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Abstract 

Many peatlands across the world are suffering from degradation and erosion 

exacerbated by human influences. Blanket peat erosion has adverse impacts on 

terrestrial and aquatic habitats, reservoir capacity and water quality. It also leads to 

accelerated carbon release. Bioclimatic modelling suggests that some areas, which 

are suitable for active peat growth currently, may be no longer under a climate 

supporting the accumulation of peat by the end of the century. Erosion in these 

marginal regions is thus more likely. However, there have been no attempts to date, 

to model blanket peat erosion mechanisms and rates and how they might respond to 

different climate scenarios and land management drivers.  

 

The PESERA-GRID model was chosen as a basis for modelling blanket peat erosion 

as it had a number of suitable properties such as its applicability in various spatial 

scales, and hydrological module is theoretically suitable for blanket peatlands. The 

model was modified to incorporate freeze-thaw and desiccation processes and 

typical land management practices (artificial drainage and burning) in blanket 

peatlands. This resulted in a modified model called PESERA-PEAT. In PESERA-

PEAT, blanket peat erosion is determined by both sediment supply through 

weathering and the transport capacity of overland flow. A novel sediment supply 

index was defined and employed to parameterize the sediment supply from blanket 

peatlands. Land management practices were parameterized for their influence on 

vegetation cover and biomass and soil moisture condition. Potential wildfire 

severity was estimated with a previously developed ignition model. The PESERA-

PEAT model was calibrated and validated with field data from previous publications 

and data from three blanket peat-covered catchments. Model testing suggested that 

PESERA-PEAT was robust for modelling blanket peat vegetation, runoff and 

erosion. 

 

Climate change scenarios were established and climate data were compiled to 2100. 

The PESERA-PEAT model was applied at a regional scale for the blanket peatlands 

of the North Pennines and at a smaller scale for ten sites across Great Britain to 

examine the response of blanket peat erosion to possible changes in climate and land 

management practices. Modelling results suggested that the response of blanket peat 
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erosion to climate change was highly variable across space both within regions and 

across Great Britain with some sites experiencing reduced erosion under some 

climate scenarios with most experiencing increased erosion. The model suggested 

that peat erosion change would be generally higher in southern and eastern areas 

than in western and northern parts of Great Britain. Predicted erosion change was 

particularly high in the North York Moors where lower rainfall and higher 

temperatures suppressed the water table, and led the predicted future erosion to be 

usually transport limited. It was suggested that summer desiccation may become a 

more important sediment source for British blanket peat erosion in the future, 

leading to more sediment erosion released from blanket peatlands during subsequent 

rainstorms. Erosion change with climate change to 2100 was predicted to be smaller 

in wetter and colder locations. As climate changes, rainfall was shown to be more 

important than temperature in shaping long-term changes in runoff production while 

temperature was generally more dominant than rainfall in controlling long-term 

erosion change. However, in the North York Moors rainfall appeared to be more 

dominant in long-term erosion change. Overall, the modelling work suggested that 

land management may have a greater impact on blanket peat erosion than on runoff, 

while climate plays a more important role in runoff production rather than in blanket 

peat erosion. It was suggested that adjusting land management practices may be 

appropriate in order to buffer the impacts of future climate change on blanket peat 

erosion. However, when blanket peatlands were managed to protect them from soil 

erosion through ensuring a thriving vegetation biomass cover, then wildfire-

awareness and precautionary fire measures would be required as the wildfire risk 

increased substantially with climate change and may also increase with such land 

management strategies. 



v 

Table of Contents 

Acknowledgements ..................................................................................................... i 

Abstract ..................................................................................................................... iii 

Table of Contents ...................................................................................................... v 

List of Tables ............................................................................................................ ix 

List of Figures .......................................................................................................... xii 

Chapter 1 Introduction ............................................................................................. 1 

1.1 Background .................................................................................................. 1 

1.2 Research aim and objectives ........................................................................ 4 

1.3 Thesis structure ............................................................................................ 6 

Chapter 2 Understanding blanket peat erosion ..................................................... 8 

2.1 Introduction .................................................................................................. 8 

2.2 Peatland classification and global distribution ............................................. 8 

2.3 Blanket peat hydrology .............................................................................. 13 

2.4 Blanket peat erosion ................................................................................... 16 

2.4.1 Overview ........................................................................................ 16 

2.4.2 Sediment production ...................................................................... 20 

2.4.3 Sediment transport ......................................................................... 22 

2.5 Contributing factors to blanket peat erosion .............................................. 32 

2.5.1 Climate ........................................................................................... 32 

2.5.2 Anthropogenic effects .................................................................... 35 

2.6 Summary and discussion ............................................................................ 41 

2.6.1 Sediment production ...................................................................... 42 

2.6.2 Sediment transport ......................................................................... 42 

2.6.3 Contributing factors ....................................................................... 43 

2.6.4 Overview ........................................................................................ 44 

2.7 Overall methodology for the thesis ............................................................ 45 

2.7.1 Model selection .............................................................................. 45 

2.7.2 Model development ........................................................................ 46 

2.7.3 Model application........................................................................... 46 

Chapter 3 Evaluation of contemporary erosion models ...................................... 48 

3.1 Introduction ................................................................................................ 48 

3.2 Development of erosion modelling ............................................................ 48 



vi 

3.2.1 Theoretical advances in erosion modelling .................................... 48 

3.2.2 Existing erosion models ................................................................. 51 

3.2.3 Candidate models ........................................................................... 53 

3.3 Model selection .......................................................................................... 63 

3.4 Numerical evaluation of the PESERA-GRID ............................................ 64 

3.4.2 Study site ........................................................................................ 64 

3.4.3 Model evaluation ............................................................................ 65 

3.4.4 Testing of PESERA-GRID ............................................................ 67 

3.5 Summary and discussion ............................................................................ 74 

Chapter 4 Development of PESERA-PEAT ......................................................... 76 

4.1 Introduction ................................................................................................ 76 

4.2 Data sources, processing and preliminary results ...................................... 77 

4.3 Prediction of sediment supply .................................................................... 84 

4.3.1 Parameterization of freeze-thaw and desiccation ........................... 85 

4.3.2 Parameterization of sediment supply ............................................. 86 

4.3.3 Linking sediment supply with climatic and soil moisture 

condition ......................................................................................... 90 

4.4 Parameterization of land management ....................................................... 95 

4.4.1 Artificial drainage .......................................................................... 95 

4.4.2 Burning and grazing ....................................................................... 98 

4.5 Modified PESERA-GRID - PESERA-PEAT .......................................... 101 

4.5.1 Updated PESERA-GRID framework ........................................... 101 

4.5.2 Detailed description of processes incorporated in PESERA-

PEAT ............................................................................................ 102 

4.6 Summary and discussion .......................................................................... 108 

Chapter 5 Evaluation of PESERA-PEAT ........................................................... 111 

5.1 Introduction .............................................................................................. 111 

5.2 Study sites ................................................................................................ 112 

5.3 Methodology ............................................................................................ 115 

5.3.1 Model evaluation method ............................................................. 115 

5.3.2 Data sources and processing ........................................................ 117 

5.4 Model implementation and evaluation ..................................................... 128 

5.4.1 Model implementation ................................................................. 128 

5.4.2 Evaluation of equilibrium modelling results ................................ 130 

5.4.3 Evaluation of time-series modelling results ................................. 144 

5.4.4 Comparison of equilibrium and time-series model ...................... 144 



vii 

5.5 Summary .................................................................................................. 145 

Chapter 6 Prediction of fluvial blanket peat erosion in the North Pennines 

under environmental change ....................................................................... 147 

6.1 Introduction .............................................................................................. 147 

6.2 Study site .................................................................................................. 148 

6.3 Data sources, processing and climate downscaling ................................. 149 

6.3.1 Climate ......................................................................................... 149 

6.3.2 Land use / cover / management, topography and soil .................. 154 

6.4 Environmental conditions in the North Pennines..................................... 157 

6.4.1 Climate change ............................................................................. 157 

6.4.2 Land management practices ......................................................... 162 

6.4.3 Environmental scenarios .............................................................. 164 

6.5 Reaction of blanket peatlands to environmental change in the North 

Pennines ................................................................................................ 167 

6.5.1 Runoff production ........................................................................ 167 

6.5.2 Erosion ......................................................................................... 173 

6.5.3 Potential wildfire severity ............................................................ 181 

6.6 Summary and discussion .......................................................................... 185 

6.6.1 The impacts of climate change ..................................................... 185 

6.6.2 Interactions between climate change and land management 

shifts ............................................................................................. 186 

6.6.3 Limitations of the work ................................................................ 187 

Chapter 7 Prediction of fluvial blanket peat erosion across Great Britain 

under environmental change ....................................................................... 189 

7.1 Introduction .............................................................................................. 189 

7.2 Study sites ................................................................................................ 191 

7.3 Data source and processing ...................................................................... 192 

7.3.1 Climate ......................................................................................... 192 

7.3.2 Land use / cover / management, topography and soil .................. 195 

7.4 Outputs of environmental conditions in GB blanket peatlands ............... 196 

7.4.1 Climate change ............................................................................. 196 

7.4.2 Environmental scenarios .............................................................. 202 

7.5 Runoff, erosion and potential wildfire severity in blanket peatlands 

of GB under the “Base Condition” scenario ......................................... 204 

7.6 The impact of environmental change on runoff, erosion and potential 

wildfire severity in blanket peatlands of GB......................................... 206 

7.6.1 Runoff .......................................................................................... 206 



viii 

7.6.2 Erosion ......................................................................................... 212 

7.6.3 Potential wildfire severity ............................................................ 222 

7.7 Summary and discussion .......................................................................... 228 

7.7.1 The future of blanket peat erosion in GB under climate 

change .......................................................................................... 230 

7.7.2 Climatic drivers of changes in blanket peatlands ......................... 232 

7.7.3 Interactions between climate change and land management 

shifts ............................................................................................. 233 

7.7.4 Limitation of the work ................................................................. 235 

Chapter 8 Conclusions .......................................................................................... 237 

8.1 A synthesis of the findings of the thesis .................................................. 237 

8.2 The role of this research in blanket peatland geomorphology ................. 241 

8.2.1 Sediment production .................................................................... 241 

8.2.2 Modelling approach ..................................................................... 241 

8.2.3 Peatland management and restoration .......................................... 242 

8.2.4 Implications for inference from site-based studies ...................... 243 

8.3 Limitations of the work ............................................................................ 244 

8.3.1 Processes involved in the PESERA-PEAT .................................. 244 

8.3.2 Parameterization of management practices .................................. 245 

8.3.3 The impacts of vegetation on blanket peat erosion ...................... 245 

8.4 Recommendations for further research .................................................... 246 

8.4.1 Field investigation ........................................................................ 246 

8.4.2 Modelling ..................................................................................... 247 

8.5 Overview of the project ............................................................................ 247 

List of References .................................................................................................. 249 

 



ix 

List of Tables 

Table 2.1 Hydro-morphological classification system (summarized from 

Charman 2002) ................................................................................................... 9 

Table 2.2 Erosion rates of blanket peat catchments in the UK ................................. 18 

Table 3.1 Basic characteristics of existing soil erosion models (summarised 

from Merritt, Letcher et al. 2003; Aksoy and Kavvas 2005) ........................... 52 

Table 3.2 Criteria used for evaluation of candidate models...................................... 64 

Table 3.3 The input parameters required by the PESERA-GRID model ................. 69 

Table 3.4 Climate inputs of PESERA-GRID ............................................................ 70 

Table 3.5 Land cover parameters .............................................................................. 71 

Table 3.6 Soil parameters .......................................................................................... 72 

Table 4.1 Data available for tributaries of the River Tees. ....................................... 79 

Table 4.2 Detailed information of the selected sites along the River Ashop 

(from Pawson, Evans et al. 2012). ................................................................... 83 

Table 4.3 Potential indicators of freeze-thaw and desiccation. ................................. 86 

Table 4.4 Regressions between monthly sediment supply indices and 

temperature related variables. .......................................................................... 92 

Table 4.5 Regressions between monthly sediment supply sediment index and 

water-table related variables. ........................................................................... 93 

Table 4.6 Regression models for prediction of monthly sediment supply index. ..... 94 

Table 4.7 Legal burning seasons and legislation in the UK. ..................................... 99 

Table 5.1 The sources of data used for evaluation of modelling results. ................ 117 

Table 5.2 The downscaled monthly / annual average measured runoff and 

erosion, and water table used for model evaluation. TB_97-09, 

SM12_10-11 and UNG_05-07 represent Trout Beck between 1997 and 

2009, Stean Moor 12 between 2010 and 2011 and Upper North Grain 

between 2005 and 2007. ................................................................................ 119 

Table 5.3 The sources of climate data for the selected sites. .................................. 119 

Table 5.4 The monthly / annual average rainfall and temperature used for 

model evaluation. TB_97-09, SM12_10-11 and UNG_05-07 represent 

the Trout Beck between 1997 and 2009, Stean Moor 12 between 2010 

and 2011 and Upper North Grain between 2005 and 2007............................ 121 

Table 5.5 Land use codes used in PESERA-PEAT and corresponding land 

uses. ................................................................................................................ 122 

Table 5.6 Linkage between LCM2000 land use type and PESERA-PEAT land 

use code, and parameters related to each land use type. ................................ 123 



x 

Table 5.7 Monthly distribution of evapotranspiration (% of annual total) and 

average annual total evapotranspiration (mm) for Trout Beck between 

1997 and 2009 (TB_97-09), Stean Moor12 between 2010 and 2011 

(SM12_10-11) and Upper North Grain between 2005 and 2007 

(UNG_05-07). ................................................................................................ 132 

Table 5.8 The comparison of downscaled measured and modelled runoff 

ratios, and contribution of subsurface flow to total runoff for the Trout 

Beck between 1997 and 2009 (TB_97-09), Stean Moor 12 between 2010 

and 2011 (SM12_10-11) and Upper North Grain between 2005 and 2007 

(UNG_05-07). Dif and Nash-Sutcliffe coefficient were calculated with 

Equation 5.1 based on downscaled measured and mean modelled runoff; 

Sub/Total means the percentage of subsurface flow in total runoff. ............. 134 

Table 5.9 The comparison of downscaled measured and modelled erosion for 

Trout Beck between 1997 and 2009 (TB_97-09), Stean Moor 12 

between 2010 and 2011 (SM12_10-11) and Upper North Grain between 

2005 and 2007 (UNG_05-07). Dif and Nash-Sutcliffe coefficient were 

calculated with Equation 5.1 based on downscaled measured and mean 

modelled erosion. ........................................................................................... 138 

Table 6.1 Peat depth and organic content of various peat types defined by 

Natural England and Land Information System. ........................................... 149 

Table 6.2 Methods for baseline climate interpolation, taking January as an 

example. ......................................................................................................... 151 

Table 6.3 Validation of baseline climate variable interpolation ............................. 151 

Table 6.4 Combinations of scenarios employed and their function in assessing 

the impacts of climate change, land management variation .......................... 166 

Table 6.5 Seasonal distribution (% of annual total) and mean annual runoff 

production (mm) in the North Pennines under different scenarios. ............... 167 

Table 6.6 Percentage (%) of blanket peat-covered areas in the North Pennines 

with different classes of runoff production under various environmental 

scenarios. ........................................................................................................ 168 

Table 6.7 Seasonal distribution (% of annual total) and mean annual sediment 

yield (ton ha
-1

) for the whole blanket peatlands of the North Pennines 

under different scenarios. ............................................................................... 173 

Table 6.8 Percentage (%) of blanket peat-covered area in the North Pennines 

undergoing a different level of erosion under defined environmental 

scenarios. ........................................................................................................ 174 

Table 6.9 Mean potential wildfire severity for blanket peatlands in the North 

Pennines under different environmental scenarios. PFS represents 

unitless potential wildfire severity. ................................................................ 181 

Table 6.10 Percentage (%) of blanket peat-covered areas in the North 

Pennines with different levels of mean potential wildfire severity under 

established environmental scenarios; zero in the table indicates 

percentage of area is less than 0.005 %. ........................................................ 181 

Table 7.1 Background information on the sites selected across GB in this 

chapter. ........................................................................................................... 192 



xi 

Table 7.2 Mean annual rainfall and temperature of the selected sites in the 

baseline period. .............................................................................................. 196 

Table 7.3 Probability level (%) of mean annual rainfall and temperature in the 

100 UKCP09 model realizations for each site under the established 

climate scenarios; “rf” and “tm” represent mean annual rainfall and 

temperature respectively. ............................................................................... 199 

Table 7.4 Environmental scenarios employed in this chapter................................. 203 

Table 7.5 Mean annual runoff, potential wildfire severity, sediment yield, and 

seasonal distribution of the mean annual sediment yield for the chosen 

sites under the “Base Condition” scenario. Potential FS represents 

potential wildfire severity, which is defined as the highest potential 

wildfire severity during any month of the summer half year (Apr-Sep). ...... 204 

Table 7.6 Descriptive statistics based on time series of annual runoff (mm) 

between 2010 and 2099 under different environmental scenarios. The 

highlighted values represent the highest predicted annual runoff for each 

site under different land management scenarios. ........................................... 210 

Table 7.7 The years with the highest predicted annual runoff, corresponding 

climate scenarios and the highest predicted annual runoff production for 

each site between 2010 and 2099 under established environmental 

scenarios. The years and climate scenarios with the highest predicted 

annual runoff are identical for each site under both carbon storage and 

food security scenarios; “Runoff_Carbon” and “Runoff_Food” represent 

the highest predicted annual runoff under carbon storage and food 

security scenarios respectively. ...................................................................... 212 

Table 7.8 Descriptive statistics based on time series of annual erosion (ton ha
-1

) 

between 2010 and 2099 under environmental scenarios. The highlighted 

numbers indicate the highest predicted annual erosion for each site under 

carbon storage and food security scenarios. .................................................. 217 

Table 7.9 Descriptive statistics based on time series of annual potential 

wildfire severity between 2010 and 2099 under established 

environmental scenarios. The highlighted numbers indicate the highest 

predicted annual potential wildfire severity for each site under carbon 

storage and food security scenarios respectively. .......................................... 226 

Table 7.10 The years with the highest predicted annual wildfire severity, 

corresponding climate scenarios and the highest predicted annual 

potential wildfire severity for each site between 2010 and 2099 under 

established environmental scenarios. ............................................................. 228 

 



xii 

List of Figures 

Figure 1.1 A flow chart of chapters and what they mainly achieve. ........................... 5 

Figure 2.1 Global distribution of peatlands (from Parish, Sirin et al. 2008)............. 10 

Figure 2.2 Global distribution of blanket peatlands (from Evans and 

Warburton 2007, page 13 ) .............................................................................. 11 

Figure 2.3 Carbon exchanges between blanket bog and the atmosphere (from 

Holden 2005c) .................................................................................................. 12 

Figure 2.4 Daily rainfall and daily runoff from the Trout Beck catchment, 

North Pennines, UK in 2008 (Source data were provided by the ECN). ......... 13 

Figure 2.5 Vertical variation in hydraulic conductivity in blanket bog at Cape 

Race, Newfoundland, Canada (from Hoag and Price 1995) ............................ 14 

Figure 2.6 Acrotelm-catotelm model rendered less useful due to pipe flow 

(redrawn from Holden 2005c) ......................................................................... 16 

Figure 2.7 A storm event from Rough Sike, North Pennines, UK on 

19/11/1998, showing the positive hysteresis between runoff and 

suspended sediment concentration (SSC) (Source data were provided by 

Martin Evans, the University of Manchester) .................................................. 20 

Figure 2.8 Illustration of needle ice (from Evans and Warburton 2007, page 

63) .................................................................................................................... 21 

Figure 2.9 a) Type 1 and type 2 gully systems (from Evans and Warburton 

2007, page 80); b) Evolvement of gully system (from Evans and 

Warburton 2007, page 78). .............................................................................. 23 

Figure 2.10 Gully sediment balance: Hl + -O=  are hillside and 

gully wall sediment inputs, O is channel sediment transport and  is 

the change in channel sediment storage, 𝒍𝑯 is the sediment inputs from 

hillsopes, 𝒍𝒘 is gully bed and wall sediment load (redrawn from Kirkby 

and Bracken 2009) ........................................................................................... 25 

Figure 2.11 A soil pipe in blanket peat ..................................................................... 28 

Figure 2.12 The processes of wind erosion under dry and wet conditions (from 

Evans and Warburton 2007, page 143) ............................................................ 30 

Figure 2.13 The conceptual model of the wind-driven rain (from Baynes 2012)..... 32 

Figure 2.14 Projected changes to blanket bog potential area for climate change 

scenarios compared with standard period. The colour scale represents the 

number of climate models predicting new appearance (blue) or 

disappearance (red) of blanket bog potential are. Ice caps and areas 

where no climate data are available are shown in light grey (from 

Gallego-Sala and Prentice 2012). .................................................................... 34 

Figure 2.15 Land drainage on peatlands in Northern Scotland (from Google 

maps) ................................................................................................................ 36 

Figure 2.16 A conceptual model of blanket peat erosion.......................................... 40 

Wl S
Hl Wl

S

file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450163
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450167
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450167
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450168
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450168
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450169
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450169
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450169
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450169
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450170
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450170
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450171
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450171
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450171
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450173
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450174
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450174
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450175
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450176
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450176
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450176
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450176
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450176
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450176
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450177
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450177


xiii 

Figure 2.17 A simplified conceptual model of blanket peat erosion and its 

relationship with environmental factors ........................................................... 42 

Figure 2.18 Overall flowchart of the project ............................................................. 47 

Figure 3.1 Hydrological processes within TOPMODEL (from Beven and 

Kirkby 1979) .................................................................................................... 61 

Figure 3.2 Trout Beck, Cottage Hill Sike, Rough Sike and gauges within Trout 

Beck catchment to measure runoff, suspended sediment concentration 

water table, rainfall and temperature (redrawn from Evans, Burt et al. 

1999). ............................................................................................................... 65 

Figure 3.3 Sediment rating curves of the Trout Beck catchment between 1997 

and 2009 ........................................................................................................... 66 

Figure 3.4 The conceptual framework of PESERA-GRID ....................................... 68 

Figure 3.5 Slope profile of testing grid cell .............................................................. 71 

Figure 3.6 Comparison of measured runoff at catchment outlet and runoff at 

hillslope scale predicted by PESERA-GRID. .................................................. 73 

Figure 3.7 Comparison of measured erosion at catchment outlet and hillslopes 

against erosion at hillslope scale predicted by PESERA-GRID. The 

measured erosion data are the monthly average for the period of 1997-

2009 based on the re-constructed sediment flux, which was produced 

with the method shown in section 3.4.3.1. ....................................................... 74 

Figure 4.1 Location of data source sites in this chapter. ........................................... 78 

Figure 4.2 Time series of daily sediment flux, daily temperature and daily 

water table in the Trout Beck catchment between 1997 and 2009. The 

daily sediment flux, daily temperature and daily water table are 

smoothed using a 7-day moving average. ........................................................ 81 

Figure 4.3 Relationship between annual runoff efficiency and catchment size. ....... 82 

Figure 4.4 a) the location of River Ashop; b) the illustration of the 13 reaches 

chosen by Pawson and Evans et al (2012), the upper six reaches were 

used in this study (from Pawson and Evans et al. 2012).................................. 83 

Figure 4.5 Relationship between annual POC flux and catchment size. .................. 84 

Figure 4.6 The definition of sediment supply index (SSI), and the comparison 

between SSI and the best fitted sediment rating curve. The daily runoff 

and suspended sediment concentration (SSC) data for Trout Beck 

catchment for 01/2000 are used as an example in the figure. .......................... 87 

Figure 4.7 Monthly sediment supply index of Trout Beck between 1997 and 

2009. ................................................................................................................. 88 

Figure 4.8 Sediment supply measured by traps at Rough Sike catchment 

between July 1999 and July 2000 (from Evans and Warburton 2007, 

page 65). ........................................................................................................... 89 

Figure 4.9 Conceptual diagram of the drainage model. ............................................ 96 

Figure 4.10 Sensitivity analysis of the drainage model based on the climatic 

conditions of the Trout Beck catchment between 1997 and 2009. .................. 97 

file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450179
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450179
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450180
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450183
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450183
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450184
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450188
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450190
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450191
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450191
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450191
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450193
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450193
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450193
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450193
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450194
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450194
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450195
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450195
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450195
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450196


xiv 

Figure 4.11 Updated framework of the PESERA-GRID model. Dashed lines 

indicate there are no intersections between crossed lines. ............................. 101 

Figure 5.1 Location of sites chosen for calibration and evaluation of the 

PESERA-PEAT. ............................................................................................ 112 

Figure 5.2 Aerial photograph of Trout Beck catchment (from Google map). ........ 113 

Figure 5.3 Aerial photograph of Stean Moor 12 (from Google map). .................... 114 

Figure 5.4 Aerial photograph of the Upper North Grain catchment (from 

Google map). .................................................................................................. 115 

Figure 5.5 Spatial distribution of land use for the Trout Beck, Stean Moor 12 

and Upper North Grain catchments. Colour scales are the same for the 

three sites. ...................................................................................................... 125 

Figure 5.6 100-m DEM (first row) and relief (second row) for Trout beck, 

Stean Moor 12 and Upper North Grain. Classification and colour scales 

for each similar variable plotted are the same between the catchments for 

ease of comparison. ........................................................................................ 126 

Figure 5.7 The distribution of calibrated base sediment supply for each month .... 130 

Figure 5.8 Monthly average vegetation biomass for Trout Beck between 1997 

and 2009 (TB_97-09), Stean Moor 12 between 2010 and 2011 

(SM12_10-11) and Upper North Grain between 2005 and 2007 

(UNG_05-07). ................................................................................................ 131 

Figure 5.9 a) The comparison between measured water table and modelled soil 

moisture deficit and for the Trout Beck catchment between 1997 and 

2009; b) The relationship between measured water table and modelled 

soil moisture deficit for Trout Beck catchment between 1997 and 2009. ..... 133 

Figure 5.10 The predicted water table for the Trout Beck between 1997 and 

2009 (TB_97-09), Stean Moor 12 between 2010 and 2011 (SM12_10-

11) and Upper North Grain between 2005 and 2007 (UNG_05-07). ............ 133 

Figure 5.11 a) The comparison between downscaled measured runoff and 

modelled runoff and subsurface flow for the Trout Beck catchment 

between 1997 and 2009; b) The correlation between downscaled 

measured and modelled runoff for the Trout Beck catchment between 

1997 and 2009. ............................................................................................... 135 

Figure 5.12 a) The comparison between downscaled measured runoff and 

modelled runoff and subsurface flow for the Stean Moor 12 catchment 

between 2010 and 2011; b) The correlation between downscaled 

measured and modelled runoff for the Stean Moor 12 catchment between 

2010 and 2011. ............................................................................................... 135 

Figure 5.13 Spatial pattern of average annual runoff production for the three 

sites during corresponding periods. Classification and colour scale are 

the same for the three sites. ............................................................................ 137 

Figure 5.14 Sensitivity of the PESERA-PEAT model to drainage density 

based on the environmental conditions of the Upper North Grain 

between 2005 and 2007. ................................................................................ 139 

file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450200
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450205
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450207
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450207
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450207
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450207
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450210
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450210
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450210
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450210
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450210
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450211
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450211
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450211
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450212
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450212
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450212


xv 

Figure 5.15 a) Comparison of downscaled measured and modelled erosion for 

the Trout Beck catchment between 1997 and 2009; b) Correlation 

between downscaled measured and modelled erosion for the Trout Beck 

catchment between 1997 and 2009. ............................................................... 140 

Figure 5.16 a) The comparison of downscaled measured and modelled erosion 

for the Stean Moor 12 catchment between 2010 and 2011; b) The 

correlation between downscaled measured and modelled erosion for the 

Stean Moor 12 catchment between 2010 and 2011. ...................................... 140 

Figure 5.17 Sediment budget (ton ha
-1

 yr
-1

) for Trout Beck between 1997 and 

2009 (TB_97-09), Stean Moor 12 between 2010 and 2011 (SM12_10-

11) and Upper North Grain between 2005 and 2007 (UNG_05-07). 

Classification and colour scales for each similar variable plotted are the 

same between the catchments for ease of comparison. .................................. 141 

Figure 5.18 a) The comparison of measured erosion and modelled erosion 

from time-series modelling for Stean Moor 12 between 2010 and 2011; 

b) The correlation between measured erosion and modelled erosion from 

time-series modelling for the Stean Moor 12 between 2010 and 2011. ........ 143 

Figure 5.19 Comparison of erosion predicted by the equilibrium and time-

series versions of PESERA-PEAT for Stean Moor 12 at one grid cell 

between 2010 and 2011: a) modelled erosion; b) correlation between 

equilibrium and time-series predictions. ........................................................ 144 

Figure 6.1 Blanket peatlands in the North Pennines, and their location. ................ 148 

Figure 6.2 MIDAS stations for interpolation of baseline climate for the North 

Pennines ......................................................................................................... 150 

Figure 6.3 The selected climate projection points for interpolation of future 

climate for the North Pennines. The squares with light blue outlines 

indicate the selected points. ........................................................................... 152 

Figure 6.4 Land use, DEM and relief of blanket peatlands in the North 

Pennines. ........................................................................................................ 156 

Figure 6.5 Spatial distribution of annual rainfall and temperature of the North 

Pennines in the baseline period of 1961-1990 ............................................... 157 

Figure 6.6 Spatial distribution of changes in annual rainfall and temperature 

between baseline and future time periods ...................................................... 158 

Figure 6.7 Change of rainfall and temperature in the North Pennines in 

selected time periods. a) and b) show the annual total rainfall and 

monthly rainfall, while c) and d) indicate the annual mean temperature 

and monthly temperature respectively. .......................................................... 159 

Figure 6.8 Change of rainfall per rain day and coefficient of variation of 

rainfall per rain day in the North Pennines in selected time Periods. a) 

and b) show rainfall per rain day at annual and monthly scales, while c) 

and d) indicate the coefficient of variation of rainfall per rain day at 

annual and monthly scales respectively. “meanrf2” and “cvrf2” represent 

rainfall per rain day and coefficient of variation of rainfall per rain day 

respectively. ................................................................................................... 160 

file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450213
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450213
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450213
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450213
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450214
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450214
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450214
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450214
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450217
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450217
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450217
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450217
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450219
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450219
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450220
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450220
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450220
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450221
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450221


xvi 

Figure 6.9 Change of temperature range and potential evapotranspiration in 

the North Pennines in selected time periods. a) and b) show the 

temperature range at annual and monthly scales, while c) and d) indicate 

potential evapotranspiration at annual and monthly scales respectively. 

“mtrange” and “meanpet30” are employed to represent temperature 

range and potential evapotranspiration respectively. ..................................... 161 

Figure 6.10 Spatial distribution of drainage, grazing, managed burning and 

their combination in blanket peatlands of the North Pennines under BAU 

condition. ....................................................................................................... 163 

Figure 6.11 Response of seasonal runoff production to change of climate and 

land management practices. All changes are calculated as difference of 

runoff production between specific scenarios and “Base Condition” 

divided by runoff under the“Base Condition” scenario. ................................ 169 

Figure 6.12 Response of mean annual runoff production to change of climate 

and land management practices. All changes are calculated as difference 

of runoff production between specific scenarios and “Base Condition” 

divided by runoff under the “Base Condition” scenario. ............................... 169 

Figure 6.13 Spatial distribution of mean annual runoff production in the 

blanket peatlands of the North Pennines under different environmental 

scenarios ......................................................................................................... 171 

Figure 6.14 Spatial distribution of changes in mean annual runoff production 

of blanket peatlands of the North Pennines under different 

environmental scenarios. The spatial distribution of land management is 

shown in Figure 6.10. ..................................................................................... 172 

Figure 6.15 Mean annual sediment yield for regions defined by management 

code under established environmental scenarios. “1” is drainage; “2” is 

light grazing; “3” is overgrazing and “4” is managed burning. ..................... 176 

Figure 6.16 Response of seasonal sediment yield to change of climate and 

land management practices. All changes are calculated as the difference 

of sediment yield between the specific scenarios and “Base Condition” 

divided by sediment yield under the “Base Condition” scenario................... 177 

Figure 6.17 Response of mean annual sediment yield to change of climate and 

land management practices. All changes are calculated as the difference 

of sediment yield between the specific scenarios and “Base Condition” 

divided by sediment yield under the “Base Condition” scenario................... 177 

Figure 6.18 Spatial distribution of mean annual blanket peat erosion in the 

North Pennines under different environmental scenarios .............................. 179 

Figure 6.19 The spatial distribution of changes in mean annual blanket peat 

erosion in the North Pennines under different environmental scenarios. 

The spatial distribution of land management is shown in Figure 6.10. ......... 180 

Figure 6.20 Response of mean potential wildfire severity to change of climate 

and land management practices. All changes are calculated as difference 

of potential wildfire severity between a specific scenarios and “Base 

Condition” divided by potential wildfire severity under the “Base 

Condition” scenario. Potential FS represents unitless potential wildfire 

severity. .......................................................................................................... 182 

file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450227
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450227
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450227
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450232
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450232
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450232


xvii 

Figure 6.21 Spatial distribution of the mean potential wildfire severity 

(highest in any month of the summer half year) in blanket peatlands of 

the North Pennines under different environmental scenarios ........................ 183 

Figure 6.22 Spatial distribution of changes in mean potential wildfire severity 

(highest in any month of the summer half year) in blanket peatlands of 

the North Pennines under different environmental scenarios. ....................... 184 

Figure 7.1 Spatial distribution of blanket peatlands across GB, with the chosen 

study sites and their corresponding regions examined in this chapter. .......... 191 

Figure 7.2 Mean annual rainfall and temperature of the selected sites in the 

baseline period. .............................................................................................. 196 

Figure 7.3 Clustering of climate for the selected sites based on average annual 

rainfall and temperature over the baseline and future periods. For each 

site, an open symbol represents the baseline climate while a solid symbol 

stands for the future climate, which is derived from the seven future 

climate scenarios. ........................................................................................... 198 

Figure 7.4 Changes of average annual rainfall in future time periods under 

different climate scenarios for each of the ten sites. ...................................... 200 

Figure 7.5 Changes of average annual temperature in future time periods 

under different climate scenarios for each of the ten sites. ............................ 201 

Figure 7.6 Mean annual runoff, potential wildfire severity and sediment yield 

for the selected sites in the baseline period without management. ................ 205 

Figure 7.7 Changes in mean annual runoff for each site between future and 

baseline periods under variations in climate and land management. ............. 208 

Figure 7.8 Mean annual runoff production for each site under the carbon 

storage scenarios against average annual temperature and rainfall 

between baseline and 2080s periods under carbon storage scenarios. The 

legend indicates the classification of mean annual runoff production. .......... 209 

Figure 7.9 Changes in mean annual erosion for each site between future and 

baseline periods under climate and land management change. ..................... 213 

Figure 7.10 Mean annual sediment yield for each site under the carbon storage 

scenarios against average annual temperature and rainfall between 

baseline and 2080s. The highest predicted annual sediment yield for 

each site under the carbon storage scenario between 2010 and 2099 is 

also plotted against the annual rainfall and temperature associated with 

the highest annual erosion. The rectangular legend indicates the 

classification of average annual sediment yield. The pink triangle in each 

graph represents the highest predicted annual sediment yield between 

2010 and 2099. ............................................................................................... 214 

Figure 7.11 Cumulative sediment yield between 2010 and 2099 for each site 

under established environmental scenarios and time series of annual 

sediment yield for the scenarios with the highest predicted annual 

sediment yield. Two groups of cumulative-erosion lines relate to the 

carbon storage and food security scenarios respectively. .............................. 220 

Figure 7.12 Monthly sediment yield and storage for each site in the years with 

the highest predicted annual sediment yield. ................................................. 221 

file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450241
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450241
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450242
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450242
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450242
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450242
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450242
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450243
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450243
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450244
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450244
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450250
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450250
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450250
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450250
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450250


xviii 

Figure 7.13 Changes in mean potential wildfire severity for each site from 

baseline to future periods under climate and management change. ............... 224 

Figure 7.14 Mean potential wildfire severity under the carbon storage scenario 

against average annual temperature and rainfall for each site between 

baseline and 2080s. The legend indicates the classification of potential 

wildfire severity. ............................................................................................ 225 

Figure 7.15 The impact of climate change on fluvial blanket peat erosion. a) 

changes in annual sediment yield from baseline to future time periods 

under carbon storage scenarios shown in Figure 7.9; b) average annual 

sediment yield for future time periods under carbon storage scenarios 

shown in Figure 7.10; c) cumulative sediment yield between 2010 and 

2099 under carbon storage scenarios presented in Table 7.8. ........................ 229 

Figure 7.16 The relationship between climate clustering and grouping of 

erosion change and erosion risk. For the climate clustering, the number 

‘1’, ‘2’, ‘3’ represents the three climate zones from dry to wet in Figure 

7.3; For erosion change / risk group the number ‘1’, ‘2’, ‘3’ and / or ‘4’ 

represent the groups with the erosion change or erosion risk from low to 

high as described above. ................................................................................ 230 

Figure 7.17 Sediment yield from the selected sites under interaction scenarios. 

a) boxplots represent average annual sediment yield for each site for 

future time periods under interaction scenarios; b) boxplots represent 

cumulative sediment yield for each site between 2010 and 2099 under 

interaction scenarios presented in Table 7.8. ................................................. 234 

Figure 8.1 A synthesis of the modelling work in the project. Red indicates 

where significant modifications to the PESERA-GRID model have been 

undertaken. The top boxes indicate the scenarios that were modelled. 

Note that mixed climate and land management scenarios were also 

included. ......................................................................................................... 240 

file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450254
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450254
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450254
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450254
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450254
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450254
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450255
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450255
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450255
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450255
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450255
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450255
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450256
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450256
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450256
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450256
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450256
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450257
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450257
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450257
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450257
file:///C:/Users/gylp/Desktop/Thesis%20correction-20150118/Thesis%20draft_final%20for%20viva.docx%23_Toc409450257


 

1 

 

Chapter 1  

Introduction 

1.1 Background 

Peat is an organic-rich soil resulting from very slow vegetation decomposition under 

a water-logged environment. Approximately 4 million km
2
 of peatlands exist across 

the world, storing 33 % to 50 % of the world’s soil carbon (Charman 2002; Holden 

2005c). Being an important subset of peatlands, blanket peat mainly occurs within 

the hyper-oceanic climate areas such as the British Isles, Newfoundland, Alaska, 

Iceland, Norway, New Zealand, Falkland Islands and Japan etc. Many peatlands 

globally occur on rather gentle terrain or infill the topography of an underlying 

basin. However, blanket peatlands tend to occur in a deposit that follows the 

underlying topography (Lindsay 1995) and can occur on slopes up to 30 degrees in 

steepness (Nature Conservancy Council 1989). Blanket peat deposits often tend to 

occur over depths of one metre or more, sometimes exceeding 6 m of thickness 

(Charman 2002). They are in contact with the underlying mineral horizon at their 

base, but gain almost all of their water and nutrient supply from precipitation.  

 

Where blanket peatlands form on a slope, they can be susceptible to rapid erosion if 

they become degraded because flowing water over hillslope gradients can act to 

entrain and transport peat particles to river channels. If peatlands degrade and 

become badly eroded then this means that i) they are no longer acting as good 

sequestration sites for carbon as the surface vegetation becomes less widespread and 

ii) the carbon once stored in the system is being lost from the site. Peatlands have a 

large potential to become net carbon sources when degraded, rather than good 

carbon sinks when intact (Evans, Stimson et al. 2012; Grayson, Holden et al. 2012; 

Pawson, Evans et al. 2012). At the same time, blanket peat erosion also has negative 

impacts on terrestrial and aquatic habitats (Ramchunder, Brown et al. 2009), 

reservoir capacity (Labadz, Burt et al. 1991) and water quality (Pattinson, Butcher et 

al. 1994). 
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Soil erosion is a process of detachment and transportation of soil materials by 

erosive agents, which can be wind, rainfall and runoff. In blanket peatlands, freeze-

thaw and desiccation are commonly cited mechanisms to produce erodible materials 

(Tallis 1973; Francis 1990), which are vulnerable to the erosive agents. Many 

blanket peatlands globally have suffered from severe erosion over the past 60 years 

or so mainly because of land management drivers (Holden, Shotbolt et al. 2007) and 

atmospheric pollution (Evans and Warburton 2007) particularly in parts of the 

British Isles (Evans, Allott et al. 2005; Evans, Warburton et al. 2006; Cummins, 

Donnelly et al. 2011), Falkland Islands (Wilson, Clark et al. 1993), Sweden (Foster, 

Wright et al. 1988) and Australian Alps (Victoria National Park Association 2005). 

Several studies have also shown that some historical erosion in blanket peatlands has 

been driven by climatic change (Tallis, Meade et al. 1997; Tallis 1998). “Climate 

envelope analysis” for blanket peat-covered areas suggests that in many areas where 

there are currently blanket peatlands, these areas may no longer be under a climate 

suitable for active peat growth as the climate shifts over the coming century (Clark, 

Gallego-Sala et al. 2010; Gallego-Sala, Clark et al. 2010; Gallego-Sala and Prentice 

2012). There may therefore be a possibility of enhanced degradation and erosion as 

favourable zones for peat formation shift towards being marginal climate zones for 

blanket peatlands, although the exact fate of the blanket peat in these marginal areas 

is uncertain given the unknown resilience of blanket peat to climate change. 

Furthermore, the interactions between land management and climate change may 

lead the change of blanket peat erosion to be more complicated in the future. 

 

Often, research is carried out through field observation and experimental 

manipulation (Wainwright and Mulligan 2013). Hypotheses can be generated upon 

the observations from fieldwork and experiments to explain the structure and 

function of natural phenomena. These hypotheses can be tested and refined against 

new observations, and may eventually gain recognition as tested theory or general 

law. A model is an abstraction of reality, representing a complex reality in the 

simplest way that is adequate for the purpose of the modelling. Modelling is not an 

alternative to observations but, under certain circumstances, can be a powerful tool 

in understanding observations and in developing and testing theory. In 

environmental science, modelling has already become one of the most powerful 

tools in understanding of the interactions between the environment, ecosystems and 
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the populations of humans and other animals (Wainwright and Mulligan 2013). This 

understanding is increasingly important in sustainable management of the 

environment under possible changes in driving forces such as human activities and 

climate and so on. Being an important part of environmental modelling, there have 

already been many erosion models established over the last several decades (Merritt, 

Letcher et al. 2003; Aksoy and Kavvas 2005). Existing erosion models usually take 

account of hydrology, topography, land use / cover and soil properties as controlling 

factors of erosion, although each model tends to have a different emphasis related to 

the research purposes they were originally developed to address. Some of the 

erosion models (e.g. USLE and its modifications) have been widely applied and 

recognised as powerful tools in predicting soil erosion (Renard, Foster et al. 1991; 

Stone and Hilborn 2000; Tiwari, Risse et al. 2000; Onori, De Bonis et al. 2006; 

Meusburger, Konz et al. 2010). The possible reaction of soil erosion to changes in 

environmental factors involved in these models can be investigated and predicted 

without having to undertake large scale field trials for each scenario. The advances 

in erosion modelling and the scientific understanding of erosion processes in blanket 

peatlands facilitate a prediction of blanket peat erosion using a modelling approach. 

However, to the author’s knowledge there has not been a blanket peat erosion model 

published. It is therefore important to develop a model to link blanket peat erosion 

with various driving forces to support environmental planning and protection. Given 

there are many erosion models established over last several decades, some of them 

may already be suitable or partly suitable for blanket peatlands. It may be more 

advisable to model blanket peat erosion with an existing model in order to avoid 

repeating the work that has been done previously. 
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1.2 Research aim and objectives 

Given the sensitivity of peatlands, the major aim of the project is to establish how 

fluvial blanket peat erosion mechanisms and rates may change under climate and 

management practices through the 21
st
 century, and modify a preferred model to 

explicitly consider such mechanisms. In order to accomplish this aim, the project 

focuses on the case study of the UK and the following research objectives have been 

defined: 

 

1) to select and modify an erosion model for blanket peat capable of addressing the 

overall aim of this project; 

2) to produce a spatially distributed climate and land management dataset to drive 

the modified peat erosion model for the 21
st
 century, based on UKCP09 and 

combined upland management data resources; 

3) to apply the modified model to determine the envelope of erosion risk under 

climate and management scenarios to the end of the 21
st
 century for a case study 

region - North Pennines, UK; 

4) to explore national variations in climate-driven erosion risk predictions for Great 

Britain (GB). 
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Figure 1.1 A flow chart of chapters and what they mainly achieve. 
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1.3 Thesis structure 

A flow chart of chapters and what they mainly achieve are presented in Figure 1.1. 

In order to investigate the response of fluvial blanket peat erosion to possible 

changes in climate and land management over the 21
st
 century, it is necessary to 

understand the erosion processes operating in blanket peatlands and their 

contributing factors. A synthesis is provided in Chapter 2. The overall approach of 

the project is also presented in Chapter 2 related to the research gaps identified by 

the synthesis. Chapter 3 reviews and evaluates contemporary erosion models to find 

out which one is potentially suitable for further development and use in blanket peat 

environments. The grid version of Pan-European Soil Erosion Risk Assessment 

(PESERA-GRID) model is selected for the project. Significant adaptations are 

considered based on literature and field data to modify the PESERA-GRID model in 

Chapter 4 in order to include observed sediment production processes in blanket 

peatlands, and to aggregate typical land management practices into the model. The 

updated PESERA-GRID model (termed PESERA-PEAT in the thesis) is then 

numerically evaluated in Chapter 5 where different components of the model are 

tested against field measurements and previously published data. The PESERA-

PEAT model has two modes: equilibrium and time-series. They have exactly the 

same physical processes but different manners of operation. The equilibrium model 

iterates sufficient times with monthly average climatic inputs over the study period 

to determine the equilibrium status of hydrology and erosion, while the time-series 

model runs only once through the whole study period with continuous monthly 

climate variables as inputs. The robustness of these two versions of PESERA-PEAT 

is demonstrated. It is also shown in Chapter 5 that the equilibrium and time-series 

PESERA-PEAT models are able to produce similar results to one another if the 

input data are the same. This provides more flexibility in applying PESERA-PEAT, 

as the equilibrium model needs relatively less input data, and is therefore easier to 

be applied over a large area. In contrast, much higher input requirements limit the 

application of the time-series model over a large space. However, the time series 

model is able to produce continuous monthly results within the study periods, and is 

therefore more suitable to capture extreme events at case study sites. The two 

versions of PESERA-PEAT are then used in Chapter 6 and Chapter 7 respectively. 

In Chapter 6, the equilibrium PESERA-PEAT model is applied based on spatially 
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distributed input data to look at the development of blanket peat erosion in the North 

Pennines under projected climate change and possible land management scenarios. 

Spatially distributed results allow investigation of the impact of environmental 

change on both the magnitude and pattern of blanket peat erosion. In Chapter 7, the 

time-series PESERA-PEAT model is used to investigate the change of blanket peat 

erosion with environmental shifts at a GB national scale. Ten sites are selected to 

represent major blanket peat-covered areas in the GB. The spatial pattern of blanket 

peat erosion change with environmental variation is examined. The climatic drivers 

of the changes in blanket peat erosion are analysed. The implications for 

management of blanket peatlands in GB are discussed. A synthesis of the work 

(including research conclusions) in the project and its contribution to the 

geomorphology of blanket peatlands are presented in Chapter 8. Limitations of the 

work and areas for further research are identified in the chapter including discussion 

of the utility of the model internationally. 
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Chapter 2  

Understanding blanket peat erosion 

2.1 Introduction 

In order to investigate the development of blanket peat erosion under environmental 

change, it is necessary to understand erosion processes in blanket peatlands and their 

contributing factors. The main purpose of this chapter is to review what is known 

about processes of sediment production and transport in blanket peatlands and their 

relationship with different external forces.  

 

The structure of this chapter is as follows. An introduction to peatlands is presented 

in section 2.2. Sections 2.3 and 2.4 concentrate on current knowledge of hydrology 

and erosional processes in blanket peatlands while drivers of change in blanket peat 

erosion are outlined in section 2.5. Section 2.6 summarizes the chapter by 

prioritising key research needs. The overall methodological approach for the rest of 

the thesis is presented in section 2.7. 

2.2 Peatland classification and global distribution 

Peat is not the same over the world and there are different characteristics which peat 

may have depending on its environmental setting. Charman (2002) categorized peat 

into four classifications which are moss, herbaceous, wood and detrital or humified 

peat. Moss peat could be further divided into Sphagnum (i.e. Sphagnaceae) and 

brown moss (i.e. Amblystegiaceae) which are common peat formers. Herbaceous 

peat often forms from the seed parts, leaves, stems, roots of sedges, grasses and 

rushes while woody peats are common in forested and shrub-dominated peatlands. 

Detrital or humified peat means that disarticulation and decomposition make the 

bulk of the plant remains hardly identifiable. As peat accumulates through time, 

peatlands are formed, but they also vary spatially across an individual site. As well 

as classification of peat, there is a long history of classification of peatlands (Moore 

1984; Lindsay and Heritage 1995; Dykes and Kirk 2006; Boylan, Jennings et al. 

2008). The source of water and nutrients are usually adopted to categorize peatlands 

into fens and bogs. The former are minerotrophic (groundwater-fed), receive water 



- Chapter 2 - 

9 

 

and nutrients from outside their confines and tend to be nutrient-rich and alkaline. 

The latter are ombrotrophic (rainfall-fed), obtain water and nutrients only from the 

atmosphere and thus are acid and nutrient-poor. Moreover, a hydro-morphological 

peatland classification system (Table 2.1) was proposed by Charman (2002). In this 

system, the overall shape of the peat deposit and the underlying ground together 

with the hydrology of site are employed to determine the basic site types, which are 

then further subdivided by vegetation, water chemistry and peat stratigraphy. 

