
 

 

 

 

 

 

 

Complete mitochondrial DNA genome variation in 

Peninsular Malaysia 

 

 

 

 

 

 

Ken Khong Eng 

 

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy 

 

 

School of Biology 

Faculty of Biological Sciences 

University of Leeds 

 

January 2014 



ii 

 

The candidate confirms that the work submitted is his own and that appropriate credit has 

been given where reference has been made to the work of others. 

 

This copy has been supplied on the understanding that it is copyright material and that no 

quotation from the thesis may be published without proper acknowledgement. 

 

© 2014 The University of Leeds and Ken Khong Eng 

 

The right of Ken Khong Eng to be identified as Author of this work has been asserted by him 

in accordance with the Copyright, Designs and Patents Act 1988. 

  



iii 

 

Acknowledgements 

I would like to thank Martin Richards and Stephen Oppenheimer for the supervision, 

help and guidance they have provided throughout this research. I would like to thank 

Mokhtar Saidin and Stephen Chia for their advice and support, especially for encouraging me 

to apply for the fellowship of Academic Staff Training Scheme, Universiti Sains Malaysia. I 

would like to acknowledge Zafarina Zainuddin for kindly providing the valuable Malay 

samples. 

I am very grateful to the help I received in the lab from Pedro Soares, Maria Pala, 

Martin Carr, Marta Costa, Joana Pereira and Verónica Fernandes; enormous thanks to their 

patience in showing me how to run the phylogenetic software in this study. I also learn a lot 

from our lab meetings, I am definitely going to miss it. 

Last but not least, I would like to thank my family and friends for your endless love, 

understanding and massive support, also for putting up with me during the more stressful 

time! 

Thank you! 

 



iv 

 

Abstract 

The peopling of Southeast Asia has been vigorously debated over the past few decades 

by archaeologists, linguists and anthropologists, as well as evolutionary and population 

geneticists. Several ethnic minorities in the region, the Orang Asli groups (the Semang, Senoi 

and Aboriginal Malays) from Peninsular Malaysia, are widely thought of as “relicts” of 

human diversity in the ancient Sunda continent. However, mitochondrial DNA (mtDNA) 

analysis of these groups has hitherto been restricted to a small number of populations and 

largely based on the mtDNA control region hypervariable segment I (HVS-I), supplemented 

by a very small number of whole-mtDNA genomes. In this study, I have both expanded the 

number of populations examined and analysed 226 lineages at the level of whole-mtDNA 

genomes from both Orang Asli and modern Malay populations, covering most of the extant 

mtDNA diversity in Peninsular Malaysia, in the context of Southeast Asian variation more 

generally, including a total of 2206 complete mtDNA sequences in the phylogeographic 

analysis. This has confirmed that the Orang Asli populations indeed experienced high genetic 

drift, likely due to their extremely small group sizes and population subdivision. All three 

Orang Asli groups have local roots that trace back to ~50 ka, and all have been affected to a 

greater or lesser extent by subsequent migrations to Peninsular Malaysia. The Semang and 

Senoi show much less haplogroup diversity than the Aboriginal Malays, although the latter 

have some indigenous ancestry that is as deep as that of the Semang and Senoi in Peninsular 

Malaysia. However, this drift, and the loss of lineages that it has entailed, is compensated for 

by the retention of many related ancient lineages in the extant modern Malay, who therefore 

provide a more comprehensive view of ancient Malay Peninsula, and more generally ancient 

Sunda, mtDNA diversity. Indeed, contrary to the model that posits a recent ancestry for 

Malay in Island Southeast Asia (ISEA), a majority of their maternal lineages appear to have 

had a local ancestry within Mainland Southeast Asia (MSEA) and the Malay Peninsula. 

Combining the Orang Asli and Malay data indicates a very deep ancestry for multiple 

indigenous maternal lineages that date back locally (or regionally) to the late Pleistocene. 

Many can be traced to the original inhabitants of Southeast Asia, who colonised the Sunda 

region from South Asia ~50–60 ka. It appears that the spread of the so-called “Coastal 

Neolithic” foraging groups (who may have engaged in horticulture, but were largely pre-rice 

agriculture) may have provided the main contribution to the north–south lineage expansions, 
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and the spread of Austro-Asiatic languages to the Orang Asli and to the Nicobars may be 

connected to some of these dispersals. Apart from preserving these ancient lineages, many of 

which have been lost by drift in the relict populations, the modern Malay also preserve 

complex maternal influences from further afield at various times stretching back to the Last 

Glacial Maximum, from ISEA (as far east as the New Guinea region), to a lesser extent from 

East Asia, and to an even lesser extent South Asia. Climatic change and sea-level rises were 

likely the most important driving force behind the demographic history of Southeast Asia, 

mainland as well as insular, as shown by a sharp signal of early Holocene population crash 

and subsequent re-expansion in both the modern Malay and the Orang Asli. Although there is 

substantial lineage sharing between modern Malay and their close Sunda neighbours in 

Sumatra, ISEA lineages amount to little more than a quarter of the maternal variation of 

Malay, and even if there was a major migration to the Peninsula in the Late Holocene, the 

majority of their maternal ancestry seems to lie within the bounds of the Sunda continent.  
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1 Introduction 

 

1.1 Mitochondria 

Mitochondria are one of the cytoplasmic organelles present in eukaryotic organisms. 

Their main function is generating energy in the form of ATP (adenosine triphosphate) 

through the process of oxidative phosphorylation. Other functions include intracellular 

signalling and involvement in apoptosis, intermediate metabolism, antiviral responses and the 

metabolism of amino acids, lipids and nucleotides (Cruz et al., 2005; Chinnery, 2006; 

McBride et al., 2006). Margulis first proposed in the 1960s (see Margulis, 1981), and it is 

now accepted, that mitochondria originated from endosymbiotic bacteria, which were taken 

up into eukaryotic cells about 1.5 billion years ago. 

Mitochondria contribute a non-recombining region of genetic material, a circular 

double-stranded DNA molecule 16,568 base pairs in length in humans (Anderson et al., 

1981; Andrews et al., 1999). The mammalian mtDNA contains 13 protein coding genes of 

the respiratory chain, two ribosomal RNAs (rRNA) and 22 transfer RNA (tRNA) genes 

(Figure 1.1). The two strands of mtDNA are named heavy strand (H) and light strand (L) 

respectively depend on their density in guanine content. There are very few introns between 

the protein-coding genes and the genes occasionally overlap with each other’s. There is a 

small non-coding region of around 1,100 bp called control region or D-loop, which is crucial 

for replication and transcription. The control region consists of three hypervariable segments 

(HVS-I, II and III) (Figure 1.2). 

Each mammalian cell contains mtDNA ranging from 1,000 to 10,000 copies depend on 

the energy requirement. These copies could all be identical copies of mtDNA (homoplasmy) 

or some may have a mutation in them while the rest do not (heteroplasmy). Heteroplasmy 

could present as somatic mutations or be passed on to the offspring if it is in the germline. As 

a haploid genome, mtDNA is maternally inherited as a single molecule unchanged to the next 

generation, unless new mutations occur. It is now commonly accepted that mtDNA does not 

recombine during meiosis. Previously, different reports claimed to have found evidence for 

recombination in mitochondrial DNA. However, they were quickly dismissed for different 
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reasons, such as sequencing error (Hagelberg et al., 1999); error was introduced in the 

transcription of the data and confusion caused by sites scoring (Macaulay et al., 1999b); the 

data used in the linkage disequilibrium study for recombination were erroneous (Kivisild et 

al., 2000); the use of inadequate statistical tools (Awadalla et al., 1999; Herrnstadt et al., 

2002a; 2002b; Ingman et al., 2000) as reported by Piganeau and Eyre-Walker (2004); or 

simply, results obtained by chance (Innan and Nordborg, 2002). 

 

Figure 1.1 Schematic diagram of the human mitochondrial genome. The genome encodes 22 transfer RNAs 

(indicated by single letter abbreviation) between the coding genes, two ribosomal RNAs (12S and 16S), and 13 

essential genes that encode subunits of the oxidative phosphorylation enzyme complexes. The D-loop region includes 
heavy and light-strand promoters (HSP and LSP), and the origin of L-strand replication (OL). 

 

Figure 1.2 Diagram of the mammalian mtDNA control region (Modified from Chinnery, 2006). The control 

region consists of three hypervariable segments (I, II and III) separated by three conserved sequence blocks (CSBs). 
LSP and HSP are the promoters for the L and H- strand respectively. 

Sperm mitochondria sometimes manage to enter the oocyte during fertilization, but they 

are quickly degraded before implantation by ubiquitin-dependent process that eliminates the 

sperm in the oocyte. There is only one case of paternal inheritance of mtDNA reported in a 

patient with a myopathy condition (Schwartz and Vissing, 2002), however it is so rare that it 

can be ignored. 
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Fortunately, a major advantage of using network analysis in phylogenetic study of 

mtDNA is that it is able to highlight potential recombination between lineages in the form of 

reticulations and pinpoint sample mix-up (Bandelt et al., 2004). Bandelt et al. (2001) used 

network analysis to identify possible errors found in phylogenetic analysis and classified 

them into five classes which helped to lower the error rate and obtain more precise results 

(see 2.7.2). When it was seemingly detected, the recombination was most likely due to 

sequencing errors that generated the systematic artefacts of the phantom mutations (Bandelt 

et al., 2002). Furthermore, so far there are no such results reported in the literature of 

complete mitochondrial sequences available online. 

The observation of non-maternal inheritance of mtDNA was reported in the muscle 

tissues of a Danish patient suffering from a mitochondrial myopathy (Schwartz and Vissing, 

2002). However this singular case so far was neither confirmed in another lab nor could be 

found in other cases of sporadic myopathies (Filosto et al., 2003; Taylor et al., 2003; 

Schwartz and Vissing, 2004). Bandelt et al. (2005) re-analysed the data including other cases 

and reported that the phenomenon of mixed or mosaic mtDNA can be concluded as 

contamination and sample mix-up. 

Homoplasmic mtDNA mutations are transmitted to all maternal offspring, but the 

transmission of heteroplasmic mtDNA is more complex. Homoplasmy is when all copies of 

the mitochondrial genome are identical; heteroplasmy is when there is a mixture of two 

or more mitochondrial genotypes (Taylor and Turnbull, 2005). There is a rapid 

intergenerational change in mitochondrial genotypes and levels of heteroplasmy during 

maternal mitochondrial transmission, which appears to be governed by random genetic drift. 

This change, however, does not present in the segregation of mutant mtDNA in both non-

dividing and proliferating tissues. The nature of the genetic drift (a reduction in genetic 

diversity resulting from a population bottleneck) during oogenesis is not completely known, 

and the amount of mutated mtDNA that is transmitted to the offspring is variable (Brown et 

al., 2001; Taylor and Turnbull, 2005). It could be due to a physical reduction in the number 

of mitochondrial genomes within individual cells, a reduction in the effective population size 

due to the compartmentalisation of genomes into homoplasmic segregating units, or the 

preferential amplification of specific genotypes (Chinnery, 2006; Cree et al., 2008; Khrapko, 

2008). 
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1.1.1 Mutation rates 

Early studies of human and other primate DNAs revealed that the base substitution rate 

in mtDNA is about ten times faster than the average rate in the nuclear genome (Brown et al., 

1979). The faster rate could be due to several reasons; firstly, the mtDNA has a less robust 

repair mechanism when mutational events occur and is unable to correct it efficiently. 

Secondly, the mtDNA molecule is less protected by proteins than the nuclear genome, and 

lastly, it is in close contact with reactive oxygen species (ROS) generated during oxidative 

phosphorylation (OXPHOS),  which are the main cause of mutations in mtDNA (Fernandez-

Silva et al., 2003). 

1.1.2 Studies using human mtDNA 

Archaeogenetics is the application of molecular genetics to the study of the human past. 

It is especially concerned with the reconstruction of the dispersal history of humankind. The 

study mostly relies on DNA data from living populations, as well as a substantial contribution 

from ancient DNA studies. Phylogeography is the study of the geographical distribution of 

the lineages in a phylogeny (Avise et al., 1987; Jobling et al., 2003). The underlying principle 

is that every mutation takes place at a particular point in space and time, and each event can 

be in theory reconstructed from the distribution. In other words, phylogenetic analysis is 

applied to geographically labelled samples where it is possible to estimate the number and 

timings of different colonisation events using the geographic origin of the samples and the 

time depth of lineages on the genealogical tree. However, this approach is not always 

straightforward due to the low density of mutations and recombination in autosomes and the 

X chromosome, and high drift in the Y chromosome. Since mutations occur frequently in 

mtDNA, the high density of mutations tracks the distribution of lineages through space and 

over time in higher detail and precision especially when complete mtDNAs are used. By 

comparing the mtDNA lineages from one region to another, it is possible to infer the 

direction and timing of dispersals. 

There are four main components in phylogeographic analysis:-  

1.1.2.1 The gene tree or network 

A gene tree or network represents the hierarchical history between the hypothetical 

basal lineage and its descendants. It is formed by branches and nodes. External (terminal) 

nodes represent the extant taxa, often called operational taxonomic units (OTUs). Internal 
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nodes are called the hypothetical taxonomic units (HTUs) to indicate that they represent the 

ancestral taxa. A group of taxa (Figure 1.3, the taxa A, B, and C) that share the same branch 

with similar set of haplotypes (mutational differences) have a monophyletic origin and is 

called a clade, or haplogroup. C, D and E do not form a clade since a clade includes all 

descendants of a common ancestor (that would therefore include A and B), they are called 

paraphyletic. The branching order of the nodes is called the topology of the tree (Vandamme, 

2009). 

 

Figure 1.3 Structure of a rooted tree. A, B, C, D, E, and F are external nodes. G, H, I, J, and K are internal 

nodes, with K as root node. In a rooted tree, the arrow indicates the direction of evolution. Figure adapted from 
Vandamme (2009). 

Both mtDNA and the Y chromosome are markers commonly used in phylogeographic 

studies because they are haploid, and non-recombining. Without recombination, the 

differences between lineages will be solely derived from mutations and the order of the 

mutation will trace the history of the locus (Macaulay and Richards, 2001). 

1.1.2.2 The geographic distribution of lineages 

The geographic distribution of lineages is assessed by sampling at different locations 

and then identifying similar lineages between locations. Subsequently, to reflect the extent of 

the geographic distribution of the lineages, the published mtDNA genomes of related lineages 

(GenBank, FamilyTree or Genome Projects) from adjacent locations are incorporated into the 

phylogeny. 

1.1.2.3 The application of a molecular clock  

A molecular clock is applied in the phylogeographic analysis to infer the time depth of 

the lineage of the phylogenetic tree. Earlier molecular clock analyses assumed that the 

diversity accumulated at a linear rate (Bromham and Penny, 2003; Kumar, 2005), which was 

problematic. Recently, the molecular clock was corrected for purifying selection for the entire 
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mtDNA molecule and calibrated with recent evidence for the divergence time of humans and 

chimpanzees (Soares et al., 2009). See more details in 1.2.2. 

1.1.2.4 Other complementary lines of evidence  

The phylogeographic analysis works best with a model-based framework that uses 

complementary evidence from other fields including archaeology, linguistics, climatology, 

geology, palaeontology and radiocarbon dating. Genetic data cannot alone serve as a 

predictor for the cultural and linguistic affiliation of its carrier. In other words, phylogenetic 

analysis is able to show the magnitude of immigration at a particular point of time and 

location, but there is nothing in the genetic evidence per se that will associate the two 

(Richards et al., 2002).  

Radiocarbon dating by 
14

C started in the 1950s and continues to be the most widely 

employed method of inferring chronometric age for late Pleistocene and Holocene age 

materials (Taylor, 1995). The two main methods employed in radiocarbon dating are decay 

counting methods (using liquid scintillation of acid-washed or acid-base-acid (ABA), and gas 

proportional counters) and accelerator mass spectrometry (AMS). AMS requires small 

sample size and it may be possible to use a pre-treatment method (such as acid-base-

oxidation (ABOX) for charcoal, or ultra-filtration for bone) that cannot be applied while 

retaining a large sample size (Ramsey, 2008). Alternative dating techniques include 

thermoluminescence and optical dating. Optical dating was used to estimate the time since 

the quartz sediments were last exposed to sunlight (Huntley et al., 1985; Aitken, 1998). 

1.2 The Human mtDNA Phylogenetic Tree 

Early human mtDNA studies were performed using RFLP analysis (restriction 

fragment-length polymorphism) of the whole genome and control-region sequencing. The 

first human complete mtDNA sequence was published by Anderson et al. (1981) and later the 

revised Cambridge reference sequence (rCRS) by Andrews et al. (1999). Since then, rCRS 

became the reference sequence for scoring the polymorphisms present in mtDNA sequences 

and for building the human mtDNA phylogenetic tree. Recently, Behar et al. (2012) proposed 

a replacement sequence to rCRS with a newly reconstructed basal sequence called the 

Reconstructed Sapiens Reference Sequence (RSRS). It was inferred by rooting the mtDNA 

phylogenetic tree with the Neanderthal complete mtDNA sequence. However, the rCRS is so 
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well established that it is both troublesome and potentially highly confusing to change to the 

new RSRS system with a risk of introducing errors; here I used the widely accepted rCRS 

system. 

1.2.1 mtDNA tree nomenclature 

The present nomenclature of mitochondrial clades was introduced by Torroni et al. 

(1993) with the four main Native American haplogroups, A, B, C and D. Subsequently, new 

haplogroups were discovered and soon took up all the alphabet letters. Even though it was 

found in high diversity in Africa, the African lineages were assigned to one single letter L 

because they were collectively and erroneously placed as one single haplogroup with an 

Asian lineage as outgroup (Chen et al., 1995). In fact, L should subsume the whole modern 

human mtDNA tree. 

The nomenclature follows a simple order that represents the nesting structure of clades 

and subclades within the tree. Consider a hypothetical haplogroup V, diverged into two 

branches; they will be labelled as V1 and V2. Two subclades of V1 would be V1a and V1b, 

and two subclades of V1a are V1a1 and V1a2, and so on. Despite the issue with haplogroups 

L0, L1 etc., re-labelling the whole mtDNA phylogenetic tree would be both impractical and 

confusing to the scientific community. To avoid changing of existing labels when a more 

ancestral node is discovered, new ancestral node can be labelled with a prefix “Pre-”. The star 

symbol “*” is used to represent members of a haplogroups that do not yet belong to a defined 

subclade, essentially defining paraphyletic clusters. Using an example from above, any other 

less frequent and undefined V lineages apart from V1 and V2 will be labelled as V*. 

A tree of global human mtDNA based on complete genome variation including 

haplogroup nomenclature was published by van Oven and Kayser (2009) on 

www.phylotree.org. The online tree was last updated to mtDNA Tree Build 15 version (30 

Sep 2012) with a total of 16,810 complete human mtDNA sequences (Figure 1.4). 

http://www.phylotree.org/
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Figure 1.4 The simplified view of the global human mtDNA phylogenetic tree Build 15 version (30 Sep 2012). 

The root of the tree (mt-MRCA) represents the maternal most recent common ancestor of all humans. Haplogroups 

L0 to L6 are lineages specific to Africa, except that L3 diverged into M and N from which all the remaining diversity 
is derived. For more details, see: www.phylotree.org, van Oven and Kayser (2009). 

The mitochondrial tree was traditionally rooted using chimpanzee, bonobo, and gorilla 

sequences (Hixson and Brown, 1986; Arnason et al., 1996; Xu and Arnason, 1996). Cann et 

al. (1987) analysed 147 human mtDNA drawn from five geographic populations using 

RFLPs, they found the lineages coalesced to a common ancestor who was postulated to have 

lived about 200,000 years ago in Africa. She was popularly known as “Mitochondrial Eve”, 

the ancestral woman from whom all of modern humans were descended or the female line of 

descent. The age of mitochondrial Eve was nearly 200,000 ya estimated by a mutation rate 

derived from the coding region only (Mishmar et al., 2003), 186,000 ya with synonymous 

rate (synonymous transition rate of 1 per 7884 years by Soares et al. (2008)); the synonymous 

mutation per 6764 years reported by Kivisild et al. (2006) was too fast), and about 190,000 

ya with whole mtDNA genome corrected for purifying selection (Soares et al., 2008). In 

2008, Green and collaborators published the Neanderthal complete mitochondrial genome 

(Green et al., 2008), and the first split was found to occur between haplogroup L0 and all of 

the remaining haplogroups both within and outside Africa. 

http://www.phylotree.org/
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1.2.2 The mtDNA molecular clock 

Several mutation rates have been proposed for the human mtDNA genome. Forster et 

al. (1996) estimated a value one transitions per nucleotide per 20,180 years for the HVS-I 

control region, and Mishmar et al. (2003) suggested one transition per 5138 years based on 

the coding region np 577-16023, which is more than 10 times lower. These mutation rates 

assumed a clock-like evolution for the human mtDNA with a homogenous distribution of the 

mutation rate across time. However, the mtDNA phylogeny shows higher proportions of non-

synonymous coding mutations at the tips of the branches than deeper in the tree, indicating 

purifying selection is acting progressively on mtDNA (Kivisild et al., 2006; Pereira et al., 

2011). Kivisild et al. (2006) proposed, using a phylogeny consisting of 277 individuals, a 

mutation rate of one transition in 6884 years for synonymous substitutions only. Soares et al. 

(2009) provided a revised estimate of the synonymous substitutions rate, and found that it is 

considerably slower at one synonymous mutation per 7884 years. Synonymous substitutions 

are not under selection pressure and present lower saturation compared with the control 

region. All these estimates utilized a divergence time of 6 or 6.5 million years between 

chimpanzee and Homo sapiens. 

Endicott and Ho (2008) attempted a recalibration with Bayesian estimation but 

assuming several highly debatable intraspecific calibration points, inevitably introducing 

assumptions into the estimation. Their Bayesian approach assumed a relaxed molecular clock 

for the coding and non-coding regions of the mtDNA, but they did not provide a rate for the 

whole mtDNA molecule. Henn et al. (2009) made the first attempt to characterise the 

mutation-rate curve of human mtDNA-coding region, but this suffers from the same 

weakness regarding calibration-point assumptions and did not allow for selection. 

However, the observed mutation rate is non-uniform throughout the mtDNA molecule. 

This is most likely due to purifying selection on the mtDNA where different regions are 

under different selective constraints. Even within the fast-evolving control region, the 

mutation rate is not homogeneous, especially the nucleotide positions identified as hotspots 

by Endicott et al. (2009). Overcoming the concerns from previous reports, Soares et al. 

(2009) constructed a phylogenetic tree with more than 2000 complete genomes and assumed 

a single calibration point corresponding to the chimpanzee-Homo sapiens split. They 

generated the mutation rate for the complete mtDNA genome, and estimated            

substitutions per nucleotide per year, or one mutation every 3624 years. Various classes of 



10 

 

mutations at different phylogenetic time depths were estimated and used to correct the 

mutation rate in each temporal window. Separate clocks for the synonymous mutations and 

the non-coding segments were also estimated for comparison with the previous studies. 

1.3 Y chromosome haplogroup phylogeny 

The Y chromosome contains the largest non-recombining block in the human genome 

and is therefore very useful for evolutionary/population studies, forensics, medical genetics, 

and genealogical reconstruction. Similar to mtDNA phylogenies, the MSY (male-specific 

region of the Y chromosome) phylogeny has nomenclature for designated haplogroups, and 

the branches are defined by SNPs (single-nucleotide polymorphisms) (de Knijff, 2000).  

The root of the MSY tree has been coined as the Y-chromosome Adam, who is 

paternally the most recent common ancestor (TMRCA) with an estimated time ~200 ka 

(Francalacci et al., 2013). Mendez et al. (2013) claims a much older time ~338 ka using an 

African American sample that was found to add an ancient root to the MSY tree. According 

to Mendez et al. (2013), the older age was estimated with a slower mutation rate (     

               per base per year) obtained from the whole-genome sequence data 

(Roach et al., 2010; Conrad et al., 2011; Kong et al., 2012), although they also estimated 

TMRCA to ~209 ka when they utilized the higher mutation rate (         per base per 

year) (Cruciani et al., 2011). The deepest primary splits in the Y chromosome phylogeny are 

African-specific clade A, and clade BT, the latter gives rise to clades B and CT. Both A and 

B are restricted to Africa, and CT comprises the majority of African and all non-African 

chromosomes (Underhill and Kivisild, 2007a; Karafet et al., 2008; Cruciani et al., 2011). 

Haplogroup BCT diverged around 75 ka into two subclades, haplogroups B and CT 

(including DE), the latter migrated outside of Africa until recent times. Haplogroup DE is 

distributed in Africa (E) and Asia (D). Haplogroup C is widely found in South and East Asia, 

Oceania, and North America. In East Asia, the most frequent lineage is haplogroup K which 

further diverged into haplogroups N and O (Underhill and Kivisild, 2007a). The topology of 

the MSY phylogenetic tree, along with the geographical distribution of the major clades A, B, 

and CT, has been interpreted as supporting an African origin for AMH (Underhill et al., 

2000), with the deepest lineages found in Khoisan of south Africa and Ethiopians of east 

Africa (Hammer et al., 2001; Semino et al., 2002). 
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Sex-specific dispersals happened when different mating and migration routes exist 

within the populations, e.g. the Jewish people (Behar et al., 2004; Behar et al., 2010). 

Besides, different genes are subject to different selective forces. Therefore, it is not unusual 

for the two uniparentally inherited marker systems to occasionally provide evidence for 

different evolutionary histories within the same geographic regions (Carvajal-Carmona et al., 

2000; Oota et al., 2001; Destro-Bisol et al., 2004; Bolnick et al., 2006). However, there are 

broad consistent features between the phylogenies derived from both mtDNA and Y-

chromosome (Underhill and Kivisild, 2007a). 

 Both phylogenies support the African root because only African populations 

harbour lineages of both the primary branches descended from the root of the 

phylogenies; 

 A small subset of both mtDNA and Y chromosome trees is distributed outside 

Africa. The non-African founder lineages are haplogroups M, N and R of 

mtDNA, and C, D and F of Y chromosome (Kivisild et al., 2003); 

 Australia and Europe show limited founder composition compared to Asia 

 Some recent gene flow such as the Bantu (Cruciani et al., 2002; Salas et al., 

2002; Luis et al., 2004) and Polynesian expansions (Hage and Marck, 2003; 

Kayser et al., 2008; Soares et al., 2011), have left traces in the genetic 

composition of both markers; 

 Admixture was observed in regions such as North Africa, and Central Asia, as 

well as West Asia, where intermediate variation is seen between distinctive 

pools of mtDNA and Y chromosome varieties (Wells et al., 2001; Arredi et al., 

2004; Comas et al., 2004; Quintana-Murci et al., 2004). 

Earlier analyses by Capelli et al. (2001) studied the paternal heritage of the 

Austronesian-speaking peoples of SEA and Oceania. They found that the majority of current 

Austronesian speakers trace their paternal heritage to Pleistocene settlers in the region, 

contrary to models arguing for replacement more-recent agricultural immigrants (Bellwood, 

1997). A fraction of the paternal heritage, however, traced to more-recent immigrants from 

northern ‘Neolithic’ populations. They also found some northern Neolithic component 

dispersed throughout the region, with a higher contribution in SEA and a nearly complete 

absence in Melanesia. Later on, Karafet et al. (2010) found the paternal gene pool is sharply 

divided between western and eastern locations, along the Wallace’s line between the islands 
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of Bali and Flores. Karafet and colleagues found that the eastern Y chromosome haplogroups 

are closely related to Melanesian lineages which were likely to reflect the initial colonisation 

of the region, while the majority of western Y chromosome haplogroups may have entered 

Indonesia during the Palaeolithic from MSEA. 

