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Abstract

The present investigation is about the quantum mechanics of multislit in-
terference experiments. One of the cornerstones of our understanding of
quantum mechanics is provided by the analysis of this type of experiments.
Beginning with Bohr and Einstein, the discussion revolved mostly around
single-slit diffraction and double-slit interference, probing the complement-
arity of path determination and the appearance of interference fringes, and
contrasting the familiar with the quantum. Here, we are concerned with
developing a systematic understanding and description of multislit interfer-
ence experiments, i.e. setups in which a plurality of slits is illuminated. We
provide a characterisation of a number of relevant observables, discussing
those that are compatible and may be measured jointly, and also incom-
patible observables which cannot be measured jointly but instead display
quantum uncertainty.
We begin with a discussion of a particular modification of the classic double-
slit interference experiment which highlights the realisation of specific po-
sition and momentum observables which are jointly measurable. Although
there are technical results regarding the coexistence of specific position and
momentum observables, it may be surprising that ubiquitous experimental
setups provide a preparation of such quantum states. We proceed with a
discussion of the particular character of the incompatibility of certain meas-
urements by building on an initial heuristic argument provided by Aharonov,
Pendleton and Petersen. We prove, extend and discuss a formulation of un-
certainty suitable for the context of multislit experiments. We conclude with
a comparison of this formulation of uncertainty with an alternative uncer-
tainty formulation developed by Uffink and Hilgevoord. Although these two
uncertainty formulations are very different technically, we demonstrate that
the same tradeoff is expressed independently.
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Preface

The present doctoral dissertation is compiled from research that was per-
formed between the years 2011 and 2014 at the University of York in the
department of mathematics. The main topic of investigation is the quantum
mechanics of multislit interference experiments. The general foundational
interest of the physics community seems to focus on contrasting single-slit
diffraction experiments and double-slit interference experiments, and the
associated questions regarding complementarity. Here, a more general in-
vestigation of multislit interference experiments is presented. We provide a
detailed study of the relevant observables, characterise interference quantum
states and address quantum uncertainty.

At the time of writing, two scientific articles were published based on this
research and a third one is being finalised for publication. The present text
is, however, more detailed on several accounts. An introduction is provided
to the relevant parts of the quantum mechanical formalism. Although this
introduction may appear deceptively short, this accurately reflects the nature
of the problems discussed: If phrased carefully, the answers can be put into
simple terms. The main body of the text has been expanded by some addi-
tional discussion of relevant physics while detailed mathematical calculations
are found in the Appendix. For going back and forth between different sec-
tions of the text, hyperlinks are provided. In particular, any reference of a
specific part of the Appendix is a hyperlink, and in the Appendix a hyperlink
is provided that leads back to the specific point, where the Appendix was
referenced.

The first part comprises an analysis of a novel variety of multislit inter-
ference experiments that were interpreted as a violation of quantum com-
plementarity since it appeared that incompatible quantum properties were
being measured together [33]. It is argued that this type of experiment can be

xi



understood, fully in line with quantum mechanics, as a joint measurement
of compatible functions of the position and momentum observables. The
analysis is based on earlier work of Busch and Lahti, who have shown that
commuting functions of position and momentum exist [44].

The second part is an investigation of the quantum uncertainty in inter-
ference experiments based on an initial attempt by Aharonov, Pendleton and
Petersen at modifying the so-called Heisenberg uncertainty relation in order
to accurately express the relevant tradeoff [11]. The proposed uncertainty for-
mulation was, however, never developed beyond a heuristic argument. We
address technical issues, obtain a correct lower bound and discuss restric-
tions on the allowed quantum states. We develop the idea by introducing a
refined observable, which allows precisely resolving the fine structure of the
interference pattern.

The third part provides a comparison with an alternative uncertainty
formulation developed by Uffink and Hilgevoord for single- and double-slit
experiments [22]. However, in order to successfully apply their uncertainty
formulation to multislit interferometry, arising issues need to be addressed.
We generalise an underlying concept to fit the multislit context and find
that additional considerations are necessary in order to express the relevant
tradeoff. The comparison then becomes straightforward. Many of the res-
ults agree qualitatively, independently confirming that the relevant physical
structure is captured.

For the purpose of a detailed and complete discussion, the Python code
used to perform the referenced numerical calculations is provided in the
Appendix.
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Chapter 1

The basic framework

Quantum mechanics is the general framework used to describe the physical
world at the microscopic scale. This chapter serves as an introduction to
those aspects of quantum mechanics that are relevant to the following in-
vestigation. The discussed results are all known very well, but reviewed here
so that they may serve as a foundation to the following chapters.

1



2 CHAPTER 1. THE BASIC FRAMEWORK

1.1 Introduction

The nonclassical behaviour of microscopic objects is described by the math-
ematical framework called quantum mechanics. In a quantum mechanical
description a given quantum object is characterised by a quantum state. Ac-
cording to quantum mechanics, the quantum state completely determines
the properties of that object. The precise meaning of the quantum state,
however, has been and continues to be a topic of debate. In particular, it
is still disputed to what extent the properties of microscopic objects can
be considered determined by quantum mechanics. The work of Einstein,
Podolsky and Rosen played a major part in this discussion [77]. A more re-
cent addition to the discussion, indicating continued interest and a lack of
resolution, is the work of Pusey, Barrett and Rudolph [88].

The peculiar character of the quantum state is reflected in the equally
peculiar predictions regarding the dynamical variables. The quantum mech-
anical treatment of the dynamical properties, the so-called observables, as-
sociated with a given physical system is unprecedented. In particular, the
fact that a limited amount of information about a quantum system exists
(according to the Copenhagen interpretation of quantum mechanics), rather
than a limited amount of information being available, makes quantum mech-
anics intrinsically statistical. Substantial effort was expended to address this
issue, most notably in the form of Bohmian mechanics and the Everett in-
terpretation [99, 1010].

A classical theory contains no restrictions on the existence or accessibility
of observables, summarised by the following two statements: Every property
of a given physical system

1. exists independently of its observation, and

2. exists independently of other observations.

At the microscopic level, however, very different behaviour is exhibited. The
properties of a quantum object can change upon interaction with a differ-
ent system or through evolution, to the point that the new properties of
the quantum object might be in apparent contradiction with its original
properties. We are forced to reject the first statement when speaking about
microscopic systems. This is further complicated by the fact that an interre-
lationship exits between the physical properties of a single quantum object,
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so that the observation of one property can have an effect on a different
property. We are forced to reject the second statement as well. In this sense
the classical concepts of “particle” and of “wave” are found insufficient for a
quantum mechanical description. Quantum objects may display characterist-
ics of either depending on the observation, whereas classical physics featured
a clear classification of phenomena into either particle or wave. Certainly,
a simple phenomenon, such as the propagation of a neutron through an in-
terferometer or the detection of an electron, can be understood in terms of
just particle or wave behaviour. More generally though, quantum mechanics
requires aspects of both to be present in a description: A limited observation
of a property associated with a particle may be possible at the same time
as a limited observation of a property associated with a wave. This suggests
that the concepts of particle and wave merely refer to two extremal cases
with a continuous range of intermediate properties. We will be discussing
such a case in the form of a modified multislit experiment in Chapter 22. The
extent to which two observables may exist jointly is described by tradeoff
relations, which are more commonly referred to as uncertainty relations. A
particular mathematical formulation of an uncertainty relation for multislit
experiments will be discussed starting with Chapter 33.

In the remainder of this chapter we discuss the mathematical formal-
ism required to describe quantum systems as they are presented here. The
quantum state and the observables are discussed in Sec. 1.21.2, along with the
(canonical) commutation relation. This serves as the basis for the discussion
of the principle of uncertainty and uncertainty relations in Sec. 1.31.3. Finally,
we are going to address concepts relevant specifically to multislit experiments
in Sec. 1.41.4, such as the evolution of a quantum state in a multislit setup.

1.2 Quantum states and observables

Quantum mechanics as presented here was formalised by John von Neumann
[1111]: With a given physical system we associate a complex Hilbert space H.
A particular physical state of that system, called (pure) quantum state, cor-
responds to a ray in H. Quantum states, as elements of an abstract Hilbert
space, are denoted using lowercase Greek characters, such as ψ or ϕ. More
precisely, the particular Hilbert space of interest to the present discussion is
the space of square-integrable complex-valued functions, denoted L2(R).
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The dynamical properties of the given quantum object, more concisely
referred to as observables, are represented by selfadjoint operators on H.
The pair of position Q and momentum P constitutes the classic example of
observables. They are represented by operators Q and P respectively. In
the following chapters, we will be dealing with measurements of Q and P as
they occur in multislit experiments.

A Hilbert space being a generalisation of the Euclidean space, we have
generalised concepts of length and angle in the form of a norm and an inner
product. Given two quantum states ψ and ϕ, their inner product may be
evaluated using their position representations ψ(x) and ϕ(x),∫ ∞

−∞
ψ∗(x) ϕ(x) dx . (1.1)

It is common to refer to representations of quantum states in terms of L2

functions using the term wavefunctions. This terminology originates from
the solutions of the Schrödinger equation, which is a wave equation.

The norm of a state ψ is defined in terms of the inner product,

||ψ|| =
∫ ∞

−∞
ψ∗(x) ψ(x) dx . (1.2)

The so-called expectation values are also defined by means of the inner
product. For examples, in the position representation of ψ the expectation
value of Q is given by

⟨Q⟩ψ =

∫ ∞

−∞
ψ∗(x)xψ(x) dx . (1.3)

The expectation value provides the link with experiments, quantifying the
predicted statistics of the measured values of a particular observable in a
given quantum state. We will be dealing mostly with the standard devi-
ations, which are defined in terms of expectation values. We use ∆(Q,ψ) to
denote the standard deviation of Q in state ψ,

∆(Q,ψ) =
√

⟨Q2⟩ψ − ⟨Q⟩2ψ . (1.4)

In the following chapters, we will utilise position and momentum-space rep-
resentations of quantum states. The Fourier transformation maps from po-
sition space to momentum space, while the inverse Fourier transformation



1.2. QUANTUM STATES AND OBSERVABLES 5

corresponds to the inverse mapping. The inverse Fourier transformation is
defined by

ψ(x) =
1√
2πℏ

∫ ∞

−∞
e−ixp/ℏ ψ̂(p) dp , (1.5)

mapping the momentum representation ψ̂(p) to the position representation
ψ(x). From now on we use units so that ℏ = 1.

Regarding the observables, as mentioned above, in the Hilbert-space for-
mulation of quantum mechanics observables are associated with operators.
The physical relationship between a pair of observables is mathematically
described by the commutation relation of the operators involved. The two
observables position Q and momentum P, represented by two operators Q
and P , form a canonically conjugate pair in that they satisfy the canonical
commutation relation

[Q,P ] = QP − PQ = i . (1.6)

According to von Neumann’s theorem, a pair of observables is jointly meas-
urable if the observables commute [1111]. Hence the observables Q and P are
said to be incompatible, precluding the existence of a complete set of joint
eigenvectors. As will be seen in Sec. 1.31.3, this results in and is expressed by
quantum uncertainty. The incompatibility of a pair of operators does not,
however, exclude the existence of some common eigenvectors, allowing some
(but not all) information about both observables to be measured; see Ref. [44]
for more information regarding this point. This possibility is best illustrated
considering the canonical commutation relation in a form due to Weyl [1212].
The Weyl form of the canonical commutation relation is expressed in terms
of (bounded) unitary operators ei pQ and ei q P and reads

ei pQ ei q P = e−i pq ei q P ei pQ . (1.7)

Observe that the operators commute for pq = 2πn with n ∈ N, because
then e−i pq = e−i 2πn = 1. Equivalently, this condition may be expressed in
terms of the minimal periods of the operators, T = 2π/q and Kn = 2π/p

respectively

T Kn =
2π

q

2π

p
=

(2π)2

2πn
=

2π

n
. (1.8)

This result suggests that a function of position commutes with a function of
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momentum if their relative periods are chosen accordingly [44]. If the period
of the former is T , then the period of the latter must correspond to

Kn =
2π

nT
=

4π

mT
, (1.9)

where we introduced m = 2n. We also define

K =
2π

T
. (1.10)

This result about the commutativity of functions of position and momentum
is central to much of the remainder of the present investigation. In Chapter 22
we will be dealing with commuting projection operators revealing inform-
ation about both Q and P by way of the particular experimental imple-
mentation. The relative periods of these projection operators is specified by
Eq. (1.101.10) for the particular experiment considered. Starting with Chapter 33,
we will be discussing an expression of the incompatibility of the observables
in multislit experiments in the form of an uncertainty relation. This involves
decomposing the operators Q and P into mutually commuting and mutually
noncommuting parts, according to the periods indicated in Eq. (1.91.9).

1.3 Uncertainty in quantum mechanics

In 1927 Heisenberg introduced the notion of a fundamental limit to the
existence of precise values of a pair of observables represented by canon-
ically conjugate operators [1313]. Heisenberg presented a heuristic argument
elucidating the physical principle now known as Heisenberg’s principle of un-
certainty. A number of mathematical formulations of uncertainty followed
shortly thereafter [1212, 1414–1616].

Kennard first published a tradeoff relation expressed in terms of the
standard deviations of operators satisfying the canonical commutation re-
lation of a single non-relativistic particle [1414],

∆(Q,ψ)∆(P, ψ) ≥ 1

2
. (1.11)

Robertson established the uncertainty relation as a formal consequence of
the non-commutativity of the operators involved [1515]. For operators A and
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B, we have

∆(A,ψ) ∆(B,ψ) ≥ 1

2
| ⟨[A,B]⟩ψ | . (1.12)

The Eqs. (1.111.11) and (1.121.12) are mathematical formulations of the principle of
uncertainty. However, a particular mathematical formulation should not be
regarded equivalent to the general principle. (A precise distinction between
the uncertainty principle and its various formulations seems particularly im-
portant in light of recent claims regarding quantum uncertainty; see Ref. [1717]
and references therein.) In fact, in Chapter 33 we are going to argue that
multislit experiments are outside the scope of Eq. (1.111.11), and that an altern-
ative expression must be sought in order to successfully express the uncer-
tainty principle in that context. We find that an alternative expression may
be obtained using Eq. (1.121.12) after a suitable adaptation of the observables
to the given experimental context.

1.4 A quantum mechanical description of multislit
experiments

The quantum mechanical analysis of multislit experiments, which is de-
veloped in this section, is indispensable for the discussions in all following
chapters, with the exception of Chapter EE.

Multislit interference experiments have been very fruitful throughout the
historical development of physics: Young’s famous double-slit interference
experiment conclusively displayed the wave behaviour of light. Möllenstedt
and Jönsson first illustrated the wave-behaviour of a massive particle, namely
the electron, in multislit interference experiments [1818, 1919]. More recently, the
quantum mechanical behaviour of the much larger and heavier C60 molecule
was demonstrated in multislit interference experiments [2020].

A diagrammatic illustration of the simplest multislit experiment, the
double-slit setup, is depicted in Fig. 1.11.1 and the associated interference pat-
tern in Fig. 1.21.2. A quantum object traverses the experimental setup along
the z-direction (from left to right). After passage of the aperture mask at
location (i), the quantum object propagates freely until it is observed at loc-
ation (ii) on a detection screen. For as long as the quantum object traverses
the experimental setup from preparation to detection, the spatially extended
wavefunction describing the object is present throughout the entire exper-
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Figure 1.1: A typical multislit experiment, an ensemble of quantum objects
is incident on the double-slit aperture mask at location (i), while at location
(ii) an interference pattern is observed on a distant screen. An illustration
of an interference pattern is provided in Fig. 1.21.2.

Figure 1.2: An illustration of the interference pattern observed in a double-
slit experiment, such as the one depicted in Fig. 1.11.1. The regions where
high intensity is detected form evenly spaced fringes (black fringes on white
background). With increasing distance to the central fringe, the fringes
become less visible as the overall intensity decreases.
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imental setup. The detection event, though, registers a single object at a
specific location, while an ensemble of such detections makes up an interfer-
ence pattern typically associated with the behaviour of continuous waves.

1.4.1 Quantum interference and the complex numbers

Interference arises in quantum mechanics immediately from the Born rule,
which postulates that probabilities are the expectation values of projections.
In the present context, the Born rule amounts to a method for obtaining
probabilities from the complex-valued wavefunctions by means of taking the
(real-valued) modulus-square of the quantum amplitudes.

The following heuristic argument shows that interference phenomena fol-
low immediately from the Born rule. Consider the experimental setup de-
picted in Fig. 1.11.1. There is a certain probability distribution associated with
an illuminated slit A. We denote this probability distribution P(A). Analog-
ously, there is a probability distribution P(B) associated with illumination
of slit B. It is an experimentally determined fact that these probability
distributions do not simply add up when both slits are illuminated. This
phenomenon is called interference, and mathematically expressed by

P(A ∪B) ̸= P(A) + P(B) . (1.13)

The probability distribution observed while both slits are open does not
equal the sum of probabilities obtained from independent observations of
each slit alone. This suggests the presence of an additional term, the so-
called interference term I(A,B)

P(A ∪B) = P(A) + P(B) + I(A,B). (1.14)

It is emphasised that this is an experimental observation, which quantum
mechanics must reproduce.

A quantum mechanical description is possible by means of a complex-
valued function, while probabilities are identified with the square-modulus
of that function by means of the Born rule. The detection probability of a
quantum object with slit A open can be expressed in terms of a complex-
valued function. We express this function in terms of a real f(x) and a
complex phase eiαx where α is a (real) constant, both of which may depend
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on the location along the axis of the screen x. The probability distribution
associated with illuminating a single slit is obtained easily

P(A) =
∣∣f(x) eiαx∣∣2 = f(x)2. (1.15)

Let us now consider simultaneous (and equal) illumination of both slits, i.e.
two slits A and B open simultaneously. In this case, we require two functions
but there can only be a difference in phase,

ΨA(x) = f(x) eiαx , (1.16)

ΨB(x) = f(x) eiβx , (1.17)

where β is another (real) constant. As we assume equal illumination of
the two slits, the quantum states can only differ in phase. We proceed to
calculate the probability of joint passage of slit A and slit B

P(A ∪B) = |ΨA(x) + ΨB(x)|2 (1.18)

= |ΨA(x)|2 + |ΨB(x)|2 +Ψ∗
A(x)ΨB(x) + Ψ∗

B(x)ΨA(x) (1.19)

= f(x)2 (2 + 2 cos (α− β)x) = 4 f(x)2 cos

(
α− β

2
x

)2

. (1.20)

The Born rule was used to obtain the final expression of the first line. The
following calculation is straightforward, leading to a final result that indeed
shows interference.

Quantum mechanics clearly describes the two-path interference exhibited
in the double-slit experiment.

1.4.2 Modelling the multislit setup

The previous discussion of multislit experiments was heuristic, highlighting
the observed phenomena. This section and the following section serve to
make the discussion more precise. Again, let us consider the double-slit
setup as depicted in Fig. 1.11.1, consisting of two slits forming an aperture
mask on which a propagating quantum object is incident.

The quantum object propagates through the device depicted in Fig. 1.11.1
along the z-axis (from left to right). We model its wavefunction as a product,
Ψ(x, y, z) = ϕ(x) η(y) ζ(z). As is detailed in the following section and used
later on, in the appropriate limit this problem can be simplified so that only
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ϕ(x) needs to be considered: The state ζ(z) is a means of keeping track of
the times of passage through the experimental setup, but any explicit time
dependence can be removed while retaining an identification of the quantum
state at different times with distinct locations in the setup. The state η(y)
is assumed to be entirely negligible. This enables us to focus solely on ϕ(x),
the component along the transversal (vertical) direction.

The quantum state ϕ is diffracted at location (i). The action of the
aperture mask at (i) is modelled by the following transmission function that
gives the wavefunction ψ(x) (up to normalisation) after passage through the
aperture:

ϕ(x) → χA(x)ϕ(x) ≡ C ψ(x). (1.21)

The indicator function χA(x) of set A takes the value 1 for x ∈ A and 0

otherwise; A being the set that describes the effective aperture mask. The
normalisation of ψ is provided by the constant C = 1/||χAϕ||. Incidentally,
Eq. (1.211.21) defines the action of an operator that is defined as a function
χA(Q) of the position operator Q,

(χA(Q)ϕ) (x) := χA(x)ϕ(x).

This operator has eigenvalues 1 and 0 with associated eigenfunctions given
by functions ϕ(x) either localised within A or within the complement of
A. Thus, the state vector ϕ is projected onto an eigenvector of the spectral
projector χA(Q) of Q associated with the set A. A single illuminated slit is
assumed to prepare a quantum state described by an isolated peak, while co-
herent illumination of a general aperture mask is assumed to yield a suitable
superposition of those.

