
Profiling
Optimised Haskell

Causal Analysis and Implementation

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy

to the University of Leeds, School of Computing

June 2014

Author:
Peter Moritz
Wortmann

Supervisor:
Prof. David Duke

Advisors:
Dr. Simon Marlow
Dr. Satnam Singh

Prof. S. Peyton-Jones

The candidate confirms that the work submitted is his/her own, except where work
which has formed part of jointly authored publications has been included. The contri-
bution of the candidate and the other authors to this work has been explicitly indicated
below. The candidate confirms that appropriate credit has been given within the thesis
where reference has been made to the work of others.

This thesis is based on the same material as the paper “Causality of optimized Haskell:
what is burning our cycles?”, by the thesis author and David Duke, published in the
proceedings of the 2013 ACM SIGPLAN symposium on Haskell. Relevant material is
reproduced in Chapter 3, Chapter 4 and Chapter 5, and is outside of contributions in
the form of supervision and discussion entirely the author’s original work.

Some parts of Chapter 5 overlap with the master thesis “Stack traces in Haskell” by
Arash Rouhani from the Chalmers University of Technology. This is due to our joint
work on improving the stack tracing capabilities of Haskell, which is however not integral
to the contributions of this thesis.

This copy has been supplied on the understanding that it is copyrighted material and
that no quotation from the thesis may be published without proper acknowledgement.

The right of Peter Moritz Wortmann to be identified as author of this work has been
asserted by him in accordance with the Copyright, Design and Patents Act of 1988.

© 2014 The University of Leeds and Peter Moritz Wortmann

Acknowledgements

It goes without saying that this work would not have been possible without all the
people around me putting rather unwise amounts of effort into encouraging me to do
crazy things.

First off I have to thank David Duke and Microsoft Research for getting the ball
rolling by arranging for pretty much everything I could have hoped for going into this
PhD. Second I would especially like to thank my supervisor David Duke again for
contributing quite a bit to making my academic life enjoyable, as well as playing an
integral parts in the few productive bits of it. I always feel like he ends up reading
my texts more often and more thoroughly than I ever could, which given his other
commitments is an incredible feat.

Furthermore, I have to credit my advisers from (formerly) Microsoft Research for
always trying to push me into the right direction. And even though we probably did
not manage to advance much on the project’s original goal, their feedback was always
much appreciated. I have to especially thank Simon Marlow for arranging a number of
meetings over the years that ended up shaping this work significantly.

Finally I have to thank all the busy people that found time to read through my
thesis, and discovered just how many orthographic, grammatical and semantic errors
a person can hide in a document of this size. In no particular order I would like to
credit Richard Senington, Dragan Šunjka, José Calderón as well as my mother Dorothee
Wortmann and brother Jonas Wortmann for their tireless efforts trying to digest my
heavy prose.

Notes

For brevity, we will use the female form throughout this thesis whenever there are
multiple conceivable ways of address. This is completely arbitrary (I flipped a coin)
and in no way a reflection on the role of either gender in modern society.

No actual trees were harmed in the production of this PhD. Well, except for all that
printing paper. My apologies.

i

Abstract

At the present time, performance optimisation of real-life Haskell programs is a bit of
a “black art”. Programmers that can do so reliably are highly esteemed, doubly so if
they manage to do it without sacrificing the character of the language by falling back
to an “imperative style”. The reason is that while programming at a high-level does
not need to result in slow performance, it must rely on a delicate mix of optimisations
and transformations to work out just right. Predicting how all these cogs will turn is
hard enough – but where something goes wrong, the various transformations will have
mangled the program to the point where even finding the crucial locations in the code
can become a game of cat-and-mouse.

In this work we will lift the veil on the performance of heavily transformed Haskell
programs: Using a formal causality analysis we will track source code links from square
one, and maintain the connection all the way to the final costs generated by the program.
This will allow us to implement a profiling solution that can measure performance at high
accuracy while explaining in detail how we got to the point in question. Furthermore,
we will directly support the performance analysis process by developing an interactive
profiling user interface that allows rapid theory forming and evaluation, as well as deep
analysis where required.

iii

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Structure . 2

2 Background 5
2.1 The Task . 5

2.1.1 Reasoning . 6
2.1.2 Tool Support . 7

2.2 Verbs and Nouns . 8
2.2.1 Verbs . 9
2.2.2 Nouns . 10
2.2.3 Explanations . 11
2.2.4 Metrics . 12

2.3 Causality . 13
2.3.1 Context . 14
2.3.2 Application to Programs . 15
2.3.3 Alternate Worlds . 16
2.3.4 Minimal Change . 17
2.3.5 Transitivity . 18

2.4 Conclusion . 19

3 Haskell 21
3.1 The Language . 22

3.1.1 Purity . 22
3.1.2 Higher Order Programming . 23
3.1.3 Optimisation . 24

3.2 Objectives . 25
3.3 GHC Overview . 26

3.3.1 Core . 27
3.3.2 Types . 28

v

3.3.3 Cmm . 29
3.4 Transformations Example . 30

3.4.1 Rules . 30
3.4.2 Basic Floating . 31
3.4.3 Worker/Wrapper Transformation 33
3.4.4 Unfolding . 34
3.4.5 Status Report . 35
3.4.6 Arity Analysis . 36
3.4.7 Observations . 39
3.4.8 Case-Of-Case . 40

3.5 Performance Model . 41
3.5.1 Core Preparation . 42
3.5.2 Abstract Evaluation . 43
3.5.3 Registers and Stack . 46
3.5.4 Heap . 47
3.5.5 Constructors . 47
3.5.6 Lambdas . 49
3.5.7 Applications . 50
3.5.8 Lets & Thunks . 51
3.5.9 Variables . 52
3.5.10 Case . 53
3.5.11 Let-No-Escape . 54
3.5.12 Conclusion . 55

4 Causality Analysis 57
4.1 Introduction . 58
4.2 Events . 59

4.2.1 Event Causes . 60
4.2.2 Cause Annotations . 62
4.2.3 Annotated Judgements . 63

4.3 Deriving Annotations . 64
4.3.1 Variables . 65
4.3.2 Local Miracles . 66
4.3.3 Nested Annotations . 67
4.3.4 Nested Events . 68
4.3.5 Variable Rule . 70

4.4 Heap . 72
4.4.1 Laziness . 72
4.4.2 Set-Up . 73

4.4.3 Proof Part 1 . 75
4.4.4 Proof Part 2 . 77
4.4.5 Wrapping Up . 79

4.5 Interrupted Rules . 80
4.5.1 Miraculous Interruption . 82
4.5.2 Application Rule . 83

4.6 Closest World Choice . 85
4.6.1 Floating Effects . 86
4.6.2 Floating Annotations . 88
4.6.3 Case Expressions . 89
4.6.4 One-Branch Case . 90
4.6.5 Skipping Scrutinisation . 91
4.6.6 Crash Recovery Consistency . 92

4.7 Causality Model . 94
4.7.1 Annotation Encapsulation . 95
4.7.2 Close Causes . 96
4.7.3 Close Effects . 97
4.7.4 Complexity . 98
4.7.5 Intuition . 99

4.8 Optimisations . 100
4.8.1 Beta Reduction . 101
4.8.2 Push Annotations . 102
4.8.3 Effects on Global Profile . 103
4.8.4 Floating Let . 104
4.8.5 Overhead . 105
4.8.6 Floating Case . 108
4.8.7 Preemption . 109
4.8.8 Case-Of-Case . 110
4.8.9 Rules . 112
4.8.10 Final Notes . 114

5 Profiling 115
5.1 Design . 116
5.2 Metrics . 117

5.2.1 Skews . 118
5.2.2 Time . 118
5.2.3 CPU . 119
5.2.4 Allocation . 119
5.2.5 Residency . 120

5.3 Explanations . 121
5.3.1 Noun Stacks . 122
5.3.2 Lexical Scopes . 122
5.3.3 Evaluation Scopes . 124
5.3.4 Static Context . 125
5.3.5 Quality Considerations . 126
5.3.6 Stack Tracing . 128

5.4 Core . 129
5.4.1 Tick Framework . 129
5.4.2 Source Notes . 131
5.4.3 Semantics . 131
5.4.4 Annotation Combination . 132
5.4.5 Scoping . 133
5.4.6 Scoping Transformation Examples 136
5.4.7 Counting . 138
5.4.8 Floating Ticks . 138
5.4.9 Merge Transformations . 139
5.4.10 Placement . 141
5.4.11 Example . 142

5.5 Cmm . 143
5.5.1 Cmm Example . 144
5.5.2 Introducing Ticks . 145
5.5.3 Tick Scopes . 145
5.5.4 Optimisations . 147

5.6 Back-End . 149
5.6.1 DWARF . 149
5.6.2 Debugging Information . 150
5.6.3 Source Lines . 151
5.6.4 Source Note Selection . 152
5.6.5 Unwinding . 153
5.6.6 GHC debug records . 156
5.6.7 Core Notes . 158
5.6.8 LLVM . 160

5.7 Data Collection . 162
5.7.1 Event-Log . 162
5.7.2 Samples . 164
5.7.3 Timers . 165
5.7.4 Hardware Performance Counters 166

5.7.5 Perf-Events . 166
5.7.6 Allocation . 167
5.7.7 Residency . 168

5.8 Analysis . 168
5.8.1 ThreadScope . 168
5.8.2 Debug Maps . 169
5.8.3 Interface Concept . 170
5.8.4 Timeline . 171
5.8.5 Performance Data . 172
5.8.6 Source View . 174
5.8.7 Core View . 174
5.8.8 Core Tools . 176

6 Evaluation 179
6.1 Performance . 180

6.1.1 Test Data . 180
6.1.2 Compilation Overhead . 180
6.1.3 Tick Counts . 182
6.1.4 Binary Size . 183
6.1.5 Core Size . 184
6.1.6 Run Time Overheads . 185
6.1.7 Sampling Overhead . 188
6.1.8 Average Overhead . 188

6.2 Usage Scenario . 190
6.2.1 The Code . 191
6.2.2 Profiling . 192
6.2.3 Analysis . 192
6.2.4 Blaze-Builder . 194
6.2.5 Folding . 198
6.2.6 Tailoring . 200
6.2.7 Manipulation . 202

6.3 Wrapping Up . 204

7 Conclusion 205
7.1 Contributions . 205
7.2 Prior Work . 206

7.2.1 Haskell Profiling . 206
7.2.2 General Profiling . 207

7.3 Future Work . 208

7.3.1 Parallelism . 208
7.3.2 Technicalities . 209
7.3.3 User Interface . 210

List of Figures I

List of Listings III

Bibliography VII

Chapter 1

Introduction

“I would like a little more enthusiasm and a little less Latin!”

— Asterix the Gaul, René Goscinny & Albert Uderzo

Program performance is a rather uneasy topic for both application users as well as
programmers. Most energy is generally expended on functionality: The more useful
an application is, the more value it will have for the end user, and the more likely
it is that the programmer will get paid for their work. However, the more features
an application accumulates and the higher the complexity rises, the more likely it
becomes that performance problems sneak their way into the program. At this point,
things might slowly become more unpleasant – our user will grow impatient, while the
software developers might be faced with the troublesome task of revisiting past design
decisions in order to prevent eventual collapse. Every seasoned software developer
knows from experience that without constant attention, basically any application under
active development will slowly converge into a similar state.

As a result, program performance is rarely thought of as a positive program property.
Instead, in software development we fear bad performance in the same way that we
might fear an empty bank account: We know that no matter how much effort we put
into saving up, we are never more than a few unwise decisions away from a hurtful
reality check. And just like a good budget and responsible spending behaviour might
give us the feeling of security, programmers also seek to use “safe” strategies in order
to prevent the eventual performance catastrophe. Where doubts about performance
creep in the shadows, we will try to stick to patterns that have served us well in the
past. We will aim to avoid uncertainty, and stick to with what we perceive as “fast”
software development practises. This makes performance a major hurdle for introducing
new development methodologies. Raising doubts about performance viability can be
as effective as suggesting that a political party might increase taxes: Even where the
concrete effects are negligible, invoking the worst case can yield to dismissal by reflex.

1

1.1. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

Despite these problems, there has been a remarkable amount of interest in the ideas
behind functional programming languages in recent times. And within this movement
there is particular interest in writing fast real-world programs. A popular reason to
cite is that we have found a new scarecrow: As has been known for quite some time,
hardware is moving towards parallel architectures. And it is pretty clear that exactly the
“safe” strategies for single-core performance will yield us programs that are exceptionally
hard to parallelise. Functional languages promise a way out: A potential safe harbour
where we can again find performance predictability.

1.1 Problem statement

However, at the most basic level this is still not solving the problem, but simply trying to
dodge a bigger one. And without trying to oversimplify the matter – can we truly expect
to be able to build fast parallel programs until we can assure predictable performance
for sequential code fragments? For this thesis we will therefore attempt to take another
stab at the classic problem of profiling sequential programs.

We will specifically target the programming language Haskell for this. As we al-
luded to in the introduction, the reason is that we see a problem with transparency:
The development community seems split between a relatively small group of “crack”
programmers squeezing impressive performance results out of the development infras-
tructure [Mainland et al., 2013] and beginner programmers struggling to solve even
relatively basic problems without running into apparently inexplicable performance
problems [Tibell, 2011].

Therefore our mantra for this work will be honesty: The Haskell infrastructure is
of significant complexity, yet for performance purposes we can not simply treat it as a
black box. We will aim to build a novel profiling infrastructure that attempts to convey
the inner workings of a running Haskell program in all detail required to make sense of
its performance characteristics. This especially means that we will take care to change
program compilation and execution only as far as it is absolutely required for us to
support performance analysis. Consequently we will opt for light-weight annotation
strategies that are nevertheless robust against code optimisations. Furthermore, we
will take care to use non-invasive instrumentation methods in order to directly measure
program performance.

1.2 Structure

For this work we will develop a novel profiling solution for Haskell from the ground up.
Our aim will be to have low overhead and stay optimisation-aware at the same time.

2

CHAPTER 1. INTRODUCTION 1.2. STRUCTURE

Implementing this will require quite a few subtle design choices, therefore in Chapter 2
we will fundamentally re-evaluate the question of what we should ask from a profiling
tool in the first place. We will demonstrate that performance analysis is an instance
of abductive cause/effect analysis, where our causes are program terms and effects are
costs appearing at program execution.

For Chapter 3 we will then take a closer look at the Haskell development environment.
We will flesh out the characteristics of the language and identify the core issue that
we will be trying to address. After that point, we will start explaining the language’s
compilation and execution mechanisms in greater detail, focusing specifically on the
Glasgow Haskell Compiler. This will lead into an overview of GHC’s optimisation passes,
as well as the development of an abstract performance model for Haskell programs.

At this point the stage will be set to get to the primary concerns of this thesis:
Chapter 4 performs a formal causal analysis of the performance model developed in
the last chapter. The idea will be that using counter-factual causality theory we can
establish causality between the unoptimised program source code and the abstract cause
terms of our performance model. As we will see, we can even make this work in the
presence of program optimisations.

In Chapter 5 we will return into the real world to instantiate our abstract causality
model with actual source code locations and costs. We will show how we can view
different profiling approaches as reconstructing different subsets of the “full” cause
terms. We will then go on to explain how we can implement our own profiling solution
based on our findings. To this end we will not only have to modify most important
transformation stages within GHC, but also settle for a suitable representation to allow
our meta data to live alongside object code. Furthermore, we will explain how we can
capture performance data using sampling, and assist the user in performance analysis
using an extension to the ThreadScope profile analysis tool.

Chapter 6 will evaluate our approach, by measuring the different overheads involved
in profiling, and contrasting it against the data collected. We will also consider an
extended usage example for our profiling solution in order to convey an idea of how we
imagine performance analysis with our tool would work.

Finally, Chapter 7 will summarise our contribution, review prior work and provide
some remarks on possible future extensions.

3

1.2. STRUCTURE CHAPTER 1. INTRODUCTION

4

Chapter 2

Background

“Well, it is an untidy sort of forest anyway. Trees all over the place!”

— Asterix the Legionary, René Goscinny & Albert Uderzo

Our idea of how fast programs look like has clearly changed. From the perspective
of performance analysis and especially profiling tools, this means that we should also
re-evaluate our role critically. Is putting time estimates across from function names
truly the limit to what we can do? Maybe we could do a much better job if we took
another hard look at what we are actually trying to accomplish? Clearly our job is to
help the programmer in the development task – but what exactly does that entail?

In this chapter we will explain how we can think of this as a causal reasoning, where
the user tries to connect the effect of bad program performance with the causes involved
in writing a program. As we will show in Section 2.1, this involves a characteristic
computer-assisted reasoning process. Our goal for Section 2.2 on page 8 will be to
develop a set of abstractions that will allow us talk about this process more easily.
Finally, in Section 2.3 on page 13 we will introduce causality theory, which will give us
a better idea of how we can properly reason about causal dependencies.

2.1 The Task

At its very heart, performance analysis is a diagnosis task: We observe an undesired
effect and want to find ways of fixing it. When a program starts using too much
resources, the programmer is basically in the same spot as a doctor trying to figure
out how to treat, say, a tummy ache: We have very good reasons to believe that the
program or patient should be able to function normally without showing these symptoms.
However, this does not mean that trying to suppress them directly is always the right
idea. While throwing in pain medication or more resources might give temporary relief,

5

2.1. THE TASK CHAPTER 2. BACKGROUND

EffectCauses

Deduction

Abduction

Figure 2.1: Deduction vs. Abduction

we might just as well be masking the real problem – and more gravely, end up producing
new ones as an adverse side effect.

Therefore attacking the problem purely from the effect side is clearly short-sighted.
We must find the causes - whether it be a bacterial infection or an inefficient loop.
Once we have properly understood where the symptoms are coming from, we will have
an easier time coming up with an appropriate solution, such as antibiotics or a more
efficient data structure.

2.1.1 Reasoning

However upon close inspection, finding the “right” solution can be a strenuous mental
task. Ideally we would like to use deduction to find the villain: Just take a hard look
at the program and its inputs, and step through it in our head until we manage to
deduce the symptoms. After all, resolving the mystery of a tummy ache might just
happen to be as easy as remembering a heavy meal! However, this method quickly runs
into problems where we lack a sufficient overview of the system’s inner workings. For
medicine, grasping all mechanisms at work within a human organism is nothing but a
distant dream. And equally the sheer volume of information produced by a program
run will also quickly eclipse the capacity of the human mind. Where problems raise
their heads from these depths, we need to employ more elaborate strategies.

Indeed our weapon of choice will not be deduction, but abduction 1: the art of
deriving causes from effects. As shown in Figure 2.1, this flips around the direction of
our reasoning. This is a very good idea here because programs by their very nature
build up complexity as they go along, processing their own data to produce ever more
complex behaviour. It is therefore generally much easier to narrow down where an effect
might be coming from than trying to predict all possible effects that a given program

1Not to be confused with abduction as in “Abduct a highly esteemed Haskell expert to solve the
problem for us”. Even though effective, this method has been shown to scale badly.

6

CHAPTER 2. BACKGROUND 2.1. THE TASK

Effect

Implausible Effect(s)

Implausible Cause(s)

Plausible

Figure 2.2: Abduction: Assessing Plausibility

element could have. Consequently, any method that allows us to climb the causal chain
backwards will allow us to locate causes more easily.

How does abduction work? While deduction only makes statements that are true by
construction, abduction is more heuristic in nature. Our starting point is the principle
of sufficient reason, which states that nothing happens without a cause. This means
that when we enumerate possible causes, we know for a fact that one of them must be
true. To make progress we then filter this set by “plausibility” as shown in Figure 2.2:
For some causes we might be able to deduce other effects, which by comparison to our
observations can lead us to discard the cause as implausible. On the flip side, we can
also use abduction recursively to show that only an entirely improbable combination of
root causes could lead to the hypothetical cause 2. Such plausibility checks will often
substantially reduce the set of possible causes. For example, if a certain loop was at
the heart of the problem, we would expect resources to be wasted there time and time
again – just like causes for aches might be distinguished by checking for other symptoms.
Ideally, cross-examination of all theories will yield us the “only possible explanation” 3

based on virtually nothing but a series of educated guesses.

2.1.2 Tool Support

Our task will be to help out the user with performing precisely this mental task. Note
that we will not actually try to do abduction within our tool: In contrast to compiler
optimisations the focus of profiling is explicitly to allow dealing with problems that
are beyond the current scope of automatic program analysis. Instead, the task of
profiling tools is “just” to offer the user exactly the information needed for facilitating
the abductive reasoning task. Insight into the reasoning process will however help us
to identify at what points we ought to provide assistance, and inform how we should
present our information to the user.

2This principle is known as Occam’s razor in scientific theory. There are a number of parallels to
the black-box problem of natural sciences here, with the notable difference that our box is not actually
black, but just very, very confusing.

3A phrase commonly used by Sir Arthur Conan Doyle’s character Sherlock Homes, who still insists
on calling the process “deduction”.

7

2.2. VERBS AND NOUNS CHAPTER 2. BACKGROUND

Let us walk through the abduction process step by step. The first task in resolving
a performance problem will be to assess the damage: Get a clear picture of what kind
of resources get used – and therefore potentially wasted – in what manner. A profiling
tool would support this step by allowing automated collection and classification of
performance data. For example, at this stage we might point out that garbage collection
seems to be taking a long time, or that we see a surprising amount of context switches.
The more precisely we can characterise the problem’s symptoms, the more focused our
search for root causes can be.

Next, the programmer will have to form theories for the observed program behaviour.
Without assistance, this is an exceptionally hard task, as just a quick read through the
program source will most likely turn up ample potential candidates for any given kind
of resource consumption. Therefore it is vital that we can cut down on the number of
possibilities by identifying “hot spots” that seem to have a close causal connection to
heavy resource usage. This is the part that is most commonly thought of as the “core”
profiling task: Show program parts annotated with a descriptive break-down of the
resource costs. Anecdotal evidence suggests that such statistics often radically reduce
the amount of code that has to be considered in the first place: Similar to the Pareto
rule-of-thumb, just 20% of the code generates about 80% of the cost[Fowler, 2002].

Such performance statistics can be used in several ways to generate plausible theories:
Both constructively, by identifying consumption patterns that exceed expectations, as
well as destructively, by noting the absence of certain performance characteristics. In
order to help the user with this, profiling tools attempt to communicate patterns beyond
simple causality to the user. For example, a standard profiling tool might point out not
only that a certain function can be connected to a significant portion of the program’s
running time, but that there is actually a certain program path that leads to the hot
spot. It is clear that the usefulness of the profiling tool will increase the closer we can
get to actually suggesting and evaluating possible courses of action for the programmer.

2.2 Verbs and Nouns

Let us take a closer look at what a “complete” explanation would look like. Figure 2.3
shows a schematic: The story will start all the way back with the programmer’s design
decisions, then follow the trail throughout the source code, its compilation, optimisation
and execution, and finally ends with the effects – in our case unsatisfactory resource
usage. Full comprehension means that programmers can connect all these dots in their
head, hopefully offering starting points for program improvements.

In order to get there, we have to communicate the nature of the causality graph.
The causality network for a program run is a product of systematic program generation

8

CHAPTER 2. BACKGROUND 2.2. VERBS AND NOUNS

MathOps

JumpOps

GCs

Idle

Busy

Time

Func1

Func2

Data

Decision1

Decision2

?

Nouns Verbs

Figure 2.3: Schematic of an Explanation

and execution mechanisms, so the nodes have meaning that we could try to convey
to the user. The closer we can get to the mental model of the programmer with this,
the easier it will be for them to understand the causality network underlying program
performance. Finding intuitive abstractions to talk about the causal processes is key.
We will follow Irvin [1995] by calling causes close to the design decisions “nouns” and
effects close to resource consumption “verbs”.

2.2.1 Verbs

Verbs are an abstraction tool for reasoning about the “symptoms” of bad program
performance. The “primitive” verb is simply resource usage, which might for example
refer to time, energy or storage. However as explained, it is a good idea to consider
intermediate causes for resource consumption instead in order to narrow the focus. This
is especially true because modern programs execute on top of a significant stack of
hardware and software, many with complicated performance semantics. For example,
complexity arising from heap management is rarely the fault of the garbage collector, but
actually of allocation and retention patterns within the program run. The better we can
decompose the final performance into factors, the easier it will be for the programmer
to influence the outcome.

Especially note that just raw resource consumption by itself is actually a rather
poor indicator for spotting a performance problem. After all, clearly no amount of
optimisation will ever reduce the run-time to absolute zero. Where we are looking for
more subtle performance improvements, too much emphasis on resource consumption
“hot spots” can actually become misleading: Productive work will end up overshadowing
the inefficiencies.

9

2.2. VERBS AND NOUNS CHAPTER 2. BACKGROUND

Therefore decomposing the total performance is also a chance for us to specifically
look for indicators that would not show up during normal operation: Just like a human
will be able to identify certain symptoms as an “ache” or just “feeling uneasy”, some
types of program behaviour are a bad sign. For example, swapping significant amounts
of data to the hard disk is usually a good indicator that there is an underlying problem,
as there is basically no reason that a program should ever have to take advantage of
such emergency measures 4. Sometimes the user will even be able to make predictions
about the kind of performance characteristics we should see: Discovering heavy memory
consumption will be especially tell-tale where the program would actually suggest heavy
number-crunching. The better we match verbs against the programmer’s performance
model, the more leads we have for the analysis.

Note that by construction many useful verbs will only reflect parts of the program’s
performance characteristics. This obviously means that focusing too much means we
risk missing a performance problem altogether! For example, basing profiling on the
amount of user-level CPU cycles might completely overlook the fact that the operating
system spent most time swapping the program’s memory to disk. On the opposite end
of the spectrum, verbs also often end up overlapping wildly, especially if we consider
verbs from different hardware or software “layers”. From the CPU’s point of view,
a swapping operation will obviously involve a significant amount of, say, branch mis-
predictions, which might be another verb we might want to track. The programmer
must understand these inter-dependencies in order to work effectively with verbs.

2.2.2 Nouns

On the other end of the cause-effect relationship, we have all influences that go into the
program’s execution. Such influences are not created equal: For profiling we will be
most interested in nouns that represent something the programmer has the capability
to change. It would be rather inappropriate to approach a performance problem by
trying to manipulate input data or the inner workings of the compiler, for example. The
main focus should be the impact of the programmer’s design decisions, as we sketched
back in Figure 2.3 on page 9.

This does not mean that outside influences are categorically not of interest for
profiling. Quite the contrary – it is not hard to think of examples where the program’s
performance behaviour depends chiefly on, say, choosing the right library data structure
or a script embedded within the input data. The real cause of the performance problem
here is not the outside influence, but how the program interacts with it. Pointing out
such connections helps focus the search, facilitating abductive reasoning as explained in
Section 2.1.1. For example, if we spend a lot of time traversing lists we might consider

4Notable counter example: Varnish Cache, which uses swapping to speed up web applications.

10

CHAPTER 2. BACKGROUND 2.2. VERBS AND NOUNS

using a different container type. On the other hand, if we could, say, determine that
input data size does not impact performance we could rule out parsing code.

In the end, everything will most likely boil down to a change to the program, of
which the source code is likely the representation most familiar to the programmer.
Therefore, we should use the programmer’s vocabulary as much as possible: Definitions
and constructs the programmer wrote directly reflect their mental model of the program.
We can refer to this model either by using names that already exist in the code, or
by using for example line numbers to steer the programmer’s attention into the right
direction. This kind of lead should generally be enough for the programmer to be able
to make the connection back to the design decisions that might be at the root of the
performance problem.

2.2.3 Explanations

The whole point of verbs and nouns is that we can break down the performance problems
in terms of simple abstract effects and causes. However, this simplification means that
we can only ever penetrate the causality graph up to a certain depth. Even if we knew
that a certain source code element causes a very specific performance problem – such
as a stack overflow – this is not always enough to make it quite obvious “how” it all
went down. At this point the programmer will need to be able to reason about the
“intermediate” steps leading up to the performance problem as well.

Fortunately, at this stage in the analysis the programmer will most likely have
settled for a certain aspect of program performance to focus on. This means that in
contrast to verbs and nouns we do not need to limit ourselves to the user’s mental
model anymore. After all, talking about the program’s inner working means reasoning
about a lot of “incidental” information – such as how the compiler chose to apply
optimisations, or how the CPU copes with our specific instruction mix. Not by chance,
this is precisely the kind of information that the programmer normally aims to offload
when using a high-level language. Yet if we want to talk about anything beyond the
bare existence of a causal connection, we need to re-introduce the user to a portion of
these implementation details.

This does not have to be too painful, as any experienced programmer ought to
have some abstract notion of how the program gets compiled and executed. We can
also ease understanding if we reference verbs and nouns familiar to the user as often
as we can. For example, for profiling imperative programs it is quite common to link
performance data to call stacks [Graham et al., 1982], which represent call hierarchies
within the program. From our point of view, this is a simplified overview of the full
causality network, as we are glossing over details such as what exactly caused a certain
call to happen in the first place. In fact, this has even been seen to be a useful

11

2.2. VERBS AND NOUNS CHAPTER 2. BACKGROUND

metaphor for functional programs, where the “true” control flow is often even more
complicated [Sansom, 1994]. We can even extend this to parallel program, where it
might be a good idea to break down exactly how and when threads were scheduled or
preempted [Jones et al., 2009]. At the most extreme, Section 5.6.7 on page 158 will even
advocate looking at intermediate language representations of our program in order to
unpack its performance characteristics.

In the end, while more complex explanations can be unpredictable to the point of
randomness, they dictate performance in broad enough strokes that involving them
becomes indispensable once performance analysis reaches a certain point. And while
we still expect explanations to only become relevant once we do a focused analysis,
we should still aim to make our explanations as self-contained as possible. An ideal
explanation “language” should be allow us to communicate exactly what we need to
know in order to understand the causal dependencies, but nothing more.

2.2.4 Metrics

As the final corner stone, abductive reasoning needs an estimate for how “strong” causal
connections are. After all, individual instances of resource usage are most likely not
worth investigating, we are looking for patterns in the performance behaviour that
are substantial enough to actually make a difference for overall program performance.
This is where metrics come in: While verbs only identify undesirable events, metrics
associate them with cost values, which we can measure and compare. For example, for
Figure 2.3 we can easily map the verbs to quantifiable metrics such as total time spent,
mathematical operations executed or garbage collection complexity.

We can use these metrics at multiple points when profiling. First, the user will
need starting points in order to discover theories. Here statistics allow us to suggest
plausible verbs, nouns and explanations. This is why we “profile” the program in the
first place: Interesting causal processes should have large enough footprints that we
can detect them in a program run. We will be much more willing to, say, pursue the
theory that a certain function causes too much stack allocation if we can show that the
function can actually be linked to a rather large amount of stack consumption.

Furthermore, these measurements come in useful when we want to gauge relative
plausibility of theories. Investigating a certain function will look even more promising
if we can show that no other function can be linked with a comparable amount of
resource usage. On the flip-side, sometimes we can even show that certain theories can
not be true simply because of the absence of certain traces in our data. As we will
later see, there is in fact a good reason why collecting performance statistics is almost
synonymous with the performance optimisation process: It allows us to spot even small
problems within large and complex programs.

12

CHAPTER 2. BACKGROUND 2.3. CAUSALITY

(a) (b) (c) (d)

Figure 2.4: Causality Analysis of an Unfortunate Event

2.3 Causality

Up to this point we have used terms like “cause” and “effect” without proper definitions.
This is not necessarily a problem, as humans generally develop a robust intuitive
understanding of causality. However, our intuition can quickly go awry once we consider
more abstract objects, such as the nouns or verbs discussed in the last section. To
see why, let us consider a real-world example and attempt to explain our intuition. In
Figure 2.4a we have depicted a car crash. If asked, we would probably say that the
existence of the tree was one of the factors that caused the crash in the first place5. If
we furthermore were asked to support that statement, we would most likely point out
that if the tree had not been there, the car would just have driven by, as depicted in
Figure 2.4d. But how sure are we of this argument? After all, we can not deny that
there are many other scenarios (Figure 2.4b-c) that share both the property of the tree
not existing and the car crashing!

Let us take a closer look. What we are doing is what Lewis [Lewis, 1973] describes
as “counter-factual causality reasoning”: We reason about a world where certain events
did not happen. In this case, we could assign the symbol α to the tree’s existence, and
the effect ω would be the crash actually happening. According to Lewis, we now think
about the closest world where α is false (the tree does not exist) and check whether
ω becomes false as well. If that is the case, we are allowed to derive causation, which
Lewis notates as

¬α �→ ¬ω

So according to Lewis, our loophole is that we regard the world depicted in (d) as closer
to (a) than either (b) or (c). But what does “closeness” mean then? From a practical
point of view, our choice can seem down-right arbitrary. After all, a woodworker might
tell us that getting to (b) would just require us to uproot the tree, while manufacturing

5Even though, as was noted, blaming the tree for these events seems decidedly unfair.

13

2.3. CAUSALITY CHAPTER 2. BACKGROUND

scenario (d) would probably involve levelling the ground afterwards. On the other hand,
keeping our physical education in mind we might argue that from these options scenario
(c) might have the best chance at upholding the law of conservation of mass.

And as it turns out, Lewis’ formalism does not actually offer too much help in this
regard. Technically we could actually use either way of measuring closeness. Worse:
Depending on the kind of scenario under consideration, it might actually make sense.
This is a well-documented weakness of Lewis’ theory, and apparently quite hard to
solve conclusively. The best we can generally do is to impose a structured model that
formalises our intuition [Pearl, 2000; Taylor, 1993]. Consequently we will have to make
our intuition concrete in one form or the other at this point, and with Lewis’ theory
we will have this choice front and centre, without prematurely locking us into a certain
thought model. As a result, we will generally stick to Lewis’ nomenclature even where
we were influenced by later work on the topic.

2.3.1 Context

What seems to steer our intuition is the context of the scenario. After all neither trees,
walls nor holes normally occur where cars are driving! Therefore to subtract the tree
from the scenario, we instinctively try to compensate by moving towards what we see
as the “default” state. This default can change: Just imagine that we knew that the
tree was planted specifically to provide a barrier, scenario Figure 2.4d might suddenly
appear a lot more “normal” than before.

What we want is consistency: It is easy to postulate an event not happening, but if
we remove a tree, we can not simply assume that there is “nothing” there. We have to
assume that something fills the void. These replacement events should cause as little
damage as possible to what we perceive as the consistency of the situation. Just like
with abduction, we can view this from two sides:

1. Cause consistency: It should be plausible that the scenario has come to be by
just some minor “miracles” in the past.

This is essentially the “woodworker” line of reasoning from the last section: If a
wondrous fairy would have to work too hard to get to the situation, it is probably
not the most plausible alternative. Ideally we would like to simply exchange
exactly one event by a related event.

2. Effect consistency: Any new effects should be as plausible as possible in the
context of the original world. As mentioned, we might for example challenge this
if nothing being there might lead to an unnatural situation.

Note that this can be formulated as already covered by the first criterion: We
assume an intelligent or otherwise purposeful entity in the past that would try its

14

CHAPTER 2. BACKGROUND 2.3. CAUSALITY

best to retain the effect in question. Our “miracle” would then be exerting the right
amount of pressure on that entity to make it change the actual implementation.
This applies strongly to profiling, as we have a guaranteed purposeful entity in
our causality network: The programmer!

Note that this definition is somewhat circular: We define plausible causality in terms of
the causal network it generates. Therefore this is, again, a consistency requirement that
we need to instantiate on a per-case basis. Especially note that a “plausible change”
does not always have to be a small change: If the car in question was carrying a person
on her way to starting World War III6, alternate world events might end up completely
different. Yet the new scenario would clearly still be “plausible”. As we will see later,
we will generally favour small and predictable miracles, even if it means that we need
to stretch effect plausibility a bit.

2.3.2 Application to Programs

Let us return to our main objective, which is reasoning about program performance. In
contrast to the example in the last sections, we have to deal with abstract rather than
physical objects: Our nouns and verbs will be program elements, runtime constructs or
cost statistics. We will later see that we can express all of these as languages of some
form, so let us have a closer look at how we can reason with them.

Suppose we have the following implementation of the factorial function:

1 f a c :: I n t → I n t
2 f a c n = f o l d r (∗) 1 [1 . . n]

Listing 2.1: Example Haskell Program

This Haskell program implements the factorial function in a straightforward way: Con-
ceptually we request an enumeration of numbers from 1 to n using the [1.. n] syntax,
which we proceed to multiply using the foldr higher-order function. We will see later
that even this simple program has quite complex compilation and execution. For the
moment, we only have to know that it has, in fact, a performance problem: In com-
parison with more efficient versions its execution consumes excessive amounts of stack
space due to recursion behaviour of foldr .

So our “root” noun here is the decision of the programmer to use foldr , and probably
some of the assumptions that went into that decision. However, a profiling tool can
not look into the mind of the programmer, therefore we use the next closest thing: We
observe the fact that “ foldr ” was used in line 2 of the listing. To help diagnose the

6Allegedly careless use of unsafePerformIO played a role.

15

2.3. CAUSALITY CHAPTER 2. BACKGROUND

performance problem, we would like to connect this cause to the effect of excessive stack
consumption. Put in terms of causality, we have two events

α ≡ Use of “ foldr ” in line 2

ω ≡ Excessive stack usage

for which we want to decide ¬α �→ ¬ω. Or in words: Would removal of “ foldr ”
possibly fix our performance problem? And like in the examples we again bump right
into the “closest world” question – how would a comparison program without “ foldr ”
even look like?

2.3.3 Alternate Worlds

We have a few options. We could play dumb for a moment and simply lexically remove
the expression, not entirely unlike uprooting the complete tree like in Figure 2.4b:

f a c :: I n t → I n t
f a c n = (∗) 1 [1 . . n]

Listing 2.2: Faulty Alternative

This is a rather useless suggestion, as the new “program” is not well-typed, and therefore
simply invalid. Even if we could get it to pass the type-checker, we have significantly
changed how program elements interact: Now we actually apply the (∗) function instead
of passing it as a parameter! Clearly this makes for a poor point of comparison.

On the other hand, we can also try to be “smart”:

f a c :: I n t → I n t
f a c n = f o l d l (∗) 1 [1 . . n]

Listing 2.3: Smart Alternative

Now we have simply replaced “ foldr ” by its sibling function “ foldl ”. As far as distance
to the original goes, this might seem like an excellent idea: We retain not only type-
correctness (at least for this example!), but we actually get the same functionality
while just changing around the concrete implementation. This is probably one of the
options the programmer will be thinking about once she has managed to track down
the problem. However, for our purposes this is actually too smart, as the new code now
could have a different performance problem 7! We have essentially run into the trap of
constructing Figure 2.4c: By being too cautious about side effects, we have ended up
reproducing the very effect we want to track.

7Even the recent work of Breitner [2004] cannot always prevent this, see e.g. Section 6.2 on page 190.

16

CHAPTER 2. BACKGROUND 2.3. CAUSALITY

2.3.4 Minimal Change

So what would be our best equivalent to the unimpeded car in Figure 2.4d then? We
want neither implausible causes nor effects, which for us means:

• disturbing the language syntax tree by actually removing the element or

• introducing new behaviour by substituting meaningful code.

Put together, this leaves us no choice but to punch a “hole” into our program:

f a c :: I n t → I n t
f a c n = � (∗) 1 [1 . . n]

Listing 2.4: Alternative with a Hole

The hole symbol � acts as a place-holder for the removed expression. In fact, in order
to not miss any possible effect we would like the new program to have no behaviour that
depends on the original “ foldr ” expression. We could for example approximate this
in a real Haskell program by setting “� = undefined”. This would make the program
terminate on the first actual usage off “fac”. That might appear rather extreme,
but among all of its effects, the new implementation is guaranteed to never have a
performance problem if “ foldr ” was to blame for it! This is exactly the kind of property
we need to reason reliably about causality.

But is substituting hole values the only way to find alternate worlds for causality
analysis? After all, this might easily lead us to over-estimate the ultimate effects of an
expression. As explained, context is important to consider, and we might occasionally
find that there are ways to remove the expression without having to involve place-
holders. For the sake of argument, let us add some error checking to our factorial
function:

f a c :: I n t → I n t
f a c n | n < 0 = e r r o r " F a c t o r i a l ␣ unde f i n ed ! "

| True = f o l d r (∗) 1 [1 . . n]
Listing 2.5: Example with Error Checking

To determine whether this new check has actually introduced the performance problem,
comparison with the pathological “fac n = �” alternative would probably not be the
best course of action. After all, we could instead simply eliminate the extra branch and
compare with the original program from Listing 2.1 instead. This would give us the
correct answer: The performance problem occurs in both cases, therefore the check is
clearly not to blame! We will later see that in a few cases we can actually do something
like this systematically.

17

2.3. CAUSALITY CHAPTER 2. BACKGROUND

To summarise, there are parallels between reasoning about causality in the real word
and handling it for abstract languages. If anything, it is actually easier to define what
the “context” of a language construct should mean, and the hole term gives us a good
default method for removing program elements.

2.3.5 Transitivity

Causality thus far has been purely about whether or not we can infer a causal connection
between a singular cause-effect pair. However, before that point we have been using the
term of causal “networks” as our metaphor for thinking about performance problems.
How do we need to extend our reasoning to allow us to cover these?

It is quite clear that we want causal transitivity: If we have a cause α, another cause
β and an effect ω, we would expect that

(¬α �→ ¬β) ∧ (¬β �→ ¬ω)⇒ (¬α �→ ¬ω)

which counter-factually states that if α was to be false, we would see both β as well as
ω becoming false. The reasoning appears sound, as after all ω depends on β happening,
which in turn depends on α. This is how we would commonly think about a cause
network: Every effect is caused via transitivity by every connected cause preceding it.

However as we should have seen by this point, we should not take consistency for
granted when reasoning about causality. If we return to our car crash example, let us
name the car crash ω, the tree’s existence β – and the decision to plant the tree in
the first place α. Normally we would expect α to cause ω now, but what if the tree
was planted to prevent the ground from slipping? Again, reversing α would still see
ω become true, albeit this time because the ground has eroded away over the years!
At heart, this is quite related to our issues with finding good close worlds. When we
considered causality between β and ω, we made no assumptions about why β became
false in the first place. We assumed a small “miracle” and restored consistency from
there. However here the prior change invalidates our assumptions: In the new alternate
world entirely new outcomes become plausible.

How are we going to handle this? There are basically two ways. First off, we can
shift around at what stage we look for causes and effects respectively. If for example
we only consider causes for the car crash that are in close temporal proximity, we will
only find β, but overlook α. However, if we take a step back and take the full history
into account, we find that it is much more worthwhile to “short-cut” our reasoning by
directly considering causality between α and ω. We will later see that this approach
can indeed be used to eliminate spurious causal relationships entirely.

On the other hand, attempting to identify such instances can increase the complexity

18

CHAPTER 2. BACKGROUND 2.4. CONCLUSION

of our task enormously. After all, in the example we could ask tricky questions like
whether changing the original decision might not – via complex mechanisms – end up
causing the car to not attempt this particular trip in the first place. Also consider the
program we considered in the past sections: A hypothetical decision to not use foldr
would most likely not result in the “hole” program from Listing 2.4. So some of the
effects we would associate with it would, in fact, not be “true” effects. Yet even knowing
this; the complexity of the program design process means that we have basically no
way of predicting what the “plausible” alternative is going to be.

However, this was to be expected. After all, if we could perform a “perfect” causality
analysis, we would be able to connect design decisions with resource usages all by
ourselves, therefore solving the performance problem. Fortunately, this is not actually
our task. For supporting abductive reasoning all we need is the ability to point out and
evaluate possible causal links. Overestimation at this point merely means that we are
subjecting the user to more false positives. While this is clearly undesirable, it comes
with the nature of our task.

2.4 Conclusion

At this point we have developed a clear picture of what the profiling task is all about:
Assist the programmer in finding causality links between the influences on program
execution and the final program performance. We have classified concrete causes and
effects into abstract causes (nouns), effects (verbs) as well as intermediates (explana-
tions). We then explained how we can establish causality between these entities. To
recapitulate, we are allowed to view something as an effect of a cause α exactly if:

1. It does not happen in an alternate world where we miraculously invalidated α

2. or – if it turns out that we cannot decide the first criterion – it is indirectly caused
by any of the other effects of α.

It is clear that the concrete implementation of our profiling tool will have to vary heavily
depending on the kinds of nouns and verbs we ultimately want to reason about. Not only
will we have different verbs, nouns and explanations, but the way we reason about them
causally will also heavily depend on the development context. For example, reasoning
about the performance of an imperative language would require a substantially different
analysis – and therefore tools – than dealing with functional programs. In the following
chapter we are going to instantiate all of these concepts for our work.

19

2.4. CONCLUSION CHAPTER 2. BACKGROUND

20

Chapter 3

Haskell

“What is up? I can like flowers even if I am a barbarian, right?”

Asterix and the Goths, René Goscinny & Albert Uderzo

Our focus for this work will be to develop a new general-purpose profiling solution for
code written in the programming language Haskell [Peyton Jones, 2003]. We have a
good motivation for limiting ourselves to a single language: As explained in the last
chapter, if we want to be effective in supporting abductive reasoning, we need to know
as much as possible about the programmer’s mental models. And the programming
language is undoubtedly one of the most important factors shaping the user’s mental
image of the program’s functionality.

This is especially true for Haskell, as it proudly breaks with venerable software
development traditions by focusing entirely on purely functional programming with
non-strict semantics. As a result, Haskell programs often end up looking entirely
differently from programs written in more conventional languages. This goes beyond
simple syntax: It is not uncommon for learning programmers to voice sentiments along
the lines of “Haskell is changing my brain”, or that it feels like re-learning programming
entirely. For our purposes, this makes it plausible that there will also be unique mental
models on the programmer’s part, justifying a specialised treatment of the development
environment.

Furthermore, for an arguably niche programming language Haskell is in the unique
position of having a healthy community of “real-world” software development. In fact,
functional programming has become main-stream enough that the International Con-
ference on Functional Programming regularly hosts special forums to allow commercial
users to discuss the practicality and – indeed – performance of a wide variety of language
use cases. It is not uncommon for Haskell to take centre stage on these occasions, as
its mix of high-level programming combined with efficient implementations has proved
to make it remarkably good at tackling problems from the real world.

21

3.1. THE LANGUAGE CHAPTER 3. HASKELL

In this chapter, we explain the particular issues we face with profiling Haskell code.
We will start with giving a general overview of the language in Section 3.1, which will
inform our priorities for the profiling solution in Section 3.2. To get an idea about the
causal inter-dependencies, we will then proceed to review the Haskell infrastructure.
Given the nature of compiler-based programming language implementation, this will be
split into two parts: Section 3.3 on page 26 will serve as an overview of the compilation
pipeline of the Glasgow Haskell Compiler, with Section 3.4 on page 30 demonstrating
how its transformations work for an example program. In Section 3.5 on page 41 we
will then explain the execution of Haskell programs, and derive an abstract performance
model.

3.1 The Language

It is a widely held belief amongst proponents of advanced programming methodologies
that programming at a high level will lead to better programs. The logic is that the
farther we can remove the programmer from the idiosyncrasy of the hardware platform
and the necessity to write noisy boilerplate code, the more brain-space she can dedicate
on solving the problems that actually make programming hard: Truly understanding
the problem requirements to the point where we can decide on a program design that
minimises cognitive effort at every step along the way. This approach, conventional
wisdom suggests, leads to software that is both effortless to write as well as maintain.

In practice, this basic idea has inspired a zoo of programming languages to spring
into existence, the size of which might actually surprise outside observers. The trouble
is that it is surprisingly hard to build programming languages that have clear meaning,
can be written in a compact way, and fit our mental models well. What seems to be
perfectly intuitive for one application can seem bewildering and forced for another. As
a result, to this day we have not only seen the birth of many programming languages,
but also have whole families and paradigms vying for the crown of being the most
“expressive”. It stands to reason that this contest will never truly be decided.

3.1.1 Purity

In the ongoing evolution of computer language design Haskell occupies quite a unique
spot. At the present time most main-stream programming languages still rely mostly
on the imperative approach, which uses the metaphor of manipulating some notion
of computer-internal state to describe algorithms. This matches both the reality of
programming on the hardware level as well as the practice of interacting with anything
outside the computer. In fact, there are situations where structuring programs in terms
of changing state is without much doubt the most natural approach.

22

CHAPTER 3. HASKELL 3.1. THE LANGUAGE

So it might appear puzzling that Haskell instead adopts the purity ideal: Describe
as many computations as possible in a way that does not depend on state manipulation
of any kind. For example, we saw in Listing 2.1 on page 15 that we can describe the
factorial function as using a fold over a list: a pure computation involving no side-effects
at all. Compare this with a typical imperative implementation:

i n t f a c (i n t n) {
i n t x = 1 ;
f o r (i n t i = 1 ; i <= n ; i++)

x = x ∗ i ;
r e t u r n x ;

}
Listing 3.1: Factorial in C

We see that idiomatic imperative programs uses state, such as the counter variable i or
the accumulator x. Experienced programmers will find this easy to read, as they can
easily play through different loop states in their heads.

Yet Haskell actively discourages this kind of programming. Beginning Haskell
programmers are generally split between bafflement and curiosity when they learn that
there is simply no straight-forward equivalent to the above implementation in Haskell.
Our closest choices would basically be to either encode the loop state as parameters to
a recursive helper function, or involve libraries [Launchbury and Peyton Jones, 1994]
that emulate imperative paradigms. This will allow us to use to write small imperative
programs such as the one cited above. However the more we want to share the state
between functions and procedures, the more of a fight the language will put up: We
will be forced to explicitly state our intentions in the type of every function that takes
part.

3.1.2 Higher Order Programming

Of course there is a good reason why Haskell goes to great lengths to promote purity.
The basic idea is that while pure functions might appear harder to write at first, they
become more straightforward to use. In a purely functional language, we basically know
that the return value of a function of type “ Int →Int” will depend exactly on the sole
parameter we pass in. It does not matter how often, in what order or in what program
phase we call the function: Its behaviour will always be the same.

This property might not seem particularly remarkable, but it is in fact very useful
if we consider the context of development of large applications. The reason is that it
forces the programmer to think carefully about introducing data dependencies. This
will not only make it “physically” harder to write hard-to-understand programs, but

23

3.1. THE LANGUAGE CHAPTER 3. HASKELL

also enables advanced programming techniques that would otherwise be too unsafe to
use. Take for example higher order programming, where we use functions as first-class
values and encourage writing programs by combining them. For example, the foldr
function we used in Listing 2.1 is defined like follows:

f o l d r :: (a → b → b) → b → [a] → b
f o l d r z [] = z
f o l d r f z (x : xs) = f x (f o l d r f z xs)

Listing 3.2: Definition of foldr

This function implements a very basic idea: Starting from certain value, we iteratively
“fold” all values from the list into it. As Listing 2.1 demonstrated, getting to the factorial
function from this point is as simple as setting f to the plus operator, use 1 as the
starting value and an enumeration of numbers as the list.

So in the end, arriving at the correct result depends on two functions co-operating:
foldr and the plus operator. Neither function knows anything about the other until we
choose to combine them. Without purity, this might be somewhat tricky: Are we sure
the two functions will not interact? Will they get called in the order they expect? It is
not hard to see that for larger examples, these sort of questions might become highly
non-trivial to answer. In the end, we might even be tempted to specialise interacting
functions to fit each other, generating treacherous inter-dependencies between software
components that could have been independent.

3.1.3 Optimisation

Despite the learning curve, higher order programming with purely functional code is
a great match. But for the purpose of this thesis we have to especially acknowledge
the performance angle: Implemented in a straight-forward way, programs using an
imperative style will often turn out to be substantially faster. The reason is simply that
the higher-order style promotes combining together a high number of general-purpose
functions. The required “glue points” between functions will make assumptions about
the data format of the passed data. It is not hard to see that these might not always
coincide with the most efficient choice.

For example, the foldr function from Listing 3.2 has to be able to work with any
Haskell function that might get passed as f. Therefore a direct implementation would
perform one indirect jump per list element at minimum, even if the only code ever called
was the plus operator. Compilation of our imperative version would see the hard-coded
plus operator at this point, and simply short-cut the jump. Even more gravely, the
Haskell way of folding over a list seem to require a list to exist in the first place. The
imperative implementation directly uses a light-weight loop at this point.

24

CHAPTER 3. HASKELL 3.2. OBJECTIVES

However not all hope is lost. In being less specific – or more declarative – about the
implementation, we allow the compiler more freedom for performing optimisations. For
example, given the compact size of the foldr definition, it is cheap to just copy the code
and specialise it for our purposes. This would trivially restore our ability to in-line the
plus operation in the last example. We can even teach the compiler to recognise and
eliminate inefficient intermediate data structures where we find them. For example, we
can generalise the enumeration of numbers as follows [Gill et al., 1993]:

e f t I n t :: I n t → I n t → [r]
e f t I n t n to = bu i l d (λ s t e p s t a r t → e f t I n t s t ep s t a r t n to)

e f t I n t FB :: (I n t → r → r) → r → I n t → I n t → r
e f t I n t FB s t ep s t a r t n to = go n

where go n | n >= to = s t a r t
| o t h e rw i s e = n ‘ s tep ‘ go (n+1)

b u i l d :: ∀ a . (∀ b . (a → b → b) → b → b) → [a]
b u i l d g = g (:) []

Listing 3.3: Fusion-enabled Enumeration

This slightly simplified implementation of eftInt splits its task into two components: An
abstract function for generating numbers (eftIntFB) and a function that parameterises
it to produce the expected list (build). The key observation is that now foldr is actually
“dual” to build , allowing for the following transformation:

f o l d r s t e p s t a r t (b u i l d g) =⇒ g s t ep s t a r t
Listing 3.4: Short-cut Fusion Rule

In the example of our tried-and-true factorial function, this rule actually allows the
compiler to eliminate the intermediate list and “fuse” the number creation with the
calculation of the factorial. We will look at the details of this process in Section 3.4.
At this point, the critical observation is that this transformation is only valid because
we know all components to be pure functions. If we had to assume possible inter-
dependencies between functions f and g in the above rule, arguing for its correctness
would be much harder.

3.2 Objectives

For performance the programming style that Haskell promotes can be a blessing and a
curse at the same time. On one hand, it is demonstrably true that Haskell programs
can perform as fast as comparable programs written in imperative languages. Espe-
cially fusion techniques can be powerful enough that even the performance of low-level

25

3.3. GHC OVERVIEW CHAPTER 3. HASKELL

languages can be “beaten” [Mainland et al., 2013]. But on the flip-side, the declarative
style offers little in terms of performance guarantees. Whether a program achieves high
performance or ends up crawling along at snail’s pace is mostly a matter of whether
the relevant program optimisations found their chance to shine.

This can lead to problems for real-world programming scenarios. Experienced
programmers will obviously try to make use of the optimisation facilities given to them,
and write their programs in a way that they expect to optimise well. For example, a
programmer might opt to restrict herself to use functions with well-defined short-cut
fusion rules [Gill et al., 1993], and proceed to reason about the program performance
with deforestation as the expected default. However, this is dangerous, as it is easy
for unforeseen interactions to sneak their way into the process. Suppose we tried to
compute the product as well as the sum of a list of numbers at the same time:

t e s t :: I n t → (I n t , I n t)
t e s t n = (f o l d r (∗) 1 nums , f o l d r (+) 0 nums)

where nums = [1 . . n]

Listing 3.5: Sharing Hindering Rules

The shared [1.. n] list is a hard nut to crack for the compiler, as it has to decide whether
the cost of duplicating the work of enumerating the numbers is outweighed by the benefit
of being able to apply the rules. Here it would actually fall back to the more conservative
choice of skipping the rules, subverting the programmer’s operational expectations. To
make matters worse, sometimes such sharing can appear without the programmer’s
knowledge, and is even quite hard to prevent [Breitner, 2012]. Once code complexity
reaches a certain point, these kind of interactions can degrade predicting performance
to a high-level guessing game. In fact, polls among Haskell users consistently results in
performance unpredictability being cited as a primary concern [Tibell, 2011].

Our goal will be to solve this problem from the profiling side. Our main hypothesis
is that real-world purely functional programming with aggressive optimisations is here
to stay, and that we can make it more workable by allowing users to trace more easily
how their program design decisions led to the observed run-time characteristics. As we
will see, program optimisations make this especially challenging, as they substantially
increase the complexity of the causality network.

3.3 GHC Overview

Before we can start fleshing out how our profiling solution ought to work, we first
need a robust understanding of what we are up against. Our primary concern is the
inner workings of Haskell compilation, and especially how it shapes the performance of

26

CHAPTER 3. HASKELL 3.3. GHC OVERVIEW

Haskell Core Cmm Back-End
Desugar

Transform

CodeGen

Transform

Figure 3.1: Glasgow Haskell Compiler – Compilation Pipeline

the compiled program. As sketched out earlier, from the compiler’s point of view the
unconventional language design choices of Haskell represent a number of challenges as
well as opportunities. Compiler passes, libraries, as well as the runtime system should
be tailored to make maximum use of the language’s characteristics.