 

Table 2.1 Hydro-morphological classification system (summarized from Charman 

2002) 

First class Second class Definition 

Ombrotrophic Raised bog Peatlands with domes and receiving water and 

nutrient only from atmosphere 

Blanket bog A type of mire complex, made up of various 

ombrotophic peatlands  

Intermediate An individual mire unit linked to another peatland 

type or extends beyond the usual definition of 

peatlands 

Minerotrophic Topogenous 

fens 
Basin fens: form in basin situation where topographic 

depression is confined and no main inlet or outlet 

Floodplain fens: form along river system, receive 

much water from floods, sometimes including mineral 

soils 

Soligenous 

peatlands 
Valley mires: form along the floors an lower slopes of 

valley that have dispersed flow of water through them 

Sloping fens: form on sloping terrain, receive water 

from runoff and groundwater maybe in the form of 

spring 

Others Other fens Boreal and subartic peatlands, patterned fens and aapa 

mire: characterized by complex patterning on surfaces 

by the arrangement of pools, hollows and hummocks 

Mire complex Complexes containing a variety of peat landforms and 

types 

 

Peatlands have wide distribution around the world. However, neither the precise 

amount nor the exact extent of peat is well known mainly because criterion used to 

classify peat varies between countries (Immirzi, Maltby et al. 1992) and there are 

difficulties in determining peat depths. Even in Europe and North America, only the 
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approximate extent and distribution of peat can be determined (Gorham 1991). For 

the whole world, it is estimated that 4.4 million km
2
 of peatlands exist (Yu, Loisel et 

al. 2010). Figure 2.1 shows the global distribution of peatlands. High latitudes of 

North America and Eurasia are important regions for peat accumulation and this is 

because of wet, cool climatic conditions. Peat accumulation increases northwards 

and peaks at around 60°N. Further north the low temperatures inhibit plant growth 

and hence active peat formation decreases (Zoltai, Taylor et al. 1988). Tropical areas 

also have large quantities of peatlands. High temperatures encourage decomposition, 

but anaerobic conditions in areas of plentiful water supply will, nevertheless, inhibit 

decomposition. Vegetation growth rates will also be fast in tropical peatlands so that 

organic matter accumulation is large. In Southeast Asia, peatlands may cover more 

than 10 % of the land area in many regions. In the Southern Hemisphere, peat is less 

of a feature than in the Northern Hemisphere because there is less land at latitudes 

suitable for its formation. However, peatlands can be found in large quantities in 

many parts of Southern America, Tasmania, New Zealand, Africa and islands of the 

South Atlantic.  

 

Blanket peat is the focus of this thesis. It is an ombrotrophic (rain-fed) peat system, 

occurring mainly on gently-sloping terrain (Taylor 1983; Shotyk 2002; Warburton 

2003). Certain climate is required for blanket peat growth, resulting in blanket peat 

having a restricted but global distribution (Figure 2.2) (Conaghan 1995). Linsday 

Figure 2.1 Global distribution of peatlands (from Parish, Sirin et al. 2008) 
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(1988) suggested four criteria for blanket bog growth: 1) annual precipitation above 

1,000 mm; 2) more than 160 rainy days each year; 3) the warmest month having an 

average temperature lower than 15 
o
C and 4) limited seasonal temperature 

variability. The global distribution (Figure 2.2) of areas suitable for blanket 

peatlands can be determined from the above conditions. Blanket peatlands are 

mainly restricted to hyper-oceanic regions such as north-western Europe, the eastern 

coast of Canada, the North American Pacific coast, the north-eastern coast of Asia, 

the tip of South America, mountainous regions of central Africa, New Zealand and 

other Southern Pacific islands. Blanket peat has been found within all these areas, 

although in some of these regions blanket bog formation still remains debatable and 

uncertain (Conaghan 1995). In addition, future climatic change may put more 

pressure on blanket peatlands. Gallego-Sala and Prentice (2012) suggested via a 

modelling exercise that shrinkage of the zone suitable for blanket peatlands would 

occur under future climate change, although there would be some small areas that 

were more suitable for blanket peat formation. During this process, erosion of 

blanket peat is more likely where the peatland system is no longer in a zone of 

favourable climate.  

 

Figure 2.2 Global distribution of blanket peatlands (from Evans and Warburton 

2007, page 13 ) 
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Figure 2.3 Carbon exchanges between blanket bog and the atmosphere (from 

Holden 2005c) 

 

Peatlands play an important role in global carbon cycling (Limpens, Berendse et al. 

2008). As the rate of decay is less than the rate of production, many peatlands are 

significant carbon sinks. Globally, peatlands were estimated to contain 33 % to 50 % 

of the world’s soil carbon (Holden 2005c). Yu et al. (2010) estimated that over 600 

Gt C have been stored as peat since the last glacial maximum with 547 Gt C for 

northern peatlands, 50 Gt C for tropical peatlands and 15 Gt C for southern 

peatlands, and this is large enough to seriously impact the global carbon budget. A 

conceptual model shown in Figure 2.3 outlines carbon cycling for blanket peatlands 

(Holden 2005c). Photosynthesis provides the main carbon input. Losses from 

respiration and mineralization (CO2) and methane (CH4) production from anaerobic 

decay occur from the peat mass. Additionally, water-borne losses occur via 

dissolved gases, aqueous carbon and particulate carbon (Holden, Smart et al. 2012a). 

There can also be wind-borne losses of particulates from a peatland site. Disturbance 

of peatlands could alter the balance of the parts of the carbon cycle and transform a 
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peatland into a net source of carbon rather than a net sink (Moore and Knowles 

1989; Evans, Stimson et al. 2012).  

2.3 Blanket peat hydrology 

Blanket peat stream regimes are very flashy. Figure 2.4 shows water discharge from 

Trout Beck catchment, a typical blanket peat-covered catchment in the North 

Pennines, UK. The hydrograph is quite spiky with very low baseflow, illustrating 

quick response of runoff to rainfall. 

 

Figure 2.4 Daily rainfall and daily runoff from the Trout Beck catchment, North 

Pennines, UK in 2008 (Source data were provided by the ECN). 

 

It is necessary to understand runoff generating mechanisms in blanket peatlands in 

order to explain the above streamflow regime. Runoff production in actively 

forming blanket peat is often dominated by saturation processes. Evans, Burt et al. 

(1999) found a strong negative linkage between water discharge and water-table 

depth. At a mid-slope point in the Trout Beck catchment water tables were within 5 

cm of the surface during 83 % of the time. Therefore when it rains the water table 

quickly rises to the surface and the peat is saturated, generating saturation-excess 

overland flow. This flow can move quickly over the peat surface or through the 

shallow vegetation that forms the uppermost peat into stream systems (Holden and 

Burt 2003c). 
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The hydraulic conductivity is one of the most important hydrological parameters of 

peatlands (Evans and Warburton 2007), and usually thought to become rapidly 

smaller with slight increase in depth from the surface in the peat profile (Figure 2.5). 

One model, developed by Russian scientists (Ivanov 1981), is usually employed to 

describe the vertical changes in peat properties. In the model, peat is divided into an 

upper acrotelm layer and a lower catotelm layer. In the upper acrotelm layer, litter is 

rapidly decomposed due to the access of air through the pores during water-table 

oscillations. The abundance of fresh litter (from bog vegetation) and relatively 

undecomposed nature of the upper layers mean that the density of the acrotelm peat 

is relatively low and the hydraulic conductivity is relatively high. However, the 

hydraulic conductivity declines and density increases rapidly with depth due to 

compression of the peat. In the catotelm layer, microbial activity and decomposition 

are suppressed because of permanent saturation in this zone. The hydraulic 

conductivity in the catotelm could be 3 to 5 orders of magnitude lower than in 

acrotelm (Figure 2.5). Consequently, most matrix flow is generated within upper 

peat layers, while matrix throughflow decreases quickly with depth within the 

acrotelm layer. The matrix throughflow in catotelm peat is very restricted (Evans, 

Figure 2.5 Vertical variation in hydraulic conductivity in blanket bog at Cape 

Race, Newfoundland, Canada (from Hoag and Price 1995) 
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Burt et al. 1999; Holden and Burt 2002a; Holden and Burt 2003b; Holden 2005c). 

The low hydraulic conductivity in the catotelm peat means that once water tables 

drop by a few cm the lateral flows from the peat are restricted and streamflow 

quickly reduces. Further water-table declines are often only due to 

evapotranspiration and during summer months diurnal steps in water table can often 

be seen associated with day-night transpiration differences (Boatman and Tomlinson 

1973; Ingram 1983). 

 

The acrotelm-catotelm model has been widely adopted to account for peatland 

hydrology but suffers from some major flaws because of over-simplification of 

processes. For example: 1) hydraulic conductivity is anisotropic and hillslope-scale 

runoff production varies spatially and over time and this is often ignored (Holden 

and Burt 2003b; Morris, Waddington et al. 2011); 2) natural soil pipes and 

macropores, that may operate within the catotelm, are not taken into account and 

may interfere with the simple model structure in terms of water flow paths and 

sources as shown in Figure 2.6 (Holden 2005c); 3) the acrotelm-catotelm model 

often means researchers in blanket peat systems have mistakenly played down the 

role of topography on runoff production mechanisms (Holden 2005c). 

 

Holden and Burt (2003c) gave the contributions of each layer of peat to runoff 

production in the Moor House site, North Pennines as 81.5 % at the peat surface, 

17.7 % between the surface and 5 cm depth, 0.7 % between 5 and 10 cm depth, and 

less than 0.1 % from below 10 cm depth despite the depth of peat deposit. However, 

subsurface pipes (Figure 2.6) in blanket peatlands have started to receive much 

attention in the past decade. Pipe flow has been found to account for about 10-14 % 

of catchment streamflow (Holden and Burt 2002b; Smart, Holden et al. 2012). More 

about pipes is provided in section 2.4.3.1.  
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2.4 Blanket peat erosion 

2.4.1 Overview 

Soil erosion is the process of weathering, transporting and depositing soil and its 

parent materials through external forces such as running water, wind and gravity etc. 

Soil erosion is widespread globally, with approximately 10.5 million km
2
 of land 

being eroded, of which 7.5 million km
2
 suffer from water erosion while another 3 

million km
2
 are impacted by wind erosion. Moreover, Yang, Kanae et al. (2003) 

suggested that nearly 30 % of the world’s arable lands were eroded during the 

second half of the 20th century, so that soil erosion is a major threat to the 

sustainability and productivity of agriculture (Stone, Cassel et al. 1985; Verity and 

Anderson 1990; Bakker, Govers et al. 2005). 

 

Inside the British Isles, there may be as much as 3,500 km
2
 of blanket peat eroded 

(Stevenson, Jones et al. 1990; Tallis 1998). Blanket peat is extensively eroded in 

British uplands (Tallis 1997; Grayson, Holden et al. 2013). Twenty six percent of 

Irish blanket bog has been exploited or disturbed by land management practices 

Figure 2.6 Acrotelm-catotelm model rendered less useful due to pipe flow 

(redrawn from Holden 2005c) 
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(Hammond 1979); many of these bogs have since been degraded through erosion 

(Bowler and Bradshaw 1985; Bradshaw and McGee 1988). Blanket peat erosion is 

extensive in the uplands of western Ireland (Leira, Cole et al. 2007). Although 

severe and extensive erosion of blanket peat is a phenomenon which is almost 

unique to British Isles, blanket peat erosion has also been reported in other parts of 

the word such as the Falkland Islands (Wilson, Clark et al. 1993), Sweden (Foster, 

Wright et al. 1988) and Austrian Alps (Victoria National Park Association 2005). 

Table 2.2 demonstrates that erosion rates from eroding blanket peatlands in the UK 

could reach over 200 ton km
-2

 yr
-1

 but it is usually modest in global terms. Even so, 

because of the low dry bulk density of peat (often approximating 0.1 g cm
-3

), large 

volumetric landform change caused by erosion may happen (i.e > 90 % of the peat 

mass is water, but bulk densities are measured on dry weight soils). Land cover may 

be related to the rate of erosion in blanket peatlands (Table 2.2). In addition, blanket 

peat erosion could lead to a series of ecological and economic problems (Yeloff, 

Labadz et al. 2006), which includes loss of terrestrial and aquatic habitats 

(Ramchunder, Brown et al. 2009), loss of grazing land, reduction of reservoir 

capacity (Labadz, Burt et al. 1991) and discoloration of water (Pattinson, Butcher et 

al. 1994). As shown in Figure 2.3, erosion also results in more carbon export from 

blanket peatlands. Therefore blanket peat erosion could cause considerable landform 

change and various environmental issues.  

 

As blanket bog can occur on sloping terrain, it could be subject to rapid erosion once 

degradation is initiated. Blanket peat erosion is a three-stage process: 1) the 

disruption and removal of vegetation cover by external forces; 2) the formation of an 

easily eroded surface layer by frost or drought; 3) the transport of erodible materials 

by wind and / or water (Tallis 1998). Water is seen as the main agent of blanket peat 

erosion, while wind is sometimes a very important force, for example, in sheet 

erosion (Bower 1961) or through wind-assisted splash (Foulds and Warburton 

2007b). 

 



 

 

 

 

 

 

Site Region Erosion rates 

(ton km
-2

 yr
-1

) 

Catchment size 

(km
2
) 

Year Cover Source 

Monachyle Central Scotland 38 7.7 1984-1985 Moorland Stott et al. (1997) 

Hopes Reservoir SE Scotland 25 5 1935-1970 Eroding moorland Ledger, Lovell et al. (1974) 

North Esk Reservoir SE Scotland 26 7 1850-1971 Eroding moorland Ledger, Lovell et al. (1974) 

Cyff Mid Wales 6 3.1 unknown Grassland Moore and Newson (1986) 

Tanllwyth Mid Wales 38 0.9 unknown forest Moore and Newson (1986) 

Upper Severn Mid Wales 66 0.94 1982-1984 Blanket peat moorland Francis (1990) 

CeunantDdu Mid Wales 3.7 0.34 1982-1983 Blanket peat moorland Francis and Taylor (1989) 

CeunantDdu Mid Wales 9 0.34 1982-1983 Ploughed Francis and Taylor (1989) 

Nant Ysguthan Mid Wales 0.7 0.14 1982-1983 Blanket peat moorland Francis and Taylor (1989) 

Nant Ysguthan Mid Wales 3 0.14 1982-1983 Ploughed Francis and Taylor (1989) 

Rough Sike North England 112 0.83 1960 Eroded blanket peat Crisp (1966) 

Rough Sike North England 44.34 0.83 1998-2001 Re-vegetated blanket peat Evans and Warburton (2005) 

Upper North Grain North England 267 0.38 2001-2002 Eroding blanket peat Evans, Warburton et al. (2006) 

Gt. Eggleshope Beck North England 12.1 11.68 1980 Uneroded blanket peat Carling (1983) 

Burnhope Reservoir North England 33.3 17.8 1936-1998 Eroding peat moorland Holliday (2003) 

Trout Beck North England 10.5 12 1997-2009 Re-vegetated blanket peat ECN sampling data 

Table 2.2 Erosion rates of blanket peat catchments in the UK 



 

 

 

 

Table 2.2 Continued

Location Region Erosion rates 

(ton km
-2

 yr
-1

) 

Catchment size 

(km
2
) 

Year Cover Source 

Cottage Hill Sike North England 2.8 0.17 2008-2009 Re-vegetated blanket peat Holden, Smart et al. (2012a) 

Coalburn North England 3 3.1 1972-1973 Uneroded peat moorland Robinson and Blyth (1982) 

Coalburn North England 25 3.1 1972-1973 Ploughed Robinson and Blyth (1982) 

Coalburn North England 13 3.1 1972-1973 Planted Robinson and Blyth (1982) 

Wessenden Moor North England 55 0.0042 1984-1986 Eroding blanket peat Labadz (1988) 

Shiny Brook North England 203.69 2.4 1881-1986 Eroding blanket peat Labadz, Burt et al. (1991) 

Featherbed Moss North England 12-40 0.03 1970 Eroding blanket peat Tallis (1973) 

Howden Reservoir North England 128 32 1912-1987 Eroding peat moorland Hutchinson (1995) 
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2.4.2 Sediment production 

Supply-limited processes are dominant in blanket peat erosion so there is a positive 

hysteresis relationship (Figure 2.7) between suspended sediment concentration and 

runoff (Labadz, Burt et al. 1991). This implies that freshly exposed peat may need a 

period of weathering driven by external forces to become loose and consequently is 

then transported. However, transport-limited erosion may occur sometimes when 

sediment supply exceeds the transporting capacity of water flow, which can be 

determined by the runoff, local topography and soil properties (Musgrave 1947). 

 

Freeze-thaw and desiccation are commonly cited as key sediment production 

mechanisms in blanket peatlands (Tallis 1973; Francis 1990). Frost is common in 

cool, wet upland climates coinciding with peat deposits (Evans and Warburton 

2007). Because of the high volumetric heat capacity, low heat conductivity and 

thermal difference from wet to dry (Fitzgibbon 1981), strong temperature gradients 

are thus present on the peat surface, which, in addition to a sufficient moisture 

supply, provides essential conditions to the development of needle ice (Outcalt 

1971). The growth of needle ice may then lead to a ‘fluffy’ peat surface (Figure 2.8), 

which is loose and granular and is usually transported to the stream as particles or 

Figure 2.7 A storm event from Rough Sike, North Pennines, UK on 

19/11/1998, showing the positive hysteresis between runoff and 

suspended sediment concentration (SSC) (Source data were 

provided by Martin Evans, the University of Manchester) 



- Chapter 2 - 

21 

 

small aggregates of particles. Needle ice may also make the surface peat layer 

desiccated (Burt and Gardiner 1984; Evans and Warburton 2007). However, the 

development of desiccated surface layers usually spans a long-term dry period, 

leading to platy aggregates. These aggregates are much lower in density than the 

material produced by frost action and are hydrophobic (Ingram 1983) Therefore they 

are transported as large floating particles when overland flow occurs. 

 

 

Two classic studies about blanket peat erosion were conducted in the Upper Severn 

catchment in mid Wales and the Shiny Brook catchment in the South Pennines 

(Francis 1990; Labadz, Burt et al. 1991). Sediment production from Plynlimon was 

dominated by summer desiccation, while winter frost heave was more important in 

sediment supply at Shiny Brook. The contrasting findings were interpreted as the 

result of climatic difference in the catchments during the study periods (Evans and 

Warburton 2007). In addition, trap results from Rough Sike, North Pennines, UK 

suggested that total rainfall and soil moisture were the most related parameters to 

sediment flux, and erosion pin results from this catchment demonstrated that bigger 

surface advance was consistent with soil temperature below freezing (Evans and 

Warburton 2007). Therefore sediment supply in peat catchments is much to do with 

climatic conditions. In line with this idea, Yang (2005) has demonstrated that the 

Figure 2.8 Illustration of needle ice (from Evans and Warburton 2007, page 63) 
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slope of best fitted lines through measured discharge-sediment concentration 

relations for individual storm events in Upper North Grain, are controlled by 

sediment supply from eroding gully walls. This regression slope is highly sensitive 

to climatic variability and connectivity within catchments (Evans and Warburton 

2007). Such an indicator could potentially be applied widely to account for 

variations in sediment supply with climate, and therefore provide a good basis for 

predicting sediment production from blanket peatlands. However, Yang’s work is at 

storm and small catchment scale. Whether such an indicator works at other spatial 

and temporal scales (e.g. plot scale, hillslope scale) is unclear. Thus more work may 

be needed to test or improve the indicator proposed by Yang (2005) before it could 

be applied broadly. 

2.4.3 Sediment transport 

2.4.3.1 Water related processes 

Fluvial erosion is the dominant process controlling sediment delivery from eroding 

peatlands. Bower (1960a; 1960b; 1961; 1962) gave an extensive review on the 

distribution, causes and classification of peat erosion in the Pennines, UK. 

According to morphology and pattern, Bower suggested that water erosion in 

peatlands existed in the forms of dissection systems, sheet erosion, and marginal 

faces. The description of these processes are provided below as the work was 

influential, but proceeding sections will include more up to date studies. 

a) Classic description of water erosion 

1) Dissection system 

Bower (1960a; 1961) suggested that there were two types of dissection systems 

which were usually referred to: type 1 and 2 (Figure 2.9a). The dissection systems 

are different in pattern but may be both initiated by seepage along horizontal or 

vertical lines of weakness within the peat, runnels on the peat surface and headward 

erosion from the margin of the peat mass. She considered the development of gully 

cross-sections as occurring through four stages (Figure 2.9b). The gullies are widely 

variable in the process of development, eroding headwards, laterally and eventually 

incise to the peat base. During the early stages, gullies are V-shaped with a different 

extent of vertical and lateral incision. For the first stage, gullies are shallow and 

contained within the peat, while the second stage contains narrow gullies which 
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have already eroded into the peat base. Late stages of gullies show a U-shaped cross 

section. In the third stage, the rate of lateral erosion into peat exceeds that of vertical 

erosion into mineral substrate, leading to the formation of gullies with a flat-floored 

profile. Separate peat islands (Figure 2.9a) are therefore formed between gullies, 

firstly having the same height as the original peat mass then lowered by either peat 

shrinkage or further erosion. In the fourth stage, eroded gullies are re-vegetated 

artificially or naturally. The above process could also be observed along a single 

dissection system. From head to foot of the system, the gully could develop from the 

V-shaped shallow narrow system to the U-shaped wider deeper gully. 

 

 

Empirically, Bower (1961) examined factors associated with the distribution of 

these two types of gully distribution. Type 1 is often present on sites where the slope 

is less than 5 degrees and the depth of peat is 1.5-2.1 m, especially where hummock-

pool complexes used to occur. In type 1, the peat is intensively dissected by a close 

network of intricately branching gullies. Type 2 takes place more extensively than 

type 1 because there is no restriction in peat depth and slopes for it to occur. In type 

2 gullies Bower suggested that the gullies become more open, that is to say, their 

frequency is low, mainly due to individual gullies which rarely branch (Bower 

1961). Islands will be generated in the process of formation of both dissection 

systems. In type 1, the gullies tend to incise to the peat base and the peat mass is 

reduced to small islands of a height equal to the original peat depth. Laterally, the 

Figure 2.9 a) Type 1 and type 2 gully systems (from Evans and Warburton 2007, 

page 80); b) Evolvement of gully system (from Evans and Warburton 2007, 

page 78). 
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islands will be lowered either by peat shrinkage or by erosion. In type 2, islands 

between gullies are larger and more angular due to the low frequency of gullies 

(Bower 1960a). 

2) Sheet erosion 

Sheet erosion takes place on the surface of the peat mass; water and wind are the 

major agents of sheet erosion (Bower 1961). Sometimes sheet erosion may occur 

during the development of dissection systems, especially on high, exposed summit 

sites and on the highest moors. On high, exposed summit sites, the vegetation cover 

is broken up by the early stage of dissection, which provides large areas of bare peat, 

then sheet erosion may become dominant (Bower 1960b). On the highest moors, 

sometimes the development of type 1 dissection slows down at the early stage, but 

lateral erosion continues and bare peat flats are then produced and sheet erosion 

occurs. 

3) Marginal faces 

Marginal faces often occur on the edge of the peat mass. It is particularly common 

when the peat mass is thinned to the feather edge lying on suddenly increased 

slopes, leading to the whole chunk of the peat mass move downslope, and resulting 

in erosion scars without vegetation cover. Such faces are often present on the edge 

of grit-stone plateau and benches. Marginal face erosion begins on the peat edge and 

often results in gullies, which usually erode back into peat mass because of 

headward erosion (Bower 1960a; Bower 1960b; Bower 1961). Frost and desiccation 

action can occur on exposed marginal faces. 

b) Recent advances in peatland water erosion 

1) Fluvial processes  

Recent work on fluvial erosion of peatlands has focussed on the upper reaches of the 

fluvial system (Rothwell, Evans et al. 2007; Kirkby and Bracken 2009; Evans and 

Lindsay 2010; Evans and Lindsay 2010), particularly on hillslope gullies (Stott 

2010). Gullies are an effective way of delivering eroded materials. Generally, a 

gully is defined as a deep channel generated by running water on a hillslope. 

Additionally, classical gullies are linear channels, which are too large to be reshaped 

or obliterated by farming equipment or operations so that they have a serious impact 
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on the landform and surface soil by transporting considerable quantities of upland 

soil and parent material to main stream channels (Kirkby and Bracken 2009). 

Figure 2.10 Gully sediment balance: Hl + -O=  are hillside and gully wall 

sediment inputs, O is channel sediment transport and  is the change in channel 

sediment storage, 𝑙𝐻 is the sediment inputs from hillsopes, 𝑙𝑤 is gully bed and wall 

sediment load (redrawn from Kirkby and Bracken 2009) 

 

Figure 2.10 illustrates the sediment balance and components of sediment transport 

within gully systems. Sediment transport following weathering of bare peat is 

usually divided into three parts including sediment input from hillsides to gullies, 

flux from gully walls to the stream channel and flux within stream channels. 

Sediment derived from outside of the gullies is one important source of transported 

material. For example, some peat islands between severely eroded gullies are bare 

because of the early incision of gullies, then later erosion on these islands results in 

available sediment for transport to the adjacent gullies (Bower 1960a). The delivery 

of sediment to stream channels is as important as sediment production for the 

sediment supply (Trimble 1981; Chamberlain 1983; Phillips 1989; Walling, Owens 

et al. 1999). However, sediment delivery from hillslope gullies to stream channels 

may vary dramatically among different catchments. Evans, Warburton et al. (2006) 

took two eroded catchments called Upper North Grain and Rough Sike as examples 

Wl
S

Hl Wl

S
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to examine the sediment budget in blanket peatlands. In the Upper North Grain 

catchment, storage of the sediment from eroding faces by overbank deposition and 

deposition at the interface of hillslope gullies and the floodplain tended to be 

insignificant as the sediment production measured by erosion pins is the 

approximately same as the measured sediment flux from the catchment. That is to 

say, most of the sediment produced at hillslope gullies was transported into the 

channels. A different situation occurred in the Rough Sike catchment where 

sediment delivery to stream channels was sharply reduced by the vegetation at the 

end of gullies trapping the sediment. Instead, the main sources of sediment for the 

main channel sediment load were lateral floodplain erosion and localized sources 

where the stream cuts into the intact blanket peat. Direct comparison of sediment 

budgets in Upper North Grain and Rough Sike emphasised the importance of 

vegetation cover in sediment transport from eroding hillslopes of blanket peatlands 

(Evans, Warburton et al. 2006). Low sediment flux from the Rough Sike catchment 

was mainly attributed to re-vegetation of the slope-channel interface. However, 

more work is desirable to evaluate the impact of vegetation cover on blanket peat 

erosion at different scales more comprehensively. For example, the influence of 

vegetation covers on sediment production and sediment transport along hillslopes 

and so on require study.  

 

The above also demonstrates that peat erosion is a natural and expected process 

within peatlands. Rivers and streams will often migrate and incise into surrounding 

peat deposits. A well-vegetated peat system could therefore still have a large 

sediment load if the stream systems are dynamic. 

 

The process of both fine and coarse sediment transport in stream channels is 

complicated. In channel systems, there are two types of peat sediment: peat blocks 

and fine peat sediment. Peat blocks occur when peat banks are directly undercut by 

stream systems. A large number of peat blocks stored on the river bed, may either 

change the plan form of the channel in larger peatland catchments or lead to the 

upstream accumulation of bed material and stepped river beds in smaller 

catchments. The removal of peat blocks by a large flood will cause the 

reorganization of the stream system. Transport of peat blocks in stream channels is 

in the form of rolling and then floating as the flow depth increases, leads to an 
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important in-channel source of the fine sediment (Evans and Warburton 2001). 

Suspension and floating are the major form of fine sediment delivery in channels. 

However, floodplain deposition happens together with the overbank flow (Klove 

1997; 1998). Warburton’s work in a small North Pennine blanket peat catchment 

showed overbank deposition could be as much as 36 % of catchment sediment yield 

(Warburton, Holden et al. 2004). 

2) Mass movement 

Mass movement of peat usually occurs on slopes, having been well recorded over 

the last few hundred years (Warburton, Holden et al. 2004). Eighty percent of peat 

mass movements have been reported in the UK (Boylan, Jennings et al. 2008), 

although examples have been recorded around the world including in Germany 

(Vidal 1966), Switzerland (Feldmeyer-Christe and Mulhauser 2011), and Canada 

(Hungr and Evans 1985). 

 

Mass movement often takes place on slopes and may take the form of a sliding of 

the peat mass or a bog burst (Dykes and Kirk 2006). Peat slides and bog bursts are 

important mainly due to their capacity to move large amount of surface peat, 

significantly affecting the stream ecosystem (McCahon, Carling et al. 1987). 

However, Statham (1977) thought that creep might be another important type of 

mass movement on peat which occurs very slowly compared to peat slides and bog 

bursts. Peat slides and bog bursts can be triggered by heavy or prolonged rainfall, 

and involve instability of peat overburden above mineral substrate (Carling 1986). 

Peat slides occur when a whole part of the peat mass moves down-slope due to the 

previous shear failure at or just below the peat-substrate interface. Bog bursts are the 

consequence of considerable quantities of near-fluid basal peat flowing down-slope 

through existing surface water channels. The basal peat usually comes to the peat 

surface through the peat tears or margins, which results in the let-down of the peat 

surface. Peat slides are dominant on areas of blanket bogs while bog bursts usually 

occur at sites where raised bog dominates (Dykes and Kirk 2001). In terms of the 

analysis of peat mass movements in the British Isles by Mills (2003), the 

distribution of bog bursts tends to occur at lower slope angles than peat slides; bog 

bursts generally have a larger volume of failure than peat slides, which means that 

sites where bog bursts occur have a deeper peat mass than slides sites, and therefore 
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this has an implication that there is a link between peat depth and the type of peat 

mass movement. Given the apparently increasing frequency of peat failures in the 

British Isles and the possibility of more peat failures elsewhere in the world as a 

consequence of climate change, it is necessary to improve the reliability of hazard 

assessment of peat failures (Dykes and Jennings 2011). In line with such 

requirement, Dykes and Warburton (2007) proposed a new precisely defined 

classification scheme for peat landslides (i.e. excluding creep), using type of peat 

deposit and failure morphology as the key criteria. Such a classification scheme 

enables a systematic approach to the identification and recording of peat failures, 

and improves peat instability hazard assessment.  

3) Pipe erosion 

The above types of erosion occur on the surface of peatlands. There is subsurface 

erosion called pipe erosion (Figure 2.3 and Figure 2.6). Pipes are found in all 

continents around the world and are natural conduits through soils often many 

centimetres in diameter and several hundred meters in length. The shape of pipes is 

complicated, fluctuating not only horizontally but also vertically: Studies on natural 

pipes have been conducted in tropical forests, collapsible loess soils, boreal forests, 

subarctic hillslopes and dispersive semi-arid soils. However, most attention has been 

paid to soil pipes through peatlands although even here there is still rather limited 

research (Holden, Smart et al. 2009) (Figure 2.11). 

 

Figure 2.11 A soil pipe in blanket peat 
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Pipes have been reported in many types of peatlands (Ingram 1983; Woo and 

DiCenzo 1988; Holden, Smart et al. 2009), but appear common in blanket peat 

(Holden 2005a; Holden 2006; Smart, Holden et al. 2012; Holden, Smart et al. 

2012a; Holden, Smart et al. 2012b). The initiation of pipes in peatlands is subject to 

the inherent properties of peat and external forces. With regard to the internal 

properties, peatlands are prone to pipe formation mainly because of plentiful water 

supply and the high gradients in horizontal and vertical hydraulic conductivity (Rosa 

and Larocque 2008). Outside, the drag force triggered by the water flow through the 

soils could lead to the conduit eroding back into the peat mass from outlets. In 

addition, root channels, desiccation cracks and faunal burrows are also commonly 

cited pipe initiation mechanisms (Holden, Smart et al. 2009) but the reality is that 

pipe formation is still not fully understood (Holden, Smart et al. 2012b).  

 

Soil pipes often transport water, sediment and solute from the soil profile to the 

stream channels and may play an important role in water and carbon transfer in 

peatlands (Smart, Holden et al. 2012; Holden, Smart et al. 2012a). In blanket 

peatlands, soil pipe density peaks at topslopes and footslopes which may be related 

to peat properties at different parts of the slope and how the peat has developed 

through time (Holden 2005a). Holden (2006) demonstrated that pipe density could 

double 35 years after beginning of open cut drainage. He also estimated that there 

could be an extra 5.8×10
3
 kg C km

-2
 yr

-1
 exported from pipe erosion alone for slopes 

where drainage is 40 years old. More complete measurements by Holden, Smart et 

al. (2012a) from selected pipes in Cottage Hill Sike, North England, suggested that 

pipe outlets produced 14 % of discharge to the stream and sediment equivalent to 62 

% of the annual stream POC flux. The morphology of pipe outlets has been shown 

to change over time, further demonstrating that pipes are not benign 

geomorphological features of peatlands. A survey of natural pipe outlets in the 

Cottage Hill Sike (Holden, Smart et al. 2012b) between 2007 and 2010, showed that 

the cross-sectional area of most pipe outlets changed and potentially responded to 

changes in weather condition. In addition, pipes may also contribute to the 

development of gullies, and pipe collapse is more likely to generate type 2 gullies; 

pipes can often be found at the head of gullies (Holden and Burt 2002b; Evans and 

Warburton 2007).  
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2.4.3.2 Wind-related processes  

Wind is a marked feature in the UK uplands and has long been considered as an 

important agent of peat erosion (Warburton 2003). Wind erosion is the process by 

which weathered peat is picked up and transported by wind. Because of low density, 

dry peat is very susceptible to wind erosion (Evans and Warburton 2007). The wind 

erosion and transport processes in peatland environments are different between dry 

and wet conditions (Figure 2.12). 

 

 

In dry conditions, the peat surface is often desiccated, crusted and cracked. Saltation, 

suspension and creep are the dominant processes of aeolian transport and sometimes 

reptation might occur due to the collisions of saltating particles with the surface 

dislodge particles (Nickling 1988). Occasionally, dry surface peat crusts (Figure 

2.12) may be entrained by the process named kite transport, which means that a 

whole chunk of peat between the cracks is blown off from the cracked peat surface. 

Under wet periods, the normal aeolian processes including saltation, suspension and 

Figure 2.12 The processes of wind erosion under dry and wet conditions (from 

Evans and Warburton 2007, page 143) 
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creep still occur. However, rainsplash and surface wash are also very important. 

Wind-driven rain is a common phenomenon in wet and windy conditions of upland 

Britain. Dry blow processes were directly measured by Foulds and Warburton 

(2007a) at Moss Flats, North Pennines, UK during a dry summer period, the rate 

was two order of magnitude less than wind-driven rain erosion monitored by 

Warburton (2003), who also suggested that the ratio of windward to leeward 

sediment flux is 2-12. However, dry blow processes may become more important in 

terms if climate change promotes more summer desiccation. A strong association 

between prevailing wind direction and the dominant orientation of streamlined 

haggs has been found by Evans and Warburton (2007). Wind-splash erosion is 

mainly controlled by climate characteristics such as rainfall intensity, wind speed 

and wind direction. A two-phase conceptual model was proposed by Edwin and 

Crews (2012) to describe wind erosion. If there has been an extensive period of frost 

action or prolonged dry climatic conditions that causes lots of surface desiccation, 

there will be more loose material on the surface so Phase 1 erosion will dominate the 

process. If the rainfall events occur shortly after another event there would be less 

opportunity for weathered material to be produced on the surface so Phase 2 erosion 

of smaller particles will dominate the process (Figure 2.13). Overall, there are 

relatively less studies on wind erosion than fluvial erosion in blanket peatlands. 

Detailed studies of aeolian processes of blanket peat have only occurred at Flow 

Moss (Baynes 2012) and Moor House (Warburton 2003; Foulds and Warburton 

2007a; Foulds and Warburton 2007b), which are both in the North Pennines, UK. 

The observation durations of these projects are usually quite short (less than two 

years). Studies on wind erosion could be enhanced in two aspects to help further 

understand the processes involved: 1) detailed studies of aeolian processes should be 

conducted at other locations; 2) extended periods of field monitoring should also be 

done. 
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2.5 Contributing factors to blanket peat erosion 

As noted above, peat erosion is a natural process, part of a cycle of landscape 

change along with re-vegetation. However, erosion will also be impacted by 

environmental disturbance such as climate change and land management. These 

disturbances alter the balance between the forces of erosion (frost, desiccation, wind, 

and runoff) and the ability of vegetation to retain peat, eventually leading to the 

initiation and / or acceleration of erosion (Evans and Warburton 2007). On the one 

hand, climate shifts impact the weathering (freeze-thaw and desiccation) and 

transport (runoff, wind) of peat, contributing to peat erosion. On the other hand, peat 

erosion is viewed as an artificial product of human action via disturbance through 

artificial drainage, grazing and trampling, air pollution, and prescribed or accidental 

fire (Phillips, Yalden et al. 1981).  

2.5.1 Climate 

Climate change has already been recognized as a global phenomenon (Harrison, 

Harrison et al. 2010), and blanket peat is sensitive to climate change (Tallis 1998; 

Ellis and Tallis 2000; Ellis and Tallis 2001). Evidence has suggested that some 

eroded peat systems pre-date intensive human disturbance (Bragg and Tallis 2001), 

and climate shifts were responsible for the initiation of these erosion processes. The 

early Medieval (ca. AD 1100-1250) Warm Period has been suggested as playing a 

role in priming the peat surface for any subsequent erosion (gullies) in the South 

Figure 2.13 The conceptual model of the wind-driven rain (from Baynes 2012) 
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Pennines, UK (Tallis 1995; Tallis 1997; Bragg and Tallis 2001). Rhodes and 

Stevenson (1997) found the Little Ice Age (ca. 1500-1850) was associated with 

increased peat erosion at six of seven small lake sites with extensive peat-covered 

catchments in Scotland, Ireland and Wales. Similar findings were also found in the 

sub-Antarctic region, where Van der Putten, Hlbrard et al. (2008) suggested that 

drier climate between AD 1150 and 1300 caused weathering of the peat surface. 

Therefore, it was suggested that erosion risk was largely increased during the 

following Little Ice Age, with colder winters and wetter summers leading to larger 

volume of runoff. 

 

Future climate change scenarios indicate that the UK will experience warmer, drier 

summers and warmer, stormier winters during the 21
st
 century (UKCP09 2009). In 

order to predict the impacts of future climate change on the existing blanket 

peatlands, bioclimatic envelope modelling has been adopted, which is widely used 

to study the current distribution of species and to project potential changes under 

future climate scenarios (Sykes, Prentice et al. 1996; Berry, Dawson et al. 2002). In 

these models, bioclimatic space is usually characterized by the climatic thresholds 

expressed as one or several climate variables. There are two types of bioclimatic 

envelope modelling: 1) statistical and 2) process-based (Gallego-Sala, Clark et al. 

2010). Both could be applied to ecosystems and species. With well-defined climatic 

thresholds (Wieder and Vitt 2006), the distribution of peatlands could be described 

by bioclimatic envelope models. Clark, Gallege-Sala et al (2010) used eight 

statistical bioclimatic envelope models to examine the vulnerability of blanket peat 

within the UK to climate change. Seven out of eight models showed a decline in 

bioclimatic space associated with blanket peat, with no increase in the bioclimatic 

space even in the north of Scotland or at high altitudes, using UKCIP02. Peat in 

eastern and southern regions was predicted to be more vulnerable to climate change 

than in western and northern areas and high-altitudes in the UK. The decrease in 

peatland bioclimatic envelope could lead to changes in peatlands, although the rate 

of change is not known. For process-based bioclimatic envelope modelling, the 

PeatStash model was applied in the UK and across the world to predict the response 

of blanket peatlands to climate shifts (Gallego-Sala, Clark et al. 2010; Gallego-Sala 

and Prentice 2012). In the UK, blanket peatlands were predicted to retreat towards 

the north and west between 2011 and 2100. This is consistent with the results from 
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studies based on statistical models (Clark, Gallego-Sala et al. 2010). Globally, the 

distribution of suitable regions for blanket peat is also predicted to be subject to 

change under climate scenarios from UKCP09 (Figure 2.14), with the appearance 

and disappearance of areas suitable for blanket peat growth occurring 

simultaneously. During these phases, the degradation of peatlands is much more 

likely, providing conditions for erosion to originate and evolve. However, no 

research has been done to directly test the response of blanket peat erosion to future 

climate change. It is therefore important to examine how blanket peat erosion 

develops with climate in the future so that the fate of blanket peat in the enlarged 

marginal areas could be assessed. 

 

 

 

 

Figure 2.14 Projected changes to blanket bog potential area for climate change 

scenarios compared with standard period. The colour scale represents the 

number of climate models predicting new appearance (blue) or 

disappearance (red) of blanket bog potential are. Ice caps and areas where 

no climate data are available are shown in light grey (from Gallego-Sala 

and Prentice 2012). 
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2.5.2 Anthropogenic effects 

Human activities including artificial drainage, prescribed burning, grazing and 

pollution also are factors important to blanket peat erosion as they could result in 

changes to vegetation cover or its complete removal and soil properties, so enhance 

sediment production (desiccation) and transport (gullies and pipes) (Holden 2005b).  

2.5.2.1 Artificial drainage 

Drainage of peatlands has been widespread for several centuries (Holden, Chapman 

et al. 2004; Holden, Wallage et al. 2011) for agriculture, forestry, horticulture and 

flood risk alleviation (Holden, Gascoign et al. 2007b; Holden, Wallage et al. 2011). 

New drainage in UK upland peat peaked between the 1940s and 1970s (Holden 

2006; Ballard, McIntyre et al. 2011). However, problems associated with drainage 

of blanket peat are frequently reported including increased flooding, peat erosion, 

decrease of water quality and ecosystem destruction (Ramchunder, Brown et al. 

2009). Artificial drainage could change the hydrological properties of blanket 

peatlands such as water-table depths and fluctuations (Holden, Wallage et al. 2011), 

hydraulic conductivity (Wallage and Holden 2011), water storage capacity and 

runoff coefficient (Holden, Chapman et al. 2004). Attempts have been made to 

incorporate drainage into hydrological modelling. Ballard, McIntyre et al. (2011) 

proposed a simplified physics-based model that allowed the associated hydrological 

processes and flow responses to be explored. A drainage model has also been 

developed to account for the impact of drainage on soil moisture deficit during a 

project funded by Yorkshire water and conducted by the University of Leeds 

(Beharry-Borg, Hubacek et al. 2009). The model was incorporated into the point 

version Pan-European Soil Erosion Assessment (PESERA-POINT) model to assess 

the socio-economic implications of land management policies in Yorkshire’s 

catchments. Drains often incise rapidly both vertically and horizontally (Mayfield 

and Pearson 1972) especially on steeper slopes. In addition, the vertical incision is 

often associated with the undercutting of ditch sides and occasional block failure 

(Holden, Gascoign et al. 2007b), probably because the bare peat on the sides is 

subject to frost heave and desiccation and transported by flowing water. The above 

processes may lead small peat drains to form large gullies. 

 

 



- Chapter 2 - 

36 

 

 

 

Figure 2.15 shows a drainage system in northern Scotland. In area 1 the land drains 

are in the relatively earlier stage while in area 2 large gullies and separate islands 

have been formed. Pipe density is known to increase around drainage networks 

(Holden, Evans et al. 2006), and sometimes rapid mass movements may occur in 

association with peatland drainage due to peat failure along the artificial drainage 

line (Holden, Chapman et al. 2004). Holden, Gascoign et al. (2007b) presented a 

survey of peat erosion in drains from four blanket peat catchments in northern UK. 

They suggested that slope and catchment area may be the most important factors 

determining the extent of peat erosion in drains; slopes less than 2 degrees are rarely 

eroded, slopes greater than 4 degrees have drains that are rarely naturally infilled 

and the erosion tends to be more severe with slope. The correlation between drain 

erosion and catchment area was significantly positive with a coefficient of 0.43. 

With regard to suspended sediment production, the unblocked drains produced 

significantly more sediment per unit area (more than one order of magnitude) than 

the blocked drains (using periodic dams) and intact peat subcatchments, which 

means drain blocking is an effective way to reduce the sediment production from 

land drains (Wilson, Wilson et al. 2011). Measured data from Upper Wharfedale 

also supported the idea that the peatland drains were an important suspended 

sediment source for the catchment as 18.3 % of the catchment sediment yield came 

Figure 2.15 Land drainage on peatlands in Northern Scotland (from Google maps) 
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from unblocked drains which only cover 7.3 % of the catchment (Holden, Gascoign 

et al. 2007b).  

2.5.2.2 Burning 

A wide range of studies have shown that prescribed burning affects the structural 

diversity of peat ecosystems (Gimingham 1972; Lance 1983; Norton and De Lange 

2003). Grouse management for shooting involves rotational burning to encourage a 

mosaic of old and new vegetation stands thought to favour the grouse life cycle 

(Holden, Chapman et al. 2012). However, this burning cycle may result in time 

periods and spatial plots for which there is a relatively bare surface and hence may 

change the hydrological regime and accelerate the potential for sediment release 

(Bower 1960a; Hough, Towers et al. 2010). However, this may depend on the 

connectivity of bare (recently burnt) patches and the stream system, and buffers are 

supposed to be left between burnt areas and watercourses (Defra 2007). The UK 

guidance restricts the timing, frequency and size of burning to ensure sufficient soil 

moisture and reduce the burning damage to underlying soil and peat (Worrall and 

Adamson 2008). There is quite limited data on the roles of burning in sediment 

production in peatlands. Prescribed burning is usually associated with fine sediment 

in the streams which affects macro-invertebrate communities (Ramchunder, Brown 

et al. 2013). During some very dry periods, wildfire could have severe sediment 

production consequences since the size and severity of the fire may be more intense 

(McMorrow, Lindley et al. 2009; Esteves, Kirkby et al. 2012), with a destruction of 

the seed stock and subsequent generation of rapid connectivity (e.g. gullies, sheet 

erosion) to stream networks (Bower 1962; Stevenson, Jones et al. 1990; Rothwell, 

Evans et al. 2007). Several models have already been developed to predict the 

wildfire risk and potential wildfire severity (Venevsky, Thonicke et al. 2002; 

McMorrow, Lindley et al. 2009). Esteves and Kirkby et al. (2012) demonstrated 

infrequent wildfire may result in more soil erosion than frequent managed burning in 

two catchments of central Portugal. McMorrow (2011) suggested, that in the UK, 

management for multiple land uses requires wildfire-aware management of 

ecosystem services and ecosystem service-aware management of wildfire. So there 

are interactions between wildfire and land management since the fuel load may be 

greater without land management making the potential impact of a wildfire worse. 
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However, this is a contentious issue since there are a large number of process 

interactions (Holden, Chapman et al. 2007a).  

2.5.2.3 Grazing 

It is widely acknowledged that overgrazing is a significant factor in degradation of 

upland peat (Evans 1977; 2005; Holden, Chapman et al. 2007a; Worrall and 

Adamson 2008). The carrying capacity of peatlands is so low that it only takes a few 

additional sheep to cause severe degradation. Peat erosion can be initiated or 

exacerbated by grazing, and such erosion is then difficult to control even if the 

animals are excluded from the area by fencing (Evans 1997).  

 

Grazing may act to trigger blanket peat erosion. When stocking density is greater 

than carrying capacity of land, the vegetation cover tends to be eaten and / or 

trampled by sheep, and therefore produces bare soils, which are vulnerable to 

weathering processes. The situation could be enhanced in poorly drained peat on flat 

or gentle slopes (Evans 1997). Grazing may also be responsible for maintaining a 

bare peat surface from erosion initiated by other factors such as burning, drainage 

and mass movements etc. (Rawes and Hobbs 1979). Through investigating the 

causes of erosion and degradation of the March Haigh catchment, Yeloff, Labadz et 

al. (2006) suggested that bare peat surfaces exposed by the accidental fire in 1959 

were maintained by highly intensive sheep grazing leading to severe erosion. 

Decreased soil infiltration caused by overgrazing may result in more surface flow 

(Burt and Gardiner 1984), and changed water table. Meyles, Williams et al. (2006) 

reported that more intensive grazing caused conditions suitable for the increased 

delivery of soil water to rapid flowpaths such as sheep tracks and other rapid routes 

which connect the source of hillslope water to channels during large floods. This 

means that a rapid connectivity is formed between hillslopes and main channels, and 

may lead to increased flooding, which transports more sediment into stream 

networks. In addition, the changed hydrological properties may also lead to varied 

soil moisture conditions, resulting in variation in sediment produced by desiccation. 

Overall, grazing may play a more important role in maintaining erosion than runoff 

(NSRI 2002). However, the exact influence of sheep grazing upon upland 

environments is still uncertain as there is a lack of quantitative information on 

variation of sediment production and transport caused by overgrazing. 
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2.5.2.4 Atmospheric pollution 

“On a global scale the impact of pollution on mire surfaces is very localized” (Evans 

and Warburton 2007). In the Southern Pennines, UK, several studies have shown 

that serious atmospheric pollution from adjacent industrial and urban areas may 

have very adverse effects on the vegetation cover, especially Sphagnum (Bower 

1962; Tallis 1997; Charman 2002). However, recently the emission of many 

atmospheric pollutants has undergone a reduction due to statutory limitation in the 

UK (Skeffington, Wilson et al. 1997) with a significant reduction in emissions and 

deposition of sulphate in last 25 years. However, globally, nitrogen emission has 

increased significantly during the 20
th

 century (Terry, Ashmore et al. 2004). In 

Europe, the main increase of nitrogen oxide emissions resulting from car travel 

occurred between 1950 and 1990. Recently, although a decline of emissions has 

occurred since 1990, the concentration of nitrate-nitrogen and ammonium-nitrogen 

in precipitation and atmosphere is still beyond natural levels (Cundill, Chapman et 

al. 2007). In upland environments, atmospheric deposition usually acts as the major 

nitrogen input to the ecosystem (Chapman, Edwards et al. 2001). Experience from 

Europe and North America suggests that increased concentration of N species could 

lead to changes in vegetation community structure (Kirkham 2001; Terry, Ashmore 

et al. 2004). That is to say, the soil environment may become unsuitable for some 

plants because of the increase of N deposition, which may cause temporal changes 

or reductions of vegetation cover and consequently increase the risk of erosion 

although other plant species might invade and take over eventually. 

 



 

 

 

 

Figure 2.16 A conceptual model of blanket peat erosion 
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2.6 Summary and discussion 

Peat is weathered through sediment production mechanisms (freeze-thaw and 

desiccation) and then transported by water and wind. A conceptual model of the peat 

erosion system, which attempts to summarise the processes described in the review 

above, is shown in Figure 2.16. Blanket peat erosion is a natural process and 

inevitable even without external disturbances (Bragg and Tallis 2001). However, 

climate change and human activities can accelerate degradation of blanket peatlands. 

