+1, so if there were a least α such that 0 ∈ V̂α, this would

have to fulfill α ⊆ 1 ∩ (JΦK + 1) = {0|Φ ∨ ¬Φ} = JΦ ∨ ¬ΦK. As V̂α needs to be

inhabited, α needs to be as well, so JΦ ∨ ¬ΦK = 1.

3. {JΦK} ∈ P(V2) and {JΦK} ∈ P(VJΦK+1), so if there were a least α such that

{JΦK} ∈ P(Vα), this would have to fulfill α ⊆ 2∩JΦK+1 = {0|Φ∨¬Φ}∪{1|Φ}.

By monotonicity this implies

{JΦK} ∈ P(V{0|Φ∨¬Φ}∪{1|Φ}) (5.3.32)

And thus

JΦK ∈ V{0|Φ∨¬Φ}∪{1|Φ} = {0|Φ ∨ ¬Φ} ∪ {ϑ ∈ P(1)|Φ} (5.3.33)

So either JΦK = 0 and Φ ∨ ¬Φ, or Φ holds. In either case, Φ ∨ ¬Φ.

4. 1 ∈ MP(V1) and 1 ∈ MP(V(JΦK+1)∪(J¬ΦK+1)) = MP({0, JΦK, J¬ΦK}), so if

there were a least α such that 1 ∈MP(Vα), this would have to fulfill

α ⊆ 1 ∩ ((JΦK + 1) ∪ (J¬ΦK + 1)) = JΦ ∨ ¬ΦK (5.3.34)

As α needs to be inhabited for Vα to be inhabited (and after all Vα needs to contain

0 ∈ Vα or 1 could not be a subset), JΦ ∨ ¬ΦK needs to be 1, so Φ ∨ ¬Φ.

5.4 Interaction with Large Sets

ZFC and CZF work very differently when it comes to the interaction of the usual von

Neumann hierarchy with inaccessibles.
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Proposition 5.16. 1. ZFC proves that a set A is inaccessible iff A = Vκ for some

regular strong limit cardinal4 κ.

2. CZF does not prove that any set A which is inaccessible is equal to some Vκ. In

fact, this statement would imply the Powerset axiom and thus5 be far stronger than

the existence of a mere inaccessible.

Proof. 1. It is a well known fact that the transitive models of second order set theory

ZF2 are exactly the Vκ with κ an inaccessible cardinal (e.g. [Sha91]). Of course,

ZFC proves that every transitive model of CZF2 also models the excluded middle

and is consequently also a model of the Foundation and Powerset axioms as well

as full Separation and thus ZF2.

2. Assume that for some inaccessible A it were true that A = Vκ. This means that

{x ∈ A|x ⊆ 1} would be a set and equal to P(1) ⊆ Vκ. This would then imply

the Powerset axiom (see [AR01]).

The interaction of the modified hierarchy with inaccessibles is however much more pro-

ductive, mainly because all its relevant functions are reflected in inaccessible sets. For

the usual von Neumann hierarchy, this is only the case with the rank function, not for the

step operator x 7→ P(x) or the stage enumerator α 7→ Vα.

Lemma 5.17. Let I be inaccessible. Then the following functions are reflected in it:

1. a 7→ r̂k(a) : I → I

2. a, α 7→ r̂kα(a) : I × (I ∩ On)→ I

3. a 7→ MP(a) : I → I

4. a 7→ V̂a : I → I

4i.e. what is usually known as an inaccessible cardinal.
5See e.g. [CR02] and [AR01].
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Proof. 3. Let a ∈ I , then

MP(a) = {x ⊆ a|∀y ∈ a.Jy ∈ xK ∈ X ∪ {0, 1}} (5.4.35)

The set of functions a(a ∪ 2) is included in every set that is full in (a, a ∪ 2) as a

∆0-definable subset. As I models ∆0-Separation and is closed under fullness, this

implies a(a ∪ 2) ∈ I . As I models second order replacement, the following set is

also in I:

S := {{y ∈ a|f(y) = 1}|f ∈ a(a ∪ 2)} ∈ I (5.4.36)

For every x ∈ MP(a) the function y ∈ a 7→ Jy ∈ xK serves as f with x = {y ∈

a|f(y) = 1}, soMP(a) ⊆ S. As the formula x ∈ MP(a) is a ∆0 formula with

all parameters in I , the set

{x ∈ S|x ∈MP(a)} =MP(a) ∈ I (5.4.37)

4. This is a direct set induction over a: Assume as induction hypothesis

∀x ∈ a.V̂x ∈ I (5.4.38)

Then by the previous part of the lemma and Union-Replacement,

Va =
⋃
x∈a

MP(Vx) ∈ I (5.4.39)

2. Let I be
⋃

-regular and α ∈ I . We prove by induction on a with side induction on

i the statement:

∀a ∈ I∀i ∈ ω.r̂kiα(a) ∈ I (5.4.40)

For i = 0, recall that

r̂k
0

α(a) = α ∪
⋃
x∈a

((
⋃
i∈ω

r̂k
i

α(x)) + 1) (5.4.41)
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By the main induction hypothesis, for all x ∈ a we have r̂k
i

α(x) ∈ I . So by

Union-Replacement, this is again an element of I 3 r̂k
0

α(a).

For the step case, recall that

r̂k
i+1

α (a) = r̂k
i

α(a) ∪ {Jx ∈ aK|x ∈ V̂
r̂k
i
α(a)
} (5.4.42)

By the induction hypothesis and point 4 of this lemma, this is again an element of

I � CZF .

1. This is a special case of point 2 for α := ∅.

The consequence is that a multitude of stages coincide at the same point:

Theorem 5.18. Let I be inaccessible, then the following sets are equal:

I = V̂I

= V̂On∩I

= V̂rk(I)

= V̂r̂k(I)

Proof. For the numbering of cases, refer to I , V̂I , V̂On∩I , V̂rk(I) and V̂r̂k(I) as 1., 2., 3., 4.

and 5. respectively.

1.⊆2. Let a ∈ I . By Lemma 5.17 this implies r̂k(a) ∈ I and so by Lemma 5.13,

a ∈MP(V̂ ˆrk(a)) ⊆
⋃
x∈I

MP(V̂x) = V̂I (5.4.43)

1.⊇2. Let x ∈ V̂I . Recall that

V̂I =
⋃
a∈I

MP(V̂a) (5.4.44)

So for some a ∈ I , we have x ∈ MP((V̂a)). As I is closed under the functions

a 7→ V̂a and x 7→ MP(x) by Lemma 5.17, we have ∀a ∈ I.MP(V̂a) ∈ I .
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2.=3. By cumulativity, V̂I ⊇ V̂I∩On . For the other direction, let a ∈ I = V̂I , then by

5.4.40, this implies r̂k(a) ∈ I ∩ On and so by Lemma 5.13 and 5.4.40,

a ∈MP(V̂ ˆrk(a)) ⊆
⋃
x∈I

MP(V̂x) = V̂I (5.4.45)

3.=4. A quick set induction over α shows that

α ∈ On → rk(α) = α (5.4.46)

For let α ∈ On, then rk(α) =
⋃
β∈α rk(β) + 1 and by induction hypothesis this is⋃

β∈α β + 1 and by transitivity of α, this is α. Thus rk′′I ⊇ On ∩ I . Conversely,

rk′′I ⊆ On ∩ I as rk : I → I and rk : V → On. So

rk(I) =
⋃
a∈I

rk(a) + 1 = rk′′I ∪
⋃
a∈I

rk(a) = rk′′I = I ∩ On (5.4.47)

The third equation holds by transitivity: If a ∈ I and α ∈ rk(a), then for some

b ∈ a ∈ I , either α ∈ rk(b) ∈ I or α = rk(b) ∈ I . In either case, α ∈ I and as α

is an ordinal, α = rk(α) ∈ rk′′I .

Thus cumulativity implies the desired equality.

1.=5. By Lemma 5.17, we have ∀a ∈ I.r̂k(a) ∈ I , so r̂k(I) ⊆ I and thus by the previous

theorem

V̂r̂k(I) ⊆ I (5.4.48)

Conversely, let a ∈ I . By the definition of r̂k this implies r̂k(a) ∈ r̂k(I) and thus

by Lemma 5.13

a ∈MP(Vr̂k(a)) ∈ V̂r̂k(I) (5.4.49)
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Armed with Theorem 5.18, it is possible to uncover a lot of new facts about the struc-

ture and configuration of large sets within the universe. In particular, it is possible to

classify inaccessibles purely by the ordinals they contain, once more strengthening the

connection between large sets and certain ordinals even for the constructive case.

Corollary 5.19. Let I1, I2 be inaccessibles.

1. If rk(I1) ⊆ rk(I2) or On ∩ I1 ⊆ I2, then I1 ⊆ I2.

2. If rk(I1) = rk(I2) or On ∩ I1 = On ∩ I2, then I1 = I2.

3. If rk(I1) ∈ rk(I2) or On ∩ I1 ∈ I2, then I1 ∈ I2.

Proof. All of this follows directly from Theorem 5.18 with Lemma 5.17.

In particular, the inaccessibles do not lie scattered arbitrarily throughout the universe,

but are ordinally ordered:

Corollary 5.20. Let I be the class of inaccessible sets.

Then there is a subclass Γ ⊆ On of ordinals and a bijective class function ∆ : Γ ↪→→→ I

such that ∆ is an isomorphism with respect to the structure generated by ∈,⊆ and =.

5.5 Further Applications of the Methods Developed in

this Chapter

While this chapter set out to answer the question of how large sets were arranged in

the universe, it should be noted that the modified von Neumann hierarchy can also be

fruitfully employed to research other topics. One of these are different characterizations

of Mahlo sets which will be developed later in Setion 7.2. Another is to investigate

clubs in a constructive context which will take place in Section 7.1. A third is found in

Section 9.1 where we use the modified von Neumann hierarchy to extract more closure

properties from critical points of elementary embeddings.
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Not directly related to large cardinals is the following application, which uses the von

Neumann hierarchy to break down the complexity of V to the complexity of On plus ∆0

formulae, which is not only of philosophical interest, but may also be expressed in the

form of a quantifier elimination theorem.

Theorem 5.21. There is a definitional extension of CZF with the property that for every

formula Φ there is a formula Φ′ provably equivalent to Φ such that Φ′ contains only

quantifiers of the forms

∀x ∈ y,∃x ∈ y,∀α ∈ On,∃α ∈ On (5.5.50)

I.e. all quantifiers can be bounded by sets or the class of ordinals.

Proof. The extension of CZF is obtained by adding a unary function symbol V̂· and

axioms defining it. As it is provable in CZF that the V̂αs are unique sets, by [AR01] this

extension is conservative.

Then Φ′ can be defined by structural recursion as follows:

Φ′ = Φ if Φ is atomic.

(ΦjΨ)′ = Φ′jΨ′ for any binary connective j

(∀xΦ(x))′ = ∀α ∈ On∀x ∈ V̂α.φ′

(∃xΦ(x))′ = ∃α ∈ On∃x ∈ V̂α.φ′

While always pleasing to eliminate, unbounded quantification plays an especially recal-

citrant role in CZF as it may not appear in the ∆0-Separation scheme. In this vein, the

theorem above allows us to conclude:

Corollary 5.22. Full Separation is equivalent to the scheme that all class functions

Γ : On → On on ordinals have an infimum β ∈ On and bounded suprema γδ ∈ On for

each δ ∈ On, where

β =
⋂
{f(β)|β ∈ On} (5.5.51)
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γδ =
⋃
{f(β) ∈ δ|β ∈ On} (5.5.52)

Proof. Obviously Full Separation implies the existence of suprema and infima. Con-

versely, working in the definitional extension from above, we prove by structural recur-

sion over Φ that

∀a.{x ∈ a|Φ} is a set. (5.5.53)

By the theorem above, we can assume w.l.o.g. that Φ does not contain completely un-

bounded quantification but only quantification of one of the forms

∀x ∈ y,∃x ∈ y,∀α ∈ On,∃α ∈ On (5.5.54)

The atomic cases are immediate by ∆0-Separation. For the cases ∧, ∨ and→, note that

union and intersection of sets are sets as is {x ∈ a|x ∈ b→ x ∈ c} by ∆0-Separation.

For Φ = ∀y ∈ b.Ψ (potentially b may be a while y of course must be new) note that for

all y ∈ b, the class {x ∈ a|Φ(y)} is a set, and so there is a function f : b→ V realizing

this relation. Then

{x ∈ a|∀y ∈ b.Ψ} = {x ∈ a|∀y ∈ b∃z ∈ f, b′ ∈ tc(z).z = (y, b′) ∧ a ∈ b′} (5.5.55)

And thus it is a set as well.

For Φ = ∃y ∈ b.Ψ (potentially b may be a while y of course must be new) note that for

all y ∈ b, the class {x ∈ a|Φ(y)} is a set, and so there is a function f : b→ V realizing

this relation. Then

{x ∈ a|∃y ∈ b.Ψ} = {x ∈ a|∃y ∈ b∃z ∈ f, b′ ∈ tc(z).z = (y, b′) ∧ a ∈ b′} (5.5.56)

And thus it is a set as well.

For Φ = ∀α ∈ On.Ψ consider the class function Γ : On → On with Γ(α) := JΨ(α)K and

let a be a set. For each element of x ∈ a, the class {x|∀αΨ(α)} is a set by the premise

and Replacement, so by Union-Replacement, {x ∈ a|∀αΨ(α)} is a set.

For Φ = ∃α ∈ On.Ψ consider the class function Γ : On → On with Γ(α) := JΨ(α)K and

let a be a set. For each element of x ∈ a, the class {x|∀αΨ(α)} is a set by the premise

(set δ := 1) and Replacement, so by Union-Replacement, {x ∈ a|∀αΨ(α)} is a set.
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Chapter 6

How many Large Sets are there?

In the classical case, the relationship between the number of postulated inaccessibles

and the strength of the theory is a simple one: The more inaccessibles, the higher the

consistency strength. This can be expressed precisely as follows:

Remark 6.1. Let Φ1(x), Φ2(x) be formulae describing a (possibly class-sized) cardi-

nality, i.e.

ZFC ` ∀x.Φ1(x)→ (x ∈ On ∧ @f : x→→ {y|Φ1(y)} ∧ ∀y.y ∈ x→ Φ1(y)) (6.0.1)

ZFC ` ∀x.Φ2(x)→ (x ∈ On ∧ @f : x→→ {y|Φ2(y)} ∧ ∀y.y ∈ x→ Φ2(y)) (6.0.2)

Let the first be provably larger than the second, i.e.

ZFC ` ∃y.y = {x|Φ2(x)} ∧ Φ1(y) (6.0.3)

Let the second cardinality not be inflatable by von Neumann universes, i.e.

ZFC ` (Vκ � ZFC ∧ x ∈ Vκ ∧ Vκ � Φ2(x))→ Φ2(x) (6.0.4)

Consider the two theories T1 and T2, which consist of ZFC plus the claim that there is

a class of inaccessible cardinals1 in 1:1 correspondence with the sets fulfilling Φ1(x)

respectively Φ2(x).

Then T1 implies Con(T2).
1i.e. regular strong limit cardinals
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Proof. Without loss of generality, we can assume

{x|Φ1(x)} = {x|Φ2(x)}+ (6.0.5)

for otherwise, define

Φ′1(x) :↔ x ∈ {x|Φ2(x)}+ (6.0.6)

Then this also describes a cardinality provably larger than the extension of Φ2 and the

statement that there are extension of Φ1 many inaccessible cardinals implies the state-

ment that there are extension of Φ′1 many inaccessible cardinals.

Working in T1, let I be a class of inaccessibles in 1:1 correspondence with {x|Φ1(x)}.

For all ordinals α with Φ1(α), let f(α) be recursively defined as the least inaccessible in

I bigger than all of the f(β) for β < α. For all these α there is such an ordinal by T1.

Define the ordinal class κ as

κ := f({α|Φ2(α)}+ 1) (6.0.7)

As Φ1 describes a cardinality bigger than Φ2, it is still the case that Φ1({α|Φ2(α)}+ 1),

so that κ is well-defined and is an inaccessible cardinal. So Vκ is a model of ZFC, and

by the condition on Φ2, we have

{x ∈ Vκ|Vκ � Φ2(x)} ⊆ {x|Φ2(x)} (6.0.8)

So as there are extension of Φ2 many inaccessibles in Vκ (and being inaccessible is

absolute), Vκ is also a model of there being Φ2 many inaccessibles. So T2 has a model.

Cardinalities fulfilling these conditions include all numerals, ω, ω1, 2ω, “class many”

and most other usual cardinalities.

Despite being somewhat peculiar, the absoluteness condition in the remark above is

necessary, as illustrated by the following example, where κ is inflatable by von Neumann

universes:
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Example 6.2. It is possible to define a cardinality κ such that

ZFC + “There are at least κ distinct inaccessibles”

≡ ZFC + “There are at least κ+ distinct inaccessibles”

Proof. Let

κ = {x ∈ 0|@µ.µ inaccessible} (6.0.9)

Then

κ =

0 if there exists at least one inaccessible

1 if there exists no inaccessible
(6.0.10)

and the two theories ZFC + “There are at least κ distinct inaccessibles” and ZFC +

“There are at least κ+ distinct inaccessibles” are the same, and both are equivalent to the

existence of at least one inaccessible.

Barring such pathological examples however (e.g. by restricting on absolute cardinali-

ties), the classical case can be said to be quite simple: The consistency strength strictly

increases with the number of inaccessibles postulated.

The constructive case however is vastly different. Here it turns out that the sheer number

of inaccessibles alone is irrelevant to the consistency strength. The remainder of this

chapter will be concerned with proving the following theorem:

Theorem 6.3. When added to CZF, the following statements all lead to theories of equal

consistency strength:

1. There is an inaccessible.

2. There are two different inaccessibles.

3. There are ω different inaccessibles.

4. There are class many inaccessibles in the weak sense that while there is at least

one inaccessible, the inaccessibles do not form a set.
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5. There are class many inaccessibles in the sense that while there is at least one

inaccessible, there is no set that contains all inaccessibles.

6. There are class many inaccessibles in the strong sense that for each set there is an

inaccessible which is not a member of that set.

The following sections will be concerned with constructing models establishing these

equiconsistencies. The step from 1 to 2 will be a modification of the formulae as classes

construction found in [Rat06] and will yield two inaccessibles I1, I2 with I1 ( I2. The

steps from 2 to 6 hinge on adding certain axioms (in particular Subcountability) to this

configuration and then reasoning in set theory to obtain the desired inaccessibles.

6.1 A Realizability Model with Inaccessible pca

In this section, let I be an inaccessible. We will construct a realizability model similar

to Rathjen’s formulae-as-classes construction [Rat06], although the pca in question will

be a set pca based on I instead of a class pca based on V . Nevertheless, most ideas

concerning the pca and many naming conventions come directly from [Rat06]. This

construction can be seen as (one version of) the initial object in the category of all pcas

on I where certain basic set-theoretic functions are represented.

As in [Rat06], define a pca structure (s, k, ◦) on I which represents functions for the

principal combinators k and s, pairing p, l and r, successor sN , predecessor pN and

decision by cases dN on natural numbers, π and σ for set-theoretic dependent products

and sums, fa for function application and ab for function abstraction. We add a means

to represent images of functions.

Definition 6.4. Choose constants s, k, π, σ, im, fa, ab ∈ ω. Then define ◦ : I × I →p I

as the smallest set such that for all a, b, c, d ∈ I:

1. k ◦ a = (k, a)
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2. (k, a) ◦ b = a

3. s ◦ a = (s, a)

4. (s, a) ◦ b = (s, a, b)

5. (s, a, b) ◦ c = (a ◦ c) ◦ (b ◦ c) in case (a ◦ c) ◦ (b ◦ c) is defined.

6. π ◦ a = (π, a)

7. (π, a) ◦ b = {f : a→ I|∀x ∈ a.f(x) ∈ b(x)} in case b : a→ I .

8. σ ◦ a = (σ, a)

9. (σ, a) ◦ b = {(x, z)|z ∈ b(x)} in case b : a→ I .

10. fa ◦ a = (fa, a)

11. (fa, a) ◦ b = c in case ∀i ∈ I.(b, i) ∈ a↔ i = c.

12. ab ◦ a = (ab, a)

13. (ab, a) ◦ b = {(x, y)|x ∈ b ∧ y ∈ I ∧ a ◦ x = y} in case ∀x ∈ b∃y ∈ I.a ◦ b = y.

14. im ◦ a = (im, a)

15. (im, a) ◦ b = a′′b in case ∀x ∈ b∃!y ∈ I.(x, y) ∈ a.

For a ◦ b we will also write ab.

Proof. This definition contains two claims: First that there is a smallest set ◦ and second

that it is a partial function ◦ : I × I →p I . Both draw on the Inductive Definition

Theorem from [AR01]: All stages of the inductive definition of ◦ are elements of I , so

their union is a rk(I)-indexed union of elements of I and thus a set, and all stages are

partial functions by induction, and thus so is their union.
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Note that a ◦ b can only have a value if a is a tuple with a natural number as first ele-

ment. By the clause regarding k and s, (I, ◦, k, s) is a obviously a pca ([TVD88]) or an

applicative topology when setting ∇ := I , x ≤ y :↔ x = y and xC p :↔ x ∈ p, which

amounts to the discrete topology over I . So it makes sense to talk about the realizability

model V (I) over this pca. By the usual method presented in [Rat03b] for regular sets

and developed in chapter 4 for inaccessibles, the set

Ī := I × (I ∩ V (I)) (6.1.11)

can not be proved to be realizedly inaccessible directly, as the condition from Lemma

4.16 was that the whole pca is an element of I , while here it is only a subset. This does

not however change things:

Theorem 6.5.

V (I)  Ī is inaccessible. (6.1.12)

Proof. All parts go through exactly as before, with two slight exceptions: Realizing that

Ī is regular and that it models Subset Collection.

For the regularity, let (x0, a) ∈ Ī , e ∈ I and R ∈ V (I) such that

e  ∀x ∈ a∃y ∈ I.(x, y) ∈ R (6.1.13)

Then for all (f, x) ∈ a there is a pair (f, y) ∈ I such that r(ef)  (x, y) ∈ R. As a ∈ I ,

we can use regularity to collect these pairs into a set b ∈ I with b ⊆ I × V (I) and

∀(f, x) ∈ a∃(f, y) ∈ b.r(ef)  (x, y) ∈ R (6.1.14)

As well as

∀(f, y) ∈ b∃(f, x) ∈ a.r(ef)  (x, y) ∈ R (6.1.15)

We claim that

p(λx.px(r(ex)))(λx.px(r(ex))) 

∀x ∈ a∃y ∈ b (x, y) ∈ R

∧ ∀y ∈ b∃x ∈ a (x, y) ∈ R
(6.1.16)
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For let (f, x) ∈ a, then there is

(l(pf(r(ef))), y) = (f, y) ∈ b (6.1.17)

with

r(pf(r(ef))) = r(ef)  (x, y) ∈ R (6.1.18)

Conversely, let (f, y) ∈ b, then there is (l(pf(r(ef))), x) = (f, x) ∈ a which fulfills

r(pf(r(ef))) = r(ef)  (x, y) ∈ R (6.1.19)

As (k, b) ∈ Ī , regularity is realized.

For Subset Collection, choose rather to realize that for each a, b ∈ Ī there is a c ∈ Ī

which is full in mv(a, b), which is an equivalent condition. So let (x0, a), (x1, b) ∈ Ī .

Let c′ ∈ I be full in mv(a, b) and set

c := {(k, r̄)|r ∈ c′} ∈ V (I) (6.1.20)

where for r ∈ c′ we define

r̄ := {(k, pair(x, y))|(x, y) ∈ R} ∈ V (I) (6.1.21)

with help of a function pair : I × I → I which internalizes pairing, i.e. for some ep ∈ I

∀x, y ∈ I.ep  (x, y) = pair(x, y)) (6.1.22)

Then (k, c) ∈ Ī and it is uniformly realized that c is full in mv(a, b). For let R ∈ V (I)

with

e  ∀x ∈ a∃y ∈ b.(x, y) ∈ R (6.1.23)

Then for all (f, x) ∈ a there is a pair (f, y) ∈ I such that r(ef)  (x, y) ∈ R. By c′

being full in mv(a, b), there is an r ∈ c′ such that

∀x ∈ a∃y ∈ b.(x, y) ∈ r ∧ (x, y) ∈ R (6.1.24)

So it is (uniformly) realized  r̄ ⊆ R and  r̄ ∈ c. Thus c ∈ V (I) ∩ I is realized to be

full in a, b, which is what we needed to prove.
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6.2 A second Inaccessible

This model contains also a second inaccessible based on I which we intend to define

now:

Definition 6.6. Define inductively a subset Ĩ0 ⊆ Ī:

If A ∈ Ī such that for all (a, b) ∈ A, it holds that b ∈ Ĩ0 and for suitable e, c, we have

a = pce and

b = {z|∃x ∈ c.e ◦ x = z} (6.2.25)

Then also A ∈ Ĩ0.

Define Ĩ ∈ V (I), Ĩ ⊆ Ī as follows:

If a ∈ I, b ∈ Ĩ0 such that it holds that for suitable e, c, we have a = pce and

b = {z|∃x ∈ c.e ◦ x = z} (6.2.26)

Then (a, b) ∈ Ĩ .

This also describes an inaccessible set. To prove it, we need to use a member of the pca

calculating an element of Ĩ by its address in Ĩ:

Lemma 6.7. There is a realizer eĨ such that for all (a, b) ∈ Ĩ , we have

eĨ ◦ a = b (6.2.27)

Proof. This can easily be pieced together from the basic functions represented in the

pca. One possibility for eĨ is:

eĨ := λx.im(ab(rx)(lx))(lx) (6.2.28)

We will use the constant eĨ for the realizer constructed in this proof for the rest of this

chapter.



6 HOW MANY LARGE SETS ARE THERE? 125

Theorem 6.8.

V (I)  Ĩ is inaccessible. (6.2.29)

Proof. We show that Ĩ is transitive, regular and models several set theoretic axioms:

1. Transitivity: If er is a realizer for reflexivity, then

λxy.pyer  ∀a ∈ Ĩ∀x ∈ a.x ∈ Ĩ (6.2.30)

by construction of Ĩ .

2. Regularity: Let R ∈ V (I), (pa0f, a) ∈ Ĩ an arbitrary element of Ĩ and

e  ∀x ∈ a∃y ∈ Ĩ .(x, y) ∈ R (6.2.31)

Let b ∈ Ĩ0 be defined as

b := eĨ ◦ (pa0(λx.pxeĨ(l(e(fx))))) (6.2.32)

And note that

(pa0(λx.pxeĨ((e(fx))0)), b) ∈ Ĩ (6.2.33)

Then we have

λx.ex  ∀x ∈ a∃y ∈ b.(x, y) ∈ R (6.2.34)

For let (g, x) ∈ a, then there is (l(eg), y) ∈ I with r(eg)  (x, y) ∈ R. By

definition of b, also (l(eg), y) ∈ b and thus ex  ∃y ∈ b.(x, y) ∈ R. Also we have

λx.ex  ∀x ∈ a∃y ∈ b.(x, y) ∈ R (6.2.35)

For let (g, y) ∈ b, then by definition of b, there for some g, x ∈ a, we have

(l(eg), y) ∈ I and r(rg)  (x, y) ∈ R. Thus ex  ∃y ∈ b.(x, y) ∈ R.

This proof demonstrates a useful motif which we will have occasion to reapply

often: When it is more convenient to construct the realizer why some set should

be in Ĩ than writing down that set itself (in this case b), Lemma 6.7 can be used to

obtain a complete element of Ĩ0 just from the realizer for why it should be in Ĩ .
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3. Pairing: Let (pa0f, a), (pb0f, b) ∈ Ĩ , then a version of the pair of a and b is repre-

sented by the set

{(0, a), (1, b)} (6.2.36)

and with h : 2→→ {(0, a), (1, b)}, h(0) := (0, a), h(1) := (1, b)

(p2(λx.f̄ahx))), {(0, a), (1, b)}) ∈ Ĩ (6.2.37)

Furthermore, their relationship is computable inside the pca.

4. Union: Let (pa0f, a) ∈ Ĩ , then a version of the union of a is represented by the set

{(pxy, c)|∃b.(x, b) ∈ a ∧ (y, c) ∈ b} (6.2.38)

and this is a surjective image of

d := σ̄(a0(p0(fa))) (6.2.39)

courtesy of the function represented by

g := λx.̄(px0x1, pr1fa(fx0)x1)̄ (6.2.40)

where (̄, )̄ is an computation for internal ordered pairs and pr1 for the internal

projection on the first component possible by the constructions for pairing above.

So (d, g) ∈ Ĩ being computable in the pca witnesses Union.

5. Natural numbers: Starting with the empty set which is represented by ∅ ∈ Ĩ ,

there is a canonical representation of every natural number n in Ĩ by recursively

repeating the constructions given above for pairing and union. Let f : ω → Ĩ0

the function enumerating this. Then the following set represents a version of the

natural numbers.

(pω(λx.f̄afx), eĨpω(λx.f̄afx)) ∈ Ĩ (6.2.41)

6. ∆0-Separation: Let Φ(x,−→a ) be a ∆0 formula with parameters in Ĩ0. By the results

of [Rat06] (in particular Lemma 3.7), the set of realizers for ∃x ∈ bΦ(x,−→a ) is

computable in the pca, so the set ({e|e  ∃x ∈ bΦ(x,−→a }, λx.lb(lx)), which

serves as the Separation set, is computably in Ĩ .
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7. Exponentiation: Let (pa0f, a), (pb0f, b) ∈ Ĩ . Then any set f ∈ Ĩ0 which is real-

ized to be a function from a to b by some realizer e must send elements (g, x) ∈ a

to elements (e′g, y) ∈ b with e′ easily computable from e (and depending on the

exact logical form in which we express f : a → b), i.e. be a member of πa0g

where g is the constant function aba0(λx.b0). Thus πa0g serves as a computable

set to enumerate (a superset of the set of) all functions realized to be from a to

b (and which can be computed from an element of πa0g in a straightforward but

tedious way).

8. Fullness: While this could also be proved directly, it conveniently follows from Ĩ

modelling Exponentiation and the Presentation Axiom (see Proposition 6.12 be-

low) as those two statements together implying Fullness (see [AR01]).

This concludes the proof of theorem 6.3, 1→ 2, considering that

Remark 6.9.

 Ī 6= Ĩ (6.2.42)

In fact, we have the more useful

Lemma 6.10.

 Ĩ ( Ī (6.2.43)

Proof. As Ĩ ⊆ Ī holds in the background universe, the subset relation is also realized.

If there were a realizer for the other direction, it would imply the existence of an e such

that for all (f, a) ∈ Ī there is an (ef, b) ∈ Ĩ with  a = b. In particular, for each a ∈ Ĩ ,

(0, a) ∈ Ī and so there is an (e0, b) ∈ Ĩ with  a = b. This implies that every a ∈ Ĩ is

a surjective image of e0. This would apply in particular to a in the canonical copy of I

contained in Ĩ and is thus a direct contradiction to I being regular.

