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0 Abstract 

The ubiquitous proto-oncogene C-Src has two neuronal splice variants, N1- and N2-

Src, which contain 6 and 17 amino acid inserts in their SH3 domains 

respectively.  These inserts are thought to modify SH3 domain binding in a manner 

that decreases auto-inhibition and changes substrate specificity.  Although high levels 

of neuronal Src expression are associated with neuronal differentiation, both during 

development and in the developmental cancer neuroblastoma, the functions, molecular 

mechanisms and specific substrate proteins of neuronal Srcs remain largely 

uncharacterised. 

Employing a highly multidisciplinary approach, this project aimed to characterise the 

role of N-Src expression in neuronal differentiation.  Neuronal Srcs were demonstrated 

to be highly active in neuroblastoma cell lines, and overexpression can drive 

significant neuritogenesis in the retinoic acid-resistant cell lines KELLY and SK-N-

AS.  N2-Src expression was also shown to decrease the expression of Ki67 in SK-N-

AS cells, indicating that N2-Src can drive neuroblastoma cells into quiescence. 

Using the Xenopus embryo as a model system for neuronal development, the 

expression pattern of xN1-Src during neurulation was characterised and a novel 

neuronal splice variant was identified in this species.  It was demonstrated that xN1-

Src is essential for healthy primary neurogenesis, and that xN1-Src knockdown caused 

a dramatic locomotive and patterning phenotype in X.tropicalis.  Using stable, 

inducible HeLa cell lines, a phosphoproteomic screen demonstrated significant 

changes in the phosphotyrosine profile between C- and N2-Src over-expressing 

cells.  Several candidate N2-Src substrates were identified, including paxillin, 

plakophilin and BCAR1.  Bioinformatic analyses of the proteomic data revealed the 

enrichment of signalling pathways and protein complexes involved in membrane 

traffic and cell adhesion. 

Through these multidisciplinary approaches, the cellular effects of N1- and N2-Src 

signalling during both neuronal precursor and neuroblastoma differentiation have been 

characterised.  Furthermore, a library of potential N-Src substrates has been generated 

that provides a framework for future studies. 
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1 Introduction 

1.1 Regulation by Phosphorylation 

 Protein kinases and phosphatases catalyse the reversible post-translational 

modification of protein by the addition and removal of a phosphate group from a 

compatible amino acid.  A protein kinase catalyses the transfer of γ-phosphate from 

ATP (or less commonly GTP) to an appropriate amino acid substrate, and 

phosphatases catalyse removal of the phosphate group onto a molecule of water.  It is 

difficult to overstate the importance of protein phosphorylation in the maintenance of 

eukaryotic life.  Protein phosphorylation in some way regulates almost every 

conceivable process in eukaryotic cells.  From proliferation to apoptosis, gene 

expression to protein degradation, memory to immunity; phosphorylation has a role in 

transducing the signalling from almost all of the major signalling pathways in the cell.  

The transient, reversible nature of phosphorylation signalling allows tight temporal 

control over signalling events and since phosphorylation requires that proteins be in 

physical contact, phosphorylation is further regulated by intracellular localisation of 

proteins.  Commonly, cell signalling by phosphorylation occurs as part of multi-tiered 

pathways or signalling cascades; where phosphorylation of one protein activates 

multiple further phosphorylation events, proliferating the signal throughout the cell.  

Examples of phosphorylation cascades include the MAP kinase signalling where 

signalling at the cell membrane activates a cascade of phosphorylation events that 

leads to activation of gene expression in the nucleus (Cuadrado and Nebreda, 2010).  

As such, phosphorylation is one of the most prevalent, flexible post-translational 

modifications, it is estimated that up to 30% of the proteins in the human genome are 

phosphorylated (Cohen, 2000) and the Phosphosite database identified over 17,000 

unique proteins with at least one such modification (Hornbeck et al., 2012).   

As the application of phosphorylation is broad, so too are the effects of amino 

acid phosphorylation upon protein function.  Phosphorylation regulates protein 

function in two main ways, through inducing conformational change of the protein, or 

by creating or disrupting a site of protein-protein interaction.  As such the effect of 

protein phosphorylation is highly variable, depending heavily upon the structural and 

cellular context into which the phosphate group is added or removed.  Protein 

phosphorylation can variably induce a protein to be activated or inactivated, degraded 
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or transported, indeed in many cases multiple phosphorylation sites exist with highly 

contradictory affects upon a single protein, one phosphorylation site which may 

activate the protein; another which may mark it for transportation to another 

subcellular localisation. 

With such a diverse range of function and action, it is no surprise that a 

relatively large proportion of the human genome is given over to the regulation of 

phosphorylation.  Over 518 protein tyrosine kinases have been identified in the human 

genome, representing in excess of 1.7% of the known human genes (Manning et al., 

2002), and around 200 phosphatase proteins which catalyse the removal of phosphate 

groups (Sacco et al., 2012).  Due to their roles in cell signalling, the importance of 

effective phospho-transferase function is self-evident, and mutation of kinases and 

phosphatases is known to cause a variety of diseases from cancers to myopathies and 

diabetes (Cohen, 2001).   

 

1.1.1 Tyrosine phosphorylation 

In eukaryotes there are only three amino acids which are commonly 

phosphorylated; serine, threonine and tyrosine.  Of these three, serine and threonine 

represent the most abundantly detected phosphorylation events, (79% and 17% 

respectively) whilst phosphorylated tyrosine represents only 4% of total protein 

phosphorylation events (Olsen et al., 2006).  Whilst tyrosine represents a relatively 

small proportion of phosphorylated amino acids, tyrosine kinases are crucially 

important to normal cell signalling, so much so that the discovery of many tyrosine 

kinases was proceeded by their discovery in oncogenic viruses, which hijack control 

of cell proliferation by use of only a few of these proteins (Courtneidge et al., 1980). 

Tyrosine phosphorylation was first identified by Eckhart, Hutchinson and 

Hunter (1979) in studies of polyoma virus.  Prompted by the discovery of the tumour 

inducing viral kinase v-Src (as yet unidentified as a tyrosine kinase), Eckhart and 

colleagues looked for and identified increased phosphorylation of polyoma virus 

antigens in infected cells.  When attempting to confirm the phosphorylation by gel 

separation of the separated, 32P-labeled, amino acids of the polyoma virus antigen 

immunoprecipitate, Tony Hunter found that the phosphorylated antigen ran between 
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the phosphothreonine and phosphoserine markers, and subsequently identified the first 

phosphorylated tyrosine (Hunter and Eckhart, 2004, Eckhart et al., 1979).   

 Since this discovery, the dysregulation of tyrosine phosphorylation has been 

strongly associated with oncogenesis.  Through both mutated viral versions of 

mammalian tyrosine kinases, to somatic and germ line mutations and dysregulation of 

endogenous tyrosine kinases, over half of the 90 tyrosine kinases identified are 

implicated with human malignancies (Blume-Jensen and Hunter, 2001).  This 

association is due to their importance as signalling regulators of pathways controlling 

development, proliferation and cell-cell communication.  Throughout normal 

development, tyrosine kinases are crucial in regulating the multiplication of stem cells 

and the differentiation of those cells to form the tissues of the body.  When the tyrosine 

kinases involved in regulating these processes become dysregulated, control over 

division is often lost, or in many cases unrestricted proliferation is promoted. 

There are two families of protein tyrosine kinases, Receptor Tyrosine Kinases 

(RTKs) and non-Receptor Tyrosine Kinases (nRTKs).  Of the 518 protein kinases 

identified by Manning and colleagues, 90 were identified as being tyrosine kinases, 

58 RTKs, and 32 nRTKs (Manning et al., 2002). 

 

1.1.2 Receptor tyrosine kinases 

 RTKs are a family of cell-surface receptors which possess extracellular ligand 

binding domains, and a cytoplasmic tyrosine kinase domains linked by a single 

membrane spanning helical domain (Lemmon and Schlessinger, 2010).  Activation of 

these RTKs is usually facilitated by ligand-mediated oligomerisation of the receptor, 

by signalling factors expressed by other cells.  Ligand binding draws receptors 

together, bringing the catalytic intracellular RTK domains close enough to allow trans-

activation of their kinase domains via phosphorylation of the kinase activation loop.  

With the kinase activity enhanced by these trans-activating events, further auto-

phosphorylation occurs in other regions of the cytoplasmic domain.  These further 

phosphorylation events often create docking sites for phosphotyrosine binding 

modular domains, resulting in the recruitment and activation of downstream signalling 

molecules (Hubbard and Till, 2000).  By this method, RTKs initiate signal 
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transduction cascades beginning with the recognition and binding of extracellular 

signalling factors and resulting in recruitment of cytosolic proteins which proliferate 

that signal.  With such central roles in cell-cell signalling, RTKs are highly conserved 

through evolution and mutation of RTKs is implicated in numerous disorders and 

diseases, most prominently, cancer.  Oncogenic signalling by RTKs allows cancer 

cells to stimulate the ligand-free downstream signalling events usually caused by 

exogenous growth factors, allowing the uncontrolled proliferation causative of tumour 

genesis (Lemmon and Schlessinger, 2010). 

 

1.1.3 Non-receptor tyrosine kinases 

 Of the 90 known protein tyrosine kinase genes, 32 code for non-receptor 

tyrosine kinases (Manning et al., 2002).  By contrast with RTKs the majority of nRTKs 

are cytosolic, although many associate with membranes via N-terminal post-

translational modifications such as myristoylation.  Whilst there is considerable 

functional diversity within nRTKs they generally play roles in trans-cytoplasmic cell 

signalling, translating signals from receptors, to which they often associate and act as 

a kinase domain module of receptors without intrinsic kinase activity (Neet and 

Hunter, 1996). 

 

1.2 Src Family Kinases 

The largest family of nRTKs is the Src Family of kinases (SFKs) which in 

vertebrates comprises 9 proteins Src, Yes, Fyn, Lck, Lyn, Fgr, Hck, Blk and Yrk.  The 

first SFK to be discovered was Src, originally identified by its oncogenic, viral 

counterpart v-Src as the causative agent of transformation in Rous sarcoma virus, a 

protein singly capable of cell transformation (Stehelin et al., 1976).  Src has since 

proceeded to the workhorse protein for the study of tyrosine kinases, Src was the first 

identified proto-oncogene as well as the causative protein behind the phosphorylation 

event responsible for the first identification of phospho-tyrosine in cells (Brown and 

Cooper, 1996, Hunter and Eckhart, 2004, Eckhart et al., 1979).  Studies of C-Src then 

prompted a search for related proteins which resulted in identification of the remainder 

of the Src family kinases.   
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SFKs can be roughly divided into two groups, those that are expressed only in 

a limited subset of cells; Lyn, Hck, Fgr, Blk and Lck, and those which are expressed 

throughout the body; Src, Yes, Fyn and Yrk.  This second group of proteins (with the 

exception of Yrk which has yet to be identified in mammals) are expressed 

ubiquitously, albeit at differing concentrations in different cell types (Brown and 

Cooper, 1996).  Members of this group have been shown to be compensatory in their 

function as mouse knockouts of either Src, Fyn or Yes are largely tolerated, with some 

cognitive and bone-formation impairment (Lowell and Soriano, 1996), however 

double knockouts Fyn/Yes causes severe renal degeneration and Src/Yes or Src/Fyn 

knockouts cause prenatal death (Stein et al., 1994).   

 

1.2.1 SFK structure 

 All SFKs have a common domain structure which feeds strongly into their 

functions within cells.  From N- to C-Terminus each SFK is structured as follows; i) 

N-terminal membrane associated region (SH4 domain), ii) unique domain, iii) SH3 

domain,  iv) SH2 domain, v) kinase domain, vi) C-terminal tail region (Fig.  1-1) 

(Brown and Cooper, 1996).  Amino acid positions on SFK proteins will be referred to 

by their chicken Src numbering throughout this thesis. 

 

1.2.2 The SH4 domain 

The N-terminal region of SFKs is essential for the effective association of 

family members with the plasma membrane and other intracellular membranes (Resh, 

1993).  Membrane association has been shown to be essential for effective function of 

SFKs.  For example 80-90% of the constitutively active v-Src is membrane localised 

to the membrane and non-membrane bound mutants of v-Src are incapable of 

transforming cells (Courtneidge et al., 1980, Cross et al., 1985).   

This region, known as the SH4 domain (Resh, 1994), consists of ~15 highly 

conserved amino acids which are the site of both lipid modification and membrane 

targeting amino acid sequences of SFKs (Resh, 1993).  Myristoylation of the glycine 

at position two of the N-terminus by N-Myristoyl-transferase occurs in all SFKs and 
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requires conservation of the 7 most N-terminal amino acids of the SFK (Cross et al., 

1984).  This irreversible post-translational modification occurs immediately after 

translation, and, although myristoylation is not singly sufficient to guarantee 

membrane localisation, without myristoylation SFKs are incapable of localising to the 

plasma membrane (Buss et al., 1984).  Myristoylation is not a specific targeting 

modification, as N-terminal myristoylation occurs in many other proteins and these 

proteins are found in various subcellular locations including the ER, Golgi, nucleus 

and cytoplasm in addition to the plasma membrane (Resh, 1994).   

In addition to myristoylation, with the exception of Src and Blk, SFKs are also 

palmitoylated at N-terminal cysteine 3 which contributes further to membrane 

association but requires pre-existing myristoylation (Koegl et al., 1994).  Whilst post-

translational addition of the myristoyl group is permanent, palmitoylation appears to 

be reversible (Paige et al., 1993) suggesting that palmitoylation of the SFK is 

dynamically regulated by the cell in order to change cellular localisation and activity.  

Palmitoylation appears to be important in enhancing the myristoyl-derived membrane 

Figure.  1-1.  Src family kinase domain summary.   
SFKs all share a common domain structure.  The length of each domain is as follows (human 
numbering) SH4: 1-15, Unique: 15-84, SH3: 84-145, SH2: 151-248, Kinase 270-523.  The N-
terminal SH4 domain is the principal site of membrane association, containing both sites of 
myristoylation and palmitoylation.  The unique domain is an intrinsically disordered region 
with no tertiary structure and varies greatly between SFKs.  The unique domain is the site of 
extensive post-translational modification and regulatory actions by interacting enzymes.  SH3 
domains are modular protein binding domains with specificity for left-handed type II 
polyproline (PPII) helices on substrates.  The SH3 domain is also crucial for intramolecular 
inhibition of kinase activity through binding to the SH2-kinase linker sequence.  The 
sequences of the three Src splice variants (C-, N1-, and N2-Src) are indicated below and insert 
into the SH3 domain.  SH2 domains bind to phosphotyrosine residues, in both auto-inhibitory 
intramolecular (T527) and a substrate-specifying, activating capacity.  The kinase domain it 
the catalytic site of src activity, transferring the γ-phosphate from ATP onto substrate tyrosine 
residues.  Though each SFK contains these modular domains there are sequence and structural 
differences in each domain of each protein, resulting in the unique regulation and substrate 
specificity that affords them their functional differences. 
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affinity of SFKs.  In experiments upon two Hck splice variants unpalmitoylated p59-

Hck and palmitoylated p61-Hck only 30% of the unpalmitoylated splice variant 

associates with membranes, compared to the completely membrane associated p59-

Hck variant which is palmitoylated.  When the palmitoylation of these two variants is 

reversed by mutation of the N-terminal domain, 70-75% of p61-Hck is membrane 

associated, and no p59-Hck is identified at the membrane (Robbins et al., 1995).  This 

suggests that the reversible palmitoylation of SFKs, alongside other localisation 

signals, can act to variably localise SFKs to membranes, as such exposing them to a 

different subset of substrates and facilitate different protein-protein interactions. 

Whilst Src and Blk are not palmitoylated, their membrane affinity is enhanced 

in the SH4 region by inclusion of basic arginine residues at positions 14-16 (Resh, 

1994, Kim et al., 1991).  These residues are thought to act in a similar fashion to basic 

residues observed around other myristoyl regions, where local highly basic regions 

interact with the acidic phospholipids of membranes (Kim et al., 1991, Ben-Tal et al., 

1996).  Association with membranes as promoted by the SH4 domain allows for the 

SFKs to interact with important receptors and substrates.  Without this capacity these 

kinases would be incapable of performing their functions within the cell, as 

demonstrated by the failure of unmyristoylated v-Src to transform cells (Cross et al., 

1985).   

 

1.2.3 The Unique Domain 

 Following the SH4 domain is the eponymous unique domain which is the main 

site of variance between the different family members.  Unlike other well characterised 

domains, the divergence between the sequences of the unique domain means that no 

single function for all family members has been identified in this region.  The unique 

domain is between 50 and 80 amino acids in length and is an Intrinsically Disordered 

Region (IDR), a region of protein sequence which lacks tertiary structure.  The many 

IDRs across the proteome are variable in their function however mutation in IDRs of 

intrinsically disordered proteins has previously been shown to result in the loss of 

important post translational modifications and aberrant interactions with physiological 

partners (Uversky et al., 2008, Li et al., 2010).  As such it is apparent that whilst IDRs 

lack a tertiary structure, they are accessible to enzymes as both substrates, and as 
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protein-protein interaction partners (Amata et al., 2014) Several of these interactions 

are summarised in Table 1-1. 

In the SFK Lck residues in the unique region form disulphide bonds to the 

transmembrane receptors CD4 and CD8 (Shaw et al., 1989).  Phosphorylation of S59 

has been identified during mitosis and is shown to regulate the specificity of the SH2 

domain (Joung et al., 1995, Kesavan et al., 2002).  This phosphorylation also decreases 

the interaction between Lck and Nck, an adaptor protein involved in signal 

transduction by association with plasma membrane elements.  Phosphorylation of Lck 

at S59 ablates interaction between Nck and Lck, and has been shown to modify Lck 

mediated activation of signalling events (Vazquez, 2007).  Similarly, Fyn and Lyn 

may also form low affinity contacts with B and T cell antigen receptors via their unique 

domains which act concomitantly with high affinity SH2 binding to phosphotyrosine 

sites (Clark et al., 1994b). 

Phosphorylation of tyrosine residues between position 25 and 34 has been 

identified in Lyn, Hck, Lck, Yes and Fgr (Hornbeck et al., 2012, Ariki et al., 1997, 

Oppermann et al., 2009).  In Lyn Y32 is phosphorylated by the EGF receptor, which 

leads to phosphorylation of MCM7 and an increase in cellular proliferation.  In vivo 

Y32 is identified in breast cancer cells with a poor prognosis (Huang et al., 2013).  In 

Fgr, phosphorylation in this region is detected at a higher rate in leukaemia patients 

(Oppermann et al., 2009).  Interestingly, it has been shown that Hck is capable of 

autophosphorylating both the activation loop of the kinase and also Y29 of the unique 

domain.  This increases the activity of the kinase by 2 fold, contributing towards a 20-

fold increase in activity when both the activation loop of the kinase domain and Y29 

are phosphorylated in unison (Johnson et al., 2000).   

In Fyn, phosphorylation of Y28 shows similarity with Hck Y29 

phosphorylation, significantly increasing activity of the kinase when phosphorylated 

by the stimulated PDGF receptor.  Y28F mutation shows that Fyn activation by 

stimulated PDGFR is significantly decreased suggesting a crucial role in the 

phosphorylation of this residue in activation of Fyn in response to membrane 

signalling (Hansen et al., 1997).   

Both Fyn and Src contain the conserved PKA substrate motif RxxS in their 

unique domains, and in Fyn this serine residue (S21) is specifically targeted by PKA.  
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This has been shown to have functional implications upon Fyn association with FAK 

as perturbing Fyn phosphorylation by PKA appears to negatively affect Fyn activity, 

resulting in a decrease in migration (Yeo et al., 2011).   

Src, being arguably the most well studied and characterised SFK, has an 

extensive amount of literature on its function, providing an interesting mechanistic 

insight into its roles in Src localisation and degradation.  As previously mentioned, Src 

associates with the acidic phospholipids of membranes through a highly basic region 

of three arginine residues at sites 14-16 (Resh, 1994).  This electrostatic interaction is 

disrupted by the phosphorylation of S17 in PDGF stimulated cells by PKA 

phosphorylation.  This phosphorylation brings a positive charge close to the site of 

electrostatic interaction, resulting in Src detaching from the plasma membrane and 

localising in the cytosol (Obara et al., 2004).  This phosphorylation event is required 

for some of the cellular effects of cAMP treatment including Rap1 activation and 

inhibition of cell growth.   

In addition to interaction with membranes through myristoylation and the triple 

arginine site, Src has recently been shown to interact with membranes via its unique 

domain, in a partially structured region termed the Unique Lipid Binding Region 

(ULBR) (Pérez et al., 2009).  This 15 amino acid region (positions 60-75) possesses a 

strong electrostatic affinity for negatively charged lipids and when mutated, causes a 

conditional lethal phenotype in Xenopus oocytes (Pérez et al., 2013).  The affinity of 

the ULBR is disrupted by flanking phosphorylation events at T37 and S75, which, 

similar to S17 phosphorylation, cause electrostatic repulsion from acidic membranes.  

These sites are phosphorylated by CDK1 in a cell-cycle dependent manner.  

Phosphorylation by CDK1 of T37 and S75 also causes a decreased affinity for 

intramolecular binding of the SH2 domain to phosphorylated Y527, an auto-inhibitory 

interaction, resulting in increased activity (Shenoy et al., 1992, Stover et al., 1994).  

This dual effect of repulsion from cell membranes and activation of Src activity could 

function to increase association of active Src with cytosolic substrates which drive cell 

cycle progression and proliferation; similar to in v-Src transformation where 60% of 

v-Src is located in the cytosol (Bjorge et al., 2000, Willingham et al., 1979). 
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Table 1-1.  Major post-translational modifications of SFKs. 
Each SFK has a unique pattern of protein interactions, many of which regulate the protein via 
post-translational modification.  Some, such as N-terminal myristoylation, Y416 
phosphorylation and Y527 phosphorylation are shared between all SFKs whilst others are unique 
to each protein.   
 

Domain Group Site Affected 
SFK(s) 

Effect Reference 

N-terminus Myristoyl G2 All Membrane localisation (Cross et al., 
1984) 

Palmitoyl C3 All except 
Src, Blk 

Dynamic, reversible 
membrane localisation 

(Paige et al., 1993, 
Koegl et al., 1994)  

Unique 
domain 

Phosphate S12, 
S17 

Src Disrupts electrostatic 
association of R14-16 
with plasma membrane 
phospholipids 

(Obara et al., 
2004, Resh, 1994, 
Yaciuk et al., 
1989)  

 Phosphate  S21 Src, Fyn Phosphorylated by PKA.  
Decreases Fyn 
association with FAK 

(Yeo et al., 2011) 

 Phosphate Y25-
Y34 

Fgr, Hck, 
Lck, Lyn, 
Yes,  

Various, increased 
phosphorylation often 
associated with 
oncogenesis 

(Hornbeck et al., 
2012, Ariki et al., 
1997, Oppermann 
et al., 2009) 

 Phosphate Y28 Fyn Increases kinase activity, 
Phosphorylation 
stimulated by PDGFr 

(Hansen et al., 
1997) 

 Phosphate Y29 Hck Increases kinase activity (Johnson et al., 
2000) 

 Phosphate Y32 Lyn Phosphorylated by EGF 
receptor, leads to MCM7 
phosphorylation and 
proliferation 

(Huang et al., 
2013) 

 Phosphate T34, 
T46, 
S72 

Src Cell cycle dependent 
CDK1 phosphorylation 
decreases SH2 affinity for 
pY527 

(Shenoy et al., 
1992, Stover et al., 
1994, Roskoski, 
2005) 

 Phosphate S59 Lck, 
possibly 
others 

Regulation of binding 
specificity of SH2 domain 

(Joung et al., 
1995, Kesavan et 
al., 2002) 

 Phosphate S69 Src Appears mutually 
exclusive with S72 
phosphorylation, may 
attenuate CDK5 S72 
degradation pathway 

(Pérez et al., 2013, 
Oppermann et al., 
2009, Amata et 
al., 2014)  

 Phosphate S72 Src CDK5 phosphorylation 
targets active Src for 
ubiquitin-mediated 
degradation 

(Pan et al., 2011) 

Kinase 
domain 
 

Phosphate Y416 All Activating 
phosphorylation of the 
kinase domain 

(Kmiecik and 
Shalloway, 1987) 

C-terminus Phosphate Y527 All Inhibitory 
phosphorylation, bound 
by SH2 constraining 
kinase activity 

(Cooper et al., 
1986) 
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Although phosphorylation of S75 usually occurs by CDK1 in a cell-cycle 

dependent manner in both neurons and some cancer cell lines, S75 is also 

phosphorylated by CDK5 independent of cell cycle, although this is dependent upon 

Src activity rather than cell cycle progression (Kato and Maeda, 1999).  CDK5 

phosphorylation of S75 of active Src targets Src for ubiquitination and cullin-5-

dependent degradation (Pan et al., 2011).  In addition to its role as a kinase of S17 in 

Src, PKA actively suppresses dephosphorylation of Src at Ser75 by phosphatases, 

suggesting a support role for PKA in the degradation of active Src (Amata et al., 2013).  

This S75 linked degradation is likely a control mechanism to prevent a loss of cell 

cycle control as a result of an accumulation of activated Src, similar to that seen in v-

Src.  This phosphorylation event is mutually exclusive to phosphorylation of S69, as 

identified in an assay where the unique domain of Src with Xenopus cell extracts 

(Pérez et al., 2013).  To date, the S69 phosphorylation has only been identified in 

humans has in cancer cell lines (Oppermann et al., 2009), suggesting that degradation 

of active Src by S75 phosphorylation may be being attenuated by S69 phosphorylation 

in these cells (Amata et al., 2014).  As Src is a potent oncogene the maintenance of a 

large pool of active Src would be positively selected for by cancer cells, and S69 

phosphorylation may mediate that effect.   

In addition to the regulation of membrane binding and protein degradation in 

the Src unique domain, Perez and colleagues also identified an intramolecular 

interaction between the unique domain and the SH3 domain (Pérez et al., 2013).  This 

interaction has to date only been identified by Nuclear Magnetic Resonance (NMR) 

spectroscopy, and as such the function of this interaction, if it occurs in vivo, is not yet 

known (Pérez et al., 2013).  Whilst until recently the functions of the unique domain 

of SFKs have proven enigmatic to researchers, studies in the last ten years have 

provided an insight into the regulation of Src activity, binding, localisation and 

degradation facilitated by the unique domain.   

 

1.2.4 The SH3 domain 

 The Src Homolog 3 domain is a non-catalytic, globular domain of between 55 

and 75 amino acids in length.  SH3 domains are a highly conserved modular domain 

present throughout evolution, in all eukaryotic life (Kaneko et al., 2008), as well as in 
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viruses and prokaryotes (Whisstock and Lesk, 1999).Originally identified in the 

adaptor protein Crk (Mayer et al., 1988), over 300 other SH3 domains have been 

identified in the human genome since (Kärkkäinen et al., 2006), making the SH3 one 

of the most abundant protein modules found in nature.  Whilst SH3 domains are found 

in a large variety of different proteins with a plethora of functions - from GTPase 

activating proteins, to phospholipases, kinases, phosphatases, adaptor proteins and 

beyond - they usually function in the same way; as a protein-protein, or occasionally 

as a protein-lipid, interacting module.   

In the case of SFK proteins, the SH3 carries out important roles in substrate 

recognition, regulation of kinase activity, and intracellular localisation (Gmeiner and 

Horita, 2001, Sriram et al., 2011).  Src was the first SFK to have the structure of its 

SH3 domain solved (Yu et al., 1992), swiftly followed by Fyn (Noble et al., 1993) 

(Fig 1-2).  Yu and colleagues identified that the Src SH3 domain consists of two three 

stranded anti-parallel β−sheets, these sheets are packed against each other at 

approximately right angles, with the interface between the sheets forming the 

hydrophobic core of the domain (Yu et al., 1992).  This hydrophobic region, in the 

fold between the two β-sheets, forms the binding face of the SH3 domain and contains 

the distal, RT and n-Src loops which connect the β-sheets (Musacchio et al., 1992, 

Ren et al., 1993, Brannetti et al., 2000).  Yu and colleagues also identified that the C- 

Figure.  1-2.  Crystal structure of the C-Src SH3 domain.   
The C-Src SH3 domain (purple) bound to the class I ligand VSL12 (grey), from the 
crystal structure solved by Feng and colleagues, 1995.  The side-chains of the amino 
acids forming the binding face of the SH3 domain interact with ligands at three points, 
forming  two hydrophobic ‘recognition pockets’ which bind proline, and one ‘specificity 
pocket’ which binds to arginine or lysine.  The site of the n-src loop (indicated) partially 
forms the specificity pocket and is the site of N1- and N2-Src exon inclusion.  Image of 
crystal structure provided by Dr Gareth Evans.  PDB code 1QWF. 
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and N- terminal peptides of the SH3 domain were located adjacent to each other which 

suggests that the extensive use of the SH3 domain as a protein module throughout 

evolution is, at least in part, due to the ability to incorporate it into a protein with 

minimal disruption to the surrounding structure (Yu et al., 1992). 

SH3 domains predominantly bind to short, proline-rich regions on target 

substrates.  The high proline content of these regions typically means that they adopt 

a left-handed type II polyproline (PPII) helix conformation when bound (Yu et al., 

1994).  These proline rich regions typically match either Class I R/KxPxxP or Class II 

PxxPxR/K motifs (Zarrinpar et al., 2003), with both motifs binding a single 

recognition surface of the SH3 in opposing N- or C- terminal orientations (Yu et al., 

1994, Feng et al., 1994, Lim and Richards, 1994, Lim et al., 1994).  Recognition of 

these motif is accomplished by insertion of the ridges of the PPII helix into a 

complementary pair of ‘recognition’ pockets on the SH3 surface, defined by well-

conserved aromatic residues (Zarrinpar et al., 2003).  Adjacent to this core region of 

recognition are the RT and n-Src loops which form a third pocket, the ‘specificity 

pocket’, by making several unique interactions with the ligand residues flanking the 

core PxxP ligand motif (Kay et al., 2000, Shi et al., 2010).   

Although adherence to the core R/KxPxxP or PxxPxR/K is important for 

binding specificity, these motifs allow for considerable sequence variation with little 

impact on the relatively weak binding affinity of this core sequence (Rickles et al., 

1994).  Rickles and colleagues identified the importance of flanking residues by using 

a biased phage display library based upon their previously established core motifs, and 

expanding these motifs in both N- and C- terminal directions (Rickles et al., 1995, 

Feng et al., 1995).  In these experiments they identified that within the core binding of 

the SH3 domain, the two ‘recognition’ pockets functioned as two xP dipeptide binding 

pockets docking via hydrophobic interactions.  The third ‘specificity’ pocket forms a 

salt bridge between the positively charged substrate arginine or lysine and tryptophan 

W118 (Feng et al., 1995, Rickles et al., 1995).   

 In addition to canonical Class I and Class II ligands, the binding face of the 

SH3 domains can make interactions with non-consensus ligands.  Unlike canonical 

Class I and Class II ligands, non-consensus binding does not always require the ligand 

to adopt a typical PPII helical conformation, and often these ligands do not make use 
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of both xP-binding pockets of the SH3 domain.  In addition to an unusually strong 

binding affinity, non-canonical binding to the SH3 is also notable for its extensive 

interaction with the specificity pocket.  Whilst salt bridge formation between Class I 

and Class II ligands and the specificity pocket also dictate the orientation of binding, 

resulting in the canonical form of binding described above, non-canonical ligands 

make more elaborate sets of contacts with the residues of the specificity pocket, 

contributing to both the specificity and affinity observed for this region (Saksela and 

Permi, 2012). 

This versatility of SH3 domain binding contributes in part to the diversity seen 

between SFKs, whilst all SFKs appear to maintain commonality in the two 

hydrophobic recognition pockets of their binding face, considerable diversity of both 

amino acid sequence and conformation is observed in the loops that make up the 

specification region (Noble et al., 1993).   

In addition to the protein-protein interactions of the SFK SH3 domain, and the 

intramolecular binding of the SH3 to the SH2-kinase domain linker (discussed 

extensively in 3.1) the Src SH3 domain has also been implicated in lipid binding.  

Isolated fragments of the SH3 were shown to bind lipids both independently, and in 

combination with unique domain binding.  This interaction occurred on the opposing 

face of the SH3 domain to the protein-protein interaction face of the SH3 (Pérez et al., 

2013).  This same study was the first to reveal that the SH3 was capable of interacting 

with the unique domain in vitro.  This interaction was shown to be abolished by SH3 

binding to a typical RxPxxP SH3 peptide ligand, probably due to allosteric 

interference as, although peptide and lipid binding occur on opposing faces of the SH3 

domain, both rely upon the n-src and RT loops for binding  (Pérez et al., 2013).  This 

implies that, whilst the SH3 domain can bind to this region of the unique domain, it 

does not do so in the presence of a peptide substrate. 

 

1.2.5 The SH2 domain 

 The Src homology 2 domain (SH2), is a modular non-catalytic 

phosphotyrosine binding domain of approximately 100 amino acids (Moran et al., 

1990, Matsuda et al., 1990, Liu et al., 2006).  SH2 domains are the largest class of 
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phosphotyrosine binding domain in the human proteome, found in 111 proteins (Liu 

et al., 2006), and have been identified immediately prior to the evolution of 

multicellular organisms reflecting their importance in regulation of higher order 

signalling pathways (Li et al., 2008).   

Binding by SH2 to phosphotyrosine residues is both high affinity, and highly 

sequence specific, requiring a conserved amino acid sequence in the region 

surrounding the target phosphotyrosine.  In an assay to identify sequence specificity 

of the SH2 domain, SFK SH2 domains were tested against a library of 

phosphotyrosines and demonstrated remarkable conservation of sequence specificity, 

all selecting the motif of pY-E-E-I (Songyang et al., 1993).  More in depth study of 

this sequence specificity later identified that residues pY - 2 and pY + 4 residues either 

side of phosphotyrosine significantly impacted sequence specificity of SH2 binding 

(Filippakopoulos et al., 2009).   

 Structurally, the SFK SH2 is formed from a β-meander, formed of two distinct 

β-sheets flanked on either face by two α-helices.  The central β sheet forms the core 

of the structure, dividing the SH2 into two distinct sides; one side  is primarily 

concerned with binding phosphotyrosine, the other binds the three residues in 

positions pY + 1, pY + 2 and pY + 3.  The crystal structures of substrate bound Src 

and Lck SH2 domains revealed remarkably similar substrate binding structures (Eck 

et al., 1993, Waksman et al., 1993).  Though seven amino acids of the substrate, from 

pY - 2 to pY + 4, make some contact with the SH2 domain.  pY - 2, pY - 1 and pY + 

4 have their functional groups face away from the SH2, and as such have only a weak 

affinity for the SH2 domain.  The main portion of the binding affinity for the SH2 

domain, arises from pY to pY + 3, hence the highly specific pYEEI binding identified 

by Songyang and colleagues for SFKs (Songyang et al., 1993).  The flat surface of the 

central β-sheet supports the weak  ionic hydrogen bonding of glutamic acid residues 

at pY + 1 and pY + 2, whereas pY and pY + 3 fall into high affinity ‘pockets’ resulting 

in ‘two pronged’ binding of these residues (Songyang et al., 1993).  The principal 

difference observed by Waksman and colleagues between high and low affinity SH2 

domain binding was the pY + 3 isoleucine, this resulted in increased overall affinity 

of peptide binding by binding tightly to a number of hydrophobic residues forming a 

deep ‘hydrophobic pocket’ on the face of the SH2 opposing phosphotyrosine binding 

(1993).  Phosphotyrosine binding by the SH2 domain occurs in a well formed pocket 
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of positively charged residues (Waksman et al., 1993).  The central residue in this 

interaction is R175, which forms specific hydrogen bonding interactions between the 

two terminal nitrogens and the two phosphate oxygens.  Since arginine is the only 

amino acid capable of forming this highly specific interaction, mutation of R175 

results in loss of SH2 binding (Waksman et al., 1992). 

Though SH2 domains appear to have originally evolved in pre-metazoans to 

promote processive phosphorylation of kinase substrates, where one phosphorylation 

event is bound by the SH2 domain, providing an anchor for further kinase 

phosphorylation of the same protein (Mayer et al., 1995), this role has been extensively 

elaborated in modern SFKs.  Processive phosphorylation of the ζ chain of the T-cell 

receptor by Lck (Lewis et al., 1997), and hyperphosphorylation of p130CAS by v-Src 

are just two of many identified processive phosphorylation events in mammalian cells 

(Pellicena and Miller, 2001).  With the complexity of multicellular signalling, SH2 

domains assumed an additional regulatory role, with regulated intramolecular binding 

causing allosteric regulation of kinase activity (Kuriyan and Eisenberg, 2007).  In 

SFKs, phosphorylated Y527 (or equivalent) binding by the SH2 domain results in a 

stable, compact and inactive conformation of the kinase, wherein the SH2/pY527 

inhibits kinase domain auto-phosphorylation by fixing the lobes of the kinase domain 

in an ‘open’ conformation.  This interaction between the SH2 domain and pY527 is 

not optimal, meaning that the SH2 domain is displaced from its auto-inhibitory 

interaction by the presence of a phosphotyrosine residue on a substrate protein.  This 

has the dual effect of targeting the SFK to the substrate protein, in addition to relieving 

the inhibition on kinase activity, effectively targeting and activating the protein in one 

binding action, such as occurs with the putative Src substrate Focal Adhesion Kinase 

(FAK) (Thomas et al., 1998).  The importance of SH2 binding for auto-regulation will 

be discussed extensively in 3.1.   

 

1.2.6 The kinase domain. 

 The kinase domain is the catalytic site of tyrosine phosphorylation in SFKs.  

The kinase domain in SFKs possesses the characteristic bi-lobed protein kinase 

structure shared by both tyrosine, and serine/threonine kinase domains (Boggon and 

Eck, 2004).  The smaller of the two lobes is located N-terminally, and is composed of 
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five β-strands and a single α-helix.  The N-terminal lobe, by contrast with the more 

rigid C-lobe, is much more flexible, with a conserved glycine-rich loop that allows 

entry of ATP into the region of catalysis.  The large C-terminal lobe, is predominantly 

composed of α-helices with the exception of a β-sheet present at the active site cleft.  

Importantly this is the lobe which contains the regulatory activation loop, the site of 

the important phosphorylation event which is required for activation of the kinase 

domain (Kmiecik and Shalloway, 1987).  In addition the C-terminal lobe contains the 

catalytic loop, important for the catalytic activity, as well as the P + 1 loop which 

recognises and docks with the peptide sequence around tyrosine substrates (Boggon 

and Eck, 2004, Hubbard et al., 1994, Knighton et al., 1991, Yamaguchi and 

Hendrickson, 1996).   

Active kinase domains catalyse the phosphorylation of tyrosine by combined 

action of the two lobes, the movement between the two lobes opening and closing the 

catalytic site (Ozkirimli and Post, 2006) .  When the site of catalysis is open, the kinase 

can bind to ATP and substrate peptides, and closing of the domain causes the catalytic 

activity, transferring the γ-phosphate of ATP to the substrate tyrosine.  The importance 

of the phosphorylation of the activation loop of the kinase domain is in the resultant 

stabilisation of the kinase domain within the rigid structural restrictions that 

phosphorylation requires (Brown and Cooper, 1996, Roskoski, 2005).  This stabilising 

effect of activation loop phosphorylation upon the kinase domain is elegantly 

demonstrated by Huse and colleagues (2002) who highlight the extensive variability 

in protein structure between different inactive kinase domains by contrast with the 

highly conserved structure of those domains once activated. 

After the identification of this activating phosphorylation event in 1981 (Smart 

et al.), debate emerged around whether this phosphorylation event was occurring intra-

molecularly, or as the result of interaction between two separate Src proteins.  It has 

since been confirmed that both of these modes of action are possible.  Sugimoto and 

colleagues confirmed that intra-molecular auto-phosphorylation occurs through 

assessing that the rate of auto-phosphorylation of v-Src was independent of 

concentration and aggregation (Sugimoto et al., 1985).  Later experiments identified 

activation loop phosphorylation in catalytically dead kinase domain mutants, 

confirming that trans-phosphorylation between proteins was also possible (Cooper and 

MacAuley, 1988). 
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Although considerable kinase substrate specificity is established through the 

sequence specificity of both SH3 and SH2 binding, which allows the docking of kinase 

to substrate, the kinase domain itself also plays a major role in substrate determination 

(Songyang et al., 1995).  This fact was demonstrated by transplanting the kinase 

domain from viral versions of the tyrosine kinase Src into another, ErbB (Chang et al., 

1995).  Both of these viral oncogenes have distinct phosphorylation profiles and 

cellular phenotypes when overexpressed in cells, and the chimera protein was screened 

for both of these characteristics.  The ErbB/Src chimera protein presented a 

phosphorylation profile somewhere between that of Src and ErbB, however a 

distinctly Src-like effect upon fibroblast cells which were transformed in a manner 

typical of v-Src expression (Chang et al., 1995).  This study demonstrated that 

although there was extensive conservation of structure within kinase domains, 

significant variance existed in the substrate proteins targeted by the kinase domains of 

different proteins.   

An extensive study pairing a peptide library with a selection of protein tyrosine 

kinases identified considerable variance in substrate specificity existed between kinase 

domains, even between different SFKs (Songyang et al., 1995).  Whilst the optimal C-

Src kinase domain motif was identified as E-E-I-Y-[G/E]-E-F-F, the motif for Lck 

was divergent and lower in specificity, with a consensus of E-X-[I/V/L]-Y-G-V-

[L/V/F/I]-F.  The major outcome from the perspective of SFK structure was that the 

cytosolic protein tyrosine kinases, including SFKs, demonstrated a kinase substrate 

preference remarkably similar to their own SH2 domain substrate preference 

(Songyang et al., 1995).  This lead to the conclusion that kinase domain is creating 

binding sites for the SH2 domain, a correlation which enables multi-site, processive 

phosphorylation.  Multi-site phosphorylation has wide ranging implications on protein 

signalling, as specific patterns of phosphorylation create unique effects upon the 

micro-environment of the substrate amino acids, in addition to the bulk effect of 

multiple phosphorylation events changing the charge of large regions of the protein 

(Patwardhan and Miller, 2007). 
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1.2.7 The C-terminal Tail 

 The final 15-17 amino acids at the carboxyl-terminus of SFKs are notable 

principally for the conserved tyrosine residue (Y527 in C-Src).  This tyrosine residue 

is a critical of phosphorylation in SFKs as phosphorylation at this site causes auto-

inhibitory intramolecular binding by the SH2 domain (Cooper et al., 1986).  

Regulation at this site most notably occurs via phosphorylation by the eponymous C-

terminal Src Kinase (Csk) (Bergman et al., 1992) in addition to the closely related Chk 

(Chong et al., 2005).  In spite of significant divergences in sequences of the various 

SFKs, the C-terminal tail is highly conserved, allowing Csk to act as a master regulator 

of all SFKs (Nada et al., 1993, Imamoto and Soriano, 1993).   

 

1.2.8 Regulation of Src 

 Effective regulation of Src activity is crucial to its normal cellular function.  

Src has roles in signal transduction pathways involved in cell motility, survival and 

proliferation, making dysregulated Src a potent oncogene.  This is no better 

characterised than in the viral oncogene v-Src, which is singly capable of transforming 

cells (Brugge and Erikson, 1977).  The transforming potential of v-Src is less the result 

of changes to substrate specificity of Src rather than of uncontrolled activity caused 

by mutation or deletion of important sequences of auto-inhibition (Smart et al., 1981). 

The oncogenic potential of Src necessitates the many, complex inter- and intra-

molecular mechanisms employed in its regulation.  Src is extensively regulated by 

auto-inhibition, however an overlooked manner of regulation is mediated through the 

unique domain.  Studies in v-Src have demonstrated that mutations in v-Src which 

prevent N-terminal mediated membrane localisation becomes incapable of cell 

transformation (Cross et al., 1985).  As discussed in 2.2, Src localisation to membranes 

can be dynamically regulated by post-translational modification of its unique domain, 

which invariably regulates substrate phosphorylation (Pérez et al., 2013).  

Additionally unique domain phosphorylation at S75 of active Src has been identified 

as a marker for ubiquitin-mediated protein degradation (Pan et al., 2011).  By this 

method the cell appears to be able to regulate the quantity of active C-Src present, and 

there are indications that the mutually exclusive S69 phosphorylation could further 
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regulate this degradation by acting as a protective phosphorylation event (Amata et 

al., 2013). 

Intramolecular inhibition of Src is regulated by three main features of its 

architecture; the binding of the SH3 domain to the SH2-kinase linker; the binding of 

the SH2 domain to phosphorylated Y527 and the inhibiting the phosphorylation of the 

kinase domain activation loop.  These three components work in a co-ordinated 

fashion to assure that Src remains in its inactive state.  I will first discuss the 

mechanism behind each of these independently before addressing their co-ordination.   

Phosphorylation of Y527 of Src by Csk, and the resultant intramolecular SH2 

binding, is a fundamental component of C-Src inhibition.  Experiments which have 

eliminated this regulation, both by Y527F mutagenesis and by Csk knockout have 

demonstrated that this causes constitutive activation of Src, resulting in an increase in 

its transforming potential and, in Csk knockout mice, embryonic lethality (Oneyama 

et al., 2008, Imamoto and Soriano, 1993, Nada et al., 1993).  SH2/pY527 binding 

mediates auto-inhibition by forcing Src into a partially closed conformation, made 

completely closed when the SH3 domain binds to the SH2-Kinase linker.  The motif 

around Y527 that is bound by the SH2 domain is interestingly not an ideal Src SH2 

binding motif, replacing the important Y + 3 isoleucine residue, vital for the ‘two 

pronged binding’ discussed in 2.3 with a glycine.  As such the SH2/pY527 binding is 

relatively low affinity, allowing for dynamic regulation that can be displaced by the 

presence of an appropriate substrate molecule.  For example the integrin activity-

mediated phosphorylation of the Focal Adhesion Kinase (FAK) provides an optimal 

SH2 binding motif for Src which results in displacement of SH2 domain from pY527 

(Parsons and Parsons, 1997).  This binding results in phosphatase activity on Y527 

furthering the activation of Src phosphorylation.   

SH2/pY527 mediated inhibition of Src works in combination with SH3 

mediated auto-inhibition.  The SH3 domain of Src binds to canonical Class I and Class 

II ligands which are proline rich and adopt PPII type - left-handed helical 

conformations.  The SH2/kinase domain linker sequence (henceforth referred to as the 

‘linker’ sequence), despite containing only one proline residue, adopts a PPII helical 

conformation, which allows weak binding by the SH3 domain to this region.  This has 

a dual effect on cell regulation, simultaneously sequestering the binding capacity of 
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Figure 1- 3. Mechanism of SFK activation.
i) In a closed inactive conformation (i) autoinhibition of SFKs occurs via SH3 (yellow) binding to the 
SH2 domain-kinase domain linker sequence and SH2 binding (green) to phosphorylated tyrosine 527. 
These two regulatory events affect kinase domain (blue) folding, causing the kinase domain to be held 
in a more open, disordered state. Whilst in this conformation the activation loop of the kinase domain 
forms an alpha helix which prevents phosphorylation of Y416. The intramolecular interactions of the 
SH2 and SH3 are sub-optimal and displaced in the presence of a superior ligand. This binding of the 
SH2 (ii) or SH3 (iii) domains to a substrate allows partial activation of the protein and 
phosphorylation of the activation loop of the kinase domain. In the fully active conformation (iv) both 
the SH3 and SH2 domains are displaced from their internal binding events. It is still unclear whether 
displacement of one intramolecular interaction is sufficient to displace the other or whether a fully 
active conformation is the result solely of substrate binding.
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the SH3 domain for weaker binding motifs, and also contributing to the SH2-SH3 

mediated, kinase inhibiting, and closed Src conformation.  Due to the lack of a PxxP 

motif in the linker, the SH3 domain is readily displaced by superior ligands, allowing 

situational activation of Src where appropriate.  The importance of the SH3/linker 

interaction was demonstrated by mutagenesis of the PPII helical region of the linker, 

which prevented binding of the SH3 domain to the linker, causing constitutive activity 

of the Src and a transforming phenotype (Potts et al., 1988).   

This closed Src conformation was observed and described in the first crystal 

structure of a whole Src molecule (Xu et al., 1997, Williams et al., 1997, Xu et al., 

1999) (Fig.  1-3).  Although the SH2/pY527 interaction was already identified in 

previous studies, the interaction between the SH3 domain and the SH2-kinase linker 

and its effects on auto-inhibition were entirely without precedent.  In the closed 

conformation, intramolecular SH2/pY527 and SH3/linker binding pulls the SH2 and 

SH3 domains together and against the kinase domain, on the opposing surface to its 

catalytic site.  In the “closed” conformation the SH2 and SH3 domains do not 

physically block substrate access to the catalytic site, instead they induce and maintain 

distortions of the active site indirectly through SH3/N-lobe and SH2/C-lobe 

interactions.  Kinase inhibition was observed in the crystallographic structure to occur 

in three main ways.  Firstly the activation loop adopts an α-helical motif which 

prevents binding of substrate sequences to the catalytic cleft of the kinase domain.  

Secondly, catalysis is prevented by displacement of the catalytically important E310 

residue from the active site.  Finally the SH3 and SH2 domains restrict the 

conformational flexibility of the N- and C-lobes of the kinase domain, preventing the 

domain from re-adjusting into an active conformation (Williams et al., 1997, Boggon 

and Eck, 2004) (Fig.  1-3).  More recent studies have also identified that SH2 and SH3 

mediated inhibition hides the activating Y416 residue by steric interference, 

preventing its phosphorylation (Huse and Kuriyan, 2002).   

Through use of weak sub-optimal intramolecular binding motifs, Src is 

maintained in an inactive conformation in the absence of a suitable ligand.  When a 

substrate protein is within proximity of Src, possessing either a superior SH3 or SH2 

ligand, the “closed” configuration is readily reversed, freeing the kinase domain to 

reconfigure into an active conformation.  This then allows auto-phosphorylation of the 

activation loop and full activation of Src kinase activity, only where appropriate 
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1.3 Cellular functions of Src 

 The list of cellular substrates of C-Src is long and diverse, and includes proteins 

with crucial roles in cell differentiation, proliferation, survival and motility (Roskoski, 

2004).  Src is heavily involved in the transduction of extracellular signals through 

integrin binding through its association at focal adhesions with focal adhesion kinase 

(FAK) (Schwartz et al., 1995).  FAK is a cytoplasmic protein tyrosine kinase central 

to regulation of cell motility and morphogenesis in the developing nervous system.  

The initial step of activation of FAK occurs by phosphorylation of FAK Y397 in 

response to both integrin engagement and activation of G-protein-coupled receptors 

(Rodríguez-Fernández and Rozengurt, 1998, Hanks and Polte, 1997).  This initial 

phosphorylation step can also be performed by constitutively active v-Src (Guan and 

Shalloway, 1992).  Phosphorylation of Y397 of FAK provides an SH2 domain to 

which Src binds, activating Src activity by removal of SH2 auto-inhibition (Cobb et 

al., 1994).  Src then phosphorylates FAK at several locations (Hanks and Polte, 1997), 

which massively increases FAK kinase activity (Calalb et al., 1995).  This activation 

of FAK by Src has been shown to be necessary for FAK phosphorylation of several of 

its downstream effectors including the adaptor protein Paxillin (Shen and Schaller, 

1999). The association of activated FAK and Src have extensive signalling roles, 

including activation of Jnk, Erk and Ras mediated MAPK signalling cascades 

(Miyamoto et al., 1995, Schlaepfer et al., 1994).  Through these cascades the Src/FAK 

signalling pathway has extensive, important effects on gene transcription and cellular 

proliferation.   In addition to its role in integrin signalling, Src also has roles in 

adherens, where it is known to interact with and phosphorylate β-catenin, which 

causes dissociation of β-catenin from E-cadherin (Coluccia et al., 2006).  This 

dissociation causes an increased nuclear localisation of β-catenin resulting in 

increased transcriptional activity, which increases growth and motility of cells in 

diseases such as prostate cancer (Coluccia et al., 2006).   

 In addition to these roles, C-Src also influences ligand-stimulated signal 

transduction, such as at the EGF receptor, among others.  C-Src has been shown to 

physically associate with EGF receptor variants in various cancer models, and both 

healthy and aberrant EGF receptor signalling requires C-Src for signal propagation 
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and cellular response (Luttrell et al., 1988, Wilson et al., 1989, Roche et al., 1995b).  

Src further facilitates EGFR signalling through the internalisation of EGF by Clathrin 

(Wilde et al., 1999).  Src also has direct roles in cytoskeletal organisation through 

phosphorylation of Cortactin, which, when activated by C-Src, promotes 

polymerisation and rearrangement of the actin cytoskeleton (Wu and Parsons, 1993). 

 The above examples offer only a snapshot of the substrates and roles of Src 

within cells.  The substrates, and as such activities, of Src within the cell are plethora, 

dependent upon - and required for cellular response to - external stimuli such as 

ligands (Wilde et al., 1999) or adhesion (Schaller, 2004), cell cycle progress (Roche 

et al., 1995a), cell division (Chackalaparampil and Shalloway, 1988) and more.   

 

1.3.1 Tissue specific expression and activity of Src 

Although Src is ubiquitously expressed in mammals, Src abundance is notably 

higher in some specific cell types.  Src expression has been identified as between 5-

200 fold increased in osteoclasts, platelets and neurons, with particularly high 

fluctuations during development (Brown and Cooper, 1996).   

The specific role that Src plays in these systems is unclear, however the 

importance of Src expression in osteoclasts is made apparent by the defects of Src 

knockout mice.  Whilst the effects of Src knockout mice are mild, there is a significant 

increase in osteoporosis due to decreased bone resorbing activity of osteoclasts.  This 

suggests that whilst C-Src expression can be compensated for by other SFKs in most 

tissues, most notably Fyn and Yes, the specific functions of C-Src in osteoclasts are 

unique to C-Src (Lowell and Soriano, 1996).  Recent studies have indicated that the 

Src has specific roles associated with mitochondria, where it phosphorylates and 

activates cytochrome c oxidase (Cox).  This Src-induced activation is required to 

produce the high levels of ATP required for bone resorption activity of osteoclasts 

(Miyazaki et al., 2006).   

Src is present in extremely high concentrations in platelets, representing up to 

0.4% of total protein.  After thrombin-induced platelet activation Src is observed to be 

transiently activated, and dephosphorylated at Y527.  This occurs concomitantly with 

Src association with the signalling molecule phosphatidylinositol 3-kinase (PI3K) and 
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the platelet surface receptor αIIBβ3 suggesting a key role in signalling at the plasma 

membrane in this system (Clark et al., 1994a).  Src has also been associated in platelets 

with Cortactin and WASp phosphorylation, regulating the important cytoskeletal 

rearrangements involved in platelet activation (Senis et al., 2014). 

 

1.3.2 Neuronal roles of Src 

Src family kinases have extensive roles in functions of both the developing, 

and mature nervous system.  Speculation of a specific role for Src activity in the brain 

began with Cotton and Brugge’s observation of 10 fold enrichment of C-Src from the 

developing brain when compared to other tissues (Cotton and Brugge, 1983).  This 

increased expression also varied significantly during the course of neuronal 

development, which could broadly be split into biphasic expression.  The first phase 

of increased C-Src expression occurs in the neuro-ectodermal cells in late gastrula 

stage, and occurs concomitantly with the specification of cells to the neuronal lineages 

(Maness et al., 1986).  The second phase was observed in neuronal progenitor cells 

undergoing terminal differentiation and neurite outgrowth in the cerebellum (Fults et 

al., 1985).  Much of this expression was later determined to be that of an ‘activated 

form of C-Src’, later demonstrated to be N1-Src, and the roles of this variant in neurons 

will be discussed in 4.1. 

Specific identification of C-Src substrates in the brain unveiled specific roles 

for Src in the regulation and plasticity of the receptors and ion channels of the synapse 

(Kalia et al., 2004).  The importance of effective communication across synapses for 

neuronal function cannot be overstated, a healthy balance of signals and receptors 

between the pre-synaptic nerve terminal and their post-synaptic target is essential for 

nearly all brain functions, from cognitive processes to motor control and synaptic 

plasticity (Cline, 2005).  In the mammalian central nervous system, synaptic 

transmission is predominantly chemically mediated across a synaptic cleft, with 

excitatory or inhibitory signals increasing or decreasing the likelihood of an action 

potential occurring in the target cell respectively.  Both excitatory and inhibitory 

neurotransmitters result from chemicals, commonly released from the pre-synaptic-

nerve terminal, binding to receptors on the post-synaptic target neuron.  Excitatory 

neurotransmitters induce depolarisation of the post-synaptic cell, whereas inhibitory 
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transmitters typically lead to hyperpolarisation.  The effective regulation and balance 

of both the excitatory and inhibitory neurotransmitters and their receptors is essential 

to the control of healthy brain function on both the cellular and tissue level (Kalia et 

al., 2004).   

Src phosphorylation and regulation has been identified in several receptor and 

channel proteins of the post-synapse, the NMDA receptor (NMDA-R, (Wang and 

Salter, 1994)), voltage gated potassium channels (Fadool et al., 1997), calcium 

channels (Cataldi et al., 1996), GABAA receptors (Moss et al., 1995) and the nicotinic 

acetylcholine receptor are all known to be regulated in some way by Src.  Probably 

the best characterised of these interactions is Src regulation of NMDA-R 

The NMDA-receptor was the first discovered of a family of ionotropic 

glutamate receptors, which transduce excitatory neurotransmission signals in the post-

synaptic neurons throughout the CNS by functioning as ligand-gated ion channels.  

Glutamate is the primary neurotransmitter for mediating excitatory synaptic 

transmission in the CNS, and is released from pre-synaptic vesicles into the synaptic 

cleft via calcium-dependent exocytosis.  The glutamate-dependent influx of calcium 

through these receptors plays important roles in both development and the synaptic 

plasticity that underlies learning and memory (Dingledine et al., 1999).   

The NMDA-R is a multi-protein complex, with a variety of functional sub-

types dependent upon its subunit composition.  NMDA-R subunits NR1, NR2, and 

often NR3 comprise the core  and form the central ion channel, associated with a 

variety of scaffolding, adaptor and signalling proteins which together constitute the 

whole NMDA-R complex (Husi et al., 2000).  When the extracellular portion of the 

NMDA-R is bound by both glutamate, and a co-activating glycine molecule, the 

NMDA-R channel is opened, allowing the influx of Na+, K+, and Ca2+ into the cell.  

Regulation of NMDA-Rs occurs in a variety of manners, both by extracellular 

modulation of the binding site and channel pore, and by intracellular kinase activity.   

Early electrophysiological studies in neurons indicated that inhibition of 

phosphorylation by SFK inhibition or exogenous phosphatase introduction decreased 

NMDA-R currents, whilst inhibiting endogenous phosphatase activity or introducing 

exogenous Src enhances NMRA-R currents (Wang and Salter, 1994, Wang et al., 

1996).  Various studies have since confirmed this Src modulation of the NMDA-R, in 
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a variety of systems including HEK cells (Köhr and Seeburg, 1996), Xenopus oocytes 

(Chen and Leonard, 1996), cultured neurons (Yu et al., 1997) and hippocampal slices 

(Lu et al., 1998).  This positive modulation of NMDA-R activity by Src was also 

shown to be required for induction of Long Term Potentiation (LTP) in Schaffer 

collateral CA1 synapses of the hippocampus, suggesting a role in learning and memory 

(Pelkey et al., 2002). 