A simplified form the impacts of environmental factors on blanket peat erosion are 

shown in Figure 2.17. Climate and human factors can influence surface conditions, 

most notably through directly altering the vegetation cover. In turn a change in 

vegetation cover will influence production and transport of sediment. Subsurface 

processes such as pipe development may also respond relatively quickly to climate 

change and land management (Holden, Smart et al. 2009; Holden, Smart et al. 

2012b). Climate and human factors also influence the hydrological properties of the 

peat system (Holden, Evans et al. 2006; Worrall, Armstrong et al. 2007; Kay and 

Davies 2008; Ballard, McIntyre et al. 2011; Holden, Wallage et al. 2011). 

Consequently, as the climate changes in the future some peatlands may become 

subject to more severe stresses which encourage degradation and erosion, despite 

our best efforts to conserve and restore peatlands. It will be important to anticipate 

such change so that we can mitigate and adapt and also account for such changes in 

our carbon store and release calculations.  
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Based on the review above, a synthesis of recent advances and gaps in 

understanding blanket peat erosion is discussed as follows: 

2.6.1 Sediment production 

The importance and mechanisms of freeze-thaw and desiccation in blanket peatlands 

have been highlighted recent years (Holden and Burt 2002a; Yang 2005; Evans and 

Warburton 2007). The slope of sediment rating curves has been demonstrated to be a 

good indicator of sediment supply in blanket peatlands at catchment scale based on 

individual storms (Yang 2005; Evans and Warburton 2007), providing a good way 

of predicting sediment production with climatic and soil moisture conditions. More 

work is desirable to extend the application of this indicator at other spatial and 

temporal scales. 

2.6.2 Sediment transport 

There are relatively few studies on wind erosion in blanket peatlands (Warburton 

2003; Foulds and Warburton 2007a; Foulds and Warburton 2007b; Baynes 2012) 

and more long-term observations are required at a wider range of sites. With regard 

to fluvial erosion of blanket peatlands, recent studies have particularly concentrated 

on hillslope gullies. Sediment budget studies on some typical blanket peat-covered 

catchments offer good understanding of the transport and deposition of erodible 

materials from hillslopes to catchment outlets (Evans and Warburton 2005; Evans, 

Warburton et al. 2006). However, the impacts of vegetation cover on blanket peat 

erosion should be identified more explicitly. Recent studies on mass movement have 

Figure 2.17 A simplified conceptual model of blanket peat erosion and its relationship 

with environmental factors 
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concentrated on improved understanding of mechanisms behind different types of 

peat failures in order to achieve more reliable hazard assessment of peat deposits. 

The contributions of pipes to runoff production, sediment yield and carbon export 

have been shown to be important in blanket peatlands (Holden and Burt 2002b; 

Holden 2005a; Holden 2006; Holden, Smart et al. 2009; Smart, Holden et al. 2012; 

Holden, Smart et al. 2012a). However, more process-based investigation is needed 

to more thoroughly understand the controls on morphology of pipes in blanket 

peatlands (Holden, Smart et al. 2012b).  

2.6.3 Contributing factors 

Climate change and human activities have been recognised as an important reason 

for initiation and acceleration of peat erosion. Bioclimatic modelling suggested that 

many blanket peatlands will be under a climate unsuitable for active peat 

accumulation by the end of the century (Clark, Gallego-Sala et al. 2010; Gallego-

Sala, Clark et al. 2010; Gallego-Sala and Prentice 2012). Blanket peat degradation 

and erosion may be more likely as climate changes in the future. However, the 

eventual fate of existing blanket peat outside the bioclimatic space remains uncertain 

because of the unknown resilience of peat to climate change (Clark, Gallego-Sala et 

al. 2010). It would be meaningful to examine how blanket peat erosion evolves with 

possible changes in future climate as this could help to identify the fate of blanket 

peatlands in the vulnerable areas predicted by bioclimatic modelling.  

 

It is now widely accepted that land management is a key factor promoting blanket 

peat erosion. Artificial drainage, burning and grazing are commonly cited land 

management options in blanket peatlands. For drainage, some models have already 

been developed to account for the impact of drainage on peat hydrology (Beharry-

Borg, Hubacek et al. 2009; Ballard, McIntyre et al. 2011). For burning and grazing, 

there are still a dearth of data to support a good understanding of their influence on 

hydrology and erosion of blanket peatlands (Worrall, Armstrong et al. 2007; Worrall 

and Adamson 2008; Esteves, Kirkby et al. 2012; Ramchunder, Brown et al. 2012; 

Holden, Wearing et al. 2013). Modelling results in other (non-peat) environments 

suggest that wildfire may have more adverse impact on soil erosion than prescribed 

burning, and there are interactions between wildfire and land management 
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(McMorrow 2011; Esteves, Kirkby et al. 2012). More research effort is therefore 

desirable to better understand these interactions. 

 

Most studies looking at the impacts of environmental change on peatland erosion 

processes have focused on the relationship between peat erosion and individual 

factors rather than combinations of climatic and anthropogenic forces (Stevenson, 

Jones et al. 1990; Tallis, Meade et al. 1997; Ellis and Tallis 2001; Yeloff, Labadz et 

al. 2006). Little effort has been made to date to explore the combined impacts of 

climate change and land management on blanket peat erosion.  

2.6.4 Overview 

There is some good understanding of hydrology and erosion processes (especially 

fluvial processes) in blanket peatlands, and their relationships with external forces. 

However, bioclimatic modelling results emphasise the necessity of investigating the 

development of blanket peat erosion through time. Long-term observational data 

from field and experimental manipulations could be helpful. However, given the 

complexity of relationships between peat erosion and environmental factors, 

uncertainties in future environmental change, and the expense of such projects, an 

alternative approach via modelling is sought. Models are usually established based 

on existing knowledge, and operate with different possible inputs to account for 

uncertainties in future change. Although modelling results are not alternatives to 

observations, they are powerful tools in interpreting observations, and in testing and 

developing theories (Wainwright and Mulligan 2013). Current knowledge of the 

hydrology and erosion processes in blanket peatlands (and it is accepted that there 

are still knowledge gaps as identified above) provides a good basis to establish, 

calibrate and validate a model. Erosion models not only provide information on the 

stage of erosion but also link varied erosion-causing factors usually including 

climate and land use / management conditions (Licciardello, Govers et al. 2009). 

Scenario analysis based on erosion modelling offers a good way of investigating the 

evolvement of sediment erosion under possible changes in climate, land use / 

management and their interactions over time. In addition, recent advances in 

modelling theory such as distributed physically-based models and other technologies 

such as Geographic Information Systems and Remote Sensing also facilitate the 

application of a modelling approach. However, modelling all types of peat erosion 
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would need large quantities of work and would not be possible given the lack of 

measurements on some peat erosion processes such as sheet erosion, river bank 

erosion or wind-driven rainsplash etc. This project will, therefore, mainly 

concentrate on the modelling of fluvial erosion in blanket peatlands because of its 

high significance and data availability (Baynes 2012; Clay, Dixon et al. 2012). 

Evans and Warburton (2007) demonstrated that the relative importance of fluvial 

erosion is usually higher than wind erosion through comparing the amount of peat 

loss from several catchments via fluvial erosion, wind erosion and peat shrinkage in 

the UK. 

2.7 Overall methodology for the thesis 

As noted above, it is possible to develop a new model for this project based on 

previous research results on the hydrology and erosion in blanket peatlands. 

However, many models looking at hydrological and erosion processes for other soil 

systems have already been developed and tested independently in recent decades 

(Aksoy and Kavvas 2005; Stott 2010), and some of them may already be capable of 

simulating all or some of the hydrological and / or erosion processes in blanket 

peatlands. This is to say, it may be more advisable to model blanket peat erosion 

with an existing model in order to avoid repeating the work that has been done 

previously. Given this consideration, three major steps, which are model selection, 

model development and model application, will be involved in this project. A 

flowchart for this project is shown in Figure 2.18. 

2.7.1 Model selection 

In this step, firstly candidate models will be reviewed from current existing erosion 

models based on the basic characteristics of them such as model type, model 

structure etc. Secondly, candidate models will be evaluated based on current 

knowledge of blanket peat erosion and the purposes of this project, to decide 

whether any are suitable for blanket peatlands. The most promising model will then 

be tested against field data to decide whether improvements are needed. This first 

step will be undertaken in Chapter 3. 
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2.7.2 Model development 

There would be no need to modify the selected model if it is perfectly suitable for 

blanket peatlands. However, this is unlikely. Therefore, two major tasks are 

involved in model development: modifying the selected model and testing the 

modified model. The former will be done mainly based on analysis of secondary 

field data, and previous publications. Then the modified model will be evaluated 

systematically with more field data. The final model will be obtained if the modified 

model behaves robustly in blanket peatlands. This second step will be completed in 

Chapters 4 and 5. 

2.7.3 Model application 

After model development, the final model will be applied to investigate the reaction 

of blanket peat erosion to possible changes in climate and land management. The 

model will firstly be applied in the North Pennines and then in ten blanket peat-

covered sites across the Great Britain (GB). It is expected that modelling results will 

be useful to inform long-term land management strategies in GB peatlands. This 

third step will be accomplished in Chapters 6 and 7. 
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Figure 2.18 Overall flowchart of the project 
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Chapter 3  

Evaluation of contemporary erosion models 

3.1 Introduction 

In Chapter 2, it was suggested that this project included three major steps, which 

were model selection, model development and model application. Model selection 

will be undertaken in this chapter by reviewing and evaluating existing erosion 

models.  

 

The structure of this chapter is as follows: Section 3.2 focuses on the theoretical 

development of erosion modelling and review of existing erosion models, especially 

candidate models for the project. Section 3.3 concentrates on theoretical assessment 

of candidate models to support the choice of the promising model for the project. 

Numerical evaluation of the selected model is then undertaken in section 3.4. 

Section 3.5 is a summary of the chapter. The improvements that are needed for the 

selected model to fit the blanket peat case are also discussed. 

3.2 Development of erosion modelling 

3.2.1 Theoretical advances in erosion modelling 

Models are simplified representations of reality. In general, three broad types of 

model are frequently used in erosion modelling: empirical, physically-based, and 

conceptual models.  

 

In empirical models, statistical techniques (e.g. regression) are employed to generate 

the relationships between different components of studied systems (Gobin and 

Govers 2003). Empirical models are able to provide very accurate results after 

parameterization and optimization. However, empirical-statistical models are not 

able to explain how or why inputs are transformed into outputs. Therefore, two 

issues often emerge after parameterization and optimization of empirical-statistical 

models. First, the calibration of parameters may result in the model getting the right 

answer in the sense of matching observations but for the wrong reason (i.e. 
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physically unrealistic parameter values). Second, empirical models often perform 

very poorly if generalized because the relationships between input and output 

variables are only reliable for certain place and time.  

 

Process / physically-based models can avoid the disadvantages of empirical models. 

Physically-based models consist of mathematical equations derived from theoretical 

principles for interaction within a system in order to explain and predict the dynamic 

behaviour of the system as a whole (Wiltshire 1983). Theoretically the actual 

processes could be perfectly reproduced by physically-based models, while all 

parameters in the model could be measured in the field and so are ‘known’. While it 

would be nice if physical models involved all physical processes in reality, it is not 

possible for models to incorporate so many processes because: 1) more complex 

models may require too much computing time to run and may not necessarily yield 

better predictions than simpler models (Beven and Binley 1992) and 2) field data 

supporting the establishment or testing of models typically has not covered all of the 

processes. This is to say, knowledge of some processes may be lacking and more 

field work is still needed to obtain process-based data.  

 

Conceptual models are an abstract representation of actual processes (Child and 

Rodrigues 2005), typically representing a catchment as series of internal storages 

(Merritt, Letcher et al. 2003). The work of conceptual models is to make theory 

more explicit and applicable, and experimental, in order to test the correspondence 

between theory and reality. However, they only include a general description of 

catchment processes rather than details of process interactions. Whilst they tend to 

be aggregated they still reflect the hypothesis about the processes governing system 

behaviour (Merritt, Letcher et al. 2003). Therefore, they usually play an 

intermediary role between empirical and physically-based models.  

 

Moreover, erosion models are usually built in two structures: lumped and distributed 

(Aksoy and Kavvas 2005). In lumped models, contributing factors of erosion are 

represented by a constant value over the whole study area. However, factors that 

influence erosion significantly vary over space even within areas as small as one 

field such as soil properties or topography. This variability cannot be represented by 

the average value. Recent advances in Geographic Information Systems and Remote 
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Sensing support better representations of this spatial variability. As a result, spatially 

distributed models may provide an improvement over the performance of traditional 

lumped models (Aksoy and Kavvas 2005). In spatially-distributed models, a large 

area is divided into small sub-units, which have uniform characteristics such as 

climate, land use and topography etc. Models then run in each of the sub-units to 

calculate soil loss (Morgan, Quinton et al. 1998a). There are two types of distributed 

models: fully-distributed and semi-distributed models. In fully-distributed models 

small sub-units are usually grid cells, while in semi-distributed models small sub-

units are defined as sub-catchments which models work on.  

 

It is clear that the variability, nonlinearity and the interacting nature of erosion and 

deposition processes over various scales significantly influence the mechanics of 

surface runoff generation and soil erosion (Kirkby 1999a; 1999b). In particular, the 

important temporal dynamics of precipitation and surface characteristics (e.g. 

vegetation cover), which also vary spatially, have strong controls on surface runoff 

generation and the resulting soil erosion (Saavedra 2005). So an erosion model 

usually could only focus on the soil erosion and transport at specific spatial and 

temporal scales. The time scale of a model is commonly known as the “time-step”. 

Typically modelling scales are plot / local (1 m
2
), hillslope (10000 m

2
), catchment 

(100 km
2
) and regional (> 1000 km

2
) in space; and event (~1 day), seasonal (~1 

year), and long-term (~100 years) in time (Saavedra 2005). Erosion and sediment 

transport models tend to have been developed from two points of view. Event-based 

models are developed to look at the response of the modelled area to single storm 

events. For each event, the model time step is in the order of minutes to hours. The 

model algorithms are often developed for application to small plots or grid cells in a 

catchment (Merritt, Letcher et al. 2003; Aksoy and Kavvas 2005). Alternatively, a 

larger temporal resolution is used in models that explore general trends over time 

with respect to changes in rainfall, vegetation or land management (Renschler and 

Flanagan 2002). This approach is usually to use a continuous time step, usually daily 

/ monthly, that is responsive to, for example, the development and recession of 

saturated zones or other processes that can be captured at this time step (Merritt, 

Letcher et al. 2003). 
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3.2.2 Existing erosion models 

Along with the development of modelling theory, various soil erosion models have 

been established over the past few decades such as the Universal Soil Loss Equation 

and its modifications (USLE / RUSLE / MUSLE) (Wischmeier and Smith 1965; 

Wischmeier and Smith 1978; Renard, Foster et al. 1991), Chemical, Runoff and 

Erosion from Agriculture Management System (CREAMS) (Knisel 1980), Water 

Erosion Prediction Project (WEPP) (Laflen, Lane et al. 1991), European Soil 

Erosion Model (EUROSEM) (Morgan, Quinton et al. 1998b), Soil and Water 

Assessment Tool (SWAT) (Neitsch, Arnold et al. 2005), Pan-European Soil Erosion 

Risk Assessment (PESERA) (Govers, Gobin et al. 2003), Limburg Soil Erosion 

Risk Model (LISEM) (De Roo 1996) and Cellular Automaton Evolutionary Slope 

And River model (CAESAR) (Coulthard, Macklin et al. 2002; Coulthard 2010). A 

summary of the basic characteristics of existing erosion models is provided in Table 

3.1. Each type of model serves a purpose, and a particular model type may not 

categorically be considered more appropriate than others in all situations (Merritt, 

Letcher et al. 2003). Choice of a suitable model relies heavily on the function that 

the model needs to serve. In this project, the chosen model will be applied at 

regional and national scales; therefore physically-based models are preferred mainly 

because of higher transferability. There are 15 physically-based erosion models in 

Table 3.1, and they are considered as candidate models for the project.  
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Table 3.1 Basic characteristics of existing soil erosion models (summarised from 

Merritt, Letcher et al. 2003; Aksoy and Kavvas 2005) 

Name Type Temporal scale Spatial scale 

AGNPS Conceptual Event/continuous Small catchment 

EMSS Conceptual Continuous Catchment 

HSPF Conceptual Continuous Catchment 

IQQM Conceptual Continuous Catchment 

LASCAM Conceptual Continuous Catchment 

AGWA Conceptual Continuous Catchment 

WATEM Conceptual Annual Catchment 

SEDNET Conceptual Annual/continuous Catchment 

SEDNET Conceptual/empirical Continuous Catchment 

SWAT Conceptual Continuous Catchment 

USLE Empirical Annual Hillslope 

RUSLE Empirical Annual Hillslope 

MUSLE Empirical Annual Hillslope 

IHACRES-WQ Empirical/conceptual Continuous Catchment 

USPED Empirical/conceptual Event/annual Catchment 

MMMF Empirical/conceptual Annual Hillslope/catchment 

SEAGIS Empirical/conceptual Annual Catchment 

SPL Empirical/conceptual Annual Catchment 

ANSWERS Physically-based Event/continuous Small catchment 

GUEST Physically-based Continuous Plot/field 

CREAMS Physically-based Event/continuous Plot/field 

PERFECT Physically-based Continuous Plot/field 

EPIC Physically-based Continuous Hillslope/catchment 

WEPP Physically-based Event/continuous Hillslope/catchment 

MIKE-II Physically-based Continuous Catchment 

SHETRAN Physically-based Event Catchment 

EROSION-3D Physically-based Event Small catchment 

CASC2D-SED Physically-based Event Catchment 

KINEROS Physically-based Event Hillslope/small catchment 

EUROSEM Physically-based Event Field/small catchment 

LISEM Physically-based Event Small catchment 

PESERA Physically-based Continuous Hillslope/regional 

CAESAR Physically-based Event/continuous Catchment 
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3.2.3 Candidate models 

The 15 candidate models are briefly introduced and discussed in this section before 

any further assessment is implemented. USLE has been extensively applied in 

predicting water erosion and supporting soil conservation measures around the 

world (Yang, Liu et al. 2005). USLE and its modifications have been used as a core 

for some of the other physically-based erosion models listed such as CREAMS, 

PERFECT and EPIC. So USLE and its variants are also introduced in this section. 

3.2.3.1 USLE and its modifications 

The Universal Soil Loss Equation (USLE) model was developed by the US 

Department of Agriculture (USDA) for sheet and rill erosion based on experimental 

data from 10,000 agricultural plots and is only valid for a field area up to 1 ha 

(Wischmeier and Smith 1978). The model estimates average annual water erosion as 

a function of six factors:  

 

                                              A = R K L S C P                                      Equation 3.1 

 

where, A is the estimated soil loss per unit area; R is the rainfall erosivity factor, K 

is the soil erodibility factor, L is the slope length factor, S is the slope steepness 

factor, C is the crop management factor, and P is the erosion control practice / 

support practice factor (Wischmeier and Smith 1978). 

 

A number of modifications have been made to the model to take into account of 

additional information, resulting in some derivatives of USLE such as MUSLE and 

RUSLE. The MUSLE has been an attempt to estimate stream sediment yield for 

individual storms by replacing the rainfall factor with a runoff factor, based on 778 

storm-runoff events collected from 18 small watersheds (Aksoy and Kavvas 2005; 

Sadeghi, Gholami et al. 2013). The RUSLE is a systematic improvement of USLE 

based on an extensive review of the USLE and its data base, analysis of data not 

previously included in the USLE, and theory describing fundamental hydrologic 

erosion processes (Renard, Foster et al. 1991; 1994).  
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3.2.3.2 ANSWERS 

The Areal Non-point Source Watershed Environment Response Simulation 

(ANWERS) model was developed by Beasley, Huggins et al. (1980). It is one of the 

first operational, fully spatially distributed, catchment erosion and sediment yield 

models, including a water erosion and sediment transport model. The main 

component of the model is the sediment continuity equation proposed by Foster and 

Meyer (1977). Runoff modelling in the ANSWERS model considers runoff as 

occurring only where rainfall intensity exceeds the infiltration capacity. Detachment 

of soil particles is calculated using an empirical function of soil properties, soil 

cover conditions, raindrop impact and overland flow (Bouraoui and Dillaha 1996). 

Dillaha, Wolfe et al. (1998) noted that plans exist to replace the existing empirical 

sediment detachment component with a reliable and robust physically-based 

sediment detachment sub-model. ANSWERS uses a form of the Yalins’ (1963) bed-

load transport equation to predict the transport of cohesionless gains over a movable 

bed for steady uniform flow of a viscous fluid (Loch, Maroulis et al. 1989). 

3.2.3.3 GUEST 

The Griffith University Erosion System Template (GUEST) is a steady-state, 

process-based model developed to interpret temporal fluctuations in sediment 

concentration from bare soil in single erosion events (Hairsine and Rose 1992a; 

Hairsine and Rose 1992b; Misra and Rose 1996). The model relates measured runoff 

and rainfall rates, soil characteristics and plot geometry of uniform slope to the 

concentration of eroded sediment, defined as dry mass of sediment per unit of runoff 

(including sediment volume) (Misra and Rose 1996). The hydrology component of 

the GUEST model requires measured rainfall rates and the runoff rate per unit area 

for a bare plot of known area and downslope length. These inputs are used to obtain 

the volumetric flux of water per unit width of plot and from these discharge-depth 

relationships to obtain an estimate of the depth of the water produced. GUEST 

allows for the consideration of sheet erosion and rill erosion. Discharge-depth 

relationships are used to calculate shear stress on the soil or sediment surface 

associated with runoff water. Shear stress and the velocity of flow are then used to 

estimate stream power. Whether or not an erosion event leads to differences in 

sediment concentration from the equilibrium conditions is assumed to be controlled 

by the stream power and the threshold stream power (Misra and Rose 1996). 
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Entrainment and re-entrainment are considered to occur only the stream power 

exceeds the threshold stream power. 

3.2.3.4 CREAMS 

The Chemical Runoff and Erosion from Agricultural Management System 

(CREAMS) model was developed by Knisel (1980a) as a tool to predict runoff, 

erosion and chemical transport from agricultural areas. The model operates in both 

single storm events or in a long-term average (continuous) mode. Algorithms in 

CREAMS have been used in numerous other models of erosion and water quality 

(e.g. PERFECT, WEPP). Runoff production in the CREAMS model is simulated 

with the empirical SCS curve number approach (USDA 1972), which is capable of 

estimating saturation-excess overland flow. Alternatively, a Green-Ampt approach 

for infiltration excess can be used. The CREAMS model uses a physically-based 

approach to erosion and sediment transport. The erosion estimated by the CREAMS 

is determined by the sediment supply and sediment transport capacity for overland 

flow. Sediment supply is predicted by the USLE, while transport capacity, as with 

the ANSWERS model, is calculated using Yalin’s equation (Yalin 1963). 

3.2.3.5 PERFECT 

The Productivity, Erosion and Runoff, Functions to Evaluate Conservation 

Techniques (PERFECT) model was developed by the Queensland Department of 

Primary Industies and the QDPI / CSIRO Agricultural Production System Research 

Unit (Littleboy, Silburn et al. 1992) to provide long-term predictions of runoff, soil 

erosion, soil water, drainage, crop growth and yield at plot and field scales. The 

model is comprised of six modules: data input, water balance, crop growth, crop 

residue, erosion and model output. Runoff depth is predicted using a modified form 

of the SCS curve number technical (Knisel 1980a). So a larger volume of runoff 

occurs at a low soil water deficit and little runoff occurs at a high soil moisture 

deficit. Predicted runoff will equal the daily rainfall when the soil is fully saturated. 

Partial area runoff processes and subsurface flow are not considered (Home 1997). 

Sediment yield is simulated in the model using MUSLE. 
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3.2.3.6 EPIC 

The Erosion Productivity Impact Calculator (EPIC) model was developed by 

Williams, Jones et al. (1984) to assess the effect of soil erosion on soil productivity. 

It is a continuous simulation model that can be used to determine the effect of 

management strategies on agricultural production and soil and water resources. The 

drainage area considered by EPIC is generally field-sized up to 100 ha. The major 

components in EPIC are weather simulation, hydrology, erosion-sedimentation, 

nutrient cycling, pesticide fate, plant growth, soil temperature, tillage, economics, 

and plant environment control. The EPIC model simulates surface runoff volumes 

and peak runoff rates, given daily rainfall amounts. Runoff volume is estimated with 

a modification of the SCS curve number approach (USDA 1972). The water erosion 

is simulated with the MUSLE. 

3.2.3.7 WEPP 

The Watershed Erosion Prediction Project (WEPP) is a physically-based model, 

which was developed by an interagency team of scientists in United States to replace 

the USLE family models and expand the capabilities for erosion prediction in a 

variety of landscapes and settings (Laflen, Lane et al. 1991; Flanagan and 

Livingston 1995). The model can be used in either a single event or continuous time 

scale and calculates erosion from rills and inter-rills at hillslope and catchment 

scales. Runoff is predicted with the a solution of the Green-Ampt equation 

developed by (Chu 1978). The peak runoff rate can be simulated using either 

kinematic wave overland flow routing or simplified regression equations. WEPP 

divides runoff between rills and interrill areas. The steady-state sediment continuity 

equation is used to predict rill and interrill processes (Nearing, Foster et al. 1989). 

Rill erosion occurs if the shear stress exerted by flow exceeds the critical shear stress 

while sediment load in the flow is smaller than the transport capacity of flow. 

Interrill erosion is considered to be proportional to the square of the rainfall 

intensity. Interrill area delivers sediment to rills (Tiwari, Risse et al. 2000). 

3.2.3.8 MIKE-II 

The MIKE-II model is a one-dimensional dynamic model consisting of a number of 

modules (Hanley, Faichney et al. 1998), operating on a number of timescales from 

single storm events to monthly water balance at catchment scale. The basic modules 
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are a rainfall-runoff component, a hydrodynamic module, a water quality module, 

and a sediment transport module. The model contains a mix of conceptual and 

physically-based modules. The runoff components are relatively simple conceptual 

models (Madsen 2000) although flow routing is described using physically-based St 

Venant’s equations (Hanley, Faichney et al. 1998). The erosion and transport of 

water flow module includes a description of the erosion and deposition of both 

cohesive and non-cohesive sediments. Erosion and deposition are modelled as 

source or sink terms in an advection-dispersion equation. 

3.2.3.9 SHETRAN 

The SHETRAN model is physically-based, spatially distributed, erosion and 

sediment yield component of the existing European distributed hydrological 

modelling system SHE and is for use at catchment scale (Ewen, Parkin et al. 2000). 

Three main components in SHETRAN are water flow, sediment transport and solute 

transport. Surface water flow is determined from the net rainfall and evaporation 

rates supplied by the interception / evapotranspiration component and from the soil 

infiltration rate of unsaturated zones (Abbott, Bathurst et al. 1986). The model 

simulates the erosion, transport and deposition of sediments at the ground surface 

and along the channel network and is divided into two subcomponents: hillslope and 

channel. For hillslopes, SHETRAN simulates soil erosion by raindrop impact, leaf 

drip and sheet overland flow, and the transport of eroded material by overland flow. 

For channels, the component simulates the erosion of the bed material and the 

downstream transport of this material, together with that supplied by overland flow 

(Ewen, Parkin et al. 2000).  

3.2.3.10 EROSION-3D 

The EROSION-3D model is a physically-based model based on physical principles 

for forecasting the soil erosion in water catchment areas caused by naturally 

occurring single rain-storm or by a series of such precipitation events (Schmidt, 

Werner et al. 1999). Runoff is calculated as infiltration-excess mechanisms, which is 

simulated by the Green-Ampt approach. The erosion component is based on 

calculating the detachment of soil particles caused by overland flow and falling 

raindrops, the transport of particles including deposition depending upon the 

transporting capacity of surface runoff (Schmidt and Werner 2000). On the basis of 
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individual rainfall events, detachment, deposition and net erosion for each grid cell 

of a catchment area are computed. In addition, the amount of runoff, sediment 

concentration, and the grain size distribution are calculated.  

3.2.3.11 CASC2D-SED 

The CASCade 2 Dimensional SEDiment (CASC2D-SED) model was developed at 

the Colorado State University (CSU), is a distributed physically-based, hydrological 

and soil erosion model that simulates the hydrological response of a catchment 

subject to a given storm event (Julien and Saghafian 1991; Julien, Saghafian et al. 

1995; Johnson and Julien 2000). For a given rainfall event, once the initial losses 

have been subtracted from rainfall, water begins to infiltrate. The Green-Ampt 

infiltration equation accommodates spatial and temporal variability due to changes 

in the rainfall and / or soil properties. When the precipitation rate exceeds the 

infiltration rate, the excess rainfall runs off as Hortonian overland flow. The final 

sediment yield is estimated based on the availability of sediment in the watershed 

and the transport capacity of the stream. The available sediment is calculated as a 

function of the hydraulic properties of the flow, the physical properties of the soil 

and the surface characteristics. Transport capacity of overland flow is estimated 

using the modified kilinc (1973) transport capacity equation, which depends on flow 

discharge, terrain slope and soil and land use characteristics. 

3.2.3.12 KINEROS 

The KINEmatic runoff and eROSion (KINEROS) model is an event oriented 

physically- based model describing the processes of interception, infiltration, surface 

runoff and erosion from small agricultural and urban watersheds (Smith, Goodrich et 

al. 1995). The catchment is represented by a cascade of planes and channels. It uses 

the Smith / Parlange infiltration model and the kinematic wave approximation to 

route overland flow and sediments (Julien, Saghafian et al. 1995). Only Hortonian 

overland flow is considered in KINEROS. The model can account separately for the 

erosion caused by raindrop energy and flowing water. The movement of eroded soil 

along with the movement of surface water is also considered (Woolhiser, Smith et 

al. 1990). 
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3.2.3.13 EUROSEM  

The European Soil Erosion Model (EUROSEM) was developed by European 

Commission funded research involving scientists from Europe and the USA between 

1989 and 1992 (Morgan, Quinton et al. 1998a). The model simulates erosion on an 

event basis for fields and small catchments, adopting physically distributed 

descriptions to describe the process of soil erosion and is fully dynamic (Morgan, 

Quinton et al. 1998b). EUROSEM is based on the KINEROS (Woolhiser, Smith et 

al. 1990) model to predict infiltration-excess overland flow. Water transport in 

EUROSEM involves interception by vegetation, soil infiltration, depression storage 

and flow in channels. Erosion is triggered by raindrop splash and surface runoff and 

then transported through hillslopes and channels to catchment outlet (Morgan, 

Quinton et al. 1998a). With regard to the output, the model produces total runoff and 

soil loss as well as the hydrograph and sediment graphs, which leads EUROSEM to 

be able to model peak sediment discharge during single events. 

3.2.3.14 LISEM 

The LImburg Soil Erosion Model (LISEM) is a fully dynamic, physically-based, 

single event based soil erosion model developed during the LISEM project in the 

loess area of the Netherlands on the basis of experiences with ANSWERS (Beasley, 

Huggins et al. 1980) and SWATRE (Belmans, Wesseling et al. 1983). The 

hydrological and erosion processes of LISEM include rainfall, interception, 

depression storage, infiltration, overland flow, channel flow, detachment by leaves, 

drainage and throughfall, detachment by overland flow and transport capacity of 

flow. In addition to the above, tractor wheelings, small roads and surface sealing 

could also be included if needed (Hessel, Jetten et al. 2003). Saturation-excess 

overland flow is simulated with the Richards equation based sub-model (SWATRE) 

when detailed soil information is known. Otherwise, only infiltration-excess 

overland flow can be simulated using the empirical Holtan / Overton infiltration 

equation. Erosion and transport processes involved in LISEM are raindrop splash, 

rill / interrill erosion, and channel erosion. Splash detachment is estimated using an 

empirical function derived from unpublished data based on soil aggregate stability, 

rainfall kinematic energy and the depth of the surface water layer (De Roo, 

Wesseling et al. 1996a; De Roo, Jetten et al. 1996b). The approaches to estimate 

flow detachment and deposition are from EUROSEM, comparing the sediment 
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concentration in flow and transport capacity of the flow, which is previously 

calculated using slope gradient and mean flow velocity, to determine detachment or 

deposition occurs and then calculate the rates with related equations (Morgan, 

Quinton et al. 1998a).  

3.2.3.15 PESERA 

The Pan-European Soil Erosion Risk Assessment (PESERA) model is a physically 

based, spatially distributed long-term soil erosion model. It was developed as a 

diagnostic tool of regional and / or European scale to predict soil erosion rates under 

various land use types, soil and landscape characteristics (Tsara, Kosmas et al. 

2005), based on earlier models (Kirkby and Neale 1987; Kirkby and Cox 1995). 

PESERA models water erosion processes occurring on hillslopes such as rill erosion 

and sheet erosion, not including channel erosion, rainsplash and river bank erosion 

etc. Nevertheless, PESERA may be used to assess sensitivity to changed climate and 

land use scenarios as land use (e.g. vegetation cover) and climate (e. g. rainfall) are 

key drivers in the model. Daily sediment yield is calculated based on soil erodibility, 

local gradient and overland flow. Long-term average erosion rate is obtained from 

daily erosion through summing over the frequency distribution of daily rainfalls for 

each month. Soil erodibility is mainly controlled by soil properties, especially soil 

texture. The value is highest for fine sand and silt soils with low clay content 

(Kirkby, Irvine et al. 2008). In addition, vegetation cover also plays an important 

role in resisting soil erosion by improving surface roughness and binding soil 

together with shallow root mats. Local gradient is usually extracted from a digital 

elevation model (Oldeman). The overland flow runoff is estimated with a storage 

model in the PESERA model. Runoff is a certain percentage of rainfall minus the 

threshold storage, which is dependent on various factors relating to soil, vegetation 

cover, tillage and soil moisture status (Kirkby 2003). PESERA is able to reproduce 

both saturation-excess and infiltration overland flow (Tsara, Kosmas et al. 2005). 
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Figure 3.1 Hydrological processes within TOPMODEL (from Beven and Kirkby 

1979) 

 

In the PESERA, the TOPography based hydrological Model (TOPMODEL) is 

incorporated to update the soil moisture content, which is crucial for reproducing 

runoff, especially for saturation-excess overland flow and subsurface flow (Govers, 

Gobin et al. 2003; Kirkby, Jones et al. 2004; Kirkby, Irvine et al. 2008). 

TOPMODEL was developed by Beven and Kirkby (1977) to predict the 

hydrological responses of ungauged catchments of up to 500 km
2
 within humid-

temperate zones (Beven, Kirkby et al. 1984). The model is physically based and was 

originally semi-distributed, with assumptions and process representations of 

TOPMODEL being suitable for blanket peat-covered catchments. The applicability 

of the model in blanket peatlands has been numerically tested since 1984 (Beven, 

Kirkby et al. 1984). The hydrological processes within the TOPMODEL are 

illustrated in Figure 3.1. Interception by vegetation cover and / or depression is 

considered as the interception store, meanwhile evaporation is allowed in this layer. 

The infiltration store will not receive water from the interception store until the 

interception store is fully filled. In the infiltration store layer, infiltration-excess 

overland flow occurs when rainfall intensity from the interception store exceeds the 

rate of infiltration from the infiltration store to saturated zone. Saturation-excess 

overland flow occurs when the infiltration store reaches its capacity. Evaporation is 

also present in the layer of the infiltration store. With regard to the layer of the 
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saturated zone store, it is significant in generating the subsurface flow, which plays a 

crucial role in providing the hydrograph tail and low flows (Knisel 1973) and 

sometimes return to flow over the surface (return flow). Spatially variable 

contributing areas are related to subsurface soil water storage. For a given storage 

level, the related source areas could be determined. Any rain falling on contributing 

areas will immediately become overland flow. The overland flow and subsurface 

flow resulting from the above processes are merged into the channel flow and 

eventually routed to the catchment outlet. 

3.2.3.16 CAESAR 

The Cellular Automaton Evolutionary Slope And River (CAESAR) model was 

developed based on a cellular automaton model of river catchment evolution of 

Coulthard, Kirkby et al. (1996; 1998). It was initially used to simulate the influence 

of changes in climate and land use on the geomorphic processes of UK rivers on a 

flood event basis over the Holocene (Coulthard, Macklin et al. 2002; Coulthard 

2010). CAESAR is a cellular model using a regular mesh of grid cells to represent 

the river catchment studied. Both fluvial erosion and deposition are calculated as a 

balance between forces moving and restraining the soil particles (Coulthard, 

Macklin et al. 2002). Slope process such as mass movement and soil creep are taken 

into account in CAESAR (Coulthard, Macklin et al. 2002). The CAESAR model can 

run in catchment mode or reach mode. For catchments under study, the description 

of hydrological process based on the input rainfall data in the model is derived from 

the TOPMODEL. Saturation-excess overland flow is therefore considered. The 

output from the hydrological model is then routed through the catchment using a 

scanning multiple flow algorithm (Coulthard, Macklin et al. 2002) that sweeps 

across the catchment in four directions (from north to south, east to west, west to 

east and south to north). For the reach mode, the input discharge is also routed using 

the scanning algorithm (Van De Wiel, Coulthard et al. 2007). In each scan, flow is 

routed to three down slope neighbours, but if the total flow is greater than the 

subsurface flow, the excess is treated as surface runoff and flow depth is calculated 

using Manning’s equation (Van De Wiel, Coulthard et al. 2007). 
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3.3 Model selection 

In order to determine the promising model for the project, five criteria (Table 3.2) 

were set up with reference to the basic characteristics of hydrology and erosion in 

blanket peatlands, and the objectives of this project. In terms of the introduction to 

contemporary erosion models in section 3.2.3, some of the models are theoretically 

capable of simulating saturation-excess overland flow such as CREAMS, 

PERFECT, EPIC, MIKE-II, LISEM, PESERA and CAESAR. However, there was 

no existing erosion model considering freeze-thaw and desiccation as the sediment 

production mechanism. So none of the candidate models listed in section 3.2.3 was 

fully suitable for blanket peat erosion simulation. A model was then selected if it 

met more criteria in Table 3.2 than others. The PESERA was the only model 

appropriate to work at a long-term, large spatial scale. The large spatial scale allows 

the simplification of some of the detailed processes observed but retains key drivers 

and parameters. However, the PESERA model can be implemented in two modes 

(Kirkby, Irvine et al. 2008). Firstly, to provide an estimate of sediment yield at a 

point, which is carried out in Excel, supported by Visual Basic Macros (PESERA-

POINT) , and secondly to produce a distributed estimate of erosion risk over a large 

spatial area, which is achieved in FORTRAN90 (PESERA-GRID), operating on data 

extracted from ArcGIS grids. Therefore, the PESERA-GRID model was chosen as a 

basis for the project. Furthermore, PESERA is theoretically able to simulate 

saturation-excess runoff generation which is crucial for blanket peatlands (Evans, 

Burt et al. 1999; Holden and Burt 2002a). The climate variables used in the 

PESERA model could be derived from UKCP09 predictions. With regard to land 

management practices, grazing has already been represented in both versions of the 

PESERA model by vegetation cover and biomass removed (Kirkby, Irvine et al. 

2008). A drainage model has been developed and incorporated into the PESERA-

POINT model the account for the impact of drainage on vegetation and soil moisture 

content (Beharry-Borg, Hubacek et al. 2009). The PESERA-POINT model was also 

extended to evaluate the impact of managed burning and wildfire on soil erosion 

based on a previous developed ignition model and experiments in central Portugal 

(Esteves, Kirkby et al. 2012). 
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Table 3.2 Criteria used for evaluation of candidate models 

3.4 Numerical evaluation of the PESERA-GRID 

The PESERA-GRID model was recognized as the promising model for this project 

in terms of the analysis in section 3.3, although not fully theoretically ready for 

blanket peat erosion modelling. In this section, PESERA-GRID is further evaluated 

with field data to investigate its applicability and potential improvements needed for 

the blanket peat use more explicitly.  

3.4.2 Study site 

The site chosen to test PESERA-GRID is Trout Beck catchment (Figure 3.2). One of 

the key reasons for choosing this site was the availability of field data as Chapter 2 

showed this was lacking from blanket peat sites more generally (Table 2.2). It lies 

within the Moor House National Nature Reserve (NNR), UK. The area is 11.4 km
2
 

with elevation ranging from 532 m to 845 m. The geology here is alternating strata 

of Carboniferous limestones, sandstone and shales. Over most of the catchment, the 

bedrock is mantled with a soliflucted till deposit dating from the end of the last 

glaciations (Johnson and Dunham 1963). Such a clay-rich deposit provides an 

impermeable base, which has allowed the formation of blanket peats. Additionally, 

the climate of the catchment is sub-arctic oceanic (Manley 1936) with 2012 mm of 

mean annual rainfall and 244 precipitation days per year (Holden and Rose 2011), 

which meets requirements necessary for blanket peat formation (Lindsay, Charman 

et al. 1988). Trout Beck is over 90 % covered by blanket peat, of which 18 % was 

classified as eroded peat (Evans, Burt et al. 1999). Blanket peat depths are typically 

1-2 m (Holden and Burt 2003a). However, mineral soils and soil complexes are 

distributed towards fell tops and along main stream channels. Vegetation cover is 

No. Criteria 

1 Is the model able to simulate saturation-excess overland flow? 

2 Is the model capable of describing typical fluvial erosion processes in blanket 

peatlands? 

3 Is the model suitable to work at a long-term, large spatial scale? 

4  Does the model include climate variables? If yes, are these variables available for 

future climate? 

5 Does the model consider typical land management practices in blanket peatlands 

such as grazing, burning and drainage? 
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dominated by the association of ling heather, cotton grass and Sphagnum. However, 

above 630 m cotton grass alone becomes dominant (Evans, Burt et al. 1999). Two 

important tributaries of Trout Beck named Cottage Hill Sike and Rough Sike have 

previously been studied for hydrological and erosion research (Evans and Warburton 

2005; 2006; 2007; Smart, Holden et al. 2012; Holden, Smart et al. 2012b). 

 

 

Figure 3.2 Trout Beck, Cottage Hill Sike, Rough Sike and gauges within Trout 

Beck catchment to measure runoff, suspended sediment concentration water table, 

rainfall and temperature (redrawn from Evans, Burt et al. 1999). 

 

3.4.3 Model evaluation 

3.4.3.1 Reconstruction of sediment flux 

Water discharge (1993-2009), suspended sediment concentration (1997-2009), 

rainfall (1991-2010) and temperature (1991-2010) of the Trout Beck catchment are 

available from Environmental Change Network (ECN) gauging stations (Figure 

3.2). Mean monthly potential evapotranspiration (PET) between 1993 and 2002 

were estimated by Clark (2005) with a Penman-Monteith equation, and the mean 

annual total was 677 mm. 
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Suspended sediment concentration data are monthly before 2004 and weekly during 

and after 2004. PESERA provides monthly sediment flux. Therefore, interpolation 

of the original suspended sediment concentration data is needed in order to obtain 

sediment flux datasets appropriate for PESERA-GRID testing. A sediment rating 

curve was adopted for interpolation of suspended sediment concentration. Best fitted 

lines were achieved when taking into consideration of seasonal (summer or winter 

half year) and hydrograph characteristics (rising or falling limb of hydrograph) of 

sampling points. Figure 3.3 shows the resulting sediment rating curves. Continuous 

suspended sediment concentration and monthly sediment flux was then calculated 

based on these equations and the 15-min measured runoff. Total sediment flux from 

Trout Beck catchment between 1997 and 2009 was estimated to be 1557 ton. This is 

similar to the value of 1531 ton calculated with an equation proposed by Verhoff, 

Melfi et al. (1980) and Walling and Webb (1985) (method 5), demonstrating the 

reliability of the fitted sediment rating curves. 

 

 

 

 

Figure 3.3 Sediment rating curves of the Trout Beck catchment between 1997 and 

2009 
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3.4.3.2 Evaluation method 

With regard to model output assessment, the Nash-Sutcliffe model efficiency (E) 

was employed to assess predictive power over the whole modelling period. 

Although initially developed to evaluate the performance of hydrologic modelling, it 

has been reported for model simulations of water quality constituents such as 

sediment, nitrogen, and phosphorus loadings (Schoenberger 1991). It is calculated 

as: 

 

E = 1 −  
∑ (Qo

t −Qm
t )2T

t=0

∑ (Qo
t − Qo̅̅ ̅̅ )2T

t=0
                           Equation 3.2  

 

where,  T is the time period for modelled and observed data; Qo
t  is the observed 

value at time t; Qm
t  is modelled value at time t; Qo

̅̅̅̅  is the average of observed 

value across the whole time period T. The Nash-Sutcliffe efficiency could range 

from  to 1. Essentially, the closer the model efficiency is to 1, the more accurate 

the model is. An efficiency of 1 means a perfect match of modelled data and field 

measurements. An efficiency of 0 means indicates the model predictions are as 

accurate as the mean of the observed data, whereas an efficiency less than zero 

occurs when the observed mean is a better predictor than the model outputs 

(Maguire, Batty et al. 2005).  

 

In addition, modelling results and observed results will be compared visually 

through plotting them together. Attention will mainly be paid to the magnitude of 

values and shape of the plots. This work is conducted to capture more details of 

differences between modelled and observed data. 

3.4.4 Testing of PESERA-GRID 

PESERA-GRID consists of three modules: hydrology, erosion and vegetation 

growth (Figure 3.4). The hydrological sub-model is centred on a water balance, and 

able to simulate saturation-excess overland flow generation which is crucial for 

blanket peatlands (Evans et al., 1999). In PESERA-GRID, total erosion is estimated 

as the transporting capacity of overland flow driven by soil property-derived 

erodibility, overland flow and local relief, and it is assessed at the slope base to 
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estimate total loss from the land, and delivered to stream channels. Many eroded 

blanket peatlands have been partly re-vegetated, with weathered peat often trapped 

before entering stream channels (Evans et al., 2006). Investigation of blanket peat 

erosion at a hillslope scale is therefore meaningful in evaluating blanket peat erosion 

systems. Vegetation growth is considered in the model based on a biomass carbon 

balance for both living vegetation and soil organic matter. This provides a good way 

of describing the interactions between land management and vegetation cover and 

biomass.  

 

 

 

The PESERA-GRID model treats the study area as a cascade of hillslopes. However, 

it usually requires 128 input grid layers to parameterize climate, land cover and use, 

topography and soil. Table 3.3 presents the parameters required by the PESERA-

GRID model. Large amounts of input data require much data processing and it takes 

much time, when PESERA-GRID is running for a spatial area. So in order to 

determine whether the theoretical framework of PESERA-GRID is suitable for 

blanket peatlands or not, PESERA-GRID was initially tested at a hillslope 

represented by a 100-m grid cell, with input parameters (i.e. climate, vegetation, soil 

and topographic characteristics) the same as typical / average values for the Trout 

Beck catchment. This point could thus be viewed as an average hillslope in the 

Trout Beck catchment.  

Figure 3.4 The conceptual framework of PESERA-GRID 
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Table 3.3 The input parameters required by the PESERA-GRID model 

Parameters Units Description 

meanrf130 mm Mean monthly rainfall 

meanrf2 mm Mean monthly rainfall per rainy day 

cvrf2 - Coefficient of variation of monthly rainfall per rainy day 

mtmean ℃ Mean monthly temperature 

mtrange ℃ Monthly temperature range 

meanpet30 mm Mean monthly PET 

newtemp ℃ Predicted future temperature 

newrf130 mm Predicted future rainfall 

use - Land cover type 

eu12crop1 - Dominant arable crop 

maize_210c - Maize crop 

eu12crop2 - Second dominant arable crop 

itill_crop1 - Planting month: dominant arable crop 

itill_maize - Planting month: maize 

itill_crop2 - Planting month: second dominant arable crop 

mitill_1 - Planting marker: dominant arable crop 

mitill_m - Planting marker: maize 

mitill_2 - Planting marker: second dominant arable crop 

cov % Initial ground cover 

rough0 mm Initial surface storage 

rough_red % Surface roughness reduction per month 

rootdepth mm Root depth 

crusting mm Crust storage 

erodibility mm Sensitivity to erosion 

swsc_eff_2 mm Effective soil water storage capacity 

p1xswap1 mm Soil water available to plants in top 300 mm 

p2xswap2 mm Soil water available to plants between 300 and 1000 mm 

m mm Scale depth (TOPMODEL) 

std_eudem2 mm Standard deviation of elevation for all points within a certain 

radius 
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3.4.4.1 Model inputs 

a) Climate inputs 

Table 3.4 Climate inputs of PESERA-GRID 

 

Climate inputs include mean monthly rainfall (meanrf130), mean monthly rainfall 

per rainday (meanrf2), coefficient of variation of monthly rainfall per rain day 

(cvrf2), mean monthly temperature (mtmean), mean monthly temperature range 

(mtrange), mean monthly potential evapotranspiration (meanpet30). Input values for 

the Trout Beck catchment between 1997 and 2009 were calculated from ECN station 

data while potential evapotranspiration data were obtained from the estimation of 

Clark (2005). The values of newtemp and newrf130 were the same as meanrf130 

and mtmean as future climate scenarios are not considered in this initial testing. 

 

b) Topography 

Slope length and relief are required to define a slope profile. In this test the length of 

slope is 100 m while relief is 20 m, which is average value for the Trout Beck 

catchment using a 100-m DEM. So the slope profile shown in Figure 3.5 is able to 

show the basic topographic characteristic of the Trout Beck catchment. 

 

Month meanrf130 

(mm)         

meanrf2 

(mm) 

cvrf2 

(Unitless) 

mtmean 

(℃) 

mtrange 

(℃) 

meanpet30 

(mm) 

1 232 10.56 1.39 1.49 3.83 10 

2 184 9.77 1.51 1.33 4.41 12 

3 194 8.88 1.58 2.39 5.22 40 

4 138 6.43 1.15 4.25 6.76 60 

5 119 5.85 1.15 7.59 7.74 100 

6 107 5.57 1.08 10.15 6.79 105 

7 125 6.13 1.51 11.99 6.92 110 

8 139 5.89 1.53 12.09 6.75 97 

9 148 6.92 1.31 10.13 6.35 70 

10 195 7.43 1.30 6.82 4.83 45 

11 205 8.87 1.18 3.93 4.05 20 

12 228 11.69 1.33 1.47 4.16 8 
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Figure 3.5 Profile of the testing grid cell 

c) Land cover / use 

Land cover parameters used in this test are based on the major land cover in the 

Trout Beck as described in section 3.4.2. Land cover code (code), initial land cover 

(cov), root depth (rootdepth), initial roughness storage (rough0) and reduction of 

roughness storage per month (rough_red) are required to operate PESERA-GRID. 