Summarizing this part of the proof of Theorem 6.3, this amounts to a relativized model

construction such that
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Corollary 6.11.

 There are two different inaccessibles

such that one is a proper subset of the other. (6.2.44)

Ĩ and choice principles

While not strictly necessary for our goal to prove the consistency of larger numbers of

inaccessible cardinals2, the following propostition might be of general interest.

Recall that the Presentation Axiom PAx states that every set is the surjective image of a

base, i.e. a set such that every total relations whose domain is this set extend a function

defined on the same domain.

Proposition 6.12.

 (Ĩ � PAx) (6.2.45)

Proof. Let (pa0f, a) ∈ Ĩ . Recall that skk is an index for the identity function. We have

b := (pa0(skk), a0) ∈ Ĩ (6.2.46)

And it is realized that Ĩ models that a is a surjective image of b by virtue of the (unique)

element of Ĩ with first component

pa0(λx.̄(x, fx)̄) (6.2.47)

Where (̄, )̄ is an computation for ordered pairs possible by the portions on pairing in the

proof above.

It is also realized that Ĩ models its element b to be a base, as from

e  ∀x ∈ b∃y ∈ Ĩ .(x, y) ∈ R (6.2.48)

2While the proof of Ĩ modelling Fullness as presented above does refer to Ĩ modelling the Presentation

Axiom, of course Fullness could also have been proved directly.
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it follows that a function containing pairs of the form (x, eĨ(ex)1) is included in R and

this is computable in the pca.

Note that while b is realized to be modeled a base in Ĩ , it is not necessarily realized

to be an actual base respective to the whole of V (I). This bears some resemblance to

realizability models proving ACω,ω, but not necessarily ACω itself.

A further interesting feature of Ĩ is the following:

Proposition 6.13.

 Ĩ is ∗ -regular. (6.2.49)

Proof. Let e, C,D be such that

e  ∀x ∈ Ĩ .x ∈ C → ∃y ∈ Ĩ .x ∈ C ∧ (x, y) ∈ D (6.2.50)

and let (pa0f, a) ∈ Ĩ such that f  a ∈ C. By virtue of the pca admitting recursion,

find an index g such that f ◦ 0 = pa0f and for a representing natural numbers,

g ◦ sNa = (e(ga))0 (6.2.51)

Then the set

p(imgω)(λx.x), imgω) ∈ Ĩ (6.2.52)

is computable in the pca and as required by the ∗-property, as it is computably realized

that a is an element and the set is closed under the total relation C.

This section can be distilled to the following corollary.

Corollary 6.14. Ĩ models the Presentation Axiom and the axiom RDC of relativized

dependent choices.

Proof. Arguing internally, the ∗-property implies that the Relation Reflection Scheme

RRS is modelled. PAx implies DC and DC plus RRS implies RDC.
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6.3 A third Inaccessible

It is interesting to note that I×Ĩ0 is also realized to be inaccessible. This is a uniformized

set that relates to Ĩ much like ω0 := {(k, n̄)|n ∈ ω} relates to ω̄ = {(n, n̄)|n ∈ ω}

(where n̄ and ω̄ are internal representations of the ordinals n and ω respectively). In fact,

Proposition 6.15. There is an e ∈ I such that both

e  Ĩ is inaccessible (6.3.53)

And

e  I × Ĩ0 is inaccessible (6.3.54)

Proof. This is just the realizer constructed in the proof of Theorem 6.8. Note that for

I×Ĩ , the realizers for a∈̇I×Ĩ need not be so complicated, but complicated realizers work

as well, and as l and r are always defined, so are the choices in the proof of Theorem

6.8.

Remark 6.16. Of course, we have again that

V (I)  I ( I × Ĩ0 (6.3.55)

6.4 Another ω Inaccessibles

Consider the Cartesian product of ω many pcas such as from the proof of theorem 6.3,

1→ 2.

Definition 6.17. On the set ωI define a partial application ◦ω : ωI →p
ωI such that

f ◦ω g ↓ :↔ ∀n ∈ ω.f(n) ◦ g(n) ↓ (6.4.56)

And if f ◦ω g ↓, then define

(f ◦ω g)(n) := f(n) ◦ g(n) (6.4.57)
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Remark 6.18. 1. We will also sometimes write fg for f ◦ω g, which of course over-

loads the term somewhat, as it could be interpreted as ◦ : I →p I or ◦ω : ωI →p

ωI (note that ωI ⊆ I). We will take care not to cause confusion as to which of the

two application functions we are talking about in any given context. It helps that

the application from last section can only denote a value when the first element is

a finite tupel with a natural number in first place, while this one can only denote

a value if the first element is a function from ω to finite tupels such that the first

component is always a natural number.

2. As the cartesian products of pcas are again pcas, ( ωI, ◦ω) describes a pca, or an

applicative topology when setting∇ = ωI , a ≤ b :↔ a = b and aC p :↔ a ∈ p.

We are interested in the model V( ωI). Inside that model we will construct a set that

behaves like Ĩ in some components and like I × Ĩ0 in others.

Definition 6.19. Define inductively a set I ′0 ∈ V ( ωI):

If A ∈ I ∩ P( ωI × I) such that for all (a, b) ∈ A, it holds that b ∈ I ′0 and for all n ∈ ω,

there are e, c ∈ I , such that we have a(n) = pce and

b = {z|∃x ∈ c.e ◦ x = z} (6.4.58)

Then also A ∈ I ′0.

For N ⊆ ω, define IN ∈ V ( ωI), IN ⊆ I as follows:

If a ∈ ωI, b ∈ I ′0 such that it holds that for all n ∈ N , there are e, c ∈ I , such that we

have a(n) = pce and

b = {z|∃x ∈ c.e ◦ x = z} (6.4.59)

Then (a, b) ∈ IN .

Theorem 6.20. Let N ⊆ ω. Then it is uniformly realized that

V ( ωI)  IN is inaccessible (6.4.60)
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Proof. This is completely analogous to the proof of Theorem 6.8. The only crucial

observation is that the same realizer that realizes the inaccessibility of Ĩ also realizes the

inaccessibility of the components of IN (by Proposition 6.15), so that there need not be

any case distinction whether a component n is in N or not.

It is now easy to find ω different inaccessibles in this model. One candidate would be

the sequence I{0}, I{1}, I{2}, ...:

Lemma 6.21. Define f ∈ V ( ωI) as

f := {(̄n̄, I{n})̄|n ∈ ω} (6.4.61)

Then

V ( ωI)  f : ω ↪→ {I|I inaccessible} (6.4.62)

Proof. By its definition, f is realized to be a function with domain ω̄. Its images are

inaccessible by the above theorem. The injectivity follows because there can only be a

realizer for I{n} = I{m} if the numbers n and m are actually equal (just as there was no

realizer for Ī = Ĩ and using that if two natural numbers cannot be different, then they

are equal) and then the realizer for reflexivity realizes n = m.

This also proves Theorem 6.3, 1→ 3.

6.5 A Proper Class of Inaccessibles

Recall the Subcountability axiom stating that

∀a∃f, b.b ⊆ ω ∧ f : b→→ a (6.5.63)

As shown by Rathjen in [Rat02], adding the Subcountability scheme to CZF or CZF +

REA does not increase the consistency strength of the theory. This is done by providing

an interpretation of set theory into an appropriate variant of Martin-L”of type theory into
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Kripke-Platek set theory, and that interpretation validates Subcountability. For the cor-

responding slightly stronger type theories and KP set theories ([GRT05], [Gib02]), this

works exactly the same for CZF plus the existence of an inaccessible, so that Subcount-

ability can also be added to the theory from theorem 6.3, part 1.

Thus for the rest of this section, work in the theory CZF plus the existence of one inac-

cessible plus the axiom of Subcountability.

There is no reason to suppose that Subcountability is absolute for realizability models,

but a very easy consequence (e.g. proved in [Rat02]) is the negation of the Powerset

axiom, and this is absolute for realizability models:

Lemma 6.22. The negation of the Powerset axiom is absolute for realizability models.

In other words, for any pca A, we have

@x.x = P(1)→ V (A)  @x.x = P(1) (6.5.64)

Proof. Suppose there is no powerset of 1 in the background universe, but there is an

a ∈ V (A) and an e such that

e  ∀x.x ⊂ 1→ x ∈ a (6.5.65)

Define a set P ⊆ P(1) by

P := {{0|x inhabited}|(f, x) ∈ a} (6.5.66)

then for each ϑ ∈ P(1), we have

λx.p00  {(0, ∅)|ϑ inhabited} ⊆ 1 (6.5.67)

So we have

e(λx.p00)  {(0, ∅)|ϑ inhabited} ∈ a (6.5.68)

Thus for some (f, x) ∈ a,

(e(λx.p00)0)1  {(0, ∅)|ϑ inhabited} = x (6.5.69)
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It follows directly from the definition of realizability for equality that if two sets are

realizedly equal, one is inhabited if and only if the other is. So

x inhabited↔ ϑ inhabited (6.5.70)

This means that

P 3 {0|x inhabited} = {0|ϑ inhabited} = ϑ (6.5.71)

Thus P = P(1), which is a contradiction.

Working in the realizability model V (I) from before, the relevant consequence of lemma

6.22 is that there can be no powerset of 1. If there were a set A containing all inaccessi-

bles, then in particular there would be a set

B := {J ∈ A|Ĩ ⊆ J ⊆ Ī} (6.5.72)

For each ϑ ⊆ 1, there is thus another inaccessible

Ĩ ∪ {i|i ∈ Ī ∧ ϑ inhabited} ∈ B (6.5.73)

Thus, the following equality holds

{{0|x = Ī}|x ∈ B} = P(1) (6.5.74)

In particular P(1) would be a set. This is a contradiction to the negation of the Powerset

axiom and thus concludes the proof of Theorem 6.3, parts 1→ 4 and 1→ 5.

6.6 Proper Classes and Inexhaustible Classes

One of the strongest sensible ways to express the classical concept of properly “class

many” constructively is to require that for every set of objects, there needs to exist a new

one not contained in that set. This demands more than just that the class not be a set,
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but that it is possible to find new members of that class which are different from any

number of previously given. We will call this concept inexhaustible and a class with

inexhaustibly many elements an inexhaustible class.

Definition 6.23. Call a class Γ an inexhaustible class if ∀A ⊆ Γ∃a ∈ Γ.a /∈ A. Say that

there are inexhaustibly many sets with a certain property if their class is inexhaustible.

Example 6.24. 1. There are inexhaustibly many sets, as for any set a ∈ V , there is a

set distinct from each member of a (namely a itself, as implied by Set Induction). In

fact, even without the axiom of Set Induction, the following argument from [AR01]

can be read as a proof that there are inexhaustibly many sets: Associate to each

set a of sets its Russel set {x ∈ a|x /∈ x} /∈ a. By the same token, Set Induction is

not needed to show that the Russel class {x|x /∈ x} is an inexhaustible class.

2. There are inexhaustibly many ordinals, as for any set of ordinals A ⊆ On, the

ordinal next(A) = A ∪
⋃
A is different from each ordinal in A.

3. The axiom of Subcountability not only implies that there are weakly class many

subsets of 1 (in the sense that their class does not form a set), but also that there

are inexhaustibly many subsets of ω.

Proof. This is just a way of looking closely at Cantor’s diagonal argument: Let

A ⊆ P(ω), a ⊆ ω and f : a→→ A, then a new set would be

{n ∈ ω|n ∈ a ∧ n /∈ f(n)} ∈ P(ω)− A (6.6.75)

The last example indicates that while the concept of weakly class many can not distin-

guish between the powerclasses of different inhabited sets (as was e.g. proved in [AR01],

the powerclass of an inhabited set is a proper class if and only if any other powerclass of

an inhabited set is), this concept of inexhaustibly many can: While under Subcountabil-

ity there are inexhaustibly many subsets of ω, there is no reason to suppose there to be

inexhaustibly many subsets of 1.
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Open Question 6.25. Is it consistent with CZF that there are two inhabited sets A,B

such that A has inexhaustibly many subsets, while B has not?

For even a slight weakening of the concept of inexhaustibly many subsets, this fails:

Proposition 6.26. If one inhabited set A has the property that for every set B ∈ P(A)

there is a B′ ∈ P(A) with B ( B′, then every inhabited set has this property.

Proof. Assume A has the property from the proposition. We only need to show that

P(1) has this property, then it directly follows for all inhabited sets. To see that, let

B ∈ P(1) be a set. Consider

C := {X ∈ P(A)|∀a ∈ A.Ja ∈ CK ∈ B} (6.6.76)

By Exponentiation, this is a set. Thus by assumption, there is a D with C ( D ⊆ P(A).

Let

E := {Ja ∈ dK|a ∈ A, d ∈ D} (6.6.77)

Then B ( E ⊆ P(1), as B = E would imply C = D.

6.7 An Inexhaustible Class of Inaccessibles

While Subcountability is not absolute for V (I) or V ( ωI), one of its consequences is:

Proposition 6.27. The statement that ω has inexhaustibly many subsets is absolute for

realizability models. In other words, for any pca S, if ω has inexhaustibly many subsets,

then

V (S)  ω has inexhaustibly many subsets. (6.7.78)

Proof. Let A ∈ V (S) and e  A ⊆ P(ω), i.e. for all (f, a) ∈ A and (g, x) ∈ a

there is a natural number n such that l(efg) = n and r(efg)  x = n̄ for canonical

representations n 7→ n of natural numbers in S and n 7→ n̄ of natural numbers in V (S)

(compare [Rat03b]). Define
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A′ := {{n ∈ ω|∃(g, x) ∈ a.  x = n̄}|(f, a) ∈ A} ⊆ P(ω) (6.7.79)

Then this is a collection of subsets of ω, so by Example 6.24, there is an N ′ ⊆ ω with

N ′ /∈ A′. Define

N := {(n, n̄|n ∈ N ′)} ⊆ ω̄ = {(n, n̄)|n ∈ ω} (6.7.80)

Then λx.pxer realizes that this is a subset of the natural numbers, since it is a subset of ω̄,

a canonical representation of the natural numbers in V (S). And any realizer realizes that

it is not an element of A, for assume otherwise, i.e.  N ∈ A. Then there is (f, a) ∈ A

with an  a = N . We want to show that

N ′ = {n ∈ ω|∃(g, x) ∈ a.  x = n̄} ∈ A′ (6.7.81)

From  a ⊆ N we conclude that for all (g, x) ∈ a there is an n ∈ N ′ with some

l(hg) = n and r(hg)  x = n̄. If also  x = n̄′, then  n̄ = n̄′ and so n = n′. Thus

any element in {n ∈ ω|∃(g, x) ∈ a.  x = n̄} is also in N ′.

On the other hand, let n ∈ N ′. From  N ⊆ a we conclude that there is an (g, x) ∈ A

with some l(hn) = g and r(hn)  x = n̄. Thus n ∈ {n ∈ ω|∃(g, x) ∈ a.  x = n̄}.

This however is a contradiction to N ′ /∈ A′. So no realizer can realize N ∈ A and thus

any realizer realizes N /∈ A.

This means that assuming Subcountability in the background, the realizability model

V ( ωI) realizes that there are inexhaustibly many subsets of ω. We use this to find

inexhaustibly many inaccessibles, basically relying that we have P(ω) many different

inaccessibles in V ( ωI).

Lemma 6.28. (Subcountability)

V ( ωI)  There are inexhaustibly many inaccessibles. (6.7.82)
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Proof. Let A ∈ V ( ωI) and  ∀x ∈ A.x inaccessible. We need to find an I ∈ V ( ωI)

such that some fixed realizer realizes  I is inaccessible and  I /∈ A.

While the class {B ⊆ ω|  IB ∈ A} can not easily seen to be a set, the following class

is a set by ∆0-Separation (note that the class of realizers for a bounded formula is a set

by [Rat03b]), Union and Replacement:

N := {{n ∈ ω|  I{n} ⊆ a}|(f, a) ∈ A} ⊆ P(ω) (6.7.83)

By Subcountability, there is a N ′ ⊆ ω with N ′ /∈ N . Then consider the set IN ′ which

is realized to be an inaccessible. If there were a realizer  IN
′ ∈ A, then for some

(f, a) ∈ A, it is realizer IN ′ = a. But then for all n ∈ N ′, it is realized that I{n} ⊆ a

by transitivity of equality and conversely it can only be realized that  I{n} ⊆ IN
′ if

actually n ∈ N . This is a contradiction to N ′ /∈ N .

This finalizes the proof of the theorem.

Remark 6.29. (Stacking Inaccessibles) The results in this chapter produced inaccessi-

bles I1 ( I2 and could be used to produce longer chains I1 ( I2 ( I3 ( ... as well

by iteration. However, in the absence of a principle like the trichotomy of ordinals, this

does not produce a stack I1 ∈ I2 ∈ ... of ordinals as in the classical case. This is no ac-

cident: It is obvious that claiming the existence of such a stack would increase the proof

theoretic strength for purely Gödelian reasons alone, as I2 would then be a model for

CZF plus the existence of an inaccessible and its existence would prove the consistency

of CZF plus an inaccessible and similarly I3 would be a model of CZF plus a stack of

inaccessibles of length 2 and so on.

In other words, in CZF the consistency strength of inaccessibles does not stem from

sheer number but from their arrangement in the universe and towards each other.
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Chapter 7

A Closer Look into Mahlo Sets

This chapter aims at investigating several facets of Mahloness.

In Section 7.1 we will explore the constructive theory of clubs, a concept closely con-

nected to Mahlo sets. This turns out to be not only a natural object of study in connection

with large sets but also an area of application for axioms developed to substitute choice,

namely RRS and ∗-regularity axioms. It will also lead to some new characterisations for

Axiom M (and thus for Mahlo sets, as these are the inaccessibles modeling Axiom M).

In Section 7.2 we will combine our results on clubs with the modified von Neumann

hierarchy developed in Chapter 5 to reconcile the classical and constructive definitions

of Mahloness. It will turn out that even though the classical definition at first glance

looks sterile without the excluded middle, it is actually equivalent to the one used by

constructivists instead.

Finally in Section 7.3 we will use Mahloness to prove new and useful induction prin-

ciples and find out exactly how much induction is contained in Axiom M (and thereby

in Mahlo sets, as these are the inaccessibles modeling Axiom M). For this we will use

induction principles related to Induction Recursion in type theory and a nondeterministic

variation of this.
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7.1 A Constructive Rendering of Clubs

7.1.1 Preliminaries and Definitions

The constructive version of Mahloness uses total relations, which are a very useful tool

in the absence of the excluded middle. Classically however, clubs are used, which al-

lows the even more powerful tool of ordinals to enter the arena. Ordinals being more

unwieldy in a constructive setting seems to be the reason why clubs have been discarded

as a medium to cast the concept of Mahloness in CZF. However, with care this can be

remedied, although some attention needs to be paid to choose a rendering of the concept

of club that retains its potency in a constructive context.

Definition 7.1. Let C ⊆ On be a class of ordinals. An ordinal α is called a limit point

of C, written α ∈ Lim(C) if it is inhabited and

∀β ∈ α∃γ ∈ α.β ∈ γ ∈ C (7.1.1)

The class C is called closed if it contains all its limit points, i.e., if Lim(C) ⊆ C.

The class C is called unbounded if

∀β∃γ.β ∈ γ ∈ C (7.1.2)

The class C is called a club if it is closed and unbounded. It is called a club in A if A is

a transitive class which models

A � C ∩ A is a club. (7.1.3)

Usually, the concept of C being a club in A is only used if A is an ordinal or an inac-

cessible set. In any case, C is a club in A iff it is a club in On ∩ A and in particular

for A being inaccessible, the clubs in A are exactly the clubs in rk(A). Generally, the

following is a nice characterisation for which classes are clubs in some fixed ordinal.
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Lemma 7.2. Let C ⊆ On be a class of ordinals and α ∈ On. Then C is a club in α iff

the following conditions are both met:

1. Lim(C) ∩ α ⊆ C

2. α ∈ Lim(C)

Proof. This is just examining what α � C ∩ α closed and α � C ∩ α unbounded mean,

respectively. The second part is direct, for the first one, the literal unwinding of the

definition would be

Lim(C ∩ α) ∩ α ⊆ C ∩ α (7.1.4)

So assume Equation 7.1.4. Let β ∈ Lim(C) ∩ α, so β ∈ α and for all γ ∈ β there

is a δ ∈ β with γ ∈ δ ∈ C. By transitivity, also for all γ ∈ β there is δ ∈ β with

γ ∈ δ ∈ C ∩ α, so β ∈ Lim(C ∩ α) and also β ∈ α, so 7.1.4 implies β ∈ C ∩ α, in

particular β ∈ C.

Conversely, assume Lim(C)∩α ⊆ C, we want to show 7.1.4. So let β ∈ Lim(C∩α)∩α.

For any γ ∈ β, there is δ ∈ β with γ ∈ δ ∈ C ∩α, so in particular β ∈ Lim(C) and thus

β ∈ C. So β ∈ C ∩ α.

Limit points can also be characterised differently:

Lemma 7.3. Let C ⊆ On, α ∈ On. Then the following are equivalent:

1. α ∈ Lim(C)

2. α is inhabited and α =
⋃

(α ∩ C)

Proof. Let α ∈ Lim(C) (in particular α is inhabited) and β ∈ α. Then for some

γ ∈ α ∩ C, we have β ∈ γ. So α ⊆
⋃

(α ∩ C). On the other hand, if β ∈
⋃

(α ∩ C),

then by transitivity β ∈ α, so α =
⋃

(α ∩ C). This proves 1→ 2.
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Let α =
⋃

(α∩C) be inhabited. Then for each γ ∈ α, there is a γ′ ∈ α∩C with γ ∈ γ′.

Thus 2→ 1.

The limit points of On are also called limit ordinals. By Lemma 7.3, these are just the

inhabited fixed points of the
⋃

-function, i.e. those inhabited α which fulfill α =
⋃
α.

In a classical context, the limit ordinals are often defined as the nonzero ordinals closed

under successors, invoking the powerful classical duality that each ordinal is either

closed under successors (limit ordinals and 0) or a successor itself (successor ordinals).

In a constructive context however, it can happen that a limit ordinal not only is not closed

under successors, but actually does not contain any successors at all:

Remark 7.4. The principle that each limit ordinal contains at least one successor is

equivalent to the principle of the excluded middle for ∆0-formulae.

In particular, the principle that each limit ordinal contains at least one successor is

equivalent to the principle that each limit ordinal is actually closed under successors.

Proof. The only relevant direction is that the principle of all limit ordinals containing a

successor implies the principle of the excluded middle for ∆0-formulae. So assume that

all limit ordinals contain a successor.

Let Φ be a ∆0-statement. Define a class function sΦ : On → On by setting

sΦ(α) := α ∪ {α|Φ} ∪ {α ∪ {α|Φ}} (7.1.5)

This defines an ordinal, because all its elements are either elements of α (and thus sub-

sets), or equal to α itself and Φ is true (and thus the element is a subset) or equal to

α∪{α|Φ} and this is a subset: All its elements are either of the form β ∈ α and are thus

also in sΦ(α) or are equal to α and Φ is true. But if Φ is true, then α ∈ sΦ(α).

The class function s⊥ is just the ordinary successor function α 7→ α + 1 while s> is the

double successor function α 7→ α + 2.
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Consider

ωΦ :=
⋃
n∈ω

(sΦ)n(0) (7.1.6)

We want to show that ωΦ is a limit ordinal. In order to do this, let α ∈ ωΦ, so α ∈

(sΦ)n(0) for some n. Then

α ∈ (sΦ)n(0) ∪ {(sΦ)n(0)|Φ} ∈ (sΦ)n+1(0) ⊆ ωΦ (7.1.7)

Thus there is another element of ωΦ which contains α.

Now we want to show Φ∨¬Φ. In order to do this, prove the following by induction over

n:

∀α.α + 1 ∈ (sΦ)n(0)→ Φ ∨ ¬Φ (7.1.8)

Let α + 1 ∈ (sΦ)n(0), then n > 0. So there are three cases: Either α + 1 ∈ (sΦ)n−1(0),

in which case we are done by the induction hypothesis. Or α + 1 = (sΦ)n−1(0) and Φ,

in which case Φ ∨ ¬Φ holds. The third possibility is

α + 1 = (sΦ)n−1(0) ∪ {(sΦ)n−1(0)|Φ} (7.1.9)

In this case, α is an element of the right hand side, so either α ∈ (sΦ)n−1(0), which

implies ¬Φ as otherwise there would be an element larger than α in α + 1 (namely

(sΦ)n−1(0)), or otherwise α = (sΦ)n−1(0) and Φ holds. In any case, Φ∨¬Φ holds. This

proves statement 7.1.8.

By assumption, there is some successor ordinal α + 1 ∈ ωΦ and the definition of ωΦ

implies that it must be an element of some (sΦ)n(0), so by 7.1.8, we are done.

There is a plentiful multitude of clubs in the set theoretic universe:

Example 7.5. 1. On is a club. For all α ∈ On, the set α is a club in α.
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2. The limit ordinals form a club.

3. The clubs in ω are exactly the infinite sets of ordinals.

4. For any α ∈ On the principal club Cα is a club, where

Cα = {β ∈ On|α ∈ β} (7.1.10)

Proof. For the unboundedness, let β ∈ On. Classically, the ordinal (β ∪ α) + 1

contains both β and α and is thus an element of Cα. This however lies on the

trichotomy of ordinals and does not hold in CZF. However, the ordinal (β + 1) ∪

(α + 1) contains both β and is in Cα.

If β ∈ Lim(Cα), then there is some β0 ∈ β∩Cα. Thus α ∈ β0 ∈ β, which implies

β ∈ Cα and so Cα is closed.

5. For a set S ⊆ On, the filter FS generated by S is a club, where

FS = {β ∈ On|S ⊆ β} (7.1.11)

Proof. For the unboundedness, let β ∈ On. Consider the ordinal

γ := (
⋃
δ∈S

δ + 1) ∪ (β + 1) (7.1.12)

Then β ∈ γ and for all δ ∈ S, we have δ ∈ γ and thus γ ∈ FS .

Another example illustrates that the chosen definition of club connects well to the mod-

ified von Neumann hierarchy:

Example 7.6. For any set a, let class Ea be the class of ordinals where a enters the

modified von Neumann hierarchy, i.e.

Ea := {α|a ∈MP(V̂α)} (7.1.13)

1. Ea is a club.

2. For any inaccessible I , the set Ea is a club in I (or equivalently in rk(I)).
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Proof. 1. Ea is unbounded as for any α ∈ On, Lemma 5.13 implies that

a ∈MP(V̂r̂kα+1(a)) (7.1.14)

So r̂kα+1(a) ∈ Ea. But Definition 5.12 directly implies that α+ 1 ⊆ r̂kα+1(a), so

for arbitrary α ∈ On there is a member of Ea containing α.

Ea is closed as for any α ∈ Lim(Ea) and X ∈ V̂α, there is a β ∈ α such that

X ∈ MP(V̂β). Then as α is a limit point there is a γ ∈ α ∩ Ea with β ∈ γ so

a ∈MP(V̂γ). This can only be the case if Ja ∈ XK ∈ V̂γ ⊆ V̂α and a ⊆ V̂γ ⊆ V̂α.

Thus a ∈MP(V̂α) or in other words α ∈ Ea.

2. We show that both conditions from Lemma 7.2 are met. Obviously Lim(C) ∩

rk(I) ⊆ Lim(C) ⊆ C by the first part of the proof. So for the second condition,

let β ∈ rk(I). Then by Lemma 5.17 also β ∈ r̂kβ+1(a) ∈ I and by Lemma 5.13

r̂kβ+1(a) ∈ Ea, so I ∈ Lim(Ea).

7.1.2 Limits of Clubs

The results of this section usually either require full AC or at least require that ordinals

admit choice, i.e. that in the theory ZF, any total relation R ⊆ a × α has a function

f : a → α as a subset. This is a consequence of the minimal element principle which

does not hold in CZF.

Instead, following e.g. [Acz08], we will use Aczel’s principles of RRS and ∗-REA to

eliminate the use of choice.

Proposition 7.7. 1. Let C ⊆ On be unbounded (e.g. a club) and assume RRS. Then

Lim(C) is a club.

2. Let A be inaccessible, ∗-regular and C ⊆ On be unbounded in A (e.g. a club in

A). Then Lim(C) is a club in A.
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Proof. 1. Let C be a club. Then Lim(C) is closed, for let

α ∈ Lim(Lim(C)) (7.1.15)

be a limit point of Lim(C), i.e. let α be inhabited and

∀β ∈ α∃γ ∈ α.β ∈ γ ∈ Lim(C) (7.1.16)

We want to show that α ∈ Lim(C). So let β ∈ α. Then there is a γ ∈ α∩Lim(C)

with β ∈ γ. So by definition of Lim(C), there is a δ ∈ γ ∩ C with β ∈ δ. As by

transitivity δ ∈ α ∩ C, this proves that α is a limit point of C.

The main part is to show that Lim(C) is unbounded. For this, fix α0 ∈ On. Define

the class relation R : On ⇒ On by

(α, β) ∈ R :↔ α ∈ β ∧ β ∈ C (7.1.17)

As C is unbounded, this is total. So let by RRS D ⊂ On be a set with α0 ∈ D and

R : D ⇒ D. Set

γ :=
⋃

D (7.1.18)

Then asR is total onD, there is an element β ∈ D with (α, β) ∈ R, so α ∈ β ∈ D

and thus α ∈ γ =
⋃
D.

We claim that γ ∈ Lim(C). To see this take an arbitrary δ ∈ γ. Then there exists

some δ′ ∈ D with δ ∈ δ′. So by R : D ⇒ D, there is a δ′′ ∈ D with δ′′ ∈ C and

δ′ ∈ δ′′. Again by R : D ⇒ D, there is a δ′′′ ∈ D with δ′′ ∈ δ′′′. So

δ∈δ′∈δ′′∈δ′′′ ∧ δ, δ′, δ′′, δ′′′ ∈ D ∧ δ′′ ∈ C (7.1.19)

Thus

δ ∈ δ′′ ∈ γ ∧ δ′′ ∈ C (7.1.20)

And this is what was to show.

2. Analogous. All these calculations can be made inside a set modeling the theory

used for them, i.e. CZF plus RRS.
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The second part of this proposition can be improved in two different ways by tweaking

the condition on α: First it will be shown that α does not need to fulfill the ∗-condition if

it is Mahlo (a proof theoretically stronger concept, but one that does not directly imply

∗-regularity), then it will be shown that A does not need to fulfill inaccessibility but only

regularity as long as it models RRS.

The proof will make use of the following lemma.

Lemma 7.8. If A is
⋃

-regular and 2 ∈ A, then rk : A→ A and

rk(A) =
⋃
a∈A

rk(a) (7.1.21)

Proof. Use induction over a to show the statement

a ∈ A→ rk(a) + 1 ∈ A (7.1.22)

Let a ∈ A and for all b ∈ a we have rk(b) + 1 ∈ A. Then by regularity there is c ∈ A

with ∀b ∈ a.rk(b) + 1 ∈ c. So
⋃
c = rk(a) ∈ A. As 2 ∈ A, the regular set A is closed

under pairing, so
⋃
c+ 1 is also in A.

