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Abstract

Primarily the focus of this project was to investigate hair bleaching and dyeing
mechanisms in the presence of ammoniar ethanolamine (MEA), at room
temperature. Frstly, the mechanism of hair bleaching by alkaline hydrogen
peroxide was explored, usingomogeneous solutions dbepiamelanin free acid
(MFA) as a model for hair melanin. Wig spectroscopy was applied to study the
rate of melanin bleaching under various conditions. It was established that both

hydroxyl radicals and perhydroxyl anions are involved in the bleachinglahime

Hydrogen peroxide decomposition an&epia melanin oxidation were then
monitored using homogenous model bleaching solutions, to see if differences in
hair bleaching when MEA is used instead of ammonia could be explained by a
change in chemistry. Disgilarities were found in liganfree and etidronic acid
(HEDP) systems when the base was altered, due to the presence of differing metal
complexes. However, when strong chelating ligands such as
ethylenediaminetetraacetic acid (EDTA) are used, no difteerwere apparent in

homogenous model bleaching systems.

The mechanism of dye formation inside hair fibres was then investigated, due to the
observation that catalase accelerates the oxidation of dye primaries in agueous
solutions. Dye formation was stwl by UWis spectroscopy. It was shown that
metal ion centres are predominantly responsible for the formation of dyes in the
hair cortex. Fe(lll) proved to be a more effective catalyst for dye production than
Cu(ll).

Finally, the effect of MEA on the rate of hair dye formation in aqueous systems was
studied, using HPLC and Jig spectroscopy. The rate of colour formation in MEA
based formulations was found to be greater than in ammonia systems, possibly due
to slower degradation of the dyes in MEA systems. It was also found that
nucleophilic attack of MEA on preformed dye molecules leads to the formation of
different dyes, which imrporate the base into their structure. The formation of

these dyes greatly changes the colour of model agueous dye solutions.
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Chapter 1 z Introduction

1.1 A brief history of hair colouring

Humans are perhaps the vainest of all the mammals. For over 4000 years various
techniques have been employed to alter the natural colour of human hair fibres.
There is nowevidence to suggest that hair colouring started with the ancient
Egyptians, who went as far as using nanotechnology to cover up their grey hairs.
This is the first documented use of hair dyd it involves the uptake of black PdS
nanoparticles by hair, hich masks the natural colour Since then different
methods have been used to alter the colour of hair fibres, including the use of

organic dyes from henna, marigolds and hibiscus.

In approximately 1860t was discovered that hydrogen peroxide could be used to
lighten the natural colour of hair in a bleaching process. This started a prolonged
period of hair loss and scalp burns, but also led to the development of permanent
hair dyes in the early 28 century, which use phenylenediamine and hydrogen

peroxidé.

From the time that these colouring systems containing hydrogen peroxide were
introduced and marketed, there has been a host of research dedicated to their

improvement. This thesis contributes to this easch.

1.1.1 Modern hair colouring

Today millions of people worldwide use hair colouring products, which can be

separated into 2 miar categories, besides bleaching.
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1. Semipermanent dyes

Semipermanent dyes, as the name suggests, alter the colour of the hair fibre but
thesedyes can be eventually washed off the hair fibre. The hair will at this point
return to its natural colour as the treatment does not chemically alter the natural
shadeof the hair fibre. Generallgemporary colouring of haiis achieved by the use

of pre-formed dyesbased onaromatic nitro compounds that are relatively low in
molecular weight, compared to those formed in permanent dye systerAs
example of the structure thathese sentpermanent dyes are based on is shown in
Figurel. The R groups are changed between hydrogen atoms, alkyl groups and
hydroxyethyl groups toachieve a range of colours across the entire visible

spectrunt“.

R =H, alkyl or hydroxyalkyl

Figurel: The general structure of some sepeirmanent hair dye's”.

2. Permanent dyes

In contrast to emi-permanent dyes, permanent dyes involve the formation of dye
molecules within the hair fibre, where they are trapped and prevented from being
washed out. As mentioned earlier they are based on systemsubaprecursors,

such asp-phenylenediamine and hydrogen peroxide to generate dye molecules
that have a elatively high molecular weight, when compared with the semi
permanent dyes. Some examples of the structures of the dyes produced during this

treatment are shown inFigure 94 and Figure 103. Again, by varying functional
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groups on the precursors, a range of colours acrosstitere visible spectrum can

be produced.

