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Abstract

Abstract Interpretation and Symbolic Model Checking are powerful tech-

niques in the field of testing. These techniques can verify the correctness of

systems by exploring the state space that the systems occupy. As this would

normally be intractable for even moderately complicated systems, both tech-

niques employ a system of using approximations in order to reduce the size

of the state space considered without compromising on the reliability of the

results. When applied to Real-time Systems, and in particular Worst Case

Execution Time Estimation, Abstract Interpretation and Symbolic Model

Checking are primarily used to verify the temporal properties of a system.

This results in a large number of applications for the techniques, from ver-

ifying the properties of components to the values given variables may take.

In turn, this results in a large problem area for researchers in devising the

approximations required to reduce the size of the state space whilst ensuring

the analysis remains safe.

This thesis examines the use of Abstract Interpretation and Symbolic

Model Checking, in particular focusing on the methods used to create ap-

proximations. To this end, this thesis introduces the ideas of Information

Theory and Lossy Compression. Information Theory gives a structured

framework which allows quantifying or valuing information. In other do-

mains, Lossy Compression utilises this framework to achieve reasonably ac-

curate approximations. However, unlike Abstract Interpretation or Sym-

bolic Model Checking, lossy compression provides ideas on how one can find

information to remove with minimal consequences. Having introduced lossy

compression applications, this thesis introduces a generic approach to ap-

plying lossy compression to problems encountered in Worst Case Execution

Time estimation.

To test that the generic approach works, two distinct problems in Worst

Case Execution Time estimation are considered. The first of these is pro-

viding a Must/May analysis for the PLRU cache; whilst common in usage,

the logical complexity of a PLRU cache renders it difficult to analyse. The

second problem is that of loop bound analysis, with a particular focus on

removing the need for information supplied by annotations, due to the in-

herent unverifiability of annotations.
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Chapter 1

Introduction

1.1 General Background

Computer systems have become an important part of everyday life, and the

pace of change has been staggering. Within the space of 40 years com-

puter systems have gone from being a product only used in business to

being embedded in a vast number of consumer electronic devices. Without

computers, many modern day conveniences, such as the mobile phone or

fly-by-wire in aeroplanes would simply not be possible.

However, the pace of change has caused problems in itself: many of the

innovations created are hugely complex and difficult to verify that the system

will always behave as expected. This manifests in the presence of bugs; a

large amount of resources are dedicated to the testing of products to find

and correct bugs before a new product is shipped. Even after a product has

been shipped, bugs may still be found, necessitating some form of update.

The two innovations highlighted above, mobile phones and fly-by-wire

systems, also require that temporal properties hold. Mobile phones must ac-

curately synchronise with a base station in order to work, and a fly-by-wire

system must monitor external conditions to ensure that the pilots instruc-

tions are carried out correctly. This gives rise to the concept of Real-time

Systems, an area of research identified by Liu and Layland [70] in 1973.

Real-time systems are specifically defined as systems which are concerned

with real-time (as measured by clocks, in seconds) rather than the normal

definition of computer time (measured in processor cycles). Normally, the

relation to real-time is expressed as a set of deadlines on the computational
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tasks that the system must execute, with consequences for failure to meet

said deadlines. The specific consequence of failure determines a further

categorisation. Soft real-time systems are capable of continuing to operate

should a deadline be missed, although they will fail should deadline misses be

too frequent. Further, a user may notice a degraded service when deadlines

are missed. A typical example of a soft real-time system is a video playback

application; in the event a video frame cannot be decoded in time, the user

will notice the dropped frame (and normally, decoding problems until the

next key frame), but provided that subsequent deadlines are not missed,

normal playback will resume. This contrasts with hard real-time systems,

for which no deadline can be missed1. An example of a hard real-time system

is that of a mobile phones baseband radio, which has to synchronise with

the base station. If a deadline is missed, the baseband radio will be unable

to communicate with the base station resulting in phone calls etc. being

dropped. Further, until the baseband radio re-establishes synchronisation

with the base station, the phone will be unable to provide communication.

Two major areas of real-time Systems research are Scheduling and Worst

Case Execution Time (WCET) Estimation. Scheduling deals with the allo-

cation of resources to tasks, whereas WCET estimation attempts to place an

accurate bound on the time a task needs to execute. If these problems can

be solved sufficiently well for a given system, then its temporal properties

can be verified.

Unfortunately, the problems of Scheduling and WCET Estimation are

hard, as modern computer systems are incredibly complicated. For example,

in a regular system, simultaneous processes compete for system resources

via a scheduler [95] - with each competitor adding to the complexity of the

system. Whilst processor design has taken this use case into account, with

features such as multicore and large caches, these features are designed to

enhance the average performance of a processor. However, as a result of

the fact that “being too late” is always incorrect in a real-time system, one

must take into account the Worst Case behaviour. As seen in Figure 1.1,

these average performance boosting features typically result in a worst case

that resides at the end of a long tail.

1In theory, no deadlines can be missed for hard real-time systems. In practice, there
will likely be a certain amount of overprovisioning and acceptable quality of service which
allow for some deadline to be missed. However, this should not be assumed in the analysis
of hard real-time systems.
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Figure 1.1: A typical graph of execution times of a task

The problem is compounded by the fact that many real-time systems

are also embedded systems, or at least share the property of embedded sys-

tems that resources are not abundant relative to the amount of work. This

rules out the simplest solution: more powerful hardware. Whilst using more

powerful hardware would of course result in a reduction of worst case per-

formance, providing more computing power increases resource costs in other

areas. Perhaps the most critical of these is increased power consumption:

with ever more systems in the mobile world, power usage is becoming a

limiting factor - either due to heat dissipation or battery life. A second

important reason is monetary cost: more powerful hardware will inevitably

cost more - which manufacturers will be keen to avoid. Finally, the benefit

is potentially very small: given the long tail of typical execution time dis-

tributions, more powerful hardware will often sit idle. If hardware sits idle,

then the extra financial cost and power allocated to obtaining and using the

more powerful hardware is wasted.

Hence a better method is to work around the complexity of computer

systems, ensuring that computing resources are well utilised. This can be

accomplished by modelling. In this context, modelling describes the process

of taking observations of a system to construct an abstract representation of

the system, the model, which can then be used to determine the properties

of the system under given situations. This, of course, leaves a lot to be

determined, such as how to collect observations, and how accurate the model

needs to be in order to be useful.

Modelling in real-time systems is used frequently: continuing the exam-
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ple of scheduling, processor scheduling algorithms assume that all tasks have

a well defined worst case execution time. Hence schedulers are not concerned

with the content of the program, provided that it can never exceed its worst

case. However, as the next section illustrates, modelling is in itself a hugely

complex field.

1.2 Philosophy of Modelling

The first attempt to encapsulate the philosophy of modelling was made by

Levins in 1966 [65], who argued that any useful model must make sacri-

fices in one of the three areas of precision, realism or generality. Whilst

Levins caused much debate at the time of his work [78, 66], Levins philos-

ophy is frequently cited as the basis for the inevitable tradeoffs involved in

modelling.

Levins argument is that no useful model can exist that maximises the

properties of precision (degree of accuracy of results), realism (faithfully

replicating the phenomena being modelled) or generality (the applicability

of the model to multiple situations). The key factor in this argument is

the term “useful model”: as expanded upon by Odenbaugh in 2006 [77], a

useful model must necessarily be tractable: that the use of the model for

its intended purpose can be accomplished in the amount of time the user

is prepared to invest. This in turn results in a fourth component in the

argument: the amount of computation resources needed to use the model,

or its tractability. This results in any model occupying a point in the dia-

gram in Figure 1.2 - the more sacrifices one is prepared to make, the less

computational resources are required.

As in any other case, models in real-time systems must be tractable, and

hence sacrifices must be made. Depending on the type of model used, one

or more of Levins desirable properties can be sacrificed - indeed, computer

systems are often so complicated that it is necessary to sacrifice multiple

properties to obtain a tractable model.

• Generality : Generality can be sacrificed by imposing restrictions. For

example, a common restriction used in scheduling is non-preemption

[9]. Assuming that once a task has been granted resources it cannot

lose those resources until it has finished significantly reduces the effects

of competition by restricting when competition can occur to before a
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Figure 1.2: The extended form of Levins categorisation of models

task starts to execute. However, the enforcement of restrictions may

result in solutions being missed. This can be seen as non-preemptive

scheduling is considered to be non-optimal.

• Realism: Realism is commonly sacrificed, as real-time systems analysis

is only concerned with behaviour and not the technical implementa-

tion. An extreme form of sacrificing realism can be seen in Statistical

Analysis [42], which replaces the entire computer system with a simple

statistical model.

• Precision: Precision is often sacrificed by allowing states which cannot

be reached to be considered for the sake of a compact representation.

For example, abstract interpretation [36] used in worst case execution

time estimation [47] simplifies states in this manner, causing the result

to be less precise than it could otherwise be.

Current state of the art techniques in modelling, such as Abstract Inter-

pretation [36], use a combination of arguments to justify the specific sacri-

fices made for the sake of tractability; in real-time systems, these arguments

typically include the safety of any simplification (as in Heckmann’s bound

on Pseudo Least Recently Used (PLRU) caches [56]), restrictions which also

carry computational benefits for run time (as with online vs offline schedul-
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ing [40]), and ideally, simplification whilst maintaining optimality (as with

Optimal Priority Assignment [5]).

However, all of the arguments for simplification rely on an innovative

step, for which there is very little guidance. For example, Abstract Inter-

pretation relies on identifying a property of the system which can be approx-

imated [36]. This leads to the situation where research is primarily focused

on identifying such properties. Further, even when such a property is found,

there is no guarantee that the property yields a useful approximation. A

more fruitful approach would involve rules which could give guidance, such

that the innovative step can be designed to have the desired properties.

1.3 Information Theory and Lossy Compression

Information Theory [92] is the family of mathematics dealing with the trans-

mission and storage of Information. A subset of Information Theory is Lossy

Compression, which is used to create highly compact representations of in-

formation by discarding information that is not useful. Lossy Compression

is used commonly, and to great effect, in audio and video compression. For

example, the audio codecs MP3 [18] and AAC [16] or video such as h264

[110] all use lossy compression. Specifically, these codecs choose to discard

information that humans would find difficult to perceive, and hence preserve

the more useful information which lies in the perceptible range of humans.

Lossy Compression also exhibits a property where sacrifices are made in

terms of tractability, to control the amount of data which is stored. A clear

example of this can be seen in audio codecs; whilst codecs such as MP3

and AAC are specialised to sounds that humans hear, other codecs can go

further. This can be seen in the SPEEX codec [103], which is specialised to

compressing the human voice. Whilst it is unsuitable for general purpose

audio, for the specialised domain of human voice compression it offers much

higher compression than other approaches. This demonstrates that sacrific-

ing generality can lead to less information being required for an acceptable

result.

In principle, as the choices made in Lossy Compression are made for

similar reasons, there is an argument that the approach used to devise a

lossy compression method such as MP3 is also applicable to the problems

of modelling encountered in real-time systems, and especially Worst Case
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Execution Time Estimation, which uses multiple models to represent various

components. This leads to the central hypothesis of this thesis.

1.4 Hypothesis

Problems encountered in finding appropriate models used in real-time sys-

tems problems, such as Worst Case Execution Time (WCET) Estimation

can be thought of as a highly specific form of lossy compression. Hence, the

approach used to design lossy compression algorithms can also be used to

design an appropriate and effective model for use in WCET estimation.

1.4.1 Thesis Aims

To give evidence for the hypothesis, this thesis will aim to accomplish the

following:

1. Introduce Information Theory and Lossy Compression in the context

of Abstract Interpretation for WCET estimation.

2. Devise a general approach which applies lossy compression to devise a

suitable model of a system.

3. Apply this approach to a problem for which there is presently no sat-

isfactory solution: a complete PLRU cache analysis.

4. Apply the same techniques to the unrelated problem of Loop Bound

Analysis, in order to reduce the amount of additional information re-

quired.

5. Evaluate how the approach was used in both problems to demonstrate

the broad applicability of this technique.

1.5 Thesis Structure

Chapter 2 introduces current literature. First, real-time systems are intro-

duced in general, followed by an in-depth review of techniques used in Worst

Case Execution Time estimation. The specific problems of cache analysis

and loop bound analysis are examined in detail, giving an overview of cur-

rent state-of-the-art approaches.
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Information Theory and Lossy Compression are introduced in Chapter

3. These approaches are examined with detailed examples of lossless and

lossy compression algorithms. The cache analysis and loop bound analysis

techniques from Chapter 2 are revisited, and examined in the context of lossy

compression. Finally, the approaches are drawn together and summarised

as a generic approach for devising a lossy compression method.

The generic lossy compression approach is given its first application in

Chapter 4 on PLRU caches. The unique structure of a PLRU cache results

in relatively high performance for a low cost but is difficult to analyse. The

use of a more principled approach, as advocated in Chapter 3, allows the

cache to be dissected and examined in greater detail to determine which

parts are amenable to compression. Further, this approach is extended to

the more general case of Hierarchical Not Most Recently Used (HNMRU)

caches.

Chapter 5 applies the same generic approach to the unrelated problem

of Loop Bound Analysis. In this case, the goal is to reduce the amount of

additional information required by the analysis in the form of user annota-

tions, by using lossy compression to guarantee the preservation of important

information.

Finally, Chapter 6 presents conclusions by drawing together the ap-

proaches and presents an argument for the broad applicability of lossy com-

pression to other problems encountered in WCET estimation. Limitations

of the approach are discussed, along with further research ideas which would

address these problems. Finally, the thesis aims and hypothesis are revisited

to present concluding remarks.
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Chapter 2

Current Techniques

This Chapter outlines current techniques and approaches to the problems

concerning this thesis. Section 2.1 gives a brief overview of the field of real-

time systems. This is continued in Section 2.2 which gives more detail to

the problem of Worse Case Execution Time, and the two main approaches

to this problem. The specific problems of Caches and Loop bound analysis,

the main problem areas examined in this thesis, are detailed in Sections 2.3

and 2.4 respectively.

2.1 Overview of Real-time Systems

Real-time systems are computer systems which have to adhere to strict

temporal deadlines. Whereas most systems can be measured with CPU

or Logical time, the deadlines of real-time systems are defined in terms of

the actual seconds that elapse between a job starting and producing out-

put. There are two main types of real-time system, hard real-time and soft

real-time [24]. Hard real-time systems are characterised by complete failure

when a deadline is missed; these can include aircraft control systems or mo-

bile phone baseband applications (controlling the synchronisation between

a mobile phone, cellular tower, and other mobile phones). In either case, if

correct temporal behaviour is not observed the system fails. In this scope,

the consequences of failure are not considered (in the examples given, they

range from potential fatalities to dropped phone calls), but instead dele-

gated to discussion of safety critical systems. In soft real-time systems this

property is relaxed, and the consequences for missing a deadline, while un-
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desirable, are not serious and do not cause the system to fail. Examples of

soft real-time systems would include video decoding, where a dropped frame

degrades the experience of the user but causes no major problems. However,

if many frames are dropped then the system becomes unusable.

Further to the definitions of hard and soft real-time Systems, a third

classification is starting to gain traction, that of Mixed Criticality Systems

(MCS) [23]. Current interest in MCS started as a result of the 2007 paper by

Vestal [105] who wished to provide sharing of processor resources between

tasks while giving greater guarantees of execution to more important tasks.

For example, an unmanned aerial drone may have two tasks: flight control

and data capture. While both tasks are functionally important, flight control

can be said to have a higher criticality than data capture because if flight

control fails the drone may be destroyed. MCS gives a method to encapsulate

this type of requirement, allowing resources to be shared between tasks of

different criticality levels while giving guarantees that tasks of high criticality

will not be affected by tasks of lower criticality.

The study of real-time systems has two major aspects: Scheduling and

Worst Case Execution Time (WCET) analysis. Scheduling [24] takes infor-

mation on a number of tasks and attempts to produce a strategy such that

all tasks will have the required resources when they execute. This can be ac-

complished either offline scheduling, where a set of parameters is calculated

before the system is deployed; these parameters are then used to determine

exactly when each task executes. A simple example of offline scheduling

is the cyclic executive scheduling policy [8], where each task is allocated a

fixed amount of time within a scheduling table. When the system is run, the

cyclic executive simply looks up which task should be running at any given

time in the scheduling table; when the end of the table is reached, the cyclic

executive simply returns to the beginning of the table and starts again.

Alternatively, online scheduling utilises set of rules that on deployment

of the system determine which tasks can execute. An example of online

scheduling is the Fixed Priority scheme [24], where a fixed priority is as-

signed to each task. When the system is run, the set of tasks that are

currently available for dispatch is evaluated and the task with highest prior-

ity is executed. In order to assign priorities, an approach such as Audsley’s

Optimal Priority Assignment (OPA) algorithm [5] can be used. For sin-

gle processor systems, if there exists a priority assignment resulting in a
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schedulable system, OPA is capable of finding it by providing a set of pri-

ority assignments that hold for the worst set of task dispatches, the critical

instant. While fixed priority scheduling is well studied on single processor

systems, this is not the case on multiprocessor systems, where problems

such as task migration costs and the lack of an easily identifiable critical

instant1. Further research by various authors, and surveyed by Davis and

Burns [40], has extended the fixed priority approach to multi-processor sys-

tems (e.g. via Partitioned Fixed Priority Scheduling), but there is currently

no optimal priority assignment algorithm for multiprocessor systems.

The Worst Case Execution Time (WCET) of a task is defined as the

maximum amount of time which that task may require to execute [24].

Worst Case Execution Time analysis is the problem of placing a bound on

the execution time of a task. Literature uses the term tightness [24, 88, 31]

to describe how accurate this upper bound is; a WCET estimate becomes

tighter as it approaches the real WCET. A further term used by the litera-

ture is safety [24, 13, 81], which is used to indicate that the WCET bound

is indeed an upper bound. However, due to confusion with the frequently

overlapping field of safety critical systems, this thesis will use the alternative

term soundness.

WCET bounds are not strictly necessary for scheduling, although schedul-

ing typically requires a notion of maximum execution time for schedulabil-

ity analysis to be possible. Similarly, while WCET analysis can be con-

ducted without regard for scheduling, in certain circumstances knowledge

of scheduling is desirable. For instance, if a scheduler causes a task to be

preempted, then the execution time of that task will increase as shared re-

sources, such as processor cache, are disrupted [4]. In addition, while the

time allocated to the interfering task does not count towards the execu-

tion time of the disrupted task, it still causes the task to take longer to

respond. Generally, the problems of inter-task interference, on both shared

resources and the delay of preemption, are separated into the related prob-

lem of Worst Case Response Time Analysis [24]: determining how long a

job will take from its task becoming available to its termination.

1Unlike in single processor systems. where the critical instant can be stated to be when
all tasks are dispatched simultaneously, in multiprocessor systems the critical instant is
not easily computable.
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2.2 Worst Case Execution Time Analysis

This section gives an overview of current approaches to the WCET problem.

In particular, thought is given to the idea of WCET as a testable property

in Subsection 2.2.1. With this in mind, the two main approaches to WCET

estimation, along with their respective advantages and disadvantages, are

introduced in Subsections 2.2.2 and 2.2.3.

If one ignores that solving the WCET problem also solves the halting

problem, the main difficulty with WCET analysis is that the many op-

timisations created for computers systems, are not designed with WCET

analysis in mind. While each of these optimisations, such as caches or com-

piler optimisations, are individually simple, the problem of their combina-

tion is illustrated by Braitenberg in his book, Vehicles [15]. The vehicles

which Braitenberg constructs are automata which possess sensors and some

amount of logic. Braitenberg’s goal is to create a toy world to learn more of

psychology. With only simple logic it becomes apparent that his vehicles are

capable of exhibiting complex behaviour. In particular, Braitenberg states

that the only realistic way of finding out what logic the vehicle uses would

be to open the vehicle and see directly; it is insufficient to use external mea-

surements to analyse the vehicle. Conversely, designing the vehicle is quite

easy, as it is merely adding or removing components. Further, design can be

carried out by very simple rules, such as Darwinian selection. Braitenberg

calls this the law of “uphill analysis and downhill design”, to reflect the fact

that analysing a system is much harder than designing one.

Bullock and Silverman [21] combine the observations of Braitenberg [15]

with Levins [65] to come up with a simple observation: While a system may

be designed to be easy to analyse, the effort for this is expended in the design

phase rather than the analysis phase. Hence there is a tradeoff between

effort required to design, and effort required to analyse. Unfortunately, for

WCET analysis, this only leads to the observation that as the design of

optimisations for computer systems is for better average case performance,

effort has not been expended on the analysability of the optimisations, and

hence analysis of such optimisations is problematic.

There are exceptions to this observation, however. Examples of this in-

clude the JOP Java machine [89] which has a particularly notably feature

in its “method cache”. The method cache is a cache which loads entire Java
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methods into cache memory. Hence, instead of every instruction fetch being

a potential cache miss, instruction cache misses can only occur when jump-

ing into or out of a method, reducing the effect of state explosion in static

analysis. In software development, the programming language wcetC [61]

is a C based language which drops features that hinder WCET calculation

and compels programmers to provide additional information. This forces

additional effort to be expended during program design rather than analy-

sis. However, these are exceptions rather than the norm, where difficult to

analyse features are common.

2.2.1 WCET as a Testable Property

The usage case of WCET is to provide some guarantee of timing behaviour in

a working system. This guarantee is similar in nature to any other guarantee

on the correctness of a program function, and hence it is appropriate to

treat the WCET as a testing problem. In “The art of software testing” [7],

testing is defined as “the process of executing a program with the intent of

finding errors.” This definition is almost adequate to directly translate to

the WCET problem apart from the use of the phrase “executing a program”.

The problem is that in many cases the system that the program is running on

is not fully understood with regards to its precise timing behaviour. Hence

testing must also explore the behaviour of the system that the program is

running on in addition to the program itself.

The purpose of viewing WCET as a testing problem is two fold. The

first reason is that in even the most stringent safety requirements, such as

avionics certification [87], testing of the system does not need to prove that

the system is entirely free of faults. Rather, it needs to provide evidence

about the likelihood of faults occurring in a given time period. Present

approaches to WCET, as will be seen in further sections, tend to be used

to find absolute bounds even though an absolute bound is not necessary to

meet the requirements of the end user.

The next reason to view WCET as testing is to attempt to integrate it

within the general testing regime, alongside the property of functional cor-

rectness. This makes sense given that in a real-time system the execution

time is a property which can cause the system to fail. Further, existing

practices mandated within required testing procedures may be measured in

additional ways to gain evidence about the WCET of a program. A prime
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example of this would be modified condition/decision coverage [7], which is

required by the DO-178B / ED-12B standard [87]. Modified condition/de-

cision coverage requires that for each variable in a conditional expression,

the program must be tested such that changing that variable determines the

outcome of the conditional expression. If these tests were conducted on the

target hardware, then the tests could be measured to provide a large body of

data on execution times, and there is no reason why this data could not be

used to aid WCET estimation. This data would not be capable of replacing

a full WCET analysis, as MC/DC (and functional testing in general) is not

guaranteed to stress the worst case path. However, as all components of

the worst case path will be tested, provided that sufficient detail is captured

on the execution times of the portions of code tested, data from functional

testing could be used as the basis of a measurement based technique which

combines execution times from blocks of code. Ideally, such testing would

take place on the target hardware, which would incur additional cost/effort

during testing. However, assuming that the test hardware is a reasonable

approximation of the target hardware, one could infer that it is likely that

larger execution times on test hardware correspond to similarly increased

execution times on the target hardware.

Returning to the argument that WCET should be considered a testing

problem, a notable observation is that testing is split into two main cate-

gories, called white box and black box testing [7]. White box testing refers to

testing methodologies which attempt to understand the system by dissecting

the system and trying to identify areas of failure. For WCET, Static Analy-

sis implements a white box approach to finding the WCET by constructing

a model of the system under analysis. Black box, or requirement led, testing

is the practice of determining if the system is functioning correctly by tak-

ing measurements and comparing them to the expected result. In WCET,

this is implemented by measurement based testing, where the model used is

constructed solely from measurements taken from the system.

An early review of testing real-time systems [50] identified that real-

time software testing was of a significantly lower quality than conventional

software testing. However the main reason was due to industrial practice

of real-time systems developers, as they adopted programming techniques

which were not conducive to testing for performance reasons. This has since

changed, due to the increase in computation power and that safety critical
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Figure 2.1: The problem facing measured WCET analysis

certifications which many real-time programs have to obtain (e.g. [87]).

However, testing real-time systems is not without issue. An article by Butler

and Finelli [25] on testing real-time systems argues that it is impossible

for normal black-box testing methods to certify real-time software to an

ultra-reliable level. This is simply due to the amount of resources such a

certification would need in order to detect faults which occur at a rate of

less than 10−7 faults per hour. While this might seem to mean that viewing

the WCET problem as a testing problem is not a helpful idea, Butler and

Finelli do not consider the WCET problem directly, and also do not consider

more testing methodologies beyond observing for the presence of faults in

simple black box testing.

2.2.2 Black Box Testing: Measurement Based Analysis

Measurement based analysis is the family of techniques which construct a

model of the system by using measurements obtained during some form of

testing. The most primitive form of measurement based analysis is simply

to take the longest observed time from testing with a variety of inputs and

increase it by a “fudge factor”. This method lacks realism, as it doesn’t seek

to model the processes within the system, and precision as error bounds are

not even defined. In general, this lack of realism is prevalent to a more or

lesser degree depending on how much the internal workings of the system

are analysed. However, as external measurements can be taken from any

system, measurement based analysis techniques are highly general: a mea-
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surement based technique developed for one type of system is likely to be

directly applicable to any type of system, even if the systems use differing

components.

A common criticism of measurement based analysis approaches is that it

is difficult to observe the WCET during testing, and hence the predictions

made from measurement based analysis may be unsound [24, 112]. This is

illustrated in Figure 2.1, which shows why this is the case; that the number

of possible samples to test is exponential with respect to the inputs to the

system, and hence will dwarf a practical number of test runs. In essence,

the cause of this problem is similar to that of the state explosion problem

faced by static analysis; that there is too much potential data to encounter.

However just because the WCET is not observed it does not mean that the

WCET can not be predicted via interpreting the data, although this may

lower the confidence that such a result is correct.

Another issue encountered in measurement based analysis is simply ob-

taining the measurements. Hilary and Madsen [57] present an argument

of how this can be more complicated than it at first seems. In Hilary and

Madsens example, a program is tested by inserting additional code to take

measurements, to measure the number of cache misses. The problem arises

because the additional code is not isolated from the rest of the system, and

will presumably have the potential to cause cache misses, which changes the

number of cache misses in the program. Further, as the state of the cache

is not known, it is not known how many additional cache misses are gen-

erated by executing the measuring code. Remedies proposed by the paper

basically amount to sticking to non-intrusive measurement practices such as

debugging hardware when possible. Hilary and Madsen cite this effect in

other disciplines as either the measurement problem or the probe effect. One

method not considered is the use of cache locking. By locking the additional

code into cache, the code will have a constant effect over the lifetime of the

program; such an effect is more manageable from an experimental point of

view.

Multiple techniques for measurement based analysis exist. The TU Vi-

enna Measurement research prototype, described in [112], builds upon mea-

suring the end-to-end execution time for a system with a variety of inputs

by introducing a strategy to select these inputs. The strategy used is to

have a genetic algorithm attempt to maximise the execution time of the
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program by varying the program’s inputs. Unfortunately the definition of

“inputs” is not described, so it is unknown if this should be taken to mean

inputs to the program under analysis or inputs to the analysis itself, which

includes additional information such as the initial processor state. Further,

the authors acknowledge that this approach cannot give a sound bound, as

the genetic algorithm will approach the true WCET from below, and has no

guarantee to find the true WCET.

Bernat et al. [12] present an argument on how to discover probabilistic

dependencies between measured factors. This is accomplished by defin-

ing execution time profiles on segments of the program which specify the

probabilities of executing within a certain time, as determined by measured

experiments. The rules for combining such segments depend on if the seg-

ments are statistically independent of each other. Independent segments

can be combined by simple convolution. Dependent segments require a new

structure termed a joint execution profile which captures the nature of any

dependencies, by using measurements of executing both segments together.

Given that any blocks may be dependent, Bernat et al. detail statistical

tests for dependence based on the results of joint execution profiles. Fur-

ther they acknowledge that in some instances it may be impossible to prove

independence of segments, but not possible to prove the nature of any de-

pendence. The proposed remedy for this is a method for finding the most

pessimistic joint execution profile for the two segments, which guarantees

that the probabilistic WCET is sound, but possibly pessimistic. This ap-

proach is implemented in the pWCET tool [13].

Bernat et al. [11] later refined the idea of probabilistic dependencies by

introducing the notion of Copulas [76]. Copulas are the general statistical

tool used for describing the nature of dependencies between variables. By

transforming the original work into this form is possible to utilise other

techniques from statistics, in particular the methods used to create upper

and lower bounds for copulas. This enables less pessimistic, but still sound,

bounds on the dependence structure of observed variables to be found than

in the previous work [12].

An alternative use of probabilistic techniques is the use of Extreme Value

Theory (EVT) statistics [63] by Edgar [42]. Edgar’s work utilises EVT to

predict the probability of exceeding a deadline with a high degree of confi-

dence, and a method to integrate this approach into scheduling. However,
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one criticism of the use of EVT is presented by Griffin and Burns [51], as the

use of EVT makes the independent and identically distributed assumption

(i.i.d.) on input data. Given that the majority of real-time systems produce

side-effects, the i.i.d. assumption cannot be guaranteed to hold.

More recently, the field of Probabilistic Real Time Systems has enabled a

revisiting of Extreme Value Theory. Given hardware with inherently random

behaviour, such as the random replacement cache [38], EVT can be argued

to be an appropriate tool to determine the tail of distributions. In particular,

Cucu et al. [38] have proposed additional tests and assumptions which they

argue can be used to ensure that the i.i.d. assumption holds, and therefore

that the results of EVT are valid.

2.2.3 White Box Testing: Static Analysis

Early formal approaches to the WCET problem favoured static analysis,

which is any WCET estimation technique which uses a model based on pro-

gram source or assembly code and the behaviour of the hardware it is to

run on. For example, take the 1989 work by Shaw [94] who proposed a

general approach which uses an extended Hoare logic to calculate a pro-

gram’s WCET. Previous work had focused on “new” languages, which were

generally extended forms of a subset of C, for instance MARS-C [82] which

was released earlier in 1989. Puschner and Koza created MARS-C due to

identifying the issue that in general it is impossible to bound a program’s

execution time, for this would solve the halting problem. MARS-C is a re-

stricted form of C in that it does not permit constructs which are difficult

to analyse like recursion. This is not enough to give tight WCET bounds,

so Puschner and Koza introduced mandatory annotations to the language,

which give additional information such as loop bounds or experimentally

derived execution times for sections of code. While the latter of these is

no longer used within static analysis, modern tools make heavy use of code

annotations in order to achieve tight WCET bounds [100]. Further, while

attention has shifted away from languages designed for WCET computation,

such languages do still exist, with the most current example being wcetC

[61].

As static analysis relies on breaking down the program structure, it is

first necessary to define a notion of program structure. A fairly universal

way of doing so is by defining the control flow graph (CFG) [3] of a program.
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I f x > 0 :
c a l l f unc t i on F

I f x < 0 :
c a l l f unc t i on F

Figure 2.2: An example of pessimism in structure analysis

A CFG represents a program in terms of two structures:

• Control instructions: Any instruction which causes conditional branch-

ing of the program.

• Basic blocks: The maximal sets of consecutive non-control instruc-

tions.

Using these definitions, a CFG is defined as a graph with the nodes cor-

responding to control instructions, while the edges connecting two nodes

correspond to the basic block which executes inbetween the two linked con-

trol instructions. The CFG may be extended with other notions as in the

program dependence graph [48], an augmented CFG for compiler optimisa-

tions which describes data flow.