This shows that A is closed under rk.

To prove the claimed equality, let α ∈ rk(I), i.e., let α ∈ rk(a) + 1 for some a ∈ A.

Then rk(a) + 1 ∈ A and thus

α ∈ rk(a) + 1 = rk(rk(a) + 1) ⊆
⋃
a∈A

rk(a) (7.1.23)

Conversely, let α ∈
⋃
a∈A rk(a), i.e., let α ∈ rk(a) for some a ∈ A, then also α ∈

rk(a) + 1 and thus α ∈ rk(I).

Proposition 7.9. Let M be Mahlo and C ⊆ On be unbounded in M . Then Lim(C) is a

club in M .

Proof. Mahlo cardinals reflect all total relations, but as it was defined in Equation 7.1.17

of the proof of Proposition 7.7, R was not total onM but only on rk(M). However, there

is an easy trick to extend it to a total relation by use of the rk-function:
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To show that Lim(C) is unbounded inM , fix α ∈ On∩M . Define a relationR : M ⇒M

by

(a, (b0, b1)) ∈ R :↔ rk(a) ∈ b0 ∧ b0 ∈ C ∧ b1 = α (7.1.24)

As C is unbounded and rk : M → M , this is total. So let D ∈ M be inaccessible with

R : D ⇒ D. Set

γ := rk(D) (7.1.25)

Then as R is total on D, there is an element of the form (b, α) ∈ D with (0, (b, α)) ∈ R,

so α ∈ D and

α = rk(α) ∈ rk(D) = γ (7.1.26)

We claim that γ ∈ Lim(C). To see this take an arbitrary δ ∈ γ. Then by Lemma 7.8

there exists some d′ ∈ D with δ ∈ rk(d′) =: δ′ ∈ D as D is closed under rk. So

by R : D ⇒ D, there is a d′′ ∈ D with rk(d′′) =: δ′′ ∈ C and δ′ ∈ δ′′. Again by

R : D ⇒ D, there is a d′′′ ∈ D with rk(d′′′) =: δ′′′ ∈ D with δ′′ ∈ δ′′′. So

δ∈δ′∈δ′′∈δ′′′ ∧ δ, δ′, δ′′, δ′′′ ∈ D ∧ δ′′ ∈ C (7.1.27)

Thus

δ ∈ δ′′ ∈ γ ∧ δ′′ ∈ C (7.1.28)

And this is what was to show.

Closedness follows just the same as before.

Alternatively the limits of a club also form a club with a proof theoretically weaker

assumption:

Proposition 7.10. Let A be ∗-regular and C ⊆ On be unbounded in A. Then Lim(C) is

a club in A.

Proof. Just as Proposition 7.7, noting that the constructions can all be carried out in a

∗-regular set. We need the ∗-property once to construct D ∈ A and the
⋃

-property once

to obtain γ :=
⋃
D.
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7.1.3 Intersections of Clubs

It is a well known fact that in classical set theory, if β 6= 0 and (Cα)α<β are clubs, then

so is
⋂
α∈β Cα (e.g. [Kan03]).1 The closedness is easy to prove, and the unboundedness

follows in a straightforward way as well: Define recursively a monotone function f :

β ·ω → On with a fixed starting value f(0) being fixed and f(β · n+α) ∈ Cα. This can

easily be done as all the Cα are unbounded, so there is an ordinal in Cα which is bigger

than the range of the function defined so far. Then the supremum of the function is an

element of the intersection
⋂
α∈β Cα that is bigger than f(0).

This however made use of a choice principle when defining the function f , namely

AC(On,On). From the perspective of ZF, this choice principle is perfectly valid as it

follows from the classical fact that inhabited classes of ordinals have a least element.

This is not the case constructively however, so a constructive theory of clubs that wants to

admit intersections must either include this choice principle or find a way to circumvert

its use.

It turns out that working with RRS (and RRS-regularity for clubs in sets) can replace this

use of choice, just as for the situation with limits of clubs. This is somewhat unusual,

as commonly this principle is used to replace (relative) dependent choice [Acz08], not

ordinal choice.

Theorem 7.11. (RRS) Let I be a set and for each i ∈ I , let Ci ⊆ On be a club. Then

C :=
⋂
i∈I

Ci (7.1.29)

is a club.

Proof. Set

C :=
⋂
i∈I

Ci (7.1.30)

1While this is the form the theorem is usually stated, it can be proved for the index set an arbitrary

nonzero set instead of an ordinal in the same way, without needing additional choice principles.
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To see closedness, let α ∈ Lim(C). Then α is inhabited and for all β ∈ α, there is a

γ ∈ α with β ∈ γ ∈ C. As for any i ∈ I we have C ⊆ Ci, it also holds that γ ∈ Ci for

each i ∈ I . Thus for each i ∈ I , it follows that α ∈ Lim(Ci). As the Ci are closed, it

follows that

α ∈
⋂
i∈I

Lim(Ci) ⊆
⋂
i∈I

Ci = C (7.1.31)

To see unboundedness, let α0 ∈ On. Define the class Γ as

Γ =
⋃
n∈ω

{r ⊆ (n× I)× On|r : n× I ⇒ On} (7.1.32)

Define a relation R : Γ ⇒ Γ by setting (r, r′) ∈ R iff for suitable n and n′ the domains

of r and r′ are n× I and n′ × I respectively, and the following all hold

1. n′ = n+ 1

2. ∀m < n∀i ∈ I∀α ∈ On.(m, i, α) ∈ r → (m, i, α) ∈ r′

3. ∀i ∈ I∀α ∈ On.(n, i, α) ∈ r′ → α ∈ Ci

4. ∀m < n∀i, j ∈ I∀α, β ∈ On.(n, i, α) ∈ r′ ∧ (m, j, β) ∈ r → β ∈ α

We claim that R is total on Γ. For let r ∈ Γ, i.e. for some n ∈ ω let

r : n× I ⇒ On (7.1.33)

Now set

αsup :=
⋃

∃i∈I.(m,i,α)∈r

(α + 1) ∈ On (7.1.34)

Note that
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∀i ∈ I,m < n, α ∈ On.(m, i, α) ∈ r → α ∈ αsup (7.1.35)

Now by unboundedness of the Ci, it is true that

∀i ∈ I∃y∃α.y = (n, i, α) ∧ α ∈ Ci ∧ αsup ∈ α (7.1.36)

By Strong Collection, collect enough such y in a set, i.e. find a set a such that

∀i ∈ I∃y ∈ a∃α.y = (n, i, α) ∧ α ∈ Ci ∧ αsup ∈ α (7.1.37)

and

∀y ∈ a∃i ∈ I∃α.y = (n, i, α) ∧ α ∈ Ci ∧ αsup ∈ α (7.1.38)

Then r ∪ y ∈ Γ as r : n× I ⇒ On and y : {n + 1} × I ⇒ On. We claim that r ∪ y is a

witness for totality, in other words:

(r, r ∪ y) ∈ R (7.1.39)

The first condition is clear as r is defined on one input. The second is immediate as

r′ ∩ (n × I × On) = r. The third follows from the second conjunct in statement 7.1.38

and the fourth from the third conjunct in 7.1.38, noting statement 7.1.35 about αsup.

So by RRS, there is a set D with R : D ⇒ D and {((0, i), α0)|i ∈ I} ∈ D. Let D′ be

the thrid projection of D, i.e.

D′ := {α ∈ On|∃r ∈ D∃n ∈ ω∃i ∈ I.((n, i), α) ∈ r} (7.1.40)

As D′ is a set of ordinals, its union is again an ordinal.
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β :=
⋃

D′ ∈ On (7.1.41)

We claim that for all i ∈ I , the ordinal β is a limit point of Ci. Obviously it is inhabited

as α0 ∈ β.

Let γ ∈ β. By definition of β and D′, this implies

∃r ∈ D,n ∈ ω, i ∈ I.((n, i), γ) ∈ r (7.1.42)

Then for such r, n, i, find by totality of R some r′ ∈ D with (r, r′) ∈ R. Then by

definition of R,

∃δ ∈ On.((n+ 1, i)δ) ∈ r′ ∧ γ ∈ δ ∧ δ ∈ Ci (7.1.43)

As such a δ is then also an element of β, this yields

∃δ ∈ β ∩ Ci.γ ∈ δ (7.1.44)

This proves β to be a limit point of Ci for all i ∈ I , so in particular β ∈ Ci for all i and

thus β ∈ C. So α0 ∈ β ∈ C and β witness unboundedness of C.

This finishes the proof.

7.1.4 An Ordinalless Approach

Just as a class C ⊆ On of ordinals is called a club if it is unbounded and closed in the

class of ordinals, for a classC ⊆ V of arbitrary sets similar properties can be considered.

Definition 7.12. Let C ⊆ V be a class. An transitive set A is called a set limit point of

C, written A ∈ SLim(C) if it is inhabited and

∀a ∈ A∃b ∈ A.a ∈ b ∧ b ∈ C (7.1.45)
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The class C is called set closed if it contains all its set limit points, i.e., if SLim(C) ⊆ C.

The class C is called set unbounded if

∀a∃b.a ∈ b ∧ b ∈ C (7.1.46)

The class C is called a set club if it is set closed and set unbounded. It is called a set

club in A if A is a transitive class which models the statement that C ∩ α is a set club.

Note that the set limit points of a class Γ are just the inhabited sets of I(Γ) from Defini-

tion 2.13.

Remark 7.13. This definition generalizes Definition 7.1 in the sense that for C ⊆ On,

1. SLim(C) = Lim(C)

2. C is a club iff C is a set club in On.

3. C is a club in α ∈ On iff C is a set club in α.

Proof. 1. Let A ∈ SLim(C). Then every element a ∈ A is transitive, as a ∈ b for

some b ∈ C and all b ∈ C are ordinals. As A itself is transitive, it is an ordinal

and thus A ∈ Lim(C). The converse is immediate from the definition.

2. When the quantifiers in the definition of set club are restricted to ordinals, the

result is exactly the definition of a club.

3. Ditto.

Remark 7.14. Extension axioms postulate that certain classes are set unbounded, e.g.

1. REA is equivalent to the statement that the class of regular sets is set unbounded.

2. IEA is equivalent to the statement that the class of inaccessible sets is set un-

bounded.
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3. MEA is equivalent to the statement that the class of Mahlo sets is set unbounded.

The main properties of clubs established in the previous section carry over to set clubs,

in particular the following:

Theorem 7.15. (RRS) Let I be a set and for each i ∈ I , let Ci ⊆ On be a set club.

Then
⋂
i∈I Ci is also a set club.

Proof. This is analogous to the proof of theorem 7.11.

This has direct implications for the theory of large cardinals. Axiom M as mentioned

before can be read as the statement that every set club has an inaccessible member,

making use of the following way to translate between total relations and set clubs.

Proposition 7.16. (RRS) The following two statements about a class R are equivalent:

1. R : V ⇒ V

2. The following class is a set club

{x|R : x⇒ x} (7.1.47)

Proof.1→ 2 Let R : V ⇒ V and set

C := {x|R : x⇒ x} (7.1.48)

Then C is set closed, for let A ∈ SLim(C) be transitive and x ∈ A. Then there is

an a ∈ A with R : a ⇒ a and x ∈ a. So ∃y ∈ a.(x, y) ∈ R. As A is transitive,

y ∈ A and thus A ∈ C.

To see that C is set unbounded, consider the relation R′ : V ⇒ V with (a, b) ∈ R′

if ∀x ∈ a∃y ∈ b.(x, y) ∈ R ∧ a ∈ y. This is total by Collection and thus RRS

implies ∀x∃a 3 x.R : a⇒ a, and R : a⇒ a implies a ∈ SLim(C).
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2→ 1 Take an arbitrary set a, then as {x|R : x 7→ x} is a set club, there is a b with a ∈ b

and R : b⇒ b. Thus there is a c ∈ b with (a, c) ∈ R.

Using the now established facts about clubs, it can be seen that axiom M is equivalent to

what on the face of it seems to be weaker, namely only requiring that every club has a

regular member.

On the other hand, it can also be strengthened by showing that axiom M also implies

that every club has a member that is not only inaccessible, but also for any α one that is

α-inaccessible.

Theorem 7.17. (RRS) The following schemes are equivalent:

1. Every set club has a regular member.

2. Every total class relation R : V ⇒ V is reflected in a regular set.

3. Every set club has a
⋃

-regular member.

4. Every total class relation R : V ⇒ V is reflected in a
⋃

-regular set.

5. Every set club has an inaccessible member.

6. Axiom M

7. For any α ∈ On, every set club has an α-inaccessible member.

8. For any α ∈ On, total class relation R : V ⇒ V is reflected in an α-inaccessible

set.

Proof. We only need to prove the odd statements to be equivalent, since every odd state-

ment is equivalent to its successor by Proposition 7.16. The odd statements are ordered

in (weakly) increasing logical strength, so only the implications from lower to higher

numbered statements need to be proved.
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1→ 3 Assume 1 and let C be a set club. Define

C⋃ := {x|∀a ∈ x.
⋃

a ∈ x} (7.1.49)

This is a set club: C⋃ is unbounded, as for every set a, we can define

a′ := {
⋃

...
⋃

︸ ︷︷ ︸
n times

x|n ∈ ω, x ∈ a ∪ {a}} (7.1.50)

Then a ∈ a′ and a′ ∈ C⋃.

The class C⋃ is also set closed, for let x ∈ SLim(C⋃) and a ∈ x. Then for some

y ∈ C⋃ ∩ x, a ∈ y. So
⋃
a ∈ y and as x is transitive, also

⋃
a ∈ x. Thus x ∈ C⋃.

So by Theorem 7.15, C ∩ C⋃ is a club and thus has a regular member. But as this

regular set is also in C⋃, it is actually
⋃

-regular.

3→ 5 Assume 3 and let C be a set club. Define some other classes:

Cω := {x|ω ∈ x} (7.1.51)

C∩ := {x|∀(a, b) ∈ x.a ∩ b ∈ x} (7.1.52)

Cfull := {x|∀(a, b) ∈ x.∃c ∈ x.c full in mv(a, b)} (7.1.53)

These are all set clubs:

(a) Cω is the principal set club generated by ω (just as principal clubs are indeed

clubs, so principal set clubs are set clubs by the same argument).

(b) C∩ is unbounded, as for every set a, we can define

a′ := {x1 ∩ ... ∩ xn|n ∈ ω, x1, ..., xn ∈ a ∪ {a}} (7.1.54)

Then a ∈ a′ and a′ ∈ C∩.

The class C∩ is also set closed, for let x ∈ Lim(C∩) and (a, b) ∈ x. Then

for some y ∈ C2 ∩ x, (a, b) ∈ y. So a ∩ b ∈ y and as x is transitive, also

a ∩ b ∈ x. Thus x ∈ C∩



7 A CLOSER LOOK INTO MAHLO SETS 157

(c) Cfull is unbounded, for consider the total relation R : V ⇒ V defined by

(x, y) ∈ R :↔ ∀(a, b) ∈ x∃c ∈ y.c full in mv(a, b) (7.1.55)

This is total by Fullness and Collection, so by RRS there are unbounded fixed

points c with R : c⇒ c, and these are all in Cfull.

The class Cfull is also set closed, for let x ∈ SLim(Cfull) and (a, b) ∈ x. Then

for some y ∈ Cfull ∩ x, (a, b) ∈ y. So there is a set full in mv(a, b) in y and

as x is transitive, this is also in x, so x ∈ Cfull.

So by Theorem 7.15, C∩Cω∩C∩∩Cfull is a club and thus has a
⋃

-regular member.

But as this
⋃

-regular set is also in Cω, it contains ω. As it is in C∩ and is a regular

set containing 2 ∈ ω, for all a, b in the set, (a, b) is also in the set, so it models

binary intersection. Similarly, as it is in Cfull, it is also closed under Fullness and

consequently, it is inaccessible.

5→ 7 Consider the classes

Cα := {x|∀a ∈ x∃b ∈ x.a ∈ b ∧ b is α-inaccessible} (7.1.56)

The classes Cα are all closed for the same reasons as C⋃, C∩ and Cfull and we

prove that they are also unbounded (and thus set clubs) by induction over α.

So let α ∈ On and Cβ be a set club for all β ∈ α by induction hypothesis. Let a

be a set. By Theorem 7.15,
⋂
β∈αCα is a set club as well and so is its intersection

with {x|a ∈ x}, the principal set club generated by a. So this intersection has

an inaccessible element, which contains a and is closed under β-inaccessibles for

all β ∈ α — thus it is α-inaccessible. By abstraction, every set is included in an

α-inaccessible and thus by RRS, Cα is a club.
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7.2 Classical and Constructive Mahloness

Aim of this section is to apply the modified von Neumann hierarchy from Chapter 5 to

Mahlo sets and to obtain a new characterization of Mahloness. This will work towards

bridging the gap between the usual classical definition for Mahloness (e.g. [Kan03]) and

the definition established in a constructive context (e.g. [AR01]). Many of the results in

this section have also been published by the author in [Zie14].

7.2.1 Characterising Mahlo Sets using Dependent Choice

Using total relations and reflections, the constructive rendering of the concept of Mahlo

relies on concepts which retains their potency even in the absence of the law of the

excluded middle. Classical mathematicians however profit greatly from the powerful

tool of working with clubs and ordinals to arrive at a definition equal or very similar to

the following:

Definition 7.18. An inaccessible set M is called classically Mahlo if for each set C ⊆

M ∩ On that is a club in M there is an inaccessible set whose rank is in C.

An inaccessible set M is called classically α-Mahlo if for each set C ⊆ M ∩ On that is

a club in M and each β ∈ α there is a classically β-Mahlo set whose rank is in C.

Note that the classically β-Mahlo set whose rank is in C is automatically an element of

M by the results of Chapter 5: As an inaccessible, this set (call it I) is equal to the stage

of its modified rank, i.e. I = V̂ ˆrk(I). But rk(I) ∈ C ⊆ M and as an inaccessible M is

closed under the function x 7→ V̂x.

In the absence of full Separation, it makes sense to question the restriction that C needs

to be a set. Admitting classes into the definition would mean that the statement ”M is

classically 1-Mahlo” would be an infinite scheme of formulae, and the statement of ”M

is classically 2-Mahlo” would on the face of it require existential quantification over a

concept only expressible in an infinite scheme of formulae — unless this scheme could
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be recognized to be equivalent to a single formula, which will be proved in Theorem

7.20. Thus only the proof of Theorem 7.20 actually shows that the following definition

can be carried out in CZF.

Definition 7.19. (DC) An inaccessible set M is called very classically Mahlo if for each

class Γ ⊆ On that is a club in M there is an inaccessible set whose rank is in Γ.

An inaccessible set M is called very classically α-Mahlo if for each class Γ ⊆ On that

is a club in M and each β ∈ α there is a classically β-Mahlo set whose rank is in Γ.

The following characterisation reconciles the constructive and classical approach:

Theorem 7.20. (DC) Let M and α be sets. The following are equivalent:

1. M is α-Mahlo.

2. M is classically α-Mahlo.

3. M is very classically α-Mahlo.

Proof. We prove the equivalence 1 ↔ 2 ↔ 3 by induction on α. So let β-Mahlo,

classically β-Mahlo and very classically β-Mahlo be equivalent for all β ∈ α.

1→ 3: Let M be α-Mahlo, the class C ⊆ On be a club in M and β ∈ α. We need to show

that there is a very classically β-Mahlo set whose rank is in C.

Consider the relation R ⊆M ×M defined by

R := {(a, b) ∈M ×M |rk(a) ∈ rk(b) ∈ C} (7.2.57)

This is a total relation, as for each a, there is a b ∈ On with rk(a) ∈ b ∈ C because

of the unboundedness of C. Then (a, b) ∈ R. The class R is not necessarily a set,

but by Strong Collection, there is a subrelation r : M ⇒ M with r ⊆ R such that

r is a set.

By M being α-Mahlo, let I ∈ M be β-Mahlo such that r is total on I . By

induction hypothesis, I is also very classically β-Mahlo. It remains to show that
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rk(I) ∈ C for which it suffices to show that rk(I) ∈ Lim(C) by Lemma 7.2 as C

is a club in M and rk(I) ∈ rk(M).

So let γ ∈ rk(I), then γ ∈ I and as r and thus R is total on I , there is some

element b ∈ I with (γ, b) ∈ R, which in particular implies γ ∈ rk(b) and b ∈ C.

As C ⊆ On, this implies rk(b) = b and thus γ ∈ b.

3→ 2: This is just specializing to the case that Γ ⊆ α is a set.

2→ 1: Let M be classically α-Mahlo. Let β ∈ α and R ⊆M ×M such that

∀a ∈M∃b ∈M.(a, b) ∈ R (7.2.58)

Consider the following subset of the ordinals of M :

C := {α ∈M ∩ On|∀a ∈ V̂α∃b ∈ V̂α.(a, b) ∈ R} (7.2.59)

We claim that C is a club in M .

To see that it is closed, let x ∈ M . Then C ∩ x ∈ M as C is defined by a ∆0-

formula (this would fail ifC had been defined analogously using the von Neumann

hierarchy instead of the modified hierarchy). We claim that

∀a ∈ V̂⋃(C∩x)∃b ∈ V̂⋃(C∩x).(a, b) ∈ R (7.2.60)

For let a ∈ V̂⋃(C∩x), in other words let α′ ∈ C ∩ x, let β′ ∈ α′ and a ∈ MP(V̂β).

As a ∈ V̂ ′α and α′ ∈ C, there is a b ∈ V̂ ′α with (a, b) ∈ R. This b is then element of

someMP(V̂γ) for some γ ∈ α′ and thus

b ∈ V̂⋃(C∩x) (7.2.61)

This demonstrates closedness, as for any x ∈ Lim(C), also x =
⋃
C ∩ x and then

by the argument above x ∈ C.

To see that it is unbounded, we take an arbitrary γ ∈ M . In order to apply DC,

define a relation S ⊆M ×M by

(a, b) ∈ S :↔ ∀x ∈ V̂rk(a)∃y ∈ V̂rk(b).(x, y) ∈ R (7.2.62)
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We claim that this relation is total on M , i.e.

∀a ∈M∃b ∈M.(a, b) ∈ S (7.2.63)

For let a ∈ M , then as R is total on M and V̂rk(a) ∈ M (another point in the

proof where it is crucial to use the modified hierarchy instead of the von Neumann

hierarchy, as Vrk(a) /∈M ), by regularity there exists a set B ∈M such that

∀x ∈ V̂rk(a)∃b ∈ B.(x, b) ∈ R (7.2.64)

Now

β′ :=
⋃
b∈B

r̂k(b) + 1 (7.2.65)

is an element of M (for M is closed under r̂k) and (a, β′) ∈ S.

As S ⊆M ×M is total, by DC there is some A ∈M with γ + 1 ∈ A and

∀x ∈ A∃y ∈ A.(x, y) ∈ S (7.2.66)

Then by definition of S, the relation R is total on the sets belonging to universes

with rank in rk(
⋃
A). So rk(

⋃
A) ∈ C by the definition of C and γ ∈

⋃
A, which

demonstrates unboundedness.

As C is therefore a club and M is classically α-Mahlo, C must have a classically

β-Mahlo ordinal γ as element. But then V̂γ ∈ M is a classically β-Mahlo set and

by induction hypothesis also a constructively β-Mahlo one. By definition of C

then V̂γ is a β-Mahlo set such that R is total on it, which concludes the proof.

7.2.2 A Variation without Choice

Instead of relying on DC to ensure that total relations are reflected inside the Mahlo set,

this can also be incorporated in the definition. Thus define the two related concepts:
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Definition 7.21. An inaccessible set M is called classically +-Mahlo if for each set

C ⊆M ∩ On that is a club in M there is an inaccessible set whose rank is in C and for

every R : M ⇒M and a ∈M there is an a ∈ A ∈M with R : A⇒ A.

An inaccessible set M is called classically α-+-Mahlo if for each β ∈ α the following

holds:

For every set C ⊆ M ∩ On that is a club in M and there is a classically β-Mahlo set

whose rank is in C and for every R : M ⇒ M and a ∈ M there is an a ∈ A ∈ M with

R : A⇒ A.

Lemma 7.22. Let M be a set. If it is classically α-+-Mahlo, then it is classically α-

Mahlo. If it is classically α-Mahlo and DC holds, then it is classically α-+-Mahlo.

Proof. This is direct by induction over α. Note that DC implies that all regular sets are

∗-regular ([Acz08]) and thus also have the +-property.

A choice free version of Theorem 7.20 is the following theorem, which relates Mahlo

sets to classically +-Mahlo sets.

Theorem 7.23. Let M and α be sets. The following are equivalent:

1. M is α-Mahlo.

2. M is classically α-+-Mahlo.

Proof. Both proofs proceed analogously to the proof of Theorem 7.20 and by induction

on α.

1→ 2 This is just like 1 → 3 from the proof of 7.20. Note that DC was not used in that

part of the proof and that the +-property, i.e. that all total relations are reflected in

some set, is implied directly by the Mahlo property that all relations are reflected

in an inaccessible set (and both only need to be fulfilled for inhabited α).
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2→ 1 This is just like 2 → 1 from the proof of 7.20. Note that DC was only used to

conclude that if S : M ⇒ M and γ + 1 ∈ M , then there is some A ∈ M with

S : A⇒ A and γ + 1 ∈ A, and this is also implied by the +-property (and is only

needed for inhabited α).

7.2.3 A Club Based Characterisation for Axiom M

Just as Mahlo sets could be reconciled with their classical characterisation via clubs,

in the same vein a connection between axiom M and clubs can be formed which can

be seen as the extension of Theorem 7.17 to the classically established characterisation

with ordinals.

Theorem 7.24. (RRS) The following are equivalent:

1. Axiom M, i.e. the scheme that every for every classR : V ⇒ V there is anM ∈ V

such that R : M ⇒M .

2. The scheme that every club C ⊆ On has a member which is the rank of an inac-

cessible.

Proof. Let Axiom M hold and C be a club. Consider the class relation R ⊆ V × V

defined by

(x, y) ∈ R :↔ rk(x) ∈ rk(y) ∈ C (7.2.67)

Unboundedness of C implies that R : V ⇒ V , so by Axiom M there is an inaccessible

I with R : I ⇒ I . For α ∈ rk(I) ∩ On also α ∈ I and thus ∃β ∈ I.α ∈ rk(β) ∈ C.

As also rk(β) ∈ rk(I), this means that rk(I) is a limit point of C ⊇ Lim(C) and thus

rk(I) ∈ C.

Conversely, let every club C ⊆ On have a member which is the rank of an inaccessible

and let the class R fulfill R : V ⇒ V . Consider the class C ⊆ On defined by

α ∈ C :↔ α ∈ On ∧R : V̂α ⇒ V̂α (7.2.68)
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This is closed since α ∈ Lim(C) implies that for all b ∈ V̂α there is β ∈ α with

b ∈ MP(V̂α). As α is a limit point, there is a γ ∈ α ∩ C with β ∈ γ, so also b ∈ V̂γ .

Thus by γ ∈ C there is a c ∈ V̂γ with (b, c) ∈ R and as γ ⊆ α by transitivity, also

c ∈ V̂α. Thus α ∈ C.

C is also unbounded. For this, consider the relation S defined by

(α, β) ∈ S :↔ R : V̂α ⇒ V̂β (7.2.69)

Then S : On ⇒ On since for α ∈ On, the relatonR is total onR : V̂α ⇒ V and V̂α is a set,

so by Strong Collection there is a set b such thatR : V̂α ⇒ b. Then β :=
⋃
x∈b(r̂k(x)+1)

fulfills (α, β) ∈ S. So for any α ∈ On, by RRS there is a setA ⊆ On such that α+1 ∈ A

and S : A⇒ A. Set β :=
⋃
A. We claim that α ∈ β ∈ C. To see this, let a ∈ V̂β , so for

some γ ∈ A we have a ∈ V̂γ . By choice of A there is some γ′ ∈ A and b ∈ V̂γ′ such that

(a, b) ∈ R. But then by monotonicity also b ∈ V̂β and β is as desired.

As C is closed and unbounded, C is a club and must have an element C 3 α = rk(I)

for some inaccessible set I . Then as V̂rk(I) = I , the definition of C implies

R : I ⇒ I (7.2.70)

7.3 How much Induction is contained in

Mahloness?

One of the most direct applications for large sets is that they allow more complex in-

ductions to take place in the universe. The classical example is REA which implies that

bounded inductive definitions produce sets.

Definition 7.25. Let Γ : V → V be a class function. This is called an inductive defini-

tion. A class ∆ is called a fixed point of Γ if Γ : P(∆)→ P(∆).

An inductive definition is called local if for all sets A ∈ V , the class Γ′′P(A) is a set.
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The support supp(Γ) of an inductive definition is defined as the class

supp(Γ) := {a|∃b ∈ Γ(a)} (7.3.71)

An inductive definition is called bounded if there is some set b such that

∀a ∈ supp(Γ)∃b0 ∈ b∃f : b0 →→ a (7.3.72)

Remark 7.26. [AR01] uses a slightly more general concept of inductive definitions. The

one introduced here implicitely demands that the class Γ(a) of consequences of a premise

a needs to be a set, a provision [AR01] do not work into their definition but use as a

condition in their set existence theorem. The results presented here need it as premise

as well and as it seems implausible to arrive at the existence of any nontrivial set fixed

points from an inductive definition where the class of consequences of a premise does not

form a set (at least in all relevant cases), it seems more straightforward in our case to

choose a formulation of inductive definitions which requires this — especially since the

formulation chosen above can easily be altered to accommodate nondeterminism, which

will be of use later.

We have already used many inductive definitions in this thesis. The central facts about

them as proved in [AR01] are:

Fact 7.27. 1. Let Γ be an inductive definition. Then there is a smallest class ∆ which

is a fixed point of Γ.

2. (wREA) Let Γ be a bounded inductive definition. Then there is a smallest set A

which is a fixed point of Γ.

The second statement can also be cast as follows:

Lemma 7.28. (wREA) Let Γ : V → V be a class and b ∈ V be a set. Then there is a

smallest set A such that:

∀a ⊆ A.(∃b0 ∈ b∃f : b0 →→ a)→ Γ(a) ⊆ A (7.3.73)
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In this lemma, the boundedness condition could be skipped as only a bounded part of Γ

was used for the induction.

A bound on the complexity of the premises used in an inductive definition is very im-

portant as otherwise even seemingly innocuous definitions can lead to very large fixed

points:

Example 7.29. The only class which is a fixed point of the inductive definition given by

Γ(a) := {a} is V , and in particular there is no set which is a fixed point.

However, the bound on the complexity does not need to be constant, as will be explored

below.