As no croplands were found in the Trout Beck catchment, parameters about crops 

and planting dates are not provided here. Values of land cover related parameters are 

presented in Table 3.5. Detailed description of vegetation growth model and 

parameterization of land cover / use is provided in section 4.5.2.2 of Chapter 4 and 

section 5.3.2.2 of Chapter 5. 

Table 3.5 Land cover parameters 

Parameters Value 

code 334 

cov (%) 100 

rootdepth (mm) 100 

rough0 (mm) 5 

rough_red (%) 0 

d) Soil 

Six soil parameters are required by PESERA-GRID. Values of soil parameters for 

blanket peatlands are based on the pedo-transfer functions and PESERA manual 

(Irvine and Kosmas 2003). The resulting values for the soil parameters are shown in 

Table 3.6. The “erodibility” and “crusting” describe the vulnerability of soil to 
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erosion and surface crusting. “p1xswap1” and “p2xswap2” are soil water available 

to plants in the top 300 mm and between 300 and 1000 mm respectively. 

“swsc_eff_2” represents the effective soil water storage capacity. “zm” is the 

TOPMODEL soil parameter, which impacts the soil water moisture and subsurface 

flow (Beven and Kirkby 1979; Beven, Kirkby et al. 1984). 

Table 3.6 Soil parameters 

Parameters Value 

erodibility (mm) 1.16 

crusting (mm) 1.16 

p1xswap1 130 

p2xswap2 21 

swsc_eff_2 (mm) 114 

m (mm) 5 

3.4.4.2 Evaluation of modelling results 

a) Runoff 

A comparison between the modelled and measured runoff is shown in Figure 3.6. 

The Nash-Sutcliffe coefficient is 0.55. The shape of the modelled and measured 

runoff is very similar, confirming that the hydrology sub-model of PESERA-GRID 

can capture the changes in runoff generating of blanket peatlands. However, the 

modelled annual runoff is apparently higher than the measured annual runoff, with 

the difference between them being 18 % of measured annual runoff. This may be 

caused by the scaling difference between measured (catchment scale) and modelled 

(hillslope) runoff, given the runoff coefficient is usually observed to decrease with 

distance or area downslope (Kirkby, Irvine et al. 2008; Bracken, Wainwright et al. 

2013). The difference between modelled and measured runoff is lower in summer 

than in winter, this may be because the water use efficiency (WUE), which impacts 

the amount of water being lost as evapotranspiration, was set to a constant through 

the whole year.  
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Figure 3.6 Comparison of measured runoff at catchment outlet and runoff at 
hillslope scale predicted by PESERA-GRID. 

b) Erosion 

Modelled erosion is systematically higher than measured erosion (Figure 3.7), with 

the Nash-Sutcliffe coefficient being -80.68. It seems that PESERA-GRID over-

estimates the sediment yield for blanket peatlands. However, it should be noted that 

measured erosion is at a catchment scale while the PESERA model only considers 

erosion transported to the bottoms of hillslopes. Sediment budget studies (e.g.Evans 

and Warburton 2005; Baynes 2012) demonstrated that vegetation cover significantly 

reduced the soil erosion produced on hillslopes reaching catchment outlets through 

decoupling the slope-channel linkage. This is considered as a scaling component and 

should be considered during interpolation of the model outputs. More significantly t 

is also noted that both the modelled and measured monthly erosion are higher in 

winter months, peaking in December and bottoming out in June. However, modelled 

erosion tends to be more sensitive than measured erosion to changes in runoff 

conditions. For example, the change of modelled erosion from February to March is 

about same as the change of runoff between these months. However, the change of 

measured erosion does not follow runoff variation in these two months. This 

phenomenon may be mainly due to unreasonable sediment-supply mechanisms in 

PESERA. Freshly exposed peat is often fibrous and thus resistant to erosive forces. 

Therefore, a period of weathering is needed to produce loose materials for 

subsequent flow wash. This mechanism drives the erosion in blanket peatlands to be 
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supply-limited in general (Evans and Warburton 2007). However, in the current 

version of PESERA model, runoff shear stress is considered to be the only agent for 

erosion, assuming that the erodible material is always enough for runoff wash 

(transport limited erosion), and freeze-thaw and desiccation are not considered. This 

could inevitably add inaccuracy to the PESERA-GRID sediment outputs and lead 

modelled erosion to be over-sensitive to runoff production. 

 

 

Figure 3.7 Comparison of measured erosion at catchment outlet and hillslopes 

against erosion at hillslope scale predicted by PESERA-GRID. The measured 

erosion data are the monthly average for the period of 1997-2009 based on the 

re-constructed sediment flux, which was produced with the method shown in 

section 3.4.3.1. 

3.5 Summary and discussion 

Recent developments of modelling theory, computing power and spatial data have 

led to the development of many erosion models over the past several decades 

(Merritt, Letcher et al. 2003; Aksoy and Kavvas 2005). It seems possible that 

modification of an existing model might be appropriate for simulation of fluvial 

blanket peat erosion based on current understanding of peat erosion processes. 

Given this context, this chapter reviewed and evaluated contemporary erosion 

models, which are possibly aligned for simulation of blanket peat hydrology and 

erosion. Fifteen physically-based erosion models were firstly selected as candidate 

models. Through theoretical assessment of candidate models with criteria defined in 
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terms of current knowledge on the objectives of the project and current 

understanding of hydrology and erosion processes of blanket peatlands, PESERA-

GRID seemed to be most theoretically ready for blanket peat erosion modelling. The 

PESERA-GRID model then underwent some preliminarily tests with historical data 

from the Trout Beck catchment of northern England.  

According to the theoretical and numerical evaluation, there are still three key things 

to be done before PESERA-GRID could be applied to blanket peat erosion 

modelling: 

1) Sediment production mechanisms of blanket peatlands need to be incorporated 

into PESERA-GRID for better representation of physical processes of blanket peat 

erosion; 

2) As described in section 3.3, only grazing has been considered in the PESERA-

GRID model at the moment. More effort is thus needed to incorporate other land 

management practices such as burning and artificial drainage into the PESERA-

GRID model.  

3) Most measured erosion data from blanket peat-covered areas are at the catchment 

scale (Table 2.2 of Chapter 2), which is different from the scale PESERA works on. 

Therefore, a better method, which eliminates the scaling difference between 

modelling results from PESERA-GRID and field measurement, is needed in order to 

evaluate the model at different blanket peat-covered sites. 

These three tasks will be undertaken in Chapter 4. 
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Chapter 4  

Development of PESERA-PEAT 

4.1 Introduction 

Chapter 3 evaluated contemporary erosion models and concluded that PESERA-

GRID was promising for this project. Three aspects of work were required before 

the model could be applied in blanket bog simulation: 

1) Currently PESERA only considers transport-limited erosion, assuming that 

erodible material is ample for flow transport (Kirkby, Irvine et al. 2008). However, 

supply-limited erosion is most prevalent in blanket peatlands (Evans and Warburton 

2005; Evans, Warburton et al. 2006; Holden, Gascoign et al. 2007b), although 

transport-limited erosion might happen more in the summer half year (Holden and 

Burt 2002a). Therefore, sediment production mechanisms in blanket peatlands 

should be incorporated into PESERA-GRID model so that more reasonable 

treatment of peat erosion can be achieved. Freeze-thaw and desiccation are common 

in northern blanket peatlands, and are mainly controlled by climate and soil moisture 

conditions (Francis 1990; Holden and Burt 2002a; Evans and Warburton 2007). 

Therefore, summer and winter weathering processes will be built into PESERA-

GRID model through linking sediment supply with the driving factors.  

2) Grazing has already been incorporated into PESERA-GRID. However, drainage 

and burning have not been considered with PESERA-GRID and so work is required 

to incorporate the impacts of artificial drainage and managed burn into the model. 

3) Table 2.2 of Chapter 2 showed measured erosion from blanket peatlands around 

the UK, implying that most of the erosion measurements reported previously were at 

catchment scales. However, only hillslope hydrology and erosion are considered in 

PESERA (Kirkby, Irvine et al. 2008; Meusburger, Konz et al. 2010; Esteves, Kirkby 

et al. 2012), and channel processes are neglected. Therefore, understanding scaling 

impacts on hydrology and erosion from blanket peatlands is crucial for this project 

as it is significant for interpreting and evaluating the modelling results. 
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Consequently the aims of this chapter are as follows 

1) to understand the impacts of scales on runoff and sediment flux in blanket 

peatlands; 

2) to investigate and quantify the relationships between sediment production and 

freeze-thaw and desiccation  in blanket peatlands; 

3) to parameterize land management options suitable for running scenario 

modelling in PESERA-GRID; 

4) to provide an updated PESERA-GRID framework (PESERA-PEAT) with newly 

established outputs from 2-3 above including sediment production regressions 

and parameterized land management options, and a description of processes 

within PESERA-PEAT. 

The structure of this chapter is as follows. Data sources and processing of the data 

are stated in section 4.2; the emphasis of this section will be on understanding the 

general characteristics of erosion catchments with good data availability and 

changes in sediment flux and runoff production from blanket peatlands with 

catchment size. Section 4.3 focuses on establishing numerical relationships linking 

sediment supply with freeze-thaw and desiccation. Parameterization of land 

management practices will be discussed in section 4.4. Section 4.5 gives an updated 

PESERA-GRID framework (PESERA-PEAT) with the established sediment 

production relationship and parameterized land management options derived from 

sections 4.3 and 4.4. The processes within PESERA-PEAT are also described in 

detail. Section 4.6 is a summary and discussion of the chapter. 

4.2 Data sources, processing and preliminary results 

Data employed in this chapter came from the River Tees and River Ashop. Their 

locations are shown in Figure 4.1. In this section, data available at these two sites 

from previous publications and field measurements are presented and used to: 1) 

obtain a preliminary understanding of blanket peat erosion, providing a basis to 

predict sediment production; 2) build up relationships between runoff efficiency and 

sediment from blanket peatlands with catchment size, providing evidence of how 

runoff and erosion change between different scales. 
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1) River Tees 

Three tributaries of the River Tees were involved: Trout Beck, Rough Sike, and 

Little Dodgen Pot Sike. Detailed information on the Trout Beck catchment including 

geology, vegetation, soil cover and climate was provided in section 3.4.2 of Chapter 

3. Rough Sike is a tributary of Trout Beck, draining 0.83 km
2
 of typical blanket 

peatlands (Evans and Warburton 2005; Evans, Warburton et al. 2006). Little Dodgen 

Pot Sike drains 0.44 km
2
 of intact blanket peat, and flows into the Tees downstream 

of the Trout Beck catchment (Holden and Burt 2003c). Lower Carboniferous 

sequences of interbedded limestone, sandstone and shale in the Little Dodgen Pot 

Sike provide a base for a glacial till. The glacial clay in the Little Dodgen Pot Sike 

catchment is usually around 30 cm deep although it can contain coarse clasts 

resulting in a clayey diamict. The overlying clay has resulted in poor drainage, 

which has led to the development of blanket bog. Peat formation began in the late 

Figure 4.1 Location of data source sites in this chapter. 
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Boreal as bog communities began to replace a birch forest, macroremains of which 

are commonly found at the base of the peat. The vegetation is dominated by 

Eriophorum sp. (cotton grass), Calluna vulgaris (heather) and Sphagnum sp. (moss) 

(Holden and Burt 2002b). 

 

As shown in Table 4.1, the sediment concentration, runoff, temperature and water-

table data from the Trout Beck catchment between 1997 and 2009 were available 

from the Environmental Change Network (ECN). Sediment fluxes from the Trout 

Beck catchment between 1997 and 2009 were re-constructed with sediment rating 

curves, and the detailed procedures and evaluations for reconstructed erosion were 

presented in section 3.4.3.1 of chapter 3. Runoff efficiency reported by Holden and 

Burt (2003c) and (Holden 2000) for Trout Beck, Rough Sike and Little Dodgen Pot 

Sike are 72 %, 77 % and 80 % respectively. 

Table 4.1 Data available for tributaries of the River Tees. 

Catchment Size 

(km
2
) 

Data available Periods Data source 

Trout Beck 11.4 

Sediment  

Jan/1997-

Dec/2009 
ECN 

Runoff  

Rainfall  

Temperature  

Runoff efficiency Oct/1994-

Dec/1999 

Holden 2003c 

Rough Sike 0.83 Runoff efficiency Oct/1994-

Dec/1999 

Holden 2003c 

Little Dodgen Pot Sike 0.44 Runoff efficiency Jul/1999-

Dec/1999 

Holden 2000 

 

Figure 4.2 plots daily sediment flux, daily temperature and daily water table for the 

Trout Beck catchment between 1997 and 2009, offering an opportunity to achieve 

an overall feeling about the relationship between peat erosion and dry periods and 

freezing temperatures. Peak sediment flux usually happens after deep water table 

and during freezing periods. This confirms the importance of freeze-thaw and 

desiccation in blanket peat erosion (Evans and Warburton 2007). The delay between 

deep water table and peak sediment flux may imply that peat erosion is transport 

limited in dry periods sometimes, especially in summer months (Francis 1990; 

Holden and Burt 2002a). In this case surplus erodible material is firstly stored, and 

then washed away in following periods, which have sufficient rainfall. In addition, 
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there is no delay between peak sediment fluxes and freezing periods, demonstrating 

that peat erosion is supply limited and all erodible material is washed off. Figure 4.2 

confirms present understanding about blanket peat erosion and shows that the actual 

pattern and magnitude of blanket peat erosion is dependent upon both the sediment 

production and transport. Therefore both sediment production and transport should 

be considered in this project so that more accurate descriptions of blanket peat 

erosion can be achieved. 



 

 

 

 

 

Figure 4.2 Time series of daily sediment flux, daily temperature and daily water table in the Trout Beck catchment between 1997 and 2009. The 

daily sediment flux, daily temperature and daily water table are smoothed using a 7-day moving average. 
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Runoff ratios of Trout Beck, Rough Sike and Little Dodgen Pot Sike are plotted 

against catchment size to evaluate scaling impacts on runoff production efficiency in 

blanket peat-covered catchments. As shown in Figure 4.3, a power relationship was 

found between runoff efficiency and catchment size, clearly demonstrating that the 

runoff efficiency decreases with catchment size. 

 

2) River Ashop 

The River Ashop (Figure 4.4a) lies within the English Peak District, in the Southern 

Pennines, UK. It drains the slopes of both Kinder Scout and Bleaklow upland 

plateaux which supports an extensive cover of blanket peat (Pawson, Evans et al. 

2012). These systems are among the most severely eroded peatland sites in the UK 

(Evans, Warburton et al. 2006; Evans and Lindsay 2010). The catchment ranges in 

elevation from 631 m on the northern part to 253 m at the catchment outlet. Average 

annual rainfall is 1554 mm (Aksoy and Kavvas 2005). The catchment is underlain 

by interbedded sandstones and mudstones of the Carboniferous-age millstone grit 

series (Roering, Kirchner et al. 1999). Soils are dominated by deep peat, although 

other types of soil such as stagnopodzols and brown earths have developed on 

steeper valley sides and lower altitude areas respectively (Aksoy and Kavvas 2005). 

Vegetation cover is primarily a Calluna, Vaccinium, Eriophorum assemblage on the 

deep peat plateau, with acid grasslands on the steeper slopes and some limited 

Figure 4.3 Relationship between annual runoff efficiency and catchment size. 
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improved grassland on the floodplains of the main valley (Pawson, Evans et al. 

2012).  

 

 

 

 

Pawson and Evans et al. (2012) presented POC flux from 13 reaches (Figure 4.4b) 

spanning a 7-km headwater section of the River Ashop between December 2005 and 

January 2007. This provided a good opportunity to investigate how the magnitude of 

erosion varies with cumulative upper stream size. However, as stagnopodzols and 

brown earths become prevalent in low elevation areas, only the upper six sites, 

where peat coverage is more than 90 %, were selected. Information on the selected 

six sites is shown in Table 4.2. 

Table 4.2 Detailed information of the selected sites along the River Ashop (from 

Pawson, Evans et al. 2012). 

Site 
Catchment size  

(km
2
) 

Peat coverage  

(%) 

POC flux  

(ton ha
-1

 yr
-1

) 

1 0.43 98.8 0.74 

2 1.49 94.7 0.79 

3 1.54 95.9 0.45 

4 3.03 95.2 0.35 

5 0.57 94.4 0.54 

6 3.69 94.4 0.38 

Figure 4.4 a) the location of River Ashop; b) the illustration of the 13 reaches 

chosen by Pawson and Evans et al (2012), the upper six reaches were used in 

this study (from Pawson and Evans et al. 2012). 
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Figure 4.5 Relationship between annual POC flux and catchment size. 

 

Figure 4.5 shows the relationship between annual POC flux and catchment size; 

POC flux declines with increased catchment size. Changes in POC flux were used to 

represent those of peat erosion mainly because: 1) there is a high organic content of 

blanket peat (Charman 2002) and 48 % of organic sediment is POC in the River 

Ashop (Pawson, Evans et al. 2012); 2) there were no more data suitable for 

establishing such a relationship for blanket peat erosion. 

4.3 Prediction of sediment supply 

Freshly exposed peat is quite resistant to water flow, and Carling, Glaister et al. 

(1997) suggested that 5.7 m s
-1

 of overland flow is required to produce erosion on 

freshly exposed peat. Velocities of 5.7 m s
-1

 are clearly beyond the likely runoff to 

be produced from relatively low gradient peatland surfaces (Evans and Warburton 

2007). This is to say, sediment flux from peatlands tends to be close to zero after the 

surface erodible materials are all removed. It is therefore reasonable to view fluvial 

erosion in blanket peatlands as the result of the balance between sediment supply 

and the transporting capacity of runoff flow. In winter, erosion usually tends to be 

supply limited because of plenty of rainfall and a lack of evaporative drawdown of 

the water table, but in summer drying conditions may result in erodible material 

beyond the transporting capacity of water flow, so transport-limited erosion 

sometimes occurs (Francis 1990; Holden and Burt 2002a). Since the original 

PESERA model could only account for transport limited erosion (transporting 
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capacity of runoff) (Govers, Gobin et al. 2003; Kirkby, Irvine et al. 2008), it was 

necessary to incorporate sediment supply in order to describe the physical processes 

of blanket peat erosion more reasonably. Freeze-thaw and desiccation are major 

sediment production mechanisms in blanket peatlands, and therefore were employed 

for prediction of sediment supply. Parameterization of weathering mechanisms and 

sediment supply were conducted at a monthly scale in order to be consistent with the 

original PESERA-GRID model.  

4.3.1 Parameterization of freeze-thaw and desiccation 

Frost heave is characterized by formation of needle ice, which is supported by the 

abundant supply of moisture and a strong thermal gradient (Outcalt 1971; Albertson, 

Aylen et al. 2010). Desiccation is a result of drought and thus is closely related to 

soil moisture condition (Burt and Gardiner 1984; Francis 1990; Holden and Burt 

2002a). Moreover, Figure 4.2 confirms the linkage between peak sediment flux and 

dry and freezing periods, indirectly demonstrating that temperature and soil moisture 

relevant parameters should be able to act as indicators of freeze-thaw and 

desiccation.  

 

Several variables were derived from daily values in the Trout Beck catchment 

between 1997 and 2009 to represent the characteristics of temperature and soil 

moisture content at a monthly scale, which is consistent with the PESERA-GRID 

model. The names, units and definitions of these variables are shown in Table 4.3. It 

was assumed that soil surface freezing is more likely when the air temperature 

record drops below zero. Therefore, NDBF shown in Table 4.3 reflects the degree of 

freeze-thaw within a month. WNDBF and WNDBF2 were used to capture the 

impacts of different freezing levels with higher weights given to days with lower 

temperature. The basic characteristics of temperature such as Temp, MinTemp, 

MaxTemp and SDTemp were also used as potential indicators of freeze-thaw. 

Because soil moisture content time-series from the Trout Beck catchment were not 

available for the study period; in this study water table was chosen as a proxy of soil 

moisture content. It was hypothesized that desiccation is more likely when water 

table drops below -5 cm. Similar to NDBF, NDB5 is to parameterize the degree of 

desiccation within a month. WNDB5 and WNDB52 are variables reflecting the 
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impacts of different drought levels on desiccation. The basic characteristics of 

monthly water table such as WT, MinWT, MaxWT and SDWT were also involved. 

All these variables are plotted against sediment supply from the Trout Beck 

catchment to identify the potential relationship between sediment production and 

weathering process drivers. So, it is necessary to parameterize the sediment supply 

from the Trout Beck catchment for the same time periods before any relationship 

can be built. This is addressed in the following sections. 

Table 4.3 Potential indicators of freeze-thaw and desiccation. 

Name Unit Definition 

Temp °C Average of daily average temperature over a specific month 

MinTemp °C Minimum daily temperature over a specific month 

MaxTemp °C Maximum daily temperature over a specific month 

SDTemp - Standard deviation of daily average temperature over a specific 

month 

NDBF day Number of days with temperature below freezing 

WNDBF - NDBF with different weights for different temperature levels (°C) 

>= 0: 0; < 0 and >= -5: 1; < -5 and >= -10: 2; < -10: 3 

WNDBF2 - NDBF with different weights for different temperature levels (°C) 

>= 0: 0; < 0 and >= -5: 1; < -5 and >= -10: 4; < -10: 9 

WT cm Average of daily average water table over a specific month 

MinWT cm Minimum daily water table over a specific month 

MaxWT cm Maximum daily water table over a specific month 

SDWT - Standard deviation of daily average water table over a specific month 

NDB5 day Number of days with water table below -5 cm 

WNDB5 - NDB5 with different weights for different water table levels (cm) 

>= -5: 0; < -5 and >= -10: 1; < -10 and >= -20: 2; < -20: 3 

WNDB52 - NDB5 with different weights for different water table levels (cm) 

>= -5: 0; < -5 and >= -10: 1; < -10 and >= -20: 4; < -20: 9 

“-” indicates the corresponding variable is unitless. 

4.3.2 Parameterization of sediment supply 

The slope of best-fitted sediment rating curves has been demonstrated as a good way 

of indicating sediment supply status in peatland catchments (Aksoy and Kavvas 

2005; Yang 2005; Evans and Warburton 2007). Yang (2005) demonstrated that the 

slope of best-fitted sediment rating curve was highly sensitive to the climatic 

variability within a catchment, and the difference of sediment delivery and 

connectivity between catchments with various eroding conditions could also be 

reflected by sediment rating curves. Evans and Warburton (2007) also emphasized 
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the applicability of the sediment rating curve as an indicator of sediment supply 

status at a catchment scale. For example, in the Rough Sike catchment (a tributary of 

Trout Beck), the difference between slopes of sediment rating curves in 1960 and 

2000 was attributed to the re-vegetation of gully floors so that the connectivity 

between hillslopes and channels was significantly reduced (Evans, Warburton et al. 

2006; Evans and Warburton 2007). Therefore, the slope of best-fitted sediment 

rating curves was adopted to investigate the sediment supply status and its 

relationship with freeze-thaw and desiccation. However, there are common 

shortfalls with sediment rating curves, such as substantial scatter associated with the 

plots, which may cause a loss of crucial details on changes of sediment production 

which do not match a uniform equation (Walling and Webb 1988) (Figure 4.6). 

 

 

 

 

 

In order to overcome the shortfalls with sediment rating curves, the slope of each 

point in the sediment rating curve, which is the sediment concentration per unit 

runoff, was defined as a sediment supply index to indicate the sediment supply 

capacity (Figure 4.6). So for every single point, the sediment supply index equals the 

Figure 4.6 The definition of sediment supply index (SSI), and the comparison 

between SSI and the best fitted sediment rating curve. The daily runoff and 

suspended sediment concentration (SSC) data for Trout Beck catchment for 

01/2000 are used as an example in the figure. 
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sediment flux divided by runoff squared. The sediment supply index for each point 

can be given by, 

 

SSI =  SSC
Roff⁄ =  SF

Roff 2⁄                       Equation 4.1 

 

where, SSI is the sediment supply index; SSC is sediment concentration; Roff is the 

water discharge; 𝑆𝐹 is the sediment flux. 

 

 

Daily sediment concentration and water discharge from Trout Beck catchment 

between 1997 and 2009 were used as the basis for analysis because, while 

recognizing the limitations of these data, PESERA parameterizes storms with daily 

precipitation (Kirkby, Irvine et al. 2008). Therefore this makes aggregation of the 

results with PESERA-GRID theoretically reasonable. Monthly sediment supply 

index was used to describe the sediment supply status within a month quantitatively. 

It is defined as the mean of daily sediment supply index within a specific month. As 

data were available between 1997 and 2009 in the Trout Beck catchment, thirteen 

sediment supply indices were therefore achieved for each month and shown in 

Figure 4.7, where sediment supply index in the summer half year (Apr-Sep) is much 

higher than that for the winter half year (Oct-Mar). Figure 4.7 does not imply that 

Figure 4.7 Monthly sediment supply index of Trout Beck between 1997 and 2009. 
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sediment production in winter is lower than in summer but reflects the idea that 

erosion in the summer half year is more likely to be transport-limited than in the 

winter half year as runoff in summer is significantly lower than in winter. Therefore, 

sediment supply index is theoretically available to represent the sediment supply 

status in blanket peatlands, and its change could serve as a proxy of variation in 

sediment supply. The monthly sediment supply index was then used to build up 

relationships with temperature and water-table relevant variables for each month for 

Trout Beck catchment between 1997 and 2009, and the results are shown and 

discussed in section 4.3.3. 

 

 

The sediment supply index is not numerically equal to the actual sediment supply in 

the Trout Beck catchment. Therefore, the actual sediment supply value is needed as 

the baseline, which changes at the same rate as the sediment supply index. Measured 

sediment supply from bare peat in the Rough Sike catchment between July 1999 and 

July 2000 was reported by Evans and Warburton (2007). In that study, nine sites 

with size ranging from 0.225 to 1.3 m
2
 were selected for sediment traps. The 

average annual sediment supply from the nine sites between July 1999 and July 

2000 was 6.89 ton ha
-1

. The monthly distribution of this sediment supply was firstly 

estimated based on Figure 4.8, and then adjusted during model calibration in 

Chapter 5. These values were employed as the actual sediment supply from bare 

Figure 4.8 Sediment supply measured by traps at Rough Sike catchment between 

July 1999 and July 2000 (from Evans and Warburton 2007, page 65). 
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peat, which was the result of freeze-thaw and desiccation and so was linked with 

changes in sediment supply index to account for variations in sediment supply in 

blanket peatlands. 

4.3.3 Linking sediment supply with climatic and soil moisture condition 

Freeze-thaw, desiccation and sediment supply have been parameterized as various 

indicators in sections 4.3.1 and 4.3.2. Relationships between these variables and 

monthly sediment supply indices were examined to determine which of them was 

capable of accounting for the weathering processes in blanket peatlands. Table 4.4 

and Table 4.5 show regressions between monthly sediment supply indices and 

variables related to freeze-thaw and desiccation respectively. In Table 4.4, 

MinTemp, MaxTemp and SDTemp have systematically lower R
2
 in relationships 

with sediment supply indices than other variables, demonstrating that these three 

variables are not suitable to be adopted as indicator for freeze-thaw. NDBF, 

WNDBF and WNDBF2 mainly have positive relationships with sediment supply 

indices in the winter half year (Oct-Mar). In the summer half year (Apr-Sep), the 

relationships appear to be negative or with a much lower R
2
 than those of the winter 

half year; especially in July and August there are no relationships found between 

NDBF, WNDBF, WNDBF2 and sediment supply indices as no days were below 

freezing. Temperature impacts sediment supply indices negatively in the winter half 

year and positively in the summer half year. This may imply that freeze-thaw 

contributes to sediment production in blanket peatlands mainly in the winter half 

year. However, the relationships between sediment supply indices and Temp, 

NDBF, WNDBF, WNDBF2 for March have lower R
2
 than those for other months of 

winter half year. If compared to relationships between sediment supply indices and 

water-table related variables in Table 4.5, it is inferred that sediment production in 

March is dominated by desiccation. For the rest of the winter half year (Oct-Feb), 

the average R
2
 given by Temp, NDBF, WNDBF and WNDBF2 is 0.34, 0.35, 0.37 

and 0.36.The R
2
 of NDBF, WNDBF and WNDBF2 is higher than that of Temp. 

This could be explained as the freeze thaw only occurs when the temperature falls 

below freezing. Moreover, R
2
 of NDBF is lower than those of WNDBF and 

WNDBF2, possibly implying that freeze-thaw is not only impacted by the length of 

time below freezing but also influenced by the freezing level. Both a longer time 

below freezing and stronger freezing could result in more erodible material. In Table 
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4.5 the R
2
 between sediment supply indices and water-table related variables is 

higher in the summer half year and lower in the winter half year. However, even in 

the winter half year the R
2
 between water-table variables and sediment supply 

indices is considerably high, demonstrating that desiccation could happen in winter 

together with freeze-thaw. This may be partly because the formation of segregation 

ice at the peat surface has the effect of desiccating the surface layer (Evans and 

Warburton 2007). SDWT, NDB5, WNDB5 and WNDB52 impact the sediment 

production positively while WT, MinWT and MaxWT impact the sediment supply 

negatively. The average R
2
 related to NDB5, WNDB5, and WNDB52 across the 

whole year is 0.56, 0.59 and 0.55 respectively, demonstrating that desiccation is 

possibly impacted by both length and strength of drought. The highest average R
2
 

across the whole year appears to be 0.64 in the relationship between WT and 

sediment supply indices. 



 

 

 

 

 

Table 4.4 Regressions between monthly sediment supply indices and temperature related variables. 

y is monthly sediment supply index; x represents Temp, MinTemp, MaxTemp, SDTemp, NDBF, WNDBF and WNDBF2 respectively. 

 

Month 
Temp MinTemp MaxTemp SDTemp NDBF WNDBF WNDBF2 

Regression R
2
 Regression R

2
 Regression R

2
 Regression R

2
 Regression R

2
 Regression R

2
 Regression R

2
 

Jan y = -2.05x +10.1 0.73 y = -0.48 x + 5.31 0.11 y = -0.77 x + 11.8 0.24 y = 0.09 x + 6.81 0.00 y = 0.31 x + 2.09 0.52 y = 0.25 x + 2.15 0.61 y = 0.15 x + 3.09 0.64 

Feb y = -0.67 x + 8.56 0.16 y = -0.39 x + 6.24 0.11 y = 0.30 x + 5.78 0.06 y = 1.03 x + 4.87 0.12 y = 0.23 x + 4.12 0.33 y = 0.13 x + 5.13 0.26 y = 0.04 x + 6.39 0.14 

Mar y = -0.08 x + 8.34 0.002 y = -0.03 x + 8.06 0.00 y = -0.26+ 9.94 0.02 y = -0.28 x + 8.84 0.01 y = 0.17 x + 5.70 0.14 y = 0.12 x + 6.08 0.14 y = 0.06 x + 6.71 0.12 

Apr y = 15.1 x- 35.2 0.39 y = 5.56 x + 31.4 0.18 y = 12.2 x - 82.9 0.44 y = -7.9 x + 48.5 0.02 y = -0.20 x + 30.8 0.00 y = -0.18 x + 31.1 0.00 y = -0.13 x + 30.8 0.00 

May y = 16.9 x - 93.0 0.30 y = 0.25 x + 34.3 0.00 y = -0.78 x + 45.5 0.01 y = 0.09 x + 34.9 0.00 y = 0.96 x + 30.8 0.03 y = 1.41 x + 28.5 0.07 y = 1.75 x + 26.1 0.14 

Jun y = 9.40 x- 62.4 0.34 y = 2.59 x + 17.6 0.11 y = -0.24 x + 36.7 0.00 y = -2.08 x + 38.0 0.01 y = -6.16 x + 39.2 0.14 y = -6.16 x + 39.2 0.14 y = -6.16 x + 39.2 0.14 

Jul y = 16.0 x- 154 0.62 y = 8.74 x - 36.1 0.12 y = 8.26 x - 99.6 0.42 y = 29.2 x - 24.7 0.47 - - - - - - 

Aug y = 1.44 x + 5.2 0.02 y = -0.91 x + 30.1 0.01 y = 4.06 x - 43.7 0.32 y = 9.44 x + 3.80 0.27 - - - - - - 

Sep y = -1.22 x + 42.1 0.004 y = -5.09 x + 58.9 0.14 y = -1.09 x + 45.5 0.01 y = 12.4 x + 3.3 0.07 y = 2.94 x + 27.4 0.02 y = 2.94 x + 27.4 0.02 y = 2.94 x + 27.4 0.02 

Oct y = -0.49 x + 11.3 0.30 y = -0.56 x + 9.12 0.25 y = 0.99 x - 3.10 0.22 y = 2.34 x + 2.36 0.38 y = 0.61 x + 5.23 0.52 y = 0.58 x + 5.23 0.56 y = 0.51 x + 5.31 0.61 

Nov y = -0.07 x + 5.85 0.20 y = -0.05 x + 6.02 0.02 y = 0.50 x + 1.38 0.22 y = 0.98 x + 3.47 0.32 y = 0.08 x + 5.58 0.12 y = 0.07 x + 5.50 0.18 y = 0.051 x + 5.51 0.23 

Dec y = - 0.69 x + 8.27 0.29 y = -0.14 x + 6.44 0.06 y = -0.24 x + 8.91 0.03 y = 0.26 x + 6.43 0.02 y = 0.14 x + 5.11 0.28 y = 0.08 x + 5.59 0.26 y = 0.03 x + 6.19 0.18 



 

 

 

 

 

Table 4.5 Regressions between monthly sediment supply sediment index and water-table related variables. 

Month 
WT MinWT MaxWT SDWT NDB5 WNDB5 WNDB52 

Regression R
2
 Regression R

2
 Regression R

2
 Regression R

2
 Regression R

2
 Regression R

2
 Regression R

2
 

Jan y = -1.15 x+5.06 0.26 y = -0.39 x + 5.14 0.16 y = -0.17 x + 7.31 0.00 y = 1.23 x + 4.92 0.15 y = 0.43 x + 5.90 0.41 y = 0.32 x + 6.06 0.38 y = 0.18 x + 6.34 0.29 

Feb y = -0.57 x + 6.39 0.25 y = -0.28 x + 5.96 0.20 y = -0.86 x + 8.66 0.11 y = 1.03 x + 5.63 0.23 y = 0.17 x + 6.78 0.25 y =  0.13 x + 6.91 0.21 y = 0.08 x + 7.10 0.15 

Mar y = -1.23 x + 4.80 0.73 y = -0.6 x + 3.83 0.74 y = -1.82 x + 10.2 0.31 y = 2.20 x + 3.11 0.88 y = 0.44 x + 5.23 0.79 y = 0.31 x + 5.67 0.91 y = 0.17 x + 6.28 0.92 

Apr y = -6.90 x - 2.40 0.86 y = -3.76 x - 11.0 0.83 y = -23.1 x + 37.2 0.42 y = 13.3 x - 12.0 0.82 y = 2.01 x + 3.50 0.56 y = 1.30 x + 3.33 0.74 y = 0.66 x + 5.39 0.82 

May y = -4.52 x + 8.87 0.78 y = -2.89 x - 8.36 0.73 y = -8.03 x + 36.9 0.37 y = 8.64 x - 3.3 0.53 y = 2.10 x 0.62 0.64 y = 1.04 x + 7.87 0.78 y = 0.43 x + 14.9 0.79 

Jun y = -4.03 x + 8.05 0.85 y = -2.30 x - 1.84 0.71 y = -7.92 x + 31.0 0.36 y = 7.59 x + 1.10 0.61 y = 1.75 x + 2.93 0.85 y = 0.82 x + 10.5 0.85 y = 0.33 x + 16.3 0.78 

Jul y = -4.79 x+ 0.57 0.87 y = -2.85 x - 12.7 0.76 y = -17.2 x + 41.2 0.57 y = 8.36 x - 6.04 0.72 y = 2.88 x - 20.3 0.70 y = 1.17 x - 2.68 0.81 y = 0.43 x + 7.75 0.81 

Aug y = -2.26 x+ 9.55 0.64 y = -0.99 x + 8.80 0.58 y = -4.23 x + 22.1 0.21 y = 2.94 x + 11.0 0.56 y = 0.82 x + 9.38 0.65 y = 0.49 x + 10.5 0.70 y = 0.21 x + 13.4 0.63 

Sep y = -3.80 x+ 6.59 0.92 y = -2.21 x - 0.99 0.91 y =  -11.0 x + 34.5 0.38 y = 6.96 x + 0.25 0.92 y = 3.06 x - 16.0 0.71 y = 1.25 x + 0.31 0.83 y = 0.43 x + 10.4 0.83 

Oct y = -1.38 x + 4.88 0.53 y = -0.31 x + 5.68 0.54 y = -2.13 x + 9.30 0.42 y = 1.87 x + 4.32 0.56 y = 0.35 x + 6.00 0.42 y = 0.30 x + 6.05 0.40 y = 0.18 x + 6.44 0.34 

Nov y = -0.81 x + 4.95 0.32 y = -0.55 x + 3.74 0.28 y = -0.60x + 6.75 0.19 y = 2.80 x + 2.07 0.34 y = 0.36 x + 5.59 0.28 y = 0.25 x + 5.72 0.19 y = 0.08 x + 5.96 0.05 

Dec y = -1.18 x+ 5.02 0.64 y = -0.57 x + 4.34 0.57 y = -0.03 x + 7.30 0.00 y = 1.57 x + 4.50 0.43 y = 0.22 x + 6.56 0.41 y = 0.19 x + 6.62 0.35 y = 0.11 x + 6.82 0.19 

y is monthly sediment supply index; x represents WT, MinWT, MaxWT, SDWT, NDB5, WNDB5 and WNDB52 respectively. 
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Table 4.6 Regression models for prediction of monthly sediment supply index. 

Month SSI-Temp & WT SSI-WNDBF & WT 

Regression R
2
 Regression R

2
 

Jan SSI = 9.28 - 1.88 Temp - 0.33 WT 0.74 SSI = 1.84 + 0.22 WNDBF - 0.53 WT 0.66 

Feb SSI = 7.11 - 0.36 Temp - 0.46 WT 0.29 SSI = 5.21 + 0.08WNDBF - 0.36 WT 0.33 

Mar SSI = 4.80 - 1.23 WT 0.73 SSI = 4.80 - 1.23 WT 0.73 

Apr SSI = -2.40 - 6.90 WT 0.86 SSI = -2.40 - 6.90 WT 0.86 

May SSI = 8.87 - 4.52 WT 0.78 SSI = 8.87 - 4.52 WT 0.78 

Jun SSI = 8.05 - 4.03 WT 0.85 SSI = 8.05 - 4.03 WT 0.85 

Jul SSI = 0.57 - 4.79 WT 0.87 SSI = 0.57 - 4.79 WT 0.87 

Aug SSI = 9.55 - 2.26 WT 0.64 SSI = 9.55 - 2.26 WT 0.64 

Sep SSI = 6.59 - 3.80 WT 0.92 SSI = 6.59 - 3.80 WT 0.92 

Oct SSI = 8.17 - 0.5 Temp - 1.39 WT 0.58 SSI = 4.21 + 0.39 WNDBF - 0.85 WT 0.7 

Nov SSI = 4.99 - 0.01 Temp - 0.82 WT 0.32 SSI = 4.62 + 0.06 WNDBF - 0.72 WT 0.42 

Dec SSI = 5.39 - 0.14 Temp - 1.09 WT 0.65 SSI = 4.83 + 0.02 WNDBF - 1.10 WT 0.65 

 

As described above, WNDBF and WT could produce the best relationships with 

sediment supply indices individually. Therefore, they were selected to produce 

multiple regressions with sediment supply indices. However, NDBF, WNDBF and 

WNDBF2 were derived from time-series of daily minimum temperature, of which 

data availability was usually poorer than monthly temperature. Therefore, Temp and 

WT were also used to produce another group of relationships with sediment supply 

indices. Table 4.6 depicts the relationships linking sediment production with Temp, 

WNDBF and WT. In these regression equations WT has negative impacts on 

sediment supply indices across the whole year, and WNDBF and Temp are included 

in the equations for the winter half year except March. Equations based on Temp 

and WT (SSI-Temp & WT) were ultimately chosen for prediction of sediment 

supply indices in the project mainly because there was better data availability of 

monthly temperature. In addition, as mentioned above, sediment supply varies at the 

same rate as sediment supply indices, and the sediment production from bare peat 

between July 1999 and July 2000 has been obtained by Evans and Warburton 

(Evans and Warburton 2007) (Figure 4.8). Therefore, the final sediment production 

from bare peat for each month is estimated by Equation 4.2: 
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SS =  SSc (1 +  
(SSI − SSIc)

|SSIc|⁄ )                 Equation 4.2 

where SS is the predicted monthly sediment supply from bare peat; SSc is the actual 

monthly sediment supply shown in Figure 4.8; SSI  is the predicted monthly 

sediment supply indexes by equations in Table 4.6; SSIc is the monthly SSI for SSc; 

|SSIc| is the absolute value of SSIc . In this project, SSIc  directly took values of 

monthly SSI for the whole Trout Beck catchment between July 1999 and July 2000 

as monthly data of temperature and water table were not available for Rough Sike 

during this period. 

4.4 Parameterization of land management 

4.4.1 Artificial drainage 

It has been demonstrated in section 2.5.2.1 of Chapter 2 that artificial drainage has 

effects of altering hydrological properties of blanket peat, and horizontal incision of 

ditch sides often results in more bare peat and thereafter erosion. The variation in 

soil properties could be attributed to changed water table, which is related to the 

density of ditches and the topographic location (Holden, Chapman et al. 2004; 

Ramchunder, Brown et al. 2009; Holden, Wallage et al. 2011). Holden, Wallage et 

al. (2011) demonstrated lower water table in drained blanket peat was detected than 

in nearby intact sites. Therefore, changes in water table caused by drainage 

management should be reflected in the model. In addition, a high density of artificial 

drainage also leads to considerable reduction of vegetation, which adds more 

impacts to the hydrology and erosion of blanket peatlands (Tallis 1998; Worrall, 

Armstrong et al. 2007). Consequently, drainage should be parameterized in two 

aspects: 1) fluctuations of water table; 2) vegetation removal. The PESERA-POINT 

drainage model meets the above requirements, and was therefore chosen for the 

project and aggregated into the PESERA-GRID model. It was developed and 

incorporated during a project, which was funded by Yorkshire Water and conducted 

by the University of Leeds, to evaluate the socio-economic implications of land 

management policies in Yorkshire’s catchments (Beharry-Borg, Hubacek et al. 

2009).  
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The PESERA-POINT drainage model is a conceptual model considering the impact 

of drainage on water table and vegetation cover and biomass. The conceptual 

diagram of this model is shown in Figure 4.9, where DS is the drain spacing in m; 𝑍 

represents the depth of drainages in m, it was set to 0.5 in this project; W is the 

width of drainages in m, it was set to 1 in this project. In addition, it was assumed 

that all the drainages within each grid cell were evenly distributed. 

 

 

 

 

 

 

Vegetation cover and biomass removal is directly calculated as the percentage of 

area of each grid cell. It follows Equation 4.5: 

 

vcropgrip =  DD A W
A⁄ = DD W                       Equation 4.3 

 

where, vcropgrip is the vegetation cover or biomass removed by drainage; DD is the 

drainage density (length of drainage / A); A is the area of the grid cell.  

 

A “ditch level” value, which represents the drainage deficit, is adopted to account 

for the impact of the drainage on the soil moisture conditions. The ditch level 

increases with drainage depth and saturated conductivity, decreases with drain 

spacing. So, 

 

DL =  
β Ksat Z

DS⁄                                      Equation 4.4 

Figure 4.9 Conceptual diagram of the drainage model. 

Z 

DS 

W 
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where, DL is the ditch level representing the drainage deficit in mm; Ksat  is the 

saturated conductivity; β is a scaling factor and was set to 5 in the project; DS is 

negatively related to drainage density, and given by, 

                                                          DS = A
DD⁄                                       Equation 4.5 

 

j∗ = j∗  exp(−DL/m)                               Equation 4.6 

 

The saturated runoff rate ( j∗ in Equations 4.12, 4.13 and 4.14), which is crucial for 

the speed of soil infiltrating into soil and soil moisture dynamics in PESERA-GRID, 

decreases exponentially with the ditch level in drained blanket peatlands (Beven 

1997). Please refer to section 4.5.2.1 for more details about runoff production in 

PESERA-GRID. Sensitivity analysis of the drainage model is presented in Figure 

4.10. The depth of modelled water table increases when the drains become denser, 

demonstrating the drainage model is capable of capturing the effect of drainages on 

water table. 

 

 

Figure 4.10 Sensitivity analysis of the drainage model based on the climatic 

conditions of the Trout Beck catchment between 1997 and 2009. 
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4.4.2 Burning and grazing 

Through review of recent publications in section 2.5.2.2 and 2.5.2.3 of chapter 2, 

burning and grazing were known to impact surface conditions and soil properties at 

the same time, and therefore change the hydrological regime and increase peat 

erosion. However, there was a dearth of data on hydrology or impacts on peatland 

erosion following fire and grazing in peatlands (Worrall, Armstrong et al. 2007; 

Worrall and Adamson 2008; Esteves, Kirkby et al. 2012; Ramchunder, Brown et al. 

2012; Holden, Wearing et al. 2013). However, Worrall, Armstrong et al (2007) 

suggested that land management controlled hydrology through influencing the 

development of vegetation in peatlands. Meanwhile, vegetation removal resulting 

from burning and grazing leads to more bare peat, which is vulnerable to erosive 

forces (Tallis 1998). It was therefore possible to hypothesize that changed 

hydrological regimes and increased sediment erosion after fire and grazing could be 

attributed to the removal of vegetation. This is to say, burning and grazing could be 

parameterized as a percentage of vegetation removed. 

 

Managed burning is controlled to burn quickly in small patches without getting out 

of control. Vegetation cover and biomass were considered to be fully removed 

within the area burnt. In this project, the length of managed burning rotations was 

used to estimate the area under prescribed burning as it could be represented by the 

reciprocal of the area burnt i.e. 1 / 20th of the land burnt = 20-year rotation (Defra 

2007). Therefore, for each grid cell, the proportion of vegetation cover and biomass 

removed by managed burning is estimated as shown in Equation 4.7: 

 

vcropburn =  1
rotation⁄                         Equation 4.7 

 

where, vcropburn is proportion of vegetation cover or biomass removed by managed 

burning; rotation is the rotational years of managed burning.  
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Table 4.7 Legal burning seasons and legislation in the UK. 

Country Upland Lowland Principal legislation 

England 1
st
 Oct- 15

th
 Apr 1

st
 Nov - 31

st
 Mar 

The Heather and Grass etc. 

Burning (England) Regulations 

2007 

Wales 1
st
 Oct - 31

st
 Mar 1

st
 Nov - 15

th
 Mar 

The Heather and Grass etc. 

Burning (Wales) Regulations 

2008 

Scotland 
1

st
 Oct - 30

th
 Apr 

(above 450 m) 

1
st
 Oct - 15

th
 Apr 

(below 450 m) 
Hill Farming Act 1946 

Northern 

Ireland 
1

st
 Sep- 14

th
 Apr 

 

Game Preservation Act (N. I.) 

1928, Chapter 25 as amended by 

the Game Law Amendment Act 

1951, Chapter 4 

 

Managed burning is restricted to the winter months by the government in the UK in 

order to minimize the damage to peatlands (Table 4.7). Therefore, managed burning 

was turned on only in the periods shown in Table 4.7 for different regions of the 

UK.  

 

Wildfires could extend across a large area (McMorrow, Lindley et al. 2009). 

Vegetation removed by wildfire is usually greater across a catchment in which it 

occurs than that removed by managed burn. In this project, an ignition model 

derived from algorithms, which were developed and tested by Venevsky, Thonicke 

et al. (2002) independently for the Iberian Peninsula, has been incorporated into 

PESERA-GRID to estimate the potential wildfire severity. This model has been 

incorporated into the PESERA-POINT model by Esteves, Kirkby et al. (2012) to 

account for the reaction of soil erosion to managed burn and wildfire in central 

Portugal. The formula of the model is shown as Equation 4.8: 

 

PFS = VEGTN (1 + 5 (1 − √AET
PET⁄ )))           Equation 4.8 
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where, PFS is unitless potential wildfire severity; VEGTN represents the vegetation 

biomass in kg m
-2

; AET and PET are actual and potential evapotranspiration in mm. 

 

The predicted potential wildfire severity was used to evaluate how serious the 

wildfire could be under certain climate and land management practices. Therefore it 

offers an opportunity to assess the impact of environmental changes on peat erosion 

more comprehensively. For example, land management practices which reduce 

erosion in blanket peatlands may increase potential wildfire severity at the same 

time. Wildfire under such conditions may cause more damage to blanket peat 

systems and result in more erosion. 

 

Grazing was also parameterized as a percentage of vegetation cover and biomass 

removed. Two levels of grazing were considered in this project: light grazing and 

overgrazing, which were assumed to reduce vegetation cover and biomass by 15 % 

and 30 % respectively. These values were estimated based on the work of Chapman, 

Termansen et al. (2009) on the response of upland vegetation to low and high 

stocking densities of 0.5 and 3 ha
-1

 respectively, based on field investigations 

undertaken in upland areas of the UK (Peak District). Grazing was assumed to occur 

though the whole year as the periods, when sheep were taken off, were not officially 

regulated. 
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4.5 Modified PESERA-GRID - PESERA-PEAT 

4.5.1 Updated PESERA-GRID framework 

 

Figure 4.11 Updated framework of the PESERA-GRID model. Dashed lines 

indicate there are no intersections between crossed lines. 

 

An updated conceptual framework of the PESERA-GRID model is given in Figure 

4.11. Climate, land use / cover and soil properties are used to derive the runoff, 

which is composed of overland flow and subsurface flow (Beven and Kirkby 1977; 

Beven and Kirkby 1979; Kirkby, Irvine et al. 2008). PESERA-GRID also calculates 

the soil moisture deficit, which is closely related to water table. The sediment yield 

in the modified PESERA-GRID is determined as a balance of sediment supply and 

transporting capacity. Both sediment supply and transport are considered to be 

impacted by vegetation cover, given erosion normally occurs on bare ground (Tallis 

1998). The soil erodibility increases when weathered, and is used to determine the 

transporting capacity with overland flow and topographic factors. The vegetation 

growth model in PESERA-GRID can update vegetation cover, biomass, humus etc. 

