

QoS Awareness and Adaptation in Service
Composition

by

Silvana De Gyvés Avila

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Computing

February 2014

The candidate confirms that the work submitted is his/her own, except where

work which has formed part of jointly-authored publications has been

included. The contribution of the candidate and the other authors to this work

has been explicitly indicated below. The candidate confirms that appropriate

credit has been given within the thesis where reference has been made to

the work of others.

All material in the following articles is the candidate’s own work, under the

supervision of the co-author Karim Djemame.

S. De Gyvés and K. Djemame , “A QoS Optimization Model for Service

Composition”, in Proceedings of the 4th International Conference on

Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE’12), Nice,

France, July 2012. Sections of this paper are included in chapters 3 and 6.

S. De Gyvés and K. Djemame , “Fuzzy Logic Based QoS Optimization

Mechanism for Service Composition”, in Proceedings of the 7th IEEE

International Symposium on Service Oriented System Engineering

(SOSE’13), San Francisco Bay, USA, March 2013. Sections of this paper

are included in chapters 4 and 6.

S. De Gyvés and K. Djemame , “Proactive Adaptation in Service

Composition Using a Fuzzy Logic Based Optimization Mechanism”, in

Proceedings of the 4th International Conference on Cloud Computing and

Service Science (CLOSER’14), Barcelona, Spain, April 2014. Sections of

this paper are included in chapters 5 and 6.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the Thesis may be published without

proper acknowledgement.

© 2014 The University of Leeds and Silvana De Gyvés Avila

i

Acknowledgements

I would like to thank my supervisor Dr Karim Djemame for his guidance,

support and advice since the beginning of my studies in the University of

Leeds. This work would never have been possible without his help and I

cannot adequately express my gratitude for that. Additionally, I would like to

thank my examiners Dr. Vania Dimitrova and Dr. Radu Calinescu, for their

excellent comments and feedback when examining this Thesis.

I would like to acknowledge the help and technical support that

Django Armstrong gave me during the setting of the experimental testbed,

and the advice that Richard Kavanagh gave me regarding the improvement

of my writing. In the school I found not only nice mates, but very good

friends. I would like to thank all those who have been a support to me during

the last four years, specially Django, Richard and Asif, for their friendship, all

those coffees and endless talks.

Moving abroad was a hard decision and involved big changes in

many aspects of my life. I would like to express my heartiest gratitude to my

husband Ismael for all his tireless support and patience. He had to deal with

my ups and downs during the last four years, and it was definitely not an

easy task. I would like to thank my Mom and Dad, Alicia and Gerardo, and

my siblings, Pamela, Brenda and Gerardo, for everything they have done for

me. My family has being there for me always; cheering me up and

encouraging me in every quest I take, this time has been no exception.

Finally, I would like to thank the Mexican National Council on Science

and Technology for the scholarship they granted me to perform my PhD

studies in United Kingdom.

ii

Abstract

The dynamic nature of a Web service execution environment generates

frequent variations in the Quality of Service offered to the consumers,

therefore, obtaining the expected results while running a composite service

is not guaranteed. When combining this highly changing environment with

the increasing emphasis on Quality of Service, management of composite

services turns into a time consuming and complicated task. Different

approaches and tools have been proposed to mitigate the impacts of

unexpected events during the execution of composite services. Among

them, self-adaptive proposals have stood out, since they aim to maintain

functional and quality levels, by dynamically adapting composite services to

the environment conditions, reducing human intervention.

The research presented in this Thesis is centred on self-adaptive

properties in service composition, mainly focused on self-optimization. Three

models have been proposed to target self-optimization, considering various

QoS parameters, the benefit of performing adaptation, and looking at

adaptation from two perspectives: reactive and proactive. They target

situations where the QoS of the composition is decreasing. Also, they

consider situations where a number of the accumulated QoS values, in

certain point of the process, are better than expected, providing the

possibility of improving other QoS parameters. These approaches have

been implemented in service composition frameworks and evaluated

through the execution of test cases.

Evaluation was performed by comparing the QoS values gathered

from multiple executions of composite services, using the proposed

optimization models and a non-adaptive approach. The benefit of adaptation

was found a useful value during the decision making process, in order to

determine if adaptation was needed or not.

Results show that using optimization mechanisms when executing

composite services provide significant improvements in the global QoS

values of the compositions. Nevertheless, in some cases there is a trade-off,

where one of the measured parameters shows an increment, in order to

improve the others.

iii

List of Abbreviations

BPML Business Process Modelling Language

BPMN Business Process Model and Notation

DAML-S DARPA Agent Markup Language for Services

DSS Decision Support System

JSON JavaScript Object Notation

LAN Local Area Network

OCL Object Constraint Language

OWL Web Ontology Language

OWL-S OWL for Services

PDDL Planning Domain Definition Language

QoS Quality of Service

REST REpresentational State Transfer

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration

UML Unified Modelling Language

URL Uniform Resource Locator

WS-Agreement Web Services Agreement Specification

WS-BPEL Web Services Business Process Execution

Language

WS-CDL Web Services Choreography Description

Language

WS-CoL Web Service Constraint Language

WS-Discovery Web Services Dynamic Discovery

iv

WS-Policy4MASC WS-Policy for the Manageable and Adaptive

Service Compositions middleware

WAN Wide Area Network

WSCI Web Service Choreography Interface

WSDL Web Services Description Language

WSFL Web Services Flow Language

WSLA Web Service Level Agreement

WSRF Web Services Resource Framework

XLANG XML LANGuage

XML Extensible Markup Language

XPath XML Path language

XSLT Extensible Stylesheet Language Transformations

v

Table of Contents

Acknowledgements i

Abstract ii

List of Abbreviations iii

Table of Contents v

List of Figures ix

List of Tables xii

Chapter 1. Introduction 1

1.1. Research Motivation ... 1

1.2. Aims and Objectives ... 3

1.3. Methodology ... 4

1.4. Research Contributions .. 6

1.5. Assumptions ... 7

1.6. Thesis Outline .. 8

Chapter 2. Background 10

2.1. Service Oriented Architecture .. 10

2.2. Web Services ... 11

2.2.1. Web Service Related Standards 13

2.2.2. Web Service Life Cycle ... 15

2.2.3. Benefits of Using Web Services .. 18

2.3. Web Service Composition .. 18

2.3.1. Composition Languages .. 21

2.3.2. Challenges in Service Composition 23

2.4. Quality of Service ... 25

2.4.1. Service Level Agreements .. 27

2.4.2. QoS in Service Composition ... 28

2.4.3. Estimation of QoS Parameters in Service Composition 29

2.4.4. Predictive Algorithms ... 30

2.5. Adaptive Service Composition ... 32

vi

2.5.1. Autonomic Computing and Self-Adaptive Software 32

2.5.2. Adaptation in Service Composition 34

2.5.2.1. Self-Adaptive Properties ... 37

2.5.2.2. The Need for Adaptation in Service
Composition .. 40

2.5.3. Reactive vs Proactive Adaptation 40

2.6. Other Adaptive Approaches for Service Composition 41

2.6.1. Late Binding .. 41

2.6.2. Fault Tolerance ... 43

2.7. Decision Support Systems ... 46

2.8. Summary .. 48

Chapter 3. A QoS Optimization Model for Service Com position 50

3.1. Motivation ... 50

3.2. Self-Adaptation in Service Composition 52

3.3. Proposed Solution .. 54

3.3.1. System Model ... 56

3.3.2. QoS Model .. 58

3.3.3. Service Selection Model .. 59

3.3.4. QoS Optimization Model ... 60

3.4. Implementation ... 63

3.4.1. Composition Engine .. 65

3.4.2. Service Binder ... 66

3.4.3. Service Repository and Service Selector 67

3.4.4. Predictor .. 67

3.4.5. Adaptation Manager .. 68

3.5. Evaluation .. 69

3.5.1. Test Case .. 69

3.5.2. Service Selection Based on Fixed Weights 71

3.5.3. First Stage of Evaluation ... 71

3.5.3.1. Experimental Environment 72

3.5.3.2. Experimental Results ... 72

3.5.4. Second Stage of Evaluation .. 74

3.5.4.1. Experimental Environment 75

3.5.4.2. Experimental Results ... 76

vii

3.5.5. Discussion ... 78

3.6. Summary .. 80

Chapter 4. A Fuzzy Logic Based QoS Optimization Mod el for
Service Composition 81

4.1. Motivation ... 81

4.2. Decision Support Systems in Service Selection and Service
Composition .. 82

4.3. Proposed Solution .. 83

4.3.1. QoS Model and Service Selection Model 84

4.3.2. QoS Optimization Model ... 86

4.3.2.1. Fuzzy Logic Based Decision Support Systems 86

4.3.2.2. QoS Optimization Heuristic 90

4.4. Implementation ... 93

4.5. Evaluation .. 93

4.5.1. Service Selection Based on Fixed Weights 94

4.5.2. Dynamic QoS Parameters ... 94

4.5.2.1. Cost .. 95

4.5.2.2. Energy Consumption .. 96

4.5.3. QoS Parameters Configuration ... 97

4.5.4. First Stage of Evaluation ... 98

4.5.4.1. Experimental Results ... 98

4.5.5. Second Stage of Evaluation .. 102

4.5.5.1. Experimental Results ... 103

4.5.6. Discussion ... 107

4.6. Summary .. 108

Chapter 5. A Proactive Adaptation Mechanism for Ser vice
Composition 110

5.1. Motivation ... 110

5.2. Proactive Adaptation in Service Composition 111

5.3. Proposed Solution .. 113

5.3.1. System Model ... 113

5.3.2. QoS Model and Service Selection Model 115

5.3.3. QoS Optimization Model ... 117

viii

5.4. Implementation ... 121

5.5. Evaluation .. 123

5.5.1. Test Cases .. 123

5.5.2. Service Selection Based on Fixed Weights 125

5.5.3. Experiment Description ... 125

5.5.4. Evaluation Results... 126

5.5.5. Discussion ... 129

5.6. Summary .. 130

Chapter 6. Comparison, Discussion and Overall Asses sment of
the Evaluation 132

6.1. Overview .. 132

6.2. Adaptation in Service Composition - Comparison and
Discussion ... 134

6.3. Assessment of the Evaluation .. 137

6.3.1. Overview of the Experiments .. 138

6.3.2. Analysis of Results .. 139

6.3.3. Limitations ... 145

6.4. Summary .. 145

Chapter 7. Conclusion and Future Work 147

7.1. Summary .. 147

7.2. Contributions .. 149

7.3. Future Work ... 151

Appendix A. Comparison of Predictive Algorithms to Support
QoS Estimation 153

Appendix B. Self-Healing Features 156

Appendix C. Fuzzy Rules 158

References 162

ix

List of Figures

Figure 2.1. SOA model used by Web services .. 12

Figure 2.2. Web service standards. (a) WSDL document. (b) SOAP
message ... 14

Figure 2.3. Layered view of XML, SOAP, WSDL and UDDI 15

Figure 2.4. Web services roadmap ... 17

Figure 2.5. Centralized vs. decentralized service composition 19

Figure 2.6. Web service composition - dataflow models 20

Figure 2.7. Service composition languages and standards 22

Figure 2.8. QoS parameters .. 25

Figure 2.9. Self-Adaptive cycle for service composition 37

Figure 3.1. Composite service example .. 51

Figure 3.2. Events that can occur at runtime ... 52

Figure 3.3. Idea of solution .. 55

Figure 3.4. System model ... 56

Figure 3.5. QoS optimization heuristic ... 62

Figure 3.6. Packages diagram .. 63

Figure 3.7. Components interaction .. 64

Figure 3.8. BPEL code that defines the XML input for the service binder ... 66

Figure 3.9. Package diagram - adaptation manager 68

Figure 3.10. Travel planning process .. 70

Figure 3.11. Experimental environment - LAN .. 72

Figure 3.12. Response time comparison between variable and fixed
weights approaches .. 73

Figure 3.13. Cost comparison between variable and fixed weights
approaches ... 73

Figure 3.14. Score comparison between variable and fixed weights
approaches ... 74

Figure 3.15. Experimental environment - WAN ... 75

Figure 3.16. Response time comparison between variable and fixed
weights approaches .. 76

Figure 3.17. Response time evaluation - differences between
executions. .. 77

x

Figure 3.18. Cost comparison between variable and fixed weights
approaches ... 77

Figure 3.19. Cost evaluation - differences between executions 78

Figure 3.20. Score comparison between variable and fixed weights
approaches ... 78

Figure 3.21. Execution time for different number of available candidate
services ... 79

Figure 4.1. Basic configuration of fuzzy systems with fuzzifier and
defuzzifier .. 87

Figure 4.2. QoS optimization heuristic ... 92

Figure 4.3. Cost evaluation algorithm .. 95

Figure 4.4. Response time comparison between fuzzy based and fixed
weights approaches .. 99

Figure 4.5. Response time evaluation - differences between executions 99

Figure 4.6. Cost comparison between fuzzy based and fixed weights
approaches ... 100

Figure 4.7. Cost evaluation - differences between executions 100

Figure 4.8. Energy consumption comparison between fuzzy based and
fixed weights approaches .. 101

Figure 4.9. Energy consumption evaluation - differences between
executions ... 101

Figure 4.10. Benefit of adaptation per each task in the travel planning
process ... 102

Figure 4.11. Response time comparison between fuzzy based and
fixed weights approaches .. 103

Figure 4.12. Response time evaluation - differences between
executions ... 104

Figure 4.13. Cost comparison between fuzzy based and fixed weights
approaches ... 104

Figure 4.14. Cost evaluation - differences between executions 105

Figure 4.15. Energy consumption comparison between fuzzy based
and fixed weights approaches ... 105

Figure 4.16. Energy consumption evaluation - differences between
executions ... 106

Figure 4.17. Benefit of adaptation per each task in the travel planning
process ... 106

Figure 4.18. Execution time for different number of available candidate
services ... 108

Figure 5.1. System model ... 114

xi

Figure 5.2. QoS evaluation heuristic ... 120

Figure 5.3. Components interaction .. 122

Figure 5.4. Test cases. (a) Order booking process. (b) Travel planning
process ... 124

Figure 5.5. Order booking process results. (a) Response time. (b)
Energy consumption ... 127

Figure 5.6. Order booking process results. (a) Availability. (b) Cost 127

Figure 5.7. Summary of results - order booking process 128

Figure 5.8. Travel planning process results. (a) Response time. (b)
Energy consumption ... 128

Figure 5.9. Travel planning process results. (a) Availability. (b) Cost 129

 Figure 5.10. Execution time for different number of available candidate
services ... 130

Figure 6.1. Experiment 1A- comparison between variable weights and
fixed weights approaches. (a) Response time. (b) Cost 140

Figure 6.2. Experiment 1B- comparison between variable weights and
fixed weights approaches. (a) Response time. (b) Cost 141

Figure 6.3. Experiment 2A- comparison between fuzzy based and fixed
weights approaches. (a) Response time. (b) Cost. (c) Energy
consumption .. 142

Figure 6.4. Experiment 2B- comparison between fuzzy based and fixed
weights approaches. (a) Response time. (b) Cost. (c) Energy
consumption .. 142

Figure 6.5. Experiment 3A- comparison between proactive fuzzy-based
and fixed weights approaches. (a) Response time. (b) Cost. (c)
Energy consumption. (d) Availability ... 143

Figure 6.6. Experiment 3B- comparison between proactive fuzzy-based
and fixed weights approaches. (a) Response time. (b) Cost. (c)
Energy consumption. (d) Availability ... 144

Figure A.1. Comparison of estimated values vs. real (WS1) 154

Figure A.2. Comparison of estimated values vs. real (WS2) 154

Figure B.1. Self-healing evaluation heuristic ... 157

xii

List of Tables

Table 2.1. Relationship between self-* properties and
events/action/goals in service composition ... 38

Table 2.2. SOA specific faults ... 43

Table 3.1. Composition tools ... 65

Table 3.2. QoS parameters configuration .. 70

Table 4.1. Fuzzy variables definition ... 88

Table 4.2. Benefit of adaptation related fuzzy rules 89

Table 4.3. Power consumption description per node 96

Table 4.4. QoS parameters configuration .. 97

Table 4.5. Results summary .. 103

Table 5.1. Fuzzy variable definition - availability 118

Table 5.2. QoS parameters configuration .. 124

Table 6.1. Adaptation in service composition - part 1 134

Table 6.2. Adaptation in service composition - part 2 135

Table 6.3. Proactive adaptation/monitoring in service-based systems 136

Table 6.4. QoS parameters configuration .. 139

Table 6.5. Summary of experiments configuration 139

Table C.1. Benefit of adaptation fuzzy rules - extended 158

Chapter 1. Introduction

1

Chapter 1
Introduction

1.1. Research Motivation

Web services are modular, self-contained and reusable software

components that rely on XML-based and Web-related standards1 to support

machine-machine interactions over distributed environments [1]. One of the

benefits offered by services is time/cost reduction during software

development and maintenance. When a single service does not accomplish

a consumer’s requirement, different services can be used in conjunction to

create a new value-added service, known as composite service, to fulfil this

requirement.

A composite service provides a new software solution with specific

functionalities and can be seen as an atomic component in other service

compositions, or as a final solution to be used by a consumer [2]. The

process of developing a composite Web service is called service

composition. In service composition, it is necessary to have a set of

available services that offer certain functionality and also fulfil Quality of

Service (QoS) constraints [3]. QoS properties refer to non-functional aspects

of Web services, such as performance, reliability, scalability, availability and

security [4]. By evaluating the QoS aspects of a set of Web services that

share the same goals, a consumer could identify which service meets his

quality requirements.

The nature of service composition, dynamicity offered by the

environments where services are executed, and growing number of

available services (that may provide the same functionality), have brought

the need of mechanisms focused not only in enabling automatic/dynamic

composition, but also ensuring that the consumer will obtain the expected

results when invoking a composite service. To achieve this goal, it is

important to consider the QoS aspects of the services involved in the

1 SOAP, JSON, REST, Thrift, Avro, among others.

Chapter 1. Introduction

2

composition, as their drawbacks will be inherited by the composite service.

However, knowing the QoS of the components is not enough to warranty the

behaviour of the composition, as unexpected events may occur at runtime.

In an ideal scenario, all the activities within a composite service (that

involve invoking service operations) are executed without problems (i.e.

delays, faults, etc.). When the composite service finishes its execution, it has

performed all the scheduled tasks, and fulfilled the customer’s requirements.

However, in the real world the behaviour offered by services exhibits

frequent variations, therefore, obtaining the expected results while running a

composite service is not guaranteed. As a result, various approaches have

been proposed in order to restore and maintain the functional and quality

aspects of the composition. Among them, proposals of self-adaptive

approaches have stood out, since they aim to provide composite services

with capabilities that enable them to morph and function in spite of internal

and external changes, searching to maximize the composition potential and

reducing as much as possible human involvement.

Self-adaptive mechanisms provide software systems with capabilities

to self-heal, self-configure, self-optimize, self-protect, etc., considering the

objectives the system should achieve, the causes of adaptation, the system

reaction towards change and the impact of adaptation upon the system [5].

Work in self-optimization for service composition has been mainly focused

on the selection of services at runtime, in order to maintain the expected

QoS of the entire composition. However, it only takes into account situations

where QoS decays (e.g. cost increments, performance degradation, etc.),

and some of the adaptation strategies apply in the next execution of the

composition, or require human specifications.

When different QoS parameters are evaluated within a composite

service, and one of them has been enhanced after executing a task (that

involves invoking a component service), it is possible to use that leverage to

improve other parameters. This can be achieved by applying weights during

service selection, giving different priorities to the QoS parameters, which

brings the following question:

Q.1. Is there any improvement in the global QoS of a composite

service when using variable weights during service selection as part

of a self-optimization mechanism?

Chapter 1. Introduction

3

However, performing adaptation everytime there is a significant

variation in the service’s behaviour does not ensure upgrading the overall

QoS of the composition. Reason why, the benefit of performing adaptation

can be considered, bringing the next question:

Q.2. How does the evaluation of the benefit of adaptation influence

the adaptation process?

The use of reactive adaptation approaches may lead to increments in

response time and cost of composite services. Self-optimization can also be

targeted from a proactive perspective, which brings the following question:

Q.3. Does the use of a proactive adaptation approach based on self-

optimization helps improving the global QoS of composite services?

To address these questions, the scope of this research is centered in

the development of mechanisms that provide a service composition

framework with capabilities that help providers in delivering services that

satisfy a QoS optimization criteria. These mechanisms react when: the QoS

levels of the composition can be improved, the QoS levels of the

composition are degraded, a component service is unavailable, and a

component service fails. Adaptation has been targeted primarily from a self-

optimization perspective, looking at the QoS values of the composition

during the different stages of its execution, aiming to improve/maintain the

global QoS levels. Changes are applied at Web service level, using service

selection strategies combined with dynamic binding.

1.2. Aims and Objectives

The aim of this work is to study QoS awareness and adaptation in the

context of service composition, mainly focussing on self-optimization. This is

because through self-optimization, composite services seek to restore and

maintain their QoS levels. Work related to the provision of self-optimization

is focused on the selection of services that provide the most appropriate

QoS levels for the composition. The purpose of this research is to design

and implement mechanisms that enable self-optimization, where adaptation

is not limited to failure prevention and QoS degradation, but also considers

Chapter 1. Introduction

4

the possibility of improvement in the QoS levels of composite services.

Taking into consideration this, the main objectives of this research are:

• The design of self-optimization mechanisms for service composition.

Design of mechanisms that consider QoS degradation, but also

explore situations where a number of the accumulated QoS values of

the previous activity in the composite service are better than

expected. This will help finding some slack that can be used while

selecting the next service in the composition, providing the possibility

of improving other QoS parameters.

• The implementation of QoS aware and adaptive frameworks for

service composition. Through these environments, composite

services will be aware of their QoS attributes, and in response to

relevant changes on these values, evaluate the need for adaptation,

and adapt when needed, in order to satisfy a QoS optimization

criteria.

1.3. Methodology

Computational research can be developed and evaluated using three

different approaches: mathematical modelling, prototyping and simulation.

Mathematical modelling enables researchers to build a representation of a

system using mathematic symbols and operations, and based on changes in

its variables, estimate the system’s behaviour. Prototyping refers to the

development of incomplete versions of a product; it allows researchers to

analyze and test functionality and design of solution ideas. Simulation is a

tool used to imitate or emulate the behaviour of a system; it helps in the

development of theories and hypotheses based on observed behaviours

when the characteristics of the system have been altered.

The research methodology used in this Thesis was driven from a

prototyping point of view, and is conformed by the elements described

below.

• A thorough literature review on self-* properties and adaptation in the

context of service composition. This review is to identify the different

self-* properties used in service composition approaches, along with

Chapter 1. Introduction

5

their methods and objectives. It also helps in finding the relationships

between these properties and the events that can occur when

executing composite services, the actions the system should take in

order to adapt and the goals of adaptation.

• The identification of limitations within self-optimization approaches.

This is through a detailed analysis of different methods and

mechanisms that perform self-optimization in service composition and

service-based systems.

• The design and development of QoS optimization mechanisms.

These mechanisms identify when adaptation is needed during the

execution of composite services. This is achieved by analyzing the

measured values of QoS parameters at runtime, and comparing them

with the QoS objective goals obtained from historical data.

• The design and development of prototypes. This is accomplished

through the analysis and extension performed on selected features of

an open source composition engine. Prototyping helps performing

experiments that provide sensible results.

• An evaluation of the proposed solutions. This is to assess the results

obtained when using the proposed solutions, and compare them with

the use of a service selection approach based on fixed weights

(described in section 3.5.2) during the execution of composite

services.

The use of prototyping in the context of this research enables the

development of optimization mechanisms and prototypes from an

evolutionary perspective. A prototype that enables the execution of

composite services with QoS aware and adaptive capabilities is introduced

in chapter 3 (addressing Q.1). It was extended with the model presented in

chapter 4, to evaluate the need of performing adaptation (addressing Q.2).

The resulted prototype, was modified and extended with the features

described in chapter 5, in order to provide proactive adaptation (addressing

Q.3).

Chapter 1. Introduction

6

1.4. Research Contributions

The main contributions of this Thesis are summarized in the following points:

• QoS optimization mechanisms for service composition. Three QoS

optimization mechanisms are presented in this work. These

mechanisms are developed to target QoS degradation and QoS

improvement from a global perspective; considering when some of

the measured QoS values at certain point of the composite service

execution are better than expected, enabling the improvement of

other QoS attributes. They use different QoS parameters and were

implemented within composition frameworks that provide adaptation

from reactive and proactive perspectives. Mechanism one (described

in chapter 3) evaluates response time and cost as QoS parameters,

and has been implemented in a reactive framework. Mechanism two

(described in chapter 4) considers as QoS parameters: response

time, cost and energy consumption. It was implemented within a

reactive framework. Mechanism three (described in chapter 5) uses

response time, cost, energy consumption and availability as QoS

parameters, and has been implemented in a proactive framework.

Mechanisms two and three use fuzzy logic as a decision making tool.

They rely on the benefit of adaptation, value obtained by analyzing

the measured QoS attributes of the composition, in order to determine

whether adaptation is needed or not.

• Conceptual frameworks that enable QoS aware and adaptive service

composition. Two abstract systems models are designed to provide a

layered structure that enables adaptation from two perspectives:

reactive and proactive (described in chapters 3 and 5, respectively).

Their main components include: composition engine, adaptation

manager, service binder, service selector, predictor and sensors.

• Prototypes for reactive and proactive service composition. Two

prototypes are implemented as extensions of an open source

composition engine. They provide support during the experimental

stage, in order to assess the different QoS optimization mechanisms

developed along this research. The first prototype enables adaptation

from a reactive perspective (see chapter 3), while the second

prototype from a proactive perspective (see chapter 5).

Chapter 1. Introduction

7

• Discovery of benefits offered by the use of the QoS optimization

mechanisms in service composition. The experiments performed

show that the mechanisms are effective and provide significant

improvements in terms of global QoS when executing composite

services. In some situations a trade-off can be found, where one of

the QoS parameters decays in order to maintain/improve the values

of the others. A summary of the experimental results can be found in

chapter 6.

1.5. Assumptions

The following list contains the main assumptions considered during the

development of this work.

• Services are atomic, stateless and their performance is not affected

by the input values.

• Services contain only one operation.

• Services are registered correctly in the repository.

• Available services cover all the operations. Per each task of the

composite services, there exist at least two component services to

invoke.

• At the time of invoking a composite service, the system has available

data from previous executions of the different components. If

historical data is not available, services will not be selected using

predictions, but only based on their functionality.

• Energy consumption is considered as the amount of energy

consumed by a server during the time the service is being executed.

• WSDL files contain Web services’ QoS information (cost and energy

consumption). As this is not part of the standard, WSDL files have

been extended to include quality values.

• In the scenarios used during the experimental stage, service

malfunction is considered to last for short periods of time.

Chapter 1. Introduction

8

1.6. Thesis Outline

The remainder of this Thesis is structured as follows:

• Chapter 2. Presents a description of relevant topics related to the

context of this research, which include: Service Oriented Architecture,

Web services and service composition. The definitions of Quality of

Service and service level agreements in the context of service

environments are provided, followed by the definition of adaptation in

service composition. Finally, a list of relevant decision support

systems that can be applied during adaptation is presented.

• Chapter 3. Describes a QoS optimization model for service

composition. It presents the motivation behind its development, along

with a discussion on work related to the provision of self-adaptation in

service composition. The proposed solution is given, followed by its

implementation details. Finally, the experiments performed to

evaluate the model and obtained results are discussed in detail.

• Chapter 4. Presents a QoS optimization model for service

composition based on fuzzy logic. Motivation and a discussion on

related approaches are provided. The proposed solution is described,

along with its implementation details. Finally, evaluation is presented,

covering the experimental setup and the results.

• Chapter 5. Introduces a proactive adaptation mechanism for service

composition based on fuzzy logic. Motivation towards the

development of the approach is given, followed by a review on work

related to the provision of proactive adaptation in service composition.

The proposed solution is described, along with information regarding

implementation. Finally, the experiments performed to evaluate the

proposed approach are provided.

• Chapter 6. Provides an overall assessment of the evaluation

performed to establish the effectiveness of the adaptation approaches

presented in chapters 3, 4 and 5. It includes a general overview of the

research motivation, a comparison between related work and the

research presented in this Thesis, and the assessment of the

evaluation. The analysis of the gathered results and their limitations

are then discussed.

Chapter 1. Introduction

9

• Chapter 7. Presents a summary of the Thesis on a chapter by chapter

basis, major contributions, and a discussion on some directions that

can be explored as part of future work.

Chapter 2. Background

10

Chapter 2
Background

This chapter comprises a description of relevant topics related to the context

of this research, and provides the main concepts used in this Thesis. Service

Oriented Architecture and Web services are defined, and services’

background is explored in detail. The concept of service composition is then

given, followed by the definitions of Quality of Service and service level

agreements in the context of service environments. Adaptation in service

composition is then described from the perspective of different mechanisms.

Finally, this chapter presents some relevant decision support systems that

can be applied during adaptation.

Description of approaches directly related to the mechanisms

presented in chapters 3, 4 and 5, and the solution proposed to overcome

their limitations is provided in the corresponding chapters. The contribution

and novelty of the proposed solutions are discussed in chapter 6.

2.1. Service Oriented Architecture

Service Oriented Architecture (SOA) is a term that represents a model

where the logic of an application is decomposed into small and distributed

units of logic that exist autonomously, but not isolated from each other. As a

group, these units, also known as services, represent a large piece of

business automation logic [6]. SOA can be considered as “… a set of

principles that define an architecture that is loosely coupled and comprised

of service providers and service consumers that interact according to a

negotiated contract or interface” [7].

Service Oriented Architecture is a paradigm for designing,

developing, managing and organizing services inside a computing

environment [7]. It enables applications written in different languages and

running on different platforms, to communicate among them and be

accessed by the same clients. In other words, SOA principles enable

services to be used by other services or programs, as long as they are

aware of each other [6].

Chapter 2. Background

11

Because of its flexibility, SOA has been proposed as a method to

establish a relationship between information technologies and business

requirements. From the IT perspective, some of the benefits that can be

achieved by implementing SOA include time reduction, improvements during

software development/maintenance, and enterprise application integration.

For enterprises, it offers agility to collaborate, agility to adapt, better

business operations, improved visibility across organizational data, and ease

of introducing new technologies [7], [8].

2.2. Web Services

Web services are self-describing, self-contained, loosely coupled, platform-

independent and reusable software components designed to support

machine-machine interactions over a network. They can be used in a wide

range of applications, from simple requests, to complete business solutions.

Consumers can use a single service to accomplish a specific task, or if

required, combine multiple services in order to solve a complex problem or

conduct a business transaction [9].

Web services are described, published, discovered and invoked in

distributed environments through a set of XML-based standards, including

WSDL (Web Services Description Language), SOAP (Simple Object Access

Protocol) and UDDI (Universal Description Discovery & Integration).

Services can also be developed as RESTful applications, without using

SOAP and WSDL-based interfaces. RESTful services are considered as

resources and identified by their URL’s [10]. As a consequence of the use of

standards, Web services enable interoperability between applications

developed in different programming languages and executed on different

platforms.

Some of the characteristics exhibited by a Web service include:

functional and non-functional properties, granularity, complexity and

synchronicity. Functional properties describe the operational behaviour of

the service, while non-functional properties include quality attributes, such as

cost, response time, scalability, etc. Granularity and complexity are relative

measures of how a service must be in order to provide the required

functionality (e.g. fine-grained services address small functionality, coarse-

grained services solve complex tasks). Finally, synchronicity is related to the

Chapter 2. Background

12

programming styles used to develop and invoke Web services (synchronous

and asynchronous) [9].

According to their capability to keep information from previous

executions (state), services can be considered either stateless or stateful.

Stateless services do not have the ability to hold state; plain SOAP-based

services and RESTful services are stateless. In contrast, stateful services,

which use WSRF (Web Services Resource Framework), maintain the state

between different invocations through separate entities called resources

[11]. Stateless services are used in traditional Web environments, Grid

applications and Cloud applications, while stateful services are mostly used

in Grid applications.

The Service Oriented Architecture used by Web services consists of

three main components: provider, registry and consumer. Figure 2.1

presents an abstract model of this architecture and the relationships

between its components.

Figure 2.1. SOA model used by Web services.

The provider develops a Web service, generates its description

(WSDL) and publishes it in the registry (UDDI), making it available for

invocation. The registry contains information to identify the Web service,

including an URL that indicates the location of the WSDL file. The consumer

queries the registry, finds (discovers) the information of the service that fits

its requirements, and uses the corresponding WSDL file to interact with the

service through SOAP messages [12].

Client
applications

Consumer Provider

Registry

Service
description

Service

Services
descriptions

Publish
(WSDL, UDDI)

Discover
(WSDL, UDDI)

Invoke /Bind
(WSDL, SOAP)

Chapter 2. Background

13

However, describe, publish, discover and invoke are not the only

operations performed in the Web services field. Services can also be

monitored and composed. Monitoring Web services involves the use of

mechanisms that provide the consumer with information about the execution

course and results [13]. While composition enables users/consumers to

develop new value-added services by combining existing ones to achieve

personalized tasks [14].

2.2.1. Web Service Related Standards

To achieve interoperable integration between heterogeneous applications,

Web services are built on a set of widely adopted standards (specifications)

proposed by different entities, which include the Organization for the

Advancement of Structured Information Standards (OASIS) [15], the World

Wide Web Consortium (W3C) [16], the Web Services Interoperability

Organization (WS-I) [17] and the Internet Engineering Task Force (IETF)

[18].

Most of the Web service related standards are based on XML

(eXtensible Markup Language). XML is a simple and flexible text format

used to describe data objects called XML documents [19], which play an

important role within data-exchange between applications. XML is also a

meta-language used to define other markup languages and protocols.

Examples of XML-based standards are WSDL, SOAP, WS-BPEL and WS-

CDL. Web Services Description Language (WSDL) is the representation

language used to describe the public interface details and implementation

characteristics of a Web service via WSDL documents (see Figure 2.2a).

According to the W3C, a WSDL document “… defines services as

collections of network endpoints, or ports” [20]. It provides information about

the service such as what it does, where it is located and how it is invoked

[21]. The elements used in a WSDL document to define a service are [20]:

• Types. Container for data type definitions.