The mechanism behind this action is in the specific phosphorylation of the 

NR2A and NR2B subunits of the core NMDA-R complex by Src and Fyn.  Y1472 

was later confirmed as the main site of SFK phosphorylation of NR2B (Cheung and 

Gurd, 2001).  Mutation of this residue caused significant impairment of fear learning 

(which the author suggests is due to decreased LTP in the amygdala) which correlated 

with a failure of the sub-unit to correctly localise (Nakazawa et al., 2006).  Yang and 

Leonard (2001) identified three phosphotyrosine sites in the cytoplasmic C-terminal 

tail of NR2A which may be the Src substrate residues which mediate Src modulation 

of the complex.  By contrast with NR2B regulation, Src phosphorylation of NR2A 

was shown to have a very different method of NMDA-R modulation.  Studies of an 

NMDA-R comprised of recombinant NR2A and NR2B indicated that phosphorylation 

by Src potentiates NR2A activity by weakening the effect of zinc inhibition of the 

NMDA-R (Xiong et al., 1999, Zheng et al., 1998). 

In addition to its roles in potentiating post-synaptic receptors and channels, Src 

is also enriched in pre-synaptic vesicles (Linstedt et al., 1992).  As observed by Foster-

Barber and Bishop (1998), Src is up-regulated in a variety of secretory cells (neurons, 

endocrine cell, platelets and osteoclasts) as well as in a variety of subcellular 

localisations involved in membrane traffic (endosomes, synaptic vesicles and 

secretory granules), which prompted investigation into Src interaction with membrane 

trafficking proteins critical to neuronal function.  Immuno-precipitation and 

immunofluorescence of Src in neurons showed that Src binds to and co-localises with 

both synapsin and dynamin, suggesting a role for Src in regulating synaptic vesicle 

life-cycle in addition to more general roles in membrane trafficking (Foster-Barber 

and Bishop, 1998).  Src has also been implicated in the LTP associated strengthening 

of synapses by multi-site phosphorylation of synaptophysin (Evans and Cousin, 2005).   
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1.4 Neuronal Src splice variants 

N1-Src was first identified in studies of C-Src expression in the central nervous 

system (CNS).  Cultures of rat neurons and astrocytes were shown to express a Src 

variant with decreased mobility on acrylamide gels that was specifically expressed in 

neurons but not astrocytes, and had 5-7 fold higher kinase activity; as measured by 

comparing phosphorylation of enolase by neuron isolated, and fibroblast isolated Src 

(Brugge et al., 1985).  The decreased mobility of N1-Src was later identified to be the 

result of inclusion of a 6 amino acid micro-exon into the SH3 domain, between exons 

3 and 4 of C-Src (Martinez et al., 1987).  Inclusion of a neuronally expressed micro-

exon between Src exons 3 and 4 is strongly conserved in neurons throughout vertebrate 

evolution (Martinez et al., 1987, Levy et al., 1987, Raulf et al., 1989).  Identical 6 

amino acid neuronal Src inserts are observed in humans, rodents (Martinez et al., 

1987) and chicks (Levy et al., 1987), whereas fish and amphibians express 6 and 5 

amino acid N1-Src exons respectively with 50% sequence homology to mammalian 

N1-Src (Pyper and Bolen, 1989).  By contrast C-Src expression is identified in 

multicellular organisms as early as sea sponges (Perifora) (Ottilie et al., 1992).  The 

sequence conservation, restricted expression and evolutionary emergence in the 

vertebrate nervous system (although no neuronal exons of C-Src are observed in hydra 

(Raulf et al., 1989)) suggests an evolutionary link to the elaborations of the nervous 

system in Chordates.   

Further investigations into neuronal splicing of Src identified a second 

alternative Src exon, N2-Src, which inserts into the Src mRNA immediately after the 

N1-Src exon, adding an additional 33 nucleotides (or 11 amino acids) to the SH3 

domain.  Since N1-Src acts as the splice-acceptor for N2-Src it is always included in 

N2-Src mRNA, making N2-Src a total of 17 amino acids longer than C-Src.  N2-Src 

inclusion also alters the final nucleotide of the N1-Src exon from coding for an 

arginine to a serine (Pyper and Bolen, 1990) (Fig.  1-4).  Inclusion of the N2-Src exon 

is highly conserved between human and mouse brain tissues, however is absent in 

chicks (Pyper and Bolen, 1990).  Interestingly inclusion of the N2-Src micro-exon has 

never been identified in the absence of the N1-Src exon.  This apparent dependency 

of N2-Src on N1-Src expression occurs in spite of the fact that N2-Src inclusion into 

C-Src would not introduce a frame-shift mutation, suggesting that the N1 micro-exon 

contributes essential residues to the N2-Src SH3 domain (Black, 1992). 
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Figure 1-4. Genomic map of Src intron and exon sequences in both Homo sapiens and Xenopus 
tropicalis. 
The number of base pairs each intron and exon sequence contains is indicated in the white and red 
boxes respectively. Exon length is reflected proportionally in the size of the box, however for the 
purposes of conciseness, the size of the introns is constant. The principal difference between the 
sequences of these genes is in the different lengths of exons 1 and 12; whilst Homo sapiens have a 
relatively short exon 1 sequence and a longer exon 12 sequence, Xenopus tropicalis are converse in 
this, .however the total length of both C-Src sequences is similar at 1662 and 1685 base pairs total, 
respectively. Interestingly, the organisation of the N1-Src exon in the genomic space between exons 3 
and 4 also differs, with N1-Src appearing far earlier in humans, than xN1-Src in  Xenopus species.
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1.4.1 Differential effects of N1-exon insertion on the SH3 domain 

Both the N1- and N2-Src micro-exons are inserted between exons 3 and 4 of 

C-Src, introducing 6 and 17 amino acid sequences into the SH3 domain of Src 

respectively.  Inclusion of the neuronal micro-exons occurs in the middle of the n-Src 

loop of the SH3 domain, directly infringing upon the third ‘specificity pocket’ of the 

binding face of the SH3 domain (Dergai et al., 2010).  This inevitably causes a change 

in the substrate specificity of the SH3 domain.  Whilst little work has been done to 

identify N2-Src specific substrates, or the effect of N2-Src inclusion on the SH3 

domain structure or function, N1-Src has been studied with some success.   

The first instance of altered N1-Src SH3 domain binding is in an assay by 

Weng and colleagues (1993) which identified via GST pull-down that inclusion of the 

6 amino acids of the N1-exon dramatically reduced the affinity of the Src SH3 domain 

for C-Src SH3 domain substrates.  Whilst an overall decrease in N1-SH3 binding was 

detected in 3T3 cells when compared to C-Src SH3, more sensitive kinase assays also 

identified substrates specifically phosphorylated by N1-Src and not C-Src.  This shows 

that the N1-Src SH3 domain, rather than simply reducing SH3 binding efficiency, 

changes the substrate specificity, preferentially binding a different subset of substrates 

than C-Src (Weng et al., 1993).   

The first protein specifically identified to bind N1-Src with less affinity than 

C-Src was SH3-Binding Protein 1 (SH3BP1) (Ren et al., 1993).  SH3BP1 is a GTP 

activating protein and modulator of Rac activity, initially identified for its binding to 

the SH3 domains of various non-receptor tyrosine kinases such as Abl.  SH3BP1 

binding to the C-Src, Abl, and Grb2 SH3 domains was detected at high affinity, 

however very limited N1-Src, Nck and Crk SH3 domain binding to SH3BP was 

identified (Ren et al., 1993), which suggested to the authors that inclusion of this short 

sequence changed the SH3 binding motif of N1-Src significantly.  As previously 

mentioned, C-Src interacts in neurons with both dynamin and synapsin, an interaction 

which is abolished by inclusion of the N1-Src exon (Foster-Barber and Bishop, 1998).  

Similarly, N1-Src exon inclusion abolished SH3 binding to the C-Src SH3 substrates 

FAK, its neuronal isoform FAK+ (Messina et al., 2003) as well as Alzheimer’s 

associated protein Tau (Reynolds et al., 2008), and signal transduction associated 

RNA binding protein Sam68 (Finan et al., 1996).  As a result of the decrease in 
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substrate binding for these functionally significant C-Src substrates, it is clear that N1-

Src is not performing the same cellular functions in neuronal cells as C-Src.  In 

addition to this decreased binding for putative C-Src substrates, several substrates have 

been identified to which N1-Src binds to exclusively, or with a higher affinity than C-

Src.   

Santoro and colleagues (1997) using the yeast two-hybrid system with the N1-

Src SH3 domain as bait, identified only one peptide, a novel voltage gated potassium 

channel of a family of previously undiscovered proteins, termed BCNG-1, later 

renamed Hyperpolarization-activated and Cyclic Nucleotide-gated channel 1 (HCN1).  

HCN1 showed a strong interaction with the N1-Src SH3 domain, however failed to 

bind C-Src Fyn and Abl SH3 domains.  Later studies of the family to which HCN1 

belongs (as reviewed by Wahl-Schott & Biel (2009)) have extensively expanded our 

knowledge of its structure and function.   

The HCN family, unlike the vast majority of voltage gated potassium channels, 

is activated by hyperpolarisation rather than depolarisation.  HCN1 expression has 

been identified in both the brain and, interestingly, the heart muscle.  In neuronal cells 

HCN1 has been implicated in the integration of excitatory synaptic input from 

dendrites, constraint of long term potentiation and with various roles in how the cell 

responds electrochemically to synaptic input (Wahl-Schott and Biel, 2009).  These 

cellular roles translate in the brain to effects upon motor learning and control of the 

working memory.  N1-Src may contribute to these roles by regulating HCN1 through 

phosphorylation of its intracellular domain, as phosphorylation of this domain is 

known to regulate HCN membrane permeability (Zong et al., 2005, Arinsburg et al., 

2006).  Unfortunately, as yet, the observation of interaction between HCN1 and N1-

Src is yet to be repeated, however an interaction between C-Src and HCN2 has been 

identified (Zong et al., 2005).  Whilst the HCN family proteins function in a largely 

similar fashion, the expression patterns and protein-protein interactions of each 

member of the family differ significantly, allowing for the possibility that C- and N1-

Src are regulating different members of the same protein family independently of each 

other.   

A second yeast two-hybrid assay identified Delphilin as a possible substrate of 

N1-Src.  Delphilin is a Glutamate Receptor Ionotropic Delta 2 (GRID2) associated 
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protein with many protein-protein interacting motifs, including PxxP, suggesting that 

it is a scaffold protein linking GRID2 with multiple signalling networks including the 

actin cytoskeleton (Miyagi et al., 2002).  More recently, N1-Src binding to the C-

terminus of the NR2A subunit of the NMDA-R has also been identified (Groveman et 

al., 2012) suggesting that, whilst N1-Src may not bind synapsin and dynamin, N1-Src 

certainly has a role at the pre-synaptic nerve terminal. 

 

1.4.2 The effects of N1-exon insertion on auto-inhibition 

It has widely been shown that the role of the SH3 domain in auto-inhibition, 

as covered in 3.1, is affected by inclusion of the N1-Src micro-exon.  Even before the 

identification of an alternative splice variant, increased abundance and activity of Src 

in was observed in neurons which varied across developmental stage (Cotton and 

Brugge, 1983).  N1-Src was first identified as a structurally modified form of C-Src 

observed to be 6-12 fold more active than C-Src in the same cells.  (Brugge et al., 

1985).  This constitutively increased activity is likely due to a decrease in the auto-

inhibitory interaction between the SH3 to the n-terminal lobe of the kinase domain.  It 

has previously been demonstrated in C-Src that mutation of the ‘n-src loop’ of the SH3 

domain, into which the N1-Src micro-exon is inserted, decreases this auto-inhibitory 

interaction, increasing the activation state of the protein (Brábek et al., 2002).  This 

increased activity not entirely uncontrolled as differential activation of N1-Src has 

been observed, and activity is still modulated by the SH2 domain (Mukherjee et al., 

2003).  Although modification of the n-src loop decreases intramolecular binding, 

inserting short amino acid sequences into the n-src loop does not appear to disrupt 

overall protein folding, as demonstrated by a 10-glycine insert by Grantcharova and 

colleagues (2000).   

 

1.4.3 Effects of N1-exon insertion on N1-Src localisation 

As described in 3.1 the SH3 domain also appears to play important roles in 

intracellular localisation, and the intracellular localisation of N1-Src appears to be 

affected by N1-exon inclusion.  From very early in the study of N1-Src, the splice 

variant was identified both in structures of the cell soma in addition to the plasma 
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membrane.  Maness and colleagues (1988) identified an increase in the ‘active form’ 

of C-Src in the growth cones at the leading edge of neurite extension in differentiating 

rat neurons, which was later confirmed as being N1-Src (Maness and Matten, 1990).  

N1-Src was further localised by electron microscopy to endoplasmic reticulum and 

associated polysomes in the cell soma, in addition to localisation at synapses (Atsumi 

et al., 1993).  N1-Src was identified in the post-synaptic density (the protein-rich 

region at the post-synaptic membrane associated with neurotransmitter release and 

signalling), in addition to both the pre-synaptic vesicles and the pre-synaptic 

membrane (Atsumi et al., 1993).  Interestingly, unlike C-Src, N1-Src has been 

identified associated with lipid rafts, a localisation usually restricted to SFKs with two 

lipid modifications in the SH4 domain (Mukherjee et al., 2003).  In the adult brain, 

N1-Src has been identified localised to the cell soma, as well as dendritic processes, 

axons and in nerve terminals (Sugrue et al., 1990). 

This differential intracellular localisation may be in part due to the effects of 

the N1-Src exon on the structure of the SH3 domain, however it may also be due to 

differential post-translational modification of N1- and C-Src.  Mukherjee (2003) noted 

that the differential N1-Src intracellular localisation was not due to its modified SH3 

domain.  The subcellular localisation of N1-Src could, therefore, be due to changes in 

the post-translational modification of the unique domain, as observed by differential 

N-terminal phosphorylation of a serine residue in N1-Src (Brugge et al., 1987). 

 

1.4.4 Effects of N1-exon inclusion on cell morphology 

The differential Src localisation, specification and activity as a result of N1-

exon inclusion inevitably has consequences on neuronal function.  Overexpression of 

Src constructs in differentiating Purkinje neurons showed that whilst wild-type N1-

Src and constitutively active C-Src had minimal effects on the morphology of these 

cells, constitutively active N1-Src caused significant aberrations in microtubule 

organisation resulting in deformed neurites (Kotani et al., 2007).  Similarly, when 

testing the effects of C- and N1-Src upon axonogenesis in differentiating Xenopus 

neurons, Worley and colleagues (1997) noted differential effects of both wild-type and 

constitutively active C- and N1-Src.  Whilst wild type C-Src had limited effects on 

axonogenesis, there was an observable enhancement in axonogenesis in N1-Src 
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overexpressing cells.  Constitutively active C- and N1- mutants both impaired 

axonogenesis, however whilst constitutively active C-Src, however the N1-Src effect 

was minimal by comparison to C-Src (Worley et al., 1997).  Interestingly when the C- 

and N1-Src constructs were expressed in Xenopus A6 epithelial cells, N1-Src induced 

significant elongation in the cells, with cells producing a neurite-like process, quite 

contrary to the rounded phenotype of C-Src transfected cells (Worley et al., 1997).  

These phenotypes taken as a whole suggest that N1-Src is promoting neuronal 

cytoskeletal rearrangement, even in the absence of a neuronal background of protein 

expression.   

 

1.4.5 Expression of N1-Src during neuronal differentiation 

In mice, N1-Src is the dominant form of C-Src in the developing brain, both in 

terms of protein concentration and activity (Wiestler and Walter, 1988).  Before 

embryonic day 9 (E9) in mice, when neuroblasts are proliferating and migrating 

rapidly, N1-Src activity is negligible and C-Src is the dominant Src isoform.  As major 

brain structures are formed during E12 and beyond, N1-Src activity increases rapidly, 

exceeding C-Src by orders of magnitude, peaking at E18 (Wiestler and Walter, 1988).  

This period of rapidly increasing N1-Src activity occurs while, in addition to 

continuing proliferation and migration of neuroblasts, an increasing proportion of 

neuroblasts are beginning to exit the cell cycle and differentiate.  This observation of 

increased N1-Src expression in neuronal precursor cells undergoing differentiation is 

supported by in vitro experiments with cultured neurons of the rat striatum.  These 

cells show little detectable N1-Src activity until serum starvation for three days, which 

induces neuronal differentiation and N1-Src activity seven fold higher than C-Src 

(Cartwright et al., 1987).  Similarly, embryonic carcinoma cells treated with retinoic 

acid to induce neuronal differentiation  express increased levels of N1-Src (Lynch et 

al., 1986), and there an increase in both N1-Src and N2-Src expression during 

differentiation of the neuroblastoma cell line LAN-5 (Matsunaga et al., 1993a).   

Expression of N1-Src during early neuronal development has also been 

characterised in the frog species Xenopus laevis.  X.laevis N-Src (xN1-Src) expression 

is temporally regulated, as it is not detectible in the maternal mRNA pool, or at the 

end of gastrulation (developmental stage 11), however is detectable mid-neurulation 
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(stage 15) and is localised to the site of neurulation at stage 16 (Collett and Steele, 

1992).  This temporal and physical localisation to the site of neurulation suggests that 

inclusion of the xN1-Src micro-exon is concurrent with neuronal specification of the 

cells of the dorsal ectoderm that become the neural plate.  Studies using ectoderm 

explants have shown that xN1-Src expression is dependent upon the presence of the 

mesoderm underlying the neural ectoderm.  In the absence of neural inductive signals 

from the mesoderm, xN1-Src isn’t expressed and the cells do not express neuronal 

markers (Collett and Steele, 1993).  This signalling mechanism was further confirmed 

by induction of xN1-Src by mimicking mesoderm induction signals using the PKC 

activator 12-O-tetradecanoylphorbol-13-O-acetate (TPA).  This induction was shown 

to be rapid, occurring without the need for new protein synthesis (Collett and Steele, 

1993).  The increased expression of xN1-Src during neurulation and primary 

neurogenesis suggest that in this model N1-Src is being expressed at times of both 

neuronal specification, and neuronal differentiation. 

 

1.4.6 Expression of N1-Src in the mature brain 

N1-Src expression in the mature rat brain has been well characterised by both 

antibody and in situ hybridisation (Sugrue et al., 1990, Ross et al., 1988) with both 

studies reporting widespread expression of N1-Src throughout the brain.  Specific 

regions of increased abundance of N1-Src in the brain include in the hippocampus, 

mesencephalon, and Purkinje neurons of the cerebellum, in addition to the Pons, 

medulla and forebrain.  Across the brain, Sugrue and colleagues (1990) reported that 

expression of N1-Src was increased in discrete subpopulations of neurons with no 

common classification.  Ross and colleagues (1988), noted that whilst in the hindbrain 

C- and N1-Srcs were broadly comparable, in the forebrain N1-Src expression was 

much higher, which they suggest links N1-Src to both higher brain development.  In 

general both studies agreed that the regions of enriched N1-Src activity were regions 

commonly linked with increased neuronal plasticity (Sugrue et al., 1990, Ross et al., 

1988). 
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1.4.7 The regulation of N1-Src splicing 

The regulation of splicing of N1-Src through development suggests that N-Src 

splicing is regulated temporally during neuronal development, likely in response to 

developmental signalling.  The lab of Douglas Black is unparalleled in the work that 

it has done to establish the molecular mechanism behind neuron-specific inclusion of 

the N1-Src exon (Summarised in Fig.  1-4).  The neuroblastoma cell line LAN-5 

includes the N1-exon in over 90% of Src mRNA and has been used extensively by 

Black and colleagues to identify the proteins necessary for exon inclusion, when 

compared to the cancer cell line HeLa which expresses no N1-Src (Black, 1991).  By 

utilizing an N1-Src mini-gene, constructed of C-Src cDNA with genomic DNA 

present between exons 3 and 4, it was established by deletion mapping of the introns 

Figure.  1-5.  Model for tissue specific N1-Src expression based on Rooke, 2013.   
In non-neuronal cells, PTB binds to CU repeats both up- and down-stream of the N1-
exon, repressing exon inclusion.  In neuronal cells PTB binding is removed, allowing 
splicing elements to include N1-Src in the processed mRNA.  hnRNPA1 (A1) molecules 
that bind to N1 may be replaced with hnRNPA1B molecules in neuronal cells to 
contribute to the enhancement of N1-Src inclusion.  KSRP has been shown to localise 
with Src mRNA in neuronal cells, however not non-neuronal cells, although its role in 
neuronal splicing is uncertain.  Some components of this system, such as hnRNP H and 
F are known to interact with the splicing machinery, although their role in the process is 
unknown. 
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up- and downstream from the N1-exon that the region of RNA responsible for N1-Src 

inclusion was in the immediate vicinity of N1-Src (Black, 1991).   

A sequence of RNA 38-142 base pairs downstream of the N1-exon was 

identified that was necessary for LAN-5 inclusion of the N1-exon and if duplicated, 

increased N1-exon inclusion (Black, 1992).  Binding proteins for both this region, and 

a negative regulatory element upstream of the N1-exon were identified as PTB, 

hnRNP F, hnRNP H and KSRP (Min et al., 1995, Modafferi and Black, 1997).  

Although all of these proteins are present in tissues throughout the body, KSRP was 

identified as a possible candidate for neuron-specific modulation (Hall et al., 2004).  

The intracellular localisation of KSRP and N1-Src expression were shown vary 

dependent upon the differentiation state of a mouse neuroblastoma cell line NIE-115.  

In undifferentiated neuroblastoma cells KSRP was not co-localised to the site of Src 

RNA and inhibitory N1-exon splicing modulator PTB and C-Src was the only detected 

Src isoform.  Upon treatment with 2% DMSO, shown to differentiate these 

neuroblastoma cells into neuronal cells, KSRP co-localises with Src RNA and the 

inhibitory PTB protein resulting in N1-Src exon inclusion (Hall et al., 2004).   

 

1.4.8 Neuronal Srcs in Neuroblastoma 

The link between the expression of N-Srcs and the differentiation of 

neuroblastoma is well established.  Early work in neuronal Srcs established that 

expression of N1-Src and the differentiation of neuroblastoma cell lines identified high 

‘C-Src’ activity and an ‘amino terminal modification’ in neuroblastoma cell lines 

which were highly differentiated (Mellström et al., 1987).  Neuroblastoma is a 

childhood cancer of the sympathetic nervous system, arising from cells of neural crest 

lineage, occurring most commonly in young children under 4 years of age.  In the USA 

neuroblastoma accounts for 6-10% of all childhood cancers, occurring in 

approximately 1 in 10,000 live births (Gurney et al., 1995).  The neuroblastoma 

screening program in Japan ran from 1985 to 2004.  At its peak the program screened 

over a million six month old infants a year for elevated levels of homovanillic acid 

and vanilmandelic acid, metabolites commonly produced by neuroblastoma (Tsubono 

and Hisamichi, 2004).  Although the program was successful in identifying 
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neuroblastoma cases, it had little impact on the mortality of the disease nationally, as 

did similar programs that were run briefly in Canada and Germany (Schilling et al., 

2002, Woods et al., 2002).  The conclusions made after these programs was that, due 

to the self-resolving nature of the majority of cases of neuroblastoma in patients under 

1 year old, as such patients were over-diagnosed by the screening program when they 

didn’t stand to benefit from the earlier diagnosis and treatment. 

This is principally because of the remarkable correlation between the age of 

neuroblastoma diagnosis, and the prognosis of the disease.  Whilst in total 

approximately 70% of neuroblastoma cases have a successful 5 year outcome, over 

the age of 18 months this number drops to as low as 50% (Howlader et al., 2011).  The 

progression of neuroblastoma is categorised into 4 main stages depending upon the 

disease severity and spread.  Stage 1 denotes the initial development of the cancer, 

where the tumour is fully visible and operable.  Stage 2 begins when either the whole 

tumour is no longer excisable by surgery, or the cancer has spread to nearby lymph 

nodes.  Stage 3 represents more severe metastasis; to nearby organs, and lymph nodes 

and stage four represents an aggressive, widespread cancer, present in distant lymph 

nodes and organs.  Stage 4 is split into two subtypes; stage 4, an extremely high risk 

cancer, with only a 30% survival rate and 4S.  Whilst both Stage 4 subtypes widely 

metastasise, stage 4S tumours are more operable and the disseminated cancer has a 

significant chance of spontaneously differentiating into a harmless neuronal 

phenotype.  This stage is exclusively observed in infants under the age of 18 months, 

once again emphasising the key role played by age on the chance of harmless cancer 

differentiation.  Standard treatment for neuroblastoma of any stage in children over 18 

months usually involves surgery to remove large masses, followed by intensive rounds 

of chemotherapy and radiotherapy.   

N2-Src expression has been observed to correlated inversely with N-Myc gene 

amplification (Matsunaga et al., 1994a), although not in samples with increased N-

MYC expression from a single copy of the gene, usually found in low risk tumours 

discovered by mass screening (Matsunaga et al., 2000).  Myc is a basic helix turn helix 

zipper DNA binding transcription factor, targeting the enhancer box of genes and 

forming complexes that can both up- (with Max) and down- (through Miz-1) regulate 

transcription (Peukert et al., 1997).  In addition to its standard functions as a 
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transcription factor, Myc can also interact with histone acetyltransferases, which 

decrease histone affinity for DNA, loosening up the winding of DNA to allow greater 

transcription (Knoepfler et al., 2006, Cotterman et al., 2008).  The main factor causing 

Myc to be a major proto-oncogene and prognostic determinant is the genes with which 

it interacts, with many mitotic, cell cycle and survival genes under Myc control.  As 

such Myc over-expression is a feature in many cancers.  The effects of Myc over 

expression are wide-ranging, involving up-regulation of cyclins, ribosomal RNA and 

proteins, and down regulation of Bcl-2 and p21, resulting in increased cell growth and 

division and decreased apoptosis and differentiation.  A recent study on the role of 

Myc in neuroblastoma differentiation looked at LAN-5, a readily differentiating 

neuroblastoma cell line with high Myc expression, and SK-N-AS, a cell line highly 

resistant to differentiation with only a single copy of Myc (Guglielmi et al., 2014).  

This study identified Myc as permissive for neuronal differentiation of these cell lines, 

as knockdown in LAN-5 prevented- and overexpression in SK-N-AS increased- drug 

induced differentiation.   

The absence of acceptable levels of progress in the treatment of neuroblastoma 

necessitates the identification of new, novel targets to promote neuroblastoma 

differentiation, quiescence or senescence in vivo.  Between 1979 and 2005 the 10 years 

survival rate of patients with stage 4 neuroblastoma increased from 6.7% to 26%, an 

increase largely attributed to the intensification of chemotherapy which has occurred 

since 1985, rather than from the development of any targeted neuroblastoma therapies 

(Haupt et al., 2010).  Due to the age of neuroblastoma patients, intensive chemotherapy 

is not an ideal treatment option, with many patients with a positive outcome still 

suffering from complications such as hearing loss, hypothyroidism, ovarian failure, 

and musculoskeletal and pulmonary abnormalities (Laverdière et al., 2005).  As such, 

the identification of druggable targets for neuroblastoma therapy which are highly 

tumour-specific is of vital importance.   

Several studies and clinical trials have focussed on targeting generic  signalling 

pathways that are thought to contribute in neuroblastoma proliferation through 

dysregulation, such as PI3K (Spitzenberg et al., 2010, Fulda, 2009), mTOR 

(Segerström et al., 2011) and the IGF-I receptor (Coulter et al., 2008).  Whilst 

rapamycin has been ruled out as a treatment due to associated increased Survivin 
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expression (Samkari et al., 2012), and targeting IGF-IR performed poorly in clinical 

trials (King et al., 2014), several promising PI3K inhibitors are undergoing 

preliminary clinical trials (Lim et al., 2014).   

Therapies targeted specifically at genes with expression restricted to 

neuroblastoma cells include targeting the human norepinephrine transporter hNet, 

expressed in 90% of neuroblastoma tumours (Carlin et al., 2003).  Radiation therapy 

can be targeted specifically to neuroblastoma cells by 131I-metaiodobenzylguandine 

(MIBG), which is taken up by the hNet transporter, causing a build-up of radiation 

specifically within these cells, and represents a promising therapy (Matthay et al., 

2012).  Similarly the expression of the GD2 ganglioside on the surface of >98% of 

neuroblastoma cells has for many years been an enticing target for antibody mediated 

therapies.  Utilising anti-GD2 antibodies coupled with IL-2 to target immune attack 

upon neuroblastoma cells has demonstrated some success with an increase in overall 

survival of 10% demonstrated compared to standard therapy (Yu et al., 2010).   

An interesting tyrosine kinase target in neuroblastoma is anaplastic lymphoma 

kinase (ALK).  ALK expression is typically only found in the developing nervous 

system (Iwahara et al., 1997) however the alteration of ALK in cancer as the result of 

chromosomal translocation and gene fusion has been identified in anaplastic large cell 

lymphoma (Morris et al., 1994), non-small lung cell cancers (Soda et al., 2007) and 

inflammatory myofibroblastic tumours (Palmer et al., 2009).  ALK is expressed in 

around 50% of neuroblastoma tumours and correlates strongly with Myc-N expression 

in advanced tumours with a poor prognosis  (Wang et al., 2013).  Studies indicate that 

ALK is a good candidate for neuroblastoma therapy, with the inhibitor Crisotinib 

showing promise in clinical trials, although it is shown to bind poorly to some known 

ALK mutations which may be lead to development of resistance during therapy 

(Bresler et al., 2011). 

Whilst there are a considerable number of candidate genes for neuroblastoma 

therapy, the ‘silver bullet’ of neuroblastoma treatment remains the identification of a 

way to induce in neuroblastoma cells the spontaneous differentiation that is 

characteristic of the cancer.  Induction of neuroblastoma cell differentiation by RA is 

already a well-regarded treatment aimed at inducing differentiation in cells remaining 

after intensive rounds of chemotherapy, radiotherapy and surgery.  Treatment with a 
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high, intermittent dose of 13-cis-retinoic acid has been shown to increase event free 

survival of patients and is now a recommended therapy (Cernaianu et al., 2008).  

Treatment with vanadium-based tyrosine phosphatase inhibitors (which increase 

phosphotyrosine levels by acting as a competitive inhibitor for phosphotyrosine) has 

been shown in vitro to increase the effectiveness of retinoic acid in inducing neuronal 

differentiation by activating both AKT and ERK signalling (Clark et al., 2013).   

Interestingly, both the age and the prognosis of neuroblastoma patients, 

correlates with the presence or absence of N1- and N2-Src, and their relative 

expression levels when compared with C-Src.  N2-Src in particular has been associated 

with a less metastatic disease, with expression of N2-Src being significantly associated 

with a longer event free survival in patients (Matsunaga et al., 2000).  This link 

between N2-Src expression and a positive prognosis was confirmed in as study by 

Terui and colleagues (2005), who correlated N2-Src with both a positive outcome, as 

well as with the expression of another favourable marker ShcB, which they speculated 

could be a substrate protein.  There is also strong evidence that N2-Src may be 

favourably expressed in neuroblastomas discovered by mass screening, rather than by 

symptom (Matsunaga et al., 2000).  These neuroblastomas are largely benign, with 

between 70 -90% being of favourable, stage I, II or the spontaneously regressing 4S 

and tend not to be Myc amplified (Bessho, 1998).  Matsunaga and colleagues (1993b) 

showed that, in LAN-5 and SK-N-SH neuroblastoma cell lines, a pattern of neuronal 

Src expression is matched by an ability to differentiate under cAMP/Retinoic Acid.  

In SK-N-SH, C-Src is the dominant isoform, and N2-Src is entirely absent, whilst in 

LAN-5 cells N1-Src is more highly expressed than C-Src, and N2-Src is expressed at 

detectable levels (Matsunaga et al., 1993a).  This suggests that a large number of N2-

Src expressing neuroblastoma tumours are resolved without any treatment, or even 

symptoms. 

 

1.5 Aims 

Very little is known about the roles of N1- and N2-Src during neuronal 

differentiation, both during healthy development and in the differentiation of the 

developmental cancer neuroblastoma.  The aim of this project is to characterise the 
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roles and effects of N1- and N2-Src during neuronal differentiation and to identify 

candidate genes and pathways through which they may function.  This will then 

provide better insight into the mechanisms regulating neuronal differentiation both 

during development and neuroblastoma, and potentially identify potential candidates 

for targeted therapies to induce neuroblastoma differentiation both in vivo and in vitro. 
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2 Materials and Methods 

2.1 Materials 

Oligonucleotide primers were ordered from Eurogentec (Seraing, Belgium) and 

Sigma (St.  Louis, MO).  Morpholinos were ordered from Gene Tools (Philomath, 

OR) after receiving advice from Gene Tools staff on their design.  Usage of Thermo 

Scientific NanoDrop was provided by the Technology Facility in the Department of 

Biology, University of York.  The gels as part of the mass spectrometry were run using 

the XCell SureLock Mini-Cell gel system, Novex NuPAGE 10% Bis-Tris pre-cast 

gels and Novex NuPAGE MES SDS Running Buffer provided by the Centre for 

Excellence in Mass Spectrometry in the University of York Technology Facility.  Sybr 

Safe was purchased from Life Technologies (Paisley, UK).  Laemmli loading buffer 

was purchased from Sigma (St.  Louis, MO).  Protein molecular weight ladders were 

purchased from Bio-Rad (Hercules, CA).  The original XL-10 Gold stock was 

purchased from Stratagene (Santa Clara, CA) and competent cells made from the stock 

in-house.  Restriction enzymes XhoI, BglII, KpnI and XbaI were purchased from NEB 

(Ipswich, MA).  Ligase and ligation buffer were purchased from Promega (Fitchburg, 

WI).  Taq polymerase was used for all non-cloning PCR steps and was a kind gift from 

Dr Daniel Ungar, University of York.  Pfu polymerase was used for all cloning PCR 

steps and was purchased from Thermo Scientific (Waltham, MA).   

The Src pFLAG plasmids were made in-house by Dr Gareth Evans by 

replacing GFP in pEGFP-N1 with the FLAG epitope tag sequence and the pmCer 

plasmid was a gift from Dr Rory Duncan (Herriot Watt University) (Rizzo et al., 

2004).  The T.REx HeLa cell line in addition to the pOG44 and pcDNA5/FRT/TO 

plasmids were gifts from Dr Paul Prior, University of York.  pCS2+ plasmid was a 

gift as part of a collaboration with the lab of Harv Isaacs.  The human neuroblastoma 

cell lines LAN-5, KELLY, and SK-N-AS were kind gifts from Dr Andrew Stoker, 

University College London.  PVDF membrane (Immobilon-P) in addition to the 

Immobilon chemiluminescent HRP substrate was purchased from Millipore (Billerica, 

MA).  α-PY20 antibody was purchased from BD Bioscience (San Diego, CA), α-

FLAG (M2) was purchased from Sigma (St.  Louis, MO), α-pY488, α-pY527 and α-

Sec23a antibodies were purchased from Cell Signalling Technology (Boston, MA), α-

actin B antibody was purchased from Abcam (Cambridge, UK).  Agarose conjugated 
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α-4G10 antibody was purchased from Merck Millipore (Billerica, MA).  α-GFP 

antibody was a gift from Dr Paul Prior, University of York.  α-TGN46 antibody was 

a gift from Dr Danny Ungar, University of York.  α-Ki67 antibody was a gift from Dr 

Paul Genever, University of York.  Secondary HRP conjugated α-mouse and α-rabbit 

antibodies was purchased from Sigma (St.  Louis, MO), Molecular Probes’ secondary 

ALEXAfluor-conjugated antibodies were purchased from Invitrogen (Paisley, UK).  

DMEM containing pyruvate, high glucose and glutamine; Hepes buffered DMEM 

without bicarbonate; RPMI with sodium bicarbonate, without L-glutamine; FBS 

(South American); Hygromycin B; were purchased from Invitrogen (Paisley, UK).   

The following were all materials purchased jointly by the Isaacs and Pownall 

labs and used as part of the collaboration with the Isaacs lab.  Restriction enzymes 

Asp718 and SureCut buffers were purchased from Promega (Fitchburg, WI) and 

Roche (Sussex, UK).  Megascript SP6 Transcription Kit was purchased from Ambion 

(Paisley, UK).  RQ1 RNAse free DNAse, L-Cysteine and L-Cysteine hydrochloride, 

Formaldehyde solution, acetic anhydride, Heparin, Denharts, CHAPS, and the First 

Strand Synthesis buffer kit were purchased from Sigma (St.  Louis, MO).  Proteinase 

K, Anti-DIG Fab fragments coupled to alkaline phosphatase, BMB, and BM purple 

were purchased from Roche (Sussex, UK).  Lamb Serum used to make the heat treated 

lamb serum used in in situs was purchased from Fisher Scientific (Paisley, UK).  Total 

yeast RNA used in the in situs was purchased from ICN Biochemicals (Aurora, OH). 

All unlisted chemicals were purchased from either Sigma or Melford (Ipswich, UK). 

 

2.2 Molecular biology methods 

2.2.1 Agarose Gels 

DNA separation for the purposes of cloning was carried out by agarose gel 

electrophoresis.  60-100 ml 1x TAE buffer (40 mM Tris, 20 mM acetic acid, and 1 

mM EDTA) containing 0.7-3% (w/v) agarose was mixed into suspension and the 

mixture heated using a microwave until the agarose was fully dissolved (~2 min, full 

power), then cooled to below ~60 oC before addition of SYBR Safe at a dilution of 

1:20,000 (v/v).  Once the gel had set the gel tray was submerged in 1x TAE buffer and 

the DNA, diluted in 5x Orange G buffer (15% glycerol, 0.2% Orange G dye, in dH2O) 
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loaded onto the gel.  DNA was then separated by electrophoresis and visualised by 

Safelight, before U.V transillumination for acquisition of image. 

 

2.2.2 DNA separation by acrylamide gel electrophoresis 

Small DNA fragments, amplified by rtPCR from cDNA samples, were 

separated by TBE poly-acrylamide gel electrophoresis, using the Bio-Rad Mini-

PROTEAN Tetra gel electrophoresis kit (Bio-Rad).  Each 15% poly-acrylamide gel 

(per 7.5ml gel: 3.75 ml of 30% acrylamide, 2.95 ml of distilled water, 0.75 ml of 10x 

TBE (890 mM Tris, 890 mM boric acid, 20mM EDTA), 60 µl of 10% (w/v) 

ammonium persulfate, 3.75 µl of Tetramethylethylenediamine (TEMED)) was mixed 

in the order listed below and was cast in Bio-Rad Mini-PROTEAN gel plates using 10 

or 15 well combs.  DNA samples were diluted in 5x SYBR Safe loading dye and 

loaded into wells.  The gels were run in 1x TBE for between 60 and 90 min at 200 

mV.  Gels were removed from the plates and stained immersed in 1x TBE (89 mM 

Tris, 89 mM boric acid 2 mM EDTA) containing a 1:50,000 (v/v) dilution of SYBR 

Safe, kept gently agitated for at least an hour then visualised by Safelight and 

transilluminated by U.V for acquisition of image. 

 

2.2.3 SDS-PAGE 

Protein separation was achieved by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE) using the Bio-Rad mini-PROTEAN Tetra gel electrophoresis kit (Bio-

Rad).  Gels were composed of a resolving gel (375 mM Tris pH 8.8, 0.1% SDS, 0.05% 

APS, 0.01% TEMED, 7.5% to 15% acrylamide) in addition to a stacking gel (125 mM 

Tris pH 6.8, 0.1% SDS, 4% acrylamide, 0.05% APS, 0.01% TEMED). 

Samples were either lysed directly into 2x Laemmli loading buffer or diluted 

in 2x Laemmli loading buffer, then boiled at 95oC for 10 min prior to loading.  The 

gel was run in 1x SDS running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS).  

Gels were electrophoresed at 120 V until the dye front passed the stacking gel 

boundary (typically 20-30 min) and then increased to 160 V until the pre-stained 
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protein molecular weight marker (Bio-Rad) indicated that sufficient resolution of the 

target protein size had been achieved.   

 

2.2.4 Protein transfer to PVDF  

SDS-PAGE gels were transferred to PVDF membranes for western blotting 

using the Bio-Rad Mini Trans-Blot system.  Transfer was carried out as per the 

manufacturer’s instructions, using transfer buffer A (Transfer buffer: 25 mM Tris pH 

8.3, 192 mM glycine, 20% methanol) for 1 h at 66 V or overnight at 20 V. 

 

  Primary 
antibody 

Secondary antibody 

Ab Block Conc. Ab Conc. 
Actin B 3% Marvel in PBS 1:90,000 α-rabbit HRP 1:5000 
FLAG (M2) 3% Marvel in PBS 1:1000 α-mouse HRP 1:5000 
PY20 3% BSA in PBS 1:1000 α-mouse HRP 1:5000 
pY416 3% BSA in PBS 1:1000 α-rabbit HRP 1:5000 
pY527 3% BSA in PBS 1:1000 α-rabbit HRP 1:5000 
Sec23a 3% Marvel in PBS 1:1000 α-rabbit HRP 1:5000 

Table 2.1 Western blotting antibody concentrations and blocking method. 
Conditions used in blocking PVDF membranes in addition to primary and secondary 
antibody combinations and concentrations 

 

2.2.5 Western Blotting 

All incubations during Western blotting were agitated on a gel shaker.  

Following transfer, membranes were washed in water and PBS before blocking for an 

hour at room temperature or overnight at 4 oC in PBS supplemented with either 3% 

Marvel milk powder or 3% BSA (see Table 2-1).  After blocking, membranes were 

probed with primary antibodies (Table 2-1) for 2 h at room temperature or overnight 

at 4 oC.  Following the primary antibody step, membranes were washed for 3 x 5 min 

in PBS Tween (PBS + 0.5% Tween).  Secondary antibodies were either anti-rabbit or 

anti-mouse antibodies conjugated to HRP and were used in combination with the 

relevant primary antibody (Table 2-1).  The membrane was incubated with secondary 

antibody for 1 h at room temperature then washed three times with PBS Tween.  

Reagents A and B of the Immobilon chemiluminescent HRP substrate were mixed 1:1 

immediately prior to application to the PVDF membrane and incubated for 1-3 min 
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before visualising bands in a dark room using Ultracruz Autoradiography film (Santa 

Cruz).   

 

2.2.6 Preparation of competent E.coli for cloning 

XL-10 Gold ultracompetent E.coli cells (Stratagene) were used for all cloning 

and DNA purification steps.  XL-10 cells were kept at -80oC and used to generate 

stocks of competent cells.  Competent cells were generated by putting a scraping of 

the original stock into 5 ml of sterile LB medium (per litre: 10 g tryptone, 10 g NaCl, 

5 g yeast extract) without antibiotic, incubated shaking at 200 rpm at 37 oC overnight.  

The overnight culture was then diluted into 200 ml of fresh LB medium supplemented 

with 4 ml of sterile 1 M MgSO4 and incubated for several hours to an OD600 of ~0.5.  

From this point the culture was kept at 4 oC until the end of the protocol.  The culture 

was centrifuged at 4oC at 4500 G for 5 min to pellet the cells.  The supernatant was 

discarded and the pellet gently resuspended in 50 ml of ice-cold TFB1 (30 mM 

potassium acetate, 10 mM calcium chloride, 50 mM manganese chloride, 0.1 M 

rubidium chloride, 15% glycerol).  The cells were incubated on ice for 5 min, then 

pelleted for 5 min again at 4 oC & 4500 G, before discarding the supernatant and gently 

resuspending the pellet in 5 ml of ice-cold TFB2 (10 mM MOPS, 75 mM calcium 

chloride, 10 mM rubidium chloride, 15% glycerol).  This solution was incubated on 

ice for 45 min, mixing occasionally by inversion.  The cells were then gently mixed 

then divided into 100 µl aliquots in sterile Eppendorfs and snap frozen in a dry 

ice/isopropanol bath.  The competent cells were then stored at -80 oC until needed.   

 

2.2.7 Bacterial transformation 

Plasmids were transformed into competent XL-10 Gold cells (described 

above) for relevant cloning steps and DNA production from plasmid stocks where 

glycerol stocks were not available.  All of the following steps were performed using 

aseptic technique.  1-5 µl of DNA added on ice to 50 µl of a stock of competent XL-

10 cells and mixed by stirring, then incubated on ice for 15-30 min.  The cells were 

then heat-shocked at 42 oC for exactly 45 s and incubated for 2 min on ice.  Following 

this, 200 µl of 37 oC LB medium was added and the tubes mixed at 37 oC and 200 rpm 
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for between 30-60 min.  Agar plates (per litre: 10 g tryptone, 10g NaCl, 5 g yeast 

extract, 20g agar) containing the appropriate antibiotic were pre-warmed to 37 oC and 

up to 100 µl of the transformation was spread over the agar plate which was incubated 

for 16-18 h at 37 oC. 

 

2.2.8 Plasmid purification 

Plasmid DNA was purified from XL-10 Gold cells either from single colonies 

selected from the agar plates of bacterial transformations or from scrapings of glycerol 

stocks stored at -80oC.  For cloning, only small quantities of DNA were required so 5-

10 ml of inoculated LB medium was processed via the Machery-Nagal Quick-Spin 

mini-prep kit as per the manufacturer’s (Machery-Nagal) instructions.  For larger 

quantities of DNA, or DNA required at a higher concentration or purity, 200 ml of LB 

medium was inoculated with a 10 ml starter culture, and processed via a Midi-Prep kit 

(Qaigen) as per the manufacturer’s instruction.  Quantification of DNA concentration 

was performed using a NanoDrop spectrophotometer (Thermo-scientific) in the 

Technology Facility in York University. 

 

2.2.9 Cloning 

The primers used for all cloning procedures can be found in Table 2-2.  The 

full length Src C-, N1- or N2-Src open reading frames with c-terminal FLAG tag 

(pFLAG constructs) was sub-cloned to generate the pCS2+ constructs used to create 

RNA to inject in Xenopus cells, and the pDNA5/FRT/T0 plasmids used to generate 

stable, inducible HeLa cell lines.  The FLAG-tagged genes were amplified by PCR 

from pFLAG using the blunt-ended PCR enzyme Pfu DNA polymerase (Thermo 

Scientific).  The PCR product was then cloned into the pJet 1.2sub-cloning plasmid 

using the clonJET kit (Thermo Scientific) as per the manufacturer’s instructions.  The 

pJet 1.2sub-cloning plasmid and vector plasmids were digested with XhoI (NEB) for 

1 h in NEB buffer 3 by standard lab protocol (1% BSA, 1x NEB 3, 2 µl restriction 

enzyme, to 60 µl with dH2O) and purified by gel extraction from agarose gel using the 

Qaigen gel extraction kit.  The purified vector and insert DNA fragments were ligated, 
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and then the correct orientation of the gene was confirmed by Taq PCR using one 

internal and one external primer. 

The xN1-Src gene was acquired from the IMAGE clone library (IMAGE 

number: 5572523) and amplified from the source plasmid by Pfu DNA polymerase 

PCR and ligated into pJet 1.2 using the clonJET kit (Thermo Scientific) as per the 

manufacturer’s instructions.  xN1-Src was then digested from pJet 1.2 into the empty 

pFLAG vector by double digest with BglII and KpnI.  The FLAG tagged xN1-Src 

construct was then excised from pFLAG by XbaI digest and ligated in to pCS2+.   

The ligation of insert DNA into plasmid vectors was accomplished at a 3:1 

molar ratio of insert to vector.  The mass of vector was constant at 100 ng and the 

quantity of insert varied dependent upon the size of the fragment.  1 µl of T4 DNA 

ligase (1-3 units/µl), 1 µl of 10x ligase buffer (both Promega) and 100 ng of vector 

was made up to 10 µl with insert DNA and dH2O.  This mix was incubated either at 

room temperature for 20 min, or at 4 oC overnight before transformation into 

competent bacteria.   

 Primer 
Pair 

Forward primer 
Sequence 

Reverse Primer 
Sequence 

Anneal 
temp 

Extension 
time 

C
lo

ni
ng

  
 

Cloning 
Srcs from 
pFLAG 

CTC-GAG-ACC-
ATG-GGC-AGC-
AAC-AAG-AGC-
AAG-CCC  

CTC-GAG-TTA-
CTT-GTC-GTC-
ATC-GTC-TTT-
GTA 

51 oC 2 min 

Cloning 
xN1-Src 
from 
IMAGE 

AGA-TCT-CTC-
TAG-AAC-CAT-
GGG-TGC-CAC-
TAA-AAG-CAA-
GCC-A 

GGT-ACC-GTA-
GAT-CCA-AGG-
TGT-TCC-CCA-
GGC-TGG-TAC-
TG 

57 oC 2 min 

rt
PC

R
 

Pan-Src ATC-TCG-CAC-
CGA-GAC-AGA-
CT 

ACT-GAG-TGC-
GAG-ACG-TGA-
TG 

60 oC 45 sec 

xN1-Src ACT-GTG-ACC-
TGA-CGC-CTT-
TT 

CTT-CCC-TCA-
TGT-CAG-GTC-
TC 

58 oC 50 sec 

L8 control GGG-CTG-TCG-
ACT-TCG-CTG-
AA 

ATA-CGA-CCA-
CCA-CCA-GCA-
AC 

57 oC 45 sec 

Table 2-2 Sequences and PCR conditions of primer pairs used during rtPCR and cloning 
steps.   
PCR reactions were performed using either Taq (rtPCR and screening cloning colonies) or 
Pfu polymerase, as described in 2.2.9.  Primers were used at a concentration of 100 nM for 
each primer pair and the product separated by either agarose or acrylamide gel electrophoresis 
as described in 2.2.1 and 2.2.2. 
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To sequence the Src splice variants identified by rtPCR of Xenopus tropicalis 

cDNA, the cDNA samples were amplified using Pfu polymerase separated on a 3% 

agarose gel.  Individual splice variants were then excised, purified and ligated into pJet 

1.2 by the clonJET system (Thermo Scientific) and sequenced.   

All of the above plasmids were sequenced upon completion by York Technology 

facility as described in 2.2.10. 

 

2.2.10 DNA sequencing 

DNA sequencing was carried out by the Technology Facility at the University of York.  

A 3.2 µl pre-mix consisting of 100 ng of plasmid DNA and 3.2 mM of primer was 

submitted to the Technology Facility and the sequence obtained was analysed using 

Sequence Scanner 1.0 (Applied Biosystems).  Plasmid sequences were then confirmed 

by alignment of in silico plasmids to the sequencing results. 

 

2.3 Cell culture methods 

2.3.1 Culture of cell lines 

Cell lines were maintained in culture in 25 cm2 or 75 cm2 flasks at 37oC in a 

humidified atmosphere of 5% CO2.  COS7, SK-N-AS, HeLa and B104 cells were 

maintained in DMEM (containing pyruvate, high glucose and glutamine (Gibco)) with 

10% FCS, 100 units/ml penicillin and 0.1 mg/ml streptomycin.  LAN-5 and KELLY 

cells were maintained in RPMI-1640 medium (with sodium bicarbonate, without L-

glutamine (Gibco)) with 10% FCS, 100 units/ml penicillin and 0.1 mg/ml 

streptomycin.  Cells were passaged 2-3 times per week upon reaching confluency.  

Passage consisted of removing culture media, washing cells with sterile PBS, and 

detaching cells from the cell culture flask with 0.5-1 ml of warmed trypsin/EDTA in 

PBS.  Upon detachment, trypsin action was halted by the addition of 5-10 ml of culture 

medium.  Cells were centrifuged in 15 ml Falcon tubes for 5 min at 120 G.  The 

supernatant was discarded and the cell pellet resuspended in 1 ml of culture medium.  

The cells were split at ratios between 1:2 and 1:10 dependent upon their proliferation 
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rate.  If the cells were required for plating, the cell density was determined using a 

haemocytometer and plated at the appropriate density. 

 

2.3.2 Transient transfection of cells for immunocytochemistry 

Ten thousand HeLa, B104 or COS7 cells, or 30,000 LAN-5, SK-N-AS or 

KELLY cells were plated onto 13 mm2 coverslips, with 500 µl of medium per well of 

a 24 well plate.  Coverslips were sterilised in an oven at 180 oC for at least 30 min 

prior to use.  Cells were transfected one day after plating using Ecotransfect (Oz 

Biosciences) according to the manufacturer’s instructions.  Briefly, transfections were 

carried out using a total of 1 µg of plasmid DNA (0.5 µg of each plasmid if performing 

a double transfection) and 2 µl of Ecotransfect, each diluted in 50 µl of DMEM or 

RPMI as appropriate.  The two solutions were mixed and incubated for 20 min at room 

temperature before pipetting drop-wise onto the culture media in each well.  The 24 

well plate was gently agitated before being returned to the incubator.  After 6 h the 

transfection media was replaced with 500 µl of fresh media.  The fresh media added 

contained any relevant drug treatment which included 5 µM 13-cis-Retinoic Acid, 1 

mM dibuteryl cAMP, or 0.5 µl of 1 µg/ml doxycycline.   

 

 Primary antibody Secondary antibody 
Antibody Conc. Antibody Concentration 
FLAG (M2) 1:1000 α-mouse ALEXA 594 1:500 
GFP 1:1000 α-rabbit ALEXA 488 1:500 
Ki67 1:200 α-rabbit ALEXA 488 1:500 
TGN46 1:1000 α-rabbit ALEXA 488 1:500 

Table 2-3 Antibody combinations and concentrations used in immunocytochemistry. 
Antibody combinations and concentrations used in immunocytochemistry.  All samples were 
blocked in BSA and permeabilised in triton prior to antibody labelling, as described in 2.3.2 

 

2.3.3 Transient transfection of cells for western blotting 

One hundred thousand B104 cells were plated per well of a 6 well plate and 

transfected with Ecotransfect.  Two days following the transfection, the cells were 

washed twice with PBS and then treated for 10 min with either 100 µM pervanadate 

solution (100 µM orthovanadate, 0.2 mM hydrogen peroxide in PBS) or PBS.  After 
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incubation, the solution was removed and the cells lysed in 120 µl of Laemmli SDS 

sample buffer. 

 

2.3.4 Stable transfection of HeLa cells 

HeLa cells were stably transfected with Src isoforms using the Invitrogen T-

REx/Flp-in systems.  Flp-in, T-REx HeLa cells stably express the tetracycline 

repressor element, in addition to having a genomic, stably transfected pFRT/lacZeo 

plasmid.  One hundred thousand HeLa cells were plated in 2 ml of culture medium per 

well of a 6 well plate and transfected using Ecotransfect (Oz Bioscience).  3 µg of 

DNA comprising 0.3 µg of the relevant pcDNA5/FRT/TO plasmid and 2.7 µg of 

pOG44 were mixed in 100 µl of DMEM, and the solution mixed with 100 ml of 

DMEM containing 6 µl of Ecotransfect.  One day after transfection the culture medium 

on the cells was changed.  Two days after transfection the culture medium was 

removed from the cells and the cells washed with PBS and treated with 500 µl of 

Trypsin/EDTA for 3-5 min in the incubator to detach the cells from the 6 well plate.  

The HeLa cells were diluted in 8 ml of culture medium at varying concentrations (5% 

- 50%), and plated onto 10 cm cell culture dishes and returned to the incubator.  The 

following day the cell culture medium was either supplemented, or replaced with 

medium containing 500 µg/ml of Hygromycin B (Invitrogen).  The cells were kept in 

Hygromycin B containing medium for several weeks until colonies between ~5-8 mm 

in diameter were visible by eye on the plates, with medium changed three times a 

week.   

Individual colonies were selected using cloning rings (1-2 cm rings cut from 

the end of a blue pipette tip), and a glass petri dish with its base coated with silica gel; 

both of which were autoclaved and dried before use.  The 10 cm plate of HeLa cells 

was gently washed twice with 8 ml PBS, and the PBS removed.  Each cloning ring 

was then pressed onto the silica gel to coat the base of the cloning ring with a 

chemically inert sealant before placing the cloning rings over colonies that were 

sufficiently spatially separated from neighbouring colonies.  One hundred ml of 

Trypsin/EDTA was added to each well created by cloning rings and the dish was left 

for 3-5 min at room temperature to allow the trypsin to detach the cells of each 
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colonies.  The trypsin cells were then further detached by repeated pipetting of the 

cell/trypsin suspension onto any remaining cells, before the suspension was moved in 

to a 24 well plate containing 1 ml of 500 µg/ml Hygromycin B containing culture 

medium.  The cells were allowed to grow to confluence in a 24 well plate, with media 

changed 3 times a week, before being passaged in 200 µl of trypsin into a 25 cm2 cell 

culture flask. 

 The stably transfected cell lines were then tested for the proportion of 

doxycycline induced FLAG expressing cells by immunocytochemistry, and for 

doxycycline induced expression of a Src splice variant by Western blotting.  

Successful clones were proliferated and stored frozen in aliquots to create stocks of 

cells. 

 

2.3.5 Immunocytochemistry 

 Cells were stained by immunocytochemistry after being transfected or drug 

treated as outlined in 2.3.2.  Cells undergoing immunocytochemistry were plated on 

to 13 mm glass coverslips in the wells of a 24 well plate.  Culture medium was 

removed from the cells and the cells gently washed three times with 1 ml PBS, before 

being fixed for 20 min at room temperature in PFA (4% paraformaldehyde and 4% 

sucrose in PBS, pH to 7.4).  The cells were then gently washed three times in 1 ml 

PBS before permeabilisation for 30 min in PBS + 1% BSA + 0.1% Triton X-100.  The 

permeabilisation buffer was removed and replaced with one or two primary antibodies 

(all antibodies raised in either mouse or rabbit, Table 2-3) in PBS + 1% BSA for 2 h 

at room temperature.  After incubation with the primary antibody(s) the cells were 

gently washed three times in 1 ml PBS before application of the secondary antibody, 

diluted 1:500 in PBS + 1% BSA.  Secondary antibodies were either Alexa Fluor 488-

conjugated goat anti-rabbit IgG or Alexa Fluor 594-conjugated goat anti-mouse IgG, 

or both if mouse and rabbit primary antibodies were used in combination.  The cells 

were incubated in secondary antibody in the dark at room temperature for 1 h.  The 

cells were then washed gently three times in PBS and washed once in dH2O.  

Coverslips were then removed from wells and air-dried on tissue before mounting on 

slides using Mowial mountant (10% Mowial, 25% glycerol in 0.1 M Tris pH 8.5) 

containing 1 µg/ml DAPI.   
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Images were acquired using a 40x objective on a Nikon TE 200 

epifluorescence inverted microscope using a RoleraXR CCD (QImaging) camera 

controlled by SimplePCI Software (Hamamatsu). 

 

2.3.6 Wound healing assay 

 Fifty thousand HeLa cells were plated per well of a 24 well plate.  Eight h after 

plating, the cells were treated with 1 µg/ml doxycycline.  The following day the culture 

media from these wells was replaced with HEPES buffered DMEM (10% FBS, 100 

u/ml penicillin, 0.1 mg/ml streptomycin) containing 1 µg/ml doxycycline.  After 2 h 

in HEPES buffered DMEM the cells were wounded using a 200 µl pipette tip and the 

medium changed to remove cell debris.  The plate was then sealed by Parafilm and 

transferred to the microscope stage maintained at 37 oC and humidified.  Regions of 

interest on each well were identified in the SimplePCI software and these sites were 

then imaged every ten min over a two day time period using an automated XY2 Prior 

stage with auto-focussing.   