This work focuses on systems that make use of hydrogen peroxide to alter hair
colour permanentlyeither through bleachingind/or permanent oxidative dyeing.
The chemistry of these processes will be discussed ire rdetail later. Before the
chemistry behind hair colouring can lbéscussedit is important to appreciate the
structure and function of hair fibres and also to understand what is responsible for

the natural colourof such fibres

1.2 Human Hair

1.2.1 The function of human hair

The two major functions of hair in noshuman primates are camouflage and
thermoregulation. Undoubtedly, these are important factors for the survival of
primates in the wild. However, for humans, changssdection pressures over time
has generally led to a decrease in hair cover, due to the change in the structure of
hairs. Generally, less of a change has been observed for human head hair. It
thought that thisis due to the role scalp hair plays in ttreermoregulation of the
brain. Human hair can also serve many other purposes including, protecting the
body from harmful UV rays, helping with touch and sense and excreting toxic

substancessuch as arsenic.

1.2.2 The structure of human hair

The structure of a human head hair fibre is shownFigure2. The sheath that
surrounds the whole hair structure forms part of the hair follicle. This is where hair

cells are originally made and then die as they are pushed upwards by newly formed

4
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hair cells, to form the hair shaft. The outer layer of the hair shaft is formally

considered to be the cuticle.

Cortex _ Medulla
Hair cuticle % Sy

1
Cuticle of inner 3
root sheath

e

Inner root _|

Huxley's layer —f- s
sheath Y 4 [ B

- Henle’s layer iy
Outer root —/
sheath / )
Yy
Ve
Connective /[ 4

tissue layer Ir /’ 4
/

Yo
Keratinization - \ I
zone \

\l 9 :.‘,' 1'
Melanocytes 5 7 ,
Dividing cells ,,»

Cavity of dermal papilla

Figure2: Crosssection of a human hair fibfe

The cells in the cutiel layer are flat, square sheets that overlap each other
extensively, as shown fRigure3. This arrangement dhesecells protects the hair
from mechanical stress and ensures that as the hair fibre groavs dirt and old
cells are removeld In addition to this, the hydrophobic molecule -18
methyleicosanoic acid is bound to surface proteins of the ctidlkis is thought to
provide a water repellent layer that assists wite drying of the hair fibr& In

short, this layer is essentially designed to protect the inner layers of the hair shatft.
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Figure3: SEMmage of a human hair fibfe

The cuticle cells are fily attached to the cortex.his layer is made up of elongated
cells that are orientated along the fibréo provide further mechanical strengthit

is here where melanin granules can be found within the hair Shalftis thought
that melanin produced by the melanocytes in the hair follicle is ingested into
cortical cells by phagocyto$ts|t is the melanin pigment in the hair cortex that is
responsible for the natural colour of hair fib/és>. The function of the final part of

the hair shaft, the medulla, is currently unknown.

1.3 Melanin Pigments

As mentioned above, it is the pigment raein that is responsible for the natural
shade of human hair. Melanin predominantly exists in two forms in human hair,
eumelanin is brownish black and pheomelanin is reddish yéfldw The exact
colour of hair fibres depends on the exact ratios of these melanins within the hair

fibre.
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1.3.1 Melanogenesis

As mentioned earlier, melanin is made in timelanocytes before it is transferred to

the hair cortex. The biosynthesis of melanin is referred to as melanogenesis.

The primary building block of both pheomelanin and eumelanin is the amino acid
tyrosine. Inside the melanosome, the enzyme tyrosinase exdswthe tyrosine to
dopaquinone, through dopa. At this stage the incorporation of cysteine into the
biosynthetic pathway can lead to the formation of pheomelanin. However, if
cysteine is not includedhe dopaquinor is cyclised to form cyclodop€yclodpa

can also be converted to dopachrome, with the simultaneous transformation of
dopaquinone to dopaFinally,the tautomerisation of dopachrome by dopachrome
tautomeraseleads to the formation of DHB(6-dihydroxyindol¢ and DHICAS5(6-
dihydroxyindole2-carboxylic acijl Eumelanin is a complex mixture of oligomers, of
varying chain length and branching, which are comprised of cyclodopa,

dopachrome, DHI and DHICHhis synthetic pathway is outlined figure4*® *’.
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Figure4: Scheme to show the biosynthesigofnelaninand pheomelanit!