Black et al. (2006) studied eight Y chromosome binary polymorphisms of the 

Cambodian population by comparing them with other populations from Bali, Christmas 

Island, Malaysia, Miao people, Southern Han and Northeastern Thai, and they found there is 

a dominant East Asian male ancestry throughout SEA. The Cambodian community has been 

reported to display post-Neolithic East Asian male and pre-Neolithic Southeast Asian female 

ancestries similar to those reported in other Southeast Asian populations (Su et al., 2000; 

Karafet et al., 2005; Wen et al., 2005).  

Cai et al. (2011) studied the Mon-Khmer and Hmong-Mien speaking populations in 

South China and MSEA, and found that a predominant MSY haplogroup O3a3b-M7, dating 

~19 ka, showed an early unidirectional distribution from SEA into East Asia, which was 

suggested to result from the genetic drift of East Asian ancestors carrying O3a3b-M7 lineages 

through many small bottlenecks complicated by landscape between SEA and East Asia. He et 

al. (2012) analysed the Y-chromosome variations of the Cham people and showed that while 

there are indigenous components in both MSY and mtDNA markers, there are also 

indications showing genetic admixture, presumably from Austronesian-speaking-immigrants 

from ISEA with the local populations in MSEA, as well as some Y chromosome influences 

from South Asia. 

Simonson et al. (2011) compared the MSY of Austronesian-speaking Iban population in 

Sarawak, Malaysia with individuals from East and Southeast Asia populations. The MSY 

haplogroup frequencies show male-specific gene flow from SEA, and the admixture analysis 

and PCA illustrate a similar pattern of population differentiation, with the Iban population 

showing affinity to those from MSEA and Indonesian samples. However, they were not able 

to preclude more recent but less substantial contributions from northern populations such as 

those of Taiwan. Delfin et al. (2011) studied the Filipino populations including the negrito 

groups, where they found heterogeneity present in both negrito and non-negrito groups with 

signatures of old and recent periods, and diverse affinities. They identified two Y-

chromosome haplogroups C-RPS4Y and K-M9 predominant among the Filipino negritos 

which represent founding lineages in the Asia-Pacific region that are also shared with 
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indigenous Australians, and not found among the Filipino non-negrito populations. Hence, 

they conclude a possible divergence and subsequent gene flow between some Filipino negrito 

groups and indigenous Australians, not necessarily via direct contact between these groups, 

but gene flow from Australia to the Philippines via neighbouring populations, in a ‘stepping-

stone’ manner, although they admitted that additional loci are needed to confirm the signal 

(Delfin et al., 2011). 

1.4 Autosomal Markers 

The genome-wide autosomal DNA variations or markers serve as another line of 

evidence to help understand the population genetic ancestry in relation to linguistic, 

geographic and demographic history. The newer genome-wide autosomal approach assay a 

huge number of autosomal single-nucleotide polymorphisms (SNPs) using genechips. A 

large-scale study by the HUGO Pan-Asian SNP Consortium (Abdulla et al., 2009) on East 

Asian (EA) and SEA populations showed that more than 90% of EA autosomal variation 

could be found in either SEA or Central-South Asian populations and show clinal structure 

with haplotype diversity decreasing from south to north, indicating that SEA was a major 

geographic source of EA populations. Abdulla et al. (2009) also tested the two-wave 

hypothesis that ancestral negrito populations first settled in SEA, Australia, and Oceania 

before a northerly migration originating in or near the Middle East, and spreading both 

towards Europe and Northeast Asia via Central Asia (Cavalli-Sforza et al., 2003). Their 

results do not disprove the two-wave model; instead, they found a population history that 

unites the negrito and non-negrito populations of SEA and East Asia via a single primary 

wave of entry of AMHs into the continent (Abdulla et al., 2009). The study also included 

several Filipino negrito groups, where they found no clear-cut genetic distinction between the 

Filipino negrito and non-negrito groups. This conclusion seems at odds with the MSY 

(haplogroups C-RPS4Y and K-M9) and mtDNA data (haplogroups B4b1a2) indicating novel 

and ancient haplogroups in the Filipino negrito groups, as mentioned by Delfin et al. (2011). 

A possible explanation given by Delfin et al. (2011) is that the ancestors of the Filipino 

negrito groups were isolated from the ancestors of the non-negrito groups, but then the two 

groups have experienced substantial, primarily male-mediated admixture in recent times 

(Stoneking and Delfin, 2010). Such substantial admixture, recorded in the MSY data, could 
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possibly account for the partial results reflected by the genome-wide SNP data (Abdulla et 

al., 2009).  

Other autosomal analyses in SEA showed a certain amount of admixture (~20%) 

between presumed-Austronesian-speaking and non-Austronesian-speakers prior to further 

eastward migration of the presumed-Austronesian migrants (Friedlaender et al., 2008; Kayser 

et al., 2008). The autosomal SNPs study by Jinam et al. (2012) claims that the Malaysian 

negrito, Philippine negrito and Alorese in Indonesia are distributed individually apart in a 

gradient or comet-like pattern in their PCA result, suggesting recent admixture between these 

groups with Thai, Chinese, or other Austronesians who formed a tight cluster (see Figure 4 in 

Jinam et al., 2012). 

Hatin et al. (2011) detected genetic substructure of four Malay sub-ethnic groups of 

Peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis) 

using genome-wide SNPs. The Melayu Minang, Melayu Jawa and Melayu Bugis are all 

known recent (i.e. historic) colonies of settlers from known parts of Indonesia. The studies 

indicate the existence of genetic heterogeneity in these populations that relate to their diverse 

origins and recent histories. The neighbour-joining tree showed, as expected, that the Melayu 

Jawa, Melayu Bugis and Melayu Minang formed a cluster with Indonesian populations 

indicating a common ancestry, while the Melayu Kelantan formed a distinct group indicating 

they are genetically different from the other Malay sub-ethnic groups (Hatin et al., 2011), 

which is consistent with an unpublished heuristic assignment of origins, based on the HVS-I 

data in Nur Haslindawaty et al. (2010) compared with our Southeast Asian database (this 

assignment was performed by S. Oppenheimer, personal communication). 

Wong et al. (2013) contributed to population genetics studies in SEA by whole-genome 

sequencing at a minimum of 30x coverage of Malay samples from Singapore to characterise 

the polymorphic variants in the population. The studies reported that they have detected deep 

population-level rare and low-frequency variants among the Austronesian-speaking Malay, 

which were not found in other populations by the low-pass sequencing either in the 1000 

Genomes Project (1KGP; McVean et al., 2012) or the International HapMap Project (2003) 

that did not included the Malay. 

Both mtDNA and MSY markers have been particularly subject to the effects of random 

genetic drift, and each autosomal marker, no matter how informative, still represents a minute 

fraction of the total genetic variation among populations (Kayser et al., 2008). The detailed 
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analyses of genealogical lineages and in particular the sex-dependent demographic scenarios 

that lie behind them can only be ascertained and dated, at present, through uniparental marker 

systems. Although, more autosomal data from additional populations combined with 

demographic modelling are required to sort out the relative roles of residence pattern, society 

structure, amount of admixture, and subsequent migration and drift in shaping the autosomal, 

mtDNA and MSY gene pools (Friedlaender et al., 2008; Kayser et al., 2008). 

1.5 The Origin of Anatomically Modern Humans (AMH) 

Many of the potential archaeological sites are at present most likely submerged under 

the sea since the beachcombing course taken by the modern humans is dependent on a 

seashore environment. Between 70 ka and today, an ~80 m-rise of sea level has altered the 

coastline by shifting it hundreds of kilometres inland and potentially inundating the range of 

beachcombing AMHs (Metspalu et al., 2006). Other factors that also prevent the recovery of 

archaeological and palaeontological evidence include the tectonic movements of the 

continental shelves and the accuracy of fossil dating techniques which is in constant dispute 

(Chen and Zhang, 1991; Klein, 1999).  

Most hominin fossils older than 100 ka are outside the scope of molecular genetics 

because they do not contain enough DNA to analyse, except for the Neanderthals where the 

more recent fossils still contain endogenous DNA (Goodwin and Ovchinnikov, 2006). One 

group of archaic hominins, the Neanderthals, evolved in Europe for around 200,000 years 

before they became extinct about 30 ka. They were then suggested to be replaced by 

anatomically modern humans (AMHs) called the Cro-Magnons, which started in the east 

around 45 ka in Europe and later retreated to several refugia 30-28 ka (Goodwin and 

Ovchinnikov, 2006). Two main hypotheses have been proposed to explain the emergence of 

AMH – the multiregional evolution hypothesis and the Out of Africa hypothesis. 

The multiregional hypothesis argues that AMH evolved from the archaic populations 

(Homo erectus ranging from Africa to Asia and Europe) in different continents they had 

spread to, simultaneously with innovations to help cope with new environments. According 

to this hypothesis, the AMH was the result of continuous, parallel development from Homo 

erectus to Homo sapiens, homogenizing the differences between them, preventing speciation 

events (Wolpoff et al., 1988). Multiregionalists claim that regional features can be followed 

through the fossil record to modern humans with no need for an influx of Africans, and the 
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morphological similarities shared between modern human and Neanderthals were the direct 

evidence that modern humans received them directly from Neanderthals as this appears more 

than likely the trait evolving twice (Wolpoff and Thorne, 1991). For this to happen would 

depend on the occurrence of numerous migrations and interbreeding between populations 

from different parts of the world. There are no obvious parallels to this in other species of 

other animals in different continents (Ayala, 1995). The main alternative to continuous 

multiregional evolution would be the Out of Africa replacement hypothesis that does not 

require the concept of parallel evolution. 

1.6 Out of Africa 

Palaeontological evidence shows that the late Pleistocene fossils from China resemble 

European and African middle Pleistocene hominins more than their supposed local ancestors. 

The earliest Homo sapiens fossils are also found in Africa and near the Levant; no clear 

Neanderthal/Homo sapiens transitional fossils have been found in Europe despite the 

excellent fossil record, and modern humans seem to have been present in the Levant briefly 

before Neanderthals (Stringer and Andrews, 1988). Ponce de Leon and Zollikofer (2001) 

argued that Neanderthals and modern humans were separate species based on cranial 

examination. Homo floresiensis, discovered recently in Flores, Indonesia, lived until as recent 

as 18,000 ya. A miniaturised species with very small brains, they most probably evolved 

from Homo erectus without gene exchange with other hominins, and may have no contact 

with Homo sapiens (Brown et al., 2004; Morwood et al., 2004). 

The oldest modern human remains were found in southern Ethiopia. The human cranial 

remains were dated by feldspar crystals found below the fossil levels with 
40

Ar/
39

Ar method 

to around 198 ka (McDougall et al., 2005). In Herto, Ethiopia, the AMH fossils were dated 

by the associated fossils and artefacts with 
40

Ar/
39

Ar method to 160-154 ka (Clark et al., 

2003; White et al., 2003). Modern human remains dated between 80 to 100 ka were also 

found to occupy sites in South Africa: with dental remains from Blombos cave (Grine and 

Henshilwood, 2002) and fragmentary artefacts from Klasies River Mouth. It is therefore 

difficult to pinpoint the origin of AMH within Africa (Deacon and Geleijnse, 1988; Deacon, 

1992). 

Earlier mtDNA work appeared to support the out of Africa model, but these early 

studies suffered problems due to their lack of resolution. A reanalysis of the original mtDNA 
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data (Cann et al., 1987) by Templeton (1993) claimed there were other more parsimonious 

trees than the original. Some of the more parsimonious trees carried an African-only branch 

as did the original, while others had a mixed African-Asian primary branch. This did not 

prove that the MRCA was non-African; it showed that while more parsimonious trees 

existed, a more complete approach of analysis was needed. These problems have since been 

largely overcome by the use of more extensive sampling, combining control-region 

sequencing with coding-region RFLP typing (Torroni et al., 1996; Macaulay et al., 1999a), 

complete mtDNA sequencing (Ingman et al., 2000; Maca-Meyer et al., 2001; Herrnstadt et 

al., 2002a; Behar et al., 2008) and the use of better phylogenetic analytical tools (Bandelt et 

al., 1995; Penny et al., 1995; Yang, 1997; Drummond and Rambaut, 2007).  

 

Figure 1.5 Map showing the inferred movements of mtDNA haplogroups in Africa and Eurasia between 60 to 

30 ka. The figure indicates the African exodus on the Southern route ~ 60 ka, taking the coastal path along the Indian 

Ocean into Southeast Asia and Australasia. Figure modified from Family Tree DNA (2006), Soares et al. (2009) and 
Beyin (2011). 

Ancient mtDNA has also lent its support to the out of Africa hypothesis. The analyses 

of the mtDNA control-region sequence of the Neanderthal specimens found in western 

Germany (Krings et al., 1999) and Mezmaiskaya Cave in the northern Caucasus 

(Ovchinnikov et al., 2000) appeared to fall outside the variation of modern humans and 

suggested that the Neanderthal mtDNAs and the AMHs mtDNA gene pool have evolved as 

separate entities for a substantial period of time. The estimated date of divergence between 
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the mtDNAs of the Neanderthal and modern humans by control-region has been estimated, 

for instance, as ~465 ka (Krings et al., 1999). In recent years, multiple complete ancient 

mtDNAs were able to be sequenced with the advancement of new sequencing technologies. 

Comparison of Neanderthal and modern human mtDNAs has indicated that the divergence 

time between the two can be estimated at around 511-550 ka (Briggs et al., 2009; Soares et 

al., 2009).  

The most recent common coalescent ancestor, also called “Mitochondrial Eve”, lies at 

the root of the two most basal branches in the tree, L0 and the remaining human mtDNA 

lineages L1 through L6 (Figure 1.4). MtDNA haplogroups L0 to L6 are found in sub-Saharan 

African populations and constitute the deepest branches of the global human mtDNA tree, 

indicating an African origin for Homo sapiens mtDNAs at about 200,000 years ago. All non-

African mtDNA lineages form subclusters of the African clade L3 that expanded from East 

Africa approximately 60 ka (Mountain et al., 1995; Watson et al., 1997). L3 left Africa and 

diverged into haplogroups M and N (Forster, 2004). Recently, Soares et al. (2009) published 

a calibrated molecular clock using the complete mtDNA genome with a maximum likelihood 

approach and estimated the age of clade L3 at ~70 ka. Non-African sub-lineages of L3: M 

and N radiated towards Asia, a small subset of N lineages colonised Eurasia and Europe. 

After the Last Glacial Maximum (LGM) ~19 ka, the first wave of a set of founders (A2, B2, 

C1, D1 and X2a) entered America from the north and spread across the American continent 

from north to south, following the Pacific coastal route (Howell et al., 2003; Achilli et al., 

2008). 

1.7 The Southern Route 

The Southern Route model is currently the main model for the earliest modern human 

colonisation of Asia and is supported by many recent genetic, archaeological, and 

anthropological studies (Lahr and Foley, 1994; Quintana-Murci et al., 1999; Stringer, 2000; 

Kivisild et al., 2003; Oppenheimer, 2003; Kivisild et al., 2004; Metspalu et al., 2006). When 

comparing data from different geographic locations (South Asia, East Asia, Australia), it is 

evident that each region carried different sub-branches of M, N and R descending directly 

from the root of the three haplogroups (Ingman and Gyllensten, 2003; Kong et al., 2003b; 

Palanichamy et al., 2004; Friedlaender et al., 2005; Merriwether et al., 2005; Thangaraj et al., 

2005; Kong et al., 2006; Sun et al., 2006; Thangaraj et al., 2006; van Holst Pellekaan et al., 
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2006). Macaulay et al. (2005) found the presence of basal M, N and R lineages in the Orang 

Asli groups in Peninsular Malaysia suggesting these three founders moved along the south 

coast of Asia ~50-60 ka, reaching Southeast Asia and the Sahul continent (Australia and New 

Guinea) by ~50 ka (Stringer, 2000; Mellars, 2006; Underhill and Kivisild, 2007; Shi et al., 

2010; Fernandes et al., 2012; Soares et al., 2012). However, different continental regions 

each harbour a distinct set of basal descendants of the M, N and R. This suggested that each 

region was colonised by individuals primarily carrying the root type of the three founders in 

their mitochondrial gene pool and that differentiation occurred in each region as mutations 

accumulated independently locally in these new M, N and R subclades (Macaulay et al., 

2005; Metspalu et al., 2006). Haplogroups M and N effectively cover the whole mtDNA pool 

in Asia. Haplogroup M is slightly more frequent than N in Siberia, northern China, Japan, 

and South Asia, while in Southeast Asia it is the opposite. M is nearly absent from Southwest 

Asia, where they are mainly subsets of N (mostly R) in the mtDNA pool. The colonisation of 

Europe would have been the results of an early offshoot of the southern route out of Africa, 

involving only lineages from the two founders N and R (Macaulay et al., 2005). The 

estimated ages of M and N in East Asia, Southeast Asia, and Australia, and the slightly 

higher age of N and R in South Asia, support a single rapid dispersal out of Africa that took 

place within the last 70 ka (Macaulay et al., 2005; Metspalu et al., 2006). 

Earlier works focused on migration routes into China and East Asia, and also out into 

Polynesia. Ballinger et al. (1992) suggested that South China was the centre of modern 

human expansion in East Asia based on the higher levels of mtDNA diversity found in the 

south. This was subsequently supported by work done on the Y chromosome that found the 

Northern Asian ancestry can be traced to the south, which additionally strengthens the case 

for a northward migration of modern humans into eastern Asia after ~60 ka (Su et al., 1999). 

An alternative model of earlier modern human colonisation of southern Asia has been 

proposed recently. According to the model, modern humans dispersed from Africa at a much 

earlier time before 74 ka reaching southern Asia before the catastrophic volcanic eruption of 

Mount Toba in Sumatra at ~74 ka (Oppenheimer, 2003; Clarkson et al., 2009; Haslam et al., 

2010). The event in Mount Toba was the largest eruption in the past 2 million year, producing 

dense rock equivalent volume of 800 km
3
 of ash into the atmosphere that blanketed the skies 

and blocked out sunlight for six years (Ambrose, 1998). As a result, global temperatures 

dropped to colder than during the Last Glacial Maximum 19-25 ka, with some suggesting that 
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this caused a middle Pleistocene human population bottleneck at this time. However, the pre-

Toba artefacts dated to more than 125 ka from the Jurreru Valley in South Asia are no longer 

thought to be the handiwork of modern humans but most likely the work of archaic people 

(Appenzeller, 2012). Even with the existing mtDNA database of 16,810 complete sequences, 

there are no pre-L3 non-African mtDNA found to indicate an early modern human 

colonisation of South Asia before the Toba eruption (Appenzeller, 2012; Mellars et al., 

2013).  

1.8 Southeast Asia 

Southeast Asia (SEA) consists of Mainland Southeast Asia (MSEA) and Island 

Southeast Asia (ISEA). MSEA includes the present day Myanmar, Thailand, Cambodia, 

Vietnam, Laos and Peninsular Malaysia. ISEA includes East Malaysia, Brunei, Indonesia 

(excluding West Papua), East Timor and the Philippines. SEA has a tropical climate, the day 

temperature floats around 30 °C throughout the year and it lies in a zone of high humidity 

with large areas under the regime of the monsoonal system (Verstappen, 1997). It covers an 

area from latitude 20° north and 16° south, and longitude 95° west to 105° east. As the 

climate on the equator does not change much, the biodiversity of flora and fauna is high 

because of the effect of climate and geological history (Myers et al., 2000). Soils in SEA tend 

to be infertile clays, where most nutrients are cycled within the rainforest biomass rather than 

in the topsoil. There are few edible wild plants suitable for human consumption or animals 

that are dispersed or arboreal and difficult to hunt in equatorial forests (Bellwood, 1994). 

1.8.1 The flooding of Sundaland 

The palaeoenvironmental and palaeogeographic changes during the late Pleistocene 

were crucial in shaping the population history of Sundaland. Intermittent periods of global 

warming and cooling during the last ice ages resulted in glaciation and deglaciation of the 

Arctic ice caps. The alternating rise and lowering of the sea levels had a profound impact on 

the climate and biogeography of the region. Nowhere else in the world has experienced such 

a large-scale loss of landmass as a consequence of rise in sea levels. The land area lost by 

Sundaland after the Ice Age was as large as India (Oppenheimer, 1998). 

The Last Glacial Maximum (LGM) occurred around 19-25 ka, centered ~21 ka, and is 

marked by the maximum volume of ice sheet expanded over Scandinavia and northern 
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Europe (Banks et al., 2008). Glacio-eustatic depression of sea level by ~120 m at the LGM 

exposed the Sunda shelf joining MSEA to Sumatra, Java, Borneo and possibly Palawan, 

substantially reducing the size of the South China Sea (Bird et al., 2005). This exposed 

continent shown in Figure 1.6 was called “Sundaland” (Molengraaff, 1921), which was 

essentially a south-east extension of the continental shelf of Southeast Asia; similarly Taiwan 

was a peninsular of the Chinese coast. East of Sundaland was a boundary called Wallace’s 

Line separating Asia by water from Wallacea and the Sahul Shelf, despite the low sea levels. 

Alfred Russell Wallace was among the first naturalists to observe a clear distinction between 

eastern and western faunas across Wallace’s Line, and recognised a natural barrier for the 

spread of mammals, including early hominins (Wallace, 1881; Voris, 2000). The sea-level 

rises that began ~19 ka due to early warming in the oceans led to the drowning of the shallow 

landmasses, losing almost half of the land area, thus revealing the present day geographical 

appearance. Current geographical features of Southeast Asia were formed towards the end of 

the Pleistocene epoch, where the Sunda flooding became stabilised ~6-7 ka.  

After the LGM, the ice retreat started between 19.5-16 ka caused a climatic 

improvement and vast areas were exposed to be re-settled reaching a peak between 16-14 ka 

(Terberger and Street, 2002; Gamble et al., 2004). After the rapid warming, the climate 

experienced a fast cold snap to glacial conditions called the Younger Dryas ~11.5 ka, which 

are most probably due to the cold melt-waters that invaded the Atlantic Ocean caused by 

global warming and the melting of the ice sheets. After the Younger Dryas, the climate 

warms up reaching the optimal conditions for a widespread growth of wild cereals and 

legumes (Scarre, 2005).  

In Southeast Asia, the ancestral population spread on east along the coast, with 

successive founder effects amplifying the founder lineages of haplogroups M, N and R as 

they moved, diverging in mainland Southeast Asia and the prehistoric continent of Sundaland 

(now the Indo-Malaysian archipelago) and continued onwards into eastern Eurasia and 

Australasia from the coast (Richards et al., 2006). Based on the ages of haplogroups of M, N 

and R, and the absent of human settlements evidence before ~30 ka, Richards et al. (2006) 

suggested that the crossing into Australia and Papuans would probably follow the easier 

‘northern route’ from Sundaland, via Wallacea (rather than the ‘southern route’ via the Nusa 

Tenggara). Nevertheless, they also noted that the water crossing would have been shorter by 

either way at any time during this period than it is today. Alternatively, a dispersal model 



22 

 

suggested by Bird et al. (2005) claimed that around 110-85 ka and thereafter around 70 ka, 

land bridges emerged intermittently connecting the Asian mainland with Sumatra, Java and 

Borneo. An open vegetation savannah corridor crossing the interior of Sundaland probably 

became an inland route for the first modern human dispersals throughout much of the region 

and into Australia (Bird et al., 2005). 

 

Figure 1.6 Sundaland in the Late Pleistocene period. Areas in yellow were drowned when the sea-level rose; 
brown areas indicate the present day countries. Figure adapted from Oppenheimer (1998). 

 

During the last glacial period, about half of Sundaland was flooded when a meltwater 

pulse originating in the northern hemisphere, probably caused by early warming in the oceans 

of the southern hemisphere and leading to a rise in sea-levels. The immersed lands are now 

70-80 m below present day sea levels (Pelejero et al., 1999; Clark and Mix, 2002). Two main 

episodes of sea-level rise were identified between 15-13.5 ka and 11.5-10 ka (Blanchon and 

Shaw, 1995; Pelejero et al., 1999), and on top of that, Blanchon and Shaw (1995) detected 

another episode between 8-7 ka. These floodings after the LGM were related to an increase in 

the sea-surface temperature and an increase in marine productivity (Pelejero et al., 1999). 

Earthquakes and tsunamis were likely to take place when the earth’s crust needed to rapidly 

readjust to the new distribution of water and ice in the sea (Oppenheimer, 1998). 
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Subsequently, it is claimed that towards the end of the Pleistocene and early Holocene, a 

number of large terrestrial animals became extinct throughout the planet (Louys et al., 2007). 

Particularly in ISEA, the increasing sea-level also affected the structure of vegetation, 

disrupting river systems, and human populations in the region (Voris, 2000). 

1.8.2 First settlement of ISEA by modern humans 

The fossil and archaeological evidence of hominin occupation in SEA showed that 

Homo erectus was present in Java as early as 1.6 million years ago (Swisher et al., 1994) and 

may have lived until as late as 27 ka (Swisher et al., 1996). These dates were arguably 

unreliable because of the uncertainties with the dating method and the stratigraphic position 

of the Java fossils (Roberts et al., 2005). There is no archaeological evidence for the arrival 

of modern humans to Southeast Asia prior to ~50 ka. Several widely accepted archaeological 

dates of modern human occupation are obtained from the “Deep Skull” in Niah Cave of 

Sarawak, Borneo, radiocarbon dated to around 39-45 ka (Barker et al., 2005), the Jerimalai 

shelter in Wallacea ~42 ka (O’Connor et al., 2007), New Guinea 44-49 ka (Summerhayes et 

al., 2010), the Bismarck Archipelago ~33 ka (Allen et al., 1988), and the Northern Solomon 

Islands ~28 ka (Wickler and Spriggs, 1988). 

In Niah Cave, the evidence of biomass burning suggested that humans occupied the 

location since at least 50 ka (Hunt et al., 2007). In MSEA, evidence of Pleistocene modern 

humans was discovered in Lang Rongrien, southwestern Thailand, radiocarbon dated 

between 27 to 43 ka (Anderson, 1990, 1997). Up north in China, in Tianyuan Cave of 

Zhoukoudian, the oldest modern human remains were dated to 39-42 ka (Shang et al., 2007). 

The dates seem to imply that ISEA was en route to the ancient continent of Sahul (Australia 

and New Guinea) and the time of colonisation of ISEA should predate the time of 

colonisation of Sahul. 
14

C dating method suffers the technical limits of chronometry to 

around 50 ka, hence becoming meaningless effectively when this is exceeded. However, the 

time of colonisation in Australia has so far been controversial, with some of the highest age 

estimates for modern humans outside of Africa, an age of 60 ka obtained from 

thermoluminescence method (Fullagar et al., 1996). However, O'Connell and Allen (2004) 

argued that estimated ages older than 45 ka obtained from the thermoluminescence method 

were not well-supported, due to the method’s lack of sensitivity to archaeological context. 
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The time of earlier colonisation by modern humans in Sundaland has been difficult to 

estimate because a number of potentially archaeological sites may well be now submerged as 

a result of sea-level fluctuations. The earlier inhabitants of Sundaland are likely to have 

resided along the coast and exploited marine resources. Bellwood (1997) suggested that for 

over a timespan of at least 40 ka, ISEA was the ultimate source-region for the populations of 

Australia and the Pacific Islands. Thangaraj et al. (2005) studied the mtDNA variation in the 

relict aboriginal populations from the Andaman Islands (Indian Ocean), and obtained an 

estimated age for the M lineages of ~65 ka. In the same year, Macaulay et al. (2005) 

estimated an age of ~63 ka for both haplogroups M and N in the Orang Asli from Peninsular 

Malaysia, although the estimated ages were slightly overestimated (Soares et al., 2009). 