Given these challenges, it is noteworthy that with the award-winning and allegedly
glorious Glasgow Haskell Compiler GHC [Peyton Jones et al., 1993] we have a compila-
tion infrastructure that has managed to build up a reputation for being industry-grade
and fit for real-world programming. It will be our primary point of reference for the
analysis, as well as our target for implementation. Other notable compilers under ac-
tive development include the Utrecht Haskell Compiler [Dijkstra et al., 2009], the Jhc
Haskell Compiler or the Intel labs Haskell research compiler [Liu et al., 2013]. The main
differences between these compilers concern the exact nature of the used intermediate
languages, such as GRIN [Boquist and Johnsson, 1997] for UHC and Jhc. However
the transformations performed on the program representations share common themes,
and we would expect our analysis to adapt to any given compiler infrastructure in a
straightforward way.

3.3.1 Core

Figure 3.1 shows a high-level overview of the GHC compilation pipeline. As customary
for compilers, the program gets translated through a number of intermediate languages.
Given their role in compilation, the primary design goal of these languages is to facilitate
transformations. For this it is paramount to be as general as possible while maintaining
a clear understanding of the performance implications of their changes. Consequently,
the design of intermediate languages differs notably from actual programming languages
in that they favour simplicity in design and a clearly defined performance model over
brevity or ease of use.

For GHC, the principal intermediate language is called Core [Peyton Jones and
Lester, 1992; Santos, 1995]. In comparison to the Haskell source language, it is a
rather simple functional language with its theoretical roots growing down all the way
to System F [Girard et al., 1989], an extension of lambda calculus with types. GHC
extends this base language further by introducing primitive types and first-class let and

27

3.3. GHC OVERVIEW CHAPTER 3. HASKELL

case expressions. This makes the program representation just low-level enough to not
limit transformations, while maintaining strong theoretical roots [Peyton Jones, 1992]
at the same time. After all, even with these extensions the language is still extremely
light-weight with only 6 distinct expression forms (ignoring types):

data Expr b
= Var I d
| L i t L i t e r a l
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b [(AltCon , [b] , Expr b)]

data Bind b = NonRec b (Expr b) | Rec [(b , (Expr b))]
Listing 3.6: Core Definition (Without Types)

This simplicity is why translating the parsed and type-checked Haskell program into
Core is called “desugaring”: We remove all syntactic sugar and break the language
down to its most basic components.

Our running example, the factorial function from Listing 2.1, would look like follows
in pretty-printed Core:

f a c :: I n t → I n t
f a c = λn → f o l d r (∗) (I # 1) (enumFromTo (I # 1) n)

Listing 3.7: Core Example

The desugared program shows a number of differences: Instead of using a parameter
pattern match, fac is now defined using an explicit lambda expression. Integer constants
now appear in the “boxed” form, using the magic I# constructor to make them non-
primitive. Finally the enumeration syntax was simply replaced by the library function
enumFromTo.

3.3.2 Types

Due to its System F heritage, Core will treat types like first-class values, passing
them around as parameters and variables where the type of an expression cannot be
determined at compile time. These type terms have no run-time representation, and
will simply get eliminated at the end of the Core transformation stage. As we are
mainly concerned with profiling of run-time costs, this means that we will pretty much
ignore types for the rest of this document. However, strictly speaking this means losing
performance-relevant causality information, as the choice of type can absolutely have
an impact on performance.

28

CHAPTER 3. HASKELL 3.3. GHC OVERVIEW

Consider the following program:

squa r e :: I n t → I n t
squa r e n = n ^ 2

Listing 3.8: Type Performance Problem

We would obviously expect this function to be very efficient. Yet in fact, for a number
of GHC releases the compiler did not only miss the obvious n∗n replacement, but also
made a very poor choice on the type level. To understand how, let us look at the Core
code after desugaring, this time with types:

squa r e :: I n t → I n t
squa r e = λn → (^) @Int @ In t eg e r $fNumInt $ f I n t e g r a l I n t e g e r

n (i n t e g e r 2)
Listing 3.9: Type Performance Problem – Core

Terms preceded by @ are the type terms we were talking about: As the (^) operator
has type (Num a, Integral b) ⇒ a → b → a, System F demands that we “pass” the
concrete type to use for a and b, as well as two Num and Integral type class dictionar-
ies [Hall et al., 1996] to be able to use them1. The important point is that the Haskell
compiler went for the conservative default choice of using the Integer type for b. This
type is normally meant for operating on arbitrarily large numbers. A rather unfortunate
choice, as we know that the largest number encountered will in fact be 2!

However, we can probably assume that these sort of problems are rare. Even where
we run into them, it is not too unlikely that the value in question will have as much
of an influence on the result as the type. In our example, a good profile might be able
to pin the performance loss to the “2” literal and Integer primitives, which is enough
to suggest the right connection2. This is rather fortunate for us, as the troubles with
accurate type error reporting have shown that reasoning about causation with type
systems can be a significant challenge (see for example Stuckey et al. [2004]).

3.3.3 Cmm

As we will see later, Core is flexible enough to express all of the most important code
transformations while in essence retaining the functional nature of the original Haskell
code. However eventually GHC will have to break out of this abstraction and deal
with the realities of adapting the program for sequential evaluation. To this end,
GHC transforms Core into the high-level portable assembly language Cmm (related to
C-- [Peyton Jones et al., 1998]) at this point.

1Dictionary terms carry a $ prefix in our example. In contrast to types, dictionaries correspond to
function tables at runtime, so we think of them simply as a data structure containing function values.

2Which is, in fact, how this problem was discovered in the first place.

29

3.4. TRANSFORMATIONS EXAMPLE CHAPTER 3. HASKELL

This intermediate language acts as a middle-ground between the functional trans-
formation pipeline and the assembly generation in the compiler back-end. This is where
GHC will decide on the concrete stack layout, register allocation as well as interactions
with the run time system. Furthermore, there are some code transformations as this
point, such as common block elimination or block concatenation. However, we see these
optimisations as relatively straight-forward local optimisations, with limited influence
on the program’s performance. Therefore, for the coming sections we will simply pre-
tend that the program is going to be a “direct” translation of our Core code. We will
however revisit Cmm in Section 5.5 on page 143 to discuss implementation issues.

3.4 Transformations Example

To get a feel for code transformations at work, let us take a closer look at how GHC
would translate the factorial function from Listing 3.6. The optimisation process would
start with the desugared Core shown in the listing, and proceed to apply (presumably)
beneficial transformations. We only stop once we are reasonably sure that we have
exploited most opportunities for improving the program.

For our example, we might start with replacing the general enumFromTo and (∗)
functions by their specialised counter-parts, eftInt and timesInt :

f a c = λn → f o l d r t im e s I n t (I # 1) (e f t I n t (I # 1) n)
Listing 3.10: Core after Specialisations

This corresponds to eliminating types and dictionaries as explained in Section 3.3.2.
Note however that foldr is still polymorphic, and cannot be specialised. This is simply
because it does not care about the element type at all, and therefore does not need
specialised versions. We would have to in-line it in order to exploit our knowledge about
types. Yet as we shall see, we can gain even more performance by applying rules.

3.4.1 Rules

The idea behind user-define rule transformations [Peyton Jones et al., 2001] is to match
and replace certain local patterns within the code. The powerful property of this system
is that Haskell libraries can feed it with custom transformation rules that exploit the
specific properties of their data structures and functions. For example, the definition
of eftInt mentioned in Listing 3.3 actually appears as a rule in GHC.Enum:

{−# RULES ‘ ‘ e f t I n t ’ ’ [~ 1] ∀ x y .
e f t I n t x y = bu i l d (λ s t e p s t a r t →

e f t I n t FB s t ep s t a r t x y) #−}
Listing 3.11: eftInt Rule

30

CHAPTER 3. HASKELL 3.4. TRANSFORMATIONS EXAMPLE

The left hand side of the equation clearly matches our program with x = I# 1 and y = n.
If we paste the right hand side of the equation into our program and replace x and y
by their assigned values, we obtain:

f a c = λn → f o l d r t im e s I n t (I # 1)
(b u i l d (λ s t e p s t a r t →

e f t I n t FB s t ep s t a r t (I # 1) n))
Listing 3.12: Core after eftInt Rule

At this point, the rule achieved little more than a slightly more controlled in-lining.
However its main function is to ensure that other rules fire correctly. Namely, at this
point we can apply the rule from Listing 3.4, originating from GHC.Base:

{−# RULES " f o l d / b u i l d " ∀ k z (g :: ∀ b . (a→b→b) → b → b) .
f o l d r k z (b u i l d g) = g k z #−}

Listing 3.13: fold/build Rule

We can instantiate this rule with k = timesInt, z = I# 1 and g the lambda term we got
from the eftInt rule.

This will “fuse” foldr and build :

f a c = λn → (λ s t e p s t a r t → e f t I n t FB s t ep s t a r t (I # 1) n)
t im e s I n t (I # 1)
Listing 3.14: Core after fold/build Rule

Now we can simply β-reduce the term and obtain:

f a c = λn → e f t I n t FB t im e s I n t (I # 1) (I # 1) n
Listing 3.15: Core after Rules

which is a clear improvement: The build / foldr duality has allowed two rules from
different library paths to collaborate in a structured and arguably predictable manner.
As far as local code transformation go, our code is now completely simplified. The only
way forward is now to unfold eftIntFB.

3.4.2 Basic Floating

For unfolding the definition we need the Core code for eftIntFB. Normally we would have
this available at this point, as GHC would save unfold-able pre-optimised definitions
along with the compiled library. However for our purposes let us take the small detour
and reconstruct the Core by hand by starting from the definition of eftIntFB. To
recapitulate, here is again the definition we gave in Listing 3.3 on page 25:

31

3.4. TRANSFORMATIONS EXAMPLE CHAPTER 3. HASKELL

e f t I n t FB :: (I n t → r → r) → r → I n t → I n t → r
e f t I n t FB s t ep s t a r t n to = go n

where go n | n >= to = s t a r t
| o t h e rw i s e = n ‘ s tep ‘ go (n+1)

Listing 3.16: eftIntFB in Haskell

Which yields us the following Core:

e f t I n t FB :: ∀ r . (I n t → r → r) → r → I n t → I n t → r
e f t I n t FB = λ s t e p s t a r t from to →

l e t go = λn →
ca se (>) n to o f

True → s t a r t
F a l s e → s t e p n (go ((+) n (I # 1)))

i n go from

Listing 3.17: eftIntFB in Core

The effects of desugaring are a bit more striking this time: The where clause from the
original Haskell code becomes a let expression, and the pattern guard was converted
into an equivalent case expression. Note that we are again dealing with a polymorphic
function, so for full Core we would also pass the type @r around explicitly. This part is
however not critical for performance or optimisations, so we will again ignore it.

Let us start optimising this fragment. To get started we can specialise and unfold
the definitions of the (>) and (+) operator to the Int type. This exposes the primitive
numerical operations:

e f t I n t FB = λ s t e p s t a r t from to →
l e t go = λn →

ca se (ca s e n o f I # n# →
ca se to o f I # to # →
(>#) n# to #) o f

True → s t a r t
F a l s e → s t e p n (go (ca s e n o f I # n# →

I # ((+#) n# 1)))
i n go from

Listing 3.18: eftIntFB after Specialisations

Unfolding the operators in place has left us with a number of case statements for
“unpacking” the boxed integers. This often means overhead, as it is generally better
to directly use primitive values whenever we can. In our case, the code is clearly not

32

CHAPTER 3. HASKELL 3.4. TRANSFORMATIONS EXAMPLE

very efficient: every loop iteration will unpack “to” again, and n will even get unpacked
twice if we follow the False branch.

Fortunately, we can easily fix this by “floating” the case statements outwards:

e f t I n t FB = λ s t e p s t a r t from to →
ca se to o f I # to # →
l e t go = λn →

ca se n o f I # n# →
ca se (>#) n# to # o f

True → s t a r t
F a l s e → s t e p n (go (I # ((+#) n# 1)))

i n go from
Listing 3.19: eftIntFB after Floating

Generally speaking, selecting the right position to put a binding is a non-trivial endeav-
our [Peyton Jones et al., 1996]. For unpacking operations however, we can stick to the
rule of thumb that we want to push them as far to the outside as possible. For the n#

binding, this means we have to stop at the lambda where n gets introduced, but to#

can actually float all the way up to the top level of eftIntFB.

3.4.3 Worker/Wrapper Transformation

As result of the floating optimisation, the unpacking of n is now actually the first thing
go does when it is invoked. This begs the question: Why pass a packed integer number
in the first place if it will get immediately unpacked? If the calling code happened to
be operating on unpacked integers in the first place, this would safe us the allocation!

GHC exploits such optimisation potential using the worker/wrapper transforma-
tion [Gill and Hutton, 2009]. For our purposes, the basic idea is that where we find a
strict parameter, we can move all actual work into a dedicated “worker” function. This
only leaves the “wrapper” part in the original function definition:

e f t I n t FB = λ s t e p s t a r t from to →
ca se to o f I # to # →
l e t wgo = λn# →

ca se (>#) n# to # o f
True → s t a r t
F a l s e → s t e p (I # n#) (go (I # ((+#) n# 1)))

go = λn → ca se n o f I # n# → wgo n#

i n go from
Listing 3.20: eftIntFB after Worker-Wrapper Transformation

33

3.4. TRANSFORMATIONS EXAMPLE CHAPTER 3. HASKELL

Now go has become a wrapper function, while wgo implements the associated worker.
The trick is that this transformation gives us the opportunity to unfold the wrapper not
only when starting the loop on the top level, but also at the recursive call site within
the worker function itself:

e f t I n t FB = λ s t e p s t a r t from to →
ca se to o f I # to # →
ca se from o f I # from # →
l e t wgo = λn# →

ca se (>#) n# to # o f
True → s t a r t
F a l s e → s t e p (I # n#) (wgo ((+#) n# 1))

i n wgo from #

Listing 3.21: eftIntFB with Unfolded Wrapper

After this little dance, we could simply drop the go function, as we are now using the
worker function exclusively. In the process we have improved the function significantly:
Now the inner loop function wgo actually uses efficient unboxed integers [Peyton Jones
and Launchbury, 1991] for tracking the current enumeration value.

However, observe that n# still gets boxed when we pass it as a parameter to the step
function. The reason for this is that eftIntFB has no information about this function
and therefore has to be conservative. In order to optimise further, we need to specialise
the code to our step function.

3.4.4 Unfolding

Now that we have optimised the eftIntFB function to our satisfaction, let us return to
the fac code from Listing 3.15. We know that in order to produce efficient code, we
need to specialise the inner loop with our custom stepper function. To this end, we can
now simply unfold the definition of eftIntFB in Listing 3.15, which yields us:

f a c = λn →
ca se n o f I # to # →
l e t wgo = λn# →

ca se (>#) n# to # o f
True → I # 1#

Fa l s e → t im e s I n t (I # n#) (wgo ((+#) n# 1))
i n wgo 1

Listing 3.22: Core after Unfolding

34

CHAPTER 3. HASKELL 3.4. TRANSFORMATIONS EXAMPLE

The inner loop is starting to take shape. Note that most of our optimisations up to this
point have been instances of unfolding function definitions at their call sites, followed
by local transformations. In fact, due to the ubiquity of small functions in Haskell
code, in-lining transformations are one of the most common optimisations performed
on functional programs. Note however how this time around we substantially increased
the code size relative to the last version of fac. This should hint at the fact that in
practice we need to take care, as excessive unfolding could lead to exponential code size
increase [Peyton Jones and Marlow, 2002].

But let us continue with our optimisations. We can now unfold timesInt as well to
expose the primitive operator:

f a c = λn →
ca se n o f I # to # →
l e t wgo = λn# →

ca se (>#) n# to # o f
True → I # 1#

Fa l s e → ca se wgo ((+#) n# 1) o f
I # r # → I # ((∗ #) n# r #)

i n wgo 1
Listing 3.23: Core after Nested Unfolding

This bring us close to the finish line. However wgo still boxes and unboxes its return
value at every step in the recursion. We can correct this using another worker/wrapper
transformation, which yields the final code:

f a c = λn →
ca se n o f I # to # →
l e t wgo = λn# →

ca se (>#) n# to # o f
True → 1#

Fa l s e → ca se wgo ((+#) n# 1) o f
r # → (∗ #) n# r #

i n I # (wgo 1)
Listing 3.24: Core after Worker/Wrapper

3.4.5 Status Report

At this point we have exhausted every local Core transformation that we could do.
The code from Listing 3.24 is exactly what GHC would produce if we used the fac
implementation from Listing 2.1. And even though simplified Core is by far not the last

35

3.4. TRANSFORMATIONS EXAMPLE CHAPTER 3. HASKELL

step in the compilation pipeline, it is noteworthy that if we assume a basic performance
model [Peyton Jones, 1992] this low-level functional code already says a lot about the
performance we can expect from the program.

Incidentally, we noted earlier that our fac implementation still had a performance
problem. We can now see why, simply by taking a good look at Listing 3.24: The
function wgo needs to call itself recursively, and only multiplies the current counter n#

with the product once the recursive call returns. Running this program, we would be
forced to keep n# in a stack frame until the recursive call returns. At the deepest point
this would mean to# nested stack frames, so our maximum stack size would be O(n).
As factorial can be computed in constant space, this is clearly not efficient3.

Thinking about this issue further, we might even recognise that the roots for this
behaviour run deep: We are folding from the right using foldr and a strict operator,
but actually generate the numbers starting from the left. And to make matters even
more troublesome, we can not even fix this simply by reversing the direction of the fold
as proposed back in Listing 2.3 on page 16. The reason is simply that foldl can not be
fused using GHC’s short-cut fusion techniques, so all the rules that served us so well
would simply stop matching. Resolving this properly would require more principled
changes to the fusion framework [Coutts et al., 2007a].

3.4.6 Arity Analysis

However as it turns out this performance problem can be fixed without the need to
reinvent fusion. The key insight is that the code in Listing 3.24 is inefficient because it
accumulates the counter before the recursive descent, but performs the multiplication
for the final result on the way back. As multiplication is associative, it should be
possible to move the product calculation in front of the recursion. This would leave
no work to be done after the recursive call, so the compiler could apply the tail-call
optimisation. This would effectively implement the C loop from Listing 3.1 on page 23.

As it happens, we can reach this goal by changing fac as follows:

f a c :: I n t → I n t
f a c n = f o l d r (λx c i → c (i ∗x)) i d [1 . . n] 1

Listing 3.25: Fixed Haskell Program

For this solution, the programmer has figuratively “leaned so far right [s]he came back
left again” [Ruehr, 2001]: We use a right fold to construct a function that performs a
left fold, which we then call with the parameter “1”. In the lambda passed to foldr , we

3Our implementation will actually go wrong even before becoming inefficient due to overflowing the
value range of Int#. As we are only interested in performance, we simply see this as a feature.

36

CHAPTER 3. HASKELL 3.4. TRANSFORMATIONS EXAMPLE

have the current counter as x, the function that will continue evaluation for the right
part of the list as c, and the current product we got from the left of the list as i .

This is probably easiest to understand with a small example:

f o l d r (λx c → c . (∗ x)) i d [1 . . 3] 1
= (λc → c . (∗1)) ((λc → c . (∗2)) ((λc → c . (∗3))

i d)) 1
= (λc → c . (∗1)) ((λc → c . (∗2))

(i d . (∗ 3))) 1
= (λc → c . (∗1))

(i d . (∗3) . (∗2)) 1
= (i d . (∗3) . (∗2) . (∗1)) 1
= (((1 ∗ 1) ∗ 2) ∗ 3)
= f o l d l (∗) [1 . . 3] 1

Listing 3.26: Fold Emulation

Note how the continuation function c “accumulates” the operations in the order appro-
priate for a left fold. Once we reach the top level, we apply the function to the start
value 1 in order to obtain the factorial.

It might seem like we merely obfuscated our implementation, but we will see that
this actually happens to correct the exact problem our first version had. We saw that
foldr ended up producing a function that ran left-to-right, and now the order in which
calculate the product reflects that! In this example, by way of short-cut fusion and
unfolding eftIntFB we obtain the following Core:

f a c = λn →
ca se n o f I # to # →
l e t wgo = λn# →

ca se (>=#) n# to # o f
True → (λ i → i)
F a l s e → l e t x = I # n#

c = wgo ((+#) n# 1)
i n λ i → c (t im e s I n t i x)

i n wgo 1 (I # 1)
Listing 3.27: Fixed Haskell Program after Unfolding

It is easy to see that this is simply the same code as in Listing 3.22, except that we
replaced the step and next functions, and pass a literal 1 to function returned by wgo.

Now we can make use of a basic feature of functional languages inherited from
lambda calculus: A function that takes one parameter and returns a function with

37

3.4. TRANSFORMATIONS EXAMPLE CHAPTER 3. HASKELL

another parameter is virtually the same as a function that takes two parameters. We
can especially convert the two forms into each other simply by doing an η-expansion
(f = e =⇒ f = λi→ e i). If we do this for the wgo function, float the application
inwards and β-reduce where possible, we get:

f a c = λn →
ca se n o f I # to # →
l e t wgo = λn# i →

ca se (>=#) n# to # o f
True → i
F a l s e → wgo ((+#) n# 1) (t im e s I n t (I # n#) i)

i n wgo 1 (I # 1)

Listing 3.28: Fixed Haskell Program after η-Expansion and β-Reduction

Comparing with the program before, we see that we have simply “floated” the lambda
from the case branches upwards towards the definition of wgo. Note that as simple as
this transformation is, finding the right situations to do this can actually be quite tricky
for the compiler: After all, we have to acknowledge the possibility that the program
might first pass one parameter to wgo and then proceed to call the partially applied
function for many different values of i . The η-expanded code would then re-do the
check of n# against to# for every call to the partially applied function!

However, in this case arity analysis decides that the cost for the check is minor
relative to the cost of constructing and calling a partially applied function. We can also
see that wgo always gets called with two parameters, so this transformation is in fact
safe [Breitner, 2004]. Going forward, strictness analysis now tells us that i always gets
evaluated by wgo: Either it is the result, or it gets used by the (strict) timesInt function
to compute the new i parameter for the recursive call. Therefore we can conclude by
induction that wgo itself is strict in that parameter. This is what we need to know for
worker/wrapper, so now we are free to displace i in favour of i#:

f a c = λn →
ca se n o f I # to # →
l e t wgo = λn# i # →

ca se (>=#) n# to # o f
True → i #

Fa l s e → wgo ((+#) n# 1) ((∗ #) i # n#)
i n I # (wgo 1 1)

Listing 3.29: Fixed Haskell Program after Worker/Wrapper

At which point we have optimised the code to completion.

38

CHAPTER 3. HASKELL 3.4. TRANSFORMATIONS EXAMPLE

3.4.7 Observations

If we compare the result from Listing 3.29 to the Core code we obtained in Listing 3.24
on page 35, we observe that paradoxically introducing our “trick” has actually made
the optimised code shorter 4. The new code is also significantly faster : The compiler
can implement the tail-call simply by updating the parameters followed by a “jump”
back to the function entry. Therefore no stack management is needed, and the back-end
will compile our function into a tight loop.

Yet we have reached this result by “cheating” a little: We specialised our code to the
exact optimisations that we knew the compiler would perform. This not only makes it
highly non-obvious why we implemented the function in this way, but also means that
the performance of our code is fairly fragile. It would be reasonable to expect that for
a different compiler or base library our “trick” might stop working completely. Worse,
given that we introduced extra code, our new version might end up slower!

This is why generally speaking, the better approach for writing fast programs is
to be explicit about performance-relevant aspects of the program. For example, we
could simply write out the loop from Listing 3.29 directly. This might be unsatisfying,
as we are essentially writing the Haskell equivalent of the low-level C solution from
Listing 3.1 on page 23, but at least we could be reasonably sure about the performance
characteristics. Fortunately though, there is a better option here. After all, as we
explained the real problem is the direction of the accumulation. So why not simply use
foldl ? As it happens, due to the work of Breitner [2004] this is now actually a good
idea, because foldl is now defined as follows:

f o l d l :: ∀ a b . (b → a → b) → b → [a] → b
f o l d l k i 0 xs = f o l d r (λx c i → c (k i x)) i d xs i 0

Listing 3.30: Definition of foldl :

Which implements exactly the trick we explained above. Note that this is base library
code, and therefore bound to a specific compiler version and therefore optimisation
pipeline! Therefore we can safely “import” this behaviour and could implement a fast
factorial function as follows:

fac ’ :: I n t → I n t
fac ’ n = f o l d l (∗) 1 [1 . . n]

Listing 3.31: Factorial with foldl

We will however continue to reference the foldr version fac throughout this work, as
we show how to track down the explained performance problem using profiling.

4Which is by no means specific to Haskell – even for low-level languages getting a very specific result
can often involve complex preparations.

39

3.4. TRANSFORMATIONS EXAMPLE CHAPTER 3. HASKELL

3.4.8 Case-Of-Case

At this point we have exhausted all optimisations that could possibly apply to our
trusty factorial function. However, we have still barely scratched the surface of all the
different transformations that play a role when translating a Haskell program into its
final form. We could never hope to cover these completely – especially considering
that optimisation is a topic that is moving rather quickly, and many transformations
only become relevant in relatively specialised domains. However, we will still cover one
more rule for its generality and potential to substantially change the control flow of the
program: The case-of-case transformation [Peyton Jones and Santos, 1998]. Consider
the example from the cited paper:

i f (not x) then e1 e l s e e2
=⇒ ca se (ca s e x o f True → Fa l s e ; F a l s e → True) o f

True → e1
Fa l s e → e2

Listing 3.32: Control Flow

After desugaring and unfolding the obvious definition of not, we are left with two nested
case expressions, which is rather unsatisfactory. After all, it is clear that the branch
taken in the inner case will determine the branch taken on the outer level, therefore
we should be able to eliminate one. And we can, if we simply copy the outer case
expression into the branches of the inner:

ca se x o f True → (ca se Fa l s e o f True → e1 ; F a l s e → e2)
Fa l s e → (ca se True o f True → e1 ; F a l s e → e2)

=⇒ ca se x o f True → e2
Fa l s e → e1
Listing 3.33: After Case-Of-Case

This way of simplifying control flow is known for imperative languages as well, where it
takes the form of short-cutting labels for the different branches [Aho and Ullman, 1977,
section 7.8]. For most languages this represents a special case, as non-strict semantics
are restricted to boolean operators. In Haskell however, this technique applies no
matter what data structure the case expression scrutinises. We can even generalise this
to constructors with parameters:

ca se (ca s e f x o f C a b → (a , b)) o f (a , b) → . . .
=⇒ ca se f x o f C a b → ca se (a , b) o f (a , b) → . . .
=⇒ ca se f x o f C a b → . . .

Listing 3.34: Case-Of-Case for Tuples

40

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

Furthermore, if we are smart about let -binding the branches of the outer case expression
before the transformation (called “join points” by Peyton Jones and Santos [1998]), we
can severely limit the amount of code duplication as well. It is not hard to see why this
might be an issue, just consider an inner case expression with more branches:

ca se (ca s e f x o f C a b → (a , b)
D c d → (c , d))

o f (a , b) → . . .
=⇒ l e t j o i nP t a b = . . .

i n ca se (ca se f x o f C a b → (a , b)
D c d → (c , d))

o f (a , b) → j o i nP t a b
=⇒ l e t j o i nP t a b = . . .

i n ca se f x o f C a b → j o i nP t a b
D c d → j o i nP t c d

Listing 3.35: Case-Of-Case with Join Point

Now the compiler can decide separately whether duplicating the branch code – meaning
inlining joinPt – would be acceptable. As a result, the case-of-case optimisation can be
applied pretty much anywhere nested case expressions are encountered, which together
with let floating means that optimised Core does not often see case scrutinise anything
but a literal or a function application. This transformation effectively “flattens” the
local control flow of the program fragment.

3.5 Performance Model

After Core optimisations have run their course, the next step is to translate the program
into an imperative intermediate low-level language. To recapitulate, this is the stage
where the compiler spells out most of the details of mapping the functional program to
hardware: Control flow is encoded using explicit code blocks and jumps, and memory
layout gets broken down to the point where the code is reasoning about individual
memory words. And even though sometimes the compiler can find optimisation oppor-
tunities even at this late stage, this is mostly limited to local transformations, such as
figuring out a good register allocation 5.

This is relevant to our considerations: We have now reached the point where we can
see the performance characteristics of the eventual execution start to shine through.
After all, a heap check generated at this point will most likely stay in the program

5Note though that the LLVM back-end [Terei and Chakravarty, 2010] can sometimes still improve
tight inner loops using low-level assembly tricks [Stewart, 2010].

41

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

all the way to the final binary. And while we might not be able to predict the exact
cost amount, we know for sure that the check will not be free of charge. This makes
the check a potential performance problem. If we remember our nomenclature from
Section 2.2.1 on page 9, this makes heap usage a verb: A plausible intermediate cause
for bad performance.

In this section we are going to build a catalogue of such resource usage types, an
abstract performance model for optimised Core. The abstract costs of the model are
meant to directly correspond to our profiling verbs. In contrast to the Core perfor-
mance model used by Santos [1995, chapter 9] or Sansom and Peyton Jones [1997]
we will not base this primarily on an abstract machine such as the Spineless Tagless
G-Machine [Peyton Jones, 1992]. Instead, in this chapter we will approach the problem
from the practical side, deriving our model from the behaviour of real-world Haskell
programs as compiled with GHC and executed on realistic hardware. And while we will
not quantify the abstract costs just yet, this already allows us to argue that our perfor-
mance model covers all relevant runtime costs in some form or another. Therefore our
performance model exhaustively characterise the performance behavior of a real-world
program. Later in Section 5.7 on page 162 we will associate these verbs with actual
measurable performance metrics. This will allow us to transfer the causal analysis of
the abstract performance model to real-world performance problems.

3.5.1 Core Preparation

The first step of code generation will be to “prepare” the Core code. The purpose of
this is not to improve performance: We just normalise some very specific constructs
that would have the same meaning for the purpose of code generation anyway. Further
reducing the complexity of our language makes it cleaner to talk about performance,
as we avoid repeating the same reasoning for different rules.

In GHC, the full Core preparation phase a good number of transformations, with
most of them being inconsequential for our purposes. However, we will assume the
following normalisations:

1. Arrange for constructors and primitive operations to appear saturated. We can do
this because we know at every point how many parameter they should receive. To
implement this, we simply η-expand wherever we find an unsaturated application:

C x =⇒ λy → C x y
Listing 3.36: Constructor Saturation

This is always possible and means that we have to deal with partial functional
applications less often.

42

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

2. To simplify dealing with shadowing, we ensure that each variable name only
gets defined exactly once in the program. Variable normalisation just requires
renaming all variables to use unique names, which GHC does relatively early in
the compilation pipeline:

l e t x = . . . i n l e t x = . . . i n . . . w1
=⇒ l e t x0 = . . . i n l e t x1 = . . . i n . . .

Listing 3.37: Variable Normalisation

3. We want A-normal form [Flanagan et al., 1993], where closures are only applied to
variables. This can be achieved simply by let -binding all non-variable arguments:

f (. . .) y
=⇒ l e t x = . . . i n f x y

Listing 3.38: Conversion to A-normal form

The transformation ensures that we can later cleanly divide concerns between
determining the parameter values and performing the function call.

4. Finally we transform strict and primitive let bindings into case statements:

l e t x = . . . i n . . .
=⇒ ca se . . . o f x → . . .

Listing 3.39: Convert strict let to case

The reasoning here is that a case statement implies reducing the scrutinee to
weak head normal form, which is what we want to do for strict values. Note that
primitive values always have to be evaluated strictly, but even for non-primitive
values we can often derive strictness properties using a suitable analysis [Clack
and Peyton Jones, 1985].

3.5.2 Abstract Evaluation

After preparation the new language subset is quite suitable for talking about operational
semantics. Our next aim is to formulate rules that say how much cost we expect each
construct to contribute to a program execution. Note that the concrete costs will often
depend on how often and in what context a given construct gets evaluated, meaning
that in order to be able to truly talk about costs we need to know how the program
evaluates. Unsurprisingly, there has been substantial prior work on how to reason about
program evaluation in a formal way. In the following we opt to follow in the footsteps
of Launchbury [1993] and Sestoft [1997], with only minor modifications to introduce
and maintain cost terms.

43

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

Let us introduce our notation. We will be using symbols to refer to specific term
types as follows:

C – Constructors will be upper-case letters.

We assume them to be constants coming from the original program. Each con-
structor has a given arity, corresponding to the number of value arguments.

x – We will notate variables as lower-case letters.

They will be used to refer to names in the program as well as to abstract heap
locations for evaluation. We will on occasion generate fresh ones in order to refer
to new heap cells.

v – Values are the result of evaluating expressions, and might appear on the heap.

As we are going to ignore primitives for now, we only have saturated constructors
and lambda values:

v ::= C x1 x2... (Constructor)
| λy.e (Lambda)
| ⊥ (Bottom, Hole)

Note that we include the ⊥ term for undefined behaviour as a value. Making
it a proper value is a rather unusual choice, most notably Launchbury’s original
semantics introduce it only retroactively. We will later make more active use of
this both as a value as well as an expression term, therefore it makes sense to
emphasise its existence up-front.

e – Expressions form our program representation:

e ::= v (Literal)
| e x (Application)
| x (Variable)
| let {x1 = e1, x2 = e2, . . . } in e (let expression)
| case e of {C x1 x2...→ e1; D y1 y2...→ e2; . . . } (case expression)

Apart from the notation, these expression types correspond closely to the ones
used by GHC, which we mentioned in Listing 3.6 on page 28. The most notable
difference is that we have now separated constructor applications and function
applications, and only allow passing variables in both cases. As we have seen in
the last section, this is just a question of preparing the Core code suitably.

44

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

Γ – Our heap will be notated using upper-case Greek letters, which stand for a
mapping of variables to either values or expressions:

Γ ::= Γ, x 7→ v (Value)
| Γ, x 7→ e (Thunk)
| {}

Note that as defined here, values are also expressions, therefore saying that ex-
pressions can appear on the heap would be enough. However, heap cells that are
not in weak head normal form essentially represent deferred (lazy) computations.
Such “thunks” will be handled differently from pure values later on, so it appears
useful to introduce this distinction right away.

O – The main goal for this section will be to identify costs. Where we can find them,
we will notate them using upper-case letters in calligraphic font.

The idea is that these costs will remain rather abstract. After all, as explained
in Section 2.2.1 on page 9, they stand for verbs, which must merely be plausible
causes for resource consumption. The verb’s identity is about “how” something
might contribute cost, therefore we will allocate names by the mechanism in
question, such as H for heap allocation.

θ – Finally, we need a way to talk about the entirety of costs produced by the
evaluation of an expression or even the whole the program. For reasons that will
become apparent later, we will call bags of costs profiles, defined as:

θ ::= θ1 + θ2 | O | ∅

Consistent with the definition of a bag, it should not matter in what order costs
are added to a profile. Or put in other words: We assume that the + constructor
is both associative as well as commutative. We will also make use of the notation
n×O =

∑nO.

Pulling all parts together, we can now state what a (cost) judgement will look like:

Γ : e ⇓θ Γ′ : v

This notation is again heavily inspired by Launchbury [1993]. We state that starting
from a certain heap Γ and expression e, evaluation yields a new heap Γ′, a value v as
well as a certain amount of costs θ. In the rest of this section we will explain how we
can derive such cost judgements for any program state Γ : e.

45

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

3.5.3 Registers and Stack

Before we start with building our abstract model, let us consider what we know about
how programs execute. Given the speed at which computational units run in this day
and age, a significant portion of run-time cost will simply come from delays involved in
obtaining data and saving back results [Patterson, 2004]. The amount of data required
for an operation is often a much more reliable predictor of performance than up-front
computational complexity. Consequently, we should take special care to account for
storage costs.

Conceptually, there are three stores in a running Haskell program – registers, the
stack and the heap. Let us focus on the first two for now: Registers and stack both
hold the current “working” data of the code, such as local variables, parameters or the
code pointer. The characteristics of these stores are as follows:

1. Registers are, by construction, the fastest possible memory to access from the
CPU. Therefore it is the first and default choice for holding data. Unfortunately,
the register file is rather small, and has to be shared across all recursive calls.

2. On the other hand, access to the stack is generally slower, yet it has the advantage
that we can grow it to virtually unlimited size. Typically the stack is used to
“spill” values that we can not fit into registers.

Allocating register and stack words in a way that optimises performance is a highly
non-trivial problem [George and Appel, 1996] that we will not attempt to model here.
Instead, for cost we will simply opt to regard registers and stack together as a sin-
gle compound store. This essentially makes register allocation an advanced caching
technique for the top-most stack frame.

The reasoning is that even if a value might end up never touching the stack, every
allocated register has an associated “opportunity cost”:

• Register pressure might force other register values to get spilt to the stack

• Calls might clobber our register, so we have to save it back

Bottom line is that while it might be quite hard to pin down exactly, every data word
put into a register will often become a data word allocated on the stack. Where register
pressure becomes a performance problem, it is almost assured to do so via increased
stack allocation. Hence we have causation, and therefore can unite both influences
together using the “stack allocation” verb, represented by the abstract cost S.

46

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

3.5.4 Heap

In contrast to stack data, the life of heap objects is not bound directly to a certain
piece of code being executed. Instead, its function is to enable sharing of complex data
structures between loosely connected code pieces. As a result, even figuring out whether
or not a heap object can be discarded means running a garbage collection heap analysis
at program run-time. This pass will have to copy a significant amount of heap data,
which means that it will become more complex the more that we allocate but cannot
discard [Sansom and Peyton Jones, 1993].

That being said, the allocation of a heap object itself is very cheap [Appel, 1987].
All we need to do is increase the global heap pointer and write the header word and all
data into the freshly reserved heap region (see Section 3.5.9). Yet the implied cost due
to triggering a garbage collection still means that programs with a high heap allocation
quickly suffer in terms of performance. We will therefore assign an abstract cost unit
H for every word that gets allocated on the heap.

In addition to allocation we have to acknowledge that keeping a large heap around
is also a significant factor in slowing the program down. For example, even though
modern multiple-generation garbage collection will try to not walk the complete heap
too often, a large heap will still cause the average time needed for a garbage collection
to increase. More subtly, having a large heap makes it less likely for its contents to
fit into processor caches, causing general slowdowns due to reduced memory locality.
Therefore there is clearly a heap residency verb. However we will not formalise garbage
collection here, and will therefore not associate an abstract cost with it.

3.5.5 Constructors

Now we have covered the groundwork, so let us start looking at concrete expression
evaluation. We will always do this in a certain way: First we will have a look at how
Launchbury-style semantics encode operational meaning, followed by a more thorough
exploration of how GHC would implement these semantics for a real Haskell program.
Finally we will go back to the rule to insert the appropriate cost term and obtain a rule
for our performance model.

First up, we have constructor applications, which require just a simple rule:

Γ : C x1 x2... ⇓O(C x1 x2) Γ : C x1 x2...

Constructors are both expressions and values, and variables uniquely identify their
values, therefore we can simply return the expression as our return value.

On the other hand, the cost term O(C x1 x2) is still an unknown for now. To find
out what kinds of costs we have to expect, we have to consider this evaluation from

47

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

Stack Heap Static Code

Constructor, n = 0: C id

Constructor, n > 0: C (pars) id

Lambda: (live) eval

Thunk: (live) eval+upd

Figure 3.2: Heap Object Construction

the perspective of the compiler. This makes things a bit more involved: Disregarding
unboxed tuples or primitives, programs will refer to data structures using pointers, as
this reduces the amount of copying the program has to do when passing data around.
How we get there depends on the arity of the constructor. Consider for example the
nullary constructors of the Bool algebraic data type:

data Bool = True | F a l s e

Listing 3.40: Definition of Bool

As Haskell is not concerned with object identity, there is no need to ever have more
than one True or False instance per program. Therefore we simply need to statically
provide these closures, reducing the “construction” to simply returning a pointer to the
prepared memory location. The opportunity cost for holding a pre-allocated closure in
static memory can not be causally connected to the constructor application, and will
therefore be ignored6.

On the other hand, where no such short-cut is available we need to actually allocate
heap memory in order to hold our data words. In order to build a valid closure for a
constructor with arity n we will have to allocate and copy n+ 1 data words, as shown
in Figure 3.2. Remember from Section 3.5.4 that we use the verb H for the overhead of
allocating and copying a word of heap data. Furthermore, we have some constant costs
for the heap check and returning a value, which we will call C.

6Note that for types like Int or Char the number of constructors makes storage costs significant
enough that GHC in fact switches to “normal” allocation for all “rarely” used 0-arity constructors.

48

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

This yields us the abstract cost term:

O(C x1 x2...) = C + n×H

And even though we are not distinguishing between the 0-arity and the n-arity case
here, for our purposes this still gets the main message across: Performance problems
can either happen because too many constructor applications are evaluated (effect of C
terms dominate), or because they are allocating too much memory (effect of H terms
dominate). As usual, the actual cost behind these terms are not that interesting, as
long as we are reasonably sure that we have not overlooked a way in which constructor
applications can become expensive without triggering one or both of these scenarios.

3.5.6 Lambdas

Our next literal expression type is the lambda: an anonymous function that we can call
via application at a later point in program execution. Due to the design of the abstract
semantics, we can use the lambda expression as a value as well:

Γ : λy.e ⇓O(λy.e) Γ : λy.e

For a real program, things are a bit trickier. After all, a lambda value must contain
all information we need for resuming evaluation of the code from a completely different
context. We must especially take care of live variables. Recall that while optimising
the “tricky” factorial function in Listing 3.27 on page 37 we had the following code
fragment:

l e t x = I # n#

c = wgo ((+#) n# 1)
i n λ i → c (t im e s I n t x i)

Listing 3.41: Lambda with Live Variables

There was a good reason we tried to optimise this: The lambda expression has two live
non-global variables, c and x, which would both be out of scope once the lambda value
actually gets applied to a parameter. To evaluate the body meaningfully, we would
need a full closure that saves back both of these values in order to restore them later.

In general, constructing a closure for an expression e with lv(e) live variables there-
fore requires lv(e) + 1 words of heap space – a code pointer and the values from the
context (see Figure 3.2). If we again assign a fresh symbol L to stand for the constant
cost of the lambda’s evaluation we can therefore state:

O(λy.e) = L+ lv(e)×H

49

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

Stack Heap Code

Application:

(live)
(pars) (live)

eval

Thunk Evaluation:

(live)
(live)

eval

upd

Figure 3.3: Call Implementation

As with constructors, we see two distinct ways in which lambda expressions can cause
performance problems. Note however that in contrast to constructor arity, the number
of live variables is a performance factor that is quite easy to overlook. For example, the
above-mentioned potential problem with the factorial function is not obvious given the
original source code from Listing 3.25 on page 36.

3.5.7 Applications

Applications are the counterpart to lambdas, they come into play once the program
wants to call the closure with a given set of parameters:

Γ : e ⇓θf Γ′ : λy1.λy2....eb Γ′ : eb[xi/yi · · ·] ⇓θb Γ′′ : v
Γ : e x1 x2 · · · ⇓O(e x1 x2···)+θf+θb Γ′′ : v

This time we need to take a closer look at the abstract semantics. For an application
e x1 x2 · · · we first need to evaluate e into a closure of matching arity, which in our
notation is written as λy1.λy2....eb

7. We then bind the parameters for the lambda
body eb by substituting the parameter names by the variables from the application
(which stand for heap objects). Finally, we can perform the actual call by evaluating
the prepared body, passing all evaluation results through.

To summarise runtime costs, we need to account for the two nested evaluations θf
7Note that in contrast to Launchbury [1993] our application rule binds multiple parameters at the

same time. The sole purpose of this is to bring the semantics more in line with actual Haskell execution.

50

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

and θb plus the expenses for the actual call O(e x1 x2 · · ·). The main work for a call is
to re-arrange the context to accommodate the body’s evaluation: Parameters and live
variables have to be arranged to appear at predictable locations on the stack. Unless
we can derive the application to be a tail call, we also want to be able to return to our
old code position once the call is finished, so we need to push the new code pointer on
top of the stack (refer to Figure 3.3).

As established in Section 3.5.3, we have one unit of abstract cost S for allocating and
initialising a word on the stack. Additionally, we will assign A to the unique constant
costs of an application. Then we have the following expenses for calling a lambda with
arity n and m live variables:

Operation Cost
Pass parameters n× S
Restore live variables m× S
Push new code address S
Jump to code, Return A

Which gives us:
O(e x1 x2 · · ·) = A+ (1 + n+m)× S

So clearly calls can quickly become expensive in terms of stack usage. Remember the
optimised Core code of our first version of factorial in Listing 3.24: The recursive wgo-
calls allocated so much stack space that it caused a performance problem. Even more
insidiously, note that the cost can rise both due to the number of parameters passed as
well as due to live variables – still a tricky property to control, as explained in the last
section. We will explain a cheaper way to implement calls in Section 3.5.11.

3.5.8 Lets & Thunks

The purpose of the let expression is to bind a certain sub-expression to a name. This
allows its evaluation result to be shared. The abstract formulation looks like follows:

Γ, yi 7→ ei[yi/xi, ...], ... : e[yi/xi, ...] ⇓θ Γ′ : v
Γ : let {xi = ei, ...} in e ⇓O(let {xi=ei,...} in e)+θ Γ′ : v

Most of the rule is concerned with replacing original names xi by yi, which we assume
are fresh for our evaluation. This is required as without renaming the abstract heap
Γ might already contain xi bindings originating from an earlier evaluation of the same
let expression [Sestoft, 1997]. Apart from that, the purpose of the rule is simply to add
the bound expressions ei to the abstract heap, and proceed to evaluate the body e. The
resulting profile θ, abstract heap Γ′ as well as the return value v all get passed through

51

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

as the evaluation result of the let expression. However, we still have to determine the
let expression’s cost contribution O (let {xi = ei, ...} in e).

To determine the cost, we have to first realise that we actually have two cases here:
If a bound expression happens to be a constructor or lambda, the value added to the
abstract heap is actually already in normal form. Therefore the runtime equivalent is
to construct the proper evaluated values right away. As we established in Sections 3.5.5
to 3.5.6 on pages 47–49 this has the abstract costs:

O(x = C x1...) = C + n×H

O(x = λy.e) = L+m×H

with n the arity of the constructor or m the number of live variables respectively.
For non-literal expressions on the other hand, this is where lazy evaluation comes

in: Instead of mapping the variable to a value, the abstract semantics push the full
expression e itself. Similarly, a running Haskell program would construct a delayed
computation – a thunk. For the purpose of construction, this works exactly the same
as building a hypothetical 0-arity lambda closure. We allocate a new heap object that
carries a special code pointer as well as all live variables that we need to restore to
resume its computation. We therefore obtain for a non-literal e with m non-global live
variables:

O(x = e) = L+m×H

To put things together, we have to finally account for the fact that for each new variable
we will need to save a pointer in the local context. We will account for this using the
cost S per binding, which gives us:

O (let {xi = ei, ...} in e) =
∑
i

(
S +O(xi = ei)

)
So apart from the relatively minor cost of keeping the pointers around, most work for
the let expression comes from the number and nature of the heap objects.

3.5.9 Variables

As thunks behave a lot like 0-arity lambdas, we can understand executing variable
expressions as performing 0-arity applications. However, we want every thunk to be
executed at most once, which we achieve by updating the abstract heap:

Γ, x 7→ v : x ⇓Ov(x) Γ, x 7→ v : v
Γ : e ⇓θ Γ′ : v

Γ, x 7→ e : x ⇓Oe(x)+θ Γ′, x 7→ v : v

52

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

To summarise, if we find that the heap cell already contains a value, we can simply
return it without making any adjustments to the heap. However if the heap contains an
expression (a thunk), the rule evaluates it and writes the value back to prevent repeated
evaluations.

On the runtime side of things, there is an easy way to implement this rule: We
simply have variable evaluation call the heap object’s entry code. For a thunk this
will evaluate the body and arrange for updating the heap, meaning pushing an extra
stack frame of two words and perform the actual update once evaluation returns (see
Figure 3.3). On the other hand, values will have a dummy “id” entry code that simply
returns itself right away, as sketched in Figure 3.2 8. Therefore we get:

Ov(x) = V + S

Oe(x) = V + (3 + n)× S + U

with V standing for variable evaluation and U for the raw cost of updating a heap cell.

3.5.10 Case

To finish our discussion of operational semantics, we have only case expressions left.
Their purpose is to extract data from the heap cells built by constructor applications
according to Section 3.5.5. The operational semantics are as follows:

Γ : e ⇓θ2 Γ′ : Ci yj ... Γ′ : ei[yj/xj , ...] ⇓θ3 Γ′′ : v
Γ1 : case e of {Ci xj ...→ ei, ...} ⇓O(case ...)+θ2+θ3 Γ′′ : v

So we first evaluate the scrutinee expression e, then depending on the returned construc-
tor Ci choose the appropriate branch ei. In the second steps, we bind the constructor
fields yj to the desired variable names xj using substitution and finally proceed to
evaluate ei. All results get passed through as usual.

Note that again we have a duality with constructors, which is unsurprising from a
theoretical point of view. After all Church encoding would see constructors as lambdas
and case expressions as applications. For actual Haskell programs, we need to evaluate
the scrutinee and identify the constructor behind the pointer. Then we can proceed
with the appropriate branch, pushing constructor parameters on the stack as required.

Recognising a constructor is relatively straightforward, as we know from Section 3.5.4
that every heap object has a header word. Apart from the code, this header pointer
also gives us an info table which identifies the constructor type 9. The cost for choosing

8In fact GHC optimises this further by “tagging” pointers according to what they are known to
point to [Marlow et al., 2007]. However there is no guarantee that we can always skip evaluation of id,
so we only discuss this method here.

9As with thunks, this can often be detected directly from the pointer tag, saving one indirection

53

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

the right branch now depends on the number of branches we have: If we could derive
that there is only one possible branch, we have to do no extra work. On the other
hand, if there is more than one branch to choose from, we have to either use a branch
tree or a jump table to identify the right choice. The compiler will chose whatever
seems fastest for the task at hand, with the constant overhead of a jump table being
the default solution.

Binding n variables means pushing the appropriate number of stack words, which
yields us the sum:

O
(
case e of {Ci xj ...→ ei, ...}

)
= E + n× S

where again E stands for all constant costs for case expressions together.

3.5.11 Let-No-Escape

At this point we have covered all expression types of our abstract language. However,
there is still one interesting case left to cover: Remember that one of the more expensive
and unpredictable parts of constructing and calling a function closure was saving and
restoring the live variables. However, this is not always necessary. After all, the live
variables might still be in scope when the function body gets executed. Suppose our
code was shaped as follows:

let {f = λx. ...; ...}

in case ... of {C → f ...;D → f ...}

Assuming that these are the only two references to f , we know that we will have exactly
the same live variables at the application site as we had when the let expression was
executed. This means that there is actually no need to either save or restore live
variables: f can simply use the data that is already on the stack!

For GHC, there is a special optimisation pass at the end of Core generation that
detects such “let-no-escape” optimisation opportunities. The critical part is to prove
that no closure reference “escapes”, meaning that all calls to the function are contained
in the let body. This implies that the function application has strictly fewer live
variables than the application site, therefore making restoring live variables redundant.
In the end, this means not only that the function application can prepare the stack
rather quickly, but it can also short-cut the jump to the known function entry code.

This means that “let-no-escape” function applications actually involve no heap
access whatsoever, making them substantially faster than standard calls. In fact, this
optimisation is of tremendous importance for generating fast programs. To see why,

54

CHAPTER 3. HASKELL 3.5. PERFORMANCE MODEL

Γ : C x1 x2... ⇓C+n×H Γ : C x1 x2... (Con)

Γ : λy.e ⇓L+lv(e)×H Γ : λy.e (Lam)

Γ : e ⇓θf Γ′ : λy1.λy2....eb Γ′ : eb[xi/yi · · ·] ⇓θb Γ′′ : v
Γ : e x1 x2 · · · ⇓A+(1+n+lv(e))×S+θf+θb Γ′′ : v (App)

Γ, yi 7→ ei[yi/xi, ...], ... : e[yi/xi, ...] ⇓θ Γ′ : v
Γ : let {xi = ei, ...} in e ⇓∑(S+O(xi=ei))+θ Γ′ : v (Let)

Γ, x 7→ v : x ⇓V+S Γ, x 7→ v : v (Var1)

Γ : e ⇓θ Γ′ : v
Γ, x 7→ e : x ⇓V+(3+lv(e))×S+U+θ Γ′, x 7→ v : v (Var2)

Γ : e ⇓θ2 Γ′ : Ci yj ... Γ′ : ei[yj/xj , ...] ⇓θ3 Γ′′ : v
Γ1 : case e of {Ci xj ...→ ei, ...} ⇓E+ni×S+θ2+θ3 Γ′′ : v (Case)

Figure 3.4: Performance Model

take another look at the above code: All we do is evaluate the body of f for two different
values of x. This type of control flow appears quite often in functional programs: Quite
a bit of the ultimate performance of our factorial implementation was based on the fact
that the let-no-escape optimisation would apply to our wgo function from Listing 3.23
on page 35 forward. Furthermore, the case-of-case transformation we introduced in
Section 3.4.8 on page 40 will deliberately generate this type of code for join points.

For our purposes, this rises the question: Do we need to modify our performance
model in order to account for the let-no-escape transformation? Fortunately, this
transformation has virtually no overhead. This means that for the sake of argument,
we could only ever make absence of this transformation a verb. This however makes
no real sense for causal reasoning, which is why we can simply ignore this case for our
performance model.

3.5.12 Conclusion

This concludes our abstract performance considerations. Figure 3.4 shows a summary
of the rules we derived. This allows us to reason about real Haskell programs: Suppose
we take a Haskell program and evaluate the equivalent of its Core code with these rules.
Then we know that any possible performance-related effect of the program run would
be reflected in our abstract model by one or more abstract cost entities. This is exactly
what we want, as the next chapter will show how we can trace causality for these back
to their respective root causes.

55

3.5. PERFORMANCE MODEL CHAPTER 3. HASKELL

56

Chapter 4

Causality Analysis

“Subjected to the influence of so many gods, who both protect and threaten
them, the nations of antiquity would like to have advance notice of their
whims.”

— Asterix and the Soothsayer, René Goscinny & Albert Uderzo

The past chapter established the main poles of the profiling problem: The first one
is represented by all the possible causes of performance problems. For our purposes
this is the entirety of design decisions that went into development of a program, mostly
encoded as Haskell source code. On the opposing side, we have all the effects that we
want to track. As we have seen, our performance model already enumerates a good
number of distinct ways in which the program in question could end up being inefficient.
The main question for this chapter is going to be how well we can establish causality
between these two sides.

To do that we will systematically employ Lewis’ theory of causation [Lewis, 1973]
as introduced in Section 2.3 on page 13. As causality judgements critically depend
on our choice of closest world, this will not be a completely passive analysis. In fact,
we have to be very careful in how we make these choices, as it is quite easy to either
over- or under-estimate causality. Note that these two trappings are very different in
nature: As we explained back in Section 2.3.5, we expect our analysis to overestimate
causality all the time. The reason is that we will never be able to tell essential program
components from interchangeable ones. For example, there is simply no way that our
analysis could know whether usage of the multiplication operator was in fact required
in order to compute a factorial. Hence for a complete profile we will always have to
include it as a potential suspect.

On the other hand, underestimating causality would be a severe problem. The
reason lies in our methodology: In order to break down the task, we will reason about
the causes of intermediate events, and use transitivity to propagate them. This approach

57

4.1. INTRODUCTION CHAPTER 4. CAUSALITY ANALYSIS

relies on the fact that the causes for these intermediate events will get carried forward
correctly. If we miss an effect of one of these event, we might end up losing track of
arbitrarily many causal connections! Therefore our primary motivation throughout will
be to make it easy for us to track down every single effect – even if it means that we
are clearly overestimating causality.

This chapter has two parts: We will start by considering causal connections in
the absence of program transformations. To do that, Section 4.2 will translate the
performance model from the last chapter, and show how we can see it as generating a
network of events. This event interpretation will allow us to analyse causal dependencies.
Section 4.3 and Section 4.5 on page 80 will show how we can systematically map these
causal dependencies to term annotations. Furthermore, Section 3.5.4 on page 47 and
Section 4.6 on page 85 will explain how we need to change our viewpoint in order
to make causal reasoning about laziness and bindings intuitive. Section 4.7 will then
present the finished causality model and explain its properties and intuition.

In Section 4.8 on page 100 we will then formally reason about how code transforma-
tions rewrite the causal network given by these semantics. We will see that depending
on the type of transformation the effects on the profile can be anything from harmless
to fairly severe. However, we will also show that even in the worst case we can still
limit the damage to – occasionally rather extreme – cases of causality overestimation,
promising that we will never actually miss a cause that exists in the program run.

4.1 Introduction

The performance model we derived in the last chapter tells us what abstract costs
we would expect if we were to execute a given Core program. The analysis of this
will yield us causal connections, which as explained in Section 2.2 on page 8 is one
corner stone for abductive reasoning. Later in Chapter 5 we add estimates about actual
execution cost into the mix, so the user can properly gauge plausibility. For the moment
however, we will focus entirely on causality. Exactly which parts of the program played
a role in shaping a certain part of the profile? Which parts did not actually matter for
performance and can therefore be ignored?