When cysteine is incorporated intbe melanogenesis, this leads to the prodiact

of pheomelanin by melanocytes This occurs because of a mutation of the

melanocortin 1 recepto(MC1R geng which is responsible fahe variation of skin

and hair colour in human® The biosynthetic pathway for the production of

pheomelanin is outlined irFigure 5. As is shown, cysteine reacts rapidly with

dopaquinone to form 55cysteinyldopa predominantly with a small amount e&2

cysteinyldopa being formed These cysteinyldopas are then oxidised by

dopaquinone to form cysteinylquinones and dopa. The cysteinyton@és are then

cyclised to form benzothiazine intermediates, which are further oxidised to make

up pheomelaniry.
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Figure 5. The biosynthetic gthway for the production of pheomelanin from

@]

dopaquinone

These biosynthetic pathways result in the monomers that make up eumelanin and
pheomelaninoligomeiic chains. The main monomers associated with each melanin
are shown irFigure6 and Figure7, whilst the tentative structures of eumelanin and
pheomelaninoligomers are represented ifrigure8. However, in realitymelanin
oligomers that are produced are a complex mixture of pheomelanin and eumelanin

units'®. This results in a wide variation of human hair colours.
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o<, Joy O
HO N CH HO N (0] N
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Figure6: The main monomer building blocks of eumel&hti
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HO OH
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) N
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OH HO NH;

Figure7: The benzothiazine monomer units thae the basis of the formation of

pheomelanirligomers®*°,

NH,
N H
HOOC ~ (COOH)
OH
H (COOH) H,oN
COOH
Eumelanin Pheomelanin

Figure8: The tentative structures of ¢heumelanin and pheomelanin oligers®.
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1.3.2 Structural studies of eumelanin from both human hair and cuttlefish
ink

The tentative structure of eumehin is shown irFigure8. It is worth noting that
linkages betweenmonomeric units may also bpresent between the2 and 3
positions of the indole ring, if carboxylate grauare not presenin these positions
This leads to complex mixtures ndomly organisealigomeric chains, coupled
with the fact that these are relatively insoluble in practically all solvents, the

structures are very difficult to ascert&fh

Various studies have been attempted, with the intention of clarifying the structure
of eumelanin in more detail. For several years the oxidative degradation of melanin
was studied using various methods, including acidic permanganate oxidation and
alkaline hydrogen peroxide oxidatioff>. Using these methods the degradation
products can be separated and quantified using HPLC. Under these conditions
eumelanin breaks down to form pyrrolic acidsPyrrole2,3,5tricarboxylic acid
(PTCA) and pyrroi2,3-dicarboxylic acid (PDCA) can be used as specific markers for
the deection of dihydroxyindole carboxylic acid (DHICA) and dihydroxyindole (DHI)
monomeric units Figure6) of eumelanin respectively®. Although these methods
serve to give an indication of the quantitiescatypes of units present, they dwot

give any indication as to how they are linked together.

NMR is generally a poweif tool for determining the structure of complex
molecules.However, he low solubility and irregulaarrangementof oligomeric
chains leads to broad lines the NMR spectraf melaning®. Nevertheless, arious
types of NMRexperimentshave been employed in order to gain more insight into
how the monomeric units of melanin are bound together, including sxtide
crosspolarization magic angle spinning (foit and®N NMRj’, water suppression
experiments for 2S homouclear decoupledH NMR experiment§ as well as 2D
INEPT solid statéH-1*C) NME.

The studies yield spectra that are still rather broad, however some useful

information has been determined from the data acquired, including the amount of

11
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protons per structural unit and estiations of unit molecular weight. Attempts have
also been made to determine the relati@Hl and DHICA content of melanins, as
well asthe prefered positions of substituents on the indole ring. The linkages
between DHI units are still unresolved even with these reswiswever, it is
proposed that DHICA unitare mainlyaligned in a linear manner, due to the
carboxylate substituent on the 2 posih of the indole ring whichprevents linkages

at this position(Figure9)®. If DHICA units are adjacent to each other in the melanin
oligomer then this could be the preferred linkage of the monomers. However, the
presence of DHI units in melanin will disrupt the sequence of DHICA units

connected together.

Figure9: The proposed alignment of DHICA units of eumelanin from NMR $tudies

Linkages between DHI units have been visualised uSihlyl and molecular
modelling. The structuren Figure10 was determined to be viable faynthetic,
tyrosinasebased melanin (DHI units onlY) The presence of DHICA units would
interrupt this arrangement of DHI monomers. Howevére tstudy showed that DHI

can form linkages between the 2,3,4 and 7 positions of the indole ring.