The aperture mask at location (i) prepares a quantum state represented
by the wavefunction ψ(x), which then propagates freely until it arrives at
(ii). In the Fraunhofer limit, upon arriving at (ii) the wavefunction has
evolved so as to have a profile approximately proportional to that of the
Fourier-transform ψ̂(k) of ψ(x). The following section provides the details.
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1.4.3 Determining the momentum distribution via a late-
time position measurement

From classical optics it is known that the interference pattern of a wave
passing through an aperture mask can be described by the Fourier trans-
formed aperture profile. Additional analysis is necessary to justify the same
application in quantum mechanics. In particular, it is required to show that
after free evolution the position representation of the state ψt at location (ii)
is, up to scaling, approximated by the momentum representation of ψ0, at
the aperture at (i):

ψt ∝ Fψ0 = ψ̂0 (approximately),

where F denotes the unitary operator effecting the Fourier transform,

f̂(k) = (Ff)(k) = 1√
2π

∫ ∞

−∞
f(x) ei k x dx. (1.22)

Also see Eq. (1.51.5) regarding the inverse Fourier transform. We recall a simple
‘rough and ready’ argument here to show how this approximation can be
obtained. The formal solution of the Schrödinger equation for free evolution,
which may be obtained using the well known technique involving Green’s
function, is given by

ψt(x) =

√
m

2πit

∫ ∞

−∞
ψ0(x

′) exp

(
i
m(x− x′)2

2t

)
dx′ . (1.23)

With the limits of integration bounded by the apertures, the actual integ-
ration takes place from −(T + a)/2 to (T + a)/2, where a denotes the slit
width. In the limit of large t then, the term depending on (x′)2 in the ex-
ponential can be neglected to a good approximation, because it is bounded
by the finite dimensions of the aperture mask. The result is the following
approximation

ψt(x) ≈
√

m

2πit

∫ ∞

−∞
ψ0(x

′) exp

(
i
mx2

2t

)
exp

(
i
mx

t
x′
)
dx′ . (1.24)

After trivial rearranging, the desired expression is obtained:

ψt(x) ≈
√
m

it
exp

(
i
mx2

2t

)
1√
2π

∫ ∞

−∞
ψ0(x

′) exp
(
i
mx

t
x′
)
dx′ (1.25)
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≈
√
m

it
exp

(
i
mx2

2t

)
ψ̂0

(m
t
x
)

(1.26)

The parameter t may be eliminated using pz
m t = L, where L denotes the

distance to the detection screen and pz the longitudinal momentum com-
ponent. In doing so, the limit of large t becomes a limit of large distance L
in relation to the aperture size. Considering the typical dimensions of such
a setup this seems reasonable. Compare, for example, the dimensions re-
ported in Ref. [33], where the centre-to-centre separation of the two pinholes
is 0.25 · 10−3 m and distance to the detection screen is 0.5m. Furthermore,
as px/pz will be small given these dimensions, we can also substitute pz ap-
proximately with the magnitude of the mean momentum, p0 so that for the
mean wavelength λ of the packet we can use the value λ = 2π/p0 ≈ 2π/pz,
and so t ≈ mLλ/(2π). This gives the probability as

|ψt(x)|2 ≈
2π

Lλ

∣∣∣∣ψ̂0

(
2π

Lλ
x

)∣∣∣∣2 . (1.27)

1.4.4 Simple multislit wavefunctions

A single illuminated slit is assumed to prepare a quantum state described by
a rectangular function of slit width, while a general aperture mask yields a
suitable superposition of those. We consider superposition states of m coher-
ently illuminated slits, where m is an even positive integer. These quantum
states are but a subset of the quantum states that a multislit aperture mask
can prepare, but they describe the important cases of the double-slit – illus-
trated in Fig. 1.31.3 – and the periodic aperture mask. They are of the form

ψn(x) =
1√
2n

n∑
j=1

[
reca (x+ (2j − 1)T/2) + reca (x− (2j − 1)T/2)

]
, (1.28)

where the function reca(x) is of rectangular shape,

reca(x) =

{
1/

√
a for x ∈ [−a/2, a/2]

0 for x /∈ [−a/2, a/2]
. (1.29)

For uniformly illuminated aperture masks, the number of illuminated slits
m is related to n via m = 2n. Furthermore, n is directly related to the
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Figure 1.3: The probability distributions associated with the double-slit state
ψ1 are depicted, position space in (a) and in (b) momentum space. Note in
particular that ψ̂1(k) vanishes at k = (j + 1/2)K, with integer j. Compare
Fig. 1.21.2. The parameters were chosen such that a/T = 0.2.

support of the principal maxima of ψ̂n(k) via Eq. (1.91.9); see the explicit
expression below. The rectangular function is a popular choice for describing
the wavefunction profile across a single slit, although one may argue that
it might not be the most physical choice. We are going to address the
relevance of this choice for multislit experiments in Chapter 44, arguing that
for purely multislit considerations this choice is acceptable. Only when (also)
considering single-slit experiments, the rectangular function is unsuitable for
technical reasons.

The interference pattern of a uniformly illuminated multislit is described
by a wavefunction that can be computed analytically by means of a Fourier
transform of the spatial wavefunction. The momentum-space wavefunction
ψ̂n(k) (the Fourier transform of ψn) is given by

ψ̂n(k) =

√
a

nπ
sinc

(a
2
k
) n∑
j=1

cos

(
(2j − 1)

T

2
k

)
. (1.30)

The following calculation is relatively trivial, but included so as to allow for
easy comparison with an alternative way of obtaining an expression for the
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Fourier transform of the wavefunctions discussed in Chapter 44.

ψ̂n(k) = Fψn(x) (1.31)

=
F√
2n

(
reca(x) ∗

n∑
j=1

[
δ

(
x+ (2j − 1)

T

2

)
+ δ

(
x− (2j − 1)

T

2

)])

=
1√
2n

√
a

2π
sinc

(a
2
k
)
·
n∑
j=1

2 cos (2j − 1)
T

2
k (1.32)

=

√
a

nπ
sinc

(a
2
k
) n∑
j=1

cos (2j − 1)
T

2
k (1.33)

Noting that the Fourier transform of a convolution is equal to a product
of Fourier transforms, this calculation decomposes into two straightforward
Fourier transformations. The computation proceeds by combining a sum of
two complex phases into a real sinc, and a sum of two complex phases into a
sum of real cosines. The latter identification happens symmetrically across
the origin as indicated in Eq. (1.281.28).

For future reference, we define

fn(y) =

n∑
j=1

cos((2j − 1) y), (1.34)

and introduce at this point the dimensionless variable

κ = Tk/2 , (1.35)

which proves particularly useful for integrations.
By way of particular examples, let us consider an aperture mask consist-

ing of two rectangular slits of width a at locations ±T/2, and an incident
wavefunction Ψ(x) of constant real-valued amplitude passing through the
aperture mask. The intensity profile of the interference pattern of the pre-
pared double-slit superposition state ψ1 is given by

∣∣∣ψ̂1(k)
∣∣∣2 = a

π
sinc

(a
2
k
)2

cos

(
T

2
k

)2

, (1.36)

The sinc function provides an envelope, while the cosine describes the fine
structure, i.e. the interference fringes. At this point, it is not obvious how the
identification of envelope and fine structure should be generalised to capture
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ψn for n > 1. That question is addressed in Chapter 44.
Comparing Eq. (1.361.36) to the diffraction pattern resulting from the illu-

mination of a single slit only, we observe that no cosine fringes are present
in the momentum-space wavefunction of ψ0,∣∣∣ψ̂0(k)

∣∣∣2 ∝ a

2π
sinc

(a
2
k
)2
. (1.37)

Note that although n = 0 denotes the single-slit state ψ0, its support prop-
erties are unrelated to Eq. (1.91.9) because ψ0 is not an interference state, but
the result of diffraction.



Chapter 2

Compatible position and
momentum observables

The present chapter comprises an analysis of a novel variety of multislit in-
terference experiments that were interpreted as a violation of quantum com-
plementarity since it appeared that incompatible quantum properties were
being measured together [33]. In this experiment, information about spatial
localisation is retained while information about interference is obtained.

It is argued here that this type of experiment can be understood, fully
in line with quantum mechanics, as a joint measurement of compatible func-
tions of the position and momentum observables. It is thus possible to
subsequently gain information about the momentum distribution by means
of the particular experimental setup with negligible impact on the position
distribution, because the observation is of compatible coarse-grained versions
of the complementary position and momentum observables. This explana-
tion goes beyond addressing the question whether complementarity has been
violated or not, namely by providing a better understanding of all quantum
states prepared in multislit setups. The particular setup discussed in this
chapter merely serves as a convenient illustration.

The analysis is based on earlier work of Busch and Lahti, who have shown
that commuting functions of position and momentum exist [44].

17



18 CHAPTER 2. COMPATIBLE Q AND P OBSERVABLES

2.1 Introduction

In traditional multislit experiments, as discussed in the previous chapter,
the momentum distribution is captured on a detection screen. However, this
procedure clearly destroys the quantum state. Establishing the existence of
an interference pattern indirectly, i.e. without destroying the quantum state,
is possible by removing the screen and replacing it by a wire grating, each
wire carefully placed at the location of a node in the interference pattern [33].
The existence of an interference pattern may be deduced from the practically
undiminished intensity passing the wire grating.

Using a lens, a geometric image of the aperture mask is produced such
that the quantum state can be detected on the very set of positions it was
prepared on—after it was subjected to the described momentum measure-
ment. While indirectly observing an interference pattern without changing
the localisation properties of a system may not be surprising from the point
of view of classical physics, it is rather curious when considered in terms of
quantum mechanics: Information about a quantum state was obtained, but
apparently without changing the properties of that quantum state. In par-
ticular, information about a pair of incompatible observables was obtained;
in this context, the measurement seems classical, revealing already existing
information without changing the system properties.

This observation indicates that the experiment should be described in
terms of two commuting observables which yield information about position
and momentum respectively. In Sec. 1.61.6 we already addressed this matter,
briefly pointing out that functions of position may commute with functions
of momentum, although position and momentum do not commute. Indeed,
as will be shown here, the experiment can be considered an approximate
realisation of a joint eigenstate of mutually commuting functions of position
and momentum. In the following two sections, the experimental setup and
joint eigenstates of periodic sets of position and momentum are discussed in
detail. This is followed by a description of multislit experiments in terms of
joint eigenstates.
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2.2 The modified multislit setup

The setup illustrated in Fig. 2.12.1 depicts a simplified version of the inter-
ference experiment reported in [33]. The experiment was performed using a
double-pinhole, here the simpler double-slit setup is considered. A particle
propagates through the device along the z-axis (from left to right). We model
its wavefunction as a product, Ψ(x, y, z) = ϕ(x) η(y) ζ(z), and focus on the
component ϕ(x). This simplification was discussed in detail in Sec. 1.4.21.4.2.

The quantum state ϕ is diffracted at location (i) of Fig. 2.12.1, where the
aperture mask is located. A wire grating is placed at location (ii), where the
interference pattern would be observed. The separation of the wires depends
on the spacing of the slits in the aperture mask via the indicated reciprocal
correspondence T ↔ 2π/T = K, although in practice the wavelength of
the source and the aperture-to-screen distance must be taken into account;
compare Eq. (1.271.27).

A lens is placed immediately behind the wire grating for the purpose of
producing at location (iii) the geometric image of the original aperture mask.
The image is registered using appropriately placed detectors. Although this
setup is sequential, with the aperture mask at (i) and the grating at (ii), it ac-
tually constitutes a joint (projective) measurement of the incident quantum
state.

The aperture mask at location (i) prepares the quantum state represen-
ted by the wavefunction ψ(x), which then propagates freely until it arrives
at (ii). The action of the aperture mask is modelled by the transmission
function that was specified in Sec. 1.4.21.4.2, Eq. (1.211.21), giving the wavefunction
ψ(x) (up to normalisation) after passage through the aperture mask. In the
Fraunhofer limit, upon arriving at (ii) the wavefunction has evolved so as
to have a profile proportional to that of the Fourier transform of the wave-
function at (i), denoted ψ̂(k). Details regarding this approximation were
discussed in Sec. 1.4.31.4.3.

The effect of the wire grating is modelled by a transmission function
similar to the one specified in Eq. (1.211.21), but with a set B of intervals
complementing the regions occupied by the wire grating:

ψ̂(k) = (Fψ)(k) → χB(k) ψ̂(k) ≡
(
χB(P ) ψ̂

)
(k), (2.1)

where the arrow indicates passage through the wire grating and χB(P ) de-
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Figure 2.1: The modified double-slit interference experiment.

notes the spectral projector of momentum P associated with the set B and F
denotes the unitary operator effecting the Fourier transformation, Eq. (1.221.22).
Formally, the Fourier transform of ψ is denoted ψ̂.

Traversing the experiment from (i) to (iii), the action of the lens located
at (ii) is modelled as spatial inversion, expressed by mappings Q 7→ −Q and
P 7→ −P , for the position and momentum respectively. This corresponds
to the unitary parity transformation, which coincides with the square of
the Fourier transformation F . As a result, the divergent wave rays emerging
from the aperture mask and arriving at the wire grating and lens are inverted
so as to be refocused into an image of the original aperture mask.

This setup is realised by Afshar et al. in the form of a double-pinhole
experiment with a total of six wires, each with a diameter of 0.127mm and
a separation of 1.3 mm [33].

2.3 Commuting functions of Q and P

While the canonical commutation relation, Eq. (1.61.6), represents the fact
that the position and momentum observables are incompatible in a strong
sense, a function of position may commute with a function of momentum.
A first characterisation of commuting functions of position and momentum
was given by Aharonov et al. in the context of an analysis of interference
experiments, with the aim of explaining non-local momentum transfers in
the Aharonov-Bohm effect [11]; we revisit this analysis in Chapter 33. A first
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full proof of necessary and sufficient conditions for the commutativity of
functions of position and momentum was reported by Busch and Lahti, who
were unaware of the work of Aharonov et al. [44]. A first construction of a set
of joint eigenstates was given by Reiter and Thirring [2121]. Here, we present
a construction of joint eigenstates that is readily identified with multislit
interferometry. In Appendix A.1A.1 an alternative, rigorous construction is
included that generalises the one given by Reiter and Thirring. It is possible
to show that these states are dense in the set of all possible states prepared in
interference experiments. A technical manuscript detailing this is currently
being prepared [2222].

The existence of commuting functions of Q and P is suggested when
considering the canonical commutation relation in the form due to Weyl,
Eq. (1.71.7). We already noted in Sec. 1.61.6 that the operators ei pQ and ei q P

commute for pq = 2πn with n ∈ N; or equivalently for respective periods T
and 2π/(nT ) = Kn. Here, we focus on the case n = 1, which is denoted by
K, as this is not only simpler but also reflects the experiment we wish to
discuss. We conclude that, although Q and P do not commute, the spectral
projections χX(Q) and χY (P ) onto periodic sets X and Y commute if the
sets have periods T and K, respectively:

[χX(Q), χY (P )] = 0.

(A set X is called periodic with (positive minimal) period T , if T is the
smallest positive number by which X can be shifted such that the shifted set
X + T = X, or equivalently, if its indicator function is a periodic function
with minimal period T .)

Physical systems exhibiting such doubly periodic behaviour occur natur-
ally. The electron in a crystal lattice constitutes a well known example: In
position space, the electron is periodically localised in accordance with the
periodic potential that is due to the crystal lattice. In momentum space,
the electron is localised periodically in the so-called reciprocal lattice, i.e. a
periodic lattice of reciprocal spacing. While solid state physics often deals
with systems containing a very large (and essentially infinite) number of lat-
tice points, it is argued below that even finite multislit experiments can be
regarded as an approximate realisation of joint eigenstates of χX(Q) and
χY (P ) over periodic sets.
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The following construction of a class of joint eigenvectors has heuristic
value and also makes the identification with multislit experiments more in-
tuitive. It is carried out using the Dirac comb XT ,

XT (x) =

∞∑
j=−∞

δ(x− T/2− jT ) , (2.2)

where δ denotes the delta-distribution. We denote the Dirac comb (or Shah
function) using the Cyrillic letter ‘sha’ as is occasionally done in electrical
engineering. We note that under a Fourier transformation the (shifted) Dirac
comb XT with period T is mapped onto a Dirac comb with period K,

X̂K(k) =

√
2π

T

∞∑
j=−∞

(−1)jδ(k − jK) . (2.3)

The sought joint eigenstates of χX(Q) and χY (P ) must have position and
momentum representations that are localised in the periodic sets X and Y ,
respectively. Their construction makes use of the following identity involving
functions W and M which will be suitably chosen:

F [W ∗ (XT ·M)](k) = Ŵ ·
(
X̂K ∗ M̂

)
(k) . (2.4)

The order of the two operations in Eq. (2.42.4), convolution (∗) and multiplic-
ation, may be chosen freely, although the result is different in general. Here,
both orders appear naturally because of the Fourier transformation present.
A special case of Eq. (2.42.4) is applied in Ref. [2323] for the construction of
functions invariant under Fourier transformation, by choosing W =M .

We now choose W and M̂ to be square-integrable functions that are loc-
alised on (that is, vanish exactly outside) intervals of lengths strictly less
than T , resp. K. For a precise definition it is convenient to use the mathem-
atical term support (of a function) when speaking of the smallest closed set
on which the function is localised.) In choosing W and M̂ square-integrable,
it is ensured that the quantum state ϕ,

ϕ(x) =
[
W ∗ (XT ·M)

]
(x) , (2.5)

ϕ̂(k) =
[
Ŵ ·

(
X̂K ∗ M̂

)]
(k) , (2.6)
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defined via Eq. (2.42.4) is indeed square-integrable. This is shown explicitly in
Appendix A.2A.2. The wavefunction ϕ(x) is localised on a periodic set X with
period T , while its Fourier transform ϕ̂(k) is localised on a periodic set Y
with period K. These sets are indeed obtained by placing equidistant copies
of the supports of W and M̂ , respectively. It follows in line with the result
of Ref. [44] that ϕ is a joint eigenstate of the associated spectral projections
of position and momentum. A mathematically rigorous construction of such
joint eigenstates without the use of Dirac combs is included in Appendix A.1A.1.

The quantum state ϕ thus does not change under the action of the spec-
tral projections χX(Q) and χY (P ). In general, for any quantum state Ψ,
the projected wavefunction χY (P )χX(Q)Ψ is a joint eigenstate of the two
projectors. In fact, all eigenstates with eigenvalue 1 may be obtained as the
projection onto the intersection of the ranges of χX(Q) and χY (P ), which is
given by the product χX(Q)χY (P ) = χY (P )χX(Q). In the analysis below
we model the action of the aperture mask and the wire grating as projections
in this sense.

2.4 Joint eigenstates of Q and P on periodic sets

As reported in Ref. [33], an initial double-slit superposition state ψ1 – see
Eqs. (1.281.28), (1.301.30), and (1.361.36) – propagates through the experimental setup
nearly undisturbed, namely the quantum state is nearly entirely detected on
the same set of positions it was prepared on. By contrast, there is an effect on
the image of the single-slit state ψ0, defined in Eq. (1.371.37), detected at location
(iii) in Fig. 2.12.1: In addition to the expected intensity peak many smaller
peaks are found, such that each peak is separated by a distance T from
its immediate neighbours. The detected signal is qualitatively illustrated in
Fig. 2.32.3 (a), while the actual signal detected by Afshar et al. can be found
in Ref. [33], Figs. 1 (c) and (d) therein. It should be noted that for a single-
slit diffraction pattern the wire grating would not be in the exact centre,
but shifted sideways by a small amount. The experimental setup reported
in Ref. [33] features a single-slit diffraction pattern of the order of tens of
millimetres, while the misalignment would be 0.25 mm.

These two observations can be understood in terms of joint eigenstates
of Q and P on periodic sets. First, the superposition state ψ1 remains un-
changed to a good approximation, because ψ1 is already prepared at (i) as
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a good approximation to a joint eigenstate of periodic characteristic func-
tions of position and momentum with appropriate periodic sets X,Y . This
means ψ1 is an approximation to an eigenstate of the momentum projector
associated with the gaps in the wire grating, and hence ψ1 passes virtu-
ally undisturbed. This can be described symbolically by the approximate
equations

ψ1 = χX(Q)ψ1 → χB(P )ψ1 ≈ χY (P )ψ1 = ψ′
1 ≈ ψ1.

Here ψ ≈ ψ′ is taken to mean ∥ψ − ψ′∥ ≪ 1 for (sub-)normalised vectors,
the arrow denotes passage through the wire grating. Here, B denotes the set
that is complementary to the set of wires, and is hence such related to the
grating. The set Y is the complement to an idealised, infinitely-extending
grating.

Second, the single-slit state ψ0 does not remain unchanged. However, the
finite wire grating imposes nodes in a manner that approximates the action
of χY (P ) to a high degree, because ψ0 remains an eigenstate of χX(Q);
symbolically expressed by

ψ0 = χX(Q)ψ0 → χB(P )ψ0 ≈ χY (P )ψ0 = ψ′
0 = χX(Q)ψ′

0 ̸≈ ψ0 .

Considering that the experimental setup in Ref. [33] involves merely six wires,
this may seem surprising. It suggests that the part of the wavefunction not
penetrating the wire grating must have comparatively small amplitude.

While all quantum states that pass the aperture mask are eigenstates of
χX(Q), the combined effect of aperture mask and wire grating represents
a preparation procedure for approximate joint eigenstates of χX(Q) and
χY (P ): All quantum states are projected onto the range of χX(Q)χY (P ) =

χY (P )χX(Q) to a good approximation. The superposition state ψ1, though,
is already an approximate eigenstate of both projections, so that the effect
of the wire grating is much smaller than on the single-slit state ψ0 and even
negligible to a good accuracy.