Mellars et al. (2013) reported that their genetic evidence from both Africa and Asia and the 

archaeological evidence from South Asian sites have found it unlikely that the initial 

dispersal of AMHs from Africa to southern Asia occurred before the volcanic eruption of the 

Mount Toba volcano at ~74 ka. These studies, however, indicate a single and rapid southern 

coastal route from Africa, along coastal India to Southeast Asia, although the estimated ages 

were slightly overestimated (Soares et al., 2009; Mellars et al., 2013). 

1.8.3 The People of SEA 

The population history of the indigenous people of Southeast Asia has been vigorously 

debated since the 1970s. Various theories were hypothesised on the basis of archaeological 

finds and linguistic surveys in attempts to explain the origins and patterns of prehistoric 

human dispersal in the region. In Southeast Asia, the first settlements of the so-called 

“Australo-Melanesian” or negrito populations are traditionally considered to have arrived 

from the Horn of Africa during the Pleistocene period via a “southern route” around 60 ka to 

75 ka, along coastal India to Southeast Asia ~50 ka and Australasia (Lahr and Foley, 1994; 

Cavalli-Sforza et al., 1994; Bellwood, 1997; Turney et al., 2001; Soares et al., 2009) before 

the sea-level rises. The negrito populations are present in the Semang of Peninsular Malaysia, 

resembling the Andaman Islanders and Filipino Aeta in that they are short in stature with 

dark skin and woolly hair. Bellwood (1997) also proposed a second group that migrated later 

from the northern latitudes called the “Mongoloids”. They represent almost all of the rest of 

the populations in ISEA who speak the Austronesian languages. 

The Pacific Islands consists of Melanesia, Micronesia and Polynesia. They are not part 

of SEA but they are archaeologically and linguistically closely related to ISEA. The term 
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Australo-Melanesian broadly includes the Melanesians (from the New Guinea highlands and 

Island Melanesia), Australians and the negrito populations in SEA (Bellwood, 1997). The 

people of Melanesia and the New Guinea highlands are dark-skinned, and the Melanesian 

populations speak Papuan languages and are considered to be descendants of the first settlers 

in the region. On the other hand, both the Micronesians and Polynesians have lighter skin and 

shared similar cultural and linguistic background, speaking the Austronesian languages 

(Terrell, 1986; Terrell et al., 2001). 

The Austronesian languages are spoken throughout ISEA, except for some populations 

in Eastern Indonesia who speak Papuan languages. The Austronesian-speaking groups have a 

common ancestral language, Proto-Austronesian, with approximately 1200 Austronesian 

languages estimated. They are spread across ISEA, distributed as far west as Madagascar, to 

the northern coast of New Guinea and the Pacific Islands in the east (Pawley, 2002). The 

Papuan-speaking (non-Austronesian) groups lack a recent common ancestry and include 

numerous linguistically unrelated groups (Wurm and Hattori, 1981; Specht, 2005). These two 

groups of people have a different history in Melanesia. The non-Austronesian speakers reflect 

the early Pleistocene arrival of modern humans in the region, whereas Austronesian speakers 

were thought to have arrived as migrants from East Asia by 3.5 ka (Kirch, 1997). The extent 

of the Austronesian languages family is shown in Figure 1.7.  

 

Figure 1.7 The area highlighted shows the extent of the Austronesian migrations. Figure adapted from 
Quirino (2010). 

Palaeoanthropological analysis includes osteoscopy examination of non-metric traits 

such as sexual dimorphism and population affinity characteristics from the cranial and 
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postcranial bones. The osteometry examination assesses the metric traits from the skull and 

teeth, from a number of populations and analysed by statistical tools to ascertain the 

relationship between the various populations. Studies on osteometry in Asia have suggested 

that the populations from ISEA cluster closely with those from MSEA. The Polynesian 

population forms a separate branch between Southeast Asia and Melanesia, and does not 

appear to be affiliated with the Taiwan and China populations which cluster together 

(Pietrusewsky, 1997; Matsumura and Hudson, 2004; Hanihara and Ishida, 2005).  

Turner (1987) studied the SEA populations using dental morphological traits, and 

suggested that two migrations originated from central China ~20-30 ka, which can be 

represented by two set of dental features, the Sinodonts and Sundadonts. The Sundadonts are 

generally found in the south that exhibits a pattern of simplification and retention. The 

Sundadonts showed weaker expression for traits like incisor shovelling, double-shovelling, 

four-cusps lower molars, and retained ancestral traits such as two-rooted upper first 

premolars and two-rooted lower second molars. The Sinodonts are found in the north that 

shows intensification and addition. They have more pronounced grades of shovelling, double-

shovelling, three-rooted lower first molars and peg-shaped upper third molars. The Sinodonts 

expanded northward into China, Siberia and across the Bering land bridge into America. The 

Sundadonts moved southward into Southeast Asia and Indonesia, and later through 

Melanesia, Micronesia and Polynesia (Turner, 1987). 

Admixture analysis with autosomal SNPs which are highly informative for Asian-

Melanesian ancestry carried out by Cox et al. (2010) showed that the East Indonesians 

display a clinal transition from Asian to Melanesian genetic variants along the Wallace’s 

Line. This phenotypic gradient probably reflects mixing of two long-separated ancestral 

source populations – one descended from the initial Melanesians, and the other related to the 

arrival of Palaeolithic immigrants in ISEA and/or with the spread of agriculture. They also 

noticed a high signal of Asian X-linked markers throughout the transition zone, which seems 

to suggest that the admixture process was sex-biased, either signalling a westward expansion 

of patrilocal Melanesian groups or an eastward expansion of matrilocal Asian inhabitants. 

The observed sex bias in admixture rate may be due to the matrilocal residence system that 

dominated the ancestral Austronesian societies (Cox et al., 2010). 

Soares et al. (2008) carried out complete mtDNA genome sequencing of haplogroup E, 

a lineage with important mtDNA diversity in the region. They showed that it has evolved in 



27 

 

situ over the last 35 ka. It then expanded around the beginning of the Holocene throughout 

ISEA, which coincides with the post-Last Glacial Maximum (LGM) sea-level rises that broke 

up the Sundaland continent into present day archipelago. There were at least three major 

bursts of accelerated sea-level rise and flooding in the so-called Catastrophic Rise Events 1 to 

3, possibly due to ice sheet collapse, at ~14.5, 11.5, and 7.5 ka (Blanchon and Shaw, 1995). 

Therefore, it is suggested that most probably the postglacial climate change and sea-level 

rises around 15 – 7 ka were the main forces shaping modern human dispersals in the region 

instead of farming/language model. Soares et al. (2008) also mentioned that haplogroup E 

lineages are associated with the “flake-blade technocomplex”, an industry based on flakes 

detached from rotated multiplatform cores, which emerged around 25 – 30 ka restricted to the 

islands and coastlines of the Sulu Sea region. Around 18 ka, this distinctive stone tool 

technology spread to northern Borneo and throughout ISEA by the maritime-oriented 

populations living around the coastlines at that time.  

1.8.4 The “Out of Taiwan model” and the “Farming/Language Dispersal 

Hypothesis” 

One dominant model has explained the colonisation process of ISEA, which has 

different names over the years: the “Express train to Polynesia” (Diamond, 1988), “Out-of-

Taiwan” (Bellwood, 1997) and the “Farming/Language Dispersal hypothesis” (Bellwood and 

Renfrew, 2003). The out-of-Taiwan or express train to Polynesia model recognises two 

waves of migration by two groups of people, the initial “Australo-Melanesian” or 

“Australoid” and the “Mongoloid” who arrived later. These first settlements were then 

replaced or assimilated in the mid-Holocene by a maritime driven dispersal of Austronesian 

speakers from southern China via Taiwan into ISEA (Bellwood, 1997, 2005a, 2005b; 

Diamond and Bellwood, 2003; Bellwood and Dizon, 2008). According to this model, rice-

agriculturalists speaking proto-Austronesian languages migrated from southern China ~5,500 

ya reaching Taiwan, before expanding into the Philippines and the rest of ISEA ~4,000 ya. 

Diamond and Bellwood (2003) identified three main advantages of agricultural populations 

over the hunter-gatherer populations: (i) higher food production per area leading to possible 

higher population density; (ii) a sedentary lifestyle that can accumulate stored food surpluses, 

which were a prerequisite for the development of complex technology, social stratification, 

centralized states, and professional armies; and (iii), the farming populations acquired 
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resistance against epidemics originating from domestic animals, for e.g. smallpox and 

measles. 

Fundamentally the out-of-Taiwan model is one of the groups of models that incorporate 

the broader “Farming/Language Dispersal Hypothesis” (Bellwood and Renfrew, 2003). The 

15 language families are: (i) Bantu (Niger-Congo family), (ii) Arawak (Taino), (iii) Austro-

Asiatic, Tai or “Daic” and Sino-Tibetan, (iv) Uto-Aztecan, (v) Oto-Manguean, Mixe-

Zoquean, Mayan, (vi) New Guinea Highlands, (vii) Japanese, (viii) Austronesian, (ix) 

Dravidian, (x) Afro-Asiatic, and (xi) Indo-European. These language families have all been 

related to nine different homelands: “hearths” of agriculture, or centres of domestication 

(Diamond and Bellwood, 2003). Bellwood (2001) outlined several characteristics that 

indicate the spread of a linguistic family together with a farming expansion, (i) a set of lexical 

reconstructions related to crops and domestic activities; (ii) rapid spread of a language over a 

large area; (iii) linguistic time depths corresponding to the archaeological records of the 

Neolithic event; and (iv) elements that allow particular languages to be linked with particular 

archaeological material cultures and a sudden horizon-like appearance of the cultures 

archaeologically. 

There are five main phyla of languages spoken in East Asia: (i) Sino-Tibetan in China, 

Burma and Nepal; (ii) Hmong-Mien in South China, North Vietnam and Laos; (iii) Tai-Kadai 

in South China and Indochina; (iv) Austro-Asiatic in Indochina and Central Malaysia; and (v) 

Austronesian in ISEA, Taiwan and much of the Pacific (Sagart et al., 2005). Blust (1995) 

suggested the Austronesian language family based on the occurrence of shared innovations in 

phonology and pronoun forms. There are possibly nine main branches of Austronesian 

languages in Taiwan, which are collectively called the Formosan by Blust (1995) (Figure 1.8). 

The decomposition and structuring of the Malayo-Polynesian branch can be used to map the 

expansion of the language in ISEA. The Malayo-Polynesian branch can be divided into the 

following subgroups: Western Malayo-Polynesian (spoken in the Philippines, Borneo, 

Sulawesi, Java, Bali, Lombok, West Sumbawa, Sumatra, Peninsular Malaysia, Vietnam, and 

Madagascar), Central-Malayo-Polynesian (in the Eastern Sumba and Moluccas except 

Halmahera), and Eastern-Malayo-Polynesian (spoken in South Halmahera, West New Guinea, 

Melanesia, Micronesia and Polynesia) (Blust, 1995). 
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Figure 1.8 Austronesian languages with corresponding geographical location. Figure after Blust (1995). 

The model suggests that the Austronesian languages originated after the colonisation of 

Taiwan by Neolithic pottery-making and rice-growing farmers in southern China and Taiwan 

after 4,000 BC, in a cultural environment of increasing population density, advancing 

technology (including boat construction and carpentry), and increasing dependence on 

agriculture and animal domestication, and also a portable food production repertoire that 

allowed long-distance dispersal to take place (Bellwood, 2011). This was followed by the 

spread of farming, pottery, and Neolithic tools to replace or hybridize with the original 

population of the Philippines (2,000 to 1,500 BC), then southwest to the Malay Peninsular 

and to Madagascar, and east through Indonesia out across the Pacific to the furthest islands of 

Polynesia, eventually reaching New Zealand by about 1,200 AD (Bellwood, 1987, 1997; 

Kirch, 2000; Diamond and Bellwood, 2003), with the various branches of Malayo-Polynesian 

derived along the voyage (Blust, 1996).  

Archaeological evidence has been able to trace connections between the Chinese 

mainland, Taiwan, the Philippines and ISEA. In southwestern coastal Taiwan, an agricultural 

(rice and foxtail millet) economy, the Tapenkeng Neolithic culture, is present by at least 

2,800 BC (Tsang, 2005; Tsang et al., 2006). There have been numerous other sites 

discovered from 3,000 BC in eastern Taiwan (Hung, 2005), and the recovery of fine-grained 

ceramic evidence for the spread at about 2,200 BC of Neolithic material culture from Taiwan 

to the Batanes Islands (previously uninhabited) and northern Luzon (Bellwood and Dizon, 

2005, 2008; Hung, 2005, 2008; Bellwood, 2011). Chicken, dog, and pig were domesticated in 

Asia and then bought into ISEA. The archaeological evidence, including red-slipped pottery 
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with specific rim forms and body shapes, pottery spindle whorls, stone bark cloth beaters, 

tanged or grooved stone adzes, Fengtian (eastern Taiwan) nephrite, Taiwan slate knives and 

projectile points, notched pebble net sinkers, suggest that these artefacts and domestic pigs 

and dogs, and possibly domesticated rice, were carried (not necessarily all together) at a 

single time or along a single route, namely, via Taiwan (Bellwood and Dizon, 2008; 

Bellwood, 2011).  

The red-slipped plain ware pottery emerged by 2,200 BC in southern and eastern 

Taiwan (Bellwood and Dizon, 2008; Hung, 2008). One of the well-established red-slipped 

pottery assemblages came from Chaolaiqiao, on Shanyuan Bay, precisely dated by 

accelerator mass spectrometry (AMS) 
14

C to 2,200 BC. By 2,000 BC, this type of pottery 

tradition had spread to previously uninhabited Reranum and Torongan Caves on Itbayat 

Island, Batanes. The close similarities in pottery shared between Reranum and Chaolaiqiao 

possibly showed a direct migration from sites such as An Son in southern Vietnam to Itbayat 

occurred between 2,200 and 2,000 BC (Bellwood, 2011). A similar find of red-slipped plain 

ware (with small amounts of stamped and incised decoration) was also found a Bukit 

Tengkorak in Sabah around 1,300 BC, along with bark cloth beaters and trapezoidal cross-

sectioned adzes paralleled in Batanes, Taiwan, and Fujian (Chia, 2003; Jiao, 2007). Besides, 

Talasea (Kutau/Bao) obsidian was found in Bukit Tengkorak possibly coming from the 

Bismarck Archipelago in Near Oceania, suggesting two-way human movement between 

1,200-900 BC (Bellwood, 1989; Chia, 2003). These archaeological finds suggest that a red-

slipped plain ware tradition has a clear Taiwan origin (Bellwood, 1997, 2011). There is no 

good evidence that showed cord-marked pottery, shell fishhooks, cut-shell beads, and shell 

adzes predate Malayo-Polynesian arrival in ISEA, although there is the widespread use of old 

shell for making artefacts (Bellwood, 1997). 

Rice is detected from macrobotanical remains at archaeological sites in East Asia and is 

seldom found, except as inclusions in pottery, at purportedly early “Austronesian” or 

“Neolithic” sites in ISEA (Bellwood, 1997). Rice husks in pottery have been found in the 

cave of Gua Sireh and Lubang Angin in Sarawak and Bukit Tengkorak in Sabah, dating from 

~2,200 BC onwards (Ipoi, 1993; Beavitt et al., 1996), which are associated with paddle- or 

comb-impressed pottery with only rare red slip and no stamping. The rim forms and 

decoration in Gua Sireh is paralleled to the Middle Neolithic assemblages in southern Taiwan 

(Li, 1983) and Hong Kong (Meacham, 1978). Previously, the Gua Sireh assemblage was 
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reported to indicate a former Austro-Asiatic linguistic presence in Borneo (Bellwood, 

2007:117, 236-238), but uncertainties arise when parallels of rice chaff-tempered pottery 

found in the southern Vietnam Neolithic sites, for example An Son in southern Vietnam 

(Bellwood, 2011). Apart from Gua Sireh, the above mentioned Borneo sites are far from 

fertile rice-growing terrain, and it is possible that the Neolithic and Iron Age burials in the 

upper Niah stratigraphy were not native people to the immediate area (Valentine et al., 2008), 

where there was a continuing presence of hunter-gatherer population (Punan) in the Niah 

Cave until the Iban incursions in the 19
th
 century (Barker, 2005). 

Other early Austronesians-speakers went on to settle new islands very rapidly in terms 

of both archaeology and comparative linguistics (Pawley, 1999). The widely accepted “out of 

Taiwan” model suggests that the Austronesian-speaking populations of ISEA, Near Oceania, 

and Remote Oceania (including Polynesians) have a common origin among early Taiwanese 

agricultural groups who dispersed into ISEA ~4 ka, reaching Near Oceania ~3.5 ka 

(Bellwood, 2005a; Spriggs, 2007). The “Polynesian motif” represents a lineage of human 

mtDNA, B4a1a1a, which is restricted to Austronesian-speaking populations and is almost 

fixed in Polynesians. Based on the “out of Taiwan” model, these people are largely 

responsible for the Lapita culture complex, which includes finely decorated dentate-stamped 

pottery, obsidian tools, and shell ornaments that first appeared in the Bismarck Archipelago 

~3.5 ka, spreading into Remote Oceania ~3 ka. Alternative models suggested maritime 

contacts between Southeast Asia and Near Oceania from the end of the Pleistocene ~12 ka 

(Solheim, 2006), or at least before the mid-Holocene, by ~6 ka (Terrell, 2004), that forms an 

interaction environment along a “voyaging corridor” between Near Oceania and ISEA (Irwin, 

1992; Terrell and Welsch, 1997; Torrence and Swadling, 2008). Lastly, hybrid models 

suggest involvement of both incoming Austronesian speakers from ISEA and indigenous 

populations in the Bismarck Archipelago (Green et al., 2008). A recent complete mtDNA 

genomes study by Soares et al. (2011) showed that the “Polynesian motif” most likely 

originated by >6 ka in and around the Bismarck Archipelago, and its immediate ancestor is 

estimated >8 ka and virtually restricted to Near Oceania. This suggests that the Polynesians 

have arrived from ISEA in Near Oceania much earlier than dispersal from either Taiwan or 

Indonesia 3-4 ka would predict. Soares et al. (2011) also reported evidence in minor lineages 

of more recent two-way maternal gene flow that reflects movements along a “voyaging 

corridor” between ISEA and Near Oceania, as previously proposed on archaeological find. 
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This work concludes a small-scale early to mid-Holocene Near Oceanic ancestry for the 

Polynesian peoples from ISEA, which transmitted Austronesian languages to the long-

established Southeast Asian colonies in the Bismarcks carrying the Polynesian motif in the 

Lapita formative period, ~3.5 ka. Besides, the rapid movement reflects the people’s 

dependence on the maritime and lowland agricultural resources, where the latter were 

reduced massively by the drowning of the most fertile alluvial and coastal locations as the sea 

attained its maximum mid-Holocene sea level (Bellwood et al., 2008). 

The “express-train” hypothesis for the colonisation of the Pacific by Austronesian-

speaking peoples has been further supported by a parsimony analysis of a linguistic dataset of 

Austronesian languages studied by Gray and Jordan (2000). They studied the lexical 

similarities instead of its differences, and found that although the most parsimonious tree in 

the analysis was a close fit to the “express train” model, but many of the branches were not 

well supported. Besides, Gray and Jordan (2000) assumed a Taiwanese root in their analysis, 

where a Philippines root seems equally plausible too. Greenhill and Gray (2005) constructed 

a maximum likelihood (ML) tree with the same data with much better resolution and better 

supported branching structure. The ML tree also seemed to be consistent with the “express 

train” model but some of the branches, as before, were not as would be expected from the 

model. For example, the languages from North Borneo and Brunei appeared basally next to 

the Taiwanese languages. 

Recent studies proposed a different Austronesian language tree in which the Western-

Malayo-Polynesian and Central-Malayo-Polynesian do not exist as separate groups (Ross, 

2008; Donohue and Denham, 2010). They did not find geographical structure within the 

Western-Malayo-Polynesian group’s distribution. Other suggestions include that more 

branches are now radiating from Proto-Malayo-Polynesian node with no identifiable direction 

of dispersal, although their find points geographically to eastern Indonesia (Dyen, 1965). 

Donohue and Denham (2010) also questioned the validity of the Central-Malayo-Polynesian 

and Eastern-Malayo-Polynesian subgroupings since many of the innovations that have been 

proposed for each of these subgroups are present in languages in the Western-Malayo-

Polynesian area as well as some area in north Taiwan (Donohue and Grimes, 2008). 
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1.9 Orang Asli in Peninsular Malaysia 

In Peninsular Malaysia, the Orang Asli currently comprise 0.5% of the Malaysian 

population and have been categorised traditionally on the basis of language, culture, 

geographic location and anatomical traits (especially statures, hair type and skin colour). 

There are broadly three groups of Orang Asli, or literally “original people”; Semang, Senoi 

and Aboriginal Malays (Figure 1.9). Each group has its distinctive traditions, although 

authors like Benjamin (1985, 2002a, 2002b) and Rambo (1988) suggested that the Semang 

and Senoi shared a common origin purely as a result of local differentiation. However, many 

earlier authors claimed that the Semang and Senoi could have partially separate origins 

(Skeat and Blagden, 1906; Schebesta and Blagden, 1926). 

 

Figure 1.9 Map of Peninsular Malaysia showing the locations of Orang Asli groups sampled. Map adapted 
from Oppenheimer (1998). 
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There have been several views on the colonisation events that affected the Orang Asli. 

The most traditional view was the “layer-cake” theory of successive waves of arrival of 

Semang, Senoi, and Aboriginal Malays who settled in Peninsular Malaysia (Cole, 1945; 

Carey, 1976; Birdsell, 1993). The physical appearance of the Semang is closely related to the 

Philippine Aeta, Andaman Islanders, Melanesians, Tasmanians, and certain tropical 

Australian rainforest foragers. The Senoi arrived in the second wave of migration, probably 

originating from South Asia, and they were closely related to other small-bodied populations 

from Veddas of Sri Lanka, Toaleans of South Sulawesi, and mainland aborigines of 

Australia. Lastly, the arrival of Aboriginal Malays marked the first influx of Mongoloids into 

Peninsular Malaysia, in conjunction with the colonisation of the Indo-Malaysian Archipelago 

by the “Proto-Malays”.  

Benjamin (1979, 1985, 1986) divides the Aslian languages into Northern, Central, and 

Southern subgroups. The Semang, such as Jahai, Mendriq and Batek, speak Northern Aslian 

languages, which is part of the Mon-Khmer language branch of the Austro-Asiatic family. 

This family is spoken widely in areas of northeast India, Burma, southernmost Thailand, 

Indochina, Peninsular Malaysia, the Nicobar Islands and the north of Sumatra (Ruhlen, 1991). 

Physically, they are short-statured and small with gracile facial features, dark-skinned with 

tightly curled hair; hence they are sometimes referred to as negrito (Bellwood, 1997). They 

are, or were until recently, hunter-gatherers living in small, nomadic groups in the lowland 

rainforests in the north, and were grouped with the similar negrito foragers of the Philippines 

and Andaman Islands. Linguistically, the Andamanese shows limited affinity with a few 

small isolates in Papua New Guinea and eastern Indonesia, and there is no widely accepted 

interpretation of the relationship of the Andamanese languages to the extant linguistic 

families of the South Asia region (Greenberg, 1971; Wurm and McElhanan, 1975; Ruhlen, 

1991; Blevins, 2007).  

The Senoi (e.g. Temiar and Semai) speak Central Aslian languages and live in the 

central higher altitudes where they practice sedentary swidden agriculture. They are taller in 

stature than the Semang, with lighter skin and wavy hair. The Aboriginal Malays (e.g., 

Semelai, Temuan and Jakun) live in the southern lowland forest of the peninsula. Some speak 

Southern Aslian languages, and others speak Austronesian languages including some Malay 

dialects. Physically they resemble Malay and are mostly short, light-skinned, and mostly 
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straight-haired and sometimes referred to as “Mongoloids” (see Bellwood, 1997:69-95). They 

subsist by collecting and trading forest produce, horticulture and fishing. 

In Peninsular Malaysia, several archaeological sites radiocarbon dated back to the 

terminal Pleistocene and Holocene such as Kota Tamban (Zuraina and Tjia, 1988; Zuraina, 

1990), Gua Gunung Runtuh (Mokhtar and Tjia, 1994) and Bukit Bunuh (Mokhtar, 2006), 

though no site in Peninsular Malaysia has produced positive evidence for habitation between 

15,000 and 26,000 years BP (Zuraina et al., 1994; Zuraina et al., 1998; Mokhtar, 2006). This 

observation is probably due to scanty use of the present-day peninsular landmass at the height 

of the LGM, owing to the relocation of the coastally oriented population to lowlands now 

inundated by sea (Bellwood and Renfrew, 2003; Bulbeck, 2011). Sea levels between 26,000 

and 43,000 years BP were higher than at the LGM, and evidence of habitation is found from 

the basal archaeological deposits of two rockshelters in southern Thailand, Lang Rongrien 

and Moh Khiew. However, these sites’ faunal remains are mutually exclusive which has been 

interpreted as indicating sporadic visits to Lang Rongrien by a coastally oriented population, 

unlike the more intensive habitation at Moh Khiew (Mudar and Anderson, 2007). After 

15,000 years BP, sites with Hoabinhian-like cobble-stone-based industry begin to appear in 

Peninsular Malaysia at all altitudes, and the subsequent incorporation of Neolithic technology 

of polished stone tools and pottery (Bulbeck, 2004a, 2011). Sumatraliths and other pebble 

tools flaked on only one face tend to be a feature of Hoabinhian assemblages in the western 

half of the peninsula and in northern Sumatra, with no documented cases in southern 

Thailand and very rare instances in central or eastern Peninsular Malaysia (Adi, 2000). 

Sumatraliths’ restricted geographical and chronological distribution suggests a maritime 

interaction across the Melaka Strait as it underwent flooding during the early Holocene 

(Bulbeck, 2008, 2011). 

Bellwood (1990) proposed that the core regions of equatorial and prehumid rainforest in 

Sundaland, particularly in the interiors of Borneo and Sumatra, were only sparsely occupied 

before the expansion of farmers along the coastlines and up the river valleys within the past 

4,000-5,000 years. During the drier conditions of the last glaciation, the foragers were able to 

penetrate the more open forest conditions into the inlands, as shown at Tingkayu and 

Baturong (Hagop Bilo) of Sabah (Bellwood, 1988a) and Kota Tampan of Perak (Zuraina and 

Tjia, 1988). During the wetter and warmer Holocene the closed forest conditions would have 
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restricted them to coastal and riverine zones, except for the Hoabinhian site of interior 

Peninsular Malaysia. 

Bellwood (1997) proposed two migratory patterns in Southeast Asia in relation to their 

language distribution. Southeast Asia’s negrito would represent the relict descendants of the 

“Australo-Melanesian” foragers. Both Austro-Asiatic and Austronesian languages had their 

origins in South China. Austro-Asiatic was brought into SEA during the middle Holocene, 

followed by the Neolithic Austronesian-speaking farmers’ expansion of Mongoloid 

appearance. He suggested that Austro-Asiatic spread southwards into MSEA using a 

mainland route, while Austronesian expanded from Taiwan to the Philippines, subsequently 

into Indonesia and Malaysia. At the beginning of the Neolithic period 2,000-1,200 BC, 

Bellwood (1993) noticed a dramatic cultural change in methods of burial and also the 

presence of a wide range of artefacts that have no precedent in the Hoabinhian culture. 