• Message. Abstract definition of the data being communicated.

• Operation. Abstract description of an action supported by the service.

• Port Type. Abstract set of operations supported by one or more

endpoints.

Chapter 2. Background

14

• Binding. Concrete protocol and data format specification for a

particular port type.

• Port. Single endpoint defined as a combination of a binding and a

network address.

• Service. Collection of related endpoints.

Interactions between customers and Web services rely on the Simple

Object Access Protocol (SOAP). It is an XML-based communication

protocol, developed to enable one-way message exchange between nodes

(request/response). A SOAP message contains an envelope that includes

two sections, header and body (see Figure 2.2b). The header is an optional

element and describes complementary information about the message,

while the body is mandatory and contains the main data (payload) [22].

SOAP is independent of programming language, operative system and

platform [21], which enables interoperability between heterogeneous

systems.

Figure 2.2. Web service standards. (a) WSDL document. (b) SOAP message.

In order to use Web services, customers must know sufficient

information to execute them. The Universal Description Discovery &

Integration (UDDI) is an initiative to define a set of services to describe and

discover service providers, Web services, and the technical information used

to access those services. Information in UDDI is represented through

business entities, business services, binding templates and tmodels [23]. A

UDDI business registry is itself a Web service. Information provided by this

registry is classified in three main components [9]:

(a) (b)

SOAP ENVELOPE

SOAP HEADER

SOAP BODY

Header block

Header block

Body sub-element

Body sub-element

WSDL DEFINITIONS

ABSTRACT DEFINITION

CONCRETE DEFINITION

Binding

Service
Port

Messages

Operation Port type

Types

Chapter 2. Background

15

• White pages. Address and key points of contact.

• Yellow pages. Information according to industrial classifications.

• Green pages. Information of technical capabilities about services.

The layered relationship between XML, WSDL, SOAP and UDDI is

shown in Figure 2.3. It can be noted that the UDDI layer works on top of

SOAP and WSDL. Both, SOAP and WSDL are built on top of XML, and work

using internet protocols (usually HTTP) to enable information exchanges

across system boundaries [21]. Even though WSDL, SOAP and UDDI can

be considered the core technologies within SOAP-based service

environments, there is a large number of standards and specifications

focused on diverse areas such as security, interoperability, management

and business processes, among others, which enable the development and

execution of complex service interactions [24].

 Figure 2.3. Layered view of XML, SOAP, WSDL and UDDI.

Web service development is not limited to the use of SOAP-based

standards. Services can also be built using REST. REpresentational State

Transfer (REST) is a design style with a stateless client-server architecture.

It is not considered a standard; however is widely used due its lightweight

infrastructure and presumed simplicity. A RESTful Web service is viewed as

a stateless set of resources identified by their URLs [25].

2.2.2. Web Service Life Cycle

In Service Oriented Computing, the Web service life cycle is the foundation

for engineering and management activities related to Web services. There

are three main entities responsible of performing the different activities that

take place during the stages of the service life cycle: service requesters

(users, consumers, buyers, customers and their intelligent agents), service

Universal Description Discovery & Integration (UDDI)

Simple Object Access Protocol
(SOAP)

Web Services Description
Language (WSDL)

Extensible Markup Language (XML)

Common internet protocols (HTTP, TCP/IP)

Chapter 2. Background

16

brokers (intermediaries and their agents), and service providers (owners,

sellers and their agents) [26].

Typical stages that can be found within a service life cycle are

development, publishing, discovery, composing and monitoring [21],[26],

[27]. Development comprises not only the creation of the service, but also

activities like design, test and deploy. Publishing involves describing and

registering in a service registry (UDDI) information about the business,

service and its technical information. These two stages are directly related to

the service provider. Discovery consists in finding within a service registry a

service that provides the desired functionality. During this stage, the service

requester interacts with the service broker. The stage of monitoring involves

observing the service behaviour. It can be performed by service requesters

and service providers. Finally, composition involves the use of different

services, combined to provide a specific function. It can be performed by a

service requester, but also by a service provider that will expose the

resulting composition as a new service.

The growing number of developed services, complexity and time

consumed during manual Web services discovery, monitoring and

composition, have driven the development of different approaches and

methods to perform these operations in an automatic or semi-automatic way.

Automatic service discovery involves the implementation of algorithms to

query the registries based not only on keywords. Some examples of these

methods are described in [28] and [29]. In [28], a semantic-based algorithm

is proposed, matching services on semantic relationships at conceptual

level. In [29], a QoS-based model that applies QoS properties as constraints

while searching services is described.

In the monitoring area, mechanisms are required to provide service

users with knowledge about performance, execution and results of the Web

services they invoke. Monitoring approaches can apply asynchronous,

synchronous, functional and non-functional based techniques in order to

obtain information about the service behaviour. For example, the work

presented in [30] proposes a policy-based approach to detect exceptions,

faults and QoS degradations in composite services during runtime, and uses

policies specified in WS-Policy4MASC. An event-based mechanism for

monitoring and logging interactions is proposed in [13]; it works with

Chapter 2. Background

17

semantic Web services supported on OWL-S. Composition is a key topic

within this research; it will be reviewed in detail in section 2.3.

Information presented in this section is summarized in the roadmap

illustrated in Figure 2.4. It is organized according to Web service standards,

service classification, stages of the service life cycle and main service uses.

Figure 2.4. Web services roadmap.

XML

Web Services

Uses Grid

Standards

Classification

Stages

WSDL

SOAP

UDDI

Stateful

Stateless

WSRF

REST

SOAP-based

Publish

Discover

Compose

Monitor

Cloud

Traditional (Web)

UDDI

Approaches

Languages

Approaches
Manual

Standards

Described in section 2.3

Synchronous

WS-Policy4MASC

Automatic

Asynchronous

Functional monitoring

QoS monitoring

WS-CoL

OWL-S

OWL-S

UDDI

WS-Discovery

Develop

Design

Code

Test

Describe

Chapter 2. Background

18

2.2.3. Benefits of Using Web Services

During development and execution, Web services exhibit significant benefits

when compared to traditional applications:

• Interoperability. Services can interact with other services and

applications because of the use of standards. They are language and

platform independent [21].

• Ease and fast development. Development of new services can be

done by reusing or combining existing services [21].

• Decoupling and just-in-time integration. Services are based on the

notion of building applications by discovering and orchestrating

network-available services [21].

• Reduced complexity by encapsulation. Implementation is not relevant

to service consumers, only the functionality provided by the service

[21].

• Self-description. Services describe their functions, inputs and outputs.

They can also describe their non-functional properties (e.g. cost,

security, etc.) [9].

• Ease in management. Service behaviour can be monitored and

managed at any time using external applications, even when the

service is not running in an in-house system [9].

• Brokering. Services that perform the same tasks can be selected by a

broker based on different attributes, such as cost, response time,

security, etc. [9].

• Development tool independence. Development tools that support

Web service standards should be able to invoke a service and access

its data [31].

2.3. Web Service Composition

Service composition can be considered as a process that “… involves

compiling value-added services from elementary or atomic services to

Chapter 2. Background

19

provide functionalities that were not available or defined at design time” [32].

Two key concepts associated to service composition are orchestration and

choreography. Orchestration refers to “… an executable business process

that can interact with internal and external services” [33], while choreography

is related to coordination protocols and messages exchanged by multiple

services, where no single party has full control of the conversation [34].

When a single service does not fulfil the consumer’s requirements, it

can be used in conjunction with other services to provide that functionality.

The obtained service (also known as composite service) can be used as a

complete software solution by the consumer, or can be considered as an

atomic service in other compositions.

Figure 2.5. Centralized vs. decentralized service composition.

Dataflow models used in service composition are centralized and

decentralized, commonly achieved by orchestration and choreography,

respectively (see Figure 2.5). In Web service orchestration, the composition

process is always controlled by the perspective of one of the parties, which

describes the services interaction at message level, including the business

logic and tasks execution [33]. It can be specified by modelling languages

like UML activity diagrams and BPMN (Business Process Modelling

Notation), and implemented in XML-based languages such as WS-BPEL

(Web Services Business Process Execution Language) and WSFL (Web

Services Flow Language).

On the other hand, choreography is more collaborative, it allows each

party involved to describe its role played in the composition. Choreography

is associated with public message exchange and rules of interaction that

occur between services [33]. It can be specified in languages like pi-calculus

and UML, and implemented in WS-CDL (Web Services Choreography

Description Language) and WSCI (Web Service Choreography Interface).

Tools such as Taverna [35] and Kepler [36] were developed to implement

Decentralized
(Choreography)

Centralized
(Orchestration)

S1

S2 S3

S1

S2

S3

Chapter 2. Background

20

orchestration in e-Science projects; ActiveBPEL Designer [37], Oracle

jDeveloper [38] and IBM WebSphere [39] to be used in the e-Business field;

and pi4soa [40] to develop choreography processes. This information is

summarized in Figure 2.6.

Figure 2.6. Web service composition - dataflow models.

For designing business processes that involve multiple Web services,

probably executed in different containers, orchestration and choreography

standards (languages and infrastructures) must achieve important technical

requirements, such as asynchronous service invocation, concurrent service

invocation, and management of exceptions and transaction integrity. The

ability to invoke a service asynchronously is essential to accomplish the

reliability and scalability required by IT environments. Concurrent service

invocation can improve the process performance. Finally, the capability to

manage exceptions and transaction integrity relies on how the system will

respond if a service is unavailable or if there is an error, to ensure the

completion of the process [33].

Beside dataflow models, different composition approaches have been

proposed. These are commonly classified according to the time when

Dataflow
models

WSFL

Centralized
(Orchestration)

Modelling

Tools

Languages

eScience

eBusiness

Decentralized
(Choreography)

Modelling

Tools pi4soa

Languages
WS-CDL
WSCI

π-calculus
UML
BPMN

WSFL
WS-BPEL

XLANG

BPEL4People

BPML

Kepler
Taverna

ActiveBPEL Designer

IBM WebSphere

Oracle jDeveloper

State charts

Activity diagrams

Petri nets

BPMN

Chapter 2. Background

21

services are composed into static and dynamic, or according to user’s

intervention in manual and automatic mode. Static composition takes place

during design time, when component services are chosen, linked, compiled

and deployed [2]. In static composition, composite services are specified by

models usually implemented through graphs and workflows. Dynamic

composition is accomplished by defining abstract models that will be linked

to services selected automatically during runtime [12]. Composite services

can be developed dynamically using: model-driven [41], declarative [42],

workflow-based [12] and ontology-driven [12] techniques. Model-driven

composition can be specified via UML (Unified Modelling Language) and

business rules written in OCL (Object Constraint Language); declarative

composition, via mathematical models, PDDL (Planning Domain Definition

Language) and state-charts; workflow-based composition, via abstract

models; and ontology-driven composition via semantics descriptions. These

specifications are analyzed and processed by different methods, matching

constraints defined by the requester, and finally mapped to a composition

language (e.g. WS-BPEL). SELF-SERV [42], FUSION [43], Argos [44],

eFlow [45], SeGSec [46] and SHOP2 [47] are systems that implement

dynamic service composition.

In manual composition, services are selected and assembled by the

user. The behaviour of the composite service is usually implemented by

workflows [2]. Manual composition is closely related to static composition.

On the other hand, in automatic composition software agents and automated

tools are used to select and assemble the composite service. Two important

techniques within this approach are semantic [48] and AI-Planning [49]

composition, where requests are defined by constraints and rules, and

processed using ontologies.

2.3.1. Composition Languages

Web service composition is guided by languages and standards proposed

by different entities to enable interoperable business processes. The

language considered as a de-facto standard is WS-BPEL (Web Services

Business Process Execution Language). It is an XML-based language that

enables the specification of Web service interactions in business processes.

It defines a model and a formal description of the behaviour and the

message exchange between the process and its partners. Using WS-BPEL

Chapter 2. Background

22

it is possible to model abstract and executable processes. An abstract

process is descriptive, partially specified and can be used to define a

process template; while an executable process is fully specified and

intended to be executed [50].

Figure 2.7 . Service composition languages and standards.

Figure 2.7 illustrates some of the relevant languages and standards

used within service composition. Each of these languages offers a set of

different features, which are used by developers according to the specific

needs of their applications.

Web Services Choreography Description Language (WS-CDL) and

Web Service Choreography Interface (WSCI) are used to define

decentralized service compositions. WS-CDL is an XML-based language

used to describe (from a global point of view) collaborations between

services, by defining their common observable behaviour. WS-CDL focuses

on information exchanges and rules required during collaboration, in order to

achieve a common business goal, without considering the supporting

platform or programming languages used to implement the hosting

environment. It is used to specify abstract business processes, in other

words, is not an executable or implementation language [51]. WSCI is an

XML-based language for describing dynamic interfaces of Web services

participating in choreographed interaction, reusing the operations defined in

a static interface (WSDL). It provides a description of the message exchange

between the involved services with a global, message-oriented view of the

interactions [52]. Web Services Flow Language (WSFL) is an XML-based

language used to describe Web services composition. It uses flow and

global models, which results into the description of business processes and

partners interactions, respectively. WSFL provides support for recursive

Web service composition, and enables orchestration and choreography [53].

XPointer WS-CDL

WS-BPEL

XPDL

WSFL

OWL-S

XPath

XSLT

WSCI

BPML

XML-Schema

Chapter 2. Background

23

From a semantic perspective, service composition can be specified

using OWL-S. OWL for Services (OWL-S), formerly known as DAML-S, is a

Web Services ontology based on OWL. In OWL-S the description of a Web

service has three main classes, ServiceProfile, ServiceGrounding and

ServiceModel, that describe what the service does, how it works, and how to

access it, respectively. It provides users and software agents with a high

degree of automation while discovering, invoking, monitoring and composing

Web resources [54].

2.3.2. Challenges in Service Composition

Building composite services has driven the development of different

proposals within academia and industry, given as a result a set of dataflow

models, approaches and techniques that enable composition from various

perspectives. However, some challenges are still open to solve. Some of

these are closely related to automatic-dynamic service composition, and

include the implementation of mechanisms that enable Quality of Service

awareness, adaptive capabilities, risk awareness, conformance, security and

interoperability.

• QoS awareness. To provide the expected results and behaviour,

composite services should be aware of their QoS aspects and those

of the different components involved, respecting and understanding

each others policies, performance levels, security requirements and

service level agreements [55].

• Adaptive capabilities. By implementing adaptive capabilities, Web

services should be able to morph and function in spite of internal and

external changes, searching to maximize the composition potential

and reducing as much as possible human involvement. These

adaptive capabilities include self-configuring, self-adapting, self-

healing and self-optimizing. Where services are able to find new

partners to interact with; function despite environmental changes;

detect and react to components that do not satisfy the service

requirements; and select partners that increase the benefits of the

composition, respectively [55].

• Risk awareness. Service composition involves the use of external

services, reason why users should be aware of the risks implicated,

Chapter 2. Background

24

since the QoS of the composite service can be affected as a result of

problems with its components. If risk is significant, there must be a

mechanism or an action to mitigate it, for example, negotiating Quality

of Service with partners or invoking other services [56].

• Conformance. In order to ensure the integrity of a composite service,

service conformance matches its operations with those of its

component services. It includes mandatory semantic constraints on

the components and ensures that constraints on data exchange

between component services are fulfilled. It guarantees that

operations do not lead to unexpected, erroneous results and preserve

their meaning [55].

• Security. Web services enable users to interact with internal

applications and databases through the Internet, which represents a

security risk. Services should be concerned about security aspects

including authentication, authorization, confidentiality, and integrity to

protect sensitive information [34].

• Interoperability. During a composition process, component services

should interoperate with each other to achieve a common goal.

Interoperation occurs at two levels, syntactic and semantic. The

former is concerned about syntactic features like the number of

parameters and their data types; the latter, about semantic properties

like the services domain and the functionality provided by an

operation [34]. Composite services should achieve both levels of

interoperability among their components to obtain the expected

results.

These challenges can be addressed separately, however, some of

them might complement each other (e.g. adaptive capabilities with QoS

awareness, adaptive capabilities with risk awareness), bringing the

possibility to combine them during the development process of composition

approaches.

Chapter 2. Background

25

2.4. Quality of Service

Quality of Service (QoS) can be considered as a collection of characteristics

that help evaluating and selecting resources. A detailed taxonomy of QoS

parameters obtained from [57] is given in Figure 2.8. In the context of Web

services, QoS properties refers to non-functional aspects (quality aspects) of

Web services, such as performance, reliability, scalability, availability and

security [4], which could be used as a differentiating point in the preference

of consumers. By evaluating the QoS aspects of a set of Web services that

share the same goals, a consumer could identify which service meets the

quality requirements of the request.

Figure 2.8. QoS parameters [57].

QoS

Earliest Start Time

Performance

Dependability

Cost

Custom Metric

Configuration

Time

Ratio

Availability

Accessibility

Accuracy

Reliability

Capacity

Manageability

Security

Authentication

Authorization

Security Level

Integrity

Confidentiality

Accountability

Transport Level

Message Level

Encryption Level

Virtual Organization

Location

Level of Service

Service Version

Supported Standard

Grid Side
Organization

Geography

Best Effort

Guaranteed

Service Throughput

Data Transfer Rate

Frame

Response Time

Latency

Processing Time
Comp Time

Comm

Latest Start Time

Earliest End Time

Latest End Time

Chapter 2. Background

26

QoS for Web services can be classified in two subtypes: runtime

quality and business quality. Runtime quality represents the measurement of

properties related to a service operation (e.g. response time, reliability,

availability and accessibility). On the other hand, business quality is

focussed on the assessment of a service operation from a business

perspective (e.g. cost, reputation and security) [34]. A list of QoS parameters

for Web services and their definitions is presented as follows:

• Performance. Represents the speed in which a service request can

be completed, measured in terms of throughput, response time,

execution time, latency and transaction time [4], [58].

♦ Throughput. Number of Web service requests served within a

period of time [58].

♦ Response time. Time consumed between invocation and

completion of the requested service operation [4], [59].

♦ Processing time (execution time). Time taken by a Web service

to process a request [4].

♦ Latency. Time consumed between the service request arrives

and the moment it is served [60].

♦ Transaction time. Time used by the service to complete a

transaction [4].

• Reliability. Probability that the request is correctly responded,

maintaining the service quality [59]. A measure of reliability can be the

number of failures per period of time (day, week, etc.) [4], [58].

• Scalability. Ability of increasing the computing capacity of a service

provider’s computer system to process more requests, operations or

transactions in a given period of time [4].

• Availability. Probability that the system is ready to be used. The

service should be available when it is invoked [4].

• Accessibility. Property of a service to serve a request from a

consumer [58].

Chapter 2. Background

27

• Cost. Amount of money charged to the consumer when invoking a

service operation [34].

• Security. Ability to ensure authorization, confidentiality,

traceability/auditability, data encryption, and non-repudiation [4].

Based on the application context and requirements, a sub-set of QoS

parameters may be selected from those mentioned above, also new

attributes/metrics can be defined.

2.4.1. Service Level Agreements

From a general point of view, a Service Level Agreement (SLA) can be

considered as “…an explicit statement of the expectations and obligations

that exist in a business relationship between two organizations: the service

provider and the customer” [61]. In the context of Web services, an SLA is a

document that defines the terms and conditions of quality that a service will

deliver to its consumers. Its major component is the quality information,

which consists of different criteria like response time and/or cost, and

correspond to the service’s QoS [62]. The use of SLAs enables the

negotiation process between service provider and consumer about the

conditions of collaboration, and provides the consumer with confidence that

the selected service will meet not only the functional but, also the quality

requirements of the request.

The use of SLAs within service environments can be performed by

using standards like Web Service Level Agreement (WSLA) and Web

Services Agreement (WS-Agreement). WSLA is a framework for specifying

and monitoring SLAs for Web services. It comprises a flexible and extensible

language based on XML-Schema, and a runtime architecture that includes

SLA monitoring services. The main sections comprised within the WSLA

language are: parties, which identifies the contractual parties; service

description, which specifies the characteristics of the service; and obligation,

which defines guaranties and constraints to be imposed on SLA parameters

[63]. WS-Agreement is a protocol that uses an extensible XML-based

language for establishing an agreement between two entities, also enables

the creation of agreement templates that help finding compatible agreement

parties [64].

Chapter 2. Background

28

2.4.2. QoS in Service Composition

The relevance of QoS management in service environments has brought the

need of QoS aware solutions for service composition. To experience the

expected behaviour during execution of a composite service and guaranty

the quality level of the composition, it may be important to consider the QoS

aspects of the atomic services involved, as their drawbacks will be inherited

by the composite service.

Different approaches have been presented to compute and evaluate

QoS attributes of Web services within service composition and workflows’

scopes. These attributes represent the non-functional characteristics

required to accomplish the set of initial requirements of an application

compose by different elements (tasks or services). Relevant work on this

subject has been presented in [65] and [62]. The mathematical model

proposed in [65] considers time, cost and reliability as the quality criteria to

evaluate in workflows. This approach presents a set of metrics to obtain the

quality values of individual tasks (Web services) and aggregation formulas to

calculate the QoS of the entire workflow. The model used to compute these

QoS metrics is based on an algorithm that reduces the workflow to an

atomic task. It involves a set of inverse operations for constructing workflows

including, sequential, parallel, conditional, loops, fault-tolerant and network

(sub-workflows) structures. Per each structure, there are defined

mathematical functions that obtain single values per quality metric. This work

considers the specification of QoS attributes at design time (estimated) and

a re-computation during execution. Estimation is based on collected data

from previous executions (test executions), while re-computation is done

using the estimate data and the workflow system log.

On the other hand, in the model presented in [62] the QoS attributes

considered to evaluate single and composite services are: execution price,

execution duration, reputation, successful execution rate and availability.

These attributes are first obtained in the context of single services, and then

computed to evaluate the QoS of the composite service. QoS attributes of

single services are calculated using data from previous invocations.

Composite services are considered as state charts and represented as

directed acyclic graphs (DAG). If the original chart contains a cyclic

structure, this is unfolded by obtaining the maximum number of possible

executions, based on historical data, and determining a finite number of

executions in the service structure. The aggregation formulas used to

Chapter 2. Background

29

compute QoS attributes of composite services work on execution plans

obtained from their DAG representation.

QoS attributes can be considered according to the requirements of

specific application domains. The models presented by Cardoso in [65], and

by Zeng in [62], take in consideration quality criteria to evaluate elementary

and composite services within workflow system and Web service domains,

respectively. Due to their generic design, these models have been used in

different works like those presented in [59], [66], [67] and [68], adjusting QoS

attributes definitions and formulas based on specific needs. The aggregation

formulas proposed by Cardoso are used in [59] as part of a self-healing

mechanism for service composition. Cardoso’s and Zeng’s QoS attributes

were combined in [66], where response time, cost, reliability and fidelity

rating are measured for single services using a probability mass function on

a finite scalar domain, and computed in workflows with specific formulas per

each structure involved. The work described in [67] adopted and modified

Cardoso’s aggregation formulas to use them in dynamic service binding and

replanning, and applied a Zeng-like method to compute loops. A Web

service selection scheme that considers non-functional characteristics in two

different contexts, single service discovery and optimization of service

composition is presented in [68]. The QoS model includes response time,

reliability, availability and price, obtained from different related work which

includes Cardoso’s model. Other methods and techniques proposed to

evaluate QoS in service composition with the aim of fulfilling the user’s

quality requirements are described in [69], [70] and [71]. These works

proposed the use of data mining techniques, service classification by domain

and optimization algorithms, and service level agreements, respectively.

Research about QoS in service composition is not only about defining

metrics to evaluate the attributes of a service, but also designing

mechanisms to build services that meet both functional and quality

requirements. Selecting a service that satisfies a QoS criteria for each task

within a composite service can be considered a critical activity, reason why it

is important to know or estimate its quality values.

2.4.3. Estimation of QoS Parameters in Service Comp osition

The QoS attributes of a service can be evaluated during design and

execution time. At design time, these attributes help building a composite

Chapter 2. Background

30

service based on the QoS requirements of the user; while at execution time,

they can be monitored to maintain the desired QoS level. Information about

these attributes can be obtained from the service’s profile [66], nevertheless,

when this information is not available, it can be obtained by analyzing data

collected from previous invocations [65].

Different approaches have been proposed to estimate the value of

QoS attributes for single and composite services using historical data; some

of these works are described in [59], [62], [72], [73], [74], [75] and [76]. A

Semi-Markov model is presented in [59]; it is used to predict performance of

single services during the execution of composite services, considering that

performance may vary based on data transmission speed. The work

described in [62] uses data from past observations to compute the QoS

attributes of single services; for composite services, QoS values are

calculated per each of the execution paths of the workflow. A comparison of

different prediction methods applied to service QoS is described in [72].

Results show that last current value can provide meaningful results when

predicting variability. The use of layering query networks with UML models to

predict the performance of composite services is proposed in [73]. The

approach presented in [74] uses decision trees for performance prediction

with the aim reducing the number of service’s reselections in service

composition. An algorithm based on graph reduction is presented in [75]; its

objective is to predict response time of composite services. Different forecast

techniques are combined in [76] to provide an adaptive QoS prediction

approach, which aims to improve the overall accuracy of the predictions by

combining the advantages of the individual techniques.

By accurately estimating the QoS values of a Web service,

considered part of a composite service, and also estimating the QoS values

of the composition itself, it may be possible to minimize performance

problems during its execution and maintain its quality levels.

2.4.4. Predictive Algorithms

Computer systems that keep information from previous executions can use it

in order to learn and predict future events. A prediction can be considered as

“… an estimation of the value of a variable �� occurring at time �� on the

future, conditioned on historical information” [77]. Predictive algorithms are

tools that can be used to analyze data collected from a sequence of

Chapter 2. Background

31

observations of an event in long-term and short-term predictions. They have

been extensively used in different areas, like performance prediction,

systems and networks management.

In the context of Web services, predictive algorithms have been used

to estimate QoS values. Running average was applied in [62] as part of a

composition approach, while single last observation and running average

were used in [72] as part of a comparison study. Single last observation,

running average and low pass filter are examples of predictive algorithms

[78] that are simple and require little processing time, which makes them a

good alternative in software solutions where time is a key constraint.

• Single last observation. The prediction is the most recent observation.

It considers that the last value will reflect the behaviour of the next

run.

� = � (2.1)

• Running average. The prediction is the mean average of all the

previous observations. It can be limited, defining a window of “�” most

recent observations.

� = ∑ �	

� (2.2)

• Low pass filter. The prediction is the average recent behaviour of an

indexer. It uses a degrading function that affects the values of older

observations.

� = � ∙ �	

 + ((1 − �) ∙ �) (2.3)

Where:

� is the prediction of the new value,

�	

 is the previous pass filter value,

� is the last observation value,

� is a weight value between 0 and 1.

Other prediction methods include Auto Regressive Integrated Moving

Average (ARIMA) [79], linear regression [72] and exponential smoothing

[80]. They can be also used to predict QoS values of Web services, based

on the available information and type of prediction required by the

application. However, it is important to consider that because of their

complexity, the use of these methods involves high processing time.

Chapter 2. Background

32

2.5. Adaptive Service Composition

Different factors, like the involvement of third-party resources

(components/infrastructure) and the use of wide area networks, can

influence the behaviour of distributed systems. In the field of Web services

and service composition, adaptive techniques have been proposed to deal

with the consequences of external and internal factors, and ensure that

services maintain their functional and quality levels, by adapting in automatic

to unexpected events and environmental conditions. These techniques are

closely related to autonomic computing and self-* properties.

2.5.1. Autonomic Computing and Self-Adaptive Softwa re

The growing complexity of Web service platforms, increase emphasis on

QoS, and variable workloads, make the management of Web services’

performance a time-consuming and complicated task. Autonomic computing

has appeared as a solution to deal with this complexity and ensure SLA

compliance. It aims to transfer software management responsibilities from

administrators to the software it self. Systems with self-managing

capabilities, also known as autonomic systems, make possible to deal with

their complexity by managing themselves according to objectives specified

by humans [81].

Because of the broad context of autonomic computing (coverage at

hardware, operative system, network, middleware and application levels),

more limited self-managing models fall under its umbrella, that is the case of

self-adaptive software. Self-adaptive software evaluates and changes its

own behaviour when it is not achieving its goals, usually focusing on the

application and middleware layers [82]. To accomplish these tasks, self-

adaptive systems should embrace certain capabilities, also known as self-*

properties, which include: self-healing, self-configuring, self-optimizing and

self-protecting.

• Self-healing. Focus on discover, diagnose, and react to disruptions. It

can also predict potential problems and take suitable actions to

prevent the system from failing. Some of the sub-properties related to

self-healing are self-diagnosing and self-repairing [82]. “Self-healing

components can detect system malfunctions and initiate policy-based

corrective actions without disrupting the IT environment. Corrective

Chapter 2. Background

33

actions could involve a product altering its own state or effecting

changes in other components in the environment” [83]. Self-healing

systems should consider a fault model to define the faults they are

going to be able to heal. Some of the characteristics to include in this

model are the duration, manifestation, source and granularity [84].

The analysis and classification of these faults allow the definition and

implementation of the recovery strategies. Self-healing is related to

availability, survivability, maintainability and reliability [82].

• Self-configuring. Reconfigures automatically and dynamically by

installing, updating, integrating, and composing/decomposing

software entities [82]. “Self-configuring components adapt

dynamically to changes in the environment. Such changes could

include the deployment of new components or the removal of existing

ones, or dramatic changes in the system characteristics” [83].

Dynamic adaptation helps software systems to ensure their

functionality, provide flexibility and reduce human involvement to

minimum. Self-configuring is related to maintainability, functionality,

portability, and usability [82].

• Self-optimizing. Management of performance and resource allocation

in order to fulfil user’s requirements [82]. “Self-optimizing components

can tune themselves to meet end-user or business needs. The tuning

actions could mean reallocating resources to improve overall

utilization, or ensuring that particular business transactions can be

completed in a timely fashion” [83]. By using self-optimizing methods,

users get high service levels, as systems continuously try to improve

their own behaviour. Self-optimizing is related with efficiency and

functionality [82].

• Self-protecting. Detects, identifies and protects the system from

security breaches, and recovers from their effects [82]. “Self-

protecting components can detect hostile behaviours as they occur

and take corrective actions to make themselves less vulnerable.

Hostile behaviours can include unauthorized access and use, virus

infection and proliferation, and denial-of-service attacks” [83]. The use

of self-protecting methods enable systems to defend against large-

scale, correlated problems arising from malicious attacks or

Chapter 2. Background

34

cascading failures that remain uncorrected by self-healing measures

[85]. Self-protecting is related to reliability and functionality [82].

2.5.2. Adaptation in Service Composition

Adaptation in service composition aims to mitigate the impact of unexpected

events that take place during the execution of composite services,

maintaining functional and Quality of Service levels. Some of the main

aspects that can be considered as part of adaptation solutions in service

composition include, but are not limited to:

• Adaptation goal. Purpose of adaptation. Adaptation goals can be

defined based on functional and/or non-functional (Quality of Service)

needs. Some approaches deal with single Quality of Service

requirements, while others focus on maintaining multiple

requirements [86].

• Adaptation level. Defines those elements that will change in order to

achieve the adaptation goal. From a Web service level perspective,

adaptation is tackled per each activity that involves service binding. In

workflow level approaches, the logic of the composition can be

modified, by adding or removing elements, or reorganizing certain

sections of the process [86]. At a higher level, adaptation can also

involve the allocation of physical resources (e.g. CPU, memory, and

bandwidth) to specific services in order to improve/maintain their QoS

(this is limited to in-house services) [87].

• Adaptation actions. Actions used to solve the adaptation problem.

The actions taken are based on the adaptation levels discussed

above [86]. For adaptation performed at Web service and workflow

levels, actions applied can involve:

♦ Service re-call (retry). Invokes the same faulty service [88].

♦ Service tuning. Changes the behaviour/properties of the

invoked service operation [86].

♦ Service selection (service replacement). Selects from a set of

candidates, a new service with equivalent functional/non-

Chapter 2. Background

35

functional characteristics and dynamically binds this service to

the failed task [86], [88].

♦ Redundancy. Executes equivalent operations from multiple

services by using coordination patterns or replication. With a

coordination pattern, each activity is bound to a set of

equivalent operations applying a redundancy pattern [86]. On

the other hand, replication techniques use similar services as

redundant replicas [89].

♦ Workflow redesign. When there is no alternative service to

rebind to, the activity is replaced by an equivalent

sequence/parallel branch that executes two or more services

[88]. Other redesign approach involves adding/removing

certain functions from the workflow.

• Adaptive mechanisms. Approaches applied to implement the

adaptation actions.

♦ Agent-based. Involves the use of agents to manage the

adaptive properties of the service composition [90].

♦ Policy-based. Uses the definition of policies that manage

different stages of adaptive service composition, e.g. service

discovery/selection, monitoring and/or recovery actions [91].

♦ Rule-based. Applies rules to describe constraints that lead the

adaptation process.

♦ Feedback-based. Collects feedback reports about service

executions, and uses this information to decide whether to use

or not certain services [92].

• Stage of adaptation. Time when adaptation is performed. During

service composition there can be identified different adaptation

stages: development time, compile/link time, load time and runtime.

At runtime, adaptation can be triggered from two perspectives,

proactive and reactive. The former is activated in advance, using

predictions of future states, while the latter is activated after a change

has been detected [86].

Chapter 2. Background

36

• Awareness levels. Describes the scope of information that will be

available in order to perform adaptation.

♦ Event awareness. Based on simple events, which trigger basic

event-condition-action rules [93].

♦ Situation awareness. Considers relevant events,

understanding their implication in a wider context [93].

♦ Adaptability awareness. Focuses on the adaptation capabilities

of an entity in its environment; it enables cooperative

adaptation [93].

♦ Goal awareness. Involves understanding the goals of the

different entities implicated, as well as the goal of the entire

composition. Goals can be functional and non-functional

properties [93].

♦ Future awareness. Looks at the life-cycle of the system. It

requires information on probable future states based on future

events [93].

♦ Context awareness. The system is aware of its context, which

is its working environment [82].