We will answer these questions using systematic analysis of the rules formulated in
the last chapter. Again we have to account for the dynamic nature of program evaluation:
The causal context of a cost will critically depend on the concrete run-time control flow.
Building the desired cause terms therefore again involves following program execution.
Our approach will be the same as in the last section: By extending Launchbury’s
operational semantics, we will generate a causal description as a “side-product”.

58

CHAPTER 4. CAUSALITY ANALYSIS 4.2. EVENTS

t

W & W ′ W

W ′

?

Figure 4.1: Causality Reasoning: Past and Future

4.2 Events

Our goal is to ground our semantics in Lewis-style causality theory [Lewis, 1973] as
introduced in Section 2.3. To do that, we have to think about things in the same way
we would when trying to make sense of a car crash: What were the events that led up
to the situation in question, and how are they connected? Which ones were actually
essential, and which could be removed without actually making a difference?

When we formulated our cost semantics in Figure 3.4, we used nested rule matches
to abstractly describe evaluation. To make it more intuitive to think about this in
terms of causality, it is a good idea to think of this in terms of events 1. Consider for
example the constructor application rule:

Γ : C x1 x2... ⇓C+n×H Γ : C x1 x2...

We can deconstruct the process of applying this rule using three event types:

Event Description

Γ : e ⇓ A rule matches input heap pattern Γ and expression pattern e

⇓O A rule emits a unit of cost O

Γ′ : v A rule returns a new heap Γ′ and a value v.

Clearly we could deconstruct a whole abstract program execution using these events
and start reasoning about causation between them. However, we need to be careful.
After all, let us think exactly about what we are planning to do: For causal reasoning
we expect to depart the original worldW by introducing a single “miracle event”, which
brings us into a parallel universeW ′ where we can proceed to apply our rules in order to

1Our approach here is inspired by the work by Taylor [1993] on causality semantics.

59

4.2. EVENTS CHAPTER 4. CAUSALITY ANALYSIS

Γ : C x1 x2... ⇓ ⇓C ⇓n×H Γ : C x1 x2...

t

Figure 4.2: Event Decomposition of a Constructor Rule Match

derive the new “future”. For example, back when we introduced causality in Section 2.3
on page 13 this miracle event was a tree ceasing to exist, which led us to a situation
where the car crash existed in the original world W , but not in the alternate world W ′.
Therefore, we reasoned that these two events had a causal relationship.

However, what if we make our “miracle” that the car crash does not happen? Clearly,
the car passing through means that there cannot be a tree in W ′. So can we conclude
that the car crash is what causes the tree to exist? This type of reasoning is clearly
dangerous, as it can easily lead us to confusing causes with effects. To ensure consistency
of causal reasoning we therefore demand that our events have a temporal order [Lewis,
1979], which tells us in what direction we are “allowed” to look for causation. Figure 4.1
shows how we imagine this to work: Our worlds W and W ′ are only allowed to differ
in terms of events that come after the miracle event. This ensures that “past” events
can never become effects in our causality analysis.

Fortunately finding a suitable temporal ordering is rather straight-forward for events
arising from our operational semantics. After all, our underlying machine execution
model is sequential by nature. Therefore we would naturally assume that the left-hand
side match happens “before” any potential nested rule matches, the events of which
in turn happen “before” the return value gets produced. For example, evaluating a
constructor application would give us the event order shown in Figure 4.2: The rule
match event “Γ : C x1 x2... ⇓ ” followed by a number of subsequent “result” events.

4.2.1 Event Causes

Our goal is now to take the event network of a rule match and run causality analysis
on it. Our starting assumption will be that a judgement gets attempted, which will
generally cause a rule match, which in turn will give rise to events according to our event
decomposition of the rule. Note that the judgement getting attempted is not self-evident:
We might be looking at the top-most rule activation of some program evaluation, or we
might actually be in the middle of a recursive rule match. In either case we will simply
see the judgement getting attempted as axiomatic. We will especially assume that such
judgements adhere to the form introduced in Section 3.5.2 on page 43 2.

2Formally speaking, we declare worlds with other judgement/event forms as unlawful[Taylor, 1993].

60

CHAPTER 4. CAUSALITY ANALYSIS 4.2. EVENTS

CausesTerms

Expressions

Expressions’

Values

Costs

α

Figure 4.3: Maintaining Cause Links

So our basic scenario is an attempt to obtain a judgement of the form Γ : e ⇓θ Γ′ : v.
The concrete rule match will now directly depend on what kind of expression type e is.
The cause for this is not immediately known to us, as the answer depends on the history
of the passed expression. For example, if our program was simply the desugaring of:

l e t x1 = . . . ; x2 = . . . ; i n C x1 x2
Listing 4.1: Constructor Source

we would say that the source code of the let expression body is what caused us to
encounter a constructor here.

On the other hand, we will eventually have to deal with code transformations, which
will make the story more complicated. It is important that we address this particular
problem generally, as we clearly do not want the complexity of transformations to
eventually bleed into our treatment of, say, the constructor application rule. It should
make no difference to our causality semantics whether code transformations touched
the expressions or not. Instead, our causality semantics should be able to see the
causal history simply as a term annotation. Then we can clearly describe what causes
a constructor rule match: The fact that a judgement was attempted together with the
cause term that was annotated on the constructor expression.

In fact, we will apply this idea generally, as shown in Figure 4.3: Using knowledge
about a rule’s inner workings, we can derive new annotations for the produced terms
using causal transitivity as explained in Section 2.3.5 on page 18. In fact, we will
represent the whole causal process using cause-annotated terms: Code transformations
will work entirely on cause-annotated expressions, which evaluation consumes in order
to produce similarly annotated value and cost terms. In the end, we will have costs
annotated with their causal history, which is exactly what we want for performance
analysis.

61

4.2. EVENTS CHAPTER 4. CAUSALITY ANALYSIS

4.2.2 Cause Annotations

An extension to the notation from Section 3.5.2 is in order. The new protagonist for
this section will be the cause term, corresponding to the profiling-related reasons that
a certain event happens for our term. In the end, we should be able to look at the cost
term annotations of the top-most judgement and obtain a break-down of the reasons
for the program’s resource usage.

α – We will use lower-case letters from the beginning of the Greek alphabet to refer
to cause terms. We will leave their definition abstract, but think of them as
standing for properties or parts of the original program source code as explained
in Section 2.3.2.

However we assume that cause terms can be composed using the logical “and”
operator ∧. We will make use of a short-hand where it is unambiguous:

α ∧ β = αβ

As usual the order in which causes are combined does not matter, meaning the ∧
operator should be both commutative and associative.

Cause terms are used to annotate the previously defined term types. To be concrete,
we will have the following types of annotated terms:

〈α〉e = e – cause-annotated expression
〈α〉v = v – cause-annotated value
〈α〉O = O – cause-annotated cost

with an underlined symbol such as e standing for both the term as well as its annotation.
In either case, the annotated term refers to a cause for the expression, value or cost
having its present form in context of the event we want to associate it with.

So for example assume that the constructor rule match events shown in Figure 4.2
were the result of matching on the annotated expression term 〈α〉C x1 x2.... Then α
stands for the cause of the expression actually being C x1 x2.... The initial match event
depends causally on this fact, because if we counter-factually assume a different value
we would presumably get a different match event, Put generally, let us say we have an
event E that successfully matches an annotated term variable such as 〈α〉e. Then we
should have:

¬α �→ ¬E

Which, again, means that in an alternate world W ′ with α false we have to assume that
e changes and therefore E does not happen.

62

CHAPTER 4. CAUSALITY ANALYSIS 4.2. EVENTS

4.2.3 Annotated Judgements

Changing our term definitions to include annotations means that we have to adjust
evaluation as well. For starters, heaps Γ now store annotated expressions and values,
and profiles θ become more truthful to their name by saving not only the costs, but
their causes as well:

Γ ::= Γ, x 7→ v

| Γ, x 7→ e

| {}
θ ::= θ1 + θ2 | O | ∅

If we assemble all these changes together, we now get the new judgement form:

Γ : e ⇓θ Γ′ : v

As explained in Section 4.2.1 we outlaw judgements that do not adhere to this form, so
every single “moving part” of the judgement now carries an annotation.

Similarly, we will not explicitly track the cause for the judgement request, even
though we could theoretically express it using another annotation:

〈δ〉
[
Γ : e ⇓θ Γ′ : v

]
However there is no need for that. We know that the context term will always tell
us that we are either in the top-level judgement or within some nested rule matches.
In either case, the entity requesting the judgement has more information about the
context than we have. Therefore every rule will just regard the match getting attempted
as a precondition and rely on the caller to keep this is mind when interpreting and
propagating cause annotations. For example, if a rule requests a judgement conditional
on a β, it will have to remember to annotate β on everything that depends on the result
of this nested rule match.

Implementing such “context changes” will regularly involve putting extra annota-
tions on existing terms. To keep rules compact, we will use the following short-hands
for adding new annotations to already-annotated terms:

〈α〉(θ1 + θ2) = 〈α〉θ1 + 〈α〉θ2

〈α〉O = 〈α〉〈β〉O = 〈αβ〉O

〈α〉∅ = ∅

as well as equivalently 〈α〉〈β〉e = 〈αβ〉e and 〈α〉〈β〉v = 〈αβ〉v.

63

4.3. DERIVING ANNOTATIONS CHAPTER 4. CAUSALITY ANALYSIS

Γ : C x1 x2... ⇓ ⇓C ⇓n×H Γ : C x1 x2...

Figure 4.4: Event Decomposition of a Constructor Rule Match (Repeated)

4.3 Deriving Annotations

Let us return to the constructor application rule. In Figure 4.4 we have repeated the
events as they happened in the original world W : We found a constructor application,
and returned a bunch of costs as well as a value. So the causal process we are looking
at has one “input” event that gets triggered from outside – the match – and a number
of “output” events that might in turn trigger other events. Note that we even draw
them differently depending on their role: Input events will have a shape that suggests
an “incoming” arrow, while the shape of output events shows a matching “outgoing”
arrow. This should make it clear that we think of them as two sides of the same coin:
The output events of one rule will most likely become the input events of another.

For causal reasoning this distinction decides the annotation responsibility: The
terms associated with input events are assumed to already carry valid annotations,
while we have to do a causality analysis on the rule in order to decide how to annotate
the terms of the output events. To get us started, we know by assumption that we always
have some sort of input event of the form “Γ : e ⇓ ”. For a constructor application,
we would specifically handle the case that e = 〈α〉C x1 x2..., which means that α is the
cause for the concrete input event shown on the left in Figure 4.4. This is enough to get
us started with unravelling the causal processes “inside” the rule application. We can
now ask: Which of the other events would change or disappear in a world W ′ where
the initial match event did not happen? To answer this, we are not allowed to assume
that the initial match event simply does not happen in W ′, so the only way to change
the course of events is to change e so that it does not match C x1 x2....

Let us use the recipe from Section 2.3.4 on page 17 and simply use the hole term
⊥ as a drop-in replacement. Our miracle is therefore that instead of the match event
“Γ : C x1 x2... ⇓ ” we somehow find ourselves with the pseudo-event “Γ : ⊥ ⇓ ”3.
As no rule is allowed to match this term, the W ′ judgement would effectively look as
follows:

Γ : ⊥ ⇓⊥ Γ : ⊥

Note that while strictly speaking we still have a match event, producing ⊥ is effectively
equivalent to no event happening at all. After all, no other rule is allowed to consume

3We assume that no matter what situation, we will always be able to name a current heap.

64

CHAPTER 4. CAUSALITY ANALYSIS 4.3. DERIVING ANNOTATIONS

α Γ : C x1 x2... ⇓ ⇓C ⇓n×H Γ : C x1 x2...

? ? ? ?

Figure 4.5: Causality Relations for a Constructor Rule Match

it, so no further events will get triggered according to this viewpoint. In the real world,
our program would probably either freeze or crash outright. In the end, we can say with
confidence that a failed match in the alternate world W ′ would mean that all result
events vanish as well.

This means that we have demonstrated a causal connection! Rather unsurprisingly,
emitting results does indeed depend on the rule match. Figure 4.5 summarises the
causality network as we now see it: In context of our judgement the match is caused
by the parameterised cause α. From there the match causes all return term events to
happen. We can only assume that these events will then in turn spawn other events in
other parts of the program evaluation. For example, the fact that we returned a certain
constructor value might well become the reason we take a certain branch later when
evaluating a case expression.

Consequently, we want to put an annotation on the returned terms to record what
we derived about their causal history. For our simple example, it is clear that all three
terms depend on α by transitivity over the match event. Formulated as an annotated
evaluation rule, this yields us:

Γ : 〈α〉C x1 x2... ⇓〈α〉C+n×〈α〉H Γ : 〈α〉C x1 x2...

4.3.1 Variables

Studying the constructor rule should have given us a general idea of how causality
analysis works. Let us now consider the slightly more complicated variable evaluation
rule from Section 3.5.9 on page 52, for the case that we need to evaluate a thunk:

Γ : e ⇓θ Γ′ : v
Γ, x 7→ e : x ⇓V+(3+lv(e))×S+U+θ Γ′, x 7→ v : v

So when evaluating a variable expression that refers to a heap slot that is not in weak
head normal form, we evaluate the associated expression and update the heap slot
before returning the result value.

65

4.3. DERIVING ANNOTATIONS CHAPTER 4. CAUSALITY ANALYSIS

Γ, x 7→ e : x ⇓V ⇓···×S ⇓θ ⇓U Γ′, x 7→ v : v

Γ : e ⇓ ⇓θ Γ′ : v (nested)

(top)

Figure 4.6: Ordered Event Decomposition of a Variable Rule Match

As shown in Figure 4.6 we can decompose a match of this rule into 9 distinct events.
Like before the match is an input event triggered from outside, and we have a number
of output events corresponding to emitted costs as well as the returned terms. However
this time around we actually have a nested rule match due to the need to evaluate
the expression e. This nesting flips around the responsibilities from our point of view:
Initiating the nested rule match becomes an output event, and all costs and results turn
into inputs to the rule’s causal process. As depicted in Figure 4.6, we end up with 3
input events and 6 output events.

4.3.2 Local Miracles

We already know from Section 4.3 how to handle a mismatch on the initial match event.
But this time around this is not our only input event, as the nested rule match returns
costs θ and a result value v back to us. What is more, in this case the rule makes no
actual “control flow” decisions based on those values. All we do is pass these terms
through, so does this simplify our treatment?

Let us again do an alternate world thought experiment. Consider a scenario W ′

where instead of the full costs θ we end up generating a subset θ′ with exactly one cost
replaced by ⊥. In an alternate world implied by this change, we can then judge:

Γ : e ⇓
θ′

Γ′ : v

Γ, x 7→ e : x ⇓V+(3+lv(e))×S+U+ θ′
Γ′, x 7→ v : v

The difference might be hard to spot without the highlights, and for good reason: The
variable rule makes no actual assumptions about the contents of the profile, therefore it
applies just as it did in the original world W . The only difference is that now we pass
through θ′ instead of θ! As it turns out, this time around removing cost has little actual
impact on the program evaluation process. We conclude that for every cost event that
we receive from the nested judgement we are going to re-emit exactly an equivalent cost
event, but nothing else.

66

CHAPTER 4. CAUSALITY ANALYSIS 4.3. DERIVING ANNOTATIONS

It is not hard to see that the same applies to the value v, both in its function as a
return value and as the new term to be associated with x on the heap. Just suppose a
world W ′′ where we get a ⊥ result. Again the rule will match as before, resulting in a
Γ′, x 7→ ⊥ : ⊥ right-hand side. Therefore the result value causes exactly the heap cell
and the result value to change.

Consider what this means for annotations: We know that the term annotations
names the cause for the exact same terms to re-appear in the output events. Therefore
these terms need to carry the same annotations (at minimum). Or put another way:
Where the term does not matter, we can simply copy the annotation along with it.

4.3.3 Nested Annotations

If we look at the variable rule again, we see that costs and the value are not the only
term that gets passed through. After all, at the start of the rule match we extract
the expression e from the heap and pass it through to the nested rule match. As we
know, expressions are actually defined recursively, and therefore can contain further sub-
expressions. It is quite likely that different parts of the expression might not originate
from exactly the same source code, and we could therefore like to associate different
cause terms with them. We have just learnt that carrying around such extra annotations
does not have to mean extra effort on our side – so can we introduce additional ones
here without introducing too much additional complexity?

When we defined annotations in Section 4.2.3 on page 63 we were still working on
the back of the original expression definition from back in Section 3.5.2 on page 43. For
nested annotations we need to revise this a bit further. We will now use the following
syntax to refer to (deeply) annotated values and expressions respectively:

v ::= 〈α〉C 〈β1〉x1 〈β2〉x2...

| 〈α〉λy.e

| ⊥

e ::= v

| 〈α〉e 〈β〉x

| 〈α〉x

| 〈α〉let {x1 = e1, x2 = e2, . . . } in e

| 〈α〉case e of {C x1 x2...→ e1; D y1 y2...→ e2; . . . }

As before we see v and e as short-hands for annotated terms, which can now contain
entire trees of cause-annotated sub-terms. Especially note that we have put annotations
on variables for both constructor as well as the function applications. This will come
in useful later when we consider let expressions in Section 4.6.2 on page 88.

67

4.3. DERIVING ANNOTATIONS CHAPTER 4. CAUSALITY ANALYSIS

4.3.4 Nested Events

The nested annotations represent something fundamentally new for our event model.
After all, introducing the events underlying our semantics in Section 4.2 on page 59 we
said that matching a whole expression e – presumably including all its sub-expressions
– only took one event. Pulling out just the part of the causal network where the initial
rule match of the variable rule causes thunk evaluation to start, we would have thought
of it as follows:

α Γ, x 7→ e : x Γ : e ⇓

Figure 4.7: Flat Events

Yet the whole point of annotations is that they tell us about the causes of underlying
events. Therefore in adding in new annotations we also need new events to anchor them
to, making the full causal story a good deal more complicated. For example instead of
having only one initial match event as pictured above, we now have a decomposition
where the “main event” of the rule match actually is accompanied by a number of
“nested events” for all involved sub-terms. So suppose that the initial match was on the
term “Γ, x 7→ 〈β〉e : 〈α〉x”, then we would have the following event network:

β

α Γ, x 7→ : x Γ : ⇓

e e?

Figure 4.8: Nested Events

The new “e” event on the left represents the (sub-)event that the initial match happened
with that exact value of e. The cause for this is β as indicated by the annotation. Note
that these new events are a bit different than the events we considered so far. For
example, we want such nesting events to only ever exist in the context of a “main” event
explaining where the value in question actually comes into play. We would furthermore
expect causal dependencies on them to always imply causal involvement of the “parent”
event.

To build some intuition let us briefly consider a real-world parallel: We can view
the original match Γ, x 7→ e : x as being an “envelope” for the contained expression e.
Just as a filled envelope is a letter without regard for its concrete contents, our match
events happens regardless of the actual value of e. This means that it clearly makes
sense to consider the causes for container and contents separately. After all, receiving
an envelope might have a lot to do with the workings of the postal service, whereas
the contents might be the result of an involved word smithing process at a far-away

68

CHAPTER 4. CAUSALITY ANALYSIS 4.3. DERIVING ANNOTATIONS

location. On the other hand, we can not fully separate the two processes either. At
minimum we would expect that by receiving the envelope, we would automatically
come into possession of the contents as well. However this distinction is still useful, as
depending on the causal process in question it can depend on either or both parts of
the decomposed event.

In our case, the downstream event is “Γ : e ⇓ ”. This event takes over the nested
annotated expression, so we accompanied it with an equivalent “e” sub-event as well in
Figure 4.8. In real life, this new event might be taking the letter in our hands in order
to read it, which can still be decomposed into the distinct events of “holding something
in your hands” and “that ‘something’ is a letter”. We would probably expect the letter
in our hand to depend exactly on what was found in the envelope. We can check this
using another closest-world thought experiment: What would happen if e was a ⊥ term,
or our “letter” was simply empty?

α Γ, x 7→ ⊥ : x Γ : ⊥ ⇓

Figure 4.9: Alternate World

The answer is that in the alternate world we would still take it in our hand, because
beforehand we could not know that it was empty. Similarly, the rule would still
match and simply pass on the hole term. We conclude by causality transitivity that
if we decompose the output event into its components, the event corresponding to the
expression term is also caused by the annotation of e, which is β as shown in Figure 4.8.

But let us not forget about the “nesting” part: Just as we decomposed the match
event by pulling out the annotated expression, we also ought to separate out all nested
sub-expressions contained within e. For example let us suppose that the expression was
a constructor application. Then we would have the following full causality graph:

β

α Γ, x 7→ : x Γ : ⇓

C ...

... ...

C ...

... ...

Figure 4.10: Deeply Nested Events

Note the new events corresponding to the annotated variables of the constructor appli-
cation. Concerning causal connections we can easily repeat the process from above on
any level to see that the “obvious” approach is, in fact, the correct one: Whenever a
rule just passes through a term without making any assumptions about its contents,
we are allowed to just “copy” all nested cause annotations along with it.

69

4.3. DERIVING ANNOTATIONS CHAPTER 4. CAUSALITY ANALYSIS

In order to save space in event diagrams, we will notate this as follows:

α Γ, x 7→ e : x Γ : e ⇓

Figure 4.11: Deeply Nested Events Notation

Formally this means that we implicitly assume the existence of sub-events corresponding
to all nested annotated terms. Furthermore, where there is a causal dependency between
two events mentioning the same annotations as shown above, the two implicit event
trees should be seen as connected at every node.

Finally note once more that this only applies where a term simply gets passed
through. Once we have an event that actually depends both on the contents as well as
the container this forces us to “merge” the causes. In our real-world example, actually
reading a letter sent by post depends on both the letter as well as the contents at the
same time. For our cost semantics, this might be matching the constructor application
rule:

β

α Γ, x 7→ : x Γ : ⇓ Γ : C ⇓

C ...

... ...

C ...

...

Figure 4.12: Depending on Nested Events

Note that there is a subtle difference between the events in the last two columns: While
the first event represents the evaluation of an arbitrary expression, which happens to
be a constructor application, the event on the right is the event of matching exactly a
constructor application.

4.3.5 Variable Rule

Let us recapitulate what we learned about the variable rule up to this point. We know
that analogous to Section 4.3, all events depend on matching a variable expression in
the first place – if the event vanishes, so do all other events that come after it. On the
other hand we know that e, θ and v get passed through no matter their value, therefore
the input events that bind them cause exactly the output events that use them. This
especially applies to nested events corresponding to annotated sub-terms.

Figure 4.13 shows the causal diagram with all the mentioned connections. For
illustration we have included one level of nested events corresponding to the values of
e and v. Note that the e expression has further nested annotations, therefore there

70

CHAPTER 4. CAUSALITY ANALYSIS 4.3. DERIVING ANNOTATIONS

Γ : e ⇓ · · · ⇓θ Γ′ : v

β Γ, x 7→ : x

e

⇓V ⇓···×S ⇓θ ⇓U Γ′, x 7→ : v

v

Figure 4.13: Causal Dependencies for a Variable Rule Match

are still more nested events here that we do not show. However, it is not hard to
convince ourselves that we have all causal connections covered: All three input events
are connected to exactly the appropriate output events as outlined above, with nested
events following along as required.

Let us now derive annotations. Note that we have very few annotations to choose
from: We have identified e, θ and v as getting passed through, which means that we
do not need to reason explicitly about their annotations. Therefore the only half-way
interesting cause term here is the match cause β, which needs to be annotated on all
output terms. This yields us the following annotated rule:

Γ : e ⇓θ Γ′ : v
Γ, x 7→ e : 〈β〉x ⇓〈β〉V+(3+lv(e))×〈β〉S+〈β〉U+〈β〉θ Γ′, x 7→ v : 〈β〉v

At this point it should not be too hard to see how this rule corresponds to the causal
network from Figure 4.13. However there are still two notable subtleties here. Let us
tackle the easy on first: We are adding an β annotation on θ as well as the return event.
Strictly speaking we would expect the output events of the nested rule match to already
be caused by our variable match. After all, the nested rule would have had no chance
to produce an output event if we had not passed it an expression to evaluate in the first
place! Would this mean by transitivity that the θ cost input event is already caused by
β, making the annotation redundant?

While this is a completely valid point, this was exactly what we were talking about
earlier in Section 4.2.1: For causal reasoning the judgement attempt is a precondition,
therefore their cause is not reflected in annotations. We can think of this in terms of
scopes: Our nested rule match will only reason causally within its own scope (shown
as a dotted rectangle) and expect the outer rule application to fill in the appropriate
cause for the call on the return path. This is what we are doing when we put β on the
returned cost: We see terms leaving the scope, and therefore annotate it with what we
see as causing execution to enter the scope in the first place. This works naturally with
our causal semantics rule – we just need to put an annotation on everything we return
no matter where it comes from originally.

71

4.4. HEAP CHAPTER 4. CAUSALITY ANALYSIS

4.4 Heap

However, there is a much more unpleasant issue with what we have not annotated in
the rule from the last section. Have a close look at the returned heap: We have not
added a β annotation on the value v when we put it back on the heap. In Figure 4.13
we also neglected to connect the nested v event on the right-hand side with the variable
expression match event and therefore β. What is more, we also pass the heap Γ through
without modifying any annotations. Are we sure that all this is the right thing to do?

At this point it should have become a reflex to consult a Lewis-style closest-world
thought experiment. If the match did not happen, what heap would we expect to see?
Comparing the answer against the original world should normally guide us to the effects
we are looking for with respect to the cause β. However, this time this tried-and-true
recipe leads us into big trouble. Consider that according to our rule the new heap is
Γ′, x 7→ v, which means that we propagate any heap changes by the nested rule, as well
as adding our own update. The easiest alternate world might now be:

Γ : ⊥ ⇓⊥ {} : ⊥

This would have us conclude that every single surviving heap cell is direct effect of us
applying the rule. This is clearly going overboard, as it is pretty clear that the “default”
behaviour for a rule is to not touch the heap at all.

Therefore we might propose:

Γ : ⊥ ⇓⊥ Γ : ⊥

Which means that we reduce the effects to all heap changes that happened during the
rule match. However, this especially includes every single thunk update that happened
in the meantime. If we took this viewpoint systematically, this would mean that a
thunk update would receive an annotation update from every single active rule match.
This is clearly not in the spirit of the operational semantics – the whole point of lazy
evaluation is that the location of thunk evaluation does not matter!

4.4.1 Laziness

Remember our goal with putting annotations on terms: Our intention is to track what
effects their respective values will have. Normally we have to assume that any change
in a term can have arbitrarily complex consequences down the line due to transitivity.
Yet for heap cells we actually happen to know that they only get updated in a very
specific manner. Namely, thunks only get replaced exactly by their result value, which
will be the same no matter at what point we decide to perform the evaluation.

72

CHAPTER 4. CAUSALITY ANALYSIS 4.4. HEAP

At this point we have run into the transitivity issue introduced in Section 2.3.5 on
page 18: By being too greedy about identifying our effects we end up overestimating
them. We should not ask whether having Γ′, x 7→ v constitutes a heap change, but
whether the update ultimately causes a change in the program’s behaviour. If our
intuition is correct, this viewpoint will yield us much more sensible results.

Let us then consider a somewhat different thought experiment. Imagine that in a
worldW ′ we successfully matched the variable rule, but this time miraculously neglected
to perform a heap update:

Γ0 : e ⇓θ Γ1 : v
Γ0, x 7→ e : x ⇓V+(3+lv(e))×S+U+θ Γ1, x 7→ e : v

How would things differ from the events in our original world? Where should we look
for the effects? Fortunately, we can easily isolate where the first effects will appear:
Of all rules from our semantics in Figure 3.4 on page 55, the (Var) rules are the only
ones to ever read a heap cell. Furthermore, the (Let) rule is careful to never overwrite
existing heap cells by using fresh names. We can conclude that the evaluation inW ′ will
remain virtually the same until exactly the point where the expression x gets evaluated
the next time. Unfortunately, this re-evaluation might then have further side-effects on
program state 4. After all, repeated evaluation might spawn new thunks, which might
in turn cause even more repeated evaluations!

4.4.2 Set-Up

Let us prove that if we miraculously forget heap updates like this, it will have no
“material” effect on program execution. This property would absolve us from putting
an annotation on e in the above example, as well as any other updated heap cell on
Γ1. So what would such an effect look like? As per Lewis, we are looking for changes
in the alternate world W ′. More specifically, we want events that happen in W but
do not happen in our alternate world W ′. It is important to note that do not care
about additional events in W ′, as for performance analysis we are only interested in
events that happen in W . In the nomenclature of Taylor [1993], we only track positive
causation. It is a good idea to keep this in mind, as duplicated thunk evaluations are
going to generate quite a few extra events in W ′.

Furthermore, even events that exist in both W and W ′ will not look exactly the
same: After all, we might evaluate more (Let) expressions in W ′, which means that
we will also see more names freshly generated. And while we expect these names to
refer to heap cells that have an equivalent in W , this still forces us to start reasoning in
terms of equivalence. Let us assume that we have a partial function f mapping variable

4As Marlow and Peyton Jones [2011] remark, laziness ironically causes plentiful side-effects.

73

4.4. HEAP CHAPTER 4. CAUSALITY ANALYSIS

W

(Var2)

eval (Var1)

W ′

(Var2)

eval (Var2)

repeat

[Part 1]

≡f

≡f

[Part 2]

Figure 4.14: Laziness Transparency Proof Overview

names from W to either the name of their clone in W ′ or ⊥ otherwise. Then we define
equivalence on expressions as follows:

x ≡f x′ where x = x′ or f(x) = x′

C x1... ≡f C x′1... where x1 ≡f x′1, ...
λy.e ≡f λy.e′ where e ≡f e′

e x ≡f e′ x′ where e ≡f e′ and x ≡f x′

let {xi = ei, . . . } in e ≡f let {xi = e′i, . . . } in e′

where ei ≡f e′i, e ≡f e′, ...
case e of {C xij ...→ ei; . . . } ≡f case e′ of {C xij ...→ e′i; . . . }

where e ≡f e′, ei ≡f e′i, ...

and equivalence on heaps along the same lines:

Γ, x 7→ e ≡f Γ′, x 7→ e′ where Γ ≡f Γ′, e ≡f e′ and f(x) 6∈ Γ
Γ, x 7→ e ≡f Γ′, x 7→ e′, f(x) 7→ e′′ where Γ ≡f Γ′

and
{

e ≡f e′ or e ≡f e′′ if e whnf
e ≡f e′ and e ≡f e′′ otherwise

{} ≡f {}

Take note how we treat duplicated heap cells for the W ′ heap: Neither copy is allowed
to be further evaluated than the original, and if the original world sees the expression
e in weak normal form, at least one of the copies must be evaluated as well.

74

CHAPTER 4. CAUSALITY ANALYSIS 4.4. HEAP

As shown in Figure 4.14, our proof will consist of two parts: First we need to show
that until we evaluate one of the “duplicated” variables from f , evaluation inW andW ′

will proceed in lock-step: All events that happened in W should find their equivalent
in W ′. However once we hit one of the duplicated variables, our task changes: At
this point the original world W will simply return the result, whereas W ′ repeats the
evaluation. As there are no equivalent events inW we do not care about how duplicated
evaluation in W ′ looks like, but we need to prove that we arrive at an equivalent return
value and heap in order to resume synchronised evaluation.

4.4.3 Proof Part 1

Due to the nature of reasoning about evaluation using nested rule matches, both parts
of the proof will take the form of an induction over the rule match tree. Assume that
we have a mapping f and two rule matches in W and W ′ respectively:

Γa : e ⇓θ Γb : v and Γ′a : e′ ⇓θ′ Γ′b : v′

with Γa ≡f Γ′a and e ≡f e′. Our induction assumption is that we will be able to build
a new refined mapping g with g(x) = f(x) where f(x) 6= ⊥ such that Γb ≡g Γ′b and
v ≡g v′. Note that this implies Γa ≡g Γ′a and e ≡g e′. We can prove this trivially if e
happens to be a constructor or lambda expression: We know due to e ≡f e′ that we
must find an equivalent expression in W ′, and the structure of the rules allows us to
simply set the new mapping g = f to obtain Γb ≡g Γ′b and v ≡g v′.

However things gets slightly more complicated for other rules. Suppose we find an
application expression in W :

Γa : e ⇓θf Γb : λy1.λy2....eb Γb : eb[xi/yi · · ·] ⇓θb Γc : v
Γa : e x1 x2 · · · ⇓...+θf+θb Γc : v

Again we know that in W ′ we must also have encountered an equivalent application
expression, and that Γa ≡f Γ′a and especially e ≡f e′. Therefore it follows by induction
that we can obtain a new mapping g from the nested rule match, with Γb ≡g Γ′b
and λy1.λy2....eb ≡g λy1.λy2....e

′
b. As this implies eb ≡g e′b and we know that g is

constructed such that xi ≡g x′i it follows that eb[xi/yi] ≡g e′b[x′i/yi] 5. Using our
induction assumption on the second nested rule match now yields us a final mapping h,
which must satisfy Γc ≡h Γ′c and v ≡h v′, which is exactly what we need to be finished
with this case.

5Note that this is only true if the substitution never changes a name bound by a lambda, let
expression or case expression. This has been proven by Sestoft [1997, section 2.5].

75

4.4. HEAP CHAPTER 4. CAUSALITY ANALYSIS

For let expressions we would have the following W judgement:

Γa, yi 7→ ei[yi/xi, ...], ... : e[yi/xi, ...] ⇓θl Γb : v
Γa : let {xi = ei, ...} in e ⇓...+θl Γb : v

As before we will have an equivalent W ′ expression of the form let {xi = e′i, ...} in e′.
With no loss of generality we assume that in both W and W ′ we choose the same fresh
variables yi to refer to the allocated heap cells. As we also know that the xi will be the
same in W and W ′ it follows trivially that e[yi/xi] ≡f e′[yi/xi]. As this extends to the
heap cells we also have Γa, yi 7→ ei[yi/xi, ...], ... ≡f Γ′a, yi 7→ e′i[yi/xi, ...], ..., at which
point our hypothesis follows from the induction assumption.

Up to this point tackling rules has been pretty mechanical, as we have of course
deliberately defined equivalence so terms can only differ in variable names. The most
interesting part of this proof is actually, again, the variable evaluation rule. Let us
suppose we find the variable in question unevaluated in W . This would prompt us to
match the (Var2) rule:

Γa : e ⇓θ Γb : v
Γa, x 7→ e : x ⇓...+θ Γb, x 7→ v : v

As before we must also encounter a variable expression in the alternate world. However,
due to duplication we can find two distinct concrete variables x′ in W ′: The choice is
between x′ = x and x′ = f(x). However, it follows directly from Γa ≡f Γ′a that neither
can be evaluated on Γ′a. To be specific, we know that we will find an unevaluated thunk
e′ with e ≡f e′. Therefore we can again conclude by induction that the nested rule
matches will yield us a new mapping g complete with new heaps Γb ≡g Γ′b and result
v ≡g v′. If we recall our heap equivalence definition, it is also not hard to convince
ourselves that both Γb, x 7→ v ≡g Γ′b, x 7→ v′ as well as Γb, x 7→ v ≡g Γ′b, f(x) 7→ v′ holds,
therefore we have heap equivalence no matter whether we have x′ = x or x′ = f(x).

Things start to diverge a bit more if the heap cell happens to be evaluated in W .
This would prompt us to match the (Var1) rule:

Γ, x 7→ v : x ⇓V+S Γ, x 7→ v : v

It is easy to prove that the desired properties hold if we assume that the variable in
question is also evaluated in W ′. However this is not guaranteed, as the prior (Var2)
rule match only ever updates one of x or f(x) in W ′. This means that the x′ heap cell
might turn out to not be evaluated, which matches (Var2) in W ′:

Γ′a : e′ ⇓θ′ Γ′b : v′

Γ′a, x′ 7→ e′ : x′ ⇓...+θ′ Γ′b, x′ 7→ v′ : v′

76

CHAPTER 4. CAUSALITY ANALYSIS 4.4. HEAP

4.4.4 Proof Part 2

This is the interesting spot: Matching a different rule means that the histories ofW and
W ′ are going to differ at this point. Our goal is to show that we can restore lock-step
evaluation between the two worlds in a way that satisfies our notion of equivalence.
First note that we know at this point that world W must have seen a (Var2) rule match
on x in the past. This is because we know that only let expressions add new bindings
to heap, so even if it added a binding in normal form to the heap, it would be in normal
form in both W and W ′, making it impossible for the (Var2) to ever match it. Hence
the heap cell must have seen an update at some point W ∗ in the past:

Γ∗a : e∗ ⇓θ∗ Γ∗b : v
Γ∗a, x 7→ e : x ⇓...+θ∗ Γ∗b , x 7→ v : v

Even though this event might have happened at an arbitrary point in the past, there are
a few things we know: The variable matched must also have been x, and the evaluation
result must have been v, as no heap cell ever gets updated twice. A little less obvious
is that we also have e∗ ≡f e′. This is due to fact that the only way an unevaluated e∗

expression could exist on the heap of W is due to a let expression binding it. At that
point we know that W ′ should bind x as well, so equivalence is guaranteed for x′ = x.
And as we will see, we will later guarantee equivalence for when we bind f(x) as well.

Let us then get back to the duplicated thunk evaluation of e′. As mentioned earlier,
this evaluation might spawn additional thunks, which we want to associate with the
“original” bindings in W using our mapping f . We do this by – again – comparing the
rule match tree ofW ′ against what happened inW . Only this time we actually compare
against a different part of W : The point of its history where it originally evaluated x.
We will call this part W ∗ from now on to contrast it from the “present” events in W .
This means that we see the W heap Γ as fixed for now and assume two parallel rule
matches in W ∗ and W ′:

Γ∗a : e∗ ⇓θ∗ Γ∗b : v∗ and Γ′a : e′ ⇓θ′ Γ′b : v′

Again we know that we should have e∗ ≡f e′, and want to derive a new mapping
g satisfying at least v∗ ≡g v. This time around we are treating the heap differently
though: As it does not change in the original evaluation in W , we need to produce a
mapping g such that Γ ≡g Γ′a as well as Γ ≡g Γ′b. Or put in other words: Every new
binding we add in W ′ during this evaluation must be a duplicate of an existing binding
in W ∗. Note that we do not have any proof obligations regarding Γ∗a or Γ∗b .

We can prove this using a familiar strategy: Using induction we walk the rule match
trees of W ∗ and W ′ in parallel, upholding our new induction assumption at every step.

77

4.4. HEAP CHAPTER 4. CAUSALITY ANALYSIS

This allows us to easily knock down variables, lambda as well as application expressions.
Let us then assume that we encounter a let expression:

Γ∗a, yi 7→ e∗i [yi/xi, ...], ... : e∗[yi/xi, ...] ⇓θ∗
l

Γ∗b : v∗

Γ∗a : let {xi = e∗i , ...} in e ⇓...+θ∗
l

Γ∗b : v∗

Note that the induction proof in the first part of the proof covered the entire rule
match tree of W , and therefore especially the part that we now refer to as W ∗. This
means that back then we must also have added the yi bindings to the past heap in W ′.
Consequently yi are no longer fresh in W ′, so we are forced to choose new names y′i. In
order to track this duplication, we now need to perform our first update to the map,
setting g(yi) = y′i and g(y) = f(y) otherwise. We know that f(yi) = ⊥ because let

expressions will remain the only instance where we update the map, and we will only
ever duplicate the evaluation of a let expression once. After all, an expression only
can get evaluated twice if it a thunk in W , and heap equivalence guarantees that for
every thunk in W there can only be either one or two thunks in W ′.

The updated map establishes yi ≡g g(yi), so once again we have e∗[yi/xi] ≡g
e′[g(yi)/xi] as well as e∗i [yi/xi] ≡g e′i[g(yi)/xi]. Furthermore, we know that updating
our heap does not violate equivalence, so we still have Γ ≡g Γ′a, g(yi) 7→ e′i[g(yi)/xi, ...]:
In case Γ still maps yi to an unevaluated expression we know it to be e∗i [yi/xi], which
must be equivalent to both the existing yi mapping in Γ′a as well as the new g(yi)
mapping as established. On the other hand if yi is evaluated on Γ we have no further
demands to satisfy. Therefore the heap passed to the nested judgement satisfies our
induction hypothesis, so we can obtain another mapping h for the nested rule match
satisfying Γ ≡h Γ′b and v∗ ≡h v′, which is what we wanted to show.

However, we still have to take care of the variable rule. After all, our current
repeated evaluation might spawn further repeated evaluations, which is why we are
putting this much effort into this to begin with. We know due to expression equivalence
that where W ∗ has a variable term x∗ we will get a variable x′ in W ′, where either
x′ = x∗ or x′ = g(x∗). Let us first consider the case that we find x′ to be already
evaluated on Γ′a:

Γ′a, x′ 7→ v′ : x′ ⇓V+S Γ′a, x′ 7→ v′ : v′

Note that we are now splitting up the cases by what we find in W ′, as that is more
convenient in this instance. As we require that Γ ≡f Γ′a this means that x∗ must also
be evaluated on Γ. Furthermore the value must be v∗, as both (Var1) and (Var2) return
the value that was pushed on the heap Γ∗b , and as Γ was derived from it we know
that the same value must still be present. Finally we know that v∗ ≡f v′ and trivially
Γ∗b ≡ Γ′b, which is our final proof obligation for this case.

This leaves only the case that the variable x′ happens to refer to a thunk in W ′,

78

CHAPTER 4. CAUSALITY ANALYSIS 4.4. HEAP

which would mean that we match the (Var2) rule instead:

Γ′a : e′ ⇓θ′ Γ′b : v′

Γ′a, x′ 7→ e′ : x′ ⇓...+θ′ Γ′b, x′ 7→ v′ : v′

Now we again have two cases: If the original-world variable x∗ also had to be evaluated
in W ∗, we can easily use the induction hypothesis to show that we can obtain a new
mapping g with v∗ ≡g v′ and Γ′b ≡g Γ, from which we can easily follow through. On
the other hand if x∗ turns out not to be evaluated, we use the same argument as we
did in part one: Clearly this is another duplicated evaluation, therefore we simply need
to compare our current W ′ with another past evaluation W ∗∗. We would still reason
about the same fixed W heap Γ, so our induction hypothesis would still apply even
though we have switched out the concrete rule application tree.

It is clear that we can do this recursively: By always jumping to the appropriate past
evaluation point in W , we will always find a way to continue the induction. Especially
note that we are always going backwards in the (finite) rule application history – so we
are not attempting to inductively reason about an infinite tree here.

4.4.5 Wrapping Up

At this point we have set up all the most important ingredients to our proof. We just
need to plug a few holes to put everything together. First note that we have ignored
case expressions so far, which are however straight-forward to add. More interestingly,
we have left no place where we could introduce our “miracle” into the proof. In fact
due to the lock-step evaluation between W and W ′, it might seem like we could not
introduce any change to W ′ at any point. This was deliberate, as this means that we
can now introduce it at an arbitrary point.

Let us assume that at some point in the first part of the proof, but have not yet
encountered a duplication. This means that f(y) = ⊥ for all y, from which by induction
hypothesis follows that Γa = Γ′a and e = e′. Suppose the judgement will look like follows:

Γa : e ⇓θ Γb : v

Normally we would expect that we would derive the same heap Γb = Γ′b in both worlds
as well. But now suppose that we choose an arbitrary binding x from the heap Γa
before evaluation and “forget” its update. If put as a rule, it would look like follows:

Γa;x 7→ e0 : e ⇓θ Γb, x 7→ e1 : v
Γa;x 7→ e0 : e ⇓θ Γb, x 7→ e0, g(x) 7→ e1 : v

With g(x) fresh and g(y) = ⊥ otherwise. Note that additionally to forgetting about x,

79

4.5. INTERRUPTED RULES CHAPTER 4. CAUSALITY ANALYSIS

the g(x) binding now refers to an (inaccessible) copy of e1. This might seem like an odd
choice, but this trick means that for Γ′b = Γb, x 7→ e0, g(x) 7→ e1 we now have Γb ≡g Γ′b.
As furthermore v ≡g v′ this means that we have not violated the induction hypothesis,
which means that the rest of the proof remains valid. Therefore – as long as we start
in the same state and introduce one miracle at maximum, we know that we can retain
synchronisation between the two worlds.

We demonstrate that W and W ′ proceed synchronously so we can argue about the
underlying events, which allows us to identify effects – or preferably the lack thereof. The
idea is that in part one we mapped every non-variable rule application in W to exactly
the same rule matching in W ′ and established that there is an equivalence relation
between the used terms. As we explained in Section 4.2 on page 59 and Section 4.3.4
on page 68, every rule match translates systematically to a set of events, therefore we
know that the arising events must be equivalent as well. The only exception is when
we match (V ar1) in W , but (V ar2) in W ′, but even then we can easily see that (V ar1)
produces strictly less events than (V ar2). Note that this is especially true for cost
events: Contrasting the cost terms emitted by the two variable evaluation rules we see
that indeed V+S < V+(3+lv(e))×S+U+θ. Note that this property is actually vital
for this argument to work – if looking up heap values could possibly be more costly
than evaluation we would have positive causation of cost with the heap update!

The way this proof has worked out, we see that replacing a thunk by its normal-form
evaluation result will never produce less costs 6. Therefore there are no effects left to
track, and we can safely omit annotations on updates such as the one in Section 4.3.5.
Note that this is especially true if our rule match “inherits” the thunk update in question
from a nested rule match. Together with the annotation encapsulation property that
we are going to show later in Section 4.7.1, this allows us to pass through updated
heaps from nested rule matches without the need for annotation updates.

4.5 Interrupted Rules

At this point we know how to annotate basic nested rules: Annotations are required on
all results caused by the rule match, excluding heap updates. However, what happens
if we have more than one nested rule match, such as with function applications? Recall
from Figure 3.4 that we gave the following semantics:

Γ : e ⇓θf Γ′ : λy1.λy2....eb Γ′ : eb[xi/yi · · ·] ⇓θb Γ′′ : v
Γ : e x1 x2 · · · ⇓A+(1+n+lv(e))×S+θf+θb Γ′′ : v

6Note that if we tracked residency costs as mentioned in Section 5.2.5 on page 120, there could be
scenarios where keeping the normal-form result around is more expensive than reverting to the thunk.
However, we regard these cases as too obscure to be relevant for profiling.

80

CHAPTER 4. CAUSALITY ANALYSIS 4.5. INTERRUPTED RULES

Γ : e x1 x2 · · · ⇓ ⇓A ⇓θf ⇓···×S ⇓θb Γ′′ : v

Γ′ : eb[xi/yi · · ·] ⇓ ⇓θb Γ′′ : v

Γ : e ⇓ ⇓θf Γ′ : λy1.λy2....eb

(nested)

(nested)

(top)

Figure 4.15: Ordered Event Decomposition of an Application Rule Match

The high-level view is that after matching the application e x1 x2 · · · we first evaluate
the function expression e, expecting a function body λy1.λy2....eb, nested inside an
appropriate number of lambda terms. We then proceed to bind parameters by sub-
stituting the variables in eb and evaluate the result to attain the result value, which
we pass through. We can decompose this process into events as shown in Figure 4.15.
Note that we want to be specific about the order in which costs appear: We assume
that constant costs happen first, and that we push the parameters on the stack before
jumping to the closure code. This will become important in a moment.

For causality analysis we now again ask how the events of the rule match could be
disrupted within the constraints of our language and judgement form. As highlighted in
the above rule, our rule makes two assumptions about the input events that could turn
out to be false. First we assume again that the expression has the form we expect – a
function application. More interestingly, this time we also assume that evaluation of the
function expression yields us a suitable lambda expression. All remaining input events
will not cause the rule to mismatch, and therefore get passed through as explained in
Section 4.3.2.

Let us consider the expression under evaluation first, as it comes first according to
our temporal order. Once more we apply our basic recipe of substituting ⊥ for forcing
an expression match failure in the alternate world W ′:

Γ : ⊥ ⇓⊥ Γ : ⊥

It might seem redundant to re-state this, but we need to remember that we always
select this alternate world by choice. We will see in Section 4.6 on page 85 that for some
expression types it makes sense to choose differently. However, this time we obtain the
usual result: all events vanish. We are left with a frozen program and the finding that
all later rule match events causally depend on the initial match happening.

81

4.5. INTERRUPTED RULES CHAPTER 4. CAUSALITY ANALYSIS

4.5.1 Miraculous Interruption

However, let us turn our attention to the point of interest for this rule: The effects of a
mismatch on the lambda value that supposedly results from evaluation. It might seem
like the type-checker should assure this property – at least ignoring termination – but
as explained in Section 4.2, in alternate worlds we are working with miracle events that
are allowed to momentarily ignore such consistency requirements. In our case, what
we want is another fresh world W ′′ where we did find a function application, yet the
returned expression magically turned out to not have the form λy1.λy2....eb. Again
there is nothing that would strongly suggest otherwise, so let our “miracle” be that the
return value for some reason turns out to be “⊥”, causing the match to fail.

This leads to a small problem: When consulting Figure 3.4 we see that no rule
would match a result of ⊥. This is not surprising, as provoking a mismatch was the
whole point of this exercise. Accordingly, we would be forced to judge:

Γ : ⊥ ⇓⊥ Γ : ⊥

Yet there are strong reasons why we cannot accept this. Take note that this alternate
world judgement would eradicate all events shown in Figure 4.15, and therefore espe-
cially events that precede the miracle result event in the temporal order. Therefore the
miracle event has actual effects that lie in its own past, which we outlawed back in
Section 4.2 on page 59.

So what can we do? We have to find some meaningful way to continue writing the
story of our alternate world W ′′. Let us think back a bit about how a real Haskell
program might run through the motions in our alternate world W ′′: It would actually
evaluate the body, triggering all associated events, proceed with pushing all required
parameters, then attempt to jump to the sneakily placed non-closure and – presumably
– crash. Or put in other words: All events prior to the failed match would happen,
but none of the events after that point. Not coincidentally, this also happens to be
the minimal solution satisfying our requirements for causality reasoning. We therefore
propose the following additional rule for W ′′ as the closest-possible description of the
last breaths of our crashing program7:

Γ : e ⇓θf Γ′ : ⊥
Γ : e x1 x2 · · · ⇓A+(1+n+lv(e))×S+θf+⊥ Γ′ : ⊥

Consequently, we conclude that the successful match in the original world W causes
exactly all rule events to happen that come after it in the temporal order.

7The argument would be cleaner using small-step semantics, as they correspond more closely with
the sketched program behaviour. However, this would make working with the semantics harder overall,
so we choose this path instead.

82

CHAPTER 4. CAUSALITY ANALYSIS 4.5. INTERRUPTED RULES

α

βi

Γ : e x1 x2 · · · ⇓ ⇓A ⇓θf ⇓···×S ⇓θb Γ′′ : v

Γ′ : eb[〈γ〉xi/〈γ〉yi · · ·] ⇓ · · · ⇓θb Γ′′ : v

Γ : e ⇓ · · · ⇓θf Γ′ : λy1.λy2....eb

Figure 4.16: Causal Relations for an Application Rule Match

4.5.2 Application Rule

At this point we have collected enough information to complete our picture of the causal
relationships within the application rule. The result is shown in Figure 4.16: We have
five “input” event types that can fail due to outside influences and variously cause five
“output” events that are visible to the rule caller. We can summarise as follows:

Cause Input Event Causal Relationship

α Γ : e x1 x2 · · · ⇓ X X X X X

⇓θf X

Γ′ : λy1.λy2....eb X X X

⇓θb X

Γ′′ : v X

Output Events: ⇓A ⇓θf ⇓...×S ⇓θb Γ′′ : v

βi

Figure 4.17: Summary of Causality Relations

We observe that in two instances input events are required for the rule to continue at
all, while the remaining causes just represent terms getting passed through according
to Section 4.3.2 on page 66. We see the profile events as representing all cost events
emitted by the first and second nested rule match respectively.

Let us get back to the original question: Exactly what annotations should we put on
the terms represented by the “output” events? We know the causes that were annotated
on the input terms, so we apply the transitive property: If what caused the input event

83

4.5. INTERRUPTED RULES CHAPTER 4. CAUSALITY ANALYSIS

“Γ : e x1 x2 · · · ⇓ ” is described by the cause term α, then according to our causality
diagram this is exactly the cause term we should, say, annotate on the A unit of cost
emitted, yielding 〈α〉A. Along the same lines we need to annotate the cause on all cost
getting passed through in θf , which we would notate as 〈α〉θf .

The rest of the output events have a causal dependency with the lambda result
coming from the evaluation of the function expression. Especially note that the pattern
“Γ′ : λy1.λy2....eb” matches the expression deeply, as we need to substitute all bound
variables in order to proceed with evaluation. As explained in Section 4.3.4 on page 68
this means that we are actually looking through a number of annotations, which means
that we are actually reasoning about a number of causes at the same time:

?
...

β2

β1 Γ′ : λy1. Γ′ : λy1.λy2. ⇓ Γ′ : [xi/yi · · ·] ⇓

λy2.

eb

...

ebeb eb

Figure 4.18: Depending on Deeply Nested Annotations

Only once we have looked through enough lambda terms we reach an the term eb which
our rule does not have a causal dependency on anymore. In order to annotate the
composite cause in a compact way, we will be making use of the following notation:

β1 ∧ β2 ∧ ... =
∧
i

βi =: βi

Furthermore note that for the variable substitution we used the eb[〈γ〉xi/〈γ〉yi · · ·] syntax
in Figure 4.16. This simply means that instead of copying the entire tree of sub-events
as explained in Section 4.3.4 on page 68, we perform the given substitution on the way.
As we retain annotations, events are still in a causal relationship even after variable
substitution.

All this allows us to finish up the annotated application rule:

Γ : e ⇓θf Γ′ : 〈β1〉λy1.〈β2〉λy2....eb Γ′ : eb[〈γ〉xi/〈γ〉yi · · ·] ⇓θb Γ′′ : v
Γ : 〈α〉(e x1 x2 · · ·) ⇓〈α〉A+(1+n+lv(e))×〈α〉S+〈α〉θf+〈αβi〉θb

Γ′′ : 〈αβi〉v

Just like when we settled on the annotated variable rule in Section 4.3.5 on page 70,
most annotations again get passed around implicitly. The only annotations that we
need to mention are the ones that correspond to actual mismatch events, which in our
case are α and βi respectively.

84

CHAPTER 4. CAUSALITY ANALYSIS 4.6. CLOSEST WORLD CHOICE

4.6 Closest World Choice

The last sections should have demonstrated that reasoning about causality is often
about choosing the right viewpoint amongst several possible options. Our goal is always
to find a way to see things that allows the sharpest diagnosis, meaning that we name
as few effects as possible that could just be chalked up as happening independent of
their supposed cause. In this section we will approach another instance where it pays
to take a fresh look at how we derive causality. Specifically, we will be looking for a
good way to annotate the let rule:

Γ, yi 7→ ei[yi/xi, ...], ... : e[yi/xi, ...] ⇓θ Γ′ : v
Γ : let {xi = ei, ...} in e ⇓∑(S+O(xi=ei))+θ Γ′ : v

On the surface, nothing here is too surprising: We are passing a number of terms to a
nested rule match. As before, we would normally look for effects at the point where the
rule generates its output events, comparing it against a world where we got a ⊥ term
in place of the let expression, yielding the familiar “crash” judgement in W ′:

Γ : ⊥ ⇓⊥ Γ : ⊥

Following this line of reasoning, we would again put annotations on every single cost
as well as the result value. But is that the right thing to do?

Note that all rules up to this point had heavy influences on the control flow of the
program. The let expression on the other hand is primarily concerned with updating
the heap, and barely touches the expression e, value v and cost θ as they pass through.
After all, the primary objective of this expression is updating the heap, and at what
point we do this does not actually matter too much in the grand scheme of things. In
fact, optimising compilers often exploit this property by allowing let bindings to “float”
freely within the optimised expressions [Peyton Jones et al., 1996]. We saw an example
for this back in Section 3.4.2.

So could we find a way to have the program degrade more “gracefully” in the
presence of our miracle? Would it, say, make sense to just “float” the let binding into
nothingness and evaluate only its body in its stead? This would make our miraculous
rule match “Γ : e ⇓ ”, ideally yielding a new W ′′ judgement of the form:

Γ : e ⇓θ Γ′ : v

This judgement means that we attempt to match the same rule(s) inW ′ that the nested
judgement in the (Let) rule originally did inW . The only difference is that our alternate
world lacks all the bindings introduced by the let expression. Obviously this might

85

4.6. CLOSEST WORLD CHOICE CHAPTER 4. CAUSALITY ANALYSIS

cause the program to crash at a point further down the line, as leaving free variables
un-renamed deliberately breaks the consistency of the semantics given by Sestoft [1997].
Yet the crash is not guaranteed – the new world W ′ might see the program continue
normal operation for some time longer, and possibly even terminate. Therefore our new
definition of W ′ is actually closer to the original world W than an immediate program
crash, and therefore preferable according to Lewis’ causality model.