(Licciardello, Govers et al. 2009). In the updated PESERA-GRID framework, 

climate change impacts hydrology and erosion outputs by altering the runoff output, 
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water table, vegetation growth, temperature and evapotranspiration. Reduced 

vegetation cover and biomass and changed water table resulting from land 

management interventions work on the hydrology, vegetation growth, sediment 

production and transport. In order to be distinguishable from the original PESERA-

GRID model, the updated one shown in Figure 4.11 is named as PESERA-PEAT. 

4.5.2 Detailed description of processes incorporated in PESERA-PEAT 

The overall conceptual framework of PESERA-PEAT has already been stated 

above. In this section processes involved in PESERA-PEAT are described in more 

detail. Modules of runoff production, vegetation growth and transporting capacity of 

overland flow are directly inherited from the original PESERA-GRID model. 

Sediment supply and storage are also incorporated to improve the erosion processes 

of PESERA-GRID for blanket bog.  

4.5.2.1 Runoff production 

This module is directly inherited from the original PESERA-GRID model, which is 

built based on water balance with precipitation divided into three components: 

overland flow, evapotranspiration and changes in soil moisture storage.  

The overland flow is estimated as: 

 

r = p (R − R0)                                   Equation 4.9 

 

where R  is the total rainfall, R0  is the runoff threshold, p  is the proportion of 

subsequent rainfall that runs off when runoff threshold is exceeded. They are all 

expressed in mm.  

 

Evapotranspiration is partitioned between the vegetated and unvegetated fractions of 

the surface. Final evapotranspiration is calculated as a sum of the partitions 

weighted for the fractional plant cover. Interception is calculated as a fraction of 

rainfall, and this fraction increases with vegetation biomass, and is given by,  

xint =
1−e

−VEGTN
5⁄

5+(R
PET⁄ )

                                Equation 4.10 
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where, xint is the proportion of rainfall intercepted by the plant cover. 

 

For each component, potential evapotranspiration, after subtraction of interception, 

is then reduced exponentially with rooting depth to an actual rate of: 

 

AET = WUE  PET e
−D

hR
⁄

                       Equation 4.11 

 

where AET is the actual evapotranspiration in mm, WUE is dimensionless water use 

efficiency for storage of plant growth, PET is the potential evapotranspiration in 

mm, D is the saturated subsurface deficit in mm and ℎ𝑅 is the rooting depth for the 

vegetated or unvegetated partition in mm.  

 

Soil moisture deficit is updated monthly with the TOPMODEL expressions of 

Equations 4.12 and 4.13, and subsurface flow is estimated as monthly change of soil 

moisture deficit as shown in Equation 4.14: 

 

D = D0 +  m ln {
j∗

i
e

−D0
m⁄ +  [1 −

j∗

i
e

−D0
m⁄ ] e

−it
m⁄ }  for i ≠ 0    Equation 4.12 

D =  D0 +  m ln [1 + 
j∗t

m
e

−D0
m⁄ ] for i = 0         Equation 4.13 

D − D0 +  it = m ln [1 −
j∗

i
e

−D0
m⁄ +  

j∗

i
e

(it−D0)
m⁄ ]      Equation 4.14 

 

where D is the deficit after time t, D0 is the initial deficit (mm), i is the net rainfall 

intensity (mm mon
-1

), which is calculated as the total rainfall plus snowmelt minus 

overland flow and evapotransporation (including vegetation interception), m is the 

TOPMODEL soil parameter (mm), and j∗ is the average saturated runoff rate (mm 

mon
-1

), and calculated as a function of saturated hydraulic conductivity and m , 

increasing with both saturated hydraulic conductivity and m. 

 

The soil moisture deficit predicted by the PESERA-PEAT is then used to calculate 

water table, which is employed for sediment supply prediction, using the 
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relationship between PESERA-PEAT modelled soil moisture deficit and measured 

water table for the Trout Beck catchment. The relationship is established and 

presented in Figure 5.9 of Chapter 5.  

 

The hydrological model also responds to snow and frozen soil conditions. The range 

of monthly temperatures is used to estimate the proportional time below freezing 

(Kirkby, Irvine et al. 2008), when rainfall is assumed to fall as snow, and lying snow 

is accumulated and melted according to a linear degree-day model (Hock 2003). Soil 

freezing depth is estimated based on a constant thermal conductivity for soil with a 

simple physical conductivity model (Wiltshire 1983), and the thermal conductivity 

of the snow pack is assumed to be 20 % of that of the soil (Kirkby, Irvine et al. 

2008). The effective soil storage capacity is then decreased exponentially with the 

freezing depth, resulting in the increased overland flow. 

 

Given the mechanism shown above, PESERA-PEAT is able to simulate both 

Hortonian and saturation-excess overland flow through comparing soil moisture 

deficit and available near-surface water storage capacity, which depends on land 

cover, organic matter and soil properties (Kirkby, Irvine et al. 2008). The detailed 

processes are as follows. If the soil is dry and far from saturation, the available near-

surface water storage capacity is lower than the soil moisture deficit. The runoff 

threshold takes the value of the available near-surface water storage capacity, and 

Hortonian overland flow occurs when rainfall intensity is over the runoff threshold 

(Equation 4.9). On the other hand, if the soil is near to saturation, the available near-

surface water storage capacity is higher than the soil moisture deficit. The runoff 

threshold takes the value of the soil moisture deficit so that saturation-excess 

overland flow could be generated if the soil is fully saturated (Equation 4.9).  

 

In the project, p value in Equation 4.9 was set to 1 due to the “spiky” characteristic 

of runoff production in blanket peatlands (Evans, Burt et al. 1999; Holden and Burt 

2002a). WUE in Equation 4.11 was set to 1 for bare ground and 0.3 for natural 

vegetation in terms of PESERA manual (Irvine and Kosmas 2003). 
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4.5.2.2 Vegetation growth 

The vegetation growth model of the PESERA-PEAT is exactly the same as that 

within the original PESERA-GRID model. It is built upon a biomass carbon balance 

for both living vegetation and soil organic matter (Kirkby, Irvine et al. 2008). The 

generic vegetation growth model primarily estimates gross primary productivity, soil 

organic matter and vegetation cover. Gross primary productivity is calculated as a 

proportion of the actual transpiration from the plant. The estimated gross primary 

productivity is offset by respiration at a rate increasing exponentially with 

temperature and proportional to biomass. Soil organic matters increases with leaf 

fall, and decompose at a rate increasing with temperature. Leaf fall fraction is a 

decreasing function of biomass, to allow for a larger structural component in large 

plants. Additional leaf fall is achieved for deciduous plants at a rate that increases 

with temperature if respiration is greater than gross primary productivity. Cover 

converges on an equilibrium value, which is defined as the ratio of plant 

transpiration to potential evapotranspiration, at a rate that is larger where biomass is 

small. In PESERA-PEAT, vegetation cover and biomass predicted by the vegetation 

growth model decrease at the same rate when blanket peatlands are managed. 

 

The original PESERA-GRID model also has a crop growth model, which is a variant 

of this generic model (Kirkby, Irvine et al. 2008). However, given UK blanket 

peatlands usually do not have croplands, the crop growth model is not incorporated 

into PESERA-PEAT currently, and so is not described here although it could be 

quite useful in future applications of PESERA-PEAT in blanket peat-covered areas 

which are used or planned to be used for arable agriculture. 

4.5.2.3 Erosion 

a) Sediment supply 

This is a newly added module in the PESERA-PEAT model. Monthly sediment 

supply is estimated with the equations shown in Table 4.6, which link sediment 

supply indices with temperature and water table, and Equation 4.2. However, 

Equation 4.2 produces the sediment supply from bare peat as the base erosion data 

measured by Evans and Warburton (2007) were mainly from bare peat on gully 

sides. Therefore, in the model, sediment supply is partitioned for bare soil and 
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vegetated areas, and it is assumed to decrease linearly with vegetation coverage. 

Therefore, the final sediment supply for each month could be expressed as: 

 

TSS =  SS (1 − cov) +  SS
x⁄  cov                 Equation 4.15 

 

where TSS is the total sediment supply resulted from freeze-thaw and desiccation for 

a month in ton ha
-1

; SS  is the erodible material produced by freeze-thaw and 

desiccation on bare peat for a month in ton ha
-1

; cov is the vegetation coverage for 

the month; x  is the rate at which sediment supply decreases with vegetation 

coverage. 

b) Sediment transport 

Transporting capacity of overland flow is estimated based on soil erodibility, water 

discharge and local relief (Musgrave 1947; Kirkby, Irvine et al. 2008). This is 

exactly the same as the equation for sediment yield calculation in the original 

PESERA-GRID.  

 

It takes the form of: 

 

C =  k ∆ ∑ r2                                Equation 4.16 

 

where C is transporting capacity of overland flow for a month in ton ha
-1

; k is soil 

erodibility in mm; ∆ is local relief in m; r2 is the squared daily runoff summed over 

a month, so the unit is mm
2
. 

 

With regard to the calculation of the parameters in Equation 4.16, k is derived from 

the soil texture with pedotransfer functions in the original PESERA-GRID. 

However, in PESERA-PEAT 𝑘 is set to the value of erodibility of weathered peat so 

that 𝐶 is the transporting capacity of overland flow for erodible material produced 

by freeze-thaw and desiccation rather than fresh peat; ∆ is calculated as the standard 

deviation of elevation within a certain radius. In order to calculate r2, storm rainfall 

is needed. Daily rainfall is used to stand for independent storm events (Kirkby, 
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Irvine et al. 2008). A gamma function is used to fit monthly rainfall distribution, 

based on monthly total precipitation, mean rainfall per rainy day and standard 

deviation of rainfall on rainy days, and the probability density function of daily 

rainfall and squared daily runoff over the month could then be achieved.  

 

pd (R) =  
α

R̅

αR
R

⁄
α−1

τα
e

−αR
R

⁄
                       Equation 4.17 

∑ r2 =  ∫ (R − R0)2∞

R0

α

R

(αR
R

⁄ )α−1

τα
e

−αR
R

⁄
 . dR        Equation 4.18 

 

where pd (R) is the rainfall distribution over the month in mm; R is the mean rain 

per rainy day in mm, α is the squared reciprocal of standard deviation of rainfall on 

rainy days, and it is unitless. 

 

In PESERA-PEAT, transporting capacity is partitioned for bare soil and vegetated 

areas, with the transporting capacity being higher on bare ground than on vegetated 

areas. Therefore, the final form of the transporting capacity equation is: 

 

TC = C (1 − cov) +  C x⁄  cov                   Equation 4.19 

 

where TC is the final transporting capacity of overland flow for a month in ton ha
-1

; 

C  is estimated with Equation 4.16; x  is the rate at which transporting capacity 

decreases with vegetation coverage (cov), and this rate was assumed to be the same 

as the rate at which sediment supply decreased with vegetation coverage mainly 

because there were no data to support the difference between them. In addition, x 

was originally set to 90 % empirically and then adjusted during model calibration in 

Chapter 5. 

c) Sediment yield 

In blanket peatlands, erosion usually tends to be supply limited (Evans and 

Warburton 2005; Evans, Warburton et al. 2006). However, transport-limited erosion 

happens sometimes (Holden and Burt 2002a), and surplus sediment will be 
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accumulated on the land surface as sediment storage. Thus it was necessary to create 

a sediment storage component for PESERA-PEAT. The sediment storage for each 

month is calculated through comparing the sediment availability and transporting 

capacity (Equation 4.20). Sediment availability is defined as a sum of the total 

sediment production by freeze-thaw and desiccation in the month and the sediment 

storage from previous months (Equation 4.21). If the sediment availability is more 

than the transporting capacity, the erosion would be transport limited, and sediment 

storage for the month is sediment availability minus transporting capacity for that 

month. If the sediment availability is less than the transporting capacity, the erosion 

would be supply limited, and sediment storage for the month is zero. Final sediment 

yield is calculated with Equation 4.22. 

 

 Storagec = Sediav −  TC                           Equation 4.20 

Sediav =  TSS +  Storagep                        Equation 4.21 

SY =  {

Sediav;               if Sediav < TC 
TC;                      if Sediav > TC
Sediav or TC;   if Sediav = TC

                 Equation 4.22 

 

where, Sediav  is the sediment availability for the current month; TSS is the total 

sediment production through freeze-thaw and desiccation for the current month in 

ton ha
-1

; Storagep  is the sediment storage from previous months; Storagec  is the 

sediment storage for the current month; TC is the transporting capacity of overland 

flow for the current month; SY is the final sediment yield. All values are in ton ha
-1

. 

4.6 Summary and discussion 

Time-series analysis of sediment flux, water table and temperature in the Trout Beck 

catchment between 1997 and 2009 confirmed the dominance of freeze-thaw and 

desiccation in sediment supply (Evans and Warburton 2007). In order to overcome 

the shortage of sediment rating curves a new indicator of sediment supply (termed 

the sediment supply index) was proposed and used to relate sediment supply with 

various temperature and soil moisture relevant variables, which were thought to be 

indicative of freeze thaw and desiccation (Francis 1990; Albertson, Aylen et al. 
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2010). In terms of these relationships, sediment supply is a result of combined 

freeze-thaw and desiccation in the winter half year (except March) while desiccation 

becomes dominant in other months. Monthly temperature and water table were then 

chosen for final regression equations with sediment supply indexes for each month 

(Table 4.6). Water table was included in the equations for all months while 

temperature was only considered between October and February. Freeze-thaw that 

happens between March and September is not taken into account by these equations. 

Therefore, these equations may encounter challenges when applied in colder places, 

where freeze-thaw may be an important source of sediment in summer. However, 

the following three points make the application of these equations across the UK 

acceptable: 1) the Trout Beck catchment is a relatively cold site in the UK due to its 

high elevation (Manley 1936), so freeze-thaw in summer months is unlikely to 

become dominant in sediment supply across the UK blanket peatlands; 2) climate 

projections suggest that the UK will experience warming in the next 100 years 

(UKCP09 2009), so freeze-thaw may become less and less important in the sediment 

supply of blanket peatlands; 3) there were not enough data from other sites to 

improve the equations established based on data from the Trout Beck catchment. On 

top of quantifying the linkage between sediment supply indices and weathering 

mechanisms, the final equations were aggregated into PESERA-GRID to account 

for sediment production by freeze-thaw and desiccation with the actual sediment 

supply measured at Rough Sike as a base. Land management practices were also 

parameterized: drainage, burning and grazing. Changed vegetation cover and 

biomass and water table resulting from land management shifts are linked with 

hydrology and erosion processes in the model. This enables PESERA-GRID to be 

applied to investigate the linkage between blanket peat erosion and land 

management in a more physically reasonable way. By doing so, an updated 

PESERA-GRID framework named PESERA-PEAT was developed. 

 

In Figure 4.3 and Figure 4.5 decreased runoff efficiency and blanket peat erosion 

with catchment size imply that peat erosion and runoff data from catchment outlets 

may be not sufficient to indicate erosion and runoff production within catchments. 

This might be because the erosion and runoff produced on hillslopes is trapped by 

vegetation cover or deposited again before reaching catchment outlets. Given many 

eroded blanket peatlands have been partly re-vegetated, more and more weathered 
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peat is stored on hillslopes without entering stream channels (Evans, Warburton et 

al. 2006). Therefore, it is advisable to study the hydrological and erosion processes 

in blanket peatlands at hillslope scales. Investigation of blanket peat erosion at a 

hillslope scale and its reaction to climatic change and typical land management is 

meaningful in evaluating the erosion risk more specifically, therefore making 

conservation practices more effective and straightforward. The necessity of looking 

at peat erosion at a hillslope scale supports the selection of PESERA-GRID as a 

basis to address the research questions in this thesis. Lastly, understanding the 

impact of spatial scales on runoff and erosion in blanket peat-covered areas 

facilitates the application of the PESERA-PEAT model. This is mainly because most 

field erosion data in blanket peatlands was collected at catchment outlets, and Figure 

4.3 and Figure 4.5 provide a way of downscaling measured runoff and sediment flux 

at the catchment outlet to hillslopes. The relationships identified in Figure 4.3 and 

Figure 4.5 can act as a linkage between PESERA-PEAT modelling results and 

measured data, and play an important role in numerically evaluating PESERA-

PEAT, which will be completed in Chapter 5. 
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Chapter 5  

Evaluation of PESERA-PEAT 

5.1 Introduction 

In Chapter 4 PESERA-GRID was modified for application to blanket peatlands 

based on analysis of field data and a review of previous literature. The major aim of 

this chapter is to calibrate and validate PESERA-PEAT at several blanket peat 

catchments under different erosion conditions, in order to confirm the applicability 

of PESERA-PEAT for regional or national blanket peatland use. 

 

The structure of this chapter is as follows: Section 5.2 introduces blanket peat sites 

chosen for the calibration and evaluation of PESERA-PEAT. Section 5.3 

concentrates on the data sources and methodology adopted for processing of model 

inputs and evaluation of model outputs. In section 5.4 PESERA-PEAT is operated 

and tested at three blanket peat catchments suffering from different eroding 

conditions. Key components such as evapotranspiration, runoff, vegetation biomass, 

sediment flux etc. are tested against field data and previous publications. The 

relationship between two versions of PESERA-PEAT (equilibrium and time-series) 

is also discussed in this section. Section 5.5 provides a summary outlining the 

reliability of PESERA-PEAT in blanket peat erosion modelling. Advantages and 

disadvantages of the equilibrium and time-series are discussed with reference to 

their utility at regional and national scales. 
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5.2 Study sites 

 

Figure 5.1 Location of sites chosen for calibration and evaluation of the PESERA-

PEAT. 

 

In order to demonstrate the reliability of PESERA-PEAT, it is necessary to test the 

model outputs with field data. However, there are few sites with good long-term 

field data on stream or hillslope sediment fluxes or concentrations. Three catchments 

were found where field data was available as shown in Figure 5.1and these were 

therefore used in this study. Trout Beck and Upper North Grain represent two 

extremes of a spectrum of eroded peat catchments in the UK (Evans and Warburton 

2005; Evans, Warburton et al. 2006). Stean Moor is an area more eroded than Trout 

Beck and less eroded than Upper North Grain. Therefore, it represents a middle 

erosion condition. A general introduction to these sites is provided below: 
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1) Trout Beck 

An overview of the Trout Beck catchment is presented in section 3.4.2 of Chapter 3. 

The aerial photograph of the Trout Beck catchment is shown in Figure 5.2.The 

percentage of bare peat in Trout Beck has changed with time. Grayson and Holden 

et al.(2010) digitized the bare peat of this catchment based on four sets of aerial 

photographs, which were taken in 1950, 1975, 1995 and 2000. The highest 

percentage of bare peat was found in 1975 at 9.2 %, with the remaining three sets of 

aerial photographs exhibiting smaller percentages of bare peat, which are between 

2.3 % and 4.6 %. There is a small amount of experimental burning and one hillslope 

has experimental drainage (Holden, Evans et al. 2006; Holden, Chapman et al. 

2012). The total area with experimental burn patches and drainage covered 0.7 % 

and 0.01 % of the catchment respectively. Most of the catchment has been left to 

naturally re-vegetate with low intensity grazing of 0.15 sheep ha
-1

 (Grayson, Holden 

et al. 2010). Therefore, in this study, the Trout Beck catchment is considered at the 

relatively ‘intact’ end of the blanket peat erosion spectrum (Pawson 2008).  

 

2) SteanMoor 12 

Stean Moor is located in Upper Nidderdale, North Yorkshire, UK and is part of the 

Nidd Comm Inlet at Chellow Heights water treatment works. There are twelve sub-

catchments in Stean Moor. They are named as Stean Moor 1 to 12. This name and 

Figure 5.2 Aerial photograph of Trout Beck catchment (from Google map). 
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number code is used because the sub-catchments have been given this nomenclature 

over the past 30 years by Yorkshire Water, and this aids any future comparison with 

historical data from this site. Stean Moor 1 to 11 are heavily drained; most of drains 

in these catchments were blocked in the winters of 2009/10 and 2010/11 (Grayson 

and Holden 2012). In Stean Moor 12 (Figure 5.3), total length of ditches was 

considered to be close to zero, and no blocking was implemented (Grayson and 

Holden 2012). Therefore, sediment data from Stean Moor 12 should better reflect 

erosion on hillslopes. Hence this catchment was selected to assess PESERA-PEAT. 

Stean Moor 12 drains an area of 0.38 km
2
 with sheep grazing as a management 

option. The altitude range is 494-558 m. Vegetation is dominated by Calluna and 

Eriophorum. The dominant soil in this catchment is deep peat. 

 

 

Figure 5.3 Aerial photograph of Stean Moor 12 (from Google map). 

 

3) Upper North Grain 

Upper North Grain is a small headwater catchment of the River Ashop. It is a part of 

the National Trust High Peak Estate, situated in the Peak District, Southern 

Pennines, UK. Located at altitudes between 490 and 541 m, the catchment is 

dominated by blanket bog. It drains an area of 0.38 km
2
, with rough grazing by 

sheep as the dominant land use (Rothwell, Robinson et al. 2005). It is heavily eroded 
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with Bower Type I peat gullies (Bower 1961), which in the upper reaches occur 

solely in a peat stratigraphy which often reach several metres in depth. The lower 

reaches of the gullies cut into the underlying bedrock, which is dominated by 

sandstones of the Millstone Grit Series (Cope 1976). An aerial photograph of the 

Upper North Grain catchment is shown in Figure 5.4, where the dendritic gully 

networks are clearly visible. (Pawson, Lord et al. 2008). Extensive gully systems 

and grazing result in considerable bare peat and drainage density of around 60 km 

km
-2

 in this catchment (Figure 5.4). 

 

 

Figure 5.4 Aerial photograph of the Upper North Grain catchment (from Google 

map). 

5.3 Methodology 

5.3.1 Model evaluation method 

As stated in section 4.5 of Chapter 4, the PESERA-PEAT model includes three 

major modules: hydrology, erosion, and vegetation growth. In order to evaluate the 

model performance, modelling results from these three modules should be 

evaluated. Vegetation biomass was used to assess the vegetation growth model. 

Evapotranspiration, runoff and soil moisture deficit were used for evaluation of the 

hydrology module, and the erosion sub-model was assessed with comparison 

between modelled and measured sediment flux. 
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The modelled vegetation biomass and evapotranspiration were evaluated with data 

from previous publications to identify whether their magnitudes were reasonable. 

The predicted soil moisture deficit was compared with measured water table to see if 

PESERA-PEAT could reflect changes in soil moisture condition. The predicted 

runoff and sediment yield were compared with field data and previously published 

data in two aspects: shape and magnitude. Because the modelling results are at 

hillslope scales, and field data are at catchment scales, field data should be 

downscaled to hillslopes before being compared with modelling outputs. The 

regression equations shown in Figure 4.3 and Figure 4.4 of Chapter 4 were adopted 

for downscaling measured runoff ratios and sediment yields respectively. Detailed 

evaluation strategies for modelled runoff and erosion are shown below: 

 

Firstly, the modelled monthly results were plotted against downscaled measured 

monthly data to see if their shapes fitted. Linear regression between downscaled 

field and modelled monthly data was also undertaken to evaluate how well model 

data could reproduce the changes in field data. A higher R
2
 of the linear regression 

indicates better fit between modelled and field data. 

 

Secondly, comparisons were also conducted between annual modelling results and 

downscaled annual field data to assess if the model could produce a reasonable 

magnitude of runoff and erosion. The difference between modelled and downscaled 

data was calculated as: 

 

Dif =  
Mod−Mead

Mead
∗ 100 %                                Equation 5.1 

 

In Equation 5.1, Dif represents the difference between modelled and downscaled 

measured data; Mod  and Mead  are modelled and downscaled actual data 

respectively. 

 

Lastly, the Nash-Sutcliffe coefficient (E) was employed to assess the overall 

accuracy of the modelling results based on modelled and downscaled measured data. 

This is mainly because the Nash-Sutcliffe coefficient is capable of assessing the 
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shape and magnitude simultaneously. A general introduction to the Nash-Sutcliffe 

coefficient was provided in section 3.4.3.2 of Chapter 3. There is debate about what 

represents a satisfactory performance of models base on the Nash-Sutcliffe value. 

Santhi, Arnold et al. (2000) concluded that a model is acceptable when it obtains a 

Nash-Sutcliffe coefficient ≥ 0.5 and the R
2
 ≥ 0.6. Saleh et al. (2001) stated that 

model performance was adequate and very good when the model obtained the Nash-

Sutcliffe coefficient of 0.54-0.65 and > 0.65 respectively. 

5.3.2 Data sources and processing 

5.3.2.1 Model evaluation data 

Table 5.1 The sources of data used for evaluation of modelling results. 

Item Site Time period Source 

Vegetation biomass Moor House 1971, 1975 Smith and Forrest (1978) 

Evapotranspiration North Yorkshire Unknown Wallace, Roberts et al. (1982) 

Water table Trout Beck 1997-2009 ECN 

Runoff Trout Beck 1997-2009 ECN 

Stean Moor 12 2010-2011 Unpublished data, 

University of Leeds 

Erosion Trout Beck 1997-2009 ECN 

Stean Moor 12 2010-2011 Unpublished data,  

University of Leeds 

Upper North Grain 2005-2007 

2001-2002 

Pawson, Evans et al. (2012) 

Evans, Warburton et al. (2006) 

 

Table 5.1 shows data employed to assess different components of the PESERA-

PEAT model. Details of measured vegetation biomass and evapotranspiration will 

be presented during model evaluation. The monthly water table (Table 5.2), runoff 

and sediment flux data of the Trout Beck catchment between 1997 and 2009 were 

calculated based on the dataset collected by ECN. A detailed description of the 

dataset has been provided in section 3.4.3.1 of Chapter 3.  

 

The time-series of runoff and erosion of Stean Moor 12 between 2010 and 2011 

were extracted from an unpublished dataset collected by the University of Leeds. In 

the dataset, the water discharge was estimated based on a rating curve between flow 

rates and stages of water surface. The original estimated runoff of Stean Moor 12 

between 2010 and 2011 was subject to a systematic overestimation, with resulting 

mean annual runoff of 1407 mm being higher than the average measured rainfall of 
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1191 mm. This is mainly because the rating curve employed to estimate the water 

discharge for the twelve sub-catchments of the Stean Moor is well populated at the 

bottom end but not at the high end of the stage. Hence as an alternative, the 

magnitude of annual runoff of Stean Moor 12 was estimated based on that of Stean 

Moor 3, whose rating curve was considered very reliable, using the downscaling 

equation shown in Figure 4.3 of Chapter 4. Meanwhile, the monthly distribution of 

the estimated annual runoff from Sean Moor 12was the same as that of the original 

runoff estimated with the rating curve. The resulting runoff was then considered as 

the actual measured runoff of Stean Moor 12 between 2010 and 2011. In 01/2010 

and 09/2011, around twenty days of suspended sediment concentration were missing 

for each of these two months. In order to avoid the possible impacts of the missing 

suspended sediment concentration on calculating the sediment flux in these two 

months, the suspended sediment concentrations of 01/2011 and 09/2010 were used 

to substitute those of 01/2010 and 09/2011 respectively. Such an adjustment was 

also done for the actual runoff data as well for calculation of the adjusted sediment 

flux. In this chapter, the adjusted sediment flux and runoff were employed as the 

base for assessment of the sediment flux and runoff predicted by the equilibrium and 

time-series versions of PESERA-PEAT for Stean Moor 12 between 2010 and 2011. 

 

Time-series of measured sediment data for Upper North Grain was not available. 

Average annual sediment flux from the Upper North Grain between 2005 and 2007 

was estimated based on the field measurements reported by Pawson, Evans et al. 

(2012) and Evans, Warburton et al. (2006). Pawson, Evans et al. (2012) 

demonstrated that the mean annual POC flux from the Upper North Grain was about 

0.73 ton ha
-1

 between 2005 and 2007, and 48 % of organic sediment flux in this site 

was POC. In addition, Evans, Warburton et al. (2006) built up the sediment budget 

for the Upper North Grain and showed that about 70 % of total sediment yield was 

organic sediment. So the mean annual sediment flux from the Upper North Grain 

between 2005 and 2007 was estimated to be 2.17 ton ha
-1

. 

 

The measured runoff and sediment flux for the selected catchments were 

downscaled from a catchment scale to a 1-ha scale, which PESERA-PEAT works on 

in this project, with the equations shown in Figure 4.3 and Figure 4.4 of Chapter 4. 

The downscaling results are shown in Table 5.2. The model was calibrated based on 
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the downscaled sediment flux from Trout Beck catchment and validated with 

datasets from other sites. 

Table 5.2 The downscaled monthly / annual average measured runoff and erosion, 

and water table used for model evaluation. TB_97-09, SM12_10-11 and 

UNG_05-07 represent Trout Beck between 1997 and 2009, Stean Moor 12 

between 2010 and 2011 and Upper North Grain between 2005 and 2007. 

 Runoff (mm) Erosion (ton ha
-1

) Water table (cm) 

Month TB_ 

97-09 

SM12_ 

10-11 

TB_ 

97-09 

SM12_ 

10-11 

UNG_ 

05-07 

TB_ 

97-09 

1 218 97 0.08 0.19 N/A -1.72 

2 168 102 0.06 0.10 N/A -2.27 

3 167 53 0.05 0.02 N/A -2.66 

4 107 49 0.03 0.01 N/A -4.11 

5 89 32 0.03 0.01 N/A -5.81 

6 83 38 0.02 0.01 N/A -6.19 

7 113 69 0.06 0.06 N/A -7.71 

8 134 92 0.08 0.08 N/A -6.57 

9 135 123 0.07 0.12 N/A -5.87 

10 197 132 0.07 0.10 N/A -2.32 

11 230 144 0.10 0.32 N/A -1.43 

12 240 123 0.10 0.12 N/A -1.89 

Annual 1880 1053 0.77 1.14 6.01 -4.05 

5.3.2.2 Model input data 

a) Climate  

Table 5.3 The sources of climate data for the selected sites. 

Site Time (year) Rainfall (mm) Temperature  (°C) 

Trout Beck 1997-2009 ECN station ECN station 

Stean Moor12 2010-2011 Unpublished data, 

University of Leeds 

Met Office gridded 

dataset 

Upper North Grain  2005-2007 MIDAS station Met Office gridded 

dataset 

 

Table 5.3 shows the sources of base climate data, from which climatic inputs for 

PESERA-PEAT were derived. The time periods of employed climate data for the 

three sites were chosen mainly dependent upon the availability of field runoff and 

erosion data. For the Trout Beck catchment, climate data between 1997 and 2009 

were used, collected by the ECN meteorological station (Grid Ref: NY758335) 

within the catchment. For Stean Moor 12, rainfall data between 2010 and 2011 were 

obtained from an unpublished tipping bucket raingauge dataset collected by the 
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University of Leeds, while temperature data were downloaded from Met Office 

gridded datasets. For Upper North Grain, rainfall data from the nearest MIDAS 

station (ID: 3257; Grid ref: SK 128895) were used as there was no measured rainfall 

available within this site, while temperature data were extracted from Met Office 

gridded datasets. Climatic inputs of PESERA-PEAT are the same as those of 

PESERA-GRID. Detailed description of the climate inputs was shown in section 

3.4.4.1 of Chapter 3. In the project, the PESERA-PEAT operated at a spatial scale of 

100 m, but temperature layers from Met Office gridded datasets are at 5-km spatial 

resolution. Therefore, these temperature data were downscaled from 5 km to 100 m 

assuming that the temperature decreases by 6.5 °C with elevation increasing by 1 

km. More specifically, the downscaling equation is as below: 

 

Temp100 =  {Resample [(Temp5000  

+ 0.0065 Elevation5000), 100, BILINEAR]}– 0.0065Elevation100 

Equation 5.2 

where, Temp100  is the temperature (°C) at 100-m resolution; Temp5000

 is the temperature (°C) at 5-km resolution; Elevation5000  

is the altitude (m) at 5-km resolution; Elevation100  is the altitude (m) 

at 100-m resolution, and the bilinear resampling method was taken to interpolate the 

temperature surface from 5 km to 100 m. 

 

Potential evapotranspiration (PET) was derived directly from a modified 

temperature-based model which was originally proposed by Oudin, Hervieu et al. 

(2005). In the project the original model was revised to include wind speed and 

vegetation height, which are also considered to be important for PET (Chiew and 

McMahon 1991), as used in the PET estimation by Clark (2005) at the Trout Beck 

catchment. The final model is as below: 

 

PET = 1000 N (
Re

λρw

Ta+ 5

100
) −  11.1 WS − 8.6 VH + 106   Equation 5.3 
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where, N is the number of days in the month; Re is the extraterrestrial radiation in 

MJ m
-2

 day
-1

; λ is the latent heat flux in MJ kg
-1

 (taken as 2.45 MJ kg
-1

); ρw is the 

density of water in kg m
-3

 (taken as 1000 kg m
-3

); Ta is the mean air temperature in 

°C, derived from long-term average; WS  is the wind speed in m s
-1

; VH is the 

vegetation height in m; PET is the total potential evapotranspiration per month in 

mm. 

 

For Trout Beck and Upper North Grain, the climatic inputs were directly derived 

from the above data sources (Table 5.3) and methodologies. For the Stean Moor 12, 

the climatic inputs of 01/2010 and 09/2011 were replaced by that of 01/2011 and 

09/2010 because such adjustment had been done for the runoff and sediment flux. 

The resulting monthly/annual average rainfall and temperature for the three sites 

during the chosen periods are presented in Table 5.4. 

 

Table 5.4 The monthly / annual average rainfall and temperature used for model 

evaluation. TB_97-09, SM12_10-11 and UNG_05-07 represent the Trout Beck 

between 1997 and 2009, Stean Moor 12 between 2010 and 2011 and Upper 

North Grain between 2005 and 2007. 

Month 

Rainfall (mm) Temperature(°C) 

TB_ 

97-09 

SM12_ 

10-11 

UNG_ 

05-07 

TB_ 

97-09 

SM12_ 

10-11 

UNG_ 

05-07 

1 232 127  155 1.49 0.75  2.67 

2 184 135  122 1.33 1.12  1.54 

3 194 68  106 2.39 3.07  2.88 

4 138 25  76 4.25 6.99  6 

5 119 69  107 7.59 8.06  8.43 

6 107 64  159 10.15 11.36  12.19 

7 125 101  131 11.99 12.57  13.75 

8 139 104  104 12.09 11.92  12.61 

9 148 124  111 10.13 10.97  11.84 

10 195 109  114 6.82 8.08  9.15 

11 205 154  118 3.93 4.43  4.31 

12 228 136  179 1.47 -0.19  2.5 

Annual 2014 1216 1482 6.14  6.59  7.32  

 

b) Land use /cover 

Croplands are not likely to exist in the UK blanket peatlands. Therefore, 

parameterization of croplands is not provided here. However, PESERA-PEAT can 
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be applied to blanket peatlands with croplands if needed as growth of crops is 

included in the original PESERA-GRID model (Kirkby 2003; Kirkby, Jones et al. 

2004; Kirkby, Irvine et al. 2008; Esteves, Kirkby et al. 2012). Given the above 

description, the PESERA-PEAT model has to date included land use codes (code), 

initial ground coverage for each month (cov), initial surface storage (rough0), 

surface roughness reduction per month (rough_red), and root depth (rootdepth) as 

the input to define the initial land use / cover condition. In PESERA-PEAT seven 

land use codes are employed in order for the vegetation growth model to recognise 

different vegetation types, and allow them to grow in different manners. The codes 

and corresponding land uses are provided in Table 5.5.  

 

Table 5.5 Land use codes used in PESERA-PEAT and corresponding land uses.  

Code Definition 

100 Artificial land 

231 Grassland or pasture  

310 Woodland 

320 Scrub 

330 Bare land 

334 Degraded natural land 

400 Water surface or undifferentiated bog 

 

Water surfaces and artificial lands are masked out and so not engaged in calculations 

during model implementation given no erosion is considered to occur in these areas. 

The vegetation growth model works to update the vegetation coverage on “231”, 

“320” and “334”. Ground coverage for “310”, “330” and “400” (undifferentiated 

bog) is always kept as initial input values. Vegetation biomass and soil organic 

matter are updated by the vegetation growth model for all land use types other than 

“330”, where they are kept as zero. In the project land management practices were 

considered to only work on “231”, “320” and “334” to impact the soil moisture 

content (drainage only), vegetation cover, biomass and thus soil organic matter. 

Land use / cover information was mainly derived from LCM2000, so LCM2000 use 

codes needed to be translated into land use codes in the PESERA-PEAT. Such 

translation is shown in Table 5.6. Initial ground cover, initial surface storage, surface 

roughness reduction per month and root depth for each land use type of LCM2000 

are shown in Table 5.6 with reference to the values provided in the user manual of 

the PESERA (Irvine and Kosmas 2003).  



 

 

 

Table 5.6 Linkage between LCM2000 land use type and PESERA-PEAT land use code, and parameters related to each land use type. 

LCM2000 category LCM2000 type 
LCM2000 
code 

PESERA-PEAT 
code 

cov 

(%) 
rough0 

(mm) 
rough_red 

(%) 
rootdepth 

(mm) 

1. Broad-leaved woodland 

Deciduous 1.1.1 310 100 5 0 1000 

Mixed 1.1.2 310 100 5 0 1000 

open birch 1.1.3 320 100 5 0 600 

Scrub 1.1.4 320 100 5 0 600 

2. Coniferous woodland 

Conifers 2.1.1 310 100 5 0 1000 

Felled 2.1.2 310 100 5 0 1000 

new plantation 2.1.3 310 100 5 0 1000 

4. Arable & horticulture 
setaside (bare) 4.3.3 334 0 5 0 200 

setaside 
(undifferentiated) 

4.3.4 334 100 5 0 200 

5. Improved grassland 

Intensive 5.1.1 231 100 5 0 300 

grass (hay/ silage cut) 5.1.2 231 100 5 0 300 

grazing marsh 5.1.3 231 100 5 0 300 

grass setaside 5.2.1 231 100 5 0 300 

6. Neutral 
rough grass (unmanaged) 6.1.1 231 100 5 0 300 

grass (neutral / 
unimproved) 

6.1.2 231 100 5 0 300 

7. Calcareous 
calcareous (managed) 7.1.1 231 100 5 0 300 

calcareous (rough) 7.1.2 231 100 5 0 300 

8. Acid 

Acid 8.1.1 231 100 5 0 300 

acid (rough) 8.1.2 231 100 5 0 300 

acid with Juncus 8.1.3 231 100 5 0 300 

acid 
Nardus/Festuca/Molinia 

8.1.4 231 100 5 0 300 

9. Bracken Bracken 9.1.1 320 100 5 0 300 

10. Dwarf shrub heath 

dense (ericaceous) 10.1.1 320 100 5 0 300 

Gorse 10.1.2 320 100 5 0 300 

open 10.2.1 320 100 5 0 300 



 

 

 

 

Table 5.6 continued 
LCM2000 category LCM2000 type LCM2000 

code 
PESERA-PEAT 
code 

cov  
(%) 

rough0 
(mm) 

rough_red 
(%) 

rootdepth 
(mm) 

12. Bog  bog (shrub) 12.1.1 320 100 5 0 300 

bog (grass/shrub) 12.1.2 320 100 5 0 300 

bog (grass/herb) 12.1.3 231 100 5 0 300 

bog (undifferentiated) 12.1.4 400 100 5 0 300 

13. Standing water/canals water (inland) 13.1.1 400 0 0 0 10 

15. Montane habitats Montane 15.1.1  320 100 5 0 600 

16. Inland rock Despoiled 16.1.1 330 0 5 0 10 

semi-natural 16.1.2 330 0 5 0 10 

17. Built up areas, gardens suburban/rural 
developed 

17.1.1 100 100 0 0 10 

urban 
residential/commercial 

17.2.1 100 100 0 0 10 

urban industrial 17.2.2 100 100 0 0 10 

18. Supra-littoral rock Rock 18.1.1 330 0 5 0 10 

19. Supra-littoral sediment shingle (vegetated) 19.1.1 330 0 5 0 10 

Shingle 19.1.2 330 0 5 0 10 

Dune 19.1.3 330 0 5 0 10 

dune shrubs 19.1.4 330 0 5 0 10 

20. Littoral rock Rock 20.1.1 330 0 5 0 10 

rock with algae 20.1.2 330 0 5 0 10 

21. Littoral sediment Mud 21.1.1 330 0 5 0 10 

Sand 21.1.2 330 0 5 0 10 

sand with algae 21.1.3 330 0 5 0 10 

Saltmarsh 21.2.1 231 100 5 0 300 

saltmarsh (grazed) 21.2.2 231 100 5 0 300 
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Figure 5.5 Spatial distribution of land use for the Trout Beck, Stean Moor 12 

and Upper North Grain catchments. Colour scales are the same for the 

three sites. 



 

 

 

 

                  

 

Figure 5.6 100-m DEM (first row) and relief (second row) for Trout beck, Stean Moor 12 and Upper North Grain. Classification and colour 

scales for each similar variable plotted are the same between the catchments for ease of comparison. 
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c) Topography 

The topographic input for the PESERA-PEAT is relief, which is defined as the 

standard deviation of elevation for all points within a certain radius. The radius was 

set to 500 m in the study. The base DEM was downloaded from Digimap and 

resampled to 100-m spatial resolution with the bilinear resampling method. The 

relief for Trout Beck, Stean Moor 12 and Upper North Grain is shown in Figure 5.6. 

d) Soil data 

The input soil properties were the same as values shown in Table 3.5 of Chapter 3 

except for the soil erodibility. In PESERA-PEAT, the soil erodibility of blanket peat 

stands for the erodibility after weathering processes rather than erodibility of fresh 

peat. It was estimated that weathered peat had erodibility about 2-3 times higher 

than that of intact peat based on the erodibility index calculated by Mulquee, 

Rodgers et al.(2006) based on in situ peat collected from four sites, which were 

under different weathering conditions. Therefore, the input erodibility was changed 

from 1.16 to 2.5 mm for the erodible materials generated by freeze-thaw and 

desiccation. 

e) Land management condition 

The Trout Beck catchment has re-vegetated in recent years with very low grazing 

intensity (Grayson, Holden et al. 2010). Managed burning and land drainage only 

occur in very small areas (Holden, Evans et al. 2006; Holden, Chapman et al. 2012). 

So the Trout Beck catchment was considered as “no land management” during 

model implementation. In Stean Moor 12, artificial drainage density is close to zero 

(Grayson and Holden 2012). In terms of the peat status map provided by Natural 

England (Longden 2009), there is no managed burning and no overgrazing within 

Stean Moor 12. However, there is active sheep grazing practices. Hence, the 

management option for this catchment was considered as light grazing during model 

runs. In Upper North Grain, rough grazing is the dominant management practice 

(Rothwell, Robinson et al. 2005). In terms of the peat status map provided by 

Natural England (Longden 2009), there is no managed burning or artificial drainage 

in Upper North Grain. However, extensive active gullies in this catchment results in 

a particularly high sediment erosion (Evans, Warburton et al. 2006; Pawson, Evans 

et al. 2012). It was thus necessary to take into account of the impacts of gullies when 

modelling the sediment yield from the Upper North Grain. The incision of deep 
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gully systems into the peat surface causes local peatland drainages (Evans and 

Lindsay 2010), which influence both the soil moisture deficit and vegetation. So 

overgrazing and drainages caused by the gully system were considered for this 

catchment during model implementation. 

5.4 Model implementation and evaluation 

5.4.1 Model implementation 

The PESERA-PEAT model has two modes: equilibrium and time-series. The 

physical processes incorporated into them are exactly the same and described in 

section 4.5 of Chapter 4. Different manners of operation are adopted in equilibrium 

and time-series versions of PESERA-PEAT in order to predict the average and 

continuous monthly values of long-term erosion respectively. In equilibrium mode, 

the model iterates sufficient times to determine the equilibrium status of hydrology 

and erosion. A convergence threshold of 0.01 is defined to determine if the model 

reaches equilibrium status. Average monthly climate data over the study period are 

required as input values. Therefore, modelling outputs are average monthly data as 

well. In time-series mode, the model runs only once through the whole time period. 

Climatic conditions of every single month are required by the time-series model 

over the whole study period, while other input parameters are currently the same as 

those for the equilibrium model. The outputs from the time-series model are 

continuous monthly data for the whole study time. The time-series model usually 

needs a period of time (1 year in this study) to warm up, making initial conditions of 

the model parameters more realistic. 

5.4.1.1 Equilibrium modelling 

Compared to the original PESERA-GRID, there are three more input layers required 

by PESERA-PEAT to indicate the land management conditions. They are spatial 

patterns of drainage density, grazing and prescribed burning. As a result, one 

hundred and thirty one grid layers are required as input data for the equilibrium 

PESERA-PEAT model at the moment. Please see section 3.4.4.1 of Chapter 3 for 

more details of the other 128 input layers. All the input data for the chosen sites 

were obtained based on data sources and methods described in section 5.3.2.2. Land 

management condition for the three sites was parameterized with the method 

provided in section 4.4 of Chapter 4. The spatial pattern of management practices 
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was not considered. If a catchment has more than one management option, total 

vegetation cover and biomass removal is the sum of vegetation cover and biomass 

reduced by separate management practices. For the Upper North Grain, it was 

considered that the drainages caused by the gully system existed across the whole 

catchment. During model operation, they were parameterized in the same way as the 

artificial drainage.  

5.4.1.2 Time-series modelling 

The time-series model operated with data from the Stean Moor 12 catchment 

between 2010 and 2011 at one grid cell. The time-series of monthly climatic inputs 

between 2010 and 2011 were derived from the data source shown in Table 5.4. Land 

use code was set to “334”, and related parameters were set in terms of Table 5.6. 

The input topographic relief (8.5 m) was the average value for Stean Moor 12. The 

soil erodibility was set to 2.5 mm, which was the same as for the equilibrium model. 

The other soil parameters were the same as those in Table 3.5 of Chapter 3. 

Management option was set to light grazing, which was parameterized with the 

method in section 4.4.2 of Chapter 4. 

5.4.1.3 Model calibration and validation 

PESERA-PEAT was calibrated in equilibrium mode with the downscaled measured 

data from the Trout Beck catchment between 1997 and 2009. Model calibration was 

erosion orientated and included two aspects: 1) adjusting the rate at which sediment 

erosion decreased with vegetation cover (x in Equations 4.12 and 4.16) to achieve a 

reasonable magnitude of modelled erosion; 2) changing the monthly distribution of 

base sediment supply derived from Figure 4.7 of Chapter 4 to obtain a good fit of 

measured and modelled erosion in shape. The above two steps were repeated 

manually until the calibrated modelling results were of reasonable magnitude and 

shape compared to the downscaled measured ones. The calibrated base sediment 

supply is displayed in Figure 5.7, and the calibrated x is 20. It should be noted that, 

at present, in the PESERA-PEAT x and base sediment supply only work on erosion 

prediction. This means that changes in x and base sediment supply have no influence 

on hydrology and vegetation growth, given the modelled erosion does not feedback 

to these processes. The calibrated equilibrium model was then applied to the other 

two sites. The calibrated x and base monthly sediment supply were directly used in 
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the time-series model, which was validated with the time-series of monthly sediment 

yield from Stean Moor 12 between 2010 and 2011. 

  

 

5.4.2 Evaluation of equilibrium modelling results 

In this section, the calibration and validation results based on the equilibrium model 

are presented and compared with measured and previously published data to test 

how reasonable the modelling results are. Since the calibration of PESERA-PEAT 

only impacts the erosion outputs and has no effects on hydrology and vegetation 

growth, so only modelled erosion is split into calibration and validation results in the 

following paragraphs, while all other modelling results are validation results. 

5.4.2.1 Vegetation biomass 

Figure 5.8 presents the modelled average vegetation biomass for the selected sites 

during the corresponding periods. Vegetation biomass is lower in winter and higher 

in summer. Smith and Forrest (1978) reported the vegetation biomass for a 

Calluneto-Eriophoretum blanket bog in Moor House National Nature Reserve 

(within which Trout Beck sits) under different grazing conditions. Vegetation 

biomass was demonstrated to be 0.78 ± 0.053 and 0.43 ± 0.24 kg m
-2

 in August 

when grazing density was 0.02 and 0.04 sheep ha
-1

 respectively. In terms of Figure 

5.8, the modelled vegetation biomass in August is 1.09, 0.47, and 0.34 kg m
-2

 in 

Trout Beck, Stean Moor 12 and Upper North Grain. They are close to Smith and 

Figure 5.7 The distribution of calibrated base sediment supply for each month 
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Forrest’s results, demonstrating the reliability of the vegetation growth model. The 

predicted vegetation biomass in the Trout Beck catchment is much higher than in the 

Stean Moor 12 and Upper North Grain possibly because the Trout Beck catchment 

is well vegetated while the other two catchments have relatively more intensive 

management practices. 

 

 

Figure 5.8 Monthly average vegetation biomass for Trout Beck between 1997 and 

2009 (TB_97-09), Stean Moor 12 between 2010 and 2011 (SM12_10-11) and 

Upper North Grain between 2005 and 2007 (UNG_05-07). 

 

5.4.2.2 Evapotranspiration 

Evapotranspiration rates, which are ratios between actual and potential 

evapotransporation, for Trout Beck, Stean Moor 12and Upper North Grain during 

the corresponding periods are 30.8 %, 30.1 % and 29.6 % respectively. Wallace, 

Roberts et al. (1982) reported the evapotranspiration rates from heather moorland in 

North Yorkshire, suggesting that evapotranspiration rates could be as low as 25 – 50 

% of potential evapotranspiration. This supports the feasibility of the modelled 

evapotranspiration rates. Mean annual evapotranspiration values for the Trout Beck, 

Stean Moor 12and Upper North Grain are predicted to be 217, 242 and 259 mm 

respectively for the chosen periods, with monthly evapotranspiration higher in 

summer months and lower in winter months (Table 5.7). 
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Table 5.7 Monthly distribution of evapotranspiration (% of annual total) and 

average annual total evapotranspiration (mm) for Trout Beck between 1997 

and 2009 (TB_97-09), Stean Moor12 between 2010 and 2011 (SM12_10-11) 

and Upper North Grain between 2005 and 2007 (UNG_05-07). 