The first technique used in finding the WCET of a program by its CFG

is structure analysis, as initially outlined by Shaw in 1989 [94]. The method

outlined by Shaw is that the time a program takes to execute can be derived

from the source code. The execution time of statements, or basic blocks, can

be bounded by measured experiments, loops take time equal to the contents

of the loop multiplied by the number of iterations and so on. Shaw proposed

an extended Hoare logic to formalise this idea, which enabled automatic

calculation of execution time for programs with known loop bounds. A

failing of the method, which Shaw acknowledges, is that due to the effects

of pipelining, caches and other hardware it is difficult to get tight bounds

on the program. Shaw’s work was refined by Lim et al. in 1995 [68] to

try and address this. Lim et al. identified that there is a period of overlap

between basic blocks; by calculating the effects of these periods of overlap,

and how the basic blocks contest for resources, it is possible to achieve a

tighter WCET bound.

There are several problems with the structural analysis approach. For

instance, consider the program in Figure 2.2. Clearly, it is impossible for x <
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0 and x > 0 to be true, and so F should be called at most once. However, as

the IF statements are separate structural elements this information cannot

be exposed to them, and so structure analysis calculates that the WCET

corresponds to two executions of F , which cannot happen. Another issue is

that structure information is most easily extractable from program source

code, whereas safety regulations may stipulate the analysis must be done on

machine code [87]. Given that compiler optimisation can have significant

effects on the structure of a program [48] this introduces the problem of

extracting the program structure of the machine code from the program

source code. Attempts have been made to preserve structural information

from the source code into the machine code [62, 45].

Given the flaws of structure based analysis, the family of path enu-

meration techniques was developed. Path enumeration techniques attempt

to search through the feasible paths through the program’s CFG. The two

methods of path enumeration are explicit path enumeration techniques

(EPET) and implicit path enumeration techniques (IPET). The only dif-

ference between the two is that EPET explicitly identifies each feasible path

through the program before searching over them, whereas IPET implicitly

identifies feasible paths while searching through them. The advantage of

EPET over IPET is that more information is available; the disadvantage is

much the same, in that more information is processed, requiring more time

and memory resources. Both families of techniques can be proven to give

tight WCET bounds, provided all constraints are known [83].

The primary method of performing IPET is to use integer linear pro-

gramming (ILP). Li and Malik [67] developed this approach to combat,

what they saw, as the wastefulness of explicit path enumeration techniques,

and created the Cinderella tool from their research. Generally, linear pro-

gramming (LP) is the mathematical problem of finding the best outcome

given a set of linear constraints. Integer linear programming is the same as

linear programming with the additional restriction that solutions must be

integers, although this additional restriction makes the problem NP-hard.

Li and Maliks approach is to derive a set of linear constraints on the execu-

tion time from a program’s CFG. These constraints are then simply given

to an ILP solver, which aims to maximise the execution time. Li and Malik

do acknowledge that ILP is an NP-hard problem, but they present an argu-

ment that by analogy to previous work (Information Description Language
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by Park [79]), there is a guarantee that any ILP problem derived from con-

straints on a CFG corresponds to a LP problem, and hence a solution can

be found in polynomial time.

An alternative IPET technique is presented by Marref [71]. Marref’s pro-

posal is named predicated WCET analysis, and is accomplished by analysing

each basic block of code separately, and to express when that block of code

can execute in terms of logical constraints. When a block of code executes,

the present state is modified according to logical rules and the next block of

code picked. As logical rules do not necessarily have an obvious represen-

tation in ILP, Marref proposed the use of constraint logic problem (CLP)

solving to find the WCET when analysis is performed with this method. As

CLP is the name given to any system combining constraint solving with logic

programming, CLP is a more natural choice than ILP. The major issue in

using CLP is that if the search order is not picked carefully, the complexity

of the problem is exponential; Marref does propose a search strategy which

avoids this issue. Marref also describes further performance enhancements

from using a divide and conquer approach which decreases precision and

realism in the model for additional tractability. This is achieved by remov-

ing the history of the search and recommencing the search at the next level

with the cut off history, and making pessimistic assumptions should this his-

tory be required. While Marrefs system is an IPET system, it shares a lot

with structural analysis based approaches in that the structural blocks are

analysed separately and this data combined. The major difference is that

the language used to describe the relationships between blocks in predicated

WCET analysis is much richer than that used in structural analysis.

The main problem with IPET based analysis is state explosion [104].

While IPET is sufficient for simple systems, modern computer architectures

feature many components which are not easily modellable as constraints

due to lack of information. For example, the state of a cache or branch

prediction buffer do not easily map into the constraints used by IPET, as

the initial states of these components may not be known. Attempts to force

such a mapping cause an IPET to have to consider an intractable number of

potential paths through the program, to account for all possible states that

these components may have. As such it is necessary to adopt additional

techniques to counter the effects of state explosion.
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2.2.4 Abstract Interpretation and Symbolic Model Checking

To combat state explosion, the two main techniques used in current ap-

proaches are Abstract Interpretation and Symbolic Model Checking. These

techniques have the same goal of discarding irrelevant information to the

problem at hand, but accomplish this goal using different and distinct meth-

ods.

Abstract interpretation is a general program testing technique developed

by Cousot and Cousot [36]. The goal of abstract interpretation is to perform

the minimal amount of work in order to prove correctness of a property for

a program. The method for this is to create an abstract representation

of the program which contains less information than the original program,

but retains enough to gain a valid answer. For instance, the operation

−x × y = −xy, on positive x and y could be abstracted to − × + = −, if

the only required information was the sign of the result. Then, once the

abstract representation has been created, fixed points can be identified or

created. Fixed points are points within the abstract representation which

are identical, or can be merged by a merging operator without impacting

the validity of the model. By combining fixed points, the size of the model

is reduced and the property is easier to prove. The level of approximation

that the abstraction uses is not defined by Cousot and Cousot; instead this

is left to the implementation and specific usage to pick an appropriate level.

Hence Cousot and Cousots argument that all program analysis techniques

can be realised by abstract interpretation is at least partially correct, as any

level of approximation could be used. However, specific details regarding the

abstract problem space may be easier to prove using alternative methods.

In usage in WCET estimation, abstract interpretation is commonly used

to model hardware effects and paired with ILP to perform path analysis, an

approach pioneered by Theiling and Ferdinand [99] in 1998. By determining

the abstract states which the different parts of the program execute in,

tighter bounds can be found on the execution time of the basic blocks of the

program. This information is then used in generating the ILP problem which

results in a tighter bound on the WCET of the program. Commercially, this

approach is implemented in the aiT tool [46].

Model checking is the general technique of automatically constructing a

model of a system by some rules, and determining if a particular property

holds in that model. The pioneering work on model checking computer
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systems was carried out by Clarke and Emerson, who proposed a system of

temporal logic to prove the correctness of parallel programs [29]. Temporal

logic is an extension to normal logical formulas to enable reasoning about

the order of application of logic formulas, and as such can be easily used

to determine the WCET of a program by selecting the maximum execution

time of all paths through the program. The use of model checking in path

analysis results in an explicit path enumeration technique, as it explicitly

details all paths through the program.

While model checking is particularly prone to the state explosion prob-

lem, there are a number of countermeasures. An important countermeasure

is the use of binary decision diagrams (BDD), a tool detailed by Bryant

[20]. Bryant proposed a system of transforming graphs of boolean systems

such that the graph only contains the minimum information necessary to

represent the boolean outcomes accurately, with such graphs being BDDs.

Building upon Bryant’s work, McMillan et al. [22] proposed an extension

using Mu-calculus to define model checking on BDDs, and from this deriv-

ing the extensions needed to use temporal logic, as parts of a new technique

termed symbolic model checking. Symbolic model checking represents the

space to model check symbolically rather than explicitly, and by determin-

ing properties on symbols many concrete states can be examined simultane-

ously. In essence, this idea is the same as the abstraction phase of abstract

interpretation; represent the space to be searched more compactly but with

minimal impact on precision.

In usage on the WCET problem, Wilhelm argues that model checking is

not a practical method for WCET calculation [111], due to the exponential

size of the problem model checking has to solve. He argues that the abstract

states of abstract interpretation mean that information can be more com-

pactly represented, and the tradeoff in accuracy for this is acceptable given

the amount of computational work saved. A strong rebuttal of Wilhelm’s

arguments is presented by Metzner [73], where Metzner demonstrates that

model checking can be used to improve WCET estimation. This is accom-

plished by using symbolic model checking [22], therefore gaining the benefits

of using an abstract model as in abstract interpretation. However, as ab-

stract interpretation uses ILP, which can suffer from numerical instabilities

which result in picking an invalid path through the program, Metzner ar-

gues that the explicit paths used in model checking can give a more accurate
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WCET estimate. Metzner does not consider the cause of numerical insta-

bilities in LP problems, which is the algorithm used. Hence it is possible to

argue that by using different algorithms to solve the ILP problem, numerical

instabilities could be avoided.

In practical terms in the WCET problem, there is very little to dis-

tinguish between the use of abstract interpretation and model checking.

Abstract interpretation explicitly involves an abstraction step. Practical

model checking is accomplished via knowing when to use techniques such

as symbolic model checking which performs an abstraction. In making the

abstraction, abstract interpretation creates the final set of abstract states

implicitly by combining existing abstract or concrete states through combi-

nation operators. Model checking performs this step explicitly by definitions

in the abstract model. Both techniques then rely on some other automated

process - traditionally integer linear programming [111] for abstract inter-

pretation, and varying [73] for model checking - to prove properties. In

essence, the biggest difference between the two is how the abstract space is

calculated.

2.2.5 Summary

While traditionally viewed as a separate problem to functional correctness,

viewing the WCET problem as such yields useful insights. For example, the

similarities between measured/static analysis and black/white box testing

highlight the respective flaws of each approach. For measurement based

analysis, this means a lack of confidence due to unobserved behaviours.

Static analysis is similar in that much like a program must be simple enough

to be understood for white box testing, simplifications must be made for

static analysis to be tractable.

Having examined the general techniques used in WCET analysis, it now

follows to inspect applications of these techniques in WCET analysis. Two

such applications, Caches and Loop Bound Analysis, are inspected in the

following sections.

2.3 Caches

Caches are a highly common form of local memory found on almost all

modern computers. While caches, or some other form of local memory, are
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necessary to achieve anywhere near a CPU’s maximum performance, a cache

presents a considerable complication to WCET analysis. Specifically, a cache

has a corresponding state, and this state must be modelled to accurately

predict WCET. An overview of the history of caches, and their impact on

WCET is found in Subsection 2.3.1. Subsection 2.3.2 examines in detail the

LRU cache replacement policy, which is completely understood in terms of

its impact on WCET. This is in contrast to PLRU and HNMRU, detailed in

Subsections 2.3.3 and 2.3.4, where the understanding of the effect of cache

is not as complete. This is in spite of the fact that the PLRU policy is a

very common cache replacement policy due to its performance and the cost

of implementing it in hardware when compared to LRU.

2.3.1 History and the impact of Cache on WCET

In the first computers, memory and the CPU ran with perfect synchroni-

sation. However, such early computers were not fast. Indeed, a common

fact used about the speed of progression for modern computers is that the

Apollo missions managed to get to the Moon in the 1960s with less compu-

tational power than a 1990s calculator. Part of this increase in speed was

the realisation that a CPU could operate at frequencies much faster than

the memory. This can be observed in current consumer machines DDR3

memory runs at frequencies between 100 and 233 MHz, whereas a consumer

CPU will run at speeds typically between 1 and 3 GHz. In addition mem-

ory controllers and the physical distance between memory and CPU add

overhead to communications between memory and CPU.

The disparity in speeds of memory and CPU comes at a cost: without

some mitigation, the CPU becomes bound on the data that it can process.

Indeed, some statistics indicates that 75% of a program’s execution time can

be occupied simply in retrieving data and instructions from main memory

[55]. The mitigation most commonly used is a CPU Cache.

A Cache is a relatively small local store of memory, either on the CPU

die or physically close to it, that stores a subset of memory for fast access.

Caches may be dedicated to a specific function; commonly separate instruc-

tion and data caches are used [55], rather than a single cache for both

instructions and data. This is because in many applications the amount

of data and instructions consumed by the CPU is not balanced, and this

separation prevents either from displacing the other. Caches may also be

39



Cache Level
Processor L1 L2 L3 Memory

150 MHz MIPS r4000 13ns – – 253ns
1.5 GHz Samsung Exynos 5250 2.6ns 17ns – 127 ns
2.8 GHz AMD Phenom II X4 920 1.0ns 4.3ns 20ns 92.5ns
3.4 GHz Intel i7-4770 1.1ns 4.7ns 20ns 56ns
3.55 GHz IBM Power 7 0.5ns 2.3ns 6.7ns 120ns

Table 2.1: Cache/Memory Latency for various processors. Data from docu-
mentation of 7-Zip LZMA Benchmarks [33].

multi-layered, with the inner cache levels being faster for the CPU to access,

but also smaller than the outer levels.

When a CPU is equipped with a cache, all appropriate memory accesses

are routed via the cache. The cache then uses some predefined rules to

determine what memory locations it should store [2]. When a memory

access is received by the cache, it checks to see if the memory location has

been stored in the cache lines stored in the cache. A Cache Line represents

the minimum size of an element in the cache; this is normally not the same

size as the minimum amount of memory a CPU can request in a single

instruction. If the memory location is in the cache it results in a cache hit ;

the value of the memory location can be returned to the CPU immediately,

without any additional expense. Otherwise a cache miss is recorded. In this

case the cache passes on the memory access to the next cache level, or main

memory in the case of the outermost cache level. For each additional cache

level traversed the time taken by the memory access increases, with the final

hop to main memory being very expensive relative to the innermost cache

level. Examples of cache/memory latency for various processors are given

in Table 2.1, which shows that the penalty for a cache miss can be expected

to be between 50-200 times that of a cache hit.

Caches that hold data must also have a policy to handle writing to the

cache2. There are two main methods of performing this: write-through and

write-back [60]. A write-through cache is the simpler policy: whenever a

memory address stored in the cache is written to, it simply forwards the

write request through the cache straight away, as well as updating the value

2Ignoring the possibility of polymorphic code, an instruction cache can be seen as
read-only.
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Figure 2.3: A fully associative cache; any cache line may contain any memory
location

the cache holds. In essence, this ignores any caching behaviour for writes,

and therefore can result in poor performance. A write-back cache avoids this

by storing information on what data has been modified and only writing the

data back to the main memory when necessary. This more complicated

approach theoretically has improved performance, but is more expensive to

implement in terms of the silicon necessary. The extra silicon may result in

the cache running more slowly. Further, a write-back cache may need extra

aid for peripherals which communicate through RAM, as such communica-

tions must be guaranteed to enter RAM for them to be effective.

The distinguishing feature of a cache is that the cache uses a predefined

set of rules to determine what data it should store. This is in contrast to the

main alternative, the scratchpad [108], which must be managed explicitly.

Evidently, this means that the scratchpad requires additional work; either

the programmer or the compiler must determine what should be stored

within the scratchpad, whereas with a cache this is automatic. However

it comes with a corresponding advantage: by explicitly declaring what is

stored in the scratchpad, the contents of the scratchpad is known. Recent

work by Whitham et al. [109] has shown that scratchpads, with appropriate

resource allocation policies, are suitable for certain workloads with respect to

analysable WCRT. Whitham et al. also make the point that with increased

hardware support, the additional costs of scratchpads could be lowered mak-

ing them more attractive. In contrast, caches have good hardware support,

but the contents of a cache is not explicitly declared in advance, and by

extension the effect on execution time cannot be calculated easily.

Cache architectures are highly variable. The simplest form of cache is

a fully associative cache [55], illustrated in Figure 2.3. A fully associative
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Figure 2.4: A direct mapped cache; memory locations mapped to specific
cache lines

cache may store any memory address in any location of the cache. In the

event that the cache is full, an eviction policy determines which element to

remove. Fully associative caches work by computing a tag from the higher

bits in the memory address, and on access uses this tag to determine if

there are any matches. As every memory address within the cache has to be

checked for a potential match, and this has to be done quickly, this normally

means that fully associative caches are small. For speed, the tag checking is

normally done in parallel, and this requires extra silicon for each additional

line of the cache.

To combat the silicon costs of the fully associative cache, the direct

mapped cache is an alternative [55], illustrated in Figure 2.4. The direct

mapped cache specifies that each memory location may only reside in a

single location in the cache. The location in the cache is typically given by

taking the lowest n bits used in the address of the cache line (ignoring bits

which are set to 0 as part of computing the cache line’s address). As only a

single location in the cache has to be checked, this results in much less silicon

to be required than in a fully associative cache. However, the problem comes

as a simple pathological case: if two memory locations which are frequently

accessed reside in the same location of the cache, then the cache cannot store

both simultaneously, and hence will not provide any performance benefit.

As a fully associative cache is too expensive for a large cache, and a direct

mapped cache has an easy pathological case, the answer is a combination

of the two: the set associative cache [55], illustrated in Figure 2.5. A Set

associative cache behaves similarly to a direct mapped cache in that it uses

the memory location requested to compute a location within the cache that

the memory location can be stored in. However, unlike a direct mapped

cache, the location computed by a set associative cache can store a set of
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Figure 2.5: A set associative cache; cache lines mapped into specific set,
whose elements can be any memory location

memory locations. The set is managed in much the same way as a fully

associative cache: a tag determines if there are possible matches, and an

eviction policy determines which memory address to remove from the set.

The size of the set is referred to as the number of ways of the cache; a 4-way

cache can hold 4 separate cache lines in each cache set.

The set associative cache avoids the pitfall of the direct mapped cache by

allowing multiple cache lines which indicate they occupy the same location

in the cache to exist in the cache simultaneously. This causes the size of

the pathological case to require more memory accesses: whereas the direct

mapped cache requires only 2 memory accesses for the pathological case, an

n-way set associative cache requires at least n + 1 memory locations, as n

locations can, by definition, coexist simultaneously. Further, as the number

of ways of the cache is relatively small, the set associative cache also avoids

the pitfall of the fully associative cache, as the amount of hardware required

to check for the presence of a memory location in a cache set is relatively

small. As such, the only missing component of the cache to explain is the

eviction policy.

Eviction policies, as with other areas of the cache, can vary greatly.

Three policies will be examined in detail in later sections; these are Least

Recently Used (LRU, Section 2.3.2), Pseudo Least Recently Used (PLRU,

Section 2.3.3) and Hierarchical Not Most Recently Used (HNMRU, Section

2.3.4). However many other policies exist. An intuitive eviction policy is

the Least Frequently Used (LFU) policy [55], where the element of the cache

least frequently used is discarded. The intuition behind this policy is that if a

cache element is frequently used it is more likely to be used again. However,

there are other less intuitive policies, such as Most Recently Used (MRU)
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[55], which evicts the element last accessed. While unintuitive, in some use

cases MRU will exhibit good performance; for example when streaming a

large volume of data which is accessed precisely once, MRU will preserve

other cache lines. Similarly unintuitive is the random replacement policy

[38], which chooses the element to evict randomly. While one might con-

sider a concrete strategy based on usage data to be more logical, the random

strategy has a quantifiable probability of exhibiting poor performance. This

contrasts with concrete strategies which typically have pathological cases,

and if such cases cannot be ruled out by analysis, the presence of a patho-

logical case can cause analysable performance to be low.

Traditionally there are two main aspects to consider when deciding on

a cache policy. The first is performance; a cache is designed to improve

performance, and so a cache policy that performs well is desirable. If the jobs

to run on the processor are known far enough in advance it may be possible

to pick a cache policy that works well with the given jobs. The second is the

cost of implementation. A complicated cache policy may consume too much

silicon on the chip to be implemented at a reasonable cost. Further, a larger

chip consumes more power and produces more heat. In the case of embedded

real-time systems power can be a concern [113]. For non-embedded systems,

power draw contributes to running costs which are desirable to minimise, and

extra heat from the cache will lower the amount of heat the main processor

can generate, limiting its clock speed.

In addition to the traditional viewpoint, Thiele and Wilhelm [101] iden-

tify that for real-time Systems, analysability is a concern. Suppose that

there are two systems A and B, such that the performance of A beats B

for all tests. It is possible that the static analysis techniques that can be

applied to A are of poorer quality than B, which can in turn lead to static

analysis suggesting the performance of B is greater than A.

If it were the case that the impact of a cache on WCET was negligible,

then analysability would not be a major concern. However, it has already

been established, fetching data and instructions from main memory is a sig-

nificant overhead when executing a task. A comprehensive analysis of cache

size on performance on the SPEC CPU 2000 benchmarks, performed by

Cantin and Hill [26], suggests that a reasonably sized cache, with respect to

cost of implementation, can obtain a hit rate of around 90%. Such a high

hit rate means that if there is a corner case when the cache is ineffective,
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i f cache . c l a s s i f y ( memoryLocation ) == Miss :
cache . evictAndReplace ( memoryLocation )

cache . touch ( memoryLocation )

Figure 2.6: A general cache replacement policy

the impact on the execution time (and hence WCET) could be huge. Hence

in addition to the absolute performance of a cache policy or its implementa-

tion cost, for statically analysed real-time systems, the methods of analysis

available to the cache policy are a major concern.

In general, a cache policy can be described by the simple algorithm

given in Figure 2.6. The first step is to classify the memory access. If the

memory access is a miss, then the memory location must be inserted into

the cache by an evict operation which determines which element should be

removed according to the cache policy. After this, or in the case that the

memory location is already in the cache, a touch operation should be applied,

updating the cache state such that the cache knows the memory location

has just been accessed. While the classification operation is independent of

policy, the evict and touch operations differ, as well as the data structures

they operate on.

In 2000, Mueller [75] set out the methods which are still used for cache

analysis today. Mueller identified that in a system there may be many ways

of reaching the same load instruction. Therefore many different cache states

could be possible for each instruction, with each needing to be considered

to check for a hit or miss. Hence Mueller gave the following five types of

classification:

1. Must Hit : A memory access is classed as a Must Hit if a cache hit is

guaranteed

2. Miss: A memory access is classed as a Miss if it a cache miss is guar-

anteed

3. First-Miss: If a memory access is a miss on its first execution but

subsequently may not be, it is a First-Miss

4. First-Hit : If a memory access is a hit on its first execution but subse-

quently may not be, it is a First-Hit
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5. May Hit : If no other classification can be applied, the memory access

is classed as a May Hit.

Mueller’s approach references neither model checking or abstract inter-

pretation. Mueller himself refers to an “abstract cache state”, but this could

be either abstract interpretation or model checking as both support simi-

lar notions of abstract states in this context, and both could be used to

implement this approach. The classifications which Mueller advocates are

particularly of use in modelling cache behaviour for program loops; given

that a program will spend the majority of its execution time in loops, this

is justified. Refinements to cache analysis for loops are presented by Martin

et al. [72], who use a combination of abstract interpretation and compiler

optimisation techniques. This is accomplished by using a method named

virtual inlining and unrolling (VIVU) on loops. VIVU modifies the CFG

presented to the WCET analyser so that the number of basic blocks reach-

able from any point in the code is reduced as much as possible; this is of

particular benefit to nested loops where it is possible for a number of posi-

tions in the CFG to be reached after executing the body of the innermost

loop. By performing VIVU on the CFG it is possible to restrict the number

of possible states to reach, and therefore derive a tighter bound on WCET

in a lesser amount of time. Other examples of schemes based on or similar

to Muellers approach are presented in [47, 73].

Mueller also identifies that of these First-Miss and First-Hit contribute

less information to the analysis than Must/May/Miss. For this reason typ-

ical analyses [91, 54] do not check for First-Miss of First-Hit. Instead, to

better match techniques such as abstract interpretation [36], most analy-

ses compute an “upper” and “lower” bound on the cache state. The upper

bound is used to determine which memory locations must reside in the cache;

any access to a location determined to be in the upper bound of the cache

must result in a cache hit, and hence the upper bound is called Must anal-

ysis. The lower bound is used to determine which memory locations may

reside in the cache, and for a similar reason is called May Analysis. The

name May Analysis is slightly misleading; the important result from per-

forming a May Analysis is to determine when cache misses are guaranteed

occur. If a cache miss cannot be guaranteed to occur, then the analysis will

have to consider the possibility of a hit or a miss. In turn, this may result

in multiple states being considered, which has a performance impact on the
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Figure 2.7: An LRU cache, represented as a list

analysis. However, if a Miss can be guaranteed, then a single successor state

can be considered, which results in higher performance and less pessimism.

2.3.2 LRU Cache: A Solved Analysis

The Least Recently Used (LRU) cache policy is one the more obvious heuris-

tics for a cache replacement policy, as mentioned earlier. LRU simply dis-

cards the least recently used element of the cache [55]. The assumption

that this heuristic makes is that data which has been recently accessed is

more likely to be accessed for a second time. While this heuristic fails for

streaming data, which is accessed once and never again, it works relatively

well for other types of data, for example the execution of program code. An

exception for this case is when a loop of memory accesses is greater than

the LRU cache size; for example a 2-way cache will not provide any caching

for the sequence of accesses a, b, c, a, b, c.

Conceptually the simplest way to visualise an LRU cache is as a list, with

position in the list representing the age of an element, as seen in Figure 2.7.

With this representation, the evict and touch operations for the LRU cache

can be defined as follows:

• EvictAndReplace(memoryLocation): replace the tail element of the

cache with the new memory location.
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• Touch(memoryLocation): move the indicated memory location from

its current position in the list to the head of the list.

In practice there are many implementations of the LRU cache [98]. The

simplest is the special case of the 2-way cache. In this case there is only

a first and last element, hence it is sufficient to use a single bit of data to

indicate the current last element. While this approach could be generalised

to designate the tail of a list, in practice it is infeasible as when there are

more than 2-ways an access may result in data having to be moved within

the cache to updated positions in the list. Hence for higher associativities

other methods are used.

One class of methods is to use age bits [98]. Age bits indicate the age of

elements in the cache. The age bits are incremented when a cache element

is demoted due to an access, and reset to zero when an element is accessed

and therefore placed at the top of the cache. This method is efficient for

relatively small associativity. When associativity is large age bits become

inefficient, due to the difficulties in updating all age bits in each access.

For LRU caches with large associativity, methods such as a linked list

become more efficient [98]. A linked list, unlike a plain array, has relatively

efficient operations for moving elements within the list. However, the addi-

tional complexity of the hardware required to implement a linked list means

that for small associativities other methods are more efficient.

A full Must/May analysis for the LRU cache was provided in 2007 by Sen

and Srikant in [91]. The method exploits the conceptual list representation

of the LRU cache. The touch operation of the LRU cache moves the specified

element from its current location to the head of the list; this also has the

effect of moving any elements inbetween the before the specified element

and down the list by one. Using this information it is trivial to construct

upper and lower bounds for each element in the list. It is then possible to

construct a touch operator that works on the lists of upper and lower bounds

as follows, by applying the following rules to each memory location m in the

cache, when touching memory location t:

• Case 1: m = t: m is now at the head of the list; set its upper and

lower bound to 0.

• Case 2: lower(m) > upper(t): m will be moved down the list by t

moving up; increment both upper and lower bounds by 1
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• Case 2: Intervals (lower(m), upper(m)) (lower(t), upper(t)) intersect:

m might be moved down the list by t, but the information present

does not prove this. As such the lower bound remains the same, but

the upper bound is incremented by 1.

• Case 3: upper(m) > lower(t): m is already lower than t, so it will not

be affected by t moving up; keep both bounds the same.

Here, the functions upper and lower denote the position of the cache line

in the lists giving the upper and lower bounds respectively. They return ∞
when the cache line is not in the cache. To complete the analysis, the lists

of upper and lower bounds can be used to classify cache accesses to element

m as follows:

To complete the analysis, the lists of upper and lower bounds can be

used to classify cache accesses to element m as follows:

• Case 1: upper(m) < cacheSize: m is guaranteed to be in the cache,

so the classification is a Must.

• Case 2: lower(m) < cacheSize < upper(m): m could be in the cache,

but might not be. Hence the classification is a May

• Case 3: cacheSize < lower(m): m cannot be in the cache, so the

classification is a Miss.

The analysis of an LRU cache in this manner is very efficient, as all

information on any number of concrete cache states can be represented by

a single upper and lower bound. While the abstraction in this manner

means that many impossible concrete states may be considered, these do

not impact the accuracy of the analysis as the abstraction stores the best

and worst cases accurately.

Unfortunately, even using the varied implementations of the LRU cache

detailed in this section, the costs of implementing the LRU cache are deemed

to be too high [55] for associativities greater than 2. Further, 4 or 8 way

caches give much higher performance in benchmarks [26]. Hence it is nec-

essary to use a different type of cache for high associativity. Even if an

LRU cache is not feasible to implement for high associativity, the least re-

cently used behaviour is a good cache heuristic in most use cases. Hence one

method to keep the advantages of LRU while decreasing the cost in silicon

is to approximate the behaviour or LRU.
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2.3.3 PLRU Cache: Widely used, Not Fully Understood

The Pseudo Least Recently Used (PLRU) cache is an approximation of an

LRU cache. In empirical testing, the PLRU cache scheme achieves a hit

ratio almost as good as an equivalently sized LRU cache [55]. However, as

the PLRU cache structure is designed to easily map onto a silicon imple-

mentation, the die area consumed by cache logic is greatly reduced when

compared to the LRU cache for high associativities [55]. This in turn results

in the cache requiring less silicon, and thus decreasing manufacturing costs

and power usage. As these attributes are valuable to chip manufacturers,

most high associativity caches are implemented using the PLRU scheme. As

will be seen, the approximation of LRU results in behaviour which is more

complicated to model. As a consequence, other than implementing the col-

lecting semantics for the PLRU cache, current approaches are not able to

fully analyse the behaviour of the PLRU: only partial static analyses are

available. This means that static verification of the PLRU cache can only

be accomplished by using the collecting semantics, which is computationally

expensive.

Implementing a PLRU cache is accomplished by organising elements in

a binary tree. Cache lines are stored on the leaves of the tree. Each node of

the tree contains an additional bit of information that acts as a pointer. The

pointers are used to approximate the least recently used element. This is

accomplished by setting each pointer to point away from a memory location

being updated during a touch operation; when the pointers are used to

determine the element to evict, the pointers are simply followed and the

element being pointed at is evicted. Hence the touch and evict operations

can be defined specifically as:

• EvictAndReplace(memoryLocation): Take the path indicated by the

pointers from the root of the tree to the indicated leaf; store the new

memory location in the cache line on the indicated leaf.

• Touch(memoryLocation): For each pointer on the path between the

root of the tree and the memory location indicated, set the pointer to

point away from that path.

These behaviours are demonstrated in Figure 2.8, which shows a request

for a memory location not in the cache, and hence results in an eviction
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Figure 2.8: Showing the behaviours of a PLRU cache by demonstrating a
cache eviction

a b c d

0) Access a

a b c da b c d

1) Access b

a b c d

2) Access c

e b c d

3) Access e, evicting a

Figure 2.9: Illustrating the fastest a memory location can be evicted from a
PLRU cache

operation (evicting the element which the pointers point to) followed by a

touch operation (pointing the pointers away from the new cache element).

One slight complication in this description is the handling of invalid cache

lines (the state of a cache line which contains no information, such as when

the cache is initially turned on). Two policies exist in this case sequential

fill and tree fill [54]. In the tree fill scheme, the pointers on the nodes of

the tree always determine which cache line should be evicted. However, in

the sequential fill scheme, if the cache contains an invalid cache line the first

invalid cache line (using an arbitrary ordering) is selected. Sequential fill

can cause complications in analysis as if it were not for this behaviour, left

and right subtrees of a node in the PLRU tree containing the same abstract

representation could be considered equal in all cases. With this behaviour,

left and right subtrees cannot necessarily be considered equal if they contain

two or more invalid cache lines.
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a b c d

Figure 2.10: As an access to a sets the circled pointer, b can be unintention-
ally protected

The behaviour of a PLRU cache means that from each access to a

cache element, it is guaranteed than the element will persist for at least

log2(cache size) + 1 accesses [56]. The worst case scenario that is used to

find this bound is illustrated in Figure 2.9. The worst case can be proven

by noting the fact that a memory access can only set a single pointer on

the path to the required value; specifically, the pointer where the path to

element a and the path to the element being accessed diverge. For all other

pointers on the path to element a, the pointers will by definition be set to

point away, as the paths are the same. Hence, to get all pointers on the path

to element a to point to a, at least cache height = log2(cache size) memory

accesses are necessary. Finally, an additional memory access is required to

evict a, and hence the bound is log2(cache size) + 1.