4.6.1 Floating Effects

Let us be a bit more formal about this. We will have W as the original world and W ′

as our first alternate world where we simply have the program crash immediately when
attempting the (Let) rule match in question. On the other hand, W ′′ will be our new
alternate world where we simply evaluate the body instead of the full let expression.
Our claim is that W ′′ has as least as many events in common with W as W ′, and can
therefore plausibly be described as “closer”. Note that this is actually not a particularly
hard requirement to fulfil: The rule mismatch in W ′ will cause parent rule matches to
fail, which as we already noted back in Section 4.3 on page 64 pretty much means that
no further events are happening. From that point of view, the miracle event is the last
actual event happening in W ′. It follows that if W ′′ can possibly reproduce any W
event past the miracle event, we have already shown the above-mentioned property.

Having said that, we are actually very interested in exactly how far we can make W
and W ′′ match up: After all, this determines the effects and therefore the annotations.
To do this we first need to recognise that due to skipping the renaming step W ′′ will
have different variable names compared to W . So again we have to employ a notion
of event equivalence. Fortunately we can simply use the same equivalence operator ≡f
we used back in Section 4.4.2, except this time we set the mapping function upfront as
exactly f(yi) = xi. We also define heap equivalence as follows:

Γ, y 7→ e ≡f Γ′, y 7→ e′ where Γ ≡f Γ′, e ≡f e′

Γ, y 7→ e ≡f Γ′ where f(y) 6= ⊥
{} ≡f {}

Capturing that we expect the y bindings to be gone in W ′.
Let us then do another induction over the rule match trees of W and W ′′ in parallel.

Our current judgements will be Γa : e ⇓θ Γb : v in W and Γ′′a : e′′ ⇓θ′′ Γ′′b : v′′ in
W ′′, with the assumptions being Γa ≡f Γ′′a and e ≡f e′′. What we want to prove is that
where a rule matches we get a new heap Γb ≡f Γ′′b and value v ≡f v′′. Note that we
do not require the rule match to succeed in W ′′, as any possibly successful rule match
would already mean more events happening than in W ′.

86

CHAPTER 4. CAUSALITY ANALYSIS 4.6. CLOSEST WORLD CHOICE

We can easily see this for either a constructor or a lambda expressions in W , for
example: Due to equivalence we encounter the same type of expression in W ′′, and the
equivalence of input terms directly proves that all result terms must be equivalent as
well. The remaining rules from Figure 3.4 need a bit more consideration. Let us run
through them once more, starting with the application rule:

Γ : e ⇓θf Γ′ : λy1.λy2....eb Γ′ : eb[xi/yi · · ·] ⇓θb Γ′′ : v
Γ : e x1 x2 · · · ⇓A+(1+n+lv(e))×S+θf+θb Γ′′ : v

If any of the nested rule matches fail, the rule itself fails. If we assume that they succeed,
we can easily obtain eb ≡f e′′b . However, the important case here is that we might have
f(xi) 6= ⊥ due to xi matching one of the yi variables from the removed let expression.
What would happen is that the variable would be propagated into the nested rule match
expression. Fortunately, this process establishes eb[xi/yi] ≡f e′′b [x′′i /y′′i], so we know that
our induction hypothesis holds for the second nested rule match as well. From this it
follows directly that the assumption is true for the application rule match as well.

Let us continue with let expressions:

Γa, yi 7→ ei[yi/xi, ...], ... : e[yi/xi, ...] ⇓θ Γb : v
Γa : let {xi = ei, ...} in e ⇓∑(S+O(xi=ei))+θ Γb : v

As usual equivalence ensures that W ′′ will encounter a let expression in the same
position. As far as execution goes, there are two cases: Either we attempt to execute
this let expression as normal in W ′′, or this rule application happens to be the one
that we want to miraculously ignore in order to study its effects. Let us tackle the latter
case first. As mentioned before we chose f so it satisfies f(yi) = xi, which means that
we can directly conclude that e[yi/xi] ≡f e′′. As we also defined heap equivalence to
ignore the yi cells it also follows that Γa, yi 7→ ei[yi/xi, ...], ... ≡f Γ′′a 8. This means by
induction that we also have Γb ≡f Γ′′b and v ≡f v′′, which is all we need to prove here.

In the case that this is not the location of our miracle, we know due to variable
normalisation (see Section 3.5.1) that our xi variable names cannot match any of
variables bound by of the removed let expression, which means that we will find our
xi variables in the same positions in e and e′′ as well as ei and e′′i respectively. If we
again assume without loss of generality that we chose the same fresh variables yi in W
andW ′′ it easily follows that e[yi/xi, ...] ≡f e′′[yi/xi, ...] and ei[yi/xi, ...] ≡f e′′i [yi/xi, ...].
This allows us to derive from the induction hypothesis that again we either propagate
a failed rule match, or we get Γb ≡f Γ′′b and v ≡f v′′.

8Note that we actually know that e = e′′ and Γa = Γ′′a , as prior evaluation must have been unchanged.
But we do not need this property at the moment.

87

4.6. CLOSEST WORLD CHOICE CHAPTER 4. CAUSALITY ANALYSIS

We can argue very similarly for the case expression:

Γa : e ⇓θ2 Γb : Ci yj ... Γb : ei[yj/xj , ...] ⇓θ3 Γc : v
Γa : case e of {Ci xj ...→ ei, ...} ⇓E+n×S+θ2+θ3 Γc : v

Again a nested rule match fail would cause us to propagate the failure. Thus the
scrutinee must evaluate to equivalent values Ci yj ... ≡f Ci y′′j ..., from which we gather
that yj ≡f y′′j and therefore ei[yj/xj , ...] ≡f e′′i [y′′j /xj , ...]. As we also know Γb ≡f Γ′′b we
can easily obtain v ≡f v′′ as well as Γc ≡f Γ′′c . Note that we will have to update this
reasoning later due to changed failure propagation in Section 4.6.6.

So far we have simply propagated the renaming and never actually accessed the
heap, which is why evaluation proceeded as normal. This makes it quite plausible that
we will have more events in W ′′ than in W ′. However, we are still violating program
consistency in a major way, which shows for the variable evaluation rules:

Γ, x 7→ v : x ⇓V+S Γ, x 7→ v : v Γa : e ⇓θ Γb : v
Γa, x 7→ e : x ⇓V+(3+lv(e))×S+U+θ Γb, x 7→ v : v

For both rule we have two cases: Either we are trying to access a variable with f(x) = ⊥,
which means that x = x′′ and therefore evaluation in W ′′ either yields v ≡f v′′ as
expected or crashes due to the a failed rule match in the nested evaluation.

On the other hand, where f(x) 6= ⊥ we must have x′′ = f(x) 6= x due to the fact that
we chose the variable name x fresh in W when evaluating the removed let expression,
and especially never introduced it into W ′′. We also know that there can be no binding
for f(x) on the heap Γ′′a. This is because even if we (say) had re-evaluated the let

expression that we skipped the first time, it would have chosen a fresh variable name
instead of f(x), as f(x) here is just the original variable name from the program text.
This means that neither (Var1) nor (Var2) can match in W ′′, so we have to assume a
mismatch judgement. Therefore our program crashes in W ′′ as well:

Γ′ : ⊥ ⇓⊥ Γ′′ : ⊥

4.6.2 Floating Annotations

The last section has shown that compared to the immediate crash in alternate world
W ′, the program can plausibly continue to run in W ′′. Not only that, but we actually
know that the evaluation in W ′′ will be equivalent to that in W exactly up to the point
where we try to access one of the variables that we “forgot” to push the bindings for.
From this it follows that we will have equivalent events in the alternate world as well.
In the end, this means that we have a number of events that happen after the match
on the let expression without causally depending on it!

88

CHAPTER 4. CAUSALITY ANALYSIS 4.6. CLOSEST WORLD CHOICE

This is the first evaluation rule where we could derive this property, a direct result
of us always comparing against an alternate world W ′ with a total program crash. This
especially means that we cannot just use the same annotation strategy as before. After
all, now the effects are not isolated “structurally” anymore: As heap references can
escape, access to a given heap cell might happen at an arbitrary point of program
execution. As this is where our effect is, we will have to find a way to introduce
annotations at exactly these points.

Fortunately, visiting all usage sites of a variable is exactly what the semantics by
Sestoft [1997] already do, even though its original purpose is to rename variables. Now
we can re-use this mechanism for our benefit and put annotations on all variables that
we know would cause history to diverge in W ′′:

Γa, yi 7→ ei[〈αγ〉yi/〈γ〉xi, ...], ... : e[〈αγ〉yi/〈γ〉xi, ...] ⇓θ Γb : v
Γa : 〈α〉let {xi = ei, ...} in e ⇓∑(〈α〉S+〈α〉O(xi=ei))+θ Γb : v

Similar to how we treated substitution in Section 4.5.2, the notation e[〈αγ〉y/〈γ〉x] means
that we replace the variable while adding the annotation α. This captures the basic fact
that in order for the variable expression to evaluate correctly it needs to both exist as
well as have an associated binding. Note especially that the substitution is not limited to
matching variable expressions, but will also add annotations when substituting variables
in constructor or function applications, from where they will get propagated to the
actual variable usage sites where appropriate.

Finally, we have to recognise that there is actually another notable difference between
W and W ′′. Namely, the original world has to pay the cost for allocating heap and
stack space for the new bindings, which the alternate worldW ′′ skips. This makes these
cost events effects of the let expression even for our refined alternate world thought
experiment, which is why they were annotated with α above. In the end, the jump to
W ′ has still provided us with a much tighter causality tracking than we had before.

4.6.3 Case Expressions

Can we repeat this trick with other rules? The only rule from the cost semantics in
Figure 3.4 left to cover is the (Case) rule:

Γa : e ⇓θ2 Γb : Ci yj ... Γb : ei[yj/xj , ...] ⇓θ3 Γc : v
Γa : case e of {Ci xj ...→ ei, ...} ⇓E+n×S+θ2+θ3 Γc : v

The straight-forward approach here would be to compare with alternate worlds where
the program crashes either because of a mismatch on the case expression or because we
did not get a constructor back from evaluating the scrutinee. After all, we have already
learnt from our discussion of the application rule in Section 4.5.1 how do deal with such

89

4.6. CLOSEST WORLD CHOICE CHAPTER 4. CAUSALITY ANALYSIS

interruptions in the middle of a rule application. Selecting all events that come after
the mismatch for annotation, we obtain the general annotated case evaluation rule:

Γa : e ⇓θ2 Γb : 〈β〉Ci yj ... Γb : ei[yj/xj , ...] ⇓θ3 Γc : v
Γa : 〈α〉case e of {Ci xj ...→ ei, ...} ⇓〈α〉E+〈α〉θ2+ni×〈αβ〉S+〈αβ〉θ3 Γc : 〈αβ〉v

Just as with the let expression, this conservative annotation strategy is valid – but not
always optimal.

4.6.4 One-Branch Case

Let us attempt to improve the accuracy of our causality analysis. Ideally, we would
like to again find a world W ′′ that is closer to the original world W in that we have a
closer match between events. However, this is not quite as obvious here. After all, one
important factor in our treatment of let was that we knew that its let body would
get evaluated no matter what. We can not generally do the same for case expressions,
as we might have a number of branches that evaluation could possibly follow9.

But what about case expression that only have one alternative? Consider a rule
specialised to this scenario:

Γa : e ⇓θ2 Γb : C1 yj ... Γb : e1[yj/xj , ...] ⇓θ3 Γc : v
Γa : case e of {C1 xj ...→ e1} ⇓E+n×S+θ2+θ3 Γc : v

Here we have picked out the situation where the control flow is the most predictable:
That scrutinee evaluation produces the expected constructor is enough to guarantee
that the highlighted evaluation will occur. And as we are reasoning about the original
world, in which we assume that we have a terminating program, this is actually an
assumption that we are allowed to make. Note that this applies even if C is not the
only constructor of the type in question, as the compiler guarantees that branches cover
all possible values. Suppose the following Core code:

let {x = ...} in

case x of {C → ...

D y → case x of {D y2 → e1}}

The inner case expression has only one branch precisely because the compiler could
derive that evaluation can only yield a D constructor. Therefore as long as the scrutinee
evaluation terminates, we positively know that e1 is going to get evaluated.

9It would be thinkable however to elect a “default” branch to follow in the alternate world. This
would for example allow us to reason about a case expressions branching out specific cases such as in
Listing 2.5 on page 17. However, it is hard to identify such an intention, see Section 4.7.3 on page 97.

90

CHAPTER 4. CAUSALITY ANALYSIS 4.6. CLOSEST WORLD CHOICE

Consequently it actually makes sense to treat e1 as the alternate-world replacement
for the case expression in W ′′. We would attempt the following judgement:

Γa : e1 ⇓θ′′3 Γ′′c : v′′

Just like with the let rule, we will attempt to match rules while leaving xi bindings in
e1 undefined. Therefore we might get a crash at some point down the road. However
as we have seen in Section 4.6.2, this does not need to scare us, as we can easily find
and annotate these effects using variable substitution.

On the other hand, we are skipping more code this time around: After all, the rule
would normally also evaluate the scrutinee. This not only means that the alternate
world W ′′ loses the cost θ2, but also all heap changes between Γa and Γb. Fortunately,
the former effect can easily be tracked by adding annotations on θ2, and the latter can
only introduce extra costs in W ′′ due to extra thunk evaluations. As we are looking for
positive causation, the non-existence of costs in W is not something we need to track10.

4.6.5 Skipping Scrutinisation

So far we have only looked at the effects of matching the one-branch case expression.
However as explained back in Section 4.5.1, having two nested sub-matches means that
we need to investigate the possibility that the rule might mismatch half-way through.
To be concrete, we have to account for the alternate-world scenario where we encounter
the case expression intact, but scrutinee evaluation miraculously does not match the
expected C1 yj ... pattern. As before this means that we need to introduce an artificial
rule that describes how we suspect the program would react to having the scrutinee
result get miraculously replaced by ⊥. If we just kept the events that temporal order
forces, this would mean we get the following rule:

Γa : e ⇓θ2 Γb : ⊥
Γa : case e of {C1 xj ...→ e1} ⇓E+n×S+θ2+⊥ Γb : ⊥

However, this is not satisfactory to us. After all, this means that we would again skip
the evaluation of the branch code. Consequently, we would have to annotate branch
evaluation results with the cause for evaluation of the scrutinee. Obviously evaluation
of the scrutinee will depend on the existence of the case expression. Therefore by
transitivity the case expression causes the branch evaluation, which is exactly what we
wanted to disprove in the last section!

10Note that we could alternatively prove that these thunk evaluations “move” from the evaluation of
the scrutinee to the evaluation of the branch body, similar to what we did in Section 4.4.4. However, this
would mean that we would not want to annotate these thunk costs inside θ2. This would be impossible
to notate, so here it actually turns out to be more useful to think of the cost as “reappearing” instead
of “moving”. We will be seeing quite a bit of this distinction once we get to optimisations.

91

4.6. CLOSEST WORLD CHOICE CHAPTER 4. CAUSALITY ANALYSIS

To fix this situation, we need an artificial “crash recovery” rule like follows:

Γa : e ⇓θ2 Γb : ⊥ Γb : e1 ⇓θ3 Γc : v
Γa : case e of {C1 xj ...→ e1} ⇓E+n×S+θ2+θ3 Γc : v

So we essentially react to the miraculous scrutinee result mismatch simply by falling
back to the same scenario we had before: The evaluation of the naked e1 branch. In
order to uphold temporal consistency as introduced in Section 4.2 on page 59 we make
sure that all previous events still happen, and especially pass on the cost θ2 originating
from the “blocked” scrutinee evaluation.

If we now put all the pieces together, we can obtain the result we wanted: No
matter whether our miracle is the case expression disappearing or the scrutinee result
mismatching, the alternate world will still end up evaluating the branch until the first
usage site of a bound variable. Therefore all branch costs and results up to that point
are caused by neither. From this realisation we obtain an annotated one-branch case

rule:
Γa : e ⇓θ2 Γb : 〈β〉C1 yj ... Γb : e1[〈αβγ〉yj/〈γ〉xj , ...] ⇓θ3 Γc : v
Γa : 〈α〉case e of {C1 xj ...→ e1} ⇓〈α〉E+n×〈α〉S+〈α〉θ2+θ3 Γc : v

Note that in comparison to the previous formulation the αβ annotation has now moved
from θ3 and v respectively to y

i
, analogous to what happened when we discussed the

let rule in Section 4.6.2 on page 88.

4.6.6 Crash Recovery Consistency

While the conclusions might sit well with us, we have to take care that we are not
introducing inconsistencies into our causality model. After all, the very structure of the
proposed crash recovery rule is worrisome: We are matching on a ⊥ result in order to
do a second nested rule match. This violates the assumption that a failed child rule
match will always cause the parent rule match to fail. From the point of view of the
event model, our intention is clearly to have certain events to happen independently
from others, but if we take the rule at face value we are actually proposing for events
to happen as a reaction to other events not happening.

As a result we should critically review our argumentation up to this point for
inconsistencies. Fortunately, we know that the artificial rule will only ever match in
the alternate world, as the original world will never see rule mismatches. Unfortunately
though, we actually have encountered one scenario where we want to pass a ⊥ scrutinee
evaluation result “through”. Specifically, when we were reasoning about the effects
of “forgetting” bindings in Section 4.6.1 we assumed that encountering an undefined
binding would cause all further events to vanish. However, with our addition this is
now wrong – in the alternate world the program can now “come back from the dead”.

92

CHAPTER 4. CAUSALITY ANALYSIS 4.6. CLOSEST WORLD CHOICE

To understand how, consider the following Core fragment:

let {x = ...} in

case x of {D y → e}

Here the crash recovery rule will actually change the outcome of removing the x binding.
After all, we would look for its effects by considering the following alternate-world
scenario:

case ⊥ of {D y → e}

Normally we would expect the evaluation of this to fail, which yields us to the conclusion
that the evaluation result of the program depends causally on x. However, with our
crash recovery rule, this is not true any more: In the alternate world we would continue
evaluating e, which might well end up producing the same result we had in the original
world. Therefore the result now would not be an effect of x any more!

This change in interpretation means that we need to adapt our reasoning from
Section 4.6.1 on page 86. Back then we assumed that every rule application could either
crash in the alternate world, or produce equivalent results. Now we have to acknowledge
the fact that at some point we could recover from a crash in W ′′:

Γ′′a : e′′ ⇓θ′′2 Γ′′b : ⊥ Γ′′b : e′′1 ⇓θ′′3 Γ′′c : v′′

Γ′′a : case e′′ of {C1 xj ...→ e′′1} ⇓E+n×S+θ′′2 +θ′′3 Γ′′c : v′′

while naturally encountering a normally evaluated case expression in W :

Γa : e ⇓θ2 Γb : C1 yj ... Γb : e1[yj/xj , ...] ⇓θ3 Γc : v
Γa : case e of {C1 xj ...→ e1} ⇓E+n×S+θ2+θ3 Γc : v

Due to our induction hypothesis we know that Γa ≡f Γ′′a and e ≡f e′′. We can even
arrange e1[yj/xj , ...] ≡g e′′1 by deriving a new mapping function g from f with g(yj) = xj .
However, note that we have no direct way for establishing Γb ≡f Γ′′b , as we have to
assume that while in “limbo” W ′′ might have skipped thunk updates that happened in
Γb. However, we can fix the proof by introducing a mapping from unevaluated bindings
in W ′′ to their evaluation in W , allowing us to argue that delayed evaluation in W ′′

yields the same results as in W . Therefore we have again at worst moved extra cost to
a later point in W ′′, which we do not need to explicitly track. We have shown before
how such a proof would work, and will skip the full explanation at this point.

In the end, once we have ironed out the inconsistency the obtained result is basically
the same as in Section 4.6.1: The concrete “surviving” event set has changed, but the
world W ′′ is still closer to W than W ′. Furthermore, we can show that the new rules
together propagate annotations exactly to the events that differ between W and W ′′.

93

4.7. CAUSALITY MODEL CHAPTER 4. CAUSALITY ANALYSIS

Γ : 〈α〉C x1 x2... ⇓〈α〉C+n×〈α〉H Γ : 〈α〉C x1 x2... (Con)

Γ : 〈α〉λy.e ⇓〈α〉L+lv(e)×〈α〉H Γ : 〈α〉λy.e (Lam)

Γ : e ⇓θf Γ′ : 〈β1〉λy1.〈β2〉λy2....eb Γ′ : eb[〈γ〉xi/〈γ〉yi · · ·] ⇓θb Γ′′ : v
Γ : 〈α〉(e x1 x2 · · ·) ⇓〈α〉A+(1+n+lv(e))×〈α〉S+〈α〉θf+〈αβi〉θb

Γ′′ : 〈αβi〉v
(App)

Γa, yi 7→ ei[〈αγ〉yi/〈γ〉xi, ...], ... : e[〈αγ〉yi/〈γ〉xi, ...] ⇓θ Γb : v
Γa : 〈α〉let {xi = ei, ...} in e ⇓∑(〈α〉S+〈α〉O(xi=ei))+θ Γb : v (Let)

Γ, x 7→ v : 〈α〉x ⇓〈α〉V+〈α〉S Γ, x 7→ v : 〈α〉v (Var1)

Γ : e ⇓θ Γ′ : v
Γ, x 7→ e : 〈β〉x ⇓〈β〉V+(3+lv(e))×〈β〉S+〈β〉U+〈β〉θ Γ′, x 7→ v : 〈β〉v

(Var2)

Γa : e ⇓θ2 Γb : 〈β〉C1 yj ... Γb : e1[〈αβγ〉yj/〈γ〉xj , ...] ⇓θ3 Γc : v
Γa : 〈α〉case e of {C1 xj ...→ e1} ⇓〈α〉E+n×〈α〉S+〈α〉θ2+θ3 Γc : v (Case1)

Γa : e ⇓θ2 Γb : 〈β〉Ci yj ... Γb : ei[〈γ〉yj/〈γ〉xj , ...] ⇓θ3 Γc : v
Γa : 〈α〉case e of {Ci xj ...→ ei, ...} ⇓〈α〉E+〈α〉θ2+ni×〈αβ〉S+〈αβ〉θ3 Γc : 〈αβ〉v

(CaseN)

Figure 4.19: Causality Model

4.7 Causality Model

At this point we have run through all rules of our performance model, with the resulting
causality model rules collected in Figure 4.19. We have added a good number of of
extensions and annotations to Launchbury’s original semantics, which might make the
full semantics a bit hard to follow. Yet when we look back, the analysis actually boiled
down just a few basic principles:

• Every possible point where a rule could mismatch means that we need to put
their annotation on terms that are produced “after” them.

• The only exceptions are cases where we can identify a better alternate world to
compare with. This has generally to do with bindings, the effects of which we
track by attaching annotations to the variables.

• Heaps can get passed through freely, and in particular we can update thunks
without annotating the cause for their evaluation.

This should make it easier to remember later on where exactly we expect annotations
to go. However, before we starting putting this model to work we still have a few loose
ends to tie up, which we will do in this section.

94

CHAPTER 4. CAUSALITY ANALYSIS 4.7. CAUSALITY MODEL

4.7.1 Annotation Encapsulation

If we look at the list of principles, the last one should stick out: We proved back in
Section 4.4 on page 72 that we can update thunks freely, but obviously this is only one
type of change that we could observe on the heap. Let us shed some more light on this.
Suppose that we have an arbitrary rule that gives us a judgement:

Γ1 : e ⇓θ Γ2 : v

to find its effects we have at various occasions used “crash” alternative judgements 11.
This generally looked like follows:

Γ1 : e ⇓⊥ Γ1 : ⊥

Finding effects is now all about comparing the alternate world with the original, and
as the heap stays the same in W ′, this comes down to comparing Γ1 with Γ2. But
what exactly constitutes a change here? Clearly heap cells that have the same value do
not count. And as we have showed in Section 4.4, replacing a thunk by its value is no
“material” change either, as the alternative would be simply re-computing it later.

Given the way that our operational semantics work, this actually covers all but one
case: What happens if a (Let) rule introduces a new binding on Γ2 that did not exist
on Γ1? Clearly this is no immaterial effect, as “forgetting” the binding might provoke
a program crash once the variable gets evaluated. However, now that we have finished
our causality semantics, we have actually new tools at our disposal: We argue that all
possible effects will already receive the appropriate annotation from other channels.

Specifically, note that we know that x must have been introduced by a (Let) rule,
so it must be a fresh name. For our rule match, this means that the rest of the program
can only access the new heap cell if the return value v has a reference to it – either
directly or indirectly. So suppose an alternate world where our rule miraculously does
not crash, but returns ⊥ anyway. Then we know that the rest of the program has no
way of accessing x, even if it still exists on the heap. Therefore the effects of the x
heap cell are strictly fewer than that of returning v, which means that as long as we
are consistent with tracking value effects, annotating v with the cause in question is
actually enough 12. And as we can see in Figure 4.19, all of our rules generally add their
annotation on the result value, therefore “encapsulating” the heap reference. The only
two rules where this is not the case are let and one-branch case, where the different
alternate world does not require us to annotate in the first place.

11This generalises to “intermediate” crashes as explained in Section 4.5.1 on page 82 as well.
12It might seem dangerous to rely on consistency while trying to establish consistency – yet in fact

either viewpoint is internally consistent, so we just choose the more intuitive one.

95

4.7. CAUSALITY MODEL CHAPTER 4. CAUSALITY ANALYSIS

Note that this situation bears some familiarities to the nested events we introduced
in Section 4.3.4: There we remarked that nested events cannot normally “escape” their
parent event either. However, we have actually already broken this particular principle:
In Section 4.6 we took sub-expressions of let and case expressions respectively and
evaluated them without causal dependency on the parent expression. In the event model,
this means that we actually “looked through” the annotation on the parent expression.
Fortunately, there was never any reason to do this for values, or we might have a harder
time arguing here. This should demonstrate how reasoning about causality is all about
internal consistency.

4.7.2 Close Causes

Up to this point we have seen two example in Section 4.6.2 and Section 4.6.4 where
we could make our causality analysis more exact by comparing against a tailor-made
alternate world. A hypothetical optimal closest world is firmly outside of our grasp, as
it would essentially solve the performance problem for us. But it still begs the question:
Are there other – closer – worlds out there that we could use to further enhance the
expressiveness of our model?

Let us remind ourselves of the rule match “miracles” that we have used so far.
Keeping in mind the two mentioned exceptions, we use the original-world expression e
to chose the alternate-world expression e′ as follows:

e′ =


e1 where e = let {...} in e1

e1 where e = case ... of {...→ e1} with e1 sole branch

⊥ otherwise

It makes sense to limit ourselves to such replacement rules: After all, we ideally want
small miracles, and switching out a term by another is the kind of change that disturbs
the consistency of the system the least.

What makes a good replacement for the purpose of our operational semantics?
As explained in Section 4.3.3 on page 67 every time we reference a term with nested
annotations this implies a whole tree of abstract events, each corresponding to a certain
part of the expression having a certain form. If we want to study effects of the cause
annotated on the top-level, this means that our primary task is eliminating the top-level
event while maintaining consistency. If we find that we can do this without eliminating
nested events, this means that we can view them as “independent” for the purpose of
the considered causal process. For example, when we proposed the new alternate world
for the (Let) rule we essentially thought of the let binding as an “attachment” to its
otherwise independent body.

96

CHAPTER 4. CAUSALITY ANALYSIS 4.7. CAUSALITY MODEL

To summarise, we are looking for replacement rules that keep as many nested events
(and therefore sub-terms) as possible while having implications that match the original
world as closely as possible. However, we must still be careful. Remember from our
introduction to causality theory in Section 2.3 that we might end up swapping a tree
for a wall: We have to be wary of replacing equals with equals. We could for example
propose the following replacement:

e′ = let {x = C y} in x where e = C y

This “replacement” introduces the very same functionality, just using a different mecha-
nism. This is clearly silly, and would be completely useless for causality analysis. After
all, both versions would allocate the constructor, possibly leading us to the conclusion
that the associated cost was not actually caused by the constructor! Making such
mistakes could lead to subtle errors in our reasoning, so we should be careful in making
sure that our replacement unambiguously encodes a “removal”.

From the point of view of the event model this means that after eliminating all
“cause” events we would like to avoid fabricating any extra events in order to restore
some notion of causality. Instead we should make do with re-interpreting existing events
in new roles. As every annotated sub-term corresponds to an event in our interpretation,
this means that the conservative choice here is therefore to restrict ourselves exactly to
proper annotated sub-terms of the original.

4.7.3 Close Effects

However, we have to not only consider the miracle itself when deciding on the closest
world to chose. After all, what made this viewpoint work for let and case expression
was not only that removing the top-level expression in this way required relatively few
“miracle” changes, but also that it changed future alternate world events in a controlled
fashion: We were able to predict accurately which events would persist and which ones
we would expect to vanish. More critically, we could derive that most of these events
had equivalents in the original execution, and could find a way to encode this fact as
annotations for our causality semantics.

Specifically, in both instances we found that we could predict that executing the
original-world expression e would result in a sub-term e′ getting evaluated in a closely
related context. This made it plausible that we could simply evaluate “past” the rule
application in the alternate world. Even more critically, we could easily describe at what
point evaluation would deviate: Variables without associated heap bindings provided
nice hooks for us to bind annotations to.

Note however that even though we limited ourselves to proper sub-expression re-

97

4.7. CAUSALITY MODEL CHAPTER 4. CAUSALITY ANALYSIS

placements in the last section, most possible choices will not behave as nicely: For
example, replacing an expression with a replacement term of a different type is bound
to have unpredictable consequences, as we are violating the assumptions that went into
compilation. For example, the following replacement rule would simply be nonsensical:

e′ = f where e = f x

This would allow us to see evaluation of the function expression as happening inde-
pendent of the function application. However in contrast to let bindings, viewing an
application as an “attachment” does not make much sense in the context of the larger
program: The evaluation result will have a higher arity than the rest of the program
expects. This might simply lead to a crash at the next value usage site, but in the
worst case it could actually end up leading to a program evaluation that has nothing
to do with the original. This would not only be difficult to describe in the form of an
annotated evaluation rule, but is also unlikely to gain us any insight.

So at this point the only replacements we are willing to allow are proper sub-
expressions that are guaranteed to evaluate with a result that does not clearly disturb
code invariants. This already reduces our options greatly: Looking at the expression
types we defined in Section 3.5.2 on page 43 and Section 4.3.3 on page 67 respectively,
we observe that indeed only let bodies and case branches are guaranteed to share the
type of their respective parent expressions.

4.7.4 Complexity

This still leaves more deeply nested sub-expressions. Could there be cases where we
could find viable expression replacements buried deeper within the tree? In fact, it is
not hard to construct examples for this. Consider for instance:

e′ = e1[y/x] where e = (λx.e1) y

This rule satisfies all of our requirements, after all e1 is a proper sub-expression and
variable substitution qualifies as simply putting events into a different context in our
eyes. Moreover, we know that β-reduction will never change program meaning in any
way, so the changes to program evaluation are about as predictable as they can get.

But still – this rule does not provide much value to us. Note that we would have
to introduce a rather awkward special case into the application rule to implement
this. This technicality is significant, because for considering optimisations later we
want annotations to be predictable, and as Section 4.8.2 will show, the special cases
introduced thus far already make that tricky. “Anticipating” code transformations like
this is something we should only do where it reduces complexity in some way.

98

CHAPTER 4. CAUSALITY ANALYSIS 4.7. CAUSALITY MODEL

1 fun = . . .
2 where ! a = . . .
3 b = . . .

fun = case ... of {a→
let {b = ...} in ...
}

(Haskell) (Core)

Figure 4.20: Core Representation of Haskell Bindings

However, let us also briefly consider the possible intuition behind the β-reduction
replacement rule. Can we really view applying a lambda expression as a detachable
“term fragment”? Note that we are currently considering unoptimised code, so this
really comes back to the supposed intention of the programmer: Would we expect them
to build such obviously reducible code without a good reason? Would we really help
them by declaring costs inside e1 as independent of the source code corresponding to
either the application or the lambda expression? The answer is probably “no”, but it
is quite hard to pin-point exactly why this is the case.

4.7.5 Intuition

As the last sections highlighted, choosing replacement terms for closest-world thought
experiments is not only about technical requirements, but also about the programmer’s
intuitive view of the program. This begs the question: How do the special cases for
let and one-branch case expressions fare from this particular angle? There is no way
we can answer this conclusively, as it would be quite hard to come up with a way to
measure intuitiveness. However, we can observe anecdotal evidence simply by looking
at the Haskell syntax. After all, computer languages are built specifically to make it
easy to express common patterns that come up during programming, so we can expect
such patterns to correspond closely to the intuition of typical Haskell program authors.

For instance, consider the program fragment from Figure 4.20: Here we bind two
variables a and b, and make use of the BangPatterns language extension in order to
request strict evaluation of the b binding. If we look at the same code after desugaring
and preparation (see Section 3.5.1), we observe that lazy and strict where bindings
correspond directly to let and one-branch case expressions respectively. Not acci-
dentally, these happen to be exactly the expressions that we have defined specialised
closest-world rules for. Therefore there actually is a strong intuition behind this choice:
Both correspond directly to a Haskell binding, therefore we can easily interpret our
alternate world thought experiments as simply “commenting out” the line 2 or 3 from
the Haskell program in Figure 4.20. This is probably what a Haskell programmer would
have done if we had asked them to naïvely “remove” the bindings.

99

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

4.8 Optimisations

At this point we have finished our causality analysis of the performance model from
Figure 3.4 on page 55. Our price was on display in Figure 4.19 on page 94: Every rule is
now able to accept and produce fully annotated terms. This means that conditional on
input causes and our analysis being correct, we now have a systematic way of deriving
a correct-by-construction cost mapping θ: A program profile. As we have derived the
performance model from an approximation of Haskell program performance behaviour,
it is furthermore plausible that we have gained a good idea of the causal dependencies
involved in executing an unoptimised program.

However, this means that we still have not quite reached our goal. After all, real
Haskell programs generally go through a number of optimisation passes before they
actually get executed. This means that the causal connections that we have identified
will get changed and obfuscated by code transformations rewriting the very source code
program evaluation takes as input. However, this does not mean that our work has
been useless: After all, the whole point of optimisations is that they know enough about
the mechanisms of evaluation to arrange expressions so that the program arrives at
exactly the same result – just using fewer resources. We will now do the same for cause
annotations: Arrange for expression annotations to retain a sensible profiling view of
all remaining costs as well as possibly introduced overheads. From a practical point of
view, limiting ourselves to only changing annotations means that the involvement of
optimisations does not increase the complexity of generating profiling data in the first
place. This is a very desirable property.

To get there, we will again employ Lewis [1973] counter-factual causality reasoning,
just as we did in the last section. However this time around we will actually do so in a
very specific fashion. Given a code transformation of the form

e′ =⇒ e

our original world W will always be the evaluation of the optimised program e whereas
the original evaluation of e′ will act as our point of comparison W ′.

Furthermore, we know that the effects we are looking for are the ones that can
be observed from the “outside”. For the purpose of our performance model, this
excludes the details about all the events happening during evaluation, but includes
values and costs produced by the top-level judgement. Fortunately, we already know
that optimisations will never change the program results, so our goal will simply be to
keep their annotations in place wherever we can. On the other hand, the whole point
of optimisations is to influence the performance of the program, therefore we will have
to take more care with the conclusion we make about the causal history behind costs.

100

CHAPTER 4. CAUSALITY ANALYSIS 4.8. OPTIMISATIONS

4.8.1 Beta Reduction

To get started, consider the situation where we apply a function term which happens to
be a lambda expressions. Such code can be reduced using the well-known β-reduction
optimisation. Incorporating annotations, this rule would look like follows:

〈α〉((〈β〉λy.e) x) =⇒ 〈?〉e[x/y]

The “?” placeholder reminds us of the fact that we do not yet know what annotations
would make sense for the right-hand side. After all, when we considered looking through
such constructs in Section 4.7.3, we came to the conclusion that we want to see this
type of code as intentionally constructed, so we would not want to lose our capability
of following that intention backwards. This means that we need to find a way to
re-introduce the causal connections given by α and β into the optimised program.

Let us have a look at how evaluation of the transformed part of the program looked
like before and after the optimisation. To do that, we simply plug 〈α〉

(
(〈β〉λy.e) x

)
into

the causality model from Figure 4.19, and obtain:

Γa : 〈β〉λy.e ⇓〈β〉L+lv(e)×〈β〉H Γa : 〈β〉λy.e Γa : e[x/y] ⇓θb Γb : v
Γa : 〈α〉

(
(〈β〉λy.e) x

)
⇓
〈α〉A+

(
1+n+lv(e)

)
×〈α〉S+〈αβ〉L+lv(e)×〈αβ〉H+〈αβ〉θb

Γb : 〈αβ〉v

If we use the same heap to evaluate the optimised version e[x/y], we simply get:

Γa : e[x/y] ⇓θb Γb : v

Ignoring annotations for a moment, this happens to be how we would prove that β-
reduction is valid in the first place. After all, the sub-match in the unoptimised program
exactly matches the judgement of the optimised expression, therefore both programs
are guaranteed to arrive not only at the same value v but also the same heap Γb.

When bringing causal annotations into play things look a bit different, though. After
all, the original execution had an extra αβ annotation on the result value. Furthermore,
the cost term actually sees substantial changes. We have:

θ = θb

θ′ = 〈α〉A+
(
1 + n+ lv(e)

)
× 〈α〉S + 〈αβ〉L+ lv(e)× 〈αβ〉H+ 〈αβ〉θb

The comparison shows why β-reduction is an optimisation: We see that a significant
cost term simply vanishes – and as we only care about events that actually exist in the
real world W , we can ignore them for causality analysis. And yet this still leaves the
remaining cost term θb, which along with the result value has a different annotation
from before.

101

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

4.8.2 Push Annotations

In order to formulate a useful β-reduction rule operating on annotated programs, we
ideally want to make sure that all surviving costs keep the same annotations as before.
As annotations on values can cause annotations on costs to change, this also indirectly
applies to value annotations. In our case, this means that for the evaluation of the
optimised expression we want an αβ annotation on both the cost term θb as well as the
result value v.

Changing causality or evaluation semantics is out of the question, so the only way
of achieving this is to suitably re-annotate the expression in the course of program
optimisation. Speaking generally, given an expression e and an annotation α, we want
an expression 〈〈α〉〉e such that:

Γ : e ⇓θ v =⇒ Γ : 〈〈α〉〉e ⇓〈α〉θ 〈α〉v

Depending on what kind of expression e happens to be, this might be as simple as
setting 〈〈α〉〉e = 〈α〉e. Our causality semantics in Figure 4.19 on page 94 show that this
would in fact work for constructor, lambda, application, variable as well as non-one-
branch case expressions: The rules that consume these expressions share the trait that
they add the expression annotation both on all costs as well as on the returned value.
Therefore an extra annotation on the expression will end up exactly where we would
like to see it.

On the other hand, this still leaves the special cases introduced in Section 4.6.2
and Section 4.6.4 for us to circumnavigate. After all, in these instances we came
to the conclusion that the expression fragment in question could easily be removed
and therefore produced costs and values were not causally dependent on the expression.
Fortunately, in both cases the costs and values that would lack an annotation originated
from nested expressions, so we can simply “push” the right annotation inwards until
we hit an expression where they will “stick”:

〈〈α〉〉〈β〉let {...} in e1 = 〈αβ〉let {...} in 〈〈α〉〉e1

〈〈α〉〉〈β〉case ... of {C ...→ e1} = 〈αβ〉case ... of {C ...→ 〈〈α〉〉e1}

〈〈α〉〉e = 〈α〉e otherwise

Note that the structure of this definition is very similar to what we identified as alternate-
world replacements in Section 4.7.2, as we are mirroring our earlier choice of alternate
world expression. This should illustrate why we advised caution when injecting extra
complexity into our causality model in Section 4.7.4 on page 98. Any extra effort at
that stage would have to be “undone” at this point!

102

CHAPTER 4. CAUSALITY ANALYSIS 4.8. OPTIMISATIONS

However, the above definition encapsulates these details nicely, which allows us to
state the new causality-aware β-reduction rule in a compact fashion:

〈α〉
(
(〈β〉λy.e) x

)
=⇒ 〈〈αβ〉〉e[x/y]

As all cost for evaluating the new expression can be matched to cost generated by
the old expression carrying the very same annotations, this rule retains perfect profile
accuracy.

4.8.3 Effects on Global Profile

At this point we have understood that the β-reduction rule retains profile accuracy
if we consider just the evaluation of a single changed expression in the same context.
However, strictly speaking this is not what we set out to do. What we want is a
statement about the accuracy of the entire program profile.

First note that we actually do not know the heaps to be equal in both worlds
(Γa = Γ′a) due to the fact that we might have unevaluated heap cells mentioning the
optimised expression. In order to prove any properties formally we have to talk about
some notion of term equivalence, where we define e ≡ e′ in a similar way to Section 4.4.2
on page 73. While back then we allowed variable names to change, this time around
we make a special case for the optimised expression:

〈〈αβ〉〉e[x/y] ≡ 〈α〉
(
(〈β〉λy.e′) x

)
where e ≡ e′

We extend this in the natural way to heap equivalence Γa ≡ Γ′a.
Furthermore suppose that a profile comparison function ≤ that behaves as expected

with respect to profile composition and annotation. For example given arbitrary θ1 ≤ θ′1
and θ2 ≤ θ′2 we should have θ1 + θ2 ≤ θ′1 + θ′2 as well as 〈α〉θ1 ≤ 〈α〉θ′1 for all α. In the
case of β-reduction we could simply define this as:

∅ ≤ ∅
θ +O ≤ θ′ +O where θ ≤ θ′

θ ≤ θ′ +O where θ ≤ θ′

in order to ensure that our optimisation actually led to a strict reduction in cost.
This definition quite obviously satisfies the laws, however note that we will revisit this
definition later in Section 4.8.5 where we can not establish as strong a result.

Now let us suppose two judgements in the original and alternate world respectively:

Γa : e ⇓θ Γb : v and Γ′a : e′ ⇓θ′ Γ′b : v′

103

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

with Γa ≡ Γ′a and e ≡ e′. Now we can prove inductively that we have Γb ≡ Γ′b, v ≡ v′

as well as θ ≤ θ′. To see this, we note that if e′ does not happen to be transformed,
we can derive the property easily simply by the structure of the rules in Figure 4.19.
However, if we find an optimised expression, we can use a variant of the argument from
Section 4.8.1 to show that, conditional on all sub-matches adhering to the induction
assumption, it also must be true for the evaluation of the expression itself.

In the end, what we get out is the statement that we must have θ ≤ θ′ for the whole
program. Given our definition of profile comparison this means that have not only
potentially reduced cost, but also more importantly retained all relevant annotations.

4.8.4 Floating Let

The need to define special notation for “pushing” an annotation on costs and values
might be surprising. After all, now it might appear like the special cases we introduced
for let and case expressions actually made our job harder! However, the opposite side
of the coin is that there are optimisations where this actually makes sensible annotation
possible in the first place. Consider for example a simple instance of let floating:

〈αc〉case e1 of
{
C x→ 〈αl〉let {y = e2} in e3, ...

}
=⇒ 〈βl〉let {y = e2} in

(
〈βc〉case e1 of {C x→ e3, ...}

)
What this does is to take the y binding and move it up through the enclosing case

expression. While it might not be quite obvious whether this transformation actually im-
proves program performance, this is often an intermediate step to further optimisations,
such as turning e2 into a global constant [Peyton Jones et al., 1996].

Our goal is now to derive new annotations βl and βc given the existing ones. To do
this, we first need an idea of how these annotations will actually propagate to the final
program profile. Consider the evaluation of the optimised expression in the world W ,
assuming that the e3 branch gets taken:

Γ : 〈βl〉let {y = e2} in
(
〈βc〉case e1 of {C x→ e3, ...}

)
Γ, ŷ 7→ e2[〈βlγ〉ŷ/〈γ〉y] : 〈βc〉case e1 of

{
C x→ e3[〈βlγ〉ŷ/〈γ〉y], ...

}[
Γ, ŷ 7→ e2[〈βlγ〉ŷ/〈γ〉y] : e1 ⇓θ1 Γ1 : 〈δ〉C x̂[
Γ1 : e3[〈βlγ〉ŷ/〈γ〉y][〈γ〉x̂/〈γ〉x] ⇓θ2 Γ2 : v
⇓〈βc〉E+〈βc〉θ1+〈βcδ〉S+〈βcδ〉θ2 Γ2 : 〈βc〉v

⇓〈βl〉κ+〈βc〉E+〈βc〉θ1+〈βcδ〉S+〈βcδ〉θ2 Γ2 : 〈βc〉v

For brevity we are using the symbol κ to refer to cost originating from the let expression,
so 〈α〉κ = 〈α〉S + 〈α〉O(y = e2). We know that for the transformation to be valid in the

104

CHAPTER 4. CAUSALITY ANALYSIS 4.8. OPTIMISATIONS

first place, e1 cannot mention y, therefore we especially have e1 = e1[〈βlγ〉ŷ/〈γ〉y] and
can skip renaming.

If we do the same for the unoptimised expression, we obtain a slightly different
evaluation tree:

Γ′ : 〈αc〉case e1 of
{
C x→ 〈αl〉let {y = e2} in e3, ...

}[
Γ′ : e1 ⇓θ′1 Γ′1 : 〈δ〉C x̂
Γ′1 : 〈αl〉let {y = e2} in e3[〈γ〉x̂/〈γ〉x][

Γ′1, ŷ 7→ e2[〈αlγ〉ŷ/〈γ〉y] : e3[〈αlγ〉ŷ/〈γ〉y][〈γ〉x̂/〈γ〉x] ⇓θ′2 Γ′2 : v′

⇓〈αl〉κ+θ′2 Γ′2 : v′

⇓〈αc〉E+〈αc〉θ′1+〈αcδ〉S+〈αcδαl〉κ+〈αcδ〉θ′2 Γ′2 : 〈αc〉v′

We assume that we choose the same fresh variable name ŷ in both worlds without loss
of generality. We also assume Γ ≡ Γ′, from which follows that x̂ is indeed identical in
both cases, as well as that we arrive at equivalent heaps Γ2 ≡ Γ′2. However, we have to
take a closer look at costs. For reference, here are again the two profile terms we get
after evaluating the expressions:

θ = 〈βc〉E + 〈βcδ〉S + 〈βl〉κ + 〈βc〉θ1 + 〈βcδ〉θ2

θ′ = 〈αc〉E + 〈αcδ〉S + 〈αcδαl〉κ + 〈αc〉θ′1 + 〈αcδ〉θ′2

As our aim is to find a way to match these profiles as closely as possible, we clearly want
to set βc = αc, as this allows us to match up all cost apart from the κ term. However,
it is less clear how we should set βl. After all, we cannot possibly set βl = αcδαl, as δ is
the value annotation that determines the taken branch, and therefore depends on the
concrete evaluation of the scrutinee e1. This means that the concrete cause will only
get determined once we run the program – which is incompatible with our intention of
setting annotations beforehand!

4.8.5 Overhead

There is a good reason why we could not match up the annotations in the last section.
After all, before the code transformation took place, evaluation of the let expression
was conditional on the case expression taking the right branch. This is exactly what
the δ annotation describes: the reason we encountered the C constructor, and therefore
decided to take the given branch, leading the program to emit the let cost κ. Also note
that we obtained the two profiles under the expressed assumption that we actually take
the e3 branch. If we assume for a moment that evaluation would take a different path,
the difference would be even more pronounced, as the cost κ would now completely
disappear from the world W ′.

105

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

What we conclude from this is that even though they are equal, we should not
actually attempt to match κ from the original world with κ from the alternate world.
Instead, we see them as distinct instances: The optimisation removed what caused the
κ cost from the original program, and then reintroduced something else to compensate
for its removal, which just so happens to also emit κ.

What do we learn from this for how to handle the code transformation? The removal
is something that we do not need to track, so we can simply drop the cost from the
profile silently. However, then the costs κ “re-appearing” in θ is a W event that does
not exist in the alternate world W ′. We conclude that these must be effects of our
miracle, which is the application (or counter-factually the reversal) of the optimisation.
This means that the cost becomes an optimisation overhead in our eyes.

What this means is that the cost κ is caused by whatever caused the compiler to
float the let expression in the first place. Let us suppose that this was the match on the
exact expression fragment 〈αc〉case e1 of

{
C x → 〈αl〉let {y = e2} in e3, ...

} 13. This
match was in turn caused by βlβc by the logic we introduced in Section 4.3.4. From
this follows that we should actually set βl = αcαl, which gives us the completed let

floating rule:

〈αc〉case e1 of
{
C x→ 〈αl〉let {y = e2} in e3, ...

}
=⇒ 〈αcαl〉let {y = e2} in

(
〈αc〉case e1 of {C x→ e3, ...}

)
What can we claim about the properties of this rule? This time, the annotation changes
are substantially harder to predict. For starters, note that βl = αcαl gets inserted into
the expression terms when substituting y by the fresh ŷ, which means that we will have
extra αc annotations in ê3 that were not present in ê′3, from which we would have to
conclude that have ê3 6≡ ê′3. To prevent this, we will define our equivalence relation to
not only allow replacing the optimised expression, but also adding extra αc annotations:

e ≡ 〈αc〉e
′ where e ≡ e′

This re-establishes ê3 ≡ ê′3, and we can show by induction over the nested evaluation
that Γ1 ≡ Γ′1, Γ2 ≡ Γ′2 and v ≡ v′ hold as well.

Note however that this change will never actually “reach” the top-level judgement:
We can argue just like we did back in Section 4.7.1 on page 95 that αc actually “encap-
sulates” the effects of ŷ already. To be concrete, ŷ was freshly generated by our let

13Which is not strictly speaking true, as we mentioned that this transformation only applies given
certain program properties. For example floating the binding up to become a global constant would be
caused by e2 having no live variables. However, we have no way to encode such “negative” properties,
therefore we can only ignore them.

106

CHAPTER 4. CAUSALITY ANALYSIS 4.8. OPTIMISATIONS

expression, so the only way that it can influence the rest of the program would be either
through the result value v or the profile θ2. As we have annotated both with αc, this
means that all effects of the substituted variable must end up carrying this particular
annotation anyway.

Apart from extra annotations, we also have substantial profile changes. The reason is
not only that we might have extra instances of κ in θ, but we could also have differences
due to us changing the αcδαl annotation on the cost to just αcαl. Therefore we need a
new profile comparison function ≤l as well:

∅ ≤l ∅
θ ≤l θ′ +O where θ ≤l θ′

θ +O ≤l θ′ +O where θ ≤l θ′

θ +O ≤l θ′ + 〈αc〉O where θ ≤l θ′

θ + 〈α〉κ ≤l θ′ where θ ≤l θ′

θ + 〈α〉κ ≤l θ′ + 〈αδ〉κ where θ ≤l θ′, δ arbitrary

This lists all the profile changes we have to allow for this particular optimisation to work:
On one hand we must allow αc annotations to appear in θ′ at least for intermediate
states. But on the other hand we have to also account for the profile-specific changes
due to the relocation of the costs associated with the let expression. This means that
we not only must allow κ terms to vanish, but also to gain additional annotations in
W ′. Note that, again, the concrete δ is only determined at runtime, so for the purpose
of equivalence we must allow arbitrary changes.

This set-up is what we need in order to be able to claim that θ ≤l θ′. And while
it might appear like we had to concede a lot of rigour with our modification of the
profile comparison function ≤, the result is actually as good as we could hope for: The
annotation changes for κ just truthfully represent the decision of the compiler to change
control flow. And the over-annotation of αc is only a temporary effect that will not
show up in the finished program profile. This means that yet again we have a basically
perfect result: For all costs that remain after the transformation, our annotations are
as accurate as they could possibly be.

At this point we should also take a moment to acknowledge that we could only
obtain this result because of our choice of alternate world in Section 4.6 on page 85.
After all, for a simple “crash” alternate world the let annotation βl would have been
seen as a cause for evaluating the contained case expression. This means that for
example the cost E would get assigned with an annotation of βcβl = αcαl, whereas
before it only got annotated with αc. This would have been a much larger change, as
now let floating would increase the annotations on all expressions that we “pass”!

107

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

4.8.6 Floating Case

We have seen that for the purpose of profiles, floating let bindings outwards work
out quite nicely. However, what about if we change things around a bit by floating a
one-branch case expression inwards?

〈α1〉case e1 of
{
C x→ 〈α2〉case e2 of {D y → e3; ...}

}
=⇒ 〈α2〉case e2 of

{
D y → 〈α1〉case e1 of {C x→ e3}; ...

}
Here we have two case expressions, with one branch and multiple branches respectively.
What we did is to “float” the one-branch case expression scrutinising e1 into the e3

branch. This is generally a very good idea where we can show that no other branch of
the inner case expression was using x. This transformation allows these branches to
skip the scrutinisation altogether.

Note that we skipped ahead a bit and already attached the “right” annotations to
the above code transformations. Let us play through the evaluations anyway so we can
have a look at the exact consequences this has on the profile. Here is the evaluation of
the original expression, which is now our alternate world W ′:

Γ′1 : 〈α1〉case e1 of
{
C x→ 〈α2〉case e2 of {D y → e3; ...}

}[
Γ′1 : e1 ⇓θ′1 Γ′2 : 〈δ1〉C x̂
Γ′2 : 〈α2〉case e2 of {D y → e3[〈α1δ1γ〉x̂/〈γ〉x]; ...}[

Γ′2 : e2 ⇓θ′2 Γ′3 : 〈δ2〉D ŷ[
Γ′3 : e3[〈α1δ1γ〉x̂/〈γ〉x][〈γ〉ŷ/〈γ〉y] ⇓θ′3 Γ′4 : v
⇓〈α2〉E+〈α2〉θ

′
2+〈α2δ2〉S+〈α2δ2〉θ

′
3

Γ′4 : 〈α2δ2〉v

⇓〈α1〉E+〈α1〉θ
′
1+〈α1〉S+〈α2〉E+〈α2〉θ

′
2+〈α2δ2〉S+〈α2δ2〉θ

′
3

Γ′4 : 〈α2δ2〉v

From the correctness of the transformation we know both that e2 cannot mention x,
and that e1 cannot contain a reference to y.

Let us then continue with the optimised expression:

Γ1 : 〈α2〉case e2 of
{
D y → 〈α1〉case e1 of {C x→ e3}; ...

}[
Γ1 : e2 ⇓θ2 Γ2 : 〈δ2〉D ŷ
Γ2 : 〈α1〉case e1 of {C x→ e3[〈γ〉ŷ/〈γ〉y]}[

Γ2 : e1 ⇓θ1 Γ3 : 〈δ1〉C x̂[
Γ3 : e3[〈α1δ1γ〉x̂/〈γ〉x][〈γ〉ŷ/〈γ〉y] ⇓θ3 Γ4 : v
⇓〈α1〉E+〈α1〉θ1+〈α1〉S+θ3 Γ4 : v

⇓〈α2〉E+〈α2〉θ2+〈α2δ2〉S+〈α1α2δ2〉E+〈α1α2δ2〉θ1+〈α1α2δ2〉S+〈α2δ2〉θ3 Γ4 : 〈α2δ2〉v

108

CHAPTER 4. CAUSALITY ANALYSIS 4.8. OPTIMISATIONS

In the end we arrive at the following profiles:

θ = 〈α1α2δ2〉E + 〈α1α2δ2〉S + 〈α1α2δ2〉θ1 + 〈α2〉E + 〈α2δ2〉S + 〈α2〉θ2 + 〈α2δ2〉θ3

θ′ = 〈α1〉E + 〈α1〉S + 〈α1〉θ
′
1 + 〈α2〉E + 〈α2δ2〉S + 〈α2〉θ

′
2 + 〈α2δ2〉θ

′
3

And again the changes do not seem too severe – the four terms originating from the
evaluation of e2 and e3 have not been touched, therefore most of the profile seems to be
left intact. On the other hand, that we gain extra annotations on the cost originating
from the relocated case expression is neither surprising nor concerning: The whole goal
was to change control flow in a way that evaluation of e1 now depends on the branch
we take, and therefore on α2δ. And as the final annotations work out to include α1α2,
we even have a consistent causal story here if we just see the cost as “re-appearing” as
we did in the last section.

4.8.7 Preemption

However, there is a more subtle problem with our argument. Specifically, suppose we
try to again show equivalence between the result values, costs and heaps. Quickly we
run into an issue: For the first version we evaluated e1 followed by e2 and then e3,
whereas after the optimisation the order has changed to e2, then e1 and finally again e3.
Now we can easily assert that evaluation of e1 and e2 cannot depend on each other on
account of not using any of the x or y variables respectively. However, their evaluations
can still “interact” with each other via thunk evaluations.