Month TB_97-09 SM12_10-11 UNG_05-07 

1 1.6 2.5 0.9 

2 1.9 3.6 4.1 

3 6.1 5.0 4.8 

4 8.9 8.8 8.4 

5 14.4 12.5 11.3 

6 15.0 14.9 15.6 

7 15.8 16.4 15.6 

8 14.3 14.1 13.9 

9 10.5 9.7 9.9 

10 7.0 6.5 8.0 

11 3.2 3.5 3.9 

12 1.3 2.3 3.7 

Annual total 217 242 259 

 

5.4.2.3 Soil moisture deficit 

In PESERA-PEAT, sediment supply is determined by the contemporary temperature 

and water table. Temperature can be directly obtained from measured data. Water 

table is calculated from the soil moisture deficit predicted by the model as discussed 

in section 4.5.2.1 of Chapter 4. It was thus necessary to confirm the accuracy of the 

soil moisture deficit against the field data on water tables. Figure 5.9 depicts the 

field water table and predicted soil moisture deficit for the Trout Beck catchment. 

The shape of modelled soil moisture deficit is quite similar to that of measured 

water-table depth with R
2
 of correlation between soil moisture deficit and water 

table being 0.9, demonstrating that PESERA-PEAT is capable of predicting water 

table in blanket peatlands. In addition, the relationship shown in Figure 5.9b was 

adopted to predict water table in other blanket peatlands based on soil moisture 

deficit predicted by the model mainly due to Stean Moor 12 and Upper North Grain 

having not measured water table available. The predicted water table for the Trout 

Beck, Stean Moor 12 and Upper North Grain in the chosen periods is shown in 

Figure 5.10. The predicted annual average water table for TB_97-09, SM12_10-11 

and UNG_05-07 are -3.97, -5.13 and -10.53 cm respectively. 
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Figure 5.10 The predicted water table for the Trout Beck between 1997 and 2009 

(TB_97-09), Stean Moor 12 between 2010 and 2011 (SM12_10-11) and Upper 

North Grain between 2005 and 2007 (UNG_05-07). 

5.4.2.4 Runoff production 

Both the modelled overland flow and subsurface flow were tested against data 

available from gauging stations and previous publications. Since the time-series of 

water discharge was only available for Trout Beck and Stean Moor 12, the monthly 

distribution of the runoff outputs was tested for these two catchments. Subsurface 

flow was tested against previously published data from the Trout Beck catchment. 
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Figure 5.9 a) The comparison between measured water table and modelled soil 

moisture deficit and for the Trout Beck catchment between 1997 and 2009; 

b) The relationship between measured water table and modelled soil 

moisture deficit for Trout Beck catchment between 1997 and 2009. 



- Chapter 5 - 

134 

 

Table 5.8 The comparison of downscaled measured and modelled runoff ratios, and 

contribution of subsurface flow to total runoff for the Trout Beck between 

1997 and 2009 (TB_97-09), Stean Moor 12 between 2010 and 2011 

(SM12_10-11) and Upper North Grain between 2005 and 2007 (UNG_05-07). 

Dif and Nash-Sutcliffe coefficient were calculated with Equation 5.1 based on 

downscaled measured and mean modelled runoff; Sub/Total means the 

percentage of subsurface flow in total runoff.  

Site Annual runoff ratio (%) 
Dif 

(%) 

Nash- 

Sutcliffe 
Sub / Total  

(%)  Downscaled Modelled 

TB_97-09 93.3 89.3 -4.3 0.89 9.9 

SM12_10-11 86.6 80.2 -7.4 0.76 16.1 

UNG_05-07 N/A 82.5 N/A N/A 4.3 

 

The difference between downscaled and modelled annual runoff ratios of the Trout 

Beck and Stean Moor 12 are -4.3 % and -7.4 % of the downscaled field 

measurements. This demonstrates that the model can predict the magnitude of runoff 

production from blanket peatlands reasonably, given climate data for these 

catchments are partly / fully represented by point data and the coarse spatial 

resolution (100 m) employed during model implementation. The contribution of 

subsurface flow to total annual flow predicted by the model is shown in Table 5.8. 

Previous studies have demonstrated that subsurface flow contributes about 10 % – 

14 % of total runoff in the Trout Beck catchment (Holden and Burt 2002b; Holden, 

Smart et al. 2009). Therefore, modelled subsurface flow is consistent with results 

from the Trout Beck catchment, although there are no field data of subsurface flow 

available for the other two sites. In terms of Figure 5.11 and Figure 5.12, the shapes 

of predicted monthly runoff are close to the downscaled measured monthly data with 

the R
2
 of the fitted line between measured and modelled runoff being 0.91 and 0.82 

respectively. This suggests that the model could capture the monthly change of the 

runoff in blanket peatlands well. Overall the Nash-Sutcliffe coefficient between 

downscaled measured and modelled runoff for the Trout Beck and Stean Moor 12 

are 0.89 and 0.76 respectively (Table 5.8). 
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Figure 5.11 a) The comparison between downscaled measured runoff and modelled 

runoff and subsurface flow for the Trout Beck catchment between 1997 and 

2009; b) The correlation between downscaled measured and modelled runoff 

for the Trout Beck catchment between 1997 and 2009. 

 

 

Figure 5.13 displays the spatial pattern of modelled runoff production from the three 

sites during the corresponding periods. In the Trout Beck catchment, the spatial 

distribution of runoff production is mainly controlled by vegetation as the climate 

inputs (both rainfall and temperature) were derived from point data. Runoff 

production on bare ground (PESERA-PEAT code: 330) is higher than other areas. 

This is mainly because during model running lower vegetation coverage and 

biomass on bare areas result in less rainfall lost as evapotranspiration (including 

interception). In Stean Moor 12 and Upper North Grain, the rainfall input was 

Figure 5.12 a) The comparison between downscaled measured runoff and modelled 

runoff and subsurface flow for the Stean Moor 12 catchment between 2010 and 

2011; b) The correlation between downscaled measured and modelled runoff for 

the Stean Moor 12 catchment between 2010 and 2011. 
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derived from point data while temperature inputs were spatially distributed. So, 

higher runoff is achieved in higher elevation areas of these two catchments mainly 

because lower temperature leads to less water flow being lost as evapotranspiration. 

Overall, runoff production with climate and land cover follows current 

understanding of hydrology in blanket peatlands. The impacts of the land 

management practices on the spatial pattern of runoff production were not discussed, 

given that the detailed spatial pattern of the management options within the selected 

sites were not considered. 
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Figure 5.13 Spatial pattern of average annual runoff production for the three 

sites during corresponding periods. Classification and colour scale are the 

same for the three sites. 
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5.4.2.5 Sediment flux 

The downscaled measured and modelled average annual erosion for the three 

selected sites during the chosen periods are shown in Table 5.9. The differences 

between downscaled and modelled erosion are 5.2 %, 12.3 % and -14.8 % for the 

Trout Beck, Stean Moor 12 and Upper North Grain respectively. The very low 

difference between downscaled field data and modelled results for the Trout Beck 

catchment is mainly because the model was calibrated with the downscaled 

sediment data from this catchment. On the other hand, relatively higher differences 

emerge when the model was validated in Stean Moor 12 and Upper North Grain. 

Given the rainfall for these two sites is represented by point data, and 100 m is quite 

a coarse scale for such small catchments, such differences between modelled and 

downscaled erosion are acceptable. It is therefore considered that the model can 

produce a reasonable magnitude of erosion for blanket peatlands. In terms of 

modelling results shown in Figure 5.14, the drainages (60 km km
-2

) caused by gully 

systems in the Upper North Grain (Pawson, Evans et al. 2012) leads the modelled 

erosion to be 5.12 ton ha
-1

 yr
-1

, which is around 1.4 times the modelled erosion if 

drainages are completely removed (drainage density = 0). The increased erosion is 

mainly attributed to the lower water table and more bare ground, which is caused by 

the drainages (Figure 4.10), resulting in more erodible materials being produced. 

 

Table 5.9 The comparison of downscaled measured and modelled erosion for Trout 

Beck between 1997 and 2009 (TB_97-09), Stean Moor 12 between 2010 and 

2011 (SM12_10-11) and Upper North Grain between 2005 and 2007 

(UNG_05-07). Dif and Nash-Sutcliffe coefficient were calculated with 

Equation 5.1 based on downscaled measured and mean modelled erosion. 

Sites Annual erosion (ton ha
-1

) Dif (%) Nash- 

Sutcliffe Downscaled Modelled 

TB_97-09 0.77 0.81 5.2 0.94 

SM12_10-11 1.14 1.28 12.3 0.86 

UNG_05-07 6.01 5.12 -14.8 N/A 
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Monthly measured sediment flux was only available for Trout Beck and Stean Moor 

12. Therefore, only comparison of downscaled measured and modelled monthly 

sediment flux for those catchments are evaluated and presented in Figure 5.15 and 

Figure 5.16. Good fit (R
2
 = 0.96 and 0.88) in shape demonstrates that the model is 

capable of predicting monthly sediment flux change. Relatively higher R
2 

for the 

Trout Beck catchment is because the model was calibrated with the sediment data 

from this catchment. Overall, the Nash-Sutcliffe coefficients between downscaled 

and measured monthly sediment flux are high (Table 5.9). 

 

 

 

 

 

 

 

 

a 

a 

Figure 5.14 Sensitivity of the PESERA-PEAT model to drainage density based on 

the environmental conditions of the Upper North Grain between 2005 and 

2007.  
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Figure 5.15 a) Comparison of downscaled measured and modelled erosion for the 

Trout Beck catchment between 1997 and 2009; b) Correlation between 

downscaled measured and modelled erosion for the Trout Beck catchment 

between 1997 and 2009. 

Figure 5.16 a) The comparison of downscaled measured and modelled erosion for 

the Stean Moor 12 catchment between 2010 and 2011; b) The correlation 

between downscaled measured and modelled erosion for the Stean Moor 12 

catchment between 2010 and 2011. 



 

 

 

 

 

Figure 5.17 Sediment budget (ton ha
-1

 yr
-1

) for Trout Beck between 1997 and 2009 (TB_97-09), Stean Moor 12 between 2010 and 2011 

(SM12_10-11) and Upper North Grain between 2005 and 2007 (UNG_05-07). Classification and colour scales for each similar variable 

plotted are the same between the catchments for ease of comparison. 
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Figure 5.17 shows the spatially distributed sediment budget of the chosen sites 

during the study periods predicted by the equilibrium version of PESERA-PEAT. 

Modelled average annual erosion peaks in bare areas and becomes lower at locations 

with higher vegetation cover in these catchments as vegetation cover impacts both 

sediment supply and transport in the model. In terms of Figure 5.17, average annual 

erosion in the Trout Beck catchment is fully supply-limited based on the average 

climate inputs between 1997 and 2009. Therefore the final erosion is equal to 

sediment supply, and transporting capacity is always higher than sediment supply. In 

Stean Moor 12 and Upper North Grain, average annual erosion tends to be transport 

limited in drier or gently sloping areas during the chosen study periods. Overall 

sediment supply driven by freeze-thaw and desiccation seems dominant in 

controlling the final erosion since both sediment yield and sediment supply are 

highest in UNG_05-07, medium in SM12_10-11 and lowest in TB_97-09. So the 

impacts of climate, vegetation cover and topography on final erosion could be 

reflected by the model. Land management practices have impacts on both vegetation 

cover and biomass and soil moisture condition (for drainage only) in PESERA-

PEAT, so they influence the final sediment yield through working on both the 

sediment supply and transport. However, since the spatial pattern of the land 

management practices in the study sites were not considered, their impacts on the 

spatial pattern of the erosion were not discussed. Besides, the coarse scale (100 m) 

of land-use data (Figure 5.5) may be of limited accuracy, adding inaccuracy to the 

spatial pattern of modelling results. 

 

In summary, the applicability of PESERA-PEAT in blanket peatlands was tested 

with monthly average measurements. The results suggest that PESERA-PEAT could 

reasonably reproduce runoff and erosion processes in blanket peatlands. PESERA-

PEAT theoretically considers the soil loss driven by overland flow on hillslopes 

such as rill and sheet erosion. However, the field runoff and sediment data adopted 

for development and evaluation of PESERA-PEAT were originally collected at 

catchment outlets. This means the sediment budget predicted by PESERA-PEAT is 

actually a lumped version of erosion caused by both hillslope and channel fluvial 

processes. This was a compromise during model development mainly because there 

were no enough data to support the process-based descriptions of more erosion 

processes such as river bank erosion, pipe erosion and mass movement etc. In 
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addition, wind erosion, which is a component of blanket peat erosion in some 

locations (Foulds and Warburton, 2007), is not considered in PESERA-PEAT at 

present.  

Figure 5.18 a) The comparison of measured erosion and modelled erosion from 

time-series modelling for Stean Moor 12 between 2010 and 2011; b) The 

correlation between measured erosion and modelled erosion from time-series 

modelling for the Stean Moor 12 between 2010 and 2011. 
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5.4.3 Evaluation of time-series modelling results 

As the major components of the PESERA-PEAT have been evaluated in section 

5.4.2, only the sediment flux is presented in this section against the time-series of 

measured sediment flux from the Stean Moor 12 catchment between 2010 and 2011. 

Figure 5.18 shows the time-series plot of downscaled measured sediment flux, 

which was calculated with the equation shown Figure 4.4 of Chapter 4, and 

modelled sediment flux from the Stean Moor 12 between 2010 and 2011. Overall, 

PESERA-PEAT is able to capture the changes in monthly erosion, with R
2
 and a 

Nash-Sutcliffe coefficient between modelled and downscaled measured erosion 

being 0.94 and 0.93 respectively. Average annual modelled sediment flux between 

2010 and 2011 is 1.25 ton ha
-1

, which is close to mean downscaled average annual 

measured erosion of 1.14 ton ta
-1

. 

5.4.4 Comparison of equilibrium and time-series model 

 

It is noted that the sediment yield of Stean Moor 12 between 2010 and 2011 

predicted by the time-series model (1.25 ton ha
-1

 yr
-1

) is close to the one predicted 

by the equilibrium model (1.28 ton ha
-1

 yr
-1

). However, the equilibrium model was 

operated with spatially distributed topography and land use / cover data, while in 

time-series modelling they were both represented by point data. In order to examine 

if these two versions of the model work in the same way, the equilibrium model was 

also operated at one grid cell with input parameters exactly the same as for the time-

Figure 5.19 Comparison of erosion predicted by the equilibrium and time-series 

versions of PESERA-PEAT for Stean Moor 12 at one grid cell between 2010 

and 2011: a) modelled erosion; b) correlation between equilibrium and time-

series predictions. 
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series model. The comparison of equilibrium and time-series modelled erosion at 

one grid cell is shown in Figure 5.19, in which the shape of monthly average erosion 

is very similar between equilibrium and time-series erosion prediction (R
2
 = 0.95) 

(Figure 5.19b). Average annual erosion modelled by the equilibrium and time-series 

model is 1.3 and 1.25 ton ha
-1

 respectively (Figure 5.19a). This suggests that the 

equilibrium and time-series model work in the same way. However, differences 

between these two versions of the model still exist (Figure 5.19a). This is because 

the time-series model is able to reflect erosion change with climate in more detail, 

while such detailed information is lost in the equilibrium model as all climate inputs 

are the average values over the study period. 

5.5 Summary 

In this chapter, the PESERA-PEAT model was evaluated with field data from 

several blanket peat-coved sites. Evaluation of modelling results demonstrated that 

three major modules of the model worked well in blanket peatlands with 

consideration of the scaling difference between the measured (catchment scale) and 

modelled (hillslope scale) runoff and sediment flux. Parameterization of 

management options were considered reliable in relation to the literature (Beharry-

Borg, Hubacek et al. 2009; Chapman, Termansen et al. 2009; Defra 2007). 

Modelling results thus demonstrated that the sediment supply index is a useful tool 

for indicating sediment supply from blanket peatlands, and quantitatively linking the 

sediment production with climatic and soil moisture conditions. Modelling results 

also confirmed the reliability of the drainage model and the values employed for the 

vegetation removed by grazing, although it was not possible to numerically test the 

parameterization of managed burning against field data as these were not available. 

 

PESERA-PEAT can now be applied to examine the response of blanket peat erosion 

to environmental changes at regional, national and global scales. Such applications 

will be beneficial for planning of land-use strategies in blanket peatlands. The 

structure of PESERA-PEAT means that climate scenarios based on the outputs of 

global and regional climate models can be used to drive PESERA-PEAT to 

investigate the impact of climate change on peat erosion. In addition, the impact of 

changing management scenarios (e.g. drainage density, burning frequency or 
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grazing intensity) can be investigated by using PESERA-PEAT and comparisons or 

interactions between climate change impacts and management impacts on peat 

erosion could be studied in the future using the model.  

 

Two versions of the model gave similar results under the same environmental 

conditions. The average monthly values of climate variables during the study period 

are required by the equilibrium model, while a time-series of monthly climate 

conditions over the whole time period studied is needed to drive the time-series 

model. This provides more flexibility in applying PESERA-PEAT as equilibrium 

and time-series models could serve different research purposes. The equilibrium 

model is easier to apply to assess average peat erosion over a large space and long 

time period given its relatively smaller data requirements. The time-series model is 

able to test the reaction of erosion to more detailed changes of environmental 

conditions, and therefore could capture extreme conditions during the study periods. 

However, its application over a large region is restricted by its much bigger data 

requirement. In the following chapters, these two versions of PESERA-PEAT will 

be applied to understand the reaction of fluvial blanket peat erosion under possible 

future environmental change at regional and national scales. The equilibrium model 

will be employed in Chapter 6 to examine potential blanket peat erosion change 

spatially in the North Pennines, and then the time-series model will be used in 

Chapter 7 to examine the potential changes and differences in fluvial blanket peat 

erosion across Great Britain, selecting 10 blanket peat-covered sites. 
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Chapter 6  

Prediction of fluvial blanket peat erosion in the 
North Pennines under environmental change 

6.1 Introduction 

It has been demonstrated in Chapter 5 that PESERA-PEAT is suited to fluvial 

blanket peat erosion modelling. The major aim of this chapter is to explore water 

erosion of blanket peatlands in the North Pennines, UK subject to scenarios of 

climate change and possible land management shifts using the equilibrium version 

of PESERA-PEAT. Spatially distributed climate and land management scenarios 

were set up to represent different combinations of possible future environmental 

change. Modelling results from these scenarios were used to examine the impact of 

climate change, land management variations and their interactions. 

The structure of this chapter is as follows: Section 6.2 is an introduction to the 

blanket peatlands in the North Pennines. Data sources of climate scenarios, land 

management, and other input data for the equilibrium version of PESERA-PEAT are 

presented in section 6.3.Combinations of climate and land management scenarios 

are selected in section 6.4 based on an analysis of future climate change and adopted 

land management practices. In section 6.5the chosen scenarios are used as input for 

the model to predict changes in fluvial blanket peat erosion while section 6.6 

discusses key findings. 
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6.2 Study site 

 

Figure 6.1 Blanket peatlands in the North Pennines, and their location. 

 

The North Pennines (Figure 6.1) is the northernmost section of the Pennine range of 

hills which runs north-south through northern England. The North Pennines was 

designated as an Area of Outstanding Natural Beauty (AONB) in 1988 and currently 

is the second largest of the 49 AONBs in the UK, covering an area of approximately 

2000 km
2
. It lies between the National Parks of the Lake District, the Yorkshire 

Dales and Northumberland with the urban centres in County Durham away to the 

east. Twenty seven percent of England’s blanket peatlands are distributed over the 

North Pennines. The classification of blanket peatlands is not the same in different 

countries (Charman 2002), nor between different institutes in the UK. In this study, 

the extent of blanket peatlands in the North Pennines was determined by peat depth 

(provided by Natural England) and the organic content of various types of peat 

(provided by the Land Information System) (Table 6.1). Accordingly, blanket 

peatlands had peat with depths of > 40 cm and an organic content of > 45 % in 

(Table 6.1), covering about 43 % of the whole of the North Pennines (Figure 6.1). 
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There are no fens in the North Pennines according to the Natural England base 

maps. Bower (1961) suggested that peat erosion at that time in the English Pennines 

was common and extensive at higher altitudes where it was common on flat ground 

as well as on slopes. More recent investigation suggested that around 20 % of 

blanket peatlands in the North Pennines were in an eroding state (Longden 2009). 

 

Table 6.1 Peat depth and organic content of various peat types defined by Natural 

England and Land Information System. 

Peat types Natural England Land Information System 

Blanket bog Peat depth > 40 cm Organic content > 45 % 

Raised bog Peat depth > 40 cm Organic content < 45 % 

Rich fens / reedbeds Peat depth > 40 cm N/A 

Wet heath 10 cm < Peat depth < 40 cm Organic content < 45 % 

Dry heath 10 cm < Peat depth < 40 cm Organic content < 45 % 

6.3 Data sources, processing and climate downscaling 

6.3.1 Climate 

Four time periods of climate data were chosen to account for climate shifts in the 

North Pennines in the future. They are “Baseline”, “2020s”, “2050s” and “2080s”, 

coving 30-year periods of 1961-1990, 2010-2039, 2040-2069 and 2070-2099 

respectively. Baseline climate data were derived from Met Office measured data and 

the other three periods were interpolated from UKCP09 climate projections. 

6.3.1.1 Baseline climate  

The stations chosen to produce the baseline climate of the North Pennines are shown 

in Figure 6.2. PESERA-PEAT requires six climate inputs which are: monthly total 

rainfall (meanrf130); mean rainfall per rainfall day (meanrf2); coefficient of 

variation of rainfall per rainfall day (cvrf2); monthly temperature range (mtrange); 

monthly temperature (mtmean); and monthly potential evapotranspiration 

(meanpet30). Rainfall related variables are monthly statistical results of daily 

meteorological data from 32 MIDAS stations. Twenty seven of them were selected 

for interpolation to create continuous surfaces for input parameters. The other five 

points were used for validation of the interpolated results. Monthly temperature and 
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monthly temperature range were obtained from 8 MIDAS stations within and around 

the North Pennines area. Since temperature data are only available for eight stations, 

it may be unreasonable to separate the dataset into training and validation subsets. 

So all eight stations were used for interpolation and interpolated results were 

evaluated with four of the stations within / close to the North Pennines. 

 

The methods employed for MIDAS baseline climate interpolation are presented in 

Table 6.2. Stepwise regression based on climatic variables, elevation, and 

coordinates (easting and northing) was the main method adopted. The resulting 

equations for January are shown in Table 6.2. The coefficient of variation of rainfall 

per rain day (cvrf2) was interpolated with the Inverse Distance Weighted (IDW) 

model rather than a regression model because no good relationship could be found 

between cvrf2, elevation and coordinates during winter months in both baseline and 

future periods. Potential evapotranspiration (PET) was derived from a modified 

temperature-based model shown in Equation 5.3 of Chapter 5. The validation of 

interpolated results for different variables is shown in Table 6.3.  

Figure 6.2 MIDAS stations for interpolation of baseline climate for the North 

Pennines 



- Chapter 6 - 

151 

 

Table 6.2 Methods for baseline climate interpolation, taking January as an example. 

January Method R
2
 n 

meanrf130 (mm)  meanrf130 = 286 + 0.210 H- 0.000576 E 0.70 27 

meanrf2 (mm) meanrf2 = 24.1 + 0.00693 H - 0.000026 E - 0.000019 N 0.75 27 

cvrf2 (unitless) IDW - 27 

mtmean (℃) mtmean = 3.78 - 0.00635 H 0.88 8 

mtrange (℃) mtrange = - 6.79 - 0.00315 H + 0.000034 E 0.87 8 

meanpet30 (mm) Equation 5.3 of Chapter 5 - - 

H, E and N represent elevation, easting and northing respectively; n means number of observations, 

this is the same as in Table 6.3. 

Table 6.3 Validation of baseline climate variable interpolation 

Variables RMSE RMSE / average R
2
 n 

meanrf130 (mm) 17.59 0.18 0.83 5 

meanrf2 (mm) 0.76 0.15 0.78 5 

cvrf2 (unitless) 0.13 0.10 0.46 5 

mtmean (℃) 0.27 0.05 0.98 4 

mtrange (℃) 0.54 0.09 0.92 4 

meanpet30 (mm) 8.30 0.15 0.95 1 

6.3.1.2 Future climate scenarios 

Future climate change was derived from the United Kingdom Climate Projection 

2009 (UKCP09) which developed probabilistic climate change projections resulting 

from an innovative modelling approach from the Met Office Hadley Centre’s 

climate model HadCM3 (UKCP09 2009). UKCP09 projections are based on Met 

office meteorological data between 1961 and 1990. They predict future UK climate 

based on different carbon emission scenarios from the IPCC Special Report of 

Emission Scenarios (SRES). Future climate projections consider different emission 

probabilities as a fundamental factor. In UKCP09 three of the SRES scenarios were 

involved, which are high emission (A1F1), medium emission (A1B) and low 

emission (B1) so that climate change can be predicted with consideration of impacts 

of anthropogenic greenhouse gas emission. The medium emission scenario was 

selected as the context of climate change in this study.  
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The UKCP09 weather generator can produce daily climate projections over the 21
st
 

century with a spatial resolution of 5 km which is suitable for the establishment of 

climate scenarios for PESERA-PEAT. One hundred model realisations from 

UKCP09 were extracted randomly to obtain future climatic conditions. PESERA-

PEAT-related climate variables could be calculated based on UKCP09 outputs. 

There are 100 possibilities for each variable. In this chapter, climatic variables take 

values of central estimates (50 % probability level) from UKCP09 for each month. 

This is because such scenario establishment is: 1) capable of capturing the likely 

change of each variable with time at a monthly scale; and 2) suitable for 

extrapolation across surfaces. 

 

 

In order to build up future climate for the whole of the North Pennines twelve points 

across the North Pennines were selected to create continuous surfaces with central 

estimates of variables derived from UKCP09 projections (Figure 6.3). Interpolation 

methods were the same as those for the MIDAS baseline climate data. However, 

Figure 6.3 The selected climate projection points for interpolation of future 

climate for the North Pennines. The squares with light blue outlines 

indicate the selected points. 
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future climate projections from UKCP09 are based on the Met Office’s historical 

gridded datasets which are different from the MIDAS climate data in the same 

period. Thus the UKCP09 climate projections needed to be transferred to be based 

on the MIDAS data. Furthermore, the resolution of the UKCP09 data is at 5 km 

which is too coarse to show the spatial distribution of climate and erosion across the 

North Pennine landscape. Hence the UKCP09 data should be downscaled from 5 km 

to a finer resolution. A 100-m spatial resolution is considered reasonable. Rainfall-

relevant variables and temperature range were downscaled assuming that the ratio of 

each 100-m square to 5-km square remains stable from baseline to the future. 

Regression equations resulting from MIDAS baseline data were applied to produce 

surfaces with resolutions of 100 m and 5 km respectively (except cvrf2 which was 

interpolated by IDW). The resulting surfaces were then employed to identify the 

ratios for each square in blanket peatlands of the North Pennines. Temperature was 

downscaled with the assumption that temperature decreases by 6.5 °C when 

elevation increases by 1 km.  

 

MIDASUKCP5000 =  MIDASBASELINE5000 +  (UKCP5000 − METBASELINE5000)       Equation 6.1 

 

MIDASUKCP100 = MIDASUKCP5000 (
MIDASBASELINE100

MIDASBASELINE5000

) 

=  MIDASBASELINE100 {Resample [(
MIDASUKCP5000

MIDASBASELINE5000
)] , 100, BILINEAR}     Equation 6.2 

 

MIDASUKCP100 = 

{Resample [(MIDASUKCP5000 +  0.0065 NPDEM5000), 100, BILINEAR]}–  0.0065 DEM100     

Equation 6.3 

 

In Equation 6.1 to Equation 6.3, MIDASBASELINE5000 / MIDASBASELINE100 is the 

5-km / 100-mcontinuous surface of climate variables at the baseline period based on 

measurements from MIDAS stations; UKCP5000 is the 5-km continuous surface of 

future climate variables derived from median estimates of UKCP09 projections; 

METBASELINE5000 is the 5-km surface of baseline climate of UKCP09 provided by 
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the Met Office; MIDASUKCP5000 / MIDASUKCP100 is the 5-km / 100-m continuous 

surface of future climate based on baseline climate derived from MIDAS stations; 

DEM100 is the digital elevation model with spatial resolution of 100 m for blanket 

peat-covered areas of the North  Pennines. 

 

Equation 6.1 was employed to enable UKCP09 projections to be based on climatic 

data from MIDAS stations in the baseline period. Equations 6.2 and 6.3 were 

adopted to downscale the spatial resolution of climatic variables from 5 km to 100 

m. The coefficient of variation of rainfall per rain day (cvrf2), rainfall per rain day 

(meanrf2) and potential evapotranspiration (meanpet30) are not available in the Met 

Office UKCP09 baseline dataset. It was therefore impossible to transfer these three 

variables directly with Met Office baseline values based on Equation 6.1, and as a 

result downscaling could not be done for them. Alternative methods were employed 

to achieve UKCP09 baseline cvrf2 and meanrf2. For baseline cvrf2, the average 

value derived from 100 UKCP09 model realisations on the selected 12 points was 

taken. Then these values were interpolated into a continuous surface with Inverse 

Distance Weight interpolation (IDW). Baseline meanrf2 was calculated as Met 

Office gridded monthly rainfall divided by rainy days per month. Rainy days per 

month was the average of values derived from 100 UKCP09 model realizations, and 

interpolated into surface based on its relationship with elevation and coordinates 

(easting and northing). In addition, the 100-m monthly potential evapotranspiration 

was directly calculated using the downscaled temperature surface (100 m), wind 

speed and vegetation height with Equation 5.3 of Chapter 5 without undergoing 

transfer and downscaling processes separately. 

 

In this project, future climate conditions established in the above way are termed as 

median climate scenarios. In this chapter, median climate scenarios for the 2020s, 

2050s and 2080s were utilized to indicate climate changeover the blanket peatlands 

of the North Pennines. 

6.3.2 Land use / cover / management, topography and soil 

Land use / cover/ management, topography and soil properties are also required by 

PESERA-PEAT as input data to set up initial conditions. land use / cover parameters 

were set according to Table 5.6 of Chapter 5. Topographic information (relief) was 
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calculated from 100-m DEM, The radius adopted for relief calculation was 500 m. 

The erodibility of weathered blanket peat was set to 2.5 mm (Mulqueen, Rodgers et 

al. 2006). Please refer to section 3.5.3.2 for values of other soil parameters. Land 

use, DEM and relief are shown in Figure 6.4. Three land management practices were 

taken into consideration in this chapter. They are artificial drainage, grazing and 

managed burning. The distribution of ditches in the North Pennines was supplied by 

the Peatland Programme. ArcGIS 10 was employed to calculate the drainage density 

based on the distribution of ditches. The extent of grazing and managed burning was 

determined based on the maps provided by the Natural England. Potential wildfire 

severity was also predicted to provide supplementary information on assessing the 

impact of climate change and land management on the blanket peat system.  
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Figure 6.4 Land use, DEM and relief of blanket peatlands in the North Pennines. 
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6.4 Environmental conditions in the North Pennines 

6.4.1 Climate change 

As stated in section 6.3.3.1, the PESERA-PEAT model requires six inputs to define 

climatic conditions. Rainfall and temperature are important factors impacting 

sediment production in blanket peatlands as rainfall is closely related to water table 

(then desiccation) (Evans, Burt et al. 1999; Holden and Burt 2002a) and temperature 

is an important indicator of freeze-thaw as determined from field data from the 

Trout Beck catchment in section 4.3 of Chapter 4. Rainfall also drives processes 

leading to sediment transport. It is therefore vital to know how rainfall and 

temperature shift temporally and spatially over the blanket peatlands of the North 

Pennines so that better understanding of blanket peat erosion change can be 

achieved. Changes in the other four variables are also investigated to provide 

supplementary information on climate change for blanket peatlands in the North 

Pennines, and also to support a better understanding of modelling results. 

 

 

Figure 6.5 Spatial distribution of annual rainfall and temperature of the North 

Pennines in the baseline period of 1961-1990 

 



 

 

 

 

 

Figure 6.6 Spatial distribution of changes in annual rainfall and temperature between baseline and future time periods 
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Figure 6.7 Change of rainfall and temperature in the North Pennines in selected 

time periods. a) and b) show the annual total rainfall and monthly rainfall, 

while c) and d) indicate the annual mean temperature and monthly temperature 

respectively. 

 

Figure 6.5 shows the spatial distribution of mean annual rainfall and temperature 

across the blanket peatlands of the North Pennines in the baseline period. Rainfall 

peaks in high-altitude areas and decreases to low areas while the temperature has an 

opposite trend. In terms of Figure 6.6, which displays change of mean annual 

rainfall and temperature spatially, the increase of rainfall peaks in the western and 

southeastern part of the North Pennines where annual rainfall increases by over 400 

mm from baseline to future periods. In the central part and some of the northern 

parts of the North Pennines annual rainfall decreases from baseline to future time 

periods and sometimes the decrease of mean annual rainfall could be more than 300 

mm. Change in temperature overtime shows a relatively simpler pattern. Mean 

annual temperature increases more quickly in the southern part than in the northern 

part of the North Pennines. In the 2080s most areas of the North Pennines will 

witness a warmer climate by about 3 
o
C. Predicted rainfall and temperature change 

for the whole North Pennines blanket peatlands is summarised in Figure 6.7. Both 

mean annual rainfall and temperature are increased between baseline and the future 

according to median climate scenarios (Figure 6.7a and Figure 6.7c). At the same 
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time mean annual rainfall decreases slightly between the 2020s and 2050s, and then 

increases again between the 2050s and 2080s. Figure 6.7b and Figure 6.7d show the 

mean monthly rainfall and temperature of the North Pennines during the selected 

four time periods. The mean monthly temperature increases with time. Mean 

monthly rainfall in winter months increases significantly from the baseline to future 

periods. In the summer months, mean monthly rainfall firstly increases from the 

baseline to the 2020s and then decreases in the following time periods. Summer 

rainfall in the 2050s and 2080s is lower than in the baseline period. Based on the 

analysis of temperature and rainfall, blanket peatlands in the North Pennines will 

experience warmer, wetter winters and warmer, drier summers in the future in terms 

of central estimates from UKCP09. This is consistent with the general conclusion 

UKCP09 has made about the trend of climate change over the whole of the UK. 

 

 

Figure 6.8 Change of rainfall per rain day and coefficient of variation of rainfall per 

rain day in the North Pennines in selected time Periods. a) and b) show rainfall 

per rain day at annual and monthly scales, while c) and d) indicate the 

coefficient of variation of rainfall per rain day at annual and monthly scales 

respectively. “meanrf2” and “cvrf2” represent rainfall per rain day and 

coefficient of variation of rainfall per rain day respectively. 
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According to Figure 6.8a and Figure 6.8b, rainfall per rain day (meanrf2) is higher 

in winter months and lower in summer months in all time periods. This implies that 

winters of the North Pennines tend to be stormier than summers. Rainfall per rain 

day (meanrf2) in the baseline period is systematically lower than in other time 

periods and keeps relatively constant between the 2020s and 2080s. This 

demonstrates that blanket peatlands of the North Pennines are likely to suffer from 

bigger storms in the future in terms of the median estimate from UKCP09. Figure 

6.8c and Figure 6.8d display the coefficient of variation of rainfall per rain day 

(cvrf2) at annual and monthly scales. Both the shapes of monthly distribution and 

annual mean cvrf2 are kept similar with the annual difference between future and 

baseline cvrf2 smaller than 2 %. Mathematically, cvrf2 is the standard deviation of 

meanrf2, and thus similar cvrf2 between periods demonstrates that the distribution 

of rainfall on rainy days does not change very much, although average rainfall 

intensity on rainy days is obviously increased from baseline to future. 

 

 

Figure 6.9 Change of temperature range and potential evapotranspiration in the 

North Pennines in selected time periods. a) and b) show the temperature range 

at annual and monthly scales, while c) and d) indicate potential 

evapotranspiration at annual and monthly scales respectively. “mtrange” and 

“meanpet30” are employed to represent temperature range and potential 

evapotranspiration respectively.  
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In terms of Figure 6.9a, the annual temperature range is slightly increased from the 

baseline to the 2080s. However, Figure 6.9b shows that change of temperature range 

in summer months is higher than in winter months, except for July. Annual potential 

evapotranspiration is predicted to continuously increase from the baseline to the 

2080s (Figure 6.9c) with summer months having more of a contribution on such 

increases than winter months (Figure 6.9d). Given the decreased summer rainfall 

and increased potential summer evapotranspiration in the blanket peatlands of the 

North Pennines in the future, peatlands are likely to be suffering from more serious 

desiccation. This may drive up soil erosion risk in blanket peatlands of the North 

Pennines. However, winter will become wetter and warmer in the future according 

to median climate scenarios based on UKCP09. It is thus logically reasonable to 

expect that sediment production caused by freeze-thaw will become weaker and peat 

erosion risk in winter is likely to be lower in the future. However, soil loss from 

hillslopes is not only dependent upon sediment production but also closely related to 

the transporting capacity of runoff (Julien and Simons 1985; Roering, Kirchner et al. 

1999; Aksoy and Kavvas 2005), which is also responsive to climate change. The 

interaction between sediment supply and transporting capacity of runoff increases 

the complexity of the relationship between soil loss from blanket peatlands and 

climate drivers. It is therefore crucial to investigate the blanket peat erosion driven 

by both sediment production and transport under climate change in order to achieve 

more physically realistic predictions. The PESERA-PEAT model is suitable for such 

investigations. 

6.4.2 Land management practices 

Figure 6.10 shows the situation of drainage, grazing, managed burning, and their 

combination in blanket peatlands of the North Pennines. The drainage density in the 

North Pennines is between 0 and 124 km km
-2

. In maps of grazing and managed 

burning in Figure 6.10, overgrazing and managed burning are restricted to the red 

areas, and the dark green areas are designated as blanket peatlands in the North 

Pennines under light grazing or without managed burning. A combination of 

drainage, grazing and managed burning is displayed in the map of combined land 

management of Figure 6.10, showing that there are often overlaps between different 

management options. In overlap areas each land management practice is thought to 

work on vegetation cover and biomass separately, and total vegetation cover and 
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biomass removal is the sum of vegetation cover and biomass reduced by separate 

management practices. In this chapter each land management practice is represented 

by a code: “1” is drainage, “2” is light grazing, “3” is overgrazing and “4” is 

managed burning. So each management combination could be simply expressed by 

the codes.  

Given that the aim of this chapter is to investigate the response of fluvial blanket 

peat erosion in the North Pennines to possible changes in climate and land 

management, it is necessary to build up environmental scenarios based on climate 

and management. As shown above, climate scenarios were mainly derived from 

MIDAS and UKCP09 data. With regard to management scenarios, the current land 

management situation was employed as the base condition for establishment of these 

scenarios. The baseline land management condition is termed the Business-As-Usual 

(BAU) land management scenario. Other land management scenarios were built up 

Figure 6.10 Spatial distribution of drainage, grazing, managed burning and 

their combination in blanket peatlands of the North Pennines under 

BAU condition. 
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based on BAU condition mainly through altering the intensity of management. Land 

management practices were parameterised with the method stated in section 4.4 of 

chapter 4. Specific values of parameters for BAU and other management scenarios 

are described in section 6.4.3 and shown in Table 6.4. 

6.4.3 Environmental scenarios 

Twelve environmental scenarios were set up to examine the impacts of changes in 

climate and land management practices on blanket peat erosion in the North 

Pennines. Interactions between climate change and land management variation were 

also investigated. Details of these combinations are displayed in Table 6.4. The 

“Base Condition” scenario was built on the baseline climate and BAU land 

management conditions. Modelling results from all other scenarios were compared 

with outputs based on the “Base Condition” scenario to test the response of blanket 

peatlands to corresponding shifts in climate and land management. The impact of 

climate change was investigated with a BAU land management scenario and climate 

conditions at the baseline, 2020s, 2050s and 2080s. Previous studies have already 

pointed out two major end-member directions of change in land management 

practices in British uplands. They are 1) “what if British hill farmers managed the 

land for wildlife and carbon?” and 2) “what would improving UK food security 

mean for our hills?”(Reed, Arblaster et al. 2009; Reed, Bonn et al. 2009; Reed, 

Hubacek et al. 2013). These are represented as “Carbon” and “Food” in Table 6.4. 

Reed, Hubacek et al. (2013) examined the possible influence of such land 

management change on ecosystem services in British uplands. To the author’s 

knowledge no research has been done to investigate the response of blanket peat 

erosion to these likely variations in land management. Two more land management 

scenarios were therefore established in this chapter to quantify these two scenarios. 

The first one was represented by completely removing current land management 

practices and the second scenario was quantified by burning frequency and drainage 

density in the areas where there is currently burning and drainage. The intensity of 

overgrazing is unlikely to increase any more given its high impact on vegetation 

cover and biomass, and so areas that are currently grazed were moved to 

‘overgrazed’ in this food security scenario rather than increasing the % vegetation 

cover and biomass removed by overgrazing. Both the removal of land management 

and the doubling of management intensity scenarios were applied with climate 
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conditions at baseline and future climate conditions to look at the impact of land 

management and interactions between land management practices and climate 

change. 



 

 

 

 

Table 6.4 Combinations of scenarios employed and their function in assessing the impacts of climate change, land management variation 

Category Name Climate Land management Back up 

Drainage  Grazing Managed 
 burning 

Base Base Condition Baseline Current (X) 15 %, 30 %  
(Y1, Y2) 

10 (Z) Baseline climate and current land management 
practices (Business-As-Usual land management 
scenario) 

Climate change 2020s_BAU 2020s - - -  
Investigating the impacts of climate changes, 
which are based on UKCP09. 2050s_BAU 2050s - - - 

2080s_BAU 2080s - - - 

Land 
Management 

Baseline_Carbon Baseline  0 0 0  
Investigating the impacts of land management 
practices. 

Baseline_Food Baseline 2X 2Y1, Y2 0.5Z 

 
 
 
Interactions 

2020s_Carbon 2020s 0 0 0  
 
 
Investigating the interactions between climate 
shifts and changes in land management. 

2020s_Food 2020s 2X 2Y1, Y2 0.5Z 

2050s_Carbon 2050s 0 0 0 

2050s_Food 2050s 2X 2Y1, Y2 0.5Z 

2080s_Carbon 2080s 0 0 0 

2080s_Food 2080s 2X 2Y1, Y2 0.5Z 

X, Y1, Y2, and Z represent drainage density, vegetation cover and biomass removal by light grazing and overgrazing, and rotational years of managed burning respectively; 

2X, 2Y1, 2Y2, 0.5Z indicate the intensity of related land management is doubled or halved.“0” indicates the management practice is totally removed.“-” indicates the land 

management intensity does not change. 
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6.5 Reaction of blanket peatlands to environmental change in the 

North Pennines 

6.5.1 Runoff production 

Table 6.5 Seasonal distribution (% of annual total) and mean annual runoff 

production (mm) in the North Pennines under different scenarios. 

Categories Base 

Condition 

2020s 

_BAU 

2050s 

_BAU 

2080s 

_BAU 

Baseline 

_Carbon 

Baseline 

_Food 

Spring 20.95 21.05 20.45 20.71 20.91 20.99 

Summer 15.72 13.65 11.75 11.01 15.54 15.82 

Autumn 30.38 30.20 30.52 30.51 30.45 30.35 

Winter 32.95 35.10 37.27 37.77 33.10 32.85 

Annual total 1316.6 1518.1 1499.9 1506.4 1298.7 1329.3 

Categories 2020s 

_Carbon 

2020s 

_Food 

2050s 

_Carbon 

2050s 

_Food 

2080s 

_Carbon 

2080s 

_Food 

Spring 20.99 21.06 20.34 20.46 20.67 20.71 

Summer 13.45 13.69 11.52 11.78 10.82 11.04 

Autumn 30.30 30.19 30.84 30.54 30.58 30.54 

Winter 35.25 35.06 37.29 37.22 37.93 37.71 

Annual total 1500.0 1522.8 1484.6 1505.2 1485.2 1512.2 

 

Table 6.5 shows the seasonal and annual total runoff production from the blanket 

peatlands of the North Pennines. Runoff production is generally highest in winters 

and lowest in summers. Runoff production in spring and autumn are in the middle 

with autumn flow being higher than spring flow. The distribution of annual runoff 

production from blanket peatlands of the North Pennines under different 

environmental scenarios is shown in Figure 6.13. High runoff production is mainly 

restricted to areas with high elevation and low runoff production primarily occurs in 

the central and southern parts of the North Pennines.  
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Table 6.6 Percentage (%) of blanket peat-covered areas in the North Pennines with 

different classes of runoff production under various environmental scenarios. 

Category Base 

Condition 

2020s 

_BAU 

2050s 

_BAU 

2080s 

_BAU 

Baseline 

_Carbon 

Baseline 

_Food 

<1000 5.68 3.26 3.65 3.61 7.17 5.31 

1000-1300 42.96 24.85 25.11 25.39 44.62 42.56 

1300-1600 42.40 36.52 38.71 37.14 40.18 42.94 

1600-1900 8.60 22.50 20.61 21.59 7.74 8.82 

>1900 0.36 12.87 11.91 12.27 0.30 0.37 

Category 2020s 

_Carbon 

2020s 

_Food 

2050s 

_Carbon 

2050s 

_Food 

2080s 

_Carbon 

2080s 

_Food 

<1000 4.02 3.09 4.10 3.42 4.44 3.38 

1000-1300 26.50 24.37 26.84 24.56 27.50 24.70 

1300-1600 35.89 36.71 38.14 38.98 36.34 37.55 

1600-1900 21.32 22.80 19.37 20.97 20.00 21.95 

>1900 12.27 13.02 11.56 12.06 11.71 12.41 

 

In terms of Table 6.6, change of areas of different flow condition with 

environmental change could be detected. If only climate change is considered, low 

runoff areas are apparently decreased from the baseline to future periods and high 

flow areas are significantly increased during the same time periods. For each period 

of climate condition, low flow areas increase and high flow areas decrease from 

BAU to the carbon storage management scenario and low flow areas decrease and 

high flow areas increase from BAU to food security management scenario. Under 

interaction scenarios, changes in the area distribution of runoff are close to that 

under climate change scenarios. This is also supported by Figure 6.13, where the 

spatial pattern of runoff distribution is similar for each time period even if the land 

management practices are different. The biggest difference emerges between maps 

of baseline and future time periods under all management scenarios (BAU, carbon 

storage and food security). This is to say, climate change is likely to be more 

important than land management practices in influencing the spatial distribution of 

runoff in the North Pennines given the established environmental scenarios in this 

chapter. 
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Figure 6.11 Response of seasonal runoff production to change of climate and land 

management practices. All changes are calculated as difference of runoff 

production between specific scenarios and “Base Condition” divided by runoff 

under the“Base Condition” scenario. 

 

 

Figure 6.12 Response of mean annual runoff production to change of climate and 

land management practices. All changes are calculated as difference of runoff 

production between specific scenarios and “Base Condition” divided by runoff 

under the “Base Condition” scenario. 
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Figure 6.11 and Figure 6.12 present the impact of environmental change on the 

seasonal and annual average runoff production from blanket bog of the North 

Pennines. In terms of Figure 6.11, as climate changes in the future, summer runoff 

decreases while runoff in other seasons increases, with most runoff increase 

occurring in winter. As a result, annual runoff is increased if climate change occurs 

in the future (Figure 6.12). With regard to the impact of land management, runoff 

production declines under carbon storage management and rises under food security 

management scenarios at both seasonal and annual scales. This is strongly supported 

by maps of “Baseline_Carbon” and “Baseline_Food” scenarios in Figure 6.14. Most 

areas produce less runoff under the “Baseline_Carbon” scenario and more runoff 

under the “Baseline_Food” scenario than under the “Base Condition” scenario. The 

impact of climate change on runoff production under carbon storage and food 

security management practices does not show much difference to that under the 

BAU condition. Consequently, climate change is more important than land 

management practices in influencing the amount of runoff production. This is also 

demonstrated by Figure 6.14 in which the pattern of maps shows a greater difference 

with climate change than with land management shifts. 
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Figure 6.13 Spatial distribution of mean annual runoff production in the blanket 

peatlands of the North Pennines under different environmental scenarios 

 

 



- Chapter 6 - 

172 

 

 

Figure 6.14 Spatial distribution of changes in mean annual runoff production of 

blanket peatlands of the North Pennines under different environmental 

scenarios. The spatial distribution of land management is shown in Figure 

6.10. 
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6.5.2 Erosion 

Table 6.7 Seasonal distribution (% of annual total) and mean annual sediment yield 

(ton ha
-1

) for the whole blanket peatlands of the North Pennines under different 

scenarios. 

Category Base 

Condition 

2020s 

_BAU 

2050s 

_BAU 

2080s 

_BAU 

Baseline 

_Carbon 

Baseline 

_Food 

Spring 14.36 15.23 15.43 15.57 14.36 14.35 

Summer 20.06 20.49 21.55 22.04 22.22 19.69 

Autumn 30.22 30.71 32.57 33.64 29.88 30.38 

Winter 35.36 33.57 30.44 28.75 33.53 35.57 

Annual total 2.23 2.25 2.27 2.29 0.95 3.26 

Category 2020s 

_Carbon 

2020s 

_Food 

2050s 

_Carbon 

2050s 

_Food 

2080s 

_Carbon 

2080s 

_Food 

Spring 15.24 15.18 15.24 15.34 15.32 15.48 

Summer 22.61 20.21 23.63 21.11 24.10 21.60 

Autumn 30.27 30.55 32.55 32.63 33.57 33.67 

Winter 31.88 34.05 28.58 30.92 27.01 29.26 

Annual total 0.96 3.22 1.00 3.30 1.01 3.32 

 

Seasonal and annual average soil loss from blanket peatlands over the North 

Pennines under established environmental scenarios are shown in Table 6.7.Under 

the “Base Condition” scenario, average sediment yield of the North Pennines 

blanket peatlands is highest in winter and lowest in spring with summer erosion and 

autumn erosion in the middle between spring and winter soil loss. As the climate 

progresses, the proportion of winter erosion declines while spring, summer and 

autumn, sediment yield contributes proportionally more to annual soil loss in future 

periods than in the baseline period. Autumn sediment becomes the biggest part of 

the annual soil loss in the 2050s and 2080s. Land management also alters the 

seasonal distribution of annual sediment yield. The proportion of spring and autumn 

erosion remains stable while the contribution of summer erosion declines and winter 

erosion rises with intensity of land management practices.  
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Table 6.8 Percentage (%) of blanket peat-covered area in the North Pennines 

undergoing a different level of erosion under defined environmental scenarios. 