Therefore, he suggested that the Senoi are descended from Hoabinhian tribes who integrated 

with incoming Neolithic farmers, who also brought with them the Aslian languages currently 

spoken by most Orang Asli groups. Some of the Aboriginal Malays speak Austronesian 

languages, which are closely related to the modern Malay language and other Malay-Chamic 

languages in West Borneo, Sumatra and coastal Vietnam. This indicates they represent a 

separate migration via ISEA (Bellwood, 1993). There is little evidence of a cultural change in 

Peninsular Malaysia until the arrival of bronze and iron metal-working and new artefactual 

styles after 500 BC and Bellwood (1993) suggested that the Aboriginal Malays arrived from 

Sumatra sometime after 2,000 BP. 

Conversely, in attempts to explain the differences between the Orang Asli groups, 

Rambo (1988) proposed a local differentiation model, where the Semang and Senoi 

developed from the same ancestral population but differentiated through adaptation to the 

distinct local ecology they came to occupy. On the other hand, Solheim (1980) suggested that 

the Semang are descended from Hoabinhians who lived on the coast, and that Senoi had an 

indigenous origin, descended from those who lived inland, with subsequent admixture from 

the newly-arrived Aboriginal Malays who brought the Neolithic culture. The first inhabitants 

in the interior mountains would have been subjected to a whole new environment and 

lifestyle, and adapted to swidden farming, causing them to diverge into a distinctive group – 

the Senoi. The Semang remained in the lowland forests having evolved from the earliest 
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populations and traded forest products for tools and food (Rambo, 1988; also Benjamin, 

1985, 1997). 

Bulbeck (1996, 2000) and Rayner and Bulbeck (2001) studied the physical 

anthropological aspects (including dental, cranial and postcranial) of the Orang Asli. A 

comparison of statures by Bulbeck (1996) found both Hoabinhian and Ban Kao people to be 

taller than Neolithic and modern Orang Asli populations. Based on the cranial evidence, 

Bulbeck also suggested that the Semang and Senoi had a common origin and began diverging 

in the early Holocene as a result of differing selection pressures, owing to the adoption of 

agriculture and gene flow between the Senoi and Malay. The ‘Mongoloid’ genetic 

contribution to the cranio-facial characteristics of the Senoi was proposed to originate from 

the expanding Malay (Bulbeck, 2000). Rayner and Bulbeck (2001) reported that the Semang 

and New Guinea populations shared an ancient dental morphology similar to that of 

Europeans and North Africans. Other Southeast Asian and Pacific populations, including the 

Aboriginal Malay, do not seem to possess this morphology. This indicated that the Aboriginal 

Malay migrated later into the peninsular, while Senoi were intermediate between the two 

Orang Asli groups, again suggesting that they are the intermediate between the Semang and 

Aboriginal Malay. 

Bulbeck (2004a) offered an alternative model for the interaction and migration of 

Orang Asli populations based on foraging ranges and the linking trails through the 

peninsula’s forests (affecting their lifestyles). He suggested that the Hoabinhians foraged 

predominantly along well-cleared trails through the jungle, trails that tend to follow valleys 

and a degree of connections between the west and east sides of the Titiwangsa Mountains 

range, the backbone of Peninsular Malaysia (Bulbeck, 2003). However, the trails along the 

lowland stretches were disrupted by later incoming Aslian populations. Hence, Bulbeck 

(2004a) suggested that the Semang would have had to adapt to drastically reduced ranges in 

inaccessible regions, navigating the jungle with minimal reliance on the cleared trails. The 

Senoi may have arisen from the Aslian speakers who sought independence from the main 

commercial network up in the hinterland. Finally, the Aslian communities who adapted to 

living along the rivers and coasts, and thrived in growing international commerce may have 

provided the origins for the Aboriginal Malay who speaks South Aslian languages and 

dialects of Malay (Bulbeck, 2004a). 
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1.9.1 The “Negrito Hypothesis” 

The negrito hypothesis depicts a shared phenotype of dark skin, short stature, and tight 

curly hair among various contemporary groups of hunter-gatherers in SEA, especially in the 

Andaman Islands, Malaysia, and the Philippines. The shared phenotype could be due to a 

common descent from a region-wide, pre-Neolithic substrate of humanity, or alternatively, 

convergent evolution. All Philippine negritos speak Austronesian languages, and all 

Malaysian negritos speak languages in the nuclear Mon-Khmer branch of Austro-Asiatic, and 

Andamanese remain distinct. The negrito hypothesis has been recently tested by 

multidisciplinary approaches and is reviewed here (Blust, 2013; Bulbeck, 2013; Chaubey and 

Endicott, 2013; Endicott, 2013; Heyer et al., 2013; Jinam et al., 2013; McAllister et al., 2013; 

Stock, 2013). Blust (2013) examined the negrito populations through linguistic and cultural 

aspects and argued that the similarity of the names of the thunder god shared between the 

Malaysian and Filipino negrito populations suggested, in favour of the negrito hypothesis, a 

common cultural and linguistic past for these two populations at a time probably preceded the 

end of the Pleistocene, with the Andamanese possibly separating earlier. 

Stock (2013) studied the stature of Andaman Islanders and Aeta foragers from the 

Philippines in relation to phenotypic variation among hunter-gatherer groups more globally, 

and he found no differences; and suggests that considerations of hypotheses of negrito origins 

need to go beyond stature as a defining phenotypic characteristic. Bulbeck (2013) agrees with 

Stock’s conclusion, and his osteology analyses also showed that the Semang shared some 

hints of Southwest Pacific affinities in cranial shape, dental morphology, and dental metrical 

“shape”. The Andamanese have been shown to resemble Africans in their craniometrics and 

South Asians in their dental morphology, while Philippine negritos resemble Mongoloid 

Southeast Asians in these respects and also in their dental metrics. The Andamanese and 

Semang (and Senoi) people have also been found to be more similar to each other, whereas 

Philippine negritos are dissimilar to both. Bulbeck (2013) reported that negritos are 

linguistically diverse and culturally heterogeneous and may differ according to mode of 

subsistence. Drift after initial-founding, admixture and environment also all have to be 

considered as possible mechanisms for regional differences in negrito morphology and 

stature. 

Chaubey and Endicott (2013) examined the genome-wide autosomal SNP data for a 

shared history between the tribes of Little Andaman (Onge) and Great Andaman, and 
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between these two groups and the rest of South and Southeast Asia (both negrito and non-

negrito groups). The Onge and Great Andamanese negritos are the closest genetic 

neighbours, the latter appear to have received a degree of relatively recent admixture from 

adjacent regional populations but also share a significant degree of genetic ancestry with 

Malaysian negrito groups. Chaubey and Endicott (2013) find the Onge are more closely 

related to Southeast Asians than they are to present-day South Asians. There are subsequent 

admixtures with neighbouring populations (both between negrito lineages and with non-

negrito lineages), but found no evidence of a single ancestral population for the different 

groups traditionally defined as negritos in SEA. Jinam et al. (2013) analysed the admixture 

patterns and genetic differentiation in negrito groups (Jahai and Kensiu) and modern Malay 

from Peninsular Malaysia and Singapore, using genome-wide SNP data. They found possible 

traces of recent admixture in both the negrito groups with the Malay, which indicated that the 

admixture was as recent as one generation ago. 

Heyer et al. (2013) identify two predominantly Philippine negrito mtDNA lineages, 

B4b1 and P9 (as well as P10), both are rarely found in any of the Southeast Asian, Southwest 

Pacific, or African populations, again indicating unique mtDNA haplogroups in the 

Philippine negritos. McAllister et al. (2013) analysed the mtDNA haplogroups by SNP 

hierarchical typing of short-statured Australian Aboriginal groups in Far North Queensland 

(FNQ) and Tasmania with those of other Australian Aboriginal populations and SEA negrito 

populations (Philippines Batek and Mamanwa, and mainland Southeast Asian Jahai, 

Mendriq, and Batak). The principle components analysis (PCA) and multidimensional scaling 

(MDS) results showed that the FNQ and Tasmanian mtDNA haplogroups cluster with those 

of other Australian Aboriginal populations and are only very distantly related to Southeast 

Asian negrito haplogroups. The result seems to coincide with finding by Delfin et al. (2011) 

who identified two Y chromosome haplogroups, C-RPS4Y and K-M9 that predominate 

among the Filipino negritos. These MSY (male-specific region of the Y chromosome) 

haplogroups represent founding lineages in the Asia-Pacific region that are also shared with 

indigenous Australians, and not found among the Filipino non-negrito populations. Hence, 

Delfin and colleagues conclude a possible divergence and subsequent gene flow between 

some Filipino negrito groups and indigenous Australians. 

In overall, Blust’s (2013) work seems to be the only one who argued linguistically for 

the negrito hypothesis in the negrito populations in Malaysia, Philippines and Andaman 



40 

 

Islands. Other fields of research like osteometry and genetics found no shared ancient 

ancestry between the three populations arguing against the negrito hypothesis. These three 

populations appear to share a similarity in physical appearance and mode of subsistence, if 

not more. 

1.10 Modern Malay in Peninsular Malaysia 

The present-day modern Malay, AKA ‘Deutero-Malay’, in Peninsular Malaysia speak 

Malay language, which is a major language of the Austronesian family. It is believed that the 

Malay in Peninsular Malaysia consist of various sub-ethnic groups of different ancestral 

origins migrated from Indochina and the Indonesian archipelago centuries ago (Wheatley, 

1961). It is suggested that the modern Malay in the west (Melayu Minang) and south (Melayu 

Jawa and Melayu Bugis) of Peninsular Malaysia are historically and culturally closer to the 

Indonesian populations compared to the Malay in the north-eastern regions (Melayu 

Kelantan) (Hatin et al., 2011). They are also referred to as Deutero-Malay, the descendants of 

the Proto-Malay, who have had historical influences and genetic admixture from the Arab, 

Chinese, Indian, Javanese, Siamese, Sumatran and Thai traders (Comas et al., 1998). An 

alternative theory by Fix (1995) suggested that the Deutero-Malay originated from southern 

China over the past 3-3.5 ka (after the migration of the Proto-Malay) who then intermarriaged 

with the Proto-Malay and traders of the ancient trade routes resulted in the diverse recent 

Deutero-Malay populations that is now known as the modern Malay (Fix, 1995; Bellwood, 

1997). 

1.11 Previous Phylogeographic Analysis 

The sequence and timing of processes leading to the settlement of Southeast Asia by 

modern humans remain extremely controversial. As mentioned earlier, for many years, the 

question was addressed primarily using indirect archaeological and linguistic evidence, 

leading to a consensus that the archipelago was largely re-settled within the last 6,000 years 

by Austronesian-speaking, rice-growing communities from South China/Taiwan (Diamond, 

1988; Blust, 1996; Bellwood, 1997). These were assumed to have replaced and/or assimilated 

the hunter-gatherer populations that had formerly inhabited the region. So far, most of the 

archaeological and linguistic studies on prehistoric modern human activities in Southeast 

Asia have therefore focused mainly on the last 6,000 years, in particular on a Neolithic arrival 
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from south China and Taiwan. However, recent genetic evidence has challenged this 

consensus. 

Saha et al. (1995), Gajra et al. (1994) and Gajra et al. (1997) studied allele frequency 

data from many genetic loci (the so-called ‘classical markers’) of the Semai Senoi and they 

argued from this that the population had undergone a long period of isolation. Saha et al. 

(1995) analysed polymorphisms in red blood cell enzymes and plasma proteins of 349 Semai 

Senoi. They found private alleles of both red cell glucose-6-phosphate dehydrogenase 

(G6PD) and 6-phosphogluconate dehydrogenase which they argued indicated that the Senoi 

may have been isolated genetically and have a long population history. Saha et al. (1995) also 

analysed the genetic distance by both cluster and principal components models on multiple 

alleles at up to 13 polymorphic loci, and found a close relationship between the Semai and 

the Khmer of Cambodia, as well as being more closely related to the Javanese than to their 

Malaysian neighbours – the Malay, Chinese, and Tamil Indians. The Senoi did not appear to 

have a real link with the Vedda of Sri Lanka. A similar conclusion was suggested by Gajra et 

al. (1994) and Gajra et al. (1997) who looked at several forms of lipoproteins in Semai from 

Betau, Pahang. They found one of the ancestral haplotypes of apolipoprotein E allele had 

risen to high frequency, indicating, they argued, a long population history for the Orang Asli. 

In 1988, Harihara et al. studied the RFLP of mtDNA samples taken from the Philippine 

Aeta, Japanese Ainu, Japanese, Koreans and Vedda of Sri Lanka. They carried out analyses 

using maximum parsimony and genetic distance methods and found that the Japanese, Ainu, 

and Korean populations were closely related to each other, while Aeta was found to show a 

relatively close relationship to these three populations, and Vedda turn out to be quite 

different from the other four populations. Another early study on coastal and highland PNG 

mtDNA RFLP by Stoneking et al. (1990) highlighted the importance of extensive geographic 

sampling of a defined area that led to better understanding of the influence of geography on 

mtDNA variation in human populations. Stoneking et al. (1990) was one of the first reports 

to find the 9-bp COII/tRNA
Lys

 intergenic deletion in mitogenome (Cann and Wilson, 1983; 

Wrischnik et al., 1987) at nucleotide positions (np) 8281-8289 that characterised haplogroup 

B. The deletion occurs at 40% mtDNAs of the coastal populations, and is seen in Indonesia 

and fixed in Polynesia, while it is absent from the highland populations and Australia 

(Hertzberg et al., 1989; Stoneking et al., 1990; Redd et al., 1995; Sykes et al., 1995; Kayser 

et al., 2006; Soares et al., 2011). The results suggested the highland PNG populations have 
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more ancient and long-term isolation from one another and from coastal populations 

(Stoneking et al., 1990). 

Ballinger et al. (1992) examined the RFLP mtDNA of seven Asian populations 

including Malaysian Chinese, Malay and Orang Asli from Peninsular Malaysia, northern 

Borneo, Han Chinese from Taiwan, Vietnamese and South Korean. Their phylogenies were 

reconstructed with RLFP data and adopted a haplogroup annotation method then which was 

completely different from the current system. However, five of their Semai (Senoi) samples 

were found to form a population-specific branch in their phylogeny, a group which they 

called then as group I with haplotypes (73, 75, 78, 81, 82) (Ballinger et al., 1992:142). Other 

haplogroups they identified included haplogroups “D”, “A”, “E” and “F” that were observed 

in nearly all of their Asian samples. Ballinger et al. (1992) found these Orang Asli 

populations of Peninsular Malaysia showed close affinities to the Austronesian-speaking 

Sabah Aborigines in northern Borneo and the people of coastal Papua New Guinea, implying 

that there was some degree of Austronesian admixture to the Orang Asli in Peninsular 

Malaysia. 

Melton et al. (1995) studied the control region of the mtDNAs of the SEA and 

Polynesian populations, including 30 Semai Senoi samples from Peninsular Malaysia. The 

classic marker of 9-bp COII/tRNA
Lys

 intergenic deletion was found in 37% of their Senoi 

samples, and they carried mutation at np 16217. All of these belonged to haplogroup B4a. 

They presented a neighbour-joining tree for the haplogroup B samples which indicated that 

the Orang Asli samples clustered closely with samples from the Philippines, East Indonesia, 

and Java than to Malay, or Barito-area Kalimantan, implying again a possible Austronesian 

influence. 

The mtDNA and Y-chromosome data from throughout Mainland and Island Southeast 

Asia, including Peninsular Malaysia and Sumatra of Western Indonesia, both suggest that the 

picture is much less simple than the prevailing ‘Out of Taiwan’ model suggests (Capelli et 

al., 2001; Macaulay et al., 2005; Hill et al., 2006, 2007; Soares et al., 2008; Hunt et al., 

submitted). Hill et al. (2006) showed using HVS-I data that haplogroups M21 and R21 have 

an ancient ancestry in Peninsular Malaysia estimated to the Upper Pleistocene (Macaulay et 

al., 2005). Haplogroup M21a has the most common type present in the Semang and its 

derivatives are found in a minority of Malay, Aboriginal Malay and Borneo. This seems to 

indicate gene flow from Semang and Senoi in the north to Aboriginal Malays in the southern 
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part of Peninsular Malaysia and into Borneo (also see Adelaar, 2006). Interestingly, the 

negrito Andamanese exhibits mainly Indian subcontinental haplogroups M31 and M32 

(Thangaraj et al., 2005), while Omoto (1995) found the Philippine Aeta has its own unique 

classical blood markers that are not observed in other populations. The findings showed none 

of the Semang samples resemble M lineages of either the Andaman Islands or the Philippine 

Aeta, hence refuting the traditional notion of a specific shared ancestry at least on the 

maternal line between the negrito groups of the Andamanese, Peninsular Malaysia and the 

Philippines. 

Haplogroups B and R9 are two familiar and widespread mtDNA haplogroups in 

Southeast Asia based on the control region analyses (Torroni et al., 1994; Kivisild et al., 

2002; Yao and Zhang, 2002; Yao et al., 2002a; Kong et al., 2003b). The two main divisions 

of haplogroup B are B4 and B5; the majority of B haplogroups in ISEA falls within B4a. 

Haplogroup B4* is most common in China (especially Yunnan province) and also common 

in Korea and Thailand (Hill, 2005), with B4a being most frequent among Taiwanese 

Aboriginals and in the Philippines (Hill et al., 2007) and dating to ~25.8 ka (Soares et al., 

2009). However, B4a1 is uncommon elsewhere and not found further west than Southeastern 

Borneo and Lombok, and is most common in the Moluccas (Hill, 2005). Hill et al. (2006) 

found a particular B5b type elevated to high frequency in the Batek Semang, probably by 

drift. This type appears to have been introduced fairly recently from ISEA because it is a 

derived type present only in the Batek, and the root type is found in Sumatra and eastern 

Indonesia, but not in Indochina (Hill C, Soares P, Mormina M, and Richards M, unpublished 

data).  

Haplogroup R9 has two main branches, R9b and F (Kong et al., 2003b), which diverged 

~47 ka (Soares et al., 2009). Haplogroup R9b was found at high frequency in the Aboriginal 

Malays. Complete mtDNA genome sequences of R9b in Hill et al. (2006) indicated a 

Pleistocene origin in Indochina, with early-Holocene dispersal southwards to Peninsular 

Malaysia and into ISEA. The finding, at least these R9b lineages, appeared to counter 

Bellwood’s (1997) view of Aboriginal Malays arriving from ISEA in conjunction with the 

expansion of Austronesian speakers in the archipelago. However, this may not necessarily 

fully represent the lineages that probably did arrive in the Aboriginal Malays from ISEA.  

Haplogroup F1a is common and widespread in SEA, where its subclade F1a1a is found 

largely in Temiar and Semai of Senoi. The root type is observed in Indonesia, Taiwan and 
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China (Hill et al., 2006), and also in Thailand (Fucharoen et al., 2001) and Vietnam by 

control region data. Haplogroup F1a1a has a mid-Holocene age in the Senoi, and probably 

dispersed from South China as early as 9,000 ya. In 2007, Hill et al. (2007) examined a total 

of 1026 control region mtDNA samples from across ISEA and Taiwan. One of their findings 

showed that haplogroup F1a and its two sister subclades F1b and F1c are found in MSEA, 

with F1b and F1c mainly restricted to South China, suggesting a possible origin for F1 and 

F1a in South China. This view is at least consistent with the Neolithic populations proposed 

by Bellwood (1993) where Peninsular Malaysia was inhabited by groups dispersed from 

central Thailand (associated with Ban Kao culture), and then intermarried with indigenous 

inhabitants to create the ancestors of the Senoi, bringing along Austro-Asiatic to Peninsular 

Malaysia at the same time. 

Subclade N9a6a is found unevenly distributed in all 3 main Orang Asli groups, but is 

most diverse in the Aboriginal Malays, and is also shared with the Malay in Peninsular 

Malaysia and Indonesia. This derived lineage was dated to ~5,500 (± 2,600) years by control 

region data (Hill et al., 2006). Haplogroup N9a is rather widespread in mainland East Asia, 

and its subclade N9a6 is found typically in South China, Indochina, and Sumatra. Similar to 

that of haplogroup R9b, N9a has a deep ancestry in MSEA and a more recent expansion 

through Peninsular Malaysia into ISEA. 

The HVS-I data showed haplogroups N21 and N22 are more diverse in the Aboriginal 

Malays compared to other Orang Asli groups, and may be associated with other Austronesian 

speaking populations in Taiwan, ISEA and Micronesia (Hill et al., 2007). Haplogroup N21 is 

also found in some Peninsular Malaysia Malay and has much more diverse lineages in 

Indonesia than the Aboriginal Malays, pointing to an origin in island Southeast Asia and a 

recent dispersal into Peninsular Malaysia. N22 was previously found by Hill et al. (2006) in 

Orang Asli Temuan, which is rare but more diverse in Indonesia.  

The Aboriginal Malays (Semelai) also have M7c3c (previously nominated as M7c1c in 

Trejaut et al. (2005) and Hill et al. (2006)) that may have arrived recently from offshore. 

M7c3c nested within the ancestral M7c* which is more common and diverse in China. 

Haplogroup M7c3c dates to 8,300 (± 2,400) years by HVS-I data (Hill et al., 2006), which 

predates the Out of Taiwan event into Island Southeast Asia. Considering the lower standard 

error of the date, however, the signal is consistent with an expansion of Austronesian 

speakers, mariner-agriculturalists, or both, in the mid-Holocene, as proposed by Bellwood 
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(2004), from Taiwan into ISEA, followed by a small-scale dispersal into Peninsular Malaysia 

from Indonesia.  

Hill et al. (2006) detected four colonisation events in the Orang Asli populations in 

Peninsular Malaysia; over 50 ka, ~10 ka, mid-Holocene and late Holocene. All three Orang 

Asli groups have roots dated to ~50 ka, and all have been affected by subsequent migrations 

to the peninsula. Although these dates bring to mind the traditional layer-cake theory (Carey, 

1976), the theory of unchanged relicts of earlier population waves was unsupported by Hill et 

al. (2006). The phylogenetic differences reflect distinct ancestries to a greater degree than 

Rambo’s (1998) local differentiation hypothesis would imply. At any rate, the role of local 

evolution for all three Orang Asli groups should be acknowledged for at least after the early 

Holocene, at the same time having several waves of immigration from the north affecting the 

Semang and Senoi, and from island Southeast Asia affecting the Aboriginal Malays. 

Two recent genetic reconstructions (Bulbeck, 2011; Oppenheimer, 2011) include 

discussion of mtDNA evidence published from Hill et al. (2006) onwards. Firstly, they 

argued that distinctive Aboriginal Malay lineages appeared to be of broad Sunda, rather than 

solely ISEA, origin (Oppenheimer, 2011; Bulbeck, 2011; Hill et al., 2006). While this 

observation grouped them with Semang and Senoi, their lineages differed uniquely from the 

latter two, who shared unique ancient local lineages of their own. Secondly, all three Orang 

Asli groups appeared to have Holocene admixture from further north in MSEA, likely 

Neolithic and from multiple sources and times, possibly consistent with linguistic suggestions 

of Neolithic Austro-Asiatic language shift among the Orang Asli groups. However, while the 

northern Neolithic influence is similar to Bellwood’s Thai Ban Kao suggestion, the Da But 

culture in Vietnam was suggested as possibly a more likely source archaeologically (Bulbeck, 

2011). Finally, modern Peninsular Malays appeared to derive more of their mtDNA ancestry 

from MSEA, and possibly South China, than from ISEA (Oppenheimer, 2011).  

The mtDNA diversity of Orang Asli in Peninsular Malaysia is low because of their 

small populations and resulting genetic drift. The Aboriginal Malays are comparatively more 

diverse than any other Orang Asli groups, but still less diverse than lineages found in ISEA. 

Although the Archaeogenetics Research Group at the University of Leeds has studied much 

of Southeast Asia in some detail, there has been a weakness in the sampling coverage. 

Previous work was limited to 260 samples from eight Orang Asli groups: Batek, Jahai and 

Mendriq of Semang, Temiar and Semai of Senoi, and Temuan, Semelai and Jakun of 
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Aboriginal Malay. Moreover, they were mostly analysed only at the low resolution afforded 

by the mtDNA control region (Hill et al., 2006). Only nine of these samples were completely 

sequenced, including a Malay sample (Macaulay et al., 2005). I therefore decided to carry out 

complete mtDNA genome sequencing by increasing the present coverage of samples among 

the Orang Asli subgroups and equally importantly, the Malay populations in West Malaysia 

and Sumatra of Western Indonesia, as well as to expand potential source regions to include 

mainland and Island SEA samples in order to identify the lineages present in these 

populations, their origins and age estimation.  
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1.12 Objectives and Hypotheses 

The overall objective of this study is to describe and examine complete mitochondrial 

DNA genome variation in Peninsular Malaysians and potential source populations in South 

Asia, Mainland Southeast Asia and Indonesia, in order to test the current hypothetical models 

of settlement history of Peninsular Malaysia and the surrounding regions. 

There are several specific, testable hypothetic models of origins of the four broad 

groups today, Semang, Senoi, Aboriginal Malays and mainstream Malay who have settled in 

Peninsular Malaysia in prehistory in multiple events, with more recent ones including origins 

of mainstream Malay: 

1. The traditional layer-cake structure in the three Orang Asli groups of Peninsular 

Malaysia (summarised in Carey, 1976), postulated three successive waves of arrival 

of three ancestral founding groups, settling in Peninsular Malaysia as ancestors of 

the modern indigenous groups in the following order: the Semang and Senoi 

ancestral groups both came separately from South Asia, while the Aboriginal 

Malays (aka ‘Proto-Malays’) arrived separately from Island Southeast Asia. The 

Malay or ‘Deutero-Malay’ arrived from ISEA as a fourth ‘layer’. 

2. The human ecology or local differentiation model (Rambo, 1988; Benjamin, 

1985, 1986) relates Orang Asli phenotypic variation to niche differentiation. This 

local-continuity model suggests the Semang and Senoi were both originally of 

coastal indigenous Peninsular origin, adapting physically to their respective 

different interior lifestyles, with inland Senoi subsequently admixing with the 

newly-arrived Neolithic Aboriginal Malays arriving from ISEA (see also Solheim, 

1980).  

3. Bellwood’s (1997) three-wave model involves an initial Pleistocene settlement by 

Australo-Melanesian negrito giving rise to the “Hoabinhians” and thence the 

Semang. These interbred with a wave of migrating Neolithic farmers, who also 

originated further north in MSEA, in the Ban Kao culture of Southern and Central 

Thailand, bringing with them the Aslian languages currently spoken by most Orang 

Asli groups, and giving rise to the Senoi. Aboriginal Malays subsequently arrived as 

Neolithic Austronesian-speaking farmers, migrating ultimately from southern China 

and Taiwan, but proximally from the south via ISEA, then north into Peninsular 
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Malaysia, followed a fourth wave (i.e. modern or Deutero-Malay) taking the same 

route 3-4,000 years ago. 

From these models we can formulate a series of testable hypotheses concerning the 

settlement of the Peninsula.  

 

 To what extent are the Semang the descendants of the earliest settlers, as all of the 

models broadly suggest? Would this correlate with the “Hoabinhians”? Have they 

admixed with other groups and if so what were the sources of the additional 

lineages? This can be tested by looking at the extent of the indigenous lineages not 

found elsewhere, as opposed to lineages shared with other populations. When did 

they arrive? This can be tested by looking at the time depth of the indigenous 

lineages. Where did they come from? The Southern Coastal Route suggests India, 

but before South Asian populations began to differentiate significantly. 

 Are the Senoi from a source in India (traditional model), or indigenous to the 

Peninsula (Rambo, 1988; Benjamin, 1985, 1986), or the result of mid-Holocene 

Australo-Asiatic migration from Thailand (Ban Kao), perhaps with some 

assimilation of Semang, as Bellwood (1997) proposes – or from coastal Vietnam 

(Da But), as Bulbeck (2008) has suggested? This can be tested by comparing Senoi 

lineages with the Semang and other Southeast Asians in Thailand and Vietnam, and 

to South Asians. 