Software systems must become more flexible, customizable,

configurable, recoverable and dependable, by adapting to environmental,

context and systems changes [5]. Distributed software as Web services,

must be capable to adapt in response to their perception of the environment

and their own behaviour, without compromising their efficiency. Composite

services should be able to adapt, also based on their components

performance, in order to provide the user with the expected behaviour and

result on the request.

The adaptation life cycle for service composition used in different

approaches, like those presented in [86] and [87], derives from the generic

MAPE-K loop in autonomic computing [83]. It is a closed loop that comprises

four main functions: monitoring, analyzing, planning and executing, as

depicted in Figure 2.9.

Chapter 2. Background

37

Figure 2.9. Self-Adaptive cycle for service composition.

These functions (steps) are closely related to the adaptation aspects

previously described. The monitoring function collects data from sensors and

obtains behavioural patterns and symptoms (relates to adaptation level, goal

and awareness level), which are then computed by the analyzing function in

order to detect when adaptation is needed (relates to adaptation level and

stage). Next, within the planning function, it is determined what needs to be

changed and how (relates to adaptation level and actions). Finally, the

executing function provides mechanisms to perform the changes and applies

those actions determined by the planning function (relates to adaptation

actions and mechanisms).

2.5.2.1. Self-Adaptive Properties

Besides the adaptation aspects described earlier in this section, other

important characteristics to look at within adaptive service composition, are

the self-* (self-adaptive) properties and their benefits. The use of self-*

properties enable composite services to deal with the dynamicity of the Web

service execution environment. These properties allow services to function

despite environmental changes, detect and react to components that do not

satisfy the service requirements, and select partners that increase the

benefits of the composition.

Based on the objectives of the composition, and the causes and

impact of adaptation, different properties can be selected and implemented.

Some self-* properties applied in service composition approaches are: self-

Monitoring

Analyzing Planning

Executing

Sensors EffectorsEvents
Metrics
Service behaviour

Re-binding
Re-execute
Re-design

Replace service
Change parameters
Change provider

Faults/failures
QoS degradation

Composition system

Chapter 2. Background

38

healing, self-optimizing and self-configuring (discussed in section 2.5.1).

Self-healing services can monitor themselves, predict/detect the causes of

failure and make the adjustments to restore their states to normal. Failures

can be either functional or non-functional [94]. Self-optimizing systems aim

to select the best available services for executing the composition, and

define the most appropriate Quality of Service levels in order to maximize

benefits and reduce cost [95]. Self-configuring services can leverage

services and resources to compose an optimal configuration based on user

requirements and the characteristics of the system [96].

Composite services can also be self-aware. Self-awareness is

defined by the combination of three properties: self-reflective, self-predictive

and self-adaptive, which enable services to be aware of the system

architecture and execution platform; predict the effect of changes on their

behaviour and effects of adaptation actions; and proactively adapt to ensure

that their QoS requirements are satisfied [97].

Table 2.1 presents a list of self-* properties and their relationships to

the events that can occur when executing composite services, the actions

(response) the system should take in order to adapt and the goals of

adaptation.

Table 2.1. Relationship between self-* properties and events/action/goals in service
composition.

Self-* property Event Action Goal

Self-healing

Server not
available

Select a new service
Prevent

composition from
failing (time out)

Service not
available Select a new service

Prevent
composition from

failing

Wrong service
found

Select a new service

Prevent
composition from

failing (wrong
functionality)

Wrong parameter
type

Perform a cast to
send the right

parameter type

Prevent
composition from

failing (component
crash)

Select a new service
that matches the
parameters type

Prevent
composition from

failing (component
crash)

Chapter 2. Background

39

Service crashed Select a new service
Prevent

composition from
failing

Service QoS
constraint violation

Recall or select a
new service

Prevent
composition from

failing (global QoS
violation)

Self-
configuration

No service
provides the

required
functionality

Workflow redesign
(add new branch
that provides the

functionality)

Enable
composition to

provide the
required

functionality

Parameters
mismatch

Adjust input
parameters

Avoid obtaining
incorrect results

Workflow
inconsistency Workflow redesign

Prevent
composition from

failing

Self-
optimization

Global QoS
degrading

Select a new service Maintain the global
QoS

Value of a QoS
property is
degrading

Select a new service
Maintain the global

QoS

Value of a QoS
property is
upgrading

Select a new service Upgrade the global
QoS

Self-
awareness*

Service failure (E)

Determine the type
of failure and trigger

its corresponding
adaptation
mechanism

Prevent
composition from

failing

Service QoS
upgrading (E)

Trigger the
corresponding

adaptation
mechanism

Upgrade the global
QoS

Service QoS
degrading (E)

Trigger the
corresponding

adaptation
mechanism

Maintain the global
QoS

Global QoS
upgrading (E)

Trigger the
corresponding

adaptation
mechanism

Upgrade the global
QoS

Global QoS
degrading (E)

Trigger the
corresponding

adaptation
mechanism

Maintain the global
QoS

Chapter 2. Background

40

Adaptation could
be triggered (A)

Analyze whether
adaptation is

necessary or not

Maintain the
composition

functionality and
QoS

Different self-*
properties can be

triggered (A)

Find the most
suitable self-*

property and trigger
the adaptation

mechanism

Maintain the
composition

functionality and
QoS

*(E) Event-awareness

*(A) Adaptability awareness

2.5.2.2. The Need for Adaptation in Service Composi tion

As stated in section 2.3.2, one of the challenges in service composition is

the implementation of adaptive capabilities that enable services to work

despite of unexpected situations that may affect their behaviour. These

capabilities do not only focus on preventing composite services from failing,

but also maintaining their Quality of Service levels (discussed in section

2.5.2.1), in order to ensure that the service consumer obtains the expected

results.

Factors like: the nature of service composition, dynamicity offered by

the environments where services are executed, and increasing number of

services (that may provide the same functionality), have turned the

management of composite services into a highly complex task. Besides,

when customers invoke a composite service, they may have different QoS

constraints, but expect the same functional requirement to be fulfilled.

Therefore the need for adaptation, as the use of self-adaptive capabilities

enable composite services to modify their behaviour according to changes in

the environment, their internal components’ behaviour and pre-established

constraints, increasing the flexibility of the service itself and reducing as

much as possible human involvement.

2.5.3. Reactive vs Proactive Adaptation

Based on the moment when adjustments take place, adaptation approaches

are classified as either reactive or proactive. In service-based applications,

reactive adaptation is triggered after problems have occurred, when

situations like the use of faulty services or services that present undesirable

Chapter 2. Background

41

QoS have already affected the application [98]. The use of reactive

mechanisms may cause increases in the execution time and financial loss,

which can lead to user and business dissatisfaction [99]. Proactive

approaches aim to deal with some of these drawbacks by detecting the need

for a change in advance.

Situations that can be predicted in proactive adaptation approaches

for service composition include: the impact of a new requirement,

misbehaviour of a service and the existence of new services [99].

Techniques like data mining, online testing, statistical analysis, runtime

verification and simulation, are applied during the prediction stage of the

process, with the aim of accurately predict the behaviour of services and

service oriented systems [100].

2.6. Other Adaptive Approaches for Service Composit ion

Adaptation in service composition is not limited to the use of self-*

properties. The abilities to bind services dynamically at run time and offer a

set of fault tolerant techniques to support service composition can also be

considered as part of adaptive mechanisms.

2.6.1. Late Binding

Late binding, also known as dynamic binding, is a concept related to the

time when entities are bound to their implementations (e.g. procedures,

libraries) [101]. In service oriented systems, late binding mechanisms

provide the ability to bind services dynamically at runtime, after selecting

them based on specific required functionality and/or quality criteria (e.g.

response time, cost, etc). When using simple clients, services can be

invoked using:

• Dynamic proxy. Invokes a Web service without stubs code

generation. It is obtained at runtime and requires a service endpoint

interface to be instantiated [102].

• Dynamic invocation interface. Invokes a Web service at run time

without using a WSDL file. The client needs to provide operation

name, parameter names, types, modes, and port type [102].

Chapter 2. Background

42

• Broker. Manages the binding establishing a bridge between consumer

and provider. It selects a set of candidate services, ranks them and

then selects the top service to bind to [103].

When late binding is going to be performed from a service

composition perspective, some of the approaches that can be used include:

• BPEL features. Include limited dynamic binding characteristics that

enable reassigning end points at runtime [104].

• Agents. Executed on top of a composition engine. They perform

activities like discovering, matching and binding services [90].

• Proxy service. Works with abstract processes (e.g. abstract BPEL),

binding abstract tasks to proxy services that will point to the actual

component services at runtime [105].

• Semantic-based middleware. Uses semantic technology to find the

most suitable services from a set of candidates, and then performs

dynamic invocation [106]. It is used as a bridge between abstract

processes and services.

Different approaches have been proposed to enable late binding in

service composition, like those described in [101], [105], [106], [107] and

[108], where functional and non-functional characteristics on candidate

services are considered with the aim of optimizing the overall QoS of the

applications. The work presented in [101] describes a late-binding

mechanism for adaptive business processes. It introduces a pre-processing

stage to avoid delays at call time. The user’s QoS preferences are modelled

using a linguistic conditional preference networks (LCP-nets) model and

specified using WS-agreements. The implementation language for business

processes is an extended version of WS-BPEL, which includes three new

activities: lateBindingConfigure, monitoring, and lateBindingInvoke. A

framework for enabling late binding in service compositions is presented in

[105]. It supports pre-execution binding, run-time binding and run-time re-

binding. Pre-execution binding is performed before the actual execution.

Run-time binding permits the selection of a service bind at run time, just

before its abstract service is invoked. Finally, re-binding is a strategy to

support recovery actions in runtime, when the QoS values deviate from

estimates or a constraints violation occurs. The use of a semantic approach

Chapter 2. Background

43

is presented in [106]. In this project, BPEL processes are bind to a semantic-

based middleware, instead of performing static binding to a specific service.

The middleware uses semantic technology to find the most suitable services

from a set of candidates, and perform a dynamic invocation. In the work

described in [107], if there is any deviation from the estimated QoS of the

composite service or a service becomes unavailable, a re-binding

mechanism is triggered. The framework presented in [108] uses policy-

based mechanisms for service composition. It combines late binding with

runtime service discovery. This approach proposes two binding types, QoS-

based and content-based dynamic binding.

A common characteristic among these approaches is the use of

abstraction into each task or function of the composite service. These

abstract elements are bind dynamically to concrete services to provide an

agile execution of the composition.

2.6.2. Fault Tolerance

A fault is an abnormal condition in a component, which can lead to failure. In

Service Oriented Architectures, like in other distributed systems, failures can

occur at hardware, software, network (communication), and operator level

[109], [110]. However, there are specific faults that can take place during

different steps of the SOA process.

The following table contains a fault taxonomy for SOA developed

combining the approaches proposed in [110] and [111].

Table 2.2. SOA specific faults.

Stage General fault Specific fault Causes

Publish

Service
description fault

• Faulty description
• Service/description

mismatch
• Development fault

Service
deployment fault

• Required resource
missing

• Service/server
incompatible

• Development fault

Discovery No service found

• Required service
not existing

• Not listed in lookup
service

Chapter 2. Background

44

Wrong service
found

• Incorrect search
criteria

• Faulty lookup
service

• Service
description fault

Timed out ---

• Service down
• Server crashed
• Communication

faults

Composition

No valid
composition

• Incompatible
components

• Parts of
composition
missing

• Development fault

Faulty
composition

• Criteria not met
• Contract not met
• Misunderstood

behaviour
• Workflow

inconsistency
• Composition

engine fault

• Service
description fault

• Wrong service
found

• Development fault

Timed out • Unavailable
service

• Service down
• Server crashed
• Communication

faults

Binding

Binding denied

• Authorization
denied

• Authentication
failed

• Accounting
problems

• Insufficient security

• Unprivileged users

Bound to wrong
service ---

• Service
description fault

Timed out • Unavailable
service

• Service down
• Server crashed
• Communication

faults

Execution

Service crashed --- • Development fault

Incorrect result • Incorrect input
• Faulty service

• Service
description fault

• Development fault
• Faulty composition

Timed out • Unavailable
service

• Service down
• Server crashed
• Communication

faults

Some of the causes of these faults are also faults, and some of them

introduced in previous SOA stages, e.g. a wrong service description may

Chapter 2. Background

45

cause a wrong search result. Development faults, which can be introduced

by human developers, are one of the common fault causes. From the

provider side, these can include changes in the service interface and

changes in the logic of the service; from the client side (e.g. composite

service), wrong bindings and parameters incompatibility.

The ability of a system to deliver its expected service, despite the

presence of fault-caused error, it is called fault tolerance [112]. A fault

tolerant service is capable to detect errors and recover from them without

external interventions, by using fault tolerance mechanisms. By distinguish

and classify the different faults that can affect a specific system, it is possible

to develop the proper fault tolerance mechanism. In the Web service

context, fault tolerance mechanisms can be applied at atomic service and

composite service levels. For atomic services, some of the mechanisms

used are replication, check point, retry and the use of alternate resources.

On the other hand, for workflows or composite services, fault tolerant

mechanisms include the use of exception handlers (defined by the user),

alternate task, redundancy and rescue workflow [113].

A fault tolerant framework for Web services is presented in [114]. It

uses active, warm passive and cold passive replication techniques to create

service groups, where only one service is designated as primary member.

When the primary member fails, it is removed from the service group, a

backup member is set as the new primary and a new backup member is

deployed. The work in described in [115] aims to provide Web services with

higher resilience to failure. Fault tolerance is implemented by using a

passive replication scheme, where a service group is created and each

service has a warm replica to call in case of failure. In the composition

context, a fault tolerant model for service orchestration, which uses passive

and active replication techniques, is presented in [116]. The model supports

fault of crash by replicating services; per each service replica, there is a

standby replica. When a replica call fails, the BPEL fault handler redirects

the call to a standby replica. Results are given to the client when at least one

replica had no faults. The approach presented in [117] proposes a

mechanism to develop fault tolerant composite services using alternative

resources, allowing developers to include different services per each task.

This mechanism also evaluates the behaviour of the components at run

time, considering response time, availability and correctness.

Chapter 2. Background

46

These works rely on the implementation of redundant replicas or the

use of multiple services to satisfy a single task, which creates a dependency

on other servers and generates high costs in processing power. The use of

fault-handlers within BPEL code can turn the development of models into a

highly complex activity when many tasks are involved.

2.7. Decision Support Systems

Adaptive mechanisms require tools to rely on during the decision making

process. These mechanisms are known as decision support systems.

Decision Support Systems (DSS) are interactive components that help

during judgment and choice tasks. In order to support framing, modelling,

and problem solving, DSS enhance the use of information with models and

model-based reasoning. Decision making models consider three main

components: a measure of preferences over decision objectives, available

decision options, and a measure of uncertainty over variables influencing the

decision and the outcomes [118]. A list of DSS and their definitions are

presented as follows:

• Bayesian networks. Probabilistic graphical models used to represent

knowledge about uncertain domains. Graphs have two main

elements, nodes and edges. Each node corresponds to the

representation of a random variable, while the edges between nodes

represent probabilistic dependencies among the corresponding

random variables. Dependencies can be estimated using statistical

and computational methods [119].

• Decision trees. Method for approximating discrete-valued target

functions, where functions are represented by diagrams of decision.

Decision trees are tree-like diagrams, which have leave nodes and

branches. Leave nodes represent attributes, while branches

correspond to possible values for the attribute. Each path from the

root to a leaf matches a conjunction of attribute tests, and the tree

itself, to a disjunction of these conjunctions [120].

• Decision tree ensembles. Ensemble methods are generic techniques

used to improve a learning algorithm by using several models and

then aggregating their predictions. Some of these methods proposed

Chapter 2. Background

47

for decision trees include: bagging, random forest, extra-trees and

boosting [121].

• Neural networks. Technique used for learning real-valued, discrete-

valued, and vector-valued target functions from examples [120]. They

can be used to predict the behaviour of a system based on different

inputs, and build a model by using training samples. The performance

of the network is based on its structure and the quality of the training

data. Neural networks are useful when building models for control

purposes [122].

• Genetic algorithms. Stochastic-based techniques based on simulated

evolution [120]. They comprise a population of individuals, where

each individual encodes a candidate solution in a chromosome.

During each step of evolution, hypothesis of every individual are

recalculated, and parts of the best hypothesis are combined and/or

mutated to form the next generation [123].

• Reinforcement learning. Paradigm focused on learning how to control

a system and maximize its long-term objective. Its goal is to develop

learning algorithms, along with the understanding of their metrics and

limitations. Reinforcement learning algorithms use powerful function

approximation methods to compactly represent value functions [124].

• Fuzzy logic. Method based on multi-valued logic which aims to

formalize approximate reasoning. It is used to deal with different types

of uncertainty in knowledge-based systems. Some of the main

components of a fuzzy system are: fuzzy sets, linguistic variables and

fuzzy rules; where a set is a collections of objects characterized by a

function, linguistic variables represent their values with words, and

fuzzy rules correspond to human knowledge [125].

• Case based reasoning. Method for problem solving and learning

based on previous experiences. Old situations and their solutions are

encapsulated into a case structure and stored in a case-base, which

is queried when a new problem is encountered. The most similar

cases are retrieved, solutions of these cases are modified to conform

to the new situation and then, stored in the case-base [126].

Chapter 2. Background

48

Based on the information available, along with the nature and specific

needs of the application, different decision support systems can be selected.

It is important to consider that due to their complexity levels, some of these

mechanisms may exhibit significant overheads at runtime.

2.8. Summary

This chapter has provided a definition on Service Oriented Architectures to

help introducing Web services and service composition. The concept of Web

services was explored in detail, presenting an overview on service related

standards, the service life cycle, and listing some of the benefits of using

services when developing software solutions.

An outline of service composition is then presented, along with the

descriptions of relevant composition languages and main challenges in the

field. Quality of Service in the context of service oriented environments is

then defined, alongside a discussion of related work in QoS management

and QoS estimation in service composition.

Adaptive service composition is then described from the perspective

of autonomic computing. Different self-* properties are defined and related to

the events that can occur during the execution of composite services,

followed by a discussion about the need for adaptation in service

composition. Other adaptive approaches used in service environments are

then discussed. Finally, different decision support systems that can be used

within adaptive mechanisms are defined.

This chapter provided a background on relevant topics and related

approaches to help the understanding of the work described in this Thesis,

which performs service composition using a centralized model (defined in

section 2.3), considering different non-functional attributes (defined in

section 2.4) as adaptation goal. Adaptation is carried out at Web service

level, using a rule-based approach for service selection at runtime, taking

into account self-optimization and self-healing capabilities (defined in section

2.5). Fuzzy logic is used as a decision support system (defined in section

2.7) to help during the decision making process of mechanisms two and

three, described in chapters 4 and 5, respectively.

Chapter 2. Background

49

The following chapter will describe a self-optimization model for

service composition. It will present a discussion on related approaches and

the solution proposed to overcome their limitations.

Chapter 3. A QoS Optimization Model for Service Composition

50

Chapter 3
A QoS Optimization Model for Service
Composition

This chapter introduces a QoS optimization model for service composition.

The motivation behind the development of the optimization model is

described through a service composition scenario. A discussion on work

related to the provision of self-adaptation in service composition is then

provided. The proposed solution is described, followed by its implementation

details. Finally, the experiments performed to evaluate the model, alongside

their configuration and results, are discussed in detail.

3.1. Motivation

Service Oriented Architectures have encouraged the development of

applications based on reusable and distributed components, and the design

of flexible business processes. These business processes, also known as

composite services, enable the structured interaction of services developed

and hosted by different entities. The scenario described in this section

provides a representative example of a composite service and its interaction

with other services and a service consumer. The actors involved in this

scenario are a customer, a travel agent Web site (service consumer), a

travel agent service, service providers and a credit card company [127].

• Customer. Aims to obtain a vacation package with the best services

and prices available.

• Travel agent Web site. Offers the ability to book vacation packages

(hotel, airplane tickets, ground transportation, etc.) and tries to

provide customer satisfaction.

• Travel agent service. Interacts and coordinates the execution of Web

services.

• Service providers. Aim to sell products and expose Web services to

query information and perform reservations on them (hotels, airlines,

etc.).

Chapter 3. A QoS Optimization Model for Service Composition

51

• Credit card company. Provides services to guaranty and process

payments.

Figure 3.1. Composite service example.

The process starts when the customer fills and submits a form with

the holidays package requirements, through the agent’s Web site. The travel

agent site finds a list of hotels and airlines, and presents the list of results to

the customer, letting him choose the best options according to his needs. To

book the customer’s choice, (1) the travel agent Web site invokes a

composite Web service (travel agent service) to coordinate the interaction of

credit, airline and hotel services (see Figure 3.1). (2) The travel agent

service contacts the credit service to confirm payment, if the response

indicates success with an authorization identifier (signed by the payment

authority), proceeds to book the hotel room. (3) The travel agent service

requests a description of how to book a room to the hotel service, sends the

request accordingly and a payment authorization identifier from the credit

service. (4) To confirm the flight reservation, the service requests a

description of how to buy a ticket to the airline service, sends the request

accordingly and a payment authorization identifier from the credit service. (5)

The travel agent service charges a fee to the customer, using the

authorization identifier signed by the credit service. (6) Finally, the service

sends to the customer, through the Web site, the confirmation identifiers of

the vacation package.

This is an ideal scenario where all the activities (in the composite

service) that involve invoking service operations are executed without

problems (delays, faults, etc.). At the end of the process, the service

consumer (travel agent Web site) gets the expected results and fulfils the

customer’s requirements. However, in the real world the behaviour offered

by services exhibits frequent variations (see Figure 3.2) , therefore, obtaining

the expected results while running a service is not guaranteed. This has

Travel agent

Web site

Credit service

Hotel service

Airline service

Credit service

(1)

(6)

(2)

(3)

(4)

(5)

Travel agent service

Customer

Chapter 3. A QoS Optimization Model for Service Composition

52

caused the need of mechanisms and tools focused on helping providers to

ensure the provision of services with certain quality levels.

Figure 3.2. Events that can occur at runtime.

As described in section 2.5, adaptive mechanisms provide software

systems with capabilities to self-heal, self-configure, self-optimize, self-

protect, etc., in order to deal and mitigate the impact of unexpected events

that can occur during service executions. The scope of the work described in

this chapter is primarily concerned on the development of a model that helps

maintaining and, if possible, improving the QoS levels of composite services.

3.2. Self-Adaptation in Service Composition

Research on self-adaptation in service composition is primarily associated

with the design and implementation of self-healing and self-optimizing

capabilities. Self-healing methods have been extensively studied in the last

years. Work in this area can be found in approaches like those presented in

[59], [90], [107], [108], [128] and [129], where new services are selected and

invoked after a functional failure or a QoS constraint violation. These works

are mainly focused on targeting events like:

• QoS degradation. The quality values of the composition have

decayed and are far from expected.

• Unavailable service. The service is down or has no network

connection.

Credit service

Hotel service

Airline service

Credit service

Composite service Available services

QoS decrease

Unavailable
service

Time out

Communication
issues

Chapter 3. A QoS Optimization Model for Service Composition

53

• Service time out. The server where the service was running crashed

or there is a network fault.

• Communication issues. The network is not working correctly.

On the other hand, mechanisms that implement self-optimization are

closely related to the selection of services at runtime, in order to maintain the

expected QoS of the entire composition. Examples of works that use these

mechanisms are described in [86],[87],[95],[107] and [130], and summarized

as follows:

• The methodology and framework proposed in [86] are focused on

QoS driven adaptation for service composition. Adaptation is

performed using service selection and coordination patterns. When

using redundancy schemes, QoS levels of a single service operation

are improved by increasing its cost. The framework uses an

optimization engine to determine the adaptation policy and ensure the

composition meets the QoS goals.

• The framework presented in [87] facilitates the development of

adaptive service-based systems by implementing service selection,

runtime reconfiguration and resource assignment. Based on the

behaviour of previous executions and adaptation requirements,

concrete workflows are re-deployed, replacing older versions. When

adaptation is targeted by resource allocation, applies only for in-

house services and takes place at runtime.

• The framework described in [95] enables designers to develop BPEL

workflows, in which they can define at design time the information

required to adapt at runtime, including a set of candidate services and

constraints. The framework aims to select the best services to invoke

from the process along with the most appropriate QoS levels. A

disadvantage of this work, is the level of human involvement at design

time.

• The solution presented in [107] proposes a QoS aware binding

mechanism based on genetic algorithms. It searches for the best

possible set of services to invoke. At runtime, the bindings can be

reconsidered and sections of the composition can change. This action

is triggered when estimations of the workflow’s QoS indicate a

Chapter 3. A QoS Optimization Model for Service Composition

54

possible deviation of the initial QoS and risk of SLA violation. Then,

the composition stops, the remaining part of the workflow is re-

planned and re-bound, and finally, the workflow execution finishes.

• The framework presented in [130] applies mixed programming to

relate abstract services with executable services. It proposes the use

of an adaptive QoS negotiation mechanism between users and the

service broker. This enables users to decrease their requirements at

runtime and reduce the number of QoS violations.

These approaches are mainly focused on the selection of services

that offer high quality values and the use of utility functions while selecting

the set of services to bind to. However, they only consider situations where

quality levels are degraded. Besides, some of the adaptation strategies

apply in the next execution of the composition, or require human

specifications. Self-optimization can be also targeted when one of the QoS

values of the entire composition has being enhanced at certain point of the

execution.

The work presented in this chapter includes this information as part of

its adaptation mechanism, considering that this behaviour provides some

slack that can be used while selecting the next service in the process,

enabling the improvement of other QoS attributes. Also, adaptation is

considered to take place at runtime, without stopping the execution of the

composite service. Further discussion between related approaches and the

model presented in this chapter will be provided in chapter 6.

3.3. Proposed Solution

The use of a QoS aware and adaptive environment on the service provider

side can help fulfilling customer requirements from both perspectives,

functional and qualitative. From a higher level, this environment works as a

middle point between the final consumer (user/application) and those

services involved in a composition process, as depicted in Figure 3.3.

Chapter 3. A QoS Optimization Model for Service Composition

55

Figure 3.3. Idea of solution.

The consumer selects a composite service from a repository, based

on its QoS specification. It is assumed that a functional search has already

been performed. Then, based on the service’s contract (SLA), the consumer

decides whether to accept or not the usage conditions. If possible, a

negotiation process between consumer and provider takes place, in order to

adjust the contracts clauses. To avoid exposing QoS attributes’ raw data,

that may not be relevant to the consumer, some of them can be expressed

using linguistic terms (e.g. low, medium, high) or considered as Business

Level Objectives (BLOs) [131].

When the consumer accepts the contract offered by the provider and

invokes the composite service, the provider has to ensure that the

composition behaves as specified in the contract, avoiding violations and

payment of compensation fees. This research is focussed in developing a

model (mechanisms) to provide such environment, helping the provider to

deliver the expected service, by maintaining/improving the QoS levels of the

composition. The aim of these mechanisms is to react to situations where:

• QoS levels can be improved. Some of the QoS values of the

composite service have been enhanced, providing the possibility of

improving the global QoS.

• QoS degradation. The quality values of the composition have

decayed and are far from expected.

• Unavailable service. The service is down or has no network

connection.

Chapter 3. A QoS Optimization Model for Service Composition

56

• Service fails. The service does not finish its execution or sends an

error message.

The use of service level agreements enables the establishment of

contracts between consumers and providers, ensuring that both entities get

the most of their interaction. However, this work is focused on adaptation

mechanisms and the use of SLAs is out of the scope.

3.3.1. System Model

An overview of the system model proposed in this chapter is illustrated in

Figure 3.4. It shows the system’s core components: composition engine,

adaptation manager, service binder, service selector, predictor, effectors and

sensors; and their interactions. This model was implemented with the aim of

creating an environment in which QoS aware and adaptive composition can

be executed. Descriptions of the system’s components are provided below.

Figure 3.4. System model.

• Service binder. Binds dynamically each of the composition’s tasks to

executable services. These services are selected using functional and

QoS criteria.

• Service selector. Searches in the registry those elements that fulfil the

task’s requirements.

Composition Engine

Service

Binder

Service

Selector

Predictor

SensorsHistorical

Data

Service

Registry

Adaptation

Manager

Monitor

Analyzer

Planner

Adapter

Effectors
Abstract

composite WS

Executable

composite WS

Chapter 3. A QoS Optimization Model for Service Composition

57

• Predictor. Obtains estimates for the QoS attributes of the selected

services by using predictive algorithms and a collection of historical

QoS data.

• Sensors. Collect information about different events at run time and

send it to the adaptation manager. Events are related to functional

and quality aspects of the compositions’ elements.

• Adaptation manager. Monitors and analyzes the behaviour of

composite services at runtime. According to its analysis, determines

when is necessary to perform changes, in order to improve/maintain

the offered QoS of the compositions. Its components are based in the

self-adaptive cycle for service composition described in section 2.5.2.

♦ Monitor. Gathers data (collected by sensors) related to the

behaviour of the services.

♦ Analyzer. Analyzes and detects when is necessary to perform

a change in the composite service.

♦ Planner. Decides how to perform adaptation.

♦ Adapter. Coordinates the changes to be performed on the

composite services.

• Effectors. Apply the actions provided by the adaptation manager,

enabling composite services to adapt at runtime.

• Composition engine. Executes the composite services (processes’

definitions).

Composite services are considered to consist of a series of abstract

tasks that will be linked to executable services at runtime. To obtain these

services, for each task in the composite service, the service binder invokes

the service selector with the desired characteristics that the component

service should provide. The service selector performs a search into the

service registry based on the provided functional requirements. For each of

the pre-selected services (candidates), the service selector invokes the

predictor to obtain its estimated QoS. A sub-set of candidates is then sent to

the binder, along with their estimated QoS. The binder ranks these services

and selects one to be invoked. During the execution of the composite

Chapter 3. A QoS Optimization Model for Service Composition

58

service, sensors capture information about the behaviour of the service and

its components. Sensors send this information to the adaptation manager,

which determines if adaptation is needed and the appropriate adaptation

strategy. At the same time, QoS data is stored in the historical database.

Finally, the adaptation manager sends the actions to be performed to the

corresponding effectors, in order to maintain/improve the QoS of the

composition.

3.3.2. QoS Model

Services that offer the same functionality may be associated with several

QoS attributes [62],[65], providing different QoS levels. By evaluating these

attributes within a set of services that share the same goals, consumers can

search/select components to be used in their applications. In the first stage

of this work, the quality attributes considered for each service are response

time and cost. The use of other QoS parameters, energy consumption and

availability, has been considered during this research. These parameters are

included in the QoS models of the approaches described in further chapters.

• Response time (��). Time consumed between the invocation and

completion of the service operation [59].

• Cost (�). Fee charged to the consumer when invoking a service [86].

Considering response time and cost enables the selection of faster

and cheaper services, providing a competitive advantage [65]. Both

parameters have been used in other approaches, like those presented in [3],

[59], [86] and [132]. Assuming that a service (�) only contains one operation,

its QoS (�) can be defined using Eq. 3.1.

�(�) = (��(�), �(�)) (3.1)

To compute the values of these parameters at execution time, three

situations have been considered within the composite service structure:

single, sequential and concurrent service invocations. When computing the

QoS parameters of a single service invocation, the QoS values of the activity

that performs the invocation corresponds to the QoS of the invoked service,

as defined in Eq. 3.2 and 3.3.

Chapter 3. A QoS Optimization Model for Service Composition

59

��(��) = ��(�) (3.2)

�(��) = �(�) (3.3)

For activities in a sequential structure, the values of response time

(��) and cost (�) are summed for the different activities with service

invocations, as shown in Eq. 3.4 and Eq. 3.5, respectively.

��(�) = � ��(��)
	

��

 (3.4)

�(�) = � �(��)
	

��

 (3.5)

For activities in a concurrent/parallel structure, the value of response

time (��) is considered as the maximum response time of the completed

activities; while value of cost (�) is the sum of the cost of the activities

involved, as defined in Eq. 3.6 and Eq. 3.7, respectively.

��(�) = �����
,..,	 ��(��) (3.6)

�(�) = � �(��)
	

��

 (3.7)

In this set of equations, the value of �� corresponds to an activity

(task) with a service invocation within the composite service �.

3.3.3. Service Selection Model

Estimation of QoS values is a key step during the service selection process.

Estimated values are calculated using historical QoS data recorded from

previous executions. This data is filtered, discarding values considered as

outliers, and the average of the last � executions of the remaining subset is

obtained. Concrete services are searched in the registry by name, assuming

that this parameter includes/describes the service’s functionality. The

resulting set of candidate services is sorted according to the relationship

between their estimated QoS values. Due to these attributes having different

units of measurement, raw values are first normalized with natural

logarithms. The overall quality score () for each service is then computed

using the following formula:

Chapter 3. A QoS Optimization Model for Service Composition

60

 � = �
 !���� + �" !���� (3.8)

Where:

!���� corresponds to the service estimated response time,

!���� corresponds to the service estimated cost,

�
 and �" correspond to weights, where 0 ≤ �
, �" ≤ 1 and

�
 + �" = 1.

Values for �
 and �" are provided by the QoS evaluation heuristic

described in the following section. The set of candidate services is ranked

based on the values of �, and the service with the lowest value is selected.

3.3.4. QoS Optimization Model

Monitoring the execution of services is a critical task in the adaptation

process. By monitoring and collecting data from services executions, based

on their behaviour it is possible to take decisions about future actions [30].

As part of this work, at runtime QoS information is collected from service,

task and process perspectives, where:

• Service. Corresponds to a concrete Web service.

• Task. Refers to an element within the composite service that invokes

a service operation.

• Process. Corresponds to the entire composition (service workflow).

Response time is measured during each stage of the process, while

cost is obtained from the WSDL1 files of the services. The QoS values of a

task are registered as an individual invocation and as the accumulated QoS

of the composition at the time of executing the task. The optimization

approach is based on the service selection model previously described. It

uses variable weights and performs service selection on the obtained set of

candidates. When the accumulated response time (or cost) of the previous

activity in the process is less than expected, it provides some slack that can

be used while selecting the next service in the process. The use of weights

gives priorities to certain QoS parameter during the service selection phase,

1 The WSDL standard was extended to include the service’s QoS information.

Chapter 3. A QoS Optimization Model for Service Composition

61

which can help to enhance its values (e.g. a large weight assigned to cost

enables the selection of a candidate service with low cost).