Unfortunately, unlike in the case of an LRU cache where a fixed number

of misses guarantees an element is evicted, there is no similar bound for the

PLRU cache. This is illustrated by Berg [10], who shows that it is trivial

to construct a case where an element in the cache can still be resident in

the cache after an arbitrarily high number of misses. This is illustrated in

Figure 2.10, and exploits the tree structure of the PLRU cache. Specifically,

where cache lines a and b reside in the same subtree, frequent accesses to

cache line a will protect cache line b from eviction, by setting the pointers

in the common part of the path of a and b to point away from b.

One of the interesting properties of a PLRU cache is that multiple cache

states can exhibit the same logical behaviour. This can be observed by ap-

plying subtree flipping : a pointer in the tree is chosen, the pointer is flipped

and the two child subtrees of that pointer are swapped; this does not change

the cache lines being pointed at, but does change physical locations3. To

3Although this does not hold in the case of a sequential fill cache containing invalid
cache lines, as in sequential fill the physical position of an invalid cache line is significant.
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Figure 2.11: Assigning a name to a tree fill PLRU cache

determine which states exhibit the same behaviour, a current technique is to

use subtree flipping to ensure that all pointers have a specified orientation,

as illustrated in Figure 2.11. As all cache states which exhibit the same

behaviour are guaranteed to have the same name, and hence duplicates can

be easily discarded; hence assigning names allows abstract interpretation

to determine which states can be discarded. This scheme also enables a

more compact representation of the cache state, as all pointers have a fixed

orientation, and so do not need to be stored explicitly. Using the logical be-

haviours of a PLRU cache as a method of analysis implements the technique

of collecting semantics for PLRU [37].

Initial work on providing a Must analysis of a PLRU cache was carried

out in 2003 by Heckmann et al [56], and further elaborated on by Grund

and Reineke [84] in 2008. As previously stated, any cache element requires

at least log2(cache size) + 1 memory accesses from its last memory access

to be evicted. Hence, it can easily be inferred that a Must analysis on an

LRU cache of size log2(k) + 1 elements will provide a sound estimate of the

elements that would be in the PLRU cache. The main problem with this

approach is that it is a partial analysis which does not scale well with the

size of the cache. Hence, while a cache of size 4 can have 3 elements analysed

by this approach, doubling the cache size to 8 results in only 4 elements of

the cache being analysed. Further, this approach does not yield any useful

data about cache Misses, and hence cannot provide a May analysis.

More recently, in 2010, Grund and Reineke [54] provided an improved

PLRU cache Must analysis, by utilising a metric named subtree distance.

Subtree distances quantify the link between elements in the cache. By ap-
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Figure 2.12: Mapping a PLRU cache state to Grund and Reinekes represen-
tation

proximating the subtree distance of elements within the cache to be either

maximal or non-maximal, the analysis is able to have some knowledge of

how access to specific elements affect other elements, thus enabling the ex-

clusion of additional elements from eviction when compared to the previous

work.

The implementation of Grund and Reineke’s approach considers abstract

cache states with 3 components: the root pointer and representations of

the left and right subtrees. Elements in the subtrees are grouped by the

maximum number of pointers that could be pointing to each element in the

subtree, as in Figure 2.12. When the maximal number of pointers reaches

log2(cache size) these elements have been considered for eviction, and hence

fail the Must test.

By analysing the root pointer of the cache tree separately, Grund and

Reinekes analysis effectively decreases the size of any cache trees which are

approximated by 1. This results in the good results seen by Grund and

Reineke for a 4-way cache [54], as the cache trees approximated have height

1, and hence behave identically to an LRU cache. However, while using the

maximal number of pointers pointing to a cache element is a better approx-

imation than using the Must analysis of an appropriately sized LRU cache,

the same problem of scalability applies. Grund and Reinekes results for an

8-way cache indicate that only 6 elements of the cache can be analysed, as

opposed to the entire cache in the 4-way case. This leads Grund and Reineke

to conclude that their technique is limited to analysing 2log2(cache size) el-

ements, and hence this is still only a partial analysis. Further, the approach

still does not yield any useful information for a May analysis.

These techniques will be revisited in Chapter 3.4.1, where they will be

analysed from an information theoretic point of view. Chapter 4 will then

perform a ground up evaluation of the PLRU cache to construct a new form
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of compression.

2.3.4 HNMRU Cache: A New Cache

The Hierarchical Not Most Recently Used (HNMRU) cache, proposed by

Roy in 2010 [86] was created to further decrease costs for implementation

of an effective cache policy while retaining the advantages of an LRU-like

policy. The main principle of the HNMRU cache is a further generalisation

of the PLRU cache policy; where a PLRU cache uses a binary tree, HNMRU

uses a tree with a varying branching factor. An example of an HNMRU cache

is illustrated in Figure 2.13. The cache shown is an HNMRU 4-2 cache, as

the branching factor at the root is 4 and on the second level of the tree is 2.

a b c d e f g h

Figure 2.13: An example of an HNMRU 4-2 cache

HNMRU pointers differ from PLRU pointers in that they indicate the

most recently used path, rather than the least recently used. In the case of

an eviction, an element is chosen by starting from the root of the tree and

randomly picking a subtree that is not pointed at; this applies the Not Most

Recently Used policy at every step of the tree hierarchy, which gives the

HNMRU policy its name. Roys implementation uses linear feedback shift

registers (LFSR) [30] to implement the random number generation used for

path selection. This choice is because LFSR is an RNG policy that can be

implemented in a small amount of die area, and the main benefit for using

HNMRU is greater control of the tradeoff between die area and performance.

Due to the fact that HNMRU is a recent development, the only analy-

sis of HNMRU appears to be in Roys paper [86]. Roys analysis uses traces

from a variety of benchmarks to simulate expected use of the HNMRU cache.

These benchmarks show that the expected performance penalty of using an

HNMRU policy over PLRU is approximately 5% for an 8-way cache. This is

favourable as HNMRU can deliver approximately a 50% reduction in storage

necessary for an 8-way cache. However, Roy’s analysis does not take into
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account worst case execution time, as it is focused on expected performance

rather than worst case. Hence Roy’s analysis does not give information that

would be required for the use of HNMRU in real-time systems. HNMRU

would be desirable in real-time systems however, as many real-time systems

also operate under energy constraints, and as the HNMRU policy uses sub-

stantially less die area for implementation there is a corresponding decrease

in the amount of energy the cache requires.

HNMRU caches will be revisited in Chapter 4.6, where a method for

their analysis will be proposed based on a generalisation of the corresponding

method for PLRU caches.

2.3.5 Summary

Caches are inherently necessary to modern computer systems, due to the

difference in speed between RAM and CPU. However, the presence of a cache

complicates timing analysis, as the state of the cache must be modelled. If

the model is too pessimistic, then the effect on estimated WCET can be

relatively large, due to the frequency with which the cache is used. While

an adequate analysis exists for the LRU cache, the same cannot be said of

the more complicated PLRU and HNMRU cache schemes.

Current cache analysis techniques are revisited in Chapter 3.4.1, and a

new method for PLRU and HNMRU cache analysis is given in Chapter 4.

2.4 Loop Bound Analysis

Loop bound analysis is the general problem of determining the number of

times each loop in a program can execute. In general, this cannot be solved

as loop bound analysis can be trivially equated to the halting problem.

However, real-time systems are typically not the general case; as real-time

systems are programmed with time constraints in mind, additional restric-

tions on the programming techniques used can be applied [82] such that it

is possible to determine if the program halts. By extension, this means that

upper bounds can be placed on the number of times each loop executes.

Loop bound analysis is a critical part of determining the worst case exe-

cution time of a program. As the previous section on caches demonstrated,

a large amount of die area is given to cache. Instruction cache is primarily

to speed the execution of loops [55]. While certain loops are trivial to place
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bounds on, for example those which have a fixed number of iterations, the

conditions for a loop can also be complex and depend on multiple variables.

While techniques such as IPET (as mentioned in Section 2.2.3) provide

bounds on loops by definition, such techniques either do not produce tight

bounds or do not scale to large programs. This is because IPET techniques

that do not perform loop bound analysis can either enumerate every possible

path through the loop or make pessimistic assumptions about variables. In

the former case the problem is intractable due to the difficulty of expressing

loop invariants as ILP problems [111]; in the latter case bounds are not

tight.

2.4.1 Value Analysis and Abstract Interpretation

In order to circumvent the problems of an exhaustive search via IPET, it

is necessary to use more intelligent methods. As variables can be used

in loops, Value Analysis plays a key role in Loop Bound analysis. Value

analysis refers to techniques that attempt to predict the possible values

that variables can take within the program. The benefits of value analysis

are considered by Ermedahl and Gustafsson [43], who show how a value

analysis can provide information which both enhances the precision of the

WCET estimate and eliminates the need for some annotations. The first

issue they address is eliminating false paths through the program, by using

conditional statements to force conditions on the dependent variables for the

remainder of the program. For example, if a program branch is executed

conditional on x > 20, x should be assumed to be greater than 20 until the

variable leaves scope. By extension this method can also apply to finding

loop bounds by expressing the unrolling of the loop and expressing it as a

series of if statements. Providing that the loop terminates, this analysis

will terminate and find the bound on the loop because the conditions on the

loop variable will continually tighten.

Unfortunately, performing Ermedahl and Gustafsson’s analysis [43] in

this manner produce a large number of states to evaluate. For this reason,

they discuss the necessity of merging states, but note a distinction between

states. Some states may be redundant and not contribute to the analysis;

these states can be merged with no penalty. States which are not redundant

may be merged as well, but in this case there is a penalty in the precision of

the WCET estimate. This leads to using techniques to reduce the number
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of states to consider.

Of the current approaches to WCET estimation that implement value

analysis, abstract interpretation is the favoured method ([100, 112, 47]). A

reason for this is given in the analysis of the Coldfire processor by Ferdi-

nand et al. [47]: values of program variables are typically unknown, but it

may be possible to calculate intervals which the value is guaranteed within.

This corresponds well to abstract interpretation, as the intervals are easily

thought of as abstract states. Further, merging is easily thought of as a

merging operator by simply picking an interval encompassing the two ab-

stract states to be merged. Operations can then be defined on intervals

which make sense; for instance, two intervals can be added together to find

the interval which the result will lie within. The only issue that Ferdinand

et al. identify with this approach is that these operations become undefined

if the interval contains overflow values, because it is unknown if an overflow

will actually happen in the concrete representation of the program.

Abstract Interpretation applied to Value Analysis is very close to the

purest form of abstract interpretation, as defined by Cousot and Cousot

[36]. In this case the process is iterative; information about variables is

propagated through the statements of the program via a series of rules. The

rules are not equivalent to executing the program; instead information is

extracted about the possible values of a variable at each point. Typically,

this is used to first compute a lower bound, and then an upper bound.

After this step, abstract interpretation has found a fixed point. However, the

information in the first fixed point found may not be adequate; for example,

an upper bound may have been calculated as infinity. This can be corrected

by iterating the process, using information from the previous iterations.

Such information can be used to improve the tightness of subsequent fixed

points, with the aim of removing overly large amounts of pessimism.

The information propagated in abstract interpretation can come from a

variety of sources. An important first source is the initial assignment; in

the case of a variable from an outside source, the range of values that the

variable may take must be known. Further to this, statements inside the

program can reveal information about possible values in certain segments

of the program. For example, if a basic block is reached by traversing the

conditional statement if x > 0, it can be inferred that for the duration of

that block x is a positive number.
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Many tools available depend on the use of additional information from

the user, supplied in the form of annotations [82, 61, 100]. These annotations

are used to provide information which is difficult to infer otherwise, such

as the values that variables will take or loop bounds. Unfortunately, as

annotations are supplied by the user, they are susceptible to human error,

a point made by Prantl et al. [81]. Prantl et al. argue that due to this

potential error it is necessary to verify annotations, in a similar way that

the program itself may be tested. This is accomplished by exploiting the

fact that it is possible to determine if a program is guaranteed to terminate

within a given time. Hence if a WCET bound is given which involves the

use of annotations, it is possible to verify it. Prantl et al. acknowledge one

core failing of this approach: it is computationally expensive. To mitigate

this, Prantl et al. state that the program analysis should be simplified first

by another method, such as abstract interpretation.

However, many implementations of value (and by extension, loop bound

analysis) do not verify annotations, and assume correctness. This can be

seen in comparisons of such tools [112], where variations of the phrase “once

the source code has been annotated” feature heavily, but with no mention

of verification of such annotations, or mention of features to detect errors in

annotations. Attempts have been made on the verification of annotations;

notably Chapman et al. [27] intended to use the submit annotations in

SPARK Ada to a theorem prover to check that annotations were correct,

although this work was not completed. Also of note is that in benchmarks

where some source code is not present, for example in the case of a shared

library, the majority of tools compared in [112] exhibit critical problems,

and leads to significant loss of tightness in others.

2.4.2 Summary

Loop bound analysis is a critical part of finding the worst case path through

a program, and hence critical to WCET estimation. By extension, this

means that Value Analysis is also critical. Currently, a weakness of common

techniques is the use of unverified annotations. As unverified annotations

may introduce incorrect information to the analysis, there is an argument

that it would be desirable to reduce the dependence on such annotations.

An examination of current techniques in the context of information the-

ory is presented in Chapter 3.4.2. Loop bound analysis itself will then be
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revisited in Chapter 5.

2.5 Common Problems

The problems encountered in WCET analysis fundamentally relate to the

flow and preservation of Information. Information is critical to the success of

any WCET analysis technique. For example, in LRU cache analysis [91] all

relevant information can be easily condensed to a compact representation,

due to the rules by which the information is treated. In the case of the PLRU

cache, which has more complicated rules, information cannot be condensed

in the same way. However, due to the state explosion problem [91], it is

impossible to consider all information without some sort of compression.

This leads to potentially valuable information being lost, as demonstrated

in the techniques presented by Grund and Reineke [54], which cannot analyse

all elements of an 8-way PLRU cache due to loss of information.

Information is again, a limiting factor in loop bound analysis. The fact

that source code and detailed annotations are necessary to the implemen-

tations of static analysis tools [112] indicates that information is not being

propagated through the analysis correctly. This is because regardless of

optimisations performed, a compiler is expected to produce a functionally

equivalent program. Provided that this assumption is true, a compiled pro-

gram should contain as much information as the source code. Hence the

question remains: why is the source code required? If the compiled pro-

gram represents the same information, it should be possible to use it to

derive the same properties.

Further, reliance on annotations which may not be correct [81], can intro-

duce incorrect information to analysis. If possible, information guaranteed

to be correct, such as valid possible values for input variables, should be re-

lied upon instead. It can be theorised that if such information is propagated

through a program analysis correctly, then additional information should

not be necessary.

Given that Information is the limiting factor, it makes sense to ques-

tion if frameworks exist that focus on the management, representation and

compression of information. This is investigated in the next chapter, on

Information Theory.
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Chapter 3

Information Theory and

Compression

As indicated in Chapter 2, a limiting factor in WCET analysis is the use of

information; specifically, the representation and compression used in meth-

ods such as Abstract Interpretation and Symbolic Model Checking. These

techniques utilise a form of lossy compression in that they discard informa-

tion that is deemed uninteresting to the analysis. However, there is no formal

method to identify what information should be considered “uninteresting”,

instead relying on research to find what should be discarded. In contrast,

the formal framework of Information Theory sets out how to classify differ-

ent types of information, and existing compression methods provide insights

on representation and how to identify information of low value to a spe-

cific goal. Hence this chapter introduces Information Theory and existing

compression methods, and then examines how these concepts are used in

existing techniques used in PLRU Cache analysis and Loop Bound analysis.

Information Theory [102] is the branch of mathematics dedicated to

the analysis, handling and storage of Information. Historically, Information

Theory was developed by Shannon in 1948 for use in analogue signal process-

ing [92]; specifically, analogue signals which are prone to interference. Using

Information Theory it is possible to specify precisely how much interference

a signal can tolerate before it is unusable.

A prominent early example of Information Theory applied to compres-

sion is Huffman Encoding Subject [58]. Huffman encoding makes the as-

sumption that the data it compresses can be modelled as a series of in-
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dependent and identically distributed (i.i.d.) random variables, and fur-

ther assumes that the distribution of the characters to be compressed is

known in advance. Subject to these caveats, it is possible to prove that

Huffman encoding is optimal [19] by applying Shannon’s source coding the-

orem [92]. Unfortunately, most data for compression will not meet the i.i.d.

assumption[96], as the i.i.d. assumption is specifically stated as follows:

• Independent: No sample affects another sample

• Identically Distributed: The chance of any result does not change

between samples, i.e. P (x = a) = P (y = a)

Obviously, for many systems, the i.i.d. assumption will not hold. For

example, the probability of the next word of a sentence is conditional on

previous words, as some combinations of words do not make valid sentences.

For example, given the beginning of the sentence “The quick brown fox

jumped over the”, the likelihood of the next word being “fence” is higher

than the word “the”, given that adding the word “the” doesn’t make a valid

sentence. However, if one were to analyse the words assuming that all words

were i.i.d., one would come to the conclusion that the word “the” were more

likely than “fence”, given that the word “the” has already appeared twice in

the sentence, and therefore evidence suggests that it appears more frequently

than other words.

In practical terms, Information Theory also provides the language needed

for the techniques given in this chapter [102]. Firstly, Information The-

ory distinguishes between “information”, the abstract representation, and

“data”, a concrete instantiation of information (for example, the difference

between a language and a sentence of that language). The next impor-

tant definition is that there can be many different types of information in

a system, where each type of information is represented by its own non-

overlapping alphabet (for example, two different languages are different

types of information). Finally, Information Theory (in particular data pro-

cessing), allows notions of value to be placed on data (for example, shouting

the word “Fire!” (usually) has a more important meaning than the word

“Sheep!”).

Although compression is typically applied to streams, the results are still

used in other situations. In many cases when data can be indexed arbitrarily,
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treating the data as a stream makes problems more tractable. For example,

many compression systems (e.g. .ZIP [41]) compress streams of data even

if all the data is known in advance. As this thesis is primarily concerned

with the application of compression, and in particular lossy compression,

the remainder of the chapter will focus on such examples.

3.1 Lossless Compression

Lossless compression is the family of techniques that take information and

reduce the size of its representation. The critical point for lossless techniques

is that even though they reduce the size of the representation, the original

can be reproduced entirely faithfully. This has many practical usages; for

example, archiving data.

One important family of lossless compression techniques is the Lempel-

Ziv (LZ) family. Developed in 1977 and 1978 respectively, LZ77 [114] and

LZ78 [115] have had a large influence on compression techniques since then,

in particular forming the basis of the compression used in the GIF format,

and the DEFLATE algorithm used in both .ZIP and PNG formats. A

particularly important variant on the LZ77 algorithm is the Lempel-Ziv

Markov chain variant, LZMA [80]. LZMA’s importance is that it is one

of the currently leading general purpose compression algorithms, able to

achieve much higher compression ratios than algorithms such as LZ77.

3.1.1 LZ77, Huffman and DEFLATE

The LZ77 [114] algorithm is particularly simple. As LZ77 advances through

a file, it maintains a window of previously encountered data. If data in

encountered which matches data held in the window the new data is encoded

as a copy of data from the window, as illustrated in Figure 3.1. Hence the

compressed file is encoded as a series of two types of block. The first type

of block represents raw data, and the second represents data that should be

reconstructed by copying previously decompressed data.

The representation of a copy block is a simple (offset, length) pair. The

offset specifies how far back in the decompressed data to go to start copying

the number of bytes specified by the length. One non-obvious benefit of this

is that it allows the efficient representation of repeated data by specifying

a length greater than the offset; this technique is illustrated in Figure 3.2.
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Figure 3.1: Finding patterns in a sliding window
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Figure 3.2: Representing patterns in LZ77

The principal is that as the decompressor works on a bytewise basis, when

the length exceeds the offset the decompressor will initially copy the first

instance of the repeated data in the normal manner, and then copy the

subsequent instances from the previous instance.

A disadvantage of LZ77 is that as the size of the sliding window increases,

finding repeated data becomes more computationally expensive. This is seen

in that the standard LZ77 algorithm specifies sliding window sizes of up-to

32kB of data. If a sliding window is sufficiently small in comparison to the

size of the input, then there is a high chance of patterns which are too long to

be compressed, and hence compression is inefficient. A second disadvantage

is that LZ77 provides only sequential access to compressed data; it cannot

provide random access. This is overcome in some implementations by using

LZ77 to compress blocks of data which are either small enough that complete

decompression is inexpensive or simply do not require random access in the

given use case. For example, .ZIP files split input data into a number of

blocks and compress each block in isolation [41]. Each block is small enough

that the loss of random access to the data in the block does not add a

large overhead, and by performing this splitting the blocks can be accessed

randomly and hence circumvent the sequential access requirement of pure

LZ77.

As previously mentioned, when combined with Huffman encoding [58],

LZ77 forms the basis of the DEFLATE algorithm [41]. Huffman encoding is

a simple method of mapping a given alphabet to an alphabet which can be

represent the same list of symbols more efficiently; approaches of this type
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are called entropy encoding. This is accomplished by knowing the probabil-

ities of each symbol in advance and representing the more common symbols

with fewer bits. The main problem which Huffman encoding overcomes

is avoiding ambiguity in the resulting bitstream, which is accomplished by

finding the smallest possible prefix-free alphabet. Hence any symbol repre-

sented by n bits cannot be a prefix of a symbol represented by m > n bits,

and hence the resulting encoding is unambiguous.

The actual implementation of DEFLATE [41], once LZ77 and Huffman

encoding are defined, is very simple. The input data is split into a num-

ber of blocks. Each block is first compressed with the LZ77 algorithm with

a dictionary size of up to 32B to remove duplicate data, and then com-

pressed using Huffman encoding. Typically, the Huffman encoding used is

specialised to the block; as all data in the block is known, it is possible to

create a frequency table for the characters used to represent the block and

construct the optimal Huffman encoding. However, it is also possible to use

a predefined Huffman table if necessary, or if the additional space required

to store the Huffman table is greater than the space the custom table would

save.

The advantages of the DEFLATE algorithm are mainly historical: it is

widely implemented and an accepted standard. Indeed, it is used within

many other standards (e.g. PNG [14]). Whilst it does provide a useful

amount of compression, the relatively small dictionary size used in the LZ77

stage of the algorithm limits its effectiveness. Further, the LZ77 portion

of the algorithm requires a relatively high amount of string comparisons, a

relatively expensive operation.

3.1.2 Legacy of LZ77

In the subsequent year, LZ77 was enhanced with the proposal of the LZ78

algorithm [115], which requires far fewer comparisons during compression

and is therefore much faster. LZ78 was again enhanced with the proposal

of the Lempel-Ziv-Welch (LZW) algorithm [107], which provides a simple

improvement and is the compression method employed in the GIF file format

[59]. Further, specialised variants such as LZMW [74], LZAP [97] and LZWL

[28] have been created.

One of the current state of the art compression methods is LZMA, cre-
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ated by Pavlov [80] in 20011. For many data sets, LZMA achieves the

greatest compression when compared with other state of the art methods

[80]. LZMA employs three major innovations over LZ77, the first of which

is a much larger dictionary/sliding window when compared to LZ77. Sec-

ondly, in LZMA a character can be any length of bits rather than being

fixed to 8 bits, meaning patterns across byte boundaries can be detected

and compressed. Finally, the algorithm implements localised caching, such

that recently detected patterns can be stored in fewer bits. All of these

additions increase the computational complexity of LZMA, but due to the

advances made in the 24 years between LZ77 and LZMA, modern computers

are able to use LZMA in a practical amount of time.

3.1.3 Summary

Lossless techniques for compression are effective at reducing the size of the

representation of information, without destroying information. The price

for this is that compressed information tends to be slower to access, as

additional computation must be performed when data is written or read

to a compressed resource. However, lossless compression has limits [92],

and whilst it can provide a moderate level of compression, higher levels of

compression may be desirable. Importantly however, lossless compression

demonstrates that the representation of data is important for the appli-

cation of compression, as seen in the enhancements of LZMA over LZ77:

enabling characters to have an arbitrary rather than fixed length improves

compression.

3.2 Lossy Compression

The previous sections have dealt with Lossless encoding, but such approaches

have limits on the amount of compression that can be achieved. These lim-

its can either be mathematical limits such as the Shannon Source Coding

Theorem [92] or simply given by the amount of resources available to find

patterns for compression. However, common compression algorithms, such

1Unfortunately, LZMA is not the product of academic research, and as such there is
no paper describing the algorithm. Indeed, the algorithm is poorly documented, and to
the best of my knowledge, the only human language overview of the algorithm is found in
an article on Wikipedia.
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Lossless Lossy
Raw Archive (LZMA) Audio (FLAC) Audio (AAC)

Size (MB) 3053 1247 1327 61
Ratio 1.0 2.4 2.3 50.0

Figure 3.3: Compression of the Open Goldberg Variations [6]

as those used in audio and video, deliver very high compression ratios with-

out having to expend significant resources. An example of this is seen in

Figure 3.3, where a recording of the Goldberg Variations [6] is compressed,

with two lossless techniques and the more common audio format, AAC.

Whereas lossless compression manages to approximately halve the file size

of the recording, AAC manages a reduction by a factor of fifty.

The trick used to increase the compression ratio so dramatically is that

of lossy compression [106]. Whilst every piece of information is important,

quite often some pieces of information are more important than others.

Lossy compression takes advantage of this principal to discard information

of low value to a particular result. However, due to this, lossy compression

is not useful in every case. For example, in the case of archiving input files

have to be recreated faithfully from the archive: in this case, all input in-

formation is of equal value, and hence it is not appropriate to discard any

information.

When applying lossy compression, the value of discarding information is

twofold. Obviously, information that is discarded does not have to be stored,

and this will increase compression. However, in addition to this, it is possible

that the information to be discarded can actually be substituted instead

[106]. If the information is substituted, then patterns can be introduced

into the information stream that can be exploited by a lossless compression

technique. This can result in even less information being stored than by

simple discarding; by introducing patterns that a compression algorithm

can effectively exploit, large sections of the stream only have to be stored a

single time, thus further reducing the amount of information to store.

Determining the value of information to discard via lossy compression is

highly dependent on the specific application of the compression. This sec-

tion will examine perhaps the most famous applications of lossy compression

techniques, audio and video compression. In both cases there is an abun-

dance of information which can be discarded, but very different principals
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apply to determining what should be discarded.

3.2.1 Audio Compression: MP3, AAC

Audio compression, such as MPEG Layer 3 (MP3) [18] or Advanced Audio

Codec (AAC) [16], rely on psychoacoustic masking for compression [106].

Psychoacoustic masking describes the limits on human hearing, and specif-

ically when the presence of one frequency of sound masks another.

First conceived of in 1979, psychoacoustic masking was independently

developed by Schroeder [90] and Hill and Krasner [64], and was an initial

failure for general purpose audio compression. Hill and Krasner succeeded

in developing hardware that compressed the sound of the human voice, but

was not useful for other sounds. Meanwhile, the more influential Schroeder

was only able to prove negative results on the viability of the technique. It

was not until later that psychoacoustic masking became a viable technique,

with implementations of psychoacoustic codecs being well publicised in 1988

[17].

Psychoacoustic masking occurs due to how the human ear receives sound.

In humans, the cochlea is the specific part of the ear which converts sound

waves to nerve signals. To do this, it is lined with thousands of tiny hairs.

Each of these hairs vibrates at a specific frequency, and when they do the

human perceives sound of that frequency. Psychoacoustic masking describes

how sounds can interfere with this process, by stopping the hairs of certain

frequencies vibrating.

There are two main forms of psychoacoustic masking. The first of these

is Simultaneous Masking [106]. Simultaneous masking occurs when the ear is

unable to differentiate between multiple frequencies of sound. This results

in only one of the frequencies being detected, with the others being lost.

This occurs because there is a mismatch in the number of sound frequencies

(uncountably infinite) and the number of hairs in the cochlea (finite). By

necessity, this means that each hair in the cochlea detects a band of sound

frequencies. If two sounds fall within the same band, then only one sound

can be perceived. As evolution has specialised the human ear, these bands

are not uniform. Instead, the bands are narrowest in the range of “human”

sounds, and greater for “non-human” sounds. In particular, this means that

at low frequencies the bands are large, and hence higher or lower frequencies

are more difficult to distinguish. Further, as humans grow older the cochlea
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will likely experience damage from various sources, most commonly loud

noise. This damage will further increase the size of the bands of sounds.

The second main form of psychoacoustic masking is Temporal Masking

[106]. Temporal masking is an effect where sounds at different times mask

each other. This is not the same as the deafness that occurs immediately

after hearing a loud sound, which is caused by acoustic reflexes attempting

to shield the ear. Instead, temporal masking occurs at a much smaller scale,

and results in the inability to distinguish lower intensity sounds that occur

immediately before or after a louder pulse of sound. The reason for this is

due to the positioning of hairs within the cochlea; some sounds will disrupt

the vibration of hairs in the cochlea either before or after they are heard,

causing the masking effect.

The MP3 standard [18] was the state-of-the-art compression format for

audio for a significant amount of time, and has become a de-facto standard.

Designed by the Moving Picture Experts Group, MP3 employs the theory

of psychoacoustic masking extensively to reduce the amount of data to com-

press, without compromising perceived audio quality. The same is true of

the successor to MP3, the AAC standard [16].

Both MP3 and AAC do not define an encoding algorithm; only the de-

coding algorithm is specified, with various optional features [18, 16]. This is

due to the fact that both codecs must make heuristic decisions, as an exhaus-

tive search for the best compression is infeasible. Hence by only specifying

the decoder, a number of encoders can exist, all producing compatible out-

put. The various encoders can have different properties, for example being

specialised to work on different source material.

In place of an encoding algorithm, MP3 and AAC specify various ref-

erence tables of the psychoacoustic effects the algorithms should use when

selecting data to discard [18, 16]. These tables are given as they are only

possible to calculate as the result of extensive, and qualitative, research.

Every human ear is different, and hence constructing tables of psychoacous-

tic response is only possible by measuring the effects on a sample of people

and selecting an “expected” masking profile, which would be reasonable to

assume.

With the psychoacoustic profiling information available, the main re-

maining problem is to decide which information should be kept, and what

should be discarded. The first problem to solve is the conversion of a sound
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wave to digital information; this process is called sampling, in an audio spe-

cific context, and more generally quantisation [49]. Assuming that sound is

represented as a series of perfect wave functions, the Nyquist-Shannon Sam-

pling Theorem [93] states that for a wave function containing frequencies of

up to x hz, the wave function can be perfectly described with a sampling

frequency of 2x hz. Whilst the mathematical assumptions made may not

match reality, this result gives a useful description of what sampling fre-

quencies are appropriate for different applications. For example, encoding

low frequency sounds, such as whale songs, requires a much lower sampling

frequency that higher pitched sounds. Hence, it is possible to compress lower

frequency sounds much more effectively than high frequency sounds, as less

information is needed to describe the sound.

The second parameter in determining what information to discard is the

user deciding how much space they are willing to allocate to the compressed

audio. As stated before, the MP3/AAC algorithms use heuristics; these

heuristics will vary depending on how the user specifies the quality of the

compressed audio. The specification gives three options: a constant bitrate

(CBR), constant quality (CQ), and a hybrid approach of average bit rate

(ABR) [18, 16]. The CBR approach attempts to maximise perceived quality

given fixed resources, whilst the CQ approach behaves similarly, maximising

compression at fixed quality. The ABR approach attempts to achieve a

balance between the two, producing output with predictable quality and

resource usage. However, in each case the heuristics used must vary. For

example, CBR and CQ approaches do not have to anticipate the difficulty of

encoding future segments of audio which is necessary for the ABR approach.