 

2.3.7 Image quantification  

 All computation image analysis was performed using ImageJ (NIH).  The 

NeuronJ (Popko et al., 2009) plugin was used to measure neurite lengths of both LAN-

5 and B104 cells.  Neurites were traced using the ‘add tracings’ tool and measured 

from the closest point to the cell soma, where the neurite was below 2 µm in diameter, 

to the end of the neurite.  The traced neurites were measured by NeuronJ and compiled 

and calibrated from pixels to microns in Microsoft Excel, using a scale set by a 

calibration image.   

 To measure the area migrated in a wound healing assay, a multi-image TIF was 

compiled in SimplePCI software.  The migration front of the cells was outlined on the 

first image of the time-course using the polygon tool, then again on the final image of 

the time-course and the area covered between these outlines was measured by ImageJ.  

The data for these time-courses was collated and analysed in Microsoft Excel. 
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 To quantify the circularity of HeLa cells, cells were outlined using the polygon 

tool, with CFP as a guide to the outline of the cells.  The outline was measured for 

perimeter and area and the data compiled in Microsoft Excel.  The roundness was 

calculated on a scale of 0 to 1 by the formula 4*π*(Area/Perimeter2) (Schneider et al., 

2012). 

 

2.3.8 Statistical analyses of neuritogenesis assays 

 Statistical analyses on neuritogenesis assays were performed where at least 

three biological replicates of the data were available.  The mean values for each 

replicate were calculated and compared for statistical significance by ANOVA, using 

a Bonferroni correction unless otherwise stated 

 

2.4 Mass spectrometry methods 

2.4.1 Phosphotyrosine immunoprecipitation from HeLa cells 

 HeLa cell lysates were subjected to anti-phosphotyrosine immunoprecipitation 

to provide immunoenriched eluate for mass spectrometry.  For each condition of the 

experiment two confluent 75 cm2 flasks were passaged into six 75 cm2 flasks.  The 

day following the passage, the relevant cells were treated with 1 µg/ml doxycycline 

and the cells incubated for two days.  After two days the flasks were (in batches of 

three) washed three times in PBS and treated for 10 min at 37 oC with 100 mM 

pervanadate (100 µM pervanadate solution, 0.2mM hydrogen peroxide in PBS), or 

PBS.  This was removed and 1 ml of RIPA buffer was added to each flask on ice and 

the cells scraped from the bottom of the flask using a cell scraper.  The flask was then 

tipped 45o upright and the lysed cells incubated in the bottom corner of the flask, on 

ice for 10 min.  After this incubation the cells were moved to a 1.5 ml Eppendorf and 

spun for 10 min at 4oC and 16,000 G to separate the RIPA insoluble fraction, the 

supernatant was then pooled in a chilled 15 ml centrifuge tube kept in ice. 

The protein concentration of the pooled lysates was established by Bradford 

assay and the concentration of all samples adjusted to match that of the sample with 

the lowest concentration.  Samples of each lysate were taken and equal quantities of 
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the lysate were used for the immunoprecipitation.  50-100 µl of agarose bead 

conjugated 4G10 antibody (Merck Millipore) was added to each sample and the tubes 

were incubated mixing end-over-end overnight at 4 oC.   

The following day the agarose beads was separated from the supernatant by 

centrifugation for 5 min at 4 oC and 720 G, the supernatant was removed and retained.  

0.4 µm Spin-x filter tubes (Corning) were washed twice with fresh 100 mM Tris pH 

7.4.  The beads were resuspended in 100 mM Tris buffer pH 7.4 and transferred to 0.4 

µm Spin-x filter tubes and washed five times in 400 µl 100 mM Tris pH 7.4 by 

centrifugation at 4 oC at 16,000 G for 20 s.  Following these washing steps the IP was 

eluted by addition of 50-100 µl Laemmli sample to the beads in the filter tubes and 

the tubes rolled at RT for 20 min.  Following this, the eluate was collected by 10 min 

of centrifugation at 16,000 G and stored at -20 oC.   

 

2.4.2 Mass spectrometry 

 40 µl of Eluate from the 4G10 IPs was loaded on a pre-cast NuPAGE 10% Bis-

Tris Gel (Novex) separated by a well with 10 ml loading dye to prevent contamination.  

The samples were run for six minutes at 200 V using the xCell SureLock Mini-Cell 

system in 1x Nupage MES SDS Running Buffer (Novex).  The gel was then removed 

from the cast and incubated in SafeBlue Protein stain (NBS Biologicals), rocking 

gently for 1 h, and then de-stained in molecular grade water overnight.  The region of 

the gel stained by the SafeBlue Protein stain was excised from the gel and dissected 

into ~1mm pieces and transferred to LoBind Eppendorf tubes (Sigma). 

 The gel was then treated twice with 25 mM ammonium bicarbonate in 50% 

acetonitrile.  The gel was then washed in acetonitrile for 5 min before the supernatant 

was removed and the gel dried by speedvac for 20 min.  The gel pieces were then 

treated in 10 mM dithioerythritol (DTE) in 100 mM ammonium bicarbonate at 56 oC 

for 1 h.  After returning to room temperature the gel pieces were then treated with 

iodoacetamide (50 mM in 100 mM ammonium bicarbonate) in the dark for 30 min.  

The gel pieces were then washed with 100 mM ammonium bicarbonate for 15 min, 

then in 25 mM ammonium bicarbonate in 50% acetonitrile for 15 min, then in 

acetonitrile solution for 5 min.  After this incubation the supernatant was removed and 
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the gel pieces dried again in the SpeedVac for 20 min.  The proteins in the gel pieces 

were then digested by 25 µg/ml trypsin in 25 mM ammonium bicarbonate at 37 oC 

overnight. 

 The supernatant containing the digested peptides was removed and retained 

and additional peptides were recovered by treating the gel pieces with 50% acetonitrile 

three times for 15 min and the supernatants retained.  The combined supernatants were 

then dried in the SpeedVac and reconstituted in 20 ml of 0.1% trifluoroacetic acid.  

The peptides were then run on the MaXis 3G high resolution Q-ToF mass spectrometer 

by Dr David Ashford of the University of York Technology Facility, Centre of 

Excellence in MS (COEMS). 

 

2.4.3 Bioinformatics 

 Lists of peptides identified by the MaXis 3G system were processed through 

Mascot and lists of proteins clustered by the protein family were retrieved from the 

database with associated Uniprot identifying codes and values.  The data were collated 

and processed in Microsoft Excel as described in 4.2.7 and Fig.  4-7 to give the lists 

of protein accessions put into various bioinformatics programs.  Since the majority of 

these programs do not recognise Uniprot IDs, the lists of Uniprot ids were converted 

by the Uniprot batch retrieval function (http://www.uniprot.org/uploadlists/ 

(Consortium, 2014)) and lists of official gene symbol used for the bioinformatics 

inputs. 

 

2.4.4 WebGestalt 

 The processed protein lists assembled in Microsoft Excel were inputted into 

WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) in the category 

hsapiens__gene_symbol (http://bioinfo.vanderbilt.edu/webgestalt/ (Zhang et al., 

2005)).  Enrichment analysis was performed upon the list against the reference set 

hsapiens__genome using the statistical method Hypergeometric, and the Benjamini & 

Hochberg multiple test adjustment (Hochberg and Benjamini, 1990) to a significance 
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of 0.05%.  Enrichment analysis of the KEGG pathways and WikiPathways was 

performed by WebGestalt and the data saved and compiled in Microsoft Excel. 

 

2.4.5 DAVID 

 Functional annotation of the processed protein lists assembled in Microsoft 

Excel were inputted into DAVID (http://david.abcc.ncifcrf.gov/ (Huang et al., 2009b).  

The list of gene names using the OFFICIAL_GENE_SYMBOL identifier were 

inputted as text.  The chart output for the Gene_Ontology categories 

GOTERM_BP_FAT, GOTERM_CC_FAT and GOTERM_MF_FAT were adjusted 

for multiple tests by the Benjamini & Hochberg method (Hochberg and Benjamini, 

1990).  Outputs were copied into and collated in Microsoft Excel. 

 

2.4.6 Phosphosite 

 Proteins of interest were searched in the PhosphoSite database by their official 

gene symbol (Hornbeck et al., 2012).  A list of the phosphorylated tyrosine residues 

was assembled in Microsoft Excel, along with annotations about whether the site was 

identified by high throughput phosphoproteomics techniques or specifically identified 

in the literature.   

 

2.4.7 GPS 2.0 

 GPS 2.0 (GPS (Xue et al., 2008)) requires input of amino acid sequences that 

were in FASTA format.  The amino acid sequence for proteins of interest was obtained 

by searching the Uniprot database for by the Uniprot ID, then inputted into GPS.  GPS 

analysis was carried out using the high stringency criteria, which only shows sites that 

were below a false positive discovery rate of 4%.  GPS was then used to analyse the 

amino acid sequence for motifs that matched a consensus sequence for 

phosphorylation by Src.  The list of positions of the tyrosine residues along with the 

assigned score were then transferred and collated in Microsoft Excel. 
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2.4.8 ScanSite 

 The same amino acid sequences inputted into GPS were also used with 

ScanSite.  ScanSite (Obenauer et al., 2003) was used to identify tyrosine residues in 

the sequence that matched the consensus motif for Src kinase domain phosphorylation.  

Due to the much lower number of output proteins from ScanSite compared with GPS, 

the lowest stringency was used, which identifies sequences in the top 5% of possible 

binding motifs.  The resulting list of tyrosine residues, along with their position and 

statistical significance were then collated in Microsoft Excel. 

 

2.4.9 STRING 

 Interaction maps of the processed protein lists were generated using STRING 

(Franceschini et al., 2013).  The list of official gene symbols was entered into 

STRING’s web interface as a list of multiple human protein names.  The default 

parameters were used to generate the protein interaction network and the interaction 

map exported as a tab-delimited table.  The table was then imported into Cytoscape 

(Smoot et al., 2011) where it was modified by grouping nodes of interest to highlight 

specific clusters enriched in the bioinformatics tools. 

 

2.5 Developmental biology methods 

2.5.1 Plasmid linearisation 

 The Src isoforms C-, N1-, xN1- and N2-Src were all cloned into the Xenopus 

expression vector pCS2+ and sequenced to confirm orientation and sequence fidelity.  

The C- N1- and N2-Src plasmids were linearised by restriction digest by Asp718 (5 

µg of DNA, 5 µl of SuRE/Cut buffer B, 2 µl of ASP718, to 50 µl with dH2O), xN1-

Src was digested by NotI as above using SuRE/Cut buffer H.  After digest the 

linearised plasmid DNA was checked on a gel, then purified by a phenol-chloroform 

extraction as follows. 

 The 50 µl digest was supplemented with 100 µl dH2O and 140 µl of phenol-

chloroform.  The reaction was vortexed thoroughly for 30 s and centrifuged for 5 min 
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at 4 oC and 16,000 G.  The aqueous phase was removed and kept, and 10 µl 3 M 

sodium acetate was added in addition to 250 µl 100% ethanol.  The sample was then 

vortexed briefly to mix and stored on dry ice for 30 min before a 15 minute 

centrifugation at 4 oC and 16,000 G.  The supernatant was removed, being careful to 

avoid disturbing the DNA pellet, and the pellet washed in 1 ml 70% ethanol.  The 

sample was briefly centrifuged to return the pellet to the base of the Eppendorf tube 

before the supernatant was removed and the pellet dried in a vacuum chamber for 10 

min.  The linearised DNA pellet was then resuspended in 10 µl of molecular grade 

water and the concentration quantified by NanoDrop.   

 

2.5.2 In vitro transcription of synthetic mRNA for injection into Xenopus 
species 

 Synthetic mRNA was generated from the pCS2+ plasmid using the Megascript 

SP6 Transcription Kit (Life Technologies).  The transcription reaction was mixed as 

follows (4.5 µl RNase-free water, 2 µl 50 mM ATP, 2 µl 50 mM CTP, 2 µl 50 mM 

UTP, 2 µl 5 mM GTP, 2.5 µl 40 mM mGTP cap, 2 µl 10x transcription buffer, 1 µl 

1 µg/µl linearised template DNA, 2 µl SP6 enzyme) and incubated for 4 h at 37 oC.  

At this point 2 µl of the reaction was run on a 2% acrylamide gel, stained with 

approximately 0.1-0.5 µg/µl ethidium bromide, to confirm that transcription had been 

successful.  One microliter of RQ DNase I was then added to the mixture and 

incubated at 37 oC for 15 min.  One hundred and fifteen microliters dH2O and 15 µl 

ammonium acetate were then added to stop the reaction. 

The RNA was then purified as follows, all centrifugation steps were performed 

at 4 oC and 16,000 G.  150 µl of phenol-chloroform was added and vortexed 

thoroughly for 1 minute before 5 min of centrifugation.  The aqueous phase was 

removed and retained, then supplemented with 150 µl of chloroform, this mix was 

vortexed for 1 minute then centrifuged for 5 min.  The aqueous phase was again 

retained and supplemented with 150 µl of isopropanol, this mix was vortexed and 

centrifuged, then incubated for 30 min at -20 oC.  The mix was then centrifuged for 15 

min to pellet the RNA, after which the supernatant was carefully removed.  Following 

this the pellet was washed in 1 ml of ice cold 70% ethanol, then briefly vortexed to 
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remove the pellet from the bottom of the Eppendorf tube.  The mix was again 

centrifuged and the supernatant removed and pellet dried by vacuum pump.  The pellet 

was thoroughly resuspended in 20 µl of dH2O by pipetting up and down, and the 

concentration of the RNA determined by NanoDrop.   

 

2.5.3 Injection of Xenopus embryos 

 Handling of animals and in vitro fertilisation of Xenopus embryos was 

performed by members of the Isaacs and Pownall labs, and injection was only 

performed where excess embryos were available when other lab members were 

performing similar experiments.  Fertilised tropicalis embryos were cultured at 21 oC 

in MRS/9 (11 mM NaCl, 0.2 mM KCl, 0.22 mM CaCl2, 0.11 mM MgCl2 and 0.5 mM 

Hepes) in 55 mm petri dishes coated in 1% agarose/dH2O.  Approximately 40 min 

after fertilisation was completed, embryos were de-jellied in cysteine (MRS/9 + 3% 

L-cysteine, pH 7.8).  Fertilised tropicalis embryos were cultured at 18 oC in NAM/10 

(NAM/10 (NAM: 110 mM NaCl2, 2mM KCl, 1 mM Ca(NO3)2, 0.1 mM EDTA), 5 

mM Hepes, 25 pg/ml gentamycin) in 55 mm petri dishes coated in 1% agarose/dH2O.  

~1 h after fertilisation was completed embryos were de-jellied in cysteine (NAM/10 + 

3% L-cysteine hydrochlorate monohydrate, pH 7.8). 

Xenopus embryos were microinjected with the appropriate concentration of 

mRNA and/or morpholino using either a pneumatic micro-injector (Harvard 

apparatus/Narishige) or Drummond injector (Drummond Scientific Company) and 

glass needles.  Fresh aliquots of the mRNA or morpholino were mixed and diluted on 

the morning of injection with molecular grade water.  Morpholinos thawed from 

storage at -80 oC were heated to 65 oC for 10 min to bring the morpholino into solution.   

 Embryos were injected in NAM/3 (NAM/3, 5 mM HEPES, 25 pg/ml 

gentamycin) or MRS/9 medium supplemented with 5% Ficol.  Varying volumes of 

solution were injected into both laevis and tropicalis embryos, however, not exceeding 

a volume of 10 nl per blastomere at the two cell stage or 5 nl per blastomere at the four 

cell stage.  Bilateral and unilateral injections for phenotypes were performed at both 

two and four cell stages.  Dorsal injections were performed at the four cell stage only.  

Embryos were changed from NAM/3 and MRS/9 prior to the onset of gastrulation, 
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typically 3-4 h after injection, and into NAM/10 and MRS/20 (5 mM NaCl, 90 mM 

KCl, 0.1 mM CaCl2, 0.1 mM Mg Cl2, 5 mM HEPES, 100 pg/ml gentamycin).   

 

2.5.4 Collecting phenotypes 

 At approximately NF stage 40, embryos were analysed for a locomotive 

phenotype.  Stage 40 embryos were imaged individually, both still and moving in 

response to gentle physical contact from forceps, on a dissection microscope using a 

JVC TK-C1381 colour video camera (JVC) with ArcSoft ShowBiz video software.  

Following imaging of the embryos, they were fixed and stored in 3.7% formaldehyde.   

 

2.5.5 In situ hybridisation 

Embryos were cultured until NF stage 13 when the vitelline membranes were 

removed.  Embryos were then cultured to stage 14 and fixed in MEMFA (100 mM 

MOPS pH 7.4, 2 mM EGTA, 1 mM MgSO4, 3.7% formaldehyde solution) for 1 h and 

then dehydrated and stored in 100% methanol at -20 oC. 

Embryos were rehydrated through a series of methanol/PBSAT (PBS, 0.1% 

Tween) washes (100%, 75% and 50% methanol).  Embryos were then permeabilised 

with a 14 min proteinase K digest (6 µg/ml proteinase K in PBSAT) at room 

temperature.  Embryos were subsequently washed twice for 10 min in 0.1 M 

triethanolamine pH 7.8, with acidic anhydride added for 5 min (to a ratio of 0.25%) 

following the second wash.  The embryos were then washed in PBSAT and refixed 

for 20 min in 10% formalin (3.7% formaldehyde, PBSAT).  Following this the 

embryos were washed five times in PBSAT before being equilibrated in a 1:4 ratio of 

hybridisation buffer:PBSAT and then transferred into hybridisation buffer (50% 

formamide, 5x SSC, 100 µg/ml Heparin, 1x Denharts solution, 0.1% CHAPS, 10 mM 

EDTA, 0.1% Tween, pH 7) for 10 min at 60 oC.  Embryos were then blocked in 

hybridisation buffer + 1 mg/ml yeast RNA for 2 h, gently agitated at 60 oC.  The buffer 

was then replaced with hybridisation buffer + 1mg/ml yeast RNA + DIG labelled RNA 

probe overnight. 
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The probe was removed and retained the following day and excess probe 

removed by two washes in hybridisation buffer, three 2x SSC + 0.1% Tween-20 

washes all at 60 oC.  N-tubulin hybridisation necessitated an additional RNase 

digestion step, embryos were incubated for 30 min in 2x SSC supplemented with 20 

µg/ml of RNase A at 37 oC, then washed in 2x SSC for 10 min at room temperature.  

This was followed by three washes with 0.2x SSC + 0.1% Tween-20 at 37 oC.  

Embryos were then washed twice in maleic acid buffer (MAB: 100 mM maleic acid, 

150 mM NaCl, 0.1% Tween-20, pH 7.8) and then blocked in MAB + 2% BMB+ 20% 

heat treated lamb serum for 2 h at room temperature.  The embryos were then 

incubated overnight in the MAB blocking solution + the anti-DIG antibody.   

The following morning, embryos were washed five times in MAB at 60 oC 

then three 1 h MAB washes at room temperature.  Embryos were washed in AP buffer 

(100mM Tris base, 50mM MgCl2, 100mM NaCl, 0.1% Tween-20, pH 9.5) then the 

samples were developed using a 1:3 solution of BM purple in AP buffer for between 

3 and 72 h.  The reaction was stopped when suitable staining contrast was achieved 

by two washes in PBSAT and incubation and storage in formalin at room temperature. 

 

2.5.6 Lacz staining  

 Embryos co-injected with lacz, in order to determine the site of injection 

were stained for lacz following embryo fixation for 1 h in MEMFA, prior to 

dehydration in 100% methanol.  Embryos were washed three times in PBSAT and 

then treated in warmed X-Gal staining solution (20 mM K3Fe(CN)6, 20 mM 

K4Fe(CN)6, 2 mM MgCl2, 0.01% deoxycholate, 0.02% NP-40) supplemented with 

1.5 mg/ml X-Gal (from a 80 mg/ml X-Gal stock in DMSO) for between 2 min to an 

hour.  The reaction was halted by two washes in PBSAT and a brief 10 minute re-

fixation of the embryos in MEMFA before dehydration in 100% methanol. 
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2.5.7 Imaging phenotypes and in situs 

Both in situs and fixed phenotypes were imaged using a LeicaMZ FLIII microscope 

(Leica), a SPOT 14.2 Colour Mosaic camera and SPOT Advanced software 

(Diagnostic Instruments Inc.).   

 

2.5.8 RNA isolation 

 Embryos taken for rtPCR experiments were incubated until the stage indicated 

then flash frozen on dry ice in 1.5 ml Eppendorfs.  These embryos were homogenised 

on ice in 1 ml of tri-reagent and then centrifuged for 10 min (for this protocol all 

centrifugation steps were at 16,000 G and 4 oC).  The aqueous layer was then removed 

and retained and left to stand for 5 min on ice before addition of 200 µl of chloroform.  

The mixture was then vortexed thoroughly for 1 minute and then stood at room 

temperature for five min before 15 min of centrifugation.  The aqueous phase was then 

removed and retained and mixed with 500 ml isopropanol before being precipitated at 

-20 oC for 30 min.  Following this incubation the sample was then centrifuged for 15 

min and the isopropanol removed, avoiding contact with the RNA pellet.  The pellet 

was then washed briefly in 70% ethanol then the pellet dried by vacuum pump.  The 

pellet was then resuspended in 100 µl dH2O, then 120 µl of 7.5 M LiCl/50 µM EDTA 

added and mixed by pipetting.  The sample was then incubated overnight at -80oC. 

 The following day the sample was centrifuged for 20 min and the pellet washed 

in 1ml of ice cold 70% ethanol.  The pellet was then dried by vacuum pump before 

resuspension in 50 ml dH2O.  The concentration of the RNA was established by 

NanoDrop and stored at -80 oC. 

 

2.5.9 cDNA synthesis  

 cDNA synthesis was achieved through use of the First Strand Synthesis kit 

(Invitrogen).  The reaction (1 µl Oligo dT primer, 100 ng RNA, 1 µl mM dNTPs, to 

14 µl with dH2O) was mixed by pipetting then incubated for 5 min at 65 οC (all 

temperature incubations in this protocol were performed in a PCR machine).  

Following this incubation the mix was kept briefly on ice before addition of 4 µl 5x 
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1st strand buffer + 2 µl 0.1 M DTT + 1 µl dH2O.  The mix was then incubated for 2 

min at 42 oC before addition of 1 µl SuperscriptII and further incubation at 42 oC for 

1 h.  The superscript was inactivated by a 15 minute incubation at 80 oC.  The cDNA 

was then diluted 1:1 in dH2O and stored at -20 oC. 

 

2.5.10 rtPCR 

 rtPCR of X.tropicalis cDNA was achieved using thermo Scientific 2x PCR 

Master Mix following the manufacturer’s instructions.  The primer pairs used and their 

annealing temperatures and extension times were listed in Table 2-2.  The PCR mix 

for rtPCR consists of; 12.5 µl of 2x PCR Master Mix, 1 µl 10 µM forward primer, 1 

µl 10 µM reverse primer, 1 µl cDNA, up to 25 µl with dH2O.  The PCR reaction 

occurred as follows: 3 min 95 oC, then 35 cycles of 30 s at 95 oC, 30 s at the annealing 

temperature, then a 72 oC as required by the product length, concluded by a 72 oC final 

extension for 15 min. 
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3 The role of N-Srcs in neuroblastoma differentiation 

3.1 Introduction 

Neuroblastoma is a developmental cancer of the sympathetic nervous system, 

arising from the sympathoadrenal lineage of the neural crest (Davidoff, 2012).  It is 

also the most common extra-cranial solid tumour in children.  In the USA, 

neuroblastoma accounts for up to 10% of cancer cases and 15% of cancer-related 

mortalities in children (Gurney et al., 1995).  Neuroblastoma incidence is highest in 

children under five, with 30% of incidences of neuroblastoma in the USA being 

reported in children under 1 year of age (Ishola and Chung, 2007).  The age at which 

neuroblastoma is diagnosed correlates significantly with the survival rates of the 

disease.  The overall survival rate is 88% in infants (<18 months), 49% in children (18 

months to 12 years), but only 10% in adolescents over 12 years of age (Cheung et al., 

2012).  Neuroblastoma is a highly heterogeneous cancer, whilst low grade tumours in 

patients diagnosed at under 12 months often demonstrate spontaneous regression and 

differentiation, up to 30% of high risk cancers are un-treatable with current therapies 

(Brodeur, 2003).   

Onset of neuroblastoma is most commonly sporadic, with only 1-2% of cases 

linked to familial gene mutations such as in the ALK or PHOX2B genes (Mossé et al., 

2008).  Neuroblastoma is one of very few cancers that demonstrate spontaneous 

regression in cases with a positive prognosis.  This regression is characterised by a 

differentiation of neuroblastoma cells into post-mitotic, neuronal cells and is 

indicative of the developmental nature of the cancer (Evans et al., 1976).  The onset 

of neuroblastoma can be characterised as arising from neuronal stem cells that have 

missed, or are resistant to their differentiation cues, resulting in constitutive cell 

proliferation without differentiation.  Tumour progression varies from spontaneous 

regression without therapeutic intervention, to an aggressive, malignant phenotype 

that is poorly responsive to treatment (Riley et al., 2004).  The prognosis of 

neuroblastoma patients has been associated with the expression of N1- and N2-Src.  

Matsunaga and colleagues demonstrated that the expression of N1- and N2-Src was 

higher in lower stages of the disease, associated with a more positive prognosis.  In a 

screen of 40 localised tumours and 20 metastatic tumours, it was observed that N2-Src 

expression exceeding 15% of total Src expression correlated significantly with a 
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longer event free survival in patients (Matsunaga et al., 1998).  The relative expression 

of N2-Src mRNA compared to total Src mRNA proved to be a more valuable 

prognostic tool than the total N2-Src mRNA expression (Matsunaga et al., 1993a).  

This correlation was later confirmed independently (Terui et al., 2005).  The model 

neuroblastoma cell line LAN-5 is used extensively to research both N1-Src expression 

(Min et al., 1995, Black, 1992), and more broadly as a model for neuronal 

differentiation (Borriello et al., 2000) and neuronal diseases such as Alzheimer’s 

disease (Businaro et al., 2006).  Matsunaga and colleagues demonstrated that during 

RA/cAMP induced differentiation LAN-5 cells, which express N1- and N2-Src in 

control conditions, levels of N1- and N2-Src mRNA increased whilst C-Src levels 

decreased.   

Treatment for neuroblastoma varies with the risk stratification of the disease and 

ranges from observation only, to standard cancer treatment methods such as surgery, 

chemotherapy and radiotherapy.  In addition to these methods, treatment for high risk 

neuroblastoma also aims to differentiate the cancer using drugs such as RA to induce 

neuronal maturation of neuroblastoma cells remaining after other treatments, in order 

to prevent relapse (Matthay et al., 1999).  Due to the age of neuroblastoma patients, 

the treatments associated with neuroblastoma therapy have significant long term 

complications including hearing loss, hypothyroidism, ovarian failure, and 

musculoskeletal and pulmonary abnormalities (Laverdière et al., 2005).  As such, the 

identification of a ‘silver bullet’ in neuroblastoma treatment that will induce 

differentiation or apoptosis in the tumour cells without damaging normal childhood 

development is of critical importance. 

For this reason, characterising novel signalling pathways that contribute to 

neuroblastoma differentiation is of the upmost importance, as these pathways may 

provide novel drug targets for future neuroblastoma therapies.  The link between 

neuronal Src expression and a positive prognosis in neuroblastoma, in addition to its 

temporal and spatial expression patterns during development, suggests that N1- and 

N2-Src may be have an important role in neuronal differentiation.  Although N1- and 

N2-Src may not be themselves druggable, identification of the upstream regulators of 

their expression and their downstream effectors could provide novel targets for 

neuroblastoma differentiation therapies.   
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The aims of this chapter are to identify whether neuronal Src expression 

contributes to the differentiation in neuroblastoma in vitro, in addition to 

characterising the role that these splice variants may have in that process. 

 

3.2 Results 

3.2.1 Neuronal Srcs are more active than C-Src in B104 cells 

Neuronal Srcs have previously been shown to possess increased kinase activity 

compared to C-Src.  In order to determine whether overexpression of the FLAG tagged 

Src constructs I used throughout my experiments demonstrate this variance in activity 

in neuroblastoma cells, the rat neuroblastoma cell line B104 was transfected with the 

C-, N1-, or N2-Src-FLAG constructs or a vector control.  Typically, fusion of 

molecular tags such as FLAG or GFP to Src either interferes with myristoylation at 

the N-terminus or folding and auto-regulation at the C-terminus.  Sandilands and 

colleagues demonstrated successful fusion of GFP to Src by use of C-terminal a 

glycine/serine-rich flexible linker peptide, which has been utilized in our FLAG 

constructs (Sandilands et al., 2004).  Cells were incubated for two days post-

transfection and then incubated in the presence or absence of 100 µM NaVa4
3- solution 

(used in this experiment to increase overall Src activity in the cells) in PBS for 10 min 

at 37° prior to lysis in SDS sample buffer.  The lysates were then separated on a 10% 

SDS poly-acrylamide gel and probed by Western blotting.   

Western blotting detected similar levels of the FLAG epitope tag attached to 

C- and N1-Src whilst detecting lower levels of N2-Src, especially so in pervanadate 

treated samples (Fig.  3-1).  This decreased detection could be due to a lower 

transfection efficiency, decreased proliferation of N2-Src expressing cells, or a post 

translational modification of N2-Src preventing detection of the N2-Src FLAG signal 

(Fig.  3-1).   

Phosphorylation of the activation loop of the kinase domain at Y416 is a well-

established indicator of Src kinase activity (Kmiecik and Shalloway, 1987) and N1- 

and N2-Src showed significantly increased phosphorylation compared with C-Src at 

this site (Fig 1).  Interestingly, two bands were identified in the N2-Src lanes of the 
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Fig. 3-1. Western blotting of C-, N1- and N2-Src-FLAG over-expressed in B104 cells with and 
without pervanadate treatment. 
Cells were transfected for two days and transiently treated with either PBS/pervanadate or PBS alone 
at 37 degrees for 10 minutes before lysis. Lysates were run on 12.5% poly-acrylamide gel and 
transferred to PVDF membrane and Western blotted as described in 2.2.3. Actin is shown as a loading 
control. Total phosphotyrosine is identified by PY20 staining, Src construct abundance is identified 
by FLAG staining. This blot is representative of three replicates performed of this experiment.
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blot, indicating possible post-translational modification of N2-Src in B104 cells, or 

alternatively that N-Src is causing an increase in either transcription or 

phosphorylation of another Src Family Kinase of higher molecular weight (Fig.  3-1).  

Y416 SFK phosphorylation was detected in all vanadate samples (Fig.  3-1).  This is 

likely to be un-tagged endogeneous Src, however due to the conservation of Y416 in 

SFKs, the antibody could be cross-reacting with a similar SFK. 

Phosphorylation of SFKs at Y527 activates auto-inhibitory intramolecular 

binding by the SH2 domain, and is an often-used indicator of negative regulation of 

SFKs (Zheng et al., 2000).  C-Src and N1-Src were similarly phosphorylated at this 

site in B104 cells, however N2-Src exhibited much less pY527 staining, indicating 

increased activity of the enzyme under basal conditions.  This relative decrease was 

also observed in the pervanadate treated samples (Fig.  3-1) suggesting decreased N-

terminal inhibition of N2-Src activity when compared to C- and N1-Src.   

In order to identify whether increased activity of N1- and N2-Src translated to 

increased phosphorylation of substrates, the samples were probed with a monoclonal 

phosphotyrosine antibody, clone PY20.  General phosphotyrosine staining identified 

the same pY416 phosphorylation events discussed above, in addition to weaker 

phosphotyrosine signals at a variety of molecular masses in N2-Src transfected cells, 

suggesting N2-Src increases global phosphotyrosine levels under basal conditions to 

a greater extent than C- or N1-Src.  In all vanadate treated samples, global 

phosphotyrosine levels were significantly increased compared to corresponding 

untreated samples.  Global phosphotyrosine levels of vanadate treated samples 

increased in the following order; control < C-Src < N1-Src < N2-Src (Fig.  3-1). 

 

3.2.2 The effects of N1- and N2-Src overexpression on B104 cell morphology 

Matsunaga and colleagues (1993a) demonstrated that increased N-Src 

expression tends to correlate with more favourable neuroblastoma prognosis and 

increased differentiation of neuroblastoma cell lines.  To test whether N-Srcs are 

capable of driving the differentiation, we sought to identify any morphological effects 

of increased N1- and N2-Src activity that may indicate differentiation in the 

neuroblastoma cell line B104.  Cells were co-transfected with FLAG tagged Src  
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constructs (or a vector control) and soluble CFP and then maintained in culture for 4 

days prior to fixing and immunostaining.  The cells were then imaged using CFP 

fluorescence to define the cell edge, and the number and length of neurites in each cell 

were quantified.  Neurites were defined as extensions from the cell of greater than one 

diameter of the cell body in length and below 2 µm in diameter (Tojima et al., 2003).  

This experiment was performed in the presence or absence of 5 µM retinoic acid (RA).  

RA is a potent differentiating agent of neuroblastoma both in vitro and in vivo (Sidell, 

1982, Matthay et al., 1999) and was used in this instance to detect whether any changes 

in neurite length and number by N1- and N2-Src overexpression were additive to RA 

induced differentiation. 

In addition to neurite length and number analyses, inspection of the cells 

revealed a differential subcellular localisation between C-, N1-, and N2-Src.  Whilst 

C-Src tends to be expressed throughout the cell in a punctate manner, with a slight 

increase in perinuclear abundance; N1- and N2-Src demonstrate a particularly 

restricted subcellular localisation to one portion of the perinuclear region.  This 

localisation is also observed in other cell lines such as COS7 cells (Fig.  5-1), and 

HeLa cells (Fig.  4-1), and was later identified to co-localise with the trans-golgi 

network (Fig.  4-2).   

Analysis of the average length of the B104 neurites revealed an increase in the 

length of neurites in cells transfected with N2-Src (Fig 2A, B).  This increase does not 

appear to be additive to the effects of retinoic acid treatment upon B104 cells (Fig.  3-

2A, B).  Similarly N1- and N2-Src caused a small increase in the average number of 

neurites per cell compared to controls.  This difference between control and N-Src 

samples was, again, reduced in RA treated samples.  By contrast, C-Src caused a 

Figure.  3-2 (page 85).  Effect of N-Src expression on B104 cell morphology.   
Cells were co-transfected for four days with FLAG tagged Src constructs and a 
soluble CFP gene, in the presence or absence of 5µM retinoic acid.  Cells were fixed 
after 4 days, and stained with mouse α-FLAG and rabbit α-GFP antibodies primary 
antibodies then ALEXA 416 α-rabbit and ALEXA 594 α-mouse secondary 
antibodies.  The cells were then imaged and analysed.  The experiment was repeated 
three times.  Neurite lengths (A) and numbers (B) were measured and counted using 
NeuronJ.  Error bars show Standard Error of the Mean, calculated from the mean 
values of each replicate.  The change in cell morphology as a result of plasmid 
expression was found to be non-significant by ANOVA.  C) Shows a representative 
image for each condition.  CFP is shown in green and FLAG staining is shown in red.  
Scale bar 20 µm. 
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decrease in the average number of neurites per cell, both in the presence and absence 

of RA (Fig.  3-2A, B).  Stringent statistical analyses of the mean values of each of the 

three replicates of this experiment failed to identify a statistically significant effect in 

the data, however, the trends described above occurred consistently in each replicate.  

It is likely that an alternative quantification method would be needed to observe 

statistical significance in the small effects of N1- and N2-Src on B104 differentiation. 

 

3.2.3 Characterising human neuroblastoma cell lines 

To better clarify the effects of neuronal Src expression on neuroblastoma 

differentiation, I selected three human neuroblastoma cell lines and assessed their 

capacity for differentiation whilst manipulating the expression levels of neuronal Srcs. 

The three human neuroblastoma cell lines chosen for assaying the effects of 

neuronal Srcs on neuroblastoma differentiation were LAN-5, SK-N-AS and KELLY.  

LAN-5 cells readily differentiate and express differentiation markers under RA 

stimulation (Fig.  3-3, Table 3-1 (Guglielmi et al., 2014)) and are induced towards 

neuronal differentiation by cAMP treatment (Fig.  3-3).  They also are known to 

express both N1- and N2-Src (Matsunaga et al., 1993a), which makes them an ideal 

candidate to assess the effects of neuronal Src knockdown upon their capacity for 

differentiation.  In contrast, the SK-N-AS cell line shows very little neuronal 

differentiation under control conditions, and is resistant to both RA and cAMP induced 

differentiation (Fig.  3-3).  Furthermore, while LAN-5 cells express multiple copies of 

the potent oncogene Myc-N, SK-N-AS cells express only a single copy (Guglielmi et 

al., 2014).  Although it is not known whether N1- and N2-Src are expressed in SK-N-

AS cells, their lack of a neuronal phenotype, and resistance to differentiation, suggests 

that they are unlikely to express these splice variants due to their association with 

differentiated neurons.  Finally, KELLY cells represent a mid-point in terms of their 

capacity for differentiation.  Although KELLY cells are RA resistant, they show a 

higher basal level of neuronal differentiation than SK-N-AS cells and can be induced 

to further differentiate by stimulation of cAMP signalling (Fig.  3-3).  Detailed 

information about the tumour from which KELLY cells are derived is not available, 
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Fig. 3-3. Characterisation of human neuroblastoma cell lines 
Representative images showing of the effects of differentiating agents on human neuroblastoma cell 
lines. Cells were transfected with soluble CFP for four days and treated with 5M Retinoic Acid or 
1mM dibutyryl cyclic AMP. Cells were mounted using mowial mountant containing 1g/ml DAPI. 
GFP is shown in green, DAPI in blue. Scale bar is 20 m.

Table 3-1. Summary of LAN-5, SK-N-AS and KELLY cell line information.
Information on each of the three human neuroblastoma cell lines used in chapter 3. Information for 
these cell lines was acquired from the literature (Matsunaga et al, 1993, Thiele, 1998, Guglielmi, 
2014) and from the ATCC website (www.lgcstandards-atcc.org/)

LAN‐5 SK‐N‐AS KELLY

N‐Src expression N1‐ and N2‐Src detected Unknown Unknown

Pa�ent 5 month old male 8 year old female st.4 Unknown

Cell line origin Bone marrow metastasis Bone marrow metastasis Unknown

Myc amplifica�on Amplified Single copy Amplified

Re�noic acid Neuronal differen�a�on Resistant Resistant

cAMP Neuronal differen�a�on Resistant Par�al resistance

con db-cAMPRA

KELLY

LAN-5

SK-N-AS
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but they have been demonstrated to have Myc-N amplification (Chanthery et al., 

2012).   

By introducing neuronal Srcs into SK-N-AS and KELLY cell lines and 

depleting N-Src expression in LAN-5s, I aimed to understand the effects of N-Src 

expression on neuroblastoma differentiation. 

 

3.2.4 Confirming N-Src shRNA function 

To identify the specific effects of N1- and N2-Src knockdown during neuronal 

differentiation, shRNAs were designed that specifically targeted the N-Src microexons 

(Table 2-2).  Unfortunately shRNA designed to target only C-Src, avoiding N1- and 

N2-Src knockdown by spanning the exon 3/4 boundary were not effective (data not 

shown), hence only neuronal Src knockdown was assayed.  pSUPER plasmids 

(Brummelkamp et al., 2002) were prepared that expressed the N1- or N2-Src shRNA 

sequences and soluble GFP from HI and CMV promoters respectively, and used 

alongside the empty pSUPER-GFP as a control.   

To test the function and specificity of the shRNA plasmids, combinations of 

the shRNA plasmids were co-transfected into the monkey fibroblast cell line COS7 

with C-, N1- and N2-Src-FLAG constructs.  These cells were chosen due to due to their 

high transfection efficiency and the absence of endogenous N-Src expression.  The cells were 

then cultured for 2 days before lysis in SDS sample buffer.  Detection of the FLAG 

epitope by Western blotting indicated that depletion only occurred when the Src 

construct was co-expressed with its corresponding shRNA.  This demonstrated that 

the shRNAs were both functional and splice-variant specific (Fig.  3-4).   

Whilst the FLAG tagged Src-FLAG constructs originate from rat cDNA, the 

sequence conservation between rat and human Src isoforms was such that there are no 

base pair substitutions within the regions targeted by the shRNAs (data not shown).  

Specificity of the shRNAs was achieved by targeting the sequences within the specific 

N-Src exon sequence.  This suggests that the N1- and N2-Src pSUPER shRNAs would 

be effective at knocking down expression of endogenous human mRNAs. 
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3.2.5 Knockdown of neuronal Srcs in LAN-5 cells 

N1- and N2-Src pSUPER shRNA plasmids or the pSUPER-GFP vector control 

were transfected into LAN-5 cells in either control, RA or cAMP containing media.  

After four days the cells were fixed and immunostained to enhance the GFP signal.  

Fluorescent cells were then imaged and the neurite lengths and numbers quantified 

using NeuronJ (Meijering et al., 2004).  No significant decrease in differentiation was 

observed when N1- and N2-Src was knocked down (Fig.  3-5).  Surprisingly, cells 

transfected with the N1-Src shRNA demonstrated an increase in the number of 

neurites being produced, in both control and drug samples (Fig.  3-5).  Additionally, 

the mean lengths of neurites increased marginally in the N1-Src knockdown condition 

(Fig.  3-5).  The pSUPER N2-Src shRNA plasmid had no significant effects upon the 

length or number of neurites (Fig.  3-5).   

The failure of these cells to exhibit the expected morphological effect as a 

result of N1- and N2-Src knockdown suggests that neuronal Srcs may have more 

complex roles in neuronal differentiation than was originally hypothesised.   

 

Figure.  3-4.  Characterising pSUPER shRNA construct function.   
COS7 cells were co-transfected with pFLAG Src constructs and pSUPER shRNA 
constructs for 2 days, then lysed in Laemmli SDS sample buffer and run on 12.5% SDS 
PAGE then transferred to PVDF for Western blotting as described in 2.2.3.  Actin is 
shown as a loading control and expression of Src constructs is indicated by FLAG 
staining.   

Figure.  3-5 (page 91).  Effect of N-Src knockdown on LAN-5 differentiation.   
LAN-5 cells transfected for 4 days with shRNA plasmids in the presence or absence of 5 
µM RA.  After four days cells were fixed and stained with rabbit α-GFP primary and 
ALEXA 488 α-rabbit secondary antibodies.  Neurite number (A) and length (B) were 
quantified using NeuronJ.  This experiment was performed twice, as such statistical 
analyses were not performed.  Error bars show Standard Error of the Mean.  C) 
Representative images from each condition.  Scale bar shows 20 µm. 
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Fig. 3-6. Effect of N-Src over-expression on SK-N-AS differentiation. 
Over-expression of FLAG tagged C-, N1- and N2-Src in SK-N-AS cells. Cells were co-transfected 
for 4 days with C-, N1- or N2-Src pFLAG constructs and the soluble CFP plasmid pmCer. The cells 
co-stained with mouse -FLAG and rabbit -GFP primary, and ALEXA 594 -mouse and ALEXA 
488 -rabbit secondary antibodies. Cells were then imaged and (A) the number of neurites per cell 
counted for each condition and the SEM calculated from the means of four replicates of the 
experiment. Statistical significance was assessed by ANOVA of the mean data of each replicate ** = 
p>0.005. B) Representative images showing CFP staining in control, RA and cAMP conditions, and 
FLAG staining in C- N1- and N2-Src conditions.  Scale bar is 40 m.
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3.2.6 Over-expression of N-Srcs in the SK-N-AS cells 

To test whether enhancing N-Src expression could contribute to neuronal 

differentiation in high risk neuroblastoma cells, SK-N-AS cells were either co-

transfected with C-, N1-, N2-Src or a vector control, and soluble CFP and incubated 

in the presence or absence of 5 µm RA or 1 mM cAMP.  Cells were incubated for 4 

days to allow neuritogenesis to occur and then fixed and immunostained.  Thirty fields 

of view were imaged at 40x magnification across four replicates and were quantified 

for neurite outgrowth (Fig.  3-6).  Neurites were defined as extensions from the cell 

soma exceeding the diameter of the cell body and less than 5 µm in thickness.   

In the control, C-Src, and cAMP conditions, the ratio of neurites to cells was 

below 0.05 (Fig.  3-6) and fewer than 5% of cells extended neurites (data not shown).  

Cells overexpressing N1-Src showed a small increase in this ratio to 0.1 neurites per 

cell and 0.18 neurites were observed per cell in N2-Src.  Whilst 0.18 neurites per cell 

seems relatively small, the resistance of SK-N-AS to neuritogenesis in all other 

conditions means that the N2-Src induced neuritogenesis is statistically significant 

(Fig.  3-6).  In addition to the neuronal phenotype and neurite quantitation, it was 

observed that cells expressing N1- or N2-Src were very rarely observed in clusters or 

groups.  This correlation was observed in all three replicates, and contrasted sharply 

with the clusters of three or four cells observed in C-Src overexpressing cells (data not 

shown).  This suggests that, in addition to inducing cytoskeletal remodelling, N-Src 

overexpression in neuroblastoma cells may decrease proliferation, or cause more cell 

death than C-Src and the differentiating agents RA and cAMP.  This fits with a model 

of N1- and N2-Src as promoters of both differentiation and cell cycle exit in 

neuroblastoma and neuronal precursors. 

 

3.2.7 Expression of N2-Src induces neuritogenesis in KELLY cells 

As previously stated, KELLY cells represent an intermediate between LAN-5 

and SK-N-AS cells in both their basal differentiation and their capacity for RA/cAMP-

induced neuronal differentiation.  To identify whether enhanced neuronal Src 

expression can also drive differentiation in this system, I transfected and analysed the 

KELLY cell line under the same conditions previously stated for SK-N-AS cells.
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Fig. 3-7. Effect of N-Src over-expression on KELLY differentiation. 
Over-expression of FLAG tagged C-, N1- and N2-Src in KELLY cells. Cells were co-transfected for 
4 days with C-, N1- or N2-Src pFLAG constructs and the soluble CFP plasmid pmCer. The cells co-
stained with mouse -FLAG and rabbit-GFP primary, and ALEXA 594 -mouse and ALEXA 488 
-rabbit secondary antibodies. Cells were then imaged and (A) the number of neurites per cell counted 
for each condition and the SEM calculated from the means of three replicates of the experiment. 
Statistical significance was assessed by ANOVA of the mean data of each replicate * = p>0.05. B) 
Representative images showing CFP staining in control, RA and cAMP conditions, and FLAG 
staining in C- N1- and N2-Src conditions. Scale bar is 40 m.
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These data confirmed the observation that treatment of KELLY cells with RA does 

not increase neurite outgrowth above that observed in controls (con 0.19 neurites/cell 

±0.007, RA 0.21 neurites/cell), however neuronal differentiation was increased 

significantly with the addition of 1 mM cAMP (0.5 neurites/cell) (Fig.  3-7).  Although 

a negligible increase in neurite number was observed in C-Src treated cells (0.26 

neurites/cell), the most significant effect on the cells was caused by N1 and N2-Src 

(Fig.  3-7).  N1-Src transfection significantly increased the formation of neurites to 0.4 

neurites/cell (Fig.  3-7).  Following the pattern observed in other experiments, N2-Src 

overexpression caused a statistically significant increase in neurite outgrowth, with 

0.5 neurites present per cell (Fig.  3-7).   

Whilst a significant effect upon the number of neurites per cell was observed 

in KELLY cells expressing N2-Src, only 29% of N1-Src expressing cells bore 

neurites, which is not significantly greater than 18% for the controls.  A significantly 

higher proportion of N2-Src cells (41%) and cAMP cells (38%) expressed neurites 

than controls.  This is because a higher proportion of cells in N1- and N2-Src 

expressing cells bear more than one neurite.  The increased neuronal phenotype 

suggests that in cells that are induced towards neuronal differentiation by N1- and N2-

Src, a more significant neuronal differentiation is occurring.  This is evident by the 

morphology observed in the individual cells (Fig.  3-7).   

 

3.2.8 The effects of N-Src expression on neuroblastoma cell proliferation 

In order to address the apparent decrease in the abundance of N2-Src 

transfected SK-N-AS cells when compared to C- and N1-Src, I sought to determine 

whether the N2-Src transfected cells were dividing.  SK-N-AS and KELLY cells were 

transfected with the FLAG-tagged Src isoforms, or a vector control, and incubated for 

three days in the presence or absence of 5 µM RA or 1 mM cAMP before fixing and 

immunostaining.  Alongside antibody staining of the FLAG epitope tag, the cells were 

probed with the proliferation marker Ki67, a widely used marker for cell proliferation 

expressed throughout all proliferative stages of the cell cycle (Gerdes et al., 1983).   

Thirty fields of view were imaged for each FLAG construct resulting in over 

100 cells showing FLAG staining assessed for Ki67 antibody staining within the 
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Fig. 3-8. The effect of N-Src overexpression on KELLY and SK-N-AS proliferation. 
KELLY (A) and SK-N-AS (B) cells were transfected with control, C- N1- and N2-Src pFLAG 
plasmids or treated with RA or cAMP for three days. Cells were co-stained with mouse -FLAG and 
rabbit - Ki67 primary and ALEXA 594 -mouse and ALEXA 488 -rabbit secondary antibodies 
and mounted in mowial containing 1g/ml DAPI. Each experiment was only performed once, as such 
statistical significance was not tested. Cells were imaged at 20x magnification over ten fields of view 
and the percentage of cells expressing nuclear Ki67 calculated. A) KELLY con n=510, C-Src n=161, 
N1-Src n=85, N2-Src n=90, RA n=509, cAMP n=655. B) SK-N-AS con n=575, C-Src n=168, N1-Src 
n=103, N2-Src n=140, RA n=625, cAMP n=551.
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nucleus.  In the vector control, RA and cAMP conditions, the top left quadrant of 10 

fields of view were analysed, resulting in over 400 cells per condition. 

These data showed that in SK-N-AS cells there was no noteworthy difference 

in nuclear Ki67 detection and, as such, cell proliferation between control, C-Src and 

N1-Src cells (63%, 63%, and 59% of cells respectively).  As hypothesised by the 

decrease in abundance of N2-Src expressing cells in previous experiments, 20% fewer 

N2-Src expressing cells were proliferative when compared to control and C-Src 

expressing cells.  This exceeds the decreased cell proliferation caused by both RA 

(54%) and cAMP (49%).  These data suggest that N2-Src, in addition to inducing 

neuritogenesis, also removes a portion of cells from the cell cycle, suggesting that N2-

Src induced neuroblastoma differentiation is terminal. 

Interestingly, whilst SK-N-AS cells showed a profound decrease in cell 

proliferation in N2-Src treated cells, KELLY cells showed no difference in Ki67 

staining between splice variants (C-Src 76%, N1- and N2-Src 74%).  These data 

suggest that, whilst KELLY cells show a higher level of neuritogenesis when 

transfected with N2-Src, this is not indicative of terminal differentiation of these cells, 

as indicated by exit from the proliferative cell cycle in SK-N-AS cells. 

 

3.3 Discussion 

Taken together, the experiments in this chapter have demonstrated that the 

neuronal isoforms of C-Srcs are constitutively more active than C-Src when expressed 

in a neuroblastoma cell line, and that overexpression of these N-Srcs in differentiation 

resistant cell lines increases neuronal differentiation.  The data also suggest that a more 

complex relationship between N-Src expression and neuronal phenotype exists, as 

whilst N2-Src can induce differentiation in KELLY and SK-N-AS cells, knockdown 

of expression in the human neuroblastoma cell line LAN-5 failed to elicit a reduction 

in differentiation.  Finally, analysis of Ki67 expression in SK-N-AS cells indicates that 

N2-Src overexpression in this neuroblastoma cell line is decreasing proliferation. 
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3.3.1 Increased activity of neuronal Srcs expressed in neuroblastoma 

Western blotting of Src transfected B104 lysates indicated that both N1- and 

N2-Src have a significantly higher basal activity than C-Src in neuroblastoma cells 

(Fig.  3-1).  In addition to the increased detection of tyrosine phosphoproteins in these 

samples, N1- and N2-Src are both observed to have higher phosphorylation of the 

Y416 kinase domain activation loop.  In all cases N2-Src is shown to be the most 

active, with the greatest global tyrosine phosphorylation and the highest pY416 signal, 

in addition to a much lower detection of the inhibitory 527 staining (Fig.  3-1).  This 

observed increased activity is highly reproducible, and is also evident when the Src 

splice variants are overexpressed in HeLa cells and developing Xenopus embryos (Fig.  

4-12; Fig.  5-3).   

The mechanism of constitutive neuronal Src activation could be attributed to a 

decrease of the inhibiting intramolecular interaction between the SH3 domain and the 

SH2-kinase linker sequence.  This interaction is highly important for locking the 

kinase domain in an open, unstructured and inactive conformation, in which the 

activation loop forms an alpha helix, preventing the activating phosphorylation of 

Y416 (Huse and Kuriyan, 2002).  Mutation of the n-src loop of the C-Src SH3 domain, 

into which the neuronal exons insert, is known to decrease the SH3-SH2/kinase linker 

binding, increasing the activation state of the protein (Brábek et al., 2002).  N1-Src 

exon inclusion into the n-src loop has been shown to change the affinity of N1-Src 

binding to C-Src substrates (Weng et al., 1993), as such disruption of the SH3/SH2-

kinase linker interaction could be expected.  The increased Y416 phosphorylation of 

N2-Src by comparison to N1-Src is likely due to inclusion of the larger N2-Src micro-

exon in the SH3 domain further disrupting intramolecular auto-inhibition, contributing 

to constitutive activity.   

Whilst phosphorylation of Src at Y416 activates the catalytic activity, Src is 

only between 0.2% and 20% active if both Y416 and Y527 are phosphorylated 

(Boerner et al., 1996).  SH2 domain binding of phosphorylated Y527 is a key 

regulatory mechanism in Src, as it forces the molecule into a partially closed 

conformation (Xu et al., 1997).  Under basal conditions, as part of the negative 

regulation of C-Src by CSK, 90-95% of C-Src is phosphorylated at Y527 (Zheng et 

al., 2000).  In addition to the increased phosphorylation of Y416, blotting of B104 
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lysates (Fig.  3-1), as well as past data in the fibroblast cell line COS7 (Keenan et al., 

manuscript in preparation), indicates that Y527 dephosphorylation occurs 

concomitantly with increased Y416 phosphorylation in neuronal Src isoforms.  The 

combination of Y416 phosphorylation and Y527 dephosphorylation suggests that 

neuronal Src isoforms are highly active in both neuronal and non-neuronal cell lines.   

The mechanism of Y527 dephosphorylation is difficult to infer.  Typically 

Y527 is dephosphorylated when the SH2 domain of Src binds to a higher affinity site 

on a substrate protein, leaving the Y527 exposed to phosphatase activity (Parsons and 

Parsons, 1997).  There is evidence that C-Src SH3 domain mutations can prevent Y527 

phosphorylation by Csk (Superti-Furga et al., 1993), suggesting that N2-Src exon 

inclusion could prevent binding and phosphorylation by Csk.  Alternatively, the 

partially open conformation of N2-Src caused by a lack of SH3 binding to the SH2-

kinase linker may be inducing partial dissociation of Y527 from the SH2 domain.  This 

could make pY527 accessible to one of the cytoplasmic (PTP1B, Shp1, Shp2) and 

transmembrane (CD45, PTPα, PTPε, and PTPλ) proteins which dephosphorylate 

Y527 (Roskoski, 2005).   

 

3.3.2 Decreased abundance of N-Srcs in Western blot samples 

Compared with C-Src expression, detection of the N2-Src-FLAG epitope was 

consistently lower in both control and pervanadate conditions (Fig.  3-1).  It is unlikely 

that it is due to decreased transfection efficiency, as all three splice variants were 

cloned into the same plasmid construct, vary little in length, and equal quantities of 

each plasmid were used in the transfection reactions.  Additionally, this phenomenon 

is highly reproducible as this experiment was performed in triplicate with the same 

result.  This effect does not seem limited to B104 neuroblastoma cells, as N2-Src-

FLAG detection is also lower in hetrologous systems such as COS7 cells (data not 

shown), HeLa cells (Fig.  4-1) and when mammalian N2-Src was expressed in 

Xenopus laevis (Fig.  5-3).   

The decreased detection of N2-Src-FLAG could be due to three possibilities.  

First there is the possibility that expression of N2-Src decreases proliferation of 

transfected cells.  When mammalian cell lines are transfected with a plasmid, it is 
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segregated between the daughter cells during mitosis.  If N2-Src was decreasing 

proliferation of the B104 cells, then cells transfected with C-Src would undergo 

several more divisions than N2-Src, amplifying the C-Src-FLAG epitope signal 

relative to N2-Src.  These data are backed up by the observation that in both SK-N-

AS and KELLY cells, fewer N2-Src expressing cells appear in clusters (indicative of 

post-transfection mitosis) than other plasmids.  Additionally, the number of cells 

observed over 90 fields of view was much lower for N2-Src than C-Src (SK-N-AS; 

N2-Src N=192, C-Src n=324, KELLY; N2-Src n=365, con n=485), suggesting again 

that little mitosis is occurring after transfection.  This observation was confirmed in 

SK-N-AS cells in which 20% fewer cells express nuclear Ki67, a well-established 

marker of cell proliferation (Fig 8).   

Secondly, the decreased FLAG signal could be due to a C-terminal 

modification in N2-Src that decreases the detection of N2-Src in comparison to C- and 

N1-Src.  Decreased phosphorylation of C-terminal Y527 could be due to this same 

post translational modification, or possibly cleavage of the C-terminus of N2-Src.  

Removal of Y527 would considerably decrease the ability for the cell to negatively 

regulate N2-Src and consequently we would likely see the observed increase in Y416 

phosphorylation (Fig.  3-1).  We would also, however, see a decrease in the size of 

N2-Src by over 20 amino acids residues, which isn’t reflected in the location of the 

pY416 signal of N2-Src.   

Finally, this decrease in abundance could be the result of differential regulation 

of the splice variants resulting in increased degradation of N1- and N2-Src.  CDK5 is 

known to phosphorylate active Src at Serine 75, targeting it for ubiquitination and 

cullin-5-dependent degradation (Pan et al., 2011, Kato and Maeda, 1999).  It can be 

speculated that the increased activity of N2-Src is targeting it for CDK5 

phosphorylation and ubiquitin-mediated degradation by the cullin-linked protein 

NEDD8 (Pan et al., 2004), resulting in the decreased identification of N2-Sc by 

Western Blotting.  This hypothesis is supported by the discovery that Src expressed 

endogenously in neuroblastoma and glioblastoma cells indicated that in the highly 

active form of Src expressed in neuroblastoma cell lines was serine phosphorylated at 

its N-terminus (Brugge et al., 1985).  This could be tested using an antibody raised 

towards neuronal isoforms of Src.  Unfortunately, due to the date of this study, neither 
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the specific splice variant of Src nor the site of serine phosphorylation were 

specifically identified.   