7.3.1 Unleashing M

If there are stronger large set assumptions than REA present, we can obtain stronger

induction principles. In particular, assuming Axiom M, the bound b of the induction

can increase inductively as the induction proceeds. This can be seen as a set theoretic

analogon of the type theoretic method of induction recursion where the complexity of

conditions is also increased inductively (see e.g. [Dyb00]). Consider the following

scheme:

Set-Theoretic Induction Recursion. For any class Γ : V → V :

For all sets B there is a smallest set A ⊇ B such that for all a ⊆ A with

∃b0 ∈ A, f : b0 →→ a (7.3.74)

it holds that

Γ(a) ⊆ A (7.3.75)

The way this induction principle is formulated, the empty set is always a trivial fixed

point. Adding the set B is needed to get the induction started. Classical inductive def-

initions as in the previous subsection have no need of being jump-started in this way,
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as there the constant bound b can contain ∅ as an element and the definition Γ some

sets of the form (∅, x) which infer x without any assumptions. This is however just a

technicality:

Lemma 7.30. Set-Theoretic Induction Recursion is equivalent to the scheme that for any

class Γ : V → V :

There is a smallest set A such that for all a ⊆ A with

∃b0 ∈ A ∪ {0}, f : b0 →→ a (7.3.76)

it holds that

Γ(a) ⊆ A (7.3.77)

Proof. To see that the statement in this lemma is implied by Set-Theoretic Induction

Recursion, set B := Γ(0). To see that Set-Theoretic Induction Recursion is implied by

the statement of this lemma, apply it to

Γ′(a) := Γ(a) ∪B (7.3.78)

Theorem 7.31. Axiom M implies Set-Theoretic Induction Recursion.

Proof. Let Γ : V → V be an inductive definition and B a set. By Axiom M there is

an inaccessible set I closed under Γ with B ∈ I (e.g. the inaccessible set closed under

a 7→ (Γ(a), B)).

Define inductively a sequence of sets (Γa)a∈I ∈ I by

Γa = B ∪
⋃
b∈a

{
⋃

Γ(x)|x ⊆ Γb ∧ ∃b0 ∈ Γb, f : b0 →→ x} (7.3.79)

Note that this is monotone, i.e. if a ⊆ b then Γa ⊆ Γb.
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These are all elements of I by induction over a ∈ I: Assume that for all b ∈ a the class

Γb is in I , then
⋃
b0 ∈ Γb is in I and so is

⋃
b0∈Γb

b0(Γb). Thus

Γa =
⋃
b∈a

{
⋃

im(f)|f ∈
⋃
b0∈Γb

b0(Γb)} ∈ I (7.3.80)

Note that this also implies that ΓI :=
⋃
b∈I{

⋃
im(f)|f ∈

⋃
b0∈Γb

b0(Γb)} is a subset of

I . We claim that it is closed by the induction principle under consideration.

To check this, let x ⊆ ΓI and b0 ∈ ΓI with f : b0 →→ x. By f : b0 →→ x, the set x

is not only a subset of I but actually an element x ∈ I . Each of its elements y ∈ x

is in some Γj for a j ∈ I because y ∈ ΓI implies y ∈ B (in which case y ∈ Γ0) or

y ∈ {
⋃

Γ(x)|x ⊆ Γb ∧ ∃b0 ∈ Γb, f : b0 →→ x} for some i ∈ I in which case y ∈ Γi+1.

Similarly, there is some b ∈ I with b0 ∈ Γb.

So collect enough of these j in a set J ∈ I , which fulfills x ⊆
⋃
j∈J Γj . Then x ⊆ Γ{J}∪b

and b0 ∈ Γ{J}∪b. So Γ(x) ⊆ Γ{J}∪b ⊆ ΓI .

ΓI is also the smallest such set, for assume that A ⊇ B and for all a ⊆ A, b0 ∈ A and

f : b0 →→ a, if (a, x) ∈ Γ then x ∈ A. Then a direct set induction over a shows that

∀a.Γa ⊆ A (7.3.81)

Axiom M implies set theoretic induction recursion, and the other direction holds to some

extent as well. However, inductive definitions are better suited to deal with functional

relationships which correspond to explicit set existence axioms than with total relations.

Definition 7.32. Let CZFexplicit be the theory CZF with Exponentiation instead of Full-

ness and Replacement instead of Strong Collection or alternatively Myhill’s CST without

DC.

Call a set I explicitly inaccessible if it is a transitive model for the theory (CZFexplicit)2.

Let the scheme “The universe is explicitly Mahlo” be: For all class functions F : V →

V there is an explicitly inaccessible set I with F : I → I .
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Remark 7.33. (ZF)

1. I is explicitly inaccessible iff it is inaccessible.

2. The universe is explicitey Mahlo iff Axiom M holds.

In the absence of the excluded middle however, being explicitly inaccessible is weaker

than being inaccessible.

Theorem 7.34. Set-Theoretic Induction Recursion implies that the universe is explicitly

Mahlo.

Proof. Let Set-Theoretic Induction Recursion hold and F : V → V be a class function.

Define an inductive definition Γ by:

Γ(a) = {F (x)|a = {x}} (7.3.82)

∪ {y ∈ x|a = {x}} (7.3.83)

∪ { xy|a = {x, y}} (7.3.84)

∪ {x ∩ y|a = {x, y}} (7.3.85)

∪ {
⋃

(x)|a = {a}} (7.3.86)

∪ {a} (7.3.87)

Then let A ⊇ ω + 1 be a fixed point for the Induction Recursion defined by Γ, i.e. let

for all b0 ∈ A and f : b0 →→ a ⊆ A hold Γ(a) ⊆ A. We claim that A is an explicitly

inaccessible fixed point of F .

A models Replacement, for let a ∈ A and f : a → A, then f : a →→ f ′′a ⊆ A and thus

by A being a fixed point and f ′′a ∈ Γ(f ′′a), part 7.3.87 of the definition of Γ implies

f ′′a ∈ A.

A is transitive, for let a ∈ A, then as 1 ∈ ω + 1 ⊆ A, {a} ⊆ a is the surjective image of

an element of A, so by A being a fixed point, part 7.3.83 of the definition of Γ implies

a ⊆ A.
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A models Infinity because ω ∈ A. As A is functionally regular, this also implies A is

closed under ordered and unordered pairs.

A models Exponentiation, Binary Intersection and Union by parts 7.3.84, 7.3.85 and

7.3.86, always noting that the conditions needed are all surjective images of elements of

A (namely of 1 and 2).

A models ∆0-Collection because by [AR01] this is implied by Binary Intersection on

the basis of Extensionality, Pairing, Union and Replacement.

Finally F : A→ A as for any a ∈ A, {a} ⊆ A is a surjective image of an element of A

(namely of 1) and thus by A being a fixed point, part 7.3.82 of the definition of Γ implies

{F (a)} ⊆ A.

7.3.2 Nondeterministic Inductive Definitions equivalent to M

If the full Axiom M is supposed to be retrieved, nondeterministic inductive definitions

need to be studied, i.e. total relations Γ : V ⇒ V instead of functions Γ : V → V . A

fixed point of such an inductive definition is then a set A with Γ : P(A) ⇒ P(A), i.e.

for all a ⊆ A there is some b with (a, b) ∈ Γ and b ⊆ A. As they are nondeterministic,

we obviously can not expect a smallest fixed point to exist; even the trivial definition

Γ := {(a, b)|b = {0} ∨ b = {1}} has the fixed points {0} and {1}, but not {0} ∩ {1} =

∅. Adapting the deterministic parts of the induction principle from last subsection to

nondeterministic definitions leads to:

Nondeterministic Set-Theoretic Induction Recursion. For any class Γ : V ⇒ V :

For all sets B there is a set A ⊇ B such that whenever b0 ∈ A and R : b0 ⇒ A, there is a

subrelation R′ ⊆ R with R′ : b0 ⇒ A and its image a := {y|∃x ∈ b0.(x, y) ∈ R′} ⊆ A

fulfills

∃b ⊆ A.(a, b) ∈ Γ (7.3.88)
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Then the concluding theorem is:

Theorem 7.35. Axiom M is equivalent to Nondeterministic Set-Theoretic Induction Re-

cursion.

Proof. 1. Assume Axiom M. Let Γ : V ⇒ V be a nondeterministic inductive defi-

nition and B be a set. By Axiom M there is an inaccessible set I closed under Γ

with B ∈ I (e.g. the inaccessible set closed under {(a, (b, B))|(a, b) ∈ Γ}).

Define a relation R ⊆ I × I by induction over the first component such that for all

a, b ∈ I:

(a, b) ∈ R :↔ b ∈ B ∨ ∃c ∈ a∃b0, x, r ∈ I.

r : b0 ⇔⇒ x ∧ (c, b0) ∈ R ∧ ∀y ∈ x (c, y) ∈ R ∧ ∃d.

b ∈ d ∧ (x, d) ∈ Γ (7.3.89)

Write Γi for {b ∈ I|∃a ∈ i.(a, b) ∈ R}. We claim that ΓI := {b ∈ I|∃a ∈

I.(a, b) ∈ R} ⊇ B is a fixed point of the nondeterministic set-theoretic induction

recursion.

To check this, let b0 ∈ ΓI and r : b0 ⇒ ΓI . By regularity of I ⊇ ΓI , there are

some r′, x ∈ I with r′ : b0 ⇔⇒ x and r′ ⊆ r. There is an i ∈ I such that b0 ∈ Γi.

Thus by definition of R, the set x ∈ Γi+1 and thus x ∈ Γi as desired.

2. Let Nondeterministic Set-Theoretic Induction Recursion hold and R0 : V ⇒ V

be a class. Define a nondeterministic inductive definition Γ by:

(a, b) ∈ Γ :↔ ∃z ∈ b.R0 : a⇔⇒ z (7.3.90)

∧ ∀x.a = {x} → x ⊆ b (7.3.91)

∧ ∀xy.a={x, y} → ∃c∈b.c full in mv(x, y) (7.3.92)

∧ ∀xy.a={x, y} → x ∩ y ∈ b (7.3.93)

∧ ∀x.a = {x} →
⋃

x ∈ b (7.3.94)

∧ {a} ∈ b (7.3.95)
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This does indeed define a total relation Γ : V ⇒ V , for let a be a set. By Strong

Collection, there is a set b0 with R0 : a⇔⇒ b0. By Replacement, Pairing, Union

and ∆0-Collection, there are also the sets

b1 := {x|x ∈ a ∧ a = {x}}

b3 := {x ∩ y|x, y ∈ a ∧ a = {x, y}}

b4 := {
⋃

x|x ∈ a ∧ a = {x}}

b5 := {{a}}

Also, for each element of {(x, y)|x, y ∈ a ∧ a = {x, y}}, there is a set c which is

full in mv(x, y), so these sets can be collected into a set b2. Set b := {b0} ∪ b1 ∪

b2∪b3∪b4∪b5, then (a, b) ∈ Γ. Indeed, the conjucts 7.3.90, 7.3.91, 7.3.92, 7.3.93,

7.3.94 and 7.3.95 are fulfilled because b ⊇ {b0}, b ⊇ b1, b ⊇ b2, b ⊇ b3, b ⊇ b4 and

b ⊇ b5 respectively. So indeed Γ : V ⇒ V .

Thus let A ⊇ ω + 1 be a fixed point for the nondeterministic Induction Recursion

defined by Γ, i.e. for all b0 ∈ A and R : b0 ⇒ A let there be a r ⊆ R such

that ∃b ⊆ A.({y|∃x.(x, y) ∈ r}, b) ∈ Γ. We claim that A is a inaccessible and

R : A⇒ A.

A models Strong Collection, for let a ∈ A and R : a⇒ A, then there is an r ⊆ R

and a b ⊆ A with ({y|∃x.(x, y) ∈ r}, b) ∈ Γ. So by part 7.3.95 of the definition of

Γ also {y|∃x.(x, y) ∈ r} ∈ A and this is an element witnessing Strong Collection

for a and R.

A is transitive, for let a ∈ A, then as 1 ∈ ω + 1 ⊆ A, {a} ⊆ a is the surjective

image of an element of A. Note that functions are minimal total relations, so if

f : 1 →→ {a} any r ⊆ f with r : 1 ⇒ A fulfills r = f , which means that if some

subset of A is the surjective image of an element of A, then there is always some

b ⊆ A with (a, b) ∈ Γ. In this case, part 7.3.91 of the definition of Γ then implies

a ⊆ A.
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A models Infinity because ω ∈ A. As A is functionally regular, this also implies

A is closed under ordered and unordered pairs.

A models Fullness, Binary Intersection and Union by parts 7.3.92, 7.3.93 and

7.3.94, always noting that the conditions needed are all surjective images of ele-

ments of A (namely of 1 and 2).

A models ∆0-Collection because by [AR01] this is implied by Binary Intersection

on the basis of Extensionality, Pairing, Union and Replacement.

FinallyR0 : A⇒ A as for any a ∈ A, {a} ⊆ A is a surjective image of an element

of A (namely of 1) and thus by A being a fixed point, part 7.3.90 of the definition

of Γ implies {F (a)} ⊆ A.
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Chapter 8

Expressing Weak Compactness

8.1 Different Renderings of the same Classical Concept

Classical set theory enjoys a whole host of equivalences for the cardinal concept of

weak compactness, most of which break down in the constructive case. Not all are

equally useful without the excluded middle and strong choice principles and some may

even lose all proof theoretic strength completely, e.g. what is classically known as the

partition property κ→ (κ)2
2 (e.g. [Dra74]):

Definition 8.1. Let A be a set. The class of two element subsets of elements of A is

defined as

[A]2 := {{a, b}|a, b ∈ A ∧ a 6= b} (8.1.1)

A function f is said to be homogeneous on an inhabited set A ⊆ dom(f) if f ′′A is a

singleton or equivalently if

∀x, y ∈ A.f(x) = f(y) (8.1.2)

Example 8.2. The following theories are equiconsistent:

1. CZF plus the existence of an inaccessible
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2. CZF plus the existence of an inaccessible I with the property that for every f :

[I]2 → 2 there is a set A ⊆ I such that f is homogeneous on [A]2 and A is set

unbounded in I

2’. CZF plus the existence of an inaccessible I with the property that for every f :

[I]2 → 2 there is a set A ⊆ I such that f is homogeneous on [A]2 and A is

bijective to I

3. CZF plus the existence of an inaccessible I with the property that every f : [I]2 →

2 is constant

Proof. Let I be an inaccessible and consider the realizability model V (Kl). By Lemma

4.16 the following set is realized to be inaccessible in V (Kl):

Ī := ω × (I ∩ V (Kl)) (8.1.3)

Let f ∈ V (Kl) and  f : [I]2 → 2, then in particular there is some realizer e with

e  ∀x, y ∈ Ī .x 6= y → ((x, y), 0) ∈ f ∨ ((x, y), 1) ∈ f (8.1.4)

Note that (g, x) ∈ Ī is equivalent to (k, x) ∈ Ī for any g and x. So for all x, y ∈

I ∩ V (Kl), if g  x 6= y, then ekkg  (x, 0) ∈ f ∨ (x, 1) ∈ f . However, if g  x 6= y,

then also k  x 6= y, so for all realizedly different x and y ∈ I ∩ V (Kl), it holds that

ekkk  ((x, y), 0) ∈ f ∨ ((x, y), 1) ∈ f . So either lekkk = 0 and rekkk  ((x, y), 0) ∈

f or lekkk = 1 and rekkk  ((x, y), 1) ∈ f .

In the first case, it holds that for all (g1, x), (g2, y) ∈ Ī with g3  x 6= y we have

eg1g2g3  ((x, y), 0) ∈ f and in the second case for all (g1, x), (g2, y) ∈ Ī with g3 

x 6= y we have eg1g2g3  ((x, y), 1) ∈ f . As Ī has two realizedly different members

(e.g. (k, 0) and (k, {(k, 0)})), one of those cases actually holds.

The situation would not be significantly altered using total relations instead of functions.

In fact, the same proof idea yields:

Example 8.3. The following theories are equiconsistent:



8 EXPRESSING WEAK COMPACTNESS 177

1. CZF plus the existence of an inaccessible

2. CZF plus the existence of an inaccessible I with the property that for all A,B ⊆ I

if A ∪B = [I]2 then either A or B are set unbounded in I

2’. CZF plus the existence of an inaccessible I with the property that for all A,B ⊆ I

if A ∪B = [I]2 then either A or B are bijective to I

3. CZF plus the existence of an inaccessible I with the property that for all A,B ⊆ I

if A ∪B = [I]2 then either A = I or B = I

In both examples, the second equivalent describes what in ZFC amounts to a weakly

compact cardinal1 while the last equivalent amounts to a straightforward inconsistency

in the presence of the excluded middle.

A fruitful way to express weak compactness in a constructive setting is inspired by the

π1
1 indescribability and developed in [Rat98] and [Gib02] as 2-strongness. This formu-

lation is classically equivalent to weak compactness and its logical strength is wedged

satisfyingly between measurability and Mahloness:

Proposition 8.4. Let K be 2-strong. Then the set of I-Mahlo sets I ∈ K is stationary,

i.e., whenever R : K ⇒ K there is an I-Mahlo set I ∈ K with R : I ⇒ I .

Proof. First show by induction on a ∈ K that K is a-Mahlo for any a ∈ K. So let

a ∈ K and for all c ∈ b ∈ a and R : K ⇒ K let there be a c-Mahlo set I such that

R : I ⇒ I . To see that K is a-Mahlo, let R : K ⇒ K and b ∈ a. Consider the set

1As these properties depend only on the cardinality of the set in question, it makes no difference

whether they are demanded for the weakly compact cardinal κ or its von Neumann stage Vκ.
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S ⊆ K3 defined by

(u, v, x) ∈ S ↔ (u, v, x) ∈ K3 ∧

v : u ∩ b⇒ K ∧

∀(c, i) ∈ v ∩ (b×K).x : i⇒ i ∧

∀(c, i) ∈ v ∩ (b×K).i is c-Mahlo ∧

∃(b, u′) ∈ v.(u, u′) ∈ R

We claim that

∀R′ : K ⇒ K∀u ∈ K∃v ∈ K∃x ∈ K.x ⊆ R′ ∧ (u, v, x) ∈ S (8.1.5)

For letR′ : K ⇒ K and u ∈ K. For each c ∈ u∩b ∈ K it holds by induction hypothesis

that there is an i ∈ K such that i is c-Mahlo and R : i ⇒ i. Using regularity, collect

enough of these pairs (c, i) in a set v0 ∈ K such that ∀c ∈ u ∩ b∃(c, i) ∈ v0 such that i

is c-Mahlo and R : i⇒ i. Let u′ be some element such that (u, u′) ∈ R, then set

v := v0 ∪ {(b, u′)} (8.1.6)

By R′ : K ⇒ K, for each (c, i) ∈ v ∩ (b × K) ∈ K and d ∈ i there is a (d, e) ∈ R.

Using regularity two times to collect these pairs into one set, one arrives at the existence

of an x ∈ K such that x ⊆ R and ∀(c, i) ∈ v.x : i⇒ i. Then by construction

(u, v, x) ∈ S (8.1.7)

For this, also note that (b, u′) can never be of the form (c, i) with (c, i) ∈ v ∩ (b ×K).

This concludes the proof of Claim 8.1.5

So by 2-strongness of K, there is some inaccessible set I with

∀R′ : I ⇒ I∀u ∈ I∃v ∈ I∃x ∈ I.x ⊆ R′ ∧ (u, v, x) ∈ S (8.1.8)
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We claim that this I is b-Mahlo. For let c ∈ b and R′ : I ⇒ I , then c ∈ I by transitivity.

Let u := {c} ∈ I , then by Equation 8.1.8 there are v, x ∈ I with (u, v, x) ∈ S. In

particular, there is some J with (c, J) ∈ v (and thus J ∈ I), R′ : J ⇒ J and J is

c-Mahlo. Thus I is b-Mahlo. Thus K is a-Mahlo. This concludes the proof for

∀a ∈ K.K is a -Mahlo (8.1.9)

Now let R : K ⇒ K. Consider the set S ⊆ K3 defined by

S = {(u, v, x) ∈ K3|

∃v1, v2.v = (v1, v2) ∧ v1 is u-Mahlo ∧ x : v1 ⇒ v1 ∧ (u, v2) ∈ R} (8.1.10)

Then K being K-Mahlo implies that for every u ∈ K, every relation R′ : K ⇒ K is

reflected in some u-Mahlo v1 ∈ K with R : v1 ⇒ v1, and so by regularity there is an

x ∈ K with x ⊆ R and x : v1 ⇒ v1. In other words,

∀R : K ⇒ K∀u ∈ K∃v ∈ K∃x ∈ K.x ⊆ R ∧ (u, v, x) ∈ S (8.1.11)

By 2-strongness this is reflected down into some inaccessible I ∈ K which is then also

closed under R and for every u ∈ I , the set I is u-Mahlo.

8.2 A Simpler Characterisation of 2-Strong Sets

Recall that an inaccessible set K is called 2-strong, if for all S (wlog with S ⊆ K3)

∀R : K ⇒ K.∀u ∈ K∃v ∈ K∃x ∈ K.x ⊆ R ∧ (u, v, x) ∈ S (8.2.12)

implies the existence of an inaccessible I ∈ K such that

∀R : I ⇒ I.∀u ∈ I∃v ∈ I∃x ∈ I.x ⊆ R ∧ (u, v, x) ∈ S (8.2.13)
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The statement that is reflected downwards from K to I contains four quantifiers (and

even more if R : K ⇒ K were to be spelled out), which can make checking if a set is

2-strong somewhat tedious. Consider the following less complex properties obtained by

simply omitting quantifiers from the definition of 2-strong:

Definition 8.5. An inaccessible set K is said to have the property (+), if for all S ′ (wlog

with S ′ ⊆ K2)

∀R : K ⇒ K.∃v ∈ K∃x ∈ K.x ⊆ R ∧ (v, x) ∈ S ′ (8.2.14)

implies the existence of an inaccessible I ∈ K such that

∀R : I ⇒ I.∃v ∈ I∃x ∈ I.x ⊆ R ∧ (v, x) ∈ S ′ (8.2.15)

And one step further

Definition 8.6. An inaccessible set K is said to have the property (++), if for all S ′′

(wlog with S ′′ ⊆ K)

∀R : K ⇒ K.∃x ∈ K.x ⊆ R ∧ x ∈ S ′′ (8.2.16)

implies the existence of an inaccessible I ∈ K such that

∀R : I ⇒ I.∃x ∈ I.x ⊆ R ∧ x ∈ S ′′ (8.2.17)

Remark 8.7. If a set is 2-strong, then it has property (+) and if a set has property (+)

then it also has property (++).

This is seen readily as (+) is just 2-strong with the S restricted to those S of the form

K × S ′ and (++) is just (+) with the S ′ restricted to those S ′ of the form K × S ′′ (noting

that the quantifiers do not run empty since as an inaccessible set, K is always inhabited).

Thus formally, these two simpler properties constitute weakenings of 2-strongness. They

are however stronger than they appear. To prove this, we first need to state a simple

fact about coding and decoding pairs, namely that the left inverses of pairing (i.e. the

projection functions) can be extended to functions with domain V , not only V × V .
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Lemma 8.8. There are definable functions p1, p2 : V → V such that

∀a, b. p1((a, b)) = a ∧ p2((a, b)) = b (8.2.18)

and which are reflected in all inaccessible sets, i.e., whenever I is inaccessible, then

p1, p2 : I → I .

Proof. Set

p1(x) := {y ∈ tc(x)|∃a, b ∈ tc(x).x = (a, b) ∧ y ∈ a} (8.2.19)

p2(x) := {y ∈ tc(x)|∃a, b ∈ tc(x).x = (a, b) ∧ y ∈ b} (8.2.20)

This works as inaccessible sets are closed under transitive closures and both a and b as

well as their elements are in tc(a, b). Furthermore, if x has the form (a, b), then a and b

are uniquely determined.

We will use these pi in the proof of the following.

Proposition 8.9. Let K have the property (+). Then K is 2-strong.

Proof. Let K fulfill (+) and let S ⊆ K3 such that

∀R : K ⇒ K.∀u ∈ K∃v ∈ K∃x ∈ K.x ⊆ R ∧ (u, v, x) ∈ S (8.2.21)

We need to show that this statement is reflected at some inaccessible element of K.

The idea of the proof is the following: We want to code both u and R into a new total

relation R′ in a way that the quantification still works. This can be done by having R′

consist of the pairs (a, (b, u)) for (a, b) ∈ R, then for every total R we find a total R′

and vice versa. We only need one element of R′ to read off u. However, we have to

read it off not from R′ itself, but from x ⊆ R′ and there is no a priori guarantee that x

is inhabited. So we force it to be inhabited, say by demanding ∅ ∈ dom(x). This loses

a small bit of information, namely whether or not ∅ ∈ dom(x) in the first place. As this

information might have been important, this bit should be stored into v′ which will be

a pair, with the old v as first component and the information about ∅ ∈ dom(x) in the
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second one, storing it as a truth value and also storing which a was used in the addition

(∅, (a, u)).

To decode x from x′ and v′, define the shorthand

f(x′, v′) :=

{(a, p1(b))|(a, b) ∈ x′ ∧ (a = ∅ ∧ p1(b) = p1(p1(p2(v′)))→ ∅ ∈ p2(p2(v′)))} (8.2.22)

Note that inaccessible sets are closed under the functions p1, p2 and f .

Now define

S ′ := {(v′, x′)|(∅, p1(p2(v′))) ∈ x′ ∧ (p2(p1(p2(v′))), p1(v′), f(x′, v′)) ∈ S} (8.2.23)

We claim that

∀R′ : K ⇒ K.∃v′ ∈ K∃x′ ∈ K.x ⊆ R ∧ (v′, x′) ∈ S ′ (8.2.24)

To see this, take any R′ : K ⇒ K. Let d be some element of K with (∅, d) ∈ R′ and let

u := p2(d). Define a total relation R : K ⇒ K by setting

R := {(a, p1(b))|(a, b) ∈ R′} (8.2.25)

Then by the assumption, there are an x ⊆ R and a v such that (u, v, x) ∈ S.

Note that for all (a, c) ∈ x there is a pair (a, b) ∈ R′ such that c = p1(b). By Strong

Collection, there is a set z of pairs such that

∀(a, c) ∈ x∃(a, b) ∈ z.c = p1(b) ∧ ∀(a, b) ∈ z.(a, p1(b)) ∈ x (8.2.26)
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Then define

x′ := z ∪ (∅, d) (8.2.27)

and

v′ := (v, (d, {∅|(∅, p1(d)) ∈ x})) (8.2.28)

Then x′ ⊆ R′ by construction. We claim that (v′, x′) ∈ S ′. To show this, we need to

establish

(∅, p1(p2(v′))) ∈ x′ ∧ (p2(p1(p2(v′))), p1(v′), f(x′, v′)) ∈ S (8.2.29)

The first conjunct is true as p1(p2(v′)) = d and (∅, d) was added to x′ in its definition.

For the second, note that

u = p2(p1(p2(v′))) (8.2.30)

v = p1(v′) (8.2.31)

x = (x ∪ (∅, p1(d))) ∩ {(∅, p1(d))|(∅, p1(d)) ∈ x}} (8.2.32)

= (x ∪ (∅, p1(d))) ∩ {(∅, p1(d))|∅ ∈ p2(p2(v′))}} (8.2.33)

= {(a, p1(b))|(a, b) ∈ x′ ∧ (8.2.34)

(a = ∅ ∧ p1(b) = p1(p1(p2(v′)))→ ∅ ∈ p2(p2(v′)))} (8.2.35)

= f(x′, v′) (8.2.36)

As (u, v, x) ∈ S by choice of v and x, this shows Equation 8.2.29 and it follows that

(v′, x′) ∈ S ′. So by abstaction,

∀R′ : K ⇒ K.∃v′ ∈ K∃x′ ∈ K.x′ ⊆ R ∧ (v′, x′) ∈ S ′ (8.2.37)
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Thus we can use the property (+) and find some inaccessible I ∈ K such that

∀R′ : I ⇒ I.∃v′ ∈ I∃x′ ∈ I.x′ ⊆ R ∧ (v′, x′) ∈ S ′ (8.2.38)

We claim that this I is as desired to show that K is 2-strong, i.e. we need to show that

∀R : I ⇒ I.∀u ∈ I∃v ∈ I∃x ∈ I.x ⊆ R ∧ (v, x) ∈ S (8.2.39)

So let R : I ⇒ I . Consider

R′ := {(a, (b, u))|(a, b) ∈ R} (8.2.40)

Then there are v′ ∈ I and x′ ∈ I with

x′ ⊆ R′ ∧ (v′, x′) ∈ S ′ (8.2.41)

Set

v := p1(v′) (8.2.42)

x := f(x′, v′) (8.2.43)

By definition of S ′, we know that

(∅, p1(p2(v′))) ∈ x′ ∧ (p2(p1(p2(v′))), p1(v′), f(x′, v′)) ∈ S (8.2.44)

From (∅, p1(p2(v′))) ∈ x′ we conclude that (∅, p1(p2(v′))) ∈ R′ and by definition of

R′ this means that p1(p2(v′)) must be of the form (b, u) for some (∅, b) ∈ R. Thus

p2(p1(p2(v′))) = u. Also p1(v′) = v and f(x′, v′) = x by definition. So the equation

(p2(p1(p2(v′))), p1(v′), f(x′, v′)) ∈ S (8.2.45)
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simplifies to (u, v, x) ∈ S which was to show.

It is also possible to get rid of the existential quantifier for v. In fact, this is quite a bit

less messy.

Proposition 8.10. Let K have the property (++). Then it has the property (+).

Proof. Let K fulfill (++) and let S ⊆ K2 such that

∀R : K ⇒ K.∃v ∈ K∃x ∈ K.x ⊆ R ∧ (v, x) ∈ S (8.2.46)

We need to show that this statement is reflected at some inaccessible element of K.

The idea of the proof is again to code the variables we want to get rid of into those we

keep in a way that will not mess with the quantification. So this time we need to code

v into x. We do that by enlarging x by an element that determines v and yet cannot be

confused with the previous elements of x - for example a pair of the type ((x, v), b) with

such a b as to make this pair an element of R.

So define a set S ′ ⊆ K by

S ′ = {x′|∃v, x, b.x′ = x ∪ {((x, v), b)} ∧ (v, x) ∈ S} (8.2.47)

Then this fulfills

∀R : K ⇒ K.∃x′ ∈ K.x′ ⊆ R ∧ x′ ∈ S ′ (8.2.48)

Because for any such R, choose v, x as above and some b with ((x, v), b) ∈ R and then

let

x′ := x ∪ {((x, v), b)} (8.2.49)
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Then using the property (++), this gets reflected downwards, i.e. there is an inaccessible

I ∈ K with

∀R : I ⇒ I.∃x′ ∈ I.x′ ⊆ R ∧ x′ ∈ S ′ (8.2.50)

We want to show that this I is as desired, i.e. that

∀R : I ⇒ I.∃v ∈ I∃x ∈ I.x ⊆ R ∧ (v, x) ∈ S (8.2.51)

To this end, take an arbitrary R : I ⇒ I . Then there is an x′ ∈ I , x′ ⊆ R with x′ ∈ S ′.