Finally, after information has been discarded from the audio stream,

lossless compression can be applied. In the MP3 and AAC codecs, this

amounts to applying Huffman encoding [58] to the stream. An additional

benefit of discarding information that cannot be perceived by human ears, is

that the amount of unique symbols decreases, and the number of repeated

symbols increases. This in turn leads to Huffman compression becoming

more effective.

Whilst MP3 and AAC codecs attempt to discard information which the

human ear cannot hear, this is not always the case. In particular, when

there is not enough capacity to compress the audio accurately, compression

artifacts will be observed, as studied by Liu et al. [69]. A common example
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of this is applause; applause is essentially random noise and therefore largely

incompressible. If there is not enough capacity to represent the applause ac-

curately, then artifacts will be introduced as the least important information

is still perceivable. In the case of applause, this is a distinct metallic ringing

sound due to Simultaneous masking being applied in excess. In the case

of Temporal Masking being applied excessively, an “echo” of the sound can

be heard, although as with Temporal masking working in both directions of

time, the echo may be heard before or after the sound which caused it.

The main things to observe in the relatively simple case of audio com-

pression are the transformation of input data to a form more amenable to

compression and that there is a clear scientific grounding for choosing the

information which is discarded. These properties are continued in the vastly

more complex case of video compression.

3.2.2 Video Compression: h264

Another well known use of lossy compression is video compression, with

a current example being the h264 algorithm [110]. Whilst the problems

faced by video compression are similar to those in audio compression, video

streams contain far more data than audio streams; an audio stream is

merely a 1-dimensional sequence of samples, whereas video data comprises

3-dimensions: x and y for position within frames, as well as time to advance

between frames.

The vastly increased amount of data has two implications: the first is

that much more data must be discarded in order to reach an acceptable

compressed data size. However, the second is that there are more strategies

available to discard information; the increased dimensions enable patterns

to be found on a single piece of data in more dimensions.

In practice, searching three dimensions for patterns is computationally

infeasible. Due to this the types of compression implemented by the MPEG

and h264 algorithms are actually quite restricted. To perform compression

over time, three video frame types are specified: I-frames, P-frames and

B-frames [110]. I-frames are the simplest and serve as a point of reference;

they simply store a compressed image taken from the source material.

By contrast, P-frames make use of information from the previous frame,

encoding the difference with techniques such a motion vectors [110]. The

image is divided into fixed sized blocks, and these blocks are compared
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against the previous frame, finding the closest matching area. The difference

between the block and the area in the previous frame is taken, and then

compressed. This results in compression as frequently, for example is scenes

where the background is static, many blocks will not change and hence

do not require space to represent in the P-frame. B-frames are similar to

P-frames, with the difference being that a B-frame can also reference the

subsequent frame.

To encode each type of frame, the MPEG and h264 codecs specify a

number of transforms that have been picked to minimise perceived image

quality loss. However, when video frames are in their basic form, it is not

easy to either specify transforms or pick which transforms are most appli-

cable. To combat this, the source frames are first transformed, primarily

using transformations based on the Discrete Cosine Transformation (DCT)

developed in 1974 by Ahmed et al. [1]. The DCT transform is not itself a

lossy transform; instead it represents portions of the frame as the sums of

weighted cosine functions at different frequencies.

Once the blocks are DCT encoded, they are in a form more amenable to

compression. One significant technique employed, as with audio, is quan-

tisation [49]. However, whilst quantisation in audio is a necessary process

to convert an analogue signal to digital, in this application quantisation is

used to trim the amount of space required to store the DCT encoded blocks.

By stripping out the contributions of cosine functions with low weights, the

DCT block can be represented using a smaller amount of data. Further, as

the cosine functions removed have a low weight, they have a low contribution

to the overall picture and hence can be argued to be not as valuable as those

with a high weight. This process does have caveats attached: specifically,

the contribution of low-weight cosine functions is necessary to reproduce

subtle details. Hence removing the low-weight cosine functions introduces

visual artifacts, as illustrated in Figure 3.4.

The h264 codec goes a step further than MPEG by attempting to min-

imise the appearance of artifacts. This is accomplished by a mandatory

deblocking filter [85], which minimises the visual appearance of artifacts.

Whilst this filter does not stop the artifacts from appearing, it minimises

the visual impact of the artifacts by replacing clearly visible hard artifacts

with artifacts that are less visible, as seen in Figure 3.4. As the compres-

sion artifacts are made less visible by the deblocking filter, the h264 codec

72



Original Frame Compressed with Artifacts

Compressed with Artifacts
and deblocking

Figure 3.4: Blocking artifacts in video compression. Images from Richardson
[85]. The differences between these images are much clearer when viewed in
colour.
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is able to be more aggressive in the quantisation step , resulting in higher

compression with fewer visible artifacts.

In contrast to audio compression, the vastly increased amount of data in

video means that visual artifacts are almost inevitable, even when discarding

information which according to scientific analysis is less likely to be noticed.

Hence in addition to the transformation of input and using scientific method

to determine what to discard, video compression introduces the notion of

a recovery strategy: in this case, substituting data likely to be noticed as

compressed with an alternate representation which is less noticeable.

3.2.3 Summary

Lossy compression can exceed the limits of lossless compression by discard-

ing unnecessary or unimportant data. The drawback to this is that it is

impossible to faithfully recreate the original source. However, if done cor-

rectly, this is irrelevant: by discarding low value information, it should be

impossible, or at least difficult to detect that changes have occurred.

3.3 Common Themes in Formal Compression Ap-

proaches

The examples of compression given illustrate a variety of approaches to

reducing a given quantity of data. Lossless compression revolves around

finding a compact representation for data. This can be accomplished either

by adjusting the alphabet of the data, as in Huffman encoding [58], or by

exploiting patterns in the data as in Lempel-Ziv encoding [114]. Further,

these approaches are not mutually exclusive, and can be combined, as in the

DEFLATE algorithm [41].

In lossy compression, a common theme is to discard information that is

deemed to be least valuable. In the case of audio encoding, this is informa-

tion describing audio which cannot be heard due to psychoacoustic effects

[18, 16]. Discarding useless information obviously results in less information

to store, and hence higher compression. Further, it is sometimes necessary

to transform the data before it becomes obvious what is of least value, such

as the DCT transform commonly employed in video encoding [110].

Further, lossy compression approaches must also be able to deal with
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the fact that discarding information can introduce artifacts that must be

dealt with. This is seen in the deblocking filter used by the h264 codec

[85], which attempts to reduce the visual impact of artifacts introduced by

the encoding process. Whilst such a filter is strictly speaking unnecessary

for compression, it reduces the effect of information loss, and hence more

information can be lost.

In summary, this leads to four main techniques used in general compres-

sion:

• Changing Representation: Changing the representation of infor-

mation such that it either takes less space, or enables another technique

to be applied. Examples: Huffman Encoding, DCT Transformation in

Video Encoding

• Pattern Compression: Finding and then efficiently encoding pat-

terns within a stream of symbols. Examples: Lempel-Ziv encoding

• Lossy Compression / Discarding Information: Discarding in-

formation so less information needs to be stored. Examples: Audio /

Video Compression

• Recovery: Ways of handling the absence of information that was

discarded during the encoding, such that the effect of information loss

is minimised. Example: Deblocking in h264

Some of these techniques may appear familiar: this is because these

techniques are already in use, but are not formally identified. The next

section will revisit the existing approaches to the problems of PLRU cache

analysis (Section 2.3.3) and loop bound (Section 2.4), and identify how these

techniques have been used in previous approaches.

3.4 Compression in Existing Techniques

Whilst applying the principals of lossy compression to the problems faced

by static analysis has not, to the best of my knowledge, been done before,

existing techniques do use many of the same ideas. This section examines

how abstract interpretation and symbolic model checking make use of lossy

compression, and identifies weaknesses where a formal approach could help.
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In principal, Symbolic model checking [22] has a very simple map to the

principals of lossy compression. Symbolic model checking works by defining

a map between the concrete state space and a symbolic state space, which

loses precision to reduce the number of states to check. This map can be

thought of in much the same way as how lossy compression maps between

the source and the compressed output. The step needed to see symbolic

model checking as lossy compression is to realise that rather than consid-

ering individual states, all states at any step of symbolic model checking

are compressed together. This allows the merge operation to be applied to

states which are similar to each other.

Abstract Interpretation [36] maps onto lossy compression in a similar

way. To reduce the number of states to consider, abstract interpretation

makes use of an abstraction function. This function takes the current set of

states and outputs a simplified version. The exact simplification made is left

to the implementer of the technique and determined by the type of problem

being considered. Hence whenever the abstraction function is used to reduce

the number of states, lossy compression occurs as the simplification will, by

definition, lose information.

3.4.1 Lossy Compression in PLRU Cache Approximation

As introduced in Chapter 2, two main forms of analysis for PLRU caches

exist; the LRU-approximation given by Heckmann et al. [56] and the Po-

tential Leading Zero (PLZ) approach given by Grund and Reineke [54]. In

addition, the practice of considering logical cache states rather than physical

cache states, the Collecting Semantics [37] of a PLRU cache, also discards

information. However, as the only information discarded by the Collect-

ing Semantics is the precise concrete states encountered, by instead keeping

track of all behaviours encountered, one can conclude that the information

discarded by Collecting Semantics has no value. In contrast, as the LRU

and PLZ approaches do not produce useful results for PLRU caches with

associativity of at least 8, it can be inferred that these approaches discard

information of significant value.

In the approached used by Heckmann et al. [56], the loss of information

is by necessity: Heckmann et al. do not propose rules for tracking when

the information could be evicted, and hence the only possible method is to

discard that information and make no decisions using that information. The
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a b c d

0       1      2       2Subtree distance to a:

Figure 3.5: Subtree distances to element a in a 4-way cache

loss of such a large amount of information is that the analysis is incomplete,

and hence has high pessimism: even for small caches a large number of

definite hits will be classified as “May Hit”.

Grund and Reineke’s Potential Leading Zeros [54] approach to PLRU

Must analysis is provided as a form of abstract interpretation, and hence

as previously stated discards information by using its abstraction function.

Specifically, an approximation of the number of pointers that point to each

element of the cache is made (the “potential leading zeros” that the analysis

is named for), as previously shown in Figure 2.12. In order to merge states,

similar states are identified by the subtree distances of the elements within

the state (Figure 3.5, which provides a partial representation of the tree

structure).

Grund and Reineke’s algorithm approximates the subtree distances be-

tween two cache lines as being either 0, non-maximal, maximal or unknown.

In the case of Figure 3.5, a has subtree distance 0 to a itself, a non-maximal

subtree distance to b, and maximal subtree distance to c and d. Effectively,

this partitions the cache into two subtrees, which allows the analysis to de-

duce that an access to a cache line within the left subtree of the root node

will not impact the right subtree, and vice versa. Any cache states which

have the same subtree distance approximations for their elements can be

merged, as seen in Figure 3.6, with the number of potential leading zeros

being upper bounded. When the number of potential leading zeros for a

cache line reaches the height of the subtree it resides in, then the analysis

considers that the cache line could be evicted at the next eviction.

The main problem with Grund and Reinkes approach is that it is in-

complete: it can not analyse all elements of caches with at least 8 ways.

Hence even though the approach succeeds in reducing the number of states

to be considered, it does not provide a full cache analysis. This can be
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Figure 3.6: Merging states in Grund and Reinekes Potential Leading Zeros
analysis

viewed as discarding too much information; Grund and Reineke’s primary

motivation for targeting the number of potential leading zeros for approx-

imation appears to be soundness. This is because the behaviour of Grund

and Reineke’s approach is similar to the technique of Heckmann et al. of

using an LRU cache to provide a Must analysis [56]. This is observed as in

Grund and Reineke’s algorithm, each subtree can be equivalently modelled

as an LRU cache of size log2(N/2), for an N -way cache, which is the same as

performing Heckmann et al.’s analysis on each subtree. Hence the property

of soundness is easily proved.

Whilst soundness is a desirable property, the consequence of discarding

too much information is the appearance of compression artefacts: the dis-

crepancies between the compressed representation and the actual system. In

the case of Grund and Reineke’s approach [54], compression artifacts lead to

considering additional states that could never be encountered. The major

concern is that Grund and Reineke’s approach can never determine that any

element has been evicted for a cache with N ≥ 8 ways. This immediately

causes state space explosion: if no element can be provably evicted, then

trivially after accessing k unique memory blocks, all possible combinations

of those cache elements must be considered. Hence for k memory blocks,

this quantity is expressed as kCN , and is equal to k!
N !(k−N)! . However, as

each cache is represented as two subtrees, the number of states considered

will likely be greater2. Regardless of the exact quantity, this leaves a lower

2Experimentally, it rises at a rate of O(2k).
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bound on the number of states considered that rises at least as fast as Ω(kN ).

Given that the number of unique memory locations considered is expected

to be large, this is clearly an undesirable property.

As too much information is discarded by Grund and Reineke’s approach,

and this leads to state explosion, it could be argued that considering the

problem from an explicitly information theoretic point of view could help.

By determining the effects of removing each type of information contained in

the cache state on the size of the state space considered, it should be possible

to devise an analysis which is both sound and doesn’t lead to state explo-

sion. This could be obtained by retaining enough information to perform

an effective May analysis, thus allowing elements to be provably evicted and

hence reducing the number of cache states to be considered.

In contrast to the approaches of Heckmann et al. [56] and Grund and

Reineke [54] approaches, using the Collecting Semantics [37] of a cache

does not discard valuable information. It does however discard informa-

tion: specifically, when cache states have different physical representations

but all exhibit the same logical behaviour, only one of these cache states

need be evaluated and the rest discarded. This information is not relevant

to the analysis as the analysis is not concerned with which physical states

may be reached, but the logical behaviours that may be observed. Hence,

in PLRU analysis, there does exist a form of lossy compression which only

discards information that has no value to the analysis. Unfortunately, the

technique of Collecting Semantics does not discard enough information to

be tractable. Hence any form of tractable analysis must discard information

which has value: the main question is in determining which information is

of least value and how it may be discarded without impacting the analysis.

3.4.2 Lossy Compression in Loop Bound Analysis

Loop bound analysis is typically accomplished by either symbolic model

checking [22] or abstract interpretation [46]. As mentioned previously, both

of these techniques use lossy compression to reduce the size of the state

space. In the case of loop bound analysis, the lossy compression takes the

form of merging states which are deemed to be identical or close-enough.

The main problem comes in defining “close-enough”. If too many states

are considered, then the analysis becomes intractable; Too few, and the

analysis will be overly pessimistic. This problem is characterised by Bullock
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and Silverman [21], who identify that in any computational simulation there

is a trade off between the tractability of the problem and accuracy3.

It can be argued that one of the problems caused by excessive com-

pression of the state space is the need for annotations to provide informa-

tion that the compression could have inferred but discarded, as observed

by Ermedahl and Gustafsson [43]. Hence, it could be argued that provided

that the bounds of input variables are well defined, it should be possible

to propagate this information through the analysis of the task code, avoid-

ing discarding useful information. In this case, annotations would not be

required as any information from an annotation could be inferred automat-

ically, rendering the annotation unnecessary. On the other hand, for an

analysis technique that requires annotations, it can be inferred that useful

information was not propagated successfully at some point in the analysis,

and therefore discarded. Hence the reason for the required annotations is to

reintroduce information lost as a result of excessive compression applied by

the analysis technique.

Hence there could be two benefits to considering this problem from a

more formal approach. The first of these is that the usage of information

within the program can be analysed; for example, to distinguish between

variables which take a small set of discrete values and those that occupy

ranges. If the analysis is capable of determining these properties, then ap-

propriate representations can be picked which allow for the most compres-

sion whilst keeping the amount of pessimism low.

The second benefit to a formal approach is that by introducing a mea-

surement for the amount of information in the analysis at any given point, it

is possible to keep track of the information within the system. This can aid

the development of analyses, by identifying the points at which an approxi-

mation discards information which could later be useful. If these points are

known, then the algorithm can be altered to attempt to avoid or minimise

the information lost.

An additional argument can be made that current approaches may be

too general. Abstract Interpretation, as applied to Loop Bound Analysis

by [46], attempts to prove the existence of loop bounds. Trivially, this

is impossible in general as it would solve the halting problem. Hence, it

3Also the generality and realism of the simulation, as identified by Levins [65], but
these properties are non-negotiable for WCET analysis.
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is expected that the program obeys conventions or rules, in the form of

restricted programming practices, that guarantee that a loop bound exists

[61]. This in turn means that it is unnecessary for loop bound analysis to

prove the existence of loop bounds; it would be acceptable to assume the

existence of loop bounds. If assuming the existence of loop bounds, then the

problem of finding the loop bounds becomes computable [39], and does not

violate the halting problem. While the assumption of the existence of loop

bounds is a major strengthening on the requirements for the input program,

it also allows a corresponding relaxation to be made on the requirements for

testing: specifically, annotations are now no longer required.

3.5 Goals for using a more formal approach

As illustrated by the analysis of lossy compression in current techniques, the

ideas of using lossy compression to reduce the state space of an analysis are

critical to current approaches [56, 54, 37, 46]. However, current approaches

to defining how to implement said compression are not formal; the basic

idea used appears to be for an interesting quantity to be identified and then

approximated. Whilst this may yield good behaviour, there is no guarantee.

For example, Grund and Reineke’s PLRU-PLZ [54] approach was selected

because the number of potential leading zeros does give an accurate de-

scription of when a cache element can be selected for eviction. However, the

approximation selected does not yield an accurate analysis due to important

information being lost.

In contrast, lossy compression in fields such as audio [18, 16] or video

compression [110] chooses to loose information for which there is an ar-

gument that the information is not important. For example, audio which

cannot be perceived by the human ear, or detail which cannot be detected

in motion. Once a sufficient amount of information has been discarded, the

information is further compressed using a form of lossless compression [58].

Of note is that these approaches demonstrate a formal approach, where in-

formation is classified according to value and the least valuable information

is discarded.

In principal, there is no reason why such a formal approach could not

be applied to problems such as those found in static analysis of Real Time

Systems, in particular those which rely on exploring a state space. These
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problems are typically found in modelling computer systems for the purpose

of finding an estimate on the WCET of a task. Such an approach would be

comprised of two main parts: first the representation of the information can

be chosen such that information is stored efficiently: a type of lossless com-

pression. Once the representation of the information is decided, information

can be tracked throughout the analysis, and only low value information can

be chosen for being discarded: a form of lossy compression. By only dis-

carding low value information, and having an appropriate recovery strategy,

the goal would be to reduce the number of states to consider to a level

acceptable to the end user.

3.6 Outline of a Formal Approach

Given the usage of lossy compression in traditional techniques, such as audio

and video compression, and the current implicit usage in abstract interpreta-

tion and symbolic model checking, it is possible to provide a general outline

of how a more formal approach can be used to find appropriate simplifica-

tions. This can be given as the following steps, with corresponding examples

from MP3 compression:

1. Types of Information: Firstly, it is necessary to identify the distinct

types of information within the system being modelled. Types of infor-

mation are determined by constructing the minimal alphabets needed

to represent unambiguously all data within the concrete system.

• Example: finding frequencies in a sound.

2. Value of Information: After types of information are found, it is nec-

essary to argue for the value of each type of information as used within

the system. This can be accomplished by considering the use of the

information within the system. Such an argument should take into ac-

count the frequency of use of the information, with less frequently used

information being less valuable, the amount of information stored in

each instance of data, and the consequences of the information being

inaccurate. Simple experimentation, by trivially discarding informa-

tion of a certain type, may be useful here to provide evidence that an

argument is correct.
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• Example: Perceptibility of frequencies in a sound at a given time

due to hearing range or psychoacoustic effects.

3. Overall Strategy : Having decided on which types of information are

least valuable, the next step is to decide how much information should

be discarded by the lossy compression. All data of no value should

automatically be discarded, and in addition enough low value data also

needs to be discarded to make the analysis tractable. These decision

on what to discard will then shape the choices in the remaining steps.

• Example: Strategy of discarding all imperceptible frequencies

when they occur, approximating the remainder using MDCT.

4. Representation: Once an overall strategy has been determined, a suit-

able representation should be found. The representation used should

be picked such that it is computationally efficient to discard any in-

formation marked for removal by the strategy.

• Example: Represent sound by applying quantisation and MDCT

to the source.

5. Approximation Operator : Next, an approximation operator must be

defined, which successfully implements the discarding of low value in-

formation.

• Example: Discarding imperceptible frequencies and removing low

value components of the MDCT transformation.

6. Recovery Strategy : Finally, if information that has value to the analysis

is discarded, it is necessary to implement a recovery strategy to cope

with the information loss. Such a strategy has to ensure that the

property of soundness still holds in the analysis, despite information

having been discarded.

• Example: Replacing sounds which have been discarded with white

noise of an appropriate volume during playback.

Having outlined an overall strategy for devising new analyses with a

more formal approach, the subsequent two chapters use this approach to

implement new analyses. Chapter 4 applies this approach to the PLRU and
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HNMRU caches, and Chapter 5 applies the same principles to Loop Bound

analysis.
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Chapter 4

Lossy Compression for Tree

Based Caches

A PLRU cache is a commonly used type of cache due to its relatively good

performance in comparison with LRU and reduced circuit complexity. How-

ever, the logical behaviour of a PLRU cache is more complicated than the

LRU cache, which results in fewer obvious abstractions being available. As

introduced in Chapter 2, previous attempts to analyse the behaviour of a

PLRU cache have resulted in incomplete analyses [56, 54], unable to analyse

the cache completely.

As previously mentioned in Chapter 3, lossy compression exists in cur-

rent techniques for modelling PLRU caches. Even utilising Collecting Se-

mantics [37], a relatively exhaustive process, on a PLRU cache implements a

form of lossy compression by not considering every physical state. Instead,

only unique behaviours are considered; any cache state encountered which

duplicates behaviour already seen is discarded. This is illustrated in Fig-

ure 4.1, which shows an intuitive method of assigning a name to the logical

Figure 4.1: Putting all pointers to the right results in assigning a name to
the logical state of a cache
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Figure 4.2: Two cache states that differ by a single bit, but have significantly
different representation in the normalised form

behaviour of a tree fill cache state - by using subtree swapping to set all

pointers to a given direction. Clearly, as cache analysis is only concerned

with the behaviour of a cache, the fact that there are multiple ways to trigger

the same behaviour is not useful to the analysis, and hence can be discarded

without consequence.

In a tree fill PLRU cache, implementing the Collecting Semantics uses

the fact that each pair of subtrees in the cache are logically equivalent.

Hence it is possible to flip subtrees around their shared pointer, provided

that the value of the pointer is also changed. One scheme for this is to flip

subtrees until every pointer points the same way, thus removing the need to

store pointers and generating a more compact representation.

To further improve on this compression, it is necessary to look inside

cache states for information which can be discarded. This technique is used

in the approaches of both Heckmann et al. [56] and Grund and Reineke [54].

Both of these analyses perform an approximation of each cache state consid-

ered, and hence are able to merge cache states exhibiting similar behaviour.

However, in both cases, too much information is discarded, resulting in anal-

yses which are unable to completely analyse a PLRU cache.

The difficulty of compression in this form is illustrated in Figure 4.2. This

shows two cache states which differ only by a single bit, but have significantly

different representations when using the intuitive naming method illustrated

in Figure 4.1. Evidently, such differences in representation will make any

compression harder to accomplish as similarities between the states are more

difficult to find. Further, a form of natural recovery is possible in PLRU

cache analysis because each cache access overwrites portions of the cache

state; pointers are overwritten by touch operations, and memory blocks by

evictions. If all uncertainties in a cache state can be overwritten, then the

cache state has recovered without penalty. Hence it would be desirable that
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any merged state only discards the absolute minimum information necessary;

in the example of Figure 4.2, this would mean only discarding the single bit

of difference. In order to address these problems, the steps outlined in

Chapter 3.6 will be applied, so that a more effective representation can be

found.

Overview

The previous chapter presented the argument that abstract interpretation,

as seen in PLRU cache analysis, is a form of lossy compression, and also

showed that more common instances of lossy compression (such as audio and

video) use a more formal approach to devising compression than commonly

seen in abstract interpretation. Therefore, it can be argued that approaching

the problem of abstract interpretation for PLRU caches with a more formal

lossy compression based approach would be beneficial. Specifically, it would

be desirable to determine what information within a PLRU cache state can

be discarded with little penalty. This is explored in Section 4.1, which

makes predictions based on the principles of lossy compression about what

information can be discarded. This is continued in Section 4.1.2, where a

simple experiment is conducted to verify that the predictions are indeed

valid.

In Section 4.2, conventions and notation are outlined, which are used

throughout the definition of the new technique. Section 4.3 gives the details

of an algorithm which implements a scheme based on the results of Sections

4.1 and 4.1.2 and the methods used to manipulate a tree-fill PLRU cache;

this is formalised in Section 4.4. Continuing this, in Section 4.5 a proof is

constructed which shows that the proposed algorithm is sound.

Further, as also introduced in Chapter 2, a relative of the PLRU cache

exists, in the form of the HNMRU cache [86]. As HNMRU caches have no

analysis available at present, but are similar to the PLRU cache, it would

be desirable to adapt the PLRU analysis to accept HNMRU caches. This is

accomplished for a modified form of HNMRU cache in Section 4.6.

An experimental evaluation of the new approach is carried out in Sec-

tion 4.7. The first part of the experimental evaluation compares the new

algorithm with the previous algorithms available, while the second part ex-

amines the relative analysable performance of PLRU and HNMRU caches

of the same size. Finally, the work in this chapter is summarised in Section
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4.8.

4.1 Information Theory and PLRU Caches

4.1.1 Information in a PLRU Cache State

The first step is to determine the different types of information used to

represent a PLRU cache. A type of information is defined by the minimal

alphabet that is needed to represent it. Information using a different alpha-

bet is counted as a different type. In the system of a tree-fill PLRU cache,

there are two quantities that affect this encoding: the number of cache ways

N , and the set of possible memory blocks that the cache could contain,

L. With this information, it is possible to identify three distinct types of

information:

• Pointers: The pointers on the nodes of the cache tree. These are

represented by the alphabet of {0, 1}, and hence consume a single bit

of information. In total, for an N -way cache, there are N −1 pointers,

meaning N − 1 bits of information are used for their representation.

Pointers are used to determine which cache line to evict.

• Cache Lines: Each cache line contains either a memory block or is

invalid. Hence they are represented by the union of the set of L possible

memory blocks and a single invalid state. As each cache line is drawn

from the pool of possible memory blocks, for a cache of size N there

are |L|CN = N !
|L|!(|L|−N)! sets of possible cache lines. Cache Lines are

used to determine if a given access is a hit or a miss.

• Tree Structure: The tree structure describes the position of each cache

line and pointer within the cache, and hence is represented by an

alphabet of orderings. Hence the tree structure is comprised of two

parts: the ordering of pointers (which, given N − 1 pointers, has a

size of N−1PN−1 = (N − 1)!) and the ordering of cache lines (which,

given N cache lines, has a size of NPN = N !), and therefore has an

alphabet size of (N − 1)!N !. However, in most representations the

tree structure will be implicit, as both pointers and cache lines will

be represented with an implicit notion of ordering (e.g. as in a list).
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The tree structure is used in both evictions and touch operations, to

determine which cache line to evict/touch respectively.

As would be expected, the number of ways in the cache is the single

biggest contributor to the complexity, although not the size of the state

space. Increasing the size of the cache increases the number of pointers, the

number of cache lines and permutations in the tree structure. For example,

increasing the number of ways in the cache from 4 to 8, using 10 memory

blocks, increases the number of states from 1680 to 5760, assuming an im-

plicit representation of tree structure. By contrast, the number of memory

blocks only increases the number of potential cache lines in the state space,

but does so at a very fast rate; for an 8 way cache, doubling the number

of memory blocks from 10 to 20 increases the number of states from 5760

to 16124160. However, while a memory block can persist in a PLRU cache

indefinitely, given a specific sequence of accesses, this can not be true for all

memory blocks in the cache, and hence the number of memory blocks under

consideration at a given point in the analysis is typically low, which means

that the effective size of |L| is low.

Of these items, the pointers and tree structure control the discrepancy

between physical and logical states of the cache. As previously mentioned,

flipping subtrees such that all pointers point in the same direction can be

used to assign a logical cache state to a physical cache state. The informa-

tion lost in this transformation is the distinction between different physical

states which have the same logical behaviour, which clearly has zero value

with respect to the analysis. However, by discarding this information, each

pointer has a specified orientation, and this reduces the size of the state

space by a factor of 2N−1; this still leaves a state space of size N !
(|L|−N)! (due

to the implicit representation of the tree structure), which is still too large

for efficient analysis.

Using these types of information, it is possible to evaluate their rele-

vance with respect to the PLRU cache algorithm. It is possible to divide

cache analysis into three steps: a classification step, which determines if

an access is a hit, miss or uncertain, an evict step that determines possi-

ble successor states in the event of a miss, and a touch step that sets the

pointers in the cache appropriately, and updates the tree structure. Each of

these steps uses information, and hence can be affected by uncertain infor-

mation. Classification uses the contents of the cache; in the case that this

89



Step of analysis
Classify Evict Touch

Pointers Used Overwritten
Cache Lines Used Overwritten

Tree Structure Used Used/Overwritten Used/Overwritten

Table 4.1: Information usage in cache analysis

is uncertain, classification will be unable to determine cache hits or misses.

Similarly, Eviction is degraded if a pointer is unknown, as in this case both

possibilities an unknown pointer represents must be considered, and hence

multiple successor states will be produced. However, it is also important

to note that these steps also modify the cache state, and hence can remove

uncertain information as well. An eviction operation can potentially replace

an unknown memory block, while a touch operation can overwrite unknown

pointers. By combining this overall description of the analysis with the de-

scription of types of information present in a PLRU cache state, as in Table

4.1, it is possible to determine the value of information for each step.

As can be seen, the tree structure is critical to all steps of the analysis,

and hence it can be inferred that performing lossy compression on the tree

structure could cause more problems than on other types of information.

This can be observed in previous techniques; In Heckman et al’s [56] tech-

nique of approximating the PLRU cache as a LRU cache, the tree structure

is only preserved in the case of caches of size 2, when an PLRU cache be-

haves exactly as an LRU cache. For caches of a higher size, sequences of

memory accesses greater than log2(k) + 1 in size result in all accesses be-

ing classed as misses. For cache sizes above this, the tree structure is not

preserved and the analysis suffers. In Grund and Reineke’s analysis [54] it

can be shown that the tree structure is preserved on caches of up to size 4,

but that parts of the tree structure may be lost in caches of a higher size.

This also results in there being a constant for which a sequence of accesses

of greater length will result in all accesses being classed as misses; Grund

and Reineke suggest this to be 2(log2(k) − 1) based on empirical evidence

obtained from experiments.

The cache lines of a cache state are used to determine if a cache access

would be a hit or a miss; this in turn determines whether or not an eviction

should occur. Pointers are used to determine what element of the cache
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should be evicted, if an eviction is necessary. It can therefore be inferred

that the information presented in the cache lines is more valuable than the

information in the pointers, because for each memory access it is necessary

to classify the memory access, whereas evictions may not happen based on

the result of the classification. Further, in actual use cache hit rates are

engineered to be high, as the penalty for a high number of misses is severe;

this is illustrated by Cantin and Hill [26], who show that for the SPEC CPU

2000 benchmark the miss rates for LRU associative caches typically range

between 10% and less than 2%, depending on the size of the cache. Assuming

that this represents acceptable performance for a cache, it would follow

that for every evict operation that occurs, between 10 and 50 classification

operations would occur. This leads to the conclusion that information used

during classification (the contents of the cache lines) is much more valuable

than information used during eviction (the contents of the pointers). In

the case that this does not hold, and evictions happen frequently, then

discarding pointers will cause pessimism; however, this pessimism will only

occur when the cache is largely ineffective (due to a high miss frequency).

Hence there is an argument that the use of the cache is inappropriate, and

would increase WCET, due to the latency the cache introduces. Therefore,

in the case where discarding pointers introduces significant pessimism, there

is an argument that the use of the cache in inappropriate.