To see why, simply suppose that we have a variable z referring to an unevaluated
cell on both the heap Γ1 and Γ′1, and just for the sake of the argument that we have
e1 = 〈α〉z and e2 = 〈β〉z. Let us suppose that evaluating z in either world would result
in costs θz to be emitted. This means that we would match the (Var1) rule on whatever
expression we evaluate first, but (Var2) on the second. We would obtain the following
profiles:

θ′1 = 〈α〉V + · · ·+ 〈α〉θz θ1 = 〈α〉V + 〈α〉S

θ′2 = 〈α〉V + 〈β〉S θ2 = 〈β〉V + · · ·+ 〈β〉θz

Clearly it has become quite hard to regard θ1 and θ′1 as well as θ2 and θ2 respectively as
equivalent. In fact, due to θz they might arguably even be arbitrarily dissimilar! This
is worrying, as in the last section we argued that putting similar annotations on these
“equivalent” profile portions might be a sign that profile quality was retained. Is there
a way we can fix our reasoning?

Let us take another look at the whole process from a causal point of view. Once
more we are going to do a thought experiment, this time with the question: Would

109

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

θz get emitted if α was false? Given our example this means we need to consider
alternate worlds – before and after optimisation – where we have to count on e1 6= z.
Setting e′1 = ⊥ would not gain us any useful insight in this matter, so let us instead set
e′1 = C x′ for some arbitrary x′. If we now evaluate the whole transformed expression in
the alternate worlds, we observe that θz gets emitted in either case. After all, the way
we have set things up we will always still evaluate e2, which will evaluate the thunk. So
by counter-factual causality analysis this tell us that α is not, in fact, a cause for θz !

Yet this can not be true. After all, we could just as well set e′2 = D y′ and arrive
at the conclusion that e2 had nothing to do with θz either. And yet there must clearly
be some causal connection, after all setting both e1 = C x′ as well as e2 = D y′ at the
same time finally makes θz disappear! What we have here is the well-known causal
phenomenon of redundant causes preempting each other [McDermott, 1995] 14. For the
purpose of causing θz, we just need either α or β, meaning that if both are present,
they are completely interchangeable. Hence we can actually argue that even though,
for example, θ1 and θ′1 are not equivalent, we can show that for the completed top-level
profiles θ and θ′ all cost either has the same cause term as before, or one where we have
exchanged a cause by another equivalent one. Either is equally valid for our analysis,
therefore this does not constitute a decrease in profile validity.

4.8.8 Case-Of-Case

Thanks to our careful preparations, all the examples discussed so far have been fairly
well-behaved: We had fairly obvious places to put annotations, and after a bit of
contemplation it was never hard to see that the resulting profiles worked out nicely in
one way or the other. However, there is no guarantee of that, so we have to expect to
encounter more difficulties once we go beyond simple floating transformations.

Consider an instance of the case-of-case transformation that we discussed back in
Section 3.4.8 on page 40, with some annotations added speculatively:

〈α1〉case
(
〈α2〉case e1 of {C → e2, ...}

)
of
{
Dy → e3, ...

}
=⇒ 〈α1α2〉case e1 of

{
C → 〈〉case e2 of {Dy → e3, ...}, ...

}
Note that we have left the annotation of the inner case expression empty, and instead
merged all existing causes into the top-level case expression annotation. To see why,
let us once more play through the evaluation of the untransformed expression with our

14Note that the literature generally states the problem the other way around – how can we identify
the “true” cause in such a tricky situation? However, we essentially already implement causal chains
as suggested by Lewis [2000], therefore ending up only with this relatively minor interpretation issue.

110

CHAPTER 4. CAUSALITY ANALYSIS 4.8. OPTIMISATIONS

causality semantics:

Γ′ : 〈α1〉case
(
〈α2〉case e1 of {C x→ e2, ...}

)
of
{
D y → e3, ...

}
Γ′ : 〈α2〉case e1 of {C x→ e2, ...}[

Γ′ : e1 ⇓θ1 Γ′1 : 〈δ1〉C x̂[
Γ′1 : e2[〈γ〉x̂/〈γ〉x] ⇓θ2 Γ′2 : 〈δ2〉D ŷ

⇓〈α2〉E+〈α2〉θ1+〈α2δ〉S+〈α2δ1〉θ2 Γ′2 : 〈α2δ1δ2〉D ŷ[
Γ′2 : e3[〈γ〉ŷ/〈γ〉y] ⇓θ3 Γ′3 : v
⇓〈α1〉E+〈α1α2〉E+〈α1α2〉θ1+〈α1α2δ1〉S+〈α1α2δ1〉θ2+〈α1α2δ1δ2〉S+〈α1α2δ1δ2〉θ3

Γ′3 : 〈α1α2δ1δ2〉v

And for the optimised version:

Γ : 〈α1α2〉case e1 of
{
C x→ 〈〉case e2 of {D y → e3, ...}, ...

}[
Γ : e1 ⇓θ1 Γ1 : 〈δ1〉C x̂
Γ1 : 〈〉case e2[〈γ〉x̂/〈γ〉x] of {D y → e3, ...}[

Γ1 : e2[〈γ〉x̂/〈γ〉x] ⇓θ2 Γ2 : 〈δ2〉D ŷ[
Γ2 : e3[〈γ〉ŷ/〈γ〉y] ⇓θ3 Γ3 : v
⇓E+θ2+〈δ2〉S+〈δ2〉θ3 Γ3 : 〈α2δ2〉v

⇓〈α1α2〉E+〈α1α2〉θ1+〈α1α2δ1〉S+〈α1α2δ1〉E+〈α1α2δ1〉θ2+〈α1α2δ1δ2〉S+〈α1α2δ1δ2〉θ3

Γ3 : 〈α1α2δ1δ2〉v

Which means that we arrive at the following cost sum:

θ = 〈α1α2〉E + 〈α1α2δ1〉S + 〈α1α2δ1〉E + 〈α1α2δ1δ2〉S + 〈α1α2〉θ1 + 〈α1α2δ1〉θ2 + 〈α1α2δ1δ2〉θ3

θ′ = 〈α1α2〉E + 〈α1α2δ1〉S + 〈α1〉E + 〈α1α2δ1δ2〉S + 〈α1α2〉θ1 + 〈α1α2δ1〉θ2 + 〈α1α2δ1δ2〉θ3

Which once more is a very close match, especially if we consider that we have no change
of annotations for θ1, θ2 and θ3, which are likely to contribute the lion share of cost in
a real program.

On the other hand, note that the cost of the case expression scrutinising the
evaluation result of e2 has gained an extra α2δ1 annotation. As before, this is a
direct result of the transformation reorganising the control flow in order to push the
case expression in question inside the branches. Unlike last time however, this new
annotation does not actually tell us anything useful: The program would execute a copy
of the case expression no matter which path we take. Hence α2δ1 is for all intents and
purposes not actually a cause for the cost in question. Consequently, transforming the
annotated program as proposed will actually cause a slight drop in profile accuracy!

This might not seem like a big deal at this point, but note that most code transfor-

111

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

mations are applied many times during the optimisation phases, therefore we should
make sure that we do not accept this without good reason. Unfortunately, our options
are quite limited: Clearly we would not want to remove annotations on θ1, θ2 or θ3, as
that would have even more severe consequences.

The most interesting of the bad options would be to get “tricky”:

〈α1〉case
(
〈α2〉case e1 of {C → e2, ...}

)
of
{
Dy → e3, ...

}
=⇒ 〈α1〉case 〈〈α2〉〉e1 of

{
C → 〈α2〉case e2 of {Dy → e3, ...}, ...

}
Which would yield us the following profile:

θ = 〈α1〉E + 〈α1α2δ1〉S + 〈α1α2δ1〉E + 〈α1α2δ1δ2〉S + 〈α1α2〉θ1 + 〈α1α2δ1〉θ2 + 〈α1α2δ1δ2〉θ3

This would allow us to match the 〈α1〉E profile portion through the back door by
comparing costs of the case expression scrutinising e1 with the one scrutinising e2.
While this might look good on paper, it is a bad idea – the assumption that the
two case costs are comparable is questionable at best. A simple extension of our
performance model would invalidate this idea.

In the end, we have to admit that we simply cannot retain perfect profiles for
every code transformation within the confines given by our causality model. Our only
consolation at this point is that we can argue that the case-of-case transformation is
typically a pretty clear one-way optimisation, so we would expect that the number of
applications in an optimisation pass is expected to be relatively low.

4.8.9 Rules

We have seen that we cannot always preserve the accuracy of our profile when running
our code through transformations. So how bad would our profiles get in the “worst
case”? For our purposes, the most general code transformation we want to support are
programmer-supplied custom optimisation rules [Peyton Jones et al., 2001].

Recall the fold/build rule we demonstrated in Section 3.4.1:

〈α〉foldr k z (〈β〉build g) =⇒ 〈αβ〉g k z

Assessing this rule is difficult. After all, both foldr and build are non-trivial functions,
the effects of which we can not easily tease apart like we did for simple expression
fragments in the previous sections. So unless we are willing to look deeply into their
definitions, these functions are simply black boxes to us. Apart from the fact that the
evaluation depends on both α and β and that they make use of sub-expressions k, z
and g there is very little we can actually know.

112

CHAPTER 4. CAUSALITY ANALYSIS 4.8. OPTIMISATIONS

Therefore, we are forced to assume that the optimisation changes all costs that it
could possibly reach. This means that we assume a “worst case” behaviour for the
program as it was before code optimisation, namely that evaluating the expression in
question caused no costs at all (or ⊥) while still producing an equivalent return value.
Our miracle would for example be the judgement:

Γ : foldr k z (build g) ⇓⊥ Γ′ : v

By this point we should be quite familiar with how this kind of thing turns out: If we
assume this cost term in our alternate world, then every cost produced by the main-
world judgement of g k z must be an effect. Just like with overheads, their cause will
be the same as what caused the optimisation. As we know that rules getting applied
depends exactly on the compiler spotting the desired expression pattern, we also know
that the transformation was caused exactly by the causes annotated on the matched
expression. In our example, this would be αβ.

To get the appropriate annotations on the effects we have to again employ indirect
measures, with all their imperfections. By consulting Figure 4.19 we find that in
our instance, the most straight-forward way of annotating all cost generated by the
modified part of the program is simply to put an annotation on the application g k z
itself. Note however that this will not generally work due to let and case expression
annotating their results differently. Fortunately, we have already solved this problem
in Section 4.8.2 using push annotations, so we can simply re-use this here. So let us
say that we have a rule matching an expression pattern with unknowns e1, e2... and
transforming it to a new expression opt(e1, e2, ...). The compound pattern match event
will depend on a number of annotations αβ · · · as explained in Section 4.3.4, which we
can then re-annotate as the cause of the optimisation:

〈α〉...e1...〈β〉...e2... =⇒ 〈〈αβ...〉〉opt(e1, e2, ...)

To reiterate, this is the most conservative way we could annotate given the expression
properties we know. Note that we could be over-annotating costs here, after all it
would not be too hard to construct an example where, say, β becoming false would
not cause a certain profile portion caused by α to change. However due to the limited
amount of information we have to accept this sort of annotation overreach. To make
matters worse, note that by using push annotations we might also be adding additional
annotations on the return value. Given that we assume that the result value does not
change, this is almost automatically a reduction in annotation usefulness.

However, things are not all bad. Optimisations often work on functions that are
coordinating heavily, so it is in fact quite hard to find real-world examples for rules

113

4.8. OPTIMISATIONS CHAPTER 4. CAUSALITY ANALYSIS

where the results depend completely on the whole pattern matched. In the example of
the short-cut rule, we are clearly reducing the number of expressions involved, so it is
not hard to see that bringing together the annotations at the only remaining expression
is our only choice. And simply by looking at the costs involved, we can even determine
that in our example we have not actually introduced any sort of profile degradation.

4.8.10 Final Notes

By this point we have covered the whole spectrum of optimisations present in the
compiler. It should be clear that no matter the code transformation, will find some
kind of annotation scheme that guarantees us to never lose annotations. In the worst
case we can always fall back to just push-annotating every cause of the optimisation
on top of the transformed expression, which as explained in the last section is always
valid.

However, the more information we have about the transformation, the better a job
we can do. This is especially true where we can anchor the logic of the transformation
into our causality model as we did with let and case expressions. However, let us take
a moment to review all the different types of profile effects we have identified, from
benign to more severe:

1. Firstly we might have cost reductions, as shown in Section 4.8.1. These are both
what optimisations want to achieve, as well as easy for us to handle, as we are
only interested in costs that actually appear in the final program.

2. Another profile change that we can gloss over is preemption as investigated in
Section 4.8.7. Here we simply have cost and value terms switching out redundant
causes, which means that we neither gain nor lose actual diagnostic accuracy.

3. In Section 4.8.5 we introduced the other side of the coin: overheads. Where a
transformation makes a conscious decision to trade one cost for another, we have
to acknowledge that fact by annotating the cause.

4. Finally, in Section 4.8.8 and Section 4.8.9 we encountered the most problematic
change we were forced to make: Annotations overreaching. This was a matter of
us hitting the limits of what causal stories we can express using the tools given
to us by the evaluation.

In the end, we expect that the causality model will be able to enumerate all possible
causes for every effect, while doing a reasonably good job at not introducing too much
noise on top. As we explained at the beginning of this chapter, this is all we could hope
to achieve. We will show in Chapter 6 that in practice we can actually tolerate false
positives to a significant degree.

114

Chapter 5

Profiling

“This hourglass keeps very good time. Helvetian made! But you have to
watch it. Whenever I shout ‘cuckoo’ it is time for all the hotel guests to
turn their hourglasses around.”

— Asterix in Switzerland, René Goscinny & Albert Uderzo

At this point we have developed a sound theoretical foundation for evaluating profiling
designs. To be concrete, what we have is a working model of how we can take a Haskell
program, desugar it into our annotated abstract language, and then proceed to optimise
and evaluate it. The result will not only be the program result, but also a perfect
correct-by-construction cause-annotated abstract cost profile: A full record of the cause
behind every abstract cost emitted.

While developing this model we took great care to reflect real-world compilation
and execution of Haskell code as closely as possible. The reason is that we go into
this chapter with the intention of mapping the abstract model back to actual Haskell
execution. This means that we are going to translate every element of our model back
into its real-life counter part: Abstract costs will become real costs, abstract evaluation
will reflect the real program evaluation, and cause annotations will be references to the
source code of some form. As we have shown that our abstract model is consistent,
this means that if we find cost in our program that corresponds to our performance
model we only have to ask what cause term we would assign to the abstract cost in
our model. As the cause term corresponds to a full history of how the source code
influenced cost generation, the result would ideally be a “perfect” explanation of how
the cost in question was emitted.

However, there is a very good reason why we limited our considerations to an
abstract model in the first place: For a concrete profiling solution our design space is
actually heavily restricted. Instrumentation and sampling will generally only be able
to tell approximately how much cost was generated from each part of the program.

115

5.1. DESIGN CHAPTER 5. PROFILING

This means that our mapping to abstract evaluation will be fairly approximate: We
can only ever hope to reconstruct very limited parts of the “actual” cause terms. To
make matters worse, we also have to start thinking about how exactly we are going to
present all of our data to the user. After all, in the end this is about causal analysis,
which means that we ought to break our data down using suitable verbs, nouns and
explanations.

We will start this chapter with reviewing our requirements and settling on a concrete
design for our profiling solutions. Section 5.1 will serve as an introduction to this, while
Section 5.2 will review the kinds of performance data we wish to collect. Section 5.3
on page 121 will then round out our design with the most important part: How much
of the cost annotations we can reconstruct, as well as what user intuitions these might
correspond to. We will especially take this opportunity to evaluate other profiling
approaches with respect to our abstract model.

Starting with Section 5.4 on page 129 we will tackle concrete implementation con-
cerns. We will begin with explaining how to adapt GHC’s passes to maintain source
code annotations that reflect cause annotations from the last chapter. In Section 5.5
on page 143 we will show how we can continue to track these annotations even after
GHC has translated the functional Core code into the imperative Cmm language. This
only leaves actual code generation, where Section 5.6 on page 149 will explain how we
can embed our debugging data into executables using a mix of standardised DWARF
code and GHC-specific extensions.

By that point, we will have learned how we can generate the program complete with
enough annotations to track virtually any cost back to the source code. However, in order
to solve its performance problems, we still need to collect and interpret performance
data. To this end, Section 5.7 on page 162 will explain how we can extend the run-time
system of programs compiled with GHC to collect samples telling us about a variety of
performance metrics. Finally, Section 5.8 on page 168 will describe how we can enable
the user to analyse and evaluate our collected data.

5.1 Design

Let us quickly remind ourselves what the profiling task is according to our earlier
definition in Section 2.1 on page 5. The whole point of our solution is to allow the
user to map an abstract notion of performance (verbs) to an abstract notion of causes
(nouns). As a simple one-to-one mapping seldom contains enough information to allow
the user to fully understand the problem, it is furthermore a good idea to give the
programmer an idea exactly how the program executed. Such explanations are vital for
effective program analysis, and should ideally strike a balance between saying enough

116

CHAPTER 5. PROFILING 5.2. METRICS

about the program run to analyse performance, and overwhelming the programmer
with too much “incidental” information. In either case, we need statistics that give us
an idea of roughly how much cost we are tracking at each point during execution, in
order to allow the user to focus their search.

So what will be the nouns, verbs and explanations for our profiling solution? Let us
start with the easiest part: Given our groundwork from the last chapter, our causes and
therefore nouns will be referring to the program source code. We can easily generate
these causes simply by remembering the original source code spans while generating
Core code during parsing and desugaring. And while maintaining these source code links
throughout compilation will require a few compilation changes, we can implement this
with only modest overheads. On the other hand, we have a much broader set of choices
when we consider how to collect performance data. We could go by time consumption,
processor cycles, or attempt to pinpoint certain hardware processes such as cache misses.
Taking inspiration from the performance model we developed in Section 3.5, we also
have the option to specifically instrument Haskell code characteristics, such as stack or
heap usage. Collecting such data will involve working alongside a program execution,
which comes with its own set of challenges.

Finally, for explanations we will mainly pursue two approaches. Our main idea will
be a pretty common one for profiling tools: We will be able to derive a good number
of source code links using our abstract model, but this does not explain very well how
the given source code element ended up influencing performance. Therefore we will
take apart the full cause term in a way reminiscent of call stacks. Furthermore, we
will show how we can use intermediate compilation results to allow the user to discover
what transformation happened in the compiler. In either case, our implementation will
attempt to provide this information without having to do any information gathering on
its own. This means that our explanatory data is basically “free”, and especially allows
us to in principle work with any given sampling back-end.

5.2 Metrics

Let us first talk about how we approach performance measurements. Due to our work
on the performance model in Section 3.5 on page 41 we generally have a pretty good idea
about how the program generates cost. Yet as we argued in Section 2.2.4 on page 12,
this is not enough for profiling: We need to be able to actually quantify these costs. To
make matters worse, different verbs will require entirely different performance metrics
as well as sampling approaches. For example information collection on low-level verbs
will generally mean that we need to interface with the CPU and the operating system,
while Haskell-specific metrics will be measured by the run-time system.

117

5.2. METRICS CHAPTER 5. PROFILING

Furthermore, given our approach it is pretty clear that we are highly interested in
high-quality performance data. After all, we have put considerable effort into making
sure that our view of causality is consistent even after program optimisations have been
applied. This means that our profiling approach is especially suitable for working with
heavily optimised programs, where our main interest might be squeezing out the last
few percents of performance. Therefore it is important that we proceed in a disciplined
fashion and make sure that our approach is able to even pick out relatively small
regressions in performance.

5.2.1 Skews

Most importantly, we need to make sure that we do not introduce systematic errors into
our profiling: If our performance measurement approach ends up selectively increasing
the cost associated with certain program elements, we might end up seeing performance
problems where they normally do not exist. This is a very real danger, as gathering
performance metrics has a cost of its own. In the extreme case, we might end up
profiling our own profiling solution instead of the program.

There are two approaches we can use to prevent this. The easiest way is to simply
make sure that we have as little overhead as possible. After all, where our sampling is
so cheap that it has no significant influence on overall program performance, it cannot
have a significant influence on profiling results. However this is slightly dangerous for
us to rely on, as what we mean by “significant” can quickly change. For instance as we
noted above, we want to be able to identify relatively minor influences on performance.
Furthermore, sometimes we might be forced to increase the overhead of our data
collection, for example because a short program run time forces us to collect a lot of
samples over a relatively short time period.

In these situations we can attempt to prove that our profiling will have few skews
despite having overhead. Fortunately, this is quite often the case: For example, taking
heap residency profiles on garbage collection will introduce basically no skews despite
its moderate cost. After all, garbage collections taking longer is unlikely to have a big
impact on how the program executes. And even for low-level measurements we can
often prevent skews by leaving most of the work to, say, the operating system, which is
outside of the scope of our performance measurements.

5.2.2 Time

Let us then start considering the different verb implementations. The most basic verb
for us is simply time passing, which is the resource that basically every abstract cost
will indirectly consume. Especially most of the “constant” costs for applying a rule

118

CHAPTER 5. PROFILING 5.2. METRICS

(such as C, L, A, V, U and E) will be covered by no specialised verbs, therefore it is
always vital that we can measure this verb in one form.

Yet this does not mean that profiling by time is without design choices. For starters,
we have to choose what program phases we want to consider: For example, a standard
restriction for Haskell programs is to only consider “mutator” time, which is the pro-
gram run time excluding garbage collections. As we are primarily interested in the
performance of our own compiled code, this makes sense most of the time. After all, it
is generally better to analyse garbage collection efficiency using specialised verbs such
as allocation or residency, which we will cover in Section 5.2.4 forward.

Furthermore, there might be other outside influences that might cause time loss,
which we might or might not want to discount. For example, our process might get
de-scheduled by the operating system because of multi-tasking, or to wait for an I/O
request to complete. Whether we see these as performance problems depends on whether
we see these as outside influences or expect our program to have control over them.

5.2.3 CPU

Moreover, where appropriate we can even break down mutator time further. After all,
the code produced for our Haskell program will run on a CPU, which is a complex
piece of hardware in its own right. This means that even beyond the relatively simple
performance model we derived for Haskell programs, there are subtle performance
characteristics to tease out. For example, depending on the structure of our control
flow and memory access patterns, the processor might spend extra cycles waiting for its
tables to reload on a mis-predicted branch. In a similar fashion, accessing an obscure
memory region might cause a cache miss followed by a slow reload.

For capturing statistics about these kinds of verbs we have to generally depend on
hardware support. However note that once we have located the source of the slowdown,
we can use the very same mechanisms to track them back to the source code that we
always employ: After all, for our purposes for example a mis-predicted jump could
simply be a part of the abstract C cost for a case expression. Therefore it will be
indirectly tracked by our abstract semantics, which yields us cost terms just like for
any other cost discussed here.

5.2.4 Allocation

The reason that we are interested in low-level statistics such as cache misses is of course
that memory access can have substantial impact on program performance. We stressed
this point quite a bit when we developed how our performance model would handle
memory. Our first verb of note here is allocation, which corresponds to the act of
introducing new data into our memory system.

119

5.2. METRICS CHAPTER 5. PROFILING

However, we have two different forms of allocation that we might be interested
to track: Let us first discuss the faster options, which is stack or – for our purposes
synonymously – register allocation as discussed back in Section 3.5.3 on page 46. The
reason that this option is fast is that we have very predictable access patterns, which
means that the top of the stack generally remains in low-level processor caches for a long
time. However, significant allocation on the stack can still be a performance problem, as
for example the factorial function we discussed back in Section 3.4 on page 30 had O(n)
stack complexity. Where a program consumes this amount of stack space capturing
appropriate measurements would definitely be useful.

The second important form of allocation that a Haskell program performs is heap
allocation. For allocation purposes this is actually remarkably cheap, as the initial heap
allocation takes place in a nursery memory block, which is also very likely to reside
in processor caches. Given efficient garbage collection this means that programming
with short-lived heap objects can be remarkably fast [Sansom and Peyton Jones, 1993].
However, not all objects are short-lived enough and will eventually cause complexity
by wandering into older heap generations. Furthermore, excessive heap allocation can
often be a sign that optimisations failed to work properly, such as missing ways to unbox
primitives as discussed in Section 3.4.2 on page 31, or failing to eliminate a closure
using let-no-escape as explained in Section 3.5.11 on page 54.

5.2.5 Residency

The problem with heap objects that fail to die in the nursery is that they might
ultimately lead to heap residency: Heap data that accumulates over the program run.
After all, an object on the heap will be kept alive as long as there is a possibility for the
program run to access it. Keeping a lot of data around in this way is generally a bad
idea for performance, as not only makes memory access slower due to lost locality, but
also makes major garbage collections more costly overall. Therefore we will not only
see heap allocation as a verb, but heap residency as well.

However note that just like before, we can also attempt to partition the heap
residency verb by the concrete cause for the residency. As Röjemo and Runciman
[1996] show, we can actually see residence as being composed of four different effects –
objects getting created but not accessed (lag), objects getting actively accessed (use),
objects getting kept alive after the program does not need them anymore (drag) as
well as objects never getting used (void). All of these correspond to different aspects
of performance problems relating to heap residency: “Lag” means that we might be
allocating objects too early, dominant “use” might point towards work not finishing up
with the object quickly enough. Finally, “drag” and “void” correspond to the classic
memory leak problem, where we keep references around for too long.

120

CHAPTER 5. PROFILING 5.3. EXPLANATIONS

Especially note that controlling references in this fashion is quite hard in practice.
After all, due to Haskell’s lazy evaluation, the compiler will attempt to delay evaluation
as much as possible, which – as shown in Section 3.5.8 – will cause us to capture all live
variables. For the inexperienced Haskell programmer, such references can be somewhat
hard to predict, and therefore often lead to tricky performance problems. As our work
is however not primarily about heap profiling, we will not attempt to go too deeply
into these problems, and will instead limit our approach to measuring and – ideally –
pin-pointing heap allocation as well as basic heap residency.

5.3 Explanations

As the last section should have shown, there are quite a few useful performance metrics
that we could use to inform program optimisation. In theory, all we need to do now
is to actually implement the equivalent of our annotations in order to derive suitable
cause terms. However, showing a causal connection is only half the battle in practise.
After all, our cause terms are only correct in the sense that the mentioned causes can
be shown to be sufficient for producing the given effect. This does not mean that the
produced compound cause term is especially descriptive of the exact mechanism that
led to the observed effect.

In fact, it is not hard to see the practical problem with full cause terms: They
will most likely turn out to be absurdly large for any program of non-trivial size. Just
consider the optimisations we investigated in the last chapter: For basically every
considered rule there was a case where we had to put all visible cause annotations
on one cost or the other. And this is hardly surprising, as programs generally work
incrementally by building on top of the information that has been derived so far.
Whether it is actual data or control flow – every action the program takes will depend
on a significant chunk of the history that led up to the point in question. If we want to
picture the extreme case, we could easily see all our cause terms approaching a maximal
cause term covering the entire non-dead code base 1.

Such cause terms would not only be really hard to work with, but would also be
prohibitively expensive to construct. Consequently our goal for this section will be to
identify ways to decompose our cause terms into its components. We will start out
with explaining what the theoretical basis for annotation decomposition is, followed
by mapping these to intuitions borrowed from existing profiling solutions. We will
then proceed explaining our actual solution options, which will generally attempt to
reconstruct as much causal information as possible from a bare minimum of sampling
data.

1Which could be useful if coverage checking was our goal [Gill and Runciman, 2007].

121

5.3. EXPLANATIONS CHAPTER 5. PROFILING

5.3.1 Noun Stacks

So what can we do about giant cause collections implied by our abstract model? We
know that cause terms grow by getting combined from existing ones. This means that
there must be a composition history behind every single cause term used in the program.
Specifically, we can interpret the cause history as a tree of compositions, with each
node corresponding to a cause term considered at some point during evaluation. This
means that the deeper we go into the tree, the more likely it will be that the given
cause term is, in fact, shared by other cause terms. After all, the extreme case here is
the evaluation of the “main” function, from which all cost in the program must derive.
After all, not evaluating this function means that zero costs would get emitted!

On the flip-side, this means that a primitive cause is more likely to be a significant
part of our cause term if only few compositions happened since it was introduced. So for
example let us say that we saw a certain case expression causing significant performance
problems. Then we would probably check first whether the case expression itself was
carrying an insightful annotation. Failing that, we would continue asking for the cause
behind the expression getting evaluated: Where did we call that function from? What
caused us to take that branch? This corresponds directly to how our cause terms was
composed in the first place.

A popular approach is to focus entirely on the “control flow”, which by our logic
is a portion of the full cause terms. Just consider our semantics from Figure 4.19 on
page 94 – we could easily reduce it to considering only control flow by disregarding all α
annotations coming from values. Especially note that if we ignore for a moment that let

and case expressions as well as optimisations can change expression annotations, every
expression annotation would directly conform to a source code location. Therefore our
cause term would directly encode a path of expressions leading back all the way to the
program entry point. If we map these expressions back to the containing functions, we
would essentially get a typical call stack as known from profiling imperative programs
(see for example Graham et al. [1982]).

5.3.2 Lexical Scopes

This is not a new insight, and is commonly exploited by established profiling solu-
tions. For example, we can view cost-centre profiling as making relatively coarse cause
statement about lexically contained expressions. Then the approach taken in Sansom
and Peyton Jones [1995] is essentially to regard the “closest” cost-centre we can find
along the control flow as the one being responsible for the cost. The PhD thesis of
Sansom [1994] further extends this to cost centre stacks, which attempts to capture all
cost-centres found on this path.

122

CHAPTER 5. PROFILING 5.3. EXPLANATIONS

〈α〉let {f = ...

h = 〈γ〉case y of {
C x→ f ;
D y → let { g = ...} in g}

in 〈β〉h x

f = ...

h = 〈γ〉...

in 〈β〉h x

lexical

evaluation

value

value

Figure 5.1: Scopes for an application expression

However in practice it is quite hard to say what the most useful interpretation of
“control flow” is. For thunks and function applications Sansom [1994] actually advocates
“lexical” or “static” scoping, where we only consider the control flow path to where the
closure was allocated instead of where it got called. Consider for example Figure 5.1:
Here the lexical scope of f is α, and the lexical scope of g similarly αγ. However, the
control flow – or “evaluation” scope – will always go through the call site h x, and
therefore be annotated with γ. The “full” cause term for the cost would of course be
αβγ. After all, for the (App) rule in our semantics from Figure 4.19 on page 94 this
cost would be θb, and it gets annotated with both the cause annotation of the closure
(including αδ) as well as β for the application expression itself.

Note that our cost causes are therefore the union of both the evaluation scope as
well as the lexical scope. This is in fact always the case. To see why, note that the
paths of the lexical scope and the evaluation scope always join sooner or later in order
to transmit the closure reference. In Figure 5.1, this is the top-level let expression,
and as the sketch shows, both evaluation and lexical run in parallel beyond this point.
This means that the path from the start of program evaluation to the “join point” must
be a part of the cost annotation. The key observation here is that the rest of the path
corresponds to how the closure value travelled back to the join point. Fortunately, we
know that outside of let and one-branch case expression every rule match on the way
will add its expression annotation α to the returned value.

Furthermore, we know that these annotations will appear on the cost generated
from the evaluation of the function application. This can be seen either by relying
on the correctness of our causality model, as clearly not returning a reference to the
closure would cause the program to not evaluate the closure. Or we could argue along
the lines of Section 4.7.1 that our annotated rules respect annotation encapsulation,
asserting that if we put an annotation on the only value containing a reference to our
closure, evaluation must eventually go back through it, causing the cause in question
to be annotated on costs.

123

5.3. EXPLANATIONS CHAPTER 5. PROFILING

5.3.3 Evaluation Scopes

Lexical scoping is often a good idea when making sense of a program written in a lazily
evaluated language. The reason is that whether or not a given thunk gets evaluated is
a rather binary choice, and more often than not the answer is “yes, eventually” 2. The
actual evaluation site therefore becomes of little interest to the profiling process.

On the other hand, the situation is a bit different for function applications: functions
can get called any number of times, therefore tracking the cause behind the function
application is typically a lot more interesting. Ultimately there is a reason for its
popularity in conventional profiling tools. However, it is quite hard to conclusively
argue one way or the other. After all, Haskell code often uses higher-order programming
in order to structure its control flow, for example when using monads [Wadler, 1992]:

getName = {−# SCC "getName" #−}
do putSt rLn "Who␣might ␣you␣be ?␣"

name ← g e t L i n e
putSt rLn $ "How␣ i n t e r e s t i n g , ␣ " ++ name ++ " ! "
Listing 5.1: Monad Usage Example

Here we are using the IO monad in do notation [Peyton Jones and Wadler, 1993] in order
to hold a bare-bones conversation with whomever might appear on the other side of the
standard terminal. Note we wrote the above program by spelling out a group of effectful
statements that will execute in sequence. This monadic style has proved quite useful in
preventing general awkwardness when writing Haskell programs [Peyton Jones, 2001].
In our case, it abstracts away the need to pas around a “state” token that actually
ensures the sequence of I/O actions. For example unfolding and eliminating newtype
wrappers would yield:

getName = {−# SCC "getName" "␣#−}␣λs0 ␣→
␣␣ ca se ␣ putSt rLn #␣"Who might you be ? "␣ s0 ␣ o f ␣ (() ␣␣ , ␣ s1) ␣→
␣␣ ca se ␣ g e t L i n e #␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s1 ␣ o f ␣ (name , ␣ s2) ␣→
␣␣ putSt rLn #␣ ("How i n t e r e s t i n g , "␣++␣name␣++␣" ! ") ␣ s2

Listing 5.2: Monad Usage Example – unfolded

As useful as this style is for writing programs in an imperative style, this makes it tricky
to reason about the code in terms of control flow. After all, the getName cost centre
now only covers the allocation of the lambda, but the actual call to the “body code”
will come from outside once we have acquired an appropriate state tag. This means
that according to evaluation scoping, the execution stack for this code would actually
not mention the getName cost centre at all!

2At which point it probably should not be a thunk in the first place, but I digress.

124

CHAPTER 5. PROFILING 5.3. EXPLANATIONS

The trouble here is that these functions behave quite differently than we speculated
earlier: Generally, when we “call” an IO function such as getName, we expect it to get
passed exactly one state token. Just like with thunks, this means that we are steering
the control flow not by calling functions, but by determining what functions to call.
Such higher-order programming practises are therefore inherently incompatible with
pure evaluation scoping.

To help with this, Marlow [2012] suggested to combine the best of both worlds
by merging the stacks given by evaluation and lexical scoping. This is in fact how
cost-centre scoping is currently implemented in GHC. The idea should be fairly familiar
to us at this point: As both evaluation and lexical scope are sub-sets of the full cause
term, using a super-set of them is more likely to recover relevant cause terms. In fact,
we can liken this approach to how we put both α and βi annotations on the cost emitted
by the called code in the (App) rule from Figure 4.19 on page 94.

However note that the combination of evaluation and lexical scoping still does not
yield a complete cause term by our standards. After all, if we again consider the example
from Figure 5.1 on page 123 we observe that for calling f neither lexical nor evaluation
scope would actually mention γ. The reason is that in our model β0 will get updated
along the way to record the history of how we determined the exact closure value to
call. And while some of this will likely be part of the lexical scope, the example should
demonstrate that this is not always the case. Therefore we have to note that strictly
speaking, even this improved version fails to tell the full causal story.

5.3.4 Static Context

The last sections have discussed how we can break our cost annotations down into
more accessible explanations for the user. However, on the way we made a number
of simplifying assumptions, such as absence of optimisations and perfect information
about how we arrived at a cause term. This made it a rather academic discussion. For
a real-world implementation, actually obtaining information about cause terms will be
tricky enough, to say nothing about their composition history. Cost-centre profiling as
discussed in the last section actually needs to constrain optimisations and do non-trivial
run-time instrumentation just to obtain consistent lexical and evaluation stacks. For
our purposes, we would like to avoid doing either, so how close can we get under these
circumstances?

Fortunately, just knowing where program evaluation was at a given time already
allows us to say a lot about cause terms. Consider for instance:

〈α〉let
{
f = 〈β〉λx.e1

}
in e2

125

5.3. EXPLANATIONS CHAPTER 5. PROFILING

Given that we find a program in the process of evaluating e.g. e1, we can make a
number of assertions about what annotations our cost is going to receive, and how. Just
from the fact that our expression is contained inside a lambda expression, we know that
there must have been a function application using a closure derived from f . As this
closure will still carry the β annotation, it follows that all cost produced by the function
would get annotated with at least β directly following the return. We furthermore know
that cost would gain an α annotation on the same occasion, as the (Let) rule would
propagate α to usage sites of f , which the program will have to evaluate in order to
obtain a reference to the closure in the first place. What we are essentially saying is
that once we know where evaluation was at a certain point, we can always reconstruct
at least the lexical scope from that piece of information. And as our explanation of
lexical scopes in Section 5.3.2 should have shown, this is a useful subset of our full cost
annotation.

It is possible to infer even richer explanations if we are willing to consult with the
user at this point: The user might not only be able to judge how relevant various pieces
of the lexical scope are, but also make educated guesses about past control flow using
knowledge about the source program. Therefore giving the user an idea of the structure
of the compiled program at the point of interest can actually be very beneficial. Simply
providing a view of Core enhanced with source code annotations can allow the user to
form a much more well-rounded opinion about the situation at hand. However, placing
this much interpretation burden on the user is obviously not something that we should
do by default, so we will only implement this as a technique for those situations where
we need to drill deep into a performance problem.

5.3.5 Quality Considerations

Our approach to determining cause terms might seem to be minimal to the extreme:
After all, where cost-centre profiling collects entire execution and/or lexical scopes, we
have just limited ourselves to only what we can reconstruct from the lexical scope of
the transformed code and user intuition! We have to confess that this is a lot less
powerful than what we can do with cost-centre profiling: Using just this approach we
will never be able to tell where function calls were coming from. In the worst case, we
might imagine getting stuck with a completely useless nugget of information, such as
that some low-level function consumed disproportional amounts of resources.

However, we are basically going to accept this risk, because it allows us to reap
significant benefits in other areas. Let us compare against cost-centre profiling again:
The stated goal of Sansom and Peyton Jones [1995] is to produce predictable cost-centre
stacks no matter whether the program was optimised or not. While this property makes
the results more expressive, the restrictions it needs to put on optimisations are actually

126

CHAPTER 5. PROFILING 5.3. EXPLANATIONS

fairly severe. After all, it is generally impossible to retain perfect stack consistency
throughout arbitrary code transformations. Take for example floating inwards:

l e t f = e1 i n {−# SCC . . . #−} . . .
=⇒

scc <... > l e t f = e1 i n . . .

Listing 5.3: Cost-Centre Float-In

consider the cost for evaluating e1: This transformation means a clear change to the
lexical scope, which we could not undo, therefore the only choice is to forbid this
transformations for cost-centre profiling. For our profiling framework, we would like
to retain such optimisations in order to make sure that our measurements correspond
closely to real-world performance.

What is more, cost-centre profiling has to work with more instrumentation cost for
managing stacks than we would be willing to accept. Each time a new cost-centre gets
entered, we need to either find or allocate some sort of structure corresponding to the
new noun combination. This is not trivial to implement, especially when we consider
that we might have to spend extra effort to “compress” deep stacks in order to be able
to reason about deep recursion. To make matters worse, maintaining lexical scoping
means that we need to determine the scope of a thunk when it enters evaluation. As
there is no way to know this statically, the profiling implementation consequently needs
to store a cost-centre-stack representation with every single allocated closure [Sansom,
1994]. Such a change in heap layout has to be propagated into all other components
working with closure objects – which means that we not only need a version of the
run-time system specialised for usage with profiled code, but also one for all linked
Haskell libraries.

When all is said and done, our approach of deriving information purely from stat-
ically known properties is substantially cheaper and consequently better suited for
low-overhead profiling. We also have fairly good reason to suspect that the information
derived using our approach will not be completely useless: For example we know that
the derived cause term sub-set will always be quite relevant to a local performance
problem. This directly follows by the logic introduced in Section 5.3.1: We will have
perfect information about the “newest” annotation added, as well as some clues about
recent annotation sources in the form of parent expressions. Furthermore, paradoxically
allowing more optimisations to run might actually be beneficial for our purposes. After
all, every time we inline a function to its call site, this means that the calling context
will become statically associated with the called code. This means that while the worst
case is still quite possible, we have reason to believe that in reality we will often have a
lot more contextual information to work with.

127

5.3. EXPLANATIONS CHAPTER 5. PROFILING

5.3.6 Stack Tracing

If we are unsatisfied with the amount of information we can extract from the program
and are willing to pay some extra cost, we always have the option of looking a bit
beyond just the current evaluation position. After all, Haskell execution maintains a
stack, which not only contains our working data and parameters, but more interestingly
code pointers to places that we are planning to return to in future (see the stack update
sketch in Figure 3.3). Often this return pointer will allow us to make conclusion about
what code made the call in the first place. For example if we had code such as

ca se f x o f
D y → e

Listing 5.4: Return Pointer Example

when calling f x, we would push a code pointer that allows us to resume computation
of the e branch once we are done with that part of evaluation. Therefore in principle
we can find any nouns associated with this call frame simply by walking the stack and
identifying such return closures.

However, this technique is still quite inferior to full causality tracking, and even to
evaluation scoping. The reason is that often there is no reason for the compiler to push
a return code pointer. Just consider the following code:

g y = l e t x = f y
i n f x

Listing 5.5: No Return Pointer Example

Now we have two calls to f, but neither would cause a proper return closure to get
generated. The first call will only result in a thunk update, which is something that
happens so often that Haskell has prepared “canned” return pointers for this specific task.
This means that all information about where the thunk originated from is effectively
lost – at least, unless we are willing to play tricks with potentially left-over thunk
pointers [Rouhani-Kalleh, 2014]. Yet the second call is even worse: Here the function
is called in tail-call position, which means that the compiler will optimise any return
code out and simply arrange for f to return to whatever called g in the first place. In
this case, the whole stack frame is lost to us.

In the end, we will not pursue this approach any further at this point, as it would
cause quite a bit of sampling complexity without actually providing any guaranteed
benefit. However, it should be noted that this kind of data can be exceptionally useful
in debugging, such as for locating program exceptions [Rouhani-Kalleh, 2014] or even
tracking down crashes through the foreign language interface [Schröder, 2014].

128

CHAPTER 5. PROFILING 5.4. CORE

data Expr b
= Var I d
| L i t L i t e r a l
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b [(AltCon , [b] , Expr b)]
| Tick (T i c k i s h I d) (Expr b)

data Bind b = NonRec b (Expr b) | Rec [(b , (Expr b))]
Listing 5.6: Ticked Core Definition

5.4 Core

The last section introduced the design concepts behind our profiling solution. We now
know what performance data we wish to collect and how we plan to explain it to the
user. However, this still leaves quite a few concrete implementation details to address.
After all, our goal is to integrate our profiling code into the GHC language tool chain,
which is a formidable task as are dealing with a fully-fledged development environment.

This means that we have to account for a significant amount of related infrastructure.
On one hand this means that we can count on a stable Haskell implementation with
reliable existing frameworks for collecting, processing and analysing profiling-related
data. Yet on the other hand, these solutions will be geared towards their specific use
cases, so we will have to adapt them. This is especially tricky as we want to remain a
“good citizen” in the sense that we do not want to disturb existing functionality.

This is especially pronounced for the compilation process, which we are going to
start considering in this section. After all, this is where we want to introduce our nouns
and track them all the way to the final compilation output using the causal model we
introduced in Chapter 4. This is one concern where we are definitely not alone: The
intention to annotate intermediate code with references to the original source code is
something that we share with virtually every profiling-type solution in existence. Yet
our annotation philosophy is unique enough that we will have to introduce a substantial
number of special cases at the Core stage.

5.4.1 Tick Framework

In order to keep compiler software complexity low, it is therefore a good idea to generalise
over annotations as much as possible. Fortunately, Marlow [2011] already recognised
this issue and implemented a framework for Core annotations into GHC. This extension
allows us to insert so-called “ticks” at arbitrary points in the Core syntax tree3. This

3The “tick” name probably derives from HPC ticks [Gill and Runciman, 2007].

129

5.4. CORE CHAPTER 5. PROFILING

means that relative to our first definition of Core in Listing 3.6 on page 28 we gain a
new Tick constructor as shown in Listing 5.6.

While this generalisation makes introducing annotations as simple as defining a
new constructor for Tickish, we have to acknowledge that not all annotations are born
equal. In fact, depending on the intended use-case ticks might vary greatly in what
information they carry and how they are expected to interact with code transformations.
To integrate our annotations gracefully into the existing environment, we have to know
the existing annotation types and their properties:

• The scoping ProfNote is used to maintain the cost-centre stack as used by cost-
centre profiling [Sansom, 1994]. This can be used to map performance statistics
such as execution time, allocation amount or heap residency to cost-centre stacks.
We already shed some light on their scoping philosophy in Section 5.3.2 forward,
which should have made it clear that retaining these through compilation poses
comparatively strict requirements on code transformations.

• The counting ProfNote variation can be used to count entries to cost-centre stacks.
These annotations still require cost-centre stacks to be kept consistent, but in
practice we will see that they interact differently with respect to code transforma-
tions. Internally, GHC will distinguish both types using flags, but for the purpose
of this work we will simply treat “scoping” and “counting” ProfNotes as distinct
tick types.

• HpcTick works in a similar fashion, with the difference that it actually specialises
on the task of coverage checking [Gill and Runciman, 2007]. In terms of code
transformations, these annotations do not care about scoping, but want the
compiler to ensure that they get invoked exactly if the associated code played a
role in program evaluation.

• On the other hand, Breakpoint is a tick type that is purely used by GHCi, the
read-eval-print loop of GHC. These annotations mark points in the program where
we might stop program execution, for example for walking through evaluation
step-by-step or inspecting variables [Himmelstrup, 2006; Iborra and Marlow, 2007].
It is fairly important that such breakpoints stay in place, therefore annotations
generally restrict transformations heavily. However note that code for GHCi will
barely get optimised in the first place, so in practice these restrictions rarely
matter.

To introduce a new kind of Tickish into this mix means that we will have to figure out
exactly where we fit into this continuum of annotation characteristics.

130

CHAPTER 5. PROFILING 5.4. CORE

5.4.2 Source Notes

As our main goal is simply to annotate source code spans, we will be calling our source
note type/constructor SourceNote. Here is the concrete definition:

data T i c k i s h i d
= [...]
| SourceNote { sourceSpan :: Rea lSrcSpan

, sourceName :: S t r i n g }

Listing 5.7: SourceNote definition

As introduced back in Section 2.2.2, our main goal with these annotations is to allow
the user later to easily identify the piece of code that we are talking about. Whether
this is more easily achieved by pointing out the concrete source code or referring to it
using a name depends on the situation. Hence we retain enough information to allow
us to use both identification methods.

Just like all other tick annotations, source notes will be generated by GHC’s Coverage
pass, which runs while the parsed Haskell program gets desugared into the intermediate
Core representation. At this point it is quite straightforward to obtain the information
mentioned above: Source spans for parsed program elements are automatically generated
by the happy parser [Gill and Marlow, 1995] and we can easily retrieve them from the
parse tree. Similarly, courtesy of automatic cost-centre generation there is an existing
mechanism for automatically generating meaningful annotation names. The idea here
is simply that we take all declarations that we find on the lexical scope, so for example
a function g defined locally inside another function f would be assigned the name “f .g”.

5.4.3 Semantics

While it is easy to define and generate source notes, we have to be a bit more careful
about what source notes should actually mean. Clearly our idea is that we want them
to model the annotations we introduced on the Core model in Chapter 4, but we still
need to explain how exactly the mapping should look like. So let us now say that we
have a source note src<a.hs> 4 as an instance of a cause term α, as well as a GHC Core
expression e corresponding to an expression e in our Core representation.

Then we define the following terms as equivalent:

src<a.hs> e ⇐⇒ 〈〈α〉〉e

using push annotations as defined in Section 4.8.2 on page 102.
4We will pretty-print ticks as tick<...>, but remain informal about what information they encode.

131

5.4. CORE CHAPTER 5. PROFILING

We are consciously not using simple annotations here. While this would allow us to
represent causal dependencies more accurately, it would make it more complicated to
reason about the meaning of our ticks. After all, using the push annotation we can now
state that we see it as annotating all effects of code that comes below it in the syntax
tree. A direct annotations would only do this provided the expression in question is
not a let or one-branch case expression. However this means that for the purposes
of annotated Core, there are now annotations that can not be represented in GHC’s
ticked Core. Suppose for example that we have two cause terms α and β, with α not
being contained in β:

〈α〉let {f = ...} in 〈β〉e

The only way to annotate the let expression in Core would be using one of our
SourceNotes. But if we are limiting ourselves to push annotations, this means that we
cannot prevent annotating e at the same time. Given that we assumed that β does
not already contain α, this unfortunately means that our cause terms have become less
expressive.

What we will be doing is the same slight dishonesty that Sansom [1994] also com-
mitted in the same situation: We will simply ignore the causes of the cost emitted by
the let expression. Instead we can simply attribute this cost to whatever scope the
let expressions ends up in. For the above example this would be β:

〈〈β〉〉let {f = 〈〈α〉〉...} in e

Note that we did not eliminate α entirely, but moved it inside the binding instead. So
we are essentially ignoring the causal history of the binding here, but retaining it for
the bound expression, which is arguably the more important part. Another notable
point here is that, after code transformations, the existence of the f binding at a certain
point is more of a property of β anyway. After all, floating transformations will move
or eliminate f depending largely on the make-up of e. By this line of thinking we are
not even over-annotating the binding costs by putting β on them, as e is essentially
protecting the let expression from getting removed.

5.4.4 Annotation Combination

Another property of our abstract annotated Core language from Chapter 4 is that
we were able to compose annotations freely. In fact, handling code transformations
depended quite heavily on the ability to merge annotations where it made sense. How-
ever at this point we have only described SourceNote ticks in terms of adding a single
primitive annotation to an expression at a time.

132

CHAPTER 5. PROFILING 5.4. CORE

The obvious solution here is to “decompose” complex annotations into tick “stacks”:

src<a.hs> src<b.hs> e ⇐⇒ 〈〈αβ〉〉e

This lets us “compose” causes in a straight-forward way. Adding a new annotation
corresponds directly to creating a suitable Tick node, not unlike the double-annotation
notation we introduced back in Section 4.2.3 on page 63. Furthermore, we would ideally
like to support various kinds of ticks to be able to co-exist within a Core tree, which
means that we need machinery to traverse such nested ticks anyway. However note that
representing compound causes as series of nested Tick expression is not quite optimal
as far as compilation performance goes. After all, we are running the risk of bogging
down compilation with re-creating deep tick trees every time the compiler wishes to
change the contained expression.

To help prevent such deep trees from forming, it is important to minimise the
amount of duplicated information we introduce. To be specific, note that the source
code span referring to a Haskell expression can generally contain the source code spans
of many other source code spans. Causally speaking, if parent source span contains
some code, it directly implies that the child source span contains the given code as well.
This makes the annotation redundant:

(α⇒ β)⇒ (α ∧ β = α)

Consequently we never want to retain an annotation if it is made redundant by another
on the same expression. This is quite a powerful mechanism, as it limits the annotations
to disjoint pieces of the source code. In practice, Section 6.1.3 on page 182 will show
that this allows us to use quite fine-grained SourceNote annotations without compilation
time increasing significantly.

5.4.5 Scoping

Let us look more closely at how we want source notes to be treated during compilation.
At this point we must remember that we are but one type of tick amongst several, and
that each has its own unique set of properties and invariants. Where HPC ticks only
care about whether or not the source code it refers to gets run, cost-centre profiling
notes cares about the whole tree that they get placed on. We would ideally like to
manage these complexities without the need to introduce separate special cases for
every optimisation pass and every tick type. Therefore we generalise the tick properties
as well by classifying them by how “fragile” they are against certain kinds of code
transformations. Keeping the characteristics of existing tick types in mind, we end up
with 3 fragility dimensions: “Scoping”, “Placement” as well as “Counting” properties.

133

5.4. CORE CHAPTER 5. PROFILING

Let us begin with the “scoping” behaviour of ticks. This property says whether
we care about whether the entirety of the annotated Core sub-tree stays within the
annotation. The prime example here is the scoping ProfNote, which implements cost-
centre profiling. As we introduced in Section 5.3.2, its aim is to ensure that the
designated cost-centre becomes a part of the cost-centre-stack for all cost that gets
generated within the annotated chunk of the program. In a similar way, SourceNote
makes a causal statement about the causes for the contained code, and it would not make
sense for code to be able to simply escape this scope. On the other extreme, HpcTick
does not care at all about sub-expressions, as long as we guarantee that coverage stays
virtually the same.

However, cost-centre-style scoping and SourceNote-like “soft” scoping still have
substantially differences. To see why, consider an instance of inward let floating, which
in GHC is implemented by the FloatIn pass. Such floating passes are the main way for
GHC to relocate code pieces within the program, and it is important for our SourceNote
to support it. Suppose that we want to float a let binding inside an arbitrary tick :

l e t foo = bar i n t i c k <... > baz
=⇒

t i c k <... > l e t foo = bar i n baz
Listing 5.8: Floating Inwards

If tick was a ProfNote in this example, we would have to forbid this transformation.
After all, this would enter new cost from bar into the context, which as we noted in
Section 5.3.5 on page 126 would be invalid for cost-centre semantics 5. On the other
hand, this is perfectly valid according to our causality semantics – we established this in
Section 4.8.6 on page 108. In fact, this transformation only ever changes the attribution
of the let costs, which as mentioned in Section 5.4.3 we have decided to tolerate.

However, completely preventing code from floating inwards would be severely re-
stricting, as it would block all kinds of code unfolding. Fortunately, this can be shown
to be a special case with respect to cost-centre semantics. Suppose we float a lambda
binding with the plan of in-lining and β-reduction:

l e t foo = λy → bar i n t i c k <... > . . . f oo x . . .
=⇒

t i c k <... > . . . (l e t foo = λy → bar i n foo) x . . .
=⇒

t i c k <... > . . . bar [x/y] . . .
Listing 5.9: In-Lining

5Theoretically we could allow it if there was a matching scc annotation on e1. But this is not too
likely, and therefore not implemented.

134

CHAPTER 5. PROFILING 5.4. CORE

This particular transformation is actually trivially legal under evaluation scoping (see
Section 5.3.3), as the application site determines what cost-centre stack to put the cost
of bar in anyway. And after the β-reduction this holds true for the modified scoping
proposed by Marlow [2012] as well, as the lexical scope of the call-site is more specific
than the lexical scope of the definition site.

Let us now consider floating into the opposite direction. In the following example
we are moving a binding towards the top level of the program:

t i c k <... > l e t foo = bar i n baz
=⇒

l e t foo = t i c k <... > bar i n t i c k <... > baz
Listing 5.10: Floating Outwards

This transformation actually happens at a number of places in GHC. For example when
converting a constructor application to A-normal form [Flanagan et al., 1993] we want
to let-bind certain sub-expressions, which might involve floating through a tick in the
process. Happily, this time around we have a solid option for retaining lexical scoping
properties: By wrapping bar into a copy of our tick, we ensure that the same code stays
covered after we performed the transformation. Note however that we can not split
every kind of tick this way, as we will see in Section 5.4.7.

To finish our overview of scoping behaviours, we have to mention that some types
of ticks do not care about scoping at all. For example, HpcTicks would simply allow
the following transformation:

t i c k <... > l e t foo = bar i n baz
=⇒

l e t foo = bar i n t i c k <... > baz
Listing 5.11: Floating Outwards Without Annotation

This means that we have identified three tick scoping behaviours:

• cost-centre: The most restrictive scoping policy. We expect lexical scopes of
code to neither grow nor shrink. The only exception is where mixed cost-centre
semantics by Marlow [2012] provably assigns the same cost-centre stacks.

• soft: A more permissive policy we intend to use for our SourceNote. Here we
expect the lexical scope to only ever grow. Or put another way: Once we put an
annotation on code – and therefore its costs – we expect it to still be there after
optimisations have run their course.

• none: When the tick does not care about lexical scopes.

Figure 5.2 on the next page summarises the resulting tick property mapping.

135

5.4. CORE CHAPTER 5. PROFILING

ProfNote ProfNote HpcTick Breakpoint SourceNote
(scoping) (counting)

Scoping: cost-centre none none cost-centre soft
Counting: no yes yes yes no
Placement: cost-centre runtime runtime runtime non-lambda

Figure 5.2: Tick Classification

5.4.6 Scoping Transformation Examples

While floating transformations are a good way to introduce the characteristics of scoping
properties, optimisation behaviour will actually quite often depend on tick scoping. Let
us first have a look at GHC’s Simplify module, which groups together a large number
of local code optimisations. The way that this pass is structured, we walk the program
using a Zipper-like data structure [Huet, 1997]. For example, entering the function
expression of an application expression (e x) means that simplification recurse into e
with a context of the form (� x). This allows optimisations to react to their surroundings.
For example if find that e is – or becomes – a lambda application, we can now look at
the context and decide that fusing the two using β-reduction would be a good idea.

To introduce ticks into this process, we would ideally like to leave this continuation
stack untouched. This would guarantee that all transformations see the exact same
context that they would normally have, and therefore perform the exact same trans-
formations. However, this means that we will have no way of retaining ticks inside
expressions that get re-built from the context. As we do not want to lose ticks, we
therefore must put them on top of the result expression, effectively floating all context
expressions past them.