Using Eqs. (2.52.5) and (2.62.6), we now proceed to construct an example of a
joint eigenstate of commuting periodic functions of Q and P . For this, the
two localised functions W, M̂ need to be chosen appropriately. The function
W describes the quantum amplitude of a single slit. We assume constant
amplitude across the slit and model the associated wavefunction using the
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Figure 2.2: The functions W (x), Eq. (2.72.7), and M̂(k), Eq. (2.102.10) are depic-
ted. These two functions are used to construct wavefunctions via Eqs. (2.52.5)
and (2.62.6).

rectangular function of Eq. (1.291.29),

W (x) = reca(x) , (2.7)

where a is the slit width; for an illustration see Fig. 2.22.2 (a). The Fourier
transform of W is easily calculated,

Ŵ (k) ∝ sinc(ak/2) . (2.8)

The function Ŵ is an envelope that accounts for the modulation of the
interference pattern I(k).

In the special case of a double-slit interference experiment with slit sep-
aration T > a, the interference pattern Ids(k) is well known and of the form

Ids(k) ∝ sinc2(ak/2) cos2(Tk/2). (2.9)

The cosine describes a periodic pattern, which should be reproduced when
the parameters of the joint eigenstate are chosen appropriate. This suggests
that we choose M̂ to correspond to a single instance of this pattern

M̂(k) = cos
(
πk/K ′) χ[−K′/2,K′/2](k)

=

{
cos(πk/K ′) for k ∈ [−K ′/2,K ′/2]

0 for k /∈ [−K ′/2,K ′/2]
, (2.10)

where we have defined K ′ < K. In effect this is a half cosine pulse strictly
contained in every interval K, and illustrated in Fig. 2.22.2 (b). For the K-
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periodic set

Y =

∞∪
j=−∞

[jK −K ′/2, jK +K ′/2]

to be different from the whole real line, it is required that K ′ < K, so that
the interval [−K ′/2,K ′/2] is strictly contained in the interval [−K/2,K/2].

Combining the expressions obtained for Ŵ , M̂ the interference pattern
is described by

∣∣∣ϕ̂(k)∣∣∣2 ∝ sinc2(ak/2)

∞∑
j=−∞

cos2
( π
K ′ (k + jK)

)
χ[−K′/2,K′/2] (k + jK) .

(2.11)
This is a sum of non-overlapping terms, and the support of this function
is the periodic set Y that is made up of equidistant copies of the interval
[−K ′/2,K ′/2]. For the quantum state in position space, W is as defined in
Eq. (2.72.7), and M follows from M̂ as defined in Eq. (2.102.10), yielding

ϕ(x) ∝ (W ∗ [XT (( · )− T/2) ·M ]) (x) =
∞∑

j=−∞
M((j − 1/2)T )χ[(j−1/2)T−a/2,(j−1/2)T+a/2](x). (2.12)

The Dirac comb is shifted by T/2, in correspondence with the experimental
setup. (This shift becomes a phase factor in momentum space and does not
affect the momentum distribution.)

A suitable choice of the parameter K ′ renders ϕ an eigenstate of the two
projections that occur in the experimental setup, namely the aperture mask
and the wire grating, such that ϕ traverses from location (i) to location (iii)
unchanged. An example of such a quantum state is depicted in Fig. 2.32.3. The
wavefunction in momentum space, depicted in (b), is supported periodically
on an interval of size K ′ = K/2. Similarly, the spatial wavefunction is
supported on a periodic set, although most of the quantum state is contained
in only four slits.

There are two important limiting cases. The spectral projection χY (P ) is
over a strictly periodic set Y . In contrast, the dimensions of any experiment
are necessarily finite. The particular experiment reported in Ref. [33] was
performed with a total of six wires only, preparing the state χB(P )ψ, where
B is the complement to the region occupied by the wires. A model calcu-
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Figure 2.3: A joint eigenstate of commuting functions of Q and P is depicted.
It is constructed according to Eqs. (2.52.5) and (2.62.6). Compare Fig. 1.31.3.

lation shows that the difference between the states χB(P )ψ and χY (P )ψ is
undetectable given the accuracy of the experiment at hand.

We may consider the limiting case of K ′ approaching K, modelling a
scenario in which the wires become negligibly thin. When K ′ = K the func-
tion M is zero at every delta peak of the periodic Dirac comb, except for
two locations: x = ±T/2. Hence it follows that for this particular choice of
W, M̂ , the quantum state ψ1 exists solely in the two slits and is an approx-
imation to a joint eigenstate defined on periodic sets. The aperture mask at
location (i) in Fig. 2.12.1 prepares ψ1 as an eigenstate of χX(Q) on the periodic
set X. However, passage through a periodic wire set Y will cause a projec-
tion of the state onto one that is a joint eigenstate of periodic position and
momentum sets. This projective measurement action causes a disturbance of
the incoming wavefunction, which manifests itself in the observed position
distribution when the state is finally detected at location (iii) in Fig. 2.12.1:
In an ideal setup with dimensions identical to those reported in Ref. [33],
approximately 1% of the total probability would not be found in the two
detectors, where it would otherwise be expected. Instead, this one per cent
of probability would be distributed over the remainder of the periodic set X.
According to Ref. [33], experimentally it was found that about 2% probability
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were found outside of the main peaks.

2.5 Conclusion

A description of multislit experiments was presented in this chapter in terms
of quantum states that are defined on periodic intervals of position and
momentum. These quantum states, themselves not periodic, represent a
class of joint eigenstates of periodic functions of position and momentum.
In our investigation we focused in particular on the modified double-slit
experiment, which is similar to the double-pinhole experiment performed by
Afshar et al. [33]. Using a description in terms of joint eigenstates it was
possible to account for the two observations reported in Ref. [33] concerning
the behaviour of a double-slit input state and a single-slit input state.

First, an incoming double-slit superposition state is virtually unaffected
by the indirect measurement of the interference pattern performed by the
wire grating, with each of the wires placed at a node. This is, of course,
because the superposition state evolves into a momentum-space wavefunc-
tion with interference fringes. An explanation in terms of joint eigenstates
over periodic sets, though, goes further and makes it possible to explain why
a superposition state can be localised on essentially the same set of posi-
tions after it was subjected to such a measurement—after all, measuring the
existence of an interference pattern corresponds to obtaining information
about the momentum distribution. This joint measurement is (approxim-
ately) implemented by commuting projection operators: The experimental
setup constitutes a good approximation to a joint determination of compat-
ible coarse-grainings of position and momentum. It follows that there is no
conflict with the principle of complementarity.

Second, an incoming single-slit state does not remain unchanged after
passage of the wire system, but is instead detected on a set of locations
expected of a joint eigenstate of periodic position and momentum projectors.
Additional intensity peaks are found, such that each peak is separated by
the same distance from its immediate neighbours as the two slits in the
aperture mask. This agrees with the interpretation that the single-slit state
was projected onto an approximate joint eigenstate of spectral projections
of position and momentum on periodic sets through the projective action of
the wire grating.
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The fact that a single-slit state is affected by the wire grating in such
a way that the detected output state is found to be localised in many peri-
odically spaced intervals is a demonstration of the mutual disturbance of
measurements of incompatible observables. The projector χA(Q) onto a
state localised in a single slit is not compatible with the projector χB(P )
onto a state localised in the set B of intervals in momentum space defined
by the gaps in the wire grating or its idealised substitution by a periodic
set. Consequently, a state originally prepared to be localised in a single slit
is changed by the projective action of the wires so as to be instead localised
on a periodic set of positions.

In this way the present experiment serves as a beautiful, new demonstra-
tion of complementarity that complements the existing illustrations. Usually
one considers a perfect interference setup and then shows how the interfer-
ence pattern is degraded by the introduction of a path-marking interaction
with a probe system storing (partial) path information. See, for example,
Ref. [2424]. In the single-slit case one starts with a perfect path-marking setup
which then, by introducing the wires, is changed into an interference exper-
iment, degrading the accuracy of the path determination.

Finally, we presented a construction of a specific class of joint eigenstates
of periodic sets of position and momentum. These states show explicitly
that in an idealised experiment with periodically placed slits and wires the
propagation of these states is entirely unaffected by the setup; the pres-
ence of the interference pattern would be established without disturbing the
quantum state at all. The work of Corcoran and Pasch suggests that the
construction of realistic approximations to such quantum states is possible
experimentally as well [2323].

To summarise, we have shown that it is appropriate to view the exper-
imental setup reported in Ref. [33] – referring to both the aperture mask
and the wire grating – as a preparation procedure for approximate joint
eigenstates on periodic sets of position and momentum, regardless of the
particular input state. The validity of this interpretation can be supported
by numerical simulations of the experiment and variants of it (with different
numbers and thickness of the wires).
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Chapter 3

Uncertainty I: Modifying the
Heisenberg Uncertainty
Relation

This chapter is about the observables in multislit interference experiments,
their incompatibility and the resulting quantum uncertainty that results in
a tradeoff between spatial localisation and the appearance of fringes. The
discussion focuses on a proposal presented by Aharonov et al., who argued
that a Heisenberg-type uncertainty relation in terms of particular position
and momentum operators should exist [11]. These operators are intended
to capture the relevant observables, because the operators present in the
Heisenberg uncertainty relation do not. However, as the work of Aharonov
et al. was not developed beyond the heuristic argument reported in Ref. [11],
no accurate expression of such a tradeoff relation exists. Before we can derive
such a relation, however, we need to address technical questions in the form
of domain issues and arising restrictions on the allowed quantum states.

A decomposition of the observables Q and P into more suitable observ-
ables is central to the proposed adaptation of the Heisenberg relation to the
multislit context.

The discussion presented here is going to be continued in Chapter 55,
after the interlude of Chapter 44 in which a better understanding of simple
multislit interference experiments is developed. This will allow us to develop
the concepts and obtain a precise formulation of uncertainty in Chapter 55.

31
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3.1 Introduction

Heisenberg’s principle of uncertainty expresses the notion of a fundamental
limitation of precise values for a pair of complementary observables for any
quantum state. Mathematically the uncertainty principle is often expressed
as a tradeoff between the standard deviations of the relevant observables.
In its most common form, the so-called Heisenberg uncertainty relation,
Eq. (1.111.11), a tradeoff is expressed between the standard deviations of the
position Q and the momentum P of a single non-relativistic quantum ob-
ject. In the context of multislit interferometry though, it is clear already
from an intuitive point of view that the relevant complementary observ-
ables are not exactly position and momentum. Indeed, position should be
replaced by “which slit” information, and momentum with fringe width. A
mathematical representation of the former is clear (simply a coarse-grained
position), but fringe width is less obvious. As is well known – see, for in-
stance, Ref. [22] – and also argued here, the standard deviation of momentum
cannot describe fringe width, rendering the Heisenberg relation unsuitable
for expressing complementarity in the interferometric context. This may
seem particularly surprising considering the important role played by the
Heisenberg uncertainty relation in the historic Bohr-Einstein debate, which
was concerned, inter alia, with the complementarity of path information and
the appearance of interference.

It is not that the standard deviation as such is a poor measure though; it
is the particular combination of standard deviation and the momentum op-
erator P that is problematic. A more suitable expression of the uncertainty
principle may be found by using observables that take into account the peri-
odic nature of the experimental setup. The idea is to modify the pair (Q,P )
by making Q discrete and P periodic. When properly adjusted, the resulting
pair will still have a “canonical” nature that leads to an uncertainty relation.
We are going to derive commutation relations for such operators, which are
formally similar to the standard Heisenberg relation. The derived relations,
however, will be valid only for subset of wavefunctions. This subset is closely
related to the wavefunctions that naturally occur in multislit experiments.
A proper understanding of this limited validity of the uncertainty relations
requires careful consideration of the mathematical subtleties of the problem,
in particular of domain questions.
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The adaptation of the observables Q and P to the interferometric context
is due to Aharonov et al., who also provided a heuristic argument that the
uncertainty relations discussed here should exist [11]. However, their work
was never developed beyond invoking an analogy to angle and angular mo-
mentum. Most importantly, the fact that the relations are only valid for
specific wavefunctions was never made clear. This is perhaps due to insuffi-
cient mathematical development of the problem in their work and in related
publications [11, 2525, 2626]. It was not until the work of Gneiting and Hornberger
of 2011 that correct commutation relations were stated, but their discussion
is mainly formal and of different focus [2727]. In conclusion, a thorough ana-
lysis seems in order. We present here a precise derivation and discussion
of these uncertainty relations. Furthermore, we address limitations and be-
nefits of the uncertainty relations, and discuss an application to uniformly
illuminated aperture masks and the asymptotic behaviour of the uncertainty
product in this case.

Throughout we will emphasise the interplay between physics and math-
ematics leading to a derivation that is mathematically deceptively simple
and physically insightful, although occasionally subtle on both accounts.

3.2 Observables of multislit interferometry

The traditional approach to quantum uncertainty, employing the Heisenberg
relation, Eq. (1.111.11), fails at quantifying the uncertainty of a double-slit su-
perposition state ψ1 (defined in Eq. (1.361.36) and illustrated in Fig. 1.31.3). The
intensity profile of the interference pattern of ψ1 is expressed by the product
of a cosine, which describes the fringes, and a sinc function, which provides
an envelope. As ∆(P, ψ1) diverges, the Heisenberg relation provides no in-
formation. The presence of fringes, or lack thereof, has no impact on the
result. This is particularly apparent when considering the single-slit state
ψ0, for which again ∆(P, ψ0) diverges. The root of this problem is the com-
bination of standard deviation and operator P . For instance, the moments
of P are insensitive to the relative phase between two path states, or even
to the absence of a phase relation in the case of a mixed state. This led
Aharonov et al. to instead consider unitary shift operators for a description
of interference, as these can be used to create overlap and thus establish
sensitivity to relative phase. They then proposed a decomposition of the
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noncommuting operators Q and P into commuting parts Qmod and Pmod

(periodic) and noncommuting parts QT and PK , and presented a heuristic
argument that an uncertainty relation of the same form as the Heisenberg
relation should exist.

The following observation illustrates this idea: Q being the shift gener-
ator for quantum states in momentum space and P being the shift generator
for position space, the unitary shift operators considered by Aharonov et
al. are, in fact, identical to the operators in Weyl’s commutation relation,
Eq. (1.71.7). This observation suggests a decomposition of Q into a T -periodic
part and a remainder, and P into a K-periodic part with remainder. More
precisely,

Q = Qmod +QT , (3.1)

P = Pmod + PK , (3.2)

yielding a pair of commuting operators

[Qmod, Pmod] = 0 . (3.3)

The subscript “mod” was chosen to reflect the terminology of Aharonov et
al., who refer to these observables as “modular variables”. We require the
following definitions

Qmod(x) = Q(x) mod T , (3.4)

Pmod(k) = (P (k) +K/2 mod K)−K/2 . (3.5)

Note that Pmod is shifted by K/2, i.e. by half the fringe separation, in order
to avoid overlap of the fringes with the points of discontinuity of Pmod(k).
This shift is crucial for avoiding anomalous behaviour of ∆(Pmod, ψn), as
will become evident shortly; Aharonov et al. appear to have neglected it [11,
2525, 2626]. The definition of the operator QT follows from Eqs. (3.13.1) and (3.43.4),
while PK follows from Eqs. (3.23.2) and (3.53.5).

QT corresponds to a discretised position observable, while PK is a dis-
cretised momentum observable. Illustrations of QT and Pmod are displayed
in Fig. 3.13.1.
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Figure 3.1: In (a) QT is depicted in position space; it is defined indirectly
through relations Eq. (3.13.1) and Eq. (3.43.4), whereas (b) illustrates Pmod in
momentum space, as defined in Eq. (3.53.5).

3.3 Uncertainty relations for multislit setups

Conceptually the periodic quantity Pmod seems appropriate for measuring
the fine structure of the momentum distribution. Similarly, QT appears
suitable for measuring the localisation property as it corresponds to a coarse
position observable—the spatial localisation should not critically depend on
the exact shape of the slits, and QT does not depend on the slit shape at
all, as is shown below. Moreover, the fact that Qmod and Pmod commute
suggests that the canonical nature of the pair (Q,P ) is “transferred” to the
pairs (QT , Pmod) and (Qmod, PK), the only problem being that QT and PK

have discrete spectrum and so cannot be canonical operators in the strict
sense. In fact, it is possible to obtain the following two commutators for
general quantum states [66, 2727]

[QT , Pmod] = i1− iK X̂K((·)−K/2), (3.6)

[Qmod, PK ] = i1− iT XT . (3.7)
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The two Eqs. (3.63.6) and (3.73.7) are unsuitable for obtaining uncertainty rela-
tions resembling the state-independent Heisenberg uncertainty relation, be-
cause they feature state-dependent terms. Simplifying these commutators
to a canonical form is only possible if the wavefunction vanishes at the loca-
tions of the delta peaks—this leads to the aforementioned restriction on the
validity of the associated uncertainty relations.

A rigorous derivation of the two commutation relations, Eqs. (3.63.6) and
(3.73.7), is rather long and technical, and provided in Ref. [2222]. It proceeds by
making precise the analogy with the angular momentum-angle case alluded
to by Aharonov et al. in their heuristic argument. In fact, relations of the
form of Eqs. (3.63.6), (3.73.7) were known for the angular momentum and angle
pair since the 1960s [2828–3030].

Here we present an alternative argument that immediately leads to the
desired commutators by exploiting the properties of the relevant quantum
states from the beginning. For the detailed discussion we focus on the pair
QT and Pmod as it is more natural to considerations in multislit interfero-
metry; an analogous argument holds for PK and Qmod. In order to determine
the commutator

[QT , Pmod]ψ = (QTPmod − PmodQT )ψ (3.8)

it is necessary to ensure that

ψ ∈ D(QT ) , (3.9)

Pmod ψ ∈ D(QT ) . (3.10)

Here D denotes the domain of the indicated operator. Since the operator
Pmod is bounded, its domain is the whole Hilbert space and hence does not
lead to restrictions.

Recall that the domain of an operator is a subspace of square-integrable
wavefunctions (elements of the Hilbert space L2(R)), which, upon applica-
tion of the operator, yield wavefunctions that are still square integrable. In
particular, the domains of Q and P are

D(Q) =

{
ψ ∈ L2(R) :

∫ ∞

−∞
x2 |ψ(x)|2 dx <∞

}
, (3.11)

D(P ) =
{
ψ ∈ L2(R) : ψ absolutely continuous , ψ′ ∈ L2(R)

}
. (3.12)
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First, note that the domains of Q and QT are equal,

D(QT ) = D(Q), (3.13)

ecause these two operators differ by the bounded Qmod. Second, noting that
Q acts as a differentiation operator in momentum space, a wavefunction in
its domain is required to be absolutely continuous. While Eq. (3.93.9) thus
amounts to the standard continuity assumption, Eq. (3.103.10) is peculiar to the
present setup and requires more care. Since

Pmod ψ̂(k) = (k − jK)ψ̂(k) for k ∈
((
j − 1

2

)
K,
(
j + 1

2

)
K
]

(3.14)

where j ∈ Z, this function is discontinuous at k = jK +K/2, unless ψ̂(k)
vanishes at these points. This gives the aforementioned restriction on the
allowed wavefunctions explicitly,

ψ̂((j + 1/2)K) = 0 for each j ∈ Z . (3.15)

Since ψ̂ is absolutely continuous by Eq. (3.93.9), this restriction is also sufficient
for the commutator [QT , Pmod]ψ to be defined.

Note that if Pmodψ̂(k) were not continuous, the derivative would not ap-
proach a finite limit value at the point of discontinuity; more precisely, we
could describe the point of discontinuity by a step function, whose (distribu-
tional) derivative is a delta function. This line of reasoning would eventually
lead to the state-dependent correction terms in Eqs. (3.63.6) and (3.73.7).

The wavefunctions that naturally appear in the interferometric context
typically have periodically-spaced nodes, i.e. they vanish periodically. As
is evident from comparing Figs. 1.31.3 and 3.13.1 and discussed in more detail
below, our specific choice of Pmod in Eq. (3.53.5) has the discontinuity points of
Pmod(k) aligned with the nodes of the particular wavefunctions considered
here. We emphasise once more that a wavefunction with periodic but non-
vanishing values at the discontinuity points of Pmod is unsuitable because of
boundary effects that lead to a state-dependent commutator.

Condition (3.153.15) suggests a decomposition of the (dense) subspace of the
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admissible wavefunctions into a direct sum of subspaces

Dj =
{
ψ̂ ∈ L2(jK + [−K/2,K/2]) : ψ̂(jK −K/2) = ψ̂(jK +K/2) = 0

}
,

(3.16)

where j ∈ Z. Note that a restriction to any of the subspaces Dj corresponds
to a quantum object confined to a (“momentum”) box, carefully discussed in
Ref. [3131] by Bonneau, Faraut and Valent; below we point out parallels.