Then let

x := {(a, b) ∈ x′|∃z, v, c ∈ I.(a, b) ∈ z ∧ ((z, v), c) ∈ x′} (8.2.52)

As x′ ∈ S ′, it is of the form x0 ∪ {((x0, v), b)} and this ensures that x is just this unique

x0. Furthermore, let v be just this unique v0, i.e. the set such that x′ = x ∪ {((x, v), b)}

for some b.

Then x ⊆ x′ ⊆ R and

(v, x) ∈ S (8.2.53)

Which is as needed.

These results can be summed up in a neatly simple characterisation of 2-strong:

Theorem 8.11. An inaccessible set K is 2-strong if and only if for all S (wlog S ⊆ K),

whenever

∀R : K → K∃x ⊆ R.x ∈ S ∩K (8.2.54)

then there is an inaccessible I ∈ K with

∀R : I → I∃x ⊆ R.x ∈ S ∩ I (8.2.55)
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Chapter 9

Elementary Embeddings

In this chapter we will analyse several aspects regarding elementary embeddings, i.e. the

axioms associated to measurable or Reinhardt sets.

We will consider several natural weakenings of the axiom “There is a measurable set”: In

Section 9.1 we consider demanding less closure from the critical point (an idea already

brought forth by Friedman and Ščedrov) and see that the corresponding axioms still hold

a surprising amount of power which can be unlocked by assuming small large cardinal

axioms. In section 9.2 we analyse ∆0 elementary embeddings where the elementarity

scheme is restricted to bounded formulae, which still proves to be quite useful. Finally

in Section 9.4 we will see that casting the elementarity scheme as an implication rather

than an equivalence makes quite the difference and construct a model for the construc-

tively weaker variant with only CZF as background theory. It should be noted that all

three variations are equivalent to measurable cardinals when using classical logic (for

the second case under one reasonable extra assumption).

One theme that will surface repeatedly during these investigations is that of cofinality,

i.e. the property that the image of the elemental embedding be unbounded in M , which

will be introduced in Section 9.3, which will also show that in the case of Reinhardt

embeddings, very strong cofinality properties hold. For ordinals, cofinality always holds

in classical set theory as j′′On is unbounded in On. We will show that this not necessarily
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the case in CZF by constructing models refuting strong cofinality in Sections 9.4 and

9.5. The first will contain an interesting (and to the author’s knowledge new) partial

combinatory algebra which directly leads to a weak elementary embedding in the model,

while the second will work with a full elementary embedding and develop new tools to

decide whether a set is or is not realized to be in a transitive model of set theory (in this

case M ).

Finally in Section 9.6, we will find that the caesura between small and large large car-

dinals in ZFC marked by their compatibility with V = L is echoed by an inherently

constructive principle in CZF.

During this chapter, we work in the extended language with the unary function symbol j

and the unary relation symbol M and extend the schemes of CZF to formulae containing

these two symbols.

9.1 How Inaccessible must the Critical Point of a Mea-

surable be?

In [FŠ84], Friedman and Ščedrov considered two different formulations of measurable

cardinals with critical points and Gibbons proved his results for the latter, more powerful

version in [Gib02]. Both have in common the axiom scheme which in this thesis has been

named j : V
≡
↪→M , i.e. an elementary embedding into a transitive class and in addition,

they demand either the existence of a transitive or an inaccessible critical point, i.e. an z

that fulfills one of the following:

Φ1(z) := z ∈ j(z) ∧ ∀x ∈ z x = j(x) ∧ z is transitive (9.1.1)

Φ2(z) := z ∈ j(z) ∧ ∀x ∈ z x = j(x) ∧ z is inaccessible (9.1.2)

From our perspective on large sets in CZF, it is also natural to consider the following

variants, some of which will be defined later in this section:
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Φ1′(z) := z ∈ j(z) ∧ ∀x ∈ z x = j(x) ∧ z is an ordinal (9.1.3)

Φ1.5(z) := z ∈ j(z) ∧ ∀x ∈ z x = j(x) ∧ z is union-functionally regular (9.1.4)

Φ1.5′(z) := z ∈ j(z) ∧ ∀x ∈ z x = j(x) ∧ z is proto-inaccessible (9.1.5)

Φ2′(z) := z ∈ j(z) ∧ ∀x ∈ z x = j(x) ∧ z is explicitly inaccessible (9.1.6)

The connections between these statements can be summarized in the following figure:

Φ1 Φ1′

Φ1.5 Φ1.5′

Φ2 Φ2′

Figure 9.1: The implicational relationships between the different degrees of inaccessi-

bility of critical points. An arrow between two statements signifies that the existence of

a set fulfilling one implies the existence of a set fulfilling the other (sometimes on the

basis of certain small large cardinal axioms). Some trivial implications were removed

for legibility.

9.1.1 Improving on Transitivity

Theorem 9.1. (j : V
≡
↪→M )

∃zΦ1(z)→ ∃αΦ1′(α) (9.1.7)



9 ELEMENTARY EMBEDDINGS 190

Proof. Assume Φ1(z) and set α := rk(z). Then to show Φ1′(α), we need to prove that j

restricted to α is the identity and j(α) 3 α.

For the first demonstrandum, show by set induction over a that

∀a.∀b ∈ a j(b) = b→ ∀β ∈ rk(a).j(β) = β (9.1.8)

For let β ∈ rk(a), so either β = rk(b) for some b ∈ a or β ∈ rk(b) for some b ∈ a. In

the first case j(β) = j(rk(b)) = rk(j(b)) = rk(b) = β where the crucial step used the

commutativity of the functions j and rk by Example 2.20. In the second case j(β) = β

by the induction hypothesis.

For the second demonstrandum, note that z ∈ j(z) implies rk(z) ∈ rk(j(z)), so

α = rk(z) ∈ rk(j(z)) = j(rk(z)) = j(α) (9.1.9)

Here we again used the commutativity of rk and j.

This completes the proof.

Theorem 9.1 indicates that when showing that Φ(z) implies stronger properties about

z, we might without loss of generality also start from an ordinal, which is why in the

following we will use variable names usually associated with ordinals, even though in

fact the critical points can be arbitrary transitive sets.

Consider the following weak regularity properties, which unlike full regularity can also

be expected to apply to large ordinals:

Definition 9.2. A transitive set α is called weakly functionally regular if whenever

β ∈ α and for some function f : β → α there is some γ ∈ α with f : β → γ.

A transitive set α is called union-functionally regular if for all β ∈ α and f : β → α,

we have
⋃
x∈β f(x) ∈ α.
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Remark 9.3. Obviously an ordinal α ≥ 2 can never actually be regular, or even func-

tionally regular, as {1} ⊆ α is the unique set in functional correspondence with {0} ∈ α

via the function f := {(0, 1)}, but is not an ordinal and thus not in α.

Still, they can be weakly functionally regular or union-functionally regular. In fact, in

the presence of the excluded middle, these two properties coincide with what is usually

called “regular” in a classical context, i.e. being its own cofinality.

For critical points, the first of these properties comes for free with transitivity:

Proposition 9.4. (j : V
≡
↪→M ) If there is an α with Φ1(α), then it is weakly functionally

regular.

Proof. Let β ∈ α and f : β → α. Then for all x, y ∈ α:

(x, y) ∈ f → (j(x), j(y)) = (x, y) ∈ j(f) (9.1.10)

and f is a function with domain β, so j(f) is a function with the same domain j(β) = β.

So in fact f = j(f). So we have

M � ∃γ ∈ j(α).∀x ∈ β∃y ∈ γ.(x, y) ∈ j(f) (9.1.11)

Namely take γ to be α ∈ j(α) ∈ M , as by transitivity α ∈ M . So in our background

model, there is such a γ ∈ α.

In fact, we can even prove:

Proposition 9.5. (j : V
≡
↪→M ) If there is an α with Φ1(α), then it is weakly regular.

Proof. Let β ∈ α and R : β ⇒ α. Then for all x, y ∈ α:

(x, y) ∈ R→ (j(x), j(y)) = (x, y) ∈ j(R) (9.1.12)
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so R ⊆ j(R). Thus as

∀x ∈ β∃y ∈ α.(x, y) ∈ R (9.1.13)

we also have

∀x ∈ β∃y ∈ α.(x, y) ∈ j(R) (9.1.14)

Thus β = j(β) implies that setting γ := α supplies a witness for

M � ∃γ ∈ j(α).∀x ∈ j(β)∃y ∈ γ.(x, y) ∈ j(R) (9.1.15)

So by elementarity there is also such an element γ ∈ α with R : β ⇒ γ.

9.1.2 IEA for Critical Points with more Traction

To obtain union-functional regularity, a new proof idea is needed, and it involves the

existence of large sets. We want to prove that if there is an α with Φ1(α), then there is

an α′ with Φ1(α′) such that α′ is union-functionally regular.

For this, define a function which imbues an ordinal α with union-functionally regular

properties. The following definition will usually be considered for α ∈ On, I an inac-

cessible set and i ∈ I + 1. However, for technical reasons we impose no such restriction

in the definition.

Definition 9.6. Let α, i and I be sets. Define the expression αIi recursively as

αIi = α ∪
⋃
k∈i

{
⋃
x∈β

f(x)|β ∈ αIk, f : β → αIk} ∪
⋃
β∈α

βII (9.1.16)

Note that this is ∆0-definable, so by Lemma 2.19 always αIi = b↔ (j(α))
j(I)
j(i) = j(b) or

written more directly:
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j(αIi ) = j(α)
j(I)
j(i) (9.1.17)

Lemma 9.7. Let I be inaccessible. Then:

1. For all a, b, c ∈ I , also acb ∈ I .

2. For all a ∈ I it holds that aII ⊆ I .

3. For all a it holds that aII =
⋃
i∈I a

I
i

Proof. These are straightforward inductions over the definition of acb since inaccessibles

are closed under the set theoretic functions used in the definition.

If the indices extend an inaccessible, αJI does not really depend on them:

Proposition 9.8. Let I, J be α-inaccessible sets, A ⊇ I and B ⊇ J and α ∈ I ∩ J .

Then the following hold:

1. ∀i.αAi = αBi

2. ∀β ∈ α.βAA ∈ B

3. ∀i.αAi ⊆ αJJ ⊆ αBB

4. αAA = αBB

Proof. The proof of this conjunction proceeds by induction on α with a side induction

on i for the the first and third claims separately. All four conjuncts are proved simul-

taneously and uniformly in I, J, A,B (i.e. the formula used for induction contains the

universal quantification over I, J, A and B rather than treat them as parameters).

1. Let β ∈ αAi . Then one of the following three cases holds by Definition 9.6:

(a) β ∈ α. In this case also β ∈ αBB by Definition 9.6.
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(b) For some k ∈ i, γ ∈ αAk and f : γ → αAk , β = f ′′γ. By induction hypothesis

on i also γ ∈ αBk and f : γ → αBk , so β ∈ αBi .

(c) For some γ ∈ α, β ∈ γAA . By the fourth part of the induction hypothesis for

α, we have γAA = γBB , so β ∈ αBi .

So αAi ⊆ αBi , and analogously αAi ⊇ αBi .

2. Let β ∈ α. By transitivity of J , it holds that β ∈ J . By J being α-inaccessible

and β ∈ α, there is some K ∈ J which is β-inaccessible and β ∈ K. Then by the

fourth part of the induction hypothesis, βAA = βKK . And as β and K are both in J ,

also βKK ∈ J ⊆ B by the first part of Lemma 9.7.

3. The second inequality αJJ ⊆ αBB follows directly from monotonicity of the defini-

tion and J ⊆ B. For the first one, let β ∈ αAi . Then one of the following three

cases holds by Definition 9.6:

(a) β ∈ α. In this case also β ∈ αJJ by Definition 9.6.

(b) For some k ∈ i, γ ∈ αAk and f : γ → αAk , β = f ′′γ. By induction hypothesis

on i also γ ∈ αJJ and f : γ → αJJ , so by the second and third part of Lemma

9.7, γ ∈ J and for every δ ∈ γ, there is a j ∈ J such that f(δ) ∈ αJj .

Collecting these j in a set j0 ∈ J and choosing j2 ∈ J such that j0 ∈ j2 and

γ ∈ αJj1 for some j1 ∈ j2, one sees that f ′′γ ∈ αJj2 ⊆ αJJ .

(c) For some γ ∈ α, β ∈ γAA . By the fourth part of the induction hypothesis for α

(note that the induction hypothesis applies to any superset of J , in particular

to J itself), we have γAA = γJJ , so β ∈ αJJ .

In each case, β ∈ αJJ .

4. The previous part implies that

αAA ⊆
⋃
i

αAi ⊆ αBB (9.1.18)

Symmetrically, also αBB ⊆ αAA and thus they are equal.
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The embedding j does not necessarily always map inaccessibles to inaccessibles, al-

though it does so if for example j : V
≡
↪→ V . The reason for this is that (M �

j(I) regular) does not imply that j(I) contains total subrelations for R : a ⇒ j(I)

with a ∈ j(I) if R /∈M .

Definition 9.9. Call an α-inaccessible I j-α-inaccessible if j(I) is α-inaccessible as

well.

Let jIEA be the statement that for every α, each set is contained in a j-α-inaccessible.

Note that j : V
≡
↪→ M + jIEA is a conservative extension of CZF+”For every α every

set is contained in an α-inaccessible” and in case j : V
≡
↪→ V , IEA is a consequence of

Axiom M (in fact, j : V
≡
↪→ V + Axiom M proves that there are stationary many models

of CZF2 with j : V
≡
↪→M + jIEA).

Corollary 9.10. Let I be j-j(α)-inaccessible. Then j(αIi ) = j(α)Ij(i) and j(αII) = j(α)II

Proof. The first equation is implied directly by Proposition 9.8 and Equation 9.1.17.

We want to show that if α is a critical point, αIi is as well, at least under certain favourable

circumstances. This consists of two parts: Proving that j does not move anything below

αIi , and proving that it moves αIi above itself. The first part is the following lemma:

Lemma 9.11.

∀i∀α ∈ On.(∀β ∈ α.j(β) = β)→ (∀β ∈ αIi .j(β) = β) (9.1.19)

Proof. The proof proceeds by induction on α with side induction on i. Let β ∈ αIi . Then

one of the following three cases holds by definition of αIi :

1. β ∈ α. In this case j(β) = β by the antecedent.
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2. For some k ∈ i, γ ∈ αIk and f : γ → αIk, β = f ′′γ. The induction hypothesis on

i implies j(γ) = γ. Thus j(f) : γ → j(αIk). If (δ, δ′) ∈ f , then by elementarity

(j(δ), j(δ′)) ∈ j(f), but by induction hypothesis j(δ) = δ and j(δ′) = δ′. So

f ⊆ j(f) and as they have the same domain, they are equal. In particular β =

f ′′γ = j(f)′′j(γ) = j(β).

3. For some γ ∈ α, β ∈ γII . By induction hypothesis on α, j(β) = β.

So if α is a critical point, then nothing below αIi gets moved. But αIi itself does:

Lemma 9.12. Let I be j-j(α)-inaccessible with j(α) ∈ I . Then

α ∈ j(α)→ αII ∈ j(αII) (9.1.20)

Proof. α ∈ j(α), so αII ∈ j(α)II by definition. But by Proposition 9.8, j(α)II =

j(α)
j(I)
j(I) = j(αII).

Now we have accumulated enough facts to prove the main theorem:

Theorem 9.13. (j : V
≡
↪→M + jIEA)

∃xΦ1(x)→ ∃xΦ1.5(x) (9.1.21)

Proof. Assume ∃x.Φ1(x). By Theorem 9.1 let α be an ordinal with Φ1(α) and by jIEA

let I be j-j(α)-inaccessible with α ∈ I . By Lemma 9.11, j acts as the identity on αII ,

while by Lemma 9.12, αII ∈ j(αII). Thus Φ1.5(αII).

Corollary 9.14. (j : V
≡
↪→ V + Axiom M)

∃xΦ1(x)→ ∃xΦ1.5(x) (9.1.22)
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9.1.3 The Modified von Neumann Hierarchy for more Closure

In Definition 9.6 we gave a construction for steps to obtain a set αII which extends α

and is closed under β 7→ βII and union-functionality. The proof goes through exactly the

same way if instead of just closing under union-functionality, we also add another ∆0-

definable functional closure property, as long as this definition can be carried out inside

an inaccessible (i.e. (α, a, b) 7→ αba is reflected in every inaccessible — note that the

α-inaccessibility was only needed for the part that αJi contains all the βJJ with β ∈ α).

For example, we could have used the following property:

Definition 9.15. Call a union-functionally regular set α with α ∈ ω proto-inaccessible,

if the following hold for all β ∈ α:

1. ∀a, b, c ∈ V̂β.Jc ∈ a ∩ bK, Jc ∈ {a, b}K, Jc ∈
⋃
aK ∈ α

2. ∀a, b, c ∈ V̂β.Jc ∈ abK ∈ α ∧ ∀f.f ∈ ab→ Jc ∈ fK ∈ α

3. ∀a, b ∈ V̂β∀f : ab→ α.
⋃
x∈ ab f(x) ∈ α

4. ∀a ∈ V̂β∀f : a→ α
⋃
x∈a f(x) ∈ α

5. β + 1 ∈ α

Then the same proofs go through (always noting that inaccessible sets are closed under

the relevant functions of the modified von Neumann hierarchy), arriving at:

Theorem 9.16. (j : V
≡
↪→M + jIEA)

∃xΦ1(x)→ ∃xΦ1.5′(x) (9.1.23)

Up until now all properties considered for critical points (i.e. Φ1, Φ1′ , Φ1.5 and Φ1.5′)

were consistent with being an ordinal. However, no ordinal can ever be inaccessible or

explicitly inaccessible (i.e. fulfill Φ2 or Φ2′). To return from the realm of ordinals to the

realm large sets, we use the modified von Neumann hierarchy.

Lemma 9.17. Let α be proto-inaccessible. Then V̂α is explicitly inaccessible.
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Proof. First note that ω ∈ V̂α as ω ∈ V̂ω+1: The set V̂ω is the set of herediterily finite

sets, and it is discrete by a direct induction over r̂k. The natural numbers ω ⊆ V̂ω form a

discrete subset and thus ω is contained inMP(V̂ω).

Closure under pairing, union and binary intersection are completely analogous to each

other, so we will only present the first. We will use that α is closed under binary unions

by union-functionally regularity, for indeed if β, γ ∈ α, then the union of the function

range of f : 2 → α with 0 7→ β, 1 7→ γ is in α as 2 ∈ V̂3 and 3 ∈ ω ∈ α. This union is

just β ∪ γ.

Now let a, b ∈ V̂α, so by α being closed under successors, there is some β ∈ α with

a, b ∈ V̂β . Then by the first part of Definition 9.15, there is a function f fulfilling

f0 : V̂β → α, c 7→ Jc ∈ {a, b}K + 1 (9.1.24)

As V̂β ∈ V̂β+1 and β + 1 ∈ α, by Part 4 of Defintion 9.15 and α being closed under

binary unions, the following set is in α as well.

β0 := β ∪
⋃
x∈V̂β

f0(x) ∈ α (9.1.25)

Similarly, we can define recursively more functions (fi)i∈ω and elements (βi)i∈ω ∈ α by

setting for all i ∈ ω

fi+1 : V̂βi → α, fi+1(c) := Jc ∈ {a, b}K + 1 (9.1.26)

βi+1 := βi ∪
⋃
x∈V̂βi

fi(x) ∈ α (9.1.27)

As usual, {a, b} ∈ V̂(
⋃
i∈ω βi)+1 and (

⋃
i∈ω βi) + 1 ∈ α as ω ∈ α.

The remaining desiderata, i.e. the modeling of Replacement and Exponentiation, share

the same basic proof idea with a few subtleties added. For Replacement, let a ∈ V̂α, i.e.
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a ∈ V̂β for some β ∈ α and let f : a → V̂α. While for all sets of the form f(x) there is

some γ ∈ α with f(x) ∈ V̂γ , this alone does not help us: To apply Part 4 of Definition

9.15, we need a functional relationship, i.e. a canonical γ and not just any γ. We get this

from the following claim:

∀a ∈ V̂α.r̂k(a) ∈ α (9.1.28)

We show ∀β ∈ α∀a ∈ MP(V̂β).r̂k(a) ∈ α by induction over β. So let all γ ∈ β have

the desired property and let a ∈MP(V̂β). In particular, a ∈ V̂β+1 and β+ 1 ∈ α. As by

induction hypothesis r̂k : a→ α, the set β0 ∈ α where

β0 :=
⋃
x∈a

r̂k(x) + 1 (9.1.29)

Then a ⊆ V̂β0 and for all b ∈ V̂β0 the truth value Jb ∈ aK is an element of α as

Jb ∈ aK = Jb ∈ {a, a}K ∈ α (9.1.30)

So this defines a function from V̂β0 ∈ V̂β0+1 to α, thus the following set is also in α by

Part 4 of Definition 9.15

β1 := β0 ∪
⋃
x∈V̂β0

Jx ∈ aK + 1 ∈ α (9.1.31)

In fact, we can repeat the same argument to define recursively for i ∈ ω:

βi+1 := βi ∪
⋃
x∈V̂βi

Jx ∈ aK + 1 ∈ α (9.1.32)

Since ω ∈ α, the union of all these (βi)i∈ω is an element of α — but this is just r̂k(a).

This concludes the demonstration of Claim 9.1.28.

Returning to the proof of Replacement, let a ∈ V̂β for some β ∈ α and let f : a → V̂α,

then by Equation 9.1.28

r̂k ◦ f : a→ α (9.1.33)
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And so by Part 4 of Definition 9.15 there is a γ0 ∈ α such that f ′′a ⊆ V̂γ0 . We use the

usual definition for i ∈ ω:

γi+1 := γi
⋃
x∈V̂γi

Jx ∈ f ′′aK + 1 (9.1.34)

Then recursively using the second part of Definition 9.15, this is a sequence of ordinals

in α and their union serves as a witness for ∃γ ∈ α.f ′′a ∈ V̂γ .

For Exponentiation, first note that by Replacement all functions from a to b are in Vα as

long as a and b are. By the third part of the definition their ranks can be collected into an

ordinal in α and the second part allows the usual recursive construction of a γ ∈ α with
ab ∈ V̂γ .

If j : V
≡
↪→ M and α fulfills Φ1.5′(α), i.e. α is a proto-inaccessible critical point of j,

then as j(V̂α) = V̂j(α) and α ∈ j(α) we have

V̂α ∈ j(V̂α) (9.1.35)

Furthermore, recursion over β yields that for all x ∈ V̂β for β ∈ α, we have j(x) = x as

x can be retrieved from a function whose domain and codomain are not moved by j by

induction hypothesis. Putting this together with Lemma 9.17, we conclude:

Theorem 9.18. (j : V
≡
↪→M + jIEA)

∃xΦ1(x)→ ∃xΦ2′(x) (9.1.36)

Corollary 9.19. (j : V
≡
↪→ V + Axiom M)

∃xΦ1(x)→ ∃xΦ2′(x) (9.1.37)

This concludes the proof of the claims made in Figure 9.1.

The step from explicit inaccessibility to full inaccessibility requires something more

and can at least on the face of it not be taken without a non-deterministic induction, as

there does not appear to be a direct way to specify the sets which need to be added due

to Fullness. The results from Section 7.3 however suggest that this might possibly be

carried out in a theory like j : V
≡
↪→ V + Axiom M.
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9.2 The Strength of Restricted Elementary Embeddings

Instead of considering different requirements on the critical point, we could also consider

restrictions to the elementarity scheme, for example a restriction to ∆0 formulae. This

makes sense as preliminary research suggests that models for these might be constructed

more easily than models with a full elementary embedding, and as it turns out they still

carry a large part of the strength associated with measurable sets.

In this section, let K be an inaccessible set and j : V → V a ∆0-elementary embedding

with critical point K, i.e.

K ∈ j(K) ∧ ∀x ∈ K.j(x) = x (9.2.38)

and for all bounded formulae Φ(−→a ) with all free variables displayed and without j or

K included in the language of Φ (although sets like K or j(K) might be parameters of

course), we have

Φ(−→a )↔ Φ(
−−→
j(a)) (9.2.39)

We also assume that the axiom schemes of set theory still hold when the formulae in

them contain the symbols j or K.

Note that without extra assumptions like j being Σ1 or j being cofinal, this is equivalent

to a ∆0 elementary embedding j : V → M into some transitive M . On the other hand,

if j is cofinal into some M , then classical logic would imply j to be a full elementary

embedding V →M and even constructively it would be an embedding for a significantly

larger class of formulae than ∆0:

Remark 9.20. If j is cofinal in the sense1 that ∀x ∈ M∃x0.x ∈ j(x0) then j is a

Σ1-elementary2 embedding. Elementarity also holds for all universally quantified Σ1-

statements.

1This concept will later be called “set cofinal”
2Here, the Σ1-formulae are the smallest class of formulae containing all bounded formulae and being

closed under bounded quantification, ∨, ∧ and unbounded existential quantification.
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Proof. Take a ∆0 formula Φ(x,−→a ).

If ∃x.Φ(x,−→a ) then by elementarity also ∃x ∈ M.Φ(x,
−−→
j(a)), namely just apply j to the

witness. If on the other hand ∃x ∈ M.Φ(x,
−−→
j(a)) then for an appropriate x0, we have

∃x ∈ j(x0).Φ(x,
−−→
j(a)) and thus ∃x ∈ x0.Φ(x,−→a ), and in particular ∃x.Φ(x,−→a ).

Thus j is a Σ1-elementary embedding, because by virtue of Strong Collection, all Σ1

formulae can be written in the form ∃x.Φ(x,−→a ).

Now let Φ(x,−→a ) be a Σ1 formula. If ∀x.Φ(x,−→a ), then take an arbitrary y ∈ M and a

y0 with y ∈ j(y0). We have ∀x ∈ y0.Φ(x,−→a ) which is a Σ1 formula, so by elementarity

also ∀x ∈ j(y0).Φ(x,
−−→
j(a)), but that implies that in particular Φ(x,

−−→
j(y)). As y was an

arbitrary element ofM we can conclude ∀x ∈M.Φ(x, j(−→a )). If on the other hand ∀x ∈

M.Φ(x,
−−→
j(a)) then for all x also Φ(j(x),

−−→
j(a)) and thus by elementarity ∀x.Φ(x,−→a ).

Classically, the same argument can be repeated throughout the whole Lévy hierarchy,

using the fact that in formulas of the form ∀x ∈ b∃y the existential can be pushed

to the left via Collection (which also works in CZF) and that in formulas of the form

∃x ∈ b∀y, the universal can also be pushed to the left (which requires classical logic on

top of Collection).

9.2.1 Inaccessibility and Mahloness

We now want to prove that K fulfills many large set properties, starting with:

Proposition 9.21. K is α−inaccessible for all α ∈ K.

Being α−inaccessible is not a ∆0 concept. In fact, even being regular is not a ∆0 concept

as it needs a quantifier over a class of relations. Restricting this quantifier to a set would

yield a ∆0-concept and if the set is large enough, and that suffices.

Definition 9.22. A transitive set A is called C-bound regular, if for all R ∈ C and

a ∈ A such that R : a⇒ A there is a b ∈ A with R : a⇔⇒ b.
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Lemma 9.23. If A is regular, then A is C-bound regular.

IfA is C-bound regular andC is full in mv(a,A) for all a ∈ A thenA is actually regular.

Proof. If A is regular, then it is also C-bound regular because the definition of C-bound

regular differs only by a restriction on a universal quantification.

On the other hand, let A be C-bound regular and C be full in mv(B,A) for all B ∈ A.

If R : a ⇒ A with a ∈ A, then there is some R′ ⊆ R with R′ ∈ C, so by C-regularity

there is a set b ∈ A such that

∀x ∈ B∃y ∈ b.(x, y) ∈ R′ (9.2.40)

∀y ∈ b∃x ∈ a.(x, y) ∈ R′ (9.2.41)

Then by R′ ⊆ R, also

∀x ∈ a∃y ∈ b.(x, y) ∈ R (9.2.42)

∀y ∈ b∃x ∈ a.(x, y) ∈ R (9.2.43)

Which means that b is as required by regularity.

A similar idea works to approximate inaccessibility by a ∆0 concept:

Definition 9.24. A regular set A is called C-bound inaccessible if it is C-bound regular,

ω ∈ A, A is closed under union and binary intersection and models the Fullness axiom.

An C-bound inaccessible set A is called C-bound α-inaccessible if for all β < α and

all a ∈ A, there is a I ∈ A such that a ∈ I and I is C-bound β-inaccessible.

Unlike the requirement that A should be closed under fullness, i.e. ∀a, b ∈ A∃c ∈ A

with c full in mv(a, b), the formally weaker requirement that A models Fullness is ∆0,

so that the whole definition is ∆0 with C as parameter. As is the definition of C-bound

α-inaccessibility with C and α as parameter.
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Lemma 9.25. If A is α-inaccessible, then A is C-bound α-inaccessible.

IfA is C-bound α-inaccessible and C is full in mv(a,A) for all a ∈ A, thenA is actually

α-inaccessible.

Proof. Again the first part is immediate. For the second statement, proceed by induction

over α. Let A be C-bound α-inaccessible.

First it needs to be shown that A is actually inaccessible, not only C-bound inaccessible.

This follows from Lemma 9.23, as it implies that A is regular, and as a regular set

containing ω, modelling fullness and closed under union, binary intersection and full

sets, it is inaccessible.

Now let β < α and a ∈ A. There is a C-bound β-inaccessible set containing a in A and

by induction hypothesis, this set is actually β-inaccessible, which is what we need.

Now we are able to prove Proposition 9.21.

Proof of Proposition 9.21. By Collection, find a set C such that C is full in mv(a,K)

for all a ∈ K. We want to show that K is C-bound α-inaccessible for all α ∈ K, then

by the Lemma 9.25 we are done. We proceed by induction over α. So let β < α, a ∈ K.

By induction hypothesis, we know that

∃x ∈ j(K).j(a) ∈ x ∧ x is j(C)−bound j(β)− inaccessible) (9.2.44)

For K itself is a witness for this, keeping in mind that j(a) = a ∈ K and that K is truly

j(β) = β-inaccessible by induction hypothesis, so by Lemma 9.25, it is also j(C)-bound

j(β)-inaccessible. Then by ∆0-elementarity and owing to β = j(β), it follows that

∃x ∈ K.a ∈ x ∧ x is C−bound β − inaccessible) (9.2.45)

But as for a witness x of this statement, C is full in mv(y,K) for all y ∈ K, so in

particular also for all y ∈ x by transitivity of K. Thus we can conclude by Lemma 9.25

that this x is actually β-inaccessible.



9 ELEMENTARY EMBEDDINGS 205

To tackle Mahloness, we want to bound that concept as well.

Definition 9.26. A C-bound inaccessible set A is called C-bound α-Mahlo, if for all

β ∈ α, whenever R : A ⇒ A for some R ∈ C, there is a C-bound β-Mahlo set B ∈ A

with R : B ⇒ B.