 

As shown in Table 6.8, under the “Base Condition” scenario, about half of blanket 

peatlands in the North Pennines produce an annual sediment yield of 2-2.5 ton ha
-1

 

and areas suffering from a higher and lower level of soil loss become smaller. The 

distribution of blanket peatlands with different amounts of erosion does not show 

much difference with climate change. In contrast, land management shifts appear to 

impact the spatial pattern of erosion to a greater degree. In BAU scenarios, the 

distribution of blanket peatlands in different erosion levels tends to be normally 

distributed. Carbon storage and food security scenarios add large skewness to the 

distribution. As a result, the majority of blanket peatlands tend to have low erosion 

in carbon storage scenarios while food security scenarios could result in much more 

areas suffering from more severe erosion. The above pattern is also demonstrated by 

maps in Figure 6.18, which outlines the spatial pattern of annual sediment yield 

from blanket peatlands of the North Pennines under possible environmental change 

as defined in section 6.4.3. 

 

 

 

Category Base  

Condition 

2020s 

_BAU 

2050s 

_BAU 

2080s 

_BAU 

Baseline 

_Carbon 

Baseline 

_Food 

<1.5 6.86 5.44 5.19 5.16 98.95 4.83 

1.5-2 21.20 27.16 18.62 18.44 0.02 1.13 

2-2.5 48.88 50.80 50.74 48.06 0.04 2.03 

2.5-3 16.36 10.03 18.62 21.45 0.01 18.36 

>3 6.70 6.56 6.83 6.89 0.98 73.64 

Category 2020s 

_Carbon 

2020s 

_Food 

2050s 

_Carbon 

2050s 

_Food 

2080s 

_Carbon 

2080s 

_Food 

<1.5 98.95 4.60 98.95 4.57 98.94 4.57 

1.5-2 0.01 0.43 0.01 0.31 0.03 0.29 

2-2.5 0.05 1.01 0.04 0.83 0.04 0.78 

2.5-3 0.01 26.60 0.01 18.77 0.02 18.94 

>3 0.98 67.35 0.98 75.52 0.98 75.42 
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As shown in Figure 6.10, land management practices are spatially distributed and 

not uniform in blanket peatlands of the North Pennines. This results in the change of 

land management intensity and then its impacts on erosion being spatially variable 

given the method for scenario establishment shown in Table 6.4. Eight land 

management combinations have been identified in Figure 6.10. The pattern of 

changes in the land management intensity between different management scenarios 

is the same in areas covered by a management combination, so the spatial pattern of 

land management change and its impact on erosion could be explored based on these 

eight land management combinations. Figure 6.15 shows the annual sediment yield 

for each management combination under defined environmental changes. Under 

BAU condition annual erosion shows an apparent difference with management 

pattern, with the annual erosion being much higher in areas with overgrazing than in 

regions without overgrazing. In contrast, the change of annual erosion with 

management under carbon storage and food security scenarios is considerably small. 

Under carbon storage scenarios annual erosion is systematically lower than under 

BAU and food security scenarios. Given there are no active management practices 

under carbon storage scenarios, the difference of annual erosion among regions 

defined by management pattern under BAU condition are mainly driven by climatic 

variance. Under food security scenarios annual erosion is highest among the three 

management scenarios, and variation in annual erosion between different areas 

defined by management codes of the BAU condition is also smaller than that under 

BAU scenarios. This is because there is no light grazing under food security 

scenarios; all light grazing-covered areas are changed to be overgrazed, and a double 

intensity of managed burning and drainage lead to the impact of management being 

much higher than in the BAU condition, but the variance of management intensity 

among areas becomes smaller. The results confirm that the spatial pattern of erosion 

is closely related to the distribution of land management practices rather than 

climate conditions in blanket peatlands of the North Pennines.  
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Figure 6.15 Mean annual sediment yield for regions defined by management code 

under established environmental scenarios. “1” is drainage; “2” is light 

grazing; “3” is overgrazing and “4” is managed burning. 
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Figure 6.16 Response of seasonal sediment yield to change of climate and land 

management practices. All changes are calculated as the difference of 

sediment yield between the specific scenarios and “Base Condition” divided 

by sediment yield under the “Base Condition” scenario. 

 

 

Figure 6.17 Response of mean annual sediment yield to change of climate and land 

management practices. All changes are calculated as the difference of 

sediment yield between the specific scenarios and “Base Condition” divided 

by sediment yield under the “Base Condition” scenario. 
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Figure 6.16 and Figure 6.17 present the impact of various environmental changes on 

seasonal and annual sediment yield for the North Pennines blanket peatlands as a 

whole. As climate changes in the future, sediment yield decreases in winter while it 

increases in other seasons (Figure 6.16). As a result, annual sediment yield slightly 

increase from the baseline to future time periods (Figure 6.17). Under BAU 

scenarios, more and more blanket peatlands in the North Pennines appear to be 

under more severe erosion conditions with climate change from baseline to future 

(Figure 6.19). The biggest increase of annual sediment yield occurs in the southern 

part and northeastern part of the North Pennines. However, negative change of 

blanket peat erosion often occurs in high elevation regions. The areas with negative 

change retreat to higher areas from the 2020s to 2080s. With regard to land 

management change, sediment yield declines under carbon storage management 

scenarios and rises under food security management scenarios at both seasonal and 

annual scales compared to BAU management scenarios. Figure 6.19 also shows that 

in the majority of the North Pennines the change of annual sediment yield from the 

“Base Condition” scenario tends to be negative when land is managed for carbon 

storage and positive when lands is managed for food security although climate 

change is also a factor. Land management change may play a more important role in 

controlling the magnitude of blanket peat erosion rather than climate change in the 

future given the environmental scenarios defined in this chapter.  
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Figure 6.18 Spatial distribution of mean annual blanket peat erosion in the North 

Pennines under different environmental scenarios 
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Figure 6.19 The spatial distribution of changes in mean annual blanket peat erosion 

in the North Pennines under different environmental scenarios. The spatial 

distribution of land management is shown in Figure 6.10. 
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6.5.3 Potential wildfire severity 

Table 6.9 Mean potential wildfire severity for blanket peatlands in the North 

Pennines under different environmental scenarios. PFS represents unitless 

potential wildfire severity. 

Category Base  

Condition 

2020s 

_BAU 

2050s 

_BAU 

2080s 

_BAU 

Baseline 

_Carbon 

Baseline 

_Food 

PFS 0.42 0.44 0.45 0.47 1.05 0.31 

Category 2020s 

_Carbon 

2020s 

_Food 

2050s 

_Carbon 

2050s 

_Food 

2080s 

_Carbon 

2080s 

_Food 

PFS 1.09 0.32 1.14 0.33 1.17 0.35 

 

Table 6.10 Percentage (%) of blanket peat-covered areas in the North Pennines with 

different levels of mean potential wildfire severity under established 

environmental scenarios; zero in the table indicates percentage of area is less 

than 0.005 %. 

Category Base  

Condition 

2020s 

_BAU 

2050s 

_BAU 

2080s 

_BAU 

Baseline 

_Carbon 

Baseline 

_Food 

<0.3 47.84 26.70 17.40 11.49 0.98 95.44 

0.3-0.5 47.60 68.74 78.03 83.93 0 0 

>0.5 4.56 4.56 4.56 4.58 99.02 4.56 

Category 2020s 

_Carbon 

2020s 

_Food 

2050s 

_Carbon 

2050s 

_Food 

2080s 

_Carbon 

2080s 

_Food 

<0.3 0.98 95.44 0.98 95.44 0.98 95.44 

0.3-0.5 0 0 0 0 0 0 

>0.5 99.02 4.56 99.02 4.56 99.02 4.56 
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Figure 6.20 Response of mean potential wildfire severity to change of climate and 

land management practices. All changes are calculated as difference of 

potential wildfire severity between a specific scenarios and “Base Condition” 

divided by potential wildfire severity under the “Base Condition” scenario. 

Potential FS represents unitless potential wildfire severity. 
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year (Oct - Mar). Maps in Figure 6.21 display the spatial distribution of potential 
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always peaks in areas with least intensity of land management practices. This is 

mainly because vegetation biomass could build up into a maximum in these areas, 

and so provides more fuel load to fire. The average values of the potential wildfire 

severity across the North Pennines blanket peatlands are shown in Table 6.9, and the 

change of potential wildfire severity from the “Base Condition” is illustrated in 

Figure 6.20. As climate changes, potential wildfire severity increases from baseline 

to future time periods. Potential wildfire severity increases by about 180 % when 

lands are managed for carbon storage, and decreases by about 26 % when lands are 

managed for food security. Variations of potential wildfire severity under interaction 
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the North Pennines. This is also demonstrated by Table 6.10 and Figure 6.22, where 

the spatial distribution of potential wildfire severity is more severely altered by land 

management change than established climate variance. 

 

 

Figure 6.21 Spatial distribution of the mean potential wildfire severity (highest in 

any month of the summer half year) in blanket peatlands of the North Pennines 

under different environmental scenarios 



- Chapter 6 - 

184 

 

 

Figure 6.22 Spatial distribution of changes in mean potential wildfire severity 

(highest in any month of the summer half year) in blanket peatlands of the 

North Pennines under different environmental scenarios. 
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6.6 Summary and discussion 

The equilibrium version of PESERA-PEAT was applied to blanket peatlands in the 

North Pennines, UK to consider how erosion may change in this area under possible 

future environmental change. Median climate scenarios were developed to account 

for possible climate change in this region. Drainage, grazing and burning were 

incorporated to reproduce possible future land management change (Reed, Hubacek 

et al. 2013). Twelve environmental scenarios were then set up to represent different 

combinations of possible variations in climate and land management practices. 

Runoff production and sediment yield under the 12 scenarios were reported. In 

addition, potential wildfire severity was also calculated to evaluate the possible 

influence of wild fire on the blanket peat ecosystem. 

6.6.1 The impacts of climate change 

Based on central estimates (50 % probability level) of UKCP09, the North Pennines 

will experience a warmer, wetter winter and a warmer, drier summer in the future. 

This is the same direction as the climate change for the whole of the UK predicted 

by UKCIP02 and UKCP09, although the magnitude of climate change varies for 

different regions of the UK (Hulme, Lu et al. 2002; UKCP09 2009). Annual rainfall 

and temperature for the North Pennines will increase from baseline to the 2080s.  

 

At an annual scale, such climate change will accelerate runoff production and soil 

loss from blanket peat covered hillslopes in the North Pennines. Modelling results 

suggest that climate change has more impact on the magnitude and spatial pattern of 

runoff production rather than soil loss in blanket peatlands (Table 6.6, Figure 6.11 

and Figure 6.12). In addition, increased annual sediment output confirms the 

inferences from previous bioclimatic envelope analyses on blanket peatlands (Clark, 

Gallego-Sala et al. 2010; Gallego-Sala, Clark et al. 2010; Gallego-Sala and Prentice 

2012), which demonstrated shrinkage of suitable environments for blanket peatlands 

at both a UK and global scale and which had suggested that progressive peat erosion 

and vegetation cover change would be a direct consequence of climate change in the 

future. At a seasonal scale, sediment flux peaks in winter and bottoms in spring 

during the baseline period. In the future to the 2080s, increased evapotranspiration 

and lower rainfall aggravate desiccation in summer months. Therefore more erodible 

material is generated to be washed away by flow in the summer and autumn. Francis 
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(1990) also noted the significance of the summer desiccation as the source of the 

sediment erosion in Upper Severn catchment, mid Wales during two drought years 

in the 1980s.Increased temperature and more rainfall in winter months weaken the 

impact of freeze-thaw in peat, so sediment yields in winter will probably decline 

despite stormier weather providing a higher transporting capacity. As a result, the 

sediment flux peaks during autumn in the 2050s and 2080s.  

 

As climate changes, the areas with negative change of blanket peat erosion were 

predicted to retreat towards higher areas under the BAU condition. This may be 

because in higher elevation areas there is usually more rainfall and lower 

temperature, which is the key condition for maintenance of blanket peatlands 

(Charman 2002).  

6.6.2 Interactions between climate change and land management shifts 

If rewilding (carbon storage scenario) takes place then the modelling for the North 

Pennines suggests that both river flow and sediment yield will decrease. On the 

other hand, if lands are managed for food security, both runoff production and soil 

erosion increase. However, the magnitude of erosion change is of a greater extent 

than for runoff change with land management shifts. Take the “2080s_Cabon” and 

“Base Condition” scenarios as an example: sediment yield under “2080s_Carbon” is 

less than half of soil loss from the “Base Condition”. In contrast, runoff production 

under the “2080s_Carbon” scenario is 13 % higher than under the “Base Condition” 

scenario, and only slightly smaller than the “2080s_BAU” scenario. This 

demonstrates that different land management intensities are capable of influencing 

blanket peat erosion significantly without impacting the water supply function of 

blanket peatlands. This is important as 70 % of UK’s drinking water is collected 

from upland areas, where blanket peatlands are widely distributed (Evans, 

Warburton et al. 2006; Reed, Bonn et al. 2009). The distribution of blanket peat 

erosion is also closely related to the spatial pattern of land management practices 

rather than climate change (Table 6.8 and Figure 6.15). It is thus concluded that land 

management practices are able to serve as a tool to mitigate peat erosion under 

future under climate change. 
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Potential wildfire severity responds to shifts in land management in an opposite way 

to runoff and erosion. Esteves, Kirkby et al. (2012) suggested that frequent managed 

burning was likely to reduce soil erosion relative to infrequent wildfires, although 

both types of fire could result in more soil loss when they studied a post-fire period 

in two semi-arid catchments in central Portugal. Wildfire adds uncertainty to 

changes in blanket peat erosion under environmental scenarios (McMorrow 2011). 

Further work is thus required to understand the interactions between management 

interventions (or the lack of them) and wildfire in upland blanket peatlands. This is 

particularly the case when trying to understand possible future erosion rates. 

6.6.3 Limitations of the work 

Climate change derived from median climate scenarios was found to play a less 

important role in influencing the magnitude and spatial pattern of fluvial blanket 

peat erosion than land management shifts between carbon storage, BAU and food 

security in the North Pennines. However, the magnitude of climate change is not the 

same in different regions of the UK (UKCP09 2009), nor is the current climate 

condition the same across all UK blanket peatlands. Hence the response of blanket 

peat erosion to climate change may vary across the UK. In addition, climate 

scenarios in this chapter were established based on central estimates of UKCP09 

projections which inevitably reduce the variability of climate variables and only 

cover one possibility of future climate conditions. This is to say, the above 

conclusion may be challenged at a national scale and when other possibilities of 

future climate scenarios are employed. It is thus necessary to examine the response 

of blanket peat erosion to climate change and land management shifts at a national 

scale, and also climate change derived from other possible future climate conditions 

also needs to be assessed. These issues form the focus of work in Chapter 7.  

 

The drainage networks caused by gully systems were not considered in the way as 

applied in Chapter 5. This is because 1) the method used for incorporation of gully 

system in Chapter 5 was actually a compromise given the actual spatial distribution 

of gullies, gully width and depth were not achieved; 2) the parameters (i.e. drainage 

density, drain depth and width) required by the drainage model for gullies are 

difficult to achieve. They were traditionally measured manually using field survey or 
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aerial photographs. These two methods are both time-consuming, labour intensive, 

and potential subjective. Evans and Lindsay (2010) proposed a novel approach to 

the automated detection of gullies from high resolution topographic data (LiDAR: 2 

m resolution), providing a useful tool of parameterizing gullies. However, the DEM 

data available in the project was originally at 10-m resolution, which appeared too 

coarse for gully mapping. Nevertheless, if the gully-caused drainages were 

incorporated, the lowering of water table due to drainages enhances the sediment 

production, and decreases the runoff production and thus transporting capacity of 

water flow. Such two aspects of effects add uncertainties to the modelling results in 

this chapter, although more bare ground resulting from the gullies facilitates the 

development of erosion. The accurate incorporation of gullies is therefore desirable 

in the future model applications. 
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Chapter 7  

Prediction of fluvial blanket peat erosion across 

Great Britain under environmental change 

7.1 Introduction 

In Chapter 6, the response of fluvial erosion in blanket peatlands of the North 

Pennines to possible changes in climate and land management practices has been 

examined with the equilibrium version of PESERA-PEAT. The work in Chapter 6 

has two main weaknesses: 1) only one possibility of climate change derived from a 

median climate scenario was considered, and this may be not sufficient to indicate 

climate change in the future given future climate conditions have uncertainties 

(UKCP09 2009); 2) only one region of blanket peat was investigated. The 

magnitude of climate change is spatially variable (UKCP09 2009), meaning that 

blanket peat erosion response to climate change may vary in different regions. The 

major aims of this chapter are:  

 

1) to investigate how fluvial blanket peat erosion reacts to different possibilities of 

future climate change, land management shifts, and their interactions;  

2) to examine the reaction of fluvial blanket peat erosion to possible environmental 

changes at a national scale, taking Great Britain (GB) as a case study. 

 

The time-series version of PESERA-PEAT was employed in this chapter. Compared 

to the equilibrium version of PESERA-PEAT, the time-series model is able to 

provide continuous monthly predictions rather than the monthly average values 

produced by the equilibrium PESERA-PEAT.  Thus the time-series version can be 

used to investigate blanket peat erosion change over time in more detail. Time-series 

of monthly sediment outputs are good for exploring possible extreme erosion events 

under climate and land management change. Meanwhile the time-series model 

requires climatic information for every single month during the periods studied. 

Such large data requirements restrict its application over a large space, and so ten 

blanket peat-covered sites were sampled in different locations of GB. The time- 
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series model was operated at these sites with defined environmental scenarios to 

address the main purposes of this chapter. 

 

The structure of this chapter is as follows: Section 7.2 is an introduction to the 

distribution of blanket peatlands and selection of study sites. Data sources and 

preparation for model inputs and scenario establishment are described in section 7.3. 

Section 7.4 concentrates on analysis of climate scenarios to understand possible 

future climate shifts within blanket peatlands in GB. This is then linked with 

modelling results to give an explanation of future change in fluvial blanket peat 

erosion. In section 7.5, blanket peat erosion, runoff production and potential wildfire 

severity under “Base Condition” are described. Section 7.6 concentrates on the 

analysis of modelling results to explore the impact of climate change and land 

management on blanket peatlands at a national scale. The summary and discussion 

are provided in section 7.7. 
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7.2 Study sites 

 

Figure 7.1 Spatial distribution of blanket peatlands across GB, with the chosen 

study sites and their corresponding regions examined in this chapter. 

 

The spatial distribution of blanket peatlands over GB was compiled from results of 

blanket peat maps from Natural England and the No. 8 (bog (deep peat)) land cover 

type of the LCM2000 1-km map. The areas, which were covered by either Natural 

England-defined blanket bog or No. 8 of LCM2000, were classified as blanket 

peatlands. As a result, an area of 7359 km
2 

was designated as being covered by 

blanket bog in GB, marked green in Figure 7.1. Ten blanket peat covered sites were 

selected to represent major regions with blanket peatlands in GB. Each study site is 

at a MIDAS weather station, where climatic conditions were available between 1961 

and 1990 (baseline period). The major reason for this is to ensure baseline climate 

was based on actual measurements. Basic information for each site is shown in 
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Table 7.1. Site 3 is the lowest altitude site with lowest relief, while site 7, which is 

part of the Trout Beck catchment in the North Pennines, is highest, while site 6 has 

the largest relief.  

Table 7.1 Background information on the sites selected across GB in this chapter. 

Site Name Coordinates 

 (Decimal degree) 

Elevation 

(m) 

Relief 

(m) 

Latitude Longitude 

1 Shetland 60.76  -0.89  24 18.70  

2 Sutherland 58.17  -4.73  99 16.32  

3 Ross-shire 58.13  -6.88  7 7.22  

4 Wigtown-shire 54.98  -4.93  166 11.96  

5 Northumberland 55.23  -2.58  201 19.87  

6 Westmorland 54.34  -3.02  91 44.85  

7 North Pennines 54.69  -2.38  556 22.01  

8 North York Moors 54.37  -0.96  151 19.07  

9 South Pennines 53.66  -2.03  387 23.97  

10 Dartmoor 50.55  -4.00  453 18.59  

 

7.3 Data source and processing 

7.3.1 Climate 

As in Chapter 6, four periods of climate were involved. They are “Baseline”, 

“2020s”, “2050s” and “2080s”, coving 30-year periods of 1961-1990, 2010-2039, 

2040-2069 and 2070-2099 respectively. The baseline climate was based on the 

MIDAS measurements, while future climate scenarios were established based on 

UKCP09 predictions and MIDAS baseline climate. 

7.3.1.1 Baseline climate 

The climate variables input into the time-series version of PESERA-PEAT are the 

same as those for the equilibrium model. They are monthly total rainfall 

(meanrf130), mean rainfall per rainfall day (meanrf2), coefficient of variation of 

rainfall per rainy day (cvrf2), monthly temperature range (mtrange), monthly 

temperature (mtmean), and monthly potential evapotranspiration (meanpet30). As 

shown in section 6.3.1.1 of Chapter 6, climatic inputs are monthly statistics of daily 

measured data except potential evapotranspiraton (PET), which was calculated with 

a modified temperature-based model shown in Equation 5.3 of Chapter 5.  
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The only difference in processing of the climatic inputs between Chapter 6 and this 

chapter is that the time-series PESERA-PEAT model requires the climate inputs for 

every single month rather than monthly average values over each time period. This 

is to say, for a 30-year period 360 values are needed for each climate variable. 

Unfortunately, MIDAS measured data often have missing values between 1961 and 

1990 for the sites selected. Hence the baseline climate predicted by the UKCP09 

was used to produce the time-series for baseline periods, and the UKCP09 time-

series was then adjusted using the monthly average of the MIDAS data in the 

baseline period to achieve a plausible time-series of MIDAS baseline climate. 

7.3.1.2 Future climate scenarios 

The climate scenarios for future time periods were established based on the 

UKCP09 projections. Three carbon emission scenarios from the IPCC Special 

Report of Emissions Scenarios (SRES) are included in UKCP09 (UKCP09 2009). 

They are high emission (A1F1), medium emission (A1B) and low emission (B1). As 

in Chapter 6, the medium emission scenario was selected as the context of climate 

change in this chapter. The UKCP09 can produce a number of potential climate 

change projections, so different probabilities of projected climate conditions could 

be derived from these outputs. The weather generator in UKCP09 can generate daily 

climate projections over the 21
st
 century. These outputs are suitable for calculation 

of climatic inputs for the time-series version of PESERA-PEAT. 

 

One hundred model realizations randomly extracted from predictions of the 

UKCP09 weather generator were employed to build up climate scenarios for each 

time period between 2010 and 2099. In this case, there are 100 possibilities of 

climate for each time period, and so 100 projected values for each of climatic input 

variables for PESERA-PEAT can be achieved. Such 100 probabilistic climate 

projections were then used to develop seven climate scenarios at different 

probability levels. These scenarios are median climate scenario as well as the 10
th

, 

50
th

 and 90
th

 percentile rainfall and temperature scenarios. Median climate scenarios 

were established through picking up median values of each climatic input variable of 

the PESEREA-PEAT from the 100 UKCP09 outputs for every single month over 

the corresponding 30-year period. The rainfall scenarios were composed of climate 

variables corresponding to a UKCP09 model realization, of which the average 
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rainfall is at the 10
th

, 50
th

, and 90
th

 position of that of 100 model realizations for each 

time period. Similar to rainfall scenarios, the 10
th

, 50
th

 and 90
th

 percentile 

temperature scenarios are the climate variables corresponding to a UKCP09 model 

realization, of which the average temperature is at the 10
th

, 50
th

, and 90
th

 position of 

that of the 100 UKCP09 model realizations for each time period. In this chapter, 

median climate scenarios are represented by 50 %. The 10
th

, 50
th

, and 90
th

 percentile 

rainfall / temperature scenarios are abbreviated as 10 %, 50 % and 90 % rf / tm 

scenarios. The seven climate scenarios established for future periods consist of a 

climatic envelope for the selected blanket bog sites through covering both median 

and extreme climate (10 %, 90 % rf / tm scenarios) conditions.  

 

UKCP09 data are at a 5-km resolution while MIDAS measured data are at a point. 

PESERA-PEAT was operated at 100-m grid cells. So there were three spatial 

resolutions: 5 km for UKCP09, point for MIDAS data and 100-m for PESERA-

PEAT inputs. Theoretically all base data should be transferred to a 100-m resolution 

before being assigned to the 100-m grid cells. In Chapter 6, interpolation and 

downscaling were conducted to offset the impacts of such scaling differences on the 

magnitude of climate data. In this chapter, the scale transfer of the UKCP09 and 

MIDAS data were not conducted mainly because there were not enough data to do 

so, given data from only one point was used in each region. This may lead the 

modelling results for site 7 to be different from predictions in Chapter 6, but such a 

difference would be systematic as all sites selected in this chapter were processed in 

the same way. In addition, results from site 7, which is located in the North Pennines, 

could serve as a link between Chapter 6 and Chapter 7 so that the findings of this 

chapter could be compared with those of Chapter 6. As a result, the time-series of 

climate input variables derived from UKCP09 outputs for each future time period 

were directly transferred with Equation 7.1 to base on MIDAS baseline climate. The 

resulting MIDASUKCP data were assigned to 100-m grid cells, without considering 

the scaling difference between different data sources. 

    MIDASUKCP = MIDASBASELINE + (UKCP − UKCPBASELINE)    Equation 7.1 
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where, MIDASUKCP  is the future climate variables based on MIDAS baseline 

climate; MIDASBASELINE is MIDAS baseline climate variables; UKCP is the future 

climate variables derived from UKCP09 projections; UKCPBASELINE  is the 

baseline climate calculated from UKCP09 predictions.  

7.3.2 Land use / cover / management, topography and soil 

As shown in previous chapters, land use / cover / management, topography and soil 

properties are also required by PESERA-PEAT as input data to set up initial 

conditions. In this chapter, land cover type for all ten selected sites was considered 

to be natural vegetation, and land use code used in the model was “334” (Table 5.2), 

on which both the vegetation growth model and land management work. Other land 

use / cover parameters related to “334” were set according to Table 5.3 of Chapter 5. 

Parameterization of land management practices (drainage, grazing and prescribed 

burning) was conducted with the method provided in section 4.4 of Chapter 4, and 

specific values of management parameters are described in section 7.4.3 and shown 

in Table 7.4. Topographic information (relief) was calculated as the standard 

deviation of elevation for all points within a certain radius. The radius was set to 500 

m in the study. The base digital elevation model was downloaded from Digimap and 

then resampled to a 100-m spatial resolution with a bilinear resampling method. As 

each site represented a blanket peat-covered region, the relief for a site was the 

average value for the blanket peatlands within the corresponding region rather than 

itself (Figure 7.1). The resulting relief and elevation of each site are shown in Table 

7.1. The erodibility of weathered blanket peat was set to 2.5 mm (Mulqueen, 

Rodgers et al. 2006). Please refer to Table 3.5 of Chapter 3 for specific values of the 

other soil parameters. 
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7.4 Outputs of environmental conditions in GB blanket peatlands 

7.4.1 Climate change 

In the baseline period, mean annual rainfall and temperature of the selected sites are 

shown in Table 7.2 and mapped in Figure 7.2. 

Table 7.2 Mean annual rainfall and temperature of the selected sites in the baseline 

period. 

Site Rainfall (mm) Temperature (
o
C) 

1 1209 7.08 

2 2029 7.42 

3 1964 8.02 

4 1527 7.60 

5 1309 7.03 

6 1829 8.12 

7 1961 4.96 

8 907 8.89 

9 1490 8.78 

10 2069 10.06 

 

 

Figure 7.2 Mean annual rainfall and temperature of the selected sites in the 

baseline period. 
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As described above, seven climate scenarios from UKCP09 between 2010 and 2099 

were employed to represent the possible future climate conditions for the blanket 

peatlands in GB. Table 7.3 shows the position of average rainfall and temperature of 

each scenario in the whole 100 UKCP09 model realizations for the three future 

periods. In median climate scenarios, average rainfall appears to be always in the 

bottom end of the whole model realizations and average temperature tends to be in 

the middle. In some cases, average rainfall in median scenarios is even lower than in 

10 % rf scenarios such as at sites 8 and 9. It would not be surprising if runoff 

production in median scenarios is less than in 10 % rf scenarios. Apart from median 

scenarios, variation of rainfall and temperature in the other six scenarios are much 

wider compared to that in median climate scenarios, giving a broad envelope to 

understand the reaction of blanket peat erosion to climate change. Figure 7.3 

displays the clustering of climate for the selected sites based on average annual 

rainfall and temperature in baseline and future time periods. There are three future 

time periods, which are the 2020s, 2050s and 2080s, and a baseline period (1961-

1990). Seven climate scenarios were built up for each future time period. For each 

site there should be 22 climate conditions over the four time periods. This means 

that there are 22 points for each site in Figure 7.3. Clustering results suggest that 

climate for the chosen sites could be divided into three groups. Site 8 is much drier 

than other sites and consists of a group on its own, sites 1, 4, 5 and 9 have similar 

rainfall and falls into another group, and sites 2, 3, 6, 7, 8, and 10 are categorised 

into a third group with high precipitation. The temperature declines and the 

temperature range becomes wider from dry to wet groups. 
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Figure 7.3 Clustering of climate for the selected sites based on average annual 

rainfall and temperature over the baseline and future periods. For each site, 

an open symbol represents the baseline climate while a solid symbol stands 

for the future climate, which is derived from the seven future climate 

scenarios. 
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Table 7.3 Probability level (%) of mean annual rainfall and temperature in the 100 

UKCP09 model realizations for each site under the established climate 

scenarios; “rf” and “tm” represent mean annual rainfall and temperature 

respectively. 

 

 

2
0
2
0

s 

Site 50% 10% rf 50% rf 90% rf 10% tm 50% tm 90% tm 

 rf tm tm tm tm rf rf rf 

1 28 47 53 92 42 93 44 53 

2 17 48 25 18 76 55 7 58 

3 23 51 61 10 21 80 81 36 

4 17 53 22 42 58 63 6 53 

5 12 50 8 16 15 63 92 39 

6 17 51 8 17 65 41 36 20 

7 19 51 95 43 70 22 44 12 

8 9 48 88 54 34 20 76 68 

9 9 50 44 23 6 6 39 43 

10 10 48 48 56 55 9 89 51 

2
0
5
0

s 

Site 50% 10% rf 50% rf 90% rf 10% tm 50% tm 90% tm 

 rf Tm tm tm tm tm tm tm 

1 31 42 34 38 16 48 51 99 

2 16 41 42 70 67 8 62 73 

3 22 44 35 65 72 33 38 71 

4 16 52 56 14 50 52 90 6 

5 10 51 34 99 64 14 3 49 

6 17 53 4 97 58 39 100 41 

7 19 52 69 84 28 38 19 99 

8 10 48 29 64 13 91 92 87 

9 12 51 49 14 4 52 34 20 

10 13 50 60 81 96 96 69 83 

2
0
8
0

s 

Site 50% 10% rf 50% rf 90% rf 10% tm 50% tm 90% tm 

 rf tm tm tm tm tm tm tm 

1 28 44 54 90 3 13 23 50 

2 22 44 14 98 82 4 31 55 

3 24 44 18 7rf 12 23 86 41 

4 19 53 8 66 56 30 5 62 

5 14 56 25 49 75 55 10 8 

6 19 57 67 35 4 37 52 30 

7 22 55 4 91 85 39 57 1 

8 9 53 85 89 43 35 38 51 

9 18 52 70 26 46 78 19 96 

10 17 50 18 51 96 37 19 52 



 

 

 

 

Figure 7.4 Changes of average annual rainfall in future time periods under different climate scenarios for each of the ten sites. 



 

 

 

 

Figure 7.5 Changes of average annual temperature in future time periods under different climate scenarios for each of the ten sites. 
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Figure 7.4 and Figure 7.5 indicate climate change defined by the established climate 

scenarios for each selected site from baseline to future periods. In most cases, mean 

annual rainfall is increased between baseline and future periods and the largest 

relative increase emerges at site 6 under the 50 % tm scenarios. However, a decrease 

of mean annual rainfall happens sometimes between baseline and future time 

periods. For example, at sites 2, 7 and 9. At site 7, the overall change of annual 

rainfall for model runs appears to be smaller compared to other sites in most cases. 

Changes in mean annual temperature show a simpler pattern than that in mean 

annual rainfall as temperature always increases from baseline to future in all 

scenarios, although the magnitude of the increase varies among sites. The relative 

increase of mean annual temperature usually peaks at site 7 and appears to be 

smaller in other sites. Snow and ice cover are common in winter for site 7 (within 

Trout Beck, Beck North Pennines), temperature increase could be more enhanced 

where winter is closer to 0 
o
C due to reduced snow / ice cover and albedo feedbacks 

(Holden and Rose 2011). 

7.4.2 Environmental scenarios 

For each climate scenario, eight environmental scenarios were established for each 

site to explore the response of blanket peatlands to corresponding environmental 

shifts. The combination of climate and land management strategies for each 

environmental scenario is shown in Table 7.4. As detailed information about the 

current land management condition is not available for sites other than site 7, two 

land management scenarios were adopted to account for the impact of possible 

changes in land management on blanket peatlands. One takes a carbon storage focus, 

while the other uses a food security scenario (Reed, Arblaster et al. 2009; Reed, 

Bonn et al. 2009; Reed, Hubacek et al. 2013). They are represented as “Carbon” and 

“Food” in Table 7.4. The carbon storage scenario is defined as no pro-active land 

management practices exist. In the food security scenario the land management 

intensity is the same as that in food security scenarios of Chapter 6 so overgrazing is 

represented by 30 % vegetation cover and biomass removal per month, the rotational 

period of managed burning is 5 years and the drainage density is 16 km km
-2

, which 

is the double the current average drainage density of the North Pennines blanket 

peatlands. This value was used mainly because the actual density of artificial 

drainage for sites other the North Pennines was unavailable. For each site, total 
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vegetation cover and biomass removal is the sum of vegetation cover and biomass 

reduced by separate management practices. The “Base Condition” scenario was built 

upon baseline climate and carbon storage management conditions. Modelling results 

from all other scenarios were compared with outputs based on the “Base Condition” 

scenario. Climatic impact was investigated with the carbon storage scenario and 

climate conditions at baseline, 2020s, 2050s and 2080s. Then food security scenarios 

were applied with climate conditions in baseline and future time periods to examine 

the impact of land management shifts and interactions between climate and 

management change. 

 

Table 7.4 Environmental scenarios employed in this chapter. 

Name Climate 

Land Management 

Back up Drainage 

(km km
-2

) 

Grazing  

(%) 

Managed 

burning 

(year) 

Base Condition Baseline 0 0 0 

Baseline climate 

and carbon storage 

scenarios. 

2020s_Carbon 2020s 0 0 0 
Investigating the 

impacts of climate 

changes. 

2050s_Carbon 2050s 0 0 0 

2080s_Carbon 2080s 0 0 0 

Baseline_Food Baseline 16 30 5 

Investigating the 

impacts of land 

management. 

2020s_Food 2020s 16 30 5 Investigating the 

interactions 

between climate 

and land 

management 

change 

(interaction 

scenarios). 

2050s_Food 2050s 16 30 5 

2080s_Food 2080s 16 30 5 

“0” indicates the management practice is totally removed. 
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7.5 Runoff, erosion and potential wildfire severity in blanket 

peatlands of GB under the “Base Condition” scenario 

Table 7.5 Mean annual runoff, potential wildfire severity, sediment yield, and 

seasonal distribution of the mean annual sediment yield for the chosen sites 

under the “Base Condition” scenario. Potential FS represents potential wildfire 

severity, which is defined as the highest potential wildfire severity during any 

month of the summer half year (Apr-Sep). 

Site Annual 

runoff 
(mm) 

Potential 

FS 
(unitless) 

Annual 

erosion 
(ton ha

-1
) 

Spring 

erosion 
(%) 

Summer 

erosion 
(%) 

Autumn 

erosion 
(%) 

Winter 

erosion 
(%) 

1 1005 0.81 0.78 15.46 9.41 48.81 26.32 

2 1790 0.87 0.8 14.52 24.61 28.95 31.92 

3 1666 0.99 0.73 16.82 15.77 41.70 25.70 

4 1246 1.02 0.91 16.98 22.03 33.17 27.82 

5 939 1.33 1.16 15.75 18.35 36.12 29.78 

6 1522 1.07 0.93 16.89 26.59 26.82 29.70 

7 1751 0.77 0.89 13.74 22.35 30.69 33.22 

8 535 1.5 0.74 17.94 14.47 37.96 29.63 

9 1213 1.02 0.92 16.42 27.49 26.94 29.15 

10 1731 1.15 0.98 17.16 30.40 29.10 23.35 

 

The mean annual runoff, potential wildfire severity, erosion and its seasonal 

distribution under the “Base Condition” scenario are displayed in Table 7.5 and 

mapped in Figure 7.6. The distribution of annual runoff is close to that of annual 

rainfall in the baseline period with the highest and lowest annual runoff of 1790 mm 

and 535 mm respectively occurring at sites 2 and 8. This is consistent with climate 

clustering results shown in Figure 7.3, where sites 2 and 8 fall into the wettest and 

driest groups respectively. Most runoff is produced in autumn and winter; while 

spring and summer contributes less to annual total runoff. Mean annual erosion 

varies between 0.73 and 1.16 ton ha
-1

 at sites 3 and 5 respectively. Similar to annual 

runoff, sediment yield for the selected sites mainly comes from autumn and winter 

rather than summer and spring (Table 7.5 and Figure 7.6). Potential wildfire severity 

ranges between 0.76 and 1.32 at sites 7 and 5 respectively.  



 

 

 

 

 

   

Figure 7.6 Mean annual runoff, potential wildfire severity and sediment yield for the selected sites in the baseline period without management. 
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7.6 The impact of environmental change on runoff, erosion and 

potential wildfire severity in blanket peatlands of GB 

7.6.1 Runoff 

The impact of climate change and land management on mean annual runoff is 

illustrated in Figure 7.7. Mean annual runoff increases by less than 5 % with land 

management shifts from carbon storage to food security. The changes in average 

annual runoff with climate change show more variety, ranging between -8 % to 

30 %, and the direction and magnitude of average annual runoff change are similar 

to those of mean annual rainfall.  

 

Changes of average annual runoff production from the baseline period under the 

carbon storage scenarios for each site with rainfall and temperature are presented in 

Figure 7.8, where the x- and y-axes stand for the range of average annual rainfall 

and temperature for each time period. It is shown in Figure 7.8 that runoff increases 

with rainfall, and does not show a strong relationship with temperature. However, 

runoff bands curve to higher rainfall, implying that higher temperature results in less 

runoff when rainfall is constant. The impact of rainfall on long-term runoff 

production is much stronger than that of temperature across GB under baseline and 

future climatic conditions.  

 

Descriptive statistics based on annual runoff from time series modelling are shown 

in Table 7.6. It shows that runoff production under food security scenarios is slightly 

higher than that under carbon storage scenarios. Such a difference is lower than the 

biggest difference in runoff production under the defined climate scenarios. The 

standard deviation of annual runoff production between 2010 and 2099 is about 

same under the carbon storage and food security scenarios. This confirms that the 

land management change has a smaller impact than climate variation on runoff 

production from blanket peatlands. The specific years with highest predicted annual 

runoff for each site are shown in Table 7.7. Sites 1, 2, 4, 5, 7, 8 and 9 have the 

highest predicted annual runoff production under the 90 % rf scenarios in 2063, 

2083, 2086, 2070, 2094, 2013 and 2099 respectively. Sites 3 and 10 have the highest 

predicted annual runoff under 90 % tm scenarios in 2054 and 2044. Annual runoff 

for site 6 peaks in 2052 for the 50 % tm scenario. The highest predicted annual 
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runoff peaks at site 10 and bottoms at site 8. This is consistent with the result of 

climate clustering shown in Figure 7.3, where sites 10 and 8 appear to be wettest and 

driest among the sites involved. 



 

 

 

 

 

Figure 7.7 Changes in mean annual runoff for each site between future and baseline periods under variations in climate and land management. 



 

 

 

 

 

Figure 7.8 Mean annual runoff production for each site under the carbon storage scenarios against average annual temperature and rainfall 

between baseline and 2080s periods under carbon storage scenarios. The legend indicates the classification of mean annual runoff 

production. 



 

 

 

 

 

Table 7.6 Descriptive statistics based on time series of annual runoff (mm) between 2010 and 2099 under different environmental scenarios. The 

highlighted values represent the highest predicted annual runoff for each site under different land management scenarios. 
 Site 1 Site 2 Site 3 Site 4 Site 5 

Scenarios Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD 

50%_Carbon 1082  1013  1143  33  1824  1742  1914  34  1766  1661  1861  48  1323  1240  1400  38  949  850  1009  25  

10%rf_Carbon 1052  844  1342  105  1806  1606  2030  91  1720  1341  2101  161  1306  977  1727  142  960  679  1245  106  

50%rf_Carbon 1111  854  1350  95  1855  1561  2188  125  1828  1425  2240  163  1386  1013  1968  163  996  739  1326  118  

90%rf_Carbon 1203  895  1470 116  1933  1683  2218 117  1938  1548  2358  179  1501  976  1989 190  1056  787  1429 113  

10%tm_Carbon 1122  903  1397  105  1824  1579  2117  112  1808  1477  2183  152  1388  857  1762  158  999  757  1256  103  

50%tm_Carbon 1098  829  1342  97  1828  1554  2199  125  1870  1481  2370  187  1345  962  1843  200  972  714  1353  126  

90%tm_Carbon 1156  847  1441  121  1870  1550  2207  117  1811  1522  2452 178  1352  987  1824  180  958  673  1296  126  

50%_Food 1106  1028  1175  32  1846  1775  1936  34  1795  1685  1891  49  1346  1264  1429  38  978  879  1037  26  

10%rf_Food 1087  856  1387  109  1839  1629  2080  91  1748  1368  2131  163  1336  1018  1763  146  991  735  1284  107  

50%rf_Food 1151  891  1418  105  1884  1590  2210  125  1856  1445  2273  165  1416  1029  1999  164  1027  762  1365  122  

90%rf_Food 1235  915  1492 116  1957  1691  2240 118  1966  1581  2387  180  1529  1003  2024 192  1088  812  1440 115  

10%tm_Food 1168  945  1449  115  1859  1601  2155  110  1838  1500  2212  153  1421  902  1800  155  1030  787  1295  105  

50%tm_Food 1137  859  1403  102  1857  1571  2229  123  1899  1506  2400  189  1375  985  1875  203  1003  741  1392  129  

90%tm_Food 1189  866  1484  121  1894  1578  2226  118  1840  1546  2490 180  1376  1008  1855  181  989  694  1336  128  

 

 

 

 

 

 



 

 

 

 

 

Table 7.6 Continued 

 Site 6 Site 7 Site 8 Site 9 Site 10 

Scenarios Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD 

50%_Carbon 1595  1529  1666  29  1749  1683  1815  26  534  469  582  22  1180  1143  1220  20  1725  1652  1817  34  

10%rf_Carbon 1585  967  2292  271  1703  1355  2092  161  547  247  898  128  1180  815  1608  161  1709  1167  2377  223  

50%rf_Carbon 1706  1159  2443  283  1765  1311  2273  195  616  322  1194  146  1275  828  1662  174  1821  994  2678  245  

90%rf_Carbon 1849  1261  2443  270  1870  1576  2564 183  679  367  1262 163  1380  949  2107 196  1948  1296  2607  281  

10%tm_Carbon 1705  955  2308  251  1750  1351  2249  184  625  269  1046  160  1260  767  1644  184  1856  1182  2810  275  

50%tm_Carbon 1789  1105  2807 315  1751  1380  2423  188  645  385  990  133  1219  804  1684  206  1850  1324  2691  259  

90%tm_Carbon 1650  1105  2542  275  1729  1169  2201  220  640  346  1043  154  1279  867  1795  185  1846  1296  2975 268  

50%_Food 1621  1555  1695  30  1797  1724  1866  31  556  491  600  23  1206  1156  1249  21  1754  1682  1848  35  

10%rf_Food 1620  980  2325  275  1728  1344  2114  165  570  262  928  132  1215  873  1615  162  1740  1190  2423  224  

50%rf_Food 1740  1183  2483  284  1798  1375  2317  195  641  338  1241  150  1306  849  1669  175  1853  1016  2726  248  

90%rf_Food 1881  1288  2473  274  1905  1581  2595 184  705  386  1302 167  1411  967  2138 196  1979  1319  2644  285  

10%tm_Food 1738  964  2349  254  1780  1414  2286  185  649  282  1086  164  1293  803  1667  185  1889  1212  2855  277  

50%tm_Food 1819  1123  2847 320  1780  1392  2451  188  670  404  1028  138  1252  845  1713  206  1883  1347  2740  263  

90%tm_Food 1679  1117  2590  279  1764  1302  2221  215  665  366  1082  159  1310  897  1819  184  1877  1324  3017 270  
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Table 7.7 The years with the highest predicted annual runoff, corresponding climate 

scenarios and the highest predicted annual runoff production for each site between 

2010 and 2099 under established environmental scenarios. The years and climate 

scenarios with the highest predicted annual runoff are identical for each site under 

both carbon storage and food security scenarios; “Runoff_Carbon” and 

“Runoff_Food” represent the highest predicted annual runoff under carbon storage 

and food security scenarios respectively. 

Site Carbon storage / food security scenario 

Year Climate scenario Runoff_Carbon (mm) Runoff_Food (mm) 

1 2063 90%_rf 1470 1492 

2 2083 90%_rf 2218 2240 

3 2054 90%_tm 2452 2490 

4 2086 90%_rf 1989 2024 

5 2070 90%_rf 1429 1440 

6 2052 50%_tm 2807 2847 

7 2094 90%_rf 2564 2595 

8 2013 90%_rf 1262 2302 

9 2099 90%_rf 2107 2138 

10 2044 90%_tm 2975 3017 

 

7.6.2 Erosion 

Figure 7.9 shows the change of average annual erosion with climate change from 

baseline to future periods and the defined land management shifts. It is apparent that 

mean annual sediment yield change with land management shifts is much higher 

than the change associated with climate change. In terms of Figure 7.9, the reaction 

of blanket peat erosion to climate change is not constant across GB. Under climate 

change between baseline and 2080s periods, changes of mean annual sediment yield 

increase from site 1 to site 10 in general. Erosion change peaks at site 8 in five of the 

seven climate scenarios which are the 50 % rf, 90 % rf, 10 % tm, 50 % tm and 90 % 

tm scenarios. In the median climate scenario mean annual erosion change peaks at 

site 10, while in 10 % rf scenarios the highest mean annual erosion change emerges 

at site 6.  



 

 

 

 

 

Figure 7.9 Changes in mean annual erosion for each site between future and baseline periods under climate and land management change. 



 

 

 

 

 

Figure 7.10 Mean annual sediment yield for each site under the carbon storage scenarios against average annual temperature and rainfall 

between baseline and 2080s. The highest predicted annual sediment yield for each site under the carbon storage scenario between 2010 and 

2099 is also plotted against the annual rainfall and temperature associated with the highest annual erosion. The rectangular legend indicates 

the classification of average annual sediment yield. The pink triangle in each graph represents the highest predicted annual sediment yield 

between 2010 and 2099. 
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The average annual sediment yield for the selected sites under the carbon storage 

scenarios is plotted against the corresponding average annual rainfall and 

temperature in the baseline and future periods in Figure 7.10 where x- and y-axes 

stand for a range of mean annual rainfall and temperature for each time period. In 

terms of change of average annual sediment yield with average annual rainfall and 

temperature, the predicted erosion for sites 1 and 8 peaks for the wettest condition. 

At sites 2, 3, 4 and 6, the predicted erosion peaks at the warmest condition, and sites 

9 and 10 have the highest erosion under the warmest and wettest condition. Erosion 

peaks at the warmest and driest condition in site 7. Site 5 has two peaks occurring 

with a middle warm, dry condition and a middle wet, warm condition. For each site 

a warmer temperature is always coincident with increased erosion while increased 

rainfall does not always do the same thing. For example, at sites 2, 3, 5 and 7, higher 

rainfall may produce less sediment yield (Figure 7.10). It is therefore inferred that 

temperature is more important than rainfall in impacting long-term change of 

blanket peat erosion across GB between 2010 and 2099. 

 

Descriptive statistics for the time series of annual sediment yield between 2010 and 

2099 are provided in Table 7.8, while the cumulative sediment yield and time-series 

of annual erosion for scenarios with the highest predicted annual sediment yield are 

plotted in Figure 7.11. Cumulative sediment yield usually peaks in 90 % tm 

scenarios and drops in median climate scenarios. A higher standard deviation of 

annual erosion under food security scenarios demonstrates that more intensive land 

management could also make the sediment yield peakier. The change of cumulative 

sediment yield with land management intensity is apparently higher than that with 

climate change, confirming that land management shifts between carbon storage and 

food security usually have more impact on the total erosion between 2010 and 2099 

than climate change (Figure 7.9). However, at site 8 the variation of cumulative 

sediment yield under different climate scenarios is closer to that with land 

management change than at other sites. In addition, the highest predicted annual 

erosion for site 8 is significantly higher than that for other sites (Table 7.8). This 

implies that blanket peat at site 8 is more vulnerable to climate change than at other 

sites. In Figure 7.11 the specific years with the highest predicted annual erosion are 

also marked out in the erosion time series of the corresponding scenarios. For most 

sites, annual sediment yield peaks simultaneously under both carbon storage and 
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food security scenarios. However, annual erosion at sites 4 and 9 peak in different 

years when management conditions vary. Site 1 has the highest annual sediment 

yield in 2064 for the 50 % tm scenarios. The predicted annual erosion at sites 2 and 

8 peaks at 10 % tm scenarios in 2089 and 2093 respectively, while sites 3, 4, 7 and 9 

have the highest annual erosion under 90 % tm scenarios in 2083, 2084 (2079), 2070, 

2097 (2070) respectively (the numbers outside the brackets indicate the year with 

the highest predicted annual erosion under carbon storage scenarios, while the 

number inside the brackets indicates the year with the highest predicted annual 

erosion under food security scenarios). Annual erosion at site 5 peaks in 2062 for the 

50 % rf scenarios. Site 6 has the highest predicted annual erosion in 2080 for the 10 % 

tm scenarios, and predicted annual erosion of site 10 peaks in 2099 for the 90 % rf 

scenarios. The highest predicted annual sediment yield under the carbon storage 

scenarios for each site is also plotted in Figure 7.10 as a pink triangle to indicate the 

climate condition for the year with highest predicted annual sediment yield. 