The hypothesis that the neuronal Srcs are being degraded in a ubiquitin 

mediated fashion does not match observations made by immunocytochemistry.  When 

overexpressed in neuroblastoma cells or fibroblast cell lines, there is no noticeable 

difference in C-, N1- or N2-Src abundance within the cells (Fig.  3-2, 6, 7 & 9; Fig.  

4-1).  There is however a consistent decrease in the observation of transfected cells in 

clusters indicative of post-transfection mitosis, suggesting that N1- and N2-Src 

transfected cells are dividing at a slower rate. 

With these observations in mind, it seems most likely that the decreased N2-

Src FLAG signal is due to a reduction in proliferation of N2-Src expressing cells.  This 

would adequately explain why, despite acute treatment with vanadate, a phosphatase 

inhibitor that activates Csk and inhibits phosphatase activity, N2-Src has less 

detectible Y527 phosphorylation when treated with pervanadate.  Additionally, 

decreased proliferation also supports the hypothesis that N2-Src stimulates neuronal 

differentiation of neuroblastoma. 

 

3.3.3 Detection of an additional Y416 band in N2-Src transfected B104 cells 

In addition to observations of consistent N2-Src Y416 phosphorylation above 

that of C-Src, probing for Y416 phosphorylation in B104 cells identified an additional 

band of interest at approximately 70 kDa exclusively in N2-Src transfected cells (Fig.  

3-1).  This band was observed in all three replicates of the experiment.  This suggests 

that N2-Src is either differentially modified in these cells, causing decreased mobility 

of the protein by SDS PAGE, or is alternatively activating pY416 phosphorylation in 

another SFK which has cross-reactivity with the Y416 antibody.  Differential 

modification of N2-Src in neuroblastoma cells could feasibly cause the observed gel 

shift, a similar shift is seen when Lck is double serine phosphorylated at its N-terminus 

(Winkler et al., 1993), and palmitoylation of N-Srcs would cause a decrease in 

electrophoretic mobility (Mukherjee et al., 2003).  This hypothesis is discounted by 

the presence of only a single FLAG signal on the same gel as the pY416 doublet, 
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which suggests that N2-Src is phosphorylating the kinase domain of an endogenous 

protein (Fig.  3-1).   

Due to the specificity of the antibody, it is most likely that cross-reactivity is occurring 

with the kinase domain of a different Src family kinase.  Although all SFKs are around 

60 kDa in size, only Fyn and Yes are expressed in neuronal tissues.  As the 

phosphorylation event appears in neuroblastoma but not HeLa cells (as demonstrated 

in Fig.  4-12) or COS7 fibroblast cells (Keenan et al.  unpublished), it is likely that the 

phosphorylation is of a protein restricted in its expression to neurons.  The neuronal 

isoform of Fyn, (FynB) is approximately 62 kDa in size and expressed exclusively in 

neurons, making it an ideal candidate for a neuron-specific trans-phosphorylated SFK 

(Brignatz et al., 2009).   

 

3.3.4 Knockdown of N-Src expression in LAN-5 cells does not decrease 
neuritogenesis 

Due to the correlation observed by Matsunaga and colleagues between the 

expression of neuronal Srcs and the capacity for differentiation in neuroblastoma cells 

(Matsunaga et al., 1993a), it was hypothesised that the expression levels of neuronal 

Srcs in neuroblastoma cells could impact upon the differentiation of neuroblastoma.  

As neuroblastoma cells are of a neuronal origin, differentiation of neuroblastoma 

causes the development of neuronal morphological characteristics such as a small, 

round cell soma and an increased length and number of neurites.  For the purposes of 

these experiments the length and number of neurites were the best parameters to 

quantify due to the difficulties in measuring cell body size in irregularly shaped cells. 

To test whether neuronal Srcs were positively contributing to neuronal 

differentiation in neuroblastoma, it was necessary to observe whether decreased N-Src 

expression abrogates the capacity for neuroblastoma cells to differentiate.  For this 

purpose I used LAN-5 cells, shown by Matsunaga and colleagues to express N1- and 

N2-Src endogenously and widely used experimentally for their neuronal morphology 

(Matsunaga et al., 1993a, Guglielmi et al., 2014, Coluccia et al., 2006).  It was 

hypothesised that knockdown of neuronal Srcs in these cells, under control conditions 

and under drug-induced differentiation, would inhibit neuronal differentiation.  During 
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my experiments, however, the LAN-5 cells did not demonstrate the expected 

differentiation in response to RA treatment.  This has serious implications on the 

efficacy on the results, as the RA responsiveness of LAN-5 cells is widely reported, 

and typical of the cell line.  The lack of any noteworthy increase in differentiation in 

response to RA, therefore implies that the results of N1- and N2-Src knockdown may 

not be reflective of the roles of N1- and N2-Src during neuritogenesis in this system.  

The cause of this RA unresponsiveness may be due to the high confluency of the cells 

inducing a high basal level of neuritogenesis, eclipsing the effects of RA treatment, or 

indeed the effects of N1- and N2-Src knockdown.   

Additionally, we cannot directly confirm N1- or N2-Src knockdown in LAN-

5 cells due to a transfection efficiency level below that which is detectible either by 

Western blotting or rtPCR.  The control experiment demonstrating effective 

knockdown was performed in COS7 cells using exogenous N1- and N2-Src FLAG 

plasmids.  In order to adequately test the function of these shRNAs, it would be 

necessary to utilise a viral method of shRNA plasmid delivery into LAN-5 cells.   

 

3.3.5 Reduced effect of N-Src expression on constitutively differentiated cell 
lines 

An additional insight into why knockdown of N-Srcs is not significantly 

inhibiting neuronal differentiation is that LAN-5 cells show a constitutively 

differentiated phenotype.  In both the B104 and LAN-5 neuroblastoma cell lines 

manipulation of N-Src expression levels by over-expression and shRNA respectively 

do not yield statistically significant changes in the neurite length and number.  B104 

and LAN-5 cells are sensitive to both RA and cAMP induced differentiation, as well 

as possessing a highly neuronal phenotype in control conditions (Fig.  3-2B & 3B).  

These cell lines both possess a constitutively differentiated phenotype, with an average 

cell possessing ~1.2 and ~1.8 neurites in B104 and LAN-5 cells respectively (Fig.  3-

2B & 5A).  It could be that this constitutive differentiation is masking the effects of 

neuronal Src overexpression or knockdown on neuronal morphology.  If neuronal Srcs 

are primarily acting during the initiation of neuronal differentiation, rather than driving 

and maintaining further neuritogenesis in differentiated cells, then we would not 
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expect to see manipulation of N-Src expression have a significant effect upon the 

quantity, or length of neurites in either B104 or LAN-5 cells.   

 

3.3.6 Overexpression of neuronal Srcs in RA resistant neuroblastoma cell lines 
induces neuritogenesis 

In all three neuroblastoma cell lines tested (B104, KELLY and SK-N-AS), 

overexpression of either N1- or N2-Src elicits a degree of increased neuritogenesis, 

when compared to controls and C-Src overexpression.  The degree of this increase 

varies between cell lines.  In B104 cells, over three replicates, the average number of 

neurites per cell increases marginally from 1.2 in control samples to 1.5 and 1.7 in N1- 

and N2-Src respectively.  In SK-N-AS, analysis across four replicates indicates a 

statistically significant, 6 fold increase in the number of neurites per cell, from 0.03 in 

controls to 0.18 in N2-Src.  Similarly, in KELLY cell lines neuritogenesis rose 

significantly, from 0.19 in controls to 0.4 and 0.5 neurites per cell in N1- and N2-Src 

overexpressing samples. 

There are several functional implications of the significant responsiveness of 

KELLY and SK-N-AS cells to N-Src induced neuritogenesis.  The small but not 

significant increase in neuritogenesis observed in B104 neuroblastoma cell lines in 

response to N-Src overexpression suggests there may be no specific molecular target 

which is differentially expressed in these cell lines, only that the capacity for 

differentiation was more optimal in the other cells.  Whilst B104 cells show a 

constitutively differentiated phenotype the level of basal neuritogenesis observed in 

SK-N-AS and KELLY cells may be indicative of cell lines in which increases in 

differentiation are more readily detectible. 

With regards to the specific molecular causes of the particularly high 

sensitivity of KELLY cells to N-Src induced neuritogenesis, it is notable that both SK-

N-AS cells and B104 cells possess only a single copy of the proto-oncogene N-Myc, 

whereas KELLY cells are N-Myc amplified.  Although N-Myc expression is 

commonly associated in patients with a decreased prognosis and a more aggressive 

metastatic tumour, there is evidence to support the claim that N-Myc amplification 

may well be necessary for differentiation of some cell lines in vitro.  Guglielmi and 
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colleagues demonstrated how the capacity for retinoic acid induced differentiation in 

the N-Myc amplified LAN-5 cell line was diminished by N-Myc depletion, whilst SK-

N-AS cells were induced towards differentiation only when N-Myc was overexpressed 

(Guglielmi et al., 2014).  Interestingly, Matsunaga and colleagues (Matsunaga et al., 

1994b) noted high N2-Src and Myc expression in neuroblastoma tumours in the 

youngest patients, with the best prognoses.  These cases are almost exclusively 

detected by the Japanese neuroblastoma screening program and as such, tumours 

commonly self-resolve before symptoms are displayed.  It is tempting to suggest from 

this correlation that perhaps Myc-N expression is pushing these neuroblastoma cells 

to a more neuronal progenitor-like phenotype, providing substrates similar to those 

targeted by neuronal Srcs during development. 

 

3.3.7 Overexpression of N2-Src causes a decrease in proliferation of SK-N-AS 
neuroblastoma cells 

Consistently, transfection of with Src isoforms has indicated that 

neuroblastoma cells may have been proliferating slower when transfected with N2-Src 

by comparison with C- and N1-Src.  By Western blotting of transfected B104 cells, a 

lower N2-Src FLAG signal was observed compared to C- and N1-Src.  When staining 

transfected B104, KELLY and SK-N-AS cells by immunocytochemistry, whilst the 

abundance of FLAG signal appeared to be the same between splice variants, the 

number of N2-Src cells transfected, and particularly clusters of cells indicating post-

transfection proliferation were much lower than with C- and N1-Src.   

To test this, SK-N-AS and KELLY cells were transfected with Src splice 

variants, or treated with cAMP or RA.  Ki67 staining showed that 20% fewer SK-N-

AS cells were proliferative when transfected with N2-Src compared with control, C-, 

and N1-Src conditions, however, in KELLY cells there wasn’t a noteworthy effect on 

proliferation between the splice variants.  The remarkable contrast between the effect 

of N2-Src on KELLY cells, where cells differentiate more without entering quiescence 

and SK-N-AS cells, where cells demonstrate less cytoskeletal rearrangement yet do 

enter quiescence, demonstrates the profound heterogeneity of neuroblastoma cell 

lines.   
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3.3.8 Parallels between N2-Src and Vanadate mediated neuroblastoma 
differentiation 

N2-Src expression in cells consistently shows an increase in global tyrosine 

phosphorylation within the cell, both in neuroblastoma cells and in HeLa cells (Fig.  

3-1; Fig.  4-6).  This increase has been demonstrated both in basal conditions, and 

when cells are treated with pervanadate phosphatase inhibitors (Fig.  3-1; Fig.  4-6).  

The inhibition of protein tyrosine phosphatases by vanadium-based inhibitors has 

shown to have important roles in restricting proliferation of neuronal cells (Faure et 

al., 1995).  In neuroblastoma cells PTP inhibition has been shown to augment the 

effects of retinoic acid on neuroblastoma differentiation (Clark et al., 2013).  This 

effect was partly dependent upon the activation of Erk and Akt, both downstream 

effectors of Src/FAK signalling at focal adhesions (Webb et al., 2004, Wang and 

Basson, 2011).   

PTP inhibition has long been known to increase activation of C-Src (Brown 

and Gordon, 1984) as well as FAK (Defilippi et al., 1995).  The increases in FAK 

phosphorylation and activity as a result of pervanadate treatment is linked to Src 

activity, as mutation of Y396 or Y576/577 phosphorylation sites that are docked by 

the Src SH2 domain as part of Src activation and targeting to FAK, reduce FAK 

phosphorylation (Maa and Leu, 1998).  As such, both vanadate-mediated and N2-Src 

mediated differentiation of neuroblastoma could be acting upon the same signalling 

pathways.  As vanadate treatment up-regulates Src and FAK signalling in cells, and 

Src/FAK signalling contributes to the same MAPK pathways identified in vanadate 

treated neuroblastoma cells, constitutively active N2-Src could be activating FAK 

phosphorylation, leading to this same downstream signalling in the Erk/Akt/Ras 

MAPK signalling pathways. 

In addition to the possibility of FAK mediated N-Src induced neuroblastoma 

differentiation, the vanadate model of neuroblastoma differentiation provides 

additional insights into N-Src function.  As observed in N2-Src overexpression in 

B104 cells, N2-Src over-expression massively increases global tyrosine 

phosphorylation in neuroblastoma cells (Fig.  3-1).  This increase in global 

phosphotyrosine is likely due to the constitutive activity of N2-Src, in comparison to 

C-Src.  Although it is difficult to identify the specific phosphoproteins that mediate 
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the N2-Src induced differentiation, it is clear that an increase in Src activity in both 

N2-Src mediated and vanadate mediated differentiation are likely to function through 

at least some of the same signalling cascades.  To test these hypotheses, FAK mutants 

could be co-transfected into the model N2-Src neuritogenesis assay in COS7 cells 

(Fig.  5-1) to see whether FAK mutation inhibits N2-Src mediated neuritogenesis. 

 

3.4 Concluding remarks 

Neuroblastoma are widely considered to be neuronal progenitor cells which 

have missed, or are resistant to their differentiation cues.  The prognosis of the cancer 

is therefore tightly linked to the capacity for the cells to ‘remember’ their cell fate and 

differentiate into non-proliferative neurons.  Neuronal Srcs are known to be expressed 

during periods of high neuronal differentiation during development (Wiestler and 

Walter, 1988), during neuroblastoma differentiation of LAN-5 cells (Matsunaga et al., 

1993a).  Data in heterologous cell lines (Fig.  5-1) indicates that overexpression of N-

Srcs can induce a neuronal morphology, even in cells without a background of 

neuronal expression.  Additionally the increased expression of neuronal Srcs has been 

shown to relate to a positive prognosis in neuroblastoma cases (Matsunaga et al., 1998, 

Terui et al., 2005).   

One of the main drawbacks whilst experimenting on human neuroblastoma cell 

lines was a very low transfection efficiency.  Despite numerous attempts to optimise 

the transfection protocol, neuroblastoma cell lines could not be transfected at a rate 

which would allow Western blotting or rtPCR.  To this end I sought to create 

doxycycline inducible C-, N1- and N2-Src expressing neuroblastoma cell lines.  

Though excellent progress was made and functional inducible plasmids as well as a 

stable tetracycline regulatory element expressing neuroblastoma cell lines were 

created, time constraints did not allow the completion of this work.  When completed, 

these cell lines will be ideal for assessing the effects of N-Src overexpression on 

neuroblastoma cells in the variety of methods demonstrated using the inducible HeLa 

cell lines described in Chapter 4.   

My data consistently indicate that overexpression of neuronal Srcs in 

neuroblastoma cells increases the proportion of cells that are differentiating.  In the 

107 
 



cell lines B104, KELLY and SK-N-AS, increased neurite outgrowth was observed to 

varying degrees in N1-Src and N2-Src transfected cells by comparison with controls 

and C-Src transfected cells.  The next step in understanding N2-Src induced neuronal 

differentiation is to identify the N2-Src specific substrates that are causing the 

dramatic changes to tyrosine phosphorylation which are resulting in the observed 

neurogenesis and quiescence of neuroblastoma cells.  SK-N-AS and KELLY cells in 

particular showed a significant increase neurite outgrowth when N1- and N2-Src 

transfected.  The data suggest that the degree to which N1- and N2-Src drive neuronal 

differentiation varies greatly between cell lines, which is indicative of the 

heterogeneity of neuroblastoma.  Identifying the specific substrates and pathways 

through which N1- and N2-Src elicit their cellular effects is the next crucial step in 

understanding their roles in neuroblastoma differentiation. 
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4 Identification of N2-Src specific substrates by mass 

spectrometry 

4.1 Introduction  

Due to the location of the neuronal exon in the Src kinase SH3 domain, it was 

predicted that the cellular changes induced by expression of neuronal isoforms of Src 

are due to a combination of increased kinase activity, as a result of decreased auto-

inhibition, and a change in SH3 substrate specificity (Dergai et al., 2010, Weng et al., 

1993).  Advances in proteomics have made the identification of the phosphorylation 

status of the proteome of a biological system (phosphoproteome) increasingly 

efficient.  Identification of differential phosphorylation in a sample is more 

challenging as the number of peptides produced by proteolytic digestion of a cell lysate 

can number in the tens of thousands allowing only the most abundant peptides to be 

identified by LC-MS/MS (Collins et al., 2007).  Techniques such as SILAC and 

iTRAQ and label-free quantification methods are highly successful at quantifying 

peptides, however the number of proteins that are phosphorylated at any one time may 

be relatively low in the cell.  It is therefore unlikely that a significant number of these 

would be identified by regular proteomics approaches.  Considering that 

phosphotyrosine represents only 4% of total phosphorylation events, the probability 

of identifying a significant proportion of the proteins regulated by tyrosine 

phosphorylation is very low (Olsen et al., 2006).   

For this reason, identification of differential tyrosine phosphorylation by mass 

spectrometry requires an initial enrichment step to increase the proportion of 

phosphotyrosine proteins or peptides in the sample prior to mass spectrometry.  

Phosphopeptide enrichment commonly involves immobilised metal or 

immunoaffinity chromatography, or immunoprecipitation of the sample proteins 

and/or digested peptides (Hammond et al., 2010, Kehasse et al., 2013, Zhang et al., 

2012, Breitkopf et al., 2012, Cunningham et al., 2010).   

Mass spectrometry, performed on phosphotyrosine enriched samples from C- 

and N2-Src, was used to identify substrates that could help indicate pathways that are 

differentially regulated by C-Src and its neuronal splice variant N2-Src using mass 

spectrometry. 
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4.2 Results 

4.2.1 Establishment of the stable, inducible Src expressing HeLa cell lines 

In order to perform large scale enrichment of tyrosine phosphorylated 

substrates and their binding partners, I established three HeLa cell lines that stably, 

inducibly, expressed C-, N1- and N2-Src-FLAG.  To accomplish this I used the 

Invitrogen pCDNA5/FRT/T0 stable transfection system in Tetracycline-Regulated 

Expression (T-REx) HeLa cells, which stably express the tetracycline repressor 

(Invitrogen, (Hillen and Berens, 1994)).  These cells also have a stably integrated 

pFRT/laczeo site (Invitrogen), which allows for the easy incorporation of the plasmid 

into the pre-existing FRT site in the genome of the cells.  pCDNA5/FRT/T0 expresses 

the gene of interest from a hybrid human cytomegalovirus (CMV)/TetO2 promoter 

that contains dual tetracycline repressor sequences to ensure gene expression only 

occurs in the presence of tetracycline or its analogue. 

I sub-cloned the Src-FLAG constructs used in experiments throughout this 

project into pCDNA5/FRT/T0, retaining the FLAG epitope tag.  T.REx HeLa cells 

were stably transfected with the plasmid and successful plasmid incorporation was 

selected for by hygromycin resistance.  Single colonies of HeLa cells were selected 

after 3-4 weeks and screened individually for doxycycline-dependent gene expression.  

The tetracycline analogue doxycycline was used due to its increased stability in culture 

compared to tetracycline.   

Figure 4-1A shows the efficiency of the tetracycline repressor in the absence 

of doxycycline as well as the effective induction of C-, N2- and N2-Src expression 

following 48 h of doxycycline treatment.  Expression in these cell lines was also 

confirmed by immunofluorescence, with detection of the FLAG tag consistently 

evident in a vast majority of cells (Fig.  4-1B).   

 

4.2.2 N2-Src expression appears to be restricted to the Golgi region 

Whilst C-Src was detected throughout the whole cell relatively evenly, with a 

small increase in localization in the perinuclear region, N2-Src expression was very 

restricted to a similar perinuclear region, with decreased, often punctate cytosolic 
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Fig. 4-1. Generation and characterisation of stable, inducible T-REx HeLa cell lines. 
A) One hundred thousand C-, N1-, and N2-Src HeLa cells treated for two days with 1 g/ml 

odoxycycline in a six well plate. Cells were lysed with Laemmli SDS sample buffer, boiled at 95 C for 
10 minutes then run on a 12.5% acrylamide SDS PAGE gel. After the proteins were transfered to 
PVDF membrane, the sample was probed with mouse a-FLAG and rabbit a-actin primary antibodies. 

2B) Ten thousand HeLa cells were plated onto 13 mm  coverslips and treated with 1 g/ml doxycycline 
for two days. Cells were then fixed in PFA, permeabilised and stained with mouse -FLAG primary 
antibody. Slides were mounted in Mowial containing 1 mg/ml DAPI. FLAG staining in red, DAPI 
staining in blue, Scale bar 50 m.

N2-SrcN1-SrcC-Src
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B
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Fig. 4-2. Intracellular localisation of Src splice variants. 
2

Ten thousand HeLa cells were plated onto 13 mm  coverslips and treated with 1 g/ml doxycycline for 
two days. Cells were then fixed in PFA, permeabilised and stained with mouse -FLAG and rabbit -
TGN46 primary antibody. Slides were mounted in Mowial containing 1 g/ml DAPI. FLAG staining 
in red, TGN46 staining in green, DAPI staining in blue. Arrows show the location of the trans-golgi 
network, as indicated by TGN46 staining. Scale bar 20 m.

C-Src

N1-Src

N2-Src

FLAG TGN46 DAPI Merge
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expression.  For this reason we looked for co-localisation between the Srcs and a Golgi 

marker, TGN46, found in the trans-Golgi network (TGN). 

The maximal staining in both C-Src and N2-Src was indeed consistently 

located with TGN46 (Fig.  4-2).  C-Src expressing HeLa cells showed extensive 

cytoplasmic FLAG staining, in addition to plasma membrane staining and an increase 

in immunoreactivity around the region of TGN46 staining.  N2-Src detection 

consistently peaked in the region surrounding the TGN, with limited, punctate staining 

throughout the rest of the cells and some, limited localisation to the plasma-membrane 

(Fig.  4-2).  N1-Src appeared to be expressed throughout the cytosol, similar to C-Src, 

however with less plasma membrane staining observed (Fig.  4-2).The differential 

cellular localisation of the three splice variants could have implications for their 

function and the substrates they encounter when activated. 

 

4.2.3 N-Src expression induces elongation of HeLa cells 

In previous experiments I demonstrated that expression of neuronal Src 

isoforms induced the extension of neurite-like processes from the cell soma in 

neuroblastoma cell lines.  Cytoskeletal rearrangements were not observed to this 

extent in the Src HeLa cells, although induction of N1- or N2-Src expression 

consistently led to an elongation of the cells compared to C-Src.  To quantify the 

change in morphology, I transfected the cells with soluble CFP, with or without 48 h 

of doxycycline treatment.  In addition to the Src cell lines I used the parental T.REx 

HeLa cell line as a control for the effects of doxycycline expression upon the cells.  

For each cell line, CFP expression was used to delineate the cell boundaries and the 

cell perimeter and the cell area was quantified using ImageJ (Schneider et al., 2012).  

Using the formula 4π(area/perimeter2), (Schneider et al., 2012) the  roundness of the 

cell was calculated on a scale of 0-1, 1 where 1 is a perfect circle and 0 is a line with 

no internal area.  The cell soma was outlined, ignoring all extensions from the body 

below 2 µm in thickness to prevent the dramatic effect that tracing filopodia would 

have upon the calculated roundness of the cell.   

Under control conditions, each cell line was broadly similar in roundness (Fig.  

4-3A), but there was a differential effect of inducing Src expression upon cell 
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roundness.  N1- and N2-Src HeLa cell lines showed a decrease in roundness of 0.1 

and 0.12 respectively, a decrease approximately equivalent to that between an oval 

with a 1:4 ratio and an oval with a 1:6 ratio (Fig 3.C).  The same change in roundness 

was not evident in C-Src and control cell lines where roundness was increased by only 

0.01 and 0.02 respectively (Fig.  4-3B). 

This quantification suggests that whilst the same scale of neuron-like 

morphology that we see in neuroblastoma cell lines isn’t occurring in HeLa cells, N-

Src expression is still having an effect on the morphology of these cells. 

 

4.2.4 Expression of N1- and N2-Src in HeLa cells reduces cell migration 

As established previously, neuronal Srcs can decrease proliferation in 

neuroblastoma cell lines (Fig.  3-8).  To identify changes in both proliferation and 

migration in the stable HeLa cell lines, a wound healing assay was performed.  Thirty 

thousand HeLa cells were seeded in each well of a 24 well plate and treated with 

doxycycline containing medium (1 µg/ml) the following day.  After overnight 

incubation in doxycycline to allow gene expression to occur, the cells were wounded 

with a 200 µl pipette tip and imaged every 10 min for 20 h at 37oC. 

To calculate the rate of cell migration, the area into which the cells migrated 

was calculated by establishing the location of the original wound, and tracing the area 

occupied by the cells after 20 h.  In control cells, the area migrated into by the cells 

Fig.  4-3 

Figure.  4-3 (page 114).  Effects of neuronal Src overexpression on HeLa cell 
morphology.   
A) Ten thousand HeLa cells were plated onto 13 µm2 coverslips and transfected with 
the soluble CFP vector pmCer and treated with 1 µg/ml doxycycline for two days.  
Cells were fixed in PFA, permeabilised and stained with mouse α-FLAG and rabbit 
α-GFP primary antibody.  Cell perimeter and area were measured in ImageJ and the 
circularity calculated using the formula 4*π*(Area/Perimeter2).  At least 98 cells were 
imaged per condition across two coverslips.  This experiment was performed once, 
as such statistical analyses were not performed on these data.  Error bars show 
standard error.  B) Fold change in circularity of HeLa cell lines treated with 
doxycycline compared to controls.  Error bars show sum of the standard error values 
for control and doxycycline conditions.  C) Example outlines of doxycycline treated 
HeLa cells taken from ImageJ with the calculated circularity shown underneath.  
Regular shapes and circularity values are provided for perspective. 
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decreased by just 3 mm2 with and without doxycycline treatment whilst C-Src cells 

occupied 12 mm2 more under doxycycline induction than in control conditions (Fig.  

4-4A, B).  By contrast, N1- and N2-Src cells occupied 4 mm2 and 11 mm2 less area 

after 20 h when treated with doxycycline compared with controls (Fig.  4-4A, B, C).   

Careful examination of the time lapse images revealed that C-Src HeLa cells 

appeared to proliferate much more rapidly, with a constant turnover of rounded cells 

undergoing mitosis, compared with N2-Src HeLa cells.  There was a notable decrease 

in the number of cells observed undergoing mitosis between C- and N2-Src.  Whilst 

C-Src HeLa cells consistently rounded and divided successfully, a decrease was 

observed in N2-Src HeLa cells, with rounding of the cells in an apparent attempt at 

mitosis often resulting in failed division or cell death.  This, alongside the evidently 

lower cell numbers evident by the much lower area covered by cells after 20 h, 

suggests that N2-Src is inhibiting proliferation of HeLa cells.  A more detailed analysis 

of individual cell behaviour during the time-lapse would reveal whether, on average 

fewer mitotic events are occurring in the cells.  Additionally, performing the scratch 

test again, in the presence of blockers of mitotic activity, would demonstrate the degree 

to which proliferation is contributing to the increased migration in C-Src HeLa cells.   

Wound healing occurred much more rapidly in C-Src HeLa cells than N2-Src HeLa 

cells, and the method of migration was visibly different between the time lapse movies.  

All cell lines were at confluency prior to wounding creating a very visible ‘front’ to 

the mass migration in C-Src expressing cells, contrasting with N2-Src cells where a 

large proportion of the area covered by migration resulted from a smaller number of 

pioneer cells (Fig.  4-4C).  Compared to C- and N2-Src, N1-Src HeLa cells behaved 

Figure.  4-4 (page 116).  Effect of neuronal Src overexpression on HeLa cell 
migration.   
Fifty thousand HeLa cells were plated per well of a 24 well plate.  The cells were 
treated with 1 µg/ml doxycycline overnight then wounded using a 200 µl pipette tip 
the following day.  Regions of interest on each well were identified and then imaged 
every ten min over a two day time period using an automated XYZ Prior stage with 
auto-focussing.  This experiment was performed once, as such no statistical analyses 
were performed.  A) The change in the area covered by the cells by the cells during 
the time course, measured in ImageJ.  Error bars show standard error.  B) Fold change 
in migration of HeLa cell lines treated with doxycycline compared to controls.  Error 
bars show sum of the standard error values for control and doxycycline conditions.  
C) Example images of doxycycline treated HeLa cells showing cells at time zero and 
after one day.  Scale bar = 100 µm. 
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in an intermediate manner, with a less significant decrease in area occupied than N2-

Src. 

 

4.2.5 N2-Src expression does not increase the proportion of HeLa cells exiting 
the cell cycle 

Ki67 immunostaining was used to test whether the apparent decrease in 

proliferation observed above in N-Src expressing cells is representative of an 

increased proportion of cells exiting the cell cycle.  HeLa cells were incubated for 48 

h in doxycycline containing or control media before being fixed and stained for FLAG 

and Ki67 expression and mounted in DAPI-containing coverslip mountant.   

10 fields of view were imaged at 20x magnification for each condition to 

identify how many of the cells were expressing the Ki67 proliferation marker and in 

all cases Ki67 staining was observed in 100% of nuclei (Fig.  4-5).  This demonstrates 

that, whilst the N2-Src expressing HeLa cells show an apparent reduction in 

proliferation rate, this is not indicative of an exit from the cell cycle as would be 

associated with quiescence or differentiation.  It is, however, still plausible that N2-

Src is decreasing the rate of proliferation through inhibiting the mechanisms of 

mitosis, such as the cytoskeletal rearrangements associated with cytokinesis, without 

affecting the proliferative potential of the cells as demonstrated by Ki67 expression.  

To confirm that N2-Src is decreasing the proliferation rate of these cells a quantitative 

analysis of cell proliferation rate, such as an MTS or MTT assay would need to be 

completed. 

 

4.2.6 Preparation of HeLa cell lysates for LC/MS/MS 

I next sought to identify proteins that are phosphorylated differentially by Src 

as a result of N-Src exon inclusion.  N2-Src produced the most significant effects on 

HeLa cell morphology and migration and was hence chosen for a phosphoproteomic 

comparison with C-Src.  Due to the inherent difficulty in identifying phosphotyrosine 

by standard phosphoproteomics (Olsen et al., 2006) immunoenrichment of tyrosine 

phosphoproteins was performed, prior to LC/MS/MS. 
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Fig. 4-5. Effect of neuronal Src over-expression on HeLa cell proliferation. 
2 Ten thousand HeLa cells were plated onto 13 mm coverslips and treated with 1 g/ml doxycycline for 

two days. The cells were fixed in PFA, permeabilised and then stained with mouse -FLAG and rabbit 
-Ki67 primary antibodies. The coverslips were mounted in Mowial containing 1 g/ml DAPI. This 
experiment was performed once. DAPI is shown in blue, Ki67 is shown in green, FLAG is shown in 
red. Scale bar = 50 m. 
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Phosphotyrosine immunoprecipitations (IPs) were performed on lysate from 

control, C- and N2-Src HeLa cells that were incubated with or without doxycycline 

and/or acutely treated with pervanadate.  Pervanadate was used as it activates Src 

Family Kinases, including C-Src, and as such it was hypothesised that pervanadate 

treatment would amplify the detection of substrates in both samples, irrespective of 

the basal activity of each variant (Boulven et al., 2002).  Of these conditions, two 

conditions were performed in duplicate; C- and N2-Src cells induced doxycycline and 

treated with pervanadate.  These two conditions were the focus of the experiment, 

rather than using just the N2-Src HeLa cell line with and without doxycycline because 

it was predicted that N2-Src shares a substantial number of substrates with C-Src.  

HeLa cells expressing activated C-Src provided the best control sample from which 

specific N2-Src specific substrate proteins could be identified.   

In the first replicate of this experiment, 6 x 75 cm2 flasks (containing 

approximately 8-10 x 106 cells each) were lysed and adjusted to 1.3 mg/ml of protein.  

Tyrosine phosphoproteins in the lysates were enriched by incubation with 100 µl of 

agarose-conjugated 4G10 resin overnight, and eluted in 100 µl of sample buffer.  In 

the second replicate, informed by the results of the first experiment, 5 x 75 cm2 flasks 

were lysed and adjusted to 2.6 mg/ml of protein, and immunoprecipitated with 50 µl 

of 4G10 resin, eluted in 50 µl of sample buffer.   

Equal volumes of input and supernatant, run on a Western blot with 2 µl of IP 

elution, showed that the IP significantly depleted tyrosine phosphoproteins from the 

supernatant (Fig.  4-6A, B).  Blotting indicated that C- and N2-Src were expressed 

exclusively in doxycycline treated samples of the correct cell lines, and no FLAG 

signal was detected in the control cell line.  Due to the risk of cross-contamination 

between HeLa cell lines, input from doxycycline treated samples was run together and 

blotted for FLAG expression, which confirmed that the C- and N2-Src cell lines had 

not cross-contaminated due to the visible shift in molecular weight caused by N2-exon 

inclusion (data not shown).  Despite the activation of C-Src with pervanadate, it was 

interesting to note that N2-Src samples showed an increased global phosphotyrosine 

level in comparison to corresponding C-Src samples (Fig.  4-6A, B).  FLAG staining 

in the IP lanes suggested that N2-Src was immuno-enriched at a much higher 

efficiency than C-Src in both replicates, both in the presence and absence of 

pervanadate.  Although there was no FLAG signal in the second replicate of 
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IN IP SN IN IP SN IN IP SN

250-
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75-
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37-

FLAG

Actin

Empty N2-Src C-Src
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P  20Y

dox

A
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50-

FLAG

N2-Src

+ + +
IN IP SN

C-Src

+ + +

P  20Y

dox

Coomassie

B

Fig. 4-6. Phosphotyrosine immunoprecipitation from T.REx HeLa cell lines. 
Western blot showing the input, elution, and supernatant from phosphotyrosine immunoprecipitations 

2from the lysate of six 75 cm  flasks of HeLa cells. Equal volumes of input and supernatant run on a 
Western blot with 2 l of IP elution.  The blots were probed with mouse -FLAG, rabbit -Actin and 
(A) mouse a-phosphotyrosine primary antibodies. Loading controls for this experiment were actin (A) 
and Coomassie staining (B). After confirming via Western blotting that the IP had enriched for 
phosphotyrosine, the eluate from this experiment was then processed for LC/MS/MS.

+- +- +- +- +- +-
van

++++++

+ + + + + + + + +
van

+ + + + + +
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pervanadate treated N2-Src, this could be due to high immunoreactivity causing the 

HRP substrate to be depleted in this area before detection takes place.  In both C-Src 

and N2-Src samples, a protein of around 67 kDa was detected by the PY20 antibody,  

likely to be C- and N2-Src themselves, probably phosphorylated on pY416 (Fig.  4-

6).  Y416 appeared more phosphorylated at this site in N2-Src, which was similarly 

identified in neuroblastoma data (Fig.  3-1) and was confirmed in a later blot of these 

HeLa samples (Fig.  4-12). 

 

4.2.7 Processing LC/MS/MS results 

The 4G10 IP elution for each sample was run a short way on to an SDS gel 

before an in-gel tryptic digest of the sample.  The resulting peptides were then applied 

to the Bruker MAXIS LC-MS/MS system by staff at York Technology Facility.  The 

resulting LC-MS/MS data was processed in and retrieved from the Matrix Science 

Mascot server, grouped by peptide family and processed as shown in Figure 4-7.   

The focus of the data analysis was upon the duplicate data for C- and N2-Src 

HeLa cell lines induced with doxycycline and acutely treated with pervanadate.  The 

raw data for these two conditions was pooled and filtered with a very high stringency; 

any protein that did not have at least two separate, significant peptide sequences 

identified in both replicates was discarded from further analysis.  Of the 972 and 930 

proteins identified in the raw data for C- and N2-Src samples, only 249 and 242 of 

these proteins matched this stringent filtering process (Table.  4-1).  Although the 

detection of significant sequences by the MAXIS LC-MS/MS system confirms the 

presence of the peptide, in order to allow semi-quantitative analysis of protein 

abundance placing the minimum number of significant sequences at two allows us to 

be sure that any change in abundance is the result of more than just the chance hits at 

the limits of detection.  In addition, having two significant sequences in both samples 

confirmed that the enrichment of that protein was consistent between biological 

replicates. 

The relative abundance of each protein in the sample was quantified using the 

exponentially modified Protein Abundance Index (emPAI) score (Ishihama et al., 

2005).  Unlike Mascot’s Protein Score that is based solely upon the number and size 
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of peptide hits, emPAI normalises the peptides observed for each protein against the 

total number of observable peptides within that protein (Ishihama et al., 2005).  This 

normalisation of the peptide hits means that the emPAI better reflects the protein 

concentration of the IP, avoiding bias caused by large or small proteins that are 

digested into a many or few detectible peptides. 

Whilst emPAI is effective at normalising for protein size, it does not normalise 

between samples.  Due to the sensitivity of MS, small changes in sample 

concentration, load volume or the quality of individual LC/MS/MS runs can contribute 

to relatively large sensitivity changes between samples.  To normalise between 

samples the %emPAI (the emPAI score for each protein as a proportion of the sum of 

all emPAI scores within the sample (Ishihama et al., 2005)) was calculated.  This 

allowed for comparison between runs, as increased sensitivity would increase both the 

diversity of proteins detected, but also the number of peptides detected for each 

protein, which would allow the %emPAI for high abundance proteins to remain 

relatively constant even with increased sample size. 

  B739 B768  
  C N2 C N2  

Matched peptides 2713 2675 2309 2154  
Unique peptides 2087 2166 1771 1521  

Proteins represented 737 714 558 529  
  Averaged data  
  C N2  

Matched peptides 2511 2414.5  
Unique peptides 2087 1843.5  

Proteins represented 972 930  
Proteins unique to sample 403 360  

  Refined results (duplicate & >2 sig seq)  
Proteins represented 249 242  

Proteins unique to sample 15 8  
Proteins with over 1log(2) 

52 62 
 

increased abundance  
 
Table 4-1.  Numeric summary of LC-MS/MS data processing. 
Summary of the process of the filtering the data retrieved from Mascot from the C- and 
N2-Src duplicate samples.  Proteins were filtered out where two significant sequences 
didn’t occur in both replicates of a condition to provide the necessary stringency for 
quantitation (personal communication, Adam Dowle, University of York). 
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Mascott results grouped by protein family

Remove all values 
that have less than

2 significant matches
in either replicate

con + Van + Dox

con + Van

C-Src + Van + Dox

N2-Src + Van + Dox

N2-Src + Van

Experiment 1
B739

C-Src + Van + Dox

N2-Src + Van + Dox

C-Src + Dox

N2-Src + Dox

Experiment 2
B768

Values between biological replicates averaged

%emPAI calculated for each sample 

Enriched Gene Ontology groups, WikiPathways and 
KEGG pathways identified and %emPAI compared

Phosphosite, GPS and ScanSite identifications of
 potential Kinase domain substrate motifs. 

DAVID

WEBGESTALT
String DB

Proteins with 1log(2) 
increase in abundance
in N2-Src sample

%emPAI compared between C- and N2-Src 
samples, protein lists made where:

-Proteins with higher %emPAI in either sample
-Proteins with over 1log(2)relative increase in %emPAI

Phosphotyrosine
immunoprecipitation

Cells lysed in 
RIPA buffer

LC/MS/MS
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 The %emPAI for the averaged C- and N2-Src HeLa cell lines that were treated 

with doxycycline and vanadate were used as the measure of abundance throughout the 

remainder of the analysis.  The relative abundance of the filtered, processed lists of 

proteins identified in C- and N2-Src samples was calculated by the log(2) ratio 

between %emPAI values of the two conditions.  From this ratio, two sets of lists that 

reflected difference in abundance between the two samples were created; one list that 

split the proteins into those with a relative increase in %emPAI of any size between 

the two samples, and a second list with only proteins showing a >1log(2) change in 

expression level, indicating that the protein was twice as abundant in one condition 

compared to the other.  Various bioinformatic analyses were then performed on these 

lists to identify functional clusters of proteins that might indicate specific increases in 

the phosphorylation of substrates by N2-Src. 

 

4.2.8 Identification of tyrosine phosphorylation sites in immunoprecipitated 
proteins 

There were very few phosphotyrosine containing peptides detected for either 

C- or N2-Src conditions, only 18 and 22 hits respectively (Table 4-2).  C- and N2-Src 

cell lines were identified as having pY416 phosphorylation, indicating that the kinases 

were active, as would be expected with transient pervanadate treatment.  Whilst the 

majority of tyrosine phosphorylated proteins in N2-Src were also present in C-Src, 

Plakophilin and Paxillin-4 were exclusively identified in N2-Src.  Due to the low 

abundance of tyrosine phosphoproteins, it isn’t possible to say that these 

phosphopeptides are higher in abundance in the N2-Src IP sample compared to C-Src, 

however, both of these proteins are also enriched in N2-Src samples (Appendix 1).  

Phosphorylation of Plakophilin at Y465 has been identified in the Phosphosite mass 

spectrometry screening for phosphorylated proteins, however there is no published  

Figure.  4-7 (page 124).  Summary of LC-MS/MS approach. 
HeLa cells were treated and lysed as described in 2.4.1 and the lysate probed with 
agarose conjugated anti-phosphotyrosine 4G10 resin.  The cells were then processed 
for mass spectrometry as described in 2.4.2.  The work of this thesis focuses almost 
exclusively on the averaged data from the C-Src + Van + Dox and N2-Src + Van + 
Dox conditions.  The data for these conditions was processed to give the %emPAI, 
then the data averaged and any peptide without two significant sequence matches in 
both replicates of one condition removed.  The lists of proteins generated were then 
processed as described in 2.4. 
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literature relating to this specific phosphorylation event or its function  (Hornbeck et 

al., 2012).  Src phosphorylation of Paxillin is well documented, and Y88 is a known 

Src phosphorylation site (Schaller and Schaefer, 2001), however the only Y88-

containing peptide in the C-Src samples was dephosphorylated.   

Other notable phosphotyrosine hits include delta-catenin, for which several 

more tyrosine phosphorylation events were identified for N2-Src compared to C-Src, 

however all of these sites are known C-Src substrates (Mariner et al., 2001).  Similarly 

BCAR1 had several more phosphotyrosine hits in N2-Src than C-Src, such as at Y387, 

a known C-Src phosphorylation site (Goldberg et al., 2003).  Phosphorylated BCAR1 

Y128 is a particularly interesting hit in N2-Src as it was identified as dephosphorylated 

 Phosphotyrosine hits  
Gene name Description C N2  
BCAR1 Breast cancer anti-

oestrogen resistance 
protein 1  

Y249 
Y410 
 

Y128 
Y249 
Y387 
Y410 (3) 

 

EGFR Epidermal growth factor 
receptor  

Y1092 
Y1197 

Y1197  

CTTN Src substrate Cortactin  Y421 
Y446 

Y421 (2) 
Y446 

 

CTNND1 Catenin delta-1  Y217 or 221 
(2) 
Y944 
 

Y217 or 
Y221 
Y257 (2) 
Y280 (3) 
Y904  

 

LSR Lipolysis-stimulated 
lipoprotein receptor  

Y382 (2)   

PARD3 Partitioning defective 3 
homolog  

Y1080 Y1080  

PKP4 Plakophilin-4   Y465  
PXN Paxillin   Y88  
SRC Proto-oncogene tyrosine-

protein kinase Src 
Y419 Y419  

TUBB Tubulin beta chain  Y106   
TUBB2B  Tubulin beta-2B chain  Y44   
TUBB4B Tubulin beta-4B chain  Y106   

Table 4-2.  Summary of C- and N2-Src phosphotyrosine hits from LC-MS/MS. 
Pooled list of phosphotyrosine hits from both replicates of C- and N2-Src samples.  
Phosphotyrosine sites were inferred from the position of the tyrosine site on the peptide.  
Y217 and Y221 of CTNND1 occur on the same peptide, as such it is unknown which 
residue was phosphorylated.  Tyrosine positions are the human numbering.  Multiple hits 
of the same site are indicated in brackets. 
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in C-Src samples, despite being a known C-Src phosphorylation site (Zhang et al., 

2013).   

 

 

4.2.9 Interaction mapping of enriched proteins using STRING  

In addition to the identification of individual tyrosine phosphorylation sites on 

immunoprecipitated proteins, the mass spectrometry data could be mined for 

functional clusters of interacting proteins.  Simply because phosphorylation of a 

protein was not detected, it did not mean the protein was of no functional importance.  

Since the proteins in this experiment were obtained through an IP of a native lysate in 

non-denaturing conditions, it is highly likely that interacting proteins and protein 

complexes were pulled down together.  In order to identify these clusters of proteins, 

the lists of proteins with enhanced abundance in either C-Src or N2-Src were inputted 

into STRING (Franceschini et al., 2013).  STRING is an online tool used to identify 

both physical and functional interactions between proteins, informed by the 

integration of interaction data from a wide variety of sources, from literature to high 

throughput and predicted interactions.   

In addition to the STRING interaction network, these protein lists were also 

processed through the online Database for Annotation, Visualization and Integrated 

Discovery (DAVID).  DAVID was used to identify enriched Gene Ontology (GO) 

terms, terms that are used to categorise the molecular function, cellular component 

association and biological processes that individual proteins are involved in (Huang et 

al., 2009b).  DAVID compares the list of proteins provided against the human genome 

in order to identify whether terms associated with those proteins are significantly 

enriched (Huang et al., 2009b).  The output from DAVID was used to inform the 

identification of functional clusters of proteins in the STRING network, and the 

grouping of nodes in the STRING network was modified in Cytoscape to more 

accurately reflect these functional classifications (Smoot et al., 2011).   

The C-Src STRING network and GO terms indicated an enrichment in 

cytoskeletal, mRNA processing and translation related proteins (Fig.  4-8A).  Whilst 

there were many other enriched categories, none possessed sufficient physical 

interactions to cluster on STRING.  These three main clusters of proteins were also 
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Translation

mRNA 
processing

Cytoskeleton

A

mRNA 
processing

Cytoskeleton

COPII 
complex

Cell junction

Translation

B

Fig. 4-8. STRING diagrams of proteins enriched in C-Src (A) or N2-Src (B) samples treated with 
plus vanadate and doxycycline  
Data is clustered by STRING based upon predicted and recorded interactions between proteins. 
Groups of proteins which have an observable functional relationship in addition to interaction 
clustering are highlighted. Identification of functional clusters was assisted by DAVID analysis of 
enriched GO terms in the samples. The STRING network was manually adjusted in Cytoscape to 
highlight functional and interaction clusters.
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identified in the N2-Src STRING network, however, it is worth noting that the 

components of each of these clusters was different to those identified in the C-Src 

samples.  Whilst these clusters are present in both samples, enrichment of different 

proteins in these functional categories suggests a change in their interactions or 

regulation due to C- and N2-Src expression.   

In addition to the shared cytoskeletal, mRNA processing and translation 

categories, N2-Src also showed profound clustering of two additional categories of 

protein, namely cell adhesion molecules and components of the COPII complex (Fig.  

4-8).  Notably the presence of variants 2, 3, and 4 of Plakophilin alongside Junction 

Plakoglobin, β-catenin and Desmoplakin strongly suggests that junctional complexes 

were immunoprecipitated (Fig.  4-8B).  Finally, the enrichment of five proteins of the 

COPII ER/Golgi transport system formed a cluster of interacting proteins (Fig.  4-8B).  

Additionally all five of these proteins were increased above a 1log(2) ratio compared 

to C-Src and no proteins of the COPII transport system were observed in an increased 

abundance in the C-Src samples.   

 

4.2.10 Identification of enriched functional clusters of proteins 

Whilst identification of clusters of interacting proteins that showed any level 

of enrichment between C- and N2-Src samples provided an adequate method with 

which to coarsely identify functional groups of interacting proteins, in order to more 

finely identify the specific complexes that were significantly increased in abundance 

in the phosphotyrosine immuno-enriched samples, a higher threshold was utilised.  

Proteins that showed a 1log(2) increase in abundance in the averaged samples for 

either C- or N2-Src HeLas treated with doxycycline and vanadate were analysed using 

DAVID and the WEB-based GEne SeT AnaLysis Toolkit (WEBGESTALT).  Whilst 

DAVID provided excellent identification of enriched GO terms from the protein list, 

WEBGESTALT was also utilized as it provided analysis of both KEGG and 

WikiPathways (Zhang et al., 2005, Kelder et al., 2012, Kanehisa and Goto, 2000). 

The >1log(2) protein lists were used to query both DAVID and 

WEBGESTALT and their output is summarised in Table 4-3 (after removing 

redundancies and categories of two or fewer proteins).  These refined lists contained 

129 
 



far fewer proteins only 52 proteins were two fold higher in abundance in C- than N2-

Src and 62 proteins more abundant in N2- than C-Src.  Of the enriched groups that 

these proteins belonged to, those that were significant (<0.05% FDR, Web Gestalt; 

<0.05% Benjamini, DAVID) are listed in Table 4-3.   

The majority of enriched categories identified by DAVID’s GO term 

enrichment are, similar to the STRING analysis, involved in translation or mRNA 

binding with largely similar categories being identified between C- and N2-Src 

samples (Table 4-3), however the enrichment of the proteins of the COPII complex 

was identified as statistically significant by DAVID.  Aside from the translation and 

mRNA processing pathways enriched in both samples, the significantly enhanced 

KEGG pathways and WikiPathways (Table.  4-3) appear to be much more divergent 

between C-Src and N2-Src expressing cell lines than the clustering identified by GO 

terms.  The C-Src sample resulted in lists of proteins in both KEGG pathways and 

WikiPathways that were largely associated with proliferation, cell cycle and DNA 

replication.  This is what we would expect in a cancer cell line that is overexpressing 

the proto-oncogene C-Src, particularly when C-Src is activated by transient vanadate 

treatment of the cells.  This provides support for the methodology of using 

comparative abundance between C-Src and N2-Src samples to help identify N2-Src 

specific substrates. 

KEGG pathways significantly enhanced in the N2-Src sample included the 

category ‘Protein processing in the ER’, a category that exclusively contains proteins 

of the COPII coat.  The list of significantly enriched KEGG pathways also included a 

group of endocytosis associated proteins.  Although these did not cluster on the 

STRING network there is a significant enrichment of proteins involved in endocytosis, 

such as Alix, Clathrin heavy chain and HRS.  Several disease associated KEGG 

pathways are enhanced, although from a biological perspective the disease clusters are 

less informative, as often pathogenic or genetic factors are more likely to be at work 

in these processes than phosphorylation.   

The most significant WikiPathways identified for C-Src were largely 

representative of its role as an oncogene in cancer cell lines, promoting cell cycle 

progression and proliferation (Table.  4-.).  In the N2-Src list, the COPII coat proteins 

were again identified, in this instance as a part of the SREBP signalling pathway.  
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Interestingly the “Neural Crest Differentiation” pathway was identified, containing β- 

catenin, Notch2 and N-Cadherin.  These genes are particularly interesting as they are 

essential components in neural crest differentiation, which relates strongly to known 

associations of N2-Src in in the neural crest derived cancer neuroblastoma.   

The protein clusters identified by these pathways and enriched GO terms 

informed a more in-depth analysis of proteins that were enhanced in N2-Src cells.  As 

a result of these groups, three main categories were analysed in detail, endocytosis, 

adherens and COPII complex proteins. 

 

4.2.11 In-depth analysis of N2-Src enhanced proteins: Endocytosis 

Six proteins involved in endocytosis were selected for further analysis, based 

upon their appearance in enriched GO terms, KEGG pathways and WikiPathways, in 

addition to applied biological knowledge of the proteins. 

Whilst all six proteins are involved in endocytosis, only four are identified as 

having interactions by STRING (Fig.  4-9A) and only three have log(2) ratios above 

1 when compared to C-Src abundance (Fig.  4-9B), Clathrin-heavy chain, Alix, HRS.  

Possible phosphorylation site for these three >1log(2) ratio proteins were identified 

using the Phosphosite database of phosphotyrosines identified by mass spectrometry 

(Hornbeck et al., 2012), in addition to Src kinase domain substrate motif analysis of 

amino acid sequence using both GPS (Xue et al., 2008) and ScanSite (Obenauer et al., 

2003), in addition to literature searches for known phosphorylation events.  This 

method of analysis was repeated for all proteins that were analysed in depth in order 

to identify both known and predicted Src substrate sites. 

All three of the endocytosis proteins that are highly increased in abundance in 

N2-Src samples are known C-Src substrates, however many more tyrosine 

phosphorylation sites were identified by Phosphosite, in addition to predicted Src 

kinase domain motifs identified by GPS and ScanSite.   
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4.2.12 In depth analysis of N2-Src enhanced proteins: Adherens 

Of the proteins associated with cell-cell junctions, the six selected for more in 

depth analysis included Junction Plakoglobin (JUP), β-catenin, Plakophilin-2, N-

Cadherin, Desmoplakin-2, Paxillin and β Actin.  These proteins were selected for more 

in depth analysis based upon their appearance in the enriched functional pathways and 

GO terms as well as applied knowledge of their functions.  Notably both Paxillin and 

a variant of Plakophilin-2 (Plakophilin-4) have specifically identified phosphopeptides 

in N2-Src samples which are not detected in C-Src samples (4.2.8).  As is apparent 

from the abridged STRING diagram (Fig.  4-10A) there is a strong interconnectivity 

between these proteins, with β-catenin and JUP at the centre.  Of these six proteins 

only four have a %emPAI in N2-Src more than double that observed in N2-Src (Fig.  

4-10B) and these were then analysed for confirmed or predicted Src phosphorylation 

sites (Fig.  4-10C). 

Figure.  4-9 (page 133).  In depth analysis of endocytosis associated proteins 
enriched in N2-Src samples.   
Figure.  4-10 (page 134).  In depth analysis of adherens associated proteins 
enriched in N2-Src samples.   
The following figure description applies to both figures 4-9 and 4-10.  A) STRING 
maps highlighting interactions between the chosen endocytosis (4-9) or adherens (4-
10) proteins in red B) Bar graph showing the average %emPAI values for C- and N2-
Src samples.  Samples with an increased abundance in N2-Src of over 1log(2) were 
further analysed for known and potential phosphorylation sites.  C) Domain summary, 
identified and predicted phosphorylation sites of proteins with over a 1log(2) increase 
in abundance in N2-Src HeLa samples.  Phosphosite hits shown in red, Src 
phosphorylation sites predicted by ScanSite shown in blue, Src phosphorylation sites 
predicted by GPS shown in green.   
Figure.  4-11 (page 135).  In depth analysis of COPII proteins enriched N2-
samples. 
A) STRING map showing the interaction between the COPII proteins, highlighted in 
red.  B) Bar graph showing the average %emPAI values for C- and N2-Src samples.  
Samples with an increased abundance in N2-Src of over 1log(2) were taken through for 
further analysis of phosphorylation sites.  C) Diagram based upon Gillon et al, 2012, 
showing the function of COPII coat in assembling transport vesicles from the ER to the 
Golgi.  SarI and Sec16 activate, recruit and scaffold the COPII inner coat (constructed 
of Sec23/24) to the ER before recruiting vesicle cargo.  Outer coat proteins (Se13/31) 
then bind to the inner coat and polymerise to coat the vesicle, forcing the membrane to 
curve out into a vesicle structure which is then transported to the Golgi.  D) Domain 
summary and identified and predicted phosphorylation sites of proteins with over a 
1log(2) increase in abundance in N2-Src HeLa samples.  Phosphosite hits shown in red, 
Src phosphorylation sites predicted by ScanSite shown in blue, Src phosphorylation 
sites predicted by GPS shown in green. 
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Phosphosite identified several phosphotyrosine residues on each protein, some 

of which were confirmed in the literature and several predicted Src kinase domain 

motifs were identified by GPS and ScanSite (10C).  Literature searches based upon 

the Phosphosite database also revealed that JUP, N-Cadherin, Plakophilin-2 and β-

catenin are all known Src substrates at some of these sites. 

 

4.2.13 In depth analysis of N2-Src enhanced proteins: COPII coat proteins 

Throughout analysis of the N2-Src expressing HeLa mass spec data, the cluster 

of Sec proteins (Sec 16A, Sec 23A, Sec 23B, Sec S4B and 24C, Fig.  4-11A)  have 

consistently been identified as significantly enriched, and all five possess %emPAI 

scores in N2-Src HeLa cells over double that observed in C-Src expressing cells (Fig.  

4-11B).  These proteins were identified as a segregated cluster, with the only 

functional connection to another protein being via HSPA5, a heat shock protein family 

member that is also localised to the ER and has a possible role in regulating protein 

transport (Figure 4-11A).  These Sec proteins have no known C-Src phosphorylation 

sites.  Sec 23A and B have very few known or predicted tyrosine phosphorylation 

sites, suggesting that they are unlikely to be the protein specifically bound in the 4G10 

IP.  Several sites of tyrosine phosphorylation by Src are predicted by ScanSite and 

Phosphosite on Sec 16a and many phosphotyrosines have been identified in the 

Phosphosite database.  Despite the identification of many sites by mass spectrometry 

on the Phosphosite database, there are no clues in the literature about any possible role 

for tyrosine phosphorylation in regulation of Sec 16a function.   

 

4.2.14 Confirming Sec23A immunoprecipitation for N2-Src expressing HeLa 
cells 

To confirm the increased abundance of the COPII complex proteins in the N2-

Src expressing HeLa IP, input and IP from vanadate treated C- and N2-Src HeLa cells 

with and without doxycycline treatment was probed with a Sec23A antibody (Fig.  4-

12).  Much higher Sec23A abundance was detected in the IP elution of N2-Src 

suggesting that the 4G10 antibody is binding to a phosphotyrosine on Sec23A, or a 

protein that it is bound to, which is only phosphorylated in the presence of N2-Src.   
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Additionally, whilst previous blots of these samples have confirmed the 

presence of N2-Src by the detection of the attached FLAG epitope tag (Fig.  4-6), this 

blot was probed with an antibody specific for Y416 Src phosphorylation.  There are 

two main bands of Y416 expression, likely to be that of endogenous C-Src or another 

SFK, and the FLAG epitope tagged C- and N2-Src splice variants that are likely to 

migrate slower than their endogenous counterparts due to their increased size.  

Interestingly, whilst both C-Src and N2-Src are tyrosine phosphorylated at Y416, N2-

Src appears to significantly trans-activate the ~60kda endogenous SFK.   

4.3 Discussion 

The above data indicate that the differential cellular effects of neuronal Src 

expression, when compared to C-Src expression, are not limited to cells of a neuronal 

origin.  This was demonstrated through analysis of the shape and migration of N-Src 

expressing HeLa cell lines.  Mass spectrometry analysis on phosphotyrosine 

immunoprecipitation samples from these cells indicates that C- and N2-Src have 

significantly different effects upon tyrosine signalling within the cell, enriching 

different functional clusters of proteins.  Specific phosphorylation events were 

identified in N2-Src expressing cells that were absent in C-Src expressing cells, and 

significantly enriched functional clusters of proteins included those of the ER/Golgi 

transport vesicle coat COPII, in addition to several adherens and endocytosis-related 

proteins.   