12
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FigurelO: The proposed structure for tyrosindsased melanin

Unfortunately, te structures shown in Figure 9 and Figure 10 cannot exist
exclusiely for biosynthesised eumelanin, ascbntairs mixtures of DHICA and DHI
units. Therefore, the tentative structure ifigure8 is currently the mostccepted

picture of the possible linkages between monomers.

In addition to providing the natural pigmentation of hair, melanin also plays a vital
role in mammalian skin. Again it provides the pigment, but eumelanin can also act
as a powerful antioxidanniorder to protect cells from damage Ilogactive oxygn
speciesRO$ such as hydroxyl radicals and superoxide anions, formed on exposure
to UV radiation’. The reaction of melanin with the superoxide anion is outlined on
page 60. By contrast, pheomelanin has been the subject of multiple studies that
suggest it behaves as a prooxidant, leading to cell damage in the skin that results in
sun burn and melanoni43. The antioxidant activity of eumelanin means it is also
suited to a protective role in the retai’. Additionally, structurally similar
neuromelanin is present in the human brain, the biological role of which is nigt ful
understood®*® | 26 SOSNE | fAYy] KLFL& 0SSy &Kz2éy
lower neuromelanin levels, demonstrating the potential importance of

neuromelanin in the prevention of cell dedth

13
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1.4 The chemistry of hair ¢ olouring

By studying the structure of hair and how natural colour arises, the process of hair
colouring can be understood in greater detail. This thesis focusep@manent

hair colour changes, including bleaching and oxidative dyeing.

1.4.1 Hair Bleaching

As mentioned earlier, hydrogen peroxide has been used to lighten the natural shade
of hair for almost 150 years. In order for this chemicaiducedhair bleaching to
occur it is necessary to break down the melanin granules in the hair cdréate
responsible for the natural colour of the h#ir This poses a significant challenge

when the structure of hair fibres is considered.

Firstly, the cuticle is protected by the hydrophobi&yer consisting of lipids,
including 18methyleicosanoic acid. This may help to prevent the diffusion of
oxidants within aqueous dye baths into the hair cortex. Additionally, the structure
of the cuticle itself forms a barrier, whichlso helps prevent e diffusion of
substances into the hair cortxlIt is therefore important to dis@s howthe
diffusion of aqueous solutions ohydrogen peroxide into the hair cortex can be

facilitated.

On immersion in water, hair fibres are known to swell. This istdube disruption

of hydrogen bonds witim proteins inside the haff. However, Wolfram has shown a
relationship exists between the pH and the extent of swelling that oétuthis
could be rationalised by the deprotonation of protein sicleains at high pH,
leading to a buileup of negative charges that repel each other. Additionally, the
cleavge of disulphide bonds may contribute to the expansion of fitfre.
Swelling of hair fibres facilitates the diffusion of hydrogen p&texhrough the
cuticle layers. Therefore, ammonia can be used to adsfsision, as it will result in

an alkaline pH that leads significanthair swelling® **. A combination of ammonia

14
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and hydrogen peroxide has also been shown to break amul solubilise
heterogeneous melanin granules effectively. This occurs as melanin is converted
into melanin free acid (MFA), which is a more soluble form of melanin. Conversion
of melanin into MFA is accompanied by a slight structural change, discussed in
chapter 2. It does not result in substantial colour change of the hair. However,
solubilisation of the pigment isometimesa prerequisite for bleaching to occur. The
oxidative breakdown of melanin that follows during bleaching has been proposed to

lead to voids wthin the hair fibre, which also contribute to hair fibre swellthg

As well as facilitating diffusiothe alkaline pH (usually this is approximately pH 10)
results in the deprotonation of hydrogen peroxidek, = 11.65 to generate the
perhydroxyl anioff. This is a critical function of ammonia in bleaching systeas
the perhydroxyl anion is thought tbe an active oxidant in the melanin bleaching

proces&®.

Unfortunately, the combination of ammonia and hydrogen peroxide on the human
hair leads to complications with the bleaching procedure, that lead to the hair fibres

becoming damaged due to thegsence of metals on hair fibres.