The heuristic presented in Figure 3.5 describes the QoS evaluation

method applied during optimization. The notation used is shown as follows.

Let,

• � = %�
, �", … , �	' be the set of � tasks in process �.
• (be the task number, where �)∈ �.

• �* = %�
* , �"* , … , �+* ' be the set of , ancestors of �), where �*
∈ �. When

(= 1, then �* = %∅'.
• ���, ���, �!���, �!��� be the accumulated values corresponding to

real response time, real cost, estimated response time and estimated

cost for a task.
• .) = %�
, �", … , �/' be the set of � services that can be used to

implement �).

• 0 be the service number, where ��∈ .).

• !���, !��� be estimated QoS values corresponding to response time

and cost for a service.

• �
, �" be weights used to obtain the score of a service (see Eq. 3.8).

• �
1, �"1 be default values used to establish the weights, where

0 ≤ �
1 < �"1 ≤ 1 and �
1 + �"1 = 1.

• 30�0��, 30�0�� be default values set as maximum difference between

�!��� and ���, and �!��� and ���, respectively.

Before invoking a Web service operation for �), the ancestors �* for �)

are obtained (step 3). �
 and �" are set initially to 0.5, enabling a service

ranking with no preference (step 4). This is used in case there are no
meaningful differences between the QoS values of � before �). If �) is not the

first task in �, this task has ancestors and QoS evaluation takes place (steps

6 to 20). Values within �* are sorted based on ��� (step 6). The task with

the highest ��� value is selected and the differences between its estimated

and real QoS values are obtained (steps 7 to 9). These values are compared

to the maximum desired percentage of difference between real and

estimated values. If the accumulated time is smaller than expected or the

accumulated cost is higher than expected (step 10), weights are assigned

giving priority to �" (steps 11 and 12). This enables the selection of a
service with a smaller cost for �).

Chapter 3. A QoS Optimization Model for Service Composition

62

If there is no adaptation required based on time, the values within �*
are sorted based on ��� (step 14). The task with the highest ��� value is

selected and the differences between its estimated and real QoS values are

obtained (steps 15 to 17). These values are compared to the maximum

desired percentage of difference between real and estimated values. If the

accumulated cost is smaller than expected or the accumulated time is higher

than expected (step 18), weights are assigned giving priority to �
 (steps 19

and 20), enabling the selection of a service with a smaller response time for
�). Scores are obtained per each of the services within .) (steps 21 and 22).

Finally, .) is sorted and the heuristic returns the service with the smaller

score (steps 23 and 24).

SelectService (45, 6, 75)
1 let � ′ be a task
2 let � ′ be an empty list
3 � ′ = ObtainAncestors(�) , �, � ′)
4 �
 = �" = 0.5

// weights selection phase
5 if � ′. 3!�8�ℎ != 0
6 sort � ′ by ��� descendent
7 � ′ = � ′[0]
8 <0=� = � ′. �!���- � ′. ���
9 <0=� = � ′. �!��� - � ′. ���
10 if <0=� ≥ 30�0�� || - <0=� ≥ 30�0��
11 �
= �
1
12 �"= �"1
13 else
14 sort � ′ by ��� descendent
15 � ′ = � ′[0]
16 <0=� = � ′. �!���- � ′. ���
17 <0=� = � ′. �!��� - � ′. ���
18 if <0=� ≥ 30�0�� || - <0=� ≥ 30�0��
19 �
= �"1
20 �"= �
1

//score computation and service ranking phase
21 for 0 = 0 to (.) . 3!�8�ℎ − 1)
22 .)[0]. = �
 .)[0]. !��� + �" .)[0]. !���
23 sort .) by ascendent
24 return .) [0]

ObtainAncestors (4, 6, 6′)
1 for (= 0 to (�. 3!�8�ℎ − 1)
2 if �[(] is ancestor of �
3 insert �[(] into � ′
4 return � ′

Figure 3.5. QoS optimization heuristic.

Chapter 3. A QoS Optimization Model for Service Composition

63

After invoking the operation of the selected service, the obtained QoS

values for service and task are stored in the historical database.

Accumulated QoS per task are calculated using the formulas presented in

equations 3.2 to 3.7.

3.4. Implementation

Implementation of the solution described in the previous section, was carried

out extending the functionality provided by a java-based composition engine.

It includes modifications to existing files and packages, and development of

new components (service binder, service selector, predictor and adaptation

manager). As a result, the engine provides the features required to execute

QoS aware service compositions, according to the proposed QoS

optimization model.

The diagram depicted in Figure 3.6 illustrates the main packages of

the engine and their dependencies. It is derived from the system model

described in section 3.3.1.

Figure 3.6. Packages diagram.

Interaction between packages is illustrated in Figure 3.7. When the

composite service is being executed, before selecting a new service to bind

to a task, candidate services are searched in the registry based on functional

requirements. This activity is performed by classes within the Service

Selector. For each of the services found in the registry, a prediction of QoS

Chapter 3. A QoS Optimization Model for Service Composition

64

values takes place (based on historical data). In this step, the Predictor has

access to the database via DBAccess. The obtained predictions and service

data (service name, WSDL’s URL) are then sent to the Service Binder.

In the next step, the Service Binder interacts with the Adaptation

Manager, in order to obtain the weights to be used during the service

ranking process. To analyze and evaluate the behaviour of the composition,

the Adaptation Manager needs information from the composite service

behaviour. It accesses historical information via DBAccess, determines if

adaptation is needed, and the weights to be used during service selection.

Weights are then sent to the Service Binder, which applies them to rank the

pre-selected services, and finally invoke the service situated in the higher

position of the ranking.

Figure 3.7. Components interaction.

Packages org.apache.ode.axis2 and org.apache.ode.bpel.runtime

correspond to original components of the composition engine. Even though

they do not interact with other components during the service selection

process, both have an important role in the monitoring process.

Service

Binder

Service

Selector
Predictor

Search Service

Get Services

Predict QoS

Get QoS Data

Get Prediction

Return Prediction

Return Services

F
o

r
e
a

c
h
 s

e
rv

ic
e

Loop

DB Access

Invoke Service

Adaptation

Manager

Get Weights

Evaluate QoS

Return Weights

Get QoS Data

Chapter 3. A QoS Optimization Model for Service Composition

65

3.4.1. Composition Engine

In order to select the engine to use in this work, different tools that enable

service composition were installed and tested (See Table 3.1). Based on the

results of this exercise, it was necessary to have not only a composition

engine, but also a designer. The parameters used to compare these tools

include: ease of obtaining source codes, licensing and compatibility.

The selected tools were Apache ODE [133] and BPEL designer for

eclipse [134]. Apache ODE is a BPEL engine that runs on standard servlet

containers, like Apache Tomcat. It is an open source project that exposes its

source codes online, enabling the extension of its functionality. BPEL

designer is a plug-in that brings support for WS-BPEL on eclipse.

Composition projects created on the designer are compatible with the

structure of ODE. The use of these tools combined provides a

design/execution environment for service compositions.

Table 3.1 . Composition tools.

Tools Installation
requirements

Available
source
codes

Composition
language Licensing

ActiveBPEL
engine [135] Apache Tomcat Java

BPEL4WS
1.1 GPL license

BPEL
designer for
eclipse [134]

Eclipse ---
WS-BPEL
2.0 Open source

Pi4soa
designer [40]

Eclipse --- WS-CDL Open source

JBoss AS
[136]

JBossESB
Overlord CDL

Java WS-CDL LGPL license

JOpera [137] Eclipse --- ---
Free with non
commercial
purposes

Apache ODE
[133] Apache Tomcat Java WS-BPEL

2.0
Apache
license

Modifications and extensions to the original ODE sources were

performed in order to provide the execution environment with monitoring,

dynamic binding and adaptive capabilities. Monitoring features enable the

collection of information from process and activity (task) perspectives.

Processes’ response time can be monitored within the class PROCESS

(package org.apache.ode.bpel.runtime). When the execution of the BPEL

Chapter 3. A QoS Optimization Model for Service Composition

66

process ends, information is collected and registered in the historical

database. From the task perspective, information can be obtained from the

class SoapExternalService (package org.apache.ode.axis2). This class is in

charge of performing service invocations. Dynamic binding and adaptive

features are described in sections 3.4.2 and 3.4.5, respectively.

3.4.2. Service Binder

Dynamic binding can be performed using different techniques, as described

in section 2.6.1. In order to develop the service binder component of the

model, it was selected the use of a proxy service [102], as it can be linked to

tasks defined in BPEL, and enables the invocation of executable services at

runtime. The service binder is deployed on top of the composition engine as

a Web service.

<bpel:copy>
 <bpel:from>
 <bpel:literal>
 <impl:fnCallService xmlns:impl="http://dynamicBinding"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <impl:values>impl:values</impl:values>
 <impl:values>impl:values</impl:values>
 </impl:fnCallService>
 </bpel:literal>
 </bpel:from>
 <bpel:to variable="DynamicProxyRequest" part="parameters">
 </bpel:to>
</bpel:copy>
<bpel:copy>
 <bpel:from><![CDATA[string('CreditCardChecking')]]>
 </bpel:from>
 <bpel:to>
 <![CDATA[$DynamicProxyRequest.parameters/ns:values[1]]]>
 </bpel:to>
</bpel:copy>
<bpel:copy>
 <bpel:from part="payload" variable="input">
 <bpel:query
 queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
 <![CDATA[tns:CardNumber]]>
 </bpel:query>
 </bpel:from>
 <bpel:to>
 <![CDATA[$DynamicProxyRequest.parameters/ns:values[2]]]>
 </bpel:to>
</bpel:copy>

Figure 3.8. BPEL code that defines the XML input for the service binder.

Chapter 3. A QoS Optimization Model for Service Composition

67

At runtime, the composite service sends to the service binder an XML

fragment with the value of the desired functionality and execution

parameters, as shown in Figure 3.8. The value of the variable that holds the

functionality details is obtained from the XML and used as input parameter

during the service search process. Values of execution parameters are also

obtained and sent as inputs during service invocation.

With the aim of selecting a specific service to bind to a task (based on

the results of the service selector), QoS values of the pre-selected services

are processed, enabling the ranking process (based on the weights values

obtained from the adaptation manager). When the invoked service has

finished its execution, information about its QoS levels is obtained and

stored in the historical database. This information is used in the prediction

stage of further compositions related to the same functionality.

3.4.3. Service Repository and Service Selector

In order to store information from different services, a repository was

implemented configuring a UDDI registry using jUDDI v.3 [138]. jUDDI is a

java-based implementation of UDDI that was created to integrate effectively

with java application servers, like Tomcat. Because the selected composition

engine was already deployed on top of Tomcat, the use of jUDDI was

considered as a suitable technical solution.

In the literature there are different ways of searching services within a

repository, some of them using semantics, where services are linked to their

functionality using ontologies. However, developing a complex search

engine is out of the scope of this research, and search is limited to a basic

mechanism where services are evaluated based on keywords that describe

their functionalities. The purpose of the service selector is finding services

that match a functional requirement, and obtaining their QoS values (by

interacting with the predictor), along with statistical details that are used by

the service binder when computing the service’s information.

3.4.4. Predictor

Estimations of QoS values are carried out by the predictor using the running

average for the last 10 executions, after removing values considered as

Chapter 3. A QoS Optimization Model for Service Composition

68

outliers. The use of this predictive algorithm was decided after performing a

set of experiments where different algorithms were evaluated and compared

when obtaining estimated QoS of Web services. The evaluated algorithms

include: single last observation (SLO), running average (RA), running

average for the last 10 executions (RA-10) and low pass filter (LPF). Details

about this experiment are discussed in appendix A.

The predictor provides the system with the capability of performing

QoS estimations at service and task (activity) level, enabling the adaptation

manager to evaluate the overall behaviour of the composition at different

stages, and make decisions regarding adaptation actions.

3.4.5. Adaptation Manager

The adaptation manager consists of four packages that combined, evaluate

the behaviour of composite services at runtime and enable QoS awareness

and adaptation. Its core components and their dependencies are illustrated

in Figure 3.9.

Figure 3.9. Package diagram - adaptation manager.

As mentioned earlier in this section, org.apache.ode.bpel.runtime and

org.apache.ode.axis2 correspond to elements within the composition engine

and have been extended to work with the adaptation manager, as part of the

monitoring mechanism. Information collected by these packages is collected

by the Monitor and stored in the historical database via DBAccess.

Implementation of the QoS evaluation heuristic (described in section 3.3.4)

and support classes for the QoS optimization model, are distributed along

the Analyzer, Planner and Adapter. The Analyzer interacts with the database

PlannerAnalyzer

org.apache.

ode.axis2

AdapterMonitor

org.apache.

ode.bpel.ru

ntime

Adaptation Manager

DBAccess

Chapter 3. A QoS Optimization Model for Service Composition

69

in order to obtain historical data, and combines this information with the new

information collected by the Monitor, in order to evaluate the performance of

the composition. The Planner and Adapter are in charge of deciding the

adaptation strategy, obtain the weights to be used in the service selection

process, and send the information to the corresponding modules. Adaptation

strategies are not limited to QoS optimization, also include self-healing

features that enable the composition to react to service unavailability and

service failures. Details regarding the self-healing functionality are described

in appendix B.

3.5. Evaluation

In order to assess the effectiveness of the proposed optimization

mechanism, two sets of experiments were designed, executing a test case in

two different environments. The first environment is setup within a local area

network, while the second environment is setup on a wide area network.

Experiments were carried out to address the following question:

• Is there any improvement in the global QoS when using variable

weights during service selection as part of a self-optimization

mechanism?

The work performed to provide an answer to this question is listed as

follows:

• Assessment and comparison of the behaviour of the proposed

optimization model vs. a baseline approach that does not use

optimization.

• Assessment of the behaviour of the optimization approach when

executing component services in local and remote environments.

3.5.1. Test Case

In the literature, there have been proposed several test cases (scenarios) to

model service compositions, such as travel planning [62], order

management [106], order fulfilments [66], DNA sequencing [65], etc. The

test case used in this work, is a BPEL process that implements a travel

Chapter 3. A QoS Optimization Model for Service Composition

70

planning process. It validates a credit card, performs flight and hotel

reservations in parallel, and finally invokes a car rental operation, as

illustrated in Figure 3.10. For simplicity, the diagram only depicts activities

that involve service invocations.

Figure 3.10. Travel planning process.

Per each of the tasks in the process, there are 9 candidate services

that fulfil the required functionality and offer different QoS, giving a total of 36

services, distributed in 9 sets among the servers (nodes). These services

were previously registered into the service registry (UDDI), and executed

several times to populate the historical database and enable the estimation

of their QoS attributes.

Table 3.2. QoS parameters configuration.

Experiment 1 Experiment 2 Set Time delays
(ms) Cost

Node 1 Node 2

S1 0 120

S2 350 80

S3 200 100

Node 2 Node 3

S1 0 150

S2 350 100

S3 200 120

Node 3 Node 4

S1 0 100

S2 350 60

S3 200 80

The initial values of QoS parameters for the candidate services used

in both experiments, are established based on the node where the service is

running and the corresponding set. Delays are inserted on some of the

service sets to obtain different response times, not only based on the

network latency, but the Web services performance. This information is

shown in Table 3.2.

Chapter 3. A QoS Optimization Model for Service Composition

71

The amount of information available per each service, before starting

the execution of the composite services, corresponds to 1,000 records in the

database. After performing each set of executions, information above 1,000

records is stored in external files and deleted from the database, in order to

have the same information available at the beginning of each experiment.

3.5.2. Service Selection Based on Fixed Weights

A service selection mechanism based on fixed weights was implemented to

be compared with the proposed optimization approach. It uses equation 3.8

(presented in section 3.3.3) and does not consider QoS optimization. For

this approach the values for �
 and �" are set equally to 0.5. The steps

used to select a service are as follows:

1. Service’s QoS data from previous executions is filtered in order to

remove outliers.

2. Average of the last 10 executions is obtained per each QoS

parameter.

3. Raw QoS values are normalized with natural logarithms.

4. Service’s score is obtained using Eq. 3.8.

5. Services are ranked and the one with the smaller score is selected.

Results that correspond to the execution of the service selection

mechanism based on fixed weights are labelled in further sections as “fixed

weights approach”.

3.5.3. First Stage of Evaluation

During the first stage of evaluation, the travel planning process was

executed 50 times to analyze the behaviour of the optimization approach

and evaluate its overall benefit. The maximum difference between

estimated/real response time and cost was established in 10%. Weights

provide priorities to the QoS attributes at the time of performing service

selection, values for �
1 and �"1(corresponding to the heuristic described in

section 3.3.4) were set to 0.3 and 0.7, respectively. The process was also

executed using the service selection mechanism based on fixed weights

described in section 3.5.2.

Chapter 3. A QoS Optimization Model for Service Composition

72

3.5.3.1. Experimental Environment

The experimental environment, illustrated in Figure 3.11, consists of three

nodes configured on a local area network. One computer with Windows

Vista, 4GB RAM and one Intel core2 duo 2.1GHz processor (node 1); and

two virtual machines with lubuntu 11.10, 512 Mb RAM and one processor

(nodes 2 and 3). Node 1 hosts the BPEL engine (Apache ODE 1.3.4),

service registry (jUDDI 3.0.4), historical database (MySQL 5.1.51) and one

application server (Tomcat 6.0.26). Nodes 2 and 3 host one application

server each (Tomcat 6.0.35). Web services are allocated in the application

servers. Every node contains 3 sets of Web services. The travel planning

process is hosted and invoked from Node 1.

Figure 3.11. Experimental environment - LAN.

Based on the analysis of the behaviour of Web services found on the

Internet, response time of the candidate services was modified by adding

random delays generated with a log-normal distribution. The distribution and

its input values were determined after executing 5 services 1,000 times,

collect their response times and analyze the difference between each

execution.

3.5.3.2. Experimental Results

Results show that the proposed approach provides a meaningful

improvement on the global QoS of the compositions, when comparing with

the fixed weights approach. Global QoS refers to the final values of the

different QoS properties of the composite service.

Chapter 3. A QoS Optimization Model for Service Composition

73

Figure 3.12. Response time comparison between variable and fixed weights approaches.

The plot depicted in Figure 3.12 shows that the measured response

time of the composite service executed using the optimization approach

(variable weights) is closer to the corresponding estimated values, as

compared to the behaviour of the fixed weights mechanism, where most of

the values are above the estimations. Measured average response time

values correspond to 7,049ms and 7,416ms, where the proposed approach

provides a mean reduction of 5%, a highest reduction of 14%, and standard

deviation of 7.45%.

Figure 3.13. Cost comparison between variable and fixed weights approaches.

50454035302520151051

510

485

460

435

410

385

360

Execution number

C
os

t

Cost (variable weights)
Estimated cost (variable weights)
Cost (fixed weights)
Estimated cost (fixed weights)

50454035302520151051

11000

10000

9000

8000

7000

6000

Execution number

R
e

sp
on

se
 ti

m
e

 (
m

s)

Response time (variable weights)
Estimated response time (variable weights)
Response time (fixed weights)
Estimated response time (fixed weights)

Chapter 3. A QoS Optimization Model for Service Composition

74

In contrast to the behaviour of response time, in the majority of the

cases, cost estimations for the proposed approach are not close to the real

measurements. As illustrated in Figure 3.13, most values are above

estimations; nevertheless, there can be found some significant cost

reductions, the highest being of 16%. Average cost value was 452, with a

standard deviation of 6.8%. Some executions show large discrepancies

(marked with circles), where the obtained composition cost is not close to

the average. These situations are caused by low response time in some of

the stages of the composite service, giving priority to cost (based on the

QoS optimization heuristic), which will encourage the search of cheaper

services in the next stage.

To obtain an overview of the compositions’ behaviour, response time

and cost values were normalized and related using simple additive

weighting. For both QoS attributes, weights were established at 0.5. From a

global perspective (illustrated in Figure 3.14), it can be noted that in most of

the service executions, using the proposed optimization model provides

smaller scores, which represents improvement in their QoS levels.

Figure 3.14. Score comparison between variable and fixed weights approaches.

3.5.4. Second Stage of Evaluation

During the second stage of evaluation, the travel planning process was

executed 50 times to analyze the behaviour of the optimization approach

and evaluate its overall benefit. Configuration values used for the

50454035302520151051

3.36

3.33

3.30

3.27

3.24

3.21

3.18

Execution number

S
co

re

Variable weights
Fixed weights

Chapter 3. A QoS Optimization Model for Service Composition

75

optimization heuristic were the same used in the first stage of evaluation

(described in section 3.5.3). The maximum difference between

estimated/real response time and cost was established in 10%, and the

values for �
1 and �"1 were set to 0.3 and 0.7, respectively. The process was

also executed using the service selection mechanism based on fixed

weights described in section 3.5.2.

This stage of evaluation was performed using services deployed in a

remote environment. Due to the randomness added by the use of a wide

area network, the experiment (set of 50 runs) was performed 3 times, to

evaluate the consistency of the results based on statistical analysis.

3.5.4.1. Experimental Environment

The experimental environment, depicted in Figure 3.15, consists of 4 nodes

configured on a wide area network, distributed between United Kingdom and

Germany, with estimated values for bandwidth and latency around 32 Mbit/s

and 29ms, respectively.

Figure 3.15. Experimental environment - WAN.

Node 1 is a computer with Windows Vista, 4GB RAM and one Intel

core2 duo 2.1GHz processor (located in United Kingdom). This node hosts

the BPEL engine (Apache ODE 1.3.4), service registry (jUDDI 3.0.4) and

historical database (MySQL 5.1.51). It is in charge of coordinate the

execution of the compositions and record all the gathered information.

Nodes 2 to 4 are virtual machines setup on remote servers (located in

Germany), each of the VM’s uses Debian Squeeze x86 and 1GB RAM.

Chapter 3. A QoS Optimization Model for Service Composition

76

These nodes host one application server (Tomcat 6.0.35.0) each, which

contains 3 sets of Web services.

3.5.4.2. Experimental Results

A similar behaviour was obtained when collecting the results of the second

set of experiments. The proposed optimization model provides a significant

improvement on the global QoS over the fixed weights approach.

When analyzing the collected results, measured average response

time values correspond to 3,277ms and 3,422ms. The proposed approach

(variable weights) provides a mean reduction of 4.5% with a mean standard

deviation of 17%, and a 95% confidence interval between 3,178.5ms and

3,375.6ms. It presents a more stable behaviour, without showing high peaks,

as compared to the fixed weights approach, as shown in Figure 3.16.

Figure 3.16. Response time comparison between variable and fixed weights approaches.

Differences among the 3 sets of executions are illustrated in Figure

3.17. The variation between response time values collected in experiments 1

and 2 (4,000ms approximately), was caused by the execution of virtual

machines in the computer where experiment 1 was performed, which

decreased the performance of the experimental environment.

50454035302520151051

5000

4500

4000

3500

3000

2500

Execution number

R
e

sp
on

se
 ti

m
e

 (
m

s)

Response time (variable weights)
Estimated response time (variable weights)
Response time (fixed weights)
Estimated response time (fixed weights)

Chapter 3. A QoS Optimization Model for Service Composition

77

Figure 3.17. Response time evaluation - differences between executions.

In terms of cost, there is a significant mean reduction of 11.7% with a

standard deviation of 14.14%, and a 95% confidence interval between

420.64 and 445.50. Behaviour of the composition cost when using the fixed

weights approach is closer to its estimated values as compared with the

optimization approach. This mechanism can encourage the invocation of the

same set of services at runtime.

The following plots depict the behaviour of the composition’s cost.

Figure 3.18 illustrates a comparison between the two approaches; while

Figure 3.19 summarizes the standard deviations values of the 3 different

sets of 50 executions using error bars.

Figure 3.18. Cost comparison between variable and fixed weights approaches.

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50

R
es

po
ns

e
T

im
e

(m
s)

Execution number

50454035302520151051

550

500

450

400

350

Execution number

C
os

t

Cost (variable weights)
Estimated cost (variable weights)
Cost (fixed weights)
Estimated cost (fixed weights)

Chapter 3. A QoS Optimization Model for Service Composition

78

Figure 3.19. Cost evaluation - differences between executions.

Similar to the results presented in section 3.5.3.2, the score values for

both approaches were computed using simple additive weighting. The plot in

Figure 3.20 contrasts their behaviour. It can be noted that using optimization

during the execution of composite services improves the QoS values for

most of the service executions.

Figure 3.20. Score comparison between variable and fixed weights approaches.

3.5.5. Discussion

The use of weights with different values (small and large) establishes

priorities during the service selection phase. A large weight value provides a

high priority to its related QoS parameter. On the other hand, a small weight

value provides a low priority to its related QoS parameter. For example,

when the composition has achieved a response time smaller than expected

200
250
300
350
400
450
500
550
600
650

0 10 20 30 40 50

C
os

t

Execution number

50454035302520151051

3.20

3.15

3.10

3.05

3.00

Execution number

S
co

re

Variable weights
Fixed weights

Chapter 3. A QoS Optimization Model for Service Composition

79

and its cost is higher than expected (according to historical values), a large

weight is assigned to cost and a small weight to response time, encouraging

the selection of a service with a high estimated response time and small

estimated cost. This incurs in a trade-off that decreases the achieved

reductions obtained in terms of response time, but enhances the global QoS

of the composition by reducing the overall cost.

Results collected during the experimental stage indicate that the use

of the proposed optimization model helps to obtain meaningful

improvements regarding the global QoS of the test case scenario, with

reductions up to 14% in response time and 16% in cost. In terms of

performance, the use of the proposed model causes an average increment

of 480ms in the invocation time per task (information obtained using a

database with 10 candidate services and 100 records per service).

Overheads increase following a quadratic model. This behaviour was

determined after performing various sets of executions increasing the

number of candidate services and analyzing the measured execution time

(see Figure 3.21).

Figure 3.21. Execution time for different number of available candidate services.

In the scenarios used during the experimental stage, component

services may fail during short periods of time. This information can be

filtered by removing outliers before performing QoS prediction (as described

in section 3.4.4). Situations with long periods of service malfunctioning were

not considered.

100908070605040302010

520

510

500

490

480

Number of services

E
xe

cu
tio

n
tim

e
 (

m
s)

Measured data

Adjusted data

Chapter 3. A QoS Optimization Model for Service Composition

80

Further assessment of the results shown in section 3.5 will be

presented in chapter 6, along with a comparison between the proposed

optimization model and relevant related work.

3.6. Summary

This chapter has presented a QoS optimization model for service

composition. It has provided the motivation behind the development of this

work, illustrated with a service composition scenario, followed by a

discussion about approaches within the self-adaptation area in service

composition.

An outline of the proposed solution is described from a general point

of view. This is followed by a detailed portrayal of the different elements

contained within the solution, system and models. Relevant implementation

aspects are then explained, along with their interaction. Finally, the

evaluation of the proposed model is detailed. It includes the description of

experimental objectives, experiments and results.

The environment presented in this chapter enables the execution of

composite services with QoS aware and adaptive capabilities. However, it

performs changes every time there is a significant variation in the measured

QoS, and is limited to the use of two parameters (response time and cost).

To overcome these limitations, the following chapter will describe a QoS

optimization model based on fuzzy logic, which extends the approach

described within this chapter by implementing a decision making tool that

evaluates the need of adaptation, and enables the use of more than two

parameters.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

81

Chapter 4
A Fuzzy Logic Based QoS Optimization Model
for Service Composition

This chapter introduces a QoS optimization model for service composition

based on fuzzy logic. The ideas that motivate the development of the model

are explained, followed by a discussion on related approaches. The

proposed solution is described, which includes the extensions performed to

the models presented in the previous chapter. Implementation details are

then provided. Finally, an evaluation of the model is presented, covering the

experimental setup and results.

4.1. Motivation

Adaptation mechanisms aim to target situations where the behaviour of

composite services deviated from what the consumer is expecting.

Nevertheless, triggering adaptation after every variation in the behaviour of

the composition does not warranty the best possible QoS values. Adaptation

actions come with a cost [139], which can influence the application’s QoS.

The cost of performing a change can be at some point higher than the

expected benefits. Reason why, before executing any adaptation action, it is

important to consider the following questions:

• Is adaptation needed?

• What is the benefit of adaptation?

• When does the composite service need to adapt?

• What is the cost of adaptation?

In addition, it is important to detect which QoS parameters are

affected when the system adapts (e.g. response time, cost, etc.) and

consider the utility of change, which represents the relationship between

cost and benefit [140].

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

82

Aiming to give an answer to some of the questions listed above, the

work described in this chapter proposes the assessment of the behaviour of

the composition, in order to determine the benefit of adaptation; and based

on this value, decide whether adaptation is needed or not. The benefit of

adaptation is obtained by analyzing the relationship between the values of

the QoS parameters, during the different stages of the composite service

execution.

4.2. Decision Support Systems in Service Selection and
Service Composition

Different decision support methods used in autonomic computing solutions

have been applied in the Web services field, aiming to provide new

strategies to facilitate activities related to the Web service life cycle, like

service selection and composition. Some of these methods include: genetic

algorithms [107], [141], [142], [143], [144]; reinforcement learning [145],

[146], [147]; decision trees [148]; and fuzzy logic [149], [150], [151], [152];

among others.

Because of its nature for solving problems and producing solutions for

management purposes, fuzzy logic has been applied in different fields like

networks, control systems and mobile applications. Examples of works that

use fuzzy logic as a support tool in the context of Web services are

presented as follows:

• The approach presented in [149] uses fuzzy logic for the selection of

service adaptation strategies in service-based applications. The fuzzy

systems applied in the selection process are based on: the overall

QoS values, importance of QoS and cost of service substitution; and

implement fixed membership functions and fuzzy rules defined by

experts.

• The solution proposed in [150] applies a fuzzy decision making model

to locate and select services based on customer’s preference or

satisfaction degree. The approach generates a dynamic ranking of

services available on the market, based on different QoS parameters.

It considers functional and non-functional service properties.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

83

• The approach presented in [151] proposes a generic model based on

fuzzy logic for representing and evaluating non-functional properties

of composite services. It aims to enable the selection of service

compositions fitting the user’s requirements. The service behaviour

(non-functional properties) is obtained by analyzing observations from

previous executions.

• The methodology described in [152] performs service selection by

combining imprecise QoS constraints (defined by the customer) and

real QoS data (provided by the service over time). It relies on fuzzy

logic, and uses fuzzy terms that are defined dynamically based on the

service QoS values.

4.3. Proposed Solution

Fuzzy logic is an approximate reasoning technique suitable to deal with

uncertainty [125], which can be used to evaluate imprecise parameters in

software systems. In order to assess the behaviour of the composition, this

research proposes the use of fuzzy logic as a tool to support the decision

making process, helping determining whether adaptation is needed or not,

and how to perform the service selection process. This is achieved using two

fuzzy support systems. The first system assesses the QoS values of the

composite service on each step of the composition, using the global QoS

measured after the execution of the previous task and historical QoS data.

The system takes the QoS parameters as inputs and based on fuzzy rules

provides the benefit of adaptation. The second system determines the

weights to apply to the different QoS attributes in the service selection

process. It uses the value of the benefit of adaptation and the errors

between estimated and measured QoS as inputs, providing as a result the

values of the weights to be used during service selection.

The environment presented in chapter 3 enables the execution of

composite services with QoS aware and adaptive capabilities. However, it

does not consider the evaluation of the benefit of adaptation. In order to

perform such evaluation, its QoS model and optimization model were

modified, including the use of the fuzzy support systems described above.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

84

4.3.1. QoS Model and Service Selection Model

The QoS model and service selection model used in this approach, extend

the models described in sections 3.3.2 and 3.3.3. As a result, the quality

parameters considered for each service are response time, cost and energy

consumption.

• Response time (��). Time consumed between the invocation and

completion of the service operation [59].

• Cost (�). Fee charged to the consumer when invoking a service [86].

• Energy consumption (>?). Amount of power consumed by a server

over a period of time [153].

Energy consumption has been selected as the third parameter

because of the importance of energy efficiency when managing computing

infrastructure and services. The amount of energy used by data centres has

not only economical but also environmental impacts. Energy efficiency is

becoming a key topic due to high energy costs and governments’ pressure

to reduce carbon footprints [154].

Assuming that a service (�) only contains one operation, its QoS (�)

can be defined using Eq. 4.1.

�(�) = (��(�), �(�), >?(�)) (4.1)

Computation of energy consumption is based on three situations

within the composite service structure: single, sequential and concurrent

service invocations, and is similar to response time and cost, as described in

section 3.3.2. When computing the energy consumption (>?) of a single

service invocation, the energy consumption value of the activity that

performs the invocation corresponds to the >? of the invoked service, as

shown in Eq. 4.2. For activities in sequential and concurrent/parallel

structures, the value of >? is summed for the different activities with service

invocations, as defined in Eq. 4.3.

>?(��) = >?(�) (4.2)

>?(�) = � >?(��)
	

��

 (4.3)

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

85

In this set of equations, the value of �� corresponds to an activity

(task) with a service invocation within the composite service �.

Estimation of QoS values is a key step during the service selection

process. Estimated values are calculated using historical QoS data recorded

from previous executions. This data is filtered, discarding values considered

as outliers and the average of the last � executions of the remaining subset

is obtained (as performed in the model described in section 3.3.3).

Concrete services are searched in the registry by name, assuming

that this parameter includes/describes the service’s functionality. The

resulting set of candidate services is sorted according to the relationship

between their estimated QoS values. Due to these attributes having different

units of measure, their raw values are normalized before being processed

and ranked. The following formula is used to normalize the values of

response time, cost and energy consumption, which are negative

parameters (lower the value, higher the quality).

�� = ���� − @�
���� − �0��

 (4.4)

Where:

���� corresponds to the maximum value of the evaluated QoS

parameter,

�0�� corresponds to the minimum value of the evaluated QoS

parameter,

@� corresponds to the estimated value for the next execution.

When ���� = �0��, then �� = 1.

After normalizing the values, the overall quality score () for each

service is computed using Eq. 4.5.

 � = �
!���� + �"!���� + �A!��>� (4.5)

Where:

!���� corresponds to the service estimated response time,

!���� corresponds to the service estimated cost,

!��>� corresponds to the service estimated energy

consumption,

�
, �" and �A correspond to assigned weights, where 0 ≤
�
, �", �A ≤ 1 and �
 + �" + �A = 1.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

86

Values for �
, �" and �A are provided by the QoS evaluation heuristic

described in the following section. The set of candidate services is ranked

based on the values of �, and the service with the highest value is selected.