Fortunately, GHC only tracks context as far as the control flow is static, so for
example we would not traverse out of a let binding or case branch. Therefore there are
only a moderate number of instances where this would change things. To be precise,
we would be performing the following transformations:

1 (t i c k <... > e) arg =⇒ t i c k <... > (e arg)
2 f (t i c k <... > ! a) =⇒ t i c k <... > f ! a
3 l e t ! x = t i c k <... > e i n . . . =⇒ t i c k <... > l e t ! x = e i n . . .
4 l e t . . . i n t i c k <... > e =⇒ t i c k <... > l e t . . . i n e
5 ca se (t i c k <... > e) o f . . . =⇒ t i c k <... > case e o f . . .
6 ca se . . . o f . . . → t i c k <... > e =⇒ t i c k <... > case . . . o f . . .
7 t i c k2 <... > (t i c k <... > e) =⇒ t i c k <... > (t i c k2 <... > e)

Listing 5.12: Floating Ticks

136

CHAPTER 5. PROFILING 5.4. CORE

The “bang” patterns on !x and !a show that strictness analysis could derive usage of
the given binding to be strict. tick2 stands for another tick in the program, which
might have different scoping properties and therefore needs to stay in place. Finally
note that transformations (4) and (6) simply refer to let and one-branch case floating,
which we have already covered in the last section 6.

Looking at these transformations with lexical scoping in mind, we can attest that
every single one might move costs into the scope of the tick in question. Even pushing
another tick inside has the potential to produce costs due to instrumentation code.
This means that the tick in question must allow this, which is only the case for ticks
that permit at least “soft” scoping, i.e. not ProfNote or Breakpoint. On the other hand,
we can explicitly allow this for SourceNote. Doing these transformations has the nice
side-effect of pulling annotations on the same control path together, which together
with annotation elimination as explained in Section 5.4.4 can significantly reduce the
amount of source annotations within the program.

Moving on, another GHC pass that needs to know about ticks is the occurrence
analysis pass OccAnal. The purpose of this pass is to annotate binders with their usage
information, which informs decisions about how greedy GHC should be about in-lining
it. Consider the following example:

l e t x = e i n t i c k <... > . . . x . . .
=⇒

l e t x = e i n t i c k <... > . . . e . . .
Listing 5.13: Thunk Unfolding

Here e is a thunk, which we are considering to unfold to a usage site. The conditions
under which this is a good idea are not quite trivial [Peyton Jones and Marlow, 2002],
but the general idea is that we want to check whether we could introduce redundant
evaluations of e by changing the program in this way. Ticks complicate this matter
further: Unfolding e would add more costs into the lexical scope of the tick , therefore
we cannot allow this for ticks that have cost-centre scoping. On the other hand, we
allow it both for SourceNote ticks and all other ticks with equally permissive scoping
rules.

To close this section out, note that the only point where we distinguished between
“soft” scope and “none” scope was when we decided whether to copy ticks on bindings
when floating outwards. This means that between the two scoping classes, the only
change will be how optimisations annotate their result. So far soft scoping implements
exactly what we had in mind: Allow arbitrary transformations, simply by moving out
of the way where appropriate.

6In the context of GHC both Simplify as well as FloatIn implement floating, but due the static
control flow limitation this version is less powerful.

137

5.4. CORE CHAPTER 5. PROFILING

5.4.7 Counting

The second major tick characteristic is whether they care about entry counts. The
motivating example here is coverage analysis using HpcTick: This tick checks whether
the annotated expression gets evaluated during program execution.

The requirements work out “backwards” when compared with scoping: Whereas
normally we care about the evaluation of the annotated code, now we care about how
often outside evaluation causes our expression to get visited. This is actually more
problematic, as now any change in sharing could potentially increase or decrease entry
counts in completely unrelated parts of the program. For this reason we can only truly
guarantee that we will never change the program so that the entry count of a “counting”
annotation would fall to zero – or the other way around, for that matter.

However, we still make a best effort to retain realistic entry counts. For example,
normally GHC would occasionally decide to inline “cheap” thunks, which would increase
entry counts of any annotations. Moreover, note that “copying” an annotation on a
floating let binding like in Listing 5.10 would also increase entry counts. On the
other hand, floating outwards like in Listing 5.11 could be allowed. Incidentally, this
demonstrates why ProfNote needs to be splittable into a scoping and a counting part,
as this behaviour would be incompatible with cost-centre style scoping.

5.4.8 Floating Ticks

In the end, there are relatively few transformations where the counting tick property
makes a difference on its own. However, there are actually a significant number of
transformations that are invalid for both counting and cost-centre scoped ticks. This
class of transformations is of special interest to us, because our SourceNote ticks will
be the first tick type in GHC that has neither property, and can therefore support said
optimisations. The crucial property is that we have maximum freedom with relocating
ticks where necessary – as we introduced in Section 4.8.9 on page 112 for rules, “floating”
ticks up is always an option according to our semantics.

A good example where we require this sort of freedom is η-reduction:

λx → t i c k <... > (e x) =⇒ t i c k <... > e
λx → e (t i c k <... > x) =⇒ t i c k <... > e

Listing 5.14: η-Reduction

Saving both a closure as well as an application is a big win, so we would really like to do
this wherever we can spot it. Yet both versions would be invalid for either cost-centre
scoping as well as counting ticks, as the relocation will change both evaluation scopes
as well as entry counts. In contrast, for our causality semantics the first transformation
is actually fine, as it would just correspond to adding more annotations on the closure

138

CHAPTER 5. PROFILING 5.4. CORE

value. On the other hand, moving annotations from the parameter to the application
is clearly a change that could decrease profile accuracy. Unfortunately this is one of
the situations where we have no other place to put the tick, and we will therefore have
to accept the resulting annotation overreach. Note that ProfNote side-steps the second
case by not putting ticks on variables, as we will see in Section 5.4.10.

We have a similar situation for Rules: As mentioned in Section 4.8.9 on page 112,
this is all about supporting user-supplied transformation rules. As we can generally
not derive where the right place would be to put the ticks afterwards, we have to
be conservative and float all of them out of the way. For example, we would do the
following for the short-cut fusion from Listing 3.4 on page 25:

f o l d r (t i c k <1> s t ep) (t i c k <2> s t a r t) (t i c k <3> bu i l d g)
=⇒ t i c k <1> t i c k <2> t i c k <3> f o l d r s t ep s t a r t (b u i l d g)
=⇒ t i c k <1> t i c k <2> t i c k <3> g s t ep s t a r t

Listing 5.15: Rule Application

Relocating ticks like this is fairly easy, as rule applications let -bind and float non-trivial
expressions where they match rule variables. We can use the same mechanism for
“floating” our ticks. This has the nice side effect that the let in question automatically
ends up with the appropriate ticks on it. For example, suppose that expr stands for a
non-variable:

f o l d r (t i c k <1> expr) (t i c k <2> s t a r t) (t i c k <3> bu i l d g)
=⇒ t i c k <1> l e t s t ep = exp r i n t i c k <2> t i c k <3> g s t ep s t a r t

Listing 5.16: Rule Application with Floating

Which in this instance retains exactly the intended ticks on expr. Floating ticks like
this still has significant potential for annotation overreaching, both for the bindings as
well as for the code built by the rule. However as noted in Section 4.8.9 on page 112
this is the only way we can support custom rules, and for the fusion rule it actually
reflects to the underlying causal dependencies quite well.

5.4.9 Merge Transformations

However, we are still not quite done with possible optimisations. In this section we
will get to the most problematic transformations. For our purpose, these are passes
that merge code from different sources. The most obvious example for this is common
sub-expression elimination in module CSE. The core problem is similar to rules: We
want this pass to match expressions even where they differ in terms of our ticks, but
what do we do from there?

139

5.4. CORE CHAPTER 5. PROFILING

There is only one place where we could possibly put annotations – the reference to
the replaced expression:

l e t x = t i c k <1> x i n . . . f (t i c k <2> x) . . .
=⇒ l e t y = t i c k <1> f x i n . . . t i c k <2> (f x) . . .
=⇒ l e t y = t i c k <1> f x i n . . . t i c k <2> y . . .

Listing 5.17: Common Sub-Expression Elimination

Again moving ticks out of the way makes things work with respect to our causality
semantics. Yet thinking about this in terms of profiling should make us uneasy. After
all, both steps in the above example reduce profile quality: First we push tick 2 up so
it covers f, only to then replace the code by a reference to y – which according to the
definition of y means that we associate all costs with tick 1.

Furthermore, ticks on thunk references are basically invisible to our profiling: If
we evaluate y we would immediately jump to the definition of y. After that point,
the only way sampling code could possibly derive that we were coming from a usage
site annotated with tick 2 would be by stack tracing (see Section 5.3.6), which we do
not currently support. Therefore the ultimate effect of this transformation might very
well be that the replaced expression effectively “vanishes” from the profile, leaving all
cost with tick 1. A very similar situation happens when we attempt to optimise case
expressions. Consider the following situation:

ca se . . . o f . . . → t i c k <1> e
. . . → t i c k <2> e

=⇒ ca se . . . o f → t i c k <1> t i c k <2> e
Listing 5.18: Common case Branch Elimination

This is quite similar to common sub-expression elimination: Again we have two ex-
pressions that we wish to merge. The difference is that this time we merge both ways,
meaning that we are forced to merge all annotations in order to preserve the ticks’ cost
association.

A further example would be case branch elimination:

ca se x o f
. . . → t i c k <1> x
. . . → t i c k <2> x

=⇒ t i c k <1> t i c k <2> x
Listing 5.19: Identity case Branch Elimination

Here all case branches simply return the scrutinised value, so there is no reason to
branch in the first place. Again we must annotate in a way that will render profiling
unable to detect which branch has been taken.

140

CHAPTER 5. PROFILING 5.4. CORE

In the end, it is pretty clear that there is simply no way to reduce code complexity in
these examples without also losing information for profiling. In fact, we could probably
argue that the optimisations shown in this section are probably rare enough that we
might actually be willing to sacrifice them for getting better profiling results. However,
it is still important to know that our profiling solution can in fact work even here while
still maintaining at least a certain measure of correctness7.

5.4.10 Placement

The final property of ticks mentioned in Figure 5.2 was “Placement”. Where scoping
and counting properties speak about general policies for contained code, placement is
about special exceptions to these rules. After all, depending on the semantics of the
ticks in question, we might have situations where it makes no difference whether we
put the tick in one place or the other. Especially where it simplifies reasoning about
the code in question, we should therefore aim to establish a certain consistency.

For example, all annotations have in common that they only care about what
happens at program execution time. However, as we noted briefly in Section 3.3.2
on page 28, GHC’s version of Core implements a variant of System F [Girard et al.,
1989], where the program may refer to purely compile-time entities such as types. This
construction ensures that it is easy to check type-correctness of the intermediate code,
but will be stripped before we get to later stages of code generation. Consequently,
placing ticks on such type applications, type lambdas or coercions makes no sense, and
we consequently float ticks through them until we hit an expression that has runtime
semantics. We refer to this as “runtime” tick placement.

Furthermore, for our SourceNote ticks we will decide to float ticks through all lambda
expressions, moving the tick into the lambda body. The motivation for this is rather
mundane: It turns out that for supporting arbitrary optimisations, ticks on lambdas
get in the way so often that it is just not worth keeping them there. Fortunately it
is not too hard to justify this. GHC will let -bind all lambda expressions before code
generation, which means that we can think of this as transforming a lambda expressions,
as follows:

t i c k <... > (λx → exp r)
=⇒ t i c k <... > l e t y = λx → exp r i n y
=⇒ l e t y = λx → (t i c k <... > exp r) i n y

Listing 5.20: let -Bound Lambda Expression

7This also facilitates implementation. After all, just a few missing transformations can have a
significant impact on the produced code. Therefore it is easier to shoot for complete synchronisation
between optimisations for ticked and un-ticked code than for any partial solution.

141

5.4. CORE CHAPTER 5. PROFILING

The second step only changes cost association in terms of let cost as well as one literal.
We especially would not want to let -bind an expression like tick<..> λx →expr, as we
could only interpret this as a thunk producing a lambda! We conclude that floating
source notes through lambdas is a relatively minor problem.

Finally, while cost-centre scoping is fairly restrictive, it actually has the most per-
missive placement behaviour. The reason is that we can often show that certain tick
relocations leave the overall consistency of the cost-centre profile intact. This holds not
only for lambda expressions, but also for a number of other examples:

l e t x = scc <... > C (scc <... > y) (scc <... > 3) i n . . .
=⇒ l e t x = C y 3 i n . . .

Listing 5.21: Cost-Centre Placement

Just like with lambda expressions, both a constructor as well as a literal will correspond
to a simple allocation, so there is no “code” there to track the cost for. On the other
hand, variable y could at maximum be a thunk. As thunk execution would not care
about the cost-centre stack at the evaluation site, this means that we can eliminate the
annotation without significant changes to the cost-centre profile.

5.4.11 Example

To see how this works out in practice, let us return to our running example from
Section 3.4 on page 30, the factorial function. If we run Core optimisations with
annotations as explained, GHC will arrive at the following annotated version:

$wfac = λ to # →
s r c<f a c . hs :15> src<Enum . l h s :500>
l e t wgo = λn# →

s r c<Enum . l h s :534> src<Num. l h s :89>
case (==#) n# to # o f

True →
s r c<Enum . l h s :535> src<Num. l h s :89> n#

Fa l s e →
s r c<Enum . l h s :536>
case $wgo ((+#) w s2L5 1) o f

r # → s r c<Num. l h s :89> (∗ #) n# r #

i n s r c<Enum . l h s :532> wgo 1#

Listing 5.22: Core Result

For brevity we have simplified treatment of Bools slightly, and note that compared with
Listing 3.24 on page 35 GHC has short-cut the last loop iteration to return n# directly.

142

CHAPTER 5. PROFILING 5.5. CMM

However, at this point we are more interested in the annotations that the Core
optimisations produced: First note that unfolding annotated library code has resulted
in a good number of low-level source code links. This is expected and generally a
good thing, as it might help us in tracking low-level performance problems. On the
other hand, note that we end up with just a single reference to the original program
(fac .hs). It is not hard to imagine what happened: We know from Section 3.4.1 on
page 30 that this code is the product of repeated rule applications, which as we have
just explained will cause source annotations to “float” towards the function entry point.
Furthermore, as explained in Section 5.4.4 we combine annotations where appropriate,
which apparently eliminated all but one tick here.

5.5 Cmm

Most interesting optimisations for GHC happen at the Core as functional code is partic-
ularly suitable for applying aggressive program transformations. Once this optimisation
potential has been exploited, GHC will transform the code into a more restricted im-
perative representation. This allows for more local transformations to prepare the code
for back-end code generation.

The intermediate language used for this is Cmm [Ramsey et al., 2010], which just like
its cousin C-- [Peyton Jones et al., 1998] is a portable assembly language. The main idea
is that we now strip high-level data such as type information from the code and start
reasoning in terms of instructions, registers and pointers. While doing this, we leave the
language just abstract enough that we can later map it to any back-end configuration
we choose. This allows us to solve common low-level code generation problems such as
data layout, register allocation or runtime system interface in a general way.

However, when we last mentioned Cmm in Section 3.3.3 on page 29, we skipped
an in-depth look at these transformations. Our reasoning was that for the purpose of
causality analysis, the far-reaching Core optimisations were the more interesting target
for our analysis. After all, in contrast to what we considered at the Core stage, most
Cmm transformations will barely change the structure of the generated code, therefore
leaving any annotations trivially correct.

However annotation implementation still faces a unique problem: Both cost-centre
annotations as well as coverage ticks will get translated into Cmm code at this point.
This means that there is actually no precedent for how to treat annotations at this
level. Unfortunately, translation to Cmm code is no option for source code links, as we
want to work without instrumentation code. This means that we have no choice but to
design an entirely new solution for maintaining annotations on the Cmm level.

143

5.5. CMM CHAPTER 5. PROFILING

5.5.1 Cmm Example

To get a feel for what this will look like, let us now translate the Core code from
Listing 5.22 into Cmm. If we simply ignore annotations, this would result in the
following code for the worker function wgo:

$wgo ()
{ A : i f (Sp−16 < SpLim) goto B ; e l s e goto C ;

B : c a l l s t g gc fun (R2 , R1) ;
C : i f (R2 == I64 [R1 + 7]) goto D; e l s e goto E ;
D: R1 = R2 ;

c a l l P64 [Sp] (R1) ;
E : I 64 [Sp − 16] = F ;

I 64 [Sp − 8] = R2 ;
R2 = R2 + 1 ;
Sp = Sp − 16 ;
c a l l $wgo (R2 , R1) r e t u r n s to F ;

F : R1 = I64 [Sp + 8] ∗ R1 ;
Sp = Sp + 16 ;
c a l l P64 [Sp] (R1) ;

}
Listing 5.23: Cmm Example

We can spot immediately that the Cmm version looks very different from the Core code.
Instead of nested expressions, Cmm procedures consist of a number of blocks, with each
block in turn containing a series of instructions. Cmm control flow is explicit, using
instructions such as goto or call to steer execution.

Furthermore, at this point the implementation of our factorial function has become
a lot more explicit: Blocks A and B start by checking for a stack overflow. Blocks C
and D then handle the case that we are done with calculating the factorial, in which
case we return to the location given by P64[Sp], passing R1 as our result. Otherwise,
block E implements the first part of the calculation: We push a new stack frame with
return pointer F and a copy of the counter n# (residing in R2). Then we increment the
counter and perform the recursive call. Once the call returns to block F, we will take
the saved-back counter from before and multiply it with the returned product. Then
we pop the stack frame and return to the code that called our function.

At this point it is not hard to convince ourselves of our earlier diagnosis: As every
recursive call to this function will increase Sp, we will have O(n) in stack allocation,
which will probably cause us to call the stack overflow handler in block B quite often.
This is quite likely to be a performance problem!

144

CHAPTER 5. PROFILING 5.5. CMM

5.5.2 Introducing Ticks

In order to bring source code annotations into the fold, we need to find a good way
to incorporate the ticks from Listing 5.22 into our Cmm code. Unfortunately, finding
a good solution here is not entirely trivial. To get started, suppose that we simply
generate a tick “pseudo instruction” every time we encounter a SourceNote in Core:

$wgo ()
{ A : i f (Sp−16 < SpLim) goto B ; e l s e goto C ;

B : c a l l s t g gc fun (R2 , R1) ;
C : s r c<Num. l h s :89> src<Enum . l h s :534>

i f (R2 == I64 [R1 + 7]) goto D; e l s e goto E ;
D: s r c<Num. l h s :89> src<Enum . l h s :535>

R1 = R2 ;
c a l l P64 [Sp] (R1) ;

E : s r c<Enum . l h s :536>
. . .
c a l l $wgo (R2 , R1) r e t u r n s to F ;

F : s r c<Num. l h s :89>
. . .
c a l l P64 [Sp] (R1) ;

}
Listing 5.24: Cmm Example with Ticks

The good news is that this is a straight-forward translation, and the result seems to
make sense for local annotations. For instance, the references to Num.lhs tells us that
block D and F together perform a multiplication. Finding these source code links might
already be useful for performance analysis.

On the other hand, we can also spot a number of problems. The entry code is not
annotated at all, and the whole procedure contains no reference to the original source
code whatsoever. If this was a larger program, this would make it basically impossible
to tell what code we are looking at. The reason for this is that in Listing 5.22 we only
have one source code annotation at the entry point of the function, which is basically
out of scope for this procedure. This is a severe problem: Unless we can find a way to
reconnect our ticks with their associated code, they will lose most of their usefulness.

5.5.3 Tick Scopes

The main disconnect stems from the fact that Cmm code consists of a loose collection
of blocks, whereas Core code is naturally structured. As explained in Section 5.3.4 on
page 125 it is vital that we can discover our static context, but the change in program

145

5.5. CMM CHAPTER 5. PROFILING

A: i f (Sp−16 < SpLim) goto B ; e l s e goto C ;
B : c a l l s t g gc fun (R2 , R1) ;
C : s r c<Num. l h s :89> src<Enum . l h s :534>

i f (R2 == I64 [R1 + 7]) goto D; e l s e goto E ;

D: s r c<Num. l h s :89> src<Enum . l h s :535>
R1 = R2 ;
c a l l P64 [Sp] (R1) ;

E : s r c<Enum . l h s :536>
. . .
c a l l $wgo (R2 , R1) r e t u r n s to F ;

F : s r c<Num. l h s :89>
. . .
c a l l P64 [Sp] (R1) ;

Figure 5.3: Cmm Tick Scopes

representation has made this a lot harder. After all, in Core we just had to walk the
expression tree upwards towards the root, whereas now we lack such a robust navigation
tool 8. This leaves basically two ways to approach this problem: We could eliminate
the need for code context by copying the complete tick context into every single block.
However this would mean a massive amount of information duplication.

Therefore we will instead reimpose Core-like scoping behaviour on top of Cmm
blocks. Figure 5.3 shows what this would look like for our example: The upper-most
scope corresponds to the top level of the function $wgo, whereas the scopes starting
from D and E implement the two main case branches respectively. Finally, the F
block corresponds to the return code after the recursive call to $wgo. Maintaining this
structure makes it easy for us to identify which ticks apply to which block.

When considering a suitable representation for these scoping rules, we have to keep a
number of secondary factors in mind. Firstly, we want scopes to work even across Cmm
procedures. After all, to resolve the issue of the missing reference to the original source
file, we would need to imagine a parent scope containing all other scopes in Figure 5.3.
This scope could then establish the causal connection to fac .hs. Furthermore, we have
to remember that there will be optimisations working on the Cmm code. Keeping in
line with our philosophy, we would like to be minimally disruptive to other compiler

8We could try to analyse the control flow of the Cmm procedure and e.g. take over ticks from
dominating blocks [Lowry and Medlock, 1969]. While this would correspond nicely to our reasoning
and might even be more accurate in some instances, it does not sound like a good idea architecturally
to depend on control flow to conform to our expectations.

146

CHAPTER 5. PROFILING 5.5. CMM

operations, both in terms of allowing transformations as well as keeping extra code
complexity to a minimum. We not only want to be able to generate new sub-scopes on
the fly, but also to merge them easily after the fact.

Finding a solution that satisfies such diverse requirements is not quite obvious. Our
approach is that we represent a scope as a globally unique string, with every subset of
this string corresponding to a potential super-scope. For our example we might assign
the function $wfac from Listing 5.22 the scope string “S”. Then we could recursively
produce new sub-scopes simply by appending the name of the first block of the scope 9,
which would give us the following block coverage:

Scope A B C D E F
S X X X X X X
SA X X X X X X
SAD X
SAE X X
SAEF X

Now we just modify Cmm code generation to associate every block with one of these
scopes. This allows us to solve the present problem in an arguably elegant way: We
know that a tick that gets generated into a block with scope SA is meant to apply to
every other block in that scope as well as all sub-scopes. All blocks in $wgo would
inherit any source note that we introduce into scope S, which would allow us to link it
back to the original source code.

5.5.4 Optimisations

Furthermore, our scope representation allows Cmm optimisations to freely arrange
blocks without having to spend too much work on updating our scope structure. For
example, simply removing a block without ticks is always allowed. But there are even
more involved optimisations that we can support. Consider for example concatenating
two blocks together:

A: . . . s tmts1 . . .
goto B ;

B : . . . s tmts2 . . .
=⇒

A: . . . s tmts1 . . .
. . . s tmts2 . . .

Listing 5.25: Cmm Block Concatenation

9This is just for easier presentation; GHC uses proper fresh names at this point.

147

5.5. CMM CHAPTER 5. PROFILING

This optimisation applies when there is no other jump to B, which is a situation that
can happen quite often in generated Cmm code. As it can expose further optimisation
opportunities, it is important that we allow code generation to take advantage of this.
Consider what this means for ticks: Both stmts1 as well as stmts2 might be covered by
a number of ticks from their respective scopes as well as all parent scopes. To ensure
that the code remains covered we therefore assign the block a scope string that is the
union of the old scope strings. Scopes of subsequent blocks are often similar, so this
does not change much while ensuring proper tick scoping. So for example if we merged
blocks with scopes S and SA, we could assure proper scoping by using the scope SA for
the combined block.

We can do a similar transformation with common block elimination:

A: . . . s tmts . . .
B : . . . s tmts . . .

=⇒
A: . . . s tmts . . .

Listing 5.26: Cmm Common Block Elimination

Under the assumption that A and B contain equivalent statements we can arrange
control flow so we can eliminate one instance. However, note that this time around we
have to take special care of tick annotations: Analogous to our treatment of common sub-
expression elimination in Section 5.4.9 on page 139 we want to ignore the annotations
when looking for candidates for CBE, only to re-annotate all ticks of the merged blocks
on the final block. For scoping we would again use string union, which for block scopes
SA and SB would yield us SAB, for example. This treatment allows us to maintain
source code links throughout GHC’s Cmm stage.

However note that we are actually glossing over a problem here: When assigning
the merged block a scope string like SAB, we might actually reduce tick coverage for
other blocks. After all, there might be another block in scope SA, which now has less
coverage due to us moving the ticks into scope SAB! To solve this, we would have to
assign individual ticks a scope – then moving them into new blocks would not change
the scope they apply to.

On the other hand, to our knowledge this issue does not happen in practice, as
GHC will only generate more than one block per scope if we have complex control flow.
This generally means that the optimisations only get applied in situations where we
eliminate complete tick scopes. For example, assume we want to use common block
elimination on blocks from two scopes SA and SB. Then it is quite likely that CBE
would have to merge all blocks from the two scopes at the same time, as jumps between
them force equivalence.

148

CHAPTER 5. PROFILING 5.6. BACK-END

5.6 Back-End

By this point in the compilation pipeline, GHC has transformed the original Haskell
code to the point where we have a relatively low-level description of how the finished
program should execute. The next step will be to produce actual machine code to be
linked with the other components to form a complete executable Haskell program.

For our purposes this poses a fresh set of challenges: While so far we always had the
option to change the language to fit our needs, we now have to target standardised file
formats. This means that our options for storing profiling-related information is reduced
to either shoehorning it into the given formats or separating it out and distributing it
as a GHC-specific attachment.

We are going to use both approaches in this section: Where existing standard
formats match our data reasonably well, we will provide it to the best of our ability.
However we will also run into a few situations where we have no choice but to go
separate ways and find a custom representation for our data.

5.6.1 DWARF

The trickiest part about this stage is that we want to keep track of machine code
locations all the way until it is loaded into memory for execution. After all, this is what
will allow us to identify the exact code under evaluation. We only have fairly indirect
influence on this process: Once the Haskell program has been compiled to assembly
code, it will be fed to standard assembly, linkage and loading tools just like a program of
any other programming language. Predicting where these tools will allocate the object
code is basically impossible unless we are willing to work with what these tools provide
us. Fortunately, tracking object code for the purposes of debugging and profiling is
not an entirely exotic use case. In fact, enough established language tool-chains have
solved this problem that the involved formats have been standardised by the DWARF
standards committee [DWA, 1993]. This specification defines a mostly language-agnostic
way for associating debug data with the compiled code.

To remain flexible about exactly what debugging and profiling features to support,
the DWARF format splits the data up depending on the concrete use case. These
different aspects of the debugging data will then take the form of sections in the object
file, with names such as .debug info and .debug line indicating both the format and
the nature of the contained data. This will then allow the system linker to merge and
update the sections accordingly when arranging object code for the final executable.
Furthermore, we can count on being able to interpret this data for a running program,
using standard tools and techniques in order to identify the concrete mapping of code
locations to system memory.

149

5.6. BACK-END CHAPTER 5. PROFILING

5.6.2 Debugging Information

Let us first tackle the general debug information section .debug info. This section is
structured as a nested series of records, each with a number of fields as well as a number
of sub-records. The top level record will always be “compile units”, which stands for
the result of compiling one source file. This would look as follows if we use objdump to
pretty-print the data:

Abbrev Number : 1 (DW TAG comp i l e u n i t)
DW AT name : f a c . hs
DW AT produce r : The G l o r i o u s GHC System
DW AT language : 0 x18 (Unknown : 18)
DW AT comp d i r : ~/ l e e d s / t e s t / h a s k e l l / f a c /
DW AT stmt l i s t : 0x0

Listing 5.27: Compilation Unit Record

This introduces general data about the compilation, such as source file location as well
as compiler and programming language. Note that the language ID 0x18 was assigned
to Haskell on initiative of Howell [2012] and is slated to become part of the DWARF 5
standard, but is not yet recognised by standard tools.

Children of compile units will be subprograms, corresponding to Cmm procedures:

Abbrev Number : 2 (DW TAG subprogram)
DW AT name : f a c
DW AT MIPS l i n k a g e name : s3S f i n f o
DW AT low pc : 0 x404360
DW AT high pc : 0 x4043b4

Listing 5.28: Sub-Program Record

This establishes just some very basic data that we have about the procedure: Its name
as well as the program counter (PC) range we expect the object code to occupy. We
will see in Section 5.6.4 how we derive the name from our source notes. Meanwhile,
it is not hard to see how we can provide the latter information simply by referencing
suitable code markers placed in the assembly code. For example, we would produce the
above record by generating the following assembly code:

$wgo1 i n f o :
l e a q −16(%rbp) ,% rax
cmpq %r15 ,% rax
j b c3Tv
// . . . imp l ementa t i on . . .

150

CHAPTER 5. PROFILING 5.6. BACK-END

$wgo1 i n f o end :
Listing 5.29: Assembly With Bound Markers

Note the stack check, matching the start of the function in Listing 5.24. For debugging,
the thing to note are the $wgo1 info and $wgo1 info end markers, which allow us to
refer to the function’s bounds. This will ensure that standard linking tools will properly
relocate code addresses in debug information whenever code changes location.

However, this is not quite enough information for us to represent the full address
mapping that we had in mind. After all, at the end of last section we associated source
ticks with individual blocks. Therefore we would ideally like to get the tool-chain to
track block bounds as well. Unfortunately, this is the first point where we have to
stretch the possibilities provided by the DWARF standard a bit, as there is no real
equivalent for “block of code in an intermediate language”.

Instead, we will declare Cmm blocks as named “lexical blocks”:

Abbrev Number : 3 (DW TAG l e x i c a l b l o ck)
DW AT name : c2Oj e n t r y
DW AT low pc : 0 x402ee9
DW AT high pc : 0 x402ee f

Listing 5.30: Lexical Block Record

Even though the purpose of this structure is to provide variable scope, using it for
assigning names to code portions works just as well. The name will allow us to associate
additional information with each block later on.

5.6.3 Source Lines

While the records contained in .debug info already would allow our tools to reconstruct
the structure of the compiled object code, it lacks references to what concrete part of
the source code the functions and blocks were coming from. In the spirit of the DWARF
format, this is relegated to its own and largely independent section, namely .debug line.
One reason for this split is that line number information is normally not similar to
other debugging information structurally. While C-like programs often have only a
couple of procedures and lexical blocks, a complete program could consist of thousands
of individual code lines. To support debugging, we require a full map connecting these
to the compiled code in the object files.

As a result, there have been significant efforts to keep the encoding of this data
as compact as possible. The DWARF standardDWA [1993] defines an elaborate data
compression scheme, allowing the DWARF producer to customise the encoding for
maximum efficiency. Fortunately, GHC can leave the generation of this table to the

151

5.6. BACK-END CHAPTER 5. PROFILING

. f i l e 1 " f a c . hs "
. t e x t

// . . . i n f o t a b l e . . .
$wgo1 i n f o :
c3Tc :

. l o c 1 15 1 /∗ t e s t 3 ∗/
l e a q −16(%rbp) ,% rax
cmpq %r15 ,% rax
j b c3Tv

. Lc3Tc end :
c3Tw :

. l o c 1 15 1 /∗ t e s t 3 ∗/
cmpq 7(%rbx) ,% r14
j e c3Ts

. Lc3Tw end :
[...]

Listing 5.31: Assembly With Line Annotations

system’s assembly tool. All we have to do is annotate the source code with special
“ . file ” and “ . loc” directives as shown in Listing 5.31. This will prompt the assembler
to build the compressed file and line tables for us, as well as generate the .debug line
section. Here is the result, decoded using objdump:

F i l e name L ine number S t a r t i n g add r e s s
f a c . hs 15 0 x404360
f a c . hs 15 0 x404369
f a c . hs 15 0 x40436f

Listing 5.32: Source Line Table

Which is what we were hoping to see.

5.6.4 Source Note Selection

We have now seen how we can represent the information from a SourceNote in DWARF:
We can use the name in order to refer to the procedure in .debug info, and the informa-
tion about the source code span to produce a matching entry in the .debug line table.
However, when we talked about tick scopes in Section 5.5.3 it should have become clear
that we rarely want to think of blocks and source notes as being in a one-to-one corre-
spondence. In fact, following static control flow backwards as explained in Section 5.3.4

152

CHAPTER 5. PROFILING 5.6. BACK-END

on page 125, we will generally find many ticks to choose from.
Unfortunately, the DWARF format does not allow us to be indecisive about what

source line or name we wish to associate with a piece of generated code. Therefore we
are forced to pick: Which source note is the “most” useful for debugging the generated
piece of code? We obviously want to throw away as little information as possible. This
makes referencing, say, the multiplication operation a bad choice. After all, the program
is most likely using multiplication often enough that it would not identify the code
in question very well. On the other hand, knowing the current module function will
generally allow us to discover roughly what low-level annotations we should expect.

This is why we will heuristically prefer source ticks that are from the source file
that corresponds to the currently compiled module. The nice property of such source
notes is that as long as we have implemented annotations correctly with respect to code
transformation, it is virtually guaranteed that all generated code will be directly or
indirectly annotated with a SourceNote corresponding to the original source file. After
all, this was the case right after desugaring, and we would expect code to only gain
annotations from there.

Bottom-line is that we will always chose the source tick that matches the compilation
unit and is most relevant to the execution site according to Section 5.3.1. This has the
additional benefit that the output also closely matches the expectations of debugging
tools, as the source references now essentially allow “stepping” through the source file.

5.6.5 Unwinding

Providing source file information in DWARF format was our main goal, but we can
actually improve on this further by taking advantage of more elaborate DWARF features.
Remember that in Section 5.3.6 on page 128 we explained that we could recover more
information about the current program state by walking the Haskell stack and analysing
the return code pointers we encounter. This corresponds to the common debugging
technique of stack unwinding: By successively removing stack frames from the heap we
recover information about the call hierarchy.

And despite the fact that the Haskell stack is actually maintained in a fairly non-
standard way, we can communicate the unroll procedure to the debugger using DWARF
unwind instructions. For example, Listing 5.33 shows the unwind specification for the
Cmm code from Listing 5.23. First, the Common Information Entry (CIE) establishes
the general heap format. For us, this means that we expect the stack to grow downwards
in steps of 64 bits, making the data alignment -8 bytes. Furthermore we establish how
to unwind a stack frame: Set the instruction pointer to the value we find at the current
Canonical Frame Address (CFA), and set the stack pointer rbp to the current CFA10.

10Note that rbp is the default x86-64 back-end register used for the Sp Cmm register.

153

5.6. BACK-END CHAPTER 5. PROFILING

CIE
Code a l i gnment f a c t o r : 1
Data a l i gnment f a c t o r : −8
Return add r e s s column : 16
DW CFA o f f s e t : r16 (r i p) at c f a+0
DW CFA va l o f f s e t : r6 (rbp) at c f a+0
DW CFA de f c f a : r6 (rbp) o f s 0

FDE c i e =00000000 pc=0040435 f . . 0 04043 b4
DW CFA s e t l o c : 00404397
DW CFA de f c f a o f f s e t : 16
DW CFA s e t l o c : 004043 aa
DW CFA de f c f a o f f s e t : 0

Listing 5.33: Unwind Instructions

By default, we set the frame base address CFA to the current rbp, which describes
the situation at the point where a function is entered: Unwinding the stack would
simply mean resetting the instruction pointer using the return pointer from the stack,
leaving rbp unchanged. However, once a function does actual stack allocation, this has
to be updated using a Frame Description Entry (FDE). In our example we instruct the
unwind process that after the update of Sp in block E of Listing 5.23 we will have to
roll the stack pointer back suitably.

Note however that there are subtleties to this. Firstly, typical debugging tools will
actually decrease the return pointer by one byte before trying to look up its information.
This is under the assumption that typical code would looks like follows:

c a l l fun
. . . // r e t u r n code

Listing 5.34: Expected Assembly

If executed, the call instruction in this assembly would push a return pointer pointing
to the return code. However, for debugging we are actually interested in where execution
was coming from, not where it is going to take us next. And in this specific case we
can easily reconstruct that, simply by decreasing the instruction pointer. In the above
code this clearly leads us back to the original call instruction.

Unfortunately, this small trick does not work for Haskell code, as we have no
guarantee that the calling code can be found anywhere near the return pointer. Let us
have a quick look at the recursive call in our running example:

154

CHAPTER 5. PROFILING 5.6. BACK-END

movq r e t i n f o ,(% rbp)
jmp $wgo i n f o
. a l i g n 8
. quad 65
. quad 32

r e t i n f o :
. . . // r e t u r n code

Listing 5.35: Actual Haskell Assembly

where the .quad directives describe the info table, which communicates the heap layout
for GHC’s garbage collector. This means that decreasing the return pointer will actually
yield a non-code pointer! This is why we actually implement a subtle “hack” to get
around this problem. Note that in Listing 5.33 the FDE actually points to code addresses
that are shifted by exactly one byte. so instead of starting at our true function entry
0x404360, we are referring to 0x40435f instead.

In order to get good line number information for past stack frames, we have to
make the same considerations for source lines. As explained in Section 5.6.3 we are not
generating this table ourselves, so we have to shift the position of the . loc directive
“manually” in order to produce the intended behaviour. Fortunately, we know that
decreasing any return pointer will land us directly inside the info table, so we can
simply annotate the data:

. . .
. a l i g n 8
. l o c 4 89 19
. quad 65
. quad 32

r e t i n f o :
. . .

Listing 5.36: Line-Annotated Haskell Assembly

The easiest approach is to simply put the same source code annotation on the info table
that we would have put on ret info . However note that we could actually be smarter
here: Just as with C code we might occasionally have information about where the
control flow was coming from, therefore annotating the info table with a suitable line
annotation could improve results.

However, there will always be examples where this is not possible, such as canned
return targets. Here we actually have the additional problem that the return pointer
is the start of the function. This means that decreasing that particular code pointer
will actually go out of the function’s bounds, both according to the debug information

155

5.6. BACK-END CHAPTER 5. PROFILING

records as discussed in Section 5.6.2 as well as the symbol table. The latter is more
critical, as we can not manipulate it due to its role in the linking process. Unfortunately,
debugging tools such as gdb use it to lookup function names, leading to unhelpful ??
entries in stack traces. For example, the following stack trace would be generated for
an exception raised inside a thunk update:

#0 s tg r a i s e z h () at r t s / Excep t i on .cmm:433
#1 0x694330 i n ?? () at r t s /Updates .cmm:57
#2 0x4047a0 i n $wf ib e r r () a t s tack−t r a c e . hs : 7

Listing 5.37: Example Stack Trace

Unfortunately, we cannot correct this from the compiler. A proper solution would most
likely require a patch to the debugging tool in question.

5.6.6 GHC debug records

At this point we have pretty much exhausted what we can meaningfully express with
the DWARF standard. However, we have a lot more information in store: In our
mind every piece of object code is covered by a number of possible source annotations,
each potentially providing valuable information about the nature of the code at hand.
Furthermore, we might want to mix in additional information about the compilation
process, as we will see in the next section.

In order to maintain such data alongside existing DWARF debugging information, we
will allocate our own object file section, called .debug ghc. For overall data organisation
we will choose the event log format [Jones et al., 2009]. This is in anticipation for
collected profiling information getting appended later on. Note that we cannot rely
on debugging tools to know about the format of our section, which means that we
will only be able to identify code addresses by comparing against information from
the .debug info section. This is why we took great care in Section 5.6.2 to associate a
unique name with every procedure and block.

As we have seen in Figure 5.3 on page 146 tick scopes naturally form a tree structure,
so it is a straight-forward choice to use a block tree for our debug records as well. Note
though that scopes will not always directly conform to this, as shown in Figure 5.4.
Firstly we might encounter multiple blocks sharing the same scope, as happens for AB
in the example. We then choose a “representative” for the scope11, which will carry all
ticks as well as becoming parent to all other blocks covered by the scope. Furthermore,
we might have scopes with more than one parent scope, such as ABC in the example.
Then we have to settle for just one parent, and restore all “lost” ticks by replicating

11The choice is pretty arbitrary – to reduce randomness we select the first block according to pre-order
traversal. This allows us to guarantee that the entry block will become root of its scope, if nothing else.

156

CHAPTER 5. PROFILING 5.6. BACK-END

A

AB

AC

ABC

Figure 5.4: Block Tree from Scopes

1 Debug module main : f a c . hs
2 Debug b l o ck l a b e l c3TG en t r y i d 1 pa r en t 0
3 Debug b l o ck l a b e l c3TH en t r y i d 2 pa r en t 0
4 Debug b l o ck l a b e l c3Tw en t r y i d 5 pa r en t 4
5 Debug b l o ck l a b e l c3Tv en t r y i d 6 pa r en t 4
6 Debug b l o ck l a b e l c3Tj i n f o i d 8 pa r en t 7
7 Debug sou r c e ∗ (Num. l h s : 8 9)
8 Debug b l o ck l a b e l c3Tt e n t r y i d 7 pa r en t 4
9 Debug sou r c e e f t I n t FB . go (Enum . l h s : 5 36)
10 Debug b l o ck l a b e l c3Ts en t r y i d 9 pa r en t 4
11 Debug sou r c e ∗ (Num. l h s : 8 9)
12 Debug sou r c e e f t I n t FB . go (Enum . l h s : 5 35)
13 Debug b l o ck l a b e l s 3S f i n f o i d 4 pa r en t 3
14 Debug sou r c e ∗ (Num. l h s : 8 9)
15 Debug sou r c e e f t I n t FB (Enum . l h s : 5 34)
16 Debug b l o ck l a b e l c3TD en t r y i d 3 pa r en t 0
17 Debug sou r c e e f t I n t FB (Enum . l h s : 5 32)
18 Debug b l o ck l a b e l c3TC en t r y i d 10 pa r en t 0
19 Debug sou r c e e f t I n t FB (Enum . l h s : 5 31)
20 Debug b l o ck l a b e l Main zdwfac i n f o i d 0
21 Debug sou r c e e f t I n t FB (Enum . l h s : 5 31)
22 Debug sou r c e enumFromTo (Enum . l h s : 5 00)
23 Debug sou r c e f a c (f a c . hs : 1 5)

Listing 5.38: Debug Records

157

5.6. BACK-END CHAPTER 5. PROFILING

$wfac = λ to # →

l e t wgo = λn# →

ca se (==#) n# to # o f

True → n#

Fa l s e →
ca se $wgo ((+#) w s2L5 1) o f

r # → (∗ #) n# r #

i n wgo 1#

Figure 5.5: “Scopes” in Core

them in the appropriate block. For our sketch, this would mean copying the ticks
associated with scope AB into the block contained in ABC.

Once we have obtained such a block tree, we emit a series of event messages that
describe its structure and payload. Listing 5.38 on page 157 shows the result for our
running example: The entry block Main zdwfac info with ID 0 (line 20) is the root of our
tree, corresponding to the top level in Listing 5.22 on page 142. One level below we find
the entry block of the $wgo with instrumentation ID 4 (line 13). Note that as shown in
Listing 5.28 on page 150, GHC has assigned it the unique name s3Sf, which we can use
to identify the correspond .debug info record and therefore its code range. As events
are written as a series, associating further properties with these blocks simply means
emitting extra block property events right after the event declaring the corresponding
block. For our example, the root node 0 will receive three source annotations from
fac .hs and Enum.lhs respectively.

5.6.7 Core Notes

When we talked about what information we could infer from just a static context in
Section 5.3.4, we noted that it will be useful to allow the user to trace compilation
backwards in detail. After all, while explaining source code causation for a program
state might require us to bring a large number of possibly relevant source locations into
play, we can generally pin-point exactly where we found ourselves in terms of Cmm or
optimised Core code. This offers the user a great deal of information, especially making
them independent of heuristics such as the one discussed in Section 5.6.4.

158

CHAPTER 5. PROFILING 5.6. BACK-END

To make use of this property, we want to link up a block tree like the one shown in
Figure 5.4 with a Core program, such as the optimised Core we derived for factorial
back in Listing 5.22 on page 142. After all, as Figure 5.5 shows we can easily map tick
scopes back to the structure of the Core program. In order to track this association,
we need to define yet another tick type just like we did in Listing 5.7 for source code
links. This time however, we track Core:

[...]
| CoreNote { co reB ind :: Var

, coreNote :: ExprPtr Var }
Listing 5.39: Core Note

with the coreBind providing a unique identifier for the Core location, and the ExprPtr
referencing the Core expression or binding in question.

The unique property of the CoreNote is that it will only get generated once we
translate the intermediate Code into Cmm. So it is guaranteed not to exist on the Core
stage, so there is no need to decide floating or placement properties like in Section 5.4
on page 129. In terms of treatment on the Cmm stage we simply expect that they will
remain in their associated tick scopes, just like source notes. In the end, this yields us
a straightforward map of tick scopes to one or multiple locations in the Core code.

In order to save the Core for later inspection we then encode the Core code in the
event-log format. We can simply achieve this by inserting appropriate “Core” event
messages with the messages the other block records. However, this process is not quite
obvious: To reduce space usage we aim to never emit any single piece of core twice.
Therefore we partition the full Core code into separate chunks, using references in order
to assemble them back together.

In our example, this means that we would generate the following Core pieces:

<A> (∗ #) n# r #

 case $wgo ((+#) w s2L5 1) o f r # → <A>
<C> n#

<D> case (==#) n# to # o f True → <C>; Fa l s e →
<E> $wfac = l e t wgo = λn# → <D> in wgo 1#

Listing 5.40: Core Pieces

To further increase the usefulness, we can also add type information into the mix. Note
however that retaining too much data at this point can quickly lead to the produced
binary growing excessively. After all, if we go through with this we will not only save
every single piece of optimised Core that the compiler produces, but also pretty much
all types encountered in intermediate code.

159

5.6. BACK-END CHAPTER 5. PROFILING

The latter can be surprisingly problematic, as for example heavy usage of monad
transformers [Espinosa, 1995] in the popular haskeline library at one point produced
types that spanned about 20 000 lines when pretty-printed. This is why we took great
care to be space-efficient, and will make Core tracking an optional feature.

5.6.8 LLVM

To this point we have described what debugging data we would like to ship with our
binaries in order to link object code back to profiling and debugging data. We even
used examples of what we would like the produced assembly code to look like. Yet
we have to note that for GHC compilation, we will not always have full control over
the produced assembly. While it is generally recommended to have GHC handle the
production of the assembly code directly, there are cases where it is beneficial to leave
this task to an external tool. For our purposes, this means that we have to deal with
an additional layer of indirection.

The alternative we want to cover here is the LLVM backend [Terei and Chakravarty,
2010], which generates high-level assembly code to be compiled using the LLVM com-
piler infrastructure [Lattner and Adve, 2004]. This allows us to make use of its low-level
optimisation facilities, which are much more advanced than the fairly basic transfor-
mations that GHC can perform on Cmm and assembly code. For our purposes, this
means that we have to find a way to instruct LLVM to generate the suitable DWARF
code. Fortunately, there is fairly direct support for this in the form of LLVM meta
data. For example, generating the .debug info records for the compilation unit as well
as the $wgo function would look as shown in Listing 5.41. Note the similarity with
the structure of .debug info as discussed Section 5.6.2 on page 150: Using metadata
links we define a tree-like structure, assigning every node a tag deriving from the record
types from the .debug info section. Note that while most of the meta data is comprised
of literals and other meta data, @s1E8 info is actually a reference to the function of the
same name, which we supposedly defined earlier in the same file. This allows us to link
the debug information to the definition in question.

Generating line number annotations also has parallels to how we generated the line
table by inserting . loc directives into the assembly in Section 5.6.3. For LLVM, we
simply annotate the code with suitable metadata links as shown in Listing 5.42. Notice
the !dbg annotations, which connect LLVM code lines with the source code line in
question. For example, meta data node !4 here stands for line 15 column 17 in fac .hs.
This is also where we introduce lexical blocks, which serve the same purpose they did
previously: Introduce unique names for Cmm blocks.

In the end, while LLVM allows us to get good results with relatively little effort, there
is also a lot that we simply cannot express using LLVM’s intermediate representation.

160

CHAPTER 5. PROFILING 5.6. BACK-END

! 0 = metadata !{ metadata ! " f a c . cpp " ,
metadata ! "~/ l e e d s / t e s t / h a s k e l l / f a c /" }

!1 = metadata !{ i 3 2 786473 , // DW TAG f i l e type
metadata !0 }

!2 = metadata !{ i 3 2 786449 , // DW TAG comp i l e u n i t
metadata ! 0 , i 3 2 24 ,
metadata ! "The␣ G l o r i o u s ␣GHC␣System " , . . . }

!3 = metadata !{ i 3 2 786478 , // DW TAG subprogram
metadata ! 0 , metadata ! 1 ,
metadata ! "$wgo" , metadata ! "$wgo" ,
metadata ! " s1E8 i n f o " ,
. . . ,
v o i d (. . .) ∗ @s1E8 i n f o }

Listing 5.41: LLVM Debug Meta Data

d e f i n e i n t e r n a l cc10 vo i d @s1E8 i n f o (. . .) a l i g n 8 {
c1Fk :

%ln1Gp = add i 64 %R1 Arg , 7 , ! dbg !4
%ln1Gr = i n t t o p t r i 6 4 %ln1Gp to i 6 4 ∗ , ! dbg !4
[...]

}
[...]
! 4 = metadata !{ i 3 2 15 , i 3 2 17 , metadata ! 5 , . . . }
!5 = metadata !{ i 3 2 786443 , // DW TAG l e x i c a l b l o ck

metadata ! 0 , . . . ,
metadata ! 1 , . . . }

Listing 5.42: LLVM Line Meta Data

161

5.7. DATA COLLECTION CHAPTER 5. PROFILING

Most prominently, LLVM expects to handle its own stack, so there are no facilities for
explaining how to unwind the custom GHC-style stack. Furthermore, there is no direct
way of assigning names to lexical blocks like we did in Section 5.6.3, so to retain links to
Cmm code we can only mark them indirectly, for example by creating dummy variables.
This means that while profiling and debugging using the LLVM backend is possible, we
have to accept further downsides on top of DWARF’s inherent restrictions.

5.7 Data Collection

We have now obtained a complete debug information map for our object code. This
means that at this point a single object-file code pointer would be enough for us to be
able to tell the full story of how the code in question was produced, and especially what
parts of the original source code played a role. All we need now in order to start our
analysis is some performance data that yields us such code pointers.

In this section we will show how to collect such profiling data. Conceptually,
this means that we are now leaving the part of the implementation that is primarily
concerned with the “cause” side (source code) and enter the phase where we are looking
for “effects” (resource consumption). Therefore this section will be about implementing
the verbs and metrics introduced back in Section 5.2 on page 117. However, we still
have to make sure that we carry along all data we have collected so far about nouns
and explanations, as this will later allow the analysis tools to link up the two sides of
the profiling problem.

5.7.1 Event-Log

As mentioned in Section 5.6.6 on page 156, we will be using the event-log format as
defined by Jones et al. [2009]. Using a common standard format for profiling has the
advantage that we can integrate various approaches both on the producer as well as the
consumer side: Existing profiling infrastructure can provide further performance data to
help put ours into context, and other profiling tools might decide to also take advantage
of the data we collect. For example, apart from the original ThreadScope application
the format is also understood by the Eden trace viewer [Berthold and Loogen, 2007],
HdpHProf [Al Saeed et al., 2012] as well as the ghc-events-analyze tool [de Vries and
Coutts, 2014], all covering different use-case for profiling analysis.

In order to produce a useful event-log file, we will first write out a “prefix” consisting
of the program’s debug records as defined in Section 5.6.6 on page 156. As we already
generated these records in event log format, this mostly means copying data from our
own .debug ghc section into the fresh event-log file. However, this task is not entirely
straightforward, as we want to provide debug information for all involved libraries as

162

CHAPTER 5. PROFILING 5.7. DATA COLLECTION

well, for which we have to resolve both compile-time as well as run-time relocations.
This means that the runtime system needs to be able to read the .debug info section

of both its “own” executable as well as all dynamically linked libraries. Fortunately,
there are standard libraries available for this task, so we simply use libelf [Riepe,
2009] and libdwarf [Anderson, 2011] in order to extract all required information. We
furthermore relocate all code pointers using our process’ memory map12 which yields us
the actual address ranges for every code block with a DWARF record. By interleaving
these pointer ranges with the existing debug block records, we obtain a full mapping of
debug information to pointer ranges:

Debug module main : f a c . hs
Debug p rocedu r e l a b e l c3TG en t r y i n s t r 1 pa r en t 0
Debug p o i n t e r range 0x004043dd−0x004043e3
Debug p rocedu r e l a b e l c3TH en t r y i n s t r 2 pa r en t 0
Debug p o i n t e r range 0x0040440c−0x00404420
Debug p rocedu r e l a b e l c3Tw en t r y i n s t r 5 pa r en t 4
Debug p o i n t e r range 0x00404369−0x0040436f
Debug p rocedu r e l a b e l c3Tv en t r y i n s t r 6 pa r en t 4
Debug p o i n t e r range 0x004043b0−0x004043b4
Debug p rocedu r e l a b e l c3Tj i n f o i n s t r 8 pa r en t 7
Debug sou r c e ∗ (l i b r a r i e s / base /GHC/Num. l h s :89 :19 −89 :30)

Listing 5.43: Debug Records with Pointer Ranges

Where we have more information on source ranges than we have records in .debug ghc,
we can even synthesise new records that describe them. This might happen for example
when we are linking with C libraries:

Debug module :SYMTAB: / l i b 6 4 / l i b p t h r e a d −2.12. so
Debug p rocedu r e l a b e l p th r ead cond wait@GLIBC 2 . 2 . 5
Debug p o i n t e r range 0 x3aa3c0c070−0x3aa3c0c108
Debug p rocedu r e l a b e l p th r ead s e t a f f i n i t y np@@GLIBC 2 . 3 . 4
Debug p o i n t e r range 0 x3aa3c0fac0−0x3aa3c0fb65

Listing 5.44: Debug Records for C Library

Note however that this is limited to information extracted from the symbol table and
the .debug info section. Therefore instead of complete source references we end up with
just symbol names. Extending this to cover full DWARF information would require us
to decode the information in .debug line as well, which we currently skip.

12Which we currently obtain by reading /proc/self/map, basically abandoning all hope of portability.

163

5.7. DATA COLLECTION CHAPTER 5. PROFILING

sample weight · · ·· · ·

sample
mode op wdt
0x00 + 8
0x10 - 8
0x40 + 32
0x50 - 32
0xf0 = 64

weight
mode wdt
0x0 0*
0x1 8
0x2 16
0x4 32
0x8 64

Figure 5.6: Sample Encoding

5.7.2 Samples

With the debug map established, referencing debug data becomes as easy as saving a
pointer, leaving the actual lookup to the analysis tool. As Section 5.2.1 on page 118
explained this is good news, as low overhead is the easiest way to prevent skews.

On the other hand, putting some effort into our encoding scheme is a good idea
anyway. Remember that this is about providing evidence for a connection between
certain causes (nouns) and effects (verb). As explained in Section 2.2.4 on page 12 this
is not just about a one-to-one connection, but we will want to associate weights with
connections, corresponding to the approximate strength of the link. Depending on our
collection method, the value range of these weights might vary quite a bit. For example,
sampling only the instruction pointer we might only ever get one sample at a time,
while inventory-type samples such as heap residency profiles will produce much more
data (see Figure 6.12 on page 190). If we add the fact that our noun representation will
generally be a 64 bit code pointer, it becomes clear that we might quickly be looking
at about 16 bytes per sample, which could add up quickly unless we invest into some
basic pre-processing.

To help with this, we use a basic compression system shown in Figure 5.6: A mode
byte tells us for every weighted sample how both the sample value as well as the weight is
going to be encoded. For values, we exploit that subsequent samples are often expected
to be in close proximity to each other, making it more compact to emit a distance to
the last sample instead of the full 64 bit pointer. We want to be especially mindful
of small hot-spots, where samples are often in very close proximity (< 256 bytes), and
unless samples jump between libraries pointer differences will generally fit into a 32 bit
integer. On the other hand, for weights we have to account for the full range of values,
with no expected proximity between neighbouring values. Therefore we cover the whole
range of integers from 0 up to 8 bytes, with 0 standing for the constant weight of 1.