 Are the Aboriginal Malays also indigenous to the Peninsula (Rambo, 1988; 

Benjamin, 1985, 1986) or the result of migrations from ISEA (Bellwood (1997) and 

the traditional model)?  

 Are the Malay the result of migrations from ISEA as Bellwood (1997) and the 

traditional model propose or might they actually have some indigenous ancestry 

within the Peninsula? To what extent do they also have ancestry from India and 

China, as the historical evidence would suggest?  

 

Some partial answers to these questions have already been proposed on the basis of 

mtDNA control-region variation (Hill et al., 2006; Bulbeck, 2011; Oppenheimer, 2011), and 

these will also be considered, but this thesis proposes to provide more precise answers by 

using whole-mtDNA genomes. 
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2 Material and Methods 

2.1 Samples 

2.1.1 Participants in this study 

I collected cheek swabs from 85 maternally unrelated Orang Asli individuals from three 

Semang locations (after HVS-I sequencing, I reduced the number of samples from 144 to 85 

to avoid duplication of haplotypes within families). The locations are situated in Lenggong 

and Pengkalan Hulu of Perak and Baling of Kedah respectively, all distributed along the 

Malaysian-Thailand border, and the samples were collected in January 2010.  The samples 

include four subgroups of Semang maternal ancestry (nine Lanoh, 21 Kintak, 34 Kensiu and 

four Jahai), and two Senoi subgroups (one Semai and 16 Temiar). As this research involved 

human participants and biological samples (cheek swabs), I obtained the informed consent of 

each individual prior to sample collection. We also obtained the appropriate ethical clearance 

from the ethical board of the Faculty of Biological Sciences, University of Leeds. The cheek 

swabs were collected from the participants using OmniSwab (Fisher Scientific). I allowed the 

swab to air dry for 20 min, then replaced it in its plastic bag and sealed it up with label giving 

the sample code. I kept the swabs in the freezer at -20 °C.  

Other samples include the previously analysed 260 Orang Asli (Hill et al., 2006, 2007), 

and 297 modern Malay samples (Zafarina Zainuddin, personal communication and aliquots 

Dec 2011). The 297 modern Malay samples were collected from four regions in Peninsular 

Malaysia: 109 Northeast Peninsular Malay (10 Bachuk, 1 Tumpat, 42 Kota Bahru, 31 Rantau 

Panjang and 25 Machang of Kelantan), 98 Northwest Peninsular Malay (11 Yan and 26 

Lembah Bujang of Kedah, 20 Kuala Kurau, 18 Parit Buntar and 23 Gopeng of Perak), 56 

Southeast Peninsular Malay (20 Pontian, 6 Benut, 13 Semerah and 17 Muar of Johor), and 34 

Southwest Peninsular Malay (22 Sri Menanti and 12 Lenggeng of Negeri Sembilan). The 

sampling locations in Peninsular Malaysia are shown in Figure 2.1. I re-sequenced the HVS-I 

region of the 297 Malay samples, from here I chose appropriate representatives from each 

haplogroup for complete mtDNA sequencing, which include 186 Malay samples and 40 

Orang Asli (21 from Hill et al., 2006 and 19 from my Semang samples). 
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K.C. Ang (personal communication) provided 91 HVS-I sequences of Orang Asli from 

Peninsular Malaysia and we have obtained permission to analyse these as well (the School of 

Environmental and Natural Resources Sciences, Faculty of Science and Technology, 

Universiti Kebangsaan Malaysia). Ang’s 91 Orang Asli sequences consist of 18 subgroups 

(Table 2.1); they cover nps 16047-16567 in HVS-I with a size of ~520 bp each. 

 

Table 2.1 Distribution of three Orang Asli subgroups from Peninsular Malaysia including samples from Hill et 
al., (2006), K.C. Ang and my Orang Asli samples. 
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29 51 / / / 32 / / / 1 / 51 2 / / / 61 33 260 

K.C. Ang 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 91 

K.K. Eng / 4 9 34 21 / / / / 1 / 16 / / / / / / 85 

  34 60 15 39 26 37 5 5 5 7 5 72 7 5 5 5 66 38 436 

 

 

Figure 2.1 Locations of the samples included in this study. Key: Kedah (KDH), Kelantan (KEL), Perak (PRK), 

Negeri Sembilan (NS) and Johor (JHR) in Peninsular Malaysia; Kota Kinabalu (KK), Brunei (BRU), Palangkaraya 

(PRY) and Banjarmasin (BAN) in Borneo; Padang (PAD), Palembang (PLB) and Bangka (BGK) in Sumatra; 

Tengger (TGR) in Jawa Timur; Bali (BAL), Mataram (MTR), Waingapu (WAI), Alor (ALO) in Nusa Tenggara 

Timur; Palu (PAL), Ujung Pandang (UJP) and Manado (MND) in Sulawesi; Thailand (THA); Vietnam (VNM); 
Philippines (FIL); Aboriginal Taiwanese (TAI). 
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2.1.2 Comparative published mtDNA complete sequences 

I retrieved a total of 2206 published complete mtDNA genome sequences (obtained 

from GenBank, the 1000 Genomes Project (McVean et al., 2012), and Archaeogenetics 

Research Group, Huddersfield) to build up the most complete phylogeny possible, for precise 

dating and to help make phylogeographic interpretations. The unpublished complete mtDNA 

genome locations from the Archaeogenetics Research Group, Huddersfield are shown in 

Figure 2.1. 1226 belonged to the haplogroup M, 978 belonged to N, including its major 

subclade haplogroup R, and one each of L3b1a1 and L4a1. The complete mtDNA genome 

data mainly came from Mainland and Island Southeast Asia (MSEA and ISEA) and 

surrounding regions, including East, Central, North and South Asia, Australasia, Polynesia 

and Melanesia. These sequences were published by the 1000 Genomes Project (McVean et 

al., 2012), Andrews et al. (1999), Chandrasekar et al. (2009), Chaubey et al. (2008), Costa et 

al. (2009), Dubut et al. (2009) , Dancause et al. (2009), Family Tree DNA (2010), Fornarino 

et al. (2009), Friedlaender et al. (2007), Gunnarsdóttir et al. (2011a) , Gunnarsdóttir et al. 

(2011b), Hartmann et al. (2009), Hill et al. (2006, 2007), Ingman et al. (2000), Ingman and 

Gyllensten (2003), Jinam et al. (2012), Kong et al. (2003a, 2003b), Kong et al. (2006), Kong 

et al. (2011), Kumar et al. (2008), Li (2006) , Loo et al. (2011), Macaulay et al. (2005), 

Mishmar et al. (2003) , Nohira et al. (2010), Palanichamy et al. (2004), Peng et al. (2010, 

2011a, 2011b), Pierson et al. (2006), Pradutkanchana et al. (2010), Rajkumar et al. (2005), 

Rani et al. (2010), Scholes et al. (2011), Soares et al. (2008), Soares, Rito and Richards 

(personal communication, 31/10/2012), Starikovskaya et al. (2005), Tabbada  et al. (2010), 

Tanaka et al. (2004), Thangaraj et al. (2005) , Thangaraj et al. (2006), Wang et al. (2011), 

Zhao et al. (2009)   and Zheng et al. (2011)1. 

The locations or regions of the complete sequences are indicated by three-letters codes 

in the phylogeography analysis. A complete list of the codes is shown in Appendix A. 

 

                                                

1 The haplogroup D complete sequences in Zheng et al. (2011) were included in the whole-

mtDNA tree but these were not used in ML estimation due to time constraints. 
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2.2 Phenol-chloroform DNA extraction 

To each cheek swab, I added 44 µl of 10% sodium dodecyl sulphate (SDS), 200 µl 

RBC lysis buffer, and 5 µl of 50 µg/ml Proteinase K, to digest nucleic acid proteins and 

remove contaminants. The RBC lysis buffer consists of 0.32 M sucrose, 1% Triton     , 5 

mM MgCl2.6H2O and 12 mM Tris-HCl pH 7.5. I incubated the mixture at 54 ˚C for 2 h and 

then 37 ˚C overnight.  

Next day, 250 µl of 5M NaCl was added to the swab, which was left on ice for 40 min, 

followed by 30 min spin in a microcentrifuge at 13,500 rpm. I then added 500 µl of 

phenol:chloroform:isoamyl alcohol 25:24:1 (saturated with 10 mM Tris, pH 8.0, 1 mM 

EDTA, Sigma product number P3803), mixed and spun for 10 min. The upper aqueous phase 

was transferred to a new tube and the phenol:chloroform:isoamyl alcohol step repeated. After 

that, the upper aqueous phase was transferred to another new tube, I mixed in 150 µl of 7.5 M 

ammonium acetate and 1 ml of 100% ethanol (ice-cold) to the tube and left overnight at -20 

˚C.  

On the third day, the tube was spun for 20 min at 13,500 rpm. Supernatant was 

decanted, and I washed the pellet with 500 µl ice-cold ethanol before spinning at 13,500 rpm 

for 10 min. After the supernatant was removed, the washing with ethanol was repeated again. 

The supernatant was removed after washing, and I left the pellet to air-dry. Lastly, I re-

suspended the pellet in 100 µl of distilled water. 

2.3 Whole-genome amplification 

Certain samples of low DNA concentration were whole-genome amplified by the 

Illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare). This amplification kit is 

capable to yield 4 μg to 7 μg from nanograms of DNA sample within 1.5 to 2 hours. The kit 

contains 0.9 ml of sample buffer, 0.9 ml of reaction buffer, 100 µl enzyme mix and 20 µl 10 

ng/µl control DNA (lambda), which is enough for 100 reactions.  

For each 1 µl (10 ng DNA) sample, I added 9 µl of sample buffer and denatured at 95 

˚C for 5 min. It was then immediately transferred onto ice (~4 ˚C) to prevent the reformation 

of double-stranded DNA. Next, I added 9 µl reaction buffer and 1 µl enzyme mix into the 

sample and started the incubation process at 37 ˚C for 2 hours, followed by the inactivation of 
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enzyme at 85 ˚C for 15 min. Finally, I diluted the amplified product with 180 µl distilled 

water. 

2.4 Polymerase Chain Reaction (PCR) Amplification and Sequencing 

PCR is a powerful tool in molecular biology that can identify a specific sequence of 

DNA between two short oligonucleotide primers and amplify that sequence. The mtDNA 

amplification was carried out by means of a thermo-cycling reaction, i.e. cycles of 

denaturation, primer annealing and DNA extension. The final volume of each reaction was 35 

µl, and it was carried out in a 96-well PCR plate. Each reaction contained 25.9 µl of 

deionized water, 7.1 µl of 5x buffer for GoTaq DNA polymerase (pH 8.5 with 7.5 mM 

MgCl2) from Promega™, 0.43 µl of 100 mM each deoxynucleoside triphosphate (dATP, 

dCTP, dGTP, and dTCP) from Bioline™, 0.18 µl of 100 pmol/µl each primer (Eurofins 

MWG Operon), 0.21 µl of GoTaq DNA Polymerase (Promega™) and 1 µl of DNA.  

The samples were first amplified for HVS-I using primers set either 15873F (5′-

TACTCAAATGGGCCTGTCCT-3′) and 388R (5′-TGGTTAGGCTGGTGTTAGGG-3′) 

(Table 2.2), or 15256F (5′-AGACAGTCCCACCCTCACAC-3′) and 131R (5′-

ACAGATACTGCGACATAGGG-3′). Targeted samples were selected for complete mtDNA 

genome sequencing based on the HVS-I control-region variation, and if necessary as well the 

HVS-II. The complete mtDNA genome was amplified in 22 overlapping PCR fragments of 

around 900 base pairs (bp) each; using a set of 22-23 specifically designed nested primers 

with matching annealing temperatures (either Table 2.2 or Table 2.3). Each pair of primers 

was used individually in each PCR reaction, not multiplex. The temperature profile of the 

amplification reaction was 95 ˚C for 5 min in initial denaturation step, followed by 35 cycles 

of 95 ˚C for 30 s, 55 ˚C for 30 s and 72 ˚C for 70 s before the final extension step at 72 ˚C for 

10 min.  
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Table 2.2 22 pairs of nested primers used for complete mtDNA genome PCR amplification designed and 
optimised by Maria Pala (research fellow in the Archaeogenetics Research Group, Huddersfield). 

N° Name Primer Sequence (5′–3′) N° Name Primer Sequence (5′–3′) 

1 
15873F TACTCAAATGGGCCTGTCCT 

12 
7494F CATGGCCTCCATGACTTTTT 

388R TGGTTAGGCTGGTGTTAGGG 8533R TATTTGGAGGTGGGGATCAA 

2 
16413F TGAAATCAATATCCCGCACA 

13 
8389F ATGGCCCACCATAATTACCC 

727R AGGGTGAACTCACTGGAACG 9333R GGAGCGTTATGGAGTGGAAG 

3 
449F TTATTTTCCCCTCCCACTCC 

14 
9183F CCTCTACCTGCACGACAACA 

1466R GGCCCTGTTCAACTAAGCAC 10175R GCACTCGTAAGGGGTGGAT 

4 
1331F AAGGTGTAGCCCATGAGGTG 

15 
9815F CCACGGACTTCACGTCATTA 

2342R AGGCTTATGCGGAGGAGAAT 10858R AATTAGGCTGTGGGTGGTTG 

5 
2007F TGGTGATAGCTGGTTGTCCA 

16 
10609F TAACCCTCAACACCCACTCC 

3169R GGAAGGCGCTTTGTGAAGTA 11767R GCGTTCGTAGTTTGAGTTTGC 

6 
2835F CCAACCTCCGAGCAGTACAT 

17 
11402F TGACTCCCTAAAGCCCATGT 

3894R GGTTCGGTTGGTCTCTGCTA 12544R TGGCTCAGTGTCAGTTCGAG 

7 
3587F CCCTGGTCAACCTCAACCTA 

18 
12227F CTAACTCATGCCCCCATGTC 

4526R GATGAGTGTGCCTGCAAAGA 13299R TTGGTTGATGCCGATTGTAA 

8 
4350F CCATCCCTGAGAATCCAAAA 

19 
12913F TCCAACTCATGAGACCCACA 

5325R TGATGGTGGCTATGATGGTG 14068R AGGTGATGATGGAGGTGGAG 

9 
5162F TCGCACCTGAAACAAGCTAA 

20 
13714F GGAAGCCTATTCGCAGGATT 

6096R TTACAAATGCATGGGCTGTG 14856R AGGAGTGAGCCGAAGTTTCA 

10 
5888F TACCTCACCCCCACTGATGT 

21 
14478F CAACCATCATTCCCCCTAAA 

6959R GCCACCTACGGTGAAAAGAA 15598R GACGGATCGGAGAATTGTGT 

11 
6643F TCCTACCAGGCTTCGGAATA 

22 
15195F TATCCGCCATCCCATACATT 

7818R AGGGCGATGAGGACTAGGAT 16439R GCACTCTTGTGCGGGATATT 
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Table 2.3 23 pairs of alternative nested primers used for complete mtDNA genome PCR amplification. 

N° Name Primer Sequence (5′–3′) N° Name Primer Sequence (5′–3′) 

1 
15587F CTCCGATCCGTCCCTAACAAA 

13 
8011F AGTACTCCCGATTGAAGCCC 

155R AATAGGATGAGGCAGGAATCAA 9218R TTGGTGGGTCATTATGTGTTGT 

2 
16522F TAAAGCCTAAATAGCCCACA 

14 
8459F AACTACCACTTACCTCCCTC 

775R AGGCATAGCGTTTTGAGCTG 9928R AACCAGATCTACAAAATGCCAGC 

3 
584F TAGCTTACCTCCTCAAAGCA 

15 
9742F CAGAGTACTTCGAGTCTCCCTTC 

1612R GCTACACTCTGGTTCGTCCAAG 10925R AGGTTGGGGAACAGCTAAATAGC 

4 
1172F CCTGGCGGTGCTTCATATCC 

16 
10279F CCCTACCATGAGCCCTACAAAC 

2433R GTGTTGGGTTGACAGTGAGGG 11472R TTGAGAATGAGTGTGAGGCG 

5 
2182F GCAGCCACCAATTAAGAAAGCG 

17 
11081F ATAACATTCACAGCCACAGA 

3235R CCTTAACAAACCCTGTTCTTGGG 12195R GGTCGTAAGCCTCTGTTGTCAG 

6 
2815F GGGCGACCTCGGAGCAGAAC 

18 
11654F ACAGCCATTCTCATCCAAACCC 

4227R ATGCTGGAGATTGTAATGGGT 12848R GCTTGAATGGCTGCTGTGTTG 

7 
3598F CTCAACCTAGGCCTCCTATT 

19 
12358F ACCACCCTAACCCTGACTTCC 

4552R AAAAATCAGTGCGAGCTTAGC 13311R TGCTAGGTGTGGTTGGTTGATG 

8 
4410F CAGCTAAATAAGCTATCGGG 

20 
13134F AGCAGAAAATAGCCCACTAA 

5483R AGGTAGGAGTAGCGTGGTAAGG 14371R ATTGGTGCTGTGGGTGAAAGAG 

9 
4955F CATAGCAGGCAGTTGAGGTGG 

21 
13930F ATCACACACCGCACAATCCC  

6345R AGATGGTTAGGTCTACGGAGGC 14992R AAGGTAGCGGATGATTCAGC 

10 
5871F GCTTCACTCAGCCATTTTACCT 

22 
14603F GAAGGCTTAGAAGAAAACCC 

6831R TGGTAGCGGAGGTGAAATATGC 15743R GGAGGTCTGCGGCTAGGAG 

11 
6604F CACCTATTCTGATTTTTCGG 

23 
15256F AGACAGTCCCACCCTCACAC 

7682R GGAAAATGATTATGAGGGCG 15978R AGCTTTGGGTGCTAATGGTG 

12 
7403F ACCCTACCACACATTCG  

8560R GGGCAATGAATGAAGCGAACAG 

 

 To fill in the gaps of the complete genomes, which sometimes were not able to be 

amplified by the primers described above, I also used a third set of 32-pair nested primers, 

Table 2.4, published by Maca-Meyer et al. (2001). These primers produce shorter amplicons 

and were much more readily amplified. However, this PCR amplification mix was different 

from before and the volume for each reaction was 23.7 µl, which consisted of 18.1 µl 

deionized water, 5.0 µl of 5x Colorless GoTaq DNA polymerase buffer (pH 8.5 with 7.5 mM 

MgCl2) from Promega™, 0.3 µl of 100 mM deoxynucleoside triphosphate (dNTP) from 

Bioline™, 0.125 µl of 100 pmol/µl each primer (Eurofins MWG Operon), 0.15 µl of GoTaq 

DNA Polymerase (Promega™). Lastly, I added 1.3 µl of DNA to get a final reaction volume 

of 25 µl. I used the same temperature profile of the amplification reaction as described above. 



56 

 

Table 2.4 32 pairs of alternative nested primers used for complete mtDNA genome PCR amplification (Maca-
Meyer et al., 2001). 

N° Name Primer Sequence (5′–3′) N° Name Primer Sequence (5′–3′) 

1 L16340 AGCCATTTACCGTACATAGCACA 17 

  

L8299 ACCCCCTCTAGAGCCCACTG 

  H408 TGTTAAAAGTGCATACCGCCA H8861 GAGCGAAAGCCTATAATCACTG 

2 L382 CAAAGAACCCTAACACCAGCC 18 

  

L8799 CTCGGACTCCTGCCTCACTCA 

  H945 GGGAGGGGGTGATCTAAAAC H9397 GTGGCCTTGGTATGTGCTTT 

3 L923 GTCACACGATTAACCCAAGTCA 19 

  

L9362 GGCCTACTAACCAACACACTA 

  H1487 GTATACTTGAGGAGGGTGACGG H9928 AACCACATCTACAAAATGCCAGT 

4 L1466 GAGTGCTTAGTTGAACAGGGCC 20 

  

L9886 TCCGCCAACTAATATTTCACTT 

  H2053 TTAGAGGGTTCTGTGGGCAAA H10462 AATGAGGGGCATTTGGTAAA 

5 L2025 GCCTGGTGATAGCTGGTTGTCC 21 

  

L10403 AAAGGATTAGACTGAACCGAA 

  H2591 GGAACAAGTGATTATGCTACCT H10975 CCATGATTGTGAGGGGTAGG 

6 L2559 CACCGCCTGCCCAGTGACACAT 22 

  

L10949 CTCCGACCCCCTAACAACCC 

  H3108 TCGTACAGGGAGGAATTTGAA H11527 CAAGGAAGGGGTAGGCTATG 

7 L3073 AAAGTCCTACGTGATCTGAGTTC 23 

  

L11486 AAAACTAGGCGGCTATGGTA 

  H3670 GGCGTAGTTTGAGTTTGATGC H12076 GGAGAATGGGGGATAGGTGT 

8 L3644 GCCACCTCTAGCCTAGCCGT 24 

  

L12028 GGCTCACTCACCCACCACATT 

  H4227 ATGCTGGAGATTGTAATGGGT H12603 ACGAACAATGCTACAGGGATG 

9 L4210 CCACTCACCCTAGCATTACTTA 25 

  

L12572 ACAACCCAGCTCTCCCTAAG 

  H4792 ACTCAGAAGTGAAAGGGGGCTA H13124 ATTTTCTGCTAGGGGGTGGA 

10 L4750 CCAATACTACCAATCAATACTC 26 

  

L13088 AGCCCTACTCCACTCAAGCAC 

  H5306 GGTGATGGTGGCTATGATGGTG H13666 AGGGTGGGGTTATTTTCGTT 

11 L5278 TGGGCCATTATCGAAGAATT 27 

  

L13612 AAGCGCCTATAGCACTCGAA 

  H5832 GACAGGGGTTAGGCCTCTTT H14186 TGGTTGAACATTGTTTGTTGG 

12 L5781 AGCCCCGGCAGGTTTGAAGC 28 

  

L14125 TCTTTCTTCTTCCCACTCATCC 

  H6367 TGGCCCCTAAGATAGAGGAGA H14685 CATTGGTCGTGGTTGTAGTCC 

13 L6337 CCTGGAGCCTCCGTAGACCT 29 

  

L14650 CCCCATTACTAAACCCACACTC 

  H6899 GCACTGCAGCAGATCATTTC H15211 TTGAACTAGGTCTGTCCCAATG 

14 L6869 CCGGCGTCAAAGTATTTAGC 30 

  

L15162 CTCCCGTGAGGCCAAATATC 

  H7406 GGGTTCTTCGAATGTGTGGTAG H15720 GTCTGCGGCTAGGAGTCAAT 

15 L7379 AGAAGAACCCTCCATAAACCTG 31 

  

L15676 TCCCCATCCTCCATATATCC 

  H7918 AGATTAGTCCGCCGTAGTCG H16157 TGATGTGGATTGGGTTTTTATGTA 

16 L7882 TCCCTCCCTTACCATCAAATCA 32 

  

L15996 CTCCACCATTAGCACCCAAAGC 

  H8345 TTTCACTGTAAAGAGGTGTTGG H16401 TGATTTCACGGAGGATGGTG 
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2.5 Gel electrophoresis 

The PCR amplification products were visualized using gel electrophoresis. 

Electrophoresis is a technique that separates molecules (nucleic acids and proteins) according 

to their size and charge in a gel matrix run in an electric field. I prepared 2% agarose by 

adding 2 g of agarose in 100 ml of 0.5% TBE (Tris/Borate/EDTA) buffer with a drop of the 

fluorescent dye, 5 mM ethidium bromide. The dye intercalates between DNA strands and 

enables visualisation of the DNA bands under UV transillumination. I run the gel at a 

constant voltage of 80V for approximately 30 min. A molecular weight ladder of 0.13 μg/μl 

at 100 bp intervals (Promega™) was used to estimate the size of the PCR products and the 

concentration of the amplicons by comparing the intensity of the bands with those of the 

ladder. 

2.6 DNA purification and sequencing 

Our laboratory used two companies to purify and sequence the mtDNA fragments: 

GATC Biotech Ltd. (London) and Eurofins MWG Operon (Ebersberg, Germany).  Both 

companies used the same purification and Sanger-based sequencing methods. The PCR 

products were first purified using the QIAquick purification kit (QIAGEN) or alternatively 

spin columns, and cycle sequencing on ABI 3730xl 96-capillary DNA Analyzer (AB Applied 

Biosystem, Foster City, CA, USA) using application of ABI Big Dye Terminator Kit 

associated with enzyme TaqFS.  

I diluted the PCR products with sterilised water to obtain ~10 ng/µl of amplified DNA 

per sample before sending them for sequencing. Normally, the same amplification primers 

were used in the sequencing process. Alternatively, the following set of sequencing primers 

was used since they annealed downstream to the 3′ end of the amplification primers and 

hence were more effective in sequencing (Table 2.5). 
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Table 2.5 Primers for sequencing reactions, designed and optimised by Maria Pala. (Tm – annealing 
temperature) 

N° Name Sequence (5′-3′) 
Tm 

(°C) 
N° Name Sequence (5′-3′) 

Tm 

(°C) 

1 131R ACAGATACTGCGACATAGGG 55.3 12 7614F AAGACGCTACTTCCCCTATC 55.2 

2 
16521F TAAAGCCTAAATAGCCCACA 55.3 13 8423F CTATTCCTCATCACCCAACT 54.1 

739R GTGGTGATTTAGAGGGTGAA 55.0 14 9213F CACCAATCACATGCCTATC 54.7 

3 614F AATGTTTAGACGGGCTCAC 55.2 15 9922F CCTGATACTGGCATTTTGTAG 55.0 

4 1402F AAACTTAAGGGTCGAAGGTG 56.0 16 10689F GGCCTAGCCCTACTAGTCTC 54.9 

5 2176F AAAGCAGCCACCAATTAAG 55.6 17 11452F TGCCGCAGTACTCTTAAAAC 55.8 

6 2897F ATCCAATAACTTGACCAACG 55.1 18 12246F CTAACAACATGGCTTTCTCA 54.0 

7 3638F TAGCCGTTTACTCAATCCTC 54.6 19 12973F CTACTAGGCCTCCTCCTAGC 55.1 

8 4410F CAGCTAAATAAGCTATCGGG 54.6 20 13723F TTCGCAGGATTTCTCATTAC 55.5 

9 5191F CACCCTTAATTCCATCCAC 55.2 21 14546F ATAATAACACACCCGACCAC 54.8 

10 5999F TCTAAGCCTCCTTATTCGAG 54.1 22 15324F CAACACTCCACCTCCTATTC 54.6 

11 6643F TCCTACCAGGCTTCGGAATA 59.7  

 

2.7 Data Manipulation 

2.7.1 Variants scoring 

The sequences were aligned against the revised Cambridge Reference Sequence (rCRS; 

Andrews et al., 1999) using the Sequencher 5.0 software. Variants were recorded when the 

aligned positions were different from the rCRS. The data is collected in two formats, FASTA 

and as a table of variants in Excel. The Excel database contains the information of the 

samples, identified haplogroups, variants in the sequence, FASTA format, which make it easy 

to select samples for a specific network in .tor format and to build input files for PAML and 

BEAST. 

A transition (A↔G or C↔T) was annotated by the position at which it differs from the 

rCRS, so that a transition at nucleotide position (np) 16189 is denoted ‘16189’; an extra 

nucleotide letter after the position number for transversion (A↔C, A↔T, T↔G, C↔G), for 

e.g. ‘16257A’ is a mutation at np 16257 from cytosine (C) to adenine (A). An ‘i’ stands for 

an insertion and a ‘d' for a deletion. I neglected any transversions to C and length 

polymorphisms around polycytosine (poly-C) tracts, which occur at nps 303-315 and 16184-

16193 when np 16189 has a transition, because they are extremely frequent and are the result 

of heteroplasmy (Bendall and Sykes, 1995). A heteroplasmic position is annotated with the 
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position number followed by letter ‘R’. The full version of Sequencher 5.0 can be used to 

export the aligned contig for one complete mtDNA genome as a single FASTA file. 