Figure.  4-12.  Identification of Sec23A abundance in T.REx HeLa phosphotyrosine 
IPs.   
Spare input and IP from the first replicate of the phosphotyrosine immunoprecipitation 
experiment were run on a gel to compare the expression of Sec23A.  Samples were run 
on a 12.5% acrylamide gel by SDS PAGE before transfer onto a PVDF membrane, 
before probing with mouse α-Sec23A, rabbit α-pY416 and rabbit a-actin antibodies. 
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4.3.1 Cellular effects of N2-Src are not limited to neuronal cells 

Whilst undertaking this study in a cell line with a neuronal background of gene 

expression would have been ideal, N2-Src expression in non-neuronal cell lines has 

consistently demonstrated a differential effect on non-neuronal cells when compared 

to C-Src.  Induced N1- and N2-Src HeLa cells were demonstrated to have differential 

effects on cell morphology (Fig.  4-2) and migration (Fig.  4-4), as well as a more 

restricted intracellular localisation than C-Src (Fig.  4-3).  All of these factors support 

the idea that, even without a neuronal background of protein expression, the inducible 

HeLa cell line system will be efficient in identification of differential C- and N2-Src 

substrate phosphorylation.   

 

4.3.2 N2-Src appears to co-activate endogenous SFKs 

An additional band of pY416 staining is observed at around 60 kDa in western 

blots of N2-Src expressing HeLa cells sample (Fig.  4-12).  Due to the specificity of 

the pY416 antibody, this band is likely to indicate trans-phosphorylation of pY416 in 

an endogenous SFK.  Interestingly a similar effect was seen in N2-Src overexpression 

in the neuroblastoma cell line B104 (Fig.  3-1), however in this instance the 

transphosphorylated SFK was 5 kDa heavier than N2-Src.  The SFK in HeLa cells is 

more likely to be endogenous Src as this is likely to have increased mobility compared 

to the larger FLAG tagged construct that the cells stably express.  As Src was the only 

Src Family kinase observed in the mass spectrometry data for these cells, it is highly 

likely that the pY416 signal at this locus is endogenous Src (Appendix 1).  

Interestingly N2-Src seems to be trans-activating C-Src at a higher rate in these cells 

to C-Src, suggesting that the SH3 domain of N2-Src does not inhibit the trans-

activating properties of C-Src. 

 

4.3.3 Appraisal of the chosen phosphoproteomic methodology 

This study identified several functional clusters of proteins that were enriched 

by phosphotyrosine immunoprecipitation of N2-Src cells, which provide extensive 
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scope for future work on the signalling pathways through which N2-Src may operate.  

It also identified three phosphopeptides that warrant further investigation (BCAR1 

Y128, Plakophillin-2 Y465 and Paxillin Y88), two of which were identified as 

dephosphorylated in C-Src samples and one of which was an as-yet uncharacterised 

tyrosine phosphorylation event.  In that respect this method has proven a success, 

however an increase in the overall number of phosphopeptides would be highly 

desirable if this experiment were repeated.   

Through immunoprecipitation with immobilised phosphotyrosine antibody 

4G10 it was expected that a large proportion of peptides identified would be tyrosine 

phosphorylated, unfortunately this was not the case.  Due to the low abundance of 

phosphotyrosine in cells (tyrosine represents only around 4% of total phosphorylation 

events (Olsen et al., 2006)), this method of immunoenrichment of phosphotyrosine 

prior to mass spectrometry has been used extensively in the literature (Hammond et 

al., 2010, Kehasse et al., 2013, Zhang et al., 2012, Breitkopf et al., 2012, Cunningham 

et al., 2010).   

A similar method published by Hammond and Clague coupled tyrosine 

immunoenrichment with Stable Isotope Labelling by Amino acids in Cell culture 

(SILAC) to identify common and discrete phosphotyrosine associated networks 

induced by EGF or HGF (Hammond et al., 2010).  The identification of phospho-

tyrosine peptides was still modest (55 peptide hits from three runs), although the use 

of SILAC allowed for a direct, quantitative comparison between samples.  Whilst 

SILAC would be desirable due to its superior quantitative power between samples, the 

%emPAI normalisation provided adequate ability to compare between samples for the 

purposes of this study.  The fidelity of %emPAI quantification was confirmed by 

Western blotting for Sec23A which identified a similar change in Sec23A abundance 

between C- and N2-Src samples with and without doxycycline (Fig.  4-12).   

To specifically identify differential C- and N2-Src phosphorylation events by 

mass spectrometry, an approach based upon work by Breitkopf and colleagues (2012) 

may prove more fruitful.  These researchers used two methods to identify BCR-ABL 

targets; firstly using a BCR-ABL co-IP to identify proteins directly bound by BCR-

ABL, and then identifying differential tyrosine phosphorylation in the cell by 

performing a tryptic digest on cell lysate, before a phosphotyrosine IP (Breitkopf et 
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al., 2012).  Similarly, Cunningham and colleagues identified over 430 phospho-

tyrosine containing peptides through a two-step enrichment, first a 4G10 IP and then 

a titanium dioxide enrichment of phosphate following tryptic digest (Cunningham et 

al., 2010).  Performing the phosphotyrosine enrichment on digested peptides rather 

than on native lysate is a particularly useful method for identifying specific 

phosphopeptides.  This method reduces enriches specifically for phosphopeptides and 

has been employed by other phosphotyrosine studies, identifying 80 (Zhang et al., 

2012) to 300 (Kehasse et al., 2013) phosphotyrosine peptides.   

The identification of functional clusters of proteins with known interactions is 

particularly important in this dataset.  Performing the phosphotyrosine 

immunoprecipitation on cell lysate, rather than on the peptides following a tryptic 

digest means that it is very likely that complexes of interacting proteins are being co-

enriched.  Identification of differentially enriched clusters will therefore provide a 

great deal of insight into which signalling pathways and regulatory complexes are 

being tyrosine phosphorylated as a result of C- or N2-Src expression.  Although 

performing these experiments in triplicate would have been desirable, due to the 

nature, and inherent cost, of this proteomic method the benefit of a further replicate of 

the data outweighed the cost.  To address the issue of lacking triplicate data, the 

stringency of each stage of the analysis was incredibly high, counting only proteins 

which have at least two different significant peptide sequences detected in both 

replicates of the data, then only studying in depth those proteins that demonstrated an 

increase in over two fold in their %emPAI scores.  As a result, despite the lack of a 

triplicate of data, we can be highly confident that the observed enrichment as detected 

by LC/MS/MS is reflected in the samples. 

Over 900 unique proteins were identified in both C- and N2-Src samples and 

the stringent filtering of these proteins by the number of significant sequences has 

allowed for meaningful quantification of their relative abundance in these samples 

(Table 4-1).  By utilizing both WebGestalt and DAVID to query the Gene Ontology, 

KEGG and WIKI Pathways databases I was able to identify functional clustering of 

proteins in each sample Table 4-3.  In addition to aiding in the identification of 

functional clusters of proteins for further analysis and better comprehension of the 

dataset, these online tools also provided statistical analyses of the likelihood that these 

proteins would occur in a population at random.  This analysis, compared the total 
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number of members of this group in the genome against the number of observed 

members in my dataset.  This method of analysis is widely used and is well-regarded 

in its ability to identify biological relevance from large datasets (Huang et al., 2009a).  

The principal failing of these methods is in their inability to scale their analyses 

according to score, so a protein with a modest enrichment in N2-Src samples by 

comparison to C-Src samples would be treated identically.  For this reason, filtering 

the protein list to only those demonstrating a two-fold increase in %emPAI score was 

essential in assuring that proteins with non-significant differences were not considered 

when regarding the biological significance of the datasets (Table 4-3). 

Hence, in the absence of large numbers of tyrosine phosphopeptides, 

identification of functional clusters of proteins enriched by phosphotyrosine 

immunoprecipitation from C- and N2-Src HeLa samples is invaluable in informing 

future studies on the specific pathways of N2-Src action within cells during neuronal 

differentiation.   

 

4.3.4 Interpretation of the identified tyrosine phosphopeptides 

Of the list of tyrosine phosphopeptides identified, three phosphoproteins are of 

particular relevance in the identification of specific N2-Src substrates, BCAR1, 

Paxillin and Plakophilin-4.  Whilst the majority of the phosphopeptides are well-

characterised as C-Src substrates, these three hits were either specifically identified as 

dephosphorylated in C-Src, or, in the case of Plakophilin-4, are as-yet uncharacterised.  

BCAR1 phosphorylation at Y128 is increased in FGFR1 overexpressing cells (Hinsby 

et al., 2003) and is associated with induced carcinogenesis as well as cell growth, 

adhesion and motility and was identified dephosphorylated in C-Src samples. 

Although Plakophilin-4 phosphorylation at Y465 has been identified by 

previous high-throughput phosphoproteomics studies there is currently no literature 

referencing this site (Jørgensen et al., 2009, Hornbeck et al., 2012).  Interestingly, 

aside from the high-throughput tyrosine phosphoproteomic curation datasets, the only 

study to identify Y465 phosphorylation of Plakophilin was in a study on Ephrin 

receptors (Jørgensen et al., 2009).  In this study Plakophilin-4 Y465 phosphorylation 

was identified in cells expressing both Ephrin receptors B1 and B2, receptors involved 
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in developmental regulation of axon guidance (Egea and Klein, 2007, Jørgensen et al., 

2009).  Since Plakophilin-4 has roles in cell-adhesion and cell-cell signalling, 

regulation of this protein by N2-Src phosphorylation, or a downstream protein, could 

be a part of the responses to N2-Src overexpression observed in this study.  N2-Src 

phosphorylation would be relatively easy to confirm using antibody pull-down of 

Plakophillin-4 in C- and N2-Src expressing HeLa cells, followed by probing for 

phosphotyrosine by Western blotting. 

BCAR1 phosphorylation at Y128 was observed in N2-Src expressing cells, 

however only the dephosphorylated peptide was identified in C-Src.  Y128 

phosphorylation is relatively well studied.  Phosphorylation at Y128 is increased in 

FGFR1 overexpressing cells (Hinsby et al., 2003) and is associated with induced 

carcinogenesis as well as cell growth, adhesion and motility and was identified 

dephosphorylated in C-Src samples.  Y128 is a known C-Src substrate and C-Src 

phosphorylation of this substrate is known to be up-regulated in colon cancer (Zhang 

et al., 2013).  Phosphorylation of Paxillin at Y88 was also only identified in N2-Src 

expressing cells, with the corresponding dephosphorylated peptide identified in C-Src 

expressing HeLa cells.  Although the cellular effect of Y88 phosphorylation has not 

been fully elucidated, Paxillin Y88 is also a C-Src substrate and phosphorylation is a 

feature of colon cancer.  Mutation of Y88 to F88 in colon cancer models decreases 

anchorage independent growth and prevents the growth of Xenografts on nude mice 

(Zhao et al., 2010).   

The identification of these three phosphoproteins warrants follow-up 

investigation to determine whether these proteins are specifically phosphorylated by 

N2-Src at a greater rate than C-Src, and whether this phosphorylation event could be 

linked to the actions of N2-Src within cells.  Plakphilin-4 is of particular interest in 

this case as, with no known C-Src phosphorylation event at this site and only neuronal 

studies identifying it, it could represent an N2-Src exclusive substrate.   

Although both Paxillin and Plakophilin-4 make excellent candidates for 

follow-up study of specific N2-Src phosphorylation, neither are enriched at over 

1log(2), and only one phosphotyrosine residue was identified for each protein.  For 

this reason, it was decided that time and resources would best be spent upon studying 

the enrichment of proteins of the COPII coat.  Although no specific COPII 
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phosphotyrosine residue was identified, the consistent, significant enrichment of this 

whole complex, I addition to co-localisation between N2-Src and the Golgi made these 

a better candidate for follow-up study.   

 

4.3.5 Specific enrichment of endocytosis related proteins in N2-Src expressing 
HeLa cells 

Several endocytosis associated proteins were specifically increased in 

abundance in N2-Src expressing samples.  This enrichment suggests that differential 

tyrosine regulation of interacting components of the endocytosis pathway may be 

occurring in N2-Src expressing cells.  Of these enriched proteins, Clathrin-heavy 

chain, HRS and Alix were all more than two-fold enriched in N2-Src cells, when 

compared to C-Src cells.   

HRS is known to interact with Clathrin, Alix and CBL (Fig.  4-9A (Stern et 

al., 2007)) suggesting that these proteins may have been immunoprecipitated as part 

of a complex.  HRS is important for endosomal sorting and recycling, and interacts 

with CBL and Alix, in this role.  HRS interacts with and recruits Clathrin during the 

formation of Clathrin-coated regions of membranes, contributing to endocytosis.  Alix 

also has roles in endosomal vesicle formation and also in the ESCRT pathway.  

Endosomal regulation is important in a wide variety of neuronal functions, from 

polarity to neurite extension and differentiation as well as the characteristic role in 

synaptic transmission in mature neurons (Schmidt and Haucke, 2007). 

Each of these three proteins could be a target of N2-Src as they are all known 

to interact with C-Src.  Regulation of HRS is known to occur via Src phosphorylation, 

(Wilde et al., 1999).  Clathrin, is phosphorylated by Src at Y1477 in response to EGF 

stimulation on one of the Clathrin arm repeat domains that regulates Clathrin assembly 

and recruitment (Wilde et al., 1999).  Src has also been shown to bind Alix C-

terminally via its SH3 domain, and at Y319, via its SH2 domain, resulting in C-

terminal phosphorylation of Alix (Fig.  4-9C (Schmidt et al., 2005)).  Although 

specific C-terminal substrate residues were not identified in the literature, Y727 is 

identified in the specified tyrosine rich region and has been identified by GPS motif 

identification software as having a suitable C-Src kinase domain substrate motif (Fig.  

4-9C). 
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These factors suggest that N2-Src overexpression is leading to tyrosine 

phosphorylation-mediated regulation of one or more endocytosis-related proteins.  It 

is interesting that in addition to endocytosis-related proteins, COPII proteins, 

commonly associated with exocytosis, are also enriched in N2-Src samples.  It is 

tempting to suggest that these data point towards a complex role for N2-Src in 

regulation of membrane dynamics.  Further study is required to delineate which of 

these proteins is phosphorylated and whether this phosphorylation event is 

biologically significant.   

 

4.3.6 Specific enrichment of adherens-related proteins in N2-Src expressing 
HeLa cells 

Src is known to have extensive roles in adhesion mediated cell-cell signalling, 

both at the site of focal adhesions through its interaction with FAK, as well as at 

integrins and adherens junctions (Hanks and Polte, 1997, Giancotti and Ruoslahti, 

1999, Mariner et al., 2001).  Several adherens-related proteins were specifically 

enriched in N2-Src expressing HeLa cells of which Junction Plakoglobin (JUP), β-

catenin, Plakophilin-2, N-Cadherin were all enriched by over two fold as determined 

by %emPAI.  As these proteins are all known to physically interact, it is likely that 

they may have been precipitated as part of a complex, suggesting that N2-Src may be 

phosphorylating one or more of these proteins. 

JUP is a catenin-family protein with roles in the structure and dynamics of 

submembranous plaques similar to that of β-catenin, supporting cell-cell junctions by 

forming a link between adherens junctions and the cytoskeleton.  Whilst JUP and β-

catenin are highly similar and can act interchangeably to some degree, JUP has roles 

in associating desmosomes with the intermediate filament cytoskeleton that β-catenin 

lacks (Miravet et al., 2003) and JUP cannot compensate for β-catenin in its roles in 

Wnt signalling.  β-catenin is known for its roles in nuclear signalling, however its co-

enrichment with so many other adherens-related proteins suggest that it is being 

enriched in complex with these, rather than in its functions in the nucleus. 

Several Plakophilin proteins were identified as enriched in N2-Src samples, 

including Plakophilin-4 for which a tyrosine phosphopeptides hit was identified.  
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Plakophilin-2 associates to desmosomes, linking Cadherins to the intermediate 

filaments of the cytoskeleton; however it has also has been identified in the cell 

nucleus (Chen et al., 2002).  Plakophilin-2 interacts with both β-catenin and JUP (Fig.  

4-11A) and can up-regulate β-catenin signalling (Chen et al., 2002).  Interestingly  

CDH2 (N-Cadherin) is a calcium dependent cell-cell adhesion protein that also 

has roles in adhesion at central nervous system synapses.  N-Cadherin, whilst not 

restricted to neurons in expression, has several crucial roles in neuronal development 

(Gärtner et al., 2012).  N-Cadherin is particularly important in specifying polarity in 

developing neurons, ectopic expression of N-Cadherin is singly sufficient to bias the 

appearance of the first neurite and subsequent re-organisation of organelles to 

accommodate this polarity (Gärtner et al., 2012).  N-Cadherin has several tyrosine 

phosphorylation events identified in the literature (Y820, Y852, Y860, Y884, Y886 

(Qi et al., 2006), Fig.  4-10C). 

The abundance and co-enrichment of all of these proteins together strongly 

suggests that adherens junctions are being regulated by N2-Src expression in these 

cells.  This is unsurprising given the phenotypes observed for N2-Src expressing cells 

and the roles of these proteins described above.  All of these proteins are potential 

candidates for N2-Src phosphorylation as all are known substrates of C-Src.Y644 

phosphorylation of JUP by C-Src decreases JUP interaction with E-cadherin and α 

cadherin, whilst increasing interaction with Desmoplakin (Miravet et al., 2003).  Src 

has been implicated in oncogenic phosphorylation and activation of β-catenin in 

human colorectal cancer and in response to EGFR activation at Y333 (Coluccia et al., 

2006, Yang et al., 2011).  Known N-Cadherin Src phosphorylation events include 

Y860 phosphorylation that  results in decreased binding between N-cadherin and β-

catenin and expression of dominant negative Src inhibits dissociation of β-catenin 

from N-Cadherin and associated signalling and nuclear transcription  (Qi et al., 2006).   

Whilst a large number of known sites of Plakophilin-2 phosphorylation are 

identified in the Phosphosite high-throughput mass spectrometry dataset and many C-

Src sites are predicted by both GPS and ScanSite, there is no literature confirming any 

individual C-Src phosphotyrosine sites.  This is particularly interesting as no C-Src hit 

was identified for Plakophilin-2. 
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The extensive interactions between these four proteins, coupled with the 

known and predicted Src phosphorylation sites on these proteins indicates that N2-Src 

may have increased affinity for one of more of these proteins, resulting in increased 

phosphorylation when N2-Src is overexpressed.  Due to the roles of adherens in a 

remarkable array of cell functions, from mechanical roles in motility to signalling roles 

in growth, survival and proliferation, the increased detection of these proteins in N2-

Src expressing cells is particularly interesting and worth following up in future studies.  

Specific phosphorylation of each of these proteins could be confirmed by 

immunoprecipitation from C- and N2-Src expressing HeLa cells followed by Western 

blotting for phosphotyrosine.  Point mutation of Plakophilin at the site of 

phosphorylation would provide some insight into the possible function of this 

phosphorylation event, alongside C- and N2-Src expression to determine whether this 

effect is splice-specific.   

 

4.3.7 Specific enrichment of the COPII coat in N2-Src overexpressing cells 

COPII vesicles are transport vesicles that carry cargo from the ER to the Golgi 

apparatus.  The COPII coat is made up of five proteins, the small GTPase Sar1, which 

initiates vesicle formation when activated by Sec12, and then recruits the COPII inner 

coat, composed of a Sec23/24 complex (Fig.  4-11B, (Gillon et al., 2012)).  The 

Sec23/24 complex has a slightly concave structure and formation of the Src23/24 

causes the bending of the membrane.  This vesicle is then further stabilised by an outer 

coat formed from a Sec13/31 complex (Fig.  4-11B).  The internal Sec23/24 complex 

is also responsible for recruiting cargo into the forming vesicle (Gillon et al., 2012).   

Unlike Sec23 and 24 isoforms, Sec16A doesn’t form a part of the COPII coat, 

however is required for the trafficking of the COPII coat from the ER to the Golgi, by 

acting as a scaffold on the ER membrane that defines the ER exit site (Fig.  4-11B, 

based upon (Gillon et al., 2012)).  Although there are many predicted Src 

phosphorylation sites and sites identified in the Phosphosite mass spectrometry 

database, there is no specific literature relating to Sec16A tyrosine phosphorylation 

relating to function (Fig.  4-11D).   
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Whilst none of the enriched COPII proteins above have any literature featuring 

the role of tyrosine phosphorylation in their regulation it is clear that one or more of 

these proteins are being specifically enriched by 4G10 IP in N2-Src expressing cells, 

resulting in the isolation of the whole complex.  This enrichment, uniquely for this 

study, was confirmed by Western blotting of C- and N2-Src samples with and without 

doxycycline treatment which corroborated the relative protein abundance in the IP 

demonstrated by the comparative %emPAI values.  Whilst it is impossible to identify 

which of these proteins is being specifically phosphorylated as a result of N2-Src 

overexpression using the data from this experiment, there are many tyrosine 

phosphorylation sites identified in the Phosphosite mass spectrometry database, 

several of which are identified by ScanSite or GPS to possess Src kinase domain 

substrate motifs.  This strongly suggests that perhaps an as-yet uncharacterised Src 

phosphorylation event is occurring on one of these proteins.  This up-regulation could 

affect Sec16 by regulating accumulation of COPII associated proteins in the ER, or by 

altering the affinity of Sec23/24 for specific COPII cargo. 

 

4.3.8 Other notable proteins increased in abundance in N2-Src samples 

Whilst the above proteins occur in large, well characterised functional clusters, 

suggesting that they may have been immunoprecipitated as a complex, there are other 

proteins that are significantly increased in abundance as a result of N2-Src expression 

which warrant further discussion (Table.  4-4). 

Although many translation and splice-associated proteins were identified as 

being highly enriched in the N2-Src (and C-Src) samples, hnRNP H3 is particularly 

noteworthy as it is associated with inclusion of the N1-Src micro-exon in neuronal 

Cells (Chou et al., 1999, Caputi and Zahler, 2001).  HNNRNP H3 has a N2-Src 

%emPAI score over two fold that of its C-Src score (0.38 & 0.15 respectively) 

suggesting that tyrosine phosphorylation of this protein or a protein that it associated 

is being up-regulated in N2-Src expressing cells (Table 4-4).  This presents interesting 

possibilities for auto-regulation of N2-Src expression. 
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Other proteins were also identified that are involved in vesicle formation and 

maintenance.  Two components of the retromer complex, VPS29 and VPS35 were 

identified at 2.3 and 1 log(2) increased abundance in N2-Src cells compared to C-Src 

(Table 4-4).  These proteins are key components of the retromer complex that retrieves 

lysosomal enzyme receptors from endosomes in the trans-Golgi network (Pfeffer, 

2001).  This localisation around the trans-Golgi network links in with previous data 

that shows an increased abundance of N2-Src around the TGN marker TGN46 (Fig.  

4-2).  Proteins of the retromer complex facilitate retrograde trafficking in order to 

recycle cargo proteins and trans-membrane receptors.  As part of this role this complex 

associates with several other proteins identified in the phosphotyrosine pull-down 

including Clathrin, HRS and Sec24b (Pfeffer, 2001).  Since no phosphotyrosine sites 

have been identified in the literature in the case of either protein it is possible they 

have been pulled down as the result of an interaction with another tyrosine 

phosphoprotein (Table 4-3).   

Whilst the adherens proteins listed above commonly associate with β-catenin 

at the adherens junctions, CARM1 is known to interact with and positively modulate 

β-catenin in its role as a gene transcriptional regulator as part of the Wnt signalling 

pathway (Ou et al., 2011).  CARM1 in N2-Src cells has almost three times the 

%emPAI score  than in C-Src (0.15 and 0.06 respectively) and has a phosphorylation 

site (Y172) that is identified in the Phosphosite mass spectrometry database and also 

identified as a Src kinase domain motif by GPS (Table 4-4). 

Cytoskeletal proteins CLASP2 and CKAP5 are interacting proteins that 

regulate the dynamics of microtubule dynamics.  Both had relatively low %emPAI 

scores in N2-Src samples (CLASP 0.022 and CKAP2 0.322), however this is still a 

four and two fold increase in abundance when compared to C-Src samples (Table.  4-

4).  What is particularly noteworthy is that, besides TCP1, the only known or predicted 

interactions of these proteins are between each other.  This interaction, as well as their 

abundance and the presence of predicted Src phosphorylation motifs that have been 

confirmed as phosphotyrosines in the Phosphosite MS database, suggests that one of 

these proteins is specifically phosphorylated as a result of N2-Src overexpression and 

that these proteins may have been pulled down together by the phosphotyrosine IP.   
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4.4 Concluding remarks 

The data clearly indicate that, when overexpressed in HeLa cells, C- and N2-

Src elicit significantly different effects upon the phosphotyrosine mediated regulation 

of the cells.  Whilst the data demonstrates this difference in tyrosine phosphorylation, 

the specific substrates differentially phosphorylated by C- and N2-Src cannot be 

confirmed by this study.  Only three phosphotyrosine peptides (Paxillin, BCAR1, 

Plakophilin-4) presented specific candidate tyrosine residues that could be followed 

up specifically in future studies. 

What this study does provide is a map of which functional groups of proteins 

contain elements that are specifically phosphorylated, providing an insight into 

systems that are differentially modulated by C- and N2-Src.  In addition, potential C- 

and N2-Src target residues on highly enriched proteins can be identified by use of the 

Phosphosite phosphoproteomics library, and Src kinase motif identification by GPS 

and ScanSite.  Of particular interest in this study is the cluster of proteins consisting 

of members of the COPII coat.  With no known C-Src associating protein and few 

notable interactions with other enriched proteins, it is tempting to suggest that one of 

these proteins is specifically tyrosine phosphorylated by N2-Src, or as a result of 

differential N2-Src signalling in the cell.   
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5  The role of Neuronal Src expression in the neuronal 

development of Xenopus 

5.1 Introduction  

Expression of the N1 isoform of Src has been identified in the EST libraries of 

both frog species X.laevis and X.tropicalis (Fig.  5-1A).  X.laevis is allotetraploid and 

so possesses two pseudoalleles of the C-Src gene.  These two genes have acquired 

polymorphisms over time, resulting in slightly different N1-Src micro-exons, both of 

which are 5 amino acids in length and share three common amino acids with 

mammalian N1-Src.  X.tropicalis is, however, a diploid, possessing a single copy of 

the xN1-Src insert, which is identical to X.laevis variant b. 

Xenopus species provide an excellent model for early neuronal development, 

undergoing signalling and patterning processes conserved in all vertebrates.  In 

vertebrates, neuronal cells are derived from ectodermal tissues induced towards a 

neural fate by signalling from the underlying mesoderm in the late gastrula.  In the 

absence of BMP signalling, the ectoderm of developing Xenopus embryos develops 

into neuronal tissues.  BMP signalling is almost ubiquitous in the ectoderm, and is 

only inhibited by the expression of Chordin, Noggin and Follistatin from the dorsal lip 

of the blastopore.  The presence of these neuralising factors, in addition to FGF 

signalling, inhibits BMP signalling, specifying the neural ectoderm towards a neuronal 

fate (Delaune et al., 2005).   

In amphibians, a small portion of these progenitor cells differentiate into neurons 

during the course of neurulation in a process known as primary neurogenesis and can 

be identified by expression of neuron-specific class II β-tubulin (N-tubulin) 

(Hartenstein, 1989, Moody et al., 1996).  The expression of N-tubulin and Sox3 

appears to be mutually exclusive during neurulation, reflecting their separate roles in 

differentiating and proliferating neuronal progenitors respectively (Bourguignon et al., 

1998).  This primary neuronal differentiation is the result of complex signalling 

involving a variety of pathways; mis-regulation of Notch, Wnt, RA, and sonic 

hedgehog signalling pathways can all result in disruption of primary neurogenesis 

(Nieber et al., 2013, Heeg-Truesdell and LaBonne, 2006, Chitnis et al., 1995). 
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X.laevis N-Src (xN1-Src) expression can be detected by mid-neurula stages 

(stage 15 (all Xenopus developmental stages listed refer to Neiuwkoop Faber (NF) 

stages)) and becomes spatially localised to the neural plate by late neurula (stage 16) 

(Collett and Steele, 1992).  The temporal and spatial localisation of xN1-Src to the 

prospective nervous system suggests that inclusion of the xN1-Src micro exon is 

concurrent with neuronal specification of the cells of the dorsal ectoderm that become 

the neural plate.  Studies using ectoderm explants have shown that xN1-Src expression 

is dependent upon the presence of the mesoderm underlying the neural ectoderm.  In 

the absence of neural inductive signals from the mesoderm, xN1-Src isn’t expressed 

and the cells do not express neuronal markers (Collett and Steele, 1993).  Further to 

this, xN1-Src expression can be induced in a rapid, protein synthesis-independent 

manner by mimicking mesoderm induction signals using the PKC activator 12-O-

tetradecanoylphorbol-13-O-acetate (TPA) (Collett and Steele, 1993). 

In order to further elucidate the roles of neuronal Srcs during normal 

developmental processes, I have used both the tetraploid Xenopus laevis and diploid 

Xenopus tropicalis to analyse the endogenous roles of xN1-Src and the effects of 

mammalian N-Src overexpression. 

 

5.2 Results 

5.2.1 xN1-Src replicates the cytoskeletal rearrangement caused by N1-Src in 
fibroblasts 

To confirm that xN1-Src has a similar biological activity to mammalian N1-

Src, the neuritogenesis assay established in Chapter 3 was conducted in COS7 

fibroblast cells.  Cells were co-transfected with soluble CFP (to aid the visualisation 

of cell morphology) and a FLAG tagged Src construct or vector control.  In addition 

to the previously described FLAG-tagged mammalian C-, N1-, and N2-Src constructs, 

X.laevis N1-Src variant b cDNA (Fig.  5-1A, IMAGE clone: 5572523 (Lennon et al., 

1996)) was cloned into the same pFLAG plasmid and transfected alongside the 

mammalian variants.  X.laevis xN1-Src variant b was used because it is identical to 

X.tropicalis xN1-Src.  At least 30 fields of view were imaged at 40X (Fig.  5-1B) and 

analysed for each of three replicates and the cells were quantified by counting the 
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number of cells bearing one or more processes.  Processes were defined as having a 

length exceeding one diameter of the cell body and a width of less than 2 µm.  The 

number of process-producing cells was expressed as a proportion of the total cells.   

In both control cells and those transfected with C-Src, the number of cells producing 

processes was 12 ± 1% (Fig 1C).  By comparison, N1-Src showed 37 ± 5% process 

outgrowth and N2-Src induced outgrowth in 45 ± 2% of cells (Fig 1C).  Transfection 

with xN1-Src had a comparable effect upon cells to mammalian N1-Src both in terms 

of process number (34 ± 5%) and in the overall morphological phenotypes exhibited 

by the cells (Fig 1B, C).  This highly significant effect of xN1-Src on the morphology 

of a heterologous cell line, in line with that demonstrated by mammalian N1-Src, 

demonstrates a highly similar biological activity, confirming the Xenopus model as an 

appropriate model system with which to study the function of N1-Src in development.   

 

5.2.2 xN1-Src expression correlates with Xenopus primary neurogenesis 

Previous data from stage 15 neural plate explants (mid-neurulation) showed 

that xN1-Src mRNA expression was restricted to the neural plate during primary 

neurogenesis (Collett and Steele, 1992).  Based on this expression pattern, these 

researchers hypothesised that xN1-Src is likely to have a role in neurite outgrowth, 

however because the induction of neuronal marker expression begins between stages 

10 and 12, they felt it unlikely that has a role in primary neurogenesis.  In order to 

more accurately determine the initiation point of xN1-Src expression I performed a 

Figure.  5-1 (page 154).  Effect of xN1-Src on COS7 cell morphology.   
A) Nucleotide and amino acid alignment of the N1-exon in human and Xenopus 
species.  B) Example cells from overexpressed of Src isoforms in the mammalian 
vector pFLAG in the monkey kidney fibroblast cell line COS7.  10 µm scale bar.  
Cells were co-transfected for four days with pFLAG Src constructs as well as pmCer 
- a CFP expression vector.  Cells were then stained for the FLAG epitope as well as 
for CFP, using an anti-GFP antibody to increase the brightness of the CFP signal.  
The staining showed is for the FLAG epitope attached to the Src constructs with the 
exception of the CFP control in which CFP staining is showed.  C) Quantification of 
process outgrowth in COS7 cells.  n=3.  Process outgrowth is defined by an extension 
longer than one diameter of the cell body less than 2 µm in diameter.  Significance 
measured by Kruskal-Wallis two tailed analysis of variants.  * =<0.05 ***=<0.001. 
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similar rtPCR time-course of xN1-Src expression during embryonic development.  For 

this experiment I used the diploid frog species Xenopus tropicalis to avoid introducing 

the unnecessary complexity of tetraploid gene regulation in X.laevis (Fig 1A).  

X.tropicalis embryos were flash frozen at time-points from stage 3 during cleavage, 

through to stage 25 at the end of neurulation.  RNA isolated from the embryos was 

then prepared for rtPCR and probed with three sets of primers. 

Primers for the 60S ribosomal protein L8 were used as a loading control, as its 

expression level is known to be relatively consistent throughout early Xenopus 

development (Sindelka et al., 2006)(Fig.  5-2B, C).  Pan-Src primers that amplify 

across the junction between exons 3 and 4, at which neuronal splicing occurs, were 

used to detect the expression levels of C- and xN1-Src simultaneously (Fig.  5-2A).  

These primers showed that Src mRNA is present in the maternal RNA pool and 

increases at stage 12, the onset of neurulation, stage 12 (Fig.  5-2C).  The majority of 

the signal from the Pan-Src primers is that of C-Src, with only weak xN1- and xN3-

Src signals visible.  This is likely due to the restricted expression of neuronal isoforms, 

by comparison with the ubiquitous expression of C-Src in all cells during 

development.  To identify neuronal splice variant levels over time without the large 

C-Src background, xN1-Src-specific primers were designed.   

Figure.  5-2 (page 156).  Temporal expression of neuronal Src isoforms during 
Xenopus neurulation.   
A) Design of the primers used for Xenopus tropicalis rtPCR.  The forwards primer 
in red was used in both Pan-Src and xN1-Src specific PCR reactions.  The xN1-Src 
specific primer in green overlapped the xN1-Src exon, excluding the possibility of 
C-Src amplification.  The reverse Pan-Src in blue binds in exon 4 amplifying, in 
combination with the red forwards primer, C-Src sequence and any exons inserted 
between exons 3 and 4.  B) rtPCR time-course of X.tropicalis Src expression.  Xn3- 
and XN1-Src isoforms were identified by the xN1-Src specific reverse primer.  
PAN-Src signal used the Pan-Src reverse primers.  L8 primers are used as a control.  
All primers, annealing temperatures and extension times are listed in materials and 
methods.  The time-course was taken from untreated X.laevis embryos and the PCR 
products ran on a 15% TBE polyacrylamide gel.  C) Quantification of (B).  Band 
intensity was measured using ImageJ and normalised against L8 control in Microsoft 
Excel.  Datapoints are plotted in arbitrary units on the y axis, and developmental 
stage on the y axis.  D) Nucleotide and amino acid sequence of xN3-Src aligned to 
xN1-Src. 
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The reverse xN1-Src primer spans the xN1-Src micro-exon at its 3’ end and 

the 5’ end of exon 4 of C-Src, thus preventing amplification of C-Src isoforms (Fig.  

5-2A).  xN1-Src was barely detected in the maternal RNA (stage <7), but increased 

significantly during late gastrula and neurula stages (stages 12.5 – 20).  xN1-Src 

expression begins increasing at stage 12, peaking at stage 17 and decreasing to lower 

expression levels post-neurulation (stage 25) (Fig.  5-2B, C). 

Surprisingly, the xN1-Src-specific primers also amplified an additional 

product of approximately 340 base pairs, with expression levels concomitant with that 

of xN1-Src (Fig.  5-2B, C).  Cloning and sequencing this additional band confirmed 

that it was an additional splice variant of Src, inserting 70 bases between exon 3 of C-

Src and the xN1-Src micro-exon.  This novel splice variant, which we termed xN3-

Src, begins immediately 5’ to the xN1-Src sequence, however inclusion of the xN3-

Src exon introduces a stop codon, followed by a frame-shift immediately prior to the 

xN1-micro-exon (Fig.  5-2D).  The stop codon occurs in the n-src loop of the SH3 

domain, rendering the SH3 domain incomplete as critical residues for SH3 folding 

occur after this point.  Therefore, xN3-Src splice variant does not encode a functional 

SH3 domain and would lack both SH2 and kinase domains (Fig.  5-2D).   

 

5.2.3 Mammalian neuronal Src overexpression causes posteriorisation in 
X.laevis 

Having confirmed that the expression of xN1-Src correlates with the timing of 

primary neurogenesis and neurulation, I sought to causally link these phenomena by 

perturbing N-Src expression levels in Xenopus species.  First, mammalian FLAG-

tagged Src constructs were overexpressed in X.laevis.  Varying doses of the mRNA 

were injected dorsally at the 4 cell stage, targeting the cells that later form the neural 

tissues of the embryo.  Embryos were then incubated until larval stage 42, allowing 

formation of major structures and body patterning and ensuring developmental defects 

are highly pronounced.   

Whilst C-Src over-expression exhibited no significant effects upon the 

patterning of the embryo, even at the highest doses of 500 pg (n=19), both neuronal 

splice variants exhibited strong dose-dependent phenotypes (Fig.  5-3A).  N1-Src 
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Fig. 5-3 . Effect of mammalian N-Src expression on Xenopus laevis development. 
A) Overexpression of mammalian Src variants in Xenopus laevis. Embryos were injected at 2 and 4 
cell stage and allowed to develop to approximately stage 40. The percentages in white indicate the 
proportion of embyros showing anterior defects. C-Src: 125 pg n=12, 250 pg n=14, 500 pg n=19; N1-
Src: 125 pg n=125, 250 pg n=19, 500 pg n=17; N2-Src: 125 pg n=17, 250 pg n=19, 500 pg n=22; 
mRFP control n=19; uninjected controls n=11. B) Western blot of the above phenotypes, samples 
flash frozen at stage 17. Membrane probed for detection of the FLAG epitope attached to Src splice 
variants and of Y416 phosphorylation. Coomassie staining is shown as a loading control. FLAG was 
blotted at an exposure of 1 minute is shown, in addition to an extended 40 minute exposure of the film 
to demonstrate the presence of N2-Src FLAG signal.

A

B

159



mRNA injection caused crano-facial defects in 75% of n=19 embryos injected with a 

250 pg dosage.  500 pg of N1-Src mRNA increased the penetrance of this phenotype 

with 84% of n=17 embryos exhibiting crano-facial defects and often failing to form 

anterior structures (Fig.  5-3A).  In N2-Src injected embryos, even at the lowest dosage 

of 125 pg, significant loss of anterior structures was observed in 94% of n=17 embryos 

(Fig.  5-3A).  These embryos showed a significant reduction in anterior structure 

formation, with the majority of embryos developing only one central eye, and a 

misplaced or absent cement gland.  The posteriorisation became even more 

pronounced in the 250 pg N2-Src injections with dramatic posteriorisation causing a 

failure to form any head structures (n=19, Fig.  5-3A).  The aberrant signalling induced 

by 500 pg of N2-Src caused resulted in cells lacking dorsal structures, as the injected 

embryos failed to properly gastrulate.  This phenotype was repeated in an independent 

experiment injecting the 125 pg dose (data not shown).  The posteriorising effects of 

N-Srcs demonstrate a significant divergence in the intracellular functions of C- and N-

Srcs, suggesting that N-Srcs act upon different developmental signalling processes 

compared to C-Src.   

To confirm that the embryos injected with Src mRNA were expressing Src 

protein, 5 embryos from each condition were flash frozen in dry ice at stage 13.  These 

embryos were then lysed in SDS sample buffer and the lysates probed by Western 

blotting.  Increasing doses of mRNA correlated with increased FLAG 

immunoreactivity, however the detection of the N-Src FLAG signals was significantly 

lower than that of C-Src (Fig.  5-3B).  N1-Src FLAG signals were lower than C-Src 

but readily observable, whereas detection of N2-Src FLAG immunoreactivity required 

much longer radiographic film exposure.  In line with previous observations in 

mammalian cell lines, pY416 immunoreactivity was highest in N1- and N2-Src (Fig.  

5-3B).   

 

5.2.4 Injection of endogenous xN1-Src into Xenopus embryos 

The effect of expressing xN1-Src mRNA was also assessed.  The same xN1-

Src-FLAG construct used in the aforementioned COS7 cell line was cloned into the 

pCS2+ plasmid, retaining the fused C-terminal FLAG tag, and mRNA was transcribed 
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in vitro.  Injections of several different doses of xN1-Src mRNA did not yield a 

significant phenotype.  Dorsal injections at the 4 cell stage of up to 500 pg were 

tolerated by the embryo, without the development of a perceivable phenotype (Fig.  5-

4).  This could be due to the ability of the embryo to better tolerate high levels of this 

endogenous isoform, particularly when localised to the neural plate.   

5.2.5 Design of a morpholino to specifically skip xN1-Src micro-exon inclusion 
in vivo 

In order to knock down expression of endogenous xN1-Src, morpholino 

technology was employed.  C-Src is known to have wide-ranging roles within the cells, 

essential in many signal transduction cascades and developmental processes, as such 

any method to knock down xN1-Src has to avoid affecting C-Src expression.   

Morpholinos bind RNA through complementary nucleic acid bases that are 

bound to morpholine rings instead of the deoxyribose/ribose ring of RNA.  Each 

Morpholino subunit is also bound to the next by a phosphorodiamidate group rather 

than the phosphate groups of nucleic acids (Summerton and Weller, 1997).  These 

changes result in a molecule which is much more stable, less charged and has a high 

binding affinity for RNA, allowing the use of short, highly specific sequences to target 

mRNA.  A particular advantage of morpholino technology is its ability to bind pre-

mRNA before the splicing machinery affects inclusion of the exons in the final 

transcript.  By using two morpholinos targeted to the donor and acceptor splice sites 

of the xN1-Src micro-exon (Collett and Steele, 1992) it is possible to prevent the 

Figure.  5-4.  Effect of xN1-Src on Xenopus laevis development. 
Fixed stage 42 phenotypes of X.laevis embryos injected with Xenopus laevis N1-Src 
variant B, or C-Src at 2 and 4 cell stages.  Two embryos shown per condition, the 
proportion of embryos showing malformation is indicated in white.  This effect is seen 
in at least two other experiments under similar conditions. 
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TTCTCTTTCCCTCACATGCTGTGCCATAGGAGACCTGACATGAGGTATGTGACCATCCGGCGGCCATATTTGTGC

MO - Acceptor

MO - Donor
TTCTCTTTCCCTCACATGCTGTGCCATAGGAGACCTGACATGAGGTATGTGACCATCCGGCGGCCATATTTGTGC

A

Fig. 5-5. Confirmation of xN1-Src Morpholino function. 
A) Exon skipping xN1-Src Morpholino design. Donor and acceptor Morpholinos were designed with 
the assistance of staff at Gene Tools. The Morpholinos are designed to be used in combination to 
anneal to and inhibit the donor and acceptor splice sites. The Morpholino is indicated in red, exons 3 
(left) and 4 (right) of Src in blue, and the xN1-Src exon in green. B) rtPCR testing the efficiency of 
Morpholino exon skipping by injection of 625 pM of each XN1-Src Morpholino. The embryos were 
injected bi-laterally at 2 and 4 cell and flash frozen at stage 15. xN1-Src abundance in cDNA and noRT 
control samples was identified by PCR using xN1-Src primers (which also identify xN3-Src), Pan-Src 
primers and L8 primers. Amplified DNA samples were run on 15% TBE polyacrylamide gels.

C-Src

xN1-Src

xN3-Src

xN3-Src

RT no RT
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B
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splicing machinery from including the xN1-Src micro-exon in the final transcript (Fig.  

5-5A).  For this series of experiments  Xenopus tropicalis was used rather than laevis 

because the latter has two versions of xN1-Src exon in its tetraploid genome with 

differing nucleotide sequences  (Collett and Steele, 1992) (Fig.  5-1A). 

To confirm the effectiveness of the donor and acceptor xN1-Src morpholino 

combination, 10 ng of each morpholino was co-injected into Xenopus tropicalis 

embryos at the 2 cell stage (Fig.  5-5A).  Total mRNA was extracted from these 

embryos at stage 17 and rtPCR was performed on the samples to confirm the 

knockdown of xN1-Src and the preservation of xC-Src expression.  xN1-Src was 

knocked down almost entirely and the additional splice variant xN3-Src (expressed 

concomitantly with xN1-Src) was undetectable (Fig, 5B).  The results also showed 

that xC-Src expression remains unaffected sequencing suggests that the mRNA 

sequence across the exon 3/exon 4 boundary of xC-Src is unchanged by altered 

splicing (data not shown). 

 

5.2.6 xN1-Src knockdown causes aberrant tail formation and a severe 
locomotive phenotype 

The combination of xN1-Src donor and acceptor targeted morpholinos (xN1-

Src morpholinos) was injected bilaterally at the 2 cell stage at doses of 625 pmol and 

1250 pmol (approximately 10 and 20 ng respectively) across the embryo.  Whilst a 

625 pmol dosage gave no significant phenotype in the embryo, doubling the dose 

resulted in a dramatic effect upon the tail development of the embryo, in addition to a 

locomotive defect (Fig.  5-6A, B).  Embryos injected with an identical dosage of a 

standard control morpholino sequence did not develop any phenotype, allowing us to 

rule out morpholino toxicity as a cause of any phenotypes. 

xN1-Src morpholino-induced malformation of the tail is a highly penetrant 

phenotype, occurring in 95% of n=40 embryos (Fig.  5-6A).  In this condition the 

dorsal portion of the embryo was consistently shortened and the tail was usually angled 

downwards, as opposed to protruding straight out from the body, as is seen in 

uninjected and control morpholino conditions (Fig.  5-6A).   
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Healthy stage 40 embryos are capable of sensing touch and respond with a fast, co-

ordinated movement; first righting themselves from a resting position on their sides, 

then immediately swimming away from the stimulus, as is seen in embryos injected 

with control morpholino (Fig.  5-6B).  Whilst the ability for xN1-Src knockdown 

embryos to sense the touch stimulus was not impeded by xN1-Src knockdown, the 

ability for co-ordinated movement in response to the stimulus was absent in 88% of 

embryos (Fig.  5-6C).  xN1-Src knockdown embryos responded to the stimulus with 

a characteristic twitching phenotype, which propelled the embryo slowly forwards, 

maintaining flank downwards position, rather than righting themselves to a normal 

dorsal-up orientation (Fig, 5-6B; Fig.  5-6, video attached to thesis).  This does not 

appear to be as a result of aberrant somite formation, as somites appear to form in their 

typical ‘chevron’ pattern with and without xN1-Src knockdown, as indicated by lacz 

accumulation shown in figure 5-6A.   

 

5.2.7 xN1-Src knockdown inhibits n-tubulin expression at primary 
neuritogenesis 

In order to confirm whether the cause of the morpholino-induced locomotive 

defect is derived from altered body patterning, or aberrant neuronal development it 

Figure.  5-6 (page 164).  Effects of exon-skipping xN1-Src Morpholinos on 
Xenopus tropicalis development.   
Embryos were injected with 1250 pmol total of xN1-Src or control Morpholino bi-
laterally at stages 2 and 4 and allowed to develop to approximately stage 42.  A) Fixed 
phenotypes of xN1-Src Morpholino and control morpholino injections.  Embryos are 
stained with lacz (blue).  The experiment was performed twice.  The proportion of 
embryos with significant abnormalities is indicated in white.  Replicate 1; cMO n=27, 
xN1-MO n=40.  N replicate 2; cMO n=21, xN1-MO n=37.  3x magnified images of 
somites are shown, taken from the regions shown by white boxes.  B) Locomotive 
phenotype of control and xN1-Src morpholino injected embryos.  This experiment 
was performed twice, however in the first instance the same phenotype was observed 
but not recorded.  Video of this phenotype is available on an attached CD as Fig.  5-
6D.  Embryos were filmed at room temperature in 1% agarose coated dishes and 
filmed at rest then moving in response to physical stimulation.  The image shows the 
movement of the embryos from the point of contact to the next frame of the video.  
C) Quantification of the movement phenotype observed in (B).  Embryos response to 
physical stimulation was classified as either a ‘dart’ or a ‘twitch.  ‘Dart’ phenotypes 
righted themselves and swiftly swam a short distance from the point of contact, 
‘Twitch’ phenotypes remained horizontal and moved slowly from the point of contact 
by an uncoordinated twitching movement.  D) Attached video file of the phenotype 
shown in (B). 
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was necessary to study the differentiation of neurons during neurogenesis.  One of the 

key advantages of gene expression in Xenopus species is the ability to target one half 

of the embryo by injecting material unilaterally at the two cell stage.  Unilateral 

injections are particularly useful for in situ hybridisation analysis of mRNA 

expression, as direct comparison of expression levels and localisation can be made 

between the experimental and contralateral sides of the embryo.   

In separate experiments, 625 pmol and 313 pmol of the xN1-Src morpholinos 

were unilaterally co-injected with lac-z tracer mRNA, in order to later identify the 

experimental hemisphere.  The embryos were then fixed for in situ hybridisation at 

stage 14.  Corresponding bilateral injections of the same dosage were performed 

alongside unilateral injections, and the embryos incubated to stage 40-42 to identify 

overall patterning or locomotive phenotypes.   

At Xenopus stage 14, the neural plate is a flat portion of the dorsal ectoderm, 

undergoing neural specification as a result of signalling from the underlying 

mesoderm.  Progenitor neurons are beginning to differentiate in the neural plate, and 

can be identified by in situ hybridisation for N-tubulin staining, a well-studied marker 

of Xenopus primary neurogenesis (Min et al., 2011, Blumberg, 1997).  N-tubulin 

staining labels three stereotypic domains of N-tubulin expression, which (from outside 

to in) label the sensory, inter and motor neurons (Fig.  5-7A).   

N-tubulin bands are observed in embryos injected with 313 pmol and 625 pmol 

of control morpholino, however in 30% and 24% of the respective embryos, the 

injected hemisphere appears to have decreased n-tubulin expression (Fig.  5-7B, C).  

Figure.  5-7 (page 166).  Effects of exon-skipping xN1-Src Morpholinos on n-tubulin 
expression during primary neurogenesis.   
A) Diagram depicting stereotypical N-tubulin staining at stage 14 of Xenopus 
development.  B) Control and xN1-Src Morpholino injection (625 and 1250 pmol total) 
effects on N-tubulin expression detected by in situ hybridisation.  Embryos were injected 
unilaterally at 2 and 4 cell stage with 625 or 1250 pmol of total Morpholino, in addition 
to between 50-100pg of lacz mRNA.  Embryos are oriented anterior upwards and the 
hemisphere of injection is indicated by an asterisk.  N-tubulin in situ staining is in purple 
and lacz staining is in blue.  625 pmol; xN1-MO n=24, cMO n=22.  1250 pmol; xN1-MO 
n=20, cMO n=23.  C) Quantification of (B) the proportion of embryos showing decreased 
N-tubulin expression on the side of injection is expressed as a percentage of total embryos.  
For the control Morpholino samples of the 625 pmol injection the lacz stain failed, so 
embryos were counted where significant asymmetry of N-tubulin signal between 
hemispheres of the embryo were counted as N-tubulin depleted. 
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Fig. 5-8.  Effects of exon-skipping xN1-Src Morphoinos on Sox3 expression during primary 
neurogenesis. 
A) In situ hybridisation staining for Sox3 mRNA expression. Embryos were injected unilaterally at 2 
and 4 cell stages with 625 pmol of either control or combined xN1-Src Morpholinos in addition to 50-
100 pg of lacz mRNA. Sox3 staining is shown in purple, lacz staining shown in blue. The hemisphere 
of injection is indicated by astrices, however control Morpholino embryos failed to stain for lacz. B) 
Quantification of (A). Embryos showing asymmetrical Sox3 expression were expressed as a 
percentage of total embryos. The widths of the Sox3 bands were measured where indicated in white 
(A).  xN1-MO n=21, cMO n=23.
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In both 313 pmol and 625 pmol xN1-Src morpholino injections, a significant decrease 

was observed in the amount of n-tubulin expressed on the side of injection.  With the 

lower dose this decrease in expression occurs in 80% of the embryos and was limited 

to the sensory neurons and often the inter-neuron stripe appeared shorter or weaker 

(Fig.  5-7B).  When the larger 625 pmol dose of xN1-Src morpholino was injected, 

there was an almost complete ablation of n-tubulin expression on the side of injection 

in approximately 90% of the embryos (Fig.  5-7C).  This indicates that xN1-Src is 

necessary for the normal expression of at least a subset of neuronal marker genes at 

the start of neuronal differentiation. 

 

5.2.8 xN1-Src knockdown does not decrease Sox3 expression during 
neurulation 

To identify whether xN1-Src has an effect on neuronal, the expression of Sox3 

was analysed by in situ hybridisation.  Sox3 is expressed throughout the entire neural 

ectoderm starting at late gastrulation stages.  During neurulation Sox3 is highly 

expressed in the neural plate in the undifferentiated neuroectoderm cells covering the 

area between the motor neuron and inter neuron stripes of N-tubulin expression 

(Bellefroid et al., 1998, Moody and Je, 2002).  X.tropicalis embryos were injected 

unilaterally at two and four cell with a total of 625 pmol of xN1-Src morpholino and 

incubated to stage 14 when they were fixed and probed by in situ hybridisation.  Whilst 

xN1-Src knockdown decreases N-tubulin expression, indicative of an inhibition of 

primary neurogenesis, Sox3 expression does not appear to be affected in the same way 

(Fig.  5-8A).  No significant change in the amount of Sox3 expression was observed 

between control and xN1-Src morpholino.  That said, 75% of n=21 xN1-Src 

morpholino injected embryos had asymmetrical expression of Sox3 (Fig.  5-8B).  This 

asymmetry manifested as either a widening of the Sox3 band on the side of injection 

and/or a blurring of the boundary between cranial and spinal Sox3 expression regions.  

This contrasts sharply with only 25% asymmetry observed in n=24 controls.  This 

result suggests that, whilst xN1-Src knockdown decreases the primary neurogenesis, 

as indicated by reduced N-tubulin expression, xN1-Src knockdown does not 

negatively affect neuronal specification.  On the contrary, decreased xN1-Src 
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Fig. 5-9. xN1-Src Morpholino rescue. 
A) xN1-Src Morpholino rescue experiment. Locomotive phenotype of control and xN1-Src 
Morpholino injected embryos in addition to a rescue condition where 500 pg of xN1-Src RNA was 
added to the xN1-Src Morpholino condition. Embryos were filmed at room temperature in 1% agarose 
coated dishes and filmed at rest then moving in response to physical stimulation. The image shows the 
movement of the embryos from the point of contact to the next frame of the video. B) Quantification of 
(A) the response of the embryos to physical stimulation was classified as either a ‘Dart’ or a ‘Twitch’ 
response. These responses were counted for each condition and expressed as a percentage. Uninjected 
controls n=31, xN1-Src overexpression n=23, xN1-MO n=26, rescue n=24. 
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expression may maintain more neuro ectoderm cells in an undifferentiated, 

proliferative phenotype demonstrated by broader Sox3 expression. 

 

5.2.9 Attempting to rescue xN1-Src knockdown with xN1-Src mRNA 
expression 

In an attempt to discover whether any off-target effects of the xN1-Src 

morpholinos are responsible for the xN1-Src morpholino phenotypes, a rescue 

experiment was conducted using the xN1-Src morpholinos co-injected with xN1-Src 

mRNA.  This experiment was possible because xN1-Src morpholinos only target pre-

mRNA, before splicing has occurred, so should not bind to mature xN1-Src mRNA.  

In the rescue condition, 1250 pg of combined xN1-Src morpholino was co-injected 

with 500 pg of mRNA bilaterally into embryos at 2 cell and 4 cell stages.  Controls 

were also injected for mRNA and morpholino only, and healthy embryos were also 

selected as uninjected controls.  These embryos were allowed to develop to stage 42, 

at which point the locomotive phenotype was assayed and recorded. 

Under these conditions xN1-Src mRNA did not significantly rescue the 

morpholino induced phenotype, which in this experiment was far less penetrant than 

has previously been observed (Fig.  5-9A, B).  Only 55% of embryos expressed the 

twitching phenotype, down from 90% in previous experiments.  The number of 

embryos exhibiting this phenotype was not decreased with the addition of xN1-Src 

mRNA, with only 5% fewer embryos showing a locomotive phenotype (Fig.  5-9B).   

 

5.3 Discussion 

In this chapter, the data have revealed a significant up-regulation of endogenous 

Xenopus N1-Src during neurulation and primary neurogenesis.  When inclusion of the 

xN1-Src micro-exon is prevented, there is a significant decrease in locomotion of the 

embryos in response to touch stimulus, coupled with a decrease in the expression of 

neuronal markers at primary neurogenesis.  Taken together, these data suggest an 

essential role for N-Src expression for effective neurogenesis during early 

development. 
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5.3.1 xN1-Src as a model for N1-Src in development 

The endogenous Xenopus N1-Src provides an excellent model for the roles of 

mammalian N1-Src during development.  Previous studies have shown that 

mammalian and Xenopus N1-Src share significant sequence homology and are both 

exclusively expressed in tissues of the neural plate which gives rise to neurons during 

primary neurogenesis (Martinez et al., 1987, Levy et al., 1987, Raulf et al., 1989).  

Transient transfection of the fibroblast cell line COS7 with mammalian N-Src 

constructs has previously been shown to have a profound effect upon cellular 

morphology (Keenan et al, unpublished).  Whilst C-Src overexpression increases cell 

body area, N1 and N2-Src overexpression induce decreased cell body size and a 

significant amount of outgrowth of neurite-like processes, as is seen in neuroblastoma 

cells in Chapter 5.  Although N1-Src is highly conserved through evolution, there are 

differences between the xN1-Src and N1-Src amino acid sequences that might cause 

these splice variants to have different cellular functions.  Since C- and N-Srcs elicit 

such quantifiably distinct phenotypes upon fibroblast cells, the COS7 experimental 

system was useful for revealing any differential cellular effects of xN1- and N1-Src.  

My data show that both mammalian and Xenopus derived N1-Src induce significant 

cytoskeletal rearrangement, encouraging outgrowth of neurite-like processes in a 

fashion similar both in their morphology and their rate of occurrence (Fig 1B, 1C).  

The largely comparable phenotypes of N1-Src and xN1-Src splice variants within the 

cells suggests that the function, and substrates, of these genes have been conserved 

throughout evolution.  This also adds weight to the idea that the functions of xN1-Src 

during amphibian neuronal development will be conserved in mammals and therefore 

that Xenopus species will make an excellent model to study the roles of neuronal Srcs 

during development. 