It is also important to consider that any operation will result in some

information being overwritten; if uncertain information introduced by lossy

compression is overwritten, then the lossy compression will not have an effect

on the precision of the analysis. Hence the likely frequency of overwriting

data is a consideration in determining which data should be discarded in

compression. As a touch operation will be performed in each access, touch

operations occur with the same frequency as classification operations, which

is expected to be much greater than the eviction operation. The logical

conclusion of this is that as the pointers of the cache are more frequently

overwritten than the cache lines or tree structure, the impact of a pointer

containing unknown information will be less than that of cache lines or tree

structure.

Finally, it is necessary to consider the impact of uncertain information.

As previously discussed, uncertain information may cause additional states

to be considered, thus reducing the precision of the analysis. Any single
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Maximum
Usage freq. Overwrite freq. Uncertainty impact

Pointers Low High k on evict
Cache Lines High Low 2 (2k)

(can trigger pointer and tree structure uncertainty)
Tree Structure V.High High k on touch

Table 4.2: Properties of Information in a PLRU cache

piece of uncertain information will not reduce the precision of the analysis

however, as every decision in the analysis is binary, and hence a single piece

of uncertain information corresponds exactly to the two possibilities of that

binary decision. Hence, in the case of a single piece of uncertain information

resulting from a merge, the analysis will have to consider two successor

states. In the case of multiple pieces of uncertain information however,

more successor states will result. Therefore, to gauge the relative impact

of uncertain pieces of information it is necessary to examine how multiple

pieces of uncertain information interact to produce states which could not

have occurred in a precise analysis.

In the case of multiple uncertain pointers, each uncertain pointer en-

countered during an eviction results in two successor states. In the worst

case, for a cache with N -ways, where every pointer in the cache is uncertain

this will result in N possible successor states, as the analysis would have to

consider the possibility that any cache line could be evicted. For the tree

structure, uncertain information results in a cache line having an unknown

position within the cache tree. In the worst case (i.e. the cache line is

known to be in the cache, but its’ position is not known), this results in N

possible successor states for the touch operation, as the analysis would have

to consider that the cache line being touch could reside at any location in

the tree structure. However, this is mutually exclusive with the additional

states created by an uncertain eviction, as eviction will select an exact lo-

cation within the cache. Finally, in cache lines uncertain information can

cause a classification to conclude that an access to a memory block cannot

be classified, resulting in two successor states - one to consider a hit and

one to consider a miss. However, this is not exclusive with either of the

above behaviours; uncertain pointers will be triggered in the miss scenario,

whereas uncertain tree structure will be triggered in the hit scenario.
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Summarising this information (Table 4.2) it can be concluded that point-

ers are a useful target for lossy compression. The tree structure is not an ap-

propriate target because it is used in every operation and uncertainty in the

tree structure results in a large number of successor states. Cache lines are

argued to be unsuitable as they are used frequently, overwritten infrequently,

and an uncertain cache line can potentially trigger uncertain pointers and

tree structure to generate additional successor states. Whilst the potentially

large number of successor states might appear to make pointers undesirable,

their expected low usage and high overwrite frequency combined mean that

in typical usage it would not be expected that this would cause a problem.

4.1.2 Experimental Verification

Having constructed an overall argument that cache pointers are the least

useful piece of information within a cache, this hypothesis should be tested

by experiment. These experiments should aim to discard precisely one form

of information from the cache states modelled, to determine the effect that

this has on a simple benchmark. The benchmark picked is a simple looping

test, as used by Grund and Reineke [54], as such a looping test stresses the

cache algorithm. Further, as a 4-way cache already has a complete Must

analysis in the form of Grund and Reineke’s PLRU-plz algorithm, an 8-way

cache set will be used for the benchmark.

For a chosen form of information to be considered amenable to discard-

ing, discarding that information would have relatively little impact on accu-

racy of the analysis. In the case of a Must analysis, this would be represented

as the number of hits that the analysis finds. Conversely, it would be ex-

pected that if more critical information were discarded, then the effect on

the number of hits found by the analysis would be significant. In the case of

a May analysis, the number of misses found represents the accuracy of the

analysis.

The test strategies for discarding information are as follows:

• S1: Cache Lines: Pick a cache line; whenever a memory address

could reside in that cache line, discard this information.

• S2: Tree Structure: Pick a pair of cache lines; consider any memory

address that could reside in one cache line as if it could reside in the

other cache line as well.

93



• S3: Pointers: Pick a pointer in the cache state; discard the value of

that pointer.

It would be expected that these “blanket” discard approaches would

likely yield poor analyses, as they discard information regardless of whether

or not such information would yield compression. However, the blanket dis-

card approach is able to determine the impact of discarding a certain piece of

information. To determine the degree of inaccuracy, it is necessary to com-

pare against the accurate results, specifically those derived by the Collecting

Semantics [37], implemented as a simple state exploration approach. The

results from this experiment are summarised in Figure 4.3, which shows the

loop(n) benchmark, a simple loop of memory blocks 1..n repeated 16 times.

In this case, the only negative result is NC, or not classified, as this repre-

sents a failure of the analysis to reach a conclusion. If the hypothesis that

discarding pointers loses the least information is true, then S3 should yield

the best results.

Figure 4.3: Results from the benchmarks, comparing the methods S1, S2
and S3 to the Collecting Semantics cs

As expected, none of these approaches is a workable analysis. Whilst

analysis time and memory usage are not presented here, none of these strate-
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gies performs better than using the accurate Collecting Semantics. However,

these results confirm the hypothesis stated in the previous section: that dis-

carding information from cache lines or tree structure is much less preferable

than discarding information from pointers, given that when pointer infor-

mation is discarded longer loops can be analysed. Also of note is that tree

structure is by far the worst type of information to discard - if tree structure

is discarded, not even a loop of 2 memory locations can be analysed.

Having verified the hypothesis that pointers are the best form of infor-

mation to discard, it is necessary to construct the representation, merge

operator and recovery strategy. This is accomplished in the next section.

4.1.3 Discarding the Least Valuable Information and Recov-

ery

As has already been established, multiple cache states that exhibit the same

behaviour, in that any sequence of accesses to memory blocks results in

the same actions being taken, can be discarded (Figure 4.1), but doing

just this does not result in sufficient compression. As pointers have been

identified as the type of information contained within a cache state that has

the least bearing on the outcome of the analysis, it is necessary to revisit

how logical states are constructed. The goal of this is to determine a method

for constructing logical states such that the information stored in pointers

can easily be compressed, while preserving the cache lines and tree structure

of the states.

The present method [37] finds logical states by using pointers to rear-

range the tree structure so that all pointers point the same direction, and

is referred to as cache naming. Cache naming is unsuitable as it becomes

complex to check that two cache states have the same tree structure, as

seen in Figure 4.2. Instead, an alternative method of transforming cache

states is necessary, such that for cache states with the same cache lines it

is easy to determine if they also have the same tree structure. This can be

accomplished by using the cache lines to manipulate the tree structure, as

opposed to the pointers, and will be referred to as the cache signature. For

compactness, a cache state which has been adjusted so its name can be read

off (i.e. all pointers are set to a predetermined direction) will be referred

to as a named state, and similarly a cache state which has been adjusted so

that the signature can be read off will be referred to as a signature state.
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Figure 4.4: Illustrating how to find a cache signature, using alphabetical
comparison, by moving from a physical state to an appropriate logical state
without using pointers

Figure 4.5: A second of finding a cache signature. As the tree structure
differs from the first, the logical state reached is significantly different.
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A method of computing the signature, using cache lines to manipulate

the tree structure, is to recursively sort the cache tree such that for each

node of the tree, the leftmost element of the left subtree is less than the left-

most element of the right subtree, using a given ordering (assuming that no

memory block can be in the cache twice). With caches in this arrangement,

as the arrangement given by cache naming which uses pointers, it is trivial

to check if two caches containing the same cache lines have the same tree

structure, by simply reading the elements of the cache in left-to-right order.

As pointers are not used to compute this ordering, the only way for two

cache states containing the same memory blocks to have a different ordering

of their elements is for their tree structures to differ. Hence it accomplishes

the goal of determining when two cache states have the same cache lines and

tree structure, and thus enables pointer information to be analysed.

An example of this is given in Figures 4.4 and 4.5, using an alphabetic

ordering on the memory blocks a, b, c, d contained in the cache states. In

Figure 4.4, first the deepest subtrees are sorted, resulting in the left hand

subtree being flipped but the right hand subtree remaining the same. Then

the next deepest subtrees (in this case, the entire tree) is sorted in the same

manner, by comparing c and a; as a < c the subtrees swapped, resulting in

the signature state. Figure 4.5 demonstrates the same sequence of actions,

but on a cache with a different tree structure. The resulting logical cache

state is significantly different, with the final ordering of elements changed;

crucially however, when using this method the only way to obtain such a

difference is through cache states with different contents or tree structure -

the contents of the pointers only affects the pointers in the signature state,

and not the positioning of memory blocks in the signature state.

An additional advantage of removing the impact of pointers on the po-

sitioning of elements in the signature states is that the signature states

become more efficient to update than named states. This is because if no

eviction/replacement is carried out, a signature state remains in its signa-

ture representation. By contrast, as the touch operation operation changes

pointers, in a named state which relies on pointers for its ordering, then

subtree flipping must occur. Hence, by removing the impact of pointers, the

efficiency of analysis is increased.

The proposed method for lossy merging is to allow each pointer to occupy

three states: left-pointing, right-pointing, and uncertain. When performing
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Cache For each set of N cache lines, number of
Associativity Physical Sates Logical States Compressed Signature States

2 2 2 1
4 192 12 3
8 5160960 40320 315
16 ≈ 1018 ≈ 1014 ≈ 109

N 2N−1N ! N ! N !/2N−1

Table 4.3: Compression from going from physical states to logical states

merging, each cache state is first transformed into its logical representation

by applying the sorting method outlined above. Then, when multiple cache

states have the same cache content and tree structure, indicated by reading

the contents of the logical cache state from left to right, these cache states

are merged. Each pointer in the merged cache state is set to be left or

right pointing if for all cache states being merged, the pointers in the same

location are all left or right pointing. Otherwise, the pointer is set to be

uncertain, as it must represent both values to be sound.

The size of the state space when applying this additional compression can

be computed by first observing that pointers no longer contribute anything

to the size of the state space, hence obtaining a compression factor of 2N−1,

where N is the number of cache ways. Then by observing that for each

subtree in the cache tree structure, that subtree can only be arranged in a

single configuration due to the conversion to a logical state, thus obtaining an

additional compression factor of 2N−1. Hence, applying these compression

factors to the size of the exhaustive state space, the size of the state space

is N !
2N−1 , multiplied by the number of combinations of memory blocks that

can be in a cache state (kCN for k distinct memory blocks), giving a total

size of N !k!
2N−1N !(k−N)!

. Table 4.3 illustrates the benefit of moving to this

representation, as caches of size 8 become feasible to analyse. However, the

caveat of this approach is that due to preserving the most complex element

of the cache state, the tree structure, the size of the state space still grows

at O(N !), thus meaning that analysis of a 16 way PLRU cache remains

infeasible.

Next it is necessary to identify a recovery strategy. As has been men-

tioned before, a PLRU cache access will overwrite data, giving a form of

natural recovery. However, in the case that uncertain data is required, it is

necessary to consider all possible states; to do otherwise would violate the
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requirement of soundness. Hence the recovery strategy is simply to consider

all possible values of the uncertain data.

Having decided on the type of information that is of low value to cache

analysis and how to discard this information, it is now possible to define an

algorithm to implement this method. Before doing this, the notation used

is given in the next section. Following this, first an informal outline of the

technique when compared to Collecting Semantics is given in Section 4.3 ,

which is then followed by a formal definition.

4.2 Full Tree Analysis: Conventions and Notation

Before beginning the definitions of the algorithm, it is necessary to introduce

the notation and conventions used in these definitions. The first, and most

important piece of notation is as follows: ⊥ is a symbol which extends the

alphabet used to represent pointers, and represents an unknown pointer. As

pointers have been evaluated to be the least important piece of information

in a cache state, ⊥ is necessary such that should the value of a pointer be

discarded, ⊥ can be used to represent this fact.

Next it follows to give the representation of PLRU tree. To aid in the

definition of the algorithm, which will be recursive, such PLRU trees are

specified recursively. Hence, a subtree of a PLRU cache is defined to be a

triple 〈l, v, r〉 where:

• v is the value of the data stored at this point in the tree. For a tree

of height 0, this is a set of possible cache line identifiers that may

reside at this cache location. For other heights, this is a pointer which

can contain the values {0, 1,⊥}. The value 0 refers to a left-pointing

pointer and the value 1 refers to a right-pointing pointer.

• l and r are the left and right subtrees respectively. For a tree of height

0, these are empty (denoted as ∅). Otherwise, subtrees are represented

as triples of this form.

And, assuming that all subtrees are symmetric the height of a subtree is

trivially defined as:

height(〈l, v, r〉) =

0 if l = ∅

height(l) + 1 otherwise
(4.1)

99



Figure 4.6: The subtree form a PLRU cache

Subtrees are illustrated in Figure 4.6, which shows subtrees for heights

> 0 and 0.

For functions accepting a tree as an argument, the forms f(〈l, v, r〉) and

f(t) (where t = 〈l, v, r〉 represents a subtree) are used interchangeably. In

algorithms, tuple unpacking is used such that l, v, r ⇐ t assigns the left

subtree, value, and right subtree of t to the variables l, v and r respectively.

In a PLRU cache, a cache subtree of size N has a root node with height

ln2(N). It always follows that subtrees of a cache of height h have height

h− 1.

A subtree is said to contain the sets of memory locations contained by

any of its subtrees. So for example with of a height 2 tree t = 〈l, v, r〉 ,

l = 〈ll, vl, lr〉, r = 〈rl, vr, rr〉 and all other subtrees are empty, t contains

the vl and vr. While this is a slight abuse of notation, the ∈ operator is

used to denote the containing relationship described above, and hence the

statement vl ∈ t is true. A similar abuse of notation is used to denote an

item being a member of a tuple, i.e. x ∈ 〈v0..vi〉 ⇒ ∃n ∈ [0, 1]vn = x.

It is assumed that an ordering is defined over all sets of cache line identi-

fiers; the order is arbitrary, but must be fixed. An example ordering could be

given by sorting the set of cache line identifiers and comparing the resulting

lists.

Finally, a dashed variable refers to a modified form of the undashed

variable (e.g. x′ is a modified form of x). However, note that in some pseu-

docode some variables are modified in-place, which means that the dashed

variable convention is not appropriate.

Having defined the conventions and notation used, it follows to give the

informal definition of the Full Tree analysis algorithm.
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4.3 Full Tree Analysis: Informal Definition

Having decided that pointers are to be discarded without touching the con-

tents of the cache, it now follows to outline how this can be accomplished.

The key idea is to merge cache states which have the same contents and tree

structure, but differ in their pointers; when pointers that differ are merged,

they are replaced by ⊥, which represents an unknown pointer which could

hold any possible value. In principle, this can yield a compression factor of

2N−1 for a cache with N ways, by ensuring that all states which only differ

by pointers are represented in a single state.

Full Tree analysis is presented as a series of modifications to the Collect-

ing Semantics of a PLRU cache [36, 54]. The Collecting Semantics describes

the logical behaviour of the PLRU cache, and provides a useful starting

point as it is correct and sound, although computationally expensive. This

section will introduce the operations which need to be modified in order to

implement Full Tree analysis. In addition, the Functions Sort and Next give

a pseudocode overview of the approach.

The first step is to define a new way of determining how to represent

the behaviour of a cache. The previous method of setting all pointers to

a single direction (Figure 4.1) does not have a way to easily determine if

the cache contents and tree structure are the same between two states.

Hence, a new naming method, the cache signature is required. The cache

signature utilises subtree flipping to ensure that the left-most element of the

left subtree is less than the left-most element of the right subtree, for all

subtrees in the cache tree. This can be accomplished efficiently be starting

from the smallest subtrees; the technique is illustrated in Figure 4.4, and a

pseudocode implementation of this sort function is given in Function Sort.

Once this property is established, the memory blocks in the cache are ordered

by the tree structure, and not the pointers. Hence the signature can be

defined as the tuple of cache lines ordered from left to right in the sorted

state.

With the method to calculate a cache’s logical state changed from cache

naming to the signature, merging becomes trivial. As the signature of a

cache state represents both the cache contents and the tree structure, the

two items which merging must preserve, two states can be merged if and

only if they share the same signature. Hence, for two states which have
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1 Function Sort(s)
2 if height(s) > 0 then
3 l, v, r← s
4 l′ ⇐ sort(l)
5 r′ ⇐ sort(r)
6 if leftmost element of l′ < leftmost element of r′ then
7 if v = 0 then
8 v′ ⇐ 1
9 else if v = 1 then

10 v′ ⇐ 0
11 else
12 v′ ⇐⊥
13 end
14 return s′ ⇐ (r′, v′, l′)

15 end
16 else
17 return s
18 end

19 else
20 return s
21 end

22 end
Function Sort(s), which converts a cache state according to the cache
signature rule

1 Function Signature(s)
2 if height(s) = 0 then
3 l, v, r← s
4 return [v]

5 end
6 else
7 s′ ← sort(s)
8 l, v, r← s′

9 return Signature(l) + Signature(r)

10 end

11 end
Function Signature(s), which returns the signature of cache state s
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Figure 4.7: Merging two cache states which have been sorted

been sorted, merging is a simple matter of examining the pointers in the

states and setting the pointers to the unknown value, ⊥, if they conflict,

and otherwise keeping the original value (Function Next Line 25). This is

illustrated in Figure 4.7.

Given a set of cache states, merging the contents of the set is accom-

plished by first applying the sorting operation to each element of the set.

Next, this set is split into subsets such that all elements of each subset share

the same signature, and finally each subset is merged to a single state. As

merging does not change the memory blocks within the cache states, classi-

fication works in the manner that it normally would (i.e. if a memory block

is present in all possible cache states, the access is a hit, if it is not present

in any it is a miss and if it is present in some states but not others it is

not classified). Similarly, as the touch operation does not require the use of

pointers, it too works in the normal manner (i.e. setting all pointers on the

path to a touched memory block m to point away from m). However, the

evict operation does require the use of pointers, and hence must be modi-

fied appropriately. Whenever an eviction operation encounters an unknown

pointer, it must consider both possibilities that the pointer could represent,

as shown in Figure 4.8. This approach is given in Function Next at Lines

12-15.

It is of note that in the worst case, the behaviour of eviction will result

in substantial pessimism, as each eviction can potentially result in 2N−1

successor states (where N is number of cache ways). However, the risk of
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1 Function Next(S, m)
2 if ∀s ∈ S,m ∈ s then
3 classification⇐ hit
4 else if ∀s ∈ S,m 6∈ s then
5 classification⇐ miss
6 else
7 classification⇐ not classified
8 end
9 T ⇐ ∅ (used as an intermediate set where all eviction operations

have been carried out)
10 for s ∈ S do
11 if m 6∈ s then
12 C ⇐ the set of concrete states that are represented by s
13 for c ∈ C do
14 c′ ⇐ c with the cache line indicated by the pointers

replaced with m
15 T ⇐ T ∪ {c′}
16 end

17 else
18 T ⇐ T ∪ {s}
19 end

20 end
21 R = ∅ (used to construct the final set of successor states with

merged cache states)
22 for t ∈ T do
23 t′ ⇐ t with all pointers on path to m set to point away from m
24 if ∃r ∈ R where signature(r) = signature(t′) then
25 m⇐ signature(t′) with all conflicting pointers with

signature(r) set to ⊥
26 R⇐ (R ∪ {m}) \ {r}
27 end
28 R⇐ R ∪ (signature(t))

29 end
30 return classification,R

31 end
Function Next(S, m) which computes the classification and successor
states from applying memory access m to the set of abstract states S
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Figure 4.8: Evicting with an unknown pointer

observing this behaviour is low as there is likely to be significant overlap in

pointers between cache states with the same signature and that the evict

operation is assumed to have a much lower frequency than the touch oper-

ation, which decreases the number of unknown cache pointers. As seen in

Function Next, other than the changes involving cache signatures, merging

and eviction, the algorithm proceeds in much the same way as the Collecting

Semantics would, in that it explores the states presented to it and assigns

each memory access a classification.

Taking into account these changes, the complete algorithm is applied to

a program in the same way that a Collecting Semantics approach would be.

Specifically, an initial set of cache states is supplied (which may correspond

to the unknown cache state). Then, for each memory access the access is first

classified as either a hit, miss or no classification (NC), based on the current

set of cache states under consideration. After this classification, the set of

cache states under consideration is updated by applying the evict and touch

operations as appropriate. Instead of computing which cache states have the

same behaviour by cache naming, the merging step outlined above is then

applied, which reduces the number of cache states under consideration at

the next step. To handle a branch in the program, each branch is considered

separately, and the cache state after the paths of the branch have merged

back together is defined to contain all states that are possible at the end of

each branch.

Having outlined the functions which need to be specified, it remains to

define a formal definition and prove its correctness.
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4.4 Full Tree Analysis: Formal Definition

This section gives a formal definition of the Full Tree Analysis algorithm.

Using the conventions from Section 4.2, this definition is defined such that

it is possible to construct a proof of correctness, by examining the portions

which differ from the Collecting Semantics, a technique which is known to

be correct.

4.4.1 Concretisation

In order to demonstrate that the formalisation is relevant to the concrete

PLRU cache, it is necessary to define a concretisation function which pro-

vides a map between the abstract states used in the formalisation and the

concrete states that they represent. The concretisation function will map

abstract states onto logical behaviours, as per the convention on naming

cache states used by Collecting Semantics [36]. After this, the proof of the

correctness of Collecting Semantics can be used for the final step of the

correctness of this proof. For an abstract cache state to correspond to ex-

actly one logical cache behaviour, the following conditions must hold on all

subtrees s = 〈l, v, r〉:

• For all subtrees of height greater than 0, v represents a cache pointer,

and so v must not be ⊥

• For all subtrees of height 0, which represent a cache line, v represents

the set of possible memory blocks and so must have a single value i.e.

|v| = 1

• For all pairs of subtrees s0, s1 ∈ s where height(s0) = height(s1), for

all memory blocks m, m ∈ s0 ⇒ m 6∈ s1.

When mapping an abstract state to a set of states that are present in

the Collecting Semantics, it is necessary to enforce all of these conditions.

Hence, to enforce the first condition, it is necessary to define a function

which maps an abstract pointer to the set of pointers it represents while

taking into account the possibility of an unknown pointer. The function is

simply defined as follows:
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pointerV alues(p) =

{0, 1} if p =⊥

{p} otherwise
(4.2)

Whilst the second condition can be enforced by simply splitting the set

v into its individual elements, enforcing the condition that a cache line iden-

tifier can only be in a single subtree is more tricky. Hence the recursively

defined concretisation function c must explicitly enforce this condition by

removing any combination of concrete subtrees which have a memory lo-

cation in common. Therefore it is necessary to define a contents function

which returns the memory locations that are present in a cache subtree, as

follows:

contents(〈l, v, r〉) =


〈v〉 if height(〈l, v, r〉) = 0

〈a0...am〉 where 〈a0...an〉 = contents(l)

〈an+1...am〉 = contents(r) otherwise

(4.3)

Using this function, the concretisation function c can be defined as fol-

lows.

c(〈l, v, r〉) =



{〈l, v′, r 〉 v′ ∈ v} if height(〈l, v, r〉) = 0

{〈l′, v′, r′〉 v′ ∈ pointerV alues(v), l′ ∈ c(l), r′ ∈ c(r),

m ∈ contents(l′)⇔ m 6∈ contents(r′)

∀m ∈ contents(〈l, v, r〉)} otherwise

(4.4)

The function c maps an abstract state to a set of states which have all

the properties defined previously. In particular, note that v takes different

values depending on the height of the subtree. In case 1, where the height

of the subtree is 0, v is a set of potential memory blocks. In case 2, v

represents the value of a pointer. Hence each of these states represents a

single logical cache state, and by the correctness of Collecting Semantics [36]

a set of concrete cache states, and therefore the formalisation is relevant.

As it is expected that the algorithm will have to deal with multiple cache

states, for proving soundness it is useful to define cSet, the concretisation
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function applied to a set of cache states S, as follows:

cSet(S) =
⋃
{c(t)|t ∈ S} (4.5)

4.4.2 Cache Operations

The first set of functions to be defined concern the normal operation of the

cache. As previously stated, a typical cache algorithm can be broken up into

three operations:

1. Classification: Determining if a cache access is a hit or a miss

2. Eviction and Replacement : Determining a cache line to evict and re-

place the contents with a new cache line. For a PLRU cache, this is

implemented by following the pointers in the cache tree.

3. Touch: Determining the actions needed to prolong the life of an ele-

ment in the cache. For a PLRU cache, this is implemented by setting

each pointer on the path to the selected element away from the ele-

ment.

However, in addition to the normal definition for a PLRU cache, these

operations must be defined to work on the abstract representation, where

both cache line index location and pointer values may be uncertain. The

next sections define the relevant formal functions.

Classification

Using the concretisation function, it is possible to construct a classification

function cs. The classification function simply determines if a memory access

is a hit, miss or unclassifiable, and does this by inspecting all concrete states

that the cache may occupy. Hence the classification function is defined as

follows:

cs(t,m) =


hit if ∀t′ ∈ c(t),m ∈ t′

miss if ∀t′ ∈ c(t),m 6∈ t′

notclassified otherwise

(4.6)
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Evict And Replace

The eviction and replacement operator takes a cache state and evicts the

cache line as indicated by the pointers. In the case of a pointer which is

unknown, the eviction operator must take into account both possibilities

that arise. This may result in many successor cache states from a single

cache state; however, this is not a problem as later compression is used

to reduce the number of states. Further, the eviction operation must also

take into account that it might not be known if a cache line is in a cache

state, and hence eviction must update the cache appropriately; this can

be accomplished by exhausting all possible locations for the cache line and

creating appropriate copies of the state where each of these assumptions is

true. To do this, it is necessary to define the purge function, which removes

all references to a cache line from a subtree. Note that this also handles

the case that the location of a memory block is unknown (e.g. from an

initial unknown state), where the cache state will not correspond to a single

behaviour and hence sets of potential memory blocks have a size greater

than 1.

purge(〈l, v, r〉,m) =

〈l, v \ {m}, r〉 if height(〈l, v, r〉) = 0

〈purge(l,m), v, purge(r,m)〉 otherwise
(4.7)

Note that the purge function deletes information, and is only usable if

all possible locations of m are considered.

Given the requirements, it is possible to define the insertion function

insert, which takes an abstract state and maps it to the set of states given

by inserting m at the location given by the pointers.

insert(〈l, v, r〉,m) =



{〈l, {m}, r〉} if height(〈l, v, r〉) = 0

{〈insert(l,m), v, r〉} if v = 0

{〈l, v, insert(r,m)〉} if v = 1

insert(〈l, 0, r〉,m) ∪ insert(〈l, 1, r〉,m) if v =⊥
(4.8)

As the insert function does not check on the presence of m within the

cache state, it can only be applied in the case of a guaranteed miss. Othe-
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wise, an insertion of memory block m is not guaranteed to result in a definite

location within the cache. Hence the evict function is defined as follows,

which also provides the necessary logic to apply evictions as necessary.

evict(s,m) =


{s} if cs(s) = hit

insert(s,m) if cs(s) = miss

{s} ∪ insert(purge(s,m),m) otherwise

(4.9)

The cases of the function ensure that the eviction is only applied in

the cases when it is necessary; in the first case this ensures that eviction is

not applied if the access is guaranteed to be a hit. In the second case, a

guaranteed miss, insert is used to get the appropriate set of cache states

where m has been inserted to the locations the pointers indicate. In the third

case, where the access is not classified, the result is the union of both the

previous cases, but purge is used to construct a state where the assumption

of a miss is true.

Touch

The touch operation sets all pointers to be pointing away from the path to

a given cache line index. The difficulty in this function is that the abstract

representation may not be able to give a precise location for a cache line

index. If at a given stage, it is not certain which subtree a cache line index,

m, is contained in, it is necessary to consider both possibilities. This is

accomplished in a similar manner to the evict function, by utilising the

purge function to assert where the possible location could be. Hence, it is

possible to define the touch function, which maps an abstract cache state

to a set of a successor states as follows, assuming that the touched cache

line index m is indeed a member of the cache, and utilising the classification

function cs:
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touch(〈l, v, r〉,m) =



{〈l, v, r〉} if height(〈l, v, r〉) = 0

{〈touch(l,m), 1, r〉} if cs(l,m) = hit

{〈l, 0, touch(r,m)〉} if cs(r,m) = hit

{〈touch(l,m), 1, purge(r,m)〉,

〈purge(l,m), 0, touch(r,m)〉 } otherwise

(4.10)

Note that the touch function exploits the fact that for two cache subtrees

S0, S1 of the same height, which belong to the same cache state, cs(S0,m) =

hit⇒ cs(S1,m) = miss as if m is definitely in S0 it cannot be in S1 as well.

Hence the final case only occurs when cs(l,m) = cs(r,m) = notclassified.

Also note that in cache operation, whenever touch is called it is guaranteed

that the cache line m will be in the cache at some location, even if that

location is not precisely known.

4.4.3 Compression

Having defined how normal operations are performed on the abstract cache

state, it remains to show how compression is accomplished. Compression is

implemented by two steps:

1. Signature and Sorting : Cache states are converted to a standardised

form by a sorting procedure; this form exposes the cache signature.

2. Merging : Cache states with the same signature are merged, reducing

the number of cache states being considered.

The following sections describe these operations.

Signature and Sorting

With the operation of the cache defined, it is necessary to define the com-

pression. The first step in this is to find a cache state’s signature by using

sorting. As shown before in Figure 4.4, this operation involves sorting the

subtrees of the cache with height greater than zero from the bottom up. As

the same operation is applied to each subtree, it is possible to define the

function recursively, broken down into three functions. The first function,
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inv, simply encapsulates how to invert a pointer whilst taking into account

that the precise value of the pointer may not be known.

inv(p) =


0 if p = 1

1 if p = 0

⊥ otherwise

(4.11)

An important property of the contents function is that for subtrees with

the same height, the length of the tuple returned by contents will be the

same. Hence, with the previously mentioned assumption of an ordering

between sets of possible cache line identifiers, it is possible to define a com-

parison between tuples returned by contents for subtrees of the same height

as follows:

lte(〈a0...an〉, 〈d0...dn〉)



True if a0 = d0 and n = 0

True if a0 < d0

False if a0 > d0

lte(〈a1...an〉, 〈d1...dn〉) otherwise

(4.12)

With these operations defined, and using the contents (4.3) function

from before, it is now possible to define the sort operation. This is a formal

definition of the sort function defined in the pseudocode Function Sort.

sort(〈l, v, r〉) =



〈l, v, r〉 if height(〈l, v, r〉) = 0

〈sort(l), v, sort(r)〉 if

lte(contents(sort(l), contents(sort(r))))

〈sort(r), inv(v), sort(l)〉 otherwise

(4.13)

The sort function is broken up into three cases. The first case is the

recursive base case; if the height of the cache is zero, then l = r = ∅ and no

sorting is necessary; hence the subtree is returned unmodified. The second

case checks to see if, when subtrees are sorted, the left subtree does indeed

belong on the left in the sorted tree. If this is the case, the only action

required is to sort both subtrees. The final case deals with the remaining

112



possibility: that in the sorted tree, the current left subtree belongs on the

right. Hence the subtrees are flipped around and the pointer inverted.

With the sort function defined, the signature function (previously de-

fined in the pseudocode Function Signature) can be defined trivially as the

sets of potential cache line indexes read from left to right on the sorted cache

state. Hence the signature function is simply:

signature(t) = contents(sort(t)) (4.14)

4.4.4 Merge

With the signature and cache sort operations defined, all that remains is

to define a merge function. The merge function considers the current set

of states and merges all which have the same signature. This implies that

they contain the same memory blocks, tree structure. In order to simplify

merging, it is assumed that all cache states to be merged are sorted by the

sort function, an assumption that is enforced by the algorithm in (4.18) and

(4.19).