4.3.2. QoS Optimization Model

Similar to the model presented in section 3.3.4, QoS information is collected

from service, task and process perspectives, where service corresponds to a

concrete Web service; task to an element within the composite service that

invokes a service operation; and process to the entire composition (service

workflow). Response time is measured during each stage of the composite

service execution, while cost and server’s power consumption are obtained

from the WSDL1 files of the services. The QoS values of a task are

registered as an individual invocation and as the accumulated QoS of the

composition at the time of executing the task.

The proposed optimization approach uses the service selection model

previously described and it is based on fuzzy support systems to assess the

QoS values of the composition (in order to decide if adaptation is needed or

not), and to establish the weights to be used during the service selection

process. It considers situations where a number of the accumulated QoS

values of the previous activity in the process are better than expected,

providing some slack that can be used while selecting the next service in the

process, improving other QoS parameters.

The idea of using fuzzy logic is to understand the relationship

between the QoS values of the composite service and the need of

adaptation. QoS parameters are expressed using linguistic variables.

4.3.2.1. Fuzzy Logic Based Decision Support Systems

Fuzzy logic is a method based on multi-valued logic which aims to formalize

approximate reasoning [125]. It is used to deal with different types of

uncertainty in knowledge-based systems. Some of the relevant

characteristics of fuzzy logic are fuzzy sets, linguistic variables and fuzzy

rules.

1 The WSDL standard was extended to include the service’s QoS information.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

87

• Fuzzy set. Is a collection of objects characterized by a membership

function with a continuous grade of membership which can be ranged

between zero and one [155].

• Linguistic variable. Is a type of variable that uses words instead of

numbers to represent its values (e.g. slow, medium, fast) [125]. The

values used to define linguistic variables are called terms and the

collection of terms is called term set.

• Fuzzy rules (BC − �D>�). Are used to represent human knowledge in

fuzzy systems. A fuzzy BC − �D>� rule is a conditional statement

structured as [156]:

BC < =EFFG HIJHJ�0�0J� >, �D>� < =EFFG HIJHJ�0�0J� >
where a < =EFFG HIJHJ�0�0J� > is a statement used to associate

linguistic variables and terms.

The basic configuration of a fuzzy system is illustrated in Figure 4.1.

During the execution of a fuzzy system, crisp inputs are converted to

linguistic variables, this process is known as fuzzification. The variables

values are then evaluated using fuzzy rules, generating the linguistic values

for the outputs. Finally, the defuzzification method uses these values to

obtain crisp outputs values.

Figure 4.1. Basic configuration of fuzzy systems with fuzzifier and defuzzifier [156].

Fuzzy systems have been applied in different areas, mainly focussed

in control and management problems [156]. In this research, two fuzzy

support systems have been defined to 1) establish the benefit of adaptation,

2) obtain the weights to be used during service selection. Each of these

systems uses its own linguistic variables and rules.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

88

The first system assesses the QoS values of the composite service

during each task of the composition. It uses as inputs the QoS values

collected from the composite service prior to the moment of selecting a new

service. The defined input variables are response time, cost and energy

consumption, which are expressed with three terms low, medium and high.

To establish these terms for each of the linguistic variables, an interval is

defined at runtime using data collected from previous executions. Historical

data is analyzed, obtaining maximum/minimum values and standard

deviations from each of the QoS parameters. Sigmoidal functions (open to

the left and right) are used to define the low and high terms, while a Gauss

function is used to define the medium term.

The system takes the inputs and based on the corresponding fuzzy

rules, provides the estimated benefit of adaptation. Four different levels of

benefit of adaptation (low, medium, high and very high) were established,

falling in the interval [0, 1], and defined with Gauss functions. The definition

of the fuzzy variables is provided in Table 4.1.

Table 4.1. Fuzzy variables definition.

Variable Terms Type Functions

Response
time

Low = sigm (−0.1, min)

Medium = gauss (avg, std)

High = sigm (0.1, max)

Input

Cost
Low = sigm (−0.1, min)

Medium = gauss (avg, std)

High = sigm (0.1, max)

Input

Energy
consumption

Low = sigm (−0.1, min)

Medium = gauss (avg, std)

High = sigm (0.1, max)

Input

Benefit of
adaptation

(BoA)

Low = gauss (0.2, 0.05)

Medium = gauss (0.4, 0.05)

High = gauss (0.6, 0.05)

Veryhigh = gauss (0.8, 0.05)

Output

Where:

��< is the standard deviation (after filtering outliers),

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

89

��� is the maximum value obtained from the database (after

filtering outliers),

�0� is the minimum value obtained from the database (after

filtering outliers),

�[8 is the average value between maximum and minimum.

Four compound rules were constructed combining the input variables

and their relationship with the different levels of benefit of adaptation. These

rules describe the scenarios that can take place at runtime. The following

table shows the rules used to obtain the benefit of adaptation.

Table 4.2. Benefit of adaptation related fuzzy rules.

1

IF (respTime IS high AND cost IS low AND energy IS low)
OR (respTime IS low AND cost IS high AND energy IS low)
OR (respTime IS low AND cost IS low AND energy IS high)
THEN BoA IS veryhigh

2

IF (respTime IS high AND cost IS medium AND energy IS low)
OR (respTime IS high AND cost IS low AND energy IS medium)
OR (respTime IS medium AND cost IS high AND energy IS low)
OR (respTime IS medium AND cost IS low AND energy IS high)
OR (respTime IS low AND cost IS high AND energy IS medium)
OR (respTime IS low AND cost IS medium AND energy IS high)
THEN BoA IS high

3

IF (respTime IS high AND cost IS medium AND energy IS medium)
OR (respTime IS medium AND cost IS high AND energy IS medium)
OR (respTime IS medium AND cost IS medium AND energy IS high)
OR (respTime IS medium AND cost IS medium AND energy IS low)
OR (respTime IS medium AND cost IS low AND energy IS medium)
OR (respTime IS medium AND cost IS low AND energy IS low)
OR (respTime IS low AND cost IS medium AND energy IS medium)
OR (respTime IS low AND cost IS medium AND energy IS low)
OR (respTime IS low AND cost IS low AND energy IS medium)
THEN BoA IS medium

4

IF (respTime IS high AND cost IS high AND energy IS high)
OR (respTime IS high AND cost IS high AND energy IS medium)
OR (respTime IS high AND cost IS high AND energy IS low)
OR (respTime IS high AND cost IS medium AND energy IS high)
OR (respTime IS high AND cost IS low AND energy IS high)
OR (respTime IS medium AND cost IS high AND energy IS high)
OR (respTime IS medium AND cost IS medium AND energy IS medium)
OR (respTime IS low AND cost IS high AND energy IS high)
OR (respTime IS low AND cost IS low AND energy IS low)
THEN BoA IS low

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

90

The second system uses the value of the benefit of adaptation (output

of the first system) and the errors between the estimated and the measured

QoS as inputs. The error value is computed per each parameter using Eq.

4.6.

! (H�) = � (H�) − �1 (H�)
�1(H�) (4.6)

Where:

� (H�) is the estimated data,

�1(H�) is the real measured data.

Input variables corresponding to the QoS errors are expressed with

three terms: low, medium and high, falling in the interval [-1, +1]. Benefit of

adaptation is expressed with four terms, as defined in the first fuzzy system.

By evaluating the different errors and the benefit of adaptation, the system

provides the values to be used as weights during the service selection

process. Output variables (response time weight, cost weight and energy

consumption weight) are expressed with five terms: very low, low, medium,

high and very high, falling in the interval [0,1] and are defined using Gauss

functions.

Parameters settings for both fuzzy systems were defined based on

values obtained after performing several tests with different configurations.

4.3.2.2. QoS Optimization Heuristic

The heuristic presented in Figure 4.2 describes the QoS evaluation method

applied during optimization, which involves the use of the fuzzy systems

previously described. The notation used in the heuristic is shown as follows.

Let,

• � = %�
, �", … , �	' be the set of � tasks in process �.
• (be the task number, where �)∈ �.

• �* = %�
* , �"* , … , �+* ' be the set of , ancestors of �), where �*
∈ �. When

(= 1, then �* = %∅'.
• ���, ���, ��>, �!���, �!���, �!��> be the accumulated values

corresponding to real response time, real cost, real energy

consumption, estimated response time, estimated cost and estimated

energy consumption for a task.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

91

• !�, !�, !> be the error values corresponding to response time, cost

and energy consumption for a task (see Eq. 4.6).
• .) = %�
, �", … , �/' be the set of � services that can be used to

implement �).

• 0 be the service number, where ��∈ .).

• !���, !���, !��> be estimated QoS values corresponding to response

time, cost and energy consumption for a service.

• �
, �", �A be weights used to obtain the score of a service (see Eq.

4.5).

• \J] be the value corresponding to the benefit of performing

adaptation.

• =�
, =�" be fuzzy systems (described in section 4.3.2.1).

Before invoking a Web service operation for �), the ancestors �* for �)

are obtained (step 3). �
, �" and �A are set initially to 0.333, enabling a

service ranking with no preference (step 4). This is used in case there are no
meaningful differences between the QoS values of � before �). If �), is not

the first task in �, this task has ancestors and QoS evaluation takes place

(steps 6 to 25). Values within �* are sorted based on ��� (step 6). The task

with the highest ��� value is selected, its accumulated real response time is

retrieved, and the error between its estimated and real response time is

obtained (steps 7 to 9). Values within �* are sorted based on ��� (step 10).

The task with the highest ��� value is selected, its accumulated real cost is

retrieved, and the error between its estimated and real cost is obtained

(steps 11 to 13). Values within �* are sorted based on ��> (step 14). The

task with the highest ��> value is selected, its accumulated real energy

consumption is retrieved, and the error between its estimated and real

energy consumption is obtained (steps 15 to 17).

The accumulated real values are set as inputs for =�
 (step 18). \J]

is obtained and evaluated (steps 19 and 20); if it is medium or higher, then

there is a need for adaptation. When adaptation is needed, the system

determines the new weights to be used during the service selection process.

This action is performed by =�"(step 21). The values of �
, �" and �A are

retrieved and adjusted, to fulfil the restriction �
 + �" + �A = 1 (steps 22 to
25). Scores are obtained per each of the services within .) (steps 26 and

27). Finally, .) is sorted and the heuristic returns the service with the higher

score (steps 28 and 29).

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

92

SelectService (45, 6, 75)
1 let � ′ be a task
2 let � ′ be an empty list
3 � ′ = ObtainAncestors(�) , �, � ′)
4 �
 = �" = �A = 0.333

// weights selection phase
5 if � ′. 3!�8�ℎ != 0
6 sort � ′ by ��� descendent
7 � ′ = � ′[0]
8 I� = � ′. ���
9 !� = (� ′. �!��� − � ′. ���)/� ′. ���
10 sort � ′ by ��� descendent
11 � ′ = � ′[0]
12 ? = � ′. ���
13 !� = (� ′. �!��� − � ′. ���)/� ′. ���
14 sort � ′ by ��> descendent
15 � ′ = � ′[0]
16 ! = � ′. ��>
17 !> = (� ′. �!��> − � ′. ��>)/� ′. ��>

//benefit of adaptation computation phase
18 =�
(I�, ?, !)
19 \J] = =�
. \J]
20 if \J] ≥ medium
21 =�"(!�, !�, !>)
22 �
= =�". �

23 �"= =�". �"
24 �A= =�". �A
25 AdjustWeights(�
, �", �A)

//score computation and service ranking phase
26 for 0 = 0 to (.) . 3!�8�ℎ − 1)
27 .)[0]. = �
 .)[0]. !��� + �" .)[0]. !��� + �A .)[0]. !��>
28 sort .) by descendent
29 return .)[0]

ObtainAncestors (4, 6, 6′)
1 for (= 0 to (�. 3!�8�ℎ − 1)
2 if �[(] is ancestor of �
3 insert �[(] into � ′
4 return � ′

AdjustWeights (_`, _a, _b)
1 �c= �
 + �" + �A
2 �
= �
/�c
3 �"= �"/�c
4 �A= �A/�c

Figure 4.2. QoS optimization heuristic.

After invoking the operation of the selected service, the obtained QoS

values for service and task are stored in the historical database.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

93

Accumulated QoS per task are calculated using the formulas presented in

equations 3.2 to 3.7, 4.2 and 4.3.

4.4. Implementation

The composition framework used in this solution corresponds to the

framework described in section 3.4, with modifications and extensions

performed to some of its components, which enable the use of a new QoS

parameter and the fuzzy support systems. The main changes are listed as

follows:

• Service binder. The ranking process performed by the service binder

uses the weights of three parameters instead of two, considering

response time, cost and energy consumption. When the

selected/invoked service has finished its execution, information about

its QoS parameters is obtained and stored in the historical database.

• Service selector. After the functional service selection, estimated

values of the different QoS parameters (response time, cost, energy

consumption) are obtained by interacting with the predictor.

• Adaptation manager. The two fuzzy support systems (mentioned in

section 4.3.2) were developed as part of the adaptation manager,

distributed along the analyzer and the planner components. The java

API used to implement these mechanisms is the

jFuzzyLogic_v2.1a.jar [157], which is an open source package that

implements a fuzzy control language. It allows the definition of fuzzy

variables (input/output), fuzzy rules, and the use of different

membership functions in order to fuzzify/defuzzify the variables.

4.5. Evaluation

In order to asses the effectiveness of the proposed optimization approach,

two sets of experiments were performed, involving the test case presented in

section 3.5.1 and the experimental environments described in sections

3.5.3.1 and 3.5.4.1. Experiments were carried out to address the following

questions:

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

94

• How does the evaluation of the benefit of adaptation influence the

adaptation process?

• Is there any improvement in the global QoS when using variable

weights during service selection as part of a self-optimization

mechanism?

The work performed to provide an answer to these questions is listed

as follows:

• Assessment of the behaviour of adaptive composite services when

evaluating the benefit of adaptation.

• Assessment and comparison of the behaviour of the proposed

optimization model vs. a baseline approach that does not use

optimization.

• Assessment of the behaviour of the optimization approach when

executing component services in local and remote environments.

4.5.1. Service Selection Based on Fixed Weights

A service selection mechanism based on fixed weights was implemented to

be compared with the proposed optimization approach. It extends the

mechanism described in section 3.5.2 and follows similar steps. This

approach uses Eq. 4.5 (presented in section 4.3.1) to obtain the services’

score, where the values for �
, �" and �A are set equally to 0.333, and

services are ranked looking for the one with the highest score. The change

in the ranking criteria is due to the use of Eq. 4.4 for the normalization

phase, which replaces the use of natural logarithms.

4.5.2. Dynamic QoS Parameters

To add dynamicity to the test environments, values of the QoS properties

must change over time, or between services’ executions. This helps to

obtain sensible results and also avoid the invocation of only one service per

each of the tasks in the composition. Two java applications have been

designed and implemented with the aim of inserting such variations.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

95

4.5.2.1. Cost

To turn the cost of the different services into dynamic QoS values, a model

which affects cost based on demand was implemented. It is assumed that

higher the cost, lower the demand. Demand is the number of times the

service is invoked over a period of time. The algorithm that represents the

cost model is shown in Figure 4.3. The notation used is as follows. Let,

• . = %�
, �", … , �/' be the set of � services.

• 0 be the service number, where ��∈ ..

• �B�[be the number of times �� has been invoked during a period of

time.

• ? be the value of cost for a service.

• ���, �0� be default values set as the maximum and minimum

number of service invocations.

The number of times a service has been invoked over a period of

� minutes is evaluated continuously. Based on this information, and the

values specified as the maximum and minimum number of invocations, it is

possible to establish a new cost based on the demand. If the �B�[is equal

or higher than ��� (step 1), the cost of �� is increased (step 2). On the other

hand, when �B�[is smaller than �0� (step 3), the cost of �� is decreased

(step 4). Finally, the algorithm returns the new value of cost for �� (step 5).

After each execution of the algorithm, the new cost is updated in the WSDL2

file of the service.

EvaluateCost (de, fgfh, ijk, ief)
1 if �B�[≥ ���
2 �� . ? = �� . ? ∗ 1.1
3 else if �B�[< �0�
4 �� . ? = �� . ? ∗ 0.7
5 return �� . ?

Figure 4.3. Cost evaluation algorithm.

Additive increase with multiplicative decrease was used as the

method to specify the changes in the values of cost. Increase rate was set to

a 10%, while decrease rate to 30%.

2 Extended version of the WSDL file.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

96

4.5.2.2. Energy Consumption

Because of the importance of energy efficiency when managing computing

infrastructure and services, the third QoS parameter included in this work is

energy consumption, which represents the amount of watts-second (Ws)

consumed by a server.

Using the linear model proposed in [153], which is based on the

percentage of CPU usage, it is possible to determine an approximate value

to the server energy consumption.

�(E) = �/no ∙ , + (1 − ,) ∙ �/no ∙ p (4.7)

Where:

�(E) is the power consumed in an instance of time,

�/no is the power consumed when the server is fully utilized,

p is the utilization level,

, is the fraction of power consumed by the idle server.

Total energy consumption can be obtained using the following

formula:

> = q �(E(�))
c

 (4.8)

Where:

> is the total energy consumption,

� is the period of time.

Each of the servers where the Web services are executed, is

assumed to have different hardware and software configurations (see Table

4.3). Servers and their characteristics were selected from the Energy Star

report [158].

Table 4.3. Power consumption description per node.

Server Hardware Operative System Idle (W) Load (W)

Node
1

Acer Incorporated
Gateway GT310 F1

Windows Server 2008
R2 64bit

50.75 129.5

Node
2

Hitachi -
HA8000/SS10

Windows Server 2008
R2

45.27 81.97

Node
3

IBM - System
X3650 M3

Red Hat Enterprise Linux
5 Update 4 x64 Edition 210.85 388.3

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

97

Servers’ utilization is considered to be variable over time. The power

consumed by a server is obtained periodically and exposed on the WSDL3

files of the corresponding services; it is computed using the data presented

in Table 4.3. The energy consumed by a server at the moment the Web

service is running, is calculated using the response time of the service.

4.5.3. QoS Parameters Configuration

The initial values of QoS parameters for the candidate services used in the

experiments are established based on the node where the service is running

and the corresponding set (as defined in chapter 3). The main difference

between the previous configuration and the one used in this experiment is

the definition of server’s power consumption. Values for the initial setup of

power consumption were obtained assuming that the utilization of the

servers was 50% at the time when the first Web service was executed. This

information is shown in Table 4.4.

Table 4.4. QoS parameters configuration.

Experiment
1

Experiment
2 Set Time delays

(ms) Cost
Power

consumption
(W)

Node 1 Node 2

S1 0 120

90 S2 350 80

S3 200 100

Node 2 Node 3

S1 0 150

63 S2 350 100

S3 200 120

Node 3 Node 4

S1 0 100

299 S2 350 60

S3 200 80

Similar to the experiments executed in chapter 3, per each of the

tasks in the process, there are 9 candidate services that fulfil the required

functionality and offer different QoS, giving a total of 36 services, distributed

in 9 sets among the servers (nodes). These services were previously

registered into the service registry, and executed several times to populate

the historical database and enable the estimation of their QoS attributes.

3 Extended version of the WSDL file.

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

98

The amount of historical information available previous to the execution of

the experiments, corresponds to 1,000 executions.

4.5.4. First Stage of Evaluation

The first stage of evaluation was performed on the experimental

environment described in section 3.5.3.1 (local area network). The travel

planning service was executed 50 times to analyze the behaviour of the

optimization approach and evaluate its overall benefit. The benefit of

adaptation is evaluated in order to determine whether adaptation is needed,

or not. To get a clear understanding on how the evaluation of the benefit of

adaptation and the use of variable weights influence the results of service

selection, the test case has also been executed using the service selection

mechanism based on fixed weights described in section 4.5.1.

When using the proposed approach, executions were carried out

applying dynamic QoS (based on the dynamic QoS models previously

described). The evaluation of cost and power was performed every 3

minutes. Due to the randomness inserted in the QoS parameters, the

experiment (set of 50 runs) was performed 5 times, to evaluate the

consistency of the results based on statistical analysis.

4.5.4.1. Experimental Results

Results show that the proposed optimization approach improves the global

QoS values (response time, cost and energy consumption) of the

composition. The following plots show a comparison between the proposed

approach and the fixed weights approach for each of the QoS parameters.

When using the proposed approach, QoS values are dynamic, services’ cost

and servers’ power consumption change over time, based on the models

described in section 4.5.2. On the other hand, when using fixed weights,

values for cost and energy consumption remain constant. For both cases,

response time is dynamic.

When analyzing the collected results, it can be noted that the

proposed approach provides smaller response times as compared with the

fixed weights mechanism, as illustrated in Figure 4.4. This is due to the

evaluation of the QoS values before a new service is selected. The system

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

99

aims to maintain or if possible, improve the global QoS of the composition.

Measured response time values of the proposed approach provide a mean

reduction of 3% and a highest reduction of 20.5%, with a mean standard

deviation of 5.2%, and a 95% confidence interval between 13,683.3ms and

13,888.1ms. Standard deviation values presented per each of the 50

executions among the 5 runs are represented with error bars in Figure 4.5.

Figure 4.4. Response time comparison between fuzzy based and fixed weights

approaches.

Figure 4.5. Response time evaluation - differences between executions.

The obtained mean cost values are shown in Figure 4.6. In

comparison with the fixed weights approach, the use of the proposed fuzzy

based system provides a mean reduction of 4.5% and a highest reduction of

33.4%, with a mean standard deviation of 6.9%, and a 95% confidence

interval between 383.17 and 390.04. Differences presented among the

different executions are illustrated in Figure 4.7.

10000
11000
12000
13000
14000
15000
16000
17000

0 10 20 30 40 50

R
es

po
ns

e
T

im
e

(m
s)

Execution number

50454035302520151051

17000

16000

15000

14000

13000

12000

11000

10000

Execution number

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fuzzy based approach
Fixed weights approach

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

100

Figure 4.6. Cost comparison between fuzzy based and fixed weights approaches.

Figure 4.7. Cost evaluation - differences between executions.

Results also indicate that there is a significant reduction in the values

of energy consumption, as illustrated in Figure 4.8, providing a mean

reduction of 31.2%, with a standard deviation of 37.5%, and a 95%

confidence interval between 180.78Ws and 198.17Ws. Figure 4.9

summarizes the standard deviation values of the 5 different sets of 50

executions using error bars. One important factor to consider is that energy

consumption is not only based in power consumption, but also in time. A

small response time value may generate a small energy consumption value.

200

250

300

350

400

450

500

0 10 20 30 40 50

C
os

t

Execution number

50454035302520151051

500

450

400

350

300

Execution number

C
os

t

Fuzzy based approach
Fixed weights approach

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

101

Figure 4.8. Energy consumption comparison between fuzzy based and fixed weights
approaches.

Figure 4.9. Energy consumption evaluation - differences between executions.

Values corresponding to the proposed approach with dynamic QoS

present the highest standard deviations for cost and energy consumption.

This behaviour is due to the inserted dynamicity. Even though the highest

cost is found in the proposed approach, when it comes to average values, it

is still lower than the fixed weights results.

The values of benefit of adaptation (BoA) collected per each task,

during one set of 50 executions of the process are illustrated in Figure 4.10.

These values were obtained using the proposed optimization model with

dynamic QoS. For the first task of the process (card validation), as there is

no QoS information from previous tasks, the BoA is equal to 0, setting the

weights for service selection equal to 0.33. Hotel reservation and flight

reservation are executed in parallel after card validation, reason why their

BoA values are the same.

0

100

200

300

400

500

0 10 20 30 40 50

E
ne

rg
y

C
on

su
m

pt
io

n
(W

s)

Execution number

50454035302520151051

400

300

200

100

0

Execution number

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

Fuzzy based approach
Fixed weights approach

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

102

Figure 4.10. Benefit of adaptation per each task in the travel planning process.

Adaptation is performed per task when BoA is larger than 0.4, which

is the highest value for the medium term defined in the fuzzy system. It was

noted that in most of the cases where BoA was higher than 0.45 for hotel

reservation/flight reservation tasks, BoA values were lower than medium for

the last task of the process, therefore, adaptation was not needed.

4.5.5. Second Stage of Evaluation

The second stage of evaluation was performed on the experimental

environment described in section 3.5.4.1 (wide area network). The travel

planning service was executed 50 times to analyze the behaviour of the

optimization approach and evaluate its overall benefit. The test case has

also been executed using the service selection mechanism based on fixed

weights described in section 4.5.1.

When using the proposed approach, executions were carried out

applying dynamic QoS (based on the dynamic QoS models described in

section 4.5.2). Cost and power evaluation was performed every 3 minutes.

Due to the randomness inserted in the QoS parameters, the experiment (set

of 50 runs) was performed 3 times to evaluate the consistency of the results

based on statistical analysis.

50454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

Execution number

B
e

ne
fit

 o
f A

da
pt

at
io

n

Card validation

Hotel reservation

Flight reservation

Car rental

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

103

4.5.5.1. Experimental Results

When analyzing the collected results of the second set of experiments, it

was noted that not all the values of the QoS parameters were enhanced.

The proposed optimization approach improves two of the QoS values of the

composition, but in order to provide such improvements, there is an

increment in the third parameter, as shown in the following table.

Table 4.5. Results summary.

Execution

Response time
(ms) Cost Energy

consumption (Ws)

Fuzzy Fixed
weights Fuzzy Fixed

weights Fuzzy Fixed
weights

1 3249.44 3665.58 419.46 451.2 118.56 102.89

2 3136.76 3695.62 559.18 471.4 53.19 69.31

3 3441.16 3753.26 390.82 375.8 138.49 153.14

The plot illustrated in Figure 4.11 depicts the behaviour of the

composite service in terms of response time, where can be noted that the

proposed approach shows smaller values when comparing to the fixed

weights approach. The average values of the executions correspond to

3,275.78ms and 3,704.82ms, for the proposed approach (fuzzy) and the

fixed weights approach, respectively. It was obtained a significant mean

reduction of 13%, with a mean standard deviation of 18.63%, and a 95%

confidence interval for the mean between 3,172.8ms and 3,378.8ms.

Differences among the 3 sets of executions are illustrated in Figure 4.12.

Figure 4.11. Response time comparison between fuzzy based and fixed weights
approaches.

50454035302520151051

6000

5000

4000

3000

2000

1000

Execution number

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fuzzy based approach
Fixed weights approach

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

104

Figure 4.12. Response time evaluation - differences between executions.

In terms of cost, the proposed approach shows higher values, with a

registered average of 456.48, which reflects an increment of 5% when

comparing to the fixed weights approach average of 432.8. This was

obtained with a mean standard deviation of 12.5%, and a 95% confidence

interval between 445.86 and 467.12. The following plots depict the

behaviour of the composition’s cost. Figure 4.13 illustrates a comparison

between the two approaches; while Figure 4.14 summarizes the standard

deviations values of the 3 different sets of 50 executions using error bars.

Figure 4.13. Cost comparison between fuzzy based and fixed weights approaches.

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50

R
es

po
ns

e
T

im
e

(m
s)

Execution number

50454035302520151051

700

600

500

400

300

Execution number

C
os

t

Fuzzy based approach
Fixed weights approach

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

105

Figure 4.14. Cost evaluation - differences between executions.

Results also indicate that there is a significant reduction regarding

energy consumption, as illustrated in Figure 4.15. The collected values

provide an average of 103.41Ws, with a mean reduction of 9.21%, and a

95% confidence interval between 93.23Ws and 113.61 Ws.

Differences in terms of energy consumption among the 3 sets of

executions are illustrated in Figure 4.16. It can be noted that in some

executions, the average of energy consumed by a composite service can

exhibit a high variability. This is caused by the use of the dynamic QoS

models described section 4.5.2.

Figure 4.15. Energy consumption comparison between fuzzy based and fixed weights
approaches.

0

100

200

300

400

500

600

700

0 10 20 30 40 50

C
os

t

Execution number

50454035302520151051

300

250

200

150

100

50

0

Execution number

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

Fuzzy based approach
Fixed weights approach

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

106

Figure 4.16. Energy consumption evaluation - differences between executions.

The plot illustrated in Figure 4.17 depicts the values of benefit of

adaptation (BoA) per task, obtained from a set of 50 executions of the travel

planning process, using the proposed optimization approach. Values for the

card validation task are equal to 0, as this is the first activity in the process

and there is no information to evaluate its QoS values before execution.

It was observed a similar behaviour as compared to the experiment

performed in the local environment, where most of the values of BoA

collected for hotel and flight reservation tasks are higher then the BoA

values of car rental. Hotel and flight reservation are executed in parallel after

card validation, reason why they have the same BoA values.

Figure 4.17. Benefit of adaptation per each task in the travel planning process.

Values of BoA for hotel and flight reservation are higher as compared

to the results obtained in a local area network, causing the process to adapt

-50

0

50

100

150

200

250

300

0 10 20 30 40 50

E
ne

rg
y

C
on

su
m

pt
io

n

(W
s)

Execution number

50454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

Execution number

B
e

ne
fit

 o
f A

da
pt

at
io

n

Card validation

Hotel reservation

Flight reservation

Car rental

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

107

in most of its executions. Even though values of BoA obtained for the last

activity are higher as compared with those obtained in a local environment,

they are still smaller to those obtained in the previous activity, and several

executions did not require to perform adaptation actions.

4.5.6. Discussion

The proposed optimization model performs service selection based on the

analysis of historical and real QoS data, gathered at different stages during

the execution of composite services. The use of fuzzy inference systems

enables the evaluation of the measured QoS values, helps deciding whether

adaptation is needed or not, and how to perform service selection. Fuzzy

logic has demonstrated to be a useful tool during the evaluation process of

the QoS attributes. By obtaining and analyzing the benefit of adaptation,

adaptation is not carried out each time a QoS value changes. It was noted

that in most of the cases, when adaptation is triggered at certain stage of the

composition, the benefit of performing adaptation is a small value (with no

need of adaptation) in the next task of the process.

The use of the optimization approach presented in this chapter has

provided meaningful improvements in the global QoS of the test case

scenario, with reductions up to 20.5% in response time, 33.4% in cost and

31.2% in energy consumption. It was observed that when using a WAN as

part of the execution environment, in order to improve the overall QoS of the

composition there is an increment in one of the three parameters

considered. This is caused by the additional variations in response time

inserted by the network.

When looking at performance, the use of the proposed model

generates an average increment of 581ms in the invocation time per task

(information obtained using a database with 10 candidate services and 100

records per service). Overheads increase following a quadratic model. This

behaviour was determined after performing various sets of executions

increasing the number of candidate services and analyzing the measured

execution time (see Figure 4.18).

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

108

Figure 4.18. Execution time for different number of available candidate services.

Further assessment of the results presented in section 4.5 will be

discussed in chapter 6, along with a comparison between the proposed

optimization model and relevant related work.

4.6. Summary

This chapter has presented a QoS optimization model for service

composition based on fuzzy logic. Motivation behind the development of the

approach is provided, followed by a discussion on approaches that use

decision support systems in service selection and composition.

The proposed solution is then described, including details about the

QoS model and optimization model. Modifications applied to the

implementation of the composition framework described in chapter 3 are

then given. Finally, evaluation details are provided, covering the description

of the experimental setup, dynamic QoS parameters and results.

The main difference between the related work found in the literature

and the approach described in this chapter, is the purpose of the use of

fuzzy logic. In the proposed approach, fuzzy logic is used as a tool to

evaluate the measured QoS values in order to determine the benefit of

performing adaptation.

100908070605040302010

700

680

660

640

620

600

580

Number of services

E
xe

cu
tio

n
tim

e
 (

m
s)

Measured data

Adjusted data

Chapter 4. A Fuzzy Logic Based QoS Optimization Model for Service Composition

109

The environment presented in this chapter enables the execution of

composite services with QoS aware and adaptive capabilities, and evaluates

the need of performing adaptation using fuzzy logic. However, it triggers the

QoS evaluation and adaptation strategies from a reactive perspective. The

following chapter will describe a proactive adaptation mechanism for service

composition. This mechanism is built as an extension to the QoS

optimization model described in this chapter.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

110

Chapter 5
A Proactive Adaptation Mechanism for Service
Composition

This chapter describes a proactive adaptation mechanism for service

composition based on fuzzy logic. Motivation towards the development of

the approach is discussed. Then, a review on work related to the provision of

proactive adaptation in service composition is presented. Following this, the

proposed solution is described, providing details related to the service

composition framework, QoS model and optimization model, along with

information regarding implementation. Finally, the experiments performed to

evaluate the proposed approach are discussed in detail.

5.1. Motivation

As discussed in previous chapters, there are different situations that can

trigger adaptation in service composition (e.g. failures, changes in QoS

levels, new services, etc.). Approaches focussed on ensuring/maintaining

the functional and quality levels of composite services, can be classified

based on the time when adaptation takes place into the categories: reactive

and proactive. The former corresponds to adaptation actions performed in

response to an incident, while the later is related to actions taken in

advance, before an incident impacts the system [100].

When adaptation in service composition is performed from a reactive

perspective, as it works after unwanted situations already occur, it may

cause increments in the execution time of the composition, leading to

unwanted consequences like financial loss and business dissatisfaction [99].

In some situations, the event that trigger the need for a change may arrive

when adaptation is not possible any longer [98]. The aim of proactive

adaptation approaches is to mitigate some of these negative aspects, by

detecting the need for a change before reaching a point where a problem

may occur. Some of the benefits offered by proactive adaptation include

[98]:

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

111

• Variations in the QoS levels of the composition can be identified and

targeted before having any consequences.

• Adaptation actions do not affect the execution of the composition.

• The need for adaptation is identified in advance, providing the service

with enough time to adapt.

The scope of the work described in this chapter is mainly focussed on

the development of a proactive adaptation mechanism for service

composition based on fuzzy logic. This mechanism is proactive in the sense

that it identifies the need for adaptation (QoS degradation/improvement)

before the composite service itself, addressing optimization at engine level.

The engine is constantly monitoring and analyzing the services’ behaviour at

runtime and triggers adaptation actions when needed. The approaches

presented in previous chapters detect the need for adaptation within the

composite service.