1.4.1.1 Hair Damage

Hair fibres naturally containraabundance of endogenous metal igngithin the

hair fibre and exogenous metal iohsund to the surface fohair fibres. Endogenous
metal ions enter the hair when it is maalin the follicle. Exogenous metains are
present when hair comes into contact with the local environment, for example
when the hair is washed. Water is the biggest factor that influences the type and
quantity of exogenous metabnsfound on the surface of hailObviously the types
and amountsof metal ions that are transferred from water to hair fibres varies
greatly depending on geographical locati@s the global distribution of metal ions

in water itself differ§’. Other factors thatinfluence the amounts of metabns

found both within hair fibres and on the surface of fibres include, age, ethnicity,
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condition of the hair and any pretreatments that the hair has been exposed to.
Tablel shows the results from a recent global study by Godfrey, which detezhin

the mean amounts of some metal iofeund on hair fibres.

. Mean concentration /
Metal ions
ppm
ca’ 4625
Mg** 302
cu” 45
Fe'* 27

Tablel: Themean levels of exogenous metal idosnd on the surface of human

hair samples from around the gloe

The study also compareadhetal levels onhair fibres of both colourant and nen
colourantusers. It was seen that the amounts of ¥1gnd C4' rise for individuals

that colour their hair. Howevethe amounts of Cti and F&* remained similarThe
authors concede thathtese results may underestimate the actual amounts present
during the colouring process, as it is thought metal ions may be complexed by
components within the formulations and rinsed out after applicatidhe greater
metal ion contents on the hair fibres diair colourant users may be attributed to
the formation of carboxylate anions and sulfonic acids during protein oxidation
(discussed on page?2). These acids can also bind @eions upon washing, thus

increasing the amounts found on hair fibres that have been damaged by colBtring
4850

Whilst the literature shows a correlation between copper levels tedievel of hair
damage caused by Wddiatiorr’, it is also known that the presence of copper and
iron cause complications in the presence of alkaline hydrogen peroxide, as this

leads to Fenton(ike) chemistry”.
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1.4.1.2 Fenton chemistry

In 1894 Fenton discovered that a mixture of amirgalt with hydrogen peroxide
resulted in the oxidation of tartaric actd It was later proposed that iron salts lead

to the decomposition of hydrogen peroxide to form reactive intermedidlbeg are
responsible for the oxidatiol. To this day the exact mechanism by which hydrogen
peroxide is decomposed bgetal ions, such auf* and Fé*is not fully understood,
despite knowledge of the chemistry dating back to 1894. There are currently two
proposed mechanisms by whitihe hydrogen peroxide is suggested to decompose,

the radicalpathwaysandthe non-radical pathways.

1.4.1.3 The radical pathway of hydrogen peroxide decomposition

The radical pathwapf hydrogen peroxide decompositiamas the first mechanism
suggestedby Haber and Willstatter in 1981 Since then continuous publications
have arisen, suggesting different or additional steps to the mechanishhe key

steps are outlined in the scheme beltiw®.

H,O, + FE* A Fe* + 0, + 2H+ 1)
HO, + Fé'A FE*+ HO+HO 2)
HOO+ F&'A FE'+ HOOA “O,+ H (3)
FE“+ QA O+ Fé" (4)
O + HO, A HO'+ HO+ O ()

Step 1 is responsible for the production tbe superoxideanion However, it also

gives FdIl), which reacts very quickly withydrogenperoxide to give the hydroxyl
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radical (HO) in step 2.Generation of the superoxide anion is also possible under
basic conditions, when hydrogen peroxide is deprotonated to give thhayoeoxyl
anion. Electron transfer between redox metal ions and the perhydroxyl anion gives
the perhydroxyl radical, which is deprotonated to give superoxide anion (step 3).
Superoxide anions can either react with hydrogen peroxide to generate hydroxyl
radicals (step 5), or they can react with metal ions to regenerate Fe(ll) (step 4),

allowing for the efficient redox cycling of the metal ions.

The hydroxyl radical is highly reactive and known to react with biomolecules, such
as proteins, at diffusioontrolled rates” %, Oxidation of proteins in this manner is

thought to result in aging and loss of cellular functfon

As a result of Fenton chemistry thereforeulnerablehair colouring treatments lead
to the generation of hydroxyl radical The hydroxyl radical has been linked with
protein loss in hair fibres and may be a cause of hair dafiaghis is discussed in

more detail from pagel.