The first function to define is mergeStates, a function to merge two

states which have the same signature and are sorted. If both subtrees have

height 0, then by virtue of their signatures matching they are identical and

no action is necessary. If the height is not zero, then the pointers are com-

pared; if they match then the pointer is kept, otherwise it is set to be

unknown. After the pointers are merged, the left and right subtrees of the

cache states are merged as appropriate. As the two cache trees are initially

of the same height, all subtrees merged in this manner will be of the same

height. Hence a case where the heights of the subtrees are unequal cannot

happen.

mergeStates(
〈l1, v1, r1〉,
〈l2, v2, r2〉

) =



〈l1, v1, r1〉 if height(〈l1, v1, r1〉) = 0

〈mergeStates(l1, l2), v1,

mergeStates(r1, r2)〉 if v1 = v2

〈mergeStates(l1, l2),⊥,

mergeStates(r1, r2)〉 otherwise

(4.15)
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Next it is necessary to define how this might be applied to a set of states

which all share the same signature and are all sorted. Utilising the notation

t = 〈l, v, r〉, it is sufficient to recursively apply the mergeStates function as

follows:

mergeStatesSet({t0...tn}) =


t0 if n = 0

mergeStates(t0,

mergeStatesSet({t1..tn})) otherwise

(4.16)

To extend this to sets of cache states which do not share the same sig-

nature, it is necessary to define functions which group the cache states by

signature. Hence the function splitBySignature is defined which takes a set

of cache states A, identifies each unique signature in A and produces sets

containing each cache state with a given signature, sorting all cache states

in these sets as required by the mergeStatesSet function.

signatures(A) = {signature(t)|t ∈ A} (4.17)

splitBySignature(A) = {{sort(t)t ∈ A, signature(t) = s}s ∈ signatures(A)}
(4.18)

Finally, the merge function can be defined as the union of merging each

set of states which have the same cache signature, with the formal definition

as follows:

merge(A) =
⋃
{mergeStatesSet(B)|B ∈ splitBySignature(A)} (4.19)

4.4.5 The Complete Algorithm

To complete the algorithm, it is necessary to define a next function, which

updates the set of abstract cache states with a memory access and then

compresses the result. To do this it is necessary to extend the evict and

touch functions such that they can be applied to sets of cache states. These

extended functions can be defined as follows:
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evictSet(T,m) =
⋃
{evict(t,m)t ∈ T} (4.20)

touchSet(T,m) =
⋃
{touch(t,m)t ∈ T} (4.21)

As evict has no effect on cache states which are a hit, and because touch

will only be applied to cache states where m is guaranteed to be a hit due

to the operation of the cache, it is simple to define the next function as

the functional composition of evictSet, touchSet and merge. Hence, next

is defined as:

next(T,m) = merge(touchSet(evictSet(T,m),m)) (4.22)

Finally, it is necessary to define the application to a trace of accesses to

memory blocks. First, simplify the notion of a control flow graph to a list

which contains only two types of object. The first of these is an access to

a memory block, and the second a branch containing a set of sub-traces.

While this definition does not contain the notion of loops, or other more

complicated structures expressible in a control flow graph, it is capable of

expressing a sound bound on the paths through a program provided that

all loop bounds are known1. The function step, which steps through a

given graph G, updating hit and miss counters 〈h,m〉, (and the auxiliary

functions updateHitsMisses and mergeHitsMisses which provide update

and merging facilities for a counter of hits and misses respectively) can then

be defined as follows:

updateHitsMisses(T, 〈h,m〉,m) =


〈h + 1,m〉 if ∀t ∈ T,m ∈ T

〈h,m + 1〉 if ∀t ∈ T,m 6∈ T

〈h,m〉 otherwise

(4.23)

mergeHitsMisses(〈h1,m1〉...〈hn,mn〉) = 〈(min(h1...hn),min(m1...mn))〉
(4.24)

1A more advanced analysis would be able to take into account information on feasible
paths, but this is beyond the scope of PLRU analysis.
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step(T,G, 〈h,m〉) =



〈T, 〈h,m〉〉 if G = ∅

step(T ′, tail(G),

updateHitsMisses(T, 〈h,m〉, head(G))) if

head(G)is a memory block, T ′ = next(T, head(G))

step(∪{T 〈T, 〈h,m〉〉 ∈ R}, tail(G),

mergeHitsMisses({T 〈T, 〈h,m〉〉 ∈ R})) if

head(G)is a branch,

R = {step(T, g, 〈h,m〉)g ∈ head(G)}
(4.25)

The step function is recursive and broken into 3 clauses; the first clause

is the base case: if the end of the program or branch has been reached,

then the function should return the set of cache states under consideration

as well as the current hit and miss counters. The second case handles a

simple memory block, and simply updates the cache states, hit and miss

counters using the appropriate functions. The final case handles branches.

Here, each branch is evaluated separately with the starting point being the

current cache states and hit/miss counters. The return values of these are

collected, and the next value for the analysis after the branches have merged

considers any cache state that could result from a branch, with the fewest

guaranteed hits and misses observed forming the counters.

Finally, the analysis function can be defined as follows:

analysis(T,G) = 〈h,m〉〈T ′, 〈h,m〉〉 = step(T,G, 〈0, 0〉) (4.26)

Which returns the hit and miss counters for a given set of initial states

T (typically, either a singleton containing either a known initialised state or

a completely unknown state) and a given graph of memory accesses G.

4.5 Proof of Soundness

In order for the approach given with to be sound, the merge, touch and evict

operators cannot cause a potential concrete state to not be considered by the
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analysis. Much of the proof of soundness can be inferred by the correctness

of the Collecting Semantics and the map between the abstract states used

in Full Tree analysis given by (4.4). Hence it is necessary to ensure that the

following properties hold:

• That the merge operator does not result in the exclusion of valid

states.

• That in the presence of unknown pointers, the evict and touch opera-

tors do not exclude valid states.

In order to accomplish this, two results will be proven:

• Merging is sound: For any set of cache states A, merging does not

result in an unsound approximation. That is, ∀A,
cSet(A) ⊆ cSet(merge(A)).

• Updating is sound: For any set of cache states, A, and memory block

m, then for each a ∈ A,

touchSet(evict(a,m)) ⊆ cSet(touchSet(evictSet(A,m))).

4.5.1 Soundness of Merging

The first step in proving the soundness of Full Tree analysis is to show that

the merging operation is sound. This can be accomplished by showing that

for a set of cache states A, the following is true:

∀A, cSet(A) ⊆ cSet(merge(A)) (4.27)

That is, that given a set of cache states A, any cache state that is rep-

resented in A is also represented after A has been merged. Showing this

demonstrates that no cache state that is in A can be removed from consid-

eration by the merge function, and hence that the merge operation is sound

as it provides a set of states which bounds the states under analysis. (4.27)

can be first rewritten by utilising the definitions of cSet (4.5) and merge

(4.19) to rewrite these functions, yielding the following:

⋃
{c(a)|a ∈ A} ⊆ {c(a)|a ∈

⋃
{mergeStatesSet(B)|B ∈ splitBySignature(A)}}

(4.28)
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As the left hand side of 4.28 is a union, the set of cache states A can be

split up providing that all cache states are still considered. For the sake of

creating symmetry between the sides of the equation, it would be desirable

to use the splitBySignature function to do this. In order for this to be

valid, it is necessary to examine the splitBySignature function to ensure

that it behaves as desired.

The splitBySignature function is intended to take a set of cache states

and group them into a series of sets such that the signature of each ele-

ment in each set is the same. Further, the elements returned have the sort

function applied to them, such that the signature of the cache state can be

read simply. As the sort function only performs subtree flipping, it can be

trivially deduced to be sound as subtree flipping is a sound operation. Simi-

larly, the splitBySignature function must be sound, as each cache state has

exactly one signature, and therefore must be in exactly one of the returned

sets, therefore ensuring that no cache state can be removed by applying

splitBySignature to a set of cache states. Therefore:

Lemma 1. The function splitBySignature applied to a set of cache states

A does not cause the loss of any cache states.

Proof. By above,

a ∈ A⇒ sort(a) ∈
⋃

splitBySignature(A) (4.29)

Observing the left hand side of Equation 4.28, it is possible to apply

Lemma 1 to each a ∈ A. This yields the following:

⋃
{c(a)|a ∈ A} ⇒

⋃
{c(a)|sorted(a) ∈

⋃
splitBySignature(A)} (4.30)

As for each a, b = sorted(a) will be in one of the sets B ∈ splitBySignature(A),

we can perform an additional rewrite to obtain:

⋃
{c(a)|a ∈ A} ⇒

⋃
{∪{c(b)|b ∈ B}|B ∈ splitBySignature(A)} (4.31)
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p(〈h, v, l, r〉) =


〈v〉 if h = 1

〈a0...am〉 where 〈a0...an〉 = p(l)

〈an+1...am〉 = p(r) otherwise

Figure 4.9: An example function mapping pointer values to a vector

Hence, combining (4.31) with (4.28), specifically by using (4.31) to rewrite

the cache set A on the left hand side to take the same form as A on the

right hand side, it is possible to obtain the following:

⋃
{∪{c(b)|b ∈ B}|B ∈ splitBySignature(A)} =

{c(b)|b ∈ ∪{mergeStatesSet(B)|B ∈ splitBySignature(A)}} (4.32)

The function splitBySignature simply splits a set of cache states into

sets such that every element of each cache state in the set has the same

signature and changes their form to being sorted. Observing this, (4.32) is

satisfied by showing that the inner components hold for sets of cache states

with a single signature which are sorted, as follows:

⋃
{c(b)|b ∈ B} ⊆ {c(b)|b = mergeStatesSet(B)}

assuming∀b1,b2 ∈ B, signature(b1) = signature(b2) (4.33)

In the recursive case, the function mergeStateSet returns

mergeStates(b0,mergeStateSet({b1...dn})). If one uses the binary op-

erator � to represent y � x = mergeStates(x, y), then the mergeStates

function can be simply expressed as dn � dn−1 � ... � d0, i.e. a sequence

of applications of the mergeStates function. The mergeStates function is

defined to take sorted cache states (as per the assumption given by Equation

4.33) and set any pointers which differ to be ⊥. This can be seen trivially

from its recursive definition which only modifies a pointer to be ⊥ if the

pointer in the two subtrees to merge differs, otherwise it keeps the same

value.

As the mergeStates function only sets pointers to be ⊥ when two point-
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ers in the same location differ, the effect of a sequence of applications can

be expressed on a per pointer basis. Let the function p be a map from

cache states to a vector of pointers in that cache state, such that the nota-

tion p(b)l refers to the value of the pointer at location l for a given cache

state b (while the exact definition of p is not necessary for this proof, pro-

vided that p maps the same locations in the cache to the same indices of

the vector it produces, for completeness an example of such a function is

given in Figure 4.9). The effect of a sequence of applications on each lo-

cation will be that p(mergeStateSet(B))l =⊥ if and only if there exist

b1,b2 ∈ B such that in p(b1)l = 0 and p(b2)l = 1. Alternatively, for b ∈ B,

p(mergeStateSet(B))l = p(b)l if and only if for all b′ ∈ B , p(b)l = p(b′)l

A trivial consequence of this is that for all b ∈ B, for all pointer lo-

cations l, then p(mergeStateSet(B))l ∈ {p(b)l,⊥}. This is because ei-

ther for all b′ ∈ B, p(b)l = p(b′)l and hence p(mergeStateSet(B))l =

p(b)l or alternatively there exists b′ ∈ B with p(b)l 6= p(b′)l and hence

p(mergeStateSet(B)) =⊥. Therefore:

Lemma 2. Given B, a set of cache states with the same signature, and

l, a pointer location in the cache tree, ∀b ∈ B, p(mergeStateSet(B))l ∈
{p(b)l,⊥}.

Proof. By above.

To see the effect of this on the concretisation function c (4.4), observe

that c guarantees that for each unknown pointer, both possible values are

considered. As by Lemma 2, for a given cache state b, contained in a set of

cache states with the same signature B, each pointer in mergeStateSet(B)

is either identical to the corresponding pointer in b or unknown. As this

excludes the possibility of a conflicting known pointer, it is trivial to conclude

that b ∈ c(mergeStateSet(B)).

Corollary 3. Given B, a set of cache states with the same signature, ∀b ∈
B, b ∈ c(mergeStateSet(B)).

Proof. Observing that by Lemma 2, pointers in mergeStateSet(B) either

match their counterpart in b or are unknown, and hence b must be in the

set returned by c(mergeStateSet(B)).
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Therefore, (4.33) is satisfied with the restriction of a single signature,

and hence (4.32) is satisfied with multiple signatures, and hence by Lemma

1 (4.28) and (4.27) are satisfied. Therefore, one can conclude:

Theorem 4 (Soundness of Merging). For an arbitrary set of cache states

B, cSet(B) ⊆ cSet(merge(B)).

Proof. Observing that by construction, (4.27) is satisfied by the proof of

Corollary 3.

4.5.2 Soundness of Updating

In order to complete the proof of soundness, it is necessary to show that the

algorithm behaves appropriately in the presence of unknown data. This can

be accomplished by showing the following statement is true:

∀m,A,a ∈ cSet(A)⇒ touchSet(evict(a,m),m) ⊆ cSet(touchSet(evictSet(A,m),m))

(4.34)

Where A is a set of abstract states and m a memory location. Specifically,

if this statement is true, then for each concrete cache state represented by

an abstract state, when that cache state is updated with a memory access

m, the updated state is contained within the updated abstract state.

First observe that as cSet is the union of c on all elements of the set

A, there exists an abstract state x ∈ A such that a ∈ c(x); by definition,

this implies that the signatures of a and x are the same. As the evictSet

function takes the union of applying the evict functions respectively, for a

given a and corresponding x, rewriting the right hand side of (4.34) gives:

cSet(touchSet(evict(x,m),m)) (4.35)

Next observe that by Lemma 2, any pointer in x must be equal to the

corresponding pointer in a or unknown. The function evict returns a set

where cache lines which can be pointed at (considering the unknown pointers

in the state) are evicted and replaced with the new memory location; in the

case that a pointer is unknown, both possibilities are considered. As no

pointer in x contradicts a pointer in a (Lemma 2), it can be inferred that

there exists x′ ∈ evict(x,m) such that evict(a,m) ∈ c(x′). Using x′, and
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noting that touchSet and cSet function take the union of applying the c and

touch functions respectively, (4.35) can be rewritten as:

cSet(touch(x′,m)),∀m (4.36)

As evict(a,m) ∈ c(x′), it can be inferred that evict(a,m) and x′ have

the same signature. Now note that the touch function updates pointers

solely on which subtree a memory location resides in; as evict(a,m) and

x′ have the same signature it follows that the touch function will update

the same pointers in evict(a,m) and x′. Hence, it is possible to define

x′′ = touch(x′,m), where touchSet(evict(a,m),m) ∈ cSet(x′′). Using this,

rewriting (4.36) gives:

cSet(x′′) = touchSet(evict(a,m),m) (4.37)
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As, by definition, touchSet(evict(a,m),m) ⊆ cSet(x′′), we can therefore

conclude (4.34) to be true and hence:

Theorem 5 (Soundness of Updating). Given a set of abstract cache states

A, ∀a ∈ A, ∀ memory locations m,

touchSet(evict(a,m),m) ∈ cSet(touchSet(evictSet(A,m),m)), and hence

updating a cache state is sound regardless of the presence of unknown data.

Proof. By above.

4.5.3 Combining to the Final Proof

Theorem 4 showed that merging cache states is sound for a set of arbi-

trary cache states. Theorem 5 showed that updating a set of abstract cache

states is sound in the presence of unknown data. Hence, as each step of the

proposed algorithm is sound, it only remains to state the final result:

Theorem 6 (Full Tree Analysis is Sound). Proof. Observing that by The-

orems 4 and 5, and the map between states in Full Tree analysis and the

Collecting Semantics (4.4) all steps of the algorithm are sound, and hence

the algorithm as a whole is sound.

4.6 Generalisation to HNMRU Caches

As introduced in Chapter 2, the HNMRU cache is a generalisation of the

PLRU cache. HNMRU provides more configurability, specifically in regards

to the trade-off between cache performance and silicon used on chip; hence

while an HNMRU cache may exhibit lower performance than a PLRU cache,

it also requires less power to operate. This section adapts Full Tree PLRU

analysis to work with an HNMRU cache. This is accomplished by apply-

ing the same information theoretic techniques as used in the derivation of

Full Tree PLRU analysis to the HNMRU cache where there is a substantial

difference, and using this information to derive an analysis appropriate for

HNMRU.
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4.6.1 Modelling the Differences Between HNMRU and PLRU

As an HNMRU cache is similar to the PLRU cache in many ways, it is nec-

essary to determine how to model the differences between the two. The only

substantial difference is the presence of a random number generator (RNG)

in the HNMRU cache, which presents some difficulty to model. Whilst the

random numbers generated by the RNG are only used during eviction, the

RNG successor state is a function of its current state. This means that

compressing the RNG state is not an option, as an uncertainty in the RNG

state would not only effect the next eviction (as is the case with pointers)

but every subsequent eviction, as there is no prospect of returning to a cer-

tain RNG state. Whilst the alternative, not merging RNG states, may lead

to state explosion, having every eviction return multiple states will certainly

lead to state explosion.

Provided that the RNG is updated regardless of a cache hit or miss, on

a single code path, the RNG will be constant across all considered cache

states (as the number of accesses is constant on a single code path) and

hence merges will be able to take place as necessary. This assumption fails

when multiple code paths require consideration, as the number of accesses

to memory will likely differ, and hence merging states from different paths

becomes impossible. Hence, in order to analyse an HNMRU cache, it is nec-

essary to adapt the HNMRU cache algorithm in a manner that mitigates this

problem. Two such adoptions are presented below, with a brief evaluation

of the caveats associated with each:

1. Remove the random elements from the HNMRU scheme entirely and

use a deterministic scheme (a simple example of this being a mod-

ification of PLRU: when the most recently used path is set to the

i’th branch, evict by following the (i + 1)’th branch). The disadvan-

tage of this scheme is that the pathological case, where useful memory

addresses are consistently evicted in minimal time, becomes easily re-

peatable, and hence this scheme would be expected to perform poorly.

2. Use a cyclic RNG with a relatively small cycle. Provided that the

RNGs cycle is sufficiently small, and the initial value is known, this

provides the possibility of being able to merge states from different

paths once the RNG occupies the same state. Whilst a cyclic RNG

could potentially remove the benefit of using an RNG in the first place,
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namely making a pathological worst-case probabilistically impossible

to encounter repeatedly, this would only be of real concern if the cycle

of the RNG and the length of pathological series of memory accesses

had a relatively low lowest common multiple, as otherwise it would

take a large number of loops for the worst-case RNG state to reappear

at the correct position in the loop. Hence it would be relatively trivial

to modify a program to exclude this possibility by inserting dummy

load instructions.

4.6.2 Adapting Full Tree analysis to HNMRU and Deter-

mining Expected Performance

For analysing HNMRU, the Full Tree PLRU algorithm can be generalised

by two simple modifications. The first of these considers the RNG, and is

not necessary if the RNG is not present, as in the first mitigation described.

To enable multipath analysis with the RNG, it is necessary to store the

present state of the RNG, and not merge states if the RNG states differ.

The given algorithm can be generalised to the HNMRU cache with a simple

modification; as the usage of data within the cache state remains the same,

it still holds that the pointers are the most promising candidate to be lost

due to compression. Then the only remaining issue is to adapt the mapping

of physical states to logical states to take account of the generalised tree

structure of HNMRU. This can be accomplished by simply changing the

algorithm to perform a full sort of all elements in each subtree at every

depth, keeping pointers pointed at the same element, rather than just the

simple check to see if two subtrees are in the correct order performed when

analysing PLRU. This is illustrated in Figure 4.10.

One interesting property of HNMRU caches, with respect to analysis is

that the sizes of the compressed state spaces vary dramatically. For example,

a 12-way HNMRU cache can be implemented as any of 2-6, 2-2-3, 2-3-2, 3-

2-2, 3-4, 4-3, or 6-2, which vary from having 462 ways to store 12 unique

elements in the case of the 6-2 cache to 155925 in the case of the 3-2-2 cache.

This leads to a tradeoff: different cache configurations can take different

amounts of effort to analyse, albeit with the effect of a higher degree of

uncertainty being introduced when cache pointers are compressed. Hence,

when deciding on an HNMRU cache for a real-time system, it is necessary

to consider the configuration of the cache for analysis.
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Figure 4.10: Subtree sorting an HNMRU 2-3 Cache

4.7 Evaluation

4.7.1 Comparison to Existing Methods

Evaluation was carried out on three sets of benchmarks, using three dif-

ferent methods. Full Tree analysis (ft) was compared against the Collect-

ing Semantics (cs), and the current state of the art, Grund and Reineke’s

Potential Leading Zeros analysis (plz). The first set of benchmarks are

synthetic benchmarks, mostly compiled by Grund and Reineke [54]. The

second and third sets of benchmarks are multipath benchmarks extracted

from the Mälardalen [35] and Papabench [44] benchmark suites respectively;

for these, due to excessive memory usage, it proved impossible to provide a

comparison against the plz method.

Synthetic Benchmarks

The Must analysis of the Full Tree algorithm (PLRU-ft) was compared

against the current leading analysis provided by Grund and Reineke [54]

based on approximating leading zeros (PLRU-plz) and the Collecting Se-

mantics of a PLRU cache (PLRU-cs), using the benchmarks that Grund

and Reineke chose to present a fair comparison. These benchmarks were

evaluated on a fully associative cache, with the intention of stress testing

the algorithm. The benchmarks are as follows:

• loopK: Subjects the analysis to a loop of the memory blocks 1 to K,
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Figure 4.11: Results for the synthetic loopK benchmark

with the loop repeating 16 times. This test provides a stress test to

show the boundaries of the analysis.

• randomK: Subjects the analysis to accesses to 100 memory blocks

randomly chosen from range (1,K). This test provides a sample of

performance in typical non-looping conditions.

When the synthetic benchmarks were tested on a fully associative 4-way

cache, the Must analysis of PLRU-ft behaved identically to PLRU-plz; in

addition, the running times of the algorithms were approximately the same.

The reason for this is that the tree structure of a 4-way cache is simple

enough that PLRU-plz can represent it accurately, and hence PLRU-plz

provides an accurate Must analysis. Hence the main benefit of PLRU-ft in

the case of a 4-way cache is the May analysis it provides. All remaining

experiments were performed on a fully associative 8-way cache.

Figure 4.11 shows the classification results for the loopK benchmark.

This illustrates that unlike plz, ft is capable of analysing all elements in the

cache. This is shown by the fact that it can predict hits for loops of size 7

and 8. Figure 4.12 shows the time that the analysis takes. Here, the Full
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Figure 4.12: Analysis time for the synthetic loopK benchmark

Tree Analysis ft is up to 10 times faster than using the Collecting Semantics

cs. It is also much faster than plz for high values of K, due to the additional

pessimism of plz resulting in plz analysing a large number of states.

Similar benefits are seen in the randomK benchmarks. Figure 4.13 shows

the classification results for the randomK benchmarks. Again, Full Tree

Analysis ft outperforms Potential Leading Zeros analysis plz in all cases.

Similarly, the time taken to reach this result is lower than that seen in cs,

with the largest observed difference being approximately 10 times. Again,

for large values of K, ft is much faster than plz.

Mälardalen and Papabench Benchmarks

To assess the effectiveness of Full Tree Analysis on more realistic bench-

marks, the Mälardalen [35] and Papabench [44] benchmarks were used. The

benchmarks were compiled for the MIPS architecture and the resulting bi-

naries interrogated using the Heptane analyser [32] to find a control flow

graph bounding all paths through the program. These graphs were then

analysed using the ft and cs methods, assuming a fully associative 8-way

PLRU cache with a line size of 32 bytes. Note a relatively small cache size
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Figure 4.13: Results for the synthetic randomK benchmark

Figure 4.14: Analysis time for the synthetic randomK benchmark
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Figure 4.15: Results for selected Mälardalen benchmarks

was chosen so that the effects of low hit rates could be examined. The size

of the control flow graphs analysed varied from less than 1KB (cnt) to more

than 100MB (compress), demonstrating that the technique is applicable to

complex programs.

Figure 4.15 shows the results for selected Mälardalen benchmarks, in-

dicated on the x-axis. For the majority, the results from ft analysis are

competitive with cs. The worst results are observed in cnt, which exhibits

some additional pessimism due to the nature of the program branches which

are merged resulting in infeasible states being considered combined with the

comparatively high proportion of misses. These problems also negatively

impact the analysis time of ft, as shown in Figure 4.16 which shows cnt

taking longer to analyse using Full Tree analysis ft than Collecting Seman-

tics cs. However, it should be noted that for all benchmarks of a substantial

length, ft outperforms cs by a factor of between 2 and 5 (note the log scale

on the graph). In the case of cnt, even though the benchmark takes longer

to analyse under ft than cs, both still perform the analysis in less than a

second.

The results for the Papabench benchmarks shows similar properties
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Figure 4.16: Analysis time for selected Mälardalen benchmarks

Figure 4.17: Results for the Papabench benchmarks
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Figure 4.18: Analysis time for the Papabench benchmarks

to those for the Mälardalen benchmarks. Figure 4.17 shows that when

analysing the benchmark as a whole, as is the case with the autopilot and

fly−by−wire, results are competitive with the Collecting Semantics. How-

ever, when the individual tasks are analysed the effect of the introduced

pessimism is proportionally higher, leading to proportionally worse results.

Similarly, the time taken for analysing individual tasks is worse for ft than

cs, but still less than a second. For the larger benchmarks, ft is faster than

cs by a factor of 5.

4.7.2 Evaluating the Analysable Performance of HNMRU

Against PLRU

Synthetic Benchmarks

Using the same methodology as comparing PLRU-ft to PLRU-plz, the

analysable performance of the 8-way HNMRU caches (using the predictable

eviction scheme) was evaluated, to determine if the claim of Roy [86] that

HNMRU cache results in a minimal performance decrease compared to

PLRU cache holds with respect to analysable performance. It should be
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Figure 4.19: Comparison of the analysable performance of 8-way HNMRU
and PLRU caches using the loop benchmark

noted that as a predictable eviction scheme has been used in place of the

pseudo-random scheme used by Roy, it would be expected that the HNMRU

cache could encounter pathological cases, which could degrade analysable

performance significantly.

As seen in Figures 4.19 and 4.20, the HNMRU cache exhibits poorer

analysable performance than the PLRU cache. The most obvious disadvan-

tage of the HNMRU cache is that the May analysis yields much less accurate

information, and as a result the analysis determines far fewer misses than

for PLRU. Also, in most cases, the Must analysis of the HNMRU cache

produces between 10 and 20% fewer hits than would have been found if a

PLRU cache had been used instead. The exceptions to this occur either

when the cache is being accessed by relatively small number of elements, in

which case HNMRU 4-2 provides results very close to that of PLRU. Also,

due to the fact that HNMRU can exhibit very different behaviour to PLRU,

the corner case of the loop(9) benchmark the HNMRU 4-2 cache outper-

forms the PLRU cache, demonstrating that different cache policies can have

specific corner cases where they are more applicable.
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Figure 4.20: Comparison of the analysable performance of 8-way HNMRU
and PLRU caches using the random benchmark

Mälardalen and Papabench Benchmarks

As with PLRU, real world and multipath code was evaluated by testing

the performance on data extracted from the Mälardalen and Papabench

benchmark suites.

In comparison with the synthetic benchmarks, Figure 4.21 shows that the

HNMRU caches appear to have much better behaviour on the Mälardalen

benchmarks. In particular, the HNMRU 4-2 cache rarely trails the PLRU

cache by more than 5%. This is in part because of the scale of the Mälardalen

benchmarks means that the uncertainty from the initial state persists for less

of the total runtime than in the synthetic benchmarks, and partly because

the Mälardalen benchmarks do not appear to place sufficient stress on the

cache for the disadvantages of the HNMRU cache to be apparent. Assuming

that the Mälardalen benchmarks are representative of “real life” code, these

results would appear to indicate that even without the random selection of

the eviction location, the analysable performance of HNMRU is sufficiently

high for the cache to be useful in real applications.

Surprisingly, as seen in Figure 4.22, the HNMRU cache is favoured even
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Figure 4.21: Comparison of the analysable performance of 8-way HNMRU
and PLRU caches using the Mälardalen benchmarks

Figure 4.22: Comparison of the analysable performance of 8-way HNMRU
and PLRU caches using the Papabench benchmarks
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more by the Papabench benchmarks, yielding higher analysable performance

on some benchmarks. This is expected to be due to the fact that fewer un-

known pointers may be encountered, due to the shortened tree height of

the HNMRU caches considered. As has been outlined previously, unknown

pointers are directly responsible for pessimism, and therefore the reduction

in the number of unknown pointers due to lower tree height could be re-

sponsible for the increased accuracy.

The difference in performance of HNMRU observed when comparing

the synthetic and Mälardalen/Papabench benchmarks may also be due, in

part, to pathological cases introduced by the removal of the pseudo-random

element of HNMRU algorithm. It is necessary to at the very least degrade

the quality of the RNG that HNMRU uses for the sake of analysability,

as a true RNG would leave no method for merging multiple program paths.

However, the fact that the performance penalty decreases substantially when

analysing “real life” code would appear to indicate that any pathological

case introduced is not a common occurrence and can be treated as the

pathological cases for other cache architectures are, namely that when it

is found that a program may trigger a pathological case, the program is

modified to avoid the pathological case.

4.8 Summary

The main contribution presented in this chapter has been to apply the prin-

ciples of lossy compression to the problem of deriving a simplification of a

PLRU cache state, for use in abstract interpretation. This has resulted in

the new Full Tree cache analysis algorithm, PLRU-ft. By preserving the tree

structure and cache lines of all cache states provides a better estimate of the

cache state than previous work, enabling a full Must/May analysis which

was not previously possible. When compared to the previous Must analysis,

PLRU-plz, PLRU-ft yields a tighter bound than PLRU-plz on every test

conducted, while taking a similar or shorter amount of analysis time to do

so.

A proof was presented of the soundness of PLRU-ft, which enables the

use of the algorithm on critical real-time systems. An evaluation of PLRU-ft

was carried out, which showed its accurate to be highly competitive with

the Collecting Semantics of a PLRU cache, but using fewer resources. The
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evaluation also gave an indication of the analysable cache performance of

PLRU on the Mälardalen benchmark suite.

The PLRU-ft algorithm was then generalised to a simplified form of the

HNMRU cache. Roy [86] claimed that the HNMRU cache had similar perfor-

mance to a PLRU cache, suffering from a 3-5% handicap depending on con-

figuration. This claim was tested with respect to the analysable performance

of an HNMRU cache, rather than the performance observed during testing.

Due to concerns about the analysability of multipath code and knowledge

required to effectively analyse an HNMRU cache, the HNMRU algorithm

was simplified by removing the random element used, which may have in-

troduced the possibility of pathological cases. Whilst HNMRU cache scored

poorly for analysable performance on the highly synthetic benchmarks used

for initial evaluation, on the Mälardalen benchmarks the analysable perfor-

mance exhibited a handicap similar to the claims of Roy. On the Papabench

benchmarks, this was largely repeated, although for some benchmarks HN-

MRU outperformed PLRU. This suggests that the pathological cases avoided

by the use of a RNG in the HNMRU algorithm are not common, and may

be avoidable by other means.
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Chapter 5

Lossy Compression for Loop

Bound Analysis

As detailed in Chapter 2, Loop Bound Analysis techniques typically require

the use of annotations. Annotations are used to supply additional infor-

mation to the analysis, which supplements the information the analysis can

infer from the program. However, annotations rely on human input which

may be incorrect [61]. As such, it would be desirable to find a way of auto-

matically inferring loop bounds without the need for annotations.

Initially, this seems impossible: annotations are typically justified by

the halting problem: As the halting problem is not solvable, annotations

are used to supply additional information such that it is possible to place a

bound on a program. Fortunately, the halting problem does not necessarily

apply in this circumstance. Loop bound analysis is used to find a worst

case - thus assuming that a worst case exists. Given the assumption of

termination, computability theory [39] states that it is computable to find

the maximum length of time that the program will execute for.