5.2. Proactive Adaptation in Service Composition

Some approaches that support reactive adaptation implement self-*

properties. Self-healing mechanisms aim to prevent composite services from

failing, from functional and non-functional perspectives. Projects like those

presented in [59], [90], [107], [108], [128], [129] and [159] apply self-healing

approaches, where new services are selected and invoked after a functional

failure or a QoS constraint violation. Self-optimization mechanisms are

closely related to the selection of services at runtime, in order to maintain the

expected QoS of the entire composition. Examples of works belonging to

this category are described in [86], [87], [95] and [130].

Approaches that support proactive adaptation in service-based

applications are presented in [98], [99], [100], [160], [161], [162] and [163],

and summarized as follows:

• The work presented in [99] introduces a proactive adaptation

approach that enables service replacement (1 − 1, 1 − �, � − 1,

� − �) when it detects situations that may cause the composition to

stop its execution (unavailable or malfunctioning services); or that

allow the composition to continue its execution, but not in its best

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

112

way. Also, it considers the emergence of better services and new

requirements. The approach uses a composition template as start

point and selects a set of candidate services to be used in the

composition and their replacements.

• The approach introduced in [162] combines runtime information with

design-time specifications (of each component service within a

composition), in order to construct a k-step model of the current

service states. The resulted model can be used to be compared with

the desired behaviour of the composition.

• The framework described in [161] aims to minimize Service Level

Agreement (SLA) violations in service compositions. It uses

predictions of SLA violations generated with regressions of monitored

and estimated data. These predictions are evaluated at defined

checkpoints.

• The framework presented in [98] uses online testing to trigger

proactive adaptation in service-based applications. Test objects can

be single or composite services. While performing online testing, if an

online test fails or deviates from its expected behaviour, the

framework will trigger adaptation to avoid undesirable consequences.

One of the application scenarios for this approach is composite

services.

• The work described in [160] proposes a self-adaptive mechanism

based on the use of test cases to obtain possible mismatches

between requested and provided services. When the diagnosis

mechanism reveals mismatches, it triggers adaptation strategies that

update the structure and behaviour of the client application, solving

the identified problems. Even though this approach is not mainly

focused in service composition, it presents a proactive mechanism

that works in service-based applications.

• The approach introduced in [163] combines monitoring, online testing

and quality prediction to enable proactive adaptation in service-based

applications. When a service is likely to be used with a high

frequency, it is selected to be tested. The use of pre-defined test

cases (concrete data inputs) enables the system to collect information

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

113

about the behaviour of the services and complement the data

gathered during monitoring.

• The work described in [100] discusses two main directions than can

be followed in order to perform proactive adaptation in service

oriented systems. The first direction is to improve the failure

predictions techniques. Some prediction techniques identified by the

authors include data mining, online testing, runtime verification,

statics analysis and simulation. The second direction is to dynamically

estimate the accuracy of the predicted failures during runtime.

The proactive approaches found in the literature are mainly focused

on adaptation targeting failures (e.g. unavailable service, QoS violation,

performance decrease). They do not consider the possibility of improving the

QoS levels of the service-based systems. In terms of QoS parameters, most

of these approaches are centred on response time and cost. The work in this

chapter presents a proactive adaptation mechanism for service composition

that aims to overcome these limitations by targeting failure prevention and

QoS improvement, considering multiple QoS parameters, which include:

response time, cost, energy consumption and availability. Further

comparison between related approaches and the mechanism proposed in

this chapter will be discussed in chapter 6.

5.3. Proposed Solution

The environment presented in chapters 3 and 4 enables the execution of

composite services with QoS aware and adaptive capabilities. However,

adaptation is performed from a reactive perspective. In order to enable

proactive adaptation, modifications to the interaction among components

within the composition framework were performed, along with extensions to

the QoS model and optimization model.

5.3.1. System Model

An overview of the system model considered in the work described in this

chapter is illustrated in Figure 5.1, which shows its core components:

composition engine, adaptation manager, service binder, service selector,

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

114

predictor and the sensors; and their interactions. This model was

implemented with the aim of enabling the execution of QoS aware service

compositions in an environment with proactive capabilities. It is built as an

extension of the composition framework described in chapter 3.

The composition engine is the software platform responsible for

executing the composite services (processes’ definitions) and hosting the

components in charge of the adaptation process. Composite services are

considered to consist of a series of abstract tasks that will be linked to

executable services at runtime. In this version of the composition framework,

the adaptation manager works semi-independent of the rest of the

components, and is constantly monitoring and analyzing not only information

collected by the sensors, but also historical data. The use of historical data

helps the understanding of the behaviour of the service and enables the

detection of any possible deviation in the values of the QoS parameters.

Figure 5.1. System model.

During the execution of a composite service, sensors collect fresh

data, looking at activity and service levels, and send this information to the

monitor. The monitor queries the historical database to obtain information

about previous executions and states of the current service, then, sends this

information to the analyzer, which evaluates both, fresh and historical data,

in order to determine the need of adaptation. If adaptation is needed, the

analyzer sends a request of adaptation to the planner, which obtains the

adaptation values that will be sent to the adapter. This information is

Composition Engine

Composite Services

Adaptation Manager

Service Binder

Service SelectorPredictor
Service

Registry

Historical

Data

Monitor Analyzer Planner Adapter

S
e
n

s
o

rs

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

115

forwarded to the service binder, in order to maintain/improve the QoS of the

composition.

For each task in the composite service, the service binder invokes the

service selector with the desired characteristics that the component service

should provide. The service selector performs a search in the service

registry based on the provided functional requirements. For each of the pre-

selected services (candidates), the service selector invokes the predictor to

obtain its estimated QoS. This information is sent to the service binder,

which compares the candidates and selects the service that suits the

request. If the need of a change was identified by the adaptation manager,

the binder uses the adaptation values to perform the ranking and selection

tasks.

5.3.2. QoS Model and Service Selection Model

The QoS model and service selection model used in this approach, extend

the models described in section 4.3.1. As a result, the quality parameters

considered for each service are response time, cost, energy consumption

and availability.

• Response time (��). Time consumed between the invocation and

completion of the service operation [59].

• Cost (�). Fee charged to the consumer when invoking a service [86].

• Energy consumption (>?). Amount of power consumed by a server

over a period of time [153].

• Availability (][). Probability that the service is up and ready for

immediate consumption [4].

The last parameter that has been selected as part of this research is

availability. By knowing the availability values of the different services, it is

possible to select a subset of components that will provide a composition

with high probabilities to be fulfilled. Work that considers availability has

been presented in [62], [68] and [107].

Assuming that a service (�) only contains one operation, its QoS (�)

can be defined using Eq. 5.1.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

116

�(�) = (��(�), �(�), >?(�),][(�)) (5.1)

Computation of availability is based on three situations within the

composite service structure. When computing the availability (][) of a single

service invocation, the availability value of the activity that performs the

invocation corresponds to the][of the invoked service, as shown in Eq.

5.2.

][(��) =][(�) (5.2)

For activities in sequential and concurrent/parallel structures, the

value of availability (][) is multiplied for the activities with service

invocations contained in the structure, as defined in Eq. 5.3.

][(�) = r][(��)
	

��

 (5.3)

In this set of equations, the value of �� corresponds to an activity

(task) with a service invocation within the composite service �.

Service selection is performed according to the model described in

section 4.3.1. After filtering services (based on their functionality), the

obtained subset is ranked according to the relationship among their

estimated QoS values. Estimations are obtained from historical data using

the average of the last � executions, after filtering values considered as

outliers. Response time, cost and energy consumption are negative

parameters (lower the value, higher the quality); while availability is a

positive parameter (higher the value, higher the quality). As the service rank

process is performed using normalized values, and the nature of availability

is opposite to the other parameters, a different formula was required to

normalize its values, described in Eq. 5.4.

�� = @� − �0��
���� − �0��

 (5.4)

Where:

���� corresponds to the maximum value of the evaluated QoS

parameter,

�0�� corresponds to the minimum value of the evaluated QoS

parameter,

@� corresponds to the estimated value for the next execution.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

117

When ���� = �0��, then �� = 1.

After normalizing the values, the overall quality score () for each

service is computed using Eq. 5.5.

 � = �
!���� + �"!���� + �A!��>� + �s!��]� (5.5)

Where:

!���� is the service estimated response time,

!���� is the service estimated cost,

!��>� is the service estimated energy consumption,

!��]� is the service estimated availability,

�
, �", �A and �s correspond to assigned weights, where

0 ≤ �
, �", �A, �s ≤ 1 and �
 + �" + �A + �s = 1.

Values for �
, �", �A and �s are provided by the QoS evaluation

heuristic described in the following section. The set of candidate services is

ranked based on the values of �, and the service with the highest value is

selected.

5.3.3. QoS Optimization Model

The proposed optimization model works as part of a proactive adaptation

mechanism. It combines the analysis of historical and fresh data. Similar to

the models presented in previous chapters, QoS information of the different

services and states of the composition is collected from service, task and

process perspectives, where service corresponds to concrete Web services;

task to elements within the composite service that invoke services; and

process to the entire composition (service workflow). Based on this

information, it is possible to take decisions about future actions.

The QoS parameters are obtained when the service invocation is

performed. Response time is measured during the service’s execution; the

values of cost and server’s power consumption are retrieved from the

service’s WSDL1 file; while the value of availability is obtained based on

historical data. According to the structures of the composite service, the QoS

values of each task are computed and stored in the historical QoS database,

1 The WSDL standard was extended to include the service’s QoS information.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

118

considering both individual values and accumulated. These values are used

in order to obtain the global QoS of the composite service.

The service selection model previously described uses as weights for

the ranking process the results of the optimization model evaluation. This

model is based on extended versions of the two fuzzy support systems

described in section 4.3.2.1. The optimization mechanism identifies when

the QoS of the composition is degrading. It also considers situations where a

number of the accumulated QoS values of the previous activity in the

process are better than expected, which provides the possibility of improving

other QoS parameters. Both fuzzy support systems were extended by

adding information regarding availability as part of their variables. In the first

fuzzy support system, in order to evaluate the benefit of adaptation,

availability was added as an input parameter, using the same linguistic terms

defined for response time, cost and energy consumption (low, medium and

high), as shown in Table 5.1.

Table 5.1. Fuzzy variable definition - availability.

Variable Terms Type Functions

Availability
Low = sigm (−50, min)

Medium = gauss (avg, std)

High = sigm (50, max)

Input

Where:

��< is the standard deviation (after filtering outliers),

�[8 is the average value between maximum and minimum.

The rules used to evaluate the benefit of adaptation (see section

4.3.2.1), were modified by adding the terms of the new input variable. The

set of rules, used in the development of the proactive mechanism described

in this chapter, is shown in appendix C.

A similar approach was taken with the second fuzzy support system.

The error obtained between the estimated and measured value of availability

was included as the fifth input variable, expressed with three terms: low,

medium and high, falling in the interval [-1, +1]. The availability weight (new

output variable), is expressed with five terms, very low, low, medium, high

and very high, falling in the interval [0,1], and is defined using Gauss

functions.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

119

The heuristic presented in Figure 5.2 describes the QoS evaluation

method applied during the optimization process, which involves the use of

the extended versions of the fuzzy systems. The notation used is shown as

follows. Let,

• � = %�
, �", … , �	' be the set of � tasks in process �.
• (be the task number, where �)∈ �.

• �* = %�
* , �"* , … , �+* ' be the set of , ancestors of �), where �*
∈ �. When

(= 1, then �* = %∅'.
• ���, ���, ��>, ��], �!���, �!���, �!��>, �!��] be the accumulated

values corresponding to real response time, real cost, real energy

consumption, real availability, estimated response time, estimated

cost, estimated energy consumption and estimated availability for a

task.

• !�, !�, !>, !] be the error values corresponding to response time, cost

energy consumption and availability for a task (see Eq. 4.6).

• �
, �", �A, �s be weights used to obtain the score of a service (see

Eq. 5.5).

• \J] be the value corresponding to the benefit of performing

adaptation.

• =�
, =�" be fuzzy systems.

Once the execution of � starts, the adaptation manager constantly

evaluates its QoS, by looking at the behaviour of its tasks. The ancestors �*
for �) are obtained (step 3). �
, �", �A and �s are set initially to 0.25,

enabling a service ranking with no preference (step 4). This is used in case
there are no meaningful differences between the QoS values of � before �).

If �), is not the first task in �, this task has ancestors and QoS evaluation

takes place (steps 6 to 30). Values within �* are sorted based on ��� (step

6). The task with the highest ��� value is selected, its accumulated real

response time is retrieved, and the error between its estimated and real

response time is obtained (steps 7 to 9). Values within �* are sorted based

on ��� (step 10). The task with the highest ��� value is selected, its

accumulated real cost is retrieved, and the error between its estimated and

real cost is obtained (steps 11 to 13). Values within �* are sorted based on

��> (step 14). The task with the highest ��> value is selected, its

accumulated real energy consumption is retrieved, and the error between its

estimated and real energy consumption is obtained (steps 15 to 17). Values

within �* are sorted based on ��] (step 18). The task with the lowest ��]

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

120

value is selected, its accumulated real availability is retrieved, and the error

between its estimated and real availability is obtained (steps 19 to 21).

EvaluateQoS (45, 6)
1 let � ′ be a task
2 let � ′ be an empty list
3 � ′ = ObtainAncestors(�) , �, � ′)
4 �
 = �" = �A = �s =0.25

// weights selection phase
5 if � ′. 3!�8�ℎ != 0
6 sort � ′ by ��� descendent
7 � ′ = � ′[0]
8 I� = � ′. ���
9 !� = (� ′. �!��� − � ′. ���)/� ′. ���
10 sort � ′ by ��� descendent
11 � ′ = � ′[0]
12 ? = � ′. ���
13 !� = (� ′. �!��� − � ′. ���)/� ′. ���
14 sort � ′ by ��> descendent
15 � ′ = � ′[0]
16 ! = � ′. ��>
17 !> = (� ′. �!��> − � ′. ��>)/� ′. ��>
18 sort � ′ by ��] descendent
19 � ′ = � ′[0]
20 �[= � ′. ��]
21 !] = (� ′. �!��] − � ′. ��])/� ′. ��]

//benefit of adaptation computation phase
22 =�
(I�, ?, !, �[)
23 \J] = =�
. \J]
24 if \J] ≥ medium
25 =�"(!�, !�, !>, !])
26 �
= =�". �

27 �"= =�". �"
28 �A= =�". �A
29 �s= =�". �s
30 AdjustWeights(�
, �", �A, �s)
31 return �
, �", �A, �s

ObtainAncestors (4, 6, 6′)
1 for (= 0 to (�. 3!�8�ℎ − 1)
2 if �[(] is ancestor of �
3 insert �[(] into � ′
4 return � ′

AdjustWeights (_`, _a, _b, _t)
1 �c= �
 + �" + �A + �s
2 �
= �
/�c
3 �"= �"/�c
4 �A= �A/�c
5 �s= �s/�c

Figure 5.2. QoS evaluation heuristic.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

121

The accumulated real values are set as inputs for =�
(step 22). \J] is

obtained and evaluated (steps 23 and 24); if it is medium or higher, then

there is a need for adaptation. When adaptation is needed, the system

determines the new weights to be used during the service selection process.

This action is performed by =�" (step 25). The values of �
, �", �A and �s

are retrieved and their values are adjusted, to fulfil the restriction �
 + �" +
�A + �s = 1 (steps 26 to 30). Finally, the heuristic returns the weight values

�
, �", �A and �s (step 31). These values are sent to the service binder to be

used at the moment of selecting the next service. When adaptation is not

needed, the service binder ranks the services using fixed weight values.

After invoking the operation of the selected service, the obtained QoS

values for service and task are stored in the historical database.

Accumulated QoS per task are calculated using the formulas presented in

equations 3.2 to 3.7, 4.2, 4.3, 5.2 and 5.3, based on the structure of the

process.

5.4. Implementation

The composition framework used to implement the proactive adaptation

mechanism, described along this chapter, contains the same components

described in section 3.4. However, interaction among them shows some

differences, as depicted in Figure 5.3.

Interaction between the Service Binder and the Adaptation Manager

does not occur each time the Service Binder is going to select a new service

(as in the framework used in previous chapters). The Adaptation Manager

monitors and analyzes the behaviour of the composite service at runtime

(while the service and its components are being executed). It uses historical

information combined with new information about the service execution.

When it identifies the need for a change, sends the weights to be used

during service ranking and selection to the Service Binder.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

122

Figure 5.3. Components interaction.

The main changes performed to the components of the framework, in

order to enable proactive adaptation and consider availability are listed as

follows:

• Adaptation manager. Instead of being invoked from the service

binder, the adaptation manager identifies when a new process

(composite service) is being executed, and starts monitoring its

behaviour. When adaptation is needed, the adaptation manager

obtains the weights to be used during the ranking process and sends

them to the service binder.

• Service binder. The ranking process performed by the service binder

uses the weights of four parameters instead of three, considering the

value of availability. After execution, information that indicates the

service was available (or not) is also registered in the historical

Service

Binder

Service

Selector
Predictor

Search Service

Get Services

Predict QoS

Get QoS Data

Get Prediction

Return Prediction

Return Services

[F
o

r
e
a

c
h

 s
e
rv

ic
e

]

Loop

DB Access

Invoke Service

Adaptation

Manager

Send Weights

Option

[A
d

a
p

ta
ti
o

n
 i
s

n
e
e

d
e

d
]

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

123

database, along with the obtained availability for the executed

service.

• Service selector. The estimated value of availability is obtained by

interacting with the predictor, and stored in the service profile along

with the estimated values of the other QoS parameters (response

time, cost and energy consumption).

5.5. Evaluation

To evaluate the proposed optimization approach, two test cases were

executed on the experimental environment described in section 3.5.4.1

(wide area network). Experiments were carried out to address the following

question:

• Does the use of a proactive adaptation approach based on self-

optimization helps improving the global QoS of composite services?

The work performed to provide an answer to this question involves

the assessment of the behaviour of composite services when using the

proposed proactive adaptation approach.

5.5.1. Test Cases

Two test cases have been used in order to asses the proposed approach.

These models are BPEL processes that represent typical examples for

service composition scenarios. Test case 1 is illustrated in Figure 5.4a, it

implements an order booking process that validates the product availability,

obtains the best price of the product from two different providers, selects the

best provider, performs the payment, and finally completes the order. Test

case 2 implements a travel planning process, as described in section 3.5.1.

It is illustrated in Figure 5.4b. For simplicity, both diagrams only depict those

activities that involve service invocations.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

124

Figure 5.4. Test cases. (a) Order booking process. (b) Travel planning process.

Table 5.2. QoS parameters configuration.

Server Set Time delays
(ms) Cost

Power
Consumption

(W)
Availability

Node 2

S1 0 120

90

0.9

S2 350 80 0.9

S3 200 100 0.9

Node 3

S1 0 150

63

0.64

S2 350 100 0.62

S3 200 120 0.63

Node 4

S1 0 100

299

0.5

S2 350 60 0.46

S3 200 80 0.48

(a)

(b)

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

125

The initial QoS parameters configuration is similar to the one

presented in previous chapters, where values were established based on the

node where the service is running and the corresponding set. The main

difference between previous configurations and the one used in this

experiment is the definition of availability values. Information is shown in

Table 5.2.

Similar to the experiments executed in chapters 3 and 4, per each of

the tasks in the processes, there are 9 candidate services, distributed

among the servers (nodes) that fulfil the required functionality, and offer

different QoS; giving a total of 45 candidate services to be used in test case

1 and 36 for test case 2. These services were previously registered into the

service registry (UDDI), and executed several times to populate the historical

database and enable the estimation of their QoS attributes. The amount of

information available in the historical database, before the execution of the

experiments, corresponds to 1,000 records.

5.5.2. Service Selection Based on Fixed Weights

A service selection mechanism based on fixed weights was implemented to

be compared with the proposed optimization approach. It extends the

mechanism described in section 4.5.1 and follows similar steps. This

approach uses Eq. 5.5 (presented in section 5.3.2) to obtain the services’

score, where the values for �
, �", �A and �s are set equally to 0.25.

Services are ranked looking for the one with the highest score.

5.5.3. Experiment Description

In order to evaluate the proposed approach, both test cases were executed

100 times. These executions were performed using services deployed on

remote servers (experimental environment described in section 3.5.4.1). The

experiment was carried out using the proactive optimization mechanism,

described in this chapter, and the service selection mechanism based on

fixed weights described in the previous section.

In the proactive mechanism, the behaviour of the composition was

monitored every second, and service selection used variable weight. Each

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

126

set of 100 runs was repeated 5 times to assess the consistency of the

results based on statistical analysis.

5.5.4. Evaluation Results

Results show improvements in the global QoS values of the composition

when using the proposed approach. Global QoS refers to the final values of

the different QoS properties (response time, cost, energy consumption and

availability). The plots shown in Figures 5.5 and 5.6 depict the behaviour of

the order booking process, showing the mean values of the different QoS

parameters after performing 5 sets of runs. For the proposed approach, the

values of services’ cost and servers’ power consumption change over time,

while for the fixed weights approach, remain constant. The evaluation of cost

and power was performed every 3 minutes. For both cases, the value of

availability changes according to the behaviour of the component services.

After analyzing the value of each of the QoS parameters, in both

processes, it was identified that, in order to improve response time, energy

consumption and availability, there was an increment in the composition’s

cost. In test case 1, results show that the proposed approach provides a

mean reduction of 2% with a standard deviation of 6.7%, and a 95%

confidence interval between 1,188.93ms and 1,203.59ms, in the measured

response time values. Also, it can be noticed from Figure 5.5a, that it

presents a more stable behaviour, without showing high peaks, as compared

to the fixed weights approach. This is due to the constant evaluation of the

QoS parameters during execution.

In terms of energy consumption, it is important to notice that this

value is not only based on power consumption, but also influenced by time.

As a result, a small response time may produce a small energy consumption

value. Figure 5.5b shows the values corresponding to energy consumption,

which have a similar behaviour to response time, and provide a mean

reduction of 14.7% with a standard deviation of 18.9%, and a 95%

confidence interval between 181Ws and 186.49Ws.

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

127

Figure 5.5. Order booking process results. (a) Response time. (b) Energy consumption.

Results also indicate that there is a significant improvement in the

processes’ availability, presenting a mean increase of 41% with a standard

deviation of 35%, and a 95% confidence interval between 0.3675 and

0.4169. The availability values corresponding to the order booking process

are illustrated in Figure 5.6a. Regarding cost, it can be noticed from Figure

5.6b that the use of the proposed approach turns into more expensive

composite services. It shows a mean increase of 11% with a standard

deviation of 8.4%, and a 95% confidence interval between 525.68 and

541.06.

Figure 5.6. Order booking process results. (a) Availability. (b) Cost.

Summarized results are illustrated in Figure 5.7. The plot depicts the

overall behaviour of the QoS parameters during the execution of test case 1

in both scenarios (proactive and fixed weights). It can be noted the

increment in terms of cost (coloured in orange), and the improvements

achieved with respect to the values of response time, energy consumption

and availability (coloured in green).

(a) (b)

1009080706050403020101

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Execution number

Av
ai

la
bi

lit
y

Proactive fuzzy-based
Fixed weights

1009080706050403020101

600

550

500

450

400

Execution number

C
os

t

Proactive fuzzy-based
Fixed weights

1009080706050403020101

1900

1800

1700

1600

1500

1400

1300

1200

1100

Execution number

R
e

sp
on

se
 ti

m
e

 (
m

s)

Proactive fuzzy-based
Fixed weights

1009080706050403020101

480

420

360

300

240

180

120

Execution number

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

Proactive fuzzy-based
Fixed weights

(a) (b)

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

128

Figure 5.7. Summary of results - order booking process.

Results obtained from test case 2 show a similar behaviour; where

response time, energy consumption and availability values are improved,

while cost increases. In terms of response time, depicted in Figure 5.8a, it

shows a mean reduction of 8.9% with a standard deviation of 16% and a

95% confidence interval between 622.24ms and 639.21ms. For energy

consumption, shown in Figure 5.8b, the obtained mean reduction is 4.6%

with a standard deviation of 29% and a 95% confidence interval between

60.75 Ws and 64.95 Ws.

Figure 5.8. Travel planning process results. (a) Response time. (b) Energy consumption.

Regarding availability, the proposed approach provides an

improvement of 18% with a standard deviation of 25% and a 95%

confidence interval between 0.4909 and 0.5392. Finally, in terms of cost, it

generates an increment of 12.5% with standard deviation of 6.8% and a 95%

confidence interval between 545.34 and 557.09. The plots depicted in

Figures 5.9a and 5.9b, illustrate the behaviour of the compositions’

availability and cost, respectively.

(a) (b)

1009080706050403020101

1460

1340

1220

1100

980

860

740

620

500

Execution number

R
e

sp
on

se
 ti

m
e

 (
m

s)

Proactive fuzzy-based
Fixed weights

1009080706050403020101

130

115

100

85

70

55

40

Execution number

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

Proactive fuzzy-based
Fixed weights

Response time(ms)

Cost

Energy consumption
(Ws)

Availability

Proactive fuzzy-based
Fixed weights2%

11%

14.7%

41.1%

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

129

Figure 5.9. Travel planning process results. (a) Availability. (b) Cost.

In this set of experiments, the behaviour of the composite services in

terms of response time has been considered based on the response time of

component services, discarding the overheads caused by the engine. This

overhead is around 3,200ms and 2,500ms, for test case 1 and test case 2,

respectively.

5.5.5. Discussion

Based on the analysis of the weight values obtained by the optimization

model and sent to the service binder, the parameter that had the higher

impact within the adaptation process was energy consumption, followed by

response time. Because of this, at the moment of selecting new services to

be invoked, priority would be given to those that are being executed on

servers with lower power consumption, and that show better performance

(lower response time). Which, based on the QoS configuration, are the

services that also involve higher costs. Different QoS configurations may

give different results; however, because of the use of multiple QoS criteria, it

is likely to find that not all the parameters can be improved.

When analyzing the results obtained during the experimental stage, it

can be noted that the use of the proactive adaptation approach presented in

this chapter has enhanced significantly the global QoS of the use case

scenarios, with reductions of up to 8.9% in response time and 14.7% in

energy consumption, and an improvement of 41% in availability; this is

achieved with an average increment in cost of 11.75 %.

In terms of performance, the use of the proposed mechanism causes

an average increment of 596ms in the invocation time per task (information

(a) (b)

1009080706050403020101

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Execution number

Av
ai

la
bi

lit
y

Proactive fuzzy-based
Fixed weights

1009080706050403020101

625

600

575

550

525

500

475

450

Execution number

C
os

t

Proactive fuzzy-based
Fixed weights

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

130

obtained using a database with 10 candidate services and 100 records per

service). Overheads increase following a quadratic model. This behaviour

was determined after performing various sets of executions increasing the

number of candidate services and analyzing the measured execution time

(see Figure 5.10).

Figure 5.10. Execution time for different number of available candidate services.

Further assessment of the results shown in section 5.5 will be

presented in chapter 6, along with a comparison between the proposed

optimization model and relevant related work, highlighting their main

differences.

5.6. Summary

This chapter has presented a proactive adaptation mechanism for service

composition based on fuzzy logic. Ideas that motivate the development of

the approach are discussed, followed by a review on work focused on

providing proactive adaptation in service composition and service-based

applications.

The proposed solution is then described in detail. It includes

information regarding the service composition framework, and the

extensions performed to the QoS model and optimization model. Following

this, implementation aspects are then provided. Finally, evaluation of the

100908070605040302010

700

680

660

640

620

600

Number of services

E
xe

cu
tio

n
tim

e
 (

m
s)

Measured data

Adjusted data

Chapter 5. A Proactive Adaptation Mechanism for Service Composition

131

proposed approach is discussed in detail, including test cases definition,

QoS parameters configuration, and results.

The following chapter will discuss the main contributions of this

Thesis, providing a comparison between relevant related approaches and

the research described in chapters 3, 4 and 5, and the overall assessment of

the evaluation performed to the different models and mechanisms provided

along those chapters.

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

132

Chapter 6
Comparison, Discussion and Overall
Assessment of the Evaluation

This chapter presents the overall assessment of the evaluation performed to

the adaptation approaches presented in previous chapters. A general

overview of the research motivation is presented. This is followed by a

comparison between related work and the research presented in this Thesis.

Finally, the assessment of the evaluation is provided, including an overview

of the experiments described in chapters 3, 4 and 5, along with the analysis

of the gathered results and their limitations.

6.1. Overview

Development in the field of service composition has resulted in a set of

dataflow models (orchestration and choreography), approaches (static,

dynamic, manual and automatic) and techniques (model-driven, declarative,

workflow-based, ontology-driven and AI-Planning) that enable composition

from different perspectives. However, some challenges still remain open,

which are closely related to automatic-dynamic service composition and

include the implementation of mechanisms that enable: Quality of Service

awareness, adaptive capabilities, risk awareness, conformance, security and

interoperability.

The behaviour offered by services exhibits frequent variations,

therefore, obtaining the expected results while running a service is not

guaranteed. This situation has caused the need of mechanisms and tools

focused on helping providers to ensure the provision of services with certain

quality levels. When looking at Quality of Service awareness and adaptive

capabilities, it can be considered that they complement each other, making

possible to combine them while developing composition approaches focused

on maintaining/improving the quality levels of composite services. QoS

awareness refers to the capability of a composite service of being aware of

its QoS aspects and those of the components involved; while adaptive

capabilities aim to target changes within the composition, enabling it to

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

133

morph regarding those changes, in order to satisfy the consumer’s

requirements.

As described in chapter 2, adaptive mechanisms provide software

systems with capabilities to self-heal, self-configure, self-optimize, self-

protect, etc., in order to deal and mitigate the impact of unexpected events

that can occur during service executions. The scope of this research is

mainly focused in the development of models (mechanisms), that provide a

service composition framework with capabilities to help providers in

delivering services with the expected quality levels. These mechanisms

react when: the QoS levels of the composition can be improved, the QoS

levels of the composition are degrading, a component service is unavailable,

and a component service fails.

Adaptation has been targeted primarily from a self-optimization

perspective, looking at the QoS levels of the composition during the different

stages of its execution. The optimization approaches consider situations

where a number of the accumulated QoS values of the previous activity in

the process are better than expected, providing the possibility of improving

other QoS parameters. Also, they identify when the QoS of the composition

is degrading. In situations where a service is unavailable or there is a service

failure, a conservative self-healing approach was undertaken, preventing

composite services from stopping their executions. However, performing

changes every time there is a variation in the expected behaviour of the

composition does not ensure the acquirement of the most favourable QoS

values. Reason why, as part of this work it was considered the benefit of

adaptation as a parameter to decide whether to adapt or not. In order to

perform such evaluation, it was proposed the use of fuzzy logic as a tool to

support the decision making process (described in chapter 4). The value of

benefit of adaptation is obtained by analyzing the relationship between the

values of the QoS parameters during the different stages of the composite

service execution.

The use of reactive adaptation approaches may lead to increments in

the response time and cost of composite services. In order to avoid such

increments and identify the need of adaptation in advance, this research

also targets self-optimization from a proactive perspective. As a result, a

proactive adaptation mechanism for service composition based on fuzzy

logic was developed (described in chapter 5).

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

134

6.2. Adaptation in Service Composition - Comparison and
Discussion

The use of adaptation solutions may involve different aspects, based on the

context where adaptation is being applied. In the context of service

composition, some of the aspects that can be considered when using

adaptation solutions include: goal, level, action, mechanism, stage of

adaptation, and awareness level (described in detail in section 2.5.2).

The research presented in this work has targeted adaptation in

service composition mainly from a self-optimization perspective. Work found

in the literature related to the development of adaptation approaches in the

area of Web service systems is presented in Tables 6.1 and 6.2, and

summarized based on the adaptation aspects mentioned above. QoS

parameters and self-adaptation properties are also considered as part of the

criteria.

Table 6.1. Adaptation in service composition - part 1.

Authors &
citations

Adaptation
goal

Adaptation
level

Adaptation
action

Adaptation
mechanism

Cardellini et
al. [86] Non functional Web service

• Service
selection

• Coordination
pattern

Policy-based

Ardagna et
al. [129]

Non functional Web service Service selection Rules-based

Calinescu
 et al. [87] Non functional • Web service

• Architectural

• Service
selection

• Coordination
pattern

• Resource
allocation

Policy-based

Bianculli et
al. [92]

• Functional
• Non

functional
Web service Service selection

Feedback-
based

Canfora et
al. [107]

Non functional • Web service
• Workflow

Service selection ---

Wenjuan et
al. [90]

Non functional Web service Service selection • Agent-based
• Policy-based

Erradi et al.
 [91], [108]

Non functional Web service Service selection Policy-based

This work Non functional Web service Service selection Rule-based

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

135

Table 6.2. Adaptation in service composition - part 2.

Authors &
citations

Stage of
adaptation

Awareness
level QoS Self-adaptation

properties

Cardellini et
al. [86]

Runtime/
reactive Event-aware

• Response
time

• Cost
• Reliability

• Self-adaptation
• Self-healing

Ardagna et
al. [129]

Runtime/
reactive

• Event-aware
• Goal-aware

• Response
time

• Cost
• Reputation

Self-healing

Calinescu
 et al. [87] Load time • Event-aware

• Goal-aware
• Performance
• Reliability

• Self-configuration
• Self-optimization

Bianculli et
al. [92]

Runtime/
proactive --- Reputation Self-healing

Canfora et
al. [107]

Runtime/
reactive Event-aware

• Time
• Price
• Availability
• Reliability

• Self-healing
• Self-optimization

Wenjuan et
al. [90]

• Runtime/
proactive

• Runtime/
reactive

Context-aware Defined by user • Self-healing
• Self-management

Erradi et al.
 [91], [108]

Runtime/
reactive Event-aware Reliability • Self-configuration

• Self-healing

This work

• Runtime/
proactive

• Runtime/
reactive

Event-aware

• Response
time

• Cost
• Energy

consumption
• Availability

• Self-healing
• Self-optimization

In terms of the aspects considered in Table 6.1, the research

presented in this Thesis has a similar approach in comparison with the

related work. The main differences are found in Table 6.2, where the use of

proactive and reactive adaptation is only targeted by Wenjuan et al. in [90].

When looking at QoS parameters, this research proposes the use of energy

consumption as a new quality attribute in service composition.