1.4.1.4 The nonradical pathway of hydrogen peroxide decomposition

The nm-radical pathway was postulated later as an alternative to the radical
mechanismi™. Highly reactive hypervalent metal intermediates, such as Feid
Cu(lll) have been proposed to form instead of radical species, such as hydroxyl
radical§?®*. These hypervalent intermediates show similar reactivity to that of the
hydroxyl radical, meaning that distinguishing between the two pathways is difficult.
However, regardless of the pathway, the formation of either intermediate during
Fenton(like) reactons leads to the potential oxidation of hair protefisA schene
representing the possible reaction pathways and reaction intermedifbeshe

Fe(ll)catalysedmentonreactionis summarised belot:.
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/H Classic Fenton pathway
3+ - . gi,
2Fe HO" + HO Fe---Q ) .
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O\.
\ )
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3+
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\
‘\
\\
/O 2+

Fe
(3]
H
H

N\

I}e:O]z++ Fe”' + H,0 ,0/

247
Fe

\ 2+ 3+ -
-Fe ——= 2Fe + 2HO

Figurell: The formation of possible hypervalent iron complexes as intermediates of

Fenton chemistfy.

It can be seen in the above pathways that radical generation may occur from the
non-radical complexes formed; particularly in pathwéyhere are two outcomes.
Production of either the nomadical ferryl ion (F& (4b)or the hydroxyl radicaf4a)
is posible. In fact the reaction pathwaand intermediates involved haveng been

the subject of intense debate.

The chemistry is affected by the presence of oxygen, pHaayahelating ligands

that arepresent in the systefii ®” %8 At low pHit is thought that the reduction of
hydrogen peroxide results in the production of hydroxyl radffalAttempts to
determine the reduction potentiabf the metal species involved in the reaction
have been madgin order to establish whether or nothe ferryl ion is involvetf.
There are many variables associated with the determination of reduction potentials,
for instance, effective charge and pH. This makes identification of the species

involved very difficuf® ®.
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Studies of eactionkinetics have also been used order to determine whetheor

not the intermediate involved ighe ferryl ion orthe hydroxyl radical under certain
reaction conditions. This is again dependent upon many variables such as, hydrogen
peroxide concentration, pH and ligands present. Dueltdh&se variables there is
discrepancy amongst the literature over values of rate constanany
assumptions have to be made with regards to which reactions are occurring when

the conditions are changéd

Efforts have also been made to discount the fsradical pathway by incorporating
70 labelled KO into a Fenton syem. The idea was to try and trap the resulting
HO using DMPO and detecting by EPRiowever, the nosradical ironperoxide
complex is capable of producing similar restit&xperimentally it habeenproven

to be very difficult to distinguish beteen the possible intermediates. However, a
recent DFT study proposdtiat the ferryl ionintermediate wasmost likelyto be
formed in aqueous solutions, when water was the only ligand. This finding was
based on the activation energies of oxygexygen bondbreaking, for both
hydrogen peroxide bound to iron ions and free hydrogen peroxide. It was then
proposed that there exists a very small energy barrier for the transformation of the
intermediate iron complexes formed, into the ferryl ion, in the presenta oon

coordinated water molecul@.

Several enzymes in mammals, including catalases, peroxidises and cytochrome c
make use of ferrylon intermediates to break down hydrogen peroxide, without

generating highly damaging radical spetie¥.

In the case of catalase, multiple
studies lave confirmed that the breakdown of hydrogen peroxide proceeds via the
formation of a ferryl ion intermediaté °. The catalytic pathway of hydrogen
peroxide decomposition by catalase is showrFigure12. Catalase is discussed in

further detail in Chapter 4.
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H202 H2O o

\>—<\ » \\I(=I<\a/)2+—Porp hyrin®

H,O + O, H,0,

Porphyrin- Iaﬁ)3+ =

Figure 122 Scheme to show the catalytic pathway of hydrogen peroxide

decomposition by catalaé

Regadless of which intermediates exist in Fenton chemistry, they are likely to be
highly reactive. Indeed botlthe ferryl ion andthe hydroxyl radical have the

potential to damage proteiré.

1.4.1.5 Mechanism of hair fibre damage

As mentioned earlier, reactive oxygen species (ROS) from the roatahtalysed
decomposition of hydrogen peroxide are prone to oxidise biomolecules such as
lipids and proteins. This is thought to be one of the mechanisms of thega
process. Therefore, in hair colouring processes if ROS, such as the hydroxyl radical,
are produced, theyanreact with lipids and proteins in the haifhis reaction can
occur if formulations do not contain radical scavengers or-axiilants. As the
hydroxyl radical is so reactive, its reaction with proteins occurs when metal ions are
bound to the proteins directly. Decomposition of the hydrogen peroxide by these

ions then generates hydroxyl radical directly at the site of the proteins.