These data support published data in several systems, both in vitro and in vivo, 

which have shown that N1-Src expression is closely linked to the times of neuronal 

differentiation or specification (Cartwright et al., 1987).  Induction of neuronal 

differentiation by serum starvation in rat striatum (Cartwright et al., 1987), neural 

induction in ectoderm by mesoderm derived signals  (Collett and Steele, 1993) and 

retinoic acid in embryonal carcinoma cells (Lynch et al., 1986) all result in greater 
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than seven-fold increases in N1-Src expression and activity above that of C-Src.  In 

the developing mouse brain N1-Src activity and expression peaks when the number of 

differentiating neuroblasts is at its highest level (Wiestler and Walter, 1988).  The 

significant effect of neuronal Srcs on the morphology of a heterologous cell line also 

demonstrates a profound effect upon signalling pathways controlling cytoskeletal 

rearrangement by all neuronal variants.  Taken together, these data demonstrate that 

N1-Src expression is consistently expressed concurrent with neuronal differentiation, 

though the specific role played by N1-Src in the organisation of neurite outgrowth and 

associated differentiation processes or in the specification of neuronal progenitors for 

differentiation has yet to be elucidated. 

 

5.3.2 Increased xN1-Src expression begins at the very beginning of neurulation 

By clarifying the time-course of expression of xN1-Src mRNA in early 

Xenopus development, I have shown that although xN1-Src is not detected in the 

maternal mRNA pool, xN1-Src is expressed at detectible levels when zygotic 

transcription begins at the mid-blastula transition (MBT); stage 8.  xN1-Src expression 

increases dramatically immediately prior to the beginning of neurulation,  peaking at 

stage 18, late neurula, and remaining high throughout neurulation before dropping to 

lower levels at stage 20 once neurulation is complete (Fig.  5-2B, C).   

The peak in xN1-Src expression correlates strongly with the decreased mitotic 

activity and increased differentiation in the neural plate identified at stages 17 and 18 

(Hartenstein, 1989).  This correlation between increased neuronal differentiation and 

increased expression of xN1-Src supports a hypothesis that N1-Src is a key regulator 

of neuronal expression during development.  Collett and Steele (1992) proposed that 

the expression pattern of xN1-Src, as well as previous literature on its intracellular 

localisation in dendritic processes and axons suggests N-Src regulates growth cone 

morphology.  The specific focus on growth cone formation rather than other cellular 

events associated with differentiation was due to the authors detecting xN1-Src mRNA 

expression at stage 15, but not at stage 11.  Their suggestion is that early markers of 

neuronal specification such as N-CAM expression begin between stages 10 and 12 

and xN1-Src expression is later than this, so unlikely to take part in early neuronal 

173 
 



differentiation.  My data show xN1-Src expression is detectable at stage 8, and 

expression begins increasing between stages 10½ and 12 (Fig.  5-2C), suggesting that 

N1-Src is expressed in direct response to the same early differentiation cues as the 

very earliest markers of neuronal specification.  Collett and Steele (1993) themselves 

later demonstrated that xN1-Src mRNA is expressed in TPA treated ectoderm in a 

protein synthesis independent fashion by blocking protein synthesis with 

cyclohexamide.  TPA has previously been shown to induce neural differentiation in 

competent ectoderm via PKC, which suggests that xN1-Src expression is occurring 

rapidly in response to early signal transduction events that are regulating splice 

regulators by post-translational modification (Otte et al., 1988).  The expression occurs 

30-60 minutes after TPA treatment, causing Collett and Steele to suggest that xN1-Src 

would be well suited as a marker for neural induction.  This rapid xN1-Src expression 

in response to neural induction places its expression at the very earliest point in 

neuronal differentiation which lends weight to the hypothesis that it is involved in 

much earlier neural differentiation processes than neurite outgrowth, which begins at 

stage 20 (Kullberg et al., 1977).  Although no work has yet identified the expression 

levels of N1-Src during neurulation in mice, data from Wiestler and Walter (1988) 

shows that N1-Src activity later in mouse brain development peaks during the highest 

period of neuronal precursor differentiation of the brain. 

It is noteworthy that xN1-Src expression decreases around stages 20-25, after 

neurulation is complete and other body patterning is occurring (Fig.  5-2C).  This 

decrease in xN1-Src expression seems to contradict a hypothesis that xN1-Src is 

associated with growth cone formation and neuronal differentiation.  Interestingly, this 

decrease was also present at stage 26 in the time-course published by Collett and Steele 

(1992).  This sudden decrease in xN1-Src expression levels occurs during a period of 

increased mitotic activity in the neural plate (Hartenstein, 1989).  Whilst almost no 

divisions are occurring in neural tissues at stages 17 and 18, following stage 20 mitotic 

activity is resumed (Hartenstein, 1989).  Collett and Steele showed that by stage 30, 

the expression level of xN1-Src had increased once more, suggesting that xN1-Src 

expression is only transiently suppressed during the period of increased mitotic 

activity in neural progenitors immediately following neurulation, and expression 

increases once more during later phases of neurogenesis.  This further correlates with 

a role for xN1-Src in the differentiation of neuronal progenitors. 
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5.3.3 Expression of the novel Src splice variant xN3 

Utilising primers that overlapped the xN1-Src/exon 4 boundary I have also 

identified a novel splice variant of Src that we termed xN3-Src (Fig.  5-2D).  xN3-Src 

is consistently less abundant than xN1-Src in the cDNA, however changes in mRNA 

abundance during neurulation are remarkably well conserved between xN1- and xN3-

Src (Fig.  5-2C).  Introduction of the 70 base pair xN3-Src exon immediately prior to 

the xN1-Src micro-exon also causes a frame-shift and introduces a stop codon prior to 

the xN1-Src exon (Fig.  5-2D).  Translation of xN3-Src would be terminated before 

the SH2 and kinase domain, as well as before residues essential for SH3 stability and 

subsequently the xN3-Src variant would not encode a functioning tyrosine kinase.  

Whist the resulting protein would be non-functional as a kinase, the presence of the 

sequence in the cDNA implies a functional mRNA of the splice variant is being 

actively expressed, and potentially translated.  The xN3-Src cDNA does code for a 

complete N-terminal unique domain, which is proposed to have roles in regulating the 

intracellular localisation and activity of C-Src, in response to phosphorylation events 

(Amata et al., 2014).  It is, therefore, not unreasonable to hypothesise that xN3-Src 

may have roles as a scaffold protein, or a competitive inhibitor of phosphorylation by 

C-Src or xN1-Src, mediated by the N-terminal unique domain, myristoylation site and 

incomplete SH3 domain.  Discovering whether xN3-Src performs these roles would 

be interesting, however, the fact that no similar variants have been identified in 

mammalian development (a BLAST search for highly similar sequences returns only 

Collett and Steele’s (1992) genomic sequence of the xC-Src intron 3), it did not 

warrant further investigation.   

 

5.3.4 Isoform-specific effects of Src overexpression in X.laevis 

Overexpression of the mammalian neuronal Src constructs in Xenopus laevis 

provides strong evidence of isoform specific actions of the three Src variants during 

the developmental process.  Interestingly, as previously identified in B104 cells (Fig.  

3-1A), the detection of N1- and particularly N2-Src by blotting was significantly lower 

than that of C-Src.  This decreased detection could be due to either decreased 
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translation of N1- and N2-Src splice variants, increased degradation of the mature 

protein, or possibly decreased proliferation of cells injected with N2-Src.  It seems 

unlikely that differential translation of these splice variants would occur, as Black and 

colleagues showed that the N1-Src RNA regulatory sequences occur in genomic DNA 

immediately up- and down-stream of the exon (Black, 2003).  Activated Src is known 

to be serine phosphorylated in the unique domain by CDK5, resulting in cullin-5-

dependent degradation (Pan et al., 2011), since N1- and N2-Src have much higher 

basal pY416 phosphorylation in Xenopus cells than C-Src, it could be that this 

mechanism is resulting in increased degradation of neuronal splice variants.  N1- and 

N2-Src have been shown to be both associated with times of endogeneous neuronal 

differentiation (Fig.  5-2A) as well as inducing neuronal differentiation when 

overexpressed (Fig.  5-1 A).  As such it would be tempting to suggest that the 

decreased signal detection of N1- and N2-Src is due to increased neuronal 

differentiation of the cells in which these splice variants are expressed, resulting in 

decreased proliferation of these cells. 

C-Src is ubiquitously expressed through development, and when 

overexpressed in dorsal tissues it appears to be highly regulated and inactive, with no 

detectable phosphorylation of Y416 (Fig.  5-3B).  Consequently mammalian C-Src 

overexpression in X.laevis does not induce a change in the phenotype of the embryos 

at stage 40 (Fig.  5-3A).  By contrast N1-Src and, to an even greater extent, N2-Src 

were shown to be highly active by pY416 immunoblotting (Fig.  5-3B).  This 

differential activity was reflected in the resulting embryo phenotypes, with N1- and 

N2-Src overexpression showing strikingly different effects (Fig.  5-3A). 

The different basal levels of kinase activity of C-, N1- and N2-Src could be 

hypothesised to be the cause of the differential phenotypes, however, nowhere in the 

literature has constitutively active (CA) C-Src, or the oncogenic V-Src been associated 

with similar anterior defects in Xenopus.  Additionally, studies in Xenopus embryonic 

fibroblasts have shown that overexpression of CA-C-Src and xN1-Src have 

profoundly different effects on cellular morphology, CA-C-Src causes rounding of the 

cell, whereas both CA-xN1-Src and xN1-Src expression cause cell elongation and 

process outgrowth similar to that observed in COS7 cells (Collett and Steele, 1993).  

The only comparable phenotype caused by overexpression of a Src family kinase is 
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that of Laloo, which causes a similar failure to develop anterior structures in Xenopus 

due to its role in FGF mediated mesoderm induction (Weinstein et al., 1998).   

The distinct phenotypes resulting from N1- and N2-Src expression also oppose 

the hypothesis that kinase activity alone is causing progressive increases in anterior 

defects.  The lowest N2-Src dose causes significant loss of anterior structures, whereas 

a four-fold higher expression of N1-Src causes a less severe crano-facial phenotype.  

This suggests that there is significantly different specificity of N1- and N2-Src SH3 

domains for developmental substrates, as these isoforms exhibit similar but divergent 

embryo phenotypes.  Because Xenopus species lack endogenous N2-Src it could be 

postulated that the targets of N2-Src in higher vertebrates simply aren’t modified in 

the same way during Xenopus development, which is causing the more potent defects 

seen with N2-Src overexpression.   

Interestingly a similar dose-dependent phenotype is seen in retinoic acid (RA) 

treatment of Xenopus embryos (Sive et al., 1990) and RA is a key driver of neuronal 

differentiation and neurogenesis, both during neurulation and in adult neurogenesis 

(Blumberg, 1997, Jacobs et al., 2006).  Similarly, activation of the FGF receptor 

pathway by eFGF, as well as manipulation of Wnt activity have been shown to 

suppress formation of anterior structures in Xenopus (Kuhl, 2003, Isaacs et al., 1994).  

These signalling pathways have diverse effects on the embryos and regulation of their 

expression is crucial to healthy neuronal development, with aberrant signalling 

resulting in significant changes to body patterning, including posteriorisation similar 

to that seen with N2-Src overexpression (Min et al., 2011, Jacobs et al., 2006).  This 

suggests that N-Srcs might act upon downstream effectors of these key developmental 

receptors, and could be tested by rescue experiments, co-expressing dominant negative 

forms of the receptors in these signalling pathways, alongside N1- and N2-Src. 

 

5.3.5 Blocking neuronal splicing of C-Src causes defects in Xenopus locomotion 

I have demonstrated that simultaneously injecting two morpholinos that target 

the donor and acceptor sites of the xN1-Src mini-exon results in a significant 

knockdown of xN1-Src expression at stage 14 of neurulation (Fig.  5-5A, B).  Exon 

skipping xN1-Src morpholinos allowed me to specifically exclude xN1-Src exon 
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inclusion into Src mRNA without affecting C-Src expression, which is ubiquitously 

expressed and an essential gene throughout development.  xN1-Src exon skipping in 

X.tropicalis causes a significant locomotive phenotype whereby the embryo is less 

capable of responding to touch stimulus with co-ordinated movement (Fig.  5-6B).  

This phenotype does not seems to stem from a failure in somitogenesis, as the 

characteristic formation of somite ‘chevrons’ at this stage appears unaffected (Fig.  5-

6A).  It could be suggested that a failure of primary neuritogenesis (Fig.  5-7) could 

be leading to a decrease in the number of neurons available to elaborate the early 

nervous system of these embryos, leading to an inability to co-ordinate behaviour (Fig.  

5-6).   

This locomotive phenotype was accompanied by a morphological phenotype 

whereby the tail of the embryo was malformed, being slightly shorter than in control 

conditions, and noticeably slanted either downwards or upwards from the body, as 

opposed to straight outwards (Fig.  6B).  The effect of xN1-Src knockdown on tail 

formation could be due to the signalling role of the neural tube in tail bud development 

(Beck and Slack, 1998).  There are two important phases of gene expression vital for 

tail formation, early genes expressed between stage 13 and 25 prior to tail bud 

formation in the region in which the tail will later form, and late genes expressed after 

stage 26 during tail bud extension (Beck and Slack, 1998).  Beck and Slack provide 

an excellent model for the interaction between these tissues and how expression from 

each of these tissues modulates the formation of the tail (Beck and Slack, 1999).   

In this model interaction between the main neural plate and the posterior 100 

µm of the neural plate, as well as the notochord during neurulation are required for the 

expression of Lfng and Wnt3a at stage 26.  Expression of Lfng in the dorsal portion 

of the closed neural tube induces activation of Notch/Delta signalling in the posterior 

portion of the neural tube and at the dorsal/ventral boundary that becomes the leading 

edge of tail bud outgrowth.  Notch/Delta signalling at the leading edge of tail-bud 

outgrowth results in Wnt3a-dependent expression of Hox3 which then allows 

extension of the tail bud and neural tube to occur.  Notch signalling is central to correct 

tail formation and inhibition causes results in aberrant tail formation (Beck and Slack, 

2002).  As such, xN1-Src depletion in the posterior neural plate and neural tube could 

be impacting the regulation of signalling events associated with tail formation.  This 
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could be causing a signalling imbalance between signals from neural tube and from 

mesodermal tissues, an asymmetry which could contribute to the characteristic kink 

in the tail of xN1-Src knockdown embryos. 

The effect of neuronal Src expression on body patterning is also evident in 

embryos injected with mammalian N1- and N2-Src mRNA (Fig.  5-3).  Injection of 

mammalian N-Src constructs induces a dose dependent posteriorisation and failure to 

form anterior crano-facial structures in injected embryos.  Similar phenotypes are 

observed when RA, FGF or Wnt signalling pathways are manipulated (Kuhl, 2003, 

Isaacs et al., 1994, Sive et al., 1990).  This suggests that the signalling pathways to 

which neuronal Srcs contribute during development can be driven by neuronal Srcs 

even in non-neuronal tissues. 

 

5.3.6 xN1-Src knockdown reduces neuronal marker expression during primary 
neurogenesis 

As part of the same experiment in which embryos developed locomotive 

defects in response to bilateral xN1-Src knockdown, embryos were also injected 

unilaterally.  These embryos were fixed during open neural plate stage and probed for 

n-tubulin expression, a marker of primary neuronal differentiation, by in situ 

hybridisation.  Expression of three domains of n-tubulin across the neural plate during 

primary neurogenesis has been used extensively in Xenopus species as a marker for 

primary neurogenesis (Chitnis et al., 1995).  N-tubulin RNA expression was 

dramatically decreased as a result of xN1-Src knock-down, indicating that effective 

primary neurogenesis was not taking place (Fig.  5-7A).  This dramatic ablation of n-

tubulin expression suggests that xN1-Src, rather than functioning as simply an 

organiser of the cellular structures associated with neuronal differentiation, as has 

previously been suggested, may be requisite in primary neuronal differentiation.   

Whilst xN1-Src knockdown appears to inhibit primary neurogenesis, it does 

not decrease neuronal specificity.  Cells are specified for a neuronal lineage by the 

blocking of BMP signalling by neuralising molecules such as Chordin and noggin and 

it appears that xN1-Src plays no significant part in this process (Penzel et al., 1997).  

This aligns with observations of the temporal expression of xN1-Src, as Sox3 (a 
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marker of neuralised ectoderm) expression occurs during gastrulation, whereas xN1-

Src is not expressed until the gastrula/neurula transition.  It is highly noteworthy that 

xN1-Src knockdown expands the region of Sox3 expression, as previous data indicates 

that N-tubulin and Sox3 expression is mutually exclusive (Bourguignon et al., 1998).  

It is tempting to suggest therefore that the region of expanded Sox3 consists of cells 

which would, in the presence of xN1-Src be differentiated into N-tubulin expressing 

neurons. 

Inhibition of neuronal differentiation at primary neurogenesis would explain 

the locomotive defects seen in later embryos as the primary function of neurogenesis 

is to provide early locomotion to the developing tadpole (Roberts, 2000).  It is likely 

that although xN1-Src morpholino decreases N-tubulin transcription, degradation of 

the morpholino over time may be allowing neuronal differentiation later in 

development.  To test this possibility, later neurogenesis could be identified by an 

extended time-course of injected embryos, to identify at which point n-tubulin 

expression re-establishes.  Additionally antigen-tagged morpholinos are available, and 

could be utilized to observe their degradation over time and identify a correlation 

between any degradation and the resumption of neurogenesis. 

 

5.4 Conclusion 

To date, the consensus in the literature is that xN1-Src only functions in post-

mitotic development of growth cones and in the regulation and formation of synapses.  

However, my data suggest that xN1-Src has a more fundamental role in primary 

neurogenesis and possibly pathways associated with wider signalling events.  xN1-Src 

expression is increased throughout primary neurogenesis and knockdown of this 

expression by Morpholino exon-skipping appears to prevent primary neurogenesis 

from occurring (Fig 5-7).  Manipulation of neuronal Src expression in Xenopus also 

has a significant effect on body patterning, with overexpression of mammalian N-Src 

constructs causing a failure in anterior structure formation and xN1-Src knockdown 

causing aberrant tail development (Fig 5-6).  The pathways through which xN1-Src 

exhibits its functions, and its specific targets are yet to be elucidated but the effects of 
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xN1-Src knockdown, and mammalian Src overexpression in Xenopus, are reminiscent 

of experiments in both FGF, RA and Wnt signalling.   

eFGF or RA injection into Xenopus both cause similar posteriorisation 

phenotypes to those seen in N1- or N2-Src injected embryos (Sive et al., 1990, Isaacs 

et al., 1994), whilst the characteristic ‘tail kink’ observed in xN1-Src knockdown 

embryos is also described in dominant negative FGF and Frzb (a negative regulator of 

frizzled signalling through Wnt) injections (Itoh and Sokol, 1999, Isaacs et al., 1994).  

Similarly, expression of a dominant negative Retinoic Acid Receptor (RARα1) 

prevents the expression of n-tubulin at primary neurogenesis (Blumberg, 1997) in an 

identical fashion to that observed in xN1-Src knockdown.  Additionally morpholino 

knockdown of SuFu, a negative regulator of hedgehog, similarly prevents expression 

of all three bands of n-tubulin expression in the Xenopus neurula (Min et al., 2011).  

These data point towards xN1-Src as a transducer, or regulator of differentiation 

signals in neuralised cells downstream of several important signalling molecules, 

although further work using dominant negative receptors or knockdown approaches 

could identify exactly which signalling pathways utilize xN1-Src as a signal 

transducer. 

In the mature rat brain, N1-Src has protein been identified by 

immunocytochemistry throughout many brain regions, however, no obvious 

commonality was observed between these regions, in terms of either their function or 

the classification of enriched neurons.  (Sugrue et al., 1990).  A similar in situ 

hybridisation study did, however, localise N1-Src mRNA expression to regions of the 

brain associated with extensive plasticity (Walaas et al., 1988, Ross et al., 1988).  

These brain regions contained clusters of neurons expressed substantially higher levels 

of N1-Src, however these cell clusters matched no obvious subpopulation of neurons 

(Sugrue et al., 1990).  In these clusters of neurons, N1-Src was localised to dendritic 

processes, the cell soma as well as nerve terminals and growth cones (Maness et al., 

1988, Sugrue et al., 1990).  Given what we now know about xN1-Src during 

differentiation it could be that these clusters of neurons are cells differentiating from 

the neuronal stem cell population in the adult brain.  It is known that RA is a key 

signalling molecule in adult neuritogenesis and given the comparable effects of 

retinoic acid signalling and xN1-Src expression/knockdown on Xenopus embryos it 
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could well be hypothesised that N1-Src is involved in retinoic acid-dependent adult 

neuritogenesis of these clusters of neurons (Jacobs et al., 2006). 

The work presented in this chapter has progressed the understanding of N1-Src 

during development, from a casual association between the abundance of post-mitotic 

neuronal cells and N1-Src expression, to one of a causal role of xN1-Src in primary 

neurogenesis in response to neuronal induction and wider signalling.  Further work is 

now needed to identify the specific signalling pathways through which splicing of the 

xN1-Src micro-exon inclusion is driven, and through which xN1-Src is functioning 

within these cells to drive neuronal differentiation. 
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6 General discussion 

6.1 Summary of works 

The work presented in this thesis represents the first significant contribution 

towards analysis of the functional roles of N1- and N2-Src during neuronal 

differentiation, both during development and neuroblastoma differentiation.  The 

identification of the importance of xN1-Src expression during primary neurogenesis 

indicates a central role for N1-Src during the neuronal development.  This observation 

reflects data in the neuroblastoma cell lines KELLY and SK-N-AS where neuronal 

Src expression induced neuritogenesis and quiescence respectively.  Whilst it is now 

clear that neuronal Srcs have a fundamental role in the differentiation of neuronal 

progenitors, the mechanism of this action is unclear.  The primary difference between 

C-Src and its neuronal splice variants is in sequence of the n-src loop of the SH3 

domain which I have shown increases the constitutive activation of N1- and N2-Src in 

neuroblastoma cells.  N1- and N2-Src exon insertion will also have a significant 

impact upon substrate specificity and, although no specific substrates have been 

confirmed by this study, mass spectrometry of phosphotyrosine immunoprecipitations 

from C- and N2-Src HeLa lysates has demonstrated extensive differences in the 

abundance of phosphotyrosine within these cells, and provided many N2-Src substrate 

candidates. 

 

6.2 Differential regulation of C-, N1- and N2-Src 

Characterisation of FLAG tagged C-, N1- and N2-Src constructs by Western 

blotting demonstrated differential post-translational Src regulation, both when 

overexpressed in B104 and HeLa cells, and when expressed in Xenopus laevis 

embryos (Fig.  3-1; Fig.  4-13; Fig.  5-3).  My data show that in all cases where the 

activating Y416 phosphorylation of C-, N1- and N2-Src are compared by Western 

blotting, activity is always highest in N2-Src, and lowest in C-Src (Fig.  3-1; Fig.  4-

13; Fig.  5-3).  Similarly, in N2-Src expressing B104 cells, Y527 phosphorylation, 

indicative of auto-inhibition and inactivity, is constitutively lower than in C- and N1-

Src expressing cells (Fig.  3-1).   
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Observations of C-, N1- and N2-Src expression in a variety of systems has 

demonstrated that the effects of the neuronal Src splice variants upon cells differ only 

by the degree of the effect (with N2-Src eliciting the strongest response) rather than 

the nature of the effect.  This is the case for cytoskeletal rearrangements in cell lines 

such as COS7 (Fig.  5-1), KELLY (Fig.  3-7) and SK-N-AS (Fig.  3.6), where N2-Src 

causes the highest amount of neuritogenesis, and N1-Src causes an intermediate effect.  

This is in stark comparison to the effects of C-Src overexpression in these cells which 

has minimal effects on cell morphology, if anything increasing the size of the cell 

soma.  Similarly, in stable, inducible HeLa cells, N1-Src demonstrates a similar, but 

weaker effect on elongation (Fig.  4-3) and motility (Fig.  4-4) when compared with 

N2-Src.  In Xenopus, N1- and N2-Src injected embryos develop anterior defects, 

however the effect is much more potent in N2-Src injected embryos (Fig.  5-3). 

With these data in mind I would propose a hypothesis that the magnitude of 

the effects of N1- and N2-Src relate to the increasing disruption of substrate binding 

by the n-src loop.  Whilst N1- and N2-Src exon insertion may contribute to the 

interaction interface of the SH3 domain for a small subset of substrates, providing 

additional specificity for SH3 domain binding, I would propose that the principal 

difference is the degree to which n-src loop-mediated substrate binding is disrupted.   

Auto-inhibition of Src depends on SH3 binding of the SH2-kinase linker and 

association with the n-terminal lobe of the kinase domain (Xu et al., 1999).  Mutation 

of the n-src loop of C-Src has been shown to decrease the affinity of the SH3 domain 

for the n-terminal lobe of the kinase domain, resulting in increased activity (Brábek et 

al., 2002).  As such, it is likely that introduction of 6 and 17 amino acid residues into 

this interaction interface would have significant effects on the inhibition of Src.  

Further, the differential substrate specificity of N1- and N2-Src when compared to C- 

may largely be the result of an increased reliance upon the PxxP binding motifs, and 

decreased binding at the R/K binding specificity pocket.  As such, rather than changing 

the SH3 binding preference, N1- and N2-Src exon inclusion may be principally acting 

to restrict binding to a smaller subset of proteins.  This is reflected in the results of the 

mass spectrometry of C- and N2-Src HeLa IP samples, in which only eight proteins 

were detected exclusively in N2-Src HeLa cells, and not C-Src (Table 4-1).  Whilst 

neuronal insertion will certainly cause specific, novel binding to new substrates, as 
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demonstrated by N1-Src binding to HCN1 (Santoro et al., 1997), I would propose that 

the majority of the differential effects of N1- and N2-Src is the result of binding site 

disruption, rather than creation.   

In this model, N2-Src would largely share N1-Src substrates, and, phosphorylate 

them at a higher rate due to the constitutively increased activity.  This model would 

explain why N1-Src consistently has an intermediate effect upon cells relative to N2-

Src, why N2-Src is always expressed endogenously at lower levels and how lower 

vertebrates such as Xenopus species do not require N2-Src for complex neuronal 

developmental processes.  This hypothesis could be tested by identification of the 

specific N1- and N2-Src SH3 binding motifs by testing the SH3 domains against a 

phage display library, or by yeast 2-hybrid screening. 

 

6.3 Neuronal Srcs in development 

6.3.1  Neuronal Srcs contribute to differentiation of neuronal progenitors 

Primary neurogenesis enables non-amniotic vertebrates such as amphibians to 

develop the neuronal circuit necessary to control early larval behaviour (Hartenstein, 

1989).  During this process a small portion of the progenitor neurons of the neural 

plate differentiate into post-mitotic neurons, whilst the majority of progenitors remain 

proliferating to form the adult central nervous system (Hartenstein, 1989).  These two 

populations of neurons, (the mitotic progenitors and the terminally differentiated 

primary neurons) can be identified by the expression of two marker genes, Sox3 and 

N-tubulin (Kishi et al., 2000, Moody et al., 1996).  Sox3 expression is limited to the 

proliferative, neuronal progenitors of the neural plate, and expression decreases when 

the cells differentiate (Kishi et al., 2000).  By contrast, N-tubulin is exclusively 

expressed in differentiating neurons, resulting in the three bands of expression on the 

open neural plate which indicate the site of differentiating motor, inter and sensory 

neurons (Moody et al., 1996).   

Knockdown of xN1-Src expression in Xenopus tropicalis embryos inhibited 

expression of N-tubulin expression during primary neurogenesis, and increased the 

width of the Sox3 band (Fig.  5-7 and 8).  These two observations reveal a great deal 
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about the potential role of xN1-Src in Xenopus neurogenesis.  Sox3 staining of 

embryos injected with xN1-Src morpholinos demonstrates that the process of neuronal 

specification does not require xN1-Src expression (Fig.  5-8).  In fact, since Sox3 and 

N-tubulin expression tend to be mutually exclusive (Bourguignon et al., 1998), 

expanded Sox3 expression may correlate with the location of precursor neurons that 

are no longer expressing N-tubulin as a result of xN1-Src knockdown (Kishi et al., 

2000).  Morpholino knockdown of xN1-Src expression also results in a locomotive 

phenotype indicative of a poorly developed primary nervous system (Fig.  5-6).  Taken 

together, these data suggest that xN1-Src is a crucial component of one or more of the 

signal transduction pathways that are responsible for the differentiation of neural 

progenitors, but not their specification.  This role is supported by other data, such as 

the observation in SK-N-AS cells that overexpression of N2-Src causes a 20% 

decrease in the number of proliferating cells (Fig.  3-8). 

 

6.3.2 Development: Patterning effects of neuronal Src expression  

In addition to disrupting regulated movement of the embryo, knockdown of 

xN1-Src expression also contributed to a patterning defect in the tail of the embryos 

(Fig.  5-6).  This suggests that xN1-Src depletion in the posterior neural plate and 

neural tube could be impacting on the regulation of signalling events associated with 

tail formation as discussed in (5.3.5).  Patterning defects are also seen in embryos 

injected with mammalian N1- and N2-Src mRNA (Fig 5-3).  In these embryos there 

is a dose dependent failure to form anterior structures, similar to phenotypes observed 

when RA, FGF or Wnt signalling pathways are manipulated (Kuhl, 2003, Isaacs et al., 

1994, Sive et al., 1990).  These effects of Src overexpression and knockdown on 

Xenopus body patterning suggests that the Src splice variants are regulating signalling 

pathways with roles not just involving neuronal differentiation.  Identification of the 

specific proteins that are phosphorylated by neuronal Srcs that are transducing or 

driving these signalling events is the next crucial step in understanding the roles of 

neuronal Srcs in development. 
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6.3.3 Potential substrates of Neuronal Srcs during development 

Based on the conclusions of an earlier section (6.2), it could tentatively be 

suggested, N1- and N2-Src share a considerable amount of their substrate proteins, 

differing only in the activity-dependent phosphorylation of these proteins.  The mass 

spectrometry of N2-Src expressing HeLa cells may therefore provide some insight into 

which specific pathways xN1-Src is contributing to in Xenopus embryos.  Of particular 

note are Notch2 and β-catenin, both of which are over two-fold enriched in the 

phosphotyrosine IP eluate from N2-Src overexpressing HeLa cells when compared to 

C-Src expressing cells (Appendix 1).  As discussed in (5.3.6), Notch and Wnt 

signalling (for which β-catenin is a central component) each have important roles in 

neurogenesis, anterior-posterior axis regulation and tail formation.  Dysregulation of 

either of these pathways could result in the observed phenotypes caused by xN1-Src 

knockdown and N1-Src overexpression.   

β-catenin is a downstream transducer of Wnt activation through the canonical 

Wnt pathway.  Typically accumulation of β-catenin in the cytosol is prevented by 

ubiquitin mediated degradation, targeted by a destruction complex including Axin, 

APC, PP2A and GSK3.  Wnt binding to Frizzled and LRP-5/6 induces translocation 

of members of the destruction complex to the cell membrane where their stability and 

activity are decreased.  This allows cytosolic accumulation of β-catenin resulting in 

nuclear localisation and gene transcription in association with transcription factors 

such as LEF.  Early neuronal development requires the suppression of Wnt signalling 

(Heeg-Truesdell and LaBonne, 2006) suggesting it is unlikely that this pathway is 

being positively regulated by neuronal Srcs during neurogenesis.  Additionally 

tyrosine phosphorylation of β-catenin, particularly by C-Src is strongly associated 

with proliferation and carcinogenesis rather than differentiation of neuronal 

progenitors (Zeng et al., 2006).  It is, however, known that Src can also inhibit Wnt/β-

catenin signalling by phosphorylation of LRP6 (Chen et al., 2014), which is also 

detected in the phosphoproteomic screen, however at levels too low to pass through 

the stringent filtering process.  As such, it seems that more likely, due to the 

enrichment of N-Cadherin and other adherens alongside β-catenin, that β-catenin is 

enriched in association with its roles in cell adhesion at the cell membrane rather than 

as a part of the canonical Wnt signalling pathway. 
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Notch is not known to be directly regulated by tyrosine phosphorylation, 

however tyrosine phosphorylation sites have been identified by Phosphosite in the 

Notch Intracellular Domain, suggesting that tyrosine phosphorylation of the Notch C-

terminus can occur in vivo (Hornbeck et al., 2012).  Notch activation is typically 

associated with an inhibitory effect on neuronal differentiation, with Notch 

intracellular domain inhibiting primary neurogenesis, and encouraging a tumorigenic 

phenotype in neuronal stem cells (Chitnis et al., 1995, Tchorz et al., 2012).  Notch is 

activated by the binding of membrane proteins such as Delta or Jagged on 

neighbouring cells, which stimulates several proteolysis steps, culminating in cleavage 

by γ-secretase at V1695.  γ-secretase cleavage releases the C-terminal intracellular 

domain of Notch into the cytosol and nucleus, where it can act upon gene transcription.  

During neurogenesis, the boundary of the neural plate is established by Notch-

mediated lateral inhibition, whereby binding of Delta from one cell, to Notch on 

another cell membrane inhibits expression of Delta.  This causes a feedback loop 

whereby cells in which Notch signalling is activated, express more Notch and less 

Delta, which suppresses a neuronal fate in cells outside of the neural plate boundary.  

Interestingly all eight of the unique Notch2 sequences identified by mass spectrometry 

of N2-Src expressing HeLa cells, occur C-terminally and seven occur after this 

activating cleavage site suggesting that the Notch2 intracellular domain is released in 

N2-Src expressing cells.  Although activated Notch suppresses neuronal 

differentiation (Chitnis et al., 1995), no data currently exist on the effects of tyrosine 

phosphorylation on this.  It is tempting to suggest that neuronal Src variants are 

negatively regulating Notch2 intracellular domain by phosphorylation of either the 

Notch intracellular protein, or a binding protein.  Notch makes a compelling candidate 

gene for xN1-Src activity, as Notch has a significant role in neuronal differentiation 

and tail bud formation (Chitnis et al., 1995, Beck and Slack, 1998, Beck and Slack, 

2002).   

Whilst Notch2 signalling is an excellent candidate for further experimentation 

on the role of xN1-Src during development, there are several other candidate pathways 

such as FGF and RA.  Rescue experiments utilizing an xN1-Src morpholino in 

combination with inhibitors or activators of these pathways may contribute to the 

identification of the specific pathways that are transduced by xN1-Src.   
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6.3.4 Localisation of xN1-Src during development 

Additionally, whilst xN1-Src expression has been temporally localised to primary 

neurogenesis (Fig.  5-2), identification of the spatial expression of xN1-Src during 

development could provide further insight into the induction of xN1-Src expression.  

Steps were made towards the development of an xN3-Src in situ hybridisation probe, 

in an attempt to identify xN1-Src expression (which appears to be co-regulated and is 

longer, making it a more appropriate probe target), however, to adequately identify 

xN1-Src expression by in situ hybridisation would require a specific xN1-Src probe.  

Due to the short length of the xN1-Src insert (15 nucleotides), standard antisense RNA 

technology is likely to result in cross-contamination with C-Src.  Use of an LNA 

probe, a modified RNA nucleotide probe with higher affinity and specificity, would 

be the optimal method to identify xN1-Src expression in embryos.  Through this 

method it would be possible to identify the temporal and spatial expression of xN1-

Src, and by use of inhibitors and activators of various signalling pathways, identify 

the specific pathways that stimulate xN1-Src exon inclusion. 

 

6.4 Neuroblastoma  

6.4.1 The effects of neuronal Srcs on neuroblastoma proliferation and 
differentiation 

Overexpression of N1- and N2-Src induce fold-changes in neuritogenesis in 

the neuroblastoma cell lines SK-N-AS (Fig.  3-6) and KELLY (Fig.  3-7) and a 20% 

decrease in the expression of the proliferation marker Ki67 in SK-N-AS cells (Fig.  3-

8).  Interestingly, in LAN-5 cells that are known to express N-Srcs and differentiate 

readily, knockdown of N2-Src had no significant effect on the number and length of 

neurites (Fig.  3-5). 

It is likely that the differential gene expression in these cells is responsible for 

enabling or inhibiting the effect of neuronal Src over-expression upon these cells.  The 

differentially expressed genes are likely to be ubiquitous, rather than neuronal genes, 

as we observe a significant N-Src induced extension of neurite-like protrusions from 
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COS7 fibroblasts, and a decrease in migration and proliferation and increase in 

elongation of N2-Src expressing HeLa cells (Fig.  4-3; Fig 4-4). 

The induction of such a remarkable change in the phenotypes in heterologous 

cell lines suggests that the substrates of neuronal Srcs are not restricted to neurons.  

Since these kinases elicit their cellular response by phosphorylation, we can safely 

assume that the effects of N2-Src phosphorylation on neuroblastoma cells are due to 

differential phosphorylation of signalling elements in the cells.  Identification of 

possible pathways for N2-Src induced neuroblastoma differentiation can therefore be 

determined by the other experiments performed, including those in Xenopus, and the 

data retrieved from the mass spectrometry experiment in HeLa cells.  These data 

suggest that N1- and N2-Src may have a complex signalling role in the differentiation 

of neuroblastoma cells.   

N1-Src and N2-Src both consistently induce some degree of increased 

neuritogenesis in neuroblastoma cells (Fig.  3-6, 7).  This effect was particularly 

pronounced in the N2-Src expressing cells of the retinoic acid resistant cell lines 

KELLY and SK-N-AS (Fig.  3-7).  Since neuroblastoma cells are derived from stem 

cells of the sympathetic nervous system, and xN1-Src deletion decreases neuronal 

differentiation in Xenopus (Fig.  5-7), it can be assumed that the mechanisms of 

differentiation and neuritogenesis in neuroblastoma cells are largely similar to 

developmental mechanisms of neuritogenesis.   

 

6.4.2 FAK and Paxillin as potential N-Src substrates 

Whilst no specific N2-Src substrates have been identified, the well 

characterised Src substrate FAK was 1.7-fold enriched in phosphotyrosine 

immunoprecipitations from N2-Src expressing HeLa cells compared to C-Src cells 

(Appendix 1).  FAK is a cytosolic protein tyrosine kinase that accumulates at focal 

adhesions to, facilitate turnover of adhesions required for cell migration as well as the 

proliferation of signalling events associated with cell-cell or cell-substrate contact.  Src 

binding to FAK requires an initial step of FAK activation via phosphorylation at Y397.  

This phosphorylation provides an SH2 domain to which Src can bind, both targeting 
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and activating Src (Cobb et al., 1994), however this step can be skipped by v-Src 

(Guan and Shalloway, 1992), so it is possible that constitutively active N-Srcs may 

not require this initial step.  FAK is then multiply phosphorylated by SH2-bound Src 

which substantially increases is activity, leading to the activation of a variety of 

signalling events within the cell (Calalb et al., 1995).  Activation of FAK by Src has 

been shown to be necessary for a variety of FAK substrate phosphorylation events, 

including that of Paxillin (Shen and Schaller, 1999), which is also 1.8-fold enriched in 

the N2-Src HeLa mass spec data (Appendix 1).  Paxillin phosphorylation at Y88 was 

identified in N2-Src cells, and only the corresponding dephosphorylated peptide 

identified in C-Src HeLa cells. 

The role of FAK in neuroblastoma differentiation was first characterised by 

Bozzo and colleagues who demonstrated that blocking FAK phosphorylation in SH-

SY5Y neuroblastoma cells prevented neuritogenesis (Bozzo et al., 1994).  Whilst FAK 

appears to be necessary for neuroblastoma differentiation, it is also specifically up-

regulated in metastatic, stage 4 neuroblastoma cases, likely due to its roles in migration 

and proliferation (Beierle et al., 2008).   

 

6.4.3 Potential downstream effectors of FAK/N-Src 

The actions and pathways regulated by Src-activated FAK are many and 

varied.  Phosphorylation of FAK by Src is necessary for the assembly of components 

of the Ras/MAPK pathway at focal adhesions (Miyamoto et al., 1995), as well as 

recruitment of Grb2, which in turn activates Erk/MAPK signalling (Schlaepfer et al., 

1994).  Src-activated FAK is also an adaptor which enables the p130Cas (BCAR1), in 

complex with BCAR1 to be phosphorylated on by Src on multiple sites (Cheng et al., 

2014).  This leads to a cascade of recruitment and interaction with ends in activation 

of the JNK/MAPK signalling cascade, associated with control of cell proliferation by 

gene transcription (Giancotti and Ruoslahti, 1999, Schlaepfer et al., 1994).  In the 

phosphotyrosine IP from N2-Src expressing HeLa cells, several members of the 

Src/FAK signalling cascade are enriched (log2 ratios of N2-Src/C-Src shown in 

brackets), including Paxillin (0.8) (Schaller, 2004), N-Cadherin (1.3) (Schaller, 2004), 

p130Cas/BRCA1 (0.13) and BCAR3 (1.1) (Cheng et al., 2014).  Similarly, there are 
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proteins associated with FAK signalling that are enriched in C-Src and absent, or less 

abundant in N2-Src HeLa IPs such as Cdc42, which is associated with both cellular 

proliferation and formation of filopodia, and is detected in both replicates of the C-Src 

MS data, however not in any N2-Src samples (Appendix 1).   

The increased abundance of so many proteins modulated by Src/FAK activity 

suggests that in N2-Src overexpressing HeLa cells, these proteins are either increased 

in tyrosine phosphorylation, or in their interactions.  Modulation of this pathway by 

N2-Src provides a viable pathway for N2-Src modulation of neuritogenesis and 

proliferation.  FAK activation of the Ras/MAPK pathway is known to be a crucial 

component in the onset of N-CAM induced neurite outgrowth (Kolkova et al., 2000).  

Similarly, during adhesion signal-induced differentiation, Src/FAK activation can 

result in ERK1/2 activation resulting in activation of transcription factors such as Myc 

(Huang et al., 2012).  Though activation of this pathway usually requires an 

extracellular signal to activate the initial activating phosphorylation of FAK, the 

constitutive activity of N2-Src may bypass this mechanism in a manner similar to that 

displayed by v-Src activation of FAK (Guan and Shalloway, 1992).   

In addition to the possibility of FAK activation instigating neuronal 

differentiation, FAK is also enriched in neuronal growth cones, in and correct function 

of FAK is required for neurite extension (Kim and Feldman, 1998).  Although the 

specific phosphorylation events that triggered the enrichment of Src/FAK associated 

proteins is not known, it seems highly likely that one or more of these proteins is 

tyrosine phosphorylated as a result of N2-Src expression.  Interestingly a neuronal 

isoform of Src (assumed to be N1-Src although not specified in the paper) has been 

demonstrated to bind poorly to both FAK and neuronal FAK+ (Messina et al., 2003).  

This suggests that FAK is unlikely to be a direct substrate of N2-Src, however the 

presence of so many FAK associated downstream proteins suggests that one or more 

of these is likely to be differentially phosphorylated.  Paxillin makes a particularly 

strong candidate for this due to the identification of a phosphopeptide in N2- but not 

C-Src samples.  Future experiments to confirm this could include blotting for FAK 

phosphorylation in C- and N2-Src expressing HeLa cells, or immunoprecipitation for 

Paxillin followed by Western blotting for phosphotyrosine.  In addition, to identify 

whether this pathway was having an effect on neuroblastoma neuritogenesis and 
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quiescence, the N2-Src induced neuritogenesis could be tested in the presence and 

absence of inhibitors of these processes. 

 

6.4.4 Notch as an N-Src substrate 

As discussed in 6.3.3 the Notch signalling pathway has multiple roles in 

neuronal differentiation during development, and Notch2 is up-regulated in the 

phosphotyrosine IP from N2-Src expressing HeLa cells (Chitnis et al., 1995) (Table 

4-4).  The role of Notch signalling in neuroblastoma, however, remains unclear.  

Notch1 expression is associated with both repression of RA induced differentiation 

(Hooper et al., 2006), and an unfavourable prognosis in neuroblastoma (Chang et al., 

2010).  More recently Zage and colleagues demonstrated that neuroblastoma cell lines 

express multiple variants of the Notch receptor that are inactive under basal conditions 

(Zage et al., 2012).  Activation of Notch2 was demonstrated to cause inhibition of 

differentiation of medulloblastoma cell lines and high Notch2 expression correlated 

with a poor prognosis in medulloblastoma (Fan et al., 2004).  This matches data 

observed in neuronal precursors where activation of Notch2 signalling inhibits 

differentiation by maintaining the cells in a proliferative state (Solecki et al., 2001).   

As discussed in 6.3.3 there are no Notch2 tyrosine phosphorylation sites 

confirmed in the literature, however 7 of the 8 unique sequences identified in the HeLa 

MS screen are from the Notch2 intracellular domain.  This suggests that Notch2 is 

being immunoprecipitated either due to a tyrosine phosphorylation site on its C-

terminal tail (several candidates have been identified by Phosphosite (Hornbeck et al., 

2012)), or by Notch intracellular domain association with another tyrosine 

phosphoprotein.  The 1.2 log2 enrichment in N2-Src expressing HeLa cells strongly 

suggests that the increase in Notch2 abundance in N2-Src samples is due to differential 

regulation of Notch, or associated proteins.  As demonstrated in the literature, 

activation of Notch2 signalling is strongly associated with proliferation and resistance 

to differentiation.   

An N2-Src mediated inhibition of Notch2 intracellular domain signalling could 

be causative in the increase differentiation and decreased proliferation observed in 
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neuroblastoma cells (Fig.  3-7, 8).  Regulation of the cleaved Notch intracellular 

domain by phosphorylation has been studied extensively, CDK8 has previously been 

shown to hyperphosphorylate the Notch intracellular domain, targeting it for ubiquitin 

mediated degradation (Fryer et al., 2004).  This process of degradation is regulated in 

a complex fashion, with ubiquitin mediated degradation inhibited by acetylation of the 

Notch intracellular domain by MAML-1 (Popko-Scibor et al., 2011).  It seems likely 

from the observed effects of N2-Src expression in both Xenopus species and human 

neuroblastoma cells and the occurrence of only the intracellular domain portion of 

Notch in the N2-Src mass spectrometry samples that N2-Src is having some role in 

Notch signalling.  Given the complex nature of Notch intracellular domain regulation 

and its importance in both development and neuroblastoma differentiation this is 

certainly an area worthy of further study. 

A simple way to test this hypothesis would be the co-expression of a Notch2 

intracellular domain plasmid with N2-Src to identify whether N2-Src abrogates 

Notch2 activated gene expression. 

 

6.4.5 N-Cadherin, Plakoglobin and β-catenin 

In addition to FAK and its associated proteins, several adheren-associated proteins 

were identified as specifically enriched in the N2-Src MS samples including N-

Cadherin (1.3 log2), Plakoglobin (1.6 log2) and β−catenin (1.1 log2).  As discussed 

above, I do not expect that the enrichment of β-catenin is related to its role in Wnt 

signalling, due to the co-enrichment of several proteins with which is associates as 

part of its role in adhesion mediated signalling.   

Decreased expression of Plakoglobin has been associated with increased 

metastatic potential in several cancer systems including breast cancer (Bailey et al., 

2012), skin cancer (Tada et al., 2000), and sarcoma (Kanazawa et al., 2008), and has 

been associated with a poor prognosis in neuroblastoma (Amitay et al., 2001).  

Similarly N-Cadherin expression has been noted to be significantly lower in metastatic 

tumours with a worse prognosis (Lammens et al., 2012).  By contrast, expression of 

β-catenin has been observed to be relatively similar to in normal ganglion cells, and 
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increased or decreased expression of these proteins was not correlated to prognosis 

(Amitay et al., 2001).  Deregulated Wnt signalling, and associated β-catenin 

accumulation has associated with high-risk neuroblastoma cases (Liu et al., 2008) and 

a knockdown of β-catenin has been reported to inhibit neuroblastoma cell growth, 

although this is to be expected from such an important molecule for normal cell 

function and signalling (Yao et al., 2013).   

 

6.5 The role of the COPII transport vesicle system in N2-Src 
function 

Of all of the results gained from the HeLa cell line mass spectrometry, the 

increase in abundance of proteins of the COPII vesicle pathway was the most exciting 

evidence of N2-Src specific enrichment of a functionally interacting group of proteins.  

Increases of protein abundance of over 1log(2) were observed in Sec 16A, 23A, 23B, 

24B and 24C.  These data indicate that N2-Src expression might be promoting the 

phosphorylation of one or more of these proteins.  It is difficult to suggest which of 

these proteins is more likely to be differentially phosphorylated although the presence 

of only a single Sec16 isoform makes it the best candidate protein.  Interestingly, 

whilst Sec23A/B and Sec24B/C form portions of the COPII coat, Sec16A does not, 

instead acting as a scaffold for COPII coat assembly on the ER.  That Sec16A was 

pulled down as part of this complex, perhaps suggests that the COPII coat is being 

pulled down whilst in association with the ER, which further points towards Sec16A 

as the differentially phosphorylated protein, or perhaps phosphorylation of Sec23/24 

which prevents detachment of the coat from the ER.   

The role of differential regulation of the COPII coat in neuronal differentiation 

is difficult to interpret.  Sec16A is known to interact and be regulated by LRRK2, 

which is known to have roles in neurological disorders such as Parkinson’s disease 

(Cho et al., 2014).  Different Sec23/24 have roles in specific recruitment of COPII 

cargo and perhaps phosphorylation of one or more of these variants might be 

influencing cargo selection.  Truncation of Sec24b is known to increase the occurrence 

of spina bifida in mice by decreasing the proper trafficking of Vangl2 (Merte et al., 

2010).  Sec23 and Sec24 are known to be essential during epithelial differentiation 
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during Drosophila embryogenesis, establishing polarity of epithelial cells and 

enabling secretion of extracellular matrix proteins in this system (Norum et al., 2010).  

Regulation of the COPII vesicle transport is also important for dendritic arborisation 

in drosophila.  RNAi against Sec23 and Src24 indicates that the COPII coat is 

transcriptionally regulated during dendritic elaboration to induce dendritic 

complexity, likely by influencing the rate of vesicle formation in addition to providing 

dynamic control of cargo selection and recruitment (Iyer et al., 2013).  These studies 

suggest that effective regulation of the COPII vesicle pathway could have crucial roles 

in several facets of neuronal differentiation and function.   

The phosphorylation of these particular members of the COPII vesicle transport 

pathway may be contributing to neuronal differentiation in several ways.  Firstly 

phosphorylation of Sec23/24 could be influencing the cargo recruitment or rate of 

formation of the COPII vesicles as has previously been demonstrated by 

transcriptional regulation of Sec23 (Iyer et al., 2013) and kinase-mediated regulation 

of COPII coat polymerisation (Aridor and Balch, 2000).  Secondly phosphorylation of 

Sec16A could be modulating COPII vesicle recruitment by increasing the formation 

of ER exit sites as has been previously demonstrated by Erk2 phosphorylation of 

Sec16   (Farhan et al., 2010).  The role of COPII regulation in neuritogenesis would 

likely be to provide increased membrane and/or recruitment of specific membrane-

bound proteins during differentiation, in addition to possible roles in secretion of 

developmentally important proteins. 

To test these hypotheses, first the specific phosphorylation event associated with 

N2-Src expression should be identified.  This could be accomplished using a mass 

spectrometry method more focussed on specific phosphorylation events rather than on 

identification of protein complexes, as described in (4.3.3).  Upon identification of the 

specific phosphorylation event, placing tyrosine to phenylalanine mutants of the 

phosphorylation site into the COS7 N2-Src induced neuritogenesis assay could 

determine whether the phosphorylation event is central to neurite outgrowth. 
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6.6 Neuronal Srcs as a therapeutic target in neuroblastoma 

Decreasing proliferation and increasing neuritogenesis in response to N-Src 

overexpression (Fig.  3-7, 8), in addition to the strong correlation between N-Src 

expression and patient prognosis (Matsunaga et al., 1994b, Matsunaga et al., 1998), 

suggests that neuronal Srcs could be a potential novel target for neuroblastoma 

therapy.  Whilst overexpression of N1- and N2-Src in neuroblastoma tumours is not a 

viable treatment method, these results do provide several other potential options.   

Matsunaga and colleagues identified that a ratio of N2-Src mRNA expression to 

total Src mRNA expression above 0.15 was indicative of a positive prognosis in 

neuroblastoma, suggesting that a relative increase in N2-Src activity over C-Src would 

improve prognosis.  Extensive work has been performed to study the potential of C-

Src inhibition as a cancer therapy.  The potent tyrosine kinase inhibitor dasatinib is 

already approved for clinical treatment of solid tumours (Demetri et al., 2009) and 

additionally has been shown to decrease the proliferation and anchorage independence 

growth of some neuroblastoma cells in vitro, although this did consistently translate 

to in vivo results in mouse models (Vitali et al., 2009).  Tyrosine kinase inhibitors such 

as dasatinib are not specific C-Src inhibitor as they elicit their effects by acting upon 

tyrosine kinase domains and as such would inhibit C-Src, N1- and N2-Src equally.  To 

specifically target C-Src activity, without inhibiting N2-Src, would require specific 

targeting of the SH3 domain of C-Src in a way that excluded N2-Src.  Though SH3 

targeted C-Src inhibitors have been attempted previously, only modest success is 

reported (Tiwari et al., 2010) and the effect of SH3 targeted inhibition on cellular 

function is not known.  As such specifically targeting Src activities does not currently 

seem like a viable option for therapy.   

Whilst directly targeting Src with drugs is not a viable option for possible 

neuroblastoma therapies, regulating the effectors of N1- and N2-Src induced neuronal 

differentiation may provide some therapeutic advantage.  It is known that N2-Src 

increases the overall level of tyrosine phosphorylation in neuroblastoma cells (Fig.  3-

1) and that vanadate treatment increases RA induced neuroblastoma differentiation 

(Clark et al., 2013).  Whilst the specific substrates of N2-Src have yet to be identified, 

several notable candidates have been listed for further study in the course of this thesis.  
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Targeting the phosphorylation of these proteins, or inhibiting their dephosphorylation, 

may provide a viable target for neuroblastoma therapies in the future.   

Finally, whilst expression of neuronal Srcs seems to correlate extensively with 

neuronal differentiation, both during normal development (Wiestler and Walter, 1988) 

and in induced differentiation of neuroblastoma (Matsunaga et al., 1993a).  The 

regulation of neuronal Src expression in these instances may also be a therapeutic 

target.  The N1-Src exon is included by the complex interaction of proteins including 

PTB, hnRNP F, hnRNP H and KSRP (Chou et al., 1999, Hall et al., 2004).  We know 

from the literature that xN1-Src inclusion occurs in a protein synthesis independent 

fashion in Xenopus ectoderm undergoing neuronal differentiation (Collett and Steele, 

1993).  As such, whilst the intracellular signals which induce the activity of the N1-

Src splicing machinery are not currently known, the mechanism the activation of N-

Src inclusion could provide a novel therapeutic target.  Interestingly the expression of 

N2-Src could well be contributing to the expression of further neuronal proteins.  

Whilst the splicing factor hnRNP H is expressed ubiquitously, its association with the 

N-Src exon contributes to its alternative splicing.  This protein is specifically enriched 

in the MS of N2-Src expressing cells, suggesting that N2-Src splicing may contribute 

to auto-regulatory feedback.  It is tempting also to suggest that the same factors 

responsible for neuronal splicing of Src may also be contributing to neuronal splicing 

of other genes.  N2-Src regulation of hnRNP H may be part of a wider transcriptional 

role for the protein.   