From a general perspective, adaptation approaches that implement

self-optimization are mainly focused in the selection of services that offer

high quality values and the use of utility functions. However, they only

consider situations where quality levels decay. Besides, some of the

adaptation strategies apply in the next execution of the composition, or

require human specifications.

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

136

Table 6.3. Proactive adaptation/monitoring in service-based systems.

Authors &
citations

Target
situations

Adaptation
actions Validation QoS

parameters

Aschoff et
al. [99],
[164]

• Unavailable
service

• Malfunctioning
service

• Decrease in
response time

• Emergence of
better services

Service
operation

replacement
(1 − 1, 1 − �,
� − 1, � − �)

• Experiments
in LAN

• Prototype
• Simulation

• Response
time

• Cost

Leitner et
al. [161]

Service Level
Agreements

violations

• Data
manipulation

• Service
rebinding

• Parameteriza
tion

• Experiments
in LAN

• Prototype
Response time

Yu et al.
[59]

Performance
decrease

• Service
replacement

• Backup in
selection &
reselection in
execution

Simulation
• Performance
• Reliability
• Cost

Tosi et al.
[160]

Integration
mismatches

Predefined
adaptation
strategies

Manual
specification in

prototype

Sammodi et
al. [163]

• QoS violations
• Malfunctioning

service

Dynamic
service binding

• Simulation
• Prototype

Response time

Yuelong et
al.

[162]

• Missing output
message

• Missing input
message

• Un matching
function
invocation

• Property
violated

--
• Experiments

in LAN
• Prototype

This work

• QoS
Degradation

• Malfunctioning
service

• Unavailable
service

• Improvement
in QoS (global
perspective)

• Service
selection

• Dynamic
service
binding

• Experiments
in WAN

• Prototype

• Response
time

• Cost
• Energy

consumption
• Availability

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

137

The approach followed in this work proposed that self-optimization

can be also targeted when one of the QoS values of the entire composition

is better than expected in certain point of the execution. It considers that this

behaviour provides some slack that can be used while selecting the next

service in the process, enabling the improvement of other QoS attributes.

As mentioned in previous chapters, this research has proposed the

use of fuzzy logic as a tool to perform the decision making process when

evaluating the QoS values of composite services, and determine the benefit

of performing adaptation. Approaches found in the literature that use fuzzy

logic in service-based systems are mainly focused in service selection, and

even though they evaluate the QoS values of the services, they do not

consider the benefit of adaptation as a parameter.

The optimization approach presented in chapter 5 works as part of a

proactive adaptation mechanism for service composition. A comparison

between work related to the provision of proactive mechanisms in service-

based systems is presented in Table 6.3. This comparison was performed

based on different criteria, which include: target situations, adaptation

actions, form of validation and QoS parameters.

It was found that this work is the only one that considers as a target

situation the improvement of the global QoS of composite services, and was

validated by performing experiments on a wide area network. Regarding

QoS parameters, most of the related approaches are focused on response

time, while this work also considers cost, energy consumption and

availability.

6.3. Assessment of the Evaluation

Results obtained after evaluating the three approaches proposed and

described along this Thesis, show that the use of the optimization

mechanisms while executing composite services provide meaningful

improvements in their global QoS values, when comparing to a service

selection mechanism based on fixed weights.

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

138

6.3.1. Overview of the Experiments

The evaluation and assessment of the optimization approaches involved the

use of test cases with various candidate services, and the configuration of

two experimental environments. As a result, two BPEL processes were

modelled. They represent typical examples for service composition

scenarios: travel planning and order booking (for further details see section

5.5.1). Per each of the tasks in the processes, there were 9 candidate

services available, giving a total of 36 services for travel planning and 45 for

order booking.

The experimental environments were setup with the following

characteristics:

• Environment 1 (local area network). It consists of three nodes, one

computer with Windows Vista (node 1); and two virtual machines with

lubuntu 11.10 (nodes 2 and 3). Node 1 hosts the BPEL engine,

service registry, historical database and one application server.

Nodes 2 and 3, host one application server each. Web services are

allocated in the application servers.

• Environment 2 (wide area network). It consists of 4 nodes configured

on a wide area network, distributed between United Kingdom and

Germany, with estimated values for bandwidth and latency around 32

Mbit/s and 29ms, respectively. Node 1 is a computer with Windows

Vista (located in United Kingdom). This node hosts the BPEL engine,

service registry and historical database. Nodes 2 to 4 are virtual

machines setup on remote servers (located in Germany). These

nodes host one application server each, which contains 3 sets of Web

services.

Initial values of QoS parameters for the candidate services used in

the experiments were established based on the node where the service was

running and the corresponding set, as described in Table 6.4.

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

139

Table 6.4. QoS parameters configuration.

Server Set Time delays
(ms) Cost

Power
Consumption

(W)
Availability

Node 1 (*2)

S1 0 120

90

0.9

S2 350 80 0.9

S3 200 100 0.9

Node 2 (*3)

S1 0 150

63

0.64

S2 350 100 0.62

S3 200 120 0.63

Node 3 (*4)

S1 0 100

299

0.5

S2 350 60 0.46

S3 200 80 0.48

* Nodes corresponding to environment 2.

Each of the proposed optimization approaches evaluates a different

subset of QoS parameters. Table 6.5 shows the experimental setup used to

evaluate each of the approaches, subset of QoS parameters considered and

number of executions performed.

Table 6.5. Summary of experiments configuration.

Approach ID Environment Test case QoS
parameters

No. of
executions

Variable
weights

1A LAN Travel
planning

• Response
time

• Cost

50

1B WAN 50 (x3)

Fuzzy
based

2A LAN
Travel

planning

• Response
time

• Cost
• Energy

consumption

50 (x5)

2B WAN 50 (x3)

Proactive

3A WAN Order
booking

• Response
time

• Cost
• Energy

consumption
• Availability

100 (x5)

3B WAN Travel
planning

100 (x5)

6.3.2. Analysis of Results

A summary of the results obtained when evaluating the effectiveness of the

proposed approaches is presented as follows. These results are compared

against measured data obtained when executing the test cases with a

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

140

service selection mechanism based on fixed weights, using the same initial

QoS parameters configuration and execution environment.

The first set of experiments (1A and 1B) corresponds to the

evaluation of the use of variable weights during service selection as part of a

self-optimization mechanism. This approach was described in chapter 3.

Figure 6.1 illustrates the QoS values measured after performing experiment

1A, which corresponds to the execution of the travel planning process over a

local area network.

Figure 6.1. Experiment 1A- comparison between variable weights and fixed weights
approaches. (a) Response time. (b) Cost.

Values regarding response time are depicted in Figure 6.1a. It can be

noted that for the optimization approach, the obtained values are smaller as

compared to the fixed weights mechanism. Even though, the smallest

response time was found in the fixed weights approach, it also presents the

highest value and a higher median. In terms of cost (Figure 6.1b), the

highest value was found in the fixed weights approach, while the smallest on

the optimization one. Most of the values obtained using fixed weights fall on

the median, with few outliers. This is caused by the lack of variation in the

cost of Web services and the use of the same service in multiple executions.

When analyzing the results obtained from executing the travel

planning process in a wide area network (experiment 1B), differences in

response time are not as notorious as compared with those found in cost, as

illustrated in Figure 6.2. Similar to the behaviour found when executing the

experiment in the local area network, response time values measured for the

optimization approach are smaller as compared with the fixed weights

approach, as depicted in Figure 6.2a. Regarding cost, there is can be noted

a meaningful reduction, where most of the values obtained with the

(a) (b)
Fixed weights Variable weights

11000

10000

9000

8000

7000

6000

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fixed weights Variable weights

500

480

460

440

420

400

380

C
os

t

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

141

optimization approach are smaller that those obtained with fixed weights

(see Figure 6.2b).

Figure 6.2. Experiment 1B- comparison between variable weights and fixed weights
approaches. (a) Response time. (b) Cost.

Based in the gathered results from experiments 1A and 1B, it can be

concluded that by using the proposed approach, there can be achieved

significant improvements in the global QoS of composite services, with

reductions up to 14% in response time and 16% in cost.

The second set of experiments (2A and 2B) was performed in order to

evaluate the fuzzy logic based optimization mechanism described in chapter

4. In these experiments, there were inserted variations regarding service’s

cost and servers’ power consumption when using the proposed approach.

These variations were based in the models presented in section 4.5.2. For

the fixed weights approach, both values remained constant according to

their initial configuration.

Figure 6.3 illustrates the summary of results obtained when

performing experiment 2A, where the travel planning process was executed

on a local area network. As can be noted from Figure 6.3a, the proposed

fuzzy approach provided the smaller response time values, as compared

with the fixed weights approach. Gathered results regarding cost and energy

consumption, depicted in Figures 6.3b and 6.3c, also provided smaller

values.

A summary of results collected after performing the travel planning

process in a wide area network (experiment 2B) is depicted in Figure 6.4.

When executing the composite services over a WAN, there was a trade-off,

where one of the QoS parameters was degraded in order to

maintain/improve the values of the others.

(a) (b)
Fixed weights Variable weights

4500

4000

3500

3000

2500

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fixed weights Variable weights

550

500

450

400

350

C
os

t

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

142

Figure 6.3. Experiment 2A- comparison between fuzzy based and fixed weights
approaches. (a) Response time. (b) Cost. (c) Energy consumption.

Figure 6.4. Experiment 2B- comparison between fuzzy based and fixed weights
approaches. (a) Response time. (b) Cost. (c) Energy consumption.

Fixed weightsFuzzy based

200

150

100

50

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

(a) (b)

(c)

Fixed weightsFuzzy based

550

500

450

400

350

C
os

t

Fixed weightsFuzzy based

4500

4000

3500

3000

2500

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fixed weightsFuzzy based

350

300

250

200

150

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

(a) (b)

(c)

Fixed weightsFuzzy based

15000

14500

14000

13500

13000

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fixed weightsFuzzy based

430

420

410

400

390

380

370

360

350

C
os

t

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

143

Average value of cost increased, while response time was reduced

and energy consumption remained very close to the values obtained when

using fixed weights (Figure 6.4). This situation may be caused by variations

in the response time of component services. As response time influences

the value of energy consumption, a large response time may generate a

large energy consumption value. When looking at results from individual

executions, they showed a similar behaviour (described in section 4.5.5.1).

In conclusion, results collected in experiments 2A and 2B indicate that

the use of the proposed fuzzy logic based optimization approach, helps to

obtain meaningful improvements in the global QoS of composite services,

providing reductions up to 20.5% in response time, 33.4% in cost and 31.2%

in energy consumption.

The third set of experiments (3A and 3B) was carried out to evaluate

the proactive adaptation mechanism described in chapter 5. In these

experiments, the order booking process and the travel planning process

were executed over a wide area network.

Figure 6.5. Experiment 3A- comparison between proactive fuzzy-based and fixed weights
approaches. (a) Response time. (b) Cost. (c) Energy consumption. (d) Availability.

Fixed weightsProactive fuzzy-based

450

400

350

300

250

200

150

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

Fixed weightsProactive fuzzy-based

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Av
ai

la
bi

lit
y

(a) (b)

(c) (d)

Fixed weightsProactive fuzzy-based

1800

1700

1600

1500

1400

1300

1200

1100

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fixed weightsProactive fuzzy-based

600

550

500

450

C
os

t

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

144

Figure 6.5 illustrates the summary of results obtained after performing

experiment 3A. It can be observed a trade-off between QoS values. When

comparing the proactive fuzzy-based approach with the fixed weights

approach, it can be noted that in order to improve response time, energy

consumption and availability, there is an increment in terms of cost (Figure

6.5b). Results obtained from experiment 3B showed a similar behaviour, as

depicted in Figure 6.6.

One reason that may influence this behaviour is the relationship

between the values of quality parameters exhibit by the services, as those

services with lower energy consumption and higher availability, also display

higher costs.

Figure 6.6. Experiment 3B- comparison between proactive fuzzy-based and fixed weights
approaches. (a) Response time. (b) Cost. (c) Energy consumption. (d) Availability.

Results obtained after performing experiments 3A and 3B show that

by using the proposed proactive adaptation approach, it is possible to

enhance significantly the global QoS of the use case scenarios, with

reductions of up to 8.9% in response time and 14.7% in energy

consumption, and an improvement of 41% in availability; this is achieved

with an average increment in cost of 11.75 %.

Fixed weightsProactive fuzzy-based

130

120

110

100

90

80

70

60

50

40

E
ne

rg
y

co
ns

um
pt

io
n

(W
s)

Fixed weightsProactive fuzzy-based

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Av
ai

la
bi

lit
y

(a) (b)

(c) (d)

Fixed weightsProactive fuzzy-based

1400

1300

1200

1100

1000

900

800

700

600

500

R
e

sp
on

se
 ti

m
e

 (
m

s)

Fixed weightsProactive fuzzy-based

600

575

550

525

500

475

450

C
os

t

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

145

6.3.3. Limitations

The experiments summarized along this section show very encouraging

results regarding the effectiveness of the proposed QoS optimization

mechanisms within the context of service composition. However, the

experimentation has some limitations, which include:

• The use of QoS values that were not obtained from real services.

Initial configuration values for cost and availability were assigned

based on assumptions, while energy consumption on servers’ power

consumption selected from the Energy Star report [158]. The use of

real services and real QoS data during the experimentation stage is

needed to assess the effectiveness of the approaches in real world

scenarios.

• The use of test cases with limited number of elements that involved

service invocations. The test cases used to perform the evaluation of

the optimization approaches were modelled inspired in composite

services found in the literature, but they have a limited number of

service invocations and structures. Experimentation with more

complex and realistic test cases is necessary to analyze the

behaviour of the optimization mechanisms and ensure they are

suitable not only for small/medium size scenarios.

• The use of a limited number of parameters when applying fuzzy logic.

The number of parameters has a strong influence in the number of

rules used by the fuzzy support systems. The number of rules

increases considerably when using more than 4 parameters, which

turns the management of the rules engine into a highly complex task.

The use of fuzzy logic may be unfeasible when considering scenarios

that involve the analysis of a high number of QoS criteria.

6.4. Summary

This chapter has presented the overall assessment of the evaluation

performed to the adaptation approaches described in previous chapters. A

general overview of the research motivations was presented, which include

the use of QoS variations in order to determine adaptation, the need of

Chapter 6. Comparison, Discussion and Overall Assessment of the Evaluation

146

performing adaptation and the use of proactive adaptation in service

composition.

A comparison between related work and the research presented in

this Thesis is then provided. This comparison was performed from two

perspectives. Firstly, from a general point of view, based on different criteria

which included: goal, level of adaptation, action, mechanism, stage of

adaptation, QoS parameters and awareness level. Secondly, from a

proactive point of view, summarizing work focused in providing proactive

mechanisms for service-based systems. The criteria considered include:

target situations, adaptation actions, form of validation and QoS parameters.

The main differences between this research and related approaches are

then highlighted.

Finally, the assessment of the evaluation is provided. It includes an

overview of the experiments described in chapters 3, 4 and 5, along with the

analysis of the gathered results and their limitations. The next chapter will

present a summary of the work described in this Thesis, followed by the key

contributions and directions for future work.

Chapter 7. Conclusion and Future Work

147

Chapter 7
Conclusion and Future Work

This chapter provides a summary of the work presented in the Thesis. Then,

the major contributions of the research are given. Following this, a

discussion on some directions that can be explored as part of future work is

presented.

7.1. Summary

The work presented in this Thesis is focused on the research of Quality of

Service awareness and adaptation in service composition. It is primarily

centred on self-optimization, looking at changes in the QoS levels of

composite services during the different stages of their execution. Self-

optimization has been targeted with three approaches, which consider

different QoS parameters and look at adaptation from reactive and proactive

perspectives. The approaches were implemented in service composition

frameworks and evaluated through the execution of test cases.

chapter 2 presents background concepts that help in the

understanding of the research described in this document. It begins by

describing Service Oriented Architectures to help introducing Web services

and service composition. Then, the concept of Web services is explored in

detail, along with service related standards, the service life cycle, and some

of the benefits of using services when developing software solutions.

Relevant concepts related to service composition are then presented,

including dataflow models, composition languages and main challenges in

the field.

The concepts of Quality of Service and Service Level Agreements

were provided in the context of service oriented environments, and followed

by a discussion on related work in QoS management and QoS estimation in

service composition. Adaptive service composition is described from the

perspective of autonomic computing. Self-* properties are defined and

related to events that can occur while executing composite services. Other

relevant adaptive approaches applied in the area of service oriented

Chapter 7. Conclusion and Future Work

148

environments are then discussed. Finally, various decision support systems

applied within adaptive mechanisms are described.

After presenting the background concepts related to service

composition and adaptation, chapter 3 goes into the description of a QoS

optimization model for service composition. It begins by providing the

motivation behind the development of the work, followed by a discussion of

work related to the provision of adaptation in service composition. An outline

of the proposed solution is then described, along with a detailed portrayal of

its elements. Alongside, implementation aspects regarding the elements of

the solution are provided. This chapter concludes by presenting the

evaluation of the proposed model. It includes details concerning the

description of experimental objectives, experiments and results.

Chapter 4 describes a QoS optimization model for service

composition based on fuzzy logic. This model is an extension of the

approach described within chapter 3. It provides the motivation behind the

development of the approach, followed by a discussion on related work. The

proposed solution is described, including details about the QoS model,

decision support systems and optimization model. Implementation of the

extensions performed to the composition framework are given. Finally, the

evaluation of the model is provided, covering the description of the

experimental setup, dynamic QoS parameters and results.

A proactive adaptation mechanism for service composition is

presented in chapter 5. This mechanism is built as an extension of the QoS

optimization model described in chapter 4. It begins by providing the ideas

that motivate the development of the approach. Then, a review on work

focused on providing proactive adaptation in service composition and

service-based applications is presented. Following this, the proposed

solution is described, providing details about the service composition

framework and modifications performed to the QoS model and optimization

model presented in previous chapters. Implementation aspects are provided.

This chapter concludes by presenting the evaluation of the proposed

approach, including test cases definition, QoS parameters configuration and

results.

Chapter 6 presents an overall assessment of the evaluation

performed to the different models and mechanisms proposed in chapters 3,

4 and 5. It provides a summary of the research motivations for the different

Chapter 7. Conclusion and Future Work

149

models. This is followed by a comparison between related work and the

research presented along this Thesis, and a discussion that underlines the

main differences. From a general point of view, the criteria used to establish

the comparison included: goal, level of adaptation, action, mechanism, stage

of adaptation, QoS parameters and awareness level. From a proactive point

of view, the criteria considered include: target situations, adaptation actions,

form of validation and QoS parameters. The assessment of the evaluation is

then provided, along with the analysis of the gathered results. It includes an

overview of the experiments described in chapters 3, 4 and 5. Evaluation

results showed that the proposed mechanisms enhanced the global QoS

values of the compositions, with significant improvements regarding the

evaluated QoS parameters. Finally, the limitations of the experimentation are

presented.

7.2. Contributions

The main contributions of the work presented in this Thesis are summarized

in the following points:

• QoS optimization mechanisms for service composition. This research

proposes three QoS optimization mechanisms which consider diverse

QoS criteria from a global perspective. These mechanisms are not

only focused on targeting QoS degradation, they also consider when

some of the measured QoS values at certain point of the composite

service execution are better than expected, enabling the improvement

of other QoS attributes. Two of these mechanisms involve the use of

fuzzy logic as a decision making tool (described in chapters 4 and 5).

They take into consideration the benefit of adaptation, value which is

obtained by analyzing the measured values of the QoS attributes. The

use of the benefit of adaptation helps determining whether adaptation

is needed or not, avoiding to trigger adaptation after every variation in

the behaviour of the composition.

• Conceptual frameworks that enable QoS aware and adaptive service

composition. This research presents two abstract system models that

enable QoS aware and adaptive composition. The first framework

(described in section 3.3.1) provides adaptation from a reactive

perspective. Its main components can be summarized as:

Chapter 7. Conclusion and Future Work

150

composition engine, adaptation manager, service binder, service

selector, predictor, sensors and effectors. On the other hand, the

second framework (described in section 5.3.1) provides adaptation

from a proactive perspective. Its core components are similar to those

used in the reactive framework, but they interact in a different

manner. In the proactive framework, the adaptation manager works

semi-independent to the rest of the components and sends

information to the service binder when adaptation is needed. In the

reactive framework, it is invoked within the binder.

• Prototypes implementations for reactive and proactive service

composition. Prototyping helps performing experiments in real

environments, which provide sensible results when evaluating

adaptation mechanisms. In order to assess the proposed QoS

optimization mechanisms, two prototypes were implemented as

extensions of an open source composition engine. A reasonable

understanding of the composition language and the execution engine

was necessary to extend the engine’s functionality and enable both

reactive and proactive adaptation.

• Discovery of benefits offered by the use of the QoS optimization

mechanisms in service composition. The effectiveness of the

proposed QoS optimization mechanisms presented in this Thesis was

demonstrated through a series of experiments, which involved the

use of two experimental environments (local area network and wide

area network), and two test cases (travel planning and order

booking). Results showed that the mechanisms were effective,

providing significant improvements in terms of global QoS when

executing composite services. In some situations a trade-off was

found, where one of the QoS parameters is degraded in order to

maintain/enhance the values of the others.

The contributions provided by this work aim to bring new solutions to

QoS awareness and adaptation in the area of service composition, targeting

QoS optimization focussed not only in maintaining, but improving the QoS

parameters of composite services. The evaluation of the QoS optimization

mechanisms demonstrated that the QoS parameters of composite services,

at some point of their execution, can be better than expected. Based on this

information, decisions can be made in order to improve the global QoS of

Chapter 7. Conclusion and Future Work

151

the composition. In addition, it was identified that when using multiple QoS

criteria, it is likely to find that not all the parameters can be improved using

the proposed approaches.

7.3. Future Work

There are further directions that can be considered in order to extend the

research work presented in this Thesis. Some of these directions are

described as follows:

• The use of Dynamic Service Level Agreements on top of the

composition framework. The composition framework is not

considering the use of SLAs and user’s QoS requirements. It is

focussed on providing the best possible global QoS, based on the

available information it has on the component services behaviour.

The use of SLAs between the framework and the customer would

provide certain limits to the QoS parameters regarding the customer’s

requirements. If these SLAs are dynamic, it will also enable the

composition to re-negotiate with the customers when the

composition’s global QoS is deviating from the original request.

Dynamic SLAs [165] could provide the composition with a flexible

approach to handle QoS requirements, helping to ensure customer’s

satisfaction.

• The development of realistic models to define the behaviour of

component services. The QoS values used during this research were

not obtained from real services. Cost and availability were assigned

aiming to support a wide range of values, while energy consumption

on servers’ power consumption selected from the Energy Star report

[158]. The use of QoS values obtained from real services would

enable the development of models that can be applied when

predicting the services behaviour, helping to assess the effectiveness

of the proposed approaches in real world scenarios.

• The assessment of the proposed approaches using different decision

support systems. The use of fuzzy logic may be unfeasible when

considering scenarios that involve the analysis of a high number of

QoS criteria. This is caused by the increase rate in the number of

Chapter 7. Conclusion and Future Work

152

rules involved in the system, which can turn the management of the

rules engine into a highly complex task. The use of different decision

making tools (such as decision trees [148], reinforcement learning

[145], genetic algorithms [107], etc.) to assess the proposed

approach, may provide some flexibility when the evaluation of QoS

parameters involves a high number of criteria. The approaches can

also be evaluated using different decision support systems with the

same number of QoS parameters, looking at performance, usage of

resources and obtained results.

• The use of diverse QoS parameters. This research considers four

QoS parameters (response time, cost, energy consumption and

availability). However, there is an extensive list of QoS parameters

that can be applied in service oriented environments [4], [58]. New

QoS criteria can be considered, based on the objectives of composite

services and users’ requirements.

• The use of other estimation mechanisms. Estimation is limited to the

use of the average of the last � elements. The use of other estimation

mechanisms (like those described in [72]) may provide more accurate

predictions, which could have an impact on the global QoS values of

the composite services.

• The extension of the adaptation mechanism. During the execution of

composite services, adaptation is performed by using service

selection/re-selection. The adaptation mechanism could be extended

by adding features that enable service replacements considering

different structures with the forms: 1 − �, � − 1 and � − � (similar to

the approach presented in [99]). This would remove the limitation of

having at least one component service to fulfil every task within the

composition by using a functional equivalent structure.

Appendix A

153

Appendix A
Comparison of Predictive Algorithms to
Support QoS Estimation

One set of experiments was developed with the aim of evaluating predictive

algorithms capabilities to obtain the estimated QoS of Web services. In this

context QoS data is limited to response time. The evaluated algorithms are:

• Single last observation (SLO).

• Running average (RA).

• Running average for the last 10 executions (RA-10).

• Low pass filter (LPF).

Two atomic services (WS1 and WS2) were deployed on Apache

Tomcat with Axis, historical data was stored in a MySQL database and the

client, which includes the algorithms implementation, was developed as a

java application. Historical data was collected by invoking each service 1000

times and measuring response time on the client side. Using the predictive

algorithms mentioned above, response time was forecasted 40 times per

service. For each prediction the WS was invocated and data recorded, in

order to compare real vs. estimated response time.

Figures A.1 and A.2 illustrate the deviation between estimated and

actual response time obtained on the executions of WS1 and WS2,

respectively. Results obtained from the execution of WS1 show that the

running average of all the historical data brought the set of values that differ

most with the actual response time. Single last observation results,

presented some accurate predictions, however, when abrupt changes occur,

estimated values were not close to the measured ones. On the other hand,

low pass filter and the running average of the last 10 executions showed

estimations with closer values to the observed behaviour of the services.

Results obtained from the execution of WS2 show a similar behaviour.

Appendix A

154

Figure A.1. Comparison of estimated values vs. real (WS1).

Figure A.2. Comparison of estimated values vs. real (WS2).

To obtain a better understanding on the results (estimations vs. real

response time), the relative error was computed per each estimated value

using the following formula [72]:

! (H�) = |� (H�) − �1 (H�)|
�1(H�) (A.1)

Where:

403632282420161284

680

660

640

620

600

WS invocations

R
e

sp
on

se
 ti

m
e

 (
m

s)

SLO2

RA2

RA-102

LPF2

ActualRT2

403632282420161284

680

670

660

650

640

630

620

610

600

590

WS invocations

R
e

sp
on

se
 ti

m
e

 (
m

s)

SLO

RA

RA-10

LPF

Actual RT

Appendix A

155

�(H�) corresponds to the estimated data,

�1(H�) corresponds to the real measured data.

After analyzing the results of WS1, the algorithm that presented the

largest error rate is the running average of all the collected data, with an

average error rate of 7.43%. Single last observation values showed an

average error of 2.55%; running average of the last 10 invocations 2.44%;

and low pass filter 2.64%. In the case of WS2, the algorithm that presented

the largest error rate is the running average of all the collected data, with an

average of 6.72%. Single last observation values showed an average error

rate of 3.39%; running average of the last 10 invocations 2.55%; and low

pass filter 2.43%.

Appendix B

156

Appendix B
Self-Healing Features

The use of self-healing capabilities has been considered as part of this work,

with the aim of preventing composite services from stopping their executions

in situations where a component service is unavailable or a service failure

occurs.

• Unavailable service. The service is down or has no network

connection.

• Service failure. The service does not finish its execution or sends an

error message.

In order to provide the features that enable such capabilities, a secondary

adaptive mechanism was designed and developed within the composition

frameworks. The heuristic behind this mechanism is presented in Figure

B.1. The notation used is shown as follows. Let,

• � = %�
, �", … , �	' be the set of � tasks in process �.
• (be the task number, where �)∈ �.

• .) = %�
, �", … , �/' be the set of � services that can be used to

implement �).

• 0 be the service number, where ��∈ ..

• !���, !���, !��>, !��] be estimated QoS values corresponding to

response time, cost, energy consumption and availability for a

service.

• !�!?., �J�� be the values corresponding to the execution status and

monitored execution time for a service.

• ��� be the default value set as the maximum execution time for a

service.

• ��8 be a response message obtained after executing ��.
• �
, �", �A, �s be weights used to obtain the score of a service (see

Eq. 5.5).

Appendix B

157

EvaluateService (de, 45)
1 let � be a service
2 if �� . !�!?. = finish
3 if �� . ��8 = error
4 � = GetService(�� , �))
5 else if �J�� > ���
6 � = GetService(�� , �))
7 return �

GetService (de, 45)
1 .) = RetrieveServices(�))
2 remove �� from .)
3 �
 = 0.85
4 �" = �A = �s =0.05

//score computation and service ranking phase
5 for 0 = 0 to v .). 3!�8�ℎ − 1w
6 .)[0]. = �
 .)[0]. !��� + �" .)[0]. !��� +

�A.)[0]. !��> + �s.)[0]. !��]
7 sort .) by descendent
8 return .) [0]

Figure B.1. Self-healing evaluation heuristic.

When a component service has been invoked, its response message

and execution time are monitored by the system. If the execution of the ��
has finished (step 2), the value of its ��8 is evaluated (step 3). If it contains

an error message, an new service is retrieved from the list of equivalent

services (step 4). If the service is still running and �J�� is longer than ���

(step 5), it is considered as a failure and a new service is selected from the

service list (step 6). Finally, the heuristic returns the service replacement

(step 7).

The replacement is obtained from .), after removing the faulty service

��. Scores of the elements within .) are computed giving priority to response

time, since a new execution will increment the response time of � (see

GetService function).

Appendix C

158

Appendix C
Fuzzy Rules

The following table contains the set of rules used to evaluate the benefit of

adaptation when using four QoS parameters as input (response time, cost,

energy consumption and availability).

Table C.1. Benefit of adaptation fuzzy rules - extended.

1

IF (respTime IS high AND cost IS low AND energy IS low AND availability
IS high)
OR (respTime IS low AND cost IS high AND energy IS low AND
availability IS high)
OR (respTime IS low AND cost IS low AND energy IS high AND
availability IS high)
OR (respTime IS low AND cost IS low AND energy IS low AND availability
IS low)
THEN BoA IS veryhigh

2

IF (respTime IS high AND cost IS high AND energy IS low AND
availability IS high)
OR (respTime IS high AND cost IS medium AND energy IS low AND
availability IS high)
OR (respTime IS high AND cost IS low AND energy IS high AND
availability IS high)
OR (respTime IS high AND cost IS low AND energy IS medium AND
availability IS high)
OR (respTime IS high AND cost IS low AND energy IS low AND
availability IS medium)
OR (respTime IS high AND cost IS low AND energy IS low AND
availability IS low)
OR (respTime IS medium AND cost IS high AND energy IS low AND
availability IS high)
OR (respTime IS medium AND cost IS low AND energy IS high AND
availability IS high)
OR (respTime IS medium AND cost IS low AND energy IS low AND
availability IS low)
OR (respTime IS low AND cost IS high AND energy IS high AND
availability IS high)
OR (respTime IS low AND cost IS high AND energy IS medium AND
availability IS high)
OR (respTime IS low AND cost IS high AND energy IS low AND
availability IS medium)
OR (respTime IS low AND cost IS high AND energy IS low AND
availability IS low)
OR (respTime IS low AND cost IS medium AND energy IS high AND
availability IS high)
OR (respTime IS low AND cost IS medium AND energy IS low AND

Appendix C

159

availability IS low)
OR (respTime IS low AND cost IS low AND energy IS high AND
availability IS medium)
OR (respTime IS low AND cost IS low AND energy IS high AND
availability IS low)
OR (respTime IS low AND cost IS low AND energy IS medium AND
availability IS low)
THEN BoA IS high

3

IF (respTime IS high AND cost IS high AND energy IS medium AND
availability IS high)
OR (respTime IS high AND cost IS high AND energy IS low AND
availability IS medium)
OR (respTime IS high AND cost IS medium AND energy IS high AND
availability IS high)
OR (respTime IS high AND cost IS medium AND energy IS medium AND
availability IS high)
OR (respTime IS high AND cost IS medium AND energy IS low AND
availability IS medium)
OR (respTime IS high AND cost IS medium AND energy IS low AND
availability IS low)
OR (respTime IS high AND cost IS low AND energy IS high AND
availability IS medium)
OR (respTime IS high AND cost IS low AND energy IS medium AND
availability IS medium)
OR (respTime IS high AND cost IS low AND energy IS medium AND
availability IS low)
OR (respTime IS medium AND cost IS high AND energy IS high AND
availability IS high)
OR (respTime IS medium AND cost IS high AND energy IS medium AND
availability IS high)
OR (respTime IS medium AND cost IS high AND energy IS low AND
availability IS medium)
OR (respTime IS medium AND cost IS high AND energy IS low AND
availability IS low)
OR (respTime IS medium AND cost IS medium AND energy IS high AND
availability IS high)
OR (respTime IS medium AND cost IS medium AND energy IS low AND
availability IS high)
OR (respTime IS medium AND cost IS medium AND energy IS low AND
availability IS low)
OR (respTime IS medium AND cost IS low AND energy IS high AND
availability IS medium)
OR (respTime IS medium AND cost IS low AND energy IS high AND
availability IS low)
OR (respTime IS medium AND cost IS low AND energy IS medium AND
availability IS high)
OR (respTime IS medium AND cost IS low AND energy IS medium AND
availability IS low)
OR (respTime IS medium AND cost IS low AND energy IS low AND
availability IS medium)
OR (respTime IS low AND cost IS high AND energy IS high AND

Appendix C

160

availability IS medium)
OR (respTime IS low AND cost IS high AND energy IS medium AND
availability IS medium)
OR (respTime IS low AND cost IS high AND energy IS medium AND
availability IS low)
OR (respTime IS low AND cost IS medium AND energy IS high AND
availability IS medium)
OR (respTime IS low AND cost IS medium AND energy IS high AND
availability IS low)
OR (respTime IS low AND cost IS medium AND energy IS medium AND
availability IS high)
OR (respTime IS low AND cost IS medium AND energy IS medium AND
availability IS low)
OR (respTime IS low AND cost IS medium AND energy IS low AND
availability IS medium)
OR (respTime IS low AND cost IS low AND energy IS medium AND
availability IS medium)
THEN BoA IS medium

4

IF (respTime IS high AND cost IS high AND energy IS high AND
availability IS high)
OR (respTime IS high AND cost IS high AND energy IS high AND
availability IS medium)
OR (respTime IS high AND cost IS high AND energy IS high AND
availability IS low)
OR (respTime IS high AND cost IS high AND energy IS medium AND
availability IS medium)
OR (respTime IS high AND cost IS high AND energy IS medium AND
availability IS low)
OR (respTime IS high AND cost IS high AND energy IS low AND
availability IS low)
OR (respTime IS high AND cost IS medium AND energy IS high AND
availability IS medium)
OR (respTime IS high AND cost IS medium AND energy IS high AND
availability IS low)
OR (respTime IS high AND cost IS medium AND energy IS medium AND
availability IS medium)
OR (respTime IS high AND cost IS medium AND energy IS medium AND
availability IS low)
OR (respTime IS high AND cost IS low AND energy IS high AND
availability IS low)
OR (respTime IS medium AND cost IS high AND energy IS high AND
availability IS medium)
OR (respTime IS medium AND cost IS high AND energy IS high AND
availability IS low)
OR (respTime IS medium AND cost IS high AND energy IS medium AND
availability IS medium)
OR (respTime IS medium AND cost IS high AND energy IS medium AND
availability IS low)
OR (respTime IS medium AND cost IS medium AND energy IS high AND
availability IS medium)
OR (respTime IS medium AND cost IS medium AND energy IS high AND

Appendix C

161

availability IS low)
OR (respTime IS medium AND cost IS medium AND energy IS medium
AND availability IS high)
OR (respTime IS medium AND cost IS medium AND energy IS medium
AND availability IS medium)
OR (respTime IS medium AND cost IS medium AND energy IS medium
AND availability IS low)
OR (respTime IS medium AND cost IS medium AND energy IS low AND
availability IS medium)
OR (respTime IS medium AND cost IS low AND energy IS medium AND
availability IS medium)
OR (respTime IS medium AND cost IS low AND energy IS low AND
availability IS high)
OR (respTime IS low AND cost IS high AND energy IS high AND
availability IS low)
OR (respTime IS low AND cost IS medium AND energy IS medium AND
availability IS medium)
OR (respTime IS low AND cost IS medium AND energy IS low AND
availability IS high)
OR (respTime IS low AND cost IS low AND energy IS medium AND
availability IS high)
OR (respTime IS low AND cost IS low AND energy IS low AND availability
IS high)
OR (respTime IS low AND cost IS low AND energy IS low AND availability
IS medium)
THEN BoA IS low

References

162

References
[1] W3C Working Group. (2004, Dec. 2013). Web Services Architecture.