164

CHAPTER 5. PROFILING 5.7. DATA COLLECTION

Furthermore, we will allow sample events to specify what noun and verb they are
talking about. This will make our sampling infrastructure open for future extensions,
for example using cost-centre nouns instead of instructions pointers. For the moment,
here is how an example sample event would look like when carrying instruction pointers,
collected by processor cycles:

Sample Samp l e I n s t rP t r by SampleByCycle cap 0 :
2∗0 x404fe9 , 0 x404 f f0 , 2∗0 x404fe9 , 3∗0 x404 f f0 ,
0 x404fe9 , 4∗0 x404 f f0 , 0 x404fe9 , 2∗0 x404 f f0 ,
0 x404 f f0 , 0 x405074

Listing 5.45: Samples in Event-Log

Especially note the distinct “hotspot” behaviour here: In this example most samples
are from a region that spans just two bytes! We also observe that multiple samples
have a weight greater than 1, as shown by the n∗ prefixes, even though the underlying
sampling process actually produces samples individually. The explanation is that our
encoding algorithm actually coalesces subsequent samples with the same sample value,
exploiting another easy compression opportunity.

5.7.3 Timers

Now that the sample tracing infrastructure is in place, we just need to acquire actual
sampling data in order to produce proper Haskell program profiles. Namely we want
an approximate map of where certain effects (verbs) occurred. The most direct way
to do this is sampling: We take snap-shots of the execution state at frequencies that
conform roughly to the amount of (abstract) resource usage.

Just consider our primitive verb from Section 5.2.2 on page 118: Time passing.
Finding program states where most time is spent is as simple as interrupting the program
at set intervals, each time taking a sample of the current instruction pointer. Clearly
a program state that only appears briefly will have a very low chance of appearing in
our profile. On the flip-side, with enough data collection we can also expect program
states to feature more often the more time was wasted.

On paper implementation is also relatively straightforward: All operating systems
offer some sort of timer support. Often we can even obtain data about the thread
state on these occasions. For example, we can use setitimer and sigaction on typical
Unix systems to program a timer to pass us the thread’s “context” in certain intervals,
including the full register set. On Windows systems, we can might be able to achieve a
similar effect by using SuspendThread followed by GetThreadContext. Access to registers
means that we can sample instruction pointers and generate the sample messages
explained in the last section, making “time” the first verb that we can provide profiling

165

5.7. DATA COLLECTION CHAPTER 5. PROFILING

support for. Note that the register set will normally also include the current stack
pointer – this could allow us to do stack tracing as explained in Section 5.3.6, potentially
providing more expressive nouns13.

In practice however, working with timers can be a bit of a challenge due the fact
that the operating system interfaces are not strictly meant to be used for profiling. This
means that we will often have to help things along a bit in order to get exactly what we
want. For example, setitimer will only ever raise the signal for one thread, therefore we
opt to manually replicate the signal across our program for multi-threaded applications.
Such tricks are not only prone to bugs, but also tend to result in bad performance.

5.7.4 Hardware Performance Counters

Profiling by time is rather simplistic; as explained in Section 5.2.3 we might want to
unpack program performance further by focusing on the different influences on CPU
execution speed. Fortunately, this is again a concern that we share with a lot of existing
profiling tools. And in fact the art of collecting specialised profiling information has
matured to the point where we even have hardware support in the form of hardware
performance counters. The idea is that we can program these counters to track some
kind of low-level performance metric such as processor cycles or cache misses. This will
give the operating system a notification whenever a certain threshold is reached. Given
that modern processors support dozens of possible counter configurations, this gives us
a lot of flexibility for data collection.

The principal “standard” library for programming hardware performance counters
is the Performance API, or PAPI for short [Browne et al., 2000]. It is portable across a
number of different Unix systems, and allows us to define “overflow” handlers for a wide
variety of performance counters from cache statistics over branching data to simple
instruction counts. However, performance is limited due to the fact that it needs to
call the program every time to allow taking samples. Furthermore, support on modern
machines does not seem to be completely stable 14. Fortunately, most modern operating
systems offer better alternatives.

5.7.5 Perf-Events

Linux is a popular kernel for Unix systems. Where it is present we can obtain perfor-
mance data much more directly by talking directly to the operating system. The idea
is that the perf_event kernel interface [Eranian, 2009] allows us to instruct the kernel
to take over the task of collecting instruction pointer samples entirely. The collected

13However a possible implementation would have to ensure that we are in valid Haskell code to begin
with, or the sampling code might end up crashing the program!

14Based on the episodic evidence that it mysteriously stopped working on the author’s computer.

166

CHAPTER 5. PROFILING 5.7. DATA COLLECTION

data will then “stream” back to the process using a memory map, which reduces our
job to copying it into our event log in regular intervals.

The advantage of this approach is that we have to accept a lot less overhead than
before. After all, performance counter events have to be handled by the operating
system at some level anyway, so having sample collection happen without another
context switch is a significant win. On the other hand, we also have to accept less
influence over the collection process. For example, now we do not have the option to
walk the Haskell stack – while the Linux kernel supports a limited form of stack tracing,
it is quite unlikely that it will be able to make sense of the Haskell stack anytime soon 15.

5.7.6 Allocation

Going beyond simple hardware statistics, Section 5.2.4 argued that we also have an
active interest in more Haskell-specific aspects of program performance. One very basic
characteristic of code generated by Haskell is that it often involves allocation of various
types of memory. In the Cmm example in Listing 5.23 on page 144 we actually saw this
spelled out: Whenever stack allocation reached a certain threshold, the generated code
would call into the run-time system in order to request a fresh block of memory. Such
requests are an indirect sign of either heap or stack allocation, both verbs that we would
like to track. After all, in either case we are making a call into the memory subsystem,
which is already quite costly on its own. Therefore the locations of allocation can be
very interesting for performance analysis.

Therefore, instrumenting these calls into the runtime system is an obvious choice.
Unfortunately, while the runtime routine receives a continuation code pointer, this
pointer does not always directly refer to where the allocation took place. This means
that if we have code like the following:

ca se x o f
C → . . . −− l o t s o f heap a l l o c a t i o n
D → . . . −− l i t t l e heap a l l o c a t i o n

Listing 5.46: Ambiguous Heap Allocation Location

the heap check might assign the same return pointer to both of them, which means
that we cannot tell which branch was actually causing the heap allocation in the first
place. Unfortunately, this happens quite frequently with GHC-generated code.

15The kernel would essentially have to track down, relocate and use the unwind information we
generated in Section 5.6.5 – which would be quite a bit of complexity even for a monolithic kernel.

167

5.8. ANALYSIS CHAPTER 5. PROFILING

5.7.7 Residency

Apart from allocation we also want to keep track of how much memory actually survives
garbage collections. As explained in Section 5.2.5 this can have an indirect effect on
program performance by reducing locality and increasing garbage-collection time. To
measure the amount of residency, we want to generate an inventory of how much data
of every type is left on the heap, as well as – ideally – why it is being kept there.
Fortunately, the GHC runtime already contains an adequate mechanism for generating
heap residency profiles, courtesy of Sansom and Peyton Jones [1995]. We can simply
adapt their implementation to yield us a statistic of which type of heap object consumed
how much memory in total. As noted back in Section 3.5.9 on page 52, heap object info
pointers double as code pointers, therefore we can directly treat them as input to our
profiling process. Note that looking at the code pointer not only allows us to identify
constructors, but also the concrete code point for thunks. This can be especially useful
for identifying situations where thunk evaluation gets delayed excessively.

5.8 Analysis

We have now learnt everything there is to know about how to obtain profiling data
from Haskell programs using our approach. With our implementation, we can now
run arbitrary programs with suitable compilation and runtime parameters and have it
produce an eventlog containing both detailed debug records as well as raw sampling
data to match. Conceptually we just need to put these two together in order to obtain
a full performance analysis.

Yet there are still engineering challenges to consider. Firstly, when we generated
the eventlog we put emphasis on making sample generation as light-weight as possible.
This almost automatically means that analysis will have to make up for it by processing
quite a bit of raw data in order to locate relevant trends. This task is not made easier
by the fact that as shown in Section 5.3 on page 121 it is not easy to explain what
the data means in the first place. Our aim must be to break the data down in terms
of notions that the programmer understands, and work with them in unravelling the
causal processes within the program.

5.8.1 ThreadScope

When we explained the requirements for our profiling solution back in Section 2.1.2 on
page 7 we defined our role as supporting the user’s abductive reasoning process. By
nature this process will be incremental, requiring step-wise theory development and
evaluation. In order to seamlessly assist the user with this, we therefore want to provide
an interactive graphical user interface.

168

CHAPTER 5. PROFILING 5.8. ANALYSIS

It is therefore fortunate for us that when Jones et al. [2009] implemented the event-
log system for GHC, they also developed a sophisticated analysis application, namely
ThreadScope. Implementing our profiling analysis as an extension to this tool allows
us to make use of a significant amount of existing infrastructure: The application
already allows the user to browse an activity profile of the program run, complete with
garbage collection statistics. As we will see, the user can allow this to easily browse our
performance data.

5.8.2 Debug Maps

However, let us cover some technical details first. The fact that we will have to process
quite a bit of data within the analysis tool means that we cannot spend too much time
on individual look-ups. This is in fact vital for establishing adequate responsiveness:
After all, the sheer volume of the static debug information can easily go up to several
hundred megabytes of data for larger applications!

Consequently, the first task for our profiling extension to ThreadScope will be to
build indexes for the debug records. Specifically, we construct the following “maps":

Debug Map: All records organised as a tree as defined in Section 5.6.6. This means
resolving all IDs used in the event-log, recovering the tree structure.

Range Map: A mapping of memory locations to their Cmm blocks. Note that we
might end up with memory locations being covered by multiple ranges 16, in which
case we chose the most specific one.

Core Map: As explained in Section 5.6.7, we allow the user to save Core code in order
to provide a look “inside” the optimised program. This provides fast access to all
Core pieces involved.

Sample Map: An index providing quick access to sample messages within the event-
log. This will allow us to easily navigate our profiling data, as we can look-up all
samples of a certain type in a given time period.

When fully evaluated, these maps index quite a considerable amount of data. In fact,
we have been struggling quite a bit with memory overflows simply due to the fact
that the maps depend on the complete static debug data block, which is already quite
substantial before unpacking. Unfortunately, the architecture of the event log reading
library ghc−events does not support navigating on-disk data, which reduces our options
considerably. We now simply leave data in ByteString form for as long as possible, but
this is not a viable long-term solution.

16This happens if our data was generated by the LLVM backend, and got inlined.

169

5.8. ANALYSIS CHAPTER 5. PROFILING

Figure 5.7: ThreadScope User Interface

5.8.3 Interface Concept

With all profiling data readily accessible, we can face our main challenge for this
section: Presenting the information in a way that assists the programmer in solving the
performance problem. As we explained in Section 2.1.2 on page 7, for our purposes we
think of this process as divided into two stages. First, the programmer will want to gain
an overview of the program’s performance characteristics. This is both about surveying
the collected data as well as comparing it against the expectations. After all, this is
where we expect the programmer to come up with a lead: Something that does not
fit into the picture, and warrants further investigation. Once a starting point is found,
focused data exploration might yield an explanation for the measured phenomenon.

This philosophy is directly reflected in the layout of our user interface. In Figure 5.7
we see a typical view of the ThreadScope profiling tool. Analysis naturally starts at
the top “timeline” overview, visualising the whole program run. The programmer will
then proceed to hunt for more specific leads in the performance data overview in the
bottom-left part of the interface. Once we have an idea what we are looking for, the
combined Haskell & Core view on the right bottom side allows drilling deeper into the
causal processes at work, ideally yielding an explanation for the problem at hand.

170

CHAPTER 5. PROFILING 5.8. ANALYSIS

By default, all these information panes will be visible at the same time, which allows
the user to jump between them quickly. However, once we get to deeper investigation,
the programmer might want to resize and collapse certain parts of the interface. For
example, we would typically remove the timeline from view once we have settled for a
program phase to investigate – and good knowledge of the source code might make the
source view redundant.

5.8.4 Timeline

The time-line view is a standard component of the profiling facilities developed by Jones
et al. [2009]. It visualises the program’s activity profile over its runtime. Consequently,
the data shown is actually not a result of our instrumentation, but is simply won from
runtime system status messages emitted into the event log. And even though this data
does not say too much about the underlying program, this visualisation can already
yield interesting observation about the program. For example, we can often immediately
spot certain “phases” in program evaluation, such as pronounced “set-up” periods for
loading data into memory. Furthermore, ThreadScope introduces information about
time spent on garbage collections into the graph, which an experienced user can also
use to assess the general heap allocation behaviour of the program.

Apart from providing the “big picture” view of our data, the timeline is also our
first interactive user interface component. Simply by selecting a portion of the profile,
the user is able to focus the investigation on a certain part of the complete profile. The
tool also actively helps to identify program phases: For example, after selecting fac3 in
Figure 5.7 the program added bright green markings to the program’s activity profile
to highlight the phase where this function was most active. The reason such a phase
exists is because the program benchmarks a number of factorial implementations:

fac1 , fac2 , fac3 , f a c4 :: I n t → I n t
f a c1 m = produc t [1 . .m]
f a c2 m = f o l d l (∗) 1 [1 . .m]
f a c3 m = f o l d r (∗) 1 [1 . .m]
f a c4 m = f o l d r (λx g → g . (x ∗)) i d [1 . .m] 1
main = forM [fac1 , fac2 , fac3 , f a c4] $ λ f a c →

r e p l i c a t eM 100 $ forM [4 0 0 0 . . 5 0 0 0] $ λn →
e v a l u a t e (f a c n)

Listing 5.47: Factorial Implementations

So it is no surprise that fac3 is only active during a part of the program run. However
note that our tools will be able to identify and investigate such phases even where they
arise indirectly from the program’s behavior.

171

5.8. ANALYSIS CHAPTER 5. PROFILING

5.8.5 Performance Data

However, for present purposes we focus on how to present our own performance data.
For this, we first need the user to select which kind of samples they would like to view.
After all, as we saw in Section 5.7 on page 162 we might have a significant number of
different sampling methods at our disposal. Just like with the time-line, this allows us
to shift the focus to different aspects of the program’s performance characteristics. For
example, in Figure 5.7 we see that “by CPU cycles” is selected, which means that we are
viewing data sampled by the CPU cycle counter, via the perf events profiling back-end.
Using such general-purpose verbs is generally a good idea to get a first impression of
the “hot spots” within the program.

Once the data set of interest is selected, our profiling tool can make use of the
prepared debug maps: The sample map will tell us where we find the samples in
question, and doing a range map lookup on the sample values gives us a total “weight”
for each individual back-end block – a proper low-level program profile. However for
the purpose of presenting an overview this is far too low-level. After all, the structure
of back-end blocks will at best correspond loosely to the program that was originally
written. Consequently, this is the point where we want to use source code links to
better aggregate our data.

We explained our general approach to this problem back in Section 5.3.4 on page 125:
Given a debug block we can reconstruct a number of causal relationships to source code
locations simply by making use of the static context of the block. After all, we took great
care in Section 5.6.6 on page 156 to organise blocks in a way that we retain information
about which set of blocks every tick scopes over. However, this still leaves us with two
problems. Firstly, due to our approach we will inevitably end up in situations where
we have more than one source tick associated with a given performance figure. At this
point we have basically the choice of either heuristically selecting a most “significant”
one – as we did in Section 5.6.4 on page 152 – or simply represent the data as we see it.

As it is our philosophy that performance is often a product of multiple disconnected
pieces of code interacting, we choose the latter approach. As a result, we can see in
Figure 5.7 that multiple list entries end up with more than 50% of the cost allocated
to them. We can especially see that the package ghc−prim ends up with a rather large
amount of cost. And this is hardly surprising, given that we expect most code to
causally depend on how primitive operations are defined. An extreme example here
is the ($) Haskell operator, which due to its use in program layout is so ubiquitous
that it is not uncommon to find it associated with a large chunk of performance data.
The user will have to take care to disregard such outliers, as from the viewpoint of our
profiling tool it is a perfectly valid concern that the wide-spread use of ($) might some
day cause a subtle and well-spread-out performance problem.

172

CHAPTER 5. PROFILING 5.8. ANALYSIS

1%

1%

80%

fuzz 0

2%

81%

80%

fuzz 1

82%

81%

80%

fuzz 2

src<fac.hs:15>

src<Enum.lhs:532>

src<Num.lhs:89>

Figure 5.8: Performance Data Fuzz

However, even given that we are willing to associate multiple source code links with
a given sample, we still have a choice in how far we want to go. After all, as we argued
in Section 5.3.1 depending on context some causes can end up being more telling about
the underlying events than others. Specifically, we know that the closer we find a source
code annotation to our block, the more likely it is that it will be specific enough to
identify it in the user’s eyes. This is a rather two-edged sword. After all, by this logic
the most specific source code link might well be the definition of, say, a multiplication
operation. For example consider Figure 5.8, where each node corresponds to a block
of code, annotated with the amount of cost we associate with it. For the scope path
on the left, the “hot spot” is clearly in the bottom-most “leaf” block, which however
only carries a source code annotation to Num.lhs. In order to establish a connection
between this performance data and the original source code in fac .hs, we therefore have
to “fuzz” the performance data by propagating it towards the root of the block scope
tree. Note though that weakening the narrowness of the mapping also substantially
increases the spread of our performance data: Now the source code from Enum.lhs also
gets attributed with more than 80 % of the cost in question. Choosing the right “sweet”
spot here is again a task that we will have to leave to the user 17. In our example we
chose a fuzz of 6, which is exactly enough to be able to track all cost to the originating
top-level function.

Finally, due to our inclusiveness the total list of source code locations associated
with performance data can become quite long and hard to manage. We remedy this
issue by structuring the source code locations by source module, associating another
aggregated performance statistic with their respective entry. For example, we see in

17While our interface choice might be somewhat unconventional, the act of subsuming performance
data upwards in “stacks” is something that most profilers support. Keeping in mind that we are not
actually using call stacks, we can loosely liken a fuzz 0 to “individual cost”, and fuzz ∞ to “inherited
cost” for cost-centre profiling.

173

5.8. ANALYSIS CHAPTER 5. PROFILING

Figure 5.7 that 97.3 % performance data could be mapped to some source tick from
the fac .hs module. Structuring the data like this is quite useful, as the spread of the
performance data across modules already tells us a rough story about what the program
is currently doing. Furthermore once we put our focus on a certain source file, the
structured list allows us to quickly access related source code nouns.

5.8.6 Source View

Up to this point, we have simply used the name attribute of source notes to refer
to source code locations. As defined in Section 5.4.2, this name is composed from
program names and likely to allow the programmer to quickly identify the source of
the referenced code. However, once we have a concrete performance problem that
we want to investigate, we will not only be interested in the identity of the involved
functions, but also in their concrete implementation. In order to reduce the amount
of footwork involved, we integrate this directly into our user interface: When a source
noun gets selected we automatically look for the associated source file, and highlight
the appropriate source code portion if successful. This does not always have to be the
whole function – depending on the current fuzz value and the size of the static context,
we might only highlight a part of the function. This could for example be a parameter
that got inlined into an inner loop, such as the operation passed to a map function.

5.8.7 Core View

Using a source-based profiling overview works well while we are trying to get an overview
of our performance data. However in subsuming the costs by source annotation we
are actually throwing away information. After all, simple source code links will tell us
that resource usage could be linked to a combination of source nouns – but not how
and in which context these source nouns interacted. When calculating the factorial
function, we would hardly be surprised by the finding that most cost is associated
with the factorial function, number enumeration or multiplication operations. Relating
performance statistics to bare source code locations does not explain the problem very
well.

Fortunately, our sampling back-ends collects data at a significantly finer granularity:
Pointers into the object code allow us to theoretically pin-point resource usage at the
accuracy of a single instruction. In our case we bound debug-information on the block
level in Section 5.6 on page 149, which reduces the precision somewhat. On the other
hand the implementation of a single Haskell function can easily consist of hundreds of
back-end blocks, so this is still quite a step up in accuracy.

This leaves the question of how we should present the data. As we introduced back
in Section 2.2.3 on page 11, the main way that we can assist the programmer at this

174

CHAPTER 5. PROFILING 5.8. ANALYSIS

Figure 5.9: Core View

point is by making the compilation process more transparent. This would be basically
impossible to convey just by pointing out certain source code locations. Instead, we have
to speak the same language as the processes that make these decisions, which in this
case means the Core intermediate language. This choice has a number of advantages:
Not only is it a good middle ground between the high-level Haskell source code and the
thoroughly obfuscated back-end code, but as we showed back in Section 3.5 on page 41
it is also not too hard to predict performance characteristics at this level.

Reconstructing the Core code means that we need to reassemble and pretty-print
the CoreNote fragments we generated in Section 5.6.7 on page 158. Figure 5.9 shows
what this would look like for our running example: On the left-hand side we annotate
how much resource usage we found at every visible location. For our example, we see
that we spent 4.9% entering the worker function $wgo and comparing the counter w
against the upper limit ww. However most of the cost happens once we have determined
that we need to recurse: Incrementing w and performing the recursive call consumes
9.2% of our time, while we spend 17.8% of our time simply performing multiplications
on the return value. As we observe on the left, the remaining 67.6% processor time are
actually spent inside the runtime system, which struggles to remain efficient given the
amount of strain we put on the stack allocator.

175

5.8. ANALYSIS CHAPTER 5. PROFILING

Figure 5.10: Tracking Stack Allocation

This means that we have actually come very close to identifying the source of
inefficiency in the function: Having this much cost on the “return path” is already
suspicious. However, we can do even better: If we go back and use the “stack allocation”
verb instead, we see in Figure 5.10 that the picture becomes even more clear. The
stack allocation shown is 6.96GB, which equals 1.2GB/s or about 69 kB per evaluation
of fac3 18! Furthermore, we can actually see that virtually all of the stack allocation
originates from the function entry point of the worker function $wgo.

5.8.8 Core Tools

For working with Core we have to keep in mind that it is still primarily an intermediate
language of the Haskell compiler. This means that readability is not one of its design
goals, and we can not count on Core code being as compact as it was in the last section.
In fact, a number of Haskell optimisations such as in-lining, worker/wrapper [Gill and
Hutton, 2009] and call pattern specialisation [Peyton Jones, 2007] have a tendency to
blow up the code size up significantly. Especially the latter optimisations tend to

18About what we would expect from Listing 5.47 on page 171, as this is just a bit less than the 72 kB
required for 4500 stack frames of 16 bytes each. The remaining difference comes from the fact that the
program will never deallocate its initial stack chunk.

176

CHAPTER 5. PROFILING 5.8. ANALYSIS

produce Core code where we have a lot of set-up code surrounding a relatively small
inner loop. While this is a great idea for performance, navigating such Core trees can
feel like being stuck in a maze.

Fortunately, we can again count on the Pareto principle, which as introduced in
Section 2.1.2 on page 7 states that most of the time, our performance problem will be
located in a rather small portion of the complete program. This applies to Core code
too: While the offending piece of code might be buried deep within the Core tree of
a big function, it is quite likely that we will also find resource consumption in close
proximity. For the purpose of our profiling tool, it is therefore essential that we allow
the user to easily navigate around the tree. In order to avoid distraction, we should
especially never display too much information by default.

Fortunately, tree navigation is a well-studied field in information visualisation [Herman
et al., 2000]. In fact, we can cut out most information simply by

1. Limiting ourselves to one concrete sub-tree at a time and

2. “folding” child sub-trees that are not of interest.

By default, the sub-tree we choose to show is the one that contains all sampling data
over a certain threshold 19. As a result, if an “inner loop” is found deep within a wrapper
function, the user never needs to see these wrappers in the first place. Along the same
lines, we automatically fold away any piece of code that does not contribute to the
currently considered profile portion. This means that any function or case alternative
that seemingly has no connection to our performance problem gets removed from view
automatically. However note that these are only default choices. If the need arises, the
user can override each of these decisions: The left “gutter” of the Core view allows the
user to both extend the view by moving the root of the shown tree “upwards” as well
as folding and un-folding arbitrary parts of the code.

Finally, it has proved to be useful if we allow the user to query the types of vari-
ables within the Core code. This can be used not only for identifying rare type-based
performance problems as shown in Section 3.3.2 on page 28, but also for making sense
of variables within the Core code. After all, it is not uncommon for program transfor-
mations to significantly garble variable names, yet their type often stays predictable.
In order to make our Core view as compact as possible we do not show these types by
default, but instead make them available on request as a tool-tip.

19Actually, we ascend until the next function definition. This way we get a better feel for the function’s
overall control flow, as well as keeping parameter names in view.

177

5.8. ANALYSIS CHAPTER 5. PROFILING

178

Chapter 6

Evaluation

“Young man! I make the classical remarks around here, alea iacta est and
all that, and what is more, you have not answered my question: What are
you going to do with all these menhirs?”

— Obelix and Co., René Goscinny & Albert Uderzo

We have covered the theory behind our profiling solution and have explained how we
have brought it to life. As far as our design work is concerned, this should have yielded
us a tool that is useful in a wide variety of situations. After all, we took care to track
causality without regard for the nature of the connection. Only once we hit technical
limits we allowed ourselves to compromise on this principle. Furthermore, we identified
a large set of verbs, corresponding to an equally rich family of potential performance
problems that we might want to track down.

However, it is quite clear the we can not meaningfully claim completeness: In
practice constructing full causality terms is simply unrealistic, and we will not be able
to collect samples for every interesting verb. The reason is that we have limits on our
own resource consumption: Virtually everything we do comes with a price tag. Tracking
causes at compile time will slow down compilation and increase the size of produced
binaries. Collecting a useful amount of sampling data might slow down the program,
and introduce skews in the process. And in the end, we might even find out that one of
our assumptions turned out to be wrong, rendering us unable to break the performance
problem down with verbs or connect it the original cause nouns.

While we cannot prove usefulness, we can still attempt to ease our doubts by
showing that our tool does the right thing in realistic scenarios. Section 6.1 will start
with looking at the performance of our profiling tool itself. Our goal will be to show
that we can produce the desired debug records and samples in a realistic setting. In
Section 6.2 on page 190 we proceed to walk through a usage scenario of our profiling
tool for a small real-world performance problem.

179

6.1. PERFORMANCE CHAPTER 6. EVALUATION

6.1 Performance

It might seem redundant to stress that we have to care about the performance of our
profiling solution. After all, the quicker we can be about our results, the faster the
user will be able to arrive at a solution. However, we are actually under especially high
pressure to deliver good performance. After all, instrumentation is a secondary concern
for the program. Furthermore, as we argued back in Section 2.1.2 on page 7 the actual
performance optimisation process often consists of a lot of trial-and-error on the user’s
part. This means that we should not only perform well – ideally our work should be
virtually invisible to the user.

6.1.1 Test Data

In order to identify the overheads of our profiling framework systematically, we will
use the “nofib” benchmark suite [Partain, 1993] as our reference. For our purposes this
benchmark suite features a large set of Haskell programs, which are largely regarded
as typical representatives for the even greater variety of Haskell code out there. Our
general approach will simply be to run this benchmark suite with different compiler
and runtime systems options, and observe how our results change as a result.

We will run all benchmarks on a personal computer running CentOS 6.5, with an
Intel® Xeon® CPU clocked at 3.1GHz and 32.1GB system memory. As virtually every
run will generate too much data to show in the context of this document, we will
generally only show a few representative results. Averages and standard deviations will
be for the complete data set. Where we consider run times, we will however exclude
small results (< 0.2 s) in order to reduce noise.

6.1.2 Compilation Overhead

The first point where our profiling solution comes into play is during the compilation
of the program. Recall from Section 5.4 on page 129 forward that we generate various
Tickish annotations that will be kept around throughout all code transformation stages,
eventually culminating in the generation of debug sections for the final binary. We are
willing to accept a moderate slowdown at this point. After all, our annotations affect
some of the most busy data structures used by the compiler: intermediate program
representations. This means that every time the compiler reconstructs a certain Core
expression or Cmm block, we will have to generate copies of Tickish nodes or CmmTick
pseudo-instructions, to say nothing about the complexity involved in making sure that
optimisations can look through them correctly.

Let us test this using our benchmarks. We will run the four configurations shown
in Figure 6.1. Each set of compiler command line options will result in more informa-

180

CHAPTER 6. EVALUATION 6.1. PERFORMANCE

Program Libraries Description
Base Baseline build without annotations
Dbg -g Only annotations from program source
Libs -g -g Annotations from program and libraries
Core -g -fsave-core -g Core gets retained for analysis

Figure 6.1: Benchmark Configurations

Base Dbg Libs Core
[s] [%] [%] [%]

cacheprof Arch_x86 0.95 +15.8 +15.8 +16.8
Generics 0.28 +21.4 +28.6 +32.1
Main 3.05 +12.1 +20.0 +21.6

calendar Main 0.40 +7.5 +17.5 +17.5
cichelli Auxil 0.24 +12.5 +16.7 +20.8

Prog 0.22 +13.6 +27.3 +31.8
circsim Main 1.04 +10.6 +19.2 +22.1
clausify Main 0.42 +7.1 +14.3 +16.7
comp_lab_zift Main 0.91 +12.1 +20.9 +24.2
compress Decode 0.25 +8.0 +24.0 +28.0

Encode 0.26 +7.7 +11.5 +15.4
compress2 Encode 0.53 +17.0 +20.8 +34.0

−1 s.d. —– +5.1 +13.5 +16.4
+1 s.d. —– +17.9 +26.4 +30.6
Average —– +11.3 +19.8 +23.3

Figure 6.2: Compilation Time

tion being available for later analysis. For our purposes “Core” is the most complete
configuration, having full source code annotations as well as Core notes for deep perfor-
mance analysis as explained in Section 5.6.7 on page 158. We do not consider compiling
libraries with Core notes here, as Core annotations in libraries make no difference for
modules using them.

The results are shown in Figure 6.2. The modules listed were chosen arbitrarily, but
we made sure to not show modules with low compilation times (< 0.2 s). As expected,
we are facing a moderate slow-down of between roughly 11.3% for simple source code
annotations and 23.3% for complete Core information. As expected, the performance hit
is definitely measurable, but fortunately not too severe to pose a problem for usability.
Our price tag might in fact be low enough to warrant keeping debugging on by default
for anything but production builds.

181

6.1. PERFORMANCE CHAPTER 6. EVALUATION

Dbg Libs
[Terms] [Ticks] [Ticks]

cacheprof Arch_x86 4733 937 1729
Generics 1105 568 912
Main 10868 3851 7722

calendar Main 1087 249 956
cichelli Auxil 1067 344 567

Prog 827 239 524
circsim Main 3563 1212 2511
clausify Main 1328 398 672
comp_lab_zift Main 3441 1395 2099
compress Decode 924 210 460

Encode 2262 620 709
compress2 Encode 4148 824 1479

WriteRoutines 804 314 534
constraints Main 2074 420 1073

Figure 6.3: Tick Count

6.1.3 Tick Counts

However, we do expect to get something in return. After all, the usefulness of our
profiling approach depends on a suitable granularity of source code annotations. This
begs the question: How high was the tick concentration in the given programs in the
first place? Let us attempt to answer this for the Core level. Figure 6.3 shows the
number of ticks after Core simplification (-ddump-simpl)e for configurations “Dbg” and
“Libs”. We skip “Base” and “Core” here, as their tick count will be 0 and the same as
“Libs” respectively. For comparison, we have put the Core “size” according to CoreStats
on the left-hand side, which roughly corresponds to the number of expressions present
in the program.

We observe that while the concrete proportion fluctuates somewhat, it stays around
1:2 to 1:5. We can take this as a encouraging sign that programs will tend to likely
neither be over- nor under-annotated. Finding stability here is not entirely surprising:
As we noted on several occasions, ticks tend to accumulate at characteristics control
flow points within the program’s Core code. As introduced in Section 5.4.4 on page 132,
this will often allow us to merge ticks, leading to a soft self-regulation of tick counts.
We can therefore say with some confidence that at the Core level annotations seem to
act as expected. Transformations leave us enough source code links to work with in the
following stages.

182

CHAPTER 6. EVALUATION 6.1. PERFORMANCE

Base Dbg Libs Core
[kB] [%] [%] [%]

cacheprof Arch_x86 341 +84.4 +96.8 +117.5
Generics 64 +183.9 +208.2 +261.3
Main 586 +165.1 +196.0 +247.2

calendar Main 47 +157.1 +223.2 +281.1
cichelli Auxil 41 +196.0 +224.1 +297.0

Prog 45 +165.2 +200.3 +262.3
circsim Main 146 +181.4 +224.5 +317.0
clausify Main 58 +224.8 +248.3 +306.2
comp_lab_zift Main 162 +204.5 +228.3 +293.2
compress Decode 51 +164.9 +187.2 +259.5

Encode 77 +55.3 +60.7 +83.7
compress2 Encode 142 +204.5 +225.6 +335.3

WriteRoutines 29 +223.8 +263.6 +353.9
constraints Main 85 +185.0 +222.1 +294.6

−1 s.d. —– +105.9 +120.5 +150.3
+1 s.d. —– +215.0 +263.1 +357.2
Average —– +154.6 +183.0 +238.3

Figure 6.4: Module Object File Sizes

6.1.4 Binary Size

During compilation, the annotations will get transformed into the various debugging
information representations explained back in Section 5.6 on page 149. As our goal
is to affect program execution as little as possible by default, this information will be
completely contained in separate object file sections. This has the interesting side effect
that if we now use standard tools like strip or objcopy to strip these sections away,
we actually obtain essentially the same program we would have arrived at if we had
not compiled with debug annotations in the first place! This level of separation makes
it quite plausible that the increased size itself will only have an negligible effect on
program performance.

However even given these considerations, program size is far from unimportant.
Building programs with GHC is already notorious for resulting in rather large exe-
cutables, due to statically linking all libraries by default. What we are doing is likely
to make this situation even worse. And as we see in Figure 6.4, the effect is quite
pronounced: Compilation with debug annotations will blow up the size of produced
object files by a factor of two to four! Even with storage space being plentiful in this
day and age, this is quite a pill to swallow.

183

6.1. PERFORMANCE CHAPTER 6. EVALUATION

To investigate where the blow-up is coming from, let us look at the sections of a
module compiled with the “Core” configuration. Using objdump -h on the “Encode”
module from “compress2” yields us essentially the following size distribution:

Name S i z e
. t e x t 0001284 f
. data 00000470
. r oda ta 0000010 f
. debug i n f o 0001205 e
. debug abbrev 0000002 c
. debug l i n e 00001 ad f
. debug frame 00003850
. debug ghc 0003611 f

Listing 6.1: Object File Sections

Clearly two debug sections contain the lion’s share of the data: .debug info and
.debug ghc. Consider debug information first: As explained back in Section 5.6.2
on page 150, this section contains a record for every single compilation unit, procedure
and block in the object file. This does not make it hard to believe that it might quickly
grow to a remarkable size: After all, the GHC native code generation will often generate
rather small blocks, so it is completely plausible that we might end up generating more
debug information into .debug info than actual machine code into the . text section.
This is even worse for the .debug ghc section: Not only will this contain information
about every single block, but also potentially source code links as well as the original
Core code. It is therefore not surprising that even with a somewhat compact encoding
we end up taking quite a significant chunk of space.

In the end, we have to admit that in order to perform the kind of performance
analysis that we have in mind, we have to pay a certain prize. Our best argument at
this point is that all this cost is optional and can be stripped at any point, letting the
user decide how much space concerns matter to her.

6.1.5 Core Size

Apart from performance concerns, this is actually a point where we can check back with
one of our design goals. After all, when we explained in Section 5.4 on page 129 how
we will deal will GHC’s transformations, we did so with the intention to be exhaustive:
Every single optimisation present in GHC should still fire with debug annotations
present. This is the property that would truly allow us to claim that we have a
chance of spotting every performance problem out there – even if it depends on certain
optimisations running.

184

CHAPTER 6. EVALUATION 6.1. PERFORMANCE

Dbg
[Terms] [%]

cacheprof Arch_x86 4733 0.0
Generics 1105 +2.9
Main 10868 +0.1

calendar Main 1087 0.0
cichelli Auxil 1067 0.0

Prog 827 0.0
circsim Main 3563 0.0
clausify Main 1328 0.0
comp_lab_zift Main 3441 -2.4
compress Decode 924 0.0

Encode 2262 0.0
compress2 Encode 4148 0.0

WriteRoutines 804 0.0
constraints Main 2074 -1.3

−1 s.d. —– -1.8
+1 s.d. —– +1.7
Average —– -0.1

Figure 6.5: Core Size

However, as we see in Figure 6.5, our work up to this point is not quite enough:
While the Core size stays the same for most modules, we can see a few instances where
the Core code seems to change. This demonstrates how hard it is to claim completeness
for a compiler as complex as GHC. For example, here is one of the issues:

f = λx y → (,) x y

Listing 6.2: Constructor Application

where (,) is the constructor of the pair. Here we could η-reduce f by setting f = (,).
This is a really minor optimisation, as the only difference here is that slightly less object
code gets generated. Apart from this, there are further issues, for example with fully
supporting the call pattern specialisation [Peyton Jones, 2007].

6.1.6 Run Time Overheads

The reason that we care so much about optimisations in the first place is of course
because they influence runtime performance of our program. While good behaviour
at compile time is a nice bonus, what happens at runtime will make or break the
usefulness of our whole profiling infrastructure. No matter whether it is due to missing
optimisations or sampling overheads – if it ends up altering the performance of the

185

6.1. PERFORMANCE CHAPTER 6. EVALUATION

Compilation Runtime Description
Base Baseline without eventlog generation
Dbg -g Simple build with debug annotations
Ev -eventlog -ls Eventlog gets generated
DbgEv -g -eventlog -ls Eventlog with debug records

Figure 6.6: Runtime Configurations

Base Dbg Ev EvDbg
[MB] [%] [%] [%]

k-nucleotide 3921 0.0 0.0 0.0
integer 3338 0.0 0.0 0.0
pidigits 2885 0.0 0.0 0.0
constraints 2104 0.0 0.0 0.0
cryptarithm1 2051 0.0 0.0 0.0
n-body 1600 0.0 0.0 0.0
circsim 1299 0.0 0.0 0.0
hidden 1084 0.0 0.0 0.0
binary-trees 956 0.0 0.0 0.0
scs 917 0.0 0.0 0.0
fannkuch-redux 870 0.0 0.0 0.0
transform 680 0.0 0.0 0.0
exp3_8 597 0.0 0.0 0.0
atom 537 0.0 0.0 0.0
−1 s.d. —– -0.0 -0.0 -0.0
+1 s.d. —– +0.0 +0.0 +0.0
Average —– -0.0 -0.0 -0.0

Figure 6.7: Allocation Overhead

program too much, all of our collected data might turn out to be nothing but smoke
and mirrors. This is why it is especially important that we take a look at the runtime
performance of the compiled programs. Even if we cannot guarantee the Core to be
completely identical, a good performance match across the benchmark suite would be
an encouraging sign that we are not likely to encounter any significant “heisenbugs”
that vanish upon inspection. This goes not only for our own debug annotations, but
also for the existing eventlog infrastructure, which we are going to use for generating
program profiles. The four configurations in Figure 6.6 cover different combinations of
these debug options.

The results are shown in Figure 6.7 and Figure 6.8. The first performance metric
shown is allocation amount. As the allocation amount of a given Haskell program is
mostly deterministic, this is an excellent metric for comparing two Haskell program

186

CHAPTER 6. EVALUATION 6.1. PERFORMANCE

Base Dbg Ev DbgEv
[s] [%] [%] [%]

k-nucleotide 5.0000 +0.5 -0.1 +0.4
fannkuch-redux 3.6467 -0.2 -0.1 0.0
spectral-norm 2.4550 0.0 -0.2 -0.2
integer 1.5300 -0.8 +0.7 -2.6
n-body 1.1300 0.0 -0.4 -0.9
constraints 0.6600 +2.0 +0.3 +1.5
cryptarithm1 0.4350 +1.1 -1.1 -1.1
fasta 0.3850 -0.4 -1.3 -1.3
pidigits 0.3700 0.0 -1.8 -2.7
circsim 0.3633 +1.8 -0.9 -0.5
binary-trees 0.3600 +2.8 +6.0 +8.3
hidden 0.3000 0.0 +3.3 +1.1
wheel-sieve1 0.2783 +0.6 -3.0 -3.0
scs 0.2517 +3.3 -0.7 +3.3
−1 s.d. —– -1.8 -3.9 -4.1
+1 s.d. —– +2.0 +2.0 +2.5
Average —– +0.1 -1.0 -0.9

Figure 6.8: Mutator Time Base Overhead

RTS options
Base -ls
Time -ls -Et
Time2 -ls -Et100
Alloc -ls -Ea
Stack -ls -Es -kc8k
Heap -ls -Eh

RTS options
Cycle -ls -Ey
Cycle2 -ls -Ey100000
Cache -ls -Ec
Cmiss -ls -EC
Branch -ls -Eb
Bmiss -ls -EB

Figure 6.9: Sampling Configurations

runs for functional differences. And as we can see, for this statistic we manage a pretty
much perfect match between all configurations.

However, things get less predictable when we consider actual run time. Note that
in Figure 6.8 we deliberately consider only “mutator” time, which is the program time
excluding start-up time and garbage collections. This is a good idea here, as copying
debug records into the eventlog might cause a significant amount of delay when starting
the program. Furthermore, we are not going to profile garbage collections, therefore
possible performance changes there do not concern us. Even without these factors, it is
quite clear that the results are still quite noisy: Paradoxically, on average performance
even improves with event-logging active. However, the good averages should show that
we have not introduced any severe biases, and can sensibly profile the code resulting
from either configuration.

187

6.1. PERFORMANCE CHAPTER 6. EVALUATION

6.1.7 Sampling Overhead

The next important influence on program performance that we have to acknowledge
is sampling overhead: The act of capturing and emitting samples causes performance
to be lost, therefore any significant overhead could introduce skews. Figure 6.9 shows
an overview of the sample collection configurations that we will test. Due to our work
in Chapter 5 we have quite a few back-ends to choose from, with perf_events alone
providing 6 different hardware performance counter configurations (on the right). On
the other hand, the left hand side represents the 3 remaining sampling approaches,
using timers, allocation and heap residency profiling respectively. Also note that we will
adjust the sampling rate in a few cases: For the configurations “Time2” and “Cycle2”
we overrode the sampling rates to 100µs and 100 000 cycles, which are 10 times higher
than their respective defaults. Furthermore, for stack allocation we decrease the stack
block size (8 kB, default 32 kB) to force more stack overflows and therefore samples.

In Figure 6.10 and Figure 6.11 we have collected data about the sampling overhead
of using the different sampling back-ends. Because we are generally interested in the
running Haskell code, we again focus on mutator time. The exception is heap profiling,
which actually runs as part of the garbage collection pass and therefore does not
influence mutator time. Consequently we switch to comparing runtime overhead. The
results work out as expected: Moderate slowdowns across the board. The exact amount
varies quite a bit due to run-time noise, but we generally stay well below 5 % overhead.
The most notable outlier is the “Cycle2” configuration, where the low sampling rate
caused costs to spike up noticeably. On the other end of the spectrum we have the
“Alloc” configuration, which is cheap enough to incur basically no overhead. As the
“Stack” configuration uses the same mechanism, we would normally expect the same
good performance characteristics. However the increase in stack block size can have
quite dramatic effects on program performance, as the +32.1 % outlier for “ansi” should
demonstrate.

6.1.8 Average Overhead

These performance measurements should convince us that all of our profiling back-ends
have the ability to work well alongside program evaluation. However, we still have
to show that each back-end was successful in collecting enough sample data in order
to inform performance analysis. Figure 6.12 therefore shows us two statistics about
the generated data: First we give the average sampling rate over all program runs
(weighted by run time). Heap profiling achieves a very high rate as this point, as it will
set weights based on heap object size – which basically makes every single byte on the
heap a sample. The next notable configuration is, again, heap allocation profiling, which

188

CHAPTER 6. EVALUATION 6.1. PERFORMANCE

Base Time Time2 Alloc Stack Heap ∗
[s] [%] [%] [%] [%] [%]

k-nucleotide 49.76 -0.3 +1.5 -0.2 -0.5 -0.7
fannkuch-redux 48.67 +0.5 +2.0 +0.0 +0.0 +0.0
n-body 11.23 +0.6 +2.3 +1.0 -0.0 +0.8
binary-trees 8.42 +1.3 +3.7 +0.2 +0.4 +76.7
spectral-norm 8.23 +0.1 +1.5 -0.1 -0.1 -0.1
fasta 3.79 +0.5 +5.5 +0.3 0.0 +0.0
integer 1.49 +0.2 +2.7 0.0 0.0 +0.3
exp3_8 1.26 0.0 +2.5 +0.3 +7.5 0.0
pidigits 1.06 0.0 +3.8 -0.3 -0.2 +0.0
wheel-sieve1 0.92 0.0 +2.2 0.0 +0.5 +7.4
reverse-complem 0.83 0.0 +2.2 0.0 -0.4 -0.4
kahan 0.81 -0.4 +1.6 0.0 -0.4 +0.0
knights 0.69 +1.4 +2.9 0.0 0.0 +1.5
ansi 0.56 +0.6 +3.5 +1.5 +32.1 +0.5
primes 0.48 0.0 +2.1 0.0 +10.4 +0.2
-1 s.d. —– -0.5 +1.9 -0.4 -3.9 -5.0
+1 s.d. —– +1.6 +4.7 +1.2 +9.5 +12.0
Average —– +0.6 +3.3 +0.4 +2.6 +3.1

(∗ Heap configuration compares run time)

Figure 6.10: Sampling Mutator Time Overhead (1/2)

Base Cycle Cycle2 Cache Cmiss Branch Bmiss
[s] [%] [%] [%] [%] [%] [%]

k-nucleotide 49.4817 +2.1 +10.1 +1.2 +3.3 +0.9 +0.8
fannkuch-redux 48.6900 +1.2 +9.5 +0.2 +0.3 +0.7 +1.9
n-body 11.2550 +2.4 +9.6 +0.6 +0.5 +0.8 +0.7
binary-trees 8.4233 +1.8 +9.9 +1.2 +1.9 +0.8 +2.3
spectral-norm 8.2283 +0.9 +8.9 +0.0 +0.0 +0.0 +0.0
fasta 3.7917 +1.9 +10.5 +1.0 +0.6 +0.7 +0.7
integer 1.4900 +2.1 +11.0 +1.3 +1.3 +1.3 +3.4
exp3_8 1.2600 +2.4 +11.9 +4.4 +1.5 +1.7 +1.3
pidigits 1.0583 +5.7 +16.1 +7.7 +3.9 +3.9 +3.9
wheel-sieve1 0.9200 +1.1 +9.8 0.0 0.0 +0.2 +0.2
reverse-complem 0.8200 +2.4 +9.8 +1.2 +1.2 +2.0 +1.2
kahan 0.8183 +1.0 +9.0 -0.6 -0.2 -0.2 +1.8
sched 0.7000 +2.9 +11.4 +1.4 +1.4 +1.4 +4.3
knights 0.6900 +1.9 +10.1 +1.4 +0.2 +1.4 +1.4
-1 s.d. —– +1.6 +9.9 +0.7 +0.4 +0.5 +1.1
+1 s.d. —– +4.6 +14.2 +4.5 +3.4 +4.0 +4.6
Average —– +3.1 +12.0 +2.5 +1.9 +2.2 +2.8

Figure 6.11: Sampling Mutator Time Overhead (2/2)

189

6.2. USAGE SCENARIO CHAPTER 6. EVALUATION

Sample Rate Overhead Message Rate Overhead
[Sample/s] [µs/Sample] [Msg/s] [µs/Msg]

Time 998.7 2.649 603.3 4.39
Time2 9 980.1 2.169 1 458.1 14.84
Alloc 208 610.3 0.003 1 760.9 0.40
Stack 4 662.4 0.468 4 662.4 0.47
Heap 43 139 691.9 0.001 7.7 7 270.24
Cycle 3 091.4 4.607 1 154.6 12.34
Cycle2 27 557.7 3.278 1 408.5 64.14
Cache 976.6 9.445 562.4 16.40
Cmiss 3 292.4 4.089 193.1 69.74
Branch 975.7 7.149 580.5 12.02
Bmiss 2 428.5 4.491 503.5 21.66

Figure 6.12: Sampling Overhead Overview

manages to collect a high number of samples, especially considering its low overhead.
This means that heap allocation sampling is especially efficient at producing a lot of

sampling data without inducing overhead – the perfect combination. To see how other
approaches stack up, we additionally calculate an overhead estimate per sample. Not
unsurprisingly, heap allocation profiling is way ahead of the pack at 0.001µs per sample.
Apart from that we see that most profiling approaches just take a few microseconds
per sample, which still makes it realistic to collect significant amounts of sampling data.
Especially note that the cost remains relatively stable when we change sampling rate
for “Time2” and “Alloc2”, suggesting that the rate can be used to regulate overheads.

6.2 Usage Scenario

The main claim that we make about our profiling solution is that it is useful for resolving
real-life performance problems. We covered performance and data quality in the last
sections, yet while these are necessary for a useful profiling tool, they are by no means
sufficient. However, in contrast to these quantifiable characteristics it will be very hard
for us to actually prove usefulness: There will always be performance problems that
we cannot help with, and probably even programmers that will find our approach to
profiling especially hard to work with.

Therefore at best we could claim relative usefulness for a given set of problems and
a certain type of user, ideally through a user study. This could give us a proper basis
to argue about intuitiveness and usefulness of our user interface. However due to time
constraints we will not be able to do this for this thesis. Instead, we opt to get our own
hands dirty, and show how analysing a non-trivial real-world example could look like.

190

CHAPTER 6. EVALUATION 6.2. USAGE SCENARIO

6.2.1 The Code

We will lift our example from the StackExchange website, where on 13th of March 2012
user “Joey Adams” asked the following question in the code review section 1:

“I wrote a string escaping function in C, and I’m trying to rewrite it to
Haskell. [...]

Here’s a naïve implementation based on Data.ByteString.concatMap:”

1 escape1 :: Word8 → By t eS t r i n g
2 escape1 c
3 | w2c c == ’\\ ’ = B. r e p l i c a t e 4 (c2w ’\\ ’)
4 | c >= 32 && c <= 126 = B. s i n g l e t o n c
5 | o t h e rw i s e = B. pack
6 [c2w ’\\ ’ , c2w ’\\ ’
7 , c2w ’0 ’ + ((c ‘ s h i f tR ‘ 6) .&. 0x7)
8 , c2w ’0 ’ + ((c ‘ s h i f tR ‘ 3) .&. 0x7)
9 , c2w ’0 ’ + (c .&. 0x7)]

10
11 e scape :: By t eS t r i n g → By t eS t r i n g
12 e scape = B. concatMap escape1
13
14 main :: IO ()
15 main = L . ge tConten t s >>= L . pu tS t r .
16 L . fromChunks . map escape . L . toChunks

Listing 6.3: Original Escaping

We have slightly refactored the code to make it fit into the context of this thesis, but the
implementation is identical: We process one single byte at a time into an escaped form.
For this example, the code author has handled three cases – basic ASCII characters,
backslashes and extended characters.

Despite the author’s warning about the code’s naïvety, it already uses quite advanced
implementation techniques: For example, instead of using Haskell’s standard String
type to handle the data stream, it employs ByteStrings [Coutts et al., 2007b], which
are well known for their speed in dealing with I/O tasks. In fact, the author seems
to be well aware that fast streaming is a matter of processing data in chunks that are
incrementally read from the disk. Therefore, the escaping process first uses map in
order to apply escape to every single chunk, followed by using concatMap in order to
process single bytes.

1http://codereview.stackexchange.com/questions/9998/optimizing-bytestring-escaping

191

http://codereview.stackexchange.com/questions/9998/optimizing-bytestring-escaping

6.2. USAGE SCENARIO CHAPTER 6. EVALUATION

6.2.2 Profiling

Given the effort, the performance of this code is quite discouraging:

“I’d expect this to be a few times slower than the C version. Nope, it is 125
times slower than the C version.”

Let us therefore compile the program with our debug annotations and profile it:

$ ghc Original.hs -O2 -rtsopts -eventlog -g -fsave-core

$./Original +RTS -ls -Ey -Ea < Original > /dev/null

$ threadscope Original.eventlog -d ~/ghc

These three lines compile and run the program, and start our analysis tool. Note the
command line options: When compiling the program we activate full optimisations, but
also pass -g in order to request our debug annotations. Due to our work in Section 5.4
on page 129 we are confident that these command line options do not conflict: We can
profile a fully optimised program. Furthermore, we requested the optimised Core code
to be saved along with the program. This will become useful shortly.

When running our program, we pass it its own executable as text data, and pipe
its results into the void. More interesting are the options that we pass to the runtime
system (RTS): The −ls option will cause a basic eventlog to be generated, while −Ey
and −Ea will cause our profiling infrastructure to collect samples by both cycles as well
as allocation. Due to the fact that both have very low skews, there is no strong reason
to not combine sampling back-ends like this.

6.2.3 Analysis

If we take a look at the resulting profile view in Figure 6.13 on the next page, it
should be clear that we have a pretty tricky performance problem here. The activity
graph shows that the program is spending most of its time in garbage collection, and is
therefore clearly allocating a lot of data. Unfortunately, even our profiling view turns
out to be all over the place: Even with increased fuzz the performance is spread well
over a number of modules. We especially cannot associate much performance with the
Original.hs source file. This suggests that most cost was not found in our code or
any portion that could get in-lined into it. Instead, we have apparently pushed most of
our complexity into the internals of the bytestring library itself. Given that we would
strongly suspect that an efficient implementation using ByteString should be possible,
this means that we are probably mis-using the library somehow.

If we further focus on the 40 % CPU cycles spent inside the bytestring library, the
picture becomes slightly cleaner. We can easily determine that inlinePerformIO and w2c
are basically cost-free, but on the other hand we have two actual “worker” functions that

192

CHAPTER 6. EVALUATION 6.2. USAGE SCENARIO

Figure 6.13: Original Example Profile

stand out: concat and unsafePackLenBytes. The timeline highlights show us that both
get used a fair amount during the execution of our program as explained in Section 5.8.4
on page 171. If we look up their definitions using the source browser, it becomes clear
that their function is to pack ByteString objects together.

However, let us take a look at the allocation profile before we attempt to draw
any conclusions. For Figure 6.14 on the next page we change the verb, and are now
viewing heap allocation statistics. The amount estimation on the left-hand side should
be encouraging that we might be on the right track: We gave the program barely
6MB of input data, yet it managed to burn through more than 1GB worth of heap
allocation while encoding it! Not surprisingly, we can also link 100% of it with usage
of the bytestring library. If we take a closer look at the allocation distribution, we spot
that most functions seem to refer to the creation of ByteStrings – such as create or
packBytes.

Interestingly enough, these two functions also do not seem to share too much common
cost, suggesting that we are dealing with cost coming from different code paths. In fact,
if we look at the Core code for packBytes cost, we spot the call to unsafePackLenBytes
from above. Furthermore, it is clear why it is so costly: It is allocating a Haskell list
(GHC.Types.:), and that within what is apparently the inner loop of the program!

193

6.2. USAGE SCENARIO CHAPTER 6. EVALUATION

Figure 6.14: Original Allocation Profile

The amount of information that our interface provides might make it hard at first to
spot the patterns, but the signs should become clearer: While concat contributed a lot
of cost, it contributes almost no allocation, therefore we are apparently concatenating
massive numbers of ByteString objects. That we spend a lot of allocation “creating”
ByteString objects fits into that picture very well. While all this is going on, we are also
clearly spending quite some time constructing lists and reducing them to even more
ByteString objects.

If we look at the original program, the problem should now be apparent: We are
creating one ByteString object per byte from the original file, which means that over
the program run we create roughly 6 million instances. A good number of them even
get generated from a list using pack, which is not particularly efficient. The final verdict
is simple: We should not try to concatenate millions of tiny ByteStrings – this is not
what the library was designed to do.

6.2.4 Blaze-Builder

Fortunately, the author of the original program guessed as much even without going
through a detailed performance analysis. In his StackExchange query, he continues:

194

CHAPTER 6. EVALUATION 6.2. USAGE SCENARIO

“Then, I tried using blaze-builder:”

1 escape1 :: Word8 → Bu i l d e r
2 escape1 c
3 | c == 92 = fromWrite $ mconcat [bs , bs , bs , bs]
4 | c >= 32 && c <= 126 = fromWrite $ writeWord8 c
5 | o t h e rw i s e = fromWrite $ mconcat
6 [bs , bs
7 , wr i teWord8 $ 48 + ((c ‘ s h i f tR ‘ 6) .&. 0x7)
8 , wr i teWord8 $ 48 + ((c ‘ s h i f tR ‘ 3) .&. 0x7)
9 , wr i teWord8 $ 48 + (c .&. 0x7)]

10 where bs = writeWord8 92
11
12 e scape :: By t eS t r i n g → Bu i l d e r
13 e scape = B. f o l d l ’ f mempty
14 where f b c = b ‘mappend ‘ e scape1 c
15
16 main :: IO ()
17 main = L . ge tConten t s >>= L . pu tS t r .
18 t oLa z yBy t eS t r i n g . mconcat . map escape . L . toChunks

Listing 6.4: Blaze-Builder Escaping

Given our knowledge from the last section, this is a smart choice. In contrast to
bytestring , the blaze-builder library addresses exactly the use-case we identified: Build-
ing large strings efficiently. In the example, we even see that the author applied the
fromWrite optimisation, which basically allows blaze-builder to skip range checks for
cases where we statically know how many characters we are going to emit.