Figure13 shows how protein oxidation and peptide bond cleavage is po<8ibite

this example the major species responsible for protein oxidation is the hydroxyl
radical, which forms a carbon centred radical. Oxygen can then react to form the
peroxyl radical, followed by further oxidation by eithedox metals or ROS to give
an alkoxyl radical This thenleads to peptide bond cleavage, which ultimately

results inthe breakdown of proteins.
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Figure13: A possible mechanism of protein oxidation by hydroxyl radicdl by

redox metalg®

Cleavage and formation of disulphide bonds is another problem associated with
protein damageROS are capabld oleaving disulphide bonds, as well @sdising
cysteine and methionine units in proteinsading to the formation of these bonds.
Thisleads to structural modifications of the proteifisFigure14 shows how the
cleavage of disulph&bonds can also occur undalkalineconditions used for hair
bleaching®. The oxidatiorand hydrolysis of disulphiddsads to the production of
sulfonates, such as cysteic acidshswn inFigure15'2°. These sulfonates assist in
the bindng of metals, which in turontributes to further protein damage of the

hair*®.
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R, R, OH
\ A
S—sS — > S 4+ s
~) \K\_
R, HO R,

Figure1l4: One of the possible mechanisms of disulphide bond cleavage in alkaline
medig’

It is worth notingthat this is not the only postulated mechanism of disulphide bond

Ot S@r3asS d FEtl1FrtftAYS LI ® | &@RNR3ISY StAYA

plausible, followed by the subsequent cleavageaotulphursulphur or carbon
sulphur bond* #2 However during hair bleaching, it is thought tha®ond fission

is the predominant mechanism of disulphide bond cleavafe

R
R
A\ A Ond O/ NP On/
§S—§ ——=» Ss—§ —» 8 — 7N —_— oy — 2 S
N V2N 7s" o 8" /R {#/ ~OH
R o 5 d o
H0 H,0 \
H,0
R R R
\ + N\ \ R H,0
S—H o S—OH |
o} o} O:.’|SI—OH
+ 0
R
\
S—OH + R
R |
\—> \S—OH —_— O0=8S—O0H
+ +
R R
\
S—OH ——= S—OH

Figurel5: Scheme to show the possible routes of disulphide bond cleavage to form

sulfonic acid, via cystine oxide intermedidtes.

The oxidation of proteins within hair fibres in these ways leads to hair damage.
Several studies have examined hair samples after various treatments to observe

and/or quantify the extent of damage that may occur.
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1.4.1.6 The effect of reactive oxygen sgcies on hair fibres

In the hair, protein oxidation leads to increased hair fibore damage and a feeling of
dryness, due to cuticles lifting from the hair shaft. After several bleaching or dyeing
cycles holes may form in the outer layer of the cuticle aeentually the complete
removal of some layers is observalfleThe SEM images Figure16 show this

clearly’.

4 h H,0, Bleach creme, 30 min

Figurel6: SEM images dfa) anuntreated hair fibre, (b) & (c) hair fibres treated
with 6% HO, at pH 10.2 (21 °C) or (d) a hair fibre treated with a bleach creme
treatment of 9% kD, at pH 8.6 (21 °&)

Although this damage appears extensivehas been shown that this does not
affect the tensile properties of théair fibre, probably because the cortex is

primarily responsible for the mechanical strength of Kaff. It does however, lead
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to a decline in the appeance and feel of the hair, which is not ideal for a cosmetic
treatment. As a result, a large amount of research has gone into attempting to
prevent damage to hair fibres that can occur during pemerd hair colouring

procedures.

1.4.1.7 Preventing hair fi bre damage

Ordinarily the Fenton reaction relies on a transition meiah to catalyse the
decomposition of hydrogen peroxide. For decomposition to occur spontangously
the metalion needs to cycle between two oxidation statess shown by reactions
(1) ¢ (4) on pagel?. In the Fenton reaction the metan centrewould be expected

to have a redox potential that fits between the valued33 ¢ 0.46 ¥/, that
correspond to the hakequations (6) & (Yat pH 7°. This allows the metal to cycle
between oxidation states, whilst hydrogen peroxide is decomposed through
reactions (2) & (4) on pagd?7. It should be noted that this redox window is based
on standard oxidation potentials that have been acquired at pH 7. These oxidation

potentials may vary for Fenton reactions that ocatialkaline pH.