We are now able to derive the commutator of QT and Pmod, and hence
the lower bound of the uncertainty relation. With the restriction (3.153.15) on
the wavefunction, Pmod corresponds to P on each interval jK+[−K/2,K/2]
up to a constant, see Eq. (3.143.14). This enables us to perform the following
formal manipulations in order to obtain the commutator

[QT , Pmod] = [Q−Qmod, Pmod] (3.17)

= [Q,Pmod] (3.18)

= [Q,P ] on each Dj (3.19)

= i (3.20)

While the algebraic manipulations are trivial, the penultimate expression
may only be obtained by way of the domain considerations above. Hence,
for each wavefunction in the dense subspace given by Eq. (3.153.15) (together
with the domain conditions (3.93.9) and (3.103.10)), we have

[QT , Pmod]ψ = iψ . (3.21)

By means of the Robertson relation, Eq. (1.121.12), the desired uncertainty
relation now follows immediately

∆(QT , ψ) ∆(Pmod, ψ) ≥
1

2
. (3.22)

This uncertainty relation is of Heisenberg-type, yet the observables have
been adapted to capture the relevant features of quantum states prepared in
multislit interference experiments. We are going to explore the benefits of
this relation in the following section.

For completeness, we point out that this discussion proceeds analogously
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for wavefunctions restricted similarly in position space, yielding

[Qmod, PK ] η = i η, (3.23)

and ultimately

∆(Qmod, η) ∆(PK , η) ≥
1

2
, (3.24)

for wavefunctions η from a suitably restricted dense subspace.

3.4 Uniformly illuminated aperture masks

For our detailed discussion we focus on Eq. (3.223.22), the uncertainty relation
that describes the tradeoff between the spatial localisation of a quantum
state incident on a multislit aperture mask and its fringe width.

We consider states obtained as follows: A single illuminated slit is as-
sumed to prepare a quantum state described by a rectangular function of
slit width, while a general aperture mask yields a suitable superposition of
those. As the eigenspaces of QT are excluded – analysis of single-slit states
is beyond the scope of this approach – we consider superposition states of
m coherently illuminated slits, where m = 2n is an even positive integer.
These quantum states are but a subset of the quantum states that a multis-
lit aperture mask can prepare, but they include important examples, and
they have a structure that makes a discussion of uncertainty both simple
and insightful. These states were introduced in Sec. 1.4.41.4.4 as superpositions
of rectangular wavefunctions. The rectangular function is a popular choice
for describing the profile across a single slit, although one may argue that it
might not be the most physical choice. For the present uncertainty relation,
Eq. (3.223.22), this choice is actually entirely irrelevant as will become evident
shortly.

The standard deviation ∆(QT , ψn) is easy to compute analytically, one
obtains [2727]

∆(QT , ψn) =
T

2

√
4n2 − 1

3
. (3.25)

We note that for uniformly illuminated aperture masks the standard devi-
ation of QT increases linearly with the number of illuminated slits m = 2n.
This result is simple and intuitive. However, ∆(Pmod, ψn) requires some
technical effort.
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It is shown in Appendix B.1B.1 that ∆(Pmod, ψn) is independent of the slit
width a, and the related sinc envelope. This result is desired on the basis
of the detailed physical considerations presented in Chapter 44, and proves
extremely useful for related considerations and calculations. The derivation
provided in Appendix B.1B.1 is very detailed; suffice it to say here that the result
follows because of the periodicity of Eq. (1.341.34), i.e. fn(k)2 = fn(k + jK)2

(with integer j), and because of a result on infinite sums provided in Ref. [3232].
This integration is performed using a conveniently rescaled variable κ =

Tk/2, which renders the integrand dimensionless. We obtain

∆(Pmod, ψn)
2 =

∫ ∞

−∞
Pmod(k)

2 ψn(k)
2 dk

=
23

T 2nπ

∫ π/2

−π/2
κ2 fn(κ)

2 dκ (3.26)

We proceed to calculate explicitly the value assigned to the fine structure of
the double-slit superposition state ψ1, we obtain

∆(Pmod, ψ1) =

(
23

T 2π

∫ π/2

−π/2
κ2 cos(κ)2 dκ

)1/2

=
1

T

√
π2 − 6

3
(3.27)

Regarding the asymptotic behaviour, it is shown in Appendix B.2B.2 that

∆(Pmod, ψn) ≈
√
2 ln 2

T

1√
n

for large n . (3.28)

Numerically computed values of ∆(Pmod, ψn) are depicted in Figs. 3.23.2 and
3.33.3, illustrating this result. We conclude immediately that the asymptotic
behaviour of the uncertainty product is divergent, i.e. that

lim
n→∞

∆(QT , ψn) ∆(Pmod, ψn) ∝ lim
n→∞

√
n = ∞ . (3.29)

The uncertainty product associated with the state ψ1 follows immediately
from Eqs. (3.253.25) and (3.273.27),

∆(QT , ψ1) ∆(Pmod, ψ1) =
1

2

√
(π2 − 6) /3 ≈ 0.568 . (3.30)

This is surprisingly close to the lower bound already, and in fact equal to
the value of the conventional Heisenberg uncertainty product, Eq. (1.111.11),
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Figure 3.2: The standard deviation of Pmod in state ψn is depicted for various
values of n. The values of ∆(Pmod, ψn) are multiplied by T , removing the
dependence on the slit separation.
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Figure 3.3: The standard deviation of Pmod in state ψn is depicted for various
values of n. The values of ∆(Pmod, ψn) are multiplied by T , removing the
dependence on the slit separation.
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assigned to a particle confined to a box (in one dimension). This is not a
coincidence, the central idea of the formulation of uncertainty discussed here
is that a direct sum of such “boxes” is considered. More explicitly, for the
particle in a box the spatial wavefunction of the lowest energy eigenstate is
described by a half cosine pulse, whereas a single fringe of the double-slit
state is described by a half cosine pulse. (See Fig. 2.22.2 (b) for an illustra-
tion of a half cosine pulse.) In these two considerations position space and
momentum space are interchanged: A spatial wavefunction is (typically)
considered for the particle in the box, whereas a wavefunction in momentum
space is considered here.

In the following chapter a better understanding of quantum states pre-
pared by uniformly illuminated aperture masks is developed. An argument
is presented which formalises the naive understanding of fringe width pre-
valent in the present chapter, explaining why the asymptotic behaviour of
the uncertainty product in Eq. (3.293.29) does not reflect the observed physical
structure. A solution is presented in Chapter 55 in the form of a more apt
decomposition of the momentum operator.

3.5 Discussion

This section contains a number of conceptual and technical points and some
critical observations on the work of Aharonov et al. [11, 2525, 2626].

While the pairs of operators appearing in Eqs. (3.223.22) and (3.243.24) are
more appropriate for multislit interferometry than Q and P appearing in the
Heisenberg uncertainty relation, it must be stressed that these inequalities
are valid only for quantum states ψ and η, respectively, which vanish at
the points of discontinuity of Pmod, see Eqs. (3.153.15), and Qmod. Notable
exceptions are the eigenstates of QT and PK . In particular, the uncertainty
relation (3.223.22) is inappropriate for a description of single-slit states. This
point is particularly intriguing, because it is the adaptation of the observables
to multislit interferometry that rules out the description of single-slit states.
This seems to point to a fundamental qualitative difference between the
quantum mechanics of interference and of (singe-slit) diffraction.

The heuristic argument provided by Aharonov et al. refers to the analogy
between the pair (QT , Pmod) and the pair of angular momentum and angle
operators, the latter being understood as in the review of Carruthers and
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Nieto, Ref. [3030]. The analogy can be made precise by observing that the
restriction of the Weyl commutation relations to a discrete set of position
variables and a periodic set of momentum variables defines a representation
of the Weyl relations on the group Z× T, where T is the circle group. This
representation is reducible, corresponding to the fact that the eigenspaces
of QT are infinite-dimensional, and can be decomposed into a direct sum of
copies of the angle-angular momentum pair. This topic will be investigated
in detail in a more technical work [66].

Finally, we feel obliged to point out that in the later publications by
Aharonov et al., their heuristic uncertainty relation, as claimed in Ref. [11],
is instead presented as an actual inequality of the form

∆(QT ,Ψ) ∆(Pmod,Ψ) ≥ 2π

in units where ℏ = 1. This is, of course, incorrect as the claimed lower bound
is easily violated. The double-slit state (among others) violates the lower
bound claimed. There is no indication that these authors are considering
a non-standard definition of the standard deviation. On the contrary, the
explicit definitions in Ref. [2626] indeed confirm that standard deviations are
used. Furthermore, the definition of Pmod(k) implicit in Aharonov et al.
[11, 2525, 2626] features an unsuitable choice of origin. It follows that the value
assigned to the fringe width increases as the number of illuminated slits is
increased, indicating that the relevant features of the fringe width are not
captured. In contrast, our choice of Eq. (3.53.5) yields the expected asymptotic
behaviour.
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Chapter 4

The product form of multislit
wavefunctions

In the present chapter an alternative way of expressing the wavefunctions
prepared in certain multislit interference experiments is introduced. This
elementary way of rewriting the momentum-space wavefunctions turns out
extremely useful for physical considerations, yet it has apparently remained
undiscovered.

A large part of the discussion of quantum uncertainty in Chapters 55
and 66 relies on the product form, because it highlights the structure of the
quantum states prepared in multislit experiments and allows us to anticipate
certain results. In particular, the product form yields a recursive relationship
between quantum states prepared in multislit interference experiments. This
recursive relationship provides a classification scheme for functions related
to the envelope and those related to the fine structure. A general method for
identifying these functions is required since at present there is no definition
apart from the simple identification of envelope with sinc and fine structure
with cos in the case of the double-slit interference experiment (which, of
course, does not work for other multislit interference experiments).

Once the particular function governing the fine structure is identified,
it becomes possible to discern the changes to the fine structure that result
from illuminating additional slits. The precise change introduced to the fine
structure must be reflected by a suitable measure of fringe width. The final
part is the subject-matter of Chapter 55.

45
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4.1 Introduction

From experimental observation it was concluded that the particular illumin-
ation of the aperture mask is related to the character of the fringes seen
on a distant detection screen. The change in the interference pattern that
results from illuminating more slits suggests that the spatial localisation (re-
lated to the number of illuminated slits) and the fringe property (related
to the appearance and shape of the fringes) constitute a pair of incompat-
ible observables, whose relationship is described by an uncertainty tradeoff.
The precise character of this relationship or the particular form of the rel-
evant observables, however, is not obvious. We develop these ideas using an
alternative way of expressing the momentum-space wavefunctions. We con-
sider multislit aperture masks with slit numbers corresponding to powers of
2, because only the wavefunctions prepared by these setups can be rewritten
in product form.

Typically the momentum-space wavefunctions of quantum states pre-
pared in setups with an even number of illuminated slits are expressed in
terms of a sum; see in Eq. (1.301.30). The following examples of such wave-
functions are prepared by setups with a number of illuminated slits that
correspond to a power of 2. There are two changes in notation as they sub-
stantially reduce the notational overhead: These quantum states are denoted
ζd, indicating the number of illuminated slits m = 2d. They relate to the
previous notation via

ζd = ψ2d−1 , (4.1)

i.e. 2d−1 = n. Furthermore, the rescaled variable κ = Tk/2 is used.

ζ̂0(κ) =

√
1

π

a

T
sinc

( a
T
κ
)

ζ̂1(κ) =

√
2

π

a

T
sinc

( a
T
κ
)
cos(κ)

ζ̂2(κ) =

√
2

2π

a

T
sinc

( a
T
κ
)
[cos(κ) + cos(3κ)]

ζ̂3(κ) =

√
2

4π

a

T
sinc

( a
T
κ
)
[cos(κ) + cos(3κ) + cos(5κ) + cos(7κ)]

ζ̂4(κ) =

√
2

8π

a

T
sinc

( a
T
κ
)
[cos(κ) + cos(3κ) + cos(5κ) + cos(7κ) . . .

· · ·+ cos(9κ) + cos(11κ) + cos(13κ) + cos(15κ)]
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...

ζ̂d(κ) =

√
2

2d−1π

a

T
sinc

( a
T
κ
) 2d−1∑
j=1

cos((2j − 1)κ) (for d ≥ 1 only)

(4.2)

Note though that the single-slit wavefunction ζ̂0 actually cannot be obtained
from Eq. (4.24.2), but must be considered independently.

The above expressions are obtained naturally when performing a Fourier
transform of the respective 2d-slit wavefunction, pairing up the slits sym-
metrically around the origin and thus combining two phase factors into a
single, real cosine. This straightforward calculation was already presented
in Sec. 1.4.41.4.4. Observe that the number of terms in the general expression
for ζ̂d(k) goes linearly with the number of illuminated slits m = 2d, where
d ∈ N.

Although this way of expressing the wavefunctions is obtained naturally,
it is not particularly useful for developing a better understanding of the struc-
ture of the respective quantum state. For instance, it is difficult to determine
the separation of the nodes or to identify the functions determining the en-
velope from the ones determining the fine structure. In particular, there is
no justification for considering (just) the sinc function as the envelope. It is
true that the sinc function is responsible for the square-integrability of the
wavefunctions, but below we shall make an argument that the envelope is
more complicated.

The same wavefunctions are now given in the alternative product form.

ζ̂0(κ) =

√
1

π

a

T
sinc

( a
T
κ
)

ζ̂1(κ) =

√
2

π

a

T
sinc

( a
T
κ
)
cos(κ)

ζ̂2(κ) =

√
4

π

a

T
sinc

( a
T
κ
)
cos(κ) cos(2κ)

ζ̂3(κ) =

√
8

π

a

T
sinc

( a
T
κ
)
cos(κ) cos(2κ) cos(4κ)

ζ̂4(κ) =

√
16

π

a

T
sinc

( a
T
κ
)
cos(κ) cos(2κ) cos(4κ) cos(8κ)

...
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ζ̂d(κ) =

√
2d

π

a

T
sinc

( a
T
κ
) d−1∏
j=0

cos
(
2jκ
)

(4.3)

It is immediately obvious that the product form provides a more compact way
of expressing the wavefunction, involving only log2m = d factors compared
to the m = 2d terms in the sum form. Also note that the general product
form (4.34.3) yields the correct expression for the single slit ζ0 when using the
convention that an unevaluated product is the identity of multiplication.

We proceed to demonstrate the equivalence of Eq. (4.24.2) and Eq. (4.34.3) by
means of mathematical induction. This is followed by an account of how the
product form expresses the same physical structure differently, leading to an
alternative mathematical expression of the wavefunctions.

4.2 Proving equivalence

The equivalence of the sum form of the interference wavefunction, Eq. (4.24.2),
and its product form, Eq. (4.34.3), can be shown using mathematical induction.
This is most conveniently done after dropping prefactors, as they are irrel-
evant to the calculation. Starting the induction at d = 2 (it holds trivially
for d = 1 and d = 0), we calculate

2−1∏
j=0

cos
(
2jκ
)
= cos

(
20κ
)
cos(2κ) (4.4)

= 2 [cos((2− 1)κ) + cos((2 + 1)κ)] (4.5)

= 2 [cos(κ) + cos(3κ)] (4.6)

= 2

22−1∑
j=1

cos((2j − 1)κ) (4.7)

Hence, for d = 2 the product form equals the summation form. We used the
known trigonometric identity

2 cos(A) cos(B) = cos(A−B) + cos(A+B) (4.8)



4.2. PROVING EQUIVALENCE 49

going from Eq. (4.44.4) to Eq. (4.54.5). Now, assuming that the equivalence holds
for the case d, i.e. that

2d−1
d−1∏
j=0

cos
(
2jκ
)
=

2d−1∑
j=1

cos((2j − 1)κ), (4.9)

we proceed to show that this equivalence holds generally for the case d+ 1.
We start the calculation and immediately use Eq. (4.94.9).

2d
d∏
j=0

cos
(
2jκ
)
= 2 · 2d−1

d−1∏
j=0

cos
(
2jκ
)
· cos

(
2dκ
)

(4.10)

= 2 ·

2d−1∑
j=1

cos((2j − 1)κ)

 · cos
(
2dκ
)

(4.11)

We now use the distributive property and then the trigonometric identity of
Eq. (4.84.8) in order to evaluate each term of cosine products thus obtained.
The terms are then rearranged.

= cos
(
2d − 1

)
κ+ cos

(
2d + 1

)
κ+ · · ·+ cosκ+ cos

(
2d+1 − 1

)
κ

= cosκ+ · · ·+ cos
(
2d − 1

)
κ+ cos

(
2d + 1

)
κ+ · · ·+ cos

(
2d+1 − 1

)
κ

=

2d∑
j=1

cos (2j − 1)κ (4.12)

This is indeed the desired expression. We conclude that the following state-
ment, linking the product form to the sum form, is true,

2d−1
d∏
i=1

cos
(
2i−1κ

)
=

2d−1∑
j=1

cos((2j − 1)κ) , (4.13)

concluding the proof.

Note that the right-hand side of Eq. (4.134.13) can be viewed as a Fourier
series of the periodic function on the left-hand side. This Fourier series has
the special property that its coefficients are either 1 or 0. A more subtle
observation relating to Eq. (4.134.13) is discussed in Appendix EE, addressing
the underlying mathematical structure. This also provides an alternative
proof to the induction presented here. Appendix EE is, however, of a purely
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mathematical interest and unrelated to physical considerations.

4.3 Deducing the product form

We obtained the momentum-space wavefunction in Sec. 1.4.41.4.4 by means of a
Fourier transform. The alternative product form, Eq. (4.34.3), can be obtained
by performing the Fourier transform in a different way. A diagrammatic
illustration is provided in Fig. 4.14.1. The different algebraic expressions leading
to the sum or the product form are easily identified. We proceed with an
example.

Assuming a uniformly illuminated aperture mask with eight slits, the
Fourier transform is performed by considering each slit location as a delta
function δ, and the aperture mask as a sum of such. The following expression
is found to express the structure of the aperture mask

f3(x) = [δ (x+ 1) + δ (x− 1)] + [δ (x+ 3) + δ (x− 3)]

+ [δ (x+ 5) + δ (x− 5)] + [δ (x+ 7) + δ (x− 7)] . (4.14)

This is precisely the underlying structure of Eq. (1.281.28). The Fourier trans-
form is easily computed, noting that the Fourier transform of a sum is the
sum of Fourier transforms, giving

f̂3(k) = cos(κ) + cos(3κ) + cos(5κ) + cos(7κ) . (4.15)

Alternatively, the aperture mask may be described by the following convo-
lutions

g3(x) = [δ (x+ 1) + δ (x− 1)] ∗ [δ (x+ 2) + δ (x− 2)]

∗ [δ (x+ 4) + δ (x− 4)] . (4.16)

The Fourier transform of Eq. (4.164.16) is also computed easily, noting that the
Fourier transform of a convolution is a product of Fourier transforms. This
leads immediately to the promised product form

ĝ3(κ) = cos(1κ) · cos(2κ) · cos(4κ) (4.17)

Eqs. (4.154.15) and (4.174.17) were obtained by pairing up slits in two distinct ways
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Figure 4.1: The two different ways of arranging the slits of an aperture mask
in pairs are depicted for an example setup with eight slits. In (a), the usual
way of pairing up slits across the origin is shown; this results in a sum. The
numbers indicate the distance between the two members of the pair, they
are in units of “slit separations”. In (b) an alternative way of pairing the
slits is shown, which underlies the product form. The numbers indicate the
distance of the successive pairings in units of “slit separations”.

as part of the Fourier transform. The common way of pairing up two slits
results in Eq. (4.154.15): Two slits with equal distance to the origin are con-
sidered a pair and their complex phases are combined into a real cosine.
This way of pairing up slits is illustrated in Fig. 4.14.1 (a). The four pairs in
the depicted 8-slit setup are denoted A, B, C and D.

The procedure underlying the product form is different, it is illustrated
in Fig. 4.14.1 (b). It entails successively dividing the aperture mask into halves,
and the halves into quarters and so on, until pairs are left. In the illustrated
example, dividing the initial aperture mask into halves results in a cosine
factor scaled with the centre-to-centre distance of 4 (in units of “half slit
separations”) between the halves. Dividing each of the two halves results in
quarters and gives a cosine factor scaled by 2, which is the centre-to-centre
distance between the quarters. Finally, the pairs of slits yield a cosine factor
scaled with unity. Observe that the centre-to-centre distances indicated on
the right-hand side times the number of occurrences is constant, e.g. on the
lowest level 4 pairs with a distance of unity are obtained whereas on the
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highest level there is one division with a centre-to-centre distance of 4. This
generalises trivially to larger interference setups.

This leads us to the following notion, the implications of which are dis-
cussed in the following section: Doubling the number of illuminated slits
results in an additional cosine factor with doubled frequency, and it seems
like a suitable definition of fringe width to regard a cosine of doubled fre-
quency to have fringes of half the width.

4.4 Conclusions

In earlier sections, in particular the previous one, certain aspects of the struc-
ture of quantum states expressed in product form were briefly mentioned.
Here, a detailed exposition is presented. We develop the concepts of the
width of an interference pattern as well as its fine structure.

Consider the momentum-space wavefunction of the double-slit superpos-
ition state ζ1; it is specified in Eq. (1.361.36) and illustrated in Fig. 1.31.3. This is
the simplest interference wavefunction and its structure is easily read: The
sinc provides an envelope while the cosine describes the fringes.