However, this version does not fare much better:

“This made a difference. It’s even slower, 300 times slower than the C
version. I thought blaze-builder was supposed to be really fast!”

At this point, our user is clearly frustrated. From his point of view, he is doing everything
he can in order to allow the Haskell program to perform well, yet it does not seem to
help. In fact, this is where he gave up and fell back to using an imperative style.

Fortunately, using our profiling solution we do not have to jump to such conclusions.
Figure 6.15 on the following page shows the result of running the new program, using
exactly the same parameters as in the last sub-section. A look at ThreadScope’s status
bar confirms the program author’s performance claims: Instead of 0.8 s we are now
taking 2.8 s to complete our test run! Also now we are allocating even more memory

195

6.2. USAGE SCENARIO CHAPTER 6. EVALUATION

Figure 6.15: Blaze-Builder Profile

on the heap, up to 1.46GB from 1.12GB we had previously. Somehow, things have
gone even more wrong than before. On the other hand, we can now spot a proper “hot
spot” in our performance data: Even low amounts of fuzzing allow us to pin 100% of
the allocation on foldl ’ .go, the worker function of foldl ’ from the bytestring library.
We actually have a similar kind of problem as our “factorial” example: GHC pulled all
important parts into a self-contained inner loop, but has failed to optimise it well.

This makes a good starting point for some Core exploration, so let us have a closer
look at Figure 6.15. Core folding as explained in Section 5.8.8 exposes the inner loop
from foldl ’ : The function starts by comparing addresses ww and ww1, continues with
reading one byte from ww, followed by increasing the address by 1. If we scroll a bit
further down, we find a recursive call. So where exactly is our allocation coming from?
In fact, we are looking right at it: The let bindings shown are the main source of
allocations, due to the fact that each of them will capture our current address as well
as the last read byte. The reason that the let expression is not directly annotated
with the 50.9 % allocation is an idiosyncrasy of heap allocation as discussed back in
Section 5.7.6 on page 167: The problem is that due to the case expression we can not
tell what branch the allocation is coming from. On the other hand, here the False is
clearly the “loop” case, so this is where our problem must stem from.

196

CHAPTER 6. EVALUATION 6.2. USAGE SCENARIO

But why are we allocating so many closures in the first place? If we look at the
structure of the remainder of the Core code, it looks as follows:

go = λb ld addr end s t a t e → {− . . . −}
l e t { a = {− . . . −} , $wa1 = {− . . . −} , {− . . . −} } i n
ca se p lusAddr # addr 1 o f addr ’ →
l e t b ld ’ = λ s t e p →

l e t s tep ’ = case byte o f
92 → l e t s tep ’ = λ range s → {− . . . −}

i n step ’
→ l e t s tep ’ = λ range s → {− . . . −}

i n step ’
i n b l d step ’

i n go bld ’ addr ’ end s t a t e ’
Listing 6.5: Blaze-Builder Core

This small forest of lambda expression spawns the rest of the allocation of our program.
Note that we renamed variables to reflect their type here, so for example byte is now
the byte that was read using readWord8OffAddr# in Figure 6.15.

So what is going on here? Well, we see the recursive call, and we are clearly passing
a new builder bld ’ , just as we would expect. However, we might be slightly surprised at
how complicated the definition of bld ’ has turned out: In fact, it is a lambda value that
passes our step to the bld closure we got as a parameter! So we are, in fact, passing
our step back to the lambda we got from our left. This should start sounding awfully
familiar at this point: When we “hacked” our factorial implementation to turn a right
fold into a left fold, we were also passing continuations between fold iterations. Except
that this time, we are apparently turning a left fold into a right fold!

The reason for this whole debacle is of course that the program author apparently
had a wrong intuition about what a Builder is in the first place. Here is the slightly
simplified definition from the blaze-builder library:

newtype Bu i l d e r
= Bu i l d e r (∀ r . Bu i l dS t ep r → Bu i l dS t ep r)

newtype Bu i l dS t ep r
= Bu i l dS t ep (BufRange → IO (Bu i l d S i g n a l r))

Listing 6.6: Builder definition

As we might have guessed from the Core code, we are actually dealing with a nested
function type here. BuildStep encapsulates a primitive write: It takes a buffer position
and attempts to write some data into it. The point of Builder is that we string them
together using continuation passing style.

197

6.2. USAGE SCENARIO CHAPTER 6. EVALUATION

We can see roughly how this works by considering the escape1 function from List-
ing 6.4 on page 195. If we expand the newtype wrappers we obtain:

escape1 :: Word8 → (BufRange → IO (Bu i l d S i g n a l a))
→ BufRange → IO (Bu i l d S i g n a l a)

Listing 6.7: escape1 type

Which is basically saying “give me a byte and a way to continue writing”. The point of
passing a continuation is simple: If we find that our content does not actually fit into
the current buffer, blaze-builder will have to allocate a new buffer to fill. Constructing
Builder like this means that every function naturally receives its buffer from the Builder
on its left, therefore this becomes a very low-overhead operation. In the end, this means
that for efficient execution we want the following recursive structure:

escape1 byte0
(e scape1 byte1

(e scape1 byte2))
buf

Listing 6.8: Recursive escape1

It is not hard to see that this is, in fact, a right fold. Therefore the choice of foldl ’ has
clearly been mistaken.

6.2.5 Folding

Of course this suggests that we might want to try to use a right fold. So let us simply
flip the direction of the fold in the program from Listing 6.4:

escapeCopyBytea2 :: By t eS t r i n g → Bu i l d e r
escapeCopyBytea2 = B. f o l d r f mempty

where f c b = escape1 c ‘mappend ‘ b
Listing 6.9: Right Fold Version

In Figure 6.16 we have opened the profile generated by the resulting program. And
clearly we are on the right track: As the status bar shows, just this small change has
increased the performance almost 8-fold relative to our first blaze-builder version, and
2-fold over the initial bytestring code. Not bad!

However, a closer look at the profile might lessen our enthusiasm: The new version
actually allocates even more memory than all our previous versions. This might seem
slightly surprising given our good performance, and is a great example for why reasoning
about verbs can sometimes be tricky: While allocation always has some overhead, the
concrete cost depends on how long we keep references around. And given that we are

198

CHAPTER 6. EVALUATION 6.2. USAGE SCENARIO

Figure 6.16: Blaze-Builder Right-Fold Profile

now walking through the ByteString in the “right” order, this basically means that our
allocated objects will die very quickly, leading to low actual overhead.

However, this does not explain why we are allocating so much data in the first
place. As we see in Figure 6.16, folding away unrelated Core code exposes a familiar
structure: address comparison, followed by reading one byte, followed – again – by a
whole bunch of closure allocations. So what is going on this time? If we pull out the
Core code structure again, we see that our inner loop has changed to the structure
shown in Listing 6.10 on the next page. Note that while in Listing 6.5 we built closures
as arguments, this time around the whole function is basically a big nested lambda-term.
The expanded type of go even looks remarkably similar to the escape1 type: Given two
addresses and a continuation we promise to fill a buffer.

However, note that instead of matching all arguments at the top level, GHC has left
lambdas “inside” wherever it could. The worry behind this is the same as we explained
back in Section 3.4.6 on page 36: What if our worker function go gets called often with
the same two addresses, but different step and range parameters? The allocated closures
are basically GHC organising thunks in order to save back work if this should happen
to be the case. And apparently, this time around the control flow is too complicated
for the arity analysis of Breitner [2004] to figure out that this is a bad idea.

199

6.2. USAGE SCENARIO CHAPTER 6. EVALUATION

go :: Addr#

→ Addr#

→ (BufRange → IO (Bu i l d S i g n a l a))
→ BufRange
→ IO (Bu i l d S i g n a l a)

go = λ addr end →
{− . . . −}
l e t {− . . . −}

b ld =
λ s t e p →

l e t a = {− . . . −}
i n ca se byte o f

92 → l e t s tep ’ = λ range s → {− . . . −}
i n step ’

→ l e t s tep ’ = λ range s → {− . . . −}
i n step ’

i n b l d
Listing 6.10: Blaze-Builder Core – Right Fold

6.2.6 Tailoring

At this point we have run out of easy solutions. The reason that the worker function
go ends up getting composed out of three layers of lambda expressions is something
that comes naturally from the way we have structured our computation. However, by
this point we know exactly what the core of the problem is: We need the inner worker
function derived for foldr to receive the right arity so it can perform Builder operations
efficiently. To achieve this, we simply take the definitions of foldr from bytestring and
mappend and mempty from blaze-builder and “manually” inline them into each other.
As we see in Listing 6.11, this means unravelling the internals of both libraries quite
a bit. However, this allows us to force GHC to use the arity we want: Now the loop
go explicitly iterates over the input buffer (p and q) and the output buffer (range) in
parallel.

As Figure 6.17 shows, this relatively straightforward change makes a significant
difference. In fact, is has reduced the runtime down to just 93ms! This is low enough
that even the set-up cost of event log generation becomes significant (see Section 5.7.1
on page 162). In fact, without profiling the program now achieves a total run time of
around 41ms, which is a substantial 8-fold improvement over the previous version.

200

CHAPTER 6. EVALUATION 6.2. USAGE SCENARIO

f o l d B u i l d e r :: (Word8 → Bu i l d e r) → B. By t eS t r i n g
→ Bu i l d e r

f o l d B u i l d e r f (PS fp s l) =
f romBui ldStepCont $ λcont range → do

l e t p t r = unsa f eFo r e i gnPt rToPt r fp
go ! p ! q ! range ’

| p == q = cont range ’
| o t h e rw i s e = do

touchFo r e i gnP t r p t r
c ← peek p
l e t p ’ = p ‘ p l u sP t r ‘ 1

s t ep = Bu i l dS t ep (go p ’ q)
r unBu i l dS t ep (unBu i l d e r (f c) s t e p)

range ’
l g o (p t r ‘ p l u sP t r ‘ s) (p t r ‘ p l u sP t r ‘ (s+l)) range

Listing 6.11: Specialised Fold

Figure 6.17: Blaze-Builder Profile – Optimised Fold

201

6.2. USAGE SCENARIO CHAPTER 6. EVALUATION

6.2.7 Manipulation

At this point, we have almost managed to push the performance of the Haskell version
into the same realm as the C implementation, which takes 13ms to complete the same
task. What is more, the Core is now compact enough that it becomes quite easy to
spot the source of the remaining inefficiencies. For example, in Figure 6.17 on page 201
we spot that the program is still allocating about 212MB worth of heap data. This is a
lot better than before, but can certainly still be improved. This time, the analysis leads
us to where data gets written into the buffer. Here is what this looks like for escaped
characters:

{− . . . d e t e rm ine what to w r i t e . . . −}
l e t s t e p :: Addr# → Addr# → Sta t e # RealWor ld

→ (# Sta t e # RealWorld , B u i l d S i g n a l r #)
s t e p = λ addr end rw →
ca se p lusAddr # addr 5# o f addr ’ →
ca se l eAddr # addr ’ end o f

F a l s e → l e t cont = λ buf ’ rw ’ →
ca se buf ’ o f BufRange addr ’ l i m i t ’ →
s t e p addr ’ l i m i t ’ rw ’

i n (# rw , B u f f e r F u l l 5 addr cont #)
True → {− . . . w r i t e out data . . . −}

i n s t ep addr end rw
Listing 6.12: Blaze-Builder Writing Core

Note that this time the two addresses addr and end refer to the output buffer. We
conclude that the point of this code is to check whether enough space is available to
output the desired number of bytes – here 5 for a character in escaped form. If we
run into the end of the buffer, we return a BufferFull signal, which will invoke the
continuation with a fresh buffer.

In this case, the allocation can be shown to originate from the step lambda 2. In
contrast to what one might expect, this is no instance of Let-No-Escape as explained
back in Section 3.5.11 on page 54. After all, a reference to writer clearly can escape
through the cont closure! While we know that this is a very rare event, this still forces
GHC to actually allocate the writer closure on the heap, complete with all life variables
just in case we need to interrupt and then resume our writing process.

2Unfortunately, the code generator plays a trick on us here – the code generated for the step lambda
advances the heap pointer in anticipation of allocating cont, only to reset it in the (expected) case that
we take the second branch. As it happens, this temporary increase of the heap pointer is what causes
all calls into the memory system, therefore “shadowing” the true source of the allocation. Fortunately,
it is not far away, so it is not hard to make the connection.

202

CHAPTER 6. EVALUATION 6.2. USAGE SCENARIO

In our example, it would clearly be better if we could just directly invoke the code
without the need to wrap it into a closure first. However, this is not as easy as it sounds,
as the data to write out comes from either the stack or the closure depending on the
code path that led us there. This means that in order to improve the code, we need to
duplicate the writing code. Fortunately, in this instance this is quite easy, at least if we
are advantageous enough to directly manipulate the implementation of blaze-builder. To
be specific, the Core code from Listing 6.12 derives directly from the library’s fromWrite
function. We can simply adapt this function to look as follows:

f romWrite ’ :: Write → Bu i l d e r
fromWrite ’ w r i t e = f romBui ldStepCont s t ep

where s t ep k (BufRange op ope)
| op ‘ p l u sP t r ‘ getBound w r i t e <= ope = do

op ’ ← runPoke (getPoke w r i t e) op
l e t ! br ’ = BufRange op ’ ope
k br ’

| o t h e rw i s e =
r e t u r n $ b u f f e r F u l l (getBound w r i t e) op

(s tep ’ k)
s tep ’ k (BufRange op ope) = do

op ’ ← runPoke (getPoke w r i t e) op
l e t ! br ’ = BufRange op ’ ope
k br ’

Listing 6.13: Custom fromWrite implementation

We have not changed much, the only difference is the step ’ function. Originally the
library passed a (step k) closure to bufferFull here, which is what led to the Core code
shown in Listing 6.12. Now we have set up a specialised code path for resuming the
write process, which should allow GHC to either let-no-escape or inline the original
step function. Having a separate function also gives us the opportunity to skip the
seemingly redundant size check for the fresh buffer.

This change brings the total runtime of the program down to 21ms, another im-
provement by a factor of 2. In fact, as Figure 6.18 on the following page shows, the
total allocation of the program is now just 385 kB, which is less than the size of the
input file. This means that we have eliminated virtually all heap allocation from the
inner loop! At this point, we have optimised the program as far as we can. In fact, we
have come fairly close to the reference point of 13ms that the C version took.

203

6.3. WRAPPING UP CHAPTER 6. EVALUATION

Figure 6.18: Blaze-Builder Profile – Optimised Write

6.3 Wrapping Up

The data we have collected in this chapter is no proof of usefulness, but it gives us
an idea how the practice of using our tool might look like. Our case study has shown
that we can optimise a Haskell program to the point where it can compete with C in
terms of performance. Especially note that while we had to replace certain key parts
of the infrastructure, the structure of the code did not change much compared to our
first version in Listing 6.4 on page 195! This means that we have indeed managed to
improve performance while remaining high-level in our top-level implementation. It is
not unrealistic that in future, libraries and compiler optimisations might mature to the
point where we can skip some of the “hacks” we had to employ here.

Furthermore, as the first part of the chapter should have shown, we can be quite
confident that our tool will work well in a lot of scenarios. We ourselves have tested our
tool on a number of programs ranging from small examples to large applications (such
as GHC itself), and have found that with careful analysis we can find evidence for most
kinds of performance problems. And while such an investigation might admittedly still
often require expert knowledge and experience, the added information and guidance
makes the optimisation job much easier than it had been before.

204

Chapter 7

Conclusion

“– We have been torturing you for hours, and it does not even seem to hurt.
This will not help you!”

“– Oh yes, it will: It will help to pass the time...”

Asterix the Gaul, René Goscinny & Albert Uderzo

When we started out with this thesis, our claim was that we would be able to provide
a novel profiling solution for the programming language Haskell. Our goal was not to
displace existing solutions, but to provide new options to users that have struggled
with making sense of Haskell’s occasionally erratic performance behaviour so far. Our
aim was to directly address one of the hardest problems that plagues reasoning about
Haskell program performance today: The disconnect between rapidly evolving libraries
promising to marry high performance with purely functional programming, and the
unfortunate realities of attempting to diagnose the ever more complicated performance
problems that this combination can lead to.

7.1 Contributions

In the end, we can claim that we were successful in attacking the profiling problem in
a rigorous fashion. As a result, we have found a few novel ways of thinking about the
profiling task.

This started in Chapter 2, where we set out to build a foundation for our work. Here
is where we defined the terms that we were going to use throughout this thesis. The
verb/noun nomenclature we introduce was originally formulated by Irvin [1995], however
we believe that the way we have linked it to the causal reasoning process is a fresh
interpretation of the concept. Similarly, Chapter 3 mainly serves to introduce existing
material, while putting our own spin on existing themes. For example, the performance
model we introduce is intended to make stronger claims about the performance of

205

7.2. PRIOR WORK CHAPTER 7. CONCLUSION

Haskell programs than usual, as we want to obtain guarantees that we are not going to
miss the causal connection of certain verbs in profiling.

The central contributions of this thesis can however be found in Chapter 4. To our
knowledge there has been no previous attempt at formally applying causal theory to
operational semantics. Our approach of decomposing rule matches into a network of
events and determining causality by employing closest-world thought experiments has
been specifically developed as a theoretical foundation for this work. The purpose of
this is to enable the reasoning about optimisations as shown in Section 4.8: At this
point we are able to make well-grounded claims about what the “right” annotation
schemes are in every situation. Before the link with causality was established, reasoning
at this point was effectively based on worst-case scenarios and consistency concerns.
And while the results might not be particularly spectacular, in a language with such
tricky semantics as Haskell it is a good idea to have strong guarantees about our claims.

The profiling framework we developed in Chapter 5 forms the second main body of
contributions. Apart from the engineering work involved, we believe that our design
brings a few new concepts to the table as well. For example, our causality semantics can
serve as a baseline for comparing different ways of explaining performance problems.
In Section 5.3 on page 121 we used this to evaluate various iterations of cost-centre
profiling as introduced by Sansom and Peyton Jones [1995]. Furthermore, our insights
into the performance analysis process has led to a novel user interface design tailored
towards the specific requirements of working with heavily optimised programs. To be
specific, we realised that talking about causal processes involving transformations meant
that we can not always determine a singular villain in the source code. Consequently we
showed in Section 5.8 on page 168 how we can design the interface so it allows the user
to work with such “ambiguous” source code links. To offset the inevitable uncertainty,
our Core viewer fills the role of a one-stop analysis tool for unraveling the program’s
inner workings. This especially allows us to making sense of exactly how the compiler’s
decision gave rise to the program’s performance characteristics. To our knowledge this
form of analysis is unprecedented, at minimum within the Haskell world.

7.2 Prior Work

7.2.1 Haskell Profiling

Clearly our work was heavily inspired by the work on previous profiling solutions. To
start with, our approach targets the Haskell ecosystem, so our main reference point is
obviously the work by Sansom and Peyton Jones [1995], which was recently revisited
by Marlow [2012]. The problems of cost attribution led us down similar paths – for
example, we argued in Section 4.4.1 on page 72 that laziness is transparent with respects

206

CHAPTER 7. CONCLUSION 7.2. PRIOR WORK

to cause annotations, which has parallels to Sansom and Peyton Jones [1997, Section
3.5]. Furthermore as explicitly explored in Section 5.3.2 on page 122 forwards, we can
even map lexical and evaluation scoping to subsets of our full cause terms. However
the aim of our works still vary significantly, with our work prioritising the ability to
do low-overhead profiling of optimised program over concerns such as cost centre stack
consistency.

Next we have to acknowledge the work of Jones et al. [2009] on the eventlog tracing
infrastructure as well as the ThreadScope profiling tool, which we extended in order to
analyse our data. The main focus of their profiling is reasoning about the behaviour of
parallel Haskell programs, which has further improved over the years due to the work
of Coutts et al. [2011]. In fact, the format has become something of a lingua franca for
profiling parallelism in Haskell variants, with a good number of consumers in the Eden
trace viewer [Berthold and Loogen, 2007], HdpHProf [Al Saeed et al., 2012] as well as the
recent ghc-events-analyze utility [de Vries and Coutts, 2014]. It has even been used
for profiling Mercurial programs [Bone and Somogyi, 2011]. And even though profiling
parallel programs is out of scope of this work, the high variety of profiling approaches
has certainly been an inspiration for developing our general noun/verb nomenclature.

On a similar note, we have to acknowledge work on Haskell profiling that we do
not actively touch here. There has been the work of Röjemo and Runciman [1996]
on decomposing what we see as the heap residency verb. The work by the same
group on coverage analysis [Gill and Runciman, 2007] could also be interpreted as a
distant relative to program profiling. Returning to parallel profiling, there have been a
number of interesting profiling approaches exploring parallel programs executed using
GranSim [Loidl, 1996], such as the work of Hammond et al. [1997]. The approach of
Charles and Runciman [1999] to make profile exploration interactive can be seen as
having parallels with our work. As Charles [2001] shows, effectively climbing the causal
chain backwards is an equally non-trivial pursuit in the parallel context.

7.2.2 General Profiling

Quite obviously Haskell has not been the only language environment that has seen
active work on profiling questions. The field is way too large to give a comprehensible
literature review. We will therefore mainly focus on instances where existing work
inspired our choice of approaching profiling of optimised code using causality theory.

On this account we first have to credit the work of Irvin [1995] which inspired the
verb/noun nomenclature used throughout this work, even if it was not interpreted in
a causal context. As he notes, verbs and nouns can exist on many different levels
of abstractions, which we can “map” in order to obtain more useful views. However,
no formal connection to causality is made. The work of Shende [2001] continues this

207

7.3. FUTURE WORK CHAPTER 7. CONCLUSION

effort of multi-level verb mapping in a distributed context, with their implementation
also explicitly addressing the problem of working with compiler optimisations. The
more complex verb structure of distributed and parallel systems has also given rise to
some work on more complex performance metrics, such as for example in Eyerman and
Eeckhout [2008], or the key performance indicators used for assessing performance of
cloud computing services [Garg et al., 2013].

Profiling in presence of compiler optimisations has also addressed quite a few times in
the past, with for example Appel et al. [1988] already noting that “The machine-code for
a function is not necessarily all contiguous. A function may be turned into several pieces
of code, with portions of the code for other functions interspersed.”. To our knowledge,
Brooks et al. [1992] is the first time that it was considered that the proper way to
approach profiling optimised code might be to see it as generated by multiple pieces of
source code at the same time. The work of Kaneshiro and Shindo [1996] tackles tracking
source code relations on object code moved by program transformations. Finally, it has
to be mentioned that the LLVM infrastructure [Lattner and Adve, 2004] as explained
in Section 5.6.8 on page 160 also supports somewhat optimisation-resistant debugging
annotations via line annotations. Neither work formally approached this problem from
a perspective of causal reasoning.

7.3 Future Work

We have made some significant progress on realising our vision for how optimisation-
aware low-level profiling could look like for Haskell. On the other hand, it is pretty
much the nature of the profiling task that we can never truly claim completeness in
any shape or form. In fact, we can easily number fairly straight-forward ways that this
work could be otherwise applied or extended.

7.3.1 Parallelism

In this day and age, it seems almost antiquated to focus as much on single-core per-
formance as we have for this thesis. The slow change in hardware architectures means
that in future we might have entirely new profiling challenges arising from the need
to run programs on parallel architectures. Fortunately, most of our ground work still
applies: The user would be facing an abductive reasoning task, and would apply verb
and noun abstractions in order to find causal links. The main difference would concern
the verb side of things, where we should now be talking about communication delays
and idle times.

In fact, in the context of this work we developed a preliminary solution for profiling
programs written using the monad−par library by Marlow et al. [2011]. The basic idea

208

CHAPTER 7. CONCLUSION 7.3. FUTURE WORK

Figure 7.1: Parallel Profile

here is that the main verb we are trying to track is data locality: Do parallel processes
progress on the work load in an orderly fashion, or are we jumping so much that we are
likely to incur significant communication delays? This shows that it can sometimes be
hard to express verbs in numbers – instead we could use a visual approach as shown
in Figure 7.1: Here we arrange the directed job dependency graph of an instrumented
monad−par library in a way that highlights the structure of data dependencies, while
reflecting how the program executed. In this view, poor locality would show as vertical
“jumps”, whereas idle times would correspond to horizontal free space. However, we
have not had the chance to develop this work much, but still expect the future of parallel
profiling to lie in similar concepts.

7.3.2 Technicalities

Furthermore, the amount of technical work that went into this thesis also uncovered a
lot of potential for further improvements. One of the most glaring problems with our
profiling solution at this point is that unless the compiler helps us by in-lining, we have
basically no chance to figure out where a function was called from. While we argue
that GHC will do this quite often, this is still a significant blind spot. Fortunately,
as we reported in Section 5.3.6 on page 128 it is quite realistic to introduce Haskell

209

7.3. FUTURE WORK CHAPTER 7. CONCLUSION

stack walking at some point, with Rouhani-Kalleh [2014] and Schröder [2014] already
investigating interesting angles of attack.

Furthermore, it is quite unsatisfactory that so far our profiling solution can only
target Linux systems. The list of problems ranges from rather trivial problems such as
identifying the current memory map (see Section 5.7.1 on page 162) to more involved
issues such as how to access hardware performance pointers reliably, as investigated
briefly in Section 5.7.4 on page 166. It would be especially nice if we could fully
support the LLVM infrastructure as sketched in Section 5.6.8, as this back-end will
often generate faster code than the native code generator. On the other hand, this is
quite hard to achieve due to the limitations in meta data, as well as apparent data loss
during low-level optimisations.

Finally, due to the fact that our profiling approach is mostly based on instruction
pointers, it is relatively easy to introduce new verbs. This leaves ample space for
future extensions, such as verbs tracking the movement of heap object types through
generations. In a similar vain we might attempt to extend our system on the noun
side: As Irvin [1995] already notes, it might make sense to track causality for user-
defined nouns instead of just source code locations. This could take the form of simple
event-log markers identifying program phases as implemented by Coutts et al. [2011],
or full-blown noun trees that the program automatically generates in order to explain
its own structure. We could for example imagine program interpreters communicating
the call stack of the interpreted program to a profiling tool in order to inform analysis.

7.3.3 User Interface

Our extension of the ThreadScope user interface has proved to be a powerful tool for
drilling deep into complicated performance problems. However, we could make our
approach even more useful if we were better about integrating existing information into
our view. For example, there is no direct reason why we could not use our interface
to reason about cost-centre profiling data as well – this would allow us to properly
reason about stack traces where it is appropriate. From the user’s point of view, there
is probably little that we would have to change, with even fuzzing as explained in
Section 5.8.5 on page 172 having a straightforward equivalent.

Furthermore, one of the unique aspects of our work was that we tried to integrate a
view of the intermediate Core language into our profiling view. However, as we noted in
Section 5.8.8 on page 176 showing unfiltered Core to the user can be overwhelming, and
therefore extra efforts might be warranted. For example, the work on HERMIT [Farmer
et al., 2012] shows a number of ways that we can make Core code easier on the eyes
and less error-prone to reason about, such as using better variable names than the
ones generated by GHC. For the purpose of profiling we would also really like to have

210

CHAPTER 7. CONCLUSION 7.3. FUTURE WORK

basic navigation tools, such as being able to quickly “jump” to a given definition or
return to a prior view. Finally, we show Core primarily to allow the user to reason
about performance, therefore we could do a better job communicating the performance
model to the user. This could be as easy as simply emphasising allocation spots
and non-primitive variables. On the other hand we also have quite a few interesting
opportunities for code analysis here, which might help identify instances of let-no-escape
(see Section 3.5.11 on page 54) or find the amount of live variables of closures.

211

7.3. FUTURE WORK CHAPTER 7. CONCLUSION

212

List of Figures

2.1 Deduction vs. Abduction . 6
2.2 Abduction: Assessing Plausibility . 7
2.3 Schematic of an Explanation . 9
2.4 Causality Analysis of an Unfortunate Event 13

3.1 Glasgow Haskell Compiler – Compilation Pipeline 27
3.2 Heap Object Construction . 48
3.3 Call Implementation . 50
3.4 Performance Model . 55

4.1 Causality Reasoning: Past and Future 59
4.2 Event Decomposition of a Constructor Rule Match 60
4.3 Maintaining Cause Links . 61
4.4 Event Decomposition of a Constructor Rule Match (Repeated) 64
4.5 Causality Relations for a Constructor Rule Match 65
4.6 Ordered Event Decomposition of a Variable Rule Match 66
4.7 Flat Events . 68
4.8 Nested Events . 68
4.9 Alternate World . 69
4.10 Deeply Nested Events . 69
4.11 Deeply Nested Events Notation . 70
4.12 Depending on Nested Events . 70
4.13 Causal Dependencies for a Variable Rule Match 71
4.14 Laziness Transparency Proof Overview 74
4.15 Ordered Event Decomposition of an Application Rule Match 81
4.16 Causal Relations for an Application Rule Match 83
4.17 Summary of Causality Relations . 83
4.18 Depending on Deeply Nested Annotations 84
4.19 Causality Model . 94
4.20 Core Representation of Haskell Bindings 99

I

LIST OF FIGURES LIST OF FIGURES

5.1 Scopes for an application expression . 123
5.2 Tick Classification . 136
5.3 Cmm Tick Scopes . 146
5.4 Block Tree from Scopes . 157
5.5 “Scopes” in Core . 158
5.6 Sample Encoding . 164
5.7 ThreadScope User Interface . 170
5.8 Performance Data Fuzz . 173
5.9 Core View . 175
5.10 Tracking Stack Allocation . 176

6.1 Benchmark Configurations . 181
6.2 Compilation Time . 181
6.3 Tick Count . 182
6.4 Module Object File Sizes . 183
6.5 Core Size . 185
6.6 Runtime Configurations . 186
6.7 Allocation Overhead . 186
6.8 Mutator Time Base Overhead . 187
6.9 Sampling Configurations . 187
6.10 Sampling Mutator Time Overhead (1/2) 189
6.11 Sampling Mutator Time Overhead (2/2) 189
6.12 Sampling Overhead Overview . 190
6.13 Original Example Profile . 193
6.14 Original Allocation Profile . 194
6.15 Blaze-Builder Profile . 196
6.16 Blaze-Builder Right-Fold Profile . 199
6.17 Blaze-Builder Profile – Optimised Fold 201
6.18 Blaze-Builder Profile – Optimised Write 204

7.1 Parallel Profile . 209

II

List of Listings

2.1 Example Haskell Program . 15
2.2 Faulty Alternative . 16
2.3 Smart Alternative . 16
2.4 Alternative with a Hole . 17
2.5 Example with Error Checking . 17

3.1 Factorial in C . 23
3.2 Definition of foldr . 24
3.3 Fusion-enabled Enumeration . 25
3.4 Short-cut Fusion Rule . 25
3.5 Sharing Hindering Rules . 26
3.6 Core Definition (Without Types) . 28
3.7 Core Example . 28
3.8 Type Performance Problem . 29
3.9 Type Performance Problem – Core . 29
3.10 Core after Specialisations . 30
3.11 eftInt Rule . 30
3.12 Core after eftInt Rule . 31
3.13 fold/build Rule . 31
3.14 Core after fold/build Rule . 31
3.15 Core after Rules . 31
3.16 eftIntFB in Haskell . 32
3.17 eftIntFB in Core . 32
3.18 eftIntFB after Specialisations . 32
3.19 eftIntFB after Floating . 33
3.20 eftIntFB after Worker-Wrapper Transformation 33
3.21 eftIntFB with Unfolded Wrapper . 34
3.22 Core after Unfolding . 34
3.23 Core after Nested Unfolding . 35
3.24 Core after Worker/Wrapper . 35

III

LIST OF LISTINGS LIST OF LISTINGS

3.25 Fixed Haskell Program . 36
3.26 Fold Emulation . 37
3.27 Fixed Haskell Program after Unfolding 37
3.28 Fixed Haskell Program after η-Expansion and β-Reduction 38
3.29 Fixed Haskell Program after Worker/Wrapper 38
3.30 Definition of foldl : . 39
3.31 Factorial with foldl . 39
3.32 Control Flow . 40
3.33 After Case-Of-Case . 40
3.34 Case-Of-Case for Tuples . 40
3.35 Case-Of-Case with Join Point . 41
3.36 Constructor Saturation . 42
3.37 Variable Normalisation . 43
3.38 Conversion to A-normal form . 43
3.39 Convert strict let to case . 43
3.40 Definition of Bool . 48
3.41 Lambda with Live Variables . 49

4.1 Constructor Source . 61

5.1 Monad Usage Example . 124
5.2 Monad Usage Example – unfolded . 124
5.3 Cost-Centre Float-In . 127
5.4 Return Pointer Example . 128
5.5 No Return Pointer Example . 128
5.6 Ticked Core Definition . 129
5.7 SourceNote definition . 131
5.8 Floating Inwards . 134
5.9 In-Lining . 134
5.10 Floating Outwards . 135
5.11 Floating Outwards Without Annotation 135
5.12 Floating Ticks . 136
5.13 Thunk Unfolding . 137
5.14 η-Reduction . 138
5.15 Rule Application . 139
5.16 Rule Application with Floating . 139
5.17 Common Sub-Expression Elimination 140
5.18 Common case Branch Elimination . 140
5.19 Identity case Branch Elimination . 140

IV

LIST OF LISTINGS LIST OF LISTINGS

5.20 let -Bound Lambda Expression . 141
5.21 Cost-Centre Placement . 142
5.22 Core Result . 142
5.23 Cmm Example . 144
5.24 Cmm Example with Ticks . 145
5.25 Cmm Block Concatenation . 147
5.26 Cmm Common Block Elimination . 148
5.27 Compilation Unit Record . 150
5.28 Sub-Program Record . 150
5.29 Assembly With Bound Markers . 150
5.30 Lexical Block Record . 151
5.31 Assembly With Line Annotations . 152
5.32 Source Line Table . 152
5.33 Unwind Instructions . 154
5.34 Expected Assembly . 154
5.35 Actual Haskell Assembly . 154
5.36 Line-Annotated Haskell Assembly . 155
5.37 Example Stack Trace . 156
5.38 Debug Records . 157
5.39 Core Note . 159
5.40 Core Pieces . 159
5.41 LLVM Debug Meta Data . 161
5.42 LLVM Line Meta Data . 161
5.43 Debug Records with Pointer Ranges . 163
5.44 Debug Records for C Library . 163
5.45 Samples in Event-Log . 165
5.46 Ambiguous Heap Allocation Location 167
5.47 Factorial Implementations . 171

6.1 Object File Sections . 184
6.2 Constructor Application . 185
6.3 Original Escaping . 191
6.4 Blaze-Builder Escaping . 195
6.5 Blaze-Builder Core . 197
6.6 Builder definition . 197
6.7 escape1 type . 198
6.8 Recursive escape1 . 198
6.9 Right Fold Version . 198
6.10 Blaze-Builder Core – Right Fold . 200

V

LIST OF LISTINGS LIST OF LISTINGS

6.11 Specialised Fold . 201
6.12 Blaze-Builder Writing Core . 202
6.13 Custom fromWrite implementation . 203

VI

Bibliography

DWARF debugging information format, version 2. Technical report, UNIX International
Programming Languages SIG, 1993. (pages 149, 151)

Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-Wesley
Series in Computer Science and Information Processing. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1977. (page 40)

Majed Al Saeed, Patrick Maier, Phil Trinder, and Lilia Georgieva. HdpHprof — a
profiler for Haskell distributed parallel Haskell. In The Draft Proceedings of the
Symposium on Trends in Functional Programming, TFP’12, St Andrews, Scotland,
June 2012. (pages 162, 207)

David Anderson. libdwarf and dwarfdump, 2011. URL www.prevanders.net/dwarf.

html. (page 163)

Andrew W. Appel. Garbage collection can be faster than stack allocation. Information
Processing Letters, 25:275–279, June 1987. (page 47)

Andrew W. Appel, Bruce F. Duba, and David B. MacQueen. Profiling in the presence
of optimization and garbage collection. Technical Report CS-TR-197-88, Princeton
University, November 1988. (page 208)

Jost Berthold and Rita Loogen. Visualizing parallel functional program runs: Case
studies with the Eden trace viewer. In Proceedings of the International Conference on
Parallel Computing: Architectures, Algorithms and Applications, PARCO ’07, pages
121–128, September 2007. (pages 162, 207)

Paul Bone and Zoltan Somogyi. Profiling parallel Mercury programs with ThreadScope.
CoRR, abs/1109.1421, 2011. (page 207)

Urban Boquist and Thomas Johnsson. The GRIN project: A highly optimising back end
for lazy functional languages. In Implementation of Functional Languages, volume
1268 of Lecture Notes in Computer Science, pages 58–84. Springer Berlin Heidelberg,
1997. (page 27)

VII

www.prevanders.net/dwarf.html
www.prevanders.net/dwarf.html

BIBLIOGRAPHY BIBLIOGRAPHY

Joachim Breitner. Call arity. In Preproceedings of the 15th Symposium on Trends in
Functional Programming, TFP2014, pages 203–212, May 2004. (pages 16, 38, 39,
199)

Joachim Breitner. dup – Explicit un-sharing in Haskell. CoRR, abs/1207.2017, 2012.
(page 26)

Gary Brooks, Gilbert J. Hansen, and Steve Simmons. A new approach to debugging
optimized code. In Proceedings of the SIGPLAN conference on programming language
design and implementation, PLDI ’92, pages 1–11, 1992. (page 208)

Shirley Browne, Jack Dongarra, Nathan Garner, Goerge Ho, and Philip Mucci. A
portable programming interface for performance evaluation on modern processors.
International Journal of High Performance Computing Applications, 14:189–204, Au-
gust 2000. (page 166)

Nathan R. Charles. Data Model Refinement, Generic Profiling, and Functional Pro-
gramming. PhD thesis, University of York, May 2001. (page 207)

Nathan R. Charles and Colin Runciman. An interactive approach to profiling parallel
functional programs. In Implementation of Functional Languages, volume 1595 of
Lecture Notes in Computer Science, pages 650–650. 1999. (page 207)

Chris Clack and Simon L. Peyton Jones. Strictness analysis—a practical approach. In
Proceedings Of a Conference on Functional Programming Languages and Computer
Architecture, pages 35–49, New York, NY, USA, 1985. Springer-Verlag New York,
Inc. (page 43)

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists to
streams to nothing at all. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN
international conference on functional programming, pages 315–326, New York, NY,
USA, 2007a. ACM. (page 36)

Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting Haskell strings. In
Practical Aspects of Declarative Languages 8th International Symposium, PADL 2007,
pages 50–64, January 2007b. (page 191)

Duncan Coutts, Mikolaj Konarski, and Andres Loeh. Spark visualiza-
tion in ThreadScope. September 2011. URL haskell.org/haskellwiki/

HaskellImplementorsWorkshop/2011/Coutts. (pages 207, 210)

Edesko de Vries and Duncan Coutts. Performance profiling with ghc-events-analyze,
February 2014. URL www.well-typed.com/blog/86/. Well-Typed Blog. (pages 162,
207)

VIII

haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Coutts
haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Coutts
www.well-typed.com/blog/86/

BIBLIOGRAPHY BIBLIOGRAPHY

Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. The architecture of the Utrecht
Haskell Compiler. In Proceedings of the 2Nd ACM SIGPLAN Symposium on Haskell,
Haskell ’09, pages 93–104, New York, NY, USA, 2009. ACM. (page 27)

Stephane Eranian. Overview of the perf_event API. 2009. URL cscads.rice.

edu/workshops/summer09/slides/performance-tools/cscads09-eranian.pdf.
(page 166)

David A. Espinosa. Semantic Lego. PhD thesis, Columbia University, 1995. (page 160)

Stijn Eyerman and Lieven Eeckhout. System-level performance metrics for multiprogram
workloads. IEEE micro, 28(3):42–53, 2008. (page 208)

Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe. The HERMIT in the
machine: A plugin for the interactive transformation of GHC Core language programs.
SIGPLAN Notices, 47(12):1–12, September 2012. ISSN 0362-1340. (page 210)

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation, PLDI ’93, pages 237–247,
New York, NY, USA, 1993. ACM. (pages 43, 135)

Martin Fowler. Yet another optimisation article. IEEE Software, 19(3):20–21, May
2002. (page 8)

Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. A framework for ranking
of cloud computing services. Future Generation Computer Systems, 29(4):1012–1023,
2013. (page 208)

Lal George and Andrew W. Appel. Iterated register coalescing. ACM Transactions
on Programming Languages and Systems, 18(3):300–324, May 1996. ISSN 0164-0925.
(page 46)

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforestation.
In Proceedings of the conference on functional programming languages and computer
architecture, FPCA ’93, pages 223–232, New York, NY, USA, 1993. ACM. (pages 25,
26)

Andy Gill and Graham Hutton. The worker/wrapper transformation. Journal of
Functional Programming, 19(2):227–251, March 2009. (pages 33, 176)

Andy Gill and Simon Marlow. Happy: The parser generator for Haskell, 1995. URL
www.haskell.org/happy. (page 131)

IX

cscads.rice.edu/workshops/summer09/slides/performance-tools/cscads09-eranian.pdf
cscads.rice.edu/workshops/summer09/slides/performance-tools/cscads09-eranian.pdf
www.haskell.org/happy

BIBLIOGRAPHY BIBLIOGRAPHY

Andy Gill and Colin Runciman. Haskell program coverage. In Proceedings of the ACM
SIGPLAN workshop on Haskell, Haskell ’07, pages 1–12, 2007. (pages 121, 129, 130,
207)

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types, volume 7. Cambridge
University Press Cambridge, 1989. (pages 27, 141)

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A call graph
execution profiler. In Proceedings of the symposium on compiler construction, pages
120–126, New York, NY, USA, 1982. ACM. (pages 11, 122)

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in Haskell. ACM Transactions on Programming Languages and Systems, 18
(2):109–138, March 1996. (page 29)

Kevin Hammond, Hans-Wolfgang Loidl, and Phil Trinder. Parallel cost centre profil-
ing. In Proceedings of 1997 Glasgow Workshop on Functional Programming, 1997.
(page 207)

I. Herman, G. Melancon, and M.S. Marshall. Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, January 2000. (page 177)

David Himmelstrup. Interactive debugging with GHCi. In Proceedings of the 2006
ACM SIGPLAN Workshop on Haskell, Haskell ’06, pages 107–107, New York, NY,
USA, 2006. ACM. (page 130)

Nathan Howell. Adding Haskell to source languages list. April 2012. URL dwarfstd.

org/ShowIssue.php?issue=120218.1. (page 150)

Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, September
1997. ISSN 0956-7968. (page 136)

José Iborra and Simon Marlow. Examine your laziness. Technical Report DSIC-II/09/07,
Departamento de Sistemas Informáticos y Computación, Technical University of
Valencia, April 2007. (page 130)

R. Bruce Irvin. Performance measurement tools for high-level parallel programming
languages. PhD thesis, University of Wisconsin, 1995. (pages 9, 205, 207, 210)

Don Jones, Jr., Simon Marlow, and Satnam Singh. Parallel performance tuning for
Haskell. In Proceedings of the 2nd ACM SIGPLAN symposium on Haskell, Haskell
’09, pages 81–92, New York, NY, USA, 2009. ACM. (pages 12, 156, 162, 169, 171,
207)

X

dwarfstd.org/ShowIssue.php?issue=120218.1
dwarfstd.org/ShowIssue.php?issue=120218.1

BIBLIOGRAPHY BIBLIOGRAPHY

Shaun Kaneshiro and Tatsuya Shindo. Profiling optimized code: A profiling system
for an hpf compiler. In Proceedings of the 10th International Parallel Processing
Symposium, IPPS ’96, pages 469–473, Washington, DC, USA, 1996. IEEE Computer
Society. (page 208)

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the international symposium on code
generation and optimization, CGO ’04, pages 75–86, Washington, DC, USA, March
2004. IEEE Computer Society. (pages 160, 208)

John Launchbury. A natural semantics for lazy evaluation. In Proceedings of the 20th
ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL
’93, pages 144–154, New York, NY, USA, 1993. ACM. (pages 43, 45, 50)

John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In Proceed-
ings of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation, PLDI ’94, pages 24–35, New York, NY, USA, 1994. ACM. (page 23)

David Lewis. Counterfactuals. Blackwell Publishers, Oxford, 1973. ISBN 978-0-631-
22425-9. (pages 13, 57, 59, 100)

David Lewis. Counterfactual dependence and time’s arrow. Noûs, 13(4):455–476, 1979.
(page 60)

David Lewis. Causation as influence. Journal of Philosophy, (97):82–72, 2000. (page 110)

Hai Liu, Neal Glew, Leaf Petersen, and Todd A. Anderson. The Intel labs Haskell
research compiler. In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell,
Haskell ’13, pages 105–116, New York, NY, USA, 2013. ACM. (page 27)

Hans-Wolfgang Loidl. GranSim’s User Guide. Department of Computing Science, Uni-
versity of Glasgow, 0.03 edition, July 1996. URL www.dcs.gla.ac.uk/fp/software/

gransim/user_toc.html. (page 207)

Edward S. Lowry and Cleburne W. Medlock. Object code optimization. Communica-
tions of the ACM, 12(1):13–22, January 1969. (page 146)

Geoffrey Mainland, Roman Leshchinskiy, and Simon L. Peyton Jones. Exploiting
vector instructions with generalized stream fusion. In Proceedings of the 18th ACM
SIGPLAN international conference on Functional programming, ICFP ’13, pages
37–48, New York, NY, USA, 2013. ACM. (pages 2, 26)

Simon Marlow. Overhaul of infrastructure for profiling, coverage (HPC) and breakpoints.
GHC Git repository, November 2011. commit 7bb0447df9a783c. (page 129)

XI

www.dcs.gla.ac.uk/fp/software/gransim/user_toc.html
www.dcs.gla.ac.uk/fp/software/gransim/user_toc.html

BIBLIOGRAPHY BIBLIOGRAPHY

Simon Marlow. Why can’t I get a stack trace? September 2012. URL haskell.org/

haskellwiki/HaskellImplementorsWorkshop/2012. (pages 125, 135, 135, 206)

Simon Marlow and Simon L. Peyton Jones. Multicore garbage collection with local
heaps. In Proceedings of the International Symposium on Memory management,
ISMM ’11, pages 21–32, 2011. (page 73)

Simon Marlow, Alexey Rodriguez Yakushev, and Simon L. Peyton Jones. Faster laziness
using dynamic pointer tagging. In ICFP ’07: Proceedings of the 12th ACM SIGPLAN
international conference on Functional programming, pages 277–288, 2007. (page 53)

Simon Marlow, Ryan Newton, and Simon L. Peyton Jones. A monad for deterministic
parallelism. In Proceedings of the 4th ACM Symposium on Haskell, Haskell ’11, pages
71–82, 2011. (page 208)

Michael McDermott. Redundant causation. British Journal for the Philosophy of
Science, pages 523–544, 1995. (page 110)

Will Partain. The nofib benchmark suite of Haskell programs. In Functional Program-
ming, Glasgow 1992, pages 195–202. Springer, 1993. (page 180)

David A. Patterson. Latency lags bandwith. Communications of the ACM, 47:71–75,
October 2004. (page 46)

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
March 2000. ISBN 978-0-521-77362-1. (page 14)

Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine. Journal of Functional Programming, 2(02):127–202,
1992. (pages 28, 36, 42)

Simon L. Peyton Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In Engineering theories of
software construction, pages 47–96. IOS Press, 2001. (page 124)

Simon L. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, May 2003. ISBN 978-0-521-82614-3. (page 21)

Simon L. Peyton Jones. Call-pattern specialisation for Haskell programs. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’07, pages 327–337, 2007. (pages 176, 185)

Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens
in a non-strict functional language. In Proceedings of the 5th ACM conference on

XII

haskell.org/haskellwiki/HaskellImplementorsWorkshop/2012
haskell.org/haskellwiki/HaskellImplementorsWorkshop/2012

BIBLIOGRAPHY BIBLIOGRAPHY

Functional programming languages and computer architecture, pages 636–666, 1991.
(page 34)

Simon L. Peyton Jones and David Lester. Implementing functional languages: A tutorial.
Prentice Hall, 1992. (page 27)

Simon L. Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell compiler
inliner. Journal of Functional Programming, 12(5):393–434, July 2002. (pages 35,
137)

Simon L. Peyton Jones and André Luís de Medeiros Santos. A transformation-based
optimiser for Haskell. Science of Computer Programming, 32(1-3):3 – 47, September
1998. 6th European Symposium on Programming. (pages 40, 41)

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’93, pages 71–84, New York, NY, USA, 1993. ACM.
(page 124)

Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and Philip
Wadler. The Glasgow Haskell compiler: a technical overview. In Proceedings of Joint
Framework for Information Technology Technical Conference, JFIT ’93, March 1993.
(page 27)

Simon L. Peyton Jones, Will Partain, and André Luís de Medeiros Santos. Let-floating:
moving bindings to give faster programs. In Proceedings of the first ACM SIGPLAN
international conference on functional programming, ICFP ’96, pages 1–12, New York,
NY, USA, 1996. ACM. (pages 33, 85, 104)

Simon L. Peyton Jones, Thomas Nordin, and Dino Oliva. C--: A portable assembly
language. In Implementation of Functional Languages, pages 1–19. Springer, 1998.
(pages 29, 143)

Simon L. Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules:
Rewriting as a practical optimization technique in GHC. In Proceedings of the 2001
Haskell Workshop, Haskell ’01, pages 203–233, September 2001. (pages 30, 112)

Norman Ramsey, João Dias, and Simon L. Peyton Jones. Hoopl: a modular, reusable
library for dataflow analysis and transformation. In Proceedings of the third ACM
Haskell symposium on Haskell, Haskell ’10, pages 121–134, New York, NY, USA,
2010. ACM. (page 143)

Michael Riepe. libelf, 2009. URL www.mr511.de/software. (page 163)

XIII

www.mr511.de/software

BIBLIOGRAPHY BIBLIOGRAPHY

Niklas Röjemo and Colin Runciman. Lag, drag, void and use—heap profiling and
space-efficient compilation revisited. In Proceedings of the first ACM SIGPLAN
international conference on Functional programming, ICFP ’96, pages 34–41, 1996.
(pages 120, 207)

Arash Rouhani-Kalleh. Stack traces in Haskell. Master’s thesis, Chalmers University
of Technology, Göteborg, Sweden, March 2014. (pages 128, 128, 210)

Fritz Ruehr. The evolution of a Haskell programmer, August 2001. URL www.

willamette.edu/~fruehr/haskell/evolution.html. (page 36)

Patrick M. Sansom. Execution Profiling for Non-strict Functional Languages. PhD
thesis, University of Glasgow, 1994. (pages 12, 122, 123, 127, 130, 132)

Patrick M. Sansom and Simon L. Peyton Jones. Generational garbage collection for
haskell. In FPCA ’93: Proceedings of the conference on Functional programming
languages and computer architecture, pages 106–116, New York, NY, USA, 1993.
ACM. (pages 47, 120)

Patrick M. Sansom and Simon L. Peyton Jones. Time and space profiling for non-strict,
higher-order functional languages. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’95, pages 355–
366, 1995. (pages 122, 126, 168, 206, 206)

Patrick M. Sansom and Simon L. Peyton Jones. Formally based profiling for higher-order
functional languages. ACM Transactions on Programming Languages and Systems,
19(2):334–385, March 1997. (pages 42, 207)

André Luís de Medeiros Santos. Compilation by Transformation in Non-Strict Func-
tional Languages. PhD thesis, University of Glasgow, July 1995. (pages 27, 42)

Tim C. Schröder. Hacking GHC’s stack for fun and profit, January 2014. URL github.

com/blitzcode/ghc-stack. GitHub repository. (pages 128, 210)

Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming,
7(03):231–264, 1997. (pages 43, 51, 75, 86, 89)

Sameer S. Shende. The role of instrumentation and mapping in performance measure-
ment. PhD thesis, University of Oregon, August 2001. AAI3024533. (page 207)

Don Stewart. Smoking fast Haskell code using GHC’s new LLVM
codegen, February 2010. URL donsbot.wordpress.com/2010/02/21/

smoking-fast-haskell-code-using-ghcs-new-llvm-codegen. (page 41)

XIV

www.willamette.edu/~fruehr/haskell/evolution.html
www.willamette.edu/~fruehr/haskell/evolution.html
github.com/blitzcode/ghc-stack
github.com/blitzcode/ghc-stack
donsbot.wordpress.com/2010/02/21/smoking-fast-haskell-code-using-ghcs-new-llvm-codegen
donsbot.wordpress.com/2010/02/21/smoking-fast-haskell-code-using-ghcs-new-llvm-codegen

BIBLIOGRAPHY BIBLIOGRAPHY

Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. Improving type error diagnosis.
In Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04, pages
80–91, New York, NY, USA, 2004. ACM. (page 29)

Chris Taylor. A Formal Logical Analysis of Causal Relations. PhD thesis, University
of Sussex, 1993. (pages 14, 59, 60, 73)

David A. Terei and Manuel M.T. Chakravarty. An LLVM backend for GHC. In
Proceedings of the third ACM Haskell symposium, Haskell ’10, pages 109–120, New
York, NY, USA, 2010. ACM. (pages 41, 160)

Johan Tibell. State of Haskell, 2011 Survey, August 2011. URL blog.johantibell.

com/2011/08/results-from-state-of-haskell-2011.html. (pages 2, 26)

Philip Wadler. The essence of functional programming. In Proceedings of the 19th
symposium on principles of programming languages, POPL ’92, pages 1–14, New
York, NY, USA, 1992. ACM. (page 124)

XV

blog.johantibell.com/2011/08/results-from-state-of-haskell-2011.html
blog.johantibell.com/2011/08/results-from-state-of-haskell-2011.html

	Introduction
	Problem statement
	Structure

	Background
	The Task
	Reasoning
	Tool Support

	Verbs and Nouns
	Verbs
	Nouns
	Explanations
	Metrics

	Causality
	Context
	Application to Programs
	Alternate Worlds
	Minimal Change
	Transitivity

	Conclusion

	Haskell
	The Language
	Purity
	Higher Order Programming
	Optimisation

	Objectives
	GHC Overview
	Core
	Types
	Cmm

	Transformations Example
	Rules
	Basic Floating
	Worker/Wrapper Transformation
	Unfolding
	Status Report
	Arity Analysis
	Observations
	Case-Of-Case

	Performance Model
	Core Preparation
	Abstract Evaluation
	Registers and Stack
	Heap
	Constructors
	Lambdas
	Applications
	Lets & Thunks
	Variables
	Case
	Let-No-Escape
	Conclusion

	Causality Analysis
	Introduction
	Events
	Event Causes
	Cause Annotations
	Annotated Judgements

	Deriving Annotations
	Variables
	Local Miracles
	Nested Annotations
	Nested Events
	Variable Rule

	Heap
	Laziness
	Set-Up
	Proof Part 1
	Proof Part 2
	Wrapping Up

	Interrupted Rules
	Miraculous Interruption
	Application Rule

	Closest World Choice
	Floating Effects
	Floating Annotations
	Case Expressions
	One-Branch Case
	Skipping Scrutinisation
	Crash Recovery Consistency

	Causality Model
	Annotation Encapsulation
	Close Causes
	Close Effects
	Complexity
	Intuition

	Optimisations
	Beta Reduction
	Push Annotations
	Effects on Global Profile
	Floating Let
	Overhead
	Floating Case
	Preemption
	Case-Of-Case
	Rules
	Final Notes

	Profiling
	Design
	Metrics
	Skews
	Time
	CPU
	Allocation
	Residency

	Explanations
	Noun Stacks
	Lexical Scopes
	Evaluation Scopes
	Static Context
	Quality Considerations
	Stack Tracing

	Core
	Tick Framework
	Source Notes
	Semantics
	Annotation Combination
	Scoping
	Scoping Transformation Examples
	Counting
	Floating Ticks
	Merge Transformations
	Placement
	Example

	Cmm
	Cmm Example
	Introducing Ticks
	Tick Scopes
	Optimisations

	Back-End
	DWARF
	Debugging Information
	Source Lines
	Source Note Selection
	Unwinding
	GHC debug records
	Core Notes
	LLVM

	Data Collection
	Event-Log
	Samples
	Timers
	Hardware Performance Counters
	Perf-Events
	Allocation
	Residency

	Analysis
	ThreadScope
	Debug Maps
	Interface Concept
	Timeline
	Performance Data
	Source View
	Core View
	Core Tools

	Evaluation
	Performance
	Test Data
	Compilation Overhead
	Tick Counts
	Binary Size
	Core Size
	Run Time Overheads
	Sampling Overhead
	Average Overhead

	Usage Scenario
	The Code
	Profiling
	Analysis
	Blaze-Builder
	Folding
	Tailoring
	Manipulation

	Wrapping Up

	Conclusion
	Contributions
	Prior Work
	Haskell Profiling
	General Profiling

	Future Work
	Parallelism
	Technicalities
	User Interface

	List of Figures
	List of Listings
	Bibliography