Alternately, the following steps were used to generate the individual FASTA file. 

2.7.2 Error detection 

All sequences and traces were carefully read side by side. I checked every sequence 

against the existing HVS-I database to not only identify haplogroup status but also to detect 

sequencing errors. Error detection was carried out, which involves drawing networks of all 

the data on the basis of identification of errors outlined by Bandelt et al. (2001). Bandelt et al. 

(2001) identified five major types of errors in a taxonomy of artefacts: Type I base shift, II 

reference bias, III phantom mutations, IV base misscoring and V artefactual recombination. 

The procedure in error detection, any unclear signals in the traces, rare mutations like 

transitions or transversion at positions of low mutation rate, or potential heteroplasmic sites 

were re-sequenced. Any private mutations were taken as a potential error and I performed a 

second reading of the traces, or re-sequenced the sample if the chromatogram gave 

ambiguous reading.   

2.7.3 v2nall 

I used an application software called v2nall, which was written by Dr. Vincent 

Macaulay of the University of Glasgow, to convert the variants/polymorphisms scored for 

each sample into FASTA/PHYLIP format. The input text file consists of variants of each 

sample per row excluding its sample ID. The variants were manually edited into five digits, 

for example, np 73 became 00073 and np 7819A was 07819A, and saved as a .tab file. I then 

executed the application in MSDOS and converted the variants into the consensus mtDNA 

sequence, which could be manually edited into individual FASTA/PHYLIP format. They 

were now readily usable by the bioinformatics tools. 

2.7.4 Geneious 

Geneious 5.0 (Biomatters) is a program integrating bioinformatics and molecular 

biology tools for DNA, RNA and protein sequence alignment and analysis. Here, I used the 

basic feature to search and retrieve deposited nucleotide sequences associated with an article 

or data for an organism and genetic marker from NCBI GenBank. The search keywords I 

used consisted of “Homo sapiens complete mitochondri* 16500:17000 [slen]” coupled with a 

country name (Southeast Asia and neighbouring country) or an article title. When the search 
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was completed, I selected and exported the sequences as a single text file or individual 

FASTA files. 

2.7.5 Alignments by Clustal algorithm 

I used BioEdit and Sequencher 5.0, both Clustal-based programs, to align the sequences 

against the rCRS. However, BioEdit was not able to align the complete mtDNA sequences 

because of its length (16568 bp), and they had to be manually aligned by introducing gaps. In 

Sequencher 5.0, alignment of various length nucleotide sequences against the rCRS is done 

automatically and in a considerably shorter time. The aligned contig can only be viewed, not 

saved, in the demo version, but it could be saved or exported with the Sequencher USB key. 

For both programs, alignments were saved as a text, FASTA or PHYLIP file which was 

ready to be further used in mtDNASyn, Phylogenetic Analysis by Maximum Likelihood 

(PAML) and Bayesian Evolutionary Analysis by Sampling Trees (BEAST). 

2.7.6 mtDNA-GeneSyn tool 

The mtDNA-GeneSyn tool is open-source software, developed for Windows-based 

platforms and implemented with the C++ language, which is available at: 

http://www.ipatimup.pt/downloads/mtDNAGeneSyn.zip (Pereira et al., 2009). The tool 

identifies and classifies the mtDNA polymorphisms in a FASTA file containing aligned 

sequences against the rCRS. I clicked on the “Polymorphism” menu and chose “Import 

Aligned File” to import and process the aligned complete sequences. The output file lists the 

polymorphisms present in each sample, where they can be extracted and compiled into an 

Excel database. Under the same menu, the saved text file can be opened and converted into a 

Röhl data format (*.rdf) format by choosing “Export to network file”, which is a binary 

matrix recognisable by the Network software. Alternatively, I used fm2net_gui to prepare the 

binary matrix file. 

2.7.7 fm2net_gui 

fm2net_gui is an executable application developed by Christopher Snell, in the 

Archaeogenetics group at the University of Leeds, to convert the mtDNA polymorphisms in a 

MS Excel file (*.xls) into a Network input Torroni RFLP format (*.tor), which we use for 

sequence variants (Figure 2.2). The input Excel file (*.xls) consisted of three columns for 

sample code, variants and number of samples respectively. There are three output options, 

trimming to different calibrated lengths of HVS-I or converting the sequence as it is. 

http://www.ipatimup.pt/downloads/mtDNAGeneSyn.zip
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“Forster” deletes all transversions and any nucleotide position values above 16365 and below 

16090; “Soares” deletes any values above 16400 and below 16051. I used the option “None” 

where no restrictions were applied, to convert the Excel file into a Network file (*.tor).  

 

Figure 2.2 fm2net_gui interface. 

2.8 Phylogeographic Analysis 

Phylogeographic analysis can be broadly defined as the analysis of the geographical 

distribution of the various mtDNA lineages within a phylogeny. A phylogenetic tree is used 

as the basic tool to understand the evolutionary processes of the mitochondrial data. There are 

four main methods for constructing phylogenies, namely Neighbour-Joining (NJ), Maximum 

Parsimony (MP), Maximum Likelihood (ML), and Bayesian inference. Distance methods 

(NJ), which are non-character based, attempt to construct phylogenetic tree based on the 

estimated genetic distance for all pairs of sequences. However, they are considered as inferior 

to character-based methods because these algorithmic approaches strongly reduce the 

phylogenetic information of the sequences (to one value per sequence pair) (Van de Peer, 

2009). MP infers a tree that has the least evolutionary changes to explain the observed data, 

while ML supposes the best hypothesis from a set of alternatives that maximises the 

likelihood of the outcome (Jobling et al., 2004). Like MP and ML, Bayesian methods (such 

as can be carried out using the BEAST software) are character-based, but perform a 

probability analysis that allows inferences to be drawn from both the data and prior 

information. More information is described below. 

 



62 

 

2.8.1 Network 4.6 

Traditional phylogeny constructing methods, such as distance methods and MP often 

fail to form nested sets of haplotypes for mtDNA data, and exhibit incompatibility between 

pairs of characters (Bandelt et al., 1995) due to homoplasy (parallel or reverse mutations). 

For example, the number of equally parsimonious trees from just a set of small RFLP data 

(56 haplotypes) exceeded one billion (Excoffier and Smouse, 1994). Therefore, randomly 

choosing one single MP tree to represent the data can be both misleading and incorrect.  

Network 4.6 implements the median-joining (MJ) and reduced-median (RM) methods 

(Bandelt et al., 1995). Although they are parsimony method, they do not provide a single 

most parsimonious tree for a set of data, but summarise many by representing alternative 

evolutionary pathways with cycles or reticulations. The RM algorithm was chosen in this 

study over MJ, as the latter is a weaker and less reliable approach. During the RM calculation, 

the splits are based on the 0-1 combinations and each haplotype is represented by a 0-1 vector. 

The parsimonious network obtained has median vectors added to each triplet of sequences to 

represent unsampled data or extinct ancestral taxa (Bandelt et al., 1995). RM networks 

highlight character conflicts in the form of reticulations, which can then be interpreted as 

homoplasy (e.g. high rates of homoplasy might lead to members of a single haplogroup being 

independently derived along different routes from the same ancestor), recombination, 

sequence error, or superimposed sequences (Bandelt et al., 1995). The reticulations can be 

resolved by considering parsimony and frequency-based arguments in order to exhibit the 

most likely evolutionary routes through a network. Network can also highlight sequencing 

errors that manifests themselves in implausible network substructures.  

The input file (*.tor) generated by fm2net_gui was imported into Network. The variants 

of each mtDNA sequence were then converted to a binary matrix with two states; 1 for 

presence, 0 for absence of a variant and saved as a *.rdf file. Soares et al. (2009) identified all 

the major hot-spots present in the mtDNA genome based on the number of occurrence in the 

global mtDNA tree. The top ten hot-spots are sites from the control region: nps 16311, 16189, 

16129, 16093, and 16362 in HVS-I and 152, 146, 195 and 150 in HVS-II. The sites can then 

be subjected to a weighing scheme when calculating a reduced-median network in order to 

eliminate some of the less plausible pathways. The default weight of 10 for each of the 

mutations is used, although it can be varied from 1 to 99, ideally not more than 15 because 

when too much weight was put on a character, it might obscure the true evolutionary 



63 

 

pathways and neglect equally acceptable ones. Fast sites in the HVS-I were down-weighted 

before calculating the reduced-median network. The weights of nps 16311, 16189, 16129, 

16093 and 16362 were reduced from 10 to 3. The next fastest sites were reduced to 5; they 

were nps 16086, 16172, 16192, 16278, 16223, 16291, 16319 and 16390. This ranking is 

made according to Soares et al. (2009).   

2.8.2 Phylogenetic trees 

I manually drew the most parsimonious phylogenetic trees computed by the reduced-

median networks for the complete mtDNA data on Microsoft Office Visio 2010. I inserted 

the mutations on the branches as described in 2.7.1. Insertions and deletions were shown only 

when they were phylogenetically informative. The PhyloTree.org website provides the basic 

phylogenetic tree framework of global human mtDNA and haplogroup nomenclature (van 

Oven and Kayser, 2009).  

I then identified the type of mutation change for each mutation with an online Java-

based program called MitoAnalyzer (Lee and Levin, 2000). The program evaluates single 

base-pair changes including mutations, insertions and deletions, and classifies them as tRNA, 

rRNA, control region and non-coding region mutations. The coding region is also subdivided 

into synonymous and non-synonymous mutations. An annotation is added to the end of the 

variants, e.g. s (synonymous), ns (non-synonymous), t (tRNA), r (rRNA), non-coding region 

mutation remains as it is. A reversion to the ancestral state was annotated by a symbol ‘@’ 

and underlined, e.g. ‘@16189’, and recurrent mutation in the tree was simply underlined. 

Variants in italics represent mutations that were associated with mitochondrial-related 

disorders. Fast mutations at nps 16182 and 16183, that were associated with 16189C, and np 

16519 were excluded from the trees. 

The sequence IDs and accession numbers were colour coded according to their 

geographic location (Figure 2.3). The Orang Asli were grouped by three main populations, 

dark green for Semang (Batek, Jahai, Lanoh, Kensiu, Kintak and Mendriq), mid-green for 

Senoi (Semai and Temiar), and light green for Aboriginal Malays (Jakun, Semelai, Temuan 

and Seletar). The Malay from Peninsular Malaysia were grouped by region: Northeast 

Peninsular Malay (Kelantan), Northwest Peninsular Malay (Kedah, and Perak), Southeast 

Peninsular Malay (Johor), and Southwest Peninsular Malay (Negeri Sembilan). 
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Figure 2.3 The colour codes for samples divided according to regional locations. 

2.8.2.1 mtPhyl v4.015 

The mtPhyl package is a useful free software tool for human mtDNA analysis and 

phylogeny reconstruction (Eltsov and Volodko, 2009). It has several helpful features: it 

compares an mtDNA sequence with the rCRS, and the variants can be exported into Excel 

format, or presented as a most-parsimonious phylogenetic tree (guided by the known 

phylogeny) in PowerPoint. Other tools include analysing mutation features, identifying 

mitochondrial haplogroups, calculating the coalescence time of nodes, and downloading 

complete human mtDNA sequences from GenBank. The aligned published complete 

sequences in 2.7.5 were saved as individual FASTA files which were imported into mtPhyl, 

since the program does not allow one to import aligned files of multiple sequences. With the 

advancement of sequencing technology today, the volume of sequence data is increasing 

rapidly, and mtPhyl helps to incorporate this massive amount of data into the phylogenetic 

trees. However, it has to be used with caution: the trees are approximate and have to be 

carefully checked and corrected, and the age estimates are not reliable. 
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2.9 Coalescence time estimation 

I used three methods to estimate the coalescence age of the main clades: the rho (ρ) 

statistic, Maximum Likelihood (ML) and Bayesian Inference (BI). 

2.9.1 The rho (ρ) statistic 

The ρ statistic for coalescence time estimates was first described by Morral et al. (1994) 

and then Forster et al. (1996). ρ is the average number of sites differing between a set of 

sequences and a specified common ancestor. Given a sample of   sequences in a most-

parsimonious tree with observed mutations and a specified root and   links, and take the 

number    as observed mutations along the  th link, ρ can be expressed as    
∑     

 
   

 
 . 

The variance was originally defined as    
 

 
 , assuming all mutations in the estimate 

are independent, which is unlikely (and only occurs if the tree is perfectly starlike). A revised 

formula for the variance that takes into account the non-independence of lineages in non-

starlike phylogenies is given as     
∑   

   
 
   

    (Saillard et al., 2000). The 95% confidence 

intervals were calculated as (                  The posterior conversion in years, using 

the non-linear mutation rate corrected for purifying selection, was carried out using the 

calculator provided in Soares et al. (2009). The major advantage of   is that it is a simple, 

model-free estimate, and it can be applied to any clock. 

2.9.2 Maximum Likelihood (ML) 

ML is here used to calculate branch lengths in a pre-defined tree and was carried out 

with PAML software (Phylogenetic Analysis by Maximum Likelihood; Yang, 1997), 

stipulating a molecular clock in a given nucleotide substitution model. It is hence not used as 

a tree-building method since the RM network for mtDNA sequences is adequate for this.  

In the same folder, there are two input files for PAML analysis, the seqfile (.phy) and 

the treefile (.txt). To prepare the seqfile, sequences were aligned against the rCRS. 

Additionally, np 3107 (a spurious base in the original, erroneous CRS that was retained as a 

deletion to conserve the numbering in the rCRS) was changed from ‘N’ to ‘T’, and np 16519 

was removed entirely since it was not considered in the calibration, resulting in a final length 

of 16568 bp. The seqfile begins with the number of samples, followed by the number of 

nucleotides, and ends with option character ‘G’. The next row begins with another ‘G’ 
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followed by the number of partitions being used. For example, for 100 sequences using 2 

partitions: 

 100 16568 G 

 G 2 

 Next, there is a ‘map’ of the partitions in the sequence corresponding to the HVS 

(partition 2) and the remainder of the molecule (partition 1). Finally, the newick treefile 

contains the shorthand text notation of the tree structure using nested parenthesis (which is 

recognisable by TreeView and FigTree tools). In the baseml.ctl file within the PAML 

package, the name of the seqfile, treefile and outfile are specified and saved (Figure 2.4). 

 

Figure 2.4 A screenshot of the baseml.ctl file opened in Notepad. 

 When all files have been prepared, the PAML analysis is executed by a double-click on 

baseml.exe. For example, the output file contains the length of each partition 16021, 547 (a 

total of 16568 bp), and their rates (1, 14.291754 respectively). The branch lengths   and 

standard errors (SE) are given for one whole gene (data set), for e.g.   0.000135, SE 

0.000014. To obtain the ML genetic distance, I calculated the sum of partitions (0.000135 × 

Rate × Length); (0.000135 × 1 × 16021) + (0.000135 × 14.291754 × 547) = final value, to 

input into the calculator (Soares et al., 2009). Similar calculations were applied for the SEs, 

which were finally converted to 95% confidence intervals. 
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2.9.3 Bayesian evolutionary analysis by sampling trees (BEAST) 

Bayesian evolutionary analysis by sampling trees (BEAST) is a package that employs a 

Bayesian statistical framework for parameter estimation and hypothesis testing of 

evolutionary models from molecular sequence data. The core algorithm of BEAST uses 

Metropolis-Hastings Markov chain Monte Carlo (MCMC) sampling procedures to estimate a 

posterior distribution of effective population size through time directly from a sample of gene 

sequences, given any specified nucleotide-substitution model (Metropolis et al., 1953; 

Hastings, 1970; Drummond et al., 2005;   Drummond and Rambaut, 2009). The Bayesian 

Skyline Plot (BSP) model uses MCMC and is able to co-estimate the evolutionary rate, 

substitution model parameters, phylogeny, and ancestral population dynamics within a single 

analysis, as well as to reconstruct demographic history under various expected scenarios 

(Drummond and Rambaut, 2007).  

BEAST software package v1.7.4 contains BEAST, BEAUti, LogCombiner, 

TreeAnnotator, Figtree and Tracer (v1.5). BEAUTi creates the input file .XML to be run in 

BEAST. The name of the complete mtDNA sequence was edited to carry details of its 

haplogroup, location code and sequence ID (e.g., B4a1a1a_BOR_B4274). The aligned 

sequences were saved as Nexus format (usually .nex or .nxs) by Sequencher and imported 

into BEAUTi.  Nexus format is widely used in phylogenetic programs (for e.g. PAUP and 

MrBayes) for storage and exchange of phylogenetic data such as store DNA and protein 

sequences, taxa distances, alignment scores and phylogenetic trees. Once imported into 

BEAUTi, the sequences were grouped monophyletically, facilitated by the edited sample IDs, 

where each group has at least three or more sequences. The parameters are summarised in 

Table 2.6.  

For BEAST analysis, I used a relaxed molecular clock (lognormal in distribution across 

branches and uncorrelated between them) and the HKY model (nst=2) of mutation with 

gamma-distributed rates. The HKY or HKY85 model (Hasegawa, Kishino and Yano, 1985) 

is considered as the extension of the Kimura80 and Felsenstein81 models, where it allows 

variable base frequencies and distinguishes between the rate of transitions and transversions 

(hence number of substitution types, nst=2). I applied a mutation rate of            

variation/position/year, estimated for haplogroup U6 with four calibration points (Pereira et 

al., 2010), as the molecular clock. I ran up to 450,000,000 iterations, with samples being 

drawn every 1,000 MCMC steps, and discarded burn-in of 10% or 45,000,000 steps. I 



68 

 

checked for convergence to the stationary distribution and sufficient sampling by inspection 

of the posterior samples. 

Table 2.6 The general settings for BEAUTi v1.7.4. 

Tabs BEAUTi v1.7.4 settings 

Partitions No change 

Taxa Define the monophyletic groups (at least >3 sequences) 

Tips No change 

Traits No change 

Sites Substitution Model: HKY 

Base frequencies: Estimated 

Site Heterogeneity Model: Gamma 

Number of Gamma Categories: 10 

Partition into codon positions: Off 

Clocks Name: U6 

Model: Lognormal relaxed clock 
(Uncorrelated) 

Estimate: untick 

Rate: 2.51E-08 (Pereira et al., 2010) 

Trees Tree Prior: Coalescent: Bayesian Skyline 

Number of groups: 10 

Skyline Model: Piecewise-constant 

Tree Model: Choose Random starting tree 

States No change 

Priors No change 

Operators Tick Auto Optimize 

MCMC Length of chain: 450,000,000 

Echo state to screen every: 1000 

Log parameters every: 1000 

File name stem: abc.txt 

Log file name: abc.log.txt 

Trees file name: abc.trees.txt 

 

2.9.3.1 Bayesian Skyline Plot (BSP) 

Bayesian skyline plots were calculated by BEAST and visualised in Tracer. A BSP 

simulates the periods of major expansions (growth) as long as the data is sufficiently 

informative about the population. BEAST outputs two files, a .log.txt containing the posterior 

probability of the evolutionary parameters, and a .trees.txt with the trees generated from the 

sequences. TreeAnnotator can be used to summarise the information in the trees file produced 

by BEAST. 
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Figure 2.5 Settings for Bayesian Skyline Plot in Tracer software. 

Tracer is a graphical tool for visualization and diagnostics of MCMC parameter output 

(Rambaut and Drummond, 2007). The outputs are the median age of the nodes 

monophyletically defined above, the corresponding mean age, the standard deviation, the 

95% lower and upper highest posterior density interval (HPD) and the effective sample size. 

The Bayesian coalescence ages of the nodes are represented by the median age flanked by the 

corresponding 95% HPD intervals. The effective population size is inferred by piecewise 

reconstruction of the demographic history of the population at different points of time and 

space. I generated the BSPs for the Orang Asli and Malay populations in Tracer and exported 

data to Excel. 

To compute the BSP, on Tracer’s “Analysis” menu I selected “Bayesian Skyline 

Analysis” and located the trees file where it will be used to predict the BSP. Other settings 

are “Stepwise (Constant)” for “Bayesian skyline variant”, “Select the traces to use for the 

arguments” that are default at “skyline.popSize” and” skyline.groupSize”, “maximum time is 

the root height’s” set to “median”, and the “number of bins” to “1000” as shown in Figure 

2.5. 
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3 Results and Discussion: Control Region and Haplogroup M 

3.1 Control-region variation 

The primary results show, and analyse, variation in the complete mtDNA genomes of 

Orang Asli (OA, aboriginal peoples) and Malay (mainstream indigenous population) in 

Peninsular Malaysia in order to assist in the reconstruction of ancient population events. This 

process consists first of an overview examination of the populations by viewing and 

reconstructing phylogenetic networks of the short hypervariable segment 1 (HVS-I) 

sequences, followed by reconstructing high-resolution phylogenetic trees built using 

complete sequence mtDNA genomes. The Semang consist of six ethnic groups, Batek, Jahai, 

Mendriq, Lanoh, Kintak and Kensiu. Hill et al. (2006) analysed the first three of these groups 

in previous work and there were no representatives from the remaining three ethnic groups. 

Here I collected from the three further Semang groups (Lanoh (49), Kintak (47) and Kensiu 

(48)) in their northeastern interior locations of Peninsular Malaysia. To avoid duplication of 

haplotypes within families, these numbers were rationalised down, hence the lower numbers 

in Table 3.1. However, on reviewing individual maternal ancestral histories (two-generation) 

on the consent forms, a number of the participants’ samples had mixed ancestry including 

both Semang and Senoi. This made it necessary to re-assign true maternal ancestry, which is 

reflected in Table 3.1 and detailed in its footnotes. On rationalisation and re-assignment of 

maternal ancestry, the three sampled Semang subgroups thus include 23 Kintak, 32 Kensiu, 

nine Lanoh, four Jahai, and two Senoi subgroups that include one Semai and 16 Temiar.  

I characterised the HVS-I sequences corresponding with the results in the previous 

work. There were eight haplogroups found in these Semang and Senoi samples. The 

haplogroup frequencies of the samples are presented in Table 3.1. The reduced-median 

networks for haplogroup M and N were constructed with variants from the characterisation of 

HVS-I diversity. Results showed that the predominant clade among the Semang is M21a at 

47.1% followed by R21 at 36.8%, reaching 56.0% in the Kensiu. Other haplogroups present 

at lower levels in Semang are R9b at 5.6%, M17a1a, N9a6a and B4c at 3.0% each, and M13b 

at 1.5%. In Senoi, there are 58.8% of F1a1a found in the Lanoh of Temiar ancestry, followed 
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by R21 at 17.6% and M21a at 11.8%. Haplogroups N9a6a and B4c are present at relatively 

low frequency among the Temiar and Semai at 5.9% each. 

 

Table 3.1 mtDNA haplogroup frequencies of 85 Orang Asli from Semang and Senoi populations2. 

Haplogroup 
Semang Total 

Semang (%) 

Senoi Total Senoi 

(%) Kintak Kensiu Lanoh Jahai Semai Temiar 

M21a 15(0.65) 11(0.34) 5(0.56) 1(0.25) 32(47.1) . 2(0.13) 2(11.8) 

M13b 1(0.04) . . . 1(1.5) . . . 

M17a1a . 2(0.06) . . 2(3.0) . . . 

N9a6a 1(0.04) 1(0.03) . . 2(3.0) . 1(0.06) 1(5.9) 

R9b 2(0.09) . . 2(0.50) 4(5.6) . . . 

F1a1a . . . . . . 10(0.63) 10(58.8) 

R21 2(0.09) 18(0.56) 4(0.44) 1(0.25) 25(36.8) . 3(0.19) 3(17.6) 

B4c 2(0.09) . . . 2(3.0) 1(1.00) . 1(5.9) 

Total 23 32 9 4 68(100.0) 1 16 17(100.0) 

 

 91 HVS-I sequences representing all 18 ethnic groups of three Orang Asli groups 

(Semang, Senoi, and Aboriginal Malays) in Peninsular Malaysia were provided by K.C. Ang 

(personal communication, see Appendix B). There were five to six samples each from six 

Semang groups (Table 2.1 in Section 2.1.1). These data were found to provide valuable 

information because they include all Orang Asli ethnic groups and gives a good overall view 

of diversity. However, the sequences were problematic and impossible to check without their 

corresponding chromatograms. Many spurious transversions and ambiguous sites were 

observed in these HVS-I sequences that resulted in heavy reticulations in the reduced-median 

networks. Before I could phylogenetically examine the data, problematic sites needed to be 

identified through a series of networks in order to tease out probable sequencing artefacts. 

Furthermore, 89 cytochrome B sequences (nps 14764-15174) were also provided with 

these 91 HVS-I sequences. However, only 84 samples appeared to have matching HVS-I and 

                                                

2 In the haplotypes obtained from Kensiu villages, one M21a and two R21’s are re-classified 

here as of Kintak maternal ancestry, while one R21 is reclassified as of Jahai maternal 

origin and one B4c is reclassified as of Semai, Senoi maternal ancestry. In the haplotypes 

obtained from Kintak villages, two M21a’s, two M17a1a’s and three R21’s are here 

reclassified as Kensiu. In the haplotypes also obtained from Kintak villages, one M21a, 

and two R9b are here reclassified as of Jahai maternal origin. In the haplotypes obtained 

from the Lanoh, 2 M21a’s, 1 N9a6a, 10 F1a1a’s and 3 R21’s are reclassified as of 

Temiar maternal origin. The latter major reclassification is consistent with the fact that 

the Lanoh are known to intermarry extensively with Temiar Senoi. 
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cytochrome B sequences. Cytochrome B provides crucial information in separating the 

haplogroup M samples from the N. The haplogroup M sample is defined by two transitions 

with respect to the rCRS in the cytochrome B sites at nps 14783 and 15043, which are absent 

in the N samples. However, some of the cytochrome B sequences of samples known to be 

haplogroup M from the HVS-I data had either one or other site, but not both, and 19 samples 

that were belonged to R21 on the basis of HVS-I had haplogroup M markers in their 

cytochrome B sequence. Therefore, the cytochrome B data was too unreliable to separate the 

sequences M from N, and not included in the network calculations. The haplogroup 

categorisation for these samples was thus done based on the control-region variants by 

comparing them with the existing data. 

When the HVS-I sequences were aligned and scored against the rCRS, several 

uncommon mutations were detected throughout the sequences. These were nps 16059iA, 

16192/16192iC/iCC/16192G, 16201N, 16516T and 16555T/iT. The score at np 16201N was 

likely a sequencing artefact as this ambiguous site can be resolved by resequencing. 

Insertions at nps 16059iA, 16192iC, 16192iCC and 16555T/iT were similar to Type III 

phantom mutations described by Bandelt et al. (2001), which could be caused by biochemical 

problems with the sequencing reaction. Transversion itself is rare and occurs at a much lower 

rate than transition. Apart from being an unlikely mutation such as the transversion from ‘G’ 

to ‘T’ at np 16516, they were not reported in the literature before. Besides, to have so many 

types of mutations at the same np 16192 only seems to suggest sequencing artefacts. They 

were therefore removed from the reduced-median network calculations as probable 

sequencing artefacts in order to generate more accurate networks. 