For higher-order wavefunctions additional functions appear and an iden-
tification with envelope and fine structure is not so simple anymore. How-
ever, once we have a recipe for identifying the additional functions, we could
group them accordingly. Formally, this is done by grouping and collectively
relabelling them according to the properties they determine: We define two
functions, ĝd(κ) and f̂d(κ). The function ĝd(κ) describes an envelope, while
the function f̂d(κ) describes the fine structure. The wavefunction would be
expressed as

ζ̂d(κ) ∝ ĝd(κ) f̂d(κ), (4.18)

up to some normalisation factor. In the previous section, we discussed a
recursive relationship between the wavefunctions,

ζ̂d(κ) ∝ ζ̂d−1(κ) cos 2
d−1κ , (4.19)

Identifying the Eqs. (4.184.18) and (4.194.19), we obtain

ĝd(κ) = ζ̂d−1(κ), (4.20)

f̂d(κ) = cos 2d−1κ . (4.21)
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According to Eq. (4.214.21), the fine structure of the momentum-space wave-
function ζ̂d(κ) is determined by a simple cosine. In fact, this single cosine
is all that differentiates ζ̂d(κ) from ζ̂d−1(κ). As this cosine does not change
the overall localisation property of the interference pattern, ζ̂d(κ) shares its
localisation property with ζ̂d−1(κ). Applying this argument repeatedly, we
conclude that the localisation property of ζ̂d(κ) is determined by ζ̂0(κ).

The quantum state ζ0 is prepared through illumination of a single aper-
ture. However, the present investigation is about superposition states and
the resulting interference phenomena; diffraction is an independent phe-
nomenon. The given choice of aperture, which implies the particular shape
of ζ̂0(k), determines the overall localisation properties of the various ζ̂d. We
refer to ζ̂0 as the fundamental envelope. While the fundamental envelope is,
in general, only part of the effective envelope, it is qualitatively distinct in
that it depends on diffraction. Accordingly, a measure of the fringe prop-
erty should not depend on the fundamental envelope. In fact, there should
not be any dependence on the effective envelope, but only dependence on
the function actually determining the fine structure of the momentum-space
wavefunction, i.e. Eq. (4.214.21). Note that any measure of fringe contrast
necessarily has this unwanted dependence.

This recursive relationship is illustrated Fig. 4.24.2 for ζ0, ζ1, ζ2 and ζ3,
i.e. for n = 1, 2, 4, 8. Note the following: The eight-slit wavefunction ζ̂3(κ)

depicted in Fig. 4.24.2 c) (solid line) is contained in an envelope ζ̂2(κ) (dotted).
Equally, the four-slit wavefunction ζ̂2(κ) depicted in Fig. 4.24.2 (b) (solid line) is
contained in an envelope ζ̂1(κ) (dotted). This argument applies recursively,
the spread of ζ̂d(κ) is determined by ζ̂d−1(κ), and in turn the spread of
ζ̂d−1(κ) is determined by ζ̂d−2(κ), all the way up to the single-slit state ζ̂0(κ).
This is an excellent illustration that the spread of the interference pattern
is independent of the number of illuminated slits; it instead depends on the
slit shape. The uncertainty product should not depend on the spread of the
interference pattern nor, consequently, on the particular choice of aperture.

Considering the fine structure we note that while the sinc is common
to the single-slit wavefunction ζ̂0(κ) and the double-slit wavefunction ζ̂1(κ),
the latter also possesses fine structure described by the cosine. Doubling the
number of illuminated slits (from 1 to 2) results in a cosine of frequency 1.
Doubling the number of illuminated slits once more (from 2 to 4) results in a
cosine of double the frequency, i.e. 2, and hence a fringe width that is reduced
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(a) |ζ̂0 ( )|2
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Figure 4.2: The interference patterns associated with ζ1, ζ2 and ζ3 are de-
picted; their recursive relationship is illustrated. Figure 1 (a) shows |ζ̂1(κ)|2,
the first interference state, and the sinc envelope (dotted line). Figure 1 (b)
shows |ζ̂2(κ)|2 (solid line), |ζ̂1(κ)|2 (dotted) serves as the envelope to |ζ̂2(κ)|2.
Figure 1 c) shows |ζ̂3(κ)|2 (solid line), |ζ̂2(κ)|2 (dotted) serves as the envelope
to |ζ̂3(κ)|2. Note that the depicted states are not normalised relative to each
other so as to better demonstrate the shape and recursive relationship of the
depicted states. The parameters are chosen such that a/T = 1/4.
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by a factor of 2. We observe that our initial result for the fine structure,
Eq. (3.283.28), depends on the square root of the number of illuminated slits.
Yet we saw in this section that doubling the number of illuminated slits
leads to a fine structure with doubled frequency; whatever measure might be
used, this should be reflected. In the next chapter we discuss a modification
of the uncertainty formulation of Chapter 33 that yields precisely the right
asymptotic behaviour.

It follows naturally that the particular choice of slit shape is of little
importance. The common choice of rectangular slit shape, reca(x), is often
rejected on the basis of its diverging standard deviation, i.e. ∆(P, reca) = ∞.
However, this concern is unnecessarily restrictive in the given context, and
only important when (also) considering single-slit diffraction.

To summarise, we discussed in detail a certain subset of superposition
states that can be expressed in a product form that provides an alternative
way for expressing the momentum-space wavefunction of these states. The
structure of interference wavefunctions in product form is easily read, which
allows identifying the functions determining the spread of the interference
pattern and the functions determining its fringe width. In particular, the
constituent functions of the wavefunction can be identified with either the
effective envelope or the fine structure. We found that the fine structure is
determined by a single cosine only.
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Chapter 5

Uncertainty II: A refined
modification of Heisenberg
uncertainty

We revisit the uncertainty formulation that was discussed in Chapter 33 in
light of the results of Chapter 44.

In Chapter 44 we identified the function describing the fine structure and
noted that doubling the number of illuminated scales this function by a factor
of 2, i.e. reduces the fringe width by a factor of 2. This feature should be
captured by any suitable measure of fringe width, but in its present form the
uncertainty formulation of Chapter 33 does not meet this requirement.

Here, we refine the measure of fringe width by adapting the operator
Pmod to the given experimental setup. This modification indeed leads to
a measure of fringe width capable of resolving the fringe width precisely,
demonstrated by fitting asymptotic behaviour of the fringe width, and to a
converging uncertainty product.

The uncertainty of a different set of quantum states is also investigated.
These quantum states are the joint eigenstates on periodic sets of Q and P ,
which were introduced in Chapter 22.
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5.1 The refined modular momentum

In Chapter 33 we found that the measure of fringe width, ∆(Pmod, ψn), is
related to the inverse square root of the the number of illuminated slits
m = 2n. This asymptotic behaviour was obtained in Eq. (3.283.28). From the
investigation of the previous section, however, we conclude that this is not
the expected asymptotic behaviour.

According to the discussion of Chapter 44, doubling the number of illu-
minated slits should result in half the fringe width. More precisely, we found
that the momentum-space wavefunction picks up a cosine of doubled fre-
quency from doubling the number of illuminated slits. However, this is not
reflected by ∆(Pmod, ψm),

∆(Pmod, ψ2n) ̸=
1

2
∆(Pmod, ψn) . (5.1)

We address this issue by means of a refined operator,

Pmod(n) = (P +Kn/2 mod Kn)−Kn/2 , (5.2)

which explicitly depends on the experimental setup by means of the depend-
ence on n. It is important to note that Pmod(n) commutes with Qmod, be-
cause Kn = 2π/(nT ), ensuring that we again obtain the uncertainty relation

∆(QT , ψ) ∆(Pmod, ψ) ≥
1

2
. (5.3)

The derivation in Sec. 3.33.3 is extended to this more general case at the dis-
cretion of the reader.

The operator Pmod(n) is adapted to the given experimental setup and
reflects the minimal period of the nodes occurring in the given interference
pattern of ψn. Calculating the asymptotic behaviour of this measure of fine
structure, we find

∆(Pmod(n), ψn) =

(
2

Kn

∫ Kn/2

−Kn/2
k2 cos

(
π

Kn
k

)2

dk

)1/2

(5.4)

=
Kn

2π

√
π2 − 6

3
=

1

nT

√
π2 − 6

3
(5.5)

We obtain a result that depends inversely on n (while we found dependence
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Figure 5.1: The standard deviation of Pmod(n) in state ψn is depicted (dots
on dashed line) as well as the previously discussed Pmod (crosses on dashed
line) for easy of comparison. The standard deviations are multiplied by T ,
removing the dependence on the slit separation.

on n−1/2 for Pmod). The integration that leads to the second line is straight-
forward. However, the first line is a very interesting statement that is worth
discussing in detail.

Observe that the integration in Eq. (5.45.4) corresponds to the standard de-
viation of a half cosine pulse. The wavefunction ψ̂n(k), however, is substan-
tially more complicated. In Chapter 33 we already discussed that ∆(Pmod, ψn)

is independent the fundamental envelope, i.e. independent of the sinc func-
tion, and this extends immediately to ∆(Pmod(n), ψn). However, Eq. (5.45.4)
states that ∆(Pmod(n), ψn) is independent of the effective envelope, which
includes the fundamental envelope. This result precisely meets the conclu-
sions of the discussion of Chapter 44. The mathematical reasoning that leads
to Eq. (5.45.4) is provided in Appendix C.2C.2. The calculation is somewhat te-
dious for the general case of even slit numbers. A much simpler calculation
is required when restricting to slit numbers corresponding to powers of 2,
as this allows exploiting the product form. That calculation is provided in
Appendix C.1C.1.

The asymptotic behaviour of ∆(Pmod(n), ψn) is depicted in Fig. 5.15.1 (dots
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Figure 5.2: The standard deviation of Pmod(n) in state ψn is depicted (dots)
as well as the previously discussed Pmod(n) for easier comparison. The stand-
ard deviations are multiplied by T , removing the dependence on the slit
separation.
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Figure 5.3: Convergence of the uncertainty product (5.65.6) for uniformly illu-
minated aperture masks of even slit number.
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on dashed line) and in Fig. 5.25.2 (dots). The resulting asymptotic behaviour of
the uncertainty product, Eq. (5.35.3), is obtained immediately from Eqs. (3.253.25)
and (5.55.5)

lim
n→∞

∆(QT , ψn)∆(Pmod(n), ψn) =
1

3

√
π2 − 6 ≈ 0.656 . (5.6)

Asymptotically, we find convergence to a finite value, while the previous
uncertainty product of Eq. (3.293.29) would diverge. The convergent behaviour
is illustrated in Fig. 5.35.3. This is the result of adapting the operator that
measures the fringes to the interference setup considered by using the known
relationship between the number of illuminated slits and the periodicity of
the nodes discussed in the previous section. While the discussion in the
previous section was restricted to slit numbers corresponding to powers of
2 only, the expression for ∆(Pmod(n), ψn) holds for all even slit numbers
m = 2n, i.e. for all n, as is illustrated in Figs. 5.25.2 and 5.35.3.

5.2 Uncertainty of joint eigenfunctions of
commuting functions of Q and P

The refined uncertainty formulation discussed in the previous section is now
applied to a second set of quantum states. These quantum states were con-
structed in Chapter 22 as eigenfunctions to periodic spectral projections of
position and momentum. Here, we parametrise these states as follows:

ϕn(x) =
[
g ∗ (XT · hn)

]
(x), (5.7a)

ϕ̂n(k) =
[
ĝ ·
(
X̂K ∗ ĥn

)]
(k) . (5.7b)

Throughout the present text the convolution operation is indicated using the
asterisk (∗). The Dirac comb is defined as

XT (x) =

∞∑
j=−∞

δ(x− T/2− jT ), (5.8)

X̂K(k) =

√
2π

T

∞∑
j=−∞

(−1)jδ(k − jK), (5.9)
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where δ denotes the delta distribution. Under Fourier transformation, the
Dirac comb XT is mapped onto a Dirac comb X̂K with reciprocal spacing
and a numerical factor. The function g describes the slit shape,

g(x) = reca(x), (5.10)

while the function ĥn is associated with the fringe shape and corresponds to

ĥn(k) =

{√
2/Kn cosπk/Kn for k ∈ [−Kn/2,Kn/2]

0 for k /∈ [−Kn/2,Kn/2]
. (5.11)

The function ĥn(k) is supported on an interval of size Kn, which thus makes
a suitable measure of fringe width.

Our parametrisation is such that ϕ1 corresponds to ψ1 while for n ≥ 2,
a joint eigenfunction of commuting functions of position and momentum is
obtained. These quantum states are eigenstates of periodic position and
momentum projectors, which were used earlier to explain the observation
of seemingly incompatible properties in Chapter 22. They address the same
underlying structure as the uncertainty formulation discussed here: These
quantum states are constructed in light of the compatibility of commuting
functions position and momentum that naturally occur in multislit experi-
ments, whereas the uncertainty formulation addresses the incompatibility of
the observables of multislit interferometry. Hence these states make natural
candidates for further examination.

Although both ψn and ϕn display increasingly finer fringes as n increases,
the character of these fringes is very different. See Fig. 5.55.5 for a direct com-
parison between ψ2 and ϕ2. The difference is found in the effective envelope
of ψ2, i.e. the fact that ψ2 possesses secondary maxima. In particular, it is
the effective envelope of ψ̂2 that is responsible for the existence of the sec-
ondary maxima. However, we already discovered that the effective envelope
does not contribute to the fine structure. We conclude immediately that the
fringe widths of ψn and ϕn should be identical. Indeed, this is what we find:
∆(Pmod(n), ϕn) can be calculated directly

∆(Pmod(n), ϕn) =

[
2

Kn

∫ Kn/2

−Kn/2
k2 cos

(
π

Kn
k

)2

dk

]1/2
(5.12)
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Figure 5.4: The operator Pmod and the quantum state ϕ2 are depicted. This
example illustrates that the action of Pmod is identical to that of Pmod(n),
because only those parts of Pmod contribute which are identical to Pmod(n).
The other parts do not contribute, because there the wavefunction vanishes.
In the depicted example the action of Pmod is identical to that of Pmod(2).
Note that the wavefunction is not normalised.
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(a)

−7/2 −5/2 −3/2 −1/2 1/2 3/2 5/2 7/2

k [Kn ]

(b)

Figure 5.5: A direct comparison of the momentum-space wavefunctions of ψ2

and ϕ2. The difference is that ψ2, depicted in (a), features secondary maxima
whereas ϕ2, depicted in (b), has extended nodes instead. The parameters
are chosen such that a/T = 1/4.

=
Kn

2π

√
π2 − 6

3
=

1

nT

√
π2 − 6

3
(5.13)

= ∆(Pmod, ϕn) (5.14)

The first equality follows, because a) we assume that the fringes are suppor-
ted on intervals of size Kn, and b) ∆(Pmod, ϕn) can be computed by consid-
ering a single interval of periodicity without the envelope. Note that accord-
ing to Eq. (5.145.14), there is no benefit from adapting the operator Pmod(n)

to the given experimental setup. The operator Pmod(n) is insensitive to the
presence of extended nodes, i.e. extended intervals where the wavefunction
vanishes. See Fig. 3.13.1 for an illustration of this point. Finally, observe that
the value in Eq. (5.135.13) is identical to that of Eq. (5.55.5).

Calculating the standard deviation of QT in state ϕn is substantially
more involved than it was for ψn, although the final result is rather simple.
Note that the operator QT is only sensitive only to the total probability
contained in intervals of length T . Let Pj correspond to the probability in
the interval [jT, (j+1)T ], where j is any integer. The standard deviation of
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QT in quantum state Ψ is given by

∆(QT ,Ψ) = T

 ∞∑
j=−∞

j2 Pj −

( ∞∑
j=−∞

j Pj

)2
1/2

. (5.15)

An aperture mask with infinitesimal slits prepares a quantum state Ψδ, in-
dicated by the delta subscript. The variance of Q in state Ψδ is given by

∆(Q,Ψδ) = T

 ∞∑
j=−∞

(j + 1/2)2 Pj

1/2

. (5.16)

Following from our assumption of even probability distributions, i.e. we
assume that |ψ(x)|2 = |ψ(−x)|2, the two Eqs. (5.155.15) and (5.165.16) are equal,

∆(QT , ψ) = ∆(Q,ψδ). (5.17)

This is shown explicitly in Appendix C.3C.3. While the operator QT is insensit-
ive to detailed features of the probability distribution of ψ, the state ψδ lacks
them. Note that according to Eq. (5.175.17) the standard deviation ∆(QT , ψ)

does not depend on the particular choice of aperture at all.
An explicit expression for ∆(QT , ϕn) can now be obtained using the equi-

valence stated in Eq. (5.175.17), the result of Appendix C.4C.4 and ĥn as specified
in Eq. (5.115.11). We find

∆(QT , ϕn) = ∆(Q,ϕn,δ) (5.18)

= ∆(Q,ϕn)− a/12 (5.19)

= nT/2 (5.20)

The two subscripts of ϕn,δ in Eq. (5.185.18) denote this quantum state as a
joint eigenfunction prepared by an aperture mask with infinitesimal slits.
Eq. (5.195.19) follows by the calculation provided in Appendix C.4C.4, while the final
result follows from a straightforward calculation of the standard deviation of
hn.

The uncertainty product associated with the state ϕn can now be calcu-
lated using Eqs. (5.135.13) and (5.185.18). We obtain

∆(QT , ϕn)∆(Pmod, ϕn) =
1

2

√
π2 − 6

3
. (5.21)
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Figure 5.6: The convergence of the uncertainty product of states ψn and ϕn,
Eqs. (5.65.6) and (5.215.21) respectively, is depicted.

Evidently this uncertainty formulation assigns the same uncertainty product
to ϕn irrespective of the particular value of n; see Fig. 5.65.6, depicting the
uncertainty product for a range of values of n. Decreasing the size of the
support for each of the fringes, resulting in finer fringes, is precisely reflected
by the loss of spatial localisation.

5.3 Conclusion

A successful adaptation of the Heisenberg relation, Eq. (1.111.11), to multislit
interferometry was presented in this chapter.

We started with the formulation of uncertainty proposed by Aharonov et
al., which we worked out in Chapter 33, and refined it in order to accommodate
for the insights obtained from the discussion of Chapter 44. The modified
uncertainty relations employ standard deviations, yet accurately express the
complementarity of spatial localisation and fringe width by virtue of the
observables involved.

Two detailed applications of this uncertainty relation were presented,
investigating two types of multislit states. The first application involved the
states ψn, prepared through uniform illumination of an aperture mask. The
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second application involved the states ϕn, which are joint eigenfunctions of
commuting functions of position and momentum.

By virtue of the refined operator Pmod(n), we were able to precisely
resolve the fringe width of ψn. This measure of fringe width not only gives
reasonable values, but also shows the expected asymptotic behaviour that
we concluded from the discussion of Chapter 44. The uncertainty product
starts at a finite value and monotonically converges to a larger value.

We discussed the physical insight regarding the calculation of the stand-
ard deviation ∆(Pmod(n), ψn). The arising simplification stems from the fact
that the effective envelope has no effect on that calculation. The result is
that the only function that determines the fine structure is a simple cosine.
This analytic result, which is worked out in detail in Appendix C.1C.1 and in
Appendix C.2C.2, elegantly expresses the physical argument of Chapter 44.

The application of uncertainty to the states ϕn yielded somewhat differ-
ent results. The fringe width of ψn is identical to that of ψn. This result was
anticipated, because from earlier considerations we concluded that the ef-
fective envelope does not affect the fine structure. However, the uncertainty
product does not change with n at all, but is the same for all ϕn irrespective
of the particular value of n. This result is interesting, because the quantum
states ϕn were constructed in order to express the compatible observations of
multislit experiments, while the discussed uncertainty formulation expresses
the incompatibility of the observables.

Finally, note that the analysis presented in this chapter does not depend
on the particular choice of aperture or the related fundamental envelope at
all. This is as it should be, as was pointed out.
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Chapter 6

Uncertainty III: Comparison
with an alternative uncertainty
formulation

In this chapter the utility of an alternative formulation of uncertainty for
multislit applications is discussed and compared to the uncertainty formula-
tion of Chapter 55.

This alternative approach was developed by Uffink and Hilgevoord in the
context of single- and double-slit experiments. For applications in a more
general multislit context, we are required to address a number of arising
issues. In particular, it is found that additional consideration is required
in order to express the relevant tradeoff in multislit experiments because
otherwise additional contributions to the uncertainty product may be in-
troduced. Additionally, one of the underlying concepts is generalised to fit
the wider range of cases. Once these issues are resolved, both uncertainty
formulations are found to yield the same qualitative results in the example
applications, confirming that they independently capture the physical rela-
tionship between the relevant observables.
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The third part provides a comparison with an alternative uncertainty
formulation developed by Uffink and Hilgevoord for single- and double-slit
experiments [22]. However, in order to successfully apply their uncertainty
formulation to multislit interferometry, arising issues need to be addressed.
We generalise an underlying concept to fit the multislit context and find
that additional considerations are necessary in order to express the relevant
tradeoff. The comparison then becomes straightforward. Many of the res-
ults agree qualitatively, independently confirming that the relevant physical
structure is captured.