Available: http://www.w3.org/TR/ws-arch/
[2] S. Dustdar and W. Schreiner, "A Survey on Web Services Composition,"

International Journal on Web and Grid Services, vol. 1, pp. 1–30, Aug. 2005.
[3] D. Ardagna and R. Mirandola, "Per-Flow Optimal Service Selection for Web

Services Based Processes," Journal of Systems and Software, vol. 83, pp.
1512-1523, Aug. 2010.

[4] W3C Working Group. (2003, Dec. 2013). QoS for Web Services:
Requirements and Possible Approaches. Available: http://www.w3c.or.kr/kr-
office/TR/2003/ws-qos/

[5] B. Cheng, et al., "Software Engineering for Self-Adaptive Systems: A
Research Roadmap," Software Engineering for Self-Adaptive Systems, vol.
5525, pp. 1-26 2009.

[6] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design:
Prentice Hall, 2006.

[7] M. Mansukhani, "Service Oriented Architecture White Paper," Hewlett-
Packard Development Company, June 2005.

[8] R. Welke, et al., "Service-Oriented Architecture Maturity," IEEE Computer,
vol. 44, pp. 61-67, Feb. 2011.

[9] M. P. Papazoglou and J.-j. Dubray, "A Survey of Web Service
Technologies," University of Trento, Trento, Italy, Technical Report DIT-04-
058, 2004.

[10] S. Tyagi. (2006, Dec. 2013). RESTful Web Services. Available:
http://www.oracle.com/technetwork/articles/javase/index-137171.html

[11] B. Sotomayor. (2005, Aug. 2013). The Globus Toolkit 4 Programmer's
Tutorial. Available: http://gdp.globus.org/gt4-tutorial/multiplehtml/index.html

[12] A. Alamri, et al., "Classification of the State-of-the-Art Dynamic Web
Services Composition Techniques," International Journal of Web and Grid
Services, vol. 2, pp. 148–166, Sept. 2006.

[13] R. Vaculin and K. Sycara, "Semantic Web Services Monitoring: An OWL-S
based Approach," presented at the Hawaii International Conference on
System Sciences (HICSS'08), Hawaii, USA, 2008.

[14] F. Mustafa and T. L. McCluskey, "Dynamic Web Services Composition,"
presented at the International Conference on Computer Engineering and
Technology (ICCET'09), Singapore, 2009.

[15] OASIS. (2013, Dec. 2013). Advancing Open Standards for the Information
Society. Available: https://www.oasis-open.org/

[16] W3C. (2013, Dec. 2013). World Wide Web Consortium. Available:
http://www.w3.org/

[17] WS-I. (2009, Dec. 2013). Web Services Interoperability Organization.
Available: http://www.ws-i.org/

[18] Internet Society. (n.d., Dec. 2013). The Internet Engineering Task Force.
Available: http://www.ietf.org/

[19] W3C. (2008, Dec. 2013). Extensible Markup Language (XML) 1.0 (Fifth
Edition). Available: http://www.w3.org/TR/2008/REC-xml-20081126/

[20] W3C. (2001, Dec. 2013). Web Services Description Language (WSDL) 1.1.
Available: http://www.w3.org/TR/wsdl

[21] A. Tsalgatidou and T. Pilioura, "An Overview of Standards and Related
Technology in Web Services," Journal of Distributed and Parallel
Databases, vol. 12, pp. 135-162, Sept./Nov. 2002.

References

163

[22] W3C. (2007, Dec. 2013). SOAP Version 1.2 Part 0: Primer (Second
Edition). Available: http://www.w3.org/TR/2007/REC-soap12-part0-
20070427/

[23] OASIS. (2004, Dec. 2013). UDDI Version 3.0.2. Available:
http://www.uddi.org/pubs/uddi_v3.htm#_Toc85907967

[24] innoQ. (1999-2008, Aug. 2013). Web Services Standards Overview.
Available: http://www.innoq.com/resources/ws-standards-poster/

[25] C. Pautasso, et al., "RESTful Web Services vs. “Big” Web Services: Making
the Right Architectural Decision," in Proceedings of the 17th International
World Wide Web Conference (WWW'08), Beijing, China, 2008, pp. 805-814.

[26] S. Zhaohao, et al., "A Demand Driven Web Service Lifecycle," in
Proceedings of the International Conference on New Trends in Information
and Service Science (NISS '09), Beijing, China, 2009, pp. 8-14.

[27] L.-J. Zhang and M. Jeckle, "The Next Big Thing: Web Services
Collaboration," in Proceedings of the International Conference on Web
Services - Europe (ICWS'03), Erfurt, Germany, 2003, pp. 1-10.

[28] W. Ren and Z. Xu, "A New Web Service Discovery Method Based on
Semantic," presented at the Workshop on Power Electronics and Intelligent
Transportation System (PEITS'08), Guangzhou, China, 2008.

[29] G. Ye, et al., "A QoS-Aware Model for Web Services Discovery," in
Proceedings of the First International Workshop on Education Technology
and Computer Science (ETCS'09), Wuhan, China, 2009, pp. 740-744.

[30] A. Erradi, et al., "WS-Policy Based Monitoring of Composite Web Services,"
in Proceedings of the 5th European Conference on Web Services (ECOWS
'07), Halle, Germany, 2007, pp. 99-108.

[31] Microsoft. (2013, Dec. 2013). Web Service Benefits. Available:
http://msdn.microsoft.com/en-us/library/cc508708.aspx

[32] M. Eid, et al., "A Reference Model for Dynamic Web Service Composition
Systems," International Journal of Web and Grid Services, vol. 4, pp. 149–
168, Jun. 2008.

[33] C. Peltz, "Web Services Orchestration and Choreography," IEEE Computer,
vol. 36, pp. 46-52, Oct. 2003.

[34] Q. Yu, et al., "Deploying and Managing Web Services: Issues, Solutions,
and Directions," International Journal on Very Large Data Bases, vol. 17, pp.
537-572, May 2008.

[35] myGrid. (2009, Dec. 2013). Taverna Workflow Management System.
Available: http://www.taverna.org.uk/

[36] Kepler. (n.d., Dec. 2013). The Kepler Project. Available: https://kepler-
project.org/

[37] Active Endpoints Inc. (2004–2006, July 2010). ActiveBPEL Designer and
Eclipse Web Tools Project. Available:
http://www.activebpel.org/samples/samples-
3/eclipseWTP_and_BPEL/doc/index.html

[38] Oracle Corporation. (2010, Dec. 2013). Oracle JDeveloper. Available:
http://www.oracle.com/technology/products/jdev/index.html

[39] IBM. (n.d., Dec. 2013). IBM Software - WebSphere. Available: http://www-
01.ibm.com/software/websphere/

[40] Geeknet Inc. (2010, Dec. 2013). Pi Calculus for SOA. Available:
http://sourceforge.net/projects/pi4soa/

[41] B. Orriëns, et al., "Model Driven Service Composition," in Proceedings of the
First International Conference on Service Oriented Computing (ICSOC'03),
Trento, Italy, 2003, pp. 75-90.

[42] B. Benatallah, et al., "Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services," in Proceedings of 18th International
Conference on Data Engineering, San Jose, USA, 2002, pp. 297-308.

References

164

[43] D. VanderMeer, et al., "FUSION: a System Allowing Dynamic Web Service
Composition and Automatic Execution," in Proceedings of the IEEE
International Conference on E-Commerce (CEC'03), Newport Beach, USA,
2003, pp. 399-404.

[44] J. L. Ambite, et al., "Argos: Dynamic Composition of Web Services for
Goods Movement Analysis and Planning," in Proceedings of the 2006
International Conference on Digital Government Research, San Diego,
USA, 2006, pp. 319-320

[45] F. Casati, et al., "Adaptive and Dynamic Service Composition in eFlow," in
Proceedings of the 12th International Conference on Advanced Information
Systems Engineering (CAiSE'00), Stockholm, Sweden, 2000, pp. 13-31.

[46] K. Fujii and T. Suda, "Dynamic Service Composition Using Semantic
Information," in Proceedings of the 2nd International Conference on Service
Oriented Computing (ICSOC'04), New York, USA, 2004, pp. 39-48.

[47] D. Wu, et al., "Automating DAML-S Web Services Composition Using
SHOP2," in Proceedings of the 2nd International Semantic Web
Conference, Lecture Notes in Computer Science, 2003, pp. 195-210.

[48] T. Weise, et al., "Different Approaches to Semantic Web Service
Composition," presented at the Third International Conference on Internet
and Web Applications and Services (ICIW'08), Athens, Greece, 2008.

[49] J. Rao and X. Su, "A Survey of Automated Web Service Composition
Methods," Semantic Web Services and Web Process Composition, Lecture
Notes in Computer Science, vol. 3387, pp. 43-54, 2005.

[50] OASIS. (2007, Dec. 2013). Web Services Business Process Execution
Language Version 2.0. Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[51] W3C. (2004, Dec. 2013). Web Services Choreography Description
Language Version 1.0. Available: http://www.w3.org/TR/2004/WD-ws-cdl-
10-20041217/

[52] W3C. (2002, Dec. 2013). Web Service Choreography Interface (WSCI) 1.0.
Available: http://www.w3.org/TR/wsci/

[53] R. Cover. (2002, Dec. 2013). Cover Pages: Web Services Flow Language
(WSFL). Available: http://xml.coverpages.org/wsfl.html

[54] W3C. (2004, Dec. 2013). OWL-S: Semantic Markup for Web Services.
Available: http://www.w3.org/Submission/OWL-S/

[55] M. P. Papazoglou, et al., "Service-Oriented Computing: A Research
Roadmap," International Journal of Cooperative Information Systems, vol.
17, pp. 223-255, 2008.

[56] N. Kokash and V. D’Andrea, "Evaluating Quality of Web Services: A Risk-
Driven Approach," Business Information Systems, vol. 4439, pp. 180-194,
2007.

[57] T. Hong-Linh, et al., "Towards a Framework for Monitoring and Analyzing
QoS Metrics of Grid Services," in Proceedings of the Second IEEE
International Conference one-Science and Grid Computing (e-Science '06),
Amsterdam, Netherlands, 2006, pp. 65-65.

[58] R. Sumra and A. D. (2003, Dec. 2013). Quality of Service for Web Services
- Demystification, Limitations, and Best Practices. Available:
http://www.developer.com/services/article.php/2027911/Quality-of-Service-
for-Web-ServicesmdashDemystification-Limitations-and-Best-Practices.htm

[59] Y. Dai, et al., "QoS-Driven Self-Healing Web Service Composition Based on
Performance Prediction," Journal of Computer Science and Technology, vol.
24, pp. 250-261, Mar. 2009.

[60] S. Kalepu, et al., "Verity: a QoS Metric for Selecting Web Services and
Providers," in Proceedings of the Fourth International Conference on Web

References

165

Information Systems Engineering Workshops (WISEW'03), 2003, pp. 131-
139.

[61] D. Verma, Supporting Service Level Agreements on IP Networks: Sams,
1999.

[62] L. Zeng, et al., "QoS-Aware Middleware for Web Services Composition,"
IEEE Transactions on Software Engineering, vol. 30, pp. 311-327, 2004.

[63] A. Keller and H. Ludwig, "The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services," Journal of Network and
Systems Management, vol. 11, pp. 57-81, 2003.

[64] Open Grid Forum, "Web Services Agreement Specification (WS-
Agreement)," Open Grid Forum, GFD-R-P.107, 2007.

[65] J. Cardoso, et al., "Quality of Service for Workflows and Web Service
Processes," Journal of Web Semantics, vol. 1, pp. 281-308, 2004.

[66] S.-Y. Hwang, et al., "A Probabilistic Approach to Modeling and Estimating
the QoS of Web-Services-Based Workflows," International Journal of
Information Sciences, vol. 177, pp. 5484-5503, Dec. 2007.

[67] G. Canfora, et al., "QoS-Aware Replanning of Composite Web Services," in
Proceedings of the 2005 IEEE International Conference on Web Services
(ICWS'05), Orlando, USA, 2005, pp. 121-129.

[68] A. Huang, et al., "An Optimal QoS-based Web Service Selection Scheme,"
Information Sciences, vol. 179, pp. 3309-3322, 2009.

[69] F. Casati, et al., "Probabilistic, Context-Sensitive, and Goal-Oriented Service
Selection," in Proceedings of the 2nd International Conference on Service
Oriented Computing (ICSOC'04), New York, USA, 2004, pp. 316-321.

[70] Q. Yu, et al., "A Two-Phase Framework for Quality-Aware Web Service
Selection," Service Oriented Computing and Applications, vol. 4, pp. 63-79,
2010.

[71] W. Dong and L. Jiao, "QoS-Aware Web Service Composition Based on
SLA," in Proceedings of the 2008 Fourth International Conference on
Natural Computation (ICNC'08), Jinan, China, 2008, pp. 247-251.

[72] B. Cavallo, et al., "An Empirical Comparison of Methods to Support QoS-
Aware Service Selection," in Proceedings of the 2nd International Workshop
on Principles of Engineering Service-Oriented Systems (PESOS'10), Cape
Town, South Africa, 2010, pp. 64-70.

[73] A. D'Ambrogio and P. Bocciarelli, "A Model-Driven Approach to Describe
and Predict the Performance of Composite Services," in Proceedings of the
6th International Workshop on Software and Performance (WOSP'07),
Buenos Aires, Argentina, 2007, pp. 78-89.

[74] A. Nasridinov, et al., "A QoS-Aware Performance Prediction for Self-Healing
Web Service Composition," in Proceedings of the Second International
Conference on Cloud and Green Computing (CGC'12), Xiangtan, China,
2012, pp. 799-803.

[75] A. Goldman and Y. Ngoko, "On Graph Reduction for QoS Prediction of Very
Large Web Service Compositions," in Proceedings of the Ninth International
Conference on Services Computing, Honolulu, USA, 2012, pp. 258-265.

[76] L. Jing, et al., "Towards Adaptive Web Services QoS Prediction," in
Proceedings of the IEEE International Conference on Service-Oriented
Computing and Applications (SOCA'10), Perth, Australia, 2010, pp. 1-8.

[77] R. Vilalta, et al., "Predictive Algorithms in the Management of Computer
Systems," IBM Systems Journal, vol. 41, pp. 461-474, Jul. 2002.

[78] N. Dushay, et al., "Predicting Indexer Performance in a Distributed Digital
Library," in Proceedings of the Third European Conference on Research
and Advanced Technology for Digital Libraries, 1999, pp. 142-166.

[79] G. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control.
San Francisco, USA, 1970.

References

166

[80] S. Makridakis, et al., Forecasting: Methods and Applications: John Wiley &
Sons, 1998.

[81] F. Zulkernine, et al., "An Autonomic Web Services Environment using a
Reflective and Database-Oriented Approach," Ubiquitous Computing and
Communication Journal: Special Issue on Autonomic Computing Systems
and Applications, pp. 33-44, 2008.

[82] M. Salehie and L. Tahvildari, "Self-adaptive Software: Landscape and
Research Challenges," ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, pp. 1-42, 2009.

[83] IBM, "An Architectural Blueprint for Autonomic Computing," White Paper.
June, 2005.

[84] S. S. Laster and A. O. Olatunji, "Autonomic Computing: Towards a Self-
Healing System," in Proceedings of the Spring 2007 American Society for
Engineering Education Conference, Illinois, USA, 2007.

[85] J. O. Kephart and D. M. Chess, "The Vision of Autonomic Computing," IEEE
Computer, vol. 36, pp. 41-50, Jan. 2003.

[86] V. Cardellini, et al., "MOSES: A Framework for QoS Driven Runtime
Adaptation of Service-Oriented Systems," IEEE Transactions on Software
Engineering, vol. 38, pp. 1138-1159, Sept./Oct. 2012.

[87] R. Calinescu, et al., "Dynamic QoS Management and Optimization in
Service-Based Systems," IEEE Transactions on Software Engineering, vol.
37, pp. 387-409, May/Jun. 2011.

[88] L. Baresi, et al., "Towards Self-healing Composition," Studies in
Computational Intelligence, vol. 42, pp. 27-46, 2007.

[89] G. Huipeng, et al., "ANGEL: Optimal Configuration for High Available
Service Composition," in Proceedings of the International Conference on
Web Services (ICWS'07), Salt Lake City, USA, 2007, pp. 280-287.

[90] L. Wenjuan, et al., "A Framework to Improve Adaptability in Web Service
Composition," in Proceedings of the 2nd International Conference on
Computer Engineering and Technology (ICCET'10), Chengdu, China, 2010,
pp. V1-616 - V1-621.

[91] A. Erradi, et al., "Policy-Driven Middleware for Self-Adaptation of Web
Services Compositions," in Proceedings of the ACM/IFIP/USENIX 2006
International Conference on Middleware (Middleware'06), Melbourne,
Australia, 2006, pp. 62-80.

[92] D. Bianculli, et al., "Automated Dynamic Maintenance of Composite
Services Based on Service Reputation," in Proceedings of the 5th
International Conference on Service-Oriented Computing (ICSOC'07),
Vienna, Austria, 2007, pp. 449-455.

[93] S. Dustdar, et al., "A Roadmap Towards Sustainable Self-Aware Service
Systems," in Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS'10), Cape
Town, South Africa, 2010, pp. 10-19.

[94] WS-Diamond Team, "WS-DIAMOND: Web Services- DiAgnosability,
MONitoring and Diagnosis," MIT press, pp. 213-239, 2009.

[95] D. Ardagna, et al., "PAWS: A Framework for Executing Adaptive Web-
Service Processes," IEEE Software, vol. 24, pp. 39-46, Nov./Dec. 2007.

[96] A. C. Huang and P. Steenkiste, "Building Self-Configuring Services Using
Service-Specific Knowledge," in Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing (HPDC'04),
Honolulu, USA, 2004, pp. 45-54.

[97] S. Kounev, et al., "Self-Aware QoS Management in Virtualized
Infrastructures," in Proceedings of the 8th ACM International Conference on
Autonomic Computing (ICAC'11), Karlsruhe, Germany, 2011, pp. 175-176.

References

167

[98] J. Hielscher, et al., "A Framework for Proactive Self-adaptation of Service-
Based Applications Based on Online Testing," in Proceedings of the 1st
European Conference Service Wave, Madrid, Spain, 2008, pp. 122-133.

[99] R. Aschoff and A. Zisman, "Proactive Adaptation of Service Composition," in
Proceedings of the ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS'12), Zürich, Switzerland, 2012, pp. 1-
10.

[100] A. Metzger, "Towards Accurate Failure Prediction for the Proactive
Adaptation of Service-Oriented Systems," in Proceedings of the 8th
Workshop on Assurances for Self-adaptive Systems (ASAS'11), Szeged,
Hungary, 2011, pp. 18-23.

[101] P. Châtel, et al., "QoS-based Late-Binding of Service Invocations in
Adaptive Business Processes," in Proceedings of the International
Conference on Web Services (ICWS'10), Miami, USA, 2010, pp. 227-234.

[102] Q. Mahmoud. (2004, Dec. 2013). Developing Web Services with Java 2
Platform, Enterprise Edition (J2EE) 1.4 Platform. Available:
http://www.oracle.com/technetwork/articles/javaee/j2ee-ws-140408.html

[103] A. Sargeant, et al., "Testing the Effectiveness of Dynamic Binding in Web
Services," in Proceedings of the10th International Conference on Computer
and Information Technology (CIT'10), Bradford, UK, 2010, pp. 1263-1268.

[104] C. Pautasso and G. Alonso, "Flexible Binding for Reusable Composition of
Web Services," in Proceedings of the 4th International Conference on
Software Composition (SC'05), Edinburgh, UK, 2005, pp. 151-166.

[105] M. D. Penta, et al., "WS Binder: a Framework to Enable Dynamic Binding of
Composite Web Services," in Proceedings of the 2006 International
Workshop on Service-Oriented Software Engineering (SOSE'06), Shanghai,
China, 2006, pp. 74-80.

[106] U. Küster and B. König-Ries, "Dynamic Binding for BPEL Processes - A
Lightweight Approach to Integrate Semantics into Web Services," in
Proceedings of the 4th International Conference on Service Oriented
Computing (ICSOC'06), Chicago, USA, 2006, pp. 116-127.

[107] G. Canfora, et al., "A Framework for QoS-Aware Binding and Re-Binding of
Composite Web Services," Journal of Systems and Software, vol. 81, pp.
1754-1769, Oct. 2008.

[108] A. Erradi and P. Maheshwari, "Dynamic Binding Framework for Adaptive
Web Services," in Proceedings of the 2008 Third International Conference
on Internet and Web Applications and Services (ICIW'08), Athens, Greece,
2008, pp. 162-167.

[109] N. Looker, et al., "Determining the Dependability of Service-Oriented
Architectures," International Journal of Simulation and Process Modelling,
vol. 3, pp. 88-97 2007.

[110] S. Bruning, et al., "A Fault Taxonomy for Service-Oriented Architecture," in
Proceedings of the 10th High Assurance Systems Engineering Symposium
(HASE'07), Plano, TX, USA, 2007, pp. 367-368.

[111] K. S. Chan, et al., "A Fault Taxonomy for Web Service Composition," in
Proceedings of the 5th International Conference on Service Oriented
Computing - Workshops (ICSOC'07), Vienna, Austria, 2009, pp. 363-375.

[112] S. S. Sathya and K. S. Babu, "Survey of Fault Tolerant Techniques for
Grid," Computer Science Review, vol. 4, pp. 101-120, May 2010.

[113] J. Yu and R. Buyya, "A Taxonomy of Scientific Workflow Systems for Grid
Computing," Special Interest Group on Management of Data, vol. 34, pp.
44-49, Sept. 2005.

[114] L. Liu, et al., "A Fault-Tolerant Framework for Web Services," in
Proceedings of the WRI World Congress on Software Engineering
(WCSE'09), Xiamen, China, 2009, pp. 138-142.

References

168

[115] C.-L. Fang, et al., "Fault Tolerant Web Services," Journal of Systems
Architecture, vol. 53, pp. 21-38, Jan. 2007.

[116] J. Lau, et al., "Designing Fault Tolerant Web Services Using BPEL," in
Proceedings of the 7th International Conference on Computer and
Information Science (ICIS'08), Portland, USA, 2008, pp. 618-623.

[117] N. Laranjeiro and M. Vieira, "Towards Fault Tolerance in Web Services
Compositions," in Proceedings of the 2007 Workshop on Engineering Fault
Tolerant Systems (EFTS'07), Dubrovnik, Croatia, 2007.

[118] M. J. Druzdzel and R. R. Flynn, "Decision Support Systems," in
Encyclopedia of Library and Information Science, Second Edition ed, 2002.

[119] I. Ben-Gal, "Bayesian Networks," in Encyclopedia of Statistics in Quality and
Reliability, ed: John Wiley & Sons, Ltd, 2008.

[120] T. M. Mitchell, Machine Learning: McGraw-Hill, 1997.
[121] P. Geurts, et al., "A Machine Learning Approach to Improve Congestion

Control Over Wireless Computer Networks," in Proceedings of the 4th
International Conference on Data Mining (ICDM'04), Brighton, UK, 2004, pp.
383-386.

[122] M. Maggio, et al., "Decision Making in Autonomic Computing Systems:
Comparison of Approaches and Techniques," in Proceedings of the 8th
ACM International Conference on Autonomic Computing (ICAC'11),
Karlsruhe, Germany, 2011, pp. 201-204.

[123] A. J. Ramirez, et al., "Applying Genetic Algorithms to Decision Making in
Autonomic Computing Systems," in Proceedings of the 6th International
Conference on Autonomic Computing (ICAC'09), Barcelona, Spain, 2009,
pp. 97-106.

[124] C. Szepesvári, Algorithms for Reinforcement Learning: Morgan & Claypool
Publishers, 2010.

[125] L. A. Zadeh, "The Role of Fuzzy Logic in Modeling, Identification and
Control," Modeling, Identification and Control, vol. 15, pp. 191-203, 1994.

[126] A. Aamodt and E. Plaza, "Case Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches," Journal of AI
Communications, vol. 7, pp. 39-59, 1994.

[127] W3C Working Group. (2004, Dec. 2013). Web Services Architecture Usage
Scenarios. Available: http://www.w3.org/TR/ws-arch-scenarios/

[128] G. Wu, et al., "Towards Self-Healing Web Services Composition," in
Proceedings of the First Asia-Pacific Symposium on Internetware
(Internetware'09), Beijing, China, 2009.

[129] D. Ardagna, et al., "A Service-Based Framework for Flexible Business
Processes," IEEE Software, vol. 28, pp. 61-67, Mar./Apr. 2011.

[130] C. Liu and D. Liu, "QoS-Oriented Web Service Framework by Mixed
Programming Techniques," Journal of Computers, vol. 8, pp. 1763-1770,
July 2013.

[131] M. Sedaghat, et al., "Unifying Cloud Management: Towards Overall
Governance of Business Level Objectives," in Proceedings of the 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid'11), Newport Beach, USA, 2011, pp. 591-597.

[132] Y. Ying, et al., "A Self-Healing Composite Web Service Model," in
Proceedings of the IEEE Asia-Pacific Services Computing Conference
(APSCC'09), Biopolis, Singapore, 2009, pp. 307-312.

[133] The Apache Software Foundation. (n.d., Dec. 2013). Apache ODE.
Available: http://ode.apache.org/

[134] The Eclipse Foundation. (2013, Dec. 2013). BPEL Designer Project.
Available: http://www.eclipse.org/bpel/

References

169

[135] Active Endpoints Inc. (2010, May 2013). BPEL Open Source Engine - The
ActiveBPEL Engine. Available: http://www.activevos.com/community-open-
source.php

[136] JBoss Community. (n.d., Dec. 2013). JBoss Application Server. Available:
http://jboss.org/jbossas

[137] JOpera.org. (2011, Dec. 2013). JOpera for Eclipse. Available:
http://www.jopera.org/

[138] The Apache Software Foundation. (2004-2013, Dec. 2013). jUDDI.
Available: http://juddi.apache.org/

[139] G. Jung, et al., "A Cost-Sensitive Adaptation Engine for Server
Consolidation of Multitier Applications," in Proceedings of the 10th
ACM/IFIP/USENIX International Conference on Middleware
(Middleware'09), Urbana Champaign, USA, 2009, pp. 163-183.

[140] M. Salehie, et al., "Change Support in Adaptive Software: A Case Study for
Fine-Grained Adaptation," in Proceedings of the 6th IEEE Conference and
Workshops on Engineering of Autonomic and Autonomous Systems
(EASe'09), San Francisco, USA, 2009, pp. 35-44.

[141] L. Ai, "QoS-Aware Web Service Composition Using Genetic Algorithms,"
PhD thesis, Faculty of Science and Technology, Queensland University of
Technology, Brisbane, Australia, 2011.

[142] Y. Vanrompay, et al., "Genetic Algorithm-Based Optimization of Service
Composition and Deployment," in Proceedings of the 3rd International
Workshop on Services Integration in Pervasive Environments (SIPE'08),
Sorrento, Italy, 2008, pp. 13-18.

[143] L. Cao, et al., "Genetic Algorithm Utilized in Cost-Reduction Driven Web
Service Selection," in Proceedings of the International Conference on
Computational Intelligence and Security (CIS'05), Xi’an, China, 2005, pp.
679-686.

[144] T. Senivongse and N. Wongsawangpanich, "Composing Services of
Different Granularity and Varying QoS Using Genetic Algorithm," in
Proceedings of the World Congress on Engineering and Computer Science
(WCECS'11), San Francisco, USA, 2011, pp. 388-393.

[145] H. Wang, et al., "Adaptive Service Composition Based on Reinforcement
Learning," in Proceedings of the International Conference on Service-
Oriented Computing (ICSOC'10), San Francisco, USA, 2010, pp. 92-107.

[146] J. Zhou and S. Chen, "Reinforcement Learning Based Web Service
Compositions for Mobile Business," in Proceedings of the International
Conference on Web Information Systems and Mining (WISM'09), Shanghai,
China, 2009, pp. 527-534.

[147] W. Hongbing, et al., "RLPLA: A Reinforcement Learning Algorithm of Web
Service Composition with Preference Consideration," in Proceedings of the
IEEE Congress on Services Part II (SERVICES-2), Beijing, China, 2008, pp.
163-170.

[148] B. Wetzstein, et al., "Preventing KPI Violations in Business Processes
based on Decision Tree Learning and Proactive Runtime Adaptation,"
Journal of Systems Integration, vol. 3, pp. 3-18, 2012.

[149] B. Pernici and S. H. Siadat, "Selection of Service Adaptation Strategies
Based on Fuzzy Logic," in Proceedings of the IEEE World Congress on
Services (SERVICES'11), Washington DC, USA, 2011, pp. 99-106.

[150] P. Wang, et al., "A Fuzzy Model for Selection of QoS-Aware Web Services,"
in Proceedings of the IEEE International Conference on e-Business
Engineering (ICEBE'06), Shanghai, China, 2006, pp. 585-593.

[151] H. Pfeffer, et al., "A Fuzzy Logic Based Model for Representing and
Evaluating Service Composition Properties," in Proceedings of the 3rd

References

170

International Conference on Systems and Networks Communications
(ICSNC'08), Sliema, Malta, 2008, pp. 335-342.

[152] R. Torres, et al., "Self-Adaptive Fuzzy QoS-Driven Web Service Discovery,"
in Proceedings of the IEEE International Conference on Services Computing
(SCC'11), Washington DC, USA, 2011, pp. 64-71.

[153] R. Buyya, et al., "Energy-Efficient Management of Data Center Resources
for Cloud Computing: A Vision, Architectural Elements, and Open
Challenges," in Proceedings of the 2010 International Conference on
Parallel and Distributed Processing Techniques and Applications
(PDPTA'10), las Vegas, USA, 2010.

[154] J. Kaplan, et al., "Revolutionizing Data Center Energy Efficiency,"
McKinsey,July 2009.

[155] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353,
1965.

[156] Li-Xin Wang, A Course in Fuzzy Systems and Control: Prentice Hall, 1997.
[157] P. Cingolani. (n.d., Dec. 2013). jFuzzyLogic. Available:

http://jfuzzylogic.sourceforge.net/html/index.html
[158] Energy Star, "Computer Servers Product List - Families," August, 2012.
[159] T. Baker, et al., "Towards Autonomic Cloud Services Engineering via

Intention Workflow Model," in Proceedings of the 10th International
Conference on Economics of Grids, Clouds, Systems, and Services
(GECON'13), Zaragoza, Spain, 2013, pp. 212-227.

[160] D. Tosi, et al., "Towards Autonomic Service-Oriented Applications,"
International Journal of Autonomic Computing, vol. 1, pp. 58-80, 2009.

[161] P. Leitner, et al., "Monitoring, Prediction and Prevention of SLA Violations in
Composite Services," in Proceedings of the IEEE International Conference
on Web Services (ICWS'10), Miami, USA, 2010, pp. 369-376.

[162] Z. Yuelong, et al., "Predicting Failures in Dynamic Composite Services with
Proactive Monitoring Technique," in Proceedings of the IEEE Eighth World
Congress on Services (SERVICES'12), Honolulu, USA, 2012, pp. 92-99.

[163] O. Sammodi, et al., "Usage-Based Online Testing for Proactive Adaptation
of Service-Based Applications," in Proceedings of the IEEE 35th Annual
Computer Software and Applications Conference (COMPSAC'11), Munich,
Germany, 2011, pp. 582-587.

[164] R. Aschoff and A. Zisman, "QoS-Driven Proactive Adaptation of Service
Composition," in Proceedings of the 9th International Conference on
Service-Oriented Computing (ICSOC'11), Paphos, Cyprus, 2011, pp. 421-
435.

[165] S. Sharaf and K. Djemame, "Enabling Service Level Agreement
Renegotiation Through Extending WS-Agreement Specification," Journal on
Service-Oriented Computing and Applications (to appear), 2014.