H,O, +€A OH+OH  (0.46\? (6)

O, +6A D (-0.33 V9 (7)

The redox potential of Gi/Cu'is 0.161 V, shown in half equation (8). This makes it
able to catalyse the decomposition reaction. Moreover, as this valuetieimiddle

of the redox window it allows for fast decomposition of the peroxide. If the
oxidation potential lies towards the edge of this window it will lead to slower

decomposition, as the rate of either reaction (2) or (4) will decr&ase
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Ct +eA Cu (0.161\°) (8)

Fe'+ e A Fe' (0.771\) 9)

The situation is more complex for irdons The oxidation potetial of F&'/Fe**
(half equation (9) is 0.771 V, which lies outside the redox windétewever,pH
plays an important role in the Fenton reaction. It has been suggestedahpt 10
Fe(ll) could exist ahe [Fe(OH)] complex whilst Fe(lll) is generallinsoluble and
exists as F©;”" %2 The redox potential assiated withthese specieghalf-equation
(10)) lies in the redox window ancbuld explain the catalytic behaviour of ifSnOn
the other hand, it is more likely that Fe(lll) is bound to substances within the hair
fibre, which could alter redox potentials sufficiently to allow iron ions to catalyse

the Fenton reactia.

FeOs;+ 4H + 26 A 2FeOH+ HO  (0.16 V) (10)

Understanding the redox potentials behind Fenton chemistry has enabled the
development of échnology to stabilise hydrogen peroxide and hence preven
decomposition. One of the moreffective ways to achieve this is by the use of
chelating ligands to sequester the mefld.igands can altethe redox potentialof

the metal centreto a value that lies outsidéor closer to the edge) dfhe redox
window. Hence, theyreduce the rate of eitherreaction (2) or (4) substantially
enough to prevent decompositiordditionally, ligands coordinatively saturate the
metal centre, preventing hydrogen peroxide from binding and thus decomp&sing
This has been applied successfully tar ltalouring systemsChelating ligands are
now commonly used in formulations to prevent the damage of hair fibres by

hydroxyl radica, as a result of hydrogen peroxide decompositfon
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One of the moreeffective chelants for inhibiting hydrogen peroxide decomposition
by copper is etflenediaminetetraacetic acid (EDTAligure 17)**. However, as

mentioned on pagd6, hair fibres contain significant levels of other metals

Ho NH\
KA

EDTA

Figurel?: The structure of the chelating ligand EDTA.

The presence of such a high concentration of caldinms causes problemthat are
associated with the use of EDTA. Despite the much lower stability constant of the
Ca(EDTA) complexvhen compared withthose of the Cu(EDTA) or Fe(EDTA)
complexes Table 2), the large excess of calcium results in the majority of EDTA
beingcomplexed to the calcium ion at pH Ithis leaves the redox active metal ions
unbound, leading to Fentodike) chemistry and hence hair fibre dama@hapter 7
descibes how speciation plots could be predicted based on the stability constants
of the metal complexes.HE speciation plot ifFigurel8 shows the posbkie copper
complexes that form in an aqueous model system containing 400 mj) N&-B5

mM EDTA, 170 mM &aand 1.27 mM Ci. These simplified conditions represent
the environment found on the surface of hair fibres during bleactlingnder
realistic bleaching conditions, the relatively low concentration of EDTA means that
copper does not bind to the ligand, resulting in the formation of copg@monia
complexes. However, in real hair systems proteins are likely to compete with

ammonia to bind the copper.
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Metal | LogK
ca* | 10.81
Mg | 8.96
Cu* | 18.78
Fe* | 25.10

Table2: The binding@nstants of EDTA with the metal idiosind in hair>.

Figure18: Speciation ploto show the coppecomplexes formedn a model hair
system containing 400 mM NHL3.95 mM EDTA, 170 mM*and 1.27 mM C®°,

Chelating the calcium ians not desired as it does not catalyse the Fenton reaction.
Chelation of this ion essentially uses up the chelating agent, so thaiaraand
copper ions remain unbound. Thus, the transition metal ions are freatalyse the

decomposition of hydrogen peroxide, generating hydroxyl radicals.

This observation led to the use of the ligand ethylenediantinE dlisuccinic acid
(EDDS), which has a much higher specificity for the copper ionlomvealcium ion
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