6.1. INTRODUCTION 71

6.1 Introduction

Throughout most of the previous chapters, a modification of the Heisenberg
uncertainty relation was discussed. Realising the inadequacy of the Heisen-
berg relation for single- and double-slit experiments, Uffink and Hilgevoord
pursued a different course of action, developing an alternative formulation
of uncertainty. According to Ref. [22], part of the motivation was to entirely
avoid standard deviations, because Uffink and Hilgevoord were convinced
that this measure was not suitable to the given context. Using unusual
measures rather than ubiquitous standard deviations, Uffink and Hilgevoord
realised an intriguing implementation of the relevant observables.

Uffink and Hilgevoord define two measures to express uncertainty: They
define the overall width ΩN (Ψ) of a normalised wavefunction Ψ(x) and the
mean fringe width ωM (Ψ) (in momentum space). They proceed to show
that an uncertainty relation exists for these quantities, expressing a tradeoff
between spatial localisation on the one hand, and fine structure in mo-
mentum space on the other. The same analysis applies independently to
Ψ̂ (formally obtained by exchanging Ψ for Ψ̂), and hence ΩN (Ψ̂)ωM (Ψ̂) is
bounded from below as well. However, we focus on Ψ in our present invest-
igation.

The overall width ΩN (Ψ) of a quantum state Ψ is the smallest interval
that contains probability N :

ΩN (Ψ) = min

{
|p1 − p2| :

∫ p2

p1

|Ψ(x)|2 dx = N

}
(6.1)

The parameter N is a number less than or equal to 1, but chosen close to 1.
Note that the value of the overall width necessarily reflects the discreteness
of the aperture mask. In the analysis below, particularly of aperture masks
with a small number of illuminated slits, a small change in N may lead to
notable discontinuous jumps of the overall width.

The fine structure of Ψ is quantified through the mean fringe width
ωM (Ψ), which is the smallest shift such that the inner product of Ψ̂(k) and
the shifted Ψ̂(k − s) is associated with a value M :

ωM (Ψ) = min

{
s :

∣∣∣∣∫ ∞

−∞
Ψ̂∗(k) Ψ̂(k − s) dk

∣∣∣∣ =M

}
(6.2)
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The parameter M is chosen with respect to the particular choice of N ; see
Eq. (6.56.5) below. Note that ωM (Ψ) is defined in terms of the autocorrela-
tion function. Similar approaches are also found in other work, for example
Ref. [3333]. This measure is conceptually rather different, it quantifies how
much the momentum-space wavefunction Ψ̂(k) deviates from precise values
of momentum. The mean fringe width ωM (Ψ) is not sensitive to the number
of momentum peaks, but only to how sharp they are.

For a normalised quantum state Ψ, Uffink and Hilgevoord proved the
existence of a lower bound to the overall width ΩN (Ψ) and the mean fringe
width ωM (Ψ),

ΩN (Ψ) ωM (Ψ) ≥ 2 arccos

(
M + 1

N
− 1

)
, (6.3)

with the following two conditions required

M2 +N2 ≥ 1, (6.4)

M ≤ 2N − 1. (6.5)

The two conditions on N and M restrict the value range of N significantly.
Squaring Eq. (6.56.5) and substituting it into Eq. (6.46.4) yields a quadratic for
N

5N2 − 4N + 1 ≥ 1. (6.6)

Solving this equation yields N ≥ 4/5. The choice N = 4/5 is clearly dis-
tinguished in Fig. 6.16.1. However, each of the acceptable pairs (N,M) yields
another acceptable value for the uncertainty product.

Uffink and Hilgevoord found that the exact choice of N and M was not
important for the applications they considered. We agree that certain results
might not depend on N or M . For example, the exact choice of M is entirely
irrelevant for an analysis of the double-slit state so long as N is chosen very
close to unity. Then, the uncertainty product is approximately equal to the
lower bound for any M (strictly true for N = 1). In general, though, we
arrived at a different conclusion, which is detailed in the analysis of example
applications provided below.

Uffink and Hilgevoord state that (in adapted notation)

• ωM (Ψ) and ΩN (Ψ) are governed by the slit separation T ,
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Figure 6.1: The two conditions on the pair (N,M), Eqs. (6.46.4) and (6.56.5), are
illustrated. The shaded area represents the allowed choices.

• ωM (Ψ̂) and ΩN (Ψ̂) are governed by the slit width a.

The slit separation T is a mere scaling parameter and, as expected, the
value of the uncertainty product is independent of T . This is a consequence
of the scaling property of the Fourier transform and follows immediately
from the definitions of overall width and mean fringe width: Let us modify
the experimental setup, replacing T by T ′ = c T , where c is a positive num-
ber. Accordingly, we would describe the experiment in terms of a modified
quantum state Ψ′. It follows from Eq. (6.16.1) that

ΩN (Ψ
′) = cΩN (Ψ),

and it follows from Eq. (6.26.2) that

ωM (Ψ̂′) = ωM (Ψ̂)/c.

The uncertainty product associated with the rescaled experiment remains
unchanged

ΩN (Ψ
′)ωM (Ψ̂′) = ΩN (Ψ)ωM (Ψ̂) .
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Only in the double-slit experiment, which Uffink and Hilgevoord con-
sidered, the slit separation T is related to the extent of the wavefunction.
We generalise the above statement,

• ωM (Ψ) and ΩN (Ψ) are governed by the fringe width b,

• ωM (Ψ̂) and ΩN (Ψ̂) are governed by the slit width a.

The fringe width b is equal to Kn for the quantum states considered here.

6.2 Uncertainty of state ψn

Any application of this formulation of uncertainty should start with choos-
ing a suitable pair (N,M). Although Uffink and Hilgevoord discussed the
mathematical constraints on (N,M) – Eqs. (6.46.4) and (6.56.5) – and argued
that the precise choice is not important, we found that the results can differ.
The correct choice can be made only after careful consideration of the given
problem; for our purpose that is the discussion of ψn in Chapter 44, and in
particular the conclusions of Sec. 4.44.4.

We choose N = 1 for the particular state ψn. An expression for the
overall width corresponds to the difference between the total number of il-
luminated slits m = 2n and the first, scaled with the slit separation T and
adjusted for the slit width a,

Ω1(ψn) = (2n− 1)T + a . (6.7)

The overall width of state ψn depends linearly on n and features an absolute
term a. The presence of the absolute term, however, is somewhat unwanted
in the context of multislit interferometry as the slit width a is unrelated
to interference. Note that its presence stems from matters of consistency:
The present uncertainty formulation allows for analysis of single-slit states.
Increasing the slit width to a = T results in a single illuminated slit of width
mT = 2nT , and the overall width must reflect this. Naturally, as the value
of Ω1(ψn) increases, this absolute term is going to become negligible.

The mean fringe width ωM (ψn) can be calculated and the result is

ωM (ψn) = min

{
s :

∣∣∣∣ 1n sinc
( a
T
s
)
fn(s)

∣∣∣∣ =M

}
. (6.8)
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Figure 6.2: An intuitive interpretation of ωM (ψ) is illustrated here for this
otherwise abstract measure. Considering a typical (a ≪ T ) interference
wavefunction ψ̂(k), then ωM (ψ) is approximately half the fringe width of
the central peak at a height 0 ≤Mψ̂(k) ≤ ψ̂(k).

The function fn was defined in Eq. (1.341.34). The derivation of Eq. (6.86.8) is
provided in Appendix D.1D.1, and an illustration in Fig. 6.26.2. According to
Eq. (6.86.8), the mean fringe width of ψn depends on the slit width a. However,
note the following special case

ω0(ψn) = min

{
s :

∣∣∣∣ 1n sinc
( a
T
s
)
fn(s)

∣∣∣∣ = 0

}
(6.9)

= min {s : cos (2n− 1)Ts/2 = 0} (6.10)

= π/(nT ) = Kn/2 . (6.11)

When M = 0, the value of ω0(ψn) does not depend on a, because ω0(ψn)

depends on the support property of the central fringe only. In fact, ω0(ψn)

is independent of the effective envelope, which distinguishes this particular
choice of M and indicates that the desired features are captured. A different
choice of M would introduce additional contributions, leading to different
asymptotic behaviour. In general, the choice of M (and N) is apparently
not as straightforward as Eqs. (6.46.4) and (6.56.5) suggest.
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Figure 6.3: Illustration of the uncertainty product given in Eq. (6.126.12) for
states ψn. Qualitatively identical behaviour was for the uncertainty formu-
lation based on the work of Aharonov et al., compare Fig. 5.35.3.

Using Eqs. (6.76.7) and (6.116.11), we calculate the uncertainty product

Ω1(ψn)ω0(ψn) = [(2n− 1)T + a]Kn/2

= 2π − π

n
+
πa

nT
(6.12)

The uncertainty product decomposes naturally into three terms, each of
which features different quantities and contributes depending on the respect-
ive sign. The third term depends on the ratio of slit width to slit separation
(a/T ) and expresses the fact that for a = T any change in n would be a scale
transformation without physical effect.

The behaviour of the uncertainty product (6.126.12) is illustrated in Fig. 6.36.3.
We observe that this uncertainty product is smallest for the state ψ1 and
converges to a value of 2π as n increases. The uncertainty product for
ψ1 could be made minimal in the limit of vanishing a/T . The asymptotic
behaviour is qualitatively identical to the asymptotic behaviour found for
the previously discussed uncertainty formulation; see Fig. 5.35.3.
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6.3 Uncertainty of state ϕn

The states ϕn have the property that the associated fringes are isolated for
n ≥ 2. This implies that for n ≥ 2 the mean fringe width ωM (ϕn) depends
only on the overlap of a single fringe with its shifted copy. While for n = 1

we find the same mean fringe width as we did for ψ1, because ϕ1 = ψ1, for
n ≥ 2 we use Eq. (5.115.11) and obtain

ωM (ϕn) = min
{
s :
∣∣∣sinc(a

2
s
)[(

1− s

Kn

)
cosπ

s

Kn
+

1

π
sinπ

s

Kn

]∣∣∣ =M
}

(6.13)
The calculation leading to this result is provided in Appendix D.2D.2. The min
condition translates into s ≤ Kn. Hence, assuming s ≤ Kn enables us to
simplify the entire expression

M = sinc
(a
2
ωM (ϕn)

)[(
1− ωM (ϕn)

Kn

)
cosπ

ωM (ϕn)

Kn
+

1

π
sinπ

ωM (ϕn)

Kn

]
(6.14)

It follows immediately from this result that ωM (ϕn) must be directly propor-
tional to Kn for M to remain approximately constant across n (accurate for
a/T → 0). Just as for the previously investigated ψn, Eq. (6.86.8), we find a de-
pendence on a. For a ≪ T this dependence becomes negligible numerically,
and we ignore it under this assumption henceforth. We set

ωM (ϕn) = cM Kn . (6.15)

The non-negative number cM determines the particular value of M ; cM is
necessarily smaller than or equal to unity. For the states ψn we found a
similar expression in Eq. (6.116.11), and conclude ωM (ϕn) ∝ ωM (ψn). We make
the arbitrary choice cM = 1/2, which results in M = 1/π and gives

ωπ−1(ϕn) = Kn/2 = π/(nT ) . (6.16)

Regarding the overall width ΩN (ϕn) not much can be said in terms of analyt-
ical results. While it is fairly simple to show that ΩN (ϕn) is approximately
proportional to n, more concrete results are difficult to obtain. The pro-
portionality follows from a straightforward calculation of the function H
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determining the overall width

hn(x) =
1√
2π

∫ Kn/2

−Kn/2

√
2

Kn
cos

(
π

Kn
k

)
eixk dk, (6.17)

= H(Knx) . (6.18)

The argument of the function H scales inversely with n, which means that
ΩN (ϕn) will approximately scale with n. Our numerical investigation shows
that ΩN (ϕn) indeed displays this behaviour in the limit of large n. See
Fig. 6.46.4, which depicts identical qualitative behaviour for three different
choices of N . We conclude that

ΩN (ϕn) = cN T n for large n. (6.19)

The linear dependence on T follows from the general discussion of this formu-
lation of uncertainty. The numerical factor cN is non-negative, but otherwise
undetermined. Explicit values of cN are not obtained as easily as for cM . We
approximate the value of cN using numerical investigations. For example,
inspection of the data points in Fig. 6.46.4 suggests

Ω0.99(ϕn) ≈ 21.25 T n , (6.20)

indicated by the dotted line depicted in Fig. 6.46.4. Using this expression
along with the result for ωπ−1(ϕn) in Eq. (6.166.16), we calculate the asymptotic
behaviour of the uncertainty product for the given choices of N and M . We
find that asymptotically a precise tradeoff occurs

Ω0.99(ϕn)ωπ−1(ϕn) ≈ 7.47 for large n. (6.21)

The convergence of this uncertainty product is depicted in Fig. 6.56.5, showing
that that the uncertainty product converges to a value of approximately 7.41.
This is in good agreement with our prediction, which was based solely on
inspection of the data points of Fig. 6.46.4.

A different choice of a/T would allow for ϕ1 to reach the lower bound,
which is illustrated in Fig. 6.56.5 by the solid line. It is unclear, however,
whether the asymptotic limit or particular values of the uncertainty product
could be decreased to meet the lower bound.

A general expression for the uncertainty product is obtained immediately
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Figure 6.4: The overall width of state ϕn is depicted for three choices of
N . The numerical calculations show that asymptotically ΩN (ϕn) depends
linearly on n. The dotted line corresponds to Eq. (6.206.20). Observe that
N = 0.25 and N = 0.5 do not make suitable choices according to Eqs. (6.46.4)
and (6.56.5), but are represented in order to illustrate the mathematical aspects
of the overall width.

from Eqs. (6.156.15) and (6.196.19),

ΩN (ϕn)ωM (ϕn) ≈ 2π cN cM for large n . (6.22)

This is the general form of the asymptotic limit of the uncertainty product
for the states ϕn. It remains approximately true for small values of n, but no
definite statement can be made due to the discrete character of the measures
used. It is, in fact, this discreteness that results in the erratic behaviour of
the uncertainty product for small values of n.

6.4 Comparison and conclusion

We now compare the results of the uncertainty investigations of the present
chapter to those of Chapter 55, discussing the similarities and differences
between the two uncertainty formulations. We also address to what extent
the general considerations are met that were discussed in Sec. 4.44.4.
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Figure 6.5: Illustration of the uncertainty product given in Eq. (6.216.21) for
states ϕn. The dotted line represents the lower bound on the uncertainty
product. Compare Fig. 5.65.6, which illustrates the qualitatively similar beha-
viour of the uncertainty product (5.65.6) for large values of n.

The example applications show that both uncertainty formulations yield
qualitatively similar results. This is reassuring, independently confirming
that the relevant physical structure is captured. However, it is not neces-
sarily straightforward to arrive at this conclusion in general terms, because
the two uncertainty formulations appear to be very different. In actual fact,
although implemented differently, the measures used describe very similar
observables. In particular, both uncertainty formulations feature measures
that relate to the width of the fringes. This captures the relevant observable
in accordance with the discussion of Chapter 44 and specifically the conclu-
sions of Sec. 4.44.4; most notably, the fact that there should not be any critical
dependence on diffraction. The particular measures employed, though, are
rather different. The formulation based on Aharonov et al. employs a meas-
ure that corresponds to computing the standard deviation of a single fringe
while neglecting the effective envelope. The formulation due to Uffink and
Hilgevoord is based on the autocorrelation function of the interference wave-
function, and in general features a (possibly negligible) dependence on the
fundamental envelope. Yet these two different implementations yield qualit-
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atively similar results.

The analysis of the quantum states ψn, prepared through uniform il-
lumination of an aperture mask, resulted in qualitatively identical results.
Figures 5.35.3 and 6.36.3 show that both uncertainty products display the same
qualitative behaviour: Starting at a minimal uncertainty product for ψ1, the
uncertainty product converges to some larger, finite value as n increases.
However, the uncertainty formulation due to Uffink and Hilgevoord actually
allows for the lower bound to be reached in the limit of vanishing slit width.
This non-critical dependence on the choice of aperture is actually somewhat
unwanted for purely multislit considerations, because it introduces a depend-
ence on diffraction. The measures used in the uncertainty formulation based
on Aharonov et al. do not depend on the aperture or the related envelope
function of the interference pattern.

The second example application involves quantum states ϕn, which are
characterised by their extended nodes. In this case, for the uncertainty for-
mulation based on Aharonov et al. the uncertainty tradeoff is exact and the
uncertainty product constant across n. For the formulation of uncertainty
due to Uffink and Hilgevoord this is the case only in the limit of large n,
because of the discrete quality of the employed measures. This is illustrated
in Figs. 5.65.6 and 6.56.5. Also note that the measure of fringe width employed by
Uffink and Hilgevoord results in a dependence on the slit width. For most
considerations this dependence may be negligible with regard to numerical
results, yet it poses a qualitative difference. In general, a dependence on
the particular aperture is to be expected for this uncertainty formulation,
although in some cases a particular parameter choice may remove this de-
pendence (as is the case for ψn).

Regarding technical aspects, we found that the formulation of uncer-
tainty due to Uffink and Hilgevoord is computationally more difficult. For
our second example application we resorted to numerical analysis in order to
obtain an approximate expression for the spatial localisation. (The formula-
tion based on the work of Aharonov et al. was not particularly straightfor-
ward to apply to this scenario either, but a satisfying analytical result was
obtained eventually.) This is further complicated by the two degrees of free-
dom, N and M . Uffink and Hilgevoord found that the exact choice of N and
M is not important to the analysis of single- or double-slit experiments—
while adhering to the conditions (6.46.4) and (6.56.5), of course. In the context
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of multislit experiments, however, we found that additional insight may be
required for appropriately choosing (N,M).



Chapter 7

Conclusion

In the preceding chapters a quantum mechanical study of multislit interfer-
ence experiments was presented. The particular focus of this investigation
relates to the compatible and incompatible observables relevant to the given
context and a mathematical description thereof. Chapter 22 comprises the
first part of this investigation, dealing with compatible observables as illus-
trated in an experiment reported in 2007 [33]. Chapters 33 to 66 comprise the
second part, dealing with the incompatibility of certain observations and the
expression of that incompatibility in the form of an uncertainty relation.

More precisely, in Chapter 22 we started from the theoretical results due
to Busch and Lahti and developed a quantum mechanical description of the
compatible observables in multislit interference experiments. While our res-
ults are applicable to all multislit interference experiments and the quantum
states prepared therein, we discussed particularly the modified experimental
setup reported by Afshar et al. in Ref. [33]. The experimental observations
of Afshar et al. demonstrate the possibility of jointly measuring certain in-
formation about the position and the momentum distribution, and match
the quantum mechanical description developed here. The presented ana-
lysis shows that it is appropriate to consider the quantum states prepared in
multislit interference setups as approximations to joint eigenstates of com-
muting functions of position and momentum. In particular, we constructed
and used a class of quantum states which are joint eigenstates of commuting
sets of position and momentum.

After concluding the analysis of compatible observables, we studied those
measurements which are incompatible. In the context of multisite interfer-
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ence experiments Aharonov, Pendleton and Petersen had presented an initial
investigation into quantum uncertainty starting from a very similar math-
ematical structure that we observed in Chapter 22 in relation to compatible
observables. This presented a natural connection to our research and became
a starting point for an investigation on our part, because although Aharonov
et al. had proposed a heuristic argument, without developing the argument
mathematically they could not provide any concrete results. We showed that
their argument can be formalised and indeed leads to a viable uncertainty
relation which expresses a tradeoff between the spatial localisation across the
multislit aperture mask and the width of the fringes of the interference pat-
tern. Developing this idea further, we obtained a refined uncertainty relation
that exhibits the correct asymptotic behaviour in example applications.

Finally, we presented a comparison of this uncertainty formulation with
an alternative uncertainty formulation, developed by Uffink and Hilgevoord,
which is also suitable for the interferometric context. Although the two for-
mulations are conceptually and mathematically very different, we found that
example applications yield qualitatively similar results. This is reassuring,
confirming that the relevant physical tradeoff is independently expressed by
two alternative formulations. We argued that, although technically imple-
mented differently, the two uncertainty formulations implement effectively
similar measures capturing the relevant observables relating to spatial loc-
alisation and fringe width. Most notably, both uncertainty formulations
employ measures relating to the fringe width. Also, neither uncertainty
formulation critically depends on the particular choice of aperture, express-
ing a clear qualitative difference between the phenomena of diffraction and
interference in a quantum mechanical context. (In fact, the uncertainty for-
mulation based on the work of Aharonov et al. is entirely independent of the
choice of aperture.)

In conclusion, the present investigation appears sufficiently self-contained
such that there is no pressing need to pursue further results. However, a tech-
nical manuscript containing certain additional results is currently being pre-
pared [2222]. Considering the fact that the questions addressed here date back
to the advent of quantum mechanics and, in particular, the Bohr-Einstein
debate, it may have proved surprising that interesting quantum mechanics
still remained to be uncovered.