Compared to average annual rainfall and temperature for the chosen time periods, 

the highest annual erosion at sites 1 and 2 occurs in years with medium rainfall and 

temperature. Sites 3, 4, 6 and 7 undergo highest annual erosion at dry and warm 

years. Annual sediment yield from sites 4, 5, 9 and 10 peaks in years with warm and 

wet climate, and site 8 has the highest sediment erosion in a quite wet year with 

medium temperature. Figure 7.12 illustrates the sediment yield and storage for the 

years with highest predicted annual sediment yield under corresponding scenarios 

(Table 7.8 and Figure 7.11). Sediment storage at all sites peaks during summer and 

then decreases in autumn and winter. It drives sediment yield to be “big event 

dominated” and usually peaks in autumn or winter. This means that transport limited 

processes are dominant in summer erosion, and stored erodible material is washed 

out in autumn and winter. So summer desiccation could be a major source of 

erodible material for future erosion, especially for the erosion with highest sediment 

output, although most sediment is still coming out of blanket peatlands in autumn 

and winter. The interaction between sediment yield and storage in Figure 7.12 also 

demonstrates that PESERA-PEAT works well under extreme erosion conditions. 

 



 

 

 

 

 

Table 7.8 Descriptive statistics based on time series of annual erosion (ton ha
-1

) between 2010 and 2099 under environmental scenarios. The 

highlighted numbers indicate the highest predicted annual erosion for each site under carbon storage and food security scenarios.  
 Site 1 Site 2 Site 3 Site 4 Site 5 

Scenarios Sum Min Max SD Sum Min Max SD Sum Min Max SD Sum Min Max SD Sum Min Max SD 

50%_Carbon 72.87  0.73  0.91  0.04  74.21  0.73  0.94  0.04  69.03  0.66  0.84  0.04  86.82  0.85  1.08  0.05  109.90  1.08  1.36  0.07  

10%rf_Carbon 84.72  0.60  1.45  0.20  75.25  0.72  1.16  0.07  71.42  0.65  1.06  0.08  91.37  0.79  1.76  0.15  116.69  1.00  2.07  0.20  

50%rf_Carbon 85.20  0.67  1.67  0.19  77.10  0.68  1.12  0.09  71.39  0.64  1.02  0.08  97.38  0.76  1.88  0.22  129.89  0.98  2.88 0.36  

90%rf_Carbon 77.73  0.63  1.52  0.13  73.16  0.68  1.15  0.08  67.21  0.65  0.93  0.06  92.27  0.72  1.63  0.18  112.35  0.96  2.13  0.19  

10%tm_Carbon 75.20  0.57  1.24  0.12  79.14  0.71  1.20 0.08  72.79  0.69  1.11  0.07  90.13  0.66  2.02  0.20  116.58  1.01  1.88  0.17  

50%tm_Carbon 85.58  0.67  1.78 0.24  73.11  0.64  1.03  0.07  71.34  0.65  1.06  0.07  100.82  0.76  2.74  0.28  131.95  0.90  2.68  0.38  

90%tm_Carbon 90.35  0.60  1.70  0.25  78.29  0.71  1.08  0.07  76.77  0.66  1.19 0.11  118.32  0.78  3.26 0.48  132.20  0.82  2.75  0.35  

50%_Food 282.07  2.93  3.43  0.10  290.01  2.82  3.53  0.13  270.51  2.78  3.19  0.09  315.95  3.23  3.77  0.11  372.86  3.77  4.55  0.20  

10%rf_Food 311.30  2.31  4.84  0.49  291.40  2.87  3.92  0.18  278.50  2.70  3.75  0.21  328.79  3.07  5.24  0.36  392.81  3.65  5.72  0.40  

50%rf_Food 312.05  2.60  5.00  0.44  296.73  2.88  3.89  0.19  279.56  2.64  3.67  0.20  341.44  3.02  5.66  0.51  412.45  3.58  7.19 0.67  

90%rf_Food 299.53  2.69  4.79  0.34  285.28  2.80  3.80  0.21  268.02  2.68  3.44  0.15  328.66  2.77  4.98  0.39  382.55  3.66  5.75  0.44  

10%tm_Food 291.76  2.52  4.12  0.34  304.68  2.85  4.09 0.21  284.41  2.84  3.86  0.18  325.93  2.74  6.77  0.49  396.14  3.59  5.68  0.43  

50%tm_Food 311.84  2.74  6.88 0.60  283.81  2.70  3.63  0.17  278.79  2.72  3.75  0.18  347.81  2.99  6.55  0.61  417.19  3.30  6.74  0.71  

90%tm_Food 321.35  2.49  5.79  0.58  299.34  2.90  3.74  0.19  291.71  2.71  4.14 0.27  382.26  3.06  7.62 0.91  416.61  3.00  6.40  0.71  

 

 

 

 

 

 



 

 

 

 

 

Table 7.8 Continued 

 Site 6 Site 7 Site 8 Site 9 Site 10 

Scenarios Sum Min Max SD Sum Min Max SD Sum Min Max SD Sum Min Max SD Sum Min Max SD 

50%_Carbon 92.43  0.90  1.14  0.06  79.99  0.80  0.96  0.04  72.87  0.66  0.92  0.05  95.90  0.88  1.25  0.08  106.19  0.99  1.44  0.10  

10%rf_Carbon 126.90  0.86  8.48 0.89  91.15  0.73  2.65  0.25  110.63  0.46  2.87  0.48  122.26  0.86  2.85  0.42  114.41  0.90  2.30  0.26  

50%rf_Carbon 116.64  0.83  3.41  0.49  79.19  0.71  1.74  0.14  140.51  0.48  7.50  0.91  105.35  0.83  2.74  0.33  123.47  0.83  3.15  0.41  

90%rf_Carbon 104.06  0.81  2.88  0.28  81.52  0.70  2.01  0.21  148.52  0.63  4.45  0.72  108.49  0.88  2.43  0.31  142.84  0.88  4.41 0.73  

10%tm_Carbon 94.22  0.75  4.03  0.36  86.25  0.74  1.95  0.20  138.73  0.46  13.35  1.42  108.56  0.82  2.41  0.32  99.72  0.83  1.77  0.19  

50%tm_Carbon 120.86  0.82  5.49  0.62  77.09  0.68  1.47  0.10  127.35  0.70  3.65  0.53  115.79  0.65  2.64  0.41  112.64  0.89  2.32  0.29  

90%tm_Carbon 130.97  0.75  5.93  0.77  88.33  0.69  3.01 0.36  140.65  0.63  3.48  0.60  125.11  0.81  4.17 0.63  126.85  0.86  3.09  0.43  

50%_Food 330.26  3.36  3.95  0.13  310.52  3.10  3.76  0.14  281.04  2.60  3.54  0.20  335.72  3.21  4.17  0.19  359.28  3.55  4.61  0.23  

10%rf_Food 402.90  3.19  15.23 1.49  342.27  3.12  6.83  0.53  398.86  1.67  10.49  1.72  394.79  3.21  9.16  0.92  378.04  3.39  6.12  0.52  

50%rf_Food 381.84  3.28  7.94  0.95  307.11  2.86  4.81  0.31  491.53  1.33  26.53  3.04  359.44  3.12  6.80  0.65  395.44  3.17  8.22  0.82  

90%rf_Food 360.25  3.11  7.06  0.58  314.69  2.87  5.61  0.44  516.03  2.45  14.60  2.35  367.57  3.27  7.04  0.71  431.12  3.21  9.67 1.34  

10%tm_Food 333.71  3.05  8.52  0.63  338.34  3.15  5.48  0.43  485.61  1.74  37.69  4.09  370.67  2.95  6.48  0.71  346.20  3.16  5.14  0.44  

50%tm_Food 392.80  3.24  11.19  1.14  308.91  2.86  4.89  0.27  464.01  2.53  13.60  1.86  381.25  2.49  7.43  0.89  374.56  3.40  6.29  0.61  

90%tm_Food 407.82  3.00  12.31  1.40  327.99  2.88  7.43 0.70  511.79  2.24  11.24  2.13  394.84  3.15  9.54 1.14  403.40  3.24  7.77  0.89  

 

 



- Chapter 7 - 

219 

 

    



- Chapter 7 - 

220 

 

Figure 7.11 Cumulative sediment yield between 2010 and 2099 for each site under 

established environmental scenarios and time series of annual sediment yield 

for the scenarios with the highest predicted annual sediment yield. Two groups 

of cumulative-erosion lines relate to the carbon storage and food security 

scenarios respectively. 



 

 

 

 

 

Figure 7.12 Monthly sediment yield and storage for each site in the years with the highest predicted annual sediment yield.
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7.6.3 Potential wildfire severity 

For each time period mean potential wildfire severity was calculated as the highest 

value of monthly average potential fire severity across thirty summer half years. 

Figure 7.13 shows the change of mean potential wildfire severity between baseline 

and future periods under climate and land management change. In most cases, mean 

potential fire severity increases between the baseline and future periods. However, 

some sites may experience decreased mean potential wildfire severity from the 

baseline to future periods such as site 5 in the 2020s for the 50 % rf scenarios, site 8 

in the 2020s for the 90 % rf scenarios, site 9 in the 2020s for the 90 % rf and 50 % 

tm scenarios, site 6 in the 2020s for the 10 % tm scenarios, and site 10 in the 2050s 

for the 10 % tm scenarios. The largest increase of mean potential wildfire severity 

from baseline to future periods is less than 30 % which is much lower than the 

change of mean potential wildfire severity caused by land management shifts 

between carbon storage and food security.  

 

The mean potential wildfire severity for the selected sites under the carbon storage 

scenario is plotted against the mean rainfall and temperature over the baseline and 

future periods in Figure 7.14, where x- and y-axes stand for the range of annual 

rainfall and temperature for each time period. In terms of Figure 7.14, the highest 

potential wildfire severity emerges at site 8. Potential wildfire severity always 

increases with temperature across the whole ten sites. Rainfall has a more 

complicated relationship with potential wildfire severity. For example, at sites 5, 7, 

8 and 10, the lowest potential wildfire severity could emerge under a high-rainfall 

condition, while at sites 9 and 10 potential wildfire severity peaks in the wettest 

condition. The complex pattern between rainfall and potential wildfire severity is 

formed possibly because a wet condition could prevent the origin and spread of 

wildfire but produces a high fuel load at the same time (Esteves, Kirkby et al. 2012). 

 

Time series modelling is able to produce the potential wildfire severity for every 

single month over the study period. Table 7.9 presents the descriptive statistics of 

the time-series of potential wildfire severity for each year, which is represented by 

the highest monthly potential wildfire severity during summer half year (Apr-Sep), 

between 2010 and 2099. It shows that potential wildfire severity is systematically 
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lower under food security than under carbon storage scenarios. This confirms the 

results shown in Figure 7.13. A lower standard deviation of annual potential wildfire 

severity under food security scenarios demonstrates that more intensive land 

management could also make the potential fire severity less peaked. The annual 

potential wildfire severity is highest at site 8. The specific years with highest 

predicted annual potential wildfire severity for each site under carbon storage and 

food security scenarios are presented in Table 7.10. The highest predicted annual 

potential wildfire severity for each of sites 1, 4, 5, 6, 7, 9 and 10 emerges 

simultaneously under carbon storage and food security scenarios, while the year 

with the highest predicted annual potential wildfire severity for each of the other 

sites (i.e. sites 2, 3 and 8) is different when management conditions change. Site 1 

has the highest predicted potential wildfire severity in 2063 for the 50 % tm 

scenarios, while the predicted annual potential wild fire severity of sites 2 and 5 

peaks under 50 % rf scenarios in 2077 (2094) and 2061. Sites 3, 4, 7 and 8 have the 

highest predicted annual potential wildfire severity under 90 % tm scenarios in 2032 

(2098), 2079, 2092, 2083 (2095) respectively. The potential wildfire severity of sites 

6 and 9 peaks in 2080 and 2058 under 10 % rf scenarios. Site 10 has the highest 

predicted annual potential wildfire severity in 2099 for the 90 % rf scenarios (for 

sites 2, 3 and 8, the number outside the brackets indicate the year with the highest 

predicted annual potential wildfire severity under the carbon storage scenarios, 

while the number inside the brackets indicates the year with the highest predicted 

annual potential wildfire severity under the food security scenarios). Therefore the 

wildfire may have the potential to become more serious in these years and could 

bring about more damage to blanket peatlands if it should occur (McMorrow, 

Lindley et al. 2009; Esteves, Kirkby et al. 2012). 

 



 

 

 

 

Figure 7.13 Changes in mean potential wildfire severity for each site from baseline to future periods under climate and management change. 



 

 

 

 

Figure 7.14 Mean potential wildfire severity under the carbon storage scenario against average annual temperature and rainfall for each site 

between baseline and 2080s. The legend indicates the classification of potential wildfire severity. 

 



 

 

 

 

 

Table 7.9 Descriptive statistics based on time series of annual potential wildfire severity between 2010 and 2099 under established 

environmental scenarios. The highlighted numbers indicate the highest predicted annual potential wildfire severity for each site under 

carbon storage and food security scenarios respectively. 

 Site 1 Site 2 Site 3 Site 4 Site 5 

Scenarios Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD 

50%_Carbon 0.87  0.72  0.96  0.04  0.94  0.77  1.02  0.05  1.08  0.90  1.17  0.05  1.12  0.88  1.24  0.06  1.47  1.18  1.63  0.08  

10%rf_Carbon 0.93  0.72  1.24  0.09  0.96  0.73  1.14  0.07  1.12  0.83  1.29  0.08  1.16  0.87  1.55  0.12  1.52  1.08  2.03  0.16  

50%rf_Carbon 0.97  0.71  1.21  0.09  0.99  0.73  1.19 0.10  1.13  0.82  1.33  0.09  1.21  0.86  1.58  0.14  1.59  1.11  2.12 0.20  

90%rf_Carbon 0.90  0.68  1.16  0.07  0.96  0.73  1.15  0.07  1.10  0.88  1.25  0.07  1.20  0.87  1.54  0.14  1.50  1.09  1.92  0.14  

10%tm_Carbon 0.90  0.70  1.06  0.06  0.95  0.73  1.11  0.07  1.12  0.85  1.33  0.08  1.15  0.85  1.61  0.12  1.51  1.15  1.88  0.15  

50%tm_Carbon 0.93  0.69  1.38 0.10  0.97  0.76  1.14  0.06  1.12  0.86  1.29  0.08  1.22  0.85  1.67  0.15  1.59  1.11  2.08  0.18  

90%tm_Carbon 0.97  0.73  1.26  0.10  1.00  0.81  1.13  0.06  1.17  0.88  1.43 0.09  1.29  0.94  2.09 0.19  1.63  1.19  2.09  0.18  

50%_Food 0.18  0.17  0.21  0.01  0.20  0.17  0.22  0.01  0.21  0.19  0.23  0.01  0.21  0.19  0.24  0.01  0.25  0.22  0.28  0.01  

10%rf_Food 0.19  0.17  0.22  0.01  0.20  0.18  0.22  0.01  0.20  0.19  0.22  0.01  0.21  0.19  0.25  0.01  0.25  0.22  0.29  0.01  

50%rf_Food 0.20  0.18  0.24  0.01  0.21  0.18  0.25 0.02  0.21  0.19  0.23  0.01  0.22  0.19  0.26  0.02  0.27  0.22  0.33 0.03  

90%rf_Food 0.18  0.17  0.21  0.01  0.20  0.18  0.23  0.01  0.20  0.18  0.23  0.01  0.22  0.19  0.26  0.02  0.25  0.22  0.30  0.01  

10%tm_Food 0.18  0.17  0.20  0.01  0.19  0.17  0.22  0.01  0.20  0.19  0.22  0.01  0.21  0.19  0.26  0.01  0.25  0.23  0.29  0.01  

50%tm_Food 0.19  0.17  0.25 0.01  0.20  0.18  0.22  0.01  0.21  0.19  0.23  0.01  0.22  0.19  0.27  0.02  0.26  0.22  0.32  0.02  

90%tm_Food 0.20  0.17  0.24  0.02  0.20  0.19  0.22  0.01  0.22  0.19  0.25 0.01  0.24  0.20  0.34 0.03  0.27  0.23  0.33  0.02  



 

 

 

 

 

Table 7.9 Continued 

 

 

 

 Site 6 Site 7 Site 8 Site 9 Site 10 

Scenarios Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD Mean Min Max SD 

50%_Carbon 1.19  0.96  1.30  0.06  0.87  0.71  0.97  0.05  1.66  1.36  1.89  0.11  1.14  0.89  1.27  0.07  1.29  1.02  1.46  0.08  

10%rf_Carbon 1.34  0.96  2.21 0.19  0.96  0.66  1.39  0.12  1.98  1.42  2.68  0.30  1.25  0.89  1.86 0.17  1.40  1.01  1.82  0.15  

50%rf_Carbon 1.33  0.94  2.04  0.20  0.94  0.72  1.36  0.11  1.96  1.16  3.05  0.38  1.19  0.91  1.78  0.15  1.42  1.05  2.04  0.17  

90%rf_Carbon 1.30  0.91  1.77  0.16  0.92  0.66  1.38  0.12  1.85  1.23  2.74  0.29  1.19  0.82  1.79  0.16  1.46  1.10  2.12 0.19  

10%tm_Carbon 1.24  0.88  2.04  0.15  0.91  0.68  1.26  0.11  1.91  1.42  2.77  0.27  1.18  0.83  1.65  0.16  1.31  0.95  1.73  0.14  

50%tm_Carbon 1.36  0.95  2.00  0.20  0.91  0.68  1.19  0.09  1.89  1.31  2.65  0.31  1.23  0.86  1.66  0.16  1.38  0.99  1.78  0.15  

90%tm_Carbon 1.42  0.96  2.05  0.20  0.99  0.73  1.49 0.13  2.01  1.40  3.26 0.35  1.27  0.91  1.71  0.16  1.44  1.05  1.95  0.16  

50%_Food 0.23  0.20  0.26  0.01  0.19  0.16  0.21  0.01  0.28  0.25  0.33  0.02  0.23  0.20  0.26  0.01  0.25  0.22  0.29  0.02  

10%rf_Food 0.24  0.19  0.34 0.03  0.19  0.16  0.25  0.01  0.31  0.26  0.41  0.04  0.24  0.20  0.32 0.02  0.26  0.22  0.31  0.02  

50%rf_Food 0.24  0.19  0.31  0.02  0.19  0.16  0.24  0.02  0.30  0.24  0.43  0.04  0.22  0.19  0.28  0.02  0.26  0.23  0.35  0.02  

90%rf_Food 0.23  0.20  0.30  0.02  0.19  0.16  0.25  0.02  0.29  0.25  0.38  0.03  0.23  0.20  0.31 0.02  0.28  0.22  0.40 0.04  

10%tm_Food 0.22  0.20  0.30  0.02  0.18  0.16  0.22  0.01  0.30  0.24  0.38  0.03  0.22  0.19  0.28  0.02  0.24  0.21  0.30  0.02  

50%tm_Food 0.24  0.20  0.33  0.03  0.18  0.16  0.21  0.01  0.30  0.25  0.38  0.03  0.24  0.20  0.28  0.02  0.26  0.22  0.33  0.02  

90%tm_Food 0.24  0.21  0.33  0.03  0.20  0.17  0.27 0.02  0.33  0.26  0.44 0.04  0.25  0.21  0.31  0.03  0.27  0.22  0.35  0.03  
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Table 7.10 The years with the highest predicted annual wildfire severity, 

corresponding climate scenarios and the highest predicted annual potential 

wildfire severity for each site between 2010 and 2099 under established 

environmental scenarios. 

Site Carbon storage Food security 

Year Climate  Potential FS Year Climate  Potential FS 

1 2063 50% tm 1.38 2063 50% tm 0.25 

2 2077 50% rf 1.19 2094 50% rf 0.25 

3 2032 90% tm 1.43 2098 90% tm 0.25 

4 2079 90% tm 2.09 2079 90% tm 0.34 

5 2061 50% rf 2.12 2061 50% rf 0.33 

6 2080 10% rf 2.21 2080 10% rf 0.34 

7 2092 90% tm 1.49 2092 90% tm 0.27 

8 2083 90% tm 3.26 2095 90% tm 0.44 

9 2058 10% rf 1.86 2058 10% rf 0.32 

10 2099 90% rf 2.12 2099 90% rf 0.4 

7.7 Summary and discussion 

The time-series version of PESERA-PEAT was applied to ten selected blanket peat-

covered sites across GB to explore changes in fluvial blanket peat erosion under 

possible variation in climate and land management practices over the 21
st
 century. 

The time-series of monthly baseline climate conditions for each site were calculated 

from UKCP09 outputs and then adjusted in terms of monthly statistics of measured 

data from MIDAS stations. Seven future climate scenarios derived from UKCP09 

median emission outputs were employed to account for the uncertainties in future 

climate change. Drainage, grazing and prescribed burning were incorporated to 

reproduce possible future land management change in blanket peatlands (Reed, 

Hubacek et al. 2013). Eight environmental scenarios were then established for each 

future climate scenario to stand for different combinations of possible variations in 

climate and land management practices. Runoff production and sediment yield 

under the eight scenarios were reported. In addition, potential wildfire severity was 

also evaluated under the established environmental scenarios.  
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Figure 7.15 The impact of climate change on fluvial blanket peat erosion. a) 

changes in annual sediment yield from baseline to future time periods 

under carbon storage scenarios shown in Figure 7.9; b) average annual 

sediment yield for future time periods under carbon storage scenarios 

shown in Figure 7.10; c) cumulative sediment yield between 2010 and 

2099 under carbon storage scenarios presented in Table 7.8. 
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7.7.1 The future of blanket peat erosion in GB under climate change 

A summary of erosion change for the ten sites with climate change is shown in 

Figure 7.15a, where erosion change at the selected sites could be roughly grouped 

into four classes. Erosion change at site 8 is systematically higher than at other sites, 

Sites 6, 9, and 10 have the second highest erosion change, sites 1, 4 and 5 have the 

third highest erosion change. Erosion change at sites 2, 3, and 7 are the lowest and 

close to zero. At sites 2 and 7, a negative change of erosion is sometimes found 

(Figure 7.9), implying that these wetter and colder areas are better suited for blanket 

peat. As a result, future erosion risk (Figure 7.15b and c) for the ten sites could be 

categorized into three groups: sediment yield from sites 5, 6, 8, 9 and 10 is 

obviously higher than from other sites; sites 1, 2, 3 and 7 have the lowest erosion 

risk, and sediment yield from site 4 falls in the middle. Overall, fluvial blanket peat 

erosion is likely to increase with climate change in most cases with increasing rates 

generally higher in the southern and eastern (e.g. Site 8) than in the northern and 

western parts of GB (except site 7). 

 

 

 

 

 

 

 

Figure 7.16 presents the relationship between climate difference and grouping of 

erosion change and risk described above. The relationship between climate 

clustering and relative erosion change is stronger than that between climate 

clustering and erosion risk. The relative erosion change is highest at driest locations, 

Figure 7.16 The relationship between climate clustering and grouping of erosion 

change and erosion risk. For the climate clustering, the number ‘1’, ‘2’, ‘3’ 

represents the three climate zones from dry to wet in Figure 7.3; For erosion 

change / risk group the number ‘1’, ‘2’, ‘3’ and / or ‘4’ represent the groups 

with the erosion change or erosion risk from low to high as described above.  
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and lowest at wettest locations. However, similar erosion change could occur even at 

locations in different climate zones (i.e. two points of erosion change group 3), at 

the same time, the highest absolute erosion (erosion risk) occurs at all climate 

conditions. This may be because the blanket peat erosion is impacted not only by the 

climate conditions but also by the local topography, although the land management 

was considered to be the same. Therefore, the future relative change and absolute 

rates of blanket peat erosion may not simply follow the pattern of climate 

distribution, even if the land management is not changed. 

 

The general spatial pattern of erosion change with climate is consistent with the 

results from previous bioclimatic envelope modelling results for blanket peatlands 

using statistical and process-based (PeatStash) bioclimatic models (Gignac, 

Nicholson et al. 1998; Clark, Gallego-Sala et al. 2010; Gallego-Sala, Clark et al. 

2010). Both Gallego-Sala, Clark et al (2010) and Clark, Gallego-Sala et al. (2010) 

demonstrated that the geographical distribution of climate suitable for blanket 

peatlands gradually retreats towards the north and west of GB. Model-based studies 

in Canada have suggested that peatlands in Canada may “migrate” northwards as a 

result of elevated temperatures and drought (Gignac, Nicholson et al. 1998). 

However, these bioclimatic modelling results do not determine the eventual fate of 

existing blanket peatlands left outside their bioclimatic space since the resilience of 

blanket peatlands to such climate change needs to be accounted for. Modelling 

results from this chapter may be able to help with assessment of the fate of blanket 

peatlands outside their suitable bioclimatic space. With climate change in the future, 

blanket peatlands within the marginal areas will be subject to more erosion and 

degradation.  

 

The change of mean annual erosion at site 7 does not follow the general spatial 

pattern of blanket peat erosion change with climate across GB, and is lower than that 

of sites around it. It is noticeable that site 7 is located in the peak of the Pennines 

hills (Trout Beck) and has the highest elevation of all sites considered. As a result, it 

is subject to high rainfall and low temperature (Figure 7.3), which is fundamental for 

active peat growth (Charman 2002). Previous studies also suggest that peatland 
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ecosystems at higher latitudes may be less sensitive to a warmer climate in Europe 

and North America in the future (Meehl and Tebaldi 2004; Bragazza 2008). 

7.7.2 Climatic drivers of changes in blanket peatlands 

Modelling results demonstrate that runoff change is more related to rainfall variance 

rather than temperature across the ten sites between baseline and three future time 

periods. This is consistent with the results from previous studies at smaller temporal 

scales (Evans, Burt et al. 1999; Holden and Burt 2002a; Holden and Burt 2003c; 

Holden 2005c), which showed saturation-excess overland flow was commonly 

recognised as a dominant runoff generation mechanism in blanket peatlands, and 

quick response of runoff to rainfall is the major characteristic of blanket bog stream 

hydrology. 

 

Temperature was demonstrated to be the main climate input variable driving the 

changes in fluvial blanket peat erosion under UKCP09 projected future climate for 

most sites (except site 8). Interestingly, Gallego-Sala, Clark et al (2010) found that 

temperature tended to be more important than rainfall and moisture index in 

variation of the areal extent of the peat bioclimatic envelope through sensitivity 

analysis of the PeatStash model dependent of climate scenarios.  

 

The predicted change in sediment yield at site 8 is unusual in the context of the other 

sites where the increased erosion is the result of increased rainfall, and the highest 

predicted annual erosion is also coincident with high rainfall (Figure 7.10). This is 

possibly because the relatively dry and warm condition at this site leads the 

sediment yield to be transport limited (Figure 7.3). Similar field results were found 

by Francis (1990), who investigated blanket peat erosion in the Upper Severn 

catchment, mid Wales during two drought years in the 1980s. In that study, the 

eroding peat surfaces exhibited maximum recession during the summer, but the peat 

surface sediment trap indicated that the highest rates of sediment loss from peat 

faces was coincident with the high rainfall during autumn and early winter. Francis’s 

results also imply that summer desiccation could be a major source of sediment 

erosion. This indirectly confirms the modelling results shown in Figure 7.12, where 
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summer desiccation is closely related to the highest predicted annual sediment yield 

for the selected sites.  

7.7.3 Interactions between climate change and land management shifts 

Modelling results suggest that runoff change with land management shifts (between 

carbon storage and food security) is smaller than with climate, while land 

management shifts is more influential than climate change in blanket peat erosion. 

This is consistent with the result for the North Pennines blanket peatlands presented 

in Chapter 6. Table 2.2 of Chapter 2 presented the measured blanket peat erosion 

from blanket peat-covered catchments around the UK. The spatial pattern of the 

measured erosion does not follow that suggested by the modelling results of this 

chapter or previous bioclimatic modelling results. This may be because the actual 

management conditions and gullies were not taken into account in this chapter, 

inevitably disturbing the climatic impacts on erosion. This may confirm the 

dominant role land cover play in controlling the magnitude and spatial pattern of 

blanket peat erosion. Field studies conducted by Ramchunder, Brown et al. (2013) 

demonstrated that rotational burning had more impact on suspended sediment 

concentration than on water discharge through comparing the field results from 

burnt and unburnt peatland sites in northern England. A significant decrease of 

blanket peat erosion in Rough Sike, northern England between 1960 and 2000 was 

attributed to re-vegetation of gullies (Evans, Warburton et al. 2006). This indicates 

the importance of land management and cover type in blanket peat erosion because 

management options usually impact vegetation cover and connectivity of sediment 

source areas to stream channels. It is acknowledged that only two extremes of land 

management scenarios have been examined in the study and that there may be many 

alternatives in between. Nevertheless, modelling results confirm that careful land 

management could be used to help partly mitigate the future impact of climatic 

change on blanket peat erosion, enhancing the resilience of these systems. 
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Figure 7.17 presents a summary of the sediment yield from the chosen sites under 

interaction scenarios. Erosion risk for sites 5, 6, 8, 9 and 10 is systematically higher 

than that for other sites. Additionally site 8 has apparently higher erosion than sites 5, 

6, 9, and 10. Sites 1, 2 and 3 have the lowest erosion compared to other sites. This 

may imply that under climate change in the future more careful and protective land 

management practices should be undertaken in GB blanket peatlands in order to 

Figure 7.17 Sediment yield from the selected sites under interaction scenarios. 

a) boxplots represent average annual sediment yield for each site for 

future time periods under interaction scenarios; b) boxplots represent 

cumulative sediment yield for each site between 2010 and 2099 under 

interaction scenarios presented in Table 7.8. 
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reduce erosion risk from climate change. However, the spatial distribution of erosion 

risk at the selected sites under different management conditions may also imply that 

sites 5, 6, 8, 9 and 10 may be more suitable for being managed for carbon storage 

compared to other sites. If there was a national food security disaster in the future 

then sites 1, 2 and 3 might be more suited for food security management if necessary. 

Site 4 could be managed for food or carbon according to the actual demand. Erosion 

at site 7 under carbon storage scenarios is lower than at site 4 and in the lowest 

group, while erosion at site 7 is about same as at site 4 and in the middle group 

under interaction scenarios. This demonstrates that site 7 is more suitable for carbon 

storage management.  

 

The established land management changes have much more impact than predicted 

climate change on potential wildfire severity. Lower intensity of land management 

leads to enhanced potential wildfire severity, and such an impact is opposite to the 

impact of land management shifts on sediment yield. Modelling results from other 

soil system have suggested that infrequent wildfire could result in more sediment 

loss than frequent managed burning (Esteves, Kirkby et al. 2012). So wildfire-

awareness should be taken when blanket pealtlands are managed (McMorrow 2011). 

More work is still desirable on the interactions between wildfire and land 

management practices. 

 

7.7.4 Limitation of the work 

In this chapter, the gully-caused drainages were not incorporated in the “Base 

Condition” with the method employed for the Upper North Grain catchment in 

Chapter 5. This is because, as stated in Chapter 6, 1) the method used for 

incorporation of gully system in the Upper North Grain catchment was actually a 

compromise since the spatial distribution of gullies, gully width and gully depth 

were set to constants; 2) the parameters required by the drainage model for gullies 

are difficult to achieve. However, absence of natural gullies in the modelling work 

may add some uncertainties to the modelling results since lowered water table due to 

drainage will increase the sediment production, and restrict the transporting capacity 
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of water flow by decreasing the runoff production. Therefore, the natural gully 

systems should be incorporated accurately in the future application of the model. 
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Chapter 8  

Conclusions 

8.1 A synthesis of the findings of the thesis 

The aim of this project was to understand “how fluvial blanket peat erosion 

mechanisms and rates may change under climate and management practices 

(artificial drainage, burning and grazing) through the 21
st
 century”. A modelling 

approach was used as it enables investigation of future scenarios of changes of 

climate and land management without impossibly laborious and expensive long-

term field experiments (Chapter 2). In the project, the grid version of the PESERA 

model (PESERA-GRID) was chosen (Chapter 3) for further development to produce 

an erosion model for blanket peatlands (PESERA-PEAT). Figure 8.1 summarizes 

the modelling work that has been done in the project. The hydrology and vegetation 

growth modules of PESERA-PEAT are exactly the same as those of the PESERA-

GRID model. However, significant modifications to the PESERA-GRID model 

(Chapter 4), which have been shown in red in Figure 8.1, focused on two aspects: 1) 

incorporation of appropriate sediment production mechanisms that dominate in 

blanket peatlands (i.e. freeze-thaw and desiccation); 2) parameterization of typical 

land management practices in blanket peat-covered areas.  

 

A novel sediment supply index, which is defined as sediment concentration per unit 

runoff, was used to relate freeze-thaw and desiccation with climatic and soil 

moisture conditions. The sediment supply index was based on a sediment rating 

curve, which had been demonstrated previously to be a good indicator of sediment 

production in blanket peat-covered catchments (Yang 2005; Evans and Warburton 

2007). The resulting regression equations were then aggregated into the model to 

account for sediment production from blanket peatlands by examining actual 

sediment production measured at Rough Sike (a tributary of Trout Beck), northern 

England. The erodibility of weathered blanket peat was considered to be higher than 

that of freshly exposed blanket peat. As a result, the erosion processes in the 
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PESERA-PEAT model are composed of sediment supply, sediment transport and 

sediment storage. This is opposed to just a final sediment yield which, in the original 

PESERA-GRID model, is simply calculated as the transporting capacity of overland 

flow.  

 

In the PESERA-GRID model, only grazing was originally considered via its impact 

on vegetation cover and biomass. In this thesis, artificial drainage and managed 

burning were incorporated into the model through the PESERA drainage model 

(Beharry-Borg, Hubacek et al. 2009) and vegetation cover and biomass were 

completely removed in the patches caused by rotational prescribed burning (Defra 

2007). Potential wildfire severity was estimated by PESERA-PEAT with an ignition 

model based on the predicted vegetation biomass and climate conditions (Venevsky, 

Thonicke et al. 2002).  

 

The PESERA-PEAT model was evaluated with field data from three blanket peat-

covered catchments and previously published data, considering spatial scaling 

impacts on the magnitude of runoff and sediment measurements (Chapter 5). Model 

testing showed that the model could predict blanket peat erosion well. The verified 

PESERA-PEAT was then applied in blanket peatlands of the North Pennines, and 

ten blanket peat-covered sites across Great Britain (GB) (Chapters 6 and 7). Climate 

change to the end of the century was derived from the UKCP09 and Met Office’s 

historical (1961-1990) meteorological data. A major undertaking for the project was 

to downscale climate data for use in the spatial model. Possible changes in land 

management practices were based on quantification of narrative land use scenarios 

resulting from previous investigations (Reed, Arblaster et al. 2009; Reed, Bonn et al. 

2009; Reed, Hubacek et al. 2013). 
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Through model development and testing in Chapters 4 and 5, it has been 

demonstrated that: 

 The PESERA-PEAT model is robust in blanket peat erosion modelling. 

 The sediment supply index is a useful tool for indicating the sediment supply 

capacity of blanket peatlands; 

 

Through application of PESERA-PEAT in blanket peatlands of the North Pennines 

and over GB in Chapters 6 and 7, it has been demonstrated that:  

 The response of blanket peat erosion to climate change is spatially very variable 

both within the North Pennines and across GB. Generally, changes in blanket 

peat erosion are predicted to be higher in southern and eastern areas than in 

western and northern parts of GB, peaking in eastern England (North York 

Moors), where relatively lower rainfall and higher temperatures under climate 

change leads the erosion to be transport limited. 

 Change of blanket peat erosion with climate change becomes smaller in wetter 

and colder places; 

 As climate changes, rainfall is more important than temperature in shaping long-

term changes of runoff production while temperature appears to be more 

dominant than rainfall in controlling long-term peat erosion change. However, in 

the North York Moors rainfall appears to be more dominant in long-term erosion 

change; 

 Summer desiccation may become a more important sediment source for GB 

blanket peat erosion in the future, leading to more sediment erosion released 

from blanket peatlands during subsequent rainstorms; 

 Land management has stronger impacts on blanket peat erosion than on runoff, 

while climate plays a more important role in runoff production rather than in 

blanket peat erosion. Land management practices can act as a good tool in 

mitigating the impacts of climate change on blanket peat erosion, although 

wildfire-awareness should be promoted when blanket peatlands are rewilded. 



 

 

 

 

 

Figure 8.1 A synthesis of the modelling work in the project. Red indicates where significant modifications to the PESERA-GRID model have 

been undertaken. The top boxes indicate the scenarios that were modelled. Note that mixed climate and land management scenarios were 

also included. 
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8.2 The role of this research in blanket peatland geomorphology  

The major contributions of this research to the geomorphology of blanket peatlands 

can be summarized through four components: 1) a quantitative description of 

sediment production mechanisms in blanket peatlands; 2) a first attempt in 

developing a model for blanket peat erosion; 3) determining implications for 

peatland management and restoration; 4) key implications for inference from site-

based studies. 

8.2.1 Sediment production 

In this project, the sediment supply index has been successfully applied to 

parameterize the sediment supply from blanket peatlands at a monthly scale based 

on field data from the Trout Beck catchment, northern England between 1997 and 

2009. Meanwhile, the sediment supply index could potentially be used for 

parameterization of sediment supply at an event scale as it is conceptually based on 

the slope of sediment rating curves, which is indicative of sediment supply status in 

small catchments based on data from individual storms (Yang 2005; Evans and 

Warburton 2007). This is to say, the sediment supply index could potentially be used 

to establish sediment supply modules for other existing erosion models which are 

hydrologically suitable for blanket peatlands such as LISEM and CAESAR etc.. 

Such an application could facilitate these models to capture blanket peat erosion 

processes (supply-limited and transport-limited) better, providing more flexibility in 

modelling them at various scales, both spatial and temporal. 

8.2.2 Modelling approach 

There has been little effort made, to date, to simulate blanket peat erosion. Only two 

studies were found: 1) May, Place et al. (2010) modelled soil erosion and transport 

in a typical blanket peat-covered catchment in County Mayo, on the northwest coast 

of the Republic of Ireland. In the model, USLE was employed for sediment 

production, while a delivery ratio determined the amount of eroded soil that entered 

the drainage network. 2) The CAESAR model has been applied to an upland 

catchment, which is partly covered by peat, to investigate the impacts of climate and 

land use change on sediment loss (Coulthard, Kirkby et al. 2000; Coulthard, Hicks et 

al. 2007). USLE only takes into account of detachment of soil by rainfall drops 
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(Stone and Hilborn 2000), while CAESAR considers the shear stress of overland 

flow as the major sediment production mechanisms (Coulthard, Kirkby et al. 2000). 

Therefore, these studies did not include the major sediment production mechanisms 

(freeze-thaw and desiccation) that occur in blanket peatlands. Moreover, none of the 

contemporary erosion models were capable of describing the sediment production 

mechanisms in blanket peatlands (Chapter 3). 

 

This thesis provided the first attempt to build a model (PESERA-PEAT) for blanket 

peat erosion. In the model, erosion has been represented by two phases: 1) sediment 

production; and 2) sediment transport. Sediment production is driven by freeze-thaw 

and desiccation, which are described as a function of temperature and water table. 

Sediment transport is calculated as a function of overland flow, soil erodibility, and 

local relief. Both the sediment production and transport are heavily impacted by the 

vegetation cover. The major advantage of the PESERA-PEAT model is that all the 

erosion produced by PESERA-PEAT is originally generated by freeze-thaw and 

desiccation, which is not considered in any other existing erosion models. The 

model describes sediment supply and transport separately, and final sediment yield 

is calculated as the balance between sediment supply and transport. This 

characteristic enables the modelled erosion to be switched between supply-limited 

and transport-limited forms, better reproducing the erosion processes of blanket 

peatlands. 

8.2.3 Peatland management and restoration 

Modelling results have demonstrated that land management could be an effective 

way of mitigating the impact of climate change on blanket peat erosion. Peatland 

landscapes are sensitive to land management interventions, and erosion protection 

should focus on controlling management activities in climate areas that are marginal 

for peatlands over the next 100 years (Chapters 6 and 7). Less intensive management 

in the form of grazing, drainage and burning could help with the recovery of blanket 

peatland vegetation cover and water table (Grayson, Holden et al. 2010; Holden, 

Wallage et al. 2011) making sites more resilient to climate change influences on peat 

erosion. Peatland restoration techniques are often adopted to reduce peat erosion 

(Parry, Holden et al. 2014). Dams and re-vegetation are the most widely applied 

means of restoring eroded peat (Holden, Shotbolt et al. 2007). Such methods are 
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prevalent mainly because they break the connectivity between hillslopes and 

channels, so less sediment reaches the catchment outlet (Evans and Warburton 2007). 

However, they may not reduce erosion on hillslopes effectively, and less attention 

has been given to investigations of the change of peat erosion on hillslopes after the 

re-vegetation of gully floors and / or blocking the gullies with dams. The PESERA-

PEAT model may offer an opportunity to implement such an investigation, 

promoting the effectiveness of peat restoration strategies and usage of the limited 

funding. The model is able to provide a sediment budget for blanket peat erosion on 

hillslopes. Such a budget is composed of three parts, which are the sediment 

production, sediment storage and sediment yield. So the impacts of peat restoration 

methods on each part of the sediment budget could be evaluated with the model. 

This is to say, the model could not only reflect the change of sediment yield at base 

of hillslopes after re-vegetation and blocking of gullies, but also link these 

restoration practices with sediment production in blanket peatlands. This is 

important as, in theory, sediment erosion in blanket peatlands comes from erodible 

materials produced by sediment production mechanisms. 

8.2.4 Implications for inference from site-based studies 

The impact of climate change on blanket peat erosion varies within the North 

Pennines (Chapter 6) and between different sites over GB (Chapter 7). For example, 

in terms of the modelling results, the erosion change in the North Pennines was 

negative (less erosion) under some climate change scenarios, while a 150 % increase 

of sediment yield could be detected in North York Moors under climate change 

scenarios. At the same time, the impact of land management practices on blanket 

peat erosion also showed difference among sites across GB (Figure 7.9). This result 

suggests that examining environmental change modelling results from one site or 

catchment area and assuming these findings may apply elsewhere would be a 

mistake. Trout Beck (within the North Pennines) appears to be least sensitive to 

potential climate change of the ten sites investigated. Notably it is also a site where 

there is a rich background of data. However, these findings warn against making 

broad assumptions from single-site-based modelling analyses of future 

environmental change impacts on peatland systems. It is thus suggested that such 

modelling needs to be conducted across different spatial regions nationally and 

internationally.  
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8.3 Limitations of the work 

8.3.1 Processes involved in the PESERA-PEAT 

The PESERA-PEAT model treats the studied area as a cascade of hillslopes. 

Theoretically it only considers the soil loss driven by overland flow on hillslopes 

such as rill and sheet erosion, which are the dominant mechanisms controlling 

sediment flux from eroding peatland systems (Evans and Warburton 2007). 

However, the base sediment and runoff data used for establishing sediment supply 

indices were collected at the outlet of Trout Beck catchment between 1997 and 2009. 

The model was also evaluated with data originally collected at other catchment 

outlets. This means the sediment budget predicted by PESERA-PEAT is actually a 

lumped version of erosion caused by both hillslope and channel processes such as 

gully erosion, sheet erosion, pipe erosion, river bank erosion, and mass movement 

(if it happened in the Trout Beck catchment during the study period) etc. In fact, this 

was a compromise during model development mainly because data from the Trout 

Beck catchment were of best quality compared to other datasets available from UK 

sites, and there were no data to support incorporation of each erosion process into 

the model separately. In future studies, more process-based descriptions and datasets 

of mass movement, river bank erosion (especially the occurrence of peat blocks), 

and pipe erosion in the model is still needed. By doing so, a more detailed sediment 

budget in relation to separate processes could be derived.  

 

The PESERA-PEAT model, at present, only accounts for the erosion driven by 

running water and so wind erosion processes are currently not included. However, 

wind erosion is an important component of blanket peat erosion in the UK 

(Warburton 2003; Evans and Warburton 2007) as strong winds are a characteristic 

feature of UK upland areas. Besides, wind-splash, which is usually highest when 

heavy rainfall is combined with high wind-speeds (Baynes 2012), may become more 

important in winter months in the future, given that the UK will experience wetter 

and stormier winter (UKCP09 2009). Meanwhile, future climate projections also 

suggested that more frequent dry weather would occur during the summer months 

over the next 100 years (UKCP09 2009), possibly leading to dry blow processes of 

erosion becoming more prevalent in UK upland areas (Foulds and Warburton 

2007a). Hence a more comprehensive and accurate prediction of changes in blanket 
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peat erosion would be achieved if the wind erosion processes could be incorporated 

into the model in the future. 

8.3.2 Parameterization of management practices and gullies 

Currently burning and grazing have been parameterized as vegetation cover and 

biomass removal in the PESERA-PEAT model (Chapter 4). This method is subject 

to shortfalls as it does not directly consider the impacts of burning and grazing on 

the hydraulic properties of soil in blanket peatlands such as infiltration rates, soil 

moisture content, hydrological connectivity etc. (Worrall, Armstrong et al. 2007; 

Worrall and Adamson 2008). Unfortunately, however, results from previous studies 

were inconclusive for mathematical modelling of the reaction of peat properties to 

burning and grazing. Hence more research effort in this area is desirable.  

 

Drainages driven by natural gullies were not considered in Chapters 6 and 7 mainly 

due to the parameters required by the drainage model were not achieved and the 

commonly used methods to achieve these parameters are unrealistic in terms of the 

scale of the project. However, absence of natural gullies negatively impacts the 

reasonability of the modelling results, and forms a limitation of this modelling 

approach. The accurate incorporation of gully systems is therefore expected in the 

future model application. 

8.3.3 The impacts of vegetation on blanket peat erosion 

In the project, model evaluation suggested that vegetation cover reduced sediment 

yield by 95 %, confirming that re-vegetation of bare ground is very clearly the most 

effective way of reducing blanket peat erosion (Evans, Warburton et al. 2006). 

However, the reliability of this result (95 %) was not validated with field data as 

there was no study directly investigating the impacts of vegetation cover on blanket 

peat erosion. Moreover, the value was obtained assuming that all vegetation types 

had the same impact on the transport capacity of overland flow if the vegetation 

cover was the same. However, this may be not the case given that the velocity of 

overland flow, which significantly affects the stream power of overland flow (Moore 

and Burch 1986), varies with vegetation cover types in peatlands (Holden, Kirkby et 

al. 2008). Moreover, in PESERA-PEAT, it is assumed that the impact of vegetation 

cover on sediment production and transport are the same. However, there is no 
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direct evidence to support whether this is reasonable as previous studies have 

usually focused on the impacts of vegetation cover on the final sediment yield rather 

than on the different phases of erosion processes (i.e. sediment production and 

transport) in blanket peatlands. More process-based research is thus needed to better 

understand blanket peat erosion under different vegetation cover types. 

8.4 Recommendations for further research 

In order to further investigate the change of blanket peat erosion under climate and 

management practices, there are a number of recommendations for future research. 

These may be divided into two sections: field investigations and modelling. 

8.4.1 Field investigation 

Future research on field investigations of blanket peat erosion should focus on: 

 Improved understanding of erosion processes in blanket peatlands 

To improve understanding of erosion processes in blanket peatlands, there should be 

process-based studies on different types of erosion and a greater body of work is 

required on understanding sediment production mechanisms more comprehensively. 

In order to fulfill the former, long-term observations on erosion processes of blanket 

peat-covered catchments are needed. The methods presented by Evans and 

Warburton (2005) and Evans, Warburton et al. (2006) for establishing a catchment 

sediment budget would be helpful. However, they need to be updated to include 

more erosion processes in blanket peatlands such as pipe erosion and mass 

movement. With regard to the latter, field data from more sites across the world are 

needed to assess the relationships between sediment production and climate and soil 

moisture content. Analysis of field measurements from the Trout Beck catchment 

between 1997 and 2009 demonstrated that freeze-thaw and desiccation are related to 

not only the length of temperature below freezing and drought, but also the freezing 

level and strength of drought. Attention should be paid to this point when 

establishing sediment production equations in the future. 

 More field data collection to improve model evaluation 

The available measured runoff and erosion data from blanket peatlands are usually 

at a catchment scale, so downscaling equations were employed to offset the scaling 

impact on the magnitude of field data during model calibration and validation. 
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However, long-term observational data on runoff and sediment flux from blanket 

peatlands at catchment scales are rare as well. So the available data were used and 

there was little choice in being able to select the best quality data. Therefore, more 

field observations on hillslope hydrology and erosion in blanket peatlands are 

urgently needed. These data would help to improve the accuracy of model 

calibration and validation. 

 A better understanding of the impacts of burning and grazing on blanket peat 

ecosystems, and interactions between wildfire and land management strategies. 

More research effort is needed to more thoroughly understand the impact of burning 

and grazing on soil properties of blanket peatlands. Modelling results in Chapters 6 

and 7 also confirmed that more work is required to understand the interactions 

between wildfire and land management practices. 

 

 More process-based field studies to understand the impacts of different 

vegetation types on the blanket peat erosion. 

8.4.2 Modelling 

 Operating the PESERA-PEAT model in different spatial regions of the UK and 

internationally; 

 A better incorporation of peat erosion processes into the PESERA-PEAT model 

such as pipe erosion, mass movement, river bank erosion and wind erosion. 

 Producing sediment production modules for erosion models at a smaller scale 

for modelling blanket peat erosion processes in more detail. 

8.5 Overview of the project 

This PhD project concentrated on modelling blanket peat erosion under 

environmental change. An erosion model for blanket peatlands (PESERA-PEAT) 

was established, being the first such model for peatlands to the author’s knowledge. 

The model specifically incorporated freeze-thaw and desiccation processes. 

PESERA-PEAT was deemed to be suitable for investigating the potential response 

of blanket peat erosion to climate change and land management shifts. Such a model 

may be a useful tool, which can now be adopted by policy makers to support 

planning of land-use strategies in blanket peatlands of the UK. Application of 

PESERA-PEAT across the North Pennines and GB provided useful evidence of the 
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potential changes in erosion rates under climate and land use change scenarios. It 

also provided some useful lessons about the value of studying a wide range of sites 

and applying models across large areas rather than inferring future trajectories 

nationally based on results from single sites. 
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