Lemma 9.27. If A is α-Mahlo, then A is C-bound α-Mahlo.

If A is C-bound α-Mahlo and C is full in mv(A,A) and in mv(a,A) for all a ∈ A, then

A is actually α-Mahlo.

Proof. Again, the first statement is trivial and the second is proved by induction over α.

So let A be C-bound α-Mahlo and C be full in mv(A,A).

First note that A is actually inaccessible as it is C-bound inaccessible and C is suffi-

ciently large.

To show the Mahlo-reflection, letR : A⇒ A and β ∈ α. ThenR ⊆ R′ for someR′ ∈ C

and R′ : A ⇒ A. Now by C-bound α-Mahloness, there is some C-bound β-Mahlo set

B ∈ A with R′ : B ⇒ B, so also R : B ⇒ B and by the induction hypothesis, B is

actually β-Mahlo and thus as desired.

Proposition 9.28. K is α−Mahlo for all α ∈ K.

Proof. Let C be full in mv(a,K) for all a ∈ K ∪ {K}. We want to show that K is

C-bound α-Mahlo for all α ∈ K, then by the previous lemma we are done. By the

previous results K is C-bound inaccessible, but we still need to prove Mahlo-reflection.

We proceed by induction over α. So let β < α, R : K ∈ K with R ∈ C.

We claim that K itself is a witness for

∃a ∈ j(K).j(R) : a⇒ a ∧ a is j(C)−bounded j(β)−Mahlo (9.2.46)

This is because by induction hypothesis, K is j(C)-bounded β−Mahlo because it is

truly j(β) = β−Mahlo and j(R) : K ⇒ K. This follows from R : K ⇒ K and j(R) ⊇
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R ∩ K the latter of which holds for (x, y) ∈ R ∩ K implies (x, y) = (j(x), j(y)) =

j(x, y) ∈ j(R).

Reflecting this statement back to K and remembering that β = j(β) yields

∃a ∈ K.R : a⇒ a ∧ atextisC−bounded β−Mahlo (9.2.47)

Thus K is C-bound α-Mahlo and thus actually α-Mahlo.

9.2.2 Beyond Mahlo

Next, we want to analyse 2-strongness. Recall that the main requirement of 2-strongness

is of the form

∀S.ΦK(x)→ ∃I ∈ K.ΦI(x) ∧ I inaccessible (9.2.48)

We want to handle this property one S at a time:

Definition 9.29. 1. An inaccessible set A is called S-reflecting if

∀R : A⇒ A∀u ∈ A∃x ∈ A, v ∈ A.x ⊆ R ∧ (v, u, x) ∈ S (9.2.49)

implies

∀R : B ⇒ B∀u ∈ B∃x ∈ B, v ∈ B.x ⊆ R ∧ (v, u, x) ∈ S (9.2.50)

2. A C-bound inaccessible set A is called C-bound S-reflecting if

∀R ∈ C.R : A⇒ A→ ∀u ∈ A∃x ∈ A, v ∈ A.x ⊆ R ∧ (v, u, x) ∈ S (9.2.51)

implies that there is some C-bound inaccessible B ∈ A with

∀R ∈ C.R : B ⇒ B → ∀u ∈ B∃x ∈ B, v ∈ B.x ⊆ R ∧ (v, u, x) ∈ S (9.2.52)

Obviously if a set is S-reflecting for all its subsets S, then it is 2-strong, and vice versa

(note that in particular it is inaccessible since there is always at least one subset, namely

∅).
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The corresponding version of the usual lemma holds with slightly stronger requirements

on one side, as now imposing a C-bound amounts to more than just decreasing the scope

of the quantifiers of a Π1 statement.

Lemma 9.30. If A is S-reflecting and C is full in mv(A,A), then A is C-bound S-

reflecting.

If A is C-bound S-reflecting and C is full in mv(B,B′) for all B,B′ ∈ A, then A is

actually S-reflecting.

Proof. For the first part, assume S-reflection and the antecedent ofC-bound S-reflecting.

Then the antecedent of S reflecting itself holds, as each R : A⇒ A can be decreased to

a R′ ⊆ R with R′ ∈ C,R′ : A⇒ A and the same x and v that work for R′ also work for

R ⊇ R′ ⊇ x. So the consequent of S-reflection holds for some inaccessible B ∈ A, and

thus also the consequent of C-bound S-reflection, and A is C-bound S-reflecting.

For the second part, assume C-bound S-reflection and the antecendent of S-reflection.

Then obviously the antecedent of C-bound S-reflecting holds as well, thus so does the

consequent of C-bound S-reflection for some C-bound inaccessible B ∈ A. This B

also witnesses the consequent of S-reflection, for let R : B ⇒ B, then there is some

R′ ⊆ R with R′ ∈ C and the x, v for that R′ also work for R ⊇ R′ ⊇ x. Also B is truly

inaccessible as C is full in mv(B,B) and in all mv(b, B) for b ∈ B by condition.

Proposition 9.31. K is 2-strong.

Proof. We will show that K is S-reflecting for all S ⊆ K3. By the lemma before,

we only need to show that it is C-bound S-reflecting for some fixed C that is full in

mv(K,K) and mv(B,B′) for all B,B′ ∈ K, easily obtained by Collection.

So let

∀R ∈ C.R : K ⇒ K → ∀u ∈ K∃x ∈ K, v ∈ K.x ⊆ R ∧ (v, u, x) ∈ S (9.2.53)
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Note that S ⊆ j(S) as x ∈ S → x = j(x) ∈ j(S).

So K is a witness for ∃B ∈ j(K) such that B is C-bound inaccessible and

∀R ∈ j(C).R : B ⇒ B → ∀u ∈ B∃x ∈ B, v ∈ B.x ⊆ R ∧ (v, u, x) ∈ j(S) (9.2.54)

For any such R : K ⇒ K can be trimmed down to an R ∈ C with R : K ⇒ K,R ⊆ R′

and the x that works for R′ also works for R ⊃ R′ ⊃ x.

So by ∆0-elementarity, there is a B ∈ K which is C-bound inaccessible and

∀R ∈ C.R : B ⇒ B → ∀u ∈ B∃x ∈ B, v ∈ B.x ⊆ R ∧ (v, u, x) ∈ S (9.2.55)

Which yields C-bound S-reflection.

For the previous proposition, it sufficed to handle each S separately, but to tackle larger

properties like the existence of unboundedly many 2-strong sets below the critical point,

we must deal with all of them simultaneously.

Definition 9.32. For C-bound inaccessible A, let A be C-bound 2-strong if for all S ∈

C, whenever

∀R : A⇒ A.R ∈ C → ∀u ∈ A∃x ∈ A, v ∈ A.x ⊆ R ∧ (v, u, x) ∈ S (9.2.56)

this property is reflected in some C-bound inaccessible B ∈ A, i.e. ∃B inaccessible and

∀R : B ⇒ B.R ∈ C → ∀u ∈ B∃x ∈ B, v ∈ B.x ⊆ R ∧ (v, u, x) ∈ S (9.2.57)

The demands on the bound C are now stronger than before:

Lemma 9.33. If A is 2-strong and C is full in mv(A,A), then A is C-bound 2-strong.

If A is C-bound 2-strong and C is full in mv(A,A) and in mv(D × A,A× A) for some

D ⊆ C ∩ mv(A,A) full in mv(A,A) and closed under projections, and C is full in

mv(a,A) for all a ∈ A, then A is actually 2-strong.
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Proof. The first statement follows from the previous lemma, as being 2-strong means

being S-reflecting for all S, that a forteriori means S-reflecting for all S ∈ C and that

implies being C-bound S-reflecting for all S ∈ C, which is the same as being C-bound

2-strong.

For the second statement, letA beC-bound 2-strong andC be as specified, including full

in mv(A,A) and in mv(D × A,A× A) for some D ⊆ C ∩mv(A,A) full in mv(A,A).

Take S ⊆ A3, we need to show that A is S-reflecting. So assume that

∀R : A⇒ A.∀u ∈ A∃x ∈ A, v ∈ A.x ⊆ R ∧ (v, u, x) ∈ S (9.2.58)

This can be used to define a total relation

Q : (D)× A⇒ A× A (9.2.59)

by mapping an R and u to an x and v such that (v, u, x) ∈ S. Trim this to a Q′ ⊆ Q

with Q′ ∈ C having the same property. So by C-bound 2-strongness applied to the

projection of Q′ on the last three components, we get a C-bound inaccessible (and thus

inaccessible) B ∈ A with the desired property.

Proposition 9.34. K contains set unboundedly many 2-strong sets below it, i.e. all

elements of K lie in another element of K that is 2-strong.

Proof. Let a ∈ K and C be as in the last lemma, we need to find a C-bound 2-strong A

such that a ∈ A ∈ K. But K itself is a witness for

∃A ∈ j(K).j(a) ∈ A ∧ A is j(C)−bound 2− strong (9.2.60)

by the previous lemma as j(C) is full in mv(A,A) and A is actually 2-strong and j(a) =

a ∈ K. Then by elementarity,

∃A ∈ K.a ∈ A ∧ A is C−bound 2− strong (9.2.61)

This A is then actually 2-strong by the previous lemma.
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The methods presented here then extend to K containing stationary many 2-strong sets

below it, K being (2-strong)+, where (2-strong)+ is the same as 2-strong but with the

occurrance of inaccessibility in its definition replaced by 2-strongness itself again, and

many more similar concepts.

9.3 Cofinality of Elementary Embeddings

In the context of classical ZF set theory, elementary embeddings j : V → M into a

transitive model M possess an important property: Cofinality. If the codomain of the

embedding is V itself, as in the context of a Reinhardt set, a particularly strong version

of cofinality is fulfilled.

Definition 9.35. Let M be a transitive model of set theory.

1. A mapping j : V → M is called cofinal if for every ordinal α ∈ On ∩M , there

exists β ∈ V with α ∈ j(β).

2. A mapping j : V → M is called strongly cofinal if for every ordinal α ∈ On,

there exists β ∈ V with α ∈ j(β).

3. A mapping j : V → M is called set cofinal if for every set a ∈ M , there exists

b ∈ V with a ∈ j(b).

4. A mapping j : V → M is called strongly set cofinal if for every set a ∈ V , there

exists b ∈ V with a ∈ j(b).

The transitivity of M lets us characterize directly how much stronger the concepts of

strong cofinality actually are:

Remark 9.36. Let j : V → M be a mapping of V into a transitive model of set theory.

Then:

1. The mapping j is strongly cofinal if and only if and M contains all ordinals, i.e.

M ∩ On = On, and j is cofinal.
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2. The mapping j is strongly set cofinal if and only if and M contains all sets, i.e.

M = V , and j is set cofinal.

Now we state the main theorem for this section. The classical side of it is of course

already known:

Theorem 9.37. 1. In the theory ZFC, all elementary embeddings j : V → M are

cofinal, strongly cofinal and set cofinal, but can only be strongly set cofinal if j is

the trivial identity map. In particular, the elementary embedding associated to a

measurable cardinal can never be strongly set cofinal.

2. In the theory CZF, all elementary embeddings j : V → V are cofinal, set cofinal,

strongly cofinal and strongly set cofinal.

The constructive part will be proved in the following subsections. The classical part

relies on the following lemma which can be found and is proved e.g. in [Kun80]:

Lemma 9.38. (ZF) If j : V → M is an elementary embedding, then for all α ∈ On it

follows that α ⊆ j(α).

Proof. By induction over α, using that the induction hypothesis implies ∀β ∈ α.β ∈

j(β) ∈ j(α) ∨ β = j(β) ∈ j(α). We used the excluded middle to conclude β ∈

j(β) ∨ β = j(β) from β ⊆ j(β).

This directly yields strong cofinality as then ∀α.α ∈ j(α + 1). For set cofinality note

that for any a ∈ M there is some α with rk(a) = α. As rk(a) = b is a ∆1 formula, it is

absolute for M , so also M � rk(a) = α. Using Lemma 9.38, we conclude that

M � rk(a) ∈ j(α + 1) (9.3.62)

Thus a ∈ V M
j(α+1) = j(Vα+1) which is as required for set cofinality. Strong set cofinality

of a nontrivial embedding j : V
≡
↪→M however would imply the existence of a Reinhardt

set which is incompatible with ZFC.
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9.3.1 The Constructive Case

In the classical case, cofinality relied on α ∈ j(α + 1), but the proof of that relies

on the trichotomy of ordinals, which is a principle to be avoided in CZF as it implies

the principle of the excluded middle for bounded formulae [AR01]. This problem can

not be repaired directly, as the statement α ∈ j(α + 1) itself implies the principle of

the excluded middle for closed bounded formulae, provided that it is not completely

vacuous, i.e. provided that the elementary embedding j : V → M is not trivial in the

sense that it has a critical point.

Proposition 9.39. Let M be transitive and j : V → M be an elementary embedding

with critical point K, i.e. K ∈ j(K) and ∀a ∈ K.a = j(K).

Then the statement ∀α ∈ On.α ∈ j(α + 1) implies the principle of the excluded middle

for bounded formulae, i.e. for each ∆0 formula Φ, it implies Φ ∨ ¬Φ.

Proof. Let Φ(−→x ) be ∆0 with all free variables displayed. Consider the ordinal

α := {β ∈ K|β ∈ On ∧ Φ(−→x )} (9.3.63)

Then by elementarity

j(α) = {β ∈ j(K)|β ∈ On ∧ Φ(
−−→
j(x))} (9.3.64)

So assuming α ∈ j(α + 1), we either have α ∈ j(α) or α = j(α). In the first case j(α)

must be inhabited, which implies Φ(
−−→
j(x)) which by elementarity implies Φ(−→x ). In the

second case, Φ(
−−→
j(x)) can not be true, as otherwise K ∈ j(α) which would imply K ∈ α

and thus the contradiction K ∈ K. So in the second case we have ¬Φ(
−−→
j(x)) and so by

elementarity ¬Φ(−→x ).

In total we get Φ(−→x ) ∨ ¬Φ(−→x ).

This seems to spell early doom for the endeavour of establishing strong cofinality in a

constructive setting, but it turns out that this can still be achieved by a more complicated

road.
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9.3.2 Approximating Subset Relations

For this, we note that while the powerclass of a set can not expected to be a set again, we

can approximate it with a set by not collecting all subsets into one class but only those

where the question of elementhood has a sufficiently simple truth value.

Definition 9.40. Let Ω ⊆ P(1) be a class of truth values, Y be any class. Then define

the class PΩ(Y ) as

PΩ(Y ) := {X ⊆ Y |∀y ∈ Y.Jy ∈ XK ∈ Ω} (9.3.65)

Write X ⊆Ω Y for X ∈ PΩ(Y ).

This concept approximates power classes in the following sense:

Remark 9.41. 1. The operation Ω 7→ PΩ(Y ) is monotone in Ω. For Ω = ∅ and

inhabited Y , it returns ∅ and for Ω = P(1) it returns P(Y ).

2. If Ω and Y are sets, then PΩ(Y ) is a set.

Proof. The first part is immediate from the definition. The second follows from Expo-

nentiation. To see this, consider the operation I1 : YΩ→ P(Y ) defined by

I1(f) = {y ∈ Y |f(y) = 1} (9.3.66)

Then the range of this operation is included in PΩ(Y ) and every set X ⊆Ω Y has the

preimage y 7→ Jy ∈ XK. So

PΩ(Y ) = {I1(f)|f ∈ YΩ} (9.3.67)

We need to adapt this concept to a generalisation of the subset relation.

Definition 9.42. Define the relation a ⊆⊆ b recursively by

a ⊆⊆ b :↔ ∀x ∈ a∃y ∈ b.x ⊆⊆ y (9.3.68)
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This is a reflexive and transitive binary relation.

Remark 9.43. The principle of the restricted excluded middle is equivalent to the state-

ment

∀α, β ∈ On.α ⊆⊆ β ↔ α ⊆ β (9.3.69)

Proof. First note that by induction α = β always implies α ⊆⊆ β. Thus α ⊆ β

also always implies α ⊆⊆ β. Also note that the restricted excluded middle implies

trichotomy on the ordinals, i.e. that for all ordinals α, β we either have α ∈ β, α = β or

α 3 β.

For the first direction, assume the restricted middle for bounded formulae and show that

α ⊆⊆ β implies α ⊆ β by induction over β. Using trichotomy, either α ∈ β (in which

case also α ⊆ β) or α = β (in which case also α ⊆ β) or α 3 β. The latter case can not

happen however, as then β ∈ α ⊆⊆ β would imply ∃γ ∈ β.β ⊆⊆ γ. By the induction

hypothesis, β ⊆ γ, so in particular γ ∈ γ which is a contradiction.

For the converse direction, let Φ be any ∆0 formula and assume that α ⊆⊆ β always

implies α ⊆ β, so in particular this should be the case for

α := {{0|Φ}} ∪ {0|Φ} (9.3.70)

and

β := 2 = {{0}, 0} (9.3.71)

Indeed α ⊆⊆ β, as it has at most two elements, and the first one is a subset of {0} ∈ β

and the second one a subset of 0 ∈ β. However, if α ⊆ β, then its one sure element

{0|Φ} must be in β, so must either be equal to {0}, in which case Φ is true, or equal to

0, in which case Φ is false. In total, we obtain Φ ∨ ¬Φ.

Collecting all sets which are in the⊆⊆ relation to a given class provides a generalisation

of the powerset operation

Definition 9.44. For a class Y , define the class P⊂⊂(Y ) to be

P⊆⊆(Y ) := {X|X ⊆⊆ Y } (9.3.72)
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Like the powerclass operation, we also intend to approximate this operation using truth

values. For technical reasons (namely preserving a certain monotonicity property), we

use not only a single set of truth values but a set of truth values for every von Neumann

stage we might need (i.e. the elements of rk({Y })).

Definition 9.45. Let a, b be sets and f : rk(b) + 1→ P(P(1)). Then define the relation

a ⊆⊆f b by recursion on b as the conjunction of the formulae

∀x ∈ a∃y ∈ b.x ⊆⊆f�(rk(y)+1) y (9.3.73)

and

∀y ∈ b∀x ⊆⊆f�(rk(y)+1) y.Jx ∈ aK ∈ f(rk(b)) (9.3.74)

Define P⊆⊆f (b) as the class of all a with a ⊆⊆f b.

Note that as with PΩ, this approximation is from below, i.e. by an obvious induction we

have

∀a, b, f.a ⊆⊆f b→ a ⊆⊆ b (9.3.75)

The central facts about this construction are the following:

1. It approximates P⊆⊆(b) with sets.

2. Every ⊆⊆ relation is approximable by it.

Written more formally, we arrive at:

Proposition 9.46. 1. Let b be a set and f : rk(b) + 1→ P(P(1)). Then P⊆⊆f (b) is a

set.

2. Let a ⊆⊆ b be sets. Then there is an f such that a ⊆⊆f b.
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Proof. 1. This is slightly more cumbersome than the proof of the corresponding

statement about the approximation of the usual powerclass. The proof proceeds

by set induction over b.

So assume by induction hypothesis that P⊆⊆f�(rk(y)+1)(y) are sets for all y ∈ b. Then

so is

A :=
⋃
y∈Y

P⊆⊆f�(rk(y)+1)(y) (9.3.76)

Define an operation

I1 : Af(rk(b)→ P⊆⊆f (b) (9.3.77)

by setting

I1(g) := {x ∈ A|g(x) = 1} (9.3.78)

To see that this is well defined, let g ∈ AΩ. Then each element of a := I1(g) is in

A, and thus

∀x ∈ a∃y ∈ b.x ⊆⊆f�(rk(y)+1) y (9.3.79)

For any y ∈ b and x ⊆⊆f�(rk(y)+1) y, we have x ∈ A, so g(x) is defined here and

x ∈ X iff g(x) = 1. Thus Jx ∈ aK = g(x) ∈ f(rk(b)). In other words

∀y ∈ b∀x ⊆⊆f�(rk(y)+1) y.Jx ∈ aK ∈ f(rk(b)) (9.3.80)

Together, 9.3.79 and 9.3.80 show that the operation g 7→ I1(g) is well defined with

codomain P⊆⊆f (b). We need to show that it is also surjective.

So let a ⊆⊆f b. Define a function g : A→ f(rk(b)) by setting

g(x) := Jx ∈ aK (9.3.81)

This is well defined because the second part of the definition of a ⊆⊆f b implies

that for all x ∈ A, the truth value Jx ∈ aK is in f(rk(b)). Then
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I1(g) = a (9.3.82)

So

P⊆⊆f (b) = {I1(g)|g ∈ Af(rk(b))} (9.3.83)

Which is a set since A and f(rk(b)) are sets.

2. We first show that every relationship a ⊆⊆ b has a skeleton set R, where we

recursively call R a skeleton for a ⊆⊆ b if R : tc(a) ⇒ tc(b) and for each x ∈ a

there is a y ∈ b such that (x, y) ∈ R and R is a skeleton for x ⊆⊆ y. In particular,

ifR is a skeleton for a ⊆⊆ b, then a ⊆⊆ b holds. Write a ⊆⊆R b ifR is a skeleton

for a ⊆⊆ b.

Direct induction over a shows that only the part ofR that is actually part of tc(a)×

tc(b) matters, i.e.

∀a, b, R.a ⊆⊆R b→ a ⊆⊆R∩(tc(a)×tc(b)) b (9.3.84)

Similarly, enlarging R by forming the union with other skeletons preserves the

relationship, as another direct induction over a yields:

∀i ∈ I ai ⊆⊆Ri bi ∧ a ⊆⊆R b→ a ⊆⊆R∪
⋃
i∈I Ri b (9.3.85)

Such an R can always be found by recursively collecting together all the pairs

x ∈ tc(a), y ∈ tc(b) which were needed to establish a ⊆⊆Ω b. I.e. we claim:

∀a, b.a ⊆⊆ b→ ∃R.a ⊆⊆R b (9.3.86)

We show this by induction over a. Let a ⊆⊆ b, then by induction hypothesis, for

all x ∈ a there is a y ∈ b and an R such that x ⊆⊆R y. By Equation 9.3.84 we can

w.l.o.g. choose this R ⊆ tc(x)× tc(y).

By Strong Collection, find a set which contains all of these R and let R0 be the

union of that set. Then by Equation 9.3.85, this R0 is as desired.
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Now let a ⊆⊆ b. By Equation 9.3.86, it has a skeleton R. By recursion over

rk(y) + 1, construct a function frk(y) : rk(y) + 1 → P(P(1)) such that for every

pair (x, y′) ∈ R with rk(y′) ∈ rk(y) + 1 we have x ⊆⊆frk(y) y — namely extend

the function so far by (rk(y),Ω) where Ω contains enough truth values such that

for every such x

∀y′ ∈ y∀x′ ⊆⊆frk(y′)
y′.Jx′ ∈ xK ∈ Ω (9.3.87)

This is possible since there are only set many such x′ by part one and the skeleton

R being a set.

The approximation of a ⊆⊆ b by functions has definite merits by the results Proposition

9.46, however it also fails one essential requirement to be used directly in the proof

of Theorem 9.37: It does not interact well with elementary embeddings. Its collapse

however does:

Definition 9.47. Let a and b be sets and Ξ ∈ P(P(P(1))) a set of sets of truth values.

Define

a ⊆⊆∃Ξ b :↔ ∃f.a ⊆⊆f b ∧ f ′′(rk(b) + 1) = Ξ (9.3.88)

Define

P⊆⊆
∃

Ξ := {x|x ⊆⊆∃Ξ b} (9.3.89)

Then this has the same good properties:

Proposition 9.48. 1. Let b be a set and Ξ ∈ P(P(P(1))). Then P⊆⊆
∃

Ξ (b) is a set.

2. Let a ⊆⊆ b be sets. Then there is a Ξ such that a ⊆⊆∃Ξ b.

Proof. 1. Let b be a set and Ξ ∈ P(P(P(1))). Then

P⊆⊆
∃

Ξ (b) =
⋃

f∈ rk(b)+1Ξ

P⊆⊆f (9.3.90)

And by the first part of Proposition 9.46, this is a union of sets.
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2. Let a ⊆⊆ b be sets. By the second part of Proposition 9.46, there is an f such that

a ⊆⊆f b. Then Ξ := f ′′(rk(b) + 1) is as desired.

9.3.3 Truth Values and Elementary Embeddings

In the following subsections we want to connect the previously defined concepts with

elementary embeddings. The results presented here only depend on the embedding being

∆0-elementary, i.e. we demand V � Φ(−→x ) ↔ M � Φ(
−−→
j(x)) for bounded formulae Φ

only.

So let j : V → M be a ∆0-elementary embedding with transitive subcritical point K,

i.e. K is transitive and ∀a ∈ K.a = j(a) (if in addition K ∈ j(K) and K is a set, then

K would be a critical point in the usual sense). If K is a set, we cannot expect every

truth value to be in K. But nevertheless, they are still preserved by j:

Remark 9.49. For all truth values η ⊆ 1, j(η) = η.

This follows from the fact that 1 ∈ K and the following slightly more general assertion:

Lemma 9.50. Let a ∈ K, b ⊆ a. Then b = j(b).

Proof. Let x ∈ b. Then x ∈ a ∈ K and thus by transitivity x ∈ K and x = j(x). As by

elementarity j(x) ∈ j(b), it follows that x ∈ j(b).

Conversely, let x ∈ j(b). By elementarity j(b) ⊆ j(a) = a, so x ∈ a ∈ K, so by

transitivity x ∈ K and x = j(x). So j(x) ∈ j(b), and thus by elementarity x ∈ b.

As an aside, this implies that
⋃
a∈K P(a) ⊆M .

We descend one level further:

Remark 9.51. For all sets Ω ⊆ P(1) of truth values, Ω = j(Ω).

Again we will state it in a slightly more general way:
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Lemma 9.52. Let a ∈ K, and b be a set of subsets of a. Then b = j(b).

Proof. Let x ∈ b, so x ⊆ a ∈ K. Then by Lemma 9.50 j(x) = x. So j(x) ∈ j(b)

implies x ∈ j(b).

Conversely, let x ∈ j(b), so x ⊆ j(a) = a ∈ K. Then by Lemma 9.50 j(x) = x. So

x ∈ j(b) implies j(x) ∈ j(b) and thus x ∈ b.

And once more:

Remark 9.53. For all sets Ξ ⊆ P(P(1)) of sets of truth values, Ξ = j(Ξ)

Again we will state it in a slightly more general way:

Lemma 9.54. Let a ∈ K, and b a set of sets of subsets of a. Then b = j(b).

Proof. Let x ∈ b, so x ⊆ P(a) for a ∈ K. Then by Lemma 9.52 j(x) = x. So

j(x) ∈ j(b) implies x ∈ j(b).

Conversely, let x ∈ j(b), so x is a set of subsets of j(a) = a ∈ K. Then by Lemma 9.52

j(x) = x. So x ∈ j(b) implies j(x) ∈ j(b) and thus x ∈ b.

Note that remarks 9.49, 9.51 and 9.53 do not depend on the existence of a critical point

K, as 0 and 1 are never moved by j anyways, because they are simply ∆0-definable. The

corresponding lemmata still work if the condition a ∈ K is replaced by j(a) = a∧∀x ∈

tc(a).j(x) = x.

Also, the results of course generalise to arbitrary finite iterations of the powerclass oper-

ation, and in particular to the elements of Vω.

While not directly relevant to the following results, it is maybe of general interest that

using set induction, Lemma 9.50 can easily be extended to apply not only to the ⊆

relation, but to the ⊆⊆ relation.

Proposition 9.55. Let a ∈ K, b ⊆⊆ a. Then b = j(b).



9 ELEMENTARY EMBEDDINGS 221

Proof. The proof proceeds by set induction over a. So let by the induction hypothesis

a ∈ K be such that for all x ∈ a, y ⊆⊆ x implies y = j(y) and take b ⊆⊆ a.

To show b ⊆ j(b), let y ∈ b. Then there is some x ∈ a with y ⊆⊆ x. By induction

hypothesis, y = j(y). By elementarity, y ∈ b implies j(y) ∈ j(b) and thus y ∈ j(b).

To show that conversely, j(b) ⊆ b, take some y ∈ j(b). The set b fulfills

∀y ∈ b∃x ∈ a.y ⊆⊆ x (9.3.91)

As a ∈ K and thus a = j(a), elementarity implies

∀y ∈ j(b)∃x ∈ a.y ⊆⊆ x (9.3.92)

So let x ∈ a be such that y ⊆⊆ x. By induction hypothesis, y = j(y) and so j(y) ∈ j(b).

By elementarity, this implies y ∈ b.

This proof made use of the elementarity scheme extended by formulae containing a

symbol for ⊆⊆, a consequence of Lemma 2.19, since ⊆⊆ has a recursive ∆0 definition.

In the presence of the Powerset Axiom, this means that critical points can be saturated

under ⊆⊆:

Corollary 9.56. If K is a critical point of j, then so is
⋃
a∈K P⊆⊆(a), provided it is a

set.

Proof. Let K be a critical point of j, and let

K ′ :=
⋃
a∈K

P⊆⊆(a) (9.3.93)

Let K ′ be a set. From Proposition 9.55, we know that for all a ∈ K, if b ∈ P⊆⊆(a), then

b = j(b). This implies that j restricted to K ′ is the identity.

We also need to prove that K ′ ∈ j(K ′). For that, note that

x ∈ K ′ ↔ ∃a ∈ K.x ⊆⊆ a (9.3.94)
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So by elementarity, to conclude K ′ ∈ j(K ′), it suffices to conclude K ′ ∈ M and ∃a ∈

j(K).K ′ ⊆⊆ a. But by a direct unfolding of the definition K ′ ⊆⊆ K, and so simply

setting a := K works.

It remains to show that K ′ ∈ M . To show this, since K ∈ j(K) ∈ M , it suffices to

show that for each a ∈ K, the set P⊆⊆(a) is in M . This is indeed a set, since it can be

obtained by Separation from K ′, which is a set by condition.

It is an element of M , because

M 3 j(P⊆⊆(a)) = P⊆⊆(a) (9.3.95)

To see this, let b ∈ j(P⊆⊆(a)), which considering that a = j(a) is equivalent to M 

b ⊆⊆ a. A short induction shows that if the ⊆⊆ relation holds in M , then it also holds

in V . Thus b ⊆⊆ a and so b ∈ P⊆⊆(a).

Conversely, if b ∈ P⊆⊆(a), then b = j(b) and as b ⊆⊆ a implies j(b) ⊆⊆ j(a) = a, it

follows that b ∈ j(P⊆⊆(a))

While ZF does prove that K ′ :=
⋃
a∈K P⊆⊆(a) is a set, the corollary is of course trivial

in that environment, as classically critical points are always closed under the⊆⊆ relation

and so K = K ′. However, it is a meaningful statement e.g. in the context of IZF.