Appendix A

Calculations of Chapter 22
A.1

The discussion of Sec. 2.32.3, and in particular the Eqs. (2.52.5) and (2.62.6) as well as
the explicit construction of Sec. 2.42.4 involves delta functions. Although this
makes for a good heuristic argument, here a different approach is presented
that is mathematically rigorous without going into the theory of distribu-
tions. While similar to the work of Reiter and Thirring, the result here is
more general [2121]. We start by choosing a square-integrable function W with
support strictly within the interval (−T/2, T/2), and define a periodically-
supported function ψ as

ψ(x) =
∞∑

j=−∞
cjW (x− jT ). (A.1)

The terms of this sum are non-overlapping, hence the series converges point-
wise. The coefficients cj are to be determined by further constraints below;
here we note that given the square integrability of W , ψ is square integrable
if and only if the cj are square-summable. This entails that the series also
converges in norm. Note that

supp ψ =
∞∪

j=−∞
supp (W + jT ) . (A.2)

The Fourier transform of ψ(x) can be computed formally and yields

ψ̂(k) =
1√
2π

∫ ∞

−∞

∞∑
j=−∞

cjW (x− jT ) exp (i k x) dx (A.3)

=

∞∑
j=−∞

cj exp (i j T k) Ŵ (k) . (A.4)
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The coefficients cn represent the coefficients of a Fourier series expansion of
a periodic function M̂p with period 2π/T :

M̂p(k) =

∞∑
j=−∞

cj exp (i k j T ) . (A.5)

Let M̂ be a function that is supported inside the interval [−d, d] where
0 < d < π/T . We can then specify M̂p – and hence the coefficients cn – so
that

M̂p(k) =
∞∑

j=−∞
M̂

(
k − 2π

T
j

)
. (A.6)

This function is supported in a periodic set,

supp M̂p ⊆
∞∪

j=−∞

[
2π

T
j − d,

2π

T
j + d

]
. (A.7)

We thus have that
ψ̂(k) = M̂p(k) Ŵ (k) . (A.8)

A simple calculation shows that M̂ is square integrable if and only if the cn
are square summable. As noted above, this condition is equivalent to ψ being
square integrable. With such a choice of M̂ we can also see directly from the
last formula that ψ̂ is square integrable, in line with the Fourier-Plancherel
theorem.

A.2

The relation Eq. (2.42.4) may be used to define a wavefunction ϕ via Eqs. (2.52.5),
(2.62.6) for square-integrable W,M if W vanishes outside an interval of length
strictly less than T , because then the square-integrability condition is met,
i.e. if the L2-norm of ||ϕ|| is finite:

||ϕ|| =
∫ ∞

−∞
|W ∗ (XT ·M)(x)|2 dx (A.9)

=

∫
W ∗

( ∞∑
j=−∞

δ((·)− jT )M

)
(x)W ∗

( ∞∑
j′=−∞

δ((·)− j′T )M

)
(x) dx

(A.10)
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=

∫
W ∗

(∑
j

δ((·)− jT )M(jT )

)
(x) . . . (A.11)

. . .W ∗
(∑

j′

δ((·)− j′T )M(j′T )

)
(x) dx

(A.12)

=

∫ ∑
j

W (x− jT )M(jT )
∑
j′

W (x− j′T )M(j′T ) dx (A.13)

=
∑
j

|M(jT )|2
∫

|W (x− jT )|2 dx = ∥W∥2
∑
j

|M(jT )|2 (A.14)

The last line is obtained due to the localisation property of the function
W , which entails that W (x− jT )W (x − j′T ) = 0 if j ̸= j′. The square
integrability of the Fourier transform ψ̂ is ensured by the Fourier-Plancherel
theorem.
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Appendix B

Calculations of Chapter 33
B.1

Here we show that the value of ∆(Pmod, ψn) is independent of the funda-
mental envelope, as was claimed in Eq. (3.263.26).

∆(Pmod, ψn)
2 =

∫ ∞

−∞
Pmod(k)

2 ψn(k)
2 dk (B.1)

We perform the integration using the dimensionless variable κ, which was
introduced in Eq. (1.351.35),

=
23a

T 3nπ

∫ ∞

−∞
Pmod(κ)

2 sinc
( a
T
κ
)2
fn(κ)

2 dκ , (B.2)

where we are using the shorthand fn(κ), which was introduced in Eq. (1.341.34).
This integral may be decomposed into an infinite sum of integrals over the
finite interval K,

=
23a

T 3nπ

∞∑
j=−∞

∫ (
j+

1
2

)
π(

j−1
2

)
π

(κ− jπ)2 sinc
( a
T
κ
)2
fn(κ)

2 dκ . (B.3)

We now substitute u = κ − jπ and immediately exploit the periodicity of
the function fn, i.e. fn, fn(κ+ jπ)2 = fn(κ)

2,

=
23a

T 3nπ

∫ π/2

−π/2
u2 fn(u)

2
∞∑

j=−∞
sinc

( a
T
(u+ jπ)

)2
du. (B.4)

The infinite series can be evaluated to T/a using Eq. (11) of Ref. [3232]. Note,
however, that in the derivation provided in Ref. [3434] a factor of 1/α missing
in both the integral term and the series in Eq. (1). Using this result on
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infinite series, we obtain

∆(Pmod, ψn)
2 =

23a

T 3nπ

T

a

∫ π/2

−π/2
u2 fn(u)

2 du (B.5)

=
23

T 2nπ

∫ π/2

−π/2
u2 fn(u)

2 du. (B.6)

The final expression is indeed equal to Eq. (3.263.26).

B.2

We show here that ∆(Pmod, ψn) in Eq. (3.283.28) indeed asymptotically goes as
1/

√
n. We use the result of Appendix B.1B.1 in order to simplify the necessary

integration, which is the same as in Eq. (3.273.27), but for general m. We
calculate

∆(Pmod, ψn)
2 =

2

nK

(
2

T

)3 ∫ π/2

−π/2
κ2 fn(κ)

2 dκ (B.7)

=
8

nπT 2

∫ π/2

−π/2
κ2

(
n∑
j=1

cos (2j − 1)κ

)2

dκ. (B.8)

We are again using the dimensionless variable κ. Note that the infinite sum
can be evaluated and the square of the sin functions reduced using the know
identity (sinx)2 = (1− cos 2x)/2. Hence we obtain(

n∑
j=1

cos (2j − 1)κ

)2

=
1

4

(
sin 2nκ

sinκ

)2

(B.9)

=
1

4

1− cos 4nκ

1− cos 2κ
. (B.10)

The standard deviation of the first term can be computed analytically∫ π/2

−π/2

κ2

1− cos 2κ
dκ = π ln 2 , (B.11)

whereas the second term vanishes in the asymptotic limit,

lim
n→∞

∫ π/2

−π/2

κ2

1− cos 2κ
cos 4nκ dκ = 0 , (B.12)
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by the Riemann-Lebesgue lemma. Hence, we obtain

∆(Pmod, ψn) ≈
√
2 ln 2

T

1√
n

for large n, (B.13)

analytically confirming the asymptotic behaviour of Eq. (3.283.28), which was
suggested by the numerical investigation depicted in Figs. 3.23.2 and 3.33.3.
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Appendix C

Calculations of Chapter 55
C.1

The calculation provided here demonstrates that ∆(Pmod(n), ψn) is not only
independent of the fundamental envelope, which was shown in Appendix B.1B.1,
but is even independent of the effective envelope. The particular calculation
included here is for slit number m = 2d, because this particular choice allows
exploiting product form. The general calculation is provided in the following
section, Appendix C.2C.2. We start with an expression similar to Eq. (B.7B.7), but
using Pmod(n) instead of Pmod.

∆(Pmod(n), ψn)
2 =

2

nK

∫ K/2

−K/2
Pmod(n, k)

2 fn(k)
2 dk (C.1)

We restrict ourselves to n = 2d−1 and substitute a product expansion

fn(k) = n

d−1∏
j=0

cos 2j
T

2
k (C.2)

in place of the sum, giving

=
2

nK
n2
∫ K/2

−K/2
Pmod(n, k)

2
d−1∏
j=0

cos

(
2j
T

2
k

)2

dk (C.3)

Using the identity cos(x)2 = (1+cos 2x)/2, it follows that each of the cosines
in the product contributes a factor of 1/2 from j = 0 to j = d − 2. The
resulting integrations including the cos 2x term are computed over multiples
of the periods of the respective cosine and do not contribute. We proceed
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explicitly with the case j = 0,

=
2n

K

∫ K/2

−K/2
Pmod(n, k)

2 1

2

[
1 + cos 2

T

2
k

] d−1∏
j=1

cos

(
2j
T

2
k

)2

dk (C.4)

=
2

Kn

1

2

∫ K/2

−K/2
Pmod(n, k)

2
d−1∏
j=1

cos

(
2j
T

2
k

)2

dk (C.5)

Repeating this another d− 2 times contributes (1/2)d−2,

=
2

Kn

1

2d−1

∫ K/2

−K/2
Pmod(n, k)

2 cos

(
2d−1T

2
k

)2

dk (C.6)

=
2

Kn

1

n

∫ K/2

−K/2
Pmod(n, k)

2 cos

(
n
T

2
k

)2

dk (C.7)

We immediately exploit the periodicity of the resulting function, substitute
nT/2 = π/Kn and use Pmod(n, k)

2 = k2 (on Kn),

=
2

Kn

1

n
n

∫ Kn/2

−Kn/2
Pmod(n, k)

2 cos

(
n
T

2
k

)2

dk (C.8)

=
2

Kn

∫ Kn/2

−Kn/2
k2 cos

(
π

Kn
k

)2

dk (C.9)

The final expression is indeed equal to Eq. (5.45.4), although here we only
proved the special case n = 2d−1.

C.2

The calculation provided here demonstrates that ∆(Pmod(n), ψn) is not only
independent of the fundamental envelope, as was shown in Appendix B.1B.1,
but is even independent of the effective envelope. This is shown here for the
general case, i.e. all even slit numbers m = 2n. This calculation is rather
tedious and only included for the sake of completeness. The calculation
proceeds by considering two cases independently. Depending on whether
n = m/2 is even or odd, the function fn is decomposed differently.
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C.2.1 First case: even n

The function fn is now expressed in a suitable form under the assumption
that n is an even integer, then we proceed with the calculation of the standard
deviation of Pmod(n).

fn(k) =

n∑
j=1

cos (2j − 1)
πk

K
(C.10)

= cos
πk

K
+ cos 3

πk

K
+ · · ·+ cos (2n− 3)

πk

K
+ cos (2n− 1)

πk

K

We now pair the cosines as follows and use a trigonometric identity, Eq. (4.84.8),
to express each of the sums of cosines as a product,

=

[
cos

πk

K
+ cos (2n− 1)

πk

K

]
+

[
cos 3

πk

K
+ cos (2n− 3)

πk

K

]
+ . . . (C.11)

= 2

[
cosn

πk

K
cos (n− 1)

πk

K

]
+ 2

[
cosn

πk

K
cos (n− 3)

πk

K

]
+ . . . (C.12)

Notice that a cosine with an n in the argument appears in each of the square
brackets. Removing this cosine, the remaining terms can be expressed in
terms of a sum,

= 2 cos
πk

Kn

n/2∑
j=1

cos (2j − 1)
πk

K
(C.13)

(Note that in the final expression we used K/n = Kn.) Notice in particular
the final expression containing n/2, which is only an integer for even n. We
proceed to calculate the square of the final expression.2 cos πk

Kn

n/2∑
j=1

cos (2j − 1)
π

K
k

2

= 4 cos
πk

Kn

2

n/2∑
j=1

cos (2j − 1)
π

K
k

2

(C.14)

= 4 cos

(
πk

Kn

)2 n/2∑
j=1

cos (2j − 1)
π

K
k
2

(C.15)

= 2 cos

(
πk

Kn

)2 n/2∑
j=1

[
1 + cos (2j − 1)

2πk

K

]
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We now proceed with the actual calculation of the standard deviation of
Pmod(n).

∆(Pmod, ψn)
2 =

4

2nK

∫ K/2

−K/2
Pmod(n, k)

2 fn(k)
2 dk (C.16)

=
8

nK

∫ K/2

−K/2
Pmod(n, k)

2 cos
πk

Kn

2

n/2∑
j=1

cos (2j − 1)
π

K
k

2

dk

The cross terms of the cosine sum integrate to zero, while the sum over
squared cosines can be simplified,

=
4

nK

∫ K/2

−K/2
Pmod(n, k)

2 cos

(
πk

Kn

)2 n/2∑
j=1

[
1 + cos (2j − 1)

2πk

K

]
dk (C.17)

=
4

nK

∫ K/2

−K/2
Pmod(n, k)

2 cos

(
πk

Kn

)2 n/2∑
j=1

1 dk (C.18)

The sum is easily evaluated,
∑n/2

j=1 1 = n/2, giving

=
2

K

∫ K/2

−K/2
Pmod(n, k)

2 cos

(
πk

Kn

)2

dk (C.19)

The integration can now be restricted to an interval Kn, exploiting the peri-
odicity of both integrands,

=
2

K
n

∫ Kn/2

−Kn/2
k2 cos

(
π

Kn
k

)2

dk =
2

Kn

∫ Kn/2

−Kn/2
k2 cos

(
π

Kn
k

)2

dk (C.20)

The final expression is indeed to Eq. (5.55.5).

C.2.2 Second case: odd n

The function fn is now expressed in a suitable form under the assumption
that n is an odd integer, then we proceed with the calculation of the standard
deviation of Pmod(n).

fn(k) =
n∑
j=1

cos
(
(2j − 1)

π

K
k
)

(C.21)

= cos
π

K
k + cos 3

π

K
k + · · ·+ cosn

π

K
k + · · ·+ cos (2n− 1)

π

K
k
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We now pair the cosines up and use a trigonometric identity that turns sums
of cosines into products of cosines,

=

[
cos

πk

K
+ cos (2n− 1)

πk

K

]
+ . . . (C.22)

· · ·+
[
cos (n− 1)

πk

K
+ cos (n+ 1)

πk

K

]
+ cos

πk

Kn

= 2

[
cosn

πk

K
cos (n− 1)

πk

K

]
+ · · ·+ 2

[
cosn

πk

K
cos

πk

K

]
+ cos

πk

Kn
(C.23)

Notice that a cosine with an n in the argument appears in each of the square
brackets. This naturally simplifies the expression,

= 2 cosn
πk

K

[
cos (n− 1)

πk

K
+ · · ·+ cos (n− n+ 1)

πk

K

]
+ cos

πk

Kn
(C.24)

= cos
πk

Kn

n∑
j=1

cos (n− (2j − 1))
πk

K
(C.25)

= cos
πk

Kn

1 + 2

(n−1)/2∑
j=1

cos 2j
πk

K

 (C.26)

We now proceed to calculate the standard deviation of Pmod(n) in state ψn,
where n is assumed to be odd.

∆(Pmod, ψn)
2 =

2

nK

∫ K/2

−K/2
Pmod(n, k)

2 fn(k)
2 dk (C.27)

=
2

nK

∫
Pmod(n, k)

2

(
cos

πk

Kn

[
1 + 2

(n−1)/2∑
j=1

cos 2j
πk

K

])2

dk

The cross terms of the cosines again integrate to zero, the remaining squares
of cosines are expressed using a trigonometric identity,

=
2

nK

∫
Pmod(n, k)

2 cos

(
πk

Kn

)2
1 + 4

(n−1)/2∑
j=1

cos
(
2j
π

K
k
)2 dk (C.28)

=
2

nK

∫ K/2

−K/2
Pmod(n, k)

2 cos

(
πk

Kn

)2
1 + 2

(n−1)/2∑
j=1

(
1 + cos 4j

π

K
k
) dk

=
2

nK

∫
Pmod(n, k)

2 cos

(
πk

Kn

)2
1 + 2

(n−1)/2∑
j=1

1

 dk (C.29)
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The sum is easily evaluated to
∑(n−1)/2

j=1 1 = (n− 1)/2,

=
2

nK
n

∫ K/2

−K/2
Pmod(n, k)

2 cos

(
πk

Kn

)2

dk (C.30)

=
2

K
n

∫ Kn/2

−Kn/2
k2 cos

(
πk

Kn

)2

dk =
2

Kn

∫ Kn/2

−Kn/2
k2 cos

(
π

Kn
k

)2

dk (C.31)

The final expression is obtained by reducing the interval over which to eval-
uate the integral to the minimal period Kn, resulting in a factor of n that
is placed in front of the integral. The final expression is indeed to Eq. (5.55.5).
This concludes the proof for all even m.

C.3

Here we show the validity of Eq. (5.175.17). In order to establish the claim, we
use show the equivalence of Eqs. (5.165.16) and (5.155.15), i.e. we confirm that

∞∑
i=−∞

i2 Pj −

( ∞∑
i=−∞

iPj

)2

=

∞∑
i=−∞

(i+ 1)2 Pj . (C.32)

We do so using the following two results.

∞∑
i=−∞

iPj =
−1∑

i=−∞
iPj +

∞∑
i=0

iPj =
∞∑
i=1

(−i)Pi−1 +

∞∑
i=0

iPj (C.33)

= −
∞∑
j=0

(j + 1)Pj +
∞∑
i=0

iPj =
∞∑
i=0

[i− (i+ 1)]Pi = −1

2
(C.34)

This result is obtained assuming symmetric probability distributions, i.e.
|ψ(x)| = |ψ(−x)|, which entails Pj = P−i−1. A very similar calculation
yields

∞∑
i=−∞

i2 Pj = 2

∞∑
i=0

i2 Pj −
1

2
(C.35)

Hence the left-hand side of Eq. (C.32C.32) becomes

∞∑
i=−∞

i2 Pj −

( ∞∑
i=−∞

iPj

)2

= 2

∞∑
i=0

i2 Pj −
3

4
, (C.36)
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whereas the right-hand side of Eq. (C.32C.32) becomes

∞∑
i=−∞

(i+ 1)2 Pj = 2

∞∑
i=0

i2 Pj −
1

2
+

(
−1

2

)2

+
1

4
(C.37)

= 2

∞∑
i=0

i2 Pj −
3

4
. (C.38)

This shows the claimed proportionality of Eqs. (5.155.15) and (5.165.16). Note that
we assume nothing about the illumination of the aperture, only that it be
symmetrical about the origin.

C.4

Here we show how Eq. (5.195.19) is obtained. In order to simplify notation
throughout the following calculation, we denote the limits of integration
using α = jT − a/2 and β = jT + a/2 and proceed to calculate

∆(Q,Ψ) =

m∑
j=1

∫ β

α

x2Pj
a

dx−

(
m∑
j=1

∫ β

α

xPj
a

dx

)2

(C.39)

=
m∑
j=1

Pj

∫ β

α

x2

a
dx−

(
m∑
j=1

Pj

∫ β

α

x

a
dx

)2

(C.40)

=

m∑
j=1

Pj
( a
12

+ j2T 2
)
−

(
m∑
j=1

PjjT

)2

(C.41)

=

m∑
j=1

Pj
a

12
+

m∑
j=1

Pjj
2T 2 −

(
m∑
j=1

PjjT

)2

(C.42)

Here we use the fact that the probabilities Pj sum to unity in order to
simplify the first term. We obtain

=
a

12
+

m∑
j=1

Pjj
2T 2 −

 m∑
j=1

PjjT

2

(C.43)

=
a

12
+ ∆(Q,Ψδ), (C.44)

which is the desired result.
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Appendix D

Calculations of Chapter 66
D.1

Here we calculate the ωM (ψn) of Eq. (6.86.8). We proceed to calculate the
autocorrelation function of ψ̂n, using the dimensionless variable κ = Tk/2.∫ ∞

−∞
ψ̂n(k)ψ̂n(k − s) dk =

2a

nTπ

∫
sinc

(aκ
T

)
sinc

( a
T
(κ− s)

)
fn(κ) fn(κ− s) dκ (D.1)

where we are using the shorthand fn(k), which was introduced in Eq. (1.341.34),
and the dimensionless variable κ = Tk/2. This integral may be decomposed
into an infinite sum of integrals over the finite interval K(= π in units of κ),

=
2a

nTπ

∞∑
j=−∞

∫ (
j+

1
2

)
π(

j−1
2

)
π

sinc
( a
T
κ
)
sinc

( a
T
(κ− s)

)
fn(κ) fn(κ− s) dκ .

(D.2)

We now substitute u = κ− jπ and immediately exploit the periodicity of fn,
i.e. that fn(κ+ jπ)2 = fn(κ)

2,

=
2a

nTπ

∞∑
j=−∞

∫ π
2

−π
2

sinc
( a
T
(u+ jπ)

)
sinc

( a
T
(u+ jπ − s)

)
fn(u)fn(u− s) du

=
2a

nTπ

∫ π
2

−π
2

∞∑
j=−∞

sinc
( a
T
(u+ jπ)

)
sinc

( a
T
(u+ jπ − s)

)
fn(u)fn(u− s) du

The sum of the two sinc functions can be evaluated by means of general
result adapted to the particular problem: According to Eq. (13) of Ref. [3434],

∞∑
j=−∞

sinc(α (v + j)) sinc(α(w + j)) (D.3)
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=

∫ ∞

−∞
sinc(α (v + x)) sinc(α(w + x)) dx (D.4)

=
π

α
sinc(α(v − w)) (D.5)

The integration of the penultimate line can be evaluated to yield the final
expression. Using the definitions

v = u/π, w = (u− s)/π, α = aπ/T , (D.6)

we return to the expression that is to be evaluated and obtain

=
2a

nTπ

T

a
sinc

( a
T
s
)∫ π/2

−π/2
fn(u)fn(u− s) du (D.7)

=
2

nπ
sinc

( a
T
s
)∫ π/2

−π/2
fn(u)fn(u− s) du (D.8)

=
2

nπ
sinc

( a
T
s
)π
2
fn(s) =

1

n
sinc

( a
T
s
)
fn(s) (D.9)

The special case: when fn(s) = 0, there is no dependence on a. In regular
units (k) this is the case for s = π/nT .