Hence if it is assumed that a program has a worst case, then finding the

worst case is a computable property. Hence the problem is to find the worst

case efficiently. As with the PLRU Cache in Chapter 4, Lossy Compression

can again help. In this case, the problem is to identify information which can

be discarded without a significant loss of accuracy, a representation which

enables this compression, and when to perform the compression.

This chapter examines how such a scheme may be created, by explicitly

using Information Theory to construct an appropriate compression scheme.
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Section 5.1 examines the different types of information necessary for loop

bound analysis and how they may be represented and merged. Section

5.3 expands upon this, given a more detailed overview of the strategies

employed to implement the compression. This is continued in Section 5.4,

which gives a detailed overview of the proposed algorithm. Section 5.6

examines the performance of the implementation on various benchmarks,

and finally Section 5.7 gives a summary of the chapter.

5.1 Information Theory for Loop Bound Analysis

As with the PLRU cache, it is necessary to examine the information used in

Loop Bound Analysis. Loops in programs fall into two categories. The first

iterates a fixed number of times, dictated by some constant in the program.

For these, loop bound analysis is trivial. The second kind of loop iterates

a variable number of times, according to some variable. Obviously, as the

bound cannot simply be read from the program source code, analysing these

loops is substantially harder.

As loop bounds depend on variables, in order to perform loop bound

analysis it is necessary to perform value analysis on variables. As value

analysis is reducible to the halting problem, this part of the analysis is

where the difficulty lies. Hence the major problem to solve is how to model

the values of variables through the program.

Abstract interpretation provides a basis for starting value analysis [36].

Abstract interpretation provides a sound approximation of values by simpli-

fication of the problem. However, the main problem with abstract interpre-

tation is that it may fail to prove the termination of a bounded program -

a false negative - or require information in annotations. This is due to the

simplifications involved; in order not to encounter the halting problem, the

abstractions used typically create false negatives that need correcting via

additional information.

In the field of real-time systems, the goal is not to prove that an arbi-

trary program does not terminate. Instead, the goal is to prove a bound

on the termination of a program that is believed to terminate. Assuming

that the program does terminate one does not have to be concerned with the

halting problem. Hence different simplifications can be used such that useful

information is propagated from the values of the inputs throughout the pro-
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gram. Support for this assumption could be given in the form of restricted

programming rules [61] where termination is guaranteed, or could instead

be as simple as an engineer judging that the program should terminate for

all inputs.

However, the caveat to assuming that the program does terminate is

that the technique becomes inapplicable should it be untrue. Specifically,

if the program does not terminate for some input value, then the analysis

will never be able to reach a conclusion. Fortunately, this is not an entirely

dissimilar problem to any other excessive resource utilisation problem during

analysis - at some point, for any analysis technique, the resources expended

on analysis outweigh the value of the result, and the analysis is deemed a

failure. Hence the net effect of assuming termination is to place an emphasis

on the user to try and provide a terminating input and also give a bound

on the amount of effort they wish to expend on analysis.

5.1.1 Types of Information

The first step in finding a compression algorithm is to identify the types of

information. As stated, loop bound analysis can be broken into two portions:

firstly the value analysis to determine the potential values of variables, and

secondly how these interact to give loop bounds. This split gives an insight

into the types of information in the problem.

The first type of information relates to the first problem: Value anal-

ysis. Specifically, the potential values of variables at a given point in the

programs execution must be modelled in order to accomplish value analysis.

The requirements and desired properties for a representation of values are

examined in Section 5.1.2, including a strategy for merging.

The remaining types of information relate to program flow. When eval-

uating a function, the result of the function may have provable properties

with regards to its input, that manifests in the form of additional assump-

tions that can be made. These assumptions are examined in Section 5.1.3.

Further, when functions are used as part of the control flow of a program and

value analysis indicates a range of possible values, multiple successor states

may be considered. This results in additional assumptions being added to

the analysis, to ensure that the assumptions made when investigating a spe-

cific path remain consistent. Further, if possible it would be desirable to

merge the multiple paths from a branch when possible: the earlier this is
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done, the less effort needs to be expended on the analysis. The additional

assumptions, as well as merge strategies, are discussed in 5.1.4.

5.1.2 Variables

Given that the main problem identified is that of variables and their impact

on the control flow of a program, it is necessary to examine variables, how

they are manipulated, and how they effect the control of a program.

At a very basic level, there are two types of variable within a computer.

The first type of variables are floating points. Floating points approximate

the real numbers, R, and despite some notable shortcomings, are relatively

successful at this. Whilst special values may exist for floating points (e.g.

NaN as the result of 1 divided by 0), these values signal errors and should not

be encountered in successful operation, and hence should not be encountered

as the correctness of the program is assumed. The second type is modular

integers. Generally, if a data type is not analogous to floating points, it is

analogous to Z2n , where n is the size of the data type in bits.

However, distinct from the actual representation of these variable types

are the usage of such variables. For example, a constant floating point value

shares more properties with modular integers than real numbers, given that

it may only have a single value. Similarly, a high precision fixed point

number, despite being analogous to modular integers may be used as an

approximation of a real number. As abstract interpretation is concerned

with the behaviour of a system rather than its physical state, it is important

to attempt to determine how variables are used rather than what the variable

actually is.

Once usage is considered, there is a third type of variable: irrelevant

variables which do not effect the control of the program. A typical example

of these could be the outputs of a function; once a function has an output,

the variables used inside the function fall out of scope, and hence no longer

effect the control flow of the program. Similarly, compilers may find variables

which have outlived their usefulness as part of optimisations, and can be

marked as irrelevant at any point. As compiler optimisations are assumed

to be correct, information stored on any variable marked as irrelevant by

the compiler can be dropped from analysis without consequence.

Having identified that variables are either analogous to integers, reals

or irrelevant, it is necessary to examine the usage of variables within a
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program to determine how multiple values might exist in a single abstract

state. Due to its usage, a special case is the program counter. As the

program counter specifies the next instruction to execute, it is inherently

intrinsic to the behaviour of the program. Hence, whilst it may be possible

to have uncertainty in variables in general, the program counter must be

represented accurately at all times.

Other variables do not have this special status, and therefore could be

modelled as containing multiple values. Typically, a function is specified to

accept a range of input variables of a given type, and this provides a useful

starting point for a suitable representation. Functions may also exclude

values from the range of valid inputs; for example, division by zero is invalid

and should not occur in a correct program. Ranges of values with exclusion

provide a benefit to compression in that they are easy to merge into a single

state. Hence the representation chosen is composed of three components:

• Range: An open or closed range encompassing all values which the

variable could contain.

• Exclusions: A list of open or closed ranges which encompass values

which the variable cannot contain.

• Usage: A switch determining the usage of the data: Integer, Real, or

Irrelevant.

This representation gives a simple way to specify all values that may be

permissible for a variable. Further, it is trivially possible to losslessly merge

two possible sets of values for a variable, by picking a new main Range

encompassing both old ranges, using both sets of exclusions and adding

a new exclusion if required. Unfortunately, only using lossless compression

will increase the size of the representation, as the number of sets of excluded

values will increase. Hence it is necessary to use lossy compression and

discard information. A sound way to discard information is to simply discard

elements of the list of exclusions; the value of ranges will still contain all

possible values, but will include additional invalid values.

Hence this representation for variables efficiently represents possible val-

ues, the usage of the variable and has the ability for efficient but sound loss

of information to aid tractability. Next it is necessary to determine how

these variables are modified and used.
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5.1.3 Functions and Structure

Once the basic usage and representation of variables has been stated, it is

necessary to examine how variables are modified. Stating the obvious, com-

puter systems provide a basic set of operations which are used to manipulate

variables. These operations are defined as mathematical operators; hence

examining the properties of the mathematical operators yields information

on how modifications should occur.

Computer programs, regardless of programming language or any other

implementation method, must be expressible in terms of a sequence of math-

ematical operators. If they are not, then the program cannot run on the

given hardware, and hence the program is not useful. Hence, if the effects

of these operators can be represented sufficiently accurately it is possible

to analyse any program. Therefore, this low level form of analysis gives a

common base across all programs, and further provides a relatively small

set of operations which need analysis. Further, a low level analysis can take

into account any optimisations which a compiler may make.

Using low level information differs from current approaches which use

high level information [100]. Approaches utilising high level representations

state advantages such as being able to easily extract information such as con-

stant loop bounds by identifying common ways to implement such bounds

and finding these in the code. This in turn aids in proving the existence of

loop bounds on more complicated structures. However, as already stated,

it should be possible to assume that loop bounds exist, and hence there

is no explicit requirement to prove the existence of loop bounds - only the

values of loop bounds that exist. In turn, this makes many of the reasons

for using high level information redundant; whilst it may be easier to prove

the existence of a loop bound from high level information, the number of

times any loop can execute given a range of inputs is a constant regardless

of representation.

One side effect of discarding high level information is that this also dis-

cards information on the structure of the program. From the point of view of

a loop bound analysis, the most problematic piece of structure discarding is

the loops themselves. Once a low level approach is used, code is represented

as basic blocks, and loops may not be obvious. Fortunately, if one is able to

translate between the low and high level representations, a loop bound can

be constructed from bounds on the number of times that the basic blocks
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inside that loop may execute.

Many of the mathematical operators available are expressible in terms

of addition and multiplication, as applied to the real numbers. In both

cases, these operations perform a well defined mathematical group with the

real numbers. A mathematical group gives a guarantee on the following

properties, for a binary operations ·:

1. Closure: For all x, y in the group, x · y is also in the group

2. Associativity: For all x, y, z in the group, x · (y · z) = (x · y) · z

3. Identity Element: There exists an identity element i such that x·i =

x

4. Inverses: For each element x, there exists x−1 such that x · x−1 = i

In their usage in computer systems, all of these properties are preserved

by the approximation of reals as floating point numbers when using addition

and multiplication. However, in the case of the approximation of integers

as modular integers these properties are not preserved. This is because in

computer systems an integer overflow is treated as an error condition. For

addition, this causes the property of closure to be invalid. Fortunately, in

practice this should not be a problem, as overflow is normally treated as an

error in the program.

In addition, multiplication also loses the group property when applied

to modular integers, as Zx only forms a group under multiplication if x is a

prime number, because otherwise not all elements will have inverses. This

is almost never the case, because as stated before the modular integers in

a computer system are mapped to Z2n , the integers modulo 2n (typically

with n = 32 or 64); hence under multiplication, these integers only form a

group under multiplication for n = 1. Therefore, for any modular integer

variable that can hold more than two values, the property of Inverses can

not be assumed, and hence any analysis must take this into account.

In practice, the loss of inverses results in potential loss of accuracy when

applying multiplication to ranges of integer values. This can be seen when

multiplying two ranges of numbers together; if x ∈ [1, 2] and y ∈ [3, 4],

xy ∈ [3, 8]. If x and y are real numbers, than xy can be any number in the

range [3, 8]. This is not true in the case that x and y are integers, as in this
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case xy cannot be 5 or 7. There are three views to dealing with this problem:

the first is that as multiplication must introduce some additional constraints

with regards to divisibility and that these constraints must be represented.

The downside to this option is a significant increases in the complexity of

the representation and additional complexity when determining what values

a variable can hold. The second view is that a program is unlikely to undo

work that it has already done. Taking the second view, these constraints

do not have to be represented, as the divisibility of a number obtained by

multiplication is unlikely to be checked. However, without these additional

constraints invalid results may be introduced. For example, if a memory

address were computed by multiplying x ∈ [1, 4], a range of values with a

single value y = 4, without the constraint of divisibility by the y any value

in the range [4, 16] could be considered. However, as a memory address is

likely to refer to some form of memory structure, memory addresses not

divisible by 4 are likely to be invalid and even nonsensical should they be

evaluated. Finally, a third option would be a compromise, which only stored

a limited amount of information.

For both addition and multiplication, it is possible to add properties on

the value of the output. For example, adding positive numbers results in a

number strictly greater than either input. Given that such properties can

inferred as mathematical fact and give useful information about the value of

the output, this information should be kept. In particular, these additional

properties may not be obtainable by other means; for example, adding the

ranges [1, 2] and [2, 4] gives a value in the range [3, 6]; without exploiting

the properties of addition, it would be impossible to prove that the result is

greater than the second operand, as the ranges intersect.

Other functions may not provide as many properties for free. For ex-

ample, the modulo operator does not preserve the properties of groups. As

the modulo function gives the remainder of division, an inverse for the mod-

ulo operator can no longer be defined. Hence information known about

the inputs may not give as great a return in information on the output as

with addition and multiplication. Similar problems can be observed in other

surjective functions (e.g. trigonometric sin and cos). However, surjective

functions do have the benefit that the output of the function is more re-

stricted than the input (e.g. the function “%y” is guaranteed to give an

output less than y).
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In a similar vein, bitwise logical operators lack the piecewise continuous

nature of other functions described so far. Whilst bitwise operators are

surjective, as is modulo, bitwise operators give additional information about

not only their output but also their input. As bitwise operators are only

defined for integers, one can infer that not only is the output of the function

an integer, the input of the function is also an integer.

Hence to summarise, functions provide two forms of information. The

first form of information relates to the outcome of the function; depend-

ing on the function and inputs, properties can be inferred on the output.

The second form of information is on the input to the function: given that

functions may not make sense for all input values, these restrictions can be

reasonably placed upon the input values. The functions discussed in this

section have been primarily concerned with the values of variables and find-

ing properties on the outputs; the next section discusses functions used to

control program flow, and how the evaluation of these functions may result

in assumptions being placed on inputs.

5.1.4 Control and Compression

In addition to pure mathematical operators, many functions will be used to

express the control flow of the program; examples of these are the less than

function, or simply casting a value to a boolean. This class of functions

return a boolean result, and this result is used to determine which path to

take through the program.

In the event that it is possible to prove that the output of a comparison

is fixed, regardless of input, then the analysis of these functions is trivial.

Otherwise, it is necessary to consider each possibility. In this case the main

problem to overcome is ensuring that the inferred properties of the relative

values of variables remain consistent for the remainder of that paths anal-

ysis. This results in multiple paths to consider, each with differing inferred

properties of variables, and hence the main problem when performing code

analysis: state explosion.

To counter state explosion, it is necessary to implement a method of com-

pression which can merge multiple paths back together. As stated before,

variables which have been marked as irrelevant have no impact on the con-

trol flow of a program, because they are not used again. Similarly, properties

inferred by an analysis may not be used again, in which case these proper-
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Variables
a, b

Variables
none

Variables
a, b, c

Variables
a, b, d

Variables
a, b

Variables
none

Figure 5.1: A simple CFG, illustrating that all variables, no matter their
age, will eventually be discarded

ties can be removed as well. Hence, the value to the analysis of properties

inferred on variables which have been marked irrelevant is zero, and these

can be discarded without penalty. Similarly, variables which have fallen out

of scope again have no impact on the control flow of a program and hence

data on any the properties of these variables can also be discarded.

Following on from this, one observation of the effect of irrelevant variables

is that as all variables will eventually fall out of scope, and therefore become

irrelevant. Hence continuing to execute a particular path of the program will

eventually lead to fewer relevant variables, and therefore less information will

be discarded when lossy compression is employed. Even if new variables are

introduced on the path, these new variables will eventually be discarded as

illustrated in Figure 5.1. Unfortunately, continuing to execute a particular

path of the program without performing merges will lead to further state

explosion. A balance can be achieved by evaluating the path of the program

which has the most information attached to it until this is no longer the case,

and then checking for relevant merges. After any applicable merges have

been applied, evaluation can resume on the next path, as determined by the

amount of information known about that path. The amount of information

known about a path under evaluation is trivially known by counting the

number of properties that have been inferred on variables on that path.

A similar effect also to variables being marked as irrelevant also occurs on

assignment: inferred properties can be lost. This will most typically occur

on reassigning a variable, although not all properties need be lost when this

happens. For example, when subtracting a known positive number y from
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Property 1 Property 2 Merged Property

None Any None
= 6= None
= <,≤ ≤
= >,≥ ≥
< > 6=
< ≥ None
> ≤ None
≤ >,≥ None
≥ <,≤ None

Table 5.1: A commutative operator table for Merging properties

a variable x, properties stating a third variable z is equal or the less than

x are no longer valid for x − y and would have to be rechecked from the

values that x− y can take. However, variables which are greater than x will

remain greater, and hence the property of being greater than x− y remains

valid. This can be achieved by using the transitive nature of the properties

in question, as x− y < x < z, and hence x− y < z.

A final observation is that even with compression, the same code may be

evaluated multiple times with different properties of variables. In this case

it is possible to have fore-knowledge of the properties that may be tested by

the code, as these will have been revealed by the previous evaluation. Hence

any property that is not tested may be discarded early.

As already stated, the representation of values of variables picked has a

simple merging operation. Hence the main task is in merging states is to

be able to merge properties correctly. Fortunately, this is relatively trivial:

properties inferred by operators governing the path through the control flow

diagram will typically be using the operators =, 6=, <,≤, >,≥. As can be

seen in Table 5.1, it is possible to merge these properties without losing

information.

Given that it is possible to merge properties without losing information,

it remains to see what information is lost when merging sets of potential

values of variables and properties. The answer is combinations: when merg-

ing the potential values of multiple variables, combinations of variables that

could not normally occur can be considered in the analysis. To an extent

this may be possible to counteract given that the properties describing the
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Information Type Value Merge Strategy

Variables

Possible Values High - Unsound if pos-
sible values not consid-
ered

Merge by encompassing
both ranges

Excluded Values Medium - Prunes search
space

Merge by extending list,
discarding if list be-
comes too long

Usage Low - May be used to
infer additional proper-
ties

Merge by assuming
worst case

Program Control

Program Counter Critical - Required to be
accurate

Only merge when iden-
tical

Properties Medium - Prunes search
space

Merge by using lossless
merge operator

Discarded Variables Medium - Prunes search
space

Delete variables once no
longer used

Combinations Medium - Prunes search
space

Merge by merging vari-
ables and properties in
program states with the
same program counter

Table 5.2: The types of information involved in Loop Bound Analysis

relationships between variables remain, but in general this should lead to a

more pessimistic analysis.

5.1.5 Summary

The previous sections have discussed the value and overall merge strategies

for the different types of information involved in loop bound analysis. These

are summarised in the Table 5.2. Having given an overall outline, the next

section will give examples of how this approach may be applied to actual

programs.

5.2 Strategy Example

To aid in understanding the overall strategy of merging when information

loss will be minimised due to variables falling out of scope, two small exam-

ples are presented here. Throughout this section, a branch of the analysis
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1 def gt5 ( x )
2 i f x > 5 :
3 r e s u l t = 1
4 else :
5 r e s u l t = 0
6 del x
7 return r e s u l t
8
9 ana lyse ( gt5 ( Range (0 , 1 0 ) ) )

Figure 5.2: A Trivial Example

will be referred to by the notation {pc, variables} where pc denotes the cur-

rent program counter and variables denotes a fixed domain function from

variable names to the range of values the variable can take, and the inferred

properties made on the variables relation with other variables.

5.2.1 Trivial Example

Figure 5.2 details a trivial example. The function gt5 simply checks if a

value is greater than 5. The example requests an analysis of the gt5 function

with the input range 0 to 10. Hence, the analysis starts at line 1 with the

state {1, (x = (0, 10))}. Obviously, as soon as the conditional on Line 2

is evaluated, the analysis must consider both possibilities. This splits the

analysis so that there are two paths being considered, {2, (x = (5, 10))}, and

{2, (x = (0, 5])}. As both of these contain the same number of variables and

have evaluated the same number of instructions, the order in which they are

evaluated is irrelevant.

Hence the analysis picks {2, (x = (5, 10))} and continues evaluation.

The variable result is created and assigned the value 1, before Line 6 is

reached and the variable x is deleted. This causes the analyser to re-evaluate

which path should be analysed. The states are now {2, (x = (0, 5))} and

{7, (result = 1)}. Whilst both contain the same number of variable, this

time {2, (x = (0, 5))} has the lower program counter.

Looking for a chance to re-merge the forked states, the analysis changes

the state it is evaluating and proceeds from {2, (x = (0, 5))}. In this state,

result is created with the value 0, before the analysis again arrives at Line

6 and deletes x, again causing the analyser to reevaluate the paths. In this
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1 def f ( y ) :
2 while y < 10 :
3 y ∗= y
4 return y
5
6 def g ( y ) :
7 z = 0
8 while z < y :
9 z += 50

10 return z
11
12 def m( x ) :
13 x = f ( x )
14 x = g ( x )
15 return x
16
17 ana lyse (m( Range (2 , 1 5 ) ) )

Figure 5.3: A Contrived, More Complicated Example

case, however, it sees that both states have the same program counter, and

are therefore suitable for merging. Hence, the analysis merges both states to

get {7, (result = [0, 1])} , and then continues. The function gt5 terminates

immediately afterwards, with the analyser having explored all possible paths

through the program, and finding that at most 5 lines of the program will

execute.

5.2.2 While Loop Example

Figure 5.3 illustrates a more contrived example with a non-trivial program

flow. The analyser is requested to analyse the function m with the range

of values (2, 15). Hence the analysis starts at Line 12. The first instruction

calls function f . Importantly, the function initialises a new variable, and

hence the state on entering f is {1, (x = (2, 15), y = (2, 15))}.
Upon encountering the loop on Line 2, the analysis must consider two

paths, and hence splits the analysis to {2, (x = (2, 15), y = [10, 15))} and

{2, (x = (2, 15), y = (2, 10))}, where x is as before and the new variable is y

defined inside the scope of the function f . As these contain the same number

of variables, the order they are analysed is irrelevant. Picking {2, (x =
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(2, 15), y = [10, 15))} first, the analysis simply skips the loop and returns

the value. On return, the variable y drops out of scope, and hence after

reaching the state {14, x = [10, 15)} the analysis returns to evaluate the

state {2, (x = (2, 15), y = (2, 10))}, as it has more variables.

After executing the body of the while loop, the analysis again evaluates

the while loop condition with the state {2, (x = (2, 15), y = (4, 100))}. This

again results in a split to two states, with {2, (x = (2, 15), y = [10, 100))}
and {2, (x = (2, 15), y = (4, 10))} being considered. As in the first case,

the false branch {2, (x = (2, 15), y = [10, 100))} is picked first and simply

evaluated until y falls out of scope, at {14, x = [10, 100)}. As two states

now exist with the same program counter, they are merged, resulting in

{14, x = [10, 100)}, and the analysis goes back to consider the remaining

state.

With the state {2, (x = (2, 15), y = (4, 10))}, the body of the while loop

must be executed a second time, resulting in {2, (x = (2, 15), y = (16, 100))}.
In this case, the condition of the while loop must succeed, and hence splitting

the evaluation for a third time is unnecessary. Hence this state is evaluated

until y falls out of scope, resulting in {14, x = (16, 100)}. As this state now

has the same program counter as the previous state, they are merged, and

once again the result of this is {14, x = [10, 100)}.
Continuing with the state {14, x = [10, 100)}, Function g is called, which

creates two new variables in its scope, y and z. Trivially, the first encounter

with the while loop on Line 8 will cause the loops body to be executed. Hence

the state at the second encounter is {8, x = [10, 100), y = [10, 100), z = 50}.
This results in a split, with {8, x = [10, 100), y = [10, 50), z = 50} and

{8, x = [10, 100), y = [50, 100), z = 50} being considered. Picking the first

path, this simply continues to evaluate until y and z fall out of scope at the

return statement on Line 10, resulting in the state {15, (x = 50)}.
Returning to the previous state {8, x = [10, 100), y = [50, 100), z = 50},

the body of the loop is executed a second time, advancing the state to

{8, x = [10, 100), y = [50, 100), z = 100}. This time, due to y being a half-

open interval, the condition z < y fails and the loop body is not executed.

Hence the evaluation continues until the y and z fall out of scope on return,

giving the state {15, (x = 100)}. The two states are then merged, giving

{15, (x = 50 or x = 100)}, and the evaluation terminates on the return of

m.
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Figure 5.4: The information contained within a single abstract variable

Hence the analysis concludes that the possible return values of m are 50

or 100, that the loop inside function f executes at most 3 times, and the

loop inside function g executes at most 2 times.

Having demonstrated the overall approach of the algorithm, it follows to

give a detailed implementation.

5.3 Requirements for Implementation

Three types of information have been identified. These are as follows:

1. Values: The concrete values that variables can take, represented as

ranges with exclusions and a usage.

2. Properties: Inferred properties made on the relative values of vari-

ables, needed to enforce constraints from the control flow of the pro-

gram; represented as relations between variables.

3. Combinations: Which combinations of values and properties are

valid at any one time; represented as the instances of variables be-

longing to separate paths.

An illustration of the components that represent the information needed

to accurately represent an instance of a single variable is given in Figure 5.4.

In order for the analysis to be sound, the implementation must at least

consider all feasible paths through the program. As detailed previously,

Values have a sound lossless merge operator and an overly complicated value
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can have information discarded soundly. In a similar note, properties can

be merged losslessly, but do not become more complicated with each merge.

However, a large number of properties may cause a slowdown in evaluation

speed; discarding properties for a speed up is sound, but may come with a

corresponding loss in accuracy. Finally, combinations can be merged simply

by merging the values and properties of each variable in the program paths

to be merged, provided that these program paths correspond to the same

point in the program as the program counter cannot be changed due to its

criticality in program execution.

In order to counter state explosion whilst minimising loss of accuracy,

the order of evaluation of different paths has to be picked carefully. As

detailed previously, when variables are marked irrelevant the information

contained in those variables has no impact on the code; this decreases the

potential to lose information, as fewer variables have to be merged. Hence

the order of evaluation is picked as evaluating the path of code which has

the most information known until this is no longer the case. At this point

any applicable merges are performed amongst paths which share the same

program counter, and overly complicated state is soundly simplified and the

process is repeated. In the case of ties with regard to amount of available

information, earlier points in the program’s execution are favoured to enable

merging into later points.

As opposed to PLRU-ft, this approach is parametrisable in that the

definition of an overly complicated state (where either the list of exclusion

values or properties is long) can be defined by the user. Overly simplifying

the states may result in an analysis that never terminates due to critical

information being lost. Not performing sufficient compression on a compli-

cated program carries the risk of the analysis taking too many resources to

complete.

In terms of user interaction, the only annotations required are for the

valid input values of the program. These should be well defined in any

program, and hence can be assumed correct with high confidence. As each

operation is implemented in the analysis to be sound and accurate on ab-

stract values used, the information on input values is propagated through

the program and no further annotations are required. However, care must be

taken in that all combinations of values specified must also be valid; failure

to observe this may result in an analysis which does not terminate.
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Having specified the requirements, the next step is to construct an im-

plementation. This implementation is given in the next section.

5.4 Implementation

One requirement which may be somewhat difficult to fulfil is knowledge

about when variables drop out of scope. Whilst it would be possible to use

scope information from a programming language, this information may not

be as accurate as possible; variables may not be used, but still remain in

scope. Whilst inaccurate information does not give unsound results, it will

cause degraded performance as merges in the analysis will be postponed. As

previously stated compilers generate information on when variables can be

removed from scope in order to apply optimisations. Hence, more accurate

information can be obtained by examining the intermediate code that a

compiler generates, which should ideally represent all information that the

compiler has obtained. As argued earlier, the drawbacks of losing high level

information, such as easily obtainable locations for the beginning and end of

complex loops, can be mitigated. Hence, this analysis targets intermediate

code.

In particular, the implementation accepts the GNU InterMediate Pro-

gramming Language (GIMPL), employed by the GCC compiler suite [34].GIMPL

gives an easy representation of the basic blocks within a program, which can

then be matched to the appropriate high level loops with minimal difficulty.

Further, GIMPL clearly labels variables which can be dropped from scope

before the end of a function call, and hence gives the information which is

required for efficient analysis.

The analysis proposed is a form of symbolic execution [22]. Whilst sym-

bolic execution is not novel, the analysis uses an efficient representation of

variables combined with a non-standard evaluation order which guarantee

as little valuable information as possible is lost. This in turn means that

the only variables that require annotations are input variables, with other

variables being inferred by propagated information. As the valid values for

input variables are presumably known for a given system, this significantly

reduces the chance of human error affected the validity of the analysis.
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5.4.1 Representation

As discussed in Section 5.1.2, at least 3 components are required for the

representation of a value: a range of possible values, exclusions, and a flag

denoting the usage of the variable. This implementation implements exclu-

sions in two ways; in addition to lists of ranges which a value cannot be, a

“divisible by” value is used. This is a specific optimisation to deal with one

common use case: calculating a memory address using pointer arithmetic.

In the case that one operand for a multiplication operator is a constant, sin-

gle value, the “divisible by” value can be used. It is a reasonable assumption

that the size of memory structures is known and fixed in cases where pointer

arithmetic is appropriate. This knowledge enables the “divisible by” value

to be used and exclude any values which may be in the prescribed range

of a given pointer, but would be impossible to encounter. In the example

of pointer arithmetic, this would exclude values that are invalid, and may

give inputs which are not in the specification of the system. An example of

this is an integer array containing (x, y) coordinates; the index of any valid

(x, y) coordinate must be divisible by 2; hence storing this constraint gives

additional accuracy by excluding index that result in a (yn, xn+1) pair.

Hence, the representation used is formally given as a list of four items:

• r Range: The minimal range in which all possible values lie

• e Exclusions: A list of ranges which are excluded

• d Divisibility: A single value which any concrete value must be divis-

ible by

• u Usage: If the value is used as a real or discrete value

Of note is that this representation does not track all possible information

about concrete values. For example, the sign and absolute value of a variable

is not explicitly tracked. This means that some calculations may not be

accurately represented; for example, multiplying the range (-1, 1) by -1

gives the range (-1, 1). This may give the impression of a no-op, but this is

only the case for the value 0; any other value in the range will be inverted.

Hence, for all other values, information has been lost, although as all values

are still considered, such information is not particularly useful.
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[] + [(30, 31] + [(5, 18)]
gcd(2, 6) = 2
mu(real, discrete) = real
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Figure 5.5: An example of merging two states

Merging the representation of such variables is accomplished by the fol-

lowing operation:

mu(u0, u1) = discrete if u0 = u1 = discrete

real otherwise
(5.1)

m((r0, e0, d0, u0),

(r1, e1, d1, u1)) = (r0 ∪ r1, e0 + e1 + [((r0 ∪ r1)− r0)− r1],

gcd(d0, d1),mu(u0, u1))

(5.2)

Where the union of two ranges is defined as the smallest contiguous

range encompassing both ranges. Similarly, subtracting ranges is defined

by excluding a smaller range from a larger range; hence the expression

((r0 ∪ r1)− r0)− r1 refers to the range of values between the ranges r0 and

r1. Finally, the function gcd refers to the greatest common denominator

function, which simply finds the greatest value which divides all operands;

obviously, this is the best value possible for merging the divisibility constant

of a number. A worked example of the merge operator is given in Figure

5.5.

Inferred properties are given as relations between values. In order to

minimise the amount of information stored, the only properties stored are

equality, less than, and their negations. As stated in Chapter 3.1, it is

advisable to perform lossless compression before any lossy compression is

attempted. This is accomplished here by observing that a property such as

x > y can be equivalently represented as y < x, and hence it is unnecessary

to store information on both less than and greater than properties.

Having defined a representation, it is necessary to define how the basic

functions which utilise this representation work.

157



5.4.2 Functions

Binary comparisons are the first class of function that will be examined.

These functions are typically used for the control flow of a program, and

hence are important to be accurately modelled. The binary comparisons

all operate in a similar manner. First, they check the properties on the

variables being compared. If properties have been inferred which specify

that the binary comparison should succeed or fail, this result is used. If

not, the variables are compared based on their possible values, and every

combination possible is considered individually. This results in at most 4

separate values: 2 represent the intersection of ranges (where the comparison

may or may not be true) and 2 represent the mutually exclusive area of the

ranges (where the comparison will or will not be true). However, in the

case of exclusive ranges, this will result in only a single value, as expected.

Importantly, each of the possible results will place additional properties on

input values whilst the results of that comparison remain valid.