9.3.4 Subset Relations and Elementary Embeddings

While classical logic provides the useful α ⊆ j(α) for elementary embeddings, the

constructive case can make use of the following analogon:

Proposition 9.57. Let j : V →M be an elementary embedding. Then

∀α ∈ On.α ⊆⊆ j(α) (9.3.96)

Proof. This is an easy induction over α.
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Let by induction hypothesis ∀β ∈ α.β ⊆⊆ j(β). As for all β ∈ α, j(β) ∈ j(α) by

elementarity, this means that in the following formula, we can choose γ to be j(β):

∀β ∈ α∃γ ∈ j(α).β ⊆⊆ γ (9.3.97)

This is just the definition of α ⊆⊆ j(α).

In fact, we have not even used that α is an ordinal and not an arbitrary set, and we only

used that j has the property x ∈ y → j(x) ∈ j(y). So from the same proof we actually

obtain:

Corollary 9.58. Let j : V →M be a ∆0-elementary embedding. Then

∀x.x ⊆⊆ j(x) (9.3.98)

That the statement also applies to arbitrary sets x and not only to ordinals α is not overly

surprising in light of the following characterisation of ⊆⊆ for arbitrary sets, which im-

plies that the ⊆⊆ relation on arbitrary sets can be reduced to the ordinal case:

Proposition 9.59. For all sets a, b ∈ V ,

a ⊆⊆ b↔ a ⊆ Vb (9.3.99)

Proof. Show this by induction over b. So take a set b such that for all y ∈ b and all x, we

have x ⊆⊆ y if and only if x ⊆ Vy. Let a be a set. Then a ⊆⊆ b is equivalent to

∀x ∈ a∃y ∈ b.x ⊆⊆ y (9.3.100)

And by induction hypothesis this is equivalent to

∀x ∈ a∃y ∈ b.x ⊆ Vy (9.3.101)

This is equivalent to the statement that each element of a is also in
⋃
y∈bP(Vy). But this

is exactly Vb.

Corollary 9.60. For all sets a, b ∈ V ,

a ⊆⊆ b↔ rk(a) ⊆⊆ rk(b) (9.3.102)
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Thus in the classical case, the ⊆⊆ relation can be characterised very economically:

Corollary 9.61. The principle of the restricted excluded middle is equivalent to the state-

ment

∀a, b.a ⊆⊆ b↔ rk(a) ≤ rk(b) (9.3.103)

Having gathered all the necessary ingredients, we now return to the proof of Theorem

9.37.

Proof of Theorem 9.37. Let in the following j : V → V be an elementary embedding.

We want to show that ∀a.a ∈
⋃
x∈V j(x). So let a be an arbitrary set.

According to Proposition 9.57, ∀a.a ⊆⊆ j(a). Then by Proposition 9.48 there is a set

of sets of truth values Ξ witnessing this, i.e. a set fufilling

a ⊆⊆∃Ξ j(a) (9.3.104)

Note that the concept of P⊆⊆∃· could be defined by a formula without parameters, for

example let

Θ(x, y, z) :↔ x = P⊆⊆∃y (z) (9.3.105)

Now

x = P⊆⊆
∃

Ξ (a) (9.3.106)

is just Θ(x,Ξ, a) and this implies Θ(j(x), j(y), j(z)) by elementarity and thus

j(x) = P⊆⊆
∃

j(Ξ) (j(a)) (9.3.107)

Thus

j(P⊆⊆
∃

Ξ (a)) = P⊆⊆
∃

j(Ξ) (j(a)) (9.3.108)

But as Ξ = j(Ξ) by Remark 9.53, this means that

a ∈ P⊆⊆
∃

Ξ (j(a)) = j(P⊆⊆
∃

Ξ (a)) (9.3.109)

is an element of a set in the range of j as desired.
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Remark 9.62. These results do not yet exhaust the question of cofinality of elementary

embeddings as they do not cover elementary embeddings j : V → M where M may be

different from V . While it is clear that general embeddings j : V →M cannot be proved

to be strongly set cofinal (at least provided that ZFC is consistent with the existence of

measurable cardinals), their strong cofinality and set cofinality still remains open and

we will address it in the following sections.

On the other hand, ∀a.a ⊆⊆ j(a) can itself be seen as a constructive version of cofinality

and this has been shown to hold for all elementary j : V →M .

9.4 A Model with a Map j : V →M

While in the theory ZFC all embeddings j : V → M are always strongly cofinal,

we want to construct a model of CZF with a weakly elementary embedding that is not

strongly cofinal. To strengthen this result, our model will actually include a weakly

measurable cardinal, i.e. the axioms schemes will also hold for formulae including a

symbol for j.

This construction can be carried out with only CZF as background theory. Thus it sharp-

ens the fact mentioned in the last section that the consistence of ZFC + a measurable

cardinal implies that it cannot be proved that all elementary embeddings are strongly

set cofinal: In fact, this section shows that only the consistence of CZF needs to be

assumed to get the result for all weakly elementary embeddings. Here a weakly ele-

mentary embedding, in contrast to a fully elementary embedding, only needs to fulfill

Φ(−→x ) → ΦM(
−−→
j(x)) instead of Φ(−→x ) ↔ ΦM(

−−→
j(x)). Classically of course, these two

concepts are equivalent, as the first one in particular includes ¬Φ(−→x )→ ¬ΦM(
−−→
j(x)).

Our j : V →M will have a critical point K in the sense that ∀x ∈ K.j(x) = x but K 6=

j(K). This implies that while in classical set theory, weakly elementary embeddings

with critical points that are admissible in the axiom schemes (i.e. measurable cardinals)

increase the consistency strength dramatically, in CZF they are actually already relatively
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consistent.

As an aside, this is also an example of a transitive proper class model of set theory that

does not contain all the ordinals - classically this can only happen for transitive models

which are sets.

9.4.1 The pca

The construction is a realizability model with a rather peculiar pca defined on the fol-

lowing set:

Definition 9.63. Let ωωec be the set of eventually constant functions f : ω → ω, i.e.

ωωec := {f : ω → ω|∃n0 ∈ ω∀n > n0.f(n) = f(n0)} (9.4.110)

For f ∈ ωωec, write f(∞) for its eventual value, i.e.

f(∞) := lim infn→∞f(n) = {i|∃n0 ∈ ω∀n1 > n0.i < f(n1)} (9.4.111)

Application is based on the idea of pointwise Turing application with the twist that the

programme has access to all previous inputs as well as the eventual limit, if it chooses

to access that data. However, the amount of data to be processed needs to be bounded.

Introduce the following notations for Turing computation with oracles:

Definition 9.64. Let e ∈ ω, f : ω → ω. Then write {e}f for the result of the ap-

plication of the e − th Turing machine with an oracle for f , should this computation

terminate. Also, let {e}f ↓ be the statement that the computation terminates and {e}f ↑

the statement that it does not terminate. If {e}f ↓ and n ∈ ω, write

{e}f ↓n (9.4.112)

if the run of the computation accesses at most the first n entries of the oracle (i.e. f(0)

up to f(n− 1)).
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Note that in contrast to how the symbol ↓n is sometimes defined alternatively, the run

of {e}f ↓n is allowed to take much longer than just n steps, as long as no more than n

entries of the oracle tape are read off.

Remark 9.65. 1. Obviously

{e}f ↓↔ ∃n ∈ ω.{e}f ↓n (9.4.113)

as the computation needs to be done in finite time and thus only has the capacity

to process a finite amount of information.

2. Obviously

{e}f ↓n ∧f � n = g � n→ {e}f = {e}g (9.4.114)

as the computation did not access any information where f and g might have

differed.

Now define the partial application on ωωec.

Definition 9.66. Let e, f ∈ ωωec. Let fn : ω → ω be defined by

fn(m) =

〈f(n−m), e(n−m)〉 if n ≥ m

〈f(∞), e(∞)〉 if n < m

(9.4.115)

Where ω 3 n,m 7→ 〈n,m〉 ∈ ω is some suitable computable implementation of the

pairing function.

If there is an n0 ∈ ω such that

∀n.{e(n)}fn ↓n0 (9.4.116)

then write e ◦ f ↓ and define e ◦ f : ω → ω as

(e ◦ f)(n) := {e(n)}fn (9.4.117)
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Otherwise, leave it undefined and write e ◦ f ↑.

The symbol ◦ may be omitted from f ◦ g when it is clear from the context that the term

was written with this application in mind.

The function fn that is made available as oracle is just the countdown of the elements

〈f(n), e(n)〉, 〈f(n − 1), e(n − 1), 〉... until it reaches 〈f(0), e(0)〉. After this point it is

constantly equal to 〈f(∞), e(∞)〉.

The restriction on f ◦ g that the number of entries used from the oracle needs to be

bounded might seem strange at first. The reason for imposing it will become clear later.

Basically it prevents certain constructions from being computable in the pca, for example

there is no f with the property

∀n.(f ◦ g)(n) := g(0) (9.4.118)

While it would be easy to write an f such that when run, the Turing machine {f(n)}gm

reads off the n− th entry in the oracle, this would not yield f ◦ g ↓, as there is no bound

on how far the oracle is tapped - indeed f(n) would need to descend n steps on the oracle

tape.

On the other hand, the bound is not required to be uniform in g. Thus it is perfectly

possible to describe an f with the property

(f ◦ g)(n) :=

g(n− g(n)) if n ≥ g(n)

g(∞) if n < g(n)

(9.4.119)

Just let f(n)gm read off the first entry in the oracle, call its first component k, and then

descend k steps further down the oracle tape. If g ∈ ωωec, then there are only finitely

many different such k, so they have some maximum kmax and thus f ◦ g ↓ by virtue of

the bound kmax - a bound which however is not at all uniform in g.
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Lemma 9.67. Let e, f ∈ ωωec and e ◦ f ↓. Then

e ◦ f ∈ ωωec (9.4.120)

Proof. Let e ◦ f ↓, so for some n0 ∈ ω it holds that

∀n.{e(n)}fn ↓n0 (9.4.121)

As e, f ∈ ωωec, there are furthermore n1, n2 with

∀n > n1.e(n) = e(n1), ∀n > n2.f(n) = f(n2) (9.4.122)

Thus with n3 := n0 + max(n1, n2), it holds that

∀n > n3. ∧ fn � n0 = fn3 � n0 ∧ e(n) = e(n3) ∧ {e(n)}fn ↓n0 (9.4.123)

Thus for all n > n3,

{e(n)}fn = {e(n3)}fn = {e(n3)}fn3 (9.4.124)

where the second equality holds by Remark 9.65. In particular, the function e ◦ f is

eventually constant.

Proposition 9.68. The set ωωec together with the partial application operation

◦ : ωωec × ωωec →p
ωωec (9.4.125)

is a pca. The combinators k and s can be chosen to be constant functions.

Proof. The combinator k is very easy: It should be the constant function that always

returns an index for a Turing machine that reads off the first entry of the oracle and then

returns an entry for a Turing machine that always puts out the first component of that

entry (and does not read off anything from the oracle tape).
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The combinator s is also relatively straightforward, as long as a few basic caveats are

followed. If s is the constant function with value c, i.e. s : ω → ω, n 7→ c, then c needs

to be an index for a Turing machine which behaves as follows:

It reads off the first entry on the oracle tape (say, 〈a0, b0〉) and puts out an index for a

Turing machine which does the following:

It reads off the first entry on the oracle tape (say, 〈a1, b1〉) and puts out an index for a

Turing machine T from which a0 and a1 can be read off (how this is done depends on

how exactly you define Turing machines of course, but it is always possible) and which

does the following:

T reads off the first entry on the oracle tape (say, 〈a2, b2〉) and then simulates lazily the

run of the entries of the first oracle tape ◦ the entries of the third one, and this ◦ (the

entries of the second oracle tape ◦ the entries of the third one) to obtain the entry of

xz(yz) at the topmost position. That is, T will start simulating {a2}... and when this

Turing machine intends to read off an entry on its oracle tape at position n, T will look

at its own oracle tape at position n, and read the required a0,n off the first component

and a3,n off the second component of the oracle entry to return 〈a0,n, a3,n〉. If it does

not terminate, then sxyz does not denote (and does not need to). Otherwise T arrives at

some interim result d.

Now T will want to start simulating the run of {d}... and when this Turing machine

intends to read off an entry on its oracle tape at position n, it again needs to be calculated

on the spot. It will be an entry of the form 〈xn, yn〉. For xn, the same calculation just

described needs to be redone just shifted by n further down the tapes and for yn the

analogon for the simulation of (yz) needs to be calculated.

This is a very inefficient process and will have to repeat the same calculations several

times at different points in its run, but if indeed (x ◦ z) ◦ (y ◦ z) ↓, then s ◦ x ◦ y ◦ z ↓

and returns the same result. To see that s only needs to descend a bounded number of

steps on the oracle tapes, note that there are upper bounds for the runs of x ◦ z, y ◦ z and

(x◦z)◦(y◦z) and the combined sum of these bounds works for the run of (s◦x◦y)◦z.
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Note that pairing and projection functions can be defined pointwise, as can the imple-

mentation of the natural numbers in the pca and case distinction.

9.4.2 The Realizability Model

Now that ( ωωec, ◦) is established as a pca, we can build the standard realizability model

over it as e.g. described in [Rat03b]. This can be done with just CZF as background

theory and yields a model V ( ωωec)  CZF whose elements are recursively defined as all

sets of pairs (e, a) with e ∈ ωωec and a ∈ V ( ωωec).

As we however want to model a weakly measurable cardinal, we need to extend the

language of the model to include a symbol j for which we want

V ( ωωec)  j : V → V (9.4.126)

Let j be this symbol and by slight abuse of notation, also define j as a function on the

pca and the underlying class of the model.

Definition 9.69. 1. Define j : ωωec → ωωec by

j(e)(n) :=

e(∞) if n = 0

e(n− 1) if n > 0

(9.4.127)

2. Define j : V ( ωωec)→ V ( ωωec) recursively by

j(a) := {(j(e), j(x))|(e, x) ∈ a} (9.4.128)

Remark 9.70. 1. It is clear that j : ωωec → ωωec is computable in this pca by a

constant function, which by abuse of notation we will also call j, so that

∀e ∈ ωωec.j ◦ e = j(e) (9.4.129)

Indeed this function can be chosen to be the constant function putting out an index

for a Turing machine which takes the first component of the second entry (i.e. entry

number 1) of its oracle tape and returns that.
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2. It follows directly from the definitions that for e, f ∈ ωωec,

j(e ◦ f) ' j(e) ◦ j(f) (9.4.130)

Also j behaves as the identity on constant functions, so j(k) = k and j(s) = s.

That means that j is a representable pca-monomorphism.

To keep track, there are five meanings of the j now: The symbol in the language we want

to interpret, its interpretation, a function on V ( ωωec), a function on ωωec which was used

to define the function on V ( ωωec) and an element of ωωec which yields the function on
ωωec when plugged into the first component of x, y 7→ x ◦ y.

Definition 9.71 (Extending Realizability to function symbols). Let L be a signature

containing ∈ and function symbols and let A be a pca. For each of those function

symbols f with arity n, let fV (A) : V (A)n → V (A) be a function.

Define the value of each term with parameters in V (A) recursively by setting aV (A) = a

for a ∈ V (A) and

(f(t1, ..., tn))V (A) := fV (A)(t
V (A)
1 , ..., tV (A)

n ) (9.4.131)

Extend the realizability relation e  Φ(−→a ) by the following clause: If Φ(x1, ..., xn) does

not contain any function symbols, then let

e  Φ(t1, ..., tn) :↔ e  Φ(t
V (A)
1 , ..., tV (A)

n ), (9.4.132)

where e  Φ(t
V (A)
1 , ..., t

V (A)
n ) is already defined by the standard realizability in V (A).

In the following, we will interpret L = {∈, j} in V ( ωωec) with jV = j.

A priori it is not at all clear that this way the interpretation of the function symbols will

indeed be functions. Considering that the raw structure of V (A) is not identical to its

extensional structure, it is very possible that f(x) = y ∧ x = z → f(z) = y fails to be

realized. On the other hand, at least f(x) = y ∧ y = z → f(x) = z is always realized as

transitivity of equality was in a certain sense built into the realizability model.
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Lemma 9.72. It is realized that j : V → V is indeed a (class) function.

Proof. We only need to find a realizer for

∀a, b.a = b→ j(a) = j(b) (9.4.133)

However, when trying to use the recursion theorem to find a realizer for this formula,

the induction does not go through. What we need to construct first is an element e of the

applicative structure that fulfills

∀a, b ∈ V ( ωωec)∀f ∈ ωωec.f  a = b→ e(j(f))  j(a) = j(b) (9.4.134)

Such a realizer can then be found making use of the recursion theorem. This theorem

assures us that we can find an e fulfilling

e = λx.p(λy.p((x0y)0, e((x0y)1)), λy.p((x1y)0, e((x1y)1))) (9.4.135)

Now 9.4.134 is proved by induction over a and b.

Let f  a = b. We need to demonstrate that e(j(f))  j(a) = j(b). To that end, take

an element of j(a), it is of the form

(j(g), j(c)) ∈ j(a) (9.4.136)

The goal is to show that there is some element of j(b) whose first component is equal to

((e(j(f)))0j(g))0 and whose second component is realizedly equal to j(c) by the realizer

((e(j(f)))0j(g))1.

Note that by the definition of j, (g, c) ∈ a. So by the assumption on f , there is a

d ∈ V ( ωωec) with

(((f0)g)0, d) ∈ b ∧ ((f0)g)1  c = d (9.4.137)

So by the induction hypothesis,

e(j((f0g)1)) = e((j(f)0j(g))1)  j(c) = j(d) (9.4.138)
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And by the definition of j(b), the fact that (((f0)g)0, d) ∈ b implies

(j((f0g)0), j(d)) ∈ b (9.4.139)

So it only remains to show the two equations

((e(j(f)))0j(g))0 = j((f0g)0) (9.4.140)

and

(e(j(f))0j(g))1 = e(j((f0g)1)) (9.4.141)

These however are just equation 9.4.135 plugged in, noting that j is a monomorphism.

The other direction is of course proved analogously.

Now a realizer for formula 9.4.133 is just λx.e(j(x)), noting that j is representable in
ωωec as per remark 9.70.

Thus j is realized to be an (extensional) class function. It is not just any class function

however, but one with the important property that it may appear freely in all axiom

schemes of CZF. The following list omits Subset Collection only because with the help

of the other schemes it can be derived from the equivalent Fullness axiom which is not

a scheme at all, so the following lemma does imply that j may also appear in Subset

Collection.

Lemma 9.73. Let Strong Collectionj , Set Inductionj and ∆0-Separationj be the axiom

schemes that for each Φ in the language L(∈, j) where a and b do not occur free:

∀x ∈ a∃yΦ→ ∃b.∀x ∈ a∃y ∈ bΦ ∧ ∀y ∈ b∃x ∈ aΦ (9.4.142)

(∀b ∈ aΦ(b)→ Φ(a))→ ∀aΦ(a) (9.4.143)

Φ bounded → ∀a∃b.b = {x ∈ a|Φ} (9.4.144)

Then these axiom schemes are realized in V ( ωωec).
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Proof. Set Inductionj is trivial, as the usual proof that normal Set Induction is realized

also goes through for Set Inductionj .

Strong Collectionj is also trivial, as the usual proof that normal Strong Collection is real-

ized goes through for Strong Collectionj , noting that j can be defined in the background

universe and thus the background universe models Strong Collectionj .

∆0-Separationj also follows from j being definable in the background universe: Just

as for normal ∆0-Separation, the critical step is to show that the class of realizers for

a bounded formula is actually a set, where now there is a new atomic case to consider.

But since j is definable in the background universe and thus the background universe

models ∆0-Separationj , the classes of realizers for jn(x) ∈ y, jn(x) = y and jn(x) 3 y

respectively do form sets for each n because jn(x) = x′ for some x′ ∈ V ( ωωec) and as

already shown before by Rathjen in [Rat03b], the classes of realizers for x′ ∈ y, x′ = y

and x′ 3 y form sets. From the fact that the classes of realizers for bounded formulae

form sets, proceed just as in [Rat03b].

This lemma was so easy to prove because the definition of what it means to add function

symbols to the language being realized was done in such a way that it would be clear that

they can be used in the axiom schemes but left all the work to be done about the question

whether the function symbols would actually be interpreted as (extensional) functions.

Consider the following sub-pca of ωωec:

ωωec, 0 := {e ∈ ωωec.e(0) = e(∞)} (9.4.145)

This is the range of j and it is easy to see that j is actually a pca isomorphism onto it:

j : ωωec
∼=−→ ωωec, 0 (9.4.146)

Let in the following M ⊆ V ( ωωec) be defined as M = V ( ωωec, 0), i.e.
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a ∈M :↔ ∀x ∈ a∃y ∈M, e ∈ ωωec, 0.x = (e, y) (9.4.147)

Then for a ∈ V ( ωωec), we have j(a) ∈ M , although of course e  j(a) = x does not

necessarily imply x ∈ M (yet this implication holds if e ∈ ωωec, 0). In a slight abuse of

notation, define within V ( ωωec) the class M as {x|∃y.x = j(y)}. Then as each element

of M has a preimage under j, it follows that

(e  x ∈M)↔ (∃y ∈M.e  x = y) (9.4.148)

We will make use of this because it allows the interpretation of quantifiers e  ∀x ∈

M.Φ and e  ∃x ∈ M.Φ directly as ∀x ∈ M.e  Φ respectively ∃x ∈ M.e  Φ and

this can thus be proved to conform to the usual definition of these quantifiers.

Now it is possible (and relatively straightforward, even though it is somewhat protracted)

to show that j is weakly elementary.

Theorem 9.74. It is realized that j : V → M is a weak elementary embedding into a

transitive model of set theory, i.e. there is a realizer for

∀x∀y ∈ x.x ∈M → y ∈M (9.4.149)

and for all formulae Φ(−→x ) with all free variables displayed, there is a realizer for

∀−→x .Φ(−→x )→ ΦM(
−−→
j(x)) (9.4.150)

Proof. In order to show transitivity, there needs to be a realizer e with the property:

∀x, y ∈ V ( ωωec)∀x′ ∈M∀f, g ∈ ωωec, 0.

f  y ∈ x ∧ g  x = x′ → ∃y′ ∈M.efg  y = y′ (9.4.151)

If et is a realizer for transitivity and es for symmetry of equality, then a realizer e that

fulfills 9.4.151 would be

e := λx, y.etx1(y0x0)1 (9.4.152)
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To show this, let x, y ∈ V ( ωωec), x′ ∈ M and f, g ∈ ωωec with f  y ∈ x and

g  x = x′.

There must exist some y with

(f0, y) ∈ x ∧ f1  y = y (9.4.153)

Thus there exists some y′ with

((g0f0)0, y
′) ∈ x′ ∧ ((g0f0)1  y = y′ (9.4.154)

Thus by transitivity

etf1((g0f0)1  y = y′ (9.4.155)

As x′ ∈M , so is y′ ∈M and thus

efg = etf1((g0f0)1 (9.4.156)

is as desired.

Now for the elementary embedding: The asserted realizer is found and proved to work

by recursion on the structure of Φ. In fact, for the induction to go through the actual

statement to be proved is a two pronged statement, namely that for all Φ(−→x ) with all

free variables displayed, there are eΦ and e′Φ such that for all a0, ..., an ∈ V ( ωωec)

(e  Φ(−→a ))→ eΦj(e)  ΦM(
−−→
j(a)) (9.4.157)

and

(e  ΦM(
−−→
j(a)))→ ∃e′.e′Φe = j(e′) ∧ e′  Φ(−→a ) (9.4.158)

While this does also imply that  ΦM(
−−→
j(a)) ⇒ Φ(−→a ), this implication is not rep-

resented in the pca and thus not realized. However, as j is represented in the pca, it

immediately implies the existence of a realizer for Φ(−→a ) → ΦM(
−−→
j(a)), which is what

was claimed in the theorem.

To avoid the use of metavariables, note that by the generic implementation of the real-

izability relation for ∀x, the order of variables in −→x plays no role in the realizer, so we

need not distinguish for instance the cases of Φ being x1 = x2 and Φ being x2 = x1.



9 ELEMENTARY EMBEDDINGS 238

1. Φ is ⊥: Then ΦM is ⊥ as well, and eΦ and e′Φ can be chosen to be arbitrary

elements. Then 9.4.157 and 9.4.158 are vacuously true.

2. Φ is x1 = x2: First note that by substitution and the way that j was implemented,

this also covers the case jn(x1) = jm(x2). The existence of a eΦ for this formula

was already proved in lemma 9.72. The other claim that for a realizer e  j(x1) =

j(x2) basically only the values e(1), e(2), ... need to matter might intuitively be

clear as its inputs and outputs are all of the form j(g). However, there is still

something to do for e′Φ: Even in the case that (ef)(0) = (ef)(∞) and thus it does

not contain anything interesting, the run of (ef)(1) is allowed to access the oracle

that returns e(0), so changing e to a function in the range of j might change the

output. However, this problem can be circumvented with care.

First note that in usual implementations of Turing machines (and we want to use

one of these), there is the possibility to include in the index of a Turing machine

what in programming is known as comments, i.e. data that can be read off of the

index of the Turing machine but does not affect the run of the program. In technical

terms, there are Turing machines a (add comment) and r (read off comment) such

that:

∀a, c, d.{r}({{a}e}c) = c ∧ {({{a}e}c)}d ' {e}d (9.4.159)

So {{a}e}c contains the information of the comment c and this can be read off,

but it is still the index of a Turing machine that acts exactly like {e}.

Now e′Φ(e) transforms e pointwise, where e′Φ(1) = e′Φ(2) = ... = e′Φ(∞) and

only e′Φ(0) differs in that e′Φe(0) := e′Φe(∞). This latter condition can be met by

shifting the oracle tape by one, i.e. by setting

{e′Φ(0)}g = {e′Φ(∞)}n7→g(n+1) (9.4.160)

Now to describe e′Φ(∞). This is an index for a Turing machine that takes an input

e (think of the input as a realizer e  j(x1) = j(x2)) and returns a pair, both

components of which will be constructed analogously, so we will only describe
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the first one. This first one takes an input f (think of it as the first component of

some (f, j(a)) ∈ j(x1)) and returns a pair with the second input of the oracle tape

as comment (if the definition of pairs are functions that return the first or second

component depending on input, then pairs can be commented as well). The second

component just recursively applies e′Φ(∞), but the first one simulates the run of

e on f . However, when this run wants to descend on the oracle tape to read off

a value of e at a strictly lower point (e.g. e(0) if we are currently calculating the

value at 1), this query is redirected to the comments of the oracle tape one above,

where this information has been saved even though it may have been deleted at the

point where the query has been originally directed to.

Thus e′Φe is always in the range of j and side induction over x1, x2 directly yields

that if e  j(x1) = j(x2), then the preimage of e′Φe under j realizes x1 = x2.

3. Φ is x1 ∈ x2: First note that by substitution and the way that j was implemented,

this also covers the case jn(x1) ∈ jm(x2).

Let e  x1 ∈ x2, i.e.

∃x3.(e0, x3) ∈ x2 ∧ e1  x1 = x3 (9.4.161)

Then by definition of j, it follows that

(j(e0), j(x3)) ∈ j(x2) (9.4.162)

and by the induction hypothesis

ex1=x3j(e1)  j(x1) = j(x3) (9.4.163)

And so setting

eΦ := λx.p(x0, ex1=x3x1) (9.4.164)

returns a realizer as desired.

On the other hand, let e  j(x1) ∈ j(x2), i.e.

∃x3.(e0, x3) ∈ j(x2) ∧ e1  j(x1) = x3 (9.4.165)
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Then by the definition of j, it follows that e0 = j(g) for some realizer g and

x3 = j(x′3) for some x3 ∈ V ( ωωec). Thus

∃x3.(e0, j(x
′
3)) ∈ j(x2) ∧ e1  j(x1) = j(x′3) (9.4.166)

and by the induction hypothesis,

j−1(e′x1=x3
e1)  x1 = x′3 (9.4.167)

And so setting

e′Φ := λx.p(x0, e
′
x1=x3

x1) (9.4.168)

returns a realizer as desired (note that e′x1=x3
does not depend on x1 or, more

importantly, x3).

4. Φ is Ψ(−→x )→ Θ(−→x ): Let e  Ψ(−→x )→ Θ(−→x ). Let f  ΨM(
−−→
j(x)). Then by the

induction hypothesis on Ψ,

j−1(e′Ψf)  Ψ(−→x ) (9.4.169)

Thus

ej−1(e′Ψf)  Θ(−→x ) (9.4.170)

By the induction hypothesis on Θ,

eΘj(ej
−1(e′Ψf))  ΘM(j(−→x )) (9.4.171)

This implies

eΘ(j(e)(e′Ψf))  ΘM(j(−→x )) (9.4.172)

And so setting

eΦ = λx.λy.eΘx(e′Ψy)) (9.4.173)

returns a realizer as desired.

On the other hand, let e  ΨM(j(−→x )) → ΘM(j(−→x )). Let f  Ψ(−→x ). Then by

the induction hypothesis on Ψ,

eΨj(f)  ΨM(j(−→x )) (9.4.174)
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Thus

eeΨj(f)  ΘM(j(−→x )) (9.4.175)

By the induction hypothesis on Θ,

j−1(e′Θ(eeΨj(f)))  Θ(−→x ) (9.4.176)

And so setting

e′′Φ := λx.λy.e′Θ(xeΨj(y)) (9.4.177)

returns a realizer almost as desired - but while e′′Φfg is in the range of j, e′′Φf is not

necessarily in that range. But the same trick as for the case of Φ being x1 = x2

works: Set

e′′Φ := λx.c(λy.e′Θ(xeΨj(y))) (9.4.178)

where c(n) is the index for a Turing machine that reads some g and returns a Turing

machine with the second entry on the oracle tape as a comment that simulates g

while redirecting the oracle query for the first component of oracle entry number

n > 0 to the comment of the first component of oracle query number n− 1, while

c(0) is just so that cg(0) = cg(∞). This is now a realizer as desired.

5. Φ is Ψ ∧Θ: Let e  Ψ(−→x ) ∧Θ(−→x ). Then by the induction hypothesis

eΨj(e0)  ΨM(j(−→x )) and eΘj(e1)  ΘM(j(−→x )) (9.4.179)

In other words

p(eΨj(e0), eΘj(e1))  (ΨM(j(−→x )) ∧Θ(j(−→x )))M (9.4.180)

And by j being a monomorphism, setting

eΦ = λx.p(eΨx0, eΘx1) (9.4.181)

returns a realizer as desired.

On the other hand, let e  ΨM(j(−→x )) ∧ ΘM(j(−→x )). Then by the induction

hypothesis

j−1(e′Ψe0)  Ψ(−→x ) and j−1(e′Θe1)  Θ(−→x ) (9.4.182)
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In other words

p(j−1(e′Ψe0), j−1(e′Θe1))  Ψ(−→x ) ∧Θ(−→x ) (9.4.183)

And by j being a monomorphism (and the preimages being defined), setting

eΦ = λx.p(e′Ψx0, e
′
Θx1) (9.4.184)

returns a realizer as desired.