 Figure 3.1 shows the reduced-median network of HVS-I for 37 of my OA haplogroup 

M samples (Table 3.1), with the M root indicated on the network. The majority of these, 34 

samples, belong to subhaplogroup M21a, which is defined here by control-region transitions 

at nps 16256 and 16271. There is one sample from M13b (previously M21b) that is defined 

by transitions at nps 16263 and 16381. The remaining two samples belonged to a novel 

haplogroup within M also found in previous work, which is now called M17a1a (Peng et al., 

2010; Tabbada et al., 2010). 
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Figure 3.1 The HVS-I Reduced-median network of haplogroup M for 34 samples. (Label boxes in light grey 
indicate Semang, and light blue for Senoi) 

  

 

Figure 3.2 The HVS-I Reduced-median network for haplogroup N and R for 48 samples. One Semelai of 

Aboriginal Malay sample (ORA; Hill et al., 2006) from haplogroup F1a1a with a transition at np 16304 was included 

in the network to define the R root. (Label boxes in light blue indicate Senoi, light grey for Semang, and light yellow 
for Aboriginal Malay) 

Figure 3.2 shows the HVS-I reduced-median network of haplogroups N and R for 48 

samples of my Orang Asli data (Table 3.1), with the N and R roots indicated on the network. 

Haplogroup B is one of the most common haplogroups in ISEA, consisting of clades B4 and 

B5. Haplogroup B is defined, albeit inadequately, by a 9-bp deletion in the coding region and 

a fast transition at np 16189 in HVS-I (Soares et al., 2007). Haplogroup B4c, seen in Semang, 

Kintak and Senoi, Semai had transitions at nps 16147, 16189, 16217 and 16235. The same 

variants were previously reported in Sumatran samples by Hill et al. (2006) and the root type 

of B4c is seen in Medan, Bangka and Palembang of Sumatra. 
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Figure 3.3 shows the HVS-I reduced-median network of all observed haplogroups 

scored from the 18 Orang Asli subgroups (KC Ang’s data). Instantly, some transversions 

were observed to wrongly define certain haplogroups like those in clades R21 and M. In 

clade R21, transversions at nps 16197A and 16192G were postulating more new branches 

and even went on to define several samples. The same situation happened to some M samples 

where nps 16214A and 16100T were behaving in a similar way, where np 16214A was 

creating a new tip of the network as a private mutation. Bandelt et al. (2001) mentioned this 

is how artefacts normally manifest in those seeming private mutations. Apart from their 

absence in previous works, these transversions occurred frequently in the data suggesting 

they were sequencing artefacts. 

Figure 3.4 shows the HVS-I corrected reduced-median network for all haplogroups 

(K.C. Ang’s data) after the probable artefactual transversion sites 16100T, 16192G, 16197A 

and 16214A were removed. The network now better distinguishes the haplogroups observed 

in the 18 Orang Asli subgroups (K.C. Ang), although some reticulations are still present. Not 

all haplogroups scored for the same haplogroup shared the same variants. By reading the 

sequences against their chromatograms, which unfortunately were not available to us, 

ambiguous sites could have been checked by examining the signals of the traces. Good clear 

signals/peaks provide sequences of higher level of confidence. In order to better examine the 

lineages, I calculated reduced-median networks for haplogroups M and N separately.  

Figure 3.5 shows the HVS-I reduced-median network for haplogroup M (K.C. Ang’s 

data) after the removal of problematic sites, such as nps 16100T, 16214A, 16192iC from the 

calculation. Apart from the predominant haplogroup M21a, M7c is found in the Semelai of 

Aboriginal Malay, similarly reported by Hill et al. (2006), where it is also found in Malay, 

and other Austronesian speaking populations in Taiwan, ISEA and Micronesia. The ancestor 

M7c* is the most diverse and common haplogroup in South China, and is believed to have 

dispersed into ISEA and then into Peninsular Malaysia. The age of haplogroup ‘M7c1c’ 

(currently it is M7c3c) was estimated at ~8,300 (±2,400) years ago in the ancestry of the 

Aboriginal Malays, suggested an origin from ISEA and Indonesia into Peninsular Malaysia 

(Hill et al., 2006). 
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Figure 3.3 The HVS-I reduced-median network of all haplogroups found in K.C. Ang’s 18 Orang Asli subgroups. 

 

Figure 3.4 The HVS-I corrected reduced-median network of all haplogroup found in K.C. Ang’s 18 Orang Asli 
subgroups. 

 

Figure 3.5 The HVS-I reduced-median network for haplogroup M of K.C. Ang’s 37 samples. (Label boxes in 
light blue indicate Senoi, light grey for Semang, and light yellow for Aboriginal Malay) 
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In Figure 3.6, the HVS-I reduced-median network for haplogroups N and R of 56 

samples (K.C. Ang’s data) is shown. Haplogroup R21 is still present in a tangle of 

reticulations, and although it is free of obvious sequencing artefacts, there were probably still 

some errors. The reticulation is due to different clusters sharing one to two variants with one 

another, hence when it is presented in a network, the nodes are unavoidably connected to 

each other in reticulations.   

 

Figure 3.6 The HVS-I reduced-median network for haplogroups N and R of K.C. Ang’s  56 samples. The roots 
N and R are indicated in the network. 

Table 3.2 mtDNA haplogroup distribution of 18 Orang Asli subgroups (K.C. Ang). 

  Semang Senoi Aboriginal Malay/Proto-Malay 
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Total(%) 

M* . . . . . . . . . . . . . 4 5 . . . 9(9.9) 

M21a 5 . . . . 4 5 5 . . . . . . . . . 1 20(22.0) 

M13b . . . . . 1 . . . . . . . . . . . . 1(1.1) 

M7c3c . . . . . . . . . . . . . . . . 1 . 1(1.1) 

E . . . . . . . . . . . . 2 1 . 3 . . 6(6.6) 

N21 . . . . . . . . . . . . . . . . 1 2 3(3.3) 

N22 . . . . . . . . . . . . . . . . . 1 1(1.1) 

N9a6 . . . . . . . . . . . . . . . 2 . . 2(2.2) 

R9b . . . . . . . . . . . . 1 . . . . . 1(1.1) 

R21 . 5 6 5 5 . . . 5 5 5 5 . . . . . 1 42(46.2) 

F1a1a . . . . . . . . . . . . 1 . . . 2 . 3(3.3) 

B4c . . . . . . . . . . . . 1 . . . . . 1(1.1) 

B5a . . . . . . . . . . . . . . . . 1 . 1(1.1) 

No. of samples 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 91(100.0) 

 

Table 3.2 shows the mtDNA haplogroup distribution of 18 Orang Asli subgroups (K.C. 

Ang’s data). The Semang and Senoi show considerably lower diversity, where the clades are 

predominantly haplogroups M21a and R21, and one individual of M13b was sampled from 
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Mendriq, Semang. In the Aboriginal Malay, the haplogroup diversity is much higher than the 

northern groups, as noted before by Hill et al. (2006). The limited number of sequence types 

and high levels of haplogroup sharing suggest that these Orang Asli populations lost diversity 

through drift. 

Table 3.3 shows the combined data of 436 Orang Asli samples and haplogroups from 

260 samples in Hill et al. (2006), 91 K.C. Ang and 85 samples from this study. Again, M21a 

remains the predominant clade at 25% among all the Orang Asli samples. It is seen in all six 

Semang subgroups, as well as in the neighbouring Senoi subgroups CheWong and Jah Hut, 

and in the Aboriginal Malay (Temuan and Semelai). R21 is present in 19.5% of the samples, 

especially in all Semang subgroups. It is also observed among Senoi, Temiar (31%), who are 

situated immediately to the south and west of the Semang in northern Peninsular Malaysia, 

and Semelai and Jakun of Aboriginal Malay that are next to each other in the south. The third 

common haplogroup that is present in all three Orang Asli subgroups is F1a1a at overall 

18.3%, but particularly the Senoi. R9b is seen in 6.7% of the samples in the Semang and 

Aboriginal Malay. B5b is seen only in the Batek and Mendriq of Semang at 38% and 5% 

respectively (3.4% of all the samples). N9a6 (5.0%) and M13b (2.8%) are present in the 

Orang Asli subgroups in a rather similar distribution and frequency pattern, where they are 

found in almost half of Semang and Aboriginal Malay, and Temiar, Senoi. The genetic 

makeup of Aboriginal Malay subgroups, in particular Semelai and Temuan, are more diverse 

compared to Semang and Senoi. Haplogroups found only in Aboriginal Malay include N21 

(6.2%), M7c3c (2.1%), E (1.4%), M22 (1.4%), N22 (1.1%), M21c (0.5%), and M7c1a 

(0.2%). 
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Table 3.3 Combined Orang Asli subgroups and haplogroups for mtDNA HVS-I of 260 samples in Hill et al. (2006), 91 K.C. Ang (personal communication) and 85 (this study). 

Haplogroup 

Semang Senoi Aboriginal Malay 

Total(%) 
Batek Jahai Lanoh Kensiu Kintak Mendriq CheWong 

Jah 

Hut 

Mah 

Meri 
Semai 

Semok 

Beri 
Temiar Jakun Kanak Kuala Seletar Semelai Temuan 

M* . . . . . . . . . . . 2(0.03) 1(0.14) 4(0.80) 5(1.00) . 1(0.02) 1(0.03) 14(3.2) 

M21a 19(0.56) 9(0.15) 5(0.33) 11(0.30) 15(0.54) 31(0.84) 5(1.00) 5(1.00) . . . 5(0.07) . . . . 2(0.03) 2(0.05) 109(25.0) 

M21c . . . . . . . . . . . . . . . . 2(0.03) . 2(0.5) 

M13b . 2(0.03) . . 1(0.04) 2(0.05) . . . . . 1(0.01) . . . . 4(0.06) 2(0.05) 12(2.8) 

M22 . . . . . . . . . . . . . . . . . 6(0.16) 6(1.4) 

M17a1a . . . 2(0.05) . . . . . . . . . . . . . . 2(0.5) 

M7c1a . . . . . . . . . . . . . . . . 1(0.02) . 1(0.2) 

M7c3c3 . . . . . . . . . . . . . . . . 9(0.14) . 9(2.1) 

E . . . . . . . . . . . . 2(0.29) 1(0.20) . 3(0.60) . . 6(1.4) 

N21 . . . . . . . . . . . . . . . . 20(0.30) 7(0.18) 27(6.2) 

N22 . . . . . . . . . . . . . . . . . 5(0.13) 5(1.1) 

N9a6 . 9(0.15) . 1(0.03) 1(0.04) . . . . . . 4(0.06) . . . 2(0.40) 1(0.02) 4(0.11) 22(5.0) 

R9b . 2(0.03) . . 2(0.07) . . . . . . . 1(0.14) . . . 17(0.26) 7(0.18) 29(6.7) 

F1a1a . 5(0.08) 6(0.40) 5(0.14) 5(0.18) . . . 5(1.00) 6(0.86) 5(1.00) 37(0.51) 1(0.14) . . . 4(0.06) 1(0.03) 80(18.3) 

R21 1(0.03) 33(0.55) 4(0.27) 18(0.49) 2(0.07) 2(0.05) . . . . . 22(0.31) 1(0.14) . . . 2(0.03) . 85(19.5) 

B* . . . . . . . . . . . . . . . . . 3(0.08) 3(0.7) 

B4a . . . . . . . . . . . . . . . . 2(0.03) . 2(0.5) 

B4c . . . . 2(0.07) . . . . 1(0.14) . . 1(0.14) . . . . . 4(0.9) 

B5a 1(0.03) . . . . . . . . . . 1(0.01) . . . . 1(0.02) . 3(0.7) 

B5b 13(0.38) . . . . 2(0.05) . . . . . . . . . . . . 15(3.4) 

Total 34(1.00) 60(1.00) 15(1.00) 37(1.00) 28(1.00) 37(1.00) 5(1.00) 5(1.00) 5(1.00) 7(1.00) 5(1.00) 72(1.00) 7(1.00) 5(1.00) 5(1.00) 5(1.00) 66(1.00) 38(1.00) 436(100.0) 

                                                

3 M7c3c was previously named M7c1c (Hill et al., 2006). 



79 

 

Table 3.4 Distribution of the modern Malay samples grouped according to sample regions and haplogroups. 

The four regions in Peninsular Malaysia are Northeast Peninsular Malay (NEM), Northwest Peninsular Malay 
(NWM), Southeast Peninsular Malay (SEM), and Southwest Peninsular Malay (SWM). 

No. Haplogroup NEM NWM SEM SWM Total % 

1 A 0 0 1 0 1 0.3 

2 B4a 3 5 1 2 11 3.7 

3 B4a1a 4 3 1 0 8 2.7 

4 B4b1 0 1 0 0 1 0.3 

5 B4c1b2 3 4 4 10 21 7.1 

6 B4c2 1 4 0 0 5 1.7 

7 B5a 9 4 4 0 17 5.7 

8 B5b 0 3 1 0 4 1.3 

9 B6a1a 0 1 1 3 5 1.7 

10 C7a 1 1 0 0 2 0.7 

11 D4a3 1 0 0 0 1 0.3 

12 D5b 0 0 1 0 1 0.3 

13 E1a1a 2 1 7 0 10 3.4 

14 E1a2 0 0 3 0 3 1.0 

15 E1b 3 3 1 0 7 2.4 

16 E2a 0 0 4 0 4 1.3 

17 F1a1 2 2 0 0 4 1.3 

18 F1a1a 8 7 2 0 17 5.7 

19 F1a3 2 1 0 0 3 1.0 

20 F1a4 1 2 0 0 3 1.0 

21 F1f 6 2 0 1 9 3.0 

22 F3a 1 2 0 0 3 1.0 

23 F3b 1 0 0 0 1 0.3 

24 F4b 0 2 0 0 2 0.7 

25 M* 2 2 3 0 7 2.4 

26 M12 3 2 0 0 5 1.7 

27 M13 1 2 0 0 3 1.0 

28 M17c 5 1 0 0 6 2.0 

29 M20 6 2 3 0 11 3.7 

30 M21a 1 3 0 1 5 1.7 

31 M21c 2 1 0 0 3 1.0 

32 M21d 1 1 0 0 2 0.7 

33 M22a 0 2 0 0 2 0.7 

34 M22b 0 0 0 1 1 0.3 

35 M26a 3 0 1 0 4 1.3 

36 M26b 0 1 1 0 2 0.7 

37 M2b 0 1 0 0 1 0.3 

38 M30 1 0 0 0 1 0.3 

39 M32c 0 0 1 0 1 0.3 

40 M37 0 0 0 1 1 0.3 

41 M47 0 1 0 0 1 0.3 

42 M5 0 1 0 0 1 0.3 

43 M50 3 2 0 0 5 1.7 

44 M51 3 0 1 0 4 1.3 

45 M71 1 0 1 2 4 1.3 

46 M72 1 0 0 1 2 0.7 

47 M73 0 0 0 1 1 0.3 

48 M74b 0 3 0 0 3 1.0 

49 M77 1 0 0 0 1 0.3 

50 M7b 1 2 0 7 10 3.4 

51 M7b3 0 0 2 0 2 0.7 

52 M7c3c 8 3 3 0 14 4.7 
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No. Haplogroup NEM NWM SEM SWM Total % 

53 N10 2 3 0 0 5 1.7 

54 N21 2 1 0 1 4 1.3 

55 N22 1 0 0 1 2 0.7 

56 N8 0 0 1 0 1 0.3 

57 N9a 1 0 0 1 2 0.7 

58 P1d 1 0 1 0 2 0.7 

59 Q1 0 0 1 0 1 0.3 

60 Q3 0 1 0 0 1 0.3 

61 R* 0 5 0 0 5 1.7 

62 R11b 2 0 0 0 2 0.7 

63 R21 1 0 0 0 1 0.3 

64 R22 2 1 5 0 8 2.7 

65 R6a 1 0 0 0 1 0.3 

66 R7a 0 0 0 1 1 0.3 

67 R9b 4 0 0 0 4 1.3 

68 U1a 1 0 0 0 1 0.3 

69 U2b1 0 1 0 0 1 0.3 

70 U7 0 3 0 0 3 1.0 

71 Y2a 0 5 1 0 6 2.0 

 Total 109 98 56 34 297 100.0 

 

The 297 ‘Malay ZZ’ samples, provided by Zafarina Zainuddin (248 of which were 

reported in Nur Haslindawaty et al., 2010), were sequenced at the control region and 

compared with the HVS-I networks adapted from Hill (2005). In order to identify these 

Malay data from the existing ones in the networks, the data is denoted as “Malay ZZ” in the 

networks. Table 3.4 shows the HVS haplogroup distribution of Peninsular Malay according 

to sampling regions. As expected, there are 71 haplogroups including the M* and R* lineages 

in the Malay samples (now rather few compared with earlier MSEA studies, due to improved 

resolution and characterisation), more than three times the number of haplogroups among 

OA. The largest single haplogroup identified is B4c1b2 at 7.1%, followed by B5a and F1a1a, 

which both contributed 5.7% each to the pool. M7c3c is found in 4.7% of the Peninsular 

Malay, 3.7% each of M20 and B4a, and 3.4% each of E1a1a and M7b. 

A total of 226 samples were selected for complete mtDNA genome sequencing: 19 

Semang, 8 Senoi, 13 Aboriginal Malay and 186 Peninsular Malay (Appendix C – also with a 

column showing the world regional distributions of each complete sequence haplogroup). 

Representative samples from each haplogroup were chosen for complete mtDNA sequencing 

(See Section 2.1.1). The higher resolution phylogenetic trees of complete mtDNA genome 

variations in Peninsular Malaysia encompassed all three main Non-African haplogroups M, 

N, and R, apart from the East African M1. Haplogroup M including haplogroups M4”67, M5, 

M24, M47, M10, M60, M76, M7, M8’CZ, M9ab’E, M12’G, M13’46’61, M17, M2, M21, 
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M22, M26, M1’20’51, M32, M29’Q, M50, M71, M72, M42’74, M73’79, M77, M80’D, and 

novel M*. Haplogroup N are N8, N10, N11, N21, N22, N9ab’Y and A. Haplogroup R 

including haplogroups R6, R7, R23, R30, R9b’cF, B4’5, R11’B6, R12’21, R22, R*, and P. 

Haplogroup U is also present at lower levels in Peninsular Malaysia. 

3.2 Haplogroup M 

All non-African mtDNAs form subclusters of an African clade called L3, which 

expanded from East Africa approximately 60-70 ka (Watson et al., 1997; Soares et al., 2009; 

Soares et al., 2012). Haplogroup M diverged from L3 with transitions at nps 489, 10400, 

14783 and 15043. Excluding the Mediterranean/Eastern African M1, it is almost exclusively 

Asian/Australasian in its distribution. It has considerably more basal branches in East Eurasia 

than the Asian haplogroup N, such as M21, M22, M7, D, E, G, Q and CZ (Hill et al., 2007). 

The major M haplogroups present in this study are shown in Figure 3.7. 

 

Figure 3.7 Schematic diagram of haplogroup M’s major subclades present in Southeast Asia. 
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3.3 Haplogroup M21 

 Haplogroup M21 is among one of the first basal haplogroups found by Hill (2005).  

Figure 3.8 shows the phylogenetic tree of complete mtDNA sequences for haplogroup M21a 

a sub-group of M21, (the latter’s age estimated at ~60 ka). Phylogeny of M21 includes 57 

complete sequences, 33 M21a, eight M21c and 16 M21d. Here I propose new nomenclatures 

for the M21 subclades. M21 splits into two branches, M21a and M21c’d (M21b has been 

reassigned to M13b). The deepest split in M21a, dating to ~31 ka, is seen between the 

Philippines (one haplotype: Tabbada et al., 2010) and largely Sunda populations, at ~ 31 ka. 

M21a1’2 dates to ~31 ka and divides into M21a1 and M21a2 within the former Sunda 

continent.  
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Figure 3.8 The tree of haplogroup M21a. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (BAT – Semang Batek, FIL – Philippines, JAH – Semang Jahai, KEN – Semang Kensiu, 

KIN – Semang Kintak, LAN – Semang Lanoh, MEN – Semang Mendriq, NEM – Northeast Peninsular Malay, NWM 

– Northwest Peninsular Malay, SBO – South Borneo, SML – Aboriginal Malay Semelai, SUL – Sulawesi, SWM – 
Southwest Peninsular Malay, TEM – Aboriginal Malay Temuan, THA – Thailand, VIE – Vietnam) 

M21a1 has a coalescence time estimated to ~14 ka, and is very frequent in Semang 

groups and also found in Senoi and Aboriginal Malays, although it is also found at low rates 
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throughout Southeast Asia. The largest sub-clade, M21a1b dates to ~6 ka and contains all the 

Semang, and Aboriginal Malay complete sequences M21a branches; and consists mostly of 

these (apart from two others, a Northwest Malay and a Thai representative). The young age 

of this ‘ethnically defined’ aboriginal cluster within a regionally ancient lineage (M21a), 

could imply recent drift and/or a local Holocene founding event (less likely) with ancestry 

found among all Aslian speakers. The first subclade nested within M21a1b, defined by a 

transition at np 152, dating to ~3 ka and is seen in the Semang Lanoh. Its subclade, defined 

by a recurrent mutation at np 16093, dating to ~2 ka, and is seen in the Semang Batek 

(Macaulay et al., 2005 and this study) and Jahai (Jinam et al., 2012). Another subclade nested 

within M21a1b, also defined by a recurrent mutation at np 16093, dating to ~4 ka. It is found 

mainly in the Semang Jahai (Jinam et al., 2012), Kensiu, Kintak, Mendriq (this study), the 

Aboriginal Malay Temuan (Jinam et al., 2012), Northwest Peninsular Malay (this study) and 

Thailand (Pradutkanchana, Ishida and Kimura, 2010).  

The two other branches of M21a1 have a much wider distribution in Southeast Asia, 

and only one representative among Orang Asli: M21a1a dates to ~2 ka, and is found in a 

Northwest Peninsular Malay and one individual in Sulawesi, Indonesia. M21a1c, dating to 

~8 ka, and is seen in an Aboriginal Malay Semelai, two (Northeast and Southwest) Peninsular 

Malay, and a Filipino (Gunnarsdóttir et al., 2011a). M21a2 dates to ~10 ka, and is found in 

Vietnam and Banjarmasin of South Borneo, Indonesia (data from the Archaeogenetics 

Research Group, Huddersfield). It would appear more likely from this phylogeographic 

pattern that M21a1’2 (and M21a) formerly had a wider Sunda distribution, along with M21c 

and M21d, than that it first spread out from Orang Asli populations. 

The whole-mtDNA M21a tree shows that the predominant Semang and Aboriginal 

Malay subclade (M21a1b) dates to ~6 ka. It remains highly localised within the Orang Asli 

mtDNAs in Peninsular Malaysia due to drift. However, the ancient ancestry appears to be 

captured by the relict descendant in other populations, such as the Peninsular Malay, Vietnam, 

Thailand, South Borneo, and Sulawesi of the Sunda shelf, and some recent offshoots to the 

Philippines. 

M21c’d is a deep and widespread Sunda lineage, dating to ~50 ka, and can be divided 

into M21c and M21d. M21c is only detected once among Orang Asli from all the HVS-I data 

(Figure 3.10, shown also as a Holocene derived branch of M21c1 in the complete sequence 

Figure 3.9) and only in one Semelai, Aboriginal Malay (Hill, 2005). M21c has a coalescence 
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time of ~50 ka and is seen widely in MSEA, Indonesia and the Philippines, and in a 

Northeast Peninsular Malay. M21c1 dates to ~31 ka, and is found in Northeast Peninsular 

Malay and the Philippines Batak (Scholes et al., 2011). It then diverged ~25 ka and seen in 

Mataram of Lesser Sunda Islands, which subsequently a subclade nested within, dating to ~7 

ka, seen in the Aboriginal Malay Semelai (mentioned above as HVS, complete sequence 

given in Macaulay et al., 2005) and the Philippines (Tabbada et al., 2011). The Philippines 

Batak is the so-called negrito group who predominantly lead a hunter-gatherer existence in 

small scattered settlements on the island of Palawan. The Batak speak languages of the 

recently spread Austronesian family, and they are believed to have replaced non-

Austronesian languages spoken by negrito before the Holocene (Reid, 1994). The recent 

admixture of the Batak populations with neighbouring non-negrito Tagbanua tribe (Eder, 

1987; Migliano et al., 2007) has accelerated the disappearance of Batak physical and cultural 

distinctiveness. Meanwhile, the introduction of agriculture into Batak hunting territory has 

effectively influenced their lifestyle (Eder, 1987). 
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Figure 3.9 The tree of haplogroup M21c’d. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (FBT – Philippines Batak, FIL – Philippines, JAV – Java, Indonesia, LSI – Lesser Sunda 

Islands, NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular Malay, SML – Aboriginal Malay 
Semelai, THA – Thailand, VIE – Vietnam, TMK – Thailand Moken) 
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 M21d dates to ~12 ka and is mainly found in MSEA – Vietnam and the Moken Sea 

Gypsies of Thailand. The Moken inhabit the Mergui Archipelago off the coast of Myanmar 

and Thailand by boats and subsist through maritime foraging (White, 1922; Sopher, 1965; 

Ivanoff, 2005). Their own language belongs to the Malayo-Polynesian branch of the 

Austronesian language family (Larish, 1999; Gordon, 2005). M21d1 dates to ~7 ka, and the 

basal lineages are seen in Thailand and Java, Indonesia (Peng et al., 2010; Archaeogenetics 

Research Group, Huddersfield). The Northern Peninsular Malay (this study) and Thai 

(Dancause et al., 2009) formed a cluster with the majority of Moken sequences 

(Pradutkanchana, Ishida and Kimura, 2010) dating to ~3 ka.  

Figure 3.10 shows the HVS-I network for haplogroup M21, which is very poorly 

resolved in comparison with the whole-mtDNA tree, as there are few informative HVS-I sites 

within the tree. In previous HVS-I studies, M21a is predominantly found in the Semang, also 

present in the Aboriginal Malays, Malay (Zainuddin and Goodwin, 2004; and “Malay ZZ”), 

Banjarmasin of South Borneo and the “Maniq” Semang of Southern Thailand (Fucharoen et 

al., 2001), corresponding with M21a1b clade in the whole-mtDNA Figure 3.8. M21c, as 

mentioned, is only found in the Aboriginal Malays. I will describe M21b (currently M13b) 

later. 

 

Figure 3.10 HVS-I network of M21*. M21b has been reassigned to M13b. Figure adapted from Hill (2005). 
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Our high-resolution tree and broader sampling has shown that M21 is a deep and 

ancient Sunda haplogroup, which do not just restricted to Peninsular Malaysia and South 

Borneo. The relict descendants have a widespread distribution on the Sunda shelf and as east 

as the Philippines (which was not part of Sundaland), which almost certainly suggest a 

Pleistocene Sunda origin. 

3.4 Haplogroup M22 

M22 is basal M haplogroup that is previously found predominantly in Temuan 

Aboriginal Malays and Thai (Hill et al., 2006). M22 dates to ~50 ka and it is diverged into 

M22a and M22b, and is restricted mainly to relict regions of the former Sunda continent with 

two derived haplotypes in South China. The phylogeny of M22 includes eleven complete 

sequences: seven M22a and four M22b, with new nomenclature for its subclades (i.e. M22a1, 

M22a2, M22b1 and M22b2). M22 appears, from the phylogeny, to be an indigenous 

haplogroup from MSEA, where it is seen in China, Vietnam, the Aboriginal Malays, 

Peninsular Malay, and Java, Indonesia. 

M22a again divides into M22a1 and M22a2 ~31 ka (Figure 3.11). M22a1 dates to ~19 

ka in Vietnam (Archaeogenetics Research Group, Huddersfield), and subsequently at ~11 ka 

found in Vietnam and Mataram of Lesser Sunda Islands, Indonesia (Peng et al., 2010). 

M22a2, dating to ~21 ka, is seen in the Temuan (Macaulay et al., 2005; Jinam et al., 2012), 

with a subsequent branch found among the Northern Peninsular Malay dating to around 12 ka. 