 

6.7 Final words 

Utilizing a variety of biological techniques I have demonstrated that neuronal 

Srcs have essential roles to play during neuronal differentiation, both in vivo and in 

vitro, and have provided a road-map for future experiments to identify the specific 

molecular mechanisms through which N-Srcs mediate their effects upon cells.  The 

understanding of the role of N1-Srcs during development has progressed from the 

correlative implications identified in the late 1980’s, to identification of the 

importance of N1-Src in neuritogenesis of neuronal precursors.  This study has also 

identified several pathways and substrates which may be specifically targeted by N1- 
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and N2-Src and provides a considerable base of knowledge from which more in depth 

studies can progress in the coming years. 
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1 Appendices  

Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

CAPRIN1  E9PLA9 n/a 0.000 0.501 0.0 4.0 0.0 4.0 
RPS14  P62263 n/a 0.000 0.412 0.0 3.0 0.0 3.0 
DDX5 B4DLW8 n/a 0.000 0.329 0.0 10.5 0.0 9.0 
HNRNPA0  Q13151 n/a 0.000 0.126 0.0 2.0 0.0 2.0 
KIRREL  B4DN67 n/a 0.000 0.119 0.0 4.5 0.0 4.0 
RPL4 P36578 n/a 0.000 0.115 0.0 3.5 0.0 3.0 
CRBN  J3QT87 n/a 0.000 0.101 0.0 3.0 0.0 2.5 
PKP2  Q99959 n/a 0.000 0.038 0.0 2.0 0.0 2.0 
LRRC59  Q96AG4 -3.106 0.043 0.373 1.0 6.0 1.0 5.5 
RPS20 P60866 -3.031 0.123 1.008 1.0 4.5 1.0 3.5 
LIMD1 C9JRJ5 -2.768 0.014 0.097 0.5 3.5 0.5 3.5 
GTF2I P78347 -2.473 0.009 0.047 0.5 3.0 0.5 3.0 
HNRNPAB  D6R9P3 -2.443 0.031 0.170 0.5 3.0 0.5 2.5 
EIF2S1  P05198 -2.296 0.041 0.202 1.0 3.5 1.0 3.5 
RPS2 H0YEN5 -2.287 0.074 0.359 1.5 4.0 1.0 3.5 
VPS29  F8VXU5 -2.246 0.065 0.308 1.0 3.5 1.0 2.5 
CKAP5  Q14008 -2.134 0.005 0.022 1.0 3.0 1.0 3.0 
CCAR1 Q8IX12 -1.990 0.011 0.043 1.0 3.5 1.0 3.0 
QARS  B4DWJ2 -1.952 0.011 0.044 0.5 2.0 0.5 2.0 
SEC24C G5EA31 -1.904 0.073 0.275 4.5 18.0 4.5 13.0 
SEC23B  Q15437 -1.835 0.071 0.255 3.5 12.5 3.5 9.0 
TIA1  F8W8I6 -1.737 0.128 0.426 3.5 8.0 2.0 7.0 
LDHA P00338 -1.640 0.041 0.128 1.0 2.5 1.0 2.5 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

JUP P14923 -1.619 0.203 0.625 9.5 21.5 8.5 17.0 
EIF4G1  E7EUU4 -1.599 0.011 0.034 1.0 3.0 1.0 3.0 
PDCD6IP Q8WUM4 -1.570 0.113 0.335 6.0 16.5 6.0 14.5 
PCBP1 Q15365 -1.563 0.063 0.185 1.5 3.5 1.5 3.5 
TIAL1  Q01085 -1.545 0.099 0.290 2.0 5.5 2.0 5.5 
HGS  O14964 -1.543 0.037 0.109 2.0 5.0 2.0 4.5 
GN=RPS19  P39019 -1.534 0.235 0.681 2.5 4.0 2.0 4.0 
CCT7 F5GZK5 -1.503 0.040 0.113 1.0 3.0 1.0 3.0 
SLC25A13 F5GX33 -1.467 0.025 0.069 1.0 2.5 1.0 2.5 
PHGDH Q5SZU1 -1.463 0.077 0.211 3.0 8.5 2.0 5.5 
SRP14  P37108 -1.418 0.148 0.394 1.5 3.0 1.0 2.5 
SEC24B  B7ZKM8 -1.378 0.141 0.366 12.0 40.5 8.0 17.0 
YTHDF3 R4GN55 -1.373 0.045 0.118 2.0 4.0 1.5 3.5 
TCP1  F5H282 -1.361 0.054 0.138 1.0 2.5 1.0 2.0 
CARM1  Q86X55 -1.343 0.058 0.148 2.5 5.5 2.5 5.0 
HNRNPDL O14979 -1.333 0.043 0.107 1.0 2.5 1.0 2.5 
HNRNPH3  P31942 -1.323 0.153 0.383 3.5 10.0 2.0 4.5 
CLTC  Q00610 -1.319 0.009 0.021 1.0 2.5 1.0 2.5 
RPL30  E5RI99 -1.310 0.135 0.335 1.0 2.0 1.0 2.0 
CPSF7 F5H669 -1.301 0.056 0.139 1.5 3.0 1.5 3.0 
RPS5 M0R0F0 -1.288 0.369 0.900 5.5 11.5 2.5 6.0 
CDH2 A8MWK3 -1.267 0.046 0.111 2.5 6.5 2.0 4.5 
SEC23A  F5H365 -1.259 0.191 0.457 8.5 25.0 7.5 13.0 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

RPS10 P46783 -1.211 0.182 0.421 3.0 7.5 1.5 3.5 
RPL7  A8MUD9 -1.198 0.414 0.951 3.5 9.0 3.5 6.0 
PHB  P35232 -1.184 0.146 0.332 2.5 4.5 2.5 4.5 
CLASP2  E3W994 -1.183 0.014 0.032 1.0 2.5 1.0 2.5 
NOTCH2  Q04721 -1.162 0.019 0.042 3.5 7.0 3.5 6.5 
CTNNB1  B4DGU4 -1.143 0.139 0.307 7.5 13.0 6.5 11.5 
FUBP1 E9PEB5 -1.134 0.113 0.247 5.5 9.0 4.5 7.5 
SEC16A J3KNL6 -1.120 0.096 0.209 14.0 26.5 13.5 22.5 
FUS H3BPE7 -1.114 0.058 0.127 2.0 3.5 1.5 3.0 
BCAR3  O75815 -1.111 0.089 0.193 5.0 9.5 5.0 8.0 
TANC2  Q9HCD6 -1.107 0.049 0.105 6.5 13.0 6.5 11.5 
HNRNPA2B1  P22626 -1.080 0.138 0.291 4.0 6.0 3.0 5.0 
SLC25A5  P05141 -1.079 0.353 0.747 6.5 11.0 5.0 8.0 
VPS35 Q96QK1 -1.078 0.092 0.195 5.0 11.5 5.0 8.0 
ATP5B  H0YH81 -1.062 0.086 0.180 2.0 3.5 2.0 3.5 
RPS8 Q5JR95 -1.001 0.223 0.446 3.0 5.0 2.5 4.0 
PHB2  J3KPX7 -0.981 0.128 0.253 2.5 4.0 2.5 4.0 
RPS13  P62277 -0.980 0.355 0.701 3.5 5.5 3.0 4.5 
RPL27A E9PJD9 -0.960 0.298 0.579 1.5 2.5 1.5 2.5 
PCMT1  J3KP72 -0.957 0.081 0.157 1.5 2.5 1.5 2.5 
SEC23IP  F5H0L8 -0.942 0.020 0.038 1.0 2.0 1.0 2.0 
ANXA11  B4DVE7 -0.930 0.078 0.148 2.5 4.5 2.5 4.0 
NCKAP1  Q9Y2A7 -0.929 0.101 0.193 7.5 13.5 6.0 12.0 

202 
 



Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

TJP1  G3V1L9 -0.914 0.034 0.063 4.5 8.0 4.0 7.0 
HSP90AB1 P08238 -0.909 0.080 0.149 4.5 7.0 4.0 6.5 
CYFIP1 Q7L576 -0.907 0.103 0.192 8.5 15.0 8.0 13.0 
PTK2 H0YBP1 -0.857 0.045 0.082 3.5 7.5 3.5 5.0 
PICALM Q13492 -0.830 0.043 0.076 1.5 3.0 1.5 3.0 
PXN  F5GZ78 -0.806 0.075 0.131 3.0 5.0 3.0 3.0 
KRT9  P35527 -0.785 0.102 0.176 3.5 5.5 3.5 5.5 
PARD3 Q5VWV2 -0.772 0.056 0.095 5.0 8.0 4.5 7.0 
EIF3A  F5H335 -0.770 0.016 0.027 1.5 2.5 1.5 2.5 
RPLP0  P05388 -0.710 0.255 0.418 4.5 7.5 3.5 5.5 
HNRNPU  Q00839 -0.676 0.075 0.120 4.0 5.5 4.0 4.5 
PIK3R2  E9PFP1 -0.672 0.058 0.093 2.5 3.0 2.0 2.5 
MRPS34 C9JJ19 -0.637 0.095 0.148 1.5 2.0 1.5 2.0 
VDAC2  B4DKM5 -0.629 0.089 0.137 1.5 2.0 1.5 2.0 
RPS18 P62269 -0.620 0.587 0.903 5.0 7.5 4.5 5.5 
AGFG1  B8ZZY2 -0.616 0.043 0.066 2.0 2.0 1.5 2.0 
KRT18 F8VZY9 -0.616 0.057 0.088 1.5 2.0 1.5 2.0 
ACTB  P60709 -0.586 0.251 0.377 6.5 7.0 5.0 6.5 
KHSRP Q92945 -0.573 0.238 0.354 11.0 13.5 9.0 11.5 
ATAD3B  Q5T9A4 -0.530 0.095 0.137 5.5 6.0 4.0 5.0 
HIST1H2AG  P0C0S8 -0.515 0.452 0.646 4.0 7.5 2.5 2.5 
SRC  P12931 -0.489 0.174 0.244 5.0 7.0 5.0 6.5 
ARAP1  Q96P48 -0.486 0.031 0.044 3.0 4.5 3.0 4.0 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

PKP3  Q9Y446 -0.468 0.111 0.153 5.5 7.0 5.5 6.5 
EIF3C H3BRV0 -0.454 0.045 0.062 3.0 3.5 3.0 3.5 
KPNA2  P52292 -0.437 0.073 0.099 2.5 3.0 2.5 3.0 
IGF2BP3  O00425 -0.412 0.045 0.060 1.5 2.0 1.5 2.0 
FUBP3 Q96I24 -0.408 0.217 0.288 7.0 8.5 6.0 7.5 
KPNB1  Q14974 -0.399 0.056 0.074 3.5 4.0 3.0 3.5 
ANKS1A  Q92625 -0.399 0.042 0.055 3.0 3.5 3.0 3.5 
DDX3X  O00571 -0.396 0.556 0.732 22.0 27.5 16.0 17.5 
EIF3L  B0QY89 -0.378 0.045 0.059 2.0 2.0 2.0 2.0 
SNX18  Q96RF0 -0.375 0.085 0.110 3.5 4.0 3.5 3.5 
MCM3 J3KQ69 -0.372 0.049 0.063 2.5 3.0 2.5 3.0 
KRT1 P04264 -0.343 0.183 0.232 8.5 9.0 6.5 7.5 
CTNND1  C9JZR2 -0.334 1.135 1.432 67.0 96.5 30.5 30.0 
BCR  P11274 -0.334 0.029 0.037 2.5 3.0 2.5 3.0 
NCL  P19338 -0.330 0.056 0.071 3.0 3.0 2.5 3.0 
HSPA9  P38646 -0.307 0.223 0.276 12.5 14.5 8.0 8.0 
CAND1 Q86VP6 -0.290 0.067 0.082 6.0 6.0 5.5 6.0 
ALB H0YA55 -0.288 0.058 0.071 2.5 2.0 1.5 2.0 
EMD  P50402 -0.279 0.278 0.337 4.5 4.5 4.0 4.0 
PKP4 Q99569 -0.259 0.224 0.268 17.0 17.5 14.0 16.0 
EEF1A1P5  Q5VTE0 -0.247 0.297 0.353 9.5 9.5 5.5 6.5 
GIT1  Q9Y2X7 -0.226 0.162 0.189 6.0 8.5 5.5 8.0 
ARHGEF7  B1ALK7 -0.181 0.204 0.232 9.5 9.5 8.0 8.5 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

TUFM P49411 -0.179 0.083 0.094 2.5 2.5 2.5 2.5 
HSPD1  P10809 -0.166 0.336 0.377 12.5 11.0 9.0 9.0 
SLC3A2 J3KPF3 -0.148 0.127 0.141 6.0 5.5 5.0 5.0 
PABPC1 P11940 -0.146 0.358 0.396 13.5 18.0 8.0 9.5 
PRKDC  E7EUY0 -0.136 0.031 0.034 9.0 9.0 9.0 9.0 
RPS7  B5MCP9 -0.136 0.532 0.585 7.0 8.0 4.5 4.5 
BCAR1  P56945 -0.132 0.324 0.355 16.5 18.5 13.5 14.0 
DSG2  Q14126 -0.110 0.115 0.124 8.0 9.0 7.5 8.0 
RPL12  P30050 -0.107 0.673 0.724 5.5 4.5 4.5 4.5 
CTTN Q14247 -0.085 2.154 2.286 45.0 42.0 27.0 26.5 
ILF2  Q12905 -0.066 0.131 0.137 3.5 3.5 2.5 3.0 
KRT2  P35908 -0.054 0.093 0.097 3.5 4.0 3.5 3.5 
NUP88  J3KMX1 -0.043 0.054 0.056 2.5 2.5 2.5 2.5 
HSPA5  P11021 -0.035 0.291 0.298 13.5 12.5 10.5 9.0 
HSPA1A  P08107 -0.031 0.365 0.373 15.0 15.0 11.0 9.5 
CBL  P22681 -0.017 0.059 0.059 3.5 3.5 3.5 3.5 
ILF3  Q12906 0.017 0.083 0.082 4.0 4.0 4.0 4.0 
VANGL1  Q8TAA9 0.020 0.112 0.110 4.5 3.5 3.5 3.5 
RPL31  B7Z4C8 0.045 0.283 0.275 2.0 2.0 2.0 2.0 
PTBP1  P26599 0.046 0.288 0.279 12.0 12.0 7.0 6.0 
CPS1 P31327 0.061 0.215 0.206 20.0 21.5 17.0 16.0 
INPPL1 O15357 0.068 0.090 0.086 7.0 7.0 7.0 6.0 
RPS12  P25398 0.099 0.413 0.386 2.5 2.5 2.0 2.0 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

RPS16 M0R210 0.100 1.266 1.181 9.0 8.5 5.0 5.0 
DAB2  P98082 0.125 0.119 0.109 6.0 4.5 5.5 4.5 
VDAC3  F5H740 0.128 0.250 0.229 4.0 5.0 4.0 3.5 
EFTUD2 K7EJ81 0.148 0.037 0.033 2.5 2.0 2.5 2.0 
RELA  Q2TAM5 0.180 0.100 0.088 2.5 2.0 2.5 2.0 
PARP1  P09874 0.195 0.075 0.066 5.0 4.5 4.5 4.0 
C14orf166  Q9Y224 0.210 0.200 0.173 3.0 2.5 3.0 2.5 
COPA P53621 0.215 0.042 0.036 3.5 3.0 3.5 3.0 
RPN1  P04843 0.228 0.184 0.157 7.5 6.0 6.5 5.0 
IPO5  H0Y8C6 0.235 0.077 0.065 6.0 4.5 6.0 4.5 
HNRNPR  O43390 0.243 0.122 0.103 5.0 5.0 4.0 4.0 
ARHGEF10  H0YAN8 0.246 0.037 0.031 3.0 2.0 2.5 2.0 
RPL23  J3KT29 0.258 0.379 0.317 3.0 2.0 2.0 1.5 
VCP  P55072 0.261 3.623 3.025 114.5 92.0 41.0 37.0 
UBAP2L  F8W726 0.270 0.088 0.073 5.5 6.0 5.5 4.0 
DRG1  Q9Y295 0.277 0.173 0.143 3.5 3.0 3.5 3.0 
CANX  B4DGP8 0.283 0.045 0.037 3.0 3.0 2.0 1.5 
TRIM25  Q14258 0.283 0.045 0.037 2.0 1.5 2.0 1.5 
CCT4  B7Z2F4 0.292 0.192 0.157 4.5 4.0 4.0 3.0 
PA2G4  Q9UQ80 0.315 0.170 0.137 4.5 2.5 4.0 2.5 
RPL18A  M0R0P7 0.320 0.315 0.253 2.5 2.0 2.5 2.0 
DHX15  O43143 0.320 0.084 0.067 4.5 3.5 3.5 3.0 
U2AF2 K7ENG2 0.345 0.100 0.079 2.0 1.5 2.0 1.5 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

CTNNA1  G3XAM7 0.346 0.075 0.059 5.0 4.0 3.5 2.0 
TUBA1A  Q71U36 0.350 1.321 1.036 51.0 39.5 14.5 12.5 
GNL3  Q9BVP2 0.362 0.072 0.056 3.0 2.0 2.0 2.0 
RPL14  E7EPB3 0.366 0.359 0.279 3.0 2.5 2.5 2.0 
SLC25A3  F8VVM2 0.376 0.095 0.073 2.0 1.5 2.0 1.5 
DDX1  Q92499 0.388 0.086 0.065 4.0 3.0 4.0 3.0 
RPS4X  P62701 0.414 0.642 0.482 9.0 6.5 7.5 6.0 
EZR  E7EQR4 0.415 0.298 0.223 10.5 7.0 8.5 6.0 
CCT3  B4DUR8 0.426 0.163 0.121 6.5 3.5 5.0 3.5 
RPL13  P26373 0.426 0.196 0.146 2.5 2.0 2.5 1.5 
DHX9 Q08211 0.438 0.105 0.078 8.5 6.0 7.5 6.0 
DDX6  P26196 0.444 0.119 0.088 3.5 3.0 2.5 2.5 
KRT10  P13645 0.474 0.127 0.091 4.0 3.0 4.0 3.0 
PLEC Q15149 0.483 0.014 0.010 5.0 3.5 4.5 3.5 
ATAD3A  H0Y2W2 0.484 0.140 0.100 6.0 4.0 5.0 3.5 
CCT5  B4DYD8 0.484 0.070 0.050 2.0 2.0 2.0 1.5 
KHDRBS1  Q07666 0.487 0.169 0.121 4.0 4.0 3.5 2.5 
RBM14  Q96PK6 0.514 0.078 0.055 3.0 2.0 3.0 2.0 
HNRNPH1 G8JLB6 0.545 0.288 0.198 10.0 13.0 5.5 4.0 
HNRNPD  H0Y8G5 0.546 0.129 0.088 2.0 1.5 2.0 1.5 
HSPA8  P11142 0.548 0.810 0.554 25.0 21.5 17.0 13.0 
DDB1  Q16531 0.588 0.079 0.052 6.5 5.0 6.0 4.0 
DYNC1H1 Q14204 0.588 0.007 0.005 3.0 2.0 3.0 2.0 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

MYBBP1A  I3L1L3 0.596 0.031 0.020 2.5 1.5 2.5 1.5 
HNRNPM  P52272 0.600 0.085 0.056 3.5 2.5 3.5 2.0 
HIST1H4A P62805 0.604 1.959 1.289 6.0 3.5 5.5 3.0 
HNRNPA1  F8W6I7 0.636 0.570 0.367 9.5 5.5 7.0 5.0 
MOV10 Q5JR04 0.643 0.037 0.024 2.0 1.5 2.0 1.5 
TUBA4A  A8MUB1 0.652 1.135 0.722 50.0 36.0 12.5 9.5 
DNAJC10  Q8IXB1 0.671 0.046 0.029 2.5 1.5 2.5 1.5 
TUBB4B P68371 0.680 2.450 1.529 55.5 36.5 20.5 16.5 
RPL9 D6RAN4 0.687 0.280 0.174 3.0 1.5 2.5 1.5 
SYNCRIP  O60506 0.748 0.283 0.168 11.0 8.0 9.0 5.5 
SERBP1  Q8NC51 0.761 0.140 0.082 3.5 2.0 3.0 2.0 
DHX36  F5GZS0 0.799 0.054 0.031 3.5 2.0 3.5 2.0 
NUDT21  O43809 0.844 0.266 0.148 3.5 2.5 3.5 2.0 
DDX17  C9JMU5 0.847 0.180 0.100 7.0 4.0 7.0 4.0 
NONO  Q15233 0.849 0.285 0.158 8.0 4.5 5.0 2.5 
G3BP1  Q13283 0.864 0.305 0.168 12.0 5.0 6.0 3.0 
IARS  J3KR24 0.887 0.034 0.018 2.5 1.5 2.5 1.5 
DDX21  Q9NR30 0.913 0.083 0.044 4.0 2.5 4.0 2.0 
NUPL1  Q5JRG1 0.925 0.105 0.055 3.0 1.5 3.0 1.5 
SFPQ  P23246 0.934 0.213 0.112 10.0 4.5 7.0 3.5 
TMPO P42167 0.956 0.223 0.115 6.5 3.0 6.0 2.5 
HNRNPK Q5T6W5 1.010 0.288 0.143 8.0 4.5 6.5 3.5 
SNRNP200  O75643 1.020 0.019 0.010 3.0 1.5 3.0 1.5 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

DBNL  Q9UJU6 1.020 0.189 0.093 5.0 2.0 5.0 2.0 
PABPC4  B1ANR0 1.020 0.420 0.207 13.5 11.5 10.5 5.5 
REL Q17RU2 1.024 0.179 0.088 7.0 4.0 6.0 3.0 
TUBB  P07437 1.039 3.282 1.597 63.0 25.5 21.5 10.5 
RPS3 P23396 1.069 0.510 0.243 6.5 3.0 6.0 3.0 
VDAC1  P21796 1.069 0.115 0.055 2.0 2.0 2.0 1.0 
MCM7  P33993 1.069 0.040 0.019 2.0 1.0 2.0 1.0 
G3BP2 Q9UN86 1.099 0.193 0.090 5.5 2.5 4.5 2.0 
SLITRK5  O94991 1.102 0.087 0.040 7.0 3.0 5.0 2.5 
BUB3  J3QT28 1.105 0.118 0.055 2.0 1.0 2.0 1.0 
XRCC5  P13010 1.107 0.265 0.123 11.0 6.0 10.5 5.5 
ANKRD17  H0YM23 1.139 0.034 0.016 5.0 2.0 5.0 1.5 
TUBA8  V9GZ17 1.178 0.510 0.226 10.5 5.5 5.0 3.5 
ROBO1  Q9Y6N7 1.184 0.095 0.042 9.5 5.5 9.0 4.5 
ATP5O  P48047 1.201 0.269 0.117 3.5 1.5 2.5 1.0 
ATP5A1  P25705 1.242 0.299 0.126 9.5 5.0 8.5 4.0 
ASS1 P00966 1.323 0.426 0.170 9.5 4.5 8.5 4.0 
UPF1  Q92900 1.332 0.081 0.032 6.0 2.0 5.5 2.0 
LARP1 Q6PKG0 1.347 0.049 0.019 3.5 1.5 3.5 1.5 
EIF2S3L  Q2VIR3 1.414 0.108 0.040 4.0 1.0 3.0 1.0 
HNRNPF  P52597 1.490 0.154 0.055 6.0 3.0 2.5 1.0 
AFAP1  Q8N556 1.524 0.091 0.031 4.0 1.5 4.0 1.5 
EEF1G B4DTG2 1.529 0.095 0.033 3.0 1.0 3.0 1.0 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

ERBB2 J3QLU9 1.583 0.079 0.026 6.0 2.0 5.5 2.0 
RPA1  P27694 1.587 0.140 0.047 6.0 2.0 5.5 1.5 
EGFR  P00533 1.851 0.291 0.081 23.0 6.0 16.5 4.0 
RPS23 P62266 2.076 0.472 0.112 3.5 1.0 3.5 1.0 
APEX1 P27695 2.147 0.095 0.021 2.0 0.5 2.0 0.5 
SPTAN1  A6NG51 2.173 0.022 0.005 4.0 1.0 4.0 1.0 
CKAP4  Q07065 2.402 0.063 0.012 2.5 0.5 2.0 0.5 
IGF2BP1 Q9NZI8 2.473 0.086 0.016 3.0 0.5 2.5 0.5 
HBS1L H0YDX7 2.596 0.072 0.012 2.5 0.5 2.5 0.5 
GIT2  F8VXI9 2.898 0.142 0.019 5.5 1.0 5.0 1.0 
LMNA P02545 3.281 0.725 0.075 23.5 2.5 16.5 2.5 
LRPPRC  P42704 3.690 0.080 0.006 7.5 0.5 7.5 0.5 
VIM  B0YJC4 n/a 0.171 0.000 4.5 0.0 4.5 0.0 
RPS9  B5MCT8 n/a 0.539 0.000 4.5 0.0 4.0 0.0 
RPS14  H0YB22 n/a 0.554 0.000 3.0 0.0 3.0 0.0 
RPL10  H7C123 n/a 0.534 0.000 2.5 0.0 2.0 0.0 
DDX5  J3KTA4 n/a 0.394 0.000 13.0 0.0 11.5 0.0 
CDK1  P06493 n/a 0.225 0.000 4.0 0.0 4.0 0.0 
SLC25A6 P12236 n/a 0.305 0.000 6.0 0.0 4.5 0.0 
RPL35 P42766 n/a 0.260 0.000 2.0 0.0 2.0 0.0 
RAB7A  P51149 n/a 0.150 0.000 2.0 0.0 2.0 0.0 
EIF3B P55884 n/a 0.044 0.000 2.5 0.0 2.5 0.0 
TRIP10  Q15642 n/a 0.205 0.000 7.5 0.0 7.0 0.0 
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Appendix 1 – Table showing relative protein abundance in  C- & N2-Src LC/MS/MS experiments 

Gene name Accession 
Log change 
%emPAI 

C-Src %emPAI 
AVG 

N2-Src %emPAI 
AVG 

C-Src Sig 
mat AVG 

N2 Sig 
mat AVG 

C-Src Sig 
Seq AVG 

N2-Sig 
Seq AVG 

GCN1L1  Q92616 n/a 0.019 0.000 4.5 0.0 3.5 0.0 
DAZAP1  Q96EP5 n/a 0.114 0.000 2.5 0.0 2.5 0.0 
KIRREL  Q96J84 n/a 0.169 0.000 8.5 0.0 7.0 0.0 
YTHDF2  Q9Y5A9 n/a 0.055 0.000 2.0 0.0 2.0 0.0 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPS9 RPS23 0.255 0 0 0 0.803 0.669 0.9 0.349 0.995 
RELA DDX21 0 0 0 0 0 0.139 0 0.563 0.598 
HNRNPK HNRNPD 0 0 0 0 0.292 0.974 0.9 0.54 0.998 
DHX9 EFTUD2 0 0 0 0 0 0 0.9 0.087 0.902 
DHX15 U2AF2 0 0 0 0 0.118 0.231 0 0.378 0.52 
UPF1 DDX5 0 0 0 0 0 0.388 0 0.092 0.406 
CPS1 ASS1 0.539 0.326 0 0 0.524 0 0 0.675 0.941 
HNRNPR HNRNPA1 0 0 0 0.7 0.134 0.736 0 0.271 0.772 
RPL23 IPO5 0 0 0 0 0 0.62 0 0.168 0.662 
RPS9 RPN1 0 0 0 0 0.072 0 0.9 0.065 0.901 
HNRNPM SNRNP200 0 0 0 0 0.071 0 0.9 0.258 0.921 
GNL3 CCT3 0 0 0 0 0.514 0 0 0 0.514 
RPL31 RPN1 0 0 0 0 0 0 0.9 0 0.899 
CCT3 RPL35 0 0 0 0 0.337 0.238 0 0 0.461 
DHX15 LRPPRC 0 0 0 0 0.459 0 0 0 0.46 
RPL31 EIF3B 0 0 0 0 0.124 0 0.9 0 0.906 
SFPQ U2AF2 0 0 0 0 0 0.62 0 0.284 0.709 
RPL9 RPS14 0.41 0 0 0 0.937 0.58 0.9 0.379 0.998 
DNAJC10 CANX 0 0 0 0 0.187 0 0 0.604 0.656 
RPS14 RPS3 0.41 0 0 0 0.959 0.744 0.9 0.524 0.999 
DHX9 DDX21 0 0 0 0 0.257 0.62 0 0.261 0.762 
RELA DDX1 0 0 0 0 0 0.621 0 0.8 0.919 
DHX9 XRCC5 0 0 0 0 0.216 0.937 0 0.17 0.953 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

DHX9 U2AF2 0 0 0 0 0 0 0.9 0.215 0.916 
HNRNPM RBM4 0 0 0 0 0.092 0.997 0 0 0.997 
CDK1 EGFR 0 0 0 0.717 0 0.394 0 0.44 0.462 
EIF3B RPS9 0 0 0 0 0.226 0 0.9 0 0.917 
RPL31 RPS9 0 0 0 0 0.589 0 0.9 0.341 0.969 
RPS9 RPL18A 0 0 0 0 0.894 0.58 0.9 0.161 0.995 
RPS23 RPS16 0.243 0 0 0 0.915 0.735 0.9 0.239 0.998 
EFTUD2 RPL35 0.265 0 0 0 0.16 0.29 0 0 0.501 
DHX9 RBM4 0 0 0 0 0 0.974 0 0 0.974 
PARP1 MCM7 0 0 0 0 0.442 0 0 0.168 0.505 
CDK1 PA2G4 0 0 0 0 0.165 0.62 0 0.071 0.664 
HNRNPA1 LRPPRC 0 0 0 0 0.189 0.425 0 0.817 0.903 
ILF3 PTBP1 0 0 0 0 0.238 0 0 0.379 0.495 
RPL10 RPL18A 0 0 0 0 0.607 0.352 0 0.239 0.779 
DDX21 DDX1 0 0 0.5 0.629 0.354 0 0 0.241 0.503 
SFPQ HNRNPA1 0 0 0 0.535 0.205 0.425 0 0.308 0.571 
RPL23 RPS23 0.41 0 0 0 0.906 0 0.9 0.241 0.994 
DHX9 HNRNPH1 0 0 0 0 0.39 0 0 0.106 0.418 
HNRNPM U2AF2 0 0 0 0 0 0 0.9 0.269 0.921 
SLC25A6 SLC25A3 0 0 0 0.672 0.499 0.141 0 0.23 0.568 
RPL10 RPL35 0.341 0 0 0 0.568 0.387 0 0.379 0.868 
PTBP1 PA2G4 0 0 0 0 0.08 0.357 0 0.144 0.424 
HNRNPD EFTUD2 0 0 0 0 0.067 0.136 0.9 0.108 0.912 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

U2AF2 NUDT21 0 0 0 0 0 0 0.9 0.202 0.914 
BUB3 MCM7 0 0 0 0 0.664 0 0 0.204 0.714 
RPS4X RPL18A 0 0 0 0 0.762 0.35 0 0.305 0.877 
SFPQ HNRNPH1 0 0 0 0 0.585 0 0 0.309 0.694 
SYNCRIP HNRNPH1 0 0 0 0.544 0.24 0.658 0 0.27 0.75 
EIF3B RPL18A 0 0 0 0 0.224 0 0.9 0 0.917 
EIF3B PA2G4 0 0 0 0 0.625 0 0 0 0.625 
HNRNPM HNRNPD 0 0 0 0.613 0.252 0 0.9 0.343 0.929 
PARP1 EGFR 0 0 0 0 0 0 0 0.528 0.528 
IPO5 DDX1 0 0 0 0 0.439 0 0 0 0.439 
DDX17 HNRNPH1 0 0 0 0 0.174 0.68 0 0.309 0.792 
HNRNPK DDX1 0 0 0 0 0.214 0.621 0 0.275 0.754 
HNRNPR SNRNP200 0 0 0 0 0.068 0 0.9 0 0.9 
DHX9 IGF2BP1 0 0 0 0 0 0 0.9 0.236 0.918 
ATP5A1 VDAC1 0 0 0 0 0.321 0.16 0 0.22 0.493 
RPL35 RPS12 0.068 0 0 0 0.775 0.385 0 0.38 0.903 
EGFR RAB7A 0 0 0 0 0 0.621 0 0.079 0.627 
PA2G4 IPO5 0 0 0 0 0.169 0.358 0 0.081 0.442 
UPF1 DAZAP1 0 0 0 0 0.103 0.58 0 0.071 0.602 
CCT3 APEX1 0 0 0 0 0.58 0 0 0 0.581 
RPL23 PA2G4 0.357 0 0 0 0.308 0 0 0.1 0.545 
RPL31 RPL18A 0.378 0 0 0 0.666 0.384 0.9 0.306 0.988 
RPL31 RPS3 0 0 0 0 0.804 0 0.9 0.318 0.984 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPS23 UPF1 0 0 0 0 0 0 0.9 0 0.899 
PLEC RPL18A 0 0 0 0 0.551 0 0 0 0.551 
RPS4X RPS9 0 0 0 0 0.715 0.386 0 0.224 0.845 
ATP5O ATP5A1 0.472 0 0.268 0 0.637 0.8 0.9 0.721 0.998 
ATP5O RPL35 0 0 0 0 0.404 0 0 0.1 0.428 
DHX36 DDX1 0 0 0 0 0.256 0 0 0.413 0.534 
NUDT21 EFTUD2 0 0 0 0 0.077 0 0.9 0.087 0.904 
RPS4X RPL10 0 0 0 0 0.702 0.226 0 0.112 0.767 
HNRNPK HNRNPR 0 0 0 0 0.35 0 0.9 0.29 0.947 
HNRNPH1 DDX5 0 0 0 0 0.569 0.996 0 0.258 0.998 
HNRNPK DHX15 0 0 0 0 0.541 0 0 0.065 0.542 
RPL14 RPS3 0.186 0 0 0 0.865 0.384 0 0.499 0.959 
DRG1 APEX1 0 0 0 0 0.416 0 0 0 0.416 
ILF3 HNRNPA1 0 0 0 0 0 0.571 0 0.379 0.715 
GNL3 IARS 0 0 0 0 0.45 0 0 0 0.45 
HNRNPM EFTUD2 0 0 0 0 0.112 0 0.9 0.183 0.917 
DHX15 CCT5 0 0 0 0 0.494 0 0 0 0.494 
CCT4 IARS 0.1 0 0 0 0.49 0 0 0.182 0.572 
YTHDF2 HNRNPH1 0 0 0 0 0.087 0.721 0 0 0.728 
EZR EGFR 0 0 0 0 0 0.621 0 0.877 0.95 
UPF1 RPL18A 0 0 0 0 0 0 0.9 0 0.899 
ILF3 DHX9 0 0 0 0 0.329 0.621 0 0.537 0.866 
RPL23 RPL18A 0 0 0 0 0.779 0.387 0.9 0.264 0.987 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

HNRNPH1 HNRNPF 0 0 0 0.965 0.128 0.621 0 0.675 0.655 
MOV10 HNRNPA1 0 0 0 0 0 0.571 0 0 0.571 
RPS3 RPS12 0.071 0 0 0 0.855 0.58 0 0.331 0.954 
RPL23 C14orf166 0 0 0 0 0.449 0 0 0 0.449 
RELA SPTAN1 0 0 0 0 0 0 0 0.504 0.504 
CCT3 PARP1 0 0 0 0 0.691 0 0 0.086 0.699 
HNRNPK PARP1 0 0 0 0 0.066 0 0 0.824 0.825 
PTBP1 HNRNPM 0 0 0 0 0 0 0.9 0.42 0.938 
MCM7 APEX1 0 0 0 0 0.444 0 0 0.08 0.455 
HNRNPK NUDT21 0 0 0 0 0.188 0 0.9 0.107 0.917 
VDAC1 TUBA4A 0 0 0 0 0 0.621 0 0 0.621 
RPS14 RPS9 0.357 0 0 0 0.862 0.671 0.9 0.371 0.997 
MCM7 RPA1 0 0 0 0 0.723 0.923 0 0.187 0.98 
DDX17 U2AF2 0 0 0 0 0 0.974 0 0.201 0.977 
LARP1 RPS9 0 0 0 0 0.097 0.388 0 0 0.41 
RPL13 RPL18A 0 0 0 0 0.82 0.735 0 0.273 0.96 
DHX9 KHDRBS1 0 0 0 0 0.11 0.993 0 0.156 0.994 
RPS14 RPS12 0.082 0 0 0 0.878 0.58 0 0.374 0.964 
LARP1 DHX15 0 0 0 0 0.091 0.388 0 0 0.406 
DYNC1H1 TUBA1A 0 0 0 0 0 0.116 0.8 0.332 0.865 
RPL23 RPS14 0.41 0 0.259 0 0.896 0 0.9 0.271 0.995 
G3BP1 IGF2BP1 0 0 0 0 0 0 0 0.411 0.411 
RPS9 EFTUD2 0.181 0 0 0 0.266 0.295 0 0 0.518 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

G3BP1 HNRNPA1 0 0 0 0.635 0.07 0.425 0 0.274 0.476 
EIF3B RPS3 0 0 0 0 0.175 0 0.9 0.092 0.914 
DHX9 PTBP1 0 0 0 0 0.183 0 0.9 0.203 0.925 
DDX17 UPF1 0 0 0 0 0 0.388 0 0.092 0.406 
LMNA TMPO 0 0 0 0 0.085 0.846 0 0.585 0.933 
HNRNPK KHDRBS1 0 0 0 0 0.159 0.993 0 0.66 0.997 
HNRNPR HNRNPF 0 0 0 0 0.077 0 0.9 0.238 0.919 
RPS14 RPL18A 0 0 0 0 0.828 0.58 0.9 0.122 0.992 
SYNCRIP DHX15 0 0 0 0 0.574 0 0 0 0.574 
SERBP1 DDX21 0 0 0 0 0.435 0 0 0.073 0.442 
RPL14 RPL10 0.079 0 0 0 0.425 0.231 0 0.342 0.674 
HNRNPF U2AF2 0 0 0 0 0 0 0.9 0.513 0.948 
RELA PARP1 0 0 0 0 0 0.939 0 0.87 0.991 
RPL13 IPO5 0 0 0 0 0.071 0.62 0 0 0.623 
HNRNPF EFTUD2 0 0 0 0 0 0 0.9 0.065 0.9 
CCT4 GCN1L1 0 0 0 0 0 0.667 0 0 0.667 
RPS14 EFTUD2 0.194 0 0 0 0.309 0.295 0 0 0.553 
RPL23 RPL13 0 0 0 0 0.852 0.387 0 0.33 0.931 
RPL31 RPS12 0 0 0 0 0.793 0.238 0 0.307 0.876 
HNRNPR PTBP1 0 0 0 0 0 0 0.9 0.201 0.914 
RPL23 EFTUD2 0.329 0 0 0 0.308 0.29 0 0.104 0.641 
DHX15 EFTUD2 0 0 0 0 0.093 0.492 0 0.272 0.618 
KHDRBS1 HNRNPD 0 0 0 0 0.29 0 0 0.3 0.47 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

SLC25A6 RPL35 0 0 0 0 0.401 0 0 0.076 0.41 
RPS23 RPN1 0 0 0 0 0.076 0 0.9 0 0.901 
RPL23 RPN1 0 0 0 0 0.078 0 0.9 0 0.901 
PARP1 CTNNA1 0 0 0 0 0.4 0 0 0 0.4 
EGFR HSPA8 0 0 0 0 0 0.472 0 0.148 0.52 
RPS3 EFTUD2 0.329 0 0 0 0.431 0.388 0 0 0.734 
EZR VIM 0 0 0 0 0 0 0 0.43 0.43 
HNRNPF RBM4 0 0 0 0 0 0.974 0 0.086 0.974 
RPL9 RPL13 0 0 0 0 0.801 0.58 0 0.219 0.926 
G3BP1 DDX6 0 0 0 0 0.071 0.621 0 0.425 0.769 
HNRNPK G3BP1 0 0 0 0 0.174 0 0 0.319 0.4 
IARS IPO5 0 0 0 0 0.494 0 0 0 0.494 
RPS23 RPS12 0.212 0 0 0 0.866 0.58 0 0.371 0.966 
CCT4 SLC25A3 0 0 0 0 0.404 0.292 0 0 0.55 
RPL23 RPL14 0.188 0 0 0 0.826 0.266 0 0.306 0.913 
ILF3 HNRNPD 0 0 0 0 0.208 0 0 0.341 0.443 
RPS3 RPS16 0.253 0 0 0 0.922 0.744 0.9 0.498 0.999 
GNL3 SYNCRIP 0 0 0 0 0.436 0 0 0 0.436 
CCT4 LRPPRC 0 0 0 0 0.426 0 0 0 0.426 
RPS12 RPL18A 0 0 0 0 0.7 0.231 0 0.243 0.801 
PTBP1 NUDT21 0 0 0 0 0 0 0.9 0.094 0.903 
CCT3 RPS3 0 0 0 0 0.39 0 0 0.122 0.428 
UPF1 RPS16 0 0 0 0 0 0 0.9 0.078 0.901 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

TUBA1A VIM 0 0 0 0 0.066 0 0 0.434 0.436 
BUB3 DHX15 0 0 0 0 0.45 0 0 0 0.45 
SERBP1 DDX1 0 0 0 0 0.487 0 0 0 0.487 
HNRNPA1 XRCC5 0 0 0 0 0.186 0.425 0 0 0.5 
CDK1 CCT5 0 0 0 0 0.373 0 0 0.128 0.417 
SLC25A6 RPL18A 0 0 0 0 0.593 0 0 0.078 0.6 
PLEC RPS23 0 0 0 0 0.55 0.488 0 0 0.754 
EGFR VIM 0 0 0 0 0 0 0 0.693 0.693 
RPL9 RPS3 0.472 0 0 0 0.936 0.653 0.9 0.429 0.999 
DHX9 HNRNPF 0 0 0 0 0 0 0.9 0.179 0.912 
RPL14 RPL13 0 0 0 0 0.748 0.489 0 0.273 0.893 
SYNCRIP SFPQ 0 0 0 0.524 0.383 0 0 0.201 0.427 
CCT3 EIF3B 0 0 0 0 0.482 0 0 0 0.482 
LMNA CDK1 0 0 0 0 0.114 0.621 0 0.447 0.788 
RPL23 RPS3 0.472 0 0 0 0.89 0 0.9 0.424 0.995 
CCT5 HSPA8 0.08 0 0 0 0.443 0 0 0.211 0.54 
U2AF2 NONO 0 0 0 0.518 0 0.62 0 0.275 0.661 
SYNCRIP HNRNPD 0 0 0 0.673 0.311 0.846 0 0.341 0.898 
HNRNPF NUDT21 0 0 0 0 0.087 0 0.9 0 0.902 
CCT4 BUB3 0 0 0 0 0.533 0 0 0 0.533 
SERBP1 SYNCRIP 0 0 0 0 0.58 0 0 0.128 0.609 
RPS14 RPS16 0.357 0 0 0 0.905 0.74 0.9 0.379 0.998 
KHDRBS1 DDX5 0 0 0 0 0.107 0.974 0 0.2 0.978 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

EIF3B DHX15 0 0 0 0 0.4 0 0 0 0.4 
DHX15 HNRNPD 0 0 0 0 0.463 0 0 0.13 0.502 
RPS4X PLEC 0 0 0 0 0.365 0.235 0 0 0.482 
HNRNPD HSPA8 0 0 0 0 0 0.845 0 0.404 0.901 
SERBP1 LRPPRC 0 0 0 0 0.485 0 0 0 0.486 
RPN1 CANX 0 0 0 0 0.265 0 0 0.47 0.584 
MYBBP1A PA2G4 0 0 0 0 0.567 0.141 0 0 0.604 
TUBB4 TUBA4A 0 0 0 0.921 0.104 0 0.8 0 0.808 
BUB3 PARP1 0 0 0 0 0.242 0.621 0 0.842 0.948 
RPS14 RPL35 0.41 0 0 0 0.91 0.58 0.9 0.379 0.998 
SFPQ KHDRBS1 0 0 0 0 0.347 0 0 0.163 0.417 
SPTAN1 PLEC 0 0 0 0.485 0.076 0.845 0 0.104 0.851 
SYNCRIP HNRNPA1 0 0 0 0.704 0.151 0.736 0 0.331 0.781 
VCP CDK1 0 0 0 0 0 0 0 0.806 0.806 
RPL14 RPS9 0.16 0 0 0 0.755 0.113 0 0.318 0.849 
PLEC RPS12 0 0 0 0 0.397 0.292 0 0 0.544 
RPL13 RPS16 0 0 0 0 0.85 0.58 0 0.34 0.952 
HNRNPR DHX15 0 0 0 0 0.571 0 0 0 0.571 
PTBP1 EFTUD2 0 0 0 0 0.077 0 0.9 0.089 0.904 
RPL9 UPF1 0 0 0 0 0 0 0.9 0 0.899 
PA2G4 RPL35 0.357 0 0 0 0.229 0.228 0 0.078 0.572 
HNRNPR SYNCRIP 0 0 0 0.968 0.575 0 0 0.426 0.58 
MYBBP1A EIF3B 0 0 0 0 0.548 0 0 0 0.548 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPL23 EIF3B 0 0 0 0 0.136 0 0.9 0 0.907 
RPS4X RPS16 0 0 0 0 0.763 0.386 0 0.227 0.872 
PABPC4 HNRNPA1 0 0 0 0.655 0.103 0.45 0 0.16 0.492 
ATP5A1 RPS3 0 0 0 0 0.39 0 0 0.12 0.428 
MCM7 IPO5 0 0 0 0 0.358 0 0 0.141 0.412 
VCP HSPA8 0 0 0 0 0.113 0.62 0 0.306 0.733 
DDX1 DDX5 0 0 0.51 0.682 0.26 0 0 0.255 0.413 
ATP5O SLC25A3 0 0 0 0 0.382 0 0 0.22 0.486 
RPL14 RPL18A 0 0 0 0 0.768 0.489 0 0.198 0.892 
RPN1 RPS3 0 0 0 0 0.159 0 0.9 0.22 0.925 
DHX15 RPS16 0 0 0 0 0 0.58 0 0 0.58 
CCT4 HNRNPH1 0 0 0 0 0.157 0.68 0 0 0.712 
DHX9 HNRNPA1 0 0 0 0 0.196 0.425 0 0.309 0.636 
SYNCRIP DHX9 0 0 0 0 0.35 0 0.9 0.197 0.94 
CCT3 DHX15 0 0 0 0 0.436 0 0 0 0.437 
DHX15 DDX1 0 0 0 0 0.613 0 0 0.136 0.644 
HNRNPK U2AF2 0 0 0 0 0 0.974 0.9 0.41 0.998 
RPL14 RPL35 0.184 0 0 0 0.868 0.384 0 0.37 0.949 
DHX9 SNRNP200 0 0 0 0 0 0 0.9 0 0.899 
SPTAN1 KIRREL 0 0 0 0 0 0 0.9 0 0.899 
HNRNPK SYNCRIP 0 0 0 0 0.29 0.986 0 0.308 0.992 
HNRNPA1 DDX5 0 0 0 0 0.088 0.736 0 0.349 0.821 
RPS23 RPS3 0.41 0 0 0 0.907 0.732 0.9 0.433 0.998 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPS9 UPF1 0 0 0 0 0 0 0.9 0.076 0.901 
RPL14 RPS23 0 0 0 0 0.829 0.113 0 0.272 0.874 
DHX36 DDX21 0 0 0 0 0.329 0 0 0.265 0.474 
PLEC RPL35 0 0 0 0 0.568 0 0 0.11 0.589 
RPL13 EFTUD2 0 0 0 0 0.4 0 0 0 0.4 
RPL9 RPL18A 0 0 0 0 0.841 0.58 0.9 0.163 0.993 
SLC25A6 CCT3 0 0 0 0 0.249 0.14 0 0.374 0.54 
EIF3B UPF1 0 0 0 0 0.121 0.62 0 0.064 0.643 
RPN1 RPL18A 0 0 0 0 0 0 0.9 0 0.899 
DDX17 XRCC5 0 0 0 0 0 0.62 0 0.13 0.647 
HNRNPD NUDT21 0 0 0 0 0.119 0 0.9 0 0.905 
RELA HSPA8 0 0 0 0 0 0.132 0 0.845 0.856 
PLEC RPS3 0 0 0 0 0.551 0.491 0 0.092 0.764 
HNRNPH1 CCT5 0 0 0 0 0.155 0.571 0 0.146 0.647 
G3BP2 NUDT21 0 0 0 0 0.434 0 0 0 0.434 
RPS4X RPS23 0 0 0 0 0.772 0.297 0 0.237 0.861 
ROBO1 CTNNA1 0 0 0 0 0 0 0.9 0.124 0.906 
CCT4 DHX15 0 0 0 0 0.656 0 0 0 0.656 
RPS4X RPS14 0 0 0 0 0.732 0.386 0 0.222 0.855 
U2AF2 DDX6 0 0 0 0 0.074 0.62 0 0.07 0.627 
VDAC3 ATP5A1 0 0 0 0 0.392 0.16 0 0 0.456 
DRG1 DDX1 0 0 0 0 0.325 0.323 0 0 0.513 
DHX9 NUDT21 0 0 0 0 0.241 0 0.9 0 0.918 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

CANX HSPA8 0 0 0 0 0.145 0.188 0 0.374 0.505 
CCT3 DDX1 0 0 0 0 0.571 0 0 0 0.571 
HNRNPA1 IGF2BP1 0 0 0 0 0 0.571 0 0.18 0.624 
GNL3 PA2G4 0 0 0 0 0.623 0.577 0 0.22 0.858 
DHX15 DDX5 0 0 0 0 0.653 0.188 0 0.272 0.767 
PLEC RPL13 0 0 0 0 0.551 0 0 0.065 0.552 
VDAC3 BUB3 0 0 0 0 0.464 0 0 0 0.464 
EIF3B EFTUD2 0 0 0 0 0.606 0.112 0 0.086 0.636 
SERBP1 CCT5 0 0 0 0 0.772 0 0 0 0.772 
CTNNA1 EGFR 0 0 0 0 0 0.394 0.9 0.202 0.944 
RPL13 RPS3 0 0 0 0 0.822 0.6 0 0.308 0.944 
VDAC3 SLC25A6 0 0 0 0 0.076 0.113 0.8 0.235 0.847 
HNRNPK HNRNPA1 0 0 0 0 0.181 0.736 0 0.752 0.939 
CCT4 SERBP1 0 0 0 0 0.798 0 0 0.067 0.799 
RPS14 RPN1 0 0 0 0 0 0 0.9 0.069 0.9 
GNL3 DHX15 0 0 0 0 0.648 0.16 0 0 0.685 
SNRNP200 DDB1 0 0 0 0 0.116 0.352 0 0.09 0.407 
DDX21 RPL18A 0 0 0 0 0 0.658 0 0 0.657 
PABPC4 DHX15 0 0 0 0 0.136 0.35 0 0.125 0.441 
CCT4 HSPA8 0.08 0 0 0 0.477 0 0 0.102 0.508 
ILF3 MCM7 0 0 0 0 0.469 0 0 0 0.469 
GNL3 MYBBP1A 0 0 0 0 0.568 0 0 0 0.568 
PTBP1 HNRNPA1 0 0 0 0 0 0.425 0 0.752 0.847 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

DHX15 IPO5 0 0 0 0 0.684 0 0 0.091 0.694 
HNRNPA1 HNRNPF 0 0 0 0 0.154 0.425 0 0.647 0.804 
HNRNPD U2AF2 0 0 0 0 0.071 0.974 0.9 0.196 0.997 
RPS23 RPL35 0.367 0 0 0 0.898 0.58 0.9 0.308 0.997 
RPL9 PA2G4 0.357 0 0 0 0.271 0.141 0 0.071 0.546 
RBM4 U2AF2 0 0 0 0 0.064 0.974 0 0.18 0.977 
DHX9 HNRNPD 0 0 0 0 0.176 0 0.9 0.149 0.92 
HNRNPD IGF2BP1 0 0 0 0 0 0 0 0.43 0.43 
VCP CANX 0 0 0 0 0.067 0.929 0 0.725 0.979 
RPL13 RPL35 0 0 0 0 0.883 0.58 0 0.412 0.967 
RPS23 EFTUD2 0.287 0 0 0 0.23 0.577 0 0 0.736 
RPL14 RPS12 0 0 0.247 0 0.685 0.078 0 0.229 0.795 
RPL9 RPL10 0.341 0 0 0 0.568 0.387 0 0.377 0.868 
IARS DDX21 0 0 0 0 0.48 0 0 0.171 0.54 
RPS9 RPS12 0.072 0 0 0 0.758 0.58 0 0.184 0.906 
HNRNPF HNRNPM 0 0 0 0 0.164 0 0.9 0.379 0.94 
HNRNPR EFTUD2 0 0 0 0 0 0 0.9 0 0.899 
RPL10 NONO 0 0 0 0 0.538 0 0 0 0.538 
HIST1H4A MCM7 0 0 0 0 0 0.583 0 0.308 0.692 
SERBP1 CCT3 0 0 0 0 0.478 0 0 0 0.478 
EIF3B RPL9 0 0 0 0 0.24 0 0.9 0 0.918 
RPL9 RPS23 0.41 0 0 0 0.943 0 0.9 0.426 0.997 
HNRNPR HNRNPM 0 0 0 0 0.222 0 0.9 0.27 0.935 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

DDX21 DHX15 0 0 0 0.466 0.598 0.077 0 0 0.604 
GNL3 EIF3B 0 0 0 0 0.466 0 0 0 0.466 
IARS CCT5 0.1 0 0 0 0.618 0 0 0 0.633 
RPL31 UPF1 0 0 0 0 0 0 0.9 0 0.899 
VCP DNAJC10 0 0 0 0 0 0.115 0 0.386 0.42 
INPPL1 EGFR 0 0 0 0 0 0.846 0 0.248 0.876 
SLC25A6 RPS3 0 0 0 0 0.554 0 0 0.07 0.558 
RPS3 RPL18A 0 0 0 0 0.9 0.6 0.9 0.236 0.996 
HNRNPR NUDT21 0 0 0 0 0.294 0 0.9 0 0.924 
HNRNPR HNRNPD 0 0 0 0.653 0.356 0 0.9 0.306 0.937 
GNL3 DDX17 0 0 0 0 0.499 0 0 0.108 0.523 
U2AF2 EFTUD2 0 0 0 0 0.067 0 0.9 0.229 0.918 
RPL31 RPL14 0 0 0 0 0.614 0.236 0 0.27 0.755 
REL HSPA8 0 0 0 0 0 0.731 0 0.298 0.799 
CCT4 PA2G4 0.068 0 0 0 0.401 0 0 0 0.405 
VDAC1 SLC25A3 0 0 0 0 0.293 0 0 0.331 0.496 
PLEC RPS14 0 0 0 0 0.545 0.488 0 0 0.752 
GNL3 DDX1 0 0 0 0 0.445 0 0 0 0.445 
RPL31 RPL13 0 0 0 0 0.64 0.384 0 0.227 0.805 
SFPQ PTBP1 0 0 0 0 0.07 0.974 0 0.318 0.981 
HNRNPK RBM4 0 0 0 0 0.148 0.974 0 0.07 0.976 
DDX17 DHX15 0 0 0 0 0.5 0.188 0 0.2 0.631 
XRCC5 APEX1 0 0 0 0 0.297 0.621 0 0.319 0.793 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

HNRNPK RPS3 0 0 0 0 0.247 0 0 0.305 0.441 
RPL9 ATP5O 0.074 0 0 0 0.564 0 0 0.067 0.571 
RPL9 SLC25A3 0 0 0 0 0.442 0 0 0 0.442 
HNRNPA1 NONO 0 0.002 0 0 0.124 0.425 0 0.318 0.608 
IPO5 RPA1 0 0 0 0 0.237 0.358 0 0 0.477 
HNRNPH1 HNRNPA1 0 0 0 0.583 0.325 0.736 0 0.656 0.86 
RPL23 RPS12 0.064 0 0 0 0.849 0.384 0 0.34 0.93 
RPL23 RPL10 0.341 0 0 0 0.568 0.387 0 0.341 0.86 
CCT3 EFTUD2 0 0 0 0 0.389 0.115 0 0 0.424 
SLC25A6 VDAC1 0 0 0 0 0.076 0.113 0.8 0.514 0.903 
RPL23 UPF1 0 0 0 0 0 0 0.9 0.069 0.9 
HNRNPA1 SNRNP200 0 0 0 0 0 0.425 0 0.128 0.465 
CCT3 HSPA8 0.08 0 0 0 0.36 0.621 0 0.22 0.788 
KHDRBS1 CDK1 0 0 0 0 0.108 0.621 0 0.148 0.671 
HNRNPF HNRNPD 0 0 0 0.572 0.075 0.974 0.9 0.378 0.997 
RPL35 RPS16 0.231 0 0 0 0.918 0.58 0.9 0.365 0.997 
RPS14 RPS23 0.267 0 0 0 0.929 0.716 0.9 0.427 0.998 
NUPL1 PA2G4 0 0 0 0 0.066 0.357 0 0.3 0.522 
SNRNP200 U2AF2 0 0 0 0 0 0 0.9 0.309 0.926 
IARS UPF1 0 0 0 0 0 0 0 0.552 0.552 
RPL31 RPL9 0 0 0 0 0.93 0.495 0.9 0.412 0.997 
RPL23 RPL35 0.472 0 0 0 0.896 0.76 0.9 0.331 0.998 
CPS1 GCN1L1 0 0 0 0 0.436 0 0 0 0.436 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPS16 RPS12 0.084 0 0 0 0.848 0.58 0 0.319 0.951 
DHX9 DDX5 0 0 0 0 0.114 0.987 0 0.317 0.991 
RPL10 RPS16 0.172 0 0 0 0.606 0.352 0 0.43 0.853 
DDX17 RBM4 0 0 0 0 0 0.974 0 0.082 0.974 
HNRNPH1 HNRNPD 0 0 0 0.613 0.341 0.658 0 0.341 0.787 
RPL35 RPL18A 0 0 0 0 0.907 0.58 0.9 0.32 0.996 
RPS23 RPL18A 0 0 0 0 0.813 0 0.9 0.227 0.983 
SFPQ DHX15 0 0 0 0 0.463 0 0 0.123 0.497 
GNL3 IPO5 0 0 0 0 0.334 0.139 0 0.131 0.434 
HNRNPA1 IPO5 0 0 0 0 0.14 0.166 0 0.425 0.53 
SPTAN1 CTNNA1 0 0 0 0.438 0 0.621 0 0 0.621 
PTBP1 HNRNPD 0 0 0 0 0 0.998 0.9 0.43 0.999 
RPL10 RPS23 0.297 0 0 0 0.568 0.114 0 0.341 0.785 
MOV10 UPF1 0 0 0 0.631 0 0.384 0 0.569 0.506 
RPS4X RPL35 0.357 0 0 0 0.774 0.35 0 0.26 0.915 
PARP1 CDK1 0 0 0 0 0.362 0 0 0.464 0.635 
IPO5 LRPPRC 0 0 0 0 0.498 0 0 0.141 0.541 
RPS3 RPL35 0.472 0 0 0 0.935 0 0.9 0.331 0.997 
DAB2 CDK1 0 0 0 0 0 0.621 0 0 0.621 
RPL10 RPS3 0.341 0 0 0 0.568 0.386 0 0.373 0.867 
HNRNPR U2AF2 0 0 0 0 0 0 0.9 0 0.9 
DYNC1H1 TUBA4A 0 0 0 0 0 0.116 0.8 0 0.811 
SPTAN1 VIM 0 0 0 0 0 0.62 0 0.092 0.631 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

HNRNPR DHX9 0 0 0 0 0.328 0 0.9 0.115 0.932 
RPL13 RPS12 0 0 0 0 0.744 0.231 0 0.424 0.871 
MOV10 DHX15 0 0 0 0 0 0.384 0 0.237 0.499 
XRCC5 RPA1 0 0 0 0 0.12 0.64 0 0.097 0.674 
PLEC VIM 0 0 0 0.608 0 0.845 0 0.669 0.884 
KHDRBS1 DDX6 0 0 0 0 0.502 0 0 0.094 0.519 
RPS3 SLC25A3 0 0 0 0 0.416 0 0 0 0.416 
ILF3 HNRNPH1 0 0 0 0 0.31 0 0 0.275 0.466 
RPL31 RPL35 0 0 0 0 0.817 0.495 0.9 0.394 0.993 
RPL9 EFTUD2 0.268 0 0 0 0.312 0.29 0 0 0.593 
RPL9 ATP5A1 0.074 0 0 0 0.454 0 0 0 0.461 
HNRNPK PTBP1 0 0 0 0 0 0.62 0.9 0.61 0.983 
DHX9 DHX15 0 0 0.525 0.769 0.508 0 0 0.23 0.582 
HNRNPF SNRNP200 0 0 0 0 0 0 0.9 0 0.899 
HNRNPK EFTUD2 0 0 0 0 0 0 0.9 0 0.899 
CDK1 DDX6 0 0 0 0 0.159 0.384 0 0 0.447 
GNL3 DDX5 0 0 0 0 0.528 0 0 0.108 0.552 
YTHDF2 HNRNPA1 0 0 0 0 0 0.571 0 0 0.571 
EFTUD2 RPS16 0.112 0 0 0 0.398 0.295 0 0 0.571 
VDAC1 HSPA8 0 0 0 0 0.3 0 0 0.275 0.458 
SERBP1 DHX15 0 0 0 0 0.695 0 0 0 0.695 
SPTAN1 DDX21 0 0 0 0 0 0 0 0.515 0.515 
TUBA1A EGFR 0 0 0 0 0 0.584 0 0.216 0.652 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