D.2

The calculation of ωM (ϕn) in Eq. (6.136.13) proceeds identically to the calcula-
tion provided in Appendix D.1D.1, the only difference being that instead of fn
we consider Hn,

Ĥn(k) =
∞∑

j=−∞
ĥn(k − jK) . (D.10)

We calculate∫ ∞

−∞
ϕ̂n(k)ϕ̂n(k − s) dk (D.11)

=
2an

π

∫
sinc

(
ak

2

)
sinc

(a
2
(k − s)

)
Hn(k)Hn(k − s) dk.

(All normalisation factors are removed from the integral, including those of
Hn.) As previously, this integral may be decomposed into an infinite sum of
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integrals over the finite interval K,

=
2an

π

∞∑
j=−∞

∫ (
j+

1
2

)
K(

j−1
2

)
K

sinc
(a
2
k
)
sinc

(a
2
(k − s)

)
Hn(k)Hn(k − s) dk.

(D.12)

Upon substituting u = k − jK, the periodicity of Hn can be exploited, i.e.
we use Hn(k + jK)2 = Hn(k)

2,

=
2an

π

∑
j

∫ K
2

−K
2

sinc
(a
2
(u+ jK)

)
sinc

(a
2
(u+ jK − s)

)
Hn(u)Hn(u− s) du

=
2an

π

∫ K
2

−K
2

∑
j

sinc
(a
2
(u+ jK)

)
sinc

(a
2
(u+ jK − s)

)
Hn(u)Hn(u− s) du

The sum of the two sinc functions is evaluated as in Appendix D.1D.1. We
arrive at

=
2an

π

T

a
sinc

(aπ
T

s

K

)∫ K/2

−K/2
Hn(u)Hn(u− s) du (D.13)

=
2nT

π
sinc

(a
2
s
)∫ Kn/2

−Kn/2
Hn(u)Hn(u− s) du (D.14)

=
1

π
sinc

(a
2
s
)[(

π − n
T

2
s

)
cosn

T

2
s+ sinn

T

2
s

]
(D.15)

= sinc
(a
2
s
)[(

1− s

Kn

)
cosπ

s

Kn
+

1

π
sinπ

s

Kn

]
(D.16)

This is the desired expression.
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Appendix E

A mathematical observation
This part is somewhat different in its scope, dealing with an interesting math-
ematical observation. While this observation would serve as an alternative
proof for Eq. (4.134.13), the flavour of this chapter is rather mathematical and
the style different in accordance with the different subject matter.

E.1 Powers of 2 and odd numbers

Proposition

Every (positive) odd integer up to 2d, with d ∈ N, can be expressed uniquely
in the form

2d−1 + cd−2 2
d−2 + cd−3 2

d−3 + · · ·+ c0 2
0 (E.1)

with a particular set of coefficients cn that are either −1 or +1.

Proof

This is shown easily using

2 cos(A) cos(B) = cos(A−B) + cos(A+B)

1. Uniqueness: Each combination of coefficients in Eq. (E.1E.1) results in
a unique number. Assume to the contrary that there are two linear
combinations that give the same odd number.

2d−1 +

d−2∑
i=0

ci 2
i = 2d−1 +

d−2∑
j=0

c′j 2
j

Not all coefficients can be different, because then one number would
be the negative of the other. Cancel all the terms that are equal.
Arrange the remaining terms so that only positive terms appear by
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moving the negative ones to the other side; the resulting sets of terms
are denoted N and M . Any such term will have a coefficient of 2,
which is henceforth absorbed into the exponent.∑

n∈N
2n+1 =

∑
m∈M

2m+1

Divide by the smallest term. Without loss of generality it is assumed
here that the smallest term occurs in the set N .

1 +
∑

n∈N/min(N)

2n−min(N)+1 =
∑
m∈M

2m−min(N)

That leaves a term +1 on the LHS, making the LHS an odd number.
On the other hand, the RHS remains an even number. Contradiction.

2. Oddness: The linear combination of Eq. (E.1E.1) results in odd integers
only. All terms are even – and hence their sum is even – apart from
c0 2

0, which is +1 or −1. Hence every linear combination gives an odd
number.

3. Onto: There are d − 1 coefficients, which can take two values. Hence
there are 2d−1 linear combinations, which fit the 2d−1 odd numbers up
to 2d by using the previous results.

Hence there exists a bijection between the odd integers up to 2d and the
linear combinations of powers of two as specified in Eq. (E.1E.1).

E.2 A construction

Observing a connection with binary numbers, it is possible to construct the
linear combinations of Eq. (E.1E.1) starting from 1 to 2d in a manner very
similar to constructing the binary expansions. Furthermore, an algorithm is
provided for constructing a particular number without the entire construc-
tion procedure.

Consider a d = 5 system, i.e. m = 2d = 32. In Table E.1E.1, a list the
odd numbers less than 2d, their binary form and their linear combination
coefficients is provided.

Starting at 1 and building up the binary form actually corresponds to
the same iterative procedure used for obtaining the coefficients, only that the
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Table E.1: An alternative representation of odd numbers
number binary coefficients

01 00001 +−−−−
03 00011 +−−−+
05 00101 +−−+−
07 00111 +−−++
09 01001 +−+−−
11 01011 +−+−+
13 01101 +−++−
15 01111 +−+++
17 10001 ++−−−
19 10011 ++−−+
21 10101 ++−+−
23 10111 ++−++
25 11001 +++−−
27 11011 +++−+
29 11101 ++++−
31 11111 +++++

initial form for the number 1 is different. Furthermore, it is possible to obtain
any single coefficient expansion without performing the entire iteration by
means of directly translating a single binary expansion into a coefficient
expansion. Working from left to right of the binary expansion, use the
following algorithm: If the current digit is a

• 1, this translates into a +

• 0, move to the next digit until the current digit is a 1, write 0 . . . 01 as
+− · · ·−

Then move forward by one digit and repeat the same procedure. An example,
the binary expansion 0001 is translated into +−−−.
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Appendix F

Numerical calculations
This chapter contains the Python code used to perform the numerical calcu-
lations referenced throughout the present text. This code is neither particu-
larly sophisticated nor pleasant to read. It is, however, possible that others
might find the availability of it useful.

The programming language Python was used, as it seems to offer an
excellent compromise between convenience and performance. This is partic-
ularly true of the Enthought distribution of Python, provided through an
academic licence, as it includes all the necessary software implemented in a
single package.
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F.1 The file GlobalDef.py

The file “GlobalDef.py” contains the values of important variables. These
values of these variables are stored in a single location so that they can be
accessed easily and changed conveniently.

1 from numpy import savetxt

2 from os.path import expanduser

3
4 d=10 # max value of d (as in m=2^d)

5 T=2 # slit separation

6 a=0.2 # slit width

7 kmax =5.0*10**3 # half the range of k

8 samps =2**20 # number of sample points

9 dk=2* kmax/samps # spacing of sample points

10
11 GlobalDef = [d,T,a,samps ,kmax ,dk]

12
13 routeOut=expanduser("~/ Documents/Python/data/...

...GlobalDef.txt")

14 savetxt(routeOut ,GlobalDef)



F.2. CONSTRUCTING WAVEFUNCTIONS ψ̂n(K) 111

F.2 Constructing wavefunctions ψ̂n(k)

The momentum-space wavefunctions ψ̂n(k) are constructed and saved for
further processing.

1 from numpy import linspace ,sinc ,sqrt ,cos ,savetxt ,...

...loadtxt

2 from os.path import expanduser

3 from math import pi

4
5 home = expanduser("~/ Documents/Python/data/")

6 routeIn = loadtxt("".join([home ,"GlobalDef.txt"]))

7 [d,T,a,samples ,kmax ,dk] = routeIn

8 d=int(d)

9 samps=int(samples)

10 axis=linspace(-kmax ,kmax ,samps)

11
12 def psin(k,d): # This is a recursive function.

13 if d == 0:

14 return sqrt(a/(pi*T))*sinc((a/T)*k/pi)

15 else:

16 return sqrt (2)*cos ((2**(d-1))*k)*psin(k,d...

...-1)

17
18 for j in range(1,d+1):

19 routeOut="".join([home ,"Int_prod_",str(j),"....

...txt"])

20 savetxt(routeOut ,psin(axis ,j))
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F.3 Constructing wavefunctions ϕn(k)

The momentum-space wavefunctions ϕ̂n(k) are constructed and saved for
further processing.

1 from numpy import linspace ,sinc ,sqrt ,cos ,savetxt ,...

...loadtxt ,array

2 from os.path import expanduser

3 from math import pi

4 from scipy.integrate import simps

5
6 home = expanduser("~/ Documents/Python/data/")

7 routeIn=loadtxt("".join([home ,"GlobalDef.txt"]))

8 [d,T,a,samples ,kmax ,dk] = routeIn

9 d=int(d)

10 samps=int(samples)

11 axis=linspace(-kmax ,kmax ,samps)

12 K=2*pi/T

13
14 def env(k): # the fundamental envelope

15 return sinc((a/T)*k/pi)

16
17 counter =1

18 for b in [2**(-j) for j in range(d)]:

19 data =[]

20 for p in axis:

21 if cos(p) <0:

22 c=-1

23 else:

24 c=1

25 if p%K<K/2*b:

26 data +=[c*cos(p%K/b)]

27 elif p%K>=K-K/2*b:

28 data +=[c*cos((p%K/(1.0*b)-K/(1.0*b)))]

29 else:

30 data +=[0]

31 data2=array(data)
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32 data2*=env(axis)

33 norm=sqrt(simps(data2**2,dx=dk))

34 data2/=norm

35 routeOut="".join([home ,"Int_trig_",str(counter...

...),".txt"])

36 savetxt(routeOut ,data2)

37 counter +=1
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F.4 Computing ∆(Pmod(n), ψn) and ∆(Pmod, ψn)

The standard deviation of the operators Pmod(n) and Pmod in state ψn is
calculated and saved.

1 from numpy import linspace ,sinc ,sqrt ,cos ,savetxt ,...

...loadtxt

2 from os.path import expanduser

3 from math import pi

4 from scipy.signal import sawtooth

5 from scipy.integrate import simps

6 home = expanduser("~/ Documents/Python/data/")

7 routeIn=loadtxt("".join([home ,"GlobalDef.txt"]))

8 [d,T,a,samples ,kmax ,dk] = routeIn

9 d=int(d)

10 samps=int(samples)

11 axis=linspace(-kmax ,kmax ,samps)

12
13 def psin(k,d):

14 if d == 0:

15 return sqrt(a/(pi*T))*sinc((a/T)*k/pi)

16 else:

17 return sqrt (2)*cos ((2**(d-1))*k)*psin(k,d...

...-1)

18 def saws(k,d): # the operator P_mod(n)

19 return pi/2**(d-1)/2* sawtooth (2**(d-1) *2*(k-pi...

.../2/2**(d-1)))

20
21 resAda = [[j,sqrt(simps(psin(axis ,j)**2* saws(axis ,...

...j)**2,dx=dk))] for j in range(1,d+1)]

22 resReg = [[j,sqrt(simps(psin(axis ,j)**2* saws(axis...

...,1)**2,dx=dk))] for j in range(1,d+1)]

23
24 routeOutReg = "".join([home ,"Pmod_prod_reg.txt"])

25 savetxt(routeOutReg , resReg)

26 routeOutAda = "".join([home ,"Pmod_prod_ada.txt"])

27 savetxt(routeOutAda , resAda)
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F.5 Computing ∆(Pmod, ϕn)

The standard deviation of the operator Pmod in state ϕn is calculated and
saved.

1 from numpy import linspace ,sqrt ,savetxt ,loadtxt

2 from os.path import expanduser

3 from math import pi

4 from scipy.signal import sawtooth

5 from scipy.integrate import simps

6
7 home = expanduser("~/ Documents/Python/data/")

8 routeIn=loadtxt("".join([home ,"GlobalDef.txt"]))

9 [d,T,a,samples ,kmax ,dk] = routeIn

10 d=int(d)

11 samps=int(samples)

12 axis=linspace(-kmax ,kmax ,samps)

13
14 def saws(k,d):

15 return pi/2**(d-1)/2* sawtooth (2**(d-1) *2*(k-pi...

.../2/2**(d-1)))

16
17 FineStructure =[]

18
19 for j in range(1,d+1):

20 routeIn="".join([home ,"Int_trig_",str(j),".txt...

..."])

21 data = loadtxt(routeIn)**2

22 FineStructure.append ([j,sqrt(simps(data*saws(...

...axis ,1)**2,dx=dk))])

23
24 routeOutReg = "".join([home ,"Pmod_trig.txt"])

25 savetxt(routeOutReg , FineStructure)
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F.6 Computing ωM(ψn) and ωM(ϕn)

The mean fringe widths of the states ψn and ϕn are computed and saved.

1 from numpy import loadtxt , savetxt , linspace

2 from math import pi

3 from os.path import expanduser

4 from scipy.integrate import simps

5
6 home = expanduser("~/ Documents/Python/data/")

7 routeIn=loadtxt("".join([home ,"GlobalDef.txt"]))

8 [d,T,a,samples ,kmax ,dk] = routeIn

9 samps=int(samples)

10 d=int(d)

11 axis=linspace(-kmax ,kmax ,samps)

12
13 MaxiIntFS = pi/2

14 IntFSstep = 15

15
16 pAxisShort = linspace(-kmax ,kmax ,samps)[samps /2:]

17
18 for case in [’prod’,’trig’]:

19 for j in range(1,d+1):

20 routeIn="".join([home ,"Int_",str(case),"_"...

...,str(j),".txt"])

21 routeOutProd = "".join([home ,"Int_",str(...

...case),"_mpw_",str(j),".txt"])

22 data = loadtxt(routeIn)

23 wlist = []

24 prev =10

25 for n in range(0,int(MaxiIntFS/dk),...

...IntFSstep):

26 value = simps(data[(n+1):]. conjugate ()...

...*data[:-(n+1)],dx=dk)

27 if prev <=abs(value):

28 break
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29 wlist.append ([ pAxisShort [(n+1)],abs(...

...value)])

30 prev=abs(value)

31 savetxt(routeOutProd , wlist)
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F.7 Performing the Fourier transform of ψ̂n(k) and
ϕ̂n(k)

The inverse Fourier transform of the wavefunctions ψ̂n(k) and ϕ̂n(k) is com-
puted and saved.

1 from numpy.fft import rfft ,fftfreq ,fftshift

2 from numpy import loadtxt , savetxt

3 from math import sqrt ,pi

4 from os.path import expanduser

5 from scipy.integrate import simps

6 home = expanduser("~/ Documents/Python/data/")

7
8 routeIn=loadtxt("".join([home ,"GlobalDef.txt"]))

9 [d,T,a,samples ,kmax ,dk] = routeIn

10 d=int(d)

11 samps=int(samples)

12 N=int(samples)

13 xAxis = fftshift(fftfreq(samps ,dk))*2*pi

14 dX=xAxis[samples /2+1]

15
16 for case in ["prod","trig"]:

17 for j in range(1,d+1):

18 routeIn="".join([home ,"Int_",str(case),"_"...

...,str(j),".txt"])

19 routeOut="".join([home ,"Img_",str(case),"_...

...",str(j),".txt"])

20 dataIN = loadtxt(routeIn)

21 dataFT = rfft(dataIN)

22 dataFT /= sqrt(simps(abs(dataFT)**2,dx=dX)...

...)*sqrt (2)

23 savetxt(routeOut ,dataFT.view(float))
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F.8 Computing ∆(QT , ψn) and ∆(QT , ϕn)

The standard deviation of the operator QT in states ψn and ϕn is calculated
and saved.

1 from numpy import loadtxt ,abs ,floor ,savetxt ,...

...concatenate

2 from os.path import expanduser

3 from numpy.fft import fftfreq , fftshift

4 from math import pi,sqrt

5 from scipy.integrate import simps

6
7 home = expanduser("~/ Documents/Python/data/")

8 routeIn=loadtxt("".join([home ,"GlobalDef.txt"]))

9 [d,T,a,samples ,kmax ,dk] = routeIn

10 d=int(d)

11
12 samples = int(samples)

13 xAxis = fftshift(fftfreq(samples ,dk))*2*pi

14 stairs = 2*floor(xAxis /2)

15 stairs2=stairs **2

16
17 for case in [’prod’,’trig’]:

18 QT=[]

19 for j in range (1,1+d):

20 routeInProd = "".join([home ,"Img_",str(...

...case),"_",str(j),".txt"])

21 temp=abs(loadtxt(routeInProd).view(complex...

...))**2

22 data=concatenate ((temp [1: -1][:: -1]....

...conjugate (),temp))

23 data/=simps(data ,dx=dk)

24 QT.append ([j,sqrt(simps(data*stairs2 ,dx=dk...

...)-simps(data*stairs ,dx=dk)**2)])

25 routeOut="".join([home ,"QT_",str(case),".txt"...

...])

26 savetxt(routeOut ,QT)
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F.9 Computing ΩN(ψn) and ΩN(ϕn)

The overall widths of states ψn and ϕn are computed and saved.

1 from numpy import loadtxt , savetxt , concatenate ,...

...linspace

2 from math import pi

3 from numpy.fft import fftfreq , fftshift

4 from os.path import expanduser

5 from scipy.integrate import simps

6
7 home = expanduser("~/ Documents/Python/data/")

8 routeIn=loadtxt("".join([home ,"GlobalDef.txt"]))

9 [d,T,a,samples ,kmax ,dk] = routeIn

10 samps=int(samples)

11 d=int(d)

12
13 axis=linspace(-kmax ,kmax ,samps)

14 MaxiImgOWliste = [5 ,20 ,20 ,20 ,20 ,30 ,30 ,30 ,100 ,150]

15 ImgOWstep = 10

16 xAxis = fftshift(fftfreq(samps ,dk)*2*pi)

17 dX=xAxis[samples /2+1]

18
19 p1=samps/2-1

20 p2=samps /2-1+int (2/2/dX)

21
22 def SR3(liste):

23 prev=0

24 OWs=[]

25 for i in range(1,int(MaxiImgOW /2/dX),ImgOWstep...

...):

26 ow1=simps(liste[p1-i:p1+i],dx=dX)

27 ow2=simps(liste[p2-i:p2+i],dx=dX)

28 if ow1 >ow2:

29 if ow1 -prev >0.01:

30 OWs.append ([xAxis[p1+i]-xAxis[p1-i...

...],ow1])
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31 prev=ow1

32 else:

33 if ow2 -prev >0.01:

34 OWs.append ([xAxis[p1+i]-xAxis[p1-i...

...],ow2])

35 prev=ow2

36 return OWs

37
38 for case in [’prod’,’trig’]:

39 for i in range(1,d+1):

40 MaxiImgOW=MaxiImgOWliste[i-1]

41 routeInProd = "".join([home ,"Img_",str(...

...case),"_",str(i),".txt"])

42 data0 = loadtxt(routeInProd).view(complex)

43 data = concatenate ((data0 [1: -1][:: -1]....

...conjugate (),data0))

44 dataOWs = abs(data)**2

45 routeOutOW = "".join([home ,"Img_",str(case...

...),"_OW_",str(i),".txt"])

46 savetxt(routeOutOW , SR3(dataOWs))
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Symbols

• a denotes the slit width

• χA is the spectral projector onto the set A, defined on 1111

• ∆(O,Ψ) denotes the standard deviation of the operator O in state Ψ;
see Eq. (1.41.4)

• F denotes the operator effecting the Fourier transform; see Eq. (1.221.22)

• K = 2π/T ; defined in Eq. (1.101.10)

• Kn = 2π/(nT ) = 4π/(mT ); defined in Eqs. (1.91.9)

• K ′ is introduced following Eq. (2.102.10)

• κ = Tk/2, a conveniently rescaled variable; used Chapter 44 and in the
Appendix

• ΩN (Ψ) denotes the overall width of state Ψ

• ωM (Ψ) denotes the mean fringe width of state Ψ; see Eq. (6.26.2)

• P denotes the momentum observable

• P denotes the momentum operator

• Pmod is the “modular” momentum operator; see Eq. (3.53.5) and also see
Fig. 3.13.1 (b) for an illustration

• Pmod(n) is the refined “modular” momentum operator; see Eq. (5.25.2)

• PK is a coarse momentum observable, defined using Eqs. (3.23.2) and
(3.53.5)

• Ψ̂ denotes the Fourier transform of Ψ; Eq. (1.221.22)
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• Q denotes the position observable

• Q denotes the position operator

• Qmod is the “modular” position operator; see Eq. (3.43.4)

• QT is a coarse position observable, defined using Eqs. (3.13.1) and (3.43.4);
see Fig. 3.13.1 (a)

• XL denotes the Dirac comb

• sinc(x) = (sinx)/x

• T denotes the slit separation; see Fig. 1.11.1

• ζd is notation defined in Eq. (4.14.1) and used throughout Chapter 44
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