M22b dates to ~47 ka and divides into M22b1 and M22b2 (Figure 3.11). M22b1, 

dating to ~18 ka, is seen in Southwest Peninsular Malaysia (this study), and South China 

(Kong et al., 2011). M22b2, dating to ~22 ka, and is found in Guangdong, South China 

(Kong et al., 2011) and Vietnam (Peng et al., 2010). The whole-mtDNA tree seems to 

suggest an origin in MSEA and spread southwards into Java, Indonesia via Peninsular 

Malaysia. 
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Figure 3.11 The tree of haplogroup M22. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, LSI – Lesser Sunda Islands, NEM – Northeast Peninsular Malay, NWM – 

Northwest Peninsular Malay, SWM – Southwest Peninsular Malay, TEM – Aboriginal Malay Temuan, VIE – 
Vietnam) 

 

Figure 3.12 HVS-I network of M22. Figure adapted from Hill (2005). 

Figure 3.12 below shows the HVS-I network of M22 showing that it was previously 

found in Thailand, the Aboriginal Malays (Hill et al., 2006), and “Malay ZZ” (this study). 

The Thai individual with a transition at np 16153 would be nested within M22a2 in the 

whole-mtDNA tree. Hill et al. (2006) suggested that the root of M22 could be somewhere in 

MSEA, which is consistent with the whole-mtDNA tree.  
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3.5 Haplogroup M7 

Haplogroup M7 is one of the most common Asian haplogroups in China, Korea, Japan, 

and Island Southeast Asia. M7 dates to ~56 ka, and divides into M7a and M7b-g, the latter is 

further divided into M7c’e’f and M7b’d’g (Figure 3.13). M7a is a Northeast Asian 

haplogroup, reported only in Japan and Korea (Kivisild et al., 2002; Tanaka et al., 2004). 

M7b-g dates to ~53 ka and is divided into M7g and M7b’d (including M7b and M7d), where 

the basal lineages are seen mostly in China. M7b and M7c have wider distribution in 

Southeast Asia as indicated in the figure below. M7 phylogeny includes 173 complete 

sequences: 47 M7a, 59 M7b, 60 M7c, one M7d, three M7e and two M7g. 

 

Figure 3.13 Schematic diagram of haplogroup M7 and its major subclades distribution. (EA – East Asia, JAP 
– Japan, SAS – South Asia, SEA – Southeast Asia, TEM – Aboriginal Malay Temuan) 

3.5.1 Haplogroup M7a 

M7a is defined by variants at nps 2626, 2772, 4386, 4958, 12771 and 16209 with a 

divergence time of ~27 ka. M7a is entirely restricted to Japan, sampled from four locations in 

Japan (Tokyo, Chiba, Aichi and Gifu) reported by Tanaka et al. (2004) and Nohira et al. 

(2010). See Appendix E for more description on M7a. 

3.5.2 Haplogroup M7c’e’f 

 M7c’e’f, dating to ~39 ka, and is divided into M7c, M7e, and M7f (Figure 3.14). M7c 

dates to ~27 ka and its subclades are mostly seen in China (Yao et al., 2002a; Yao et al., 

2002b; Hartmann et al., 2009; Kong et al., 2011; Peng et al., 2011b; Zheng et al., 2011) and 

Japan (Tanaka et al., 2004; Nohira et al., 2010), with the exception of subclade M7c3c that is 

widely distributed throughout SEA, and a single instance of Temuan Aboriginal Malay 
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nested within M7c2b2. M7e (dates to ~5 ka) and M7f is represented here by a single Chinese 

lineage, both are found in south China (Kong et al., 2011; Peng et al. 2011b).  

 Haplogroup M7c1 and two out of the three subclades are similarly dated to the LGM 

(Figure 3.14), mainly restricted to China (Hartmann et al., 2009; Kong et al., 2011) and Japan 

(Tanaka et al., 2004; Nohira et al., 2010).  
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Figure 3.14 The tree of haplogroup M7c’e’f excluding M7c3c. Time estimates shown for clades are ML (in 

black) and averaged distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, JAP – Japan, MGL –  Inner 

Mongolia, China, TEM – Aboriginal Malay Temuan, XIN – Xinjiang, China) 

M7c2, dating to ~24 ka, has a basal lineage seen in Liaoning, northeast of China (Kong 

et al., 2003a). Its subclades are seen in north China (Zheng et al., 2010), and nested within 

subclade M7c2b2 (dates to ~9 ka) is the Aboriginal Malay Temuan (Jinam et al., 2012), 

clearly suggesting a northern origin and witness to a small-scale late glacial dispersal south 

into the Malay Peninsula. 

M7c3 dates towards the end of the LGM at ~19 ka and is one of the most commonly 

found haplogroups in ISEA (Hill et al., 2007). Minor subclades M7c3a and M7c3b are 

nested within a subclade defined by a back mutation at np 16295, and dates to ~17 ka. M7c3a 

is so far only represented by a single instance from the Philippines (Loo et al., 2011), and 
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M7c3b, dating to ~12 ka, appears to be confined in Guizhou, South China and Inner 

Mongolia (Kong et al., 2003a; Kong et al., 2006).  
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Figure 3.15 The tree of haplogroup M7c3c. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. Mutation at np 310 in the GU733- sequences (Gunnarsdóttir et al., 2011a) was removed 

from the tree for posing incorrect evolutionary pathways. (BID – Bidayuh Sarawak, FIL – Philippines, MIC – 

Micronesia, MAM – Philippines Mamanwa, NEM – Northeast Peninsular Malay, NWM - Northwest Peninsular 
Malay, SEM – Southeast Peninsular Malay, SML – Aboriginal Malay Semelai, SUM – Sumatra, TAI – Taiwan) 

 M7c3c (previously called M7c1c) dates to ~7.5 ka (Figure 3.15) and is widely 

distributed throughout ISEA in Peninsular Malaysia, Sumatra, Borneo and the Philippines, 

and elsewhere in the Aboriginal Taiwanese, and east in Majuro Atoll, Micronesia (Pierson et 

al., 2006; Tabbada et al., 2010; Gunnarsdóttir et al., 2011a; Gunnarsdóttir et al., 2011b; Loo 

et al., 2011; Jinam et al., 2012). In Malaysia, it is seen in the Aboriginal Malay (but Aslian-

speaking) Semelai and modern Malay in the northern and southeastern Peninsular Malay (this 

study). A subclade of M7c3c defined by a transition at np 16086 (~5 ka) has recently found 

among the Sarawak Bidayuh of north Borneo (Jinam et al., 2012). A subclade defined by a 

reversion at np 16295, dating to ~4 ka, is seen in Filipino (Tabbada et al., 2010) and a 

Southeastern Peninsular Malay. One negrito Mamanwa from Philippines shares a subclade 

with an urban Filipino (Gunnarsdóttir et al., 2011a) that diverged at ~1 ka. A possible 

subcluster characterised by a transition at the fast site np 152 dates to ~4 ka, is shared 

between one Taiwanese aboriginal (Pierson et al., 2006) and the Monobo and Surigaonons of 

Philippines (Gunnarsdóttir et al., 2011a).  

Additionally, there are at least four subclades with an average date of ~2 ka formed by 

the Sumatran of Indonesia (Gunnarsdóttir et al., 2011b). The first two subclusters have a 

similar estimated age of ~2 ka. The third and fourth subclusters are not dated because they 

are defined by deletions that are not used in the age estimations. M7c3c1 dates around 6 ka, 
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and is found in Aboriginal Taiwanese (Loo et al., 2011) and the Philippines (Gunnarsdóttir et 

al., 2011a).  

Similar to M7b, therefore, M7c3c offers a possible origin in the postulated 

Austronesian-speaking dispersal from South China and Taiwan through ISEA into Peninsular 

Malaysia (Bellwood, 1997), although the point estimates for the ages of M7c3c and M7c3c1 

seem too old for that archaeo-linguistic model, and the phylogeography of the M7c3c1 clade 

in the whole-mtDNA tree could also be consistent with a Philippines/ISEA origin and a 

reverse migration to Taiwan quite recently. 

 

Figure 3.16 HVS-I network of M7c3c. Figure adapted from Hill (2005). 

The HVS-I data in Figure 3.16 confirm that M7c3c is common throughout Indonesia, 

Peninsular Malaysia, Thailand, Borneo, the Philippines and the Aboriginal Taiwanese. The 

derivatives defined by a transition at np 16168 are seen in Sulawesi, which is recognisable as 

M7c3c1 on the whole-mtDNA tree, and a further transversion at np 16265T found in East 

Indonesia would have nested within the same subclade, which suggests M7c3c1 is not only 

restricted to Taiwan and the Philippines (whole-mtDNA tree), but also present in Sulawesi 

and East Indonesia.  

The whole-mtDNA tree and HVS-I data of M7c appears to indicate an ultimate origin 

in China. However, subclade M7c3c predates the traditional Neolithic Out of Taiwan model 

to mid-Holocene period ~7.5 ka. The genetic diversity in Taiwan and Borneo appears to be 
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more diverse than would be expected if it had arrived from China <6 ka (Hill et al., 2007). 

The spatial frequency distribution for haplogroup M7c3c (M7c1c in Hill et al., 2007) 

indicates that it is more centered on Borneo and Sulawesi. The new analysis confirmed the 

finding in Hill et al. (2007) that although M7c3c is possibly a strong marker for Out of 

Taiwan dispersal, the older date obtained from the whole-mtDNA analysis shows it has a 

postglacial mid-Holocene dispersal in ISEA, which is likely to centre on Borneo and reverse 

migration to Taiwan and travel as far east as Micronesia. 

3.5.3 Haplogroup M7b’d’g 

M7b’d’g dates to ~50 ka. It is divided into M7b’d and M7g, dating to ~38 ka and ~23 

respectively. M7d and M7g are rarer haplogroups seen in China. M7d is represented here by 

a single instance in Qinghai, China, and M7g, which dates to ~23 ka, are found in Sichuan 

and Guizhou of China (Kong et al., 2011).  

M7b, dating to ~28 ka, and is divided into haplogroups M7b1’2’4-8 and M7b3, where 

M7b1’2’4-8 encompasses four subclades as shown in Figure 3.17. M7b1’2’4-8+C16192T 

dates to ~16 ka and the basal lineages are mostly seen in northern and southern China (Kong 

et al., 2003a; Zheng et al., 2011), and a lineage from the Temuan Aboriginal Malay (Jinam et 

al., 2012). M7b6, dating to ~9 ka, is seen in south China (Zheng et al., 2011) and Thailand 

(Pradutkanchana, Ishida and Kimura, 2010). A subclade formed by the Philippines samples 

(Gunnarsdóttir et al., 2011a) is shown in the tree, but they were excluded from age 

estimations because of the ambiguous sites and gaps present in these sequences. M7b5 dates 

to ~13 and seen in south China (Zheng et al., 2011). M7b4 dates to ~12 ka, and is found in 

Hunan China (Kong et al., 2003a) and the Ivatan Philippines (Loo et al., 2011). Ivatan 

Islanders are Austronesian speakers from Orchid Island and the Batanes archipelago located 

between Taiwan and the Philippines, who have a close cultural relationship with the Yami 

tribe in Taiwan, which is the only non-Formosan Austronesian speakers among Taiwan 

Aborigines (Blust, 1999). However, it is not possible to infer with just a few complete 

sequences.  

M7b3 dates to ~12 ka and a basal lineage is seen in Guizhou, China (Kong et al., 2006), 

nested within a subclade M7b3a that dates to mid-Holocene ~10 ka and seen in Southeast 

Peninsular Malaysia, Yami of Aboriginal Taiwanese and India (Ingman and Gyllensten, 

2003).  
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Figure 3.17 The tree of haplogroup M7b’d’g (excluding M7b1'2'4-8+16189). Time estimates shown for clades 

are ML (in black) and averaged distance (ρ; in blue) in ka. The Philippines sequences marked by “*” are excluded 

from age estimations. (CHI – China, FIL – Philippines, IND – India, SEM – Southeast Peninsular Malay, TAI – 
Taiwan, TEM – Aboriginal Malay Temuan, THA – Thailand) 

 

A subclade of M7b1’2’4-8 defined by a transition at 16189 dates to ~16 ka and can be 

divided into M7b2, M7b7, and M7b8 (Figure 3.18). M7b2, dating to ~7 ka, is mostly seen in 

Japan (Tanaka et al., 2004) with some in China (Kong et al., 2003a; Zheng et al., 2011). 

There are two other rare subclades, M7b7 dates to ~12 ka and is found in one Northwest 

Peninsular Malay (this study) and one in Beijing China (Zheng et al., 2011), and M7b8 is 

represented by two similar instances seen in South China (Zheng et al., 2011). Also nested 

within subclade M7b1’2’4-8 is a branch defined by transitions at nps 332, 8110 and 16189, 

dating to ~10 ka, and found in Northwest and Southwest Peninsular Malay only (this study).  
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Figure 3.18 The tree of haplogroup M7b1'2'4-8. Time estimates shown for clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, NWM – Northwest Peninsular Malay, SWM – 
Southwest Peninsular Malay, XIN – Xinjiang, China) 

 

Figure 3.19 Weighted HVS-I network of M7b*, M7b1 and M7b3 types with the root indicated. Figure adapted 
from Hill (2005). 

Figure 3.19 shows the HVS-I network of M7b (subclades M7b1 and M7b3 are 

recognisable and outlined in the network). Although at much lower resolution and lesser 

informative sites, the HVS-I data corresponds the whole-mtDNA tree where it shows M7b is 

most commonly reported in South China by Kivisild et al. (2002), Yao et al. (2002a) and Yao 

et al. (2002b). Elsewhere, M7b is seen at decreasing levels in Singapore, the Philippines, 

Thailand and Vanuatu (Hill, 2005). The HVS-I of M7b3 haplotypes are mainly found in 

Taiwanese Aboriginals, and less common in Toraja Sumatra, the Philippines and Peninsular 

Malay, much similar to what is observed in the new analysis.  
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The whole-mtDNA result suggests M7b has a pre-LGM origin in China seen, in 

particular, from the diversity of the branching order in China, with Late Glacial expansions 

on the Sunda shelf as evident by the extant relict lineages in SEA. The M7b Temuan and 

Malay lineages (of different subclades) appear to have maternal origin in South China during 

the late Pleistocene (~16 ka) and early-Holocene dispersals (~12-10 ka) into Peninsular 

Malaysia, instead of a Neolithic event coming from offshore. 

3.6 Haplogroup M9 

Haplogroup M9, dating to ~53 ka, includes haplogroup M9a’b and E. E dates to ~29 ka 

and M9a’b to ~36 ka. The tree of M9 includes 200 complete sequences: 79 M9a’b and 121 E. 

The complete sequence tree of M9a’b suggests a root for M9a’b in South China (Figure 

3.20), however, there is a basal paraphyletic branch of M9 from the Northeastern Malay 

Peninsula, suggesting an older root there for M9 with spread northwards into South China 

and elsewhere in East Asia (see also discussion in Soares et al., 2008). M9a has basal 

lineages in South China, which diversify in China and Japan as M9a1 and M9a5, and in 

South China and SEA as M9a4. M9a1a and its subclades are absent in SEA, but are 

commonly seen in China and Japan, except that M9a1a1c is also seen in Central Asia (see 

discussion in Peng et al., 2011a). M9a1b suggests a root in China and spread to Japan, while 

its subclade M9a1b1 is seen in South Asia and SEA, and M9a1b2 is found in Central and 

East Asia (see discussion in Peng et al 2011a). Haplogroup E is a primary branch of M9 and 

is divided into E1 and E2, each subdivided into 2 subclades, E1a, E1b, E2a and E2b. All 4 

subclades have a very distinctive geographic distribution in ISEA, which is highly 

informative about the demographic history of the region. However, only E1a and E2b are 

found in Taiwan. E1b and E2a are both largely confined to ISEA, although occasionally 

extending to New Guinea and Peninsular Malaysia, indicating that both arose in ISEA and 

dispersed fairly recently east and west. 
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Figure 3.20 Schematic diagram of haplogroup M9 and its major subclades distribution. (CAS – Central Asia, 

EA – East Asia, FIL – Philippines, ISEA – Island Southeast Asia, MSEA – Mainland Southeast Asia, PNG – Papua 
New Guinea, SAS – South Asia, SC – South China, SEA – Southeast Asia, TAI - Taiwan) 

3.6.1 Haplogroup M9a’b 

Figure 3.21 shows that there is a single paraphyletic basal lineage within M9, found in a 

Northwest Peninsular Malay (Macaulay et al., 2005) – although its assignment to M9 relies 

on a single variant at np 4491 (Soares et al., 2008), a site which changes six times in the 

global phylogeny of Soares et al. (2009).  M9a’b dates to ~36 ka, and bifurcates immediately 

into the major M9a and the much rarer M9b, which both have representatives in both China 

and the Sunda continent (mainly Vietnam, in M9a4). M9a dates to ~26 ka, and consists of 

subclades M9a1, M9a4 and M9a5, which are dated to ~20 ka, ~19 ka and ~13 ka respectively.  

Given the basal MSEA lineage within M9 and the majority presence of MSEA 

representatives in the primary M9a4 branch, the precise geographic origins of M9a’b, M9a 

and M9b (i.e., whether South China or MSEA) are open to question (as discussed in Peng et 

al., 2011a; see also Soares et al., 2008). However, basal types of M9a are found in South 

China and Southeast Asian lineages are largely restricted to Vietnam and Myanmar, 

suggesting Holocene gene flow from a South China source into the latter parts of MSEA and 

sporadically also Taiwan/Indonesia. The database of HVS variation (which identifies both 

major branches of M9a’b) confirms that the centre of gravity for the distribution is strongly 

South China, with few examples further to the south, although there is a very heavy skew 

towards the M9a1a subclade, which is not seen south of China.  
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Figure 3.21 The tree of haplogroup M9a’b, excluding M9a1. Time estimates shown for clades are ML (in 

black) and averaged distance (ρ; in blue) in ka. (CHI – China, NBO – North Borneo, NWM – Northwest Peninsular 
Malay, TAI – Taiwan, VIE – Vietnam, XIN - Xinjiang) 
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Figure 3.22 The tree of haplogroup M9a1, excluding M9a1a1c. Time estimates shown for clades are ML (in 

black) and averaged distance (ρ; in blue) in ka. (BGL – Bangladesh, CHI – China, IND – India, JAP – Japan, JAV – 
Java, Indonesia, MGL –  Inner Mongolia, China, MYA – Myanmar, TIB – Tibet, XIN – Xinjiang) 

 M9a4, dating to ~16 ka, is rare and divided into M9a4a and M9a4b. M9a4a includes 

two subclades: M9a4a1 and the newly named M9a4a2. M9a4a1 dates to ~10 ka and is found 

in individuals in Taiwan, Vietnam and South China (Soares et al., 2008; Peng et al., 2011a). 
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M9a4a2, dating to ~12 ka, is seen in South China and Vietnam (Peng et al., 2011a). M9a4b 

dates to ~4 ka and seen in Vietnam (Peng et al., 2011a) and North Borneo (Archaeogenetics 

Research Group, Huddersfield). M9a5 is seen in Southern China, and a nested subclade dates 

to ~11 ka, and is found in China and Vietnam (Peng et al., 2011a). M9b dates to ~3 ka and is 

represented in the tree by only two individuals, from Xinjiang China (Kong et al., 2006) and 

Vietnam (Peng et al., 2011a).  

In Figure 3.22, M9a1 dates to ~ 20 ka and has a basal lineage found in South China, 

which can be divided into M9a1a and M9a1b, both showing post-glacial expansion centred 

largely in China. M9a1a is by far the most frequent subclade within M9a’b, and also appears 

to be an East Asian haplogroup, seeing as it is mainly found in South China, Japan, Korea, 

and at relatively lower frequency in Tibet, India, and Mongolia (Ingman et al., 2000; Kong et 

al., 2003a; Tanaka et al., 2004; Kong et al., 2006; Soares et al., 2008; Peng et al., 2011a; 

Zheng et al., 2011). M9a1a dates to ~17.5 ka, and has at least three subclades, 

M9a1a+@16362, M9a1a1, and M9a1a2. M9a1a+@16362, a loss of transition at np 16362 

from M9a1a, has been dated to ~16 ka, and detected in single individuals from Xinjiang and 

South China (Peng et al., 2011a). M9a1a1 dates to ~16 ka, and is subsequently divided into 

M9a1a1a, M9a1a1b, M9a1a1c and M9a1a1d. A reversion at np 153 generates a putative pre-

M9a1a1a node, dating to ~8 ka in northern China. M9a1a1a dates to ~5 ka and is confined to 

China and Japan only (Ingman et al., 2000; Tanaka et al., 2004; Peng et al., 2011a; Zheng et 

al., 2011). An additional transition at np 11914 defines a subclade of M9a1a1a dating to ~2 

ka and detected in northern China (Peng et al., 2011a; Zheng et al., 2011). M9a1a1c is shown 

in Appendix E. 

M9a1a1b dates to ~9 ka. It is shared between an individual from Inner Mongolia in 

China (Peng et al., 2011a) and two Japanese samples (Tanaka et al., 2004). The latter belong 

to a subclade dating to ~5 ka, similar to the Japanese subclade M9a1a1a, pointing to a 

colonisation event ~5 ka involving both subclades as founders. M9a1a1d dates to ~ 11 ka, 

and is found only in three individuals from northwest and southwest China (Peng et al., 

2011a).  

M9a1b has a basal lineage in China, with a nested subclade M9a1b+150 (~10 ka) is 

seen across in China, Myanmar, Tibet, India and Bangladesh, suggesting a Holocene 

expansion west from South China, and also one individual in Java. 
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3.6.2 Haplogroup E1 

Haplogroup E is a primary branch of M9, which divides into E1 and E2, each further 

subdivided into 2 subclades, E1a, E1b, E2a and E2b (Figure 3.20). As mentioned earlier, all 4 

subclades have a very distinctive geographic distribution in ISEA, and my analyses have 

further added on relevant dates on the demographic history of the region previously reported 

by Soares et al. (2008). Only E1a is found in Taiwan, while E1b is largely restricted to ISEA, 

with occasionally extending to New Guinea (E1a2), Peninsular Malaysia and Thailand, 

indicating that both subclades arose in ISEA and dispersed fairly recently east and west. The 

age estimation in Soares et al. (2008) was calculated using coding region and uncorrected 

mutation rate, which tended to be overestimated; here my results (using corrected molecular 

clock by Soares et al., 2009) should give more realistic dates and is useful for checking the 

conclusions there.  

E1 dates to ~15 ka, and is found only very rarely in China (one each from Guangxi, 

Xinjiang and Guangdong) and E1a is entirely absent in China; the HVS-I data confirms this 

result (Hill, 2005). In Figure 3.23, E1a dates to ~10 ka (revised from 12 ka in Soares et al., 

2008); it is most commonly found in the northern part of ISEA in the Philippines (Tabbada et 

al., 2008) and North Borneo, and also in Taiwan (Soares et al., 2008). E1a1 dates to ~8 ka 

(formerly 9 ka) with two basal lineages seen only in Taiwan. E1a1a dates to ~8 ka 

(previously ~10 ka), and is seen in Taiwan (Soares et al., 2008), the Philippines 

(Gunnarsdóttir et al., 2011a), South Borneo (Soares et al., 2008), Sumatra (Gunnarsdóttir et 

al., 2011b) and the North- and Southeast Peninsular Malay (this study). There are at least four 

subclades nested within E1a1a, including E1a1a1 and three other unnamed subclades. A 

subclade defined by transitions at nps 131 and 8577, dating to ~4 ka, is seen in Taiwan and 

the Philippines (Soares et al., 2008). The second subclade defined by a transition at np 709, 

dating to ~5 ka, is seen in Taiwan (Soares et al., 2008) and Sumatra (Gunnarsdóttir et al., 

2011b). Lastly, the third subclade defined by a transition at np 9699, dating to ~4 ka, is seen 

in South Borneo (Soares et al., 2008) and Southeast Peninsular Malay (this study). 

In E1a1a, Taiwanese and ISEA lineages are interleaved within it so that a direction of 

dispersal is less clear. Soares et al. (2008) showed that the overall haplotype diversity 

(translated into an age estimate) is considerably higher (older ~13 ka) in ISEA than in Taiwan 

(younger ~11 ka). My results echoed their finding that E1a2, one of the two major subclades 
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of E1a, is only present in ISEA (at an older age of ~8 ka) compared to E1a1 (~7.6 ka), 

confirming an origin of E1a in ISEA which then spread into Taiwan mid-Holocene. 

E1a1a1 dates to ~6 ka, and is spread across ISEA/Peninsular Malaysia (Figure 3.24). It 

is seen widely in the Philippines including the negrito Mamanwa (Gunnarsdóttir et al., 

2011a), Sulawesi (Soares et al., 2008) and Sumatra (Gunnarsdóttir et al., 2011b), a Northeast 

Peninsular Malay (this study) and five individuals in Thailand (Pradutkanchana, Ishida and 

Kimura, 2010). There are two Southeast Asian subclades within E1a1a1; the first has a 

transition at np 16189, dating to ~4 ka, which splits between Sulawesi and the Filipinos from 

Surigaonons and Visayan Island around ~2 ka. The second subclade is defined by transitions 

at nps 961 and 5777 and dates to ~1 ka, and is found only in Thailand (Pradutkanchana, 

Ishida and Kimura, 2010), indicating a very recent founder effect in Thailand. 
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Figure 3.23 The phylogeny of haplogroup E1 excluding E1a1a and E1a2. Time estimates shown for clades are 

ML (in black) and averaged distance (ρ; in blue) in ka. (BID – Bidayuh Sarawak, FIL – Philippines, JAV – Java, 

Indonesia, LSI – Lesser Sunda Islands, NBO – North Borneo, NEM – Northeast Peninsular Malay, NWM – 
Northwest Peninsular Malay, SBO – South Borneo, SUL – Sulawesi, PNG – Papua New Guinea, TAI – Taiwan) 

E1b dates to ~8 ka and the basal lineage is seen in Java (Archaeogenetics Research 

Group, Huddersfield) while the rest of the lineages are nested within a subclade further 

defined by a transition at np 16261, dating to ~7 ka (Figure 3.23). This subclade is widely 

distributed in ISEA, seen in Aboriginal Malay Seletar (Jinam et al., 2012), Peninsular Malay 
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(this study), Indonesia (Soares et al., 2008; Jinam et al., 2012), the Philippines (Soares et al., 

2008), and further nested within is subclade E1b1 found in Papua New Guinea (Friedlaender 

et al., 2007; Archaeogenetics Research Group, Huddersfield) dating to ~5 ka. The whole-

mtDNA tree indicates E1b likely to have been originated in ISEA during mid-Holocene and 

dispersed across region and as west as Oceania. 
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Figure 3.24 The phylogeny of haplogroup E1a1a. Sequence marked by “*” are excluded from age estimations. 

Time estimates shown for clades are ML (in black) and averaged distance (ρ; in blue) in ka. (FIL – Philippines, MAM 

– Philippines Mamanwa, NBO – North Borneo, NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular 

Malay, SBO – South Borneo, SEM – Southeast Peninsular Malay, SUL – Sulawesi, SUM – Sumatra, THA – 

Thailand, PNG – Papua New Guinea, TAI – Taiwan) 
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Figure 3.25 The phylogeny of haplogroup E1a2. Time estimates shown for clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (FIL – Philippines, NBO – North Borneo, SBO – South Borneo, SEM – Southeast 
Peninsular Malay, SUL – Sulawesi, PNG – Papua New Guinea) 
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 E1a2 dates to ~8 ka (formerly ~9 ka in Soares et al., 2008, Figure 3.25). It has an 

extensive distribution in Indonesia (Soares et al., 2008), the