XRCC5 TMPO 0 0 0 0 0.102 0.62 0 0 0.635 
DHX15 PA2G4 0 0 0 0 0.429 0.117 0 0 0.462 
C14orf166 DDX1 0 0 0 0 0.374 0.64 0.9 0.2 0.978 
HNRNPH1 DHX15 0 0 0 0 0.681 0 0 0.09 0.69 
SYNCRIP DDX21 0 0 0 0 0.58 0 0 0 0.58 
RPL9 RPL35 0.472 0 0 0 0.935 0.792 0.9 0.235 0.999 
DYNC1H1 CDK1 0 0 0 0 0 0.184 0.9 0.159 0.921 
CCT4 RPL9 0 0 0 0 0.393 0.078 0 0 0.404 
G3BP1 RPS9 0 0 0 0 0 0.388 0 0.092 0.406 
HNRNPK EGFR 0 0 0 0 0 0.394 0 0.147 0.448 
MCM7 TMPO 0 0 0 0 0.432 0 0 0 0.433 
RPL31 RPS14 0 0 0 0 0.865 0.384 0.9 0.341 0.993 
RPL23 RPS4X 0.357 0 0 0 0.725 0 0 0.171 0.834 
EGFR SLC25A3 0 0 0 0 0 0.394 0 0.077 0.403 
HNRNPA1 NUDT21 0 0 0 0 0.115 0.425 0 0 0.457 
RPL9 RPN1 0 0 0 0 0 0 0.9 0 0.899 
HNRNPR HNRNPH1 0 0 0 0.55 0.49 0 0 0.263 0.539 
RPL31 RPL10 0 0 0 0 0.224 0.268 0 0.167 0.462 
SLC25A6 RPS9 0 0 0 0 0.405 0 0 0 0.405 
SYNCRIP DDX1 0 0 0 0 0.462 0 0 0.34 0.621 
DDX17 DDX5 0 0 0.525 0.956 0 0.998 0 0.658 0.998 
SERBP1 HNRNPD 0 0 0 0 0.297 0 0 0.202 0.401 
GNL3 DDX21 0 0 0 0 0.702 0 0 0.203 0.747 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPL9 RPL14 0.21 0 0 0 0.86 0.384 0 0.374 0.948 
RPS14 UPF1 0 0 0 0 0 0 0.9 0.08 0.901 
CDK1 VIM 0 0 0 0 0.092 0.621 0 0.892 0.957 
RPL14 RPS14 0.177 0 0 0 0.843 0.384 0 0.348 0.937 
RPL9 RPS16 0.255 0 0 0 0.909 0.58 0.9 0.318 0.997 
RPL10 RPS12 0 0 0 0 0.504 0.228 0 0.341 0.712 
RPL9 PLEC 0 0 0 0 0.568 0 0 0 0.567 
HNRNPA1 HNRNPD 0 0 0.498 0.867 0.359 0.425 0 0.648 0.662 
DYNC1H1 RAB7A 0 0 0 0 0 0 0.9 0.065 0.9 
DHX15 HNRNPM 0 0 0 0 0.224 0.388 0 0 0.493 
TUBA1A TUBB4 0 0 0 0.922 0.147 0 0.8 0.163 0.819 
BUB3 CDK1 0 0 0 0 0.706 0.143 0.9 0.43 0.982 
RELA REL 0 0 0 0.899 0 0.982 0 0.861 0.984 
HNRNPR SERBP1 0 0 0 0 0.555 0 0 0.078 0.563 
CDK1 RPS3 0 0 0 0 0 0 0 0.8 0.8 
IARS LRPPRC 0 0 0 0 0.551 0 0 0 0.551 
HBS1L EFTUD2 0.176 0 0.401 0.456 0.154 0.077 0 0 0.411 
DDX17 HNRNPK 0 0 0 0 0.096 0.974 0 0.239 0.979 
DHX15 APEX1 0 0 0 0 0.445 0 0 0 0.445 
RPL31 RPL23 0 0 0 0 0.894 0.492 0.9 0.332 0.995 
PARP1 ERBB2 0 0 0 0 0 0 0 0.499 0.499 
RPL23 RPL9 0.472 0 0 0 0.92 0.792 0.9 0.317 0.999 
PA2G4 RPS3 0.357 0 0 0 0.229 0 0 0.07 0.475 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

ERBB2 VIM 0 0 0 0 0 0 0 0.638 0.639 
EIF3B RPL35 0 0 0 0 0.071 0 0.9 0 0.9 
RPL31 RPS16 0 0 0 0 0.792 0.384 0.9 0.263 0.988 
RELA DHX9 0 0 0 0 0 0.653 0 0.095 0.665 
DHX15 SNRNP200 0 0 0 0 0.123 0.489 0 0.394 0.691 
EIF3B RPS16 0 0 0 0 0.115 0 0.9 0 0.905 
RPL23 RPS16 0.253 0 0 0 0.892 0 0.9 0.203 0.992 
PTBP1 U2AF2 0 0 0 0 0.152 0 0.9 0.751 0.975 
PTBP1 KHDRBS1 0 0 0 0 0 0 0 0.43 0.43 
DHX9 HNRNPM 0 0 0 0 0.119 0 0.9 0.158 0.915 
RPS9 RPL35 0.305 0 0 0 0.866 0 0.9 0.26 0.991 
RPS4X RPS3 0.357 0 0 0 0.756 0.387 0 0.318 0.92 
PARP1 XRCC5 0 0 0 0 0.13 0.995 0 0.29 0.997 
RPL23 RPS9 0.41 0 0 0 0.793 0 0.9 0.37 0.99 
RPS14 RPL13 0 0 0 0 0.82 0.58 0 0.201 0.931 
EIF3B DDX6 0 0 0 0 0 0.387 0 0.115 0.421 
DRG1 PA2G4 0.223 0 0 0 0.546 0 0 0.086 0.633 
PLEC CDK1 0 0 0 0 0 0.621 0 0 0.621 
RPL13 RPS23 0 0 0 0 0.84 0 0 0.19 0.862 
ATP5A1 CCT5 0 0 0 0 0.479 0 0 0.121 0.512 
DDX21 HNRNPA1 0 0 0 0 0.212 0.425 0 0.176 0.574 
PARP1 APEX1 0 0 0 0 0.289 0 0 0.319 0.483 
PTBP1 SNRNP200 0 0 0 0 0 0 0.9 0 0.899 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPL10 RPS9 0.297 0 0 0 0.591 0.352 0 0.261 0.833 
DDX6 UPF1 0 0 0 0 0 0.62 0 0.659 0.861 
DDX6 EFTUD2 0 0 0 0 0 0.744 0 0 0.744 
RPS9 RPS3 0.41 0 0 0 0.91 0.671 0.9 0.465 0.998 
HNRNPM NUDT21 0 0 0 0 0.071 0 0.9 0.106 0.905 
EGFR ERBB2 0 0 0 0.936 0 0.999 0.9 0.982 0.999 
RPS9 PA2G4 0.311 0 0 0 0.268 0 0 0.065 0.463 
PA2G4 RPL18A 0 0 0 0 0.154 0.576 0 0.065 0.618 
CCT4 DDX1 0 0 0 0 0.482 0 0 0 0.483 
ATP5A1 SLC25A3 0 0 0 0 0.769 0 0 0.107 0.781 
HNRNPA1 KHDRBS1 0 0 0 0 0.25 0.621 0 0.926 0.976 
RPL10 RPS14 0.297 0 0 0 0.568 0.352 0 0.274 0.826 
HNRNPA1 DDX1 0 0 0 0 0.133 0.425 0 0.182 0.535 
RPL9 RPS12 0 0 0 0 0.88 0.385 0 0.273 0.939 
RPS9 RPS16 0.357 0 0 0 0.866 0.671 0.9 0.379 0.997 
PLEC RPS9 0 0 0 0 0.503 0.488 0 0.102 0.74 
EIF3B IPO5 0 0 0 0 0.424 0.235 0 0 0.529 
MOV10 IGF2BP1 0 0 0 0 0 0.62 0 0.166 0.661 
RPL23 PLEC 0 0 0 0 0.568 0 0 0 0.567 
LRPPRC DDX1 0 0 0 0 0.581 0 0 0 0.581 
DDX21 RPS16 0 0 0 0 0 0.636 0 0.155 0.672 
SFPQ NONO 0 0 0 0.944 0.207 0.978 0 0.691 0.982 
G3BP2 DHX15 0 0 0 0 0.421 0.115 0 0.088 0.469 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

PA2G4 CCT5 0.068 0 0 0 0.572 0 0 0 0.575 
HNRNPK HNRNPH1 0 0 0 0 0.445 0.721 0 0.43 0.899 
HNRNPK HNRNPM 0 0 0 0 0.202 0.238 0.9 0.426 0.957 
HNRNPH1 HNRNPM 0 0 0 0 0.365 0.571 0 0.425 0.821 
MYBBP1A DDX21 0 0 0 0 0.399 0 0 0.242 0.513 
CCT4 RPL35 0 0 0 0 0.436 0.238 0 0 0.541 
RPL31 RPS23 0 0 0 0 0.888 0 0.9 0.462 0.993 
HNRNPK DHX9 0 0 0 0 0.371 0.974 0.9 0.261 0.998 
CCT3 PA2G4 0.068 0 0 0 0.676 0 0 0.08 0.684 
CDK1 TMPO 0 0 0 0 0.742 0 0 0.144 0.764 
UPF1 RPL35 0 0 0 0 0 0 0.9 0 0.899 
SYNCRIP IGF2BP1 0 0 0 0.48 0 0 0.9 0.317 0.914 
RBM4 DDX5 0 0 0 0 0 0.974 0 0.161 0.976 
EIF3B RPS23 0 0 0 0 0.122 0 0.9 0 0.906 
CCT3 CCT5 0 0 0.525 0.88 0.874 0.648 0.9 0.624 0.995 
HNRNPA1 HNRNPM 0 0 0 0.589 0.189 0.736 0 0.507 0.816 
RPN1 RPS16 0 0 0 0 0.064 0 0.9 0 0.9 
PLEC RPS16 0 0 0 0 0.545 0.489 0 0 0.752 
DHX36 DHX15 0 0 0.525 0.815 0.429 0 0 0.092 0.484 
RPS3 UPF1 0 0 0 0 0 0.585 0.9 0.085 0.956 
HNRNPK DDX5 0 0 0 0 0.357 0.974 0 0.19 0.984 
DRG1 GCN1L1 0 0 0 0 0.065 0.416 0 0.076 0.426 
EIF3B RPS14 0 0 0 0 0.112 0 0.9 0 0.905 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

RPL13 RPS9 0 0 0 0 0.796 0 0 0.378 0.865 
CCT4 CCT3 0 0 0.525 0.884 0.906 0.745 0.9 0.379 0.997 
CDK1 RPA1 0 0 0 0 0.162 0.845 0 0.17 0.877 
HNRNPK SNRNP200 0 0 0 0 0.076 0 0.9 0 0.901 
PARP1 VIM 0 0 0 0 0 0 0 0.864 0.864 
RPL9 RPS9 0.41 0 0 0 0.879 0.58 0.9 0.245 0.997 
RPL10 RPL13 0 0 0 0 0.607 0.352 0 0.425 0.833 
SERBP1 BUB3 0 0 0 0 0.425 0 0 0 0.425 
CKAP4 RPN1 0 0 0 0 0.068 0 0.8 0.108 0.81 
EIF3B MCM7 0 0 0 0 0.436 0 0 0.093 0.454 
RPS4X RPL9 0.357 0 0 0 0.823 0 0 0.34 0.914 
PTBP1 HNRNPF 0 0 0 0 0 0 0.9 0.563 0.953 
SNRNP200 EFTUD2 0 0 0 0 0.092 0.792 0.9 0.318 0.984 
RPS16 RPL18A 0 0 0 0 0.869 0.58 0.9 0.366 0.995 
SNRNP200 NUDT21 0 0 0 0 0.068 0 0.9 0 0.9 
DBNL LMNA 0 0 0 0 0 0.62 0 0 0.619 
MCM7 CDK1 0 0 0 0 0.833 0 0 0.412 0.895 
VDAC1 CANX 0 0 0 0 0.331 0 0 0.274 0.481 
RPN1 RPL35 0 0 0 0 0.069 0 0.9 0 0.9 
DDX17 HNRNPA1 0 0 0 0 0.073 0.736 0 0.317 0.81 
RPL31 RPS4X 0 0 0 0 0.542 0 0 0.244 0.631 
SNRNP200 HNRNPD 0 0 0 0 0 0 0.9 0 0.899 
ATP5A1 HSPA8 0 0 0 0 0.257 0 0 0.272 0.422 
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Appendix 3 – Table showing C-Src STRING interaction network 
 
Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 

Combined 
score 

HNRNPK HNRNPF 0 0 0 0 0.115 0 0.9 0.884 0.988 
CCT4 CCT5 0 0 0.525 0.9 0.907 0.644 0.9 0.507 0.996 
HNRNPD DAZAP1 0 0 0 0.825 0.363 0.388 0 0.435 0.613 
KHDRBS1 U2AF2 0 0 0 0 0 0.974 0 0.412 0.983 
RPS4X RPS12 0 0 0 0 0.675 0.35 0 0.244 0.819 
RPS4X RPL13 0 0 0.208 0 0.701 0.35 0 0.133 0.838 
RPL10 EFTUD2 0.239 0 0.254 0 0.227 0.16 0 0 0.553 
HNRNPA1 DHX15 0 0 0 0 0.231 0.425 0 0 0.528 
BUB3 CCT5 0 0 0 0 0.523 0 0 0.133 0.559 
RPS4X RPL14 0.118 0 0 0 0.619 0.231 0 0.261 0.768 
NUDT21 TMPO 0 0 0 0 0.423 0 0 0 0.423 
RPL14 RPS16 0.094 0 0 0 0.76 0.384 0 0.34 0.892 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

DDX3X EIF2S1 0 0 0 0 0.069 0.83 0 0.14 0.846 
HNRNPA0 HNRNPH3 0 0 0.363 0 0.135 0.974 0 0 0.983 
ILF2 RPS5 0 0 0 0 0.417 0 0 0 0.417 
HSPD1 NCL 0 0 0 0 0.746 0 0 0.165 0.774 
HSPD1 TCP1 0 0 0.38 0.56 0.867 0 0 0.612 0.916 
HNRNPA0 DDX5 0 0 0 0 0.16 0.974 0 0.078 0.977 
RPS10 RPL4 0 0 0 0 0.78 0 0.9 0.424 0.985 
RPL12 RPL27A 0.222 0 0 0 0.757 0.582 0.9 0.307 0.992 
RPL4 RPS13 0 0 0 0 0.914 0 0.9 0.461 0.994 
ILF2 EIF2S1 0 0 0 0 0.166 0 0 0.462 0.521 
TIA1 DDX3X 0 0 0 0 0 0.583 0 0.084 0.592 
FUBP1 HNRNPA2B1 0 0 0 0 0.362 0 0 0.146 0.419 
RPL12 RPL7 0.168 0 0 0 0.68 0.293 0 0.533 0.893 
RPS13 RPS5 0 0 0 0 0.937 0.582 0.9 0.379 0.998 
RPS10 RPS13 0 0 0 0 0.848 0.489 0.9 0.51 0.995 
CPSF7 HNRNPU 0 0 0 0 0 0 0.9 0 0.899 
TCP1 HNRNPH3 0 0 0 0 0.504 0 0 0 0.504 
EIF3A PABPC1 0 0 0 0 0.152 0.35 0 0.168 0.478 
RPL27A EIF4G1 0 0 0 0 0 0 0.9 0 0.899 
RPS2 RPS13 0 0 0 0 0.64 0.384 0 0.465 0.865 
DDX3X EIF3C 0 0 0 0 0.071 0.837 0 0.064 0.839 
SRP14 RPS13 0 0 0 0 0.421 0 0.9 0.219 0.948 
TUFM RPL4 0.41 0 0 0 0.292 0.416 0 0.113 0.737 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

RPLP0 RPL30 0 0 0 0 0.863 0.388 0.9 0.341 0.993 
RPL27A RPS13 0 0 0 0 0.88 0.582 0.9 0.173 0.995 
RPS13 RPS19 0 0 0 0 0.857 0.671 0.9 0.46 0.996 
RPLP0 ATP5B 0 0 0 0 0.442 0 0 0.118 0.476 
SRC CTTN 0 0 0 0 0 0.621 0.9 0.962 0.998 
PTK2 CBL 0 0 0 0 0 0.846 0 0.242 0.875 
RPS8 RPS19 0 0 0.246 0 0.875 0.62 0.9 0.515 0.997 
HSPA9 ATP5B 0 0 0 0 0.322 0 0 0.229 0.442 
RPL12 RPS20 0.261 0 0 0 0.908 0 0.9 0.342 0.994 
PICALM CLTC 0 0 0 0 0.078 0.621 0.36 0.136 0.765 
PTK2 PDCD6IP 0 0 0 0 0 0.621 0 0 0.621 
RPLP0 RPS14 0.19 0 0 0 0.903 0.388 0.9 0.27 0.995 
RPS14 RPS20 0.41 0 0 0 0.894 0.74 0.9 0.465 0.998 
ALB KRT9 0 0 0 0 0 0.302 0 0.202 0.405 
PRKDC ALB 0 0 0 0 0 0 0 0.426 0.425 
RPL12 RPS10 0 0 0 0 0.857 0.188 0.9 0.464 0.992 
CTTN TJP1 0 0 0 0 0 0.621 0.8 0.926 0.993 
ARHGEF7 SRC 0 0 0 0.483 0 0 0.9 0.926 0.947 
TCP1 EIF2S1 0 0 0 0 0.602 0 0 0 0.602 
EIF3A EIF2S1 0 0 0 0 0.331 0.792 0.8 0.098 0.969 
PRKDC RPL4 0 0 0 0 0 0 0 0.583 0.583 
CTNNB1 KRT1 0 0 0 0 0 0 0.9 0.182 0.912 
SRC CTNNB1 0 0 0 0 0 0.621 0.9 0.515 0.979 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

RPS7 EIF4G1 0 0 0 0 0.076 0 0.9 0 0.901 
EIF3C CCT7 0 0 0 0 0.492 0 0 0 0.492 
GIT1 SRC 0 0 0 0 0 0.621 0 0.878 0.95 
RPL4 DDX5 0 0 0 0 0.119 0.388 0 0.068 0.427 
RPLP0 RPS5 0.268 0 0.212 0 0.876 0.505 0.9 0.317 0.996 
RPS2 TUFM 0.258 0 0 0 0.217 0.345 0 0 0.567 
SLC25A5 TCP1 0 0 0 0 0.301 0.14 0 0.158 0.425 
HSPD1 HSPA9 0.08 0 0 0 0.857 0.232 0 0.401 0.926 
RPL7 RPL4 0.297 0 0 0 0.829 0.294 0 0.341 0.932 
ARHGEF7 ALB 0 0 0 0 0 0 0 0.426 0.425 
SEC23A SEC24B 0 0 0 0.571 0.332 0.621 0.9 0.923 0.982 
DDX3X PABPC1 0 0 0 0 0 0.831 0 0.169 0.85 
TCP1 CCT7 0 0 0.525 0.875 0.878 0.83 0.9 0.773 0.998 
RPL27A RPS2 0.278 0 0 0 0.48 0.384 0 0.244 0.788 
CDH2 NOTCH2 0 0 0 0 0 0 0 0.411 0.412 
RPL4 SRP14 0 0 0 0 0.333 0 0.9 0.148 0.935 
RPS7 RPS19 0 0 0 0 0.813 0.667 0.9 0.725 0.997 
SRC TJP1 0 0 0 0 0 0 0 0.923 0.923 
HGS CBL 0 0 0 0.445 0 0 0.9 0.371 0.918 
HNRNPA2B1 TCP1 0 0 0 0 0.534 0 0 0.159 0.582 
TIA1 EIF4G1 0 0 0 0 0 0.352 0 0.508 0.66 
HNRNPA2B1 KPNB1 0 0 0 0 0.383 0.077 0 0.157 0.454 
LDHA HSPD1 0 0 0 0 0.53 0.117 0 0.21 0.627 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

RPS13 RPS20 0 0 0 0 0.909 0.756 0.9 0.514 0.998 
EIF3C RPL4 0 0 0 0 0.547 0 0 0 0.547 
PARD3 HSPD1 0 0 0 0 0 0.62 0 0 0.619 
CPSF7 PCBP1 0 0 0 0 0 0 0.9 0 0.899 
EIF3L QARS 0 0 0 0 0.468 0 0 0 0.468 
CCT7 RPS5 0 0 0 0 0.46 0 0 0 0.46 
ACTB CBL 0 0 0 0 0 0.62 0 0.086 0.629 
HNRNPA2B1 CCAR1 0 0 0 0 0.218 0 0.9 0.135 0.923 
PHB2 RPS5 0 0 0 0 0.556 0 0 0 0.556 
ILF2 CCT7 0 0 0 0 0.605 0 0 0.117 0.628 
RPS2 RPS20 0.32 0 0 0 0.581 0.384 0 0.514 0.896 
GIT1 ARHGEF7 0 0 0 0 0 0.995 0.9 0.504 0.999 
RPS18 RPL4 0.287 0 0 0 0.504 0 0 0.342 0.735 
HNRNPA2B1 DDX5 0 0 0 0 0.516 0 0 0.283 0.63 
HSPD1 HSPA5 0.08 0 0 0 0.4 0.619 0 0.429 0.854 
SEC16A SEC23B 0 0 0 0 0 0 0 0.406 0.407 
RPLP0 RPL4 0.208 0 0 0 0.895 0.576 0.9 0.412 0.997 
TCP1 HSPA9 0.08 0 0 0 0.544 0 0 0.113 0.577 
RPS8 RPS14 0 0 0 0 0.896 0.576 0.9 0.461 0.997 
JUP CDH2 0 0 0 0 0 0.937 0.9 0.947 0.999 
KPNA2 TCP1 0 0 0 0 0.723 0 0 0 0.723 
RPL30 RPS20 0.268 0 0 0 0.898 0 0.9 0.498 0.995 
SRP14 RPS20 0 0 0 0 0.326 0 0.9 0.202 0.938 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

EIF3L EIF3A 0 0 0 0 0.271 0.86 0.9 0.317 0.991 
RPS7 RPL4 0 0 0 0 0.911 0.388 0.9 0.317 0.995 
NCL HNRNPU 0 0 0 0 0.378 0 0 0.521 0.682 
TUFM RPS5 0.41 0 0 0 0.268 0.576 0 0.135 0.808 
RPS7 SRP14 0 0 0 0 0.465 0 0.9 0 0.942 
HNRNPA2B1 HNRNPH3 0 0 0 0.63 0.624 0 0 0.369 0.669 
CTNND1 TJP1 0 0 0 0 0 0 0.9 0.611 0.958 
CBL PXN 0 0 0 0 0 0.845 0 0.535 0.923 
CTTN ALB 0 0 0 0 0 0 0 0.423 0.423 
CTNND1 JUP 0 0 0 0.473 0 0.621 0.9 0.752 0.975 
CTNND1 CDH2 0 0 0 0 0 0.974 0.9 0.947 0.999 
RPL27A RPS20 0.41 0 0 0 0.846 0.667 0.9 0.22 0.996 
RPLP0 TUFM 0.307 0 0 0 0.176 0 0 0.17 0.46 
EIF4G1 RPS19 0 0 0 0 0 0 0.9 0.127 0.906 
RPS2 ATP5B 0 0 0 0 0.48 0 0 0 0.48 
GIT1 PXN 0 0 0 0 0 0.937 0.8 0.925 0.998 
VPS35 CLTC 0 0 0 0 0.164 0.359 0 0.105 0.454 
LDHA TCP1 0 0 0 0 0.544 0.117 0 0 0.571 
RPS10 SRP14 0 0 0 0 0.198 0 0.9 0 0.914 
CTNNB1 CTTN 0 0 0 0 0.076 0 0.9 0.3 0.926 
RPL4 RPS14 0.357 0 0 0 0.924 0.58 0.9 0.37 0.998 
EIF4G1 RPS5 0 0 0 0 0 0 0.9 0.124 0.906 
RPS8 RPS13 0 0 0 0 0.941 0.62 0.9 0.43 0.998 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

KRT18 PKP3 0 0 0 0 0 0.62 0 0.112 0.639 
TIA1 EIF2S1 0 0 0 0 0.075 0 0 0.43 0.437 
RPS8 RPS5 0 0 0 0 0.87 0.388 0.9 0.43 0.994 
KRT18 CBL 0 0 0 0 0 0.62 0 0.07 0.622 
HSPA5 SEC23B 0 0 0 0 0.45 0 0 0.186 0.523 
CTNNB1 HGS 0 0 0 0 0 0.115 0.9 0.079 0.907 
CPSF7 CCAR1 0 0 0 0 0.12 0 0.9 0 0.906 
PHGDH ALB 0 0 0 0 0 0 0 0.43 0.43 
RPS10 RPS7 0 0 0 0 0.79 0.488 0.9 0.651 0.995 
CTNND1 CTNNB1 0 0 0 0.482 0 0.845 0.9 0.659 0.988 
KHSRP NCL 0 0 0 0 0.074 0 0 0.411 0.418 
RPS8 EIF3A 0 0 0 0 0.096 0.388 0 0.102 0.435 
NCL DDX5 0 0 0 0 0.576 0.508 0 0.318 0.838 
RPL7 RPL30 0 0 0 0 0.813 0.347 0 0.428 0.92 
TCP1 KPNB1 0 0 0 0 0.516 0 0 0 0.516 
RPL12 TUFM 0.41 0 0 0 0.225 0.388 0 0.146 0.71 
EIF3L CCT7 0 0 0 0 0.432 0 0 0 0.432 
CTTN CBL 0 0 0 0 0 0 0 0.428 0.428 
PABPC1 PXN 0 0 0 0 0 0.621 0 0.355 0.739 
RPL12 RPS14 0.221 0 0 0 0.866 0.58 0.9 0.424 0.996 
SRC CDH2 0 0 0 0 0 0 0 0.949 0.949 
HNRNPU HNRNPH3 0 0 0 0 0.164 0.98 0 0.08 0.982 
ALB FUS 0 0 0 0 0 0 0 0.43 0.43 

242 
 



Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

HGS CLTC 0 0 0 0 0 0.845 0 0.124 0.855 
ALB KRT1 0 0 0 0 0 0.302 0 0.34 0.508 
RPS18 RPS19 0 0 0 0 0.504 0.356 0 0.498 0.817 
HGS PDCD6IP 0 0 0 0 0.089 0.24 0 0.241 0.401 
RPL7 RPS13 0 0 0.332 0 0.68 0.292 0 0.412 0.892 
RPS10 RPS5 0 0 0 0 0.829 0.388 0.9 0.891 0.998 
HNRNPA2B1 PCBP1 0 0 0 0 0.163 0 0.9 0.919 0.992 
PHB2 TUFM 0 0 0 0 0.5 0 0 0.07 0.504 
VDAC2 ATP5B 0 0 0 0 0.593 0.141 0 0.203 0.683 
RPS2 RPS19 0 0 0 0 0.688 0.384 0 0.507 0.892 
RPS18 RPS8 0 0 0 0 0.427 0.229 0 0.426 0.711 
RPS7 RPS14 0 0 0 0 0.856 0.576 0.9 0.42 0.995 
DDX3X RPS5 0 0 0 0 0 0.388 0 0.126 0.43 
EIF4G1 RPL30 0 0 0 0 0 0 0.9 0.164 0.91 
RPS18 RPS2 0.223 0 0 0 0.292 0.224 0 0.466 0.723 
HNRNPA2B1 HSPD1 0 0 0 0 0.444 0 0 0.23 0.543 
RPS10 RPLP0 0 0 0 0 0.84 0.077 0.9 0.242 0.986 
CDH2 PKP2 0 0 0 0 0 0 0 0.463 0.462 
DDX3X EIF3A 0 0 0 0 0.113 0.599 0 0.072 0.624 
RPLP0 RPS19 0.189 0 0 0 0.867 0 0.9 0.184 0.989 
RPS8 RPLP0 0 0 0 0 0.915 0.352 0.9 0.374 0.995 
TIA1 KHSRP 0 0 0 0 0.079 0 0 0.54 0.547 
RPL7 RPLP0 0.156 0 0 0 0.754 0.24 0 0.341 0.873 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

CARM1 PABPC1 0 0 0 0 0 0.62 0 0.842 0.936 
RPL4 CCT7 0 0 0 0 0.407 0 0 0 0.407 
RPL7 RPS14 0.297 0 0 0 0.827 0.231 0 0.374 0.929 
RPS8 RPL27A 0 0 0 0 0.746 0.388 0.9 0.318 0.987 
SRC PDCD6IP 0 0 0 0 0 0.845 0 0.242 0.875 
RPS2 RPS7 0 0 0 0 0.54 0.29 0 0.429 0.787 
VDAC2 TCP1 0 0 0 0 0.402 0.077 0 0.077 0.421 
EIF4G1 PABPC1 0 0 0 0.472 0.069 0.846 0 0.963 0.925 
RPS18 TUFM 0.224 0 0 0 0.154 0.355 0 0 0.518 
RPL12 RPLP0 0.329 0 0 0 0.855 0.505 0.9 0.342 0.995 
TANC2 KIRREL 0 0 0 0 0 0.238 0 0.394 0.508 
EIF3C EIF2S1 0 0 0 0 0.271 0.578 0.8 0.22 0.941 
HSPD1 RPL7 0 0 0 0 0.247 0 0 0.305 0.441 
CTNND1 SRC 0 0 0 0 0 0.846 0.9 0.949 0.999 
PRKDC MCM3 0 0 0 0 0.302 0.8 0 0.214 0.875 
HSPD1 ATP5B 0 0 0 0 0.303 0 0 0.273 0.459 
CCAR1 HNRNPH3 0 0 0 0 0.606 0 0 0.123 0.632 
ILF2 FUS 0 0 0 0 0.127 0 0 0.463 0.499 
CTNNB1 JUP 0 0 0 0.956 0 0.845 0.9 0.751 0.984 
PTK2 CTTN 0 0 0 0 0 0.621 0 0.561 0.822 
PXN BCAR1 0 0 0 0 0 0.937 0.8 0.946 0.999 
RPL12 RPS19 0.228 0 0 0 0.846 0 0.9 0.22 0.988 
RPS14 SRP14 0 0 0 0 0.217 0 0.9 0 0.916 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

LDHA KPNA2 0 0 0 0 0.591 0 0 0 0.591 
EIF3C HGS 0 0 0 0 0 0 0 0.528 0.528 
HSPD1 KPNA2 0 0 0 0 0.631 0 0 0 0.631 
RPS10 RPS2 0 0 0 0 0.675 0.237 0 0.5 0.858 
SEC24C SEC24B 0 0 0 0.824 0.087 0.352 0.9 0.88 0.943 
SEC16A SEC23A 0 0 0 0 0 0.621 0 0.801 0.919 
RPL27A RPL30 0 0 0 0 0.8 0.671 0.9 0.272 0.994 
ACTB TJP1 0 0 0 0 0 0.592 0.8 0.221 0.927 
TIA1 FUBP1 0 0 0 0 0.401 0 0 0.111 0.431 
RPS18 RPLP0 0.152 0 0 0 0.396 0.236 0 0.33 0.681 
GIT1 PTK2 0 0 0 0 0 0.937 0 0.448 0.963 
JUP PKP2 0 0 0 0 0 0.62 0 0.947 0.978 
RPS8 SRP14 0 0 0 0 0.323 0 0.9 0 0.927 
RPL4 RPS19 0 0 0 0 0.859 0 0.9 0.341 0.989 
EIF4G1 EIF2S1 0 0 0 0 0 0.388 0.9 0.47 0.963 
RPS18 RPS5 0.23 0 0 0 0.544 0.348 0 0.341 0.817 
HSPD1 CCT7 0 0 0.491 0.618 0.579 0 0 0.285 0.683 
RPL12 RPL30 0 0 0 0 0.895 0.582 0.9 0.393 0.996 
PKP3 JUP 0 0 0 0.457 0.077 0.62 0 0.611 0.744 
TJP1 KRT1 0 0 0 0 0 0.592 0 0.171 0.639 
KPNA2 KPNB1 0 0 0 0 0.366 0.992 0 0.885 0.999 
HSP90AB1 HSPA5 0 0 0 0 0.224 0 0 0.38 0.487 
RPL7 RPS20 0.341 0 0 0 0.701 0 0 0.658 0.923 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

CBL PIK3R2 0 0 0 0 0 0.977 0.8 0.193 0.995 
RPL27A RPS14 0.357 0 0 0 0.78 0.58 0.9 0.283 0.994 
TUFM ATP5B 0 0 0 0 0.419 0 0 0.207 0.509 
PCBP1 HNRNPU 0 0 0 0 0 0 0.9 0.18 0.912 
CBL BCAR1 0 0 0 0.448 0 0 0.9 0.317 0.914 
SRC BCR 0 0 0 0 0 0.62 0 0.653 0.859 
PARD3 CTNNB1 0 0 0 0 0 0.923 0 0.144 0.929 
NCL TCP1 0 0 0 0 0.443 0 0 0 0.443 
RPS8 EIF3C 0 0 0 0 0.321 0.352 0 0.2 0.6 
RPL27A RPS19 0 0 0 0 0.891 0.58 0.9 0.371 0.996 
SLC3A2 ALB 0 0 0 0 0 0 0 0.461 0.461 
RPL27A RPL4 0.357 0 0 0 0.552 0.735 0.9 0.285 0.992 
RPLP0 RPS20 0.242 0 0 0 0.901 0.576 0.9 0.22 0.996 
CTNNB1 CDH2 0 0 0 0 0 0.999 0.9 0.929 0.999 
RPL12 RPS5 0.291 0 0 0 0.874 0.58 0.9 0.373 0.996 
RPL7 RPS19 0 0 0 0 0.667 0 0 0.622 0.866 
SRC ACTB 0 0 0 0 0 0.621 0 0.346 0.735 
EIF4G1 RPL4 0 0 0 0 0 0 0.9 0.12 0.906 
HSPA9 CCT7 0.08 0 0 0 0.4 0 0 0.167 0.477 
RPS10 RPL30 0 0 0 0 0.857 0 0.9 0.374 0.989 
CTNND1 PXN 0 0 0 0 0 0 0 0.429 0.429 
RPS14 EIF2S1 0 0 0 0 0.121 0 0.9 0 0.906 
ACTB RPLP0 0 0 0 0 0.093 0.143 0 0.515 0.57 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

HNRNPA2B1 CPSF7 0 0 0 0 0.077 0 0.9 0 0.901 
ACTB BCAR1 0 0 0 0 0 0.621 0 0 0.621 
RPS8 RPS2 0 0 0 0 0.613 0.239 0 0.484 0.827 
KPNA2 CCT7 0 0 0 0 0.434 0.141 0 0 0.482 
EIF3A RPS7 0 0 0 0 0.093 0.6 0 0.103 0.629 
PKP4 CDH2 0 0 0 0 0 0.619 0 0.167 0.661 
HNRNPA0 FUS 0 0 0 0 0.112 0 0.9 0.107 0.909 
PCBP1 ATP5B 0 0 0 0 0.444 0 0 0 0.444 
VDAC2 PHB 0 0 0 0 0 0.289 0 0.341 0.5 
RPS10 RPL7 0 0 0 0 0.719 0 0 0.318 0.796 
RPL12 RPL4 0.24 0 0 0 0.815 0.582 0.9 0.371 0.995 
CTNNB1 CARM1 0 0 0 0 0 0.621 0 0.085 0.629 
HNRNPA0 PCBP1 0 0 0 0 0.165 0 0.9 0 0.91 
SRC BCAR3 0 0 0 0 0 0 0 0.543 0.544 
CKAP5 ALB 0 0 0 0 0 0 0 0.41 0.409 
SRP14 RPS5 0 0 0 0 0.289 0 0.9 0 0.924 
HSPA5 CBL 0 0 0 0 0 0.62 0 0 0.619 
RPS10 EIF2S1 0 0 0 0 0.097 0 0.9 0 0.903 
SEC16A SEC24B 0 0 0 0 0.067 0.352 0 0.629 0.745 
RPS14 RPS13 0 0 0.261 0 0.913 0.671 0.9 0.424 0.998 
RPS14 RPS5 0.268 0 0 0 0.88 0.633 0.9 0.468 0.997 
NCL PABPC1 0 0 0 0.636 0.163 0.62 0 0.379 0.702 
ACTB ATP5B 0 0 0 0 0.243 0 0 0.34 0.467 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

KRT18 HSPA1A 0 0 0 0 0 0.621 0 0.095 0.633 
RPS18 RPL30 0 0 0 0 0.544 0 0 0.29 0.655 
ACTB HSP90AB1 0 0 0 0 0.291 0.143 0 0.38 0.571 
RPS18 PARD3 0 0 0 0 0 0.62 0 0 0.619 
LDHA VDAC2 0 0 0 0 0.381 0 0 0.128 0.424 
DDX3X NCL 0 0 0 0 0.16 0.388 0 0.151 0.503 
FUBP1 ILF2 0 0 0 0 0.436 0 0 0 0.436 
VDAC2 HSPD1 0 0 0 0 0.286 0.384 0 0.18 0.589 
TUFM RPS20 0.472 0 0 0 0.367 0.647 0 0.12 0.873 
SRC PTK2 0 0 0 0.801 0 0.999 0.8 0.954 0.999 
SRC HNRNPU 0 0 0 0 0 0 0 0.852 0.852 
GTF2I HSPA9 0 0 0 0 0.12 0.357 0 0.393 0.61 
RPLP0 SRP14 0 0 0 0 0.302 0 0.9 0 0.925 
RPS8 RPS7 0 0 0 0 0.871 0.386 0.9 0.542 0.995 
PKP3 DSG2 0 0 0 0 0.087 0.62 0 0.563 0.827 
TIAL1 EIF4G1 0 0 0 0 0 0.352 0 0.234 0.47 
EIF2S1 RPS5 0 0 0 0 0.088 0 0.9 0.09 0.905 
HNRNPA2B1 NCL 0 0 0 0.74 0.407 0 0 0.425 0.467 
JUP DSG2 0 0 0 0 0 0.974 0 0.947 0.998 
RPS18 RPL12 0.177 0 0 0 0.568 0 0 0.289 0.712 
PKP4 CTNNB1 0 0 0 0.475 0 0.619 0 0.127 0.632 
CPSF7 HNRNPA0 0 0 0 0 0 0 0.9 0.079 0.901 
RPL30 RPS13 0 0 0 0 0.936 0.6 0.9 0.431 0.998 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

ARHGEF7 PXN 0 0 0 0 0 0.62 0 0.54 0.813 
SRC ALB 0 0 0 0 0 0 0 0.752 0.752 
RPS10 EIF4G1 0 0 0 0 0 0 0.9 0.078 0.901 
RPS18 RPS13 0 0 0 0 0.544 0.384 0 0.375 0.8 
SRC PRKDC 0 0 0 0 0 0 0 0.851 0.851 
SRC CARM1 0 0 0 0 0 0.62 0 0.861 0.943 
RPS14 RPS19 0 0 0 0 0.865 0.671 0.9 0.61 0.997 
CDH2 PXN 0 0 0 0 0 0 0 0.465 0.465 
RPS10 RPS14 0 0 0 0 0.87 0.488 0.9 0.467 0.995 
RPS8 RPL7 0 0 0 0 0.674 0.187 0 0.366 0.809 
HSPD1 PHB 0 0 0 0 0.154 0 0 0.374 0.435 
RPS2 RPS5 0.278 0 0 0 0.702 0.356 0 0.515 0.918 
HSP90AB1 RPS5 0 0 0 0 0.435 0 0 0.148 0.486 
RPL27A RPL7 0.297 0 0 0 0.434 0.294 0 0.229 0.737 
HSP90AB1 ATP5B 0 0 0 0 0.379 0.239 0 0.196 0.567 
BCR CBL 0 0 0 0 0 0.846 0.8 0.43 0.98 
HNRNPH3 DDX5 0 0 0 0 0.34 0.974 0 0.148 0.983 
RPL30 SRP14 0 0 0 0 0.368 0 0.9 0.161 0.939 
EIF3L EIF3C 0 0 0 0 0.568 0.387 0.9 0.425 0.981 
ILF2 HNRNPAB 0 0 0 0 0.562 0 0 0 0.562 
HSPA1A ALB 0 0 0 0 0 0 0 0.42 0.421 
SRC CBL 0 0 0 0 0 0.999 0.9 0.752 0.999 
SEC24C SEC23B 0 0 0 0.552 0.124 0.517 0.36 0.522 0.759 

249 
 



Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

CTNNB1 PKP2 0 0 0 0 0 0.62 0 0.374 0.746 
RPS10 RPS19 0 0 0 0 0.883 0.488 0.9 0.571 0.996 
RPS7 RPS5 0 0 0 0 0.933 0.577 0.9 0.427 0.998 
CLASP2 CKAP5 0 0 0 0.437 0.104 0 0.9 0.486 0.928 
HNRNPAB ACTB 0 0 0 0 0.093 0.621 0 0.107 0.65 
RPL30 EIF2S1 0 0 0 0 0.119 0 0.9 0 0.905 
HSP90AB1 HSPA9 0 0 0 0 0.388 0.118 0 0.235 0.531 
LDHA ATP5B 0 0 0 0 0.501 0 0 0.228 0.589 
RPS18 RPS20 0.329 0 0 0 0.55 0.384 0 0.429 0.871 
HSP90AB1 CCT7 0 0 0 0 0.485 0 0 0.201 0.561 
BCR PXN 0 0 0 0 0 0.846 0 0.33 0.89 
KPNB1 CCT7 0 0 0 0 0.632 0 0 0.133 0.66 
VPS29 VPS35 0 0 0 0 0.134 0.959 0 0.983 0.999 
RPS2 RPL7 0.231 0 0 0 0.528 0 0 0.429 0.764 
RPS18 RPL27A 0.287 0 0 0 0.425 0 0 0.304 0.675 
CYFIP1 NCL 0 0 0 0 0 0.62 0 0.196 0.673 
QARS RPS5 0 0 0 0 0.402 0.104 0 0.14 0.476 
EIF3A EIF4G1 0 0 0 0 0.144 0.62 0 0.262 0.726 
ALB CDH2 0 0 0 0 0 0 0 0.46 0.46 
HSP90AB1 NCL 0 0 0 0 0.402 0 0 0.163 0.465 
LDHA HSP90AB1 0 0 0 0 0.243 0 0 0.26 0.402 
CTNNB1 TJP1 0 0 0 0 0 0 0.9 0.517 0.948 
EMD ACTB 0 0 0 0 0 0.852 0 0.079 0.855 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

RPL12 SRP14 0 0 0 0 0.16 0 0.9 0 0.91 
PABPC1 PCBP1 0 0 0 0 0.144 0.619 0 0.29 0.736 
SRC PXN 0 0 0 0 0 0.937 0 0.968 0.997 
RPL12 EIF2S1 0 0 0 0 0.1 0 0.9 0 0.904 
RPS10 RPS20 0 0 0 0 0.843 0.491 0.9 0.465 0.994 
SRC HGS 0 0 0 0 0 0 0.9 0.305 0.925 
RPS14 RPL30 0 0 0 0 0.907 0.58 0.9 0.653 0.998 
PRKDC HNRNPU 0 0 0 0 0 0 0 0.845 0.845 
HSPD1 HSP90AB1 0 0 0 0 0.737 0 0 0.379 0.825 
RPS8 RPS20 0 0 0 0 0.918 0.576 0.9 0.463 0.997 
SEC24C SEC23A 0 0 0 0.558 0.124 0.845 0.9 0.844 0.99 
HSPA1A HSP90AB1 0 0 0 0 0.154 0.079 0 0.345 0.419 
RPS2 RPL30 0 0 0 0 0.608 0 0 0.38 0.741 
HNRNPU CCAR1 0 0 0 0 0 0 0.9 0.159 0.91 
CKAP5 MCM3 0 0 0 0 0.451 0.115 0 0 0.482 
RPS8 RPS10 0 0 0 0 0.839 0.271 0.9 0.428 0.991 
EIF3A BCR 0 0 0 0 0 0 0 0.488 0.488 
PHB2 ALB 0 0 0 0 0 0 0 0.412 0.412 
RPL30 RPS5 0.41 0 0 0 0.886 0.615 0.9 0.341 0.997 
RPS5 RPS20 0.41 0 0 0 0.791 0.64 0.9 0.412 0.996 
KRT18 PKP2 0 0 0 0 0 0.62 0 0.149 0.654 
RPL12 RPS13 0 0 0 0 0.909 0.58 0.9 0.379 0.997 
ARHGEF7 CBL 0 0 0 0 0 0.974 0.9 0.513 0.998 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

PARD3 BCAR1 0 0 0 0 0 0 0 0.47 0.469 
ALB TJP1 0 0 0 0 0 0 0 0.563 0.563 
RPL27A EIF2S1 0 0 0 0 0.16 0 0.9 0 0.91 
PHB2 CCT7 0 0 0 0 0.729 0 0 0 0.729 
MRPS34 TUFM 0 0 0 0 0.483 0 0 0.12 0.515 
RPS18 RPS7 0 0 0 0 0.426 0.356 0 0.371 0.735 
RPL12 RPS7 0 0 0 0 0.884 0.388 0.9 0.32 0.994 
ILF2 PRKDC 0 0 0 0 0.163 0.967 0 0.809 0.994 
EIF3C NCL 0 0 0 0 0.429 0.079 0 0.068 0.442 
ILF2 KPNA2 0 0 0 0 0.459 0 0 0.138 0.502 
HNRNPA0 CCAR1 0 0 0 0 0 0 0.9 0 0.899 
RPS7 RPL30 0 0 0 0 0.905 0.6 0.9 0.236 0.996 
PHB2 HSPA9 0 0 0 0 0.244 0.079 0 0.34 0.476 
HSPD1 TUFM 0 0 0.252 0 0.544 0.228 0 0.145 0.727 
KHSRP CARM1 0 0 0 0 0.191 0 0 0.464 0.537 
SLC25A5 RPL4 0 0 0 0 0.439 0 0 0.116 0.471 
ILF2 MCM3 0 0 0 0 0.415 0.8 0 0 0.875 
PCMT1 TCP1 0 0 0 0 0.64 0 0 0 0.64 
HNRNPA2B1 HNRNPA0 0 0 0.525 0.934 0.108 0 0.9 0.379 0.909 
LDHA ALB 0 0 0 0 0 0 0 0.51 0.51 
RPL4 ATP5B 0 0 0 0 0.489 0 0 0.125 0.523 
DSG2 PKP2 0 0 0 0 0.066 0.62 0 0.783 0.912 
NCKAP1 CYFIP1 0 0 0 0 0.071 0.993 0 0.757 0.998 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

RPL4 RPL30 0 0 0 0 0.904 0.67 0.9 0.341 0.997 
RPS2 RPL4 0.278 0 0 0 0.763 0 0 0.412 0.885 
EIF2S1 RPS19 0.156 0 0 0 0.117 0 0.9 0 0.915 
EIF4G1 RPS13 0 0 0 0 0 0 0.9 0.551 0.952 
NCL RPL4 0 0 0 0 0.309 0 0 0.236 0.436 
TCP1 RPS19 0 0 0.38 0 0.132 0 0 0 0.426 
EIF3A NCL 0 0 0 0 0.408 0.233 0 0.08 0.524 
CTNND1 CTTN 0 0 0 0 0 0.62 0.9 0.896 0.995 
NCL ALB 0 0 0 0 0 0 0 0.425 0.424 
PTK2 PIK3R2 0 0 0 0 0 0.62 0.8 0.201 0.93 
EIF3L PHB2 0 0 0 0 0.403 0 0 0 0.404 
PHB2 PHB 0 0 0.372 0.935 0.536 0.619 0 0.919 0.826 
SLC3A2 HSPA5 0 0 0 0 0.121 0 0 0.38 0.418 
KIRREL TJP1 0 0 0 0 0 0.846 0.9 0.909 0.998 
SRC GTF2I 0 0 0 0 0 0.619 0 0.266 0.701 
SRC PIK3R2 0 0 0 0.508 0 0.62 0.8 0.239 0.926 
EIF2S1 RPS20 0 0 0 0 0.126 0 0.9 0 0.906 
SEC16A SEC24C 0 0 0 0.435 0.159 0.236 0 0.726 0.589 
RPS7 RPLP0 0 0 0 0 0.87 0 0.9 0.305 0.989 
SLC25A5 ATP5B 0 0 0 0 0.565 0 0 0.182 0.62 
VDAC2 SLC25A5 0 0 0 0 0.325 0.113 0.8 0.2 0.883 
EIF3A EIF3C 0 0 0 0 0.585 0.846 0.9 0.427 0.995 
TUFM CCT7 0 0 0 0 0.442 0.228 0 0.154 0.586 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

HNRNPAB TCP1 0 0 0 0 0.406 0 0 0.07 0.411 
TUFM RPS13 0.132 0 0 0 0.154 0.647 0 0.086 0.712 
CCAR1 FUS 0 0 0 0 0.064 0 0.9 0 0.9 
RPL27A RPS5 0.32 0 0 0 0.768 0.615 0.9 0.893 0.999 
ILF2 HSP90AB1 0 0 0 0 0.534 0 0 0.102 0.553 
KRT18 ALB 0 0 0 0 0.107 0 0 0.43 0.456 
KHSRP TIAL1 0 0 0 0 0.079 0 0 0.425 0.434 
HSPA5 EIF2S1 0 0 0 0 0.13 0 0 0.379 0.424 
RPS19 RPS5 0 0 0 0 0.882 0.58 0.9 0.429 0.996 
PTK2 TJP1 0 0 0 0 0 0 0 0.415 0.416 
PCBP1 CCAR1 0 0 0 0 0 0 0.9 0 0.899 
RPS8 EIF2S1 0.064 0 0 0 0.122 0 0.9 0 0.906 
HSPD1 ALB 0 0 0 0 0 0 0 0.563 0.563 
HSP90AB1 RPL4 0 0 0 0 0.375 0 0 0.133 0.422 
SLC25A5 RPLP0 0 0 0 0 0.308 0 0 0.201 0.41 
CTTN PXN 0 0 0 0 0.075 0 0 0.946 0.947 
PHB2 MRPS34 0 0 0 0 0.408 0 0 0 0.408 
RPLP0 EIF4G1 0 0 0 0 0.068 0 0.9 0 0.9 
NCL HSPA9 0 0 0 0 0.373 0 0 0.144 0.428 
RPL4 RPS20 0.41 0 0 0 0.805 0 0.9 0.371 0.991 
ACTB CTNNB1 0 0 0 0 0 0.143 0 0.476 0.522 
ALB PXN 0 0 0 0 0 0 0 0.541 0.54 
TJP1 CDH2 0 0 0 0 0 0 0 0.67 0.669 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

NCL EIF4G1 0 0 0 0 0.227 0 0 0.475 0.567 
RPS8 EIF4G1 0 0 0 0 0.096 0 0.9 0.188 0.916 
ACTB PXN 0 0 0 0 0 0 0.8 0.19 0.827 
EIF3L RPLP0 0 0 0 0 0.432 0 0 0 0.432 
CTTN CDH2 0 0 0 0 0 0 0 0.901 0.902 
EIF3L RPL4 0 0 0 0 0.725 0 0 0.071 0.727 
HNRNPA2B1 HNRNPU 0 0 0 0 0.285 0 0.9 0.433 0.953 
RPL4 RPS5 0.357 0 0 0 0.941 0.58 0.9 0.317 0.998 
HSP90AB1 TCP1 0 0 0 0 0.455 0 0 0.161 0.513 
PTK2 BCAR1 0 0 0 0 0 0.999 0.9 0.6 0.999 
RPL12 EIF4G1 0 0 0 0 0 0 0.9 0 0.899 
JUP KRT9 0 0 0 0 0 0 0 0.426 0.425 
HGS VPS35 0 0 0 0 0 0.077 0 0.466 0.474 
RPS10 RPL27A 0 0 0 0 0.768 0 0.9 0.891 0.997 
RPS19 RPS20 0 0 0 0 0.877 0.671 0.9 0.726 0.998 
ACTB HNRNPU 0 0 0 0 0 0.62 0 0.121 0.643 
ILF2 ATP5B 0 0 0 0 0.447 0 0 0 0.448 
EIF3L RPS13 0 0 0 0 0.54 0 0 0 0.54 
CLTC PXN 0 0 0 0 0 0.62 0 0 0.619 
RPL27A SRP14 0 0 0 0 0.14 0 0.9 0 0.908 
RPL7 RPS5 0.22 0 0 0 0.653 0.292 0 0.331 0.844 
HSPA1A HSPD1 0.08 0 0 0 0.103 0 0 0.585 0.61 
EIF2S1 RPS13 0 0 0 0 0.155 0 0.9 0 0.909 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

RPS18 RPL7 0.239 0 0 0 0.365 0 0 0.341 0.637 
BCAR3 BCAR1 0 0 0 0 0 0.846 0 0.516 0.92 
KPNB1 NUP88 0 0 0 0 0.096 0 0.9 0.25 0.922 
RPL4 EIF2S1 0.07 0 0 0 0.24 0 0.9 0 0.919 
ILF2 TCP1 0 0 0 0 0.407 0 0 0.124 0.446 
KPNB1 CLTC 0 0 0 0 0.107 0.62 0 0.117 0.658 
KPNA2 MCM3 0 0 0 0 0.475 0 0 0.193 0.549 
EIF4G1 RPS14 0 0 0 0 0 0 0.9 0.112 0.905 
PABPC1 CCAR1 0 0 0 0 0 0 0 0.675 0.675 
HNRNPU FUS 0 0 0 0 0 0 0.9 0.191 0.913 
TUFM RPS14 0.277 0 0 0 0.175 0.576 0 0.086 0.719 
SRC BCAR1 0 0 0 0 0 0.999 0.9 0.939 0.999 
HNRNPAB NCL 0 0 0 0.739 0.507 0 0 0.078 0.509 
EIF3A RPS13 0 0 0 0 0 0.6 0 0.087 0.61 
JUP TJP1 0 0 0 0 0 0 0 0.61 0.609 
RPS2 RPLP0 0.148 0 0 0 0.789 0.232 0 0.373 0.895 
PCBP1 FUS 0 0 0 0 0 0 0.9 0.082 0.902 
ARAP1 SRC 0 0 0 0 0 0 0 0.833 0.833 
SRC JUP 0 0 0 0 0 0.621 0.9 0.899 0.995 
RPS18 RPS14 0.287 0 0 0 0.544 0.357 0 0.41 0.85 
EIF3C EIF4G1 0 0 0 0 0.172 0 0 0.526 0.581 
SRP14 RPS19 0 0 0 0 0.143 0 0.9 0 0.908 
RPLP0 RPS13 0 0 0 0 0.892 0.495 0.9 0.215 0.994 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

ILF2 NCL 0 0 0 0 0.363 0 0 0.201 0.457 
KIRREL PIK3R2 0 0 0 0 0 0 0.9 0 0.899 
RPLP0 EIF2S1 0 0 0 0 0.155 0 0.9 0.072 0.91 
EMD SRC 0 0 0 0 0 0 0 0.802 0.802 
RPS7 RPS20 0 0 0 0 0.842 0.671 0.9 0.481 0.996 
PKP4 JUP 0 0 0 0 0 0 0 0.462 0.462 
PHB2 ATP5B 0 0 0 0 0.672 0 0 0 0.672 
HNRNPA0 HNRNPU 0 0 0 0 0.068 0 0.9 0.757 0.974 
RPL7 RPS7 0 0 0 0 0.772 0.236 0 0.319 0.865 
RPS8 RPL12 0 0 0 0 0.902 0.388 0.9 0.378 0.995 
PABPC1 RPL4 0 0 0 0 0.341 0 0 0.16 0.41 
SEC24B SEC23B 0 0 0 0.579 0.127 0 0.36 0.775 0.594 
RPS2 RPS14 0.278 0 0 0 0.778 0.384 0 0.467 0.936 
RPS8 RPL4 0 0 0 0 0.865 0.388 0.9 0.424 0.994 
RPL12 RPS2 0.179 0 0 0 0.604 0.293 0 0.271 0.796 
KRT18 HSPA5 0 0 0 0 0 0.621 0 0.121 0.644 
RPL27A RPLP0 0.191 0 0 0 0.692 0.576 0.9 0.107 0.987 
RPS18 RPS10 0 0 0 0 0.424 0.232 0 0.379 0.687 
ATP5B CCT7 0 0 0 0 0.56 0 0 0 0.561 
BCR CLTC 0 0 0 0 0 0.62 0 0.065 0.62 
CPSF7 FUS 0 0 0 0 0.068 0 0.9 0 0.9 
EMD CTNNB1 0 0 0 0 0 0.621 0 0.139 0.651 
HNRNPA2B1 FUS 0 0 0 0.718 0.226 0 0.9 0.305 0.923 
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Appendix 4 – Table showing N2-Src STRING interaction network 

Node 1 Node 2 Neighborhood Fusion Cooccurence Homology Coexpression Experimental Knowledge Textmining 
Combined 
score 

ALB CBL 0 0 0 0 0 0 0 0.462 0.462 
RPS7 EIF2S1 0 0 0 0 0.126 0 0.9 0 0.906 
TJP1 PXN 0 0 0 0 0 0 0 0.433 0.433 
TUFM HSPA9 0 0 0.291 0 0.166 0 0 0.109 0.401 
EIF4G1 RPS20 0 0 0 0 0 0 0.9 0.073 0.901 
NCL KPNB1 0 0 0 0 0.335 0 0 0.269 0.481 
EIF3L RPS5 0 0 0 0 0.685 0 0 0 0.685 
PTK2 PXN 0 0 0 0 0 0.999 0.8 0.962 0.999 
RPS8 RPL30 0 0 0 0 0.879 0.388 0.9 0.369 0.994 
ACTB ALB 0 0 0 0 0 0 0 0.514 0.514 
RPS7 RPS13 0 0 0 0 0.931 0.667 0.9 0.43 0.998 
RPL27A RPS7 0 0 0 0 0.606 0.388 0.9 0.216 0.977 
ACTB CARM1 0 0 0 0 0 0.62 0 0.144 0.652 
RPL30 RPS19 0 0 0 0 0.84 0 0.9 0.378 0.988 
CKAP5 TCP1 0 0 0 0 0.269 0.231 0 0 0.4 
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0 List of Abbreviations 

ALK Anaplastic lymphoma kinase 
ATP Adenosine Triphosphate 
BCAR1 Breast cancer associated receptor 1 
BDNF Brain-derived neurotrophic factor 
BMB Boehringer Mannheim Blocking 
CAM Cell-adhesion molecule 
cAMP Cyclic adenosine monophosphate 
CDK Cyclin dependent kinase 
CFP Cyan fluorescent protein 
Chk Csk-homology kinase 
CMV Cytomegalovirus 
CNS Central nervous system 
CSK C-terminal Src Kinase 
DAVID Database for annotation, visualization and Integrated discovery 
DIG Digoxygenin 
ECM Extracellular matrix 
eFGF Embryonic Fibroblast Growth Factor 
emPAI Exponentially modified Protein Abundance Index 
ER Endoplasmic reticulum 
ERK Extracellular-Signal-Regulated kinase 
ESCRT Endosomal sorting complexes required for transport  
FAK Focal Adhesion Kinase 
FBS Foetal bovine serum 
FGF Fibroblast Growth Factor 
Fig Figure 
GABA Gamma aminobutyric acid 
GAP GTPase activating protein 
GEF Guanine nucleotide exchange factor 
GFP Green fluorescent protein 
GO term Gene Ontology term 
GPS Group-based prediction system 
GRID2 Glutamate Receptor Ionotropic Delta 2 
GTP Guanosine tri-phosphate 
HCN Hyperpolarization-activated cyclic nucleotide-gated 
HEK Human Embryonic Kidney 
HRP Horse radish peroxidase 
IDP Intrinsically disordered protein 
IDR Intrinsically disordered region 
LC Liquid Chromatography 
LTP Long-term potentiation 
MAP Mitogen activated protein 
MCM7 Minichromosome maintenance complex component 7 
MS Mass spectrometry 
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NMDA N-methyl-D-aspartic acid 
nRTK Non-receptor tyrosine kinase 
PBS Phosphate buffered saline 
PCR Polymerase Chain Reaction 
PDGF Platelet-derived growth factor 
PHOX2B Paired-like homeobox 2b 
PI3K Phosphoinositide-3 kinase 
PKA Protein Kinase A 
PKC Protein kinase C 
PPII Poly-proline type- II 
PTK Protein tyrosine kinase 
PTM Post-translational modification 
PTP Protein tyrosine phosphatase 
PVDF Polyvinylidene fluoride 
RA Retinoic acid 
RPMI Roswell Park Memorial Institute  
RTK Receptor tyrosine kinase 
rtPCR Reverse transcriptase polymerase chain reaction 
SDS PAGE Sodium dodecyl sulfate polyagarose gel electrophoresis 
SFK Src family kinase 
SH2 Src Homology 2 
SH3 Src Homology 3 
SH3BP1  Src Homology 3 binding protein 
SH4 Src Homology 4 
shRNA Short hairpin RNA 
siRNA Short interfering RNA 
TGN Trans-golgi network 
TPA 12-O-tetradecanoylphorbol-13-O-acetate  
WASp Wiskott–Aldrich Syndrome protein  
WebGestalt WEB-based GEne SeT AnaLysis Toolkit  
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