The standard mathematical operators +,−,×,÷,% are implemented on

ranges in the obvious manner; all values are adjusted by the appropriate

amount and operator. As is the case with merging two states, this can

cause the number of excluded ranges to grow, and this effectively causes

lossy compression: if the number of excluded ranges exceeds a user supplied

constant, then excluded ranges are discarded in order of size, from smallest

range to largest. This is because as the smaller ranges represent fewer values,

discarding these ranges discards less information on infeasible values than

discarding a larger range which represents more values.

To handle the divisibility component of a variable, which represents the

greatest number that all valid values of the variable must be divisible by,

then multiplication and division by a single value operators modify this as

expected (by multiplication/division as appropriate). In the case of a range

of values for multiplication/division, as well as addition/subtraction, the

divisibility component of the result is the greatest common divisor of the

divisibility components of the two input variables, as this is the largest single

value that can be tractably found which is guaranteed to divide the result.

In the case of modulo, it is not possible to infer a divisibility relationship

with the output, and hence information on divisibility is lost.

Finally, the usage component simply tracks if both operators are discrete;

if they are then the result is also discrete. Otherwise, it is treated as a real
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value, as real values make fewer assumptions than discrete values.

Where possible, additional properties on the results in relation to the

input values and operator are inferred. Two examples of this are as follows:

multiplying two values strictly greater than one or adding two positive values

produces an answer greater than either input, which results in an additional

property that can be enforced. These properties may not be obvious if not

explicitly enforced at this stage; adding the ranges (1, 3) and (1, 4) gives the

result (2, 7), which would otherwise appear to overlap both input values.

Some bitwise operators present more of a challenge. Trivially, bitwise

operations are only valid on discrete values, as it makes little sense to use

bitwise operators on floating point values1. Also trivial are the bitwise shift

operators, which can be represented as multiplication and integer division

operations respectively. Finally, the not operator is also trivial as it can be

represented as != 0, which has already been defined.

Other bitwise operations, specifically and, or, and xor are more com-

plicated. It is necessary to check whether each bit could possibly be set

in the range of the variables, and apply this to the result. However, some

optimisations can be applied in the common cases where one of the inputs is

known. For example x&0xff is equivalent to min(0xff, x) for non-negative

x and max(0, 0xff − x) otherwise. These optimisations, where applicable,

significantly reduce the computational time of these functions. As with the

more standard mathematical operations, it is possible to apply properties

on the outputs relative to inputs. Again using and as an example, x&y is

less than or equal to both x and y.

Finally, having defined the mechanisms by which functions work, it is

necessary to define how the program is evaluated.

5.4.3 Evaluation Order

Initially, the program starts from a single known state, with ranges for input

values supplied by the user. This changes once a binary comparison used for

the control of the program indicates multiple possible values, which causes

it to become necessary to consider multiple paths.

As stated in Section 5.1.4, properties can be merged without losing infor-

1Barring the possibility of conversion to a different floating point format, which this
analysis has implicitly guarded against by assuming all floating point values are analogues
of real numbers.
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Figure 5.6: A non-trivial visiting order. The dotted line indicates the order
in which nodes of the CFG are evaluated

mation. Hence the only consideration is when information is lost from the

possible values of variables. As stated, once variables have been marked as

irrelevant, there is less information to compress, and hence less information

to lose. Hence the evaluation strategy is to execute the path of the program

for which the greatest number of variables are currently relevant; once this

stops being the case, conduct any applicable merges and resume evaluation

with the new path which has the greatest number of variables valid.

In practice, this can be likened to a breadth-first search, as far as such

a notion can be defined on a CFG. As illustrated in Figure 5.1, for simple

programs this can be easy to see. However, Figure 5.6 illustrates that on

more complicated programs the order of evaluation is non-trivial.

Having defined the properties of the algorithm, the next step is to test

its performance.

5.5 Overview of Algorithm

To provide a pseudocode overview of the algorithm, the first functions to

define deal with how to merge states under consideration. The resulting state

must be an upper bound. This is handled by the Functions MergeCFG and

Merge.
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1 Function MergeCFG(cfg1, cfg2)
2 cfg′ ⇐ cfg1
3 for edge e′ ∈ cfg′ do
4 e2 ⇐ the corresponding edge of e′ in cfg2
5 if label(e2) > label(e′) then
6 label(e′)← label(e2)

7 end
8 return cfg′

9 end
Function MergeCFG(cfg1, cfg2), which returns an upper bound of the
annotations of cfg1 and cfg2

1 Function MergeCFG(cfg1, cfg2)
2 cfg1, pc1,variables1 ⇐ state1
3 cfg2, pc2,variables2 ⇐ state2
4 cfg′ ⇐MergeCFG(cfg1, cfg2)
5 variables′ ⇐ {}
6 for variable1 in variables1 do
7 variable2 ⇐ the matching variable to variable1 in variables2
8 variable′ ⇐ m(variable1, variable2) where m is as defined in

(5.2)
9 variables′ ⇐ variables′ ∪ {variable′}

10 end
11 return 〈cfg′, pc1, variable′〉
12 end
Function Merge(state1, state2), a function which provides an upper
bound for two abstract states which have the same program counter
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Having defined the merging functions, it follows to give an overview of

the entire algorithm. This is given in Function BoundCFG, which takes

the control flow graph of the program and annotated input variables, and

provides an annotated control flow graph as output. This is accomplished by

evaluating the statements of the program with respect to the input variables,

and merging as appropriate.

1 Function MergeCFG(cfg1, cfg2)
2 cfgannot ⇐ cfgunannot
3 for edge e′ ∈ cfgannot do
4 label(e′)⇐ 0
5 end
6 states⇐ {(cfgannot, 0, in)}
7 while states 6= ∅ do
8 currentState⇐ x where x is picked from states such that no

other state in states contains more information than x
9 remove currentState from states

cfg, pc,variables⇐ currentState
10 pcold ⇐ pc
11 evaluate basic block pc with variables, returning a set of

successor states representing all possible outcomes of basic
block pc with variables

12 for each outcome pc′, variables′ do
13 cfg′ ⇐ a copy of cfg
14 increment the label on the edge between basic blocks pcold

and pc′ by on cfg′ by 1
15 add (cfg′, pc′, variables′) to states

16 end
17 for each pair of states, state1, state2 with the same pc in

states do
18 remove state1, state2 from states
19 add merge(state1, state2) to states

20 end

21 end

22 end
Function BoundCFG(cfgunannot, in), which takes an unannotated cfg
and annotated input variables, and produces a cfg annotated with bounds
on the maximum number of times each edge can be executed.
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No of Input States WCET
Benchmark States Explored by analyser by exhaustive Pessimism

exploration

fibcall.c 30 7946 253 253 1.0
insertsort.c 10! 214864036 749 749 1.0
prime.c ≈ 1013 2732670 5054 5054 1.0

matmult.c O(220
4
) 188879 188879 188879 1.0

janne complex.c 25 Did not terminate
recursion.c 25 Did not terminate

Table 5.3: Selected results from the Mälardalen Benchmarks; Full Results
are in Appendix B

5.6 Evaluation

For evaluation, the Mälardalen benchmarks [35] were used. Initially, they

were used unmodified, in single path form. However, in this form all bench-

marks that could be analysed returned correct loop bounds, regardless of

the programs structure or lack thereof. Hence, the evaluation considered a

modified form of the Mälardalen benchmarks, where input parameters were

changed to ranges. This allowed the analyser to be tested with regards to

handling variable input. A worst case was then computed by hand and the

results compared to compute the ratio between the hypothetical worst case

the analyser found and the actual worst case, creating a pessimism score. A

pessimism score of 1 is a perfect answer, whereas 2 would present a 100%

pessimism penalty, and so on. To evaluate performance, the number of in-

structions evaluated was compared with both the worst case alone and the

number of instructions evaluated should no merges take place.

Of note however, is that a number of Mälardalen benchmarks failed to

run under the analyser (Full results provided in Appendix B). The reasons

for these failures ranged from undocumented GIMPL features which the

tools were unable to interpret to programs failing the strict assumptions of

correctness. For example, the qsort-exam benchmark makes the assump-

tion that the compiler allocates space before an array, such that an element

loaded with the index −1 is zero. This fails the strict requirement of cor-

rectness required by this approach.

Selected results are given in Table 5.3, with full results given in Appendix

B. As can be seen, the results fall into two categories. Where the compression

is appropriate and does not discard important information, a perfect score is
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achieved. If the compression is inappropriate, the analysis fails to terminate

hence does not produce any answer at all. The reason for this disparity

could be caused by one of two things. In the case of the janne complex.c

benchmark, memory usage becomes stable. This suggests that for the input

ranges given, one combination of input values gives an infinite loop. In the

case of recursion.c however, memory usage is not stable. This suggests

important information has been discarded due to the approximation of real

and discrete numbers. Given the lack of user annotations, the analysis

has no way of recovering the information lost to this approximation and

hence has insufficient information to prove any bound. If user annotations

were supplied, this information could be recovered, albeit at the expense of

trusting that the user annotations supplied were indeed accurate.

For the results that do terminate, the complexity of the analysis does

vary. This is mainly due to the varying structure of the programs, and how

the input values impact the paths the program can take. For example, whilst

the input state space for the matmult.c benchmark is huge, the input of a

20x20 matrix does not effect the path taken through the program, and hence

the number of evaluated instructions is comparatively low. This is not the

case in the insertsort.c benchmark on 10 elements; insertion sort is highly

dependent on the ordering of the input variables, and hence a comparatively

high number of states must be explored in relation to the size of the input

state space.

Examining the results in further detail produces an annotated control

flow graph for the program, with each annotation indicating the number of

times that path can be taken within a single function call, at the basic block

level. An example of this output is given in Figure 5.7. From such a CFG

it is trivial to extract loop bounds.

An obvious improvement on the analysis would be to attempt to deter-

mine if the analysis will not terminate. Whilst this cannot be accomplished

in every case due to the halting problem, some approaches may be able to

detect some common cases. In the case of the janne complex.c benchmark

previously mentioned, it would be sufficient to check that the analysis did

not become trapped in a loop of previously visited states. Note that this

improvement does not improve the quality of results other than attempting

to ensure that the results actually exist, rather than assuming the absence

of a result after a sufficient amount of computation means failure.
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Figure 5.7: An annotated CFG for the fibcall.c benchmark. Labels on
nodes are of the form “function name:basic block number”, and labels on
edges denote the maximum number of times that edge may be taken.
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Comparison with other approaches is difficult, as other approaches [100,

112] make use of annotations. The lack of annotations in this approach

means that the problem is fundamentally different: whereas other approaches

require additional input to find accurate loop bounds, this approach is pri-

marily focused on preserving information that can be logically inferred.

However, the primary benefit of the approach outlined is the fact that the

information required is much less susceptible to human error. The main

downside is in the execution of the algorithm, in that it is not guaranteed

to terminate, whereas other approaches are.

5.7 Summary

This chapter has outlined a different approach to loop bound analysis, which

almost entirely removes the need for annotations to code. The advantage

of this is that annotations are potentially susceptible to human error, a

situation which is not easily improved upon [81]; with no annotations, the

chance for error is minimised. However, this approach is not without its

difficulties. Specifically, the compression scheme outlined here is not suitable

for all programs; some properties are not tracked, and if a program’s control

flow relies on one of these properties then the analysis will fail to terminate.

On the other hand, the compression scheme could be varied. There

is no reason why the tracked properties could not be changed. If done

correctly, this would change the programs that can be analysed without

significantly increasing the time taken to perform the analysis. As this

would still preserve the property that annotations are not required, varying

the compression used may be a more suitable method for analysing high

integrity systems than relying on human annotations.
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Chapter 6

Conclusions

This Chapter gives an overview of the thesis. Section 6.1 draws together the

themes of the thesis, and presents an argument that the overall techniques

used are an extension of the current state of the art which is broadly appli-

cable to other problems where Abstract Interpretation or Symbolic Model

Checking are used in Worst Case Execution Time Estimation. Section 6.2

presents some of the limitations of the work in this thesis, with ideas for

further research. Finally, Section 6.3 revisits the original research question

and goals, to determine the success or otherwise of each and presents some

concluding remarks.

6.1 Summary of Contribution

This thesis began by examining current techniques in Chapter 2. Current

techniques all approach the intractable problem of Worst-Case Execution

Time estimation by creating a model of some kind, be it based on measure-

ments as from Measurement-Based Techniques (Section 2.2.2) or approx-

imation in Static Techniques (Section 2.2.3). The creation of a model is

necessary as the systems involved are complicated, and cannot be analysed

by exhaustive techniques in any reasonable time. Hence the creation of a

simpler model is necessary which is constructed to provide a sound bound on

the execution time of a program, typically by means of overapproximation.

Focusing on Static techniques, the main approaches used are based on

Abstract Interpretation [36] or Symbolic Model Checking [22]. Both of these

techniques seek to use some form of approximation in order to reduce the

167



1. Types of Information: Determine the alphabets used to compactly
represent information.

2. Value of Information: Using logical argument and/or experimenta-
tion, determine the value of each type of information.

3. Overall Strategy : Decide which information should be discarded during
the merging of states.

4. Representation: Pick an appropriate representation to enable the de-
sired information to be discarded.

5. Merge Operator : Formally define a lossy merge operator.

6. Recovery Strategy : If necessary, determine how to soundly resolve in-
formation which has been discarded.

Figure 6.1: A 6-step process to create a custom compression method

number of states that must be considered during analysis. However, neither

approach details how such an approximation can be found, instead leaving

it to researchers to identify useful approximations. When a useful approxi-

mation is found, for example the approximation of LRU caches by two lists

[98], these techniques are immensely powerful. Unfortunately, such approx-

imations are hard to find, especially given the fact that there is no method

proposed for examining or quantifying the information that is approximated.

This results in approximations which have limited scope being proposed, for

example the Potential-Leading-Zero (PLZ) approximation of a PLRU cache;

while adequate for the Must analysis of a 4-way cache, the PLZ approach

cannot fully analyse an 8-way cache.

To propose a solution to this, the thesis introduced the ideas of Lossy

Compression in Chapter 3. At the heart of the approximations used by Ab-

stract Interpretation and Symbolic Model Checking, the desire is to discard

data from a representation which is of low value to the end result. In doing

this, the first problem encounter would be a lack of appropriate language to

discuss the quantity, value and storage of information in analysis; Informa-

tion Theory (Chapter 3) provides this language. This is enhanced by lossless

compression algorithms (Section 3.1), which provide techniques to achieve

highly efficient representations of data which do not lose any information.

Unfortunately, while Lossless Compression can provide an aid, the nor-
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mal methods of Abstract Interpretation and Symbolic Model Checking are

used precisely because without using approximations the problems of WCET

estimation are intractable. Hence it is necessary to look at Lossy Compres-

sion methods (Section 3.2). Lossy Compression utilises the language and

ideas of Information Theory in combination with scientific methods to de-

termine information that is probably of low value. For example, audio codecs

[18, 16] rank the frequencies they encode by how likely it is for the human

ear to be able to perceive them. After this ranking is complete, information

on frequencies that would not, in that instant, be perceptible is discarded

first. This approach is precisely what the use of Abstract Interpretation or

Symbolic Model Checking in the WCET is meant to accomplish , but rather

than vague guidance provides a concrete method.

Having identified the main problems encountered in creating a lossy

compression technique, the main contribution of Chapter 3 is a generic set

of instructions for creating a custom lossy compression method for state

based problems. When applied to such a problem, the resulting compres-

sion method can be used as the basis for either abstract interpretation or

symbolic model checking, depending on which technique is more appropri-

ate. This method is summarised in Figure 6.1 for easy reference.

To demonstrate that this method is broadly applicable to problems in

WCET estimation, it was applied to two unrelated problems: PLRU/HN-

MRU Cache Must/May Analysis in Chapter 4 and Loop Bound Analysis in

Chapter 5. These problems are typical of WCET Estimation problems as

the main challenge to overcome in each is the vast number of possible states

to explore. A summary of the application of this method is presented in

Table 6.1.

As can be seen in Table 6.1, the same process produces results on both

problems, despite the problems not sharing many common features. In fact,

the main common features to both problems are the size of the state space

to be explored necessitating some form of sound approximation and that

not all information is equally valuable. As previously stated, the goal of the

generic approach to deriving a custom lossy compression is to be able to

reduce the size of the state space while minimising the amount of valuable

information discarded. In this regard, the approach is successful in both

cases.

Hence, as the common feature of both problems are simply that the state
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Step PLRU-ft Loop Bound Analysis

Types of Information Identify pointers, tree
structure, and cache
lines

Identify value ranges,
excluded values and as-
sumptions on variables

Value of Information Find that pointers are
least valuable type of
data

Find assumptions and
excluded values are
least valuable

Overall Strategy Discard conflicting in-
formation on pointers

Discard data on ex-
cluded values / assump-
tions when too much
data present

Representation Store cache state such
that pointers do not af-
fect logical positions of
cache lines

Store Values Ranges,
Exclude values and as-
sumptions separately

Merge Operator Merge states which have
the same cache lines and
tree structure, destroy-
ing conflicting pointers

Discard Exclude Ranges
/ Assumptions if too
many are present

Recovery Strategy Consider all possible
states

Consider all possible
paths

Table 6.1: Comparing the application of using the generic process given in
Figure 6.1 on PLRU and Loop Bound Analysis
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space is too large for an exhaustive approach and that there exists some type

of information which is less valuable than other types of information to the

stated goal, it can be inferred that when these two conditions hold the use

of lossy compression is appropriate. Specifically, the more information that

is of sufficiently low value to the analysis there is, the greater the effect

of lossy compression on improving the tractability of the analysis. This

is a more specific version of the premise used in Abstract Interpretation

and Symbolic Model Checking, where an appropriate approximation must

be found. Therefore one can use the generic lossy compression approach

as a more guided method for finding such an approximation in problems

suspected to be amenable to Abstract Interpretation or Symbolic Model

Checking.

6.2 Limitations and Further Work

This section details some of the limitations of the present work.

6.2.1 Cache Analysis: 16-Way Caches

Chapter 4 made passing reference to 16-way PLRU caches. However, due to

the size of the state space involved; this is because, even though a 16-way

PLRU cache is the next step from an 8-way PLRU cache, the state space is

much greater. The scale of the problem becomes apparent in that analysing a

simple loop of 16 memory accesses using PLRU-ft compression requires more

than four gigabytes of memory with the current implementation. Hence it

would be expected that in order to analyse a 16-way cache, either additional

information on the starting state would have to be known, or alternatively

additional compression must be used. If a known starting state is supplied,

for example by flushing the cache before the invocation of each task resulting

in an empty cache state, complexity is bounded by the amount of branching

in the program and hence analysis is possible provided that branching is not

excessively frequent.

Additional compression presents a challenge, in that the PLRU-ft com-

pression already discards the least valuable information. Any further in-

formation discarded may result in state explosion if critical information is

discarded. Hence the more relevant path of research may be to determine
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how much additional information is needed on the starting state for the

problem to become tractable.

6.2.2 Cache Analysis: Sequential-Fill Caches

Similarly, Chapter 4 does not deal with Sequential-Fill PLRU Caches. As

previously stated, a sequential fill cache has the additional rule that invalid

cache lines are always selected for filling in a sequential manner before any

evictions can take place. The complication that this introduces is that left

and right subtrees of a PLRU cache can no longer be treated as equal,

and hence the operation to order a cache state into a logical representation

becomes problematic.

This problem could potentially be overcome by introducing a new type

of information: the original position of each cache line in the cache. As this

information is only used when inserting a new element into the cache when

the cache contains an invalid line, it can be argued it is of low value. Hence,

it becomes a candidate for compression. This would be implemented by a

merge operator which produces cache states that list the possible original

locations of each cache line. In the event of this information being used, all

possibilities would have to be considered.

However, the problem with this approach is that it would inevitably

increase the size of the state space. Hence it would be necessary to evaluate

this approach to see if it remains tractable.

6.2.3 Loop Bound Analysis: Assumption of Program Cor-

rectness

The Loop Bound Analysis approach in Chapter 5 makes a very large as-

sumption: that the program given is correct and will terminate for all inputs.

Obviously, this is a desirable property for any real-time system. However, it

may not be a property that can be guaranteed. In the event that a program

does not terminate on all inputs, then the approach given cannot work, as

it will fall into an infinite loop.

An obvious improvement to the approach would be to integrate some

counter-measures against this. Simple counter-measures would be trivial to

implement: specifically, it is assumed that the deadlines for a task are known

in advance. With this knowledge, the problem can be rephrased to “will the
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input program halt in a specific time”, and by integrating the loop bound

analysis with timing analysis the problem once again becomes computable.

However, the additional complexity may render it intractable. Other trivial

approaches will not be able to find all faults, as this would violate the

halting problem. A non-trivial improvement would be to present a real-time

visualisation of the analysis. An appropriate visualisation would enable

supervision, such that potential bugs could be found during the analysis,

rather than the analysis not terminating.

6.2.4 “One-Size Fits All” Compression

One assumption made throughout this thesis is that “One-Size Fits All”

Compression is appropriate. By this, it is meant that information deemed

least useful by the analysis would always be found to be least useful, re-

gardless of context. In PLRU cache analysis (Chapter 4), this appears to be

the case. However, as seen in Chapter 5, it does not appear to be true for

Loop Bound Analysis, where the given compression can result in important

information being discarded.

This leads to the questions about using multiple compression techniques,

and picking those which are appropriate to the situation. While Chapter 5

performed Loop Bound Analysis without any annotations, a non-standard

type of annotation may be useful in this regard. Similar in how an automated

theorem prover works, where rules are selected by a user, it may be useful

to use annotations which pick appropriate compression methods at different

points in the analysis. This supplies data on how the user believes the

analysis should be carried out, as opposed to regular annotations which

simply supply data to the analysis. This would result in a user guiding the

application of techniques which are known to give sound results. In the case

of failure on the part of the user, the analysis would fail to give a result or

give a poor quality result; however any result obtained would be guaranteed

to be sound. This can be argued to be preferable to the current situation of

a user giving information that must be assumed to be correct.

6.3 Revisiting the Goals and Hypothesis

This section revisits the goals and hypothesis presented in Chapter 1, and

presents closing remarks on each.
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• Introduce Information Theory and Lossy Compression in the context of

Abstract Interpretation for WCET estimation.

Chapter 3 introduced Information Theory and Lossy Compression in their

respective normal domains. It then furthered this by examining specific

examples of Abstract Interpretation for WCET estimation and arguing how

these could be seen as a highly specialised form of lossy compression.

• Devise a general approach which applies lossy compression to devise a

suitable model of a system.

Drawing from Information Theory, Lossy Compression and the specific ex-

amples of approaches already used, a general approach was presented in

Chapter 3.6. This approach attempted to encapsulate all that was neces-

sary to devise a specialised compression scheme for a given problem.

• Apply this approach to a problem for which there is presently no satisfac-

tory solution: a complete PLRU cache analysis.

The approach was successfully applied to an tree-fill PLRU Caches of up to

8-ways. In addition, it was also adapted to the newer HNMRU cache variant,

for caches with up to 12-ways. However, for PLRU/HNMRU caches with a

higher number of cache ways, the algorithm produced is not tractable. Fur-

ther, the case of sequential-fill caches was not addressed. However, for the

caches for which the algorithm is appropriate, the results are comparable

to using the collecting semantics [37] of a cache, but the approach has been

shown to be up to 10 times faster.

• Apply the same techniques to the unrelated problem of Loop Bound Anal-

ysis, in order to reduce the amount of additional information required.

The approach was applied to Loop Bound Analysis, resulting in an algo-

rithm which did not require user annotations on any variables apart from

input variables. When this approach was successful, in the tests conducted

no pessimism was observed. However, the approach was not always success-

ful: in some cases, it was unable to find any answer. This was due to the

fact that important information was lost in the compression. This results in

two possible interpretations: the first being that in some cases, it may not

be possible to find a universal compression method which always discards
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the least useful information. The second interpretation being that multiple,

user-guided, compression methods may be necessary in some problems, such

that the user selects between compression methods which are guaranteed to

be sound rather than supplying data which may be unsound.

• Evaluate how the approach was used in both problems to demonstrate the

broad applicability of this technique.

While the results of the specific compression method divided by the approach

for Loop Bound Analysis were only partially successful, the method itself

was applied successfully to both problems, despite their lack of similarity.

Further, the problem faced in Loop Bound Analysis is different in that while

some information is clearly critical, the value of the remainder is context

specific: making a different choice on the value of types of information would

have resulted in a different technique. Hence the overall approach appears

to be sound, although the exact compression needed may depend on the

problem under consideration.

6.3.1 Hypothesis

Problems encountered in finding appropriate models used in real-time sys-

tems problems, such as Worst Case Execution Time (WCET) Estimation

can be thought of as a highly specific form of lossy compression. Hence, the

approach used to design lossy compression algorithms can also be used to

design an appropriate and effective model for use in WCET estimation.

This thesis examined current approaches to building models, and iden-

tified similarities with lossy compression methods.

The main contribution of this thesis was a generic approach to design-

ing a lossy compression algorithm which can be used in conjunction with

more traditional techniques such as Abstract Interpretation to produce an

appropriate model. This has been demonstrated on two distinct problems,

for which traditional techniques applied in isolation failed to produce ade-

quate models, namely 8-way PLRU cache analysis (which was subsequently

presented at [52]) and Annotation-Free Loop Bound Analysis.

The main problem encountered was the definition of value of information,

as used in lossy compression. While in PLRU cache analysis it is relatively

straightforward to find a least valuable type of information, in Loop Bound
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Analysis the value of information can be context specific. However, the

principal still applies that the least valuable information should be discarded.

Given the successful application of the generic lossy compression ap-

proach to building models, it seems justified to conclude that the problems

examined were amenable to lossy compression. Further, due the lack of simi-

larity between the two problems, other than common features found in many

of the modelling problems faced in modelling real-time systems, it seems jus-

tified to conclude that the technique has wider applicability. While not in

the scope of this thesis, further evidence for this has been demonstrated by

subsequent research which applied the principles of lossy compression to the

random replacement cache architecture [53].
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Appendix A

Results of Full Tree Analysis

on Benchmarks

Mälardalen Benchmarks

PLRU-cs PLRU-ft HNMRU(2,4)-ft HNMRU(4,2)-ft

Must May Miss Must May Miss Must May Miss Must May Miss

adpcm 194975 121 16623 194975 134 16610 191920 18129 1670 200946 126 10647

bs 252 7 12 225 46 0 243 15 13 248 11 12

bsort100 641570 49398 49021 641373 69213 29403 641279 54537 44173 641280 87262 11447

cnt 8477 482 32 8305 672 14 8207 750 34 7917 1042 32

compress 12742818 67422 375479 12742815 67442 375462 - - - - - -

crc 145544 498 7206 145542 532 7174 145300 1248 6700 145295 1255 6698

edn 450031 1092 48392 450031 1115 48369 449977 1135 48403 450028 1147 48340

expint 63554 897 1921 63554 927 1891 63455 1096 1821 63456 1092 1824

fdct 5710 2 838 5710 23 817 5710 0 840 5710 2 838

fft 108945 711 17541 108945 753 17499 108938 707 17552 108941 773 17483

fibcall 777 0 8 775 10 0 775 0 10 776 1 8

fir 6021 12 169 6021 26 155 6012 13 177 6021 14 167

insertsort 5893 47 34 5893 69 12 5885 54 35 5893 38 43

jfdctint 7008 1 738 7007 23 717 7007 2 738 7008 2 737

lcdnum 1161 94 189 1161 173 110 1161 103 180 1159 129 156

ludcmp 39066 395 3724 39066 473 3646 38943 497 3745 38930 651 3604

matmult 422628 2590 868 422088 3192 806 420919 4697 470 420955 5098 33

minmax 165 9 33 163 44 0 165 9 33 165 9 33

minver 4539 80 249 4536 100 232 4509 115 244 4490 128 250

ndes 121658 2631 17022 121658 2653 17000 121447 2988 16876 121560 2454 17297

nsichneu 19066 190 2753 19066 232 2711 19066 190 2753 19066 190 2753

prime 28063 11 745 28058 45 716 28057 14 748 28064 13 742

qurt 8456 235 1276 8456 253 1258 8456 235 1276 8456 240 1271

select 11134 189 843 11134 343 689 11134 232 800 11134 189 843

sqrt 2399 41 370 2399 164 247 2399 39 372 2399 41 370

st 410648 3387 38146 410647 3402 38132 414994 4028 33159 410157 4123 37901

statemate 297999 3291 81582 297998 3311 81563 297998 3291 81583 297999 3291 81582

ud 19367 152 1108 19367 287 973 19264 318 1045 19317 388 922

Papabench Benchmarks

PLRU-cs PLRU-ft HNMRU(2,4)-ft HNMRU(4,2)-ft

Must May Miss Must May Miss Must May Miss Must May Miss

autopilot 8207384 101539 939134 8207383 101552 939122 8179708 110513 957836 8204398 170930 872729

autopilot.t10 8194685 101410 937423 8194682 101445 937391 - - - - - -
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PLRU-cs PLRU-ft HNMRU(2,4)-ft HNMRU(4,2)-ft

Must May Miss Must May Miss Must May Miss Must May Miss

autopilot.t11 90 2 16 90 18 0 90 2 16 90 2 16

autopilot.t12 421 15 80 421 67 28 421 15 80 421 15 80

autopilot.t13 4658 38 697 4658 98 637 4658 38 697 4658 38 697

autopilot.t6 2704 33 434 2703 64 404 2701 36 434 2704 33 434

autopilot.t7 277 5 53 276 20 39 277 5 53 277 5 53

autopilot.t8 53 2 10 53 12 0 53 2 10 53 2 10

autopilot.t9 2945 18 334 2945 53 299 2945 18 334 2945 19 333

fly by wire 127901 9673 14628 127900 9692 14610 128433 9330 14439 127741 10110 14351

fly by wire.t1 888 17 152 888 36 133 888 17 152 888 17 152

fly by wire.t2 339 3 31 339 19 15 339 3 31 339 3 31

fly by wire.t3 369 7 65 369 24 48 369 7 65 369 7 65

fly by wire.t4 1203 224 26 1193 260 0 1218 213 22 1201 234 18

fly by wire.t5 1045 22 181 1045 65 138 1045 22 181 1045 22 181
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Appendix B

Results of Loop Bound

Analysis on the Mälardalen

Benchmarks

The following benchmarks were successfully analysed. The remaining Mälardalen

benchmarks were unanalysable for technical reasons.

1. expint.c

2. fibcall.c

3. insertsort.c

4. janne complex.c

5. matmult.c

6. prime.c

7. recursion.c
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expint.c Size of Input State Space: 100. States Explored: 67. WCET
Found: 67. Actual WCET: 67. Annotated CFG:

expin t :7

expin t :4

1

expin t :5

1

expin t :2

expin t :3

1

1

main:1

main:2

1

expin t :1

1

1

expin t :21

1

1
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fibcall.c Size of Input State Space: 30. States Explored: 7946. WCET
Found: 253. Actual WCET: 253. Annotated CFG:

fib:5

fib:6

1

fib:3

2 9

fib:7

1

main:2

1

fib:1

1

main:3

1

fib:4

2 9

fib:2

1

1

2 9

1

main:1

1
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insertsort.c Size of Input State Space: 10!. States Explored: 214864036.
WCET Found: 749. Actual WCET: 749. Annotated CFG:

main:6

main:7

9

main:8

1

main:3

9

main:5

9

main:4

4 5 4 5

main:9

1

main:1

main:2

1

1

9

janne complex.c Analysis did not terminate. As memory usage was stable,
it appears that an infinite loop was encountered.
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matmult.c Size of Input State Space: O(220
4
). States Explored: 188879.

WCET Found: 188879. Actual WCET: 188879. Annotated CFG:
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prime.c Size of Input State Space: 1111111111111. States Explored:
2732670. WCET Found: 5054. Actual WCET: 5054. Annotated CFG:
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recursion.c Analysis did not terminate. Memory usage was growing, so it
appears that important information was discarded and the analysis unable
to recover.
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Appendix C

Digital Appendix

All program source code and experiments can be downloaded from the York

Real Time Systems wiki which can be found at http://www.cs.york.ac.

uk/rts/.
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