6. Φ is Ψ∨Θ: Let e  Ψ(−→x )∨Θ(−→x ). Then either e0 = 0 and e1  Ψ(−→x ) or e0 = 1

and e1  Θ(−→x ). Using the induction hypothesis on each disjunct yields

(e0 = 0∧eΨ(j(e1))  ΨM(j(−→x ))∨(e0 = 1∧eΘ(j(e1))  ΘM(j(−→x )) (9.4.185)

Thus by j being a monomorphism, setting

eΦ = λx. p(x0, dx0(eΨx1)(eΘx1)) (9.4.186)

returns a realizer as desired, where d denotes some member of the pca that imple-

ments case distinctions, i.e.

∀x, y.d0xy = x ∧ d1xy = y (9.4.187)

On the other hand, let e  ΨM(j(−→x )) ∨ ΘM(j(−→x )). Then either e0 = 0 and

e1  ΨM(j(−→x )) or e0 = 1 and e1  ΘM(j(−→x )). Using the induction hypothesis

on each disjunct yields

(e0 = 0 ∧ j−1(e′Ψe1)  Ψ(j(−→x )) ∨ (e0 = 1 ∧ j−1(e′Θe1)  Θ(j(−→x )) (9.4.188)

Thus by j being a monomorphism, setting

eΦ = λx.p(x0, dx0(e′Ψx1)(e′Θx1)) (9.4.189)

returns a realizer as desired, where again d denotes some member of the pca that

implements case distinctions.

7. Φ is ∀x1 ∈ x2Ψ(x1,
−→x ) or ∃x1 ∈ x2Ψ(x1,

−→x ): These cases can be skipped since

the bounded quantifiers are definable from the other logical connectives.
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8. Φ is ∀x1Ψ(x1,
−→x ): By realizing unbounded quantifiers in a generic way, this di-

rectly reduces to the induction hypothesis since

e  ∀x1Ψ(x1,
−→x )↔ ∀x1.e  Ψ(x1,

−→x ) (9.4.190)

and

e  (∀x1Ψ(x1,
−−→
j(x)))M ↔ ∀x1 ∈M.e  ΨM(j(x1),

−−→
j(x)) (9.4.191)

This uses that all elements of M are realizedly of the form j(x1) as established

above and the consequently justified convention to interpret ∀x ∈M generically.

9. Φ is ∃x1Ψ(x1,
−→x ): This is just the same as the universal quantification directly

above, as in the same vein

e  ∃x1Ψ(x1,
−→x )↔ ∃x1.e  Ψ(x1,

−→x ) (9.4.192)

and

e  (∃x1ΨM(x1,
−−→
j(x)))M ↔ ∃x1 ∈M.e  ΨM(j(x1),

−−→
j(x)) (9.4.193)

9.4.3 Critical Points and Cofinality in the Model

This section will show that the j : V →M realized in the last section is neither strongly

set-cofinal nor even strongly cofinal (unlike all weakly elementary embeddings in clas-

sical set theory). One point where this fails will be a critical point itself in the above

sense, i.e. a K such that j � K = idK but K 6= j(K) (or equivalently K ( j(K)).

In the following, use the convention of n ∈ V ( ωωec) being the implementation of the

natural number n in the model such that
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n = {(x 7→ m,m)|m < n} (9.4.194)

Also, ω can be implemented as

ω = {(x 7→ m,m)|m ∈ ω} (9.4.195)

Then the statement ω = ω is realized. Note that this is not the usual implementation

of natural numbers and is specific to this pca, but it enables a quicker presentation of

the following arguments. This alternative implementation works as the mapping of the

constant functions of the form x 7→ m to the usual implementation of natural numbers

m (as certain terms in s and k) is representable in the pca, as is its inverse.

Definition 9.75. For n ∈ ω, let fn ∈ ωωec be the function defined by

fn(m) =

n if m = 0

0 if m 6= 0

(9.4.196)

Define K ∈ V ( ωωec) as

K := {(fn, n)|n ∈ ω} (9.4.197)

Looking from the outside, K contains exactly the natural numbers, but with unusual

realizers. From the inside, the situation is slightly more complicated.

Lemma 9.76. The following are realized:

1. K is transitive, i.e.

∀x ∈ K∀y ∈ x.y ∈ K (9.4.198)

2. K is a set of transitive sets, i.e.

∀x ∈ K∀y ∈ x∀z ∈ y.z ∈ x (9.4.199)
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3. K contains all natural numbers, i.e. ω ⊆ K

4. K consists not only of natural numbers, i.e. ¬K ⊆ ω

5. The elements of K consist only of natural numbers, i.e.
⋃
K = ω

6. The elements of K are fixed points of j, i.e. ∀x ∈ K.j(x) = x

7. K itself is no fixed point of j, i.e. K ( j(K)

8. K is not in M

Proof. 1. Let (e, x) ∈ K, (f, y) ∈ x. Then by the definition of K, the set x must be

equal to n1 for some n1 ∈ ω. Thus by the definition of n1,

∃n2 ∈ n1.f = (m 7→ n2)m∈ω ∧ y = n2 (9.4.200)

Let er being the value of some constant function e′r realizing the reflexivity of

equality. Then the above implies

p(fn2 , e
′
r)  y ∈ K (9.4.201)

Thus the following realizer works as desired:

ω 3 n 7→

λeλf.p(f, er) if n = 0

λeλf.p(0, er) if n 6= 0

(9.4.202)

Here λx.t and p are used as an abbreviation for the index of a Turing machine, not

a member if the pca ωωec. It should be understood that the input λx.t uses for x is

the second component of the first entry (entry number 0) of its oracle tape.

2. Let (e, x) ∈ K, (f, y) ∈ x, (g, z) ∈ y. Then by the definition of K, the set x must

be equal to n1 for some n1 ∈ ω. Thus by the definition of n1, the set y must be

equal to n2 for some n2 ∈ n1 and by the definition of n2 it follows that
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∃n3 ∈ n2.g = (m 7→ n3)m∈ω ∧ z = n3 (9.4.203)

This means that for some er being the constant value of some constant function e′r

realizing the reflexivity of equality,

p(fn3 , e
′
r)  y ∈ K (9.4.204)

Thus the following realizer works as desired:

ω 3 n 7→

λeλfλg.p(g, er) if n = 0

λeλfλg.p(0, er) if n 6= 0

(9.4.205)

3. To realize the equivalent ∀x ∈ ω.x ∈ K, let (e, x) ∈ ω. Then by the definition of

ω,

∃n ∈ ω.g = (m 7→ n)m∈ω ∧ x = n (9.4.206)

This means that for some er being the constant value of some constant function e′r

realizing the reflexivity of equality,

p(fn, e
′
r)  x ∈ K (9.4.207)

Thus the following realizer works as desired:

ω 3 n 7→

λe.p(e, er) if n = 0

λe.p(0, er) if n 6= 0

(9.4.208)

4. Assume for contradiction e  ∀x ∈ K.x ∈ ω. Then for all elements of K, i.e. for

all (fn, n) ∈ K

∃((efn)0, (efn)0) ∈ ω.(efn)1  n = (efn)0 (9.4.209)
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But for all natural numbers n1 and n2, their equality can only be realized if they

actually stem from equal numbers n1 = n2. So

n = (efn)0 (9.4.210)

Equality between functions is extensional in set theory and repeating this argument

for n+ 1, this means

∀m.(efn)0(m) = n 6= n+ 1 = (efn+1)0(m) (9.4.211)

But as fn and fn+1 only differ in their value at point 0, this means that the calcula-

tion of the mth component of efn uses at least m entries of the oracle tape, which

is a contradiction to the boundedness imposed on oracle consumption.

5. As ω ⊆ K, it follows that ω =
⋃
ω ⊆

⋃
K, so the only thing that remains to be

demonstrated is a realizer for

∀x ∈ K∀y ∈ x.y ∈ ω (9.4.212)

Let (e, x) ∈ K and (f, y) ∈ x. Then by the definition of K, the set x must be

equal to n1 for some n1 ∈ ω. Thus by the definition of n1 it follows that

∃n2 ∈ ω.f = (m 7→ n2)m∈ω ∧ y = n2 (9.4.213)

This means that for e′r being some function realizing the reflexivity of equality,

p(fn2 , e
′
r)  y ∈ K (9.4.214)

Thus the following realizer works as desired:

λxλy.p(y, e′r) (9.4.215)
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6. Let (e, x) ∈ K. Then by the definition of K, the set x must be equal to n for some

n ∈ ω. A direct induction over n shows that all the sets n have the property that

j(n) = n, so for e′r being some function realizing the reflexivity of equality,

λx.er (9.4.216)

is a realizer that works as desired.

7. As the elements of K are fixed points of j, it follows directly that K ⊆ j(K). For

the negation of the converse, suppose for contradiction that there exists a realizer

e such that

∀(f, x) ∈ j(K)∃((ef)0, y) ∈ K.(ef)1  x = y (9.4.217)

By the definitions of K and j, these (f, x) must all be of the form (j(fn), j(n))

and j(n) = n, with such an element existing for every n ∈ ω. Furthermore,

((ef)0, y) ∈ K must be of the form (fm,m). As n is realizedly equal to m, they

must be equal themselves, i.e. n = m. In particular,

fn = (ej(fn))0 (9.4.218)

This means that there is an element in the pca ωωec which calculates fn from

j(fn) for all n. But the value of fn at 0, which is n, i.e. always different, must be

calculated using only the value of j(fn) at zero, which is always 0, and the value

of j(fn) at∞, which is always 0 as well. This is a contradiction.

8. Recall the result that if K were realized to be in M , there would be an element

j(A) of M realizedly equal to K. Then because j(A) needs to be a superset of K

and j acts as the identity on K, in particular there is a realizer e such that

∃x0, x1 ∈M.(ef0, x0) ∈ j(A) ∧ (ef1, x1) ∈ j(A)∧  x0 = 0 ∧ V dashx1 = 1

(9.4.219)

As on the other hand j(A) is also a subset of K, there is a realizer f such that

fef0 = f0 ∧ fef1 = f1 (9.4.220)
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But as (efi) ∈ ωωec,0 for i = 0, 1 (i.e. as functions their value at place 0 is equal

to their value at place ∞), the different value of the functions fef0 and fef1 at

place 0 implies that the values of ef1 and ef0 need to have differed at place ∞.

But that cannot be as it would be in direct contradiction with the boundedness of

the consumption of oracle tape just as in point 4.

Theorem 9.77. 1. The weakly elementary embedding j : V → M has a critical

point K in the sense that j � K = idK but K 6= j(K).

2. The map j : V →M is neither strongly set cofinal nor strongly cofinal.

Proof. The critical point were points 6 and 7 of lemma 9.76. A set witnessing that j is

not strongly set cofinal is K, as shown in 8 of lemma 9.76, noting that M is realized to

be transitive. This is also a witness to j not being strongly cofinal as K is an ordinal as

per points 1 and 2 of lemma 9.76.

Corollary 9.78. 1. The proof theoretic strength of CZF plus a weakly measurable

cardinal is equal to that of CZF.

2. If CZF is consistent, then it does not prove that all weakly elementary embeddings

are cofinal.

Both statements become false if CZF is replaced by ZFC.

9.4.4 The Limits of the Methods used in this Chapter

The model construction detailed above relies on a pca monomorphism j : A → A on

some pca A with certain properties which is then lifted to a homomorphism of realiz-

ability models j : V (A)→ V (A) by defining recursively

j(A) := {(j(e), j(a))|(e, a) ∈ A} (9.4.221)
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This manifests itself in the model V (A) as a weakly elementary embedding. A fully

elementary embedding remains tantalizingly close: While it is true that

 Φ(−→x )↔ ΦM(
−−→
j(x)), (9.4.222)

only the direction from left to right has been proved to be represented in the pca. This is

not an incomplete result but due to the general limitations of this method:

Theorem 9.79. If in a situation as described above there is a realizer for

∀−→x .ΦM(
−−→
j(x))→ Φ(−→x ) (9.4.223)

then there is a left inverse for j representable in the pca and thus

 ∀a.j(a) = a (9.4.224)

Proof. Assume there was such a realizer at least in the special case consisting of the

following formula:

e  ∀x, y.j(x) = j(y)→ x = y (9.4.225)

Then define

a := {(k, ∅)} ∈ V (A) (9.4.226)

For all f ∈ A, define

bf := {(f, ∅)} ∈ V (A) (9.4.227)

And for er some realizer for ∅ = ∅, let

gf := p(λx.p(j(f), er), λx.p(k, er)) ∈ A (9.4.228)
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Note that j(a) = a and j(bf ) = {(j(f), ∅)}, so

gf  j(a) = j(bf ) (9.4.229)

Thus

egf  a = bf (9.4.230)

So for each (k, ∅) ∈ a, there is a (((egf )0k)0, ∅) ∈ bf . But as there is only one element

in bf , this means

((egf )0k)0 = f (9.4.231)

And thus by abstraction

∀f.(λx.((ep(λy.p(j(x), er), λy.p(k, er)))0k)0)j(f) = f (9.4.232)

So the left inverse of j is representable in the pca via the element

e′ := λx.((ep(λy.p(j(x), er), λy.p(k, er)))0k)0 (9.4.233)

From that it is very easy to find a realizer for ∀a.a = j(a). For example the following

realizer defined with the recursion theorem in A works as desired:

e′′ := p(λx.p(jx, e′′), λx.p(e′x, ese
′′)) (9.4.234)

Where es is a realizer for ∀x, y.x = y → y = x.

Then this realizes j being the identity by induction: For (f, x) ∈ a there is (j(f), j(x)) ∈

j(a) with ((e′′0)f)0 = j(f) and by induction hypothesis
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((e′′0)f)1 = e′′  x = j(x) (9.4.235)

Conversely for (f, x) ∈ j(a), f = j(f ′) there are f ′, x′ with x = j(x′) and (f ′, x′) ∈ a.

Then ((e′′1)f)0 = e′f = f ′ and by the induction hypothesis

((e′′1)f)1 = ese
′′  x = x′ where x=j(x’) (9.4.236)

Thus if this method is to produce a nontrivial j : V →M , it can at most be proved to be

weakly elementary, never fully elementary.

9.5 Stronger Assumptions yield a Fully Elementary Em-

bedding refuting Cofinality

Last section demonstrated that assuming the consistency of CZF, the embedding asso-

ciated to the large set axiom of weak measurability cannot be proved to be cofinal. If

we want to extend this result to fully elementary embeddings, it stands to reason that a

stronger assumption is needed as then the consistency strength increases. In the result

for this section, this will be the existence of a measurable set (which holds for instance

in models of ZFC with a measurable cardinal).

Let in the following j : V →M be an elementary embedding. Consider the realizability

model V (Kl) as described in [Rat03b] augmented by realizability for the symbols for

j and ∈ M as presented in Definition 4.23. Recall that the interpretation of j is chosen

in such a way that for x ∈ V (Kl) the formula jn(x) = y is realized if and only if for

x′ := jn(x) the formula x′ = y is realized, and analogously for ∈. A realizer for x ∈M

is any realizer which realizes x = y for some y ∈M .

In the following we will rely on Kl being unaffected by j. Not only are its underlying

set and its elements fixed points of j, but the structure of Kl is fixed as well:
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Remark 9.80. For e, f ∈ Kl

∃g ∈ ω(e, f, g) ∈ ◦ ↔ V � e ◦ f ↓↔M � e ◦ f ↓↔ ∃g ∈ ω(e, f, g) ∈ j(◦) (9.5.237)

and for g also in Kl

(e, f, g) ∈ ◦ ↔ V � e ◦ f = g ↔M � e ◦ f = g ↔ (e, f, g) ∈ j(◦) (9.5.238)

Proof. The relation ◦ ⊆ ω3 can be and defined by a bounded formula whose quantifiers

are bounded by fixed points of j (i.e. ω and its elements) and its domain consists of fixed

points as well (i.e. triples of natural numbers).

9.5.1 What is and is not realized to be in M

As M ∩ V (Kl) = (V (Kl))M , we will use the convention M(Kl) to refer to this class.

By Definition 4.23, anything that is realizably equal to an element of M(Kl) is realized

to be in M . Thus if e  x ∈ M , the set x ∈ V (Kl) does not actually have to be an

element of M(Kl). For example if a /∈ M , then the set ak := {(k, xk)|x ∈ a} cannot

be in M either, as M is closed under the construction x 7→ xk. However, if a ( b ∈ M ,

then bk is in M(Kl), and bk is realizably equal to

bk ∪ {(skk, xk)|x ∈ a} (9.5.239)

This set however can not be in M(Kl), even if it is realized to be in M .

Thus to show that something is not realized to be in M , it does not suffice to show that

it is not a member of M(Kl). Except in special circumstances:

Definition 9.81. Define the class of slim sets a ∈ V (Kl) recursively by letting a be slim

iff both of the following hold

1. For all (e, x) ∈ a, the set x ∈ V (Kl) is slim.

2. For all (e, x) ∈ a and (e′, x′) ∈ a and  x = x′, it follows that e = e′ and x = x′.
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Slim sets have some convenient properties:

Definition 9.82. If e ∈ Kl and a ∈ V (Kl), define recursively

ae := {((e1f)0, x(e1f)1)|(f, x) ∈ a} ∈ V (Kl) (9.5.240)

Proposition 9.83. Let a ∈ V (Kl) be slim, e ∈ ω and b ∈ V (Kl) be such that e  a = b.

Then

a = be (9.5.241)

Proof. The proof proceeds by induction over a and b.

Take an arbitrary element of be, it has the form ((e1f)0, x(e1f)1) where (f, x) ∈ b. Thus

by the condition on e,

∃((e1f)0, y) ∈ b.(e1f)1  x = y (9.5.242)

By the induction hypothesis, y must be equal to x(e1f)1 . Thus ((e1f)0, x(e1f)1) ∈ a and

by abstraction be ⊆ a.

Now take an arbitrary element (f, x) ∈ a. Then

∃((e0f)0, y) ∈ b.(e0f)1  x = y (9.5.243)

Going back to a yields

∃((e1(e0f)0)0, z) ∈ a.(e1(e0f)0)1  y = z (9.5.244)

By transitivity,  x = z and so as a is slim, x = z and (e1(e0f)0)0 = f . But the

definition of be implies that 9.5.243 also yields

((e1(e0f)0)0, y(e1(e0f)0)1) ∈ be (9.5.245)
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But the first component of this is equal to f as established above and the second compo-

nent equal to x by the induction hypothesis, which is applicable since (f, x) ∈ a implies

that x is also slim. Thus a ⊆ be.

Corollary 9.84. Let a, b and b′ be slim sets. Then

e  a = b ∧ e  a = b′ → b = b′ (9.5.246)

In particular for er a realizer for reflexivity,

b = b′ ↔ er  b = b′ (9.5.247)

Proof. By proposition 9.83, e  a = b and e  a = b′ imply that b = ae = b′. Setting

a := b implies the second statement.

Slimness is basically a bounded property:

Proposition 9.85. If N is a transitive model of set theory, then for all a ∈ N(Kl), a is

slim iff N � a is slim.

Proof. This is direct by induction over a, noting that the induction hypothesis can always

be applied because (e, x) ∈ a ∈ N implies x ∈ N .

For slim sets, it is easy to decide whether they are realized to be in M .

Theorem 9.86. Let a ∈ V (Kl) be slim and er be a realizer for reflexivity of equality.

Then

a ∈M(Kl)↔ er  a ∈M ↔ a ∈M (9.5.248)

Proof. The directions from left to right are trivial, so it suffices to show the implication

( a ∈M)→ (a ∈M(Kl)) (9.5.249)

So let for some b ∈M(Kl)

e  a = b (9.5.250)
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As a is slim, proposition 9.83 implies

a = be (9.5.251)

But a quick induction over x shows that M is closed under the operation (x, f) 7→ xf

(as it was defined by bounded recursion) and since b and e are elements of M , this then

means that a must be an element of M (and thus of M(Kl)) as well.

Now we turn to the question of refuting cofinality in this model. This relies on construc-

tive logic giving a lot of leeway to the world of ordinals and there being a great wealth

of ordinals in V (Kl). In particular there are ordinals in V (Kl) corresponding to every

element of αω for α some ordinal from the background universe:

Definition 9.87. Define for ordinals α and functions f : α → ω recursively over α the

symbol αf as

αf := {(f(β), βf�β)|β ∈ α} ∈ V (Kl) (9.5.252)

This fulfills a strong injectivity property:

Lemma 9.88. Let α, β ∈ On and f : α→ ω, g : β → ω. Then

( αf = βg)→ (α = β) (9.5.253)

Proof. This is done by induction.

If e  αf = βg, then in particular for every element (e, γf
′
) ∈ αf , there is a (h, δg

′
) ∈ βg

such that γf ′ is realizedly equal to δg′ and vice versa.

By the induction hypothesis, this means that γ = δ, and thus for every element of α,

there is an equal element of β and vice versa. In other words, α = β.

Proposition 9.89. Let α ∈ On and f : α → ω. Then αf is slim and realized to be an

ordinal.
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Proof. This is shown by induction over α.

For the first part of the definition of slimness, note that by the induction hypothesis, all

βf�β are slim for β ∈ α.

For the second part, take two arbitrary elements of αf , they are of the form

(f(β), βf�β), (f(β′), β′f�β) ∈ αf (9.5.254)

where β, β′ ∈ α. Suppose there is a realizer

e  βf�β = β′f�β
′

(9.5.255)

Then by lemma 9.88, β = β′. Thus both elements are identical, which is as desired by

the second part of the definition of slimness.

That αf is an ordinal can be expressed as

∀x ∈ αf∀y ∈ x∀z ∈ y.y ∈ αf ∧ z ∈ x (9.5.256)

This is realized by a fixed point of the following equation where er is a realized for

reflexivity of identity:

e = λxλyλz.p(p(y, er), p(z, er)) (9.5.257)

To see this, let (g, x) ∈ αf , (h, y) ∈ x, (i, z) ∈ y. Then the goal is to show that

(eghi)0 = p(h, er)  y ∈ αf (9.5.258)

and

(eghi)1 = p(i, er)  z ∈ x (9.5.259)
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For 9.5.258, note that h = f(γ) for some γ with y = γf�γ by the definition of x 7→ xf

and choice of x and y. Thus p(h, er)  y ∈ αf , again by the definition of x 7→ xf .

For 9.5.259, note that i = f(γ) for some γ with z = γf�γ by the definition of x 7→ xf

and choice of x, y and z. Also, x = δf�δ for some δ 3 γ. Thus p(i, er)  z ∈ x, again

by the definition of x 7→ xf .

Putting it all together leads to

Proposition 9.90. If there is any α ∈ On and f : α→ ω with f /∈M , then

 ∃β ∈ On.β /∈M (9.5.260)

In particular, j is not strongly cofinal.

Proof. Let f : α → V be such a function f /∈ M . Then also αf /∈ M as f can be

retrieved from αf by absolute (by ∆0-recursion definable) set theoretic operations. Then

by Theorem 9.86, it cannot be realized that αf is in M . But as it is an ordinal, it is

realized that there are ordinals outside of M .

If j were realized to be strongly cofinal, then there would be a β ∈ V (Kl) with αf ∈

j(β) being realized. By transitivity of M , it would also be realized that αf ∈ M , which

contradicts the first part of the proof.

Indeed, while classically all elementary embeddings are strongly cofinal so that all ordi-

nals lie in M , the condition of proposition 9.90 that there is a numerical function on an

ordinal that is outside of M is still easy to fulfill.

Proposition 9.91. The following theories are equiconsistent:

1. ZFC plus a measurable3 embedding j : V →M

2. ZFC plus a measurable embedding j : V → M such that there is an ordinal α

and function f : α→ 2 for which f /∈M
3i.e. a nontrivial elementary embedding j so that the axiom schemes of ZFC also hold in the language

L(∈, j)
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Proof. As the second part implies the first one outright, only the direction from 1 to 2

needs to be shown. Argue in the specified theory.

By the usual arguments (see for example [Kun80]), it is possible to construct a relative

model to this theory with a measurable embedding j : V → M with a critical point

κ such that there is an ultrafilter U ⊆ P(κ) and j is the embedding associated to this

ultrafilter, i.e. M is the Mostowski collapse of the ultrapower of V over U . By [Kun80]

Proposition 5.7, U /∈M but P(κ) = P(κ)M ∈M .

By choice in M , let f : α ↪→→→ P(κ) be a well ordering of P(κ) with f ∈M . Then define

the function g : α→ 2 by

g(β) :=

1 iff f(β) ∈ U

0 iff f(β) /∈ U
(9.5.261)

This is a function from an ordinal to 2 and can not be an element of M lest

U = {f(β)|β ∈ α ∧ g(β) = 1} (9.5.262)

also be in M .

Thus we obtain a new result about the refutation of cofinality of measurable embeddings:

Corollary 9.92. Provided measurable cardinals are consistent with classical set theory,

CZF does not prove that measurable embeddings are strongly cofinal.

9.6 Hitting the Ceiling

The main theorem in this section is the following:

Theorem 9.93. (There is a measurable set + Subcountability)

1 = 0 (9.6.263)
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This is a direct consequence of the following more positive proposition:

Proposition 9.94. (j : V
≡
↪→M + Subcountability)

∀a.j(a) = a (9.6.264)

For this we first need an easy lemma:

Lemma 9.95. (j : V
≡
↪→M )

∀n ∈ ω.j(n) = n ∧ j(ω) = ω (9.6.265)

Proof. We prove j(n) = n by induction over n. For the induction beginning, note that

@x.x ∈ 0 so by elementarity @x ∈ M.x ∈ j(0). As any element of j(0) would be in M

by transitivity of M , this implies j(0) = 0.

For the induction step, assume j(n) = n. Then x ∈ n + 1 ↔ x ∈ n ∨ x = n, so by

elementarity

∀x ∈M.x ∈ j(n+ 1)↔ x ∈ j(n) = n ∨ x = j(n) = n (9.6.266)

As any element of j(n+ 1) would be in M , this implies x ∈ j(n+ 1)↔ x ∈ n∨ x = n

for any x, so j(n+ 1) = n+ 1.

To prove j(ω) = ω, note that n ∈ ω → n = j(n) ∈ j(ω), so j(ω) ⊇ ω. The natural

numbers fulfill

∀n ∈ ω.n = 0 ∨ ∃m ∈ ω.n = m+ 1 (9.6.267)

So the same is true for j(ω) (note that n = m+ 1 is absolute as it is ∆0):

∀n ∈ j(ω).n = 0 ∨ ∃m ∈ j(ω).n = m+ 1 (9.6.268)

So prove by set induction that j(ω) ⊆ ω: Let x ∈ j(ω), then either it is 0, in which case

it is an element of ω, or it is m + 1 for some element of j(ω) which is a natural number

by induction hypothesis. In either case, x ∈ ω.
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Proof of Proposition 9.94. We proceed by set induction over a. So take an a such that

∀x ∈ a.j(x) = x (9.6.269)

By Subcountability, let A ⊆ ω and f ⊆ A× a with

f : A→→ a (9.6.270)

Then also

j(f) : j(A)→→ j(a) (9.6.271)

And dom(j(f)) = j(dom(f)) = j(A).

For all n ∈ ω, j(n) = n by Lemma 9.95, so if (n, x) ∈ f then also

(n, x) = (j(n), j(x)) ∈ j(f) (9.6.272)

Thus

j(f) � A = f (9.6.273)

A natural number n fulfills n ∈ A iff n = j(n) ∈ j(A) by elementarity, and all elements

of j(A) are natural numbers since j(A) ⊆ j(ω) = ω, so

A = j(A) (9.6.274)

Consequently

j(f) = j(f) � j(A) = j(f) � A = f (9.6.275)

And thus

a = f ′′A = j(f)′′j(A) = j(a) (9.6.276)
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Note that the exact same proof also yields the following result, whose main motivation

lies in the fact that the hereditarily subcountable sets often constitute a (class) model of

CZF itself4:

Corollary 9.96. (j : V
≡
↪→ M or j : V

≡
↪→∆0 M ) All hereditarily subcountable sets are

unmoved by j.

This has the interesting consequence of refuting a considerable weakening5 of Subcount-

ability, which has recently been found to be validated in certain category theoretic mod-

els of set theory, namely the axiom V = Vω1 (see [SS12]).

Definition 9.97.

ω1 := {rk(a)|a is hereditarily subcountable}) (9.6.277)

= rk({a|a is hereditarily subcountable}) (9.6.278)

= {α ∈ On|α is hereditarily subcountable} (9.6.279)

(9.6.280)

Note that neither CZF nor CZF + REA prove ω1 to be a set. In contrast, [SS12] use a

different definition of ω1 which can be shown to be a set in CZF + REA. As we want

the strongest possible refutation result, we aim at defining ω1 in a way which makes

V = Vω1 as weak as possible, and thus define ω1 to be as large as possible. It can easily

be seen that ω1 ⊇ ω]1 ⊇ ω[1 where ω]1 and ω[1 are the versions of ω1 from [SS12]. So if

V = Vω1 does not hold in a certain model, then neither do V = Vω]1
and V = Vω[1 .

Combining Propositions 9.55 and 9.59 with the previous corollary yields the following

result directly:

Corollary 9.98. (j : V
≡
↪→ M or j : V

≡
↪→∆0 M ) Vω1 is a subcritical point of j, i.e. all

its elements fulfill j(x) = x.

4e.g. in the standard Kleene realizability model if all subsets of ω are bases in the background theory
5It is an obvious weakening when employing our Definition 9.97 of ω1. With the alternative definitions

mentioned below, it seems that it neither implies, nor is implied by, Subcountability. The inconsistency

results hold for these as well.
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In particular, if V = Vω1 , then there can not exist a measurable set.

Theorem 9.93 has both practical and philosophical implications. On the practical side,

incompability with Subcountability makes it much harder to analyze the proof-theoretic

strength of axioms about elementary embeddings, as the now well-worn track of inter-

preting constructive set theory with large cardinals via an appropriate type theory into a

Kripke-Platek style set theory (e.g. presented in [GR94] and employed in [Rat02] and

[Gib02]) turns into a cul-de-sac, seeing that at least without further modification, such

a model would also validate Subcountability and thus not the existence of elementary

embeddings.

On a more fundamental note, depending on one’s preferred style of constructivism, this

result can cast serious doubt on the admissibility of elementary embeddings to construc-

tive reasoning. Actual Subcountability or at least compatibility with Subcountability can

be seen as essential to some brands of constructivism (e.g. schools of thought inspired

by Russian Constructivism or by Classical Finitism), so that asserting the existence of

any nontrivial elementary embedding could in the light of Theorem 9.93 be regarded as

taboo for the conscientious constructivist.

On the other hand, this situation might merely be interpreted as an indication that the

specifically constructive axiom of Subcountability could play a role for the constructive

theory of large sets similar to that which the axiom V = L plays in classical set theory:

An arguably sensible assumption which limits the universe to contain only the easily

graspable sets (either constructible or subcountable ones) and which constitutes a water-

shed for axioms about largeness, being consistent with the small ones but denying the

large ones which demand or imply the existence of nontrivial elementary embeddings in

the universe.

Whether this watershed merits being crossed might be a debatable question, and the

answer might well also depend on what exactly we find on the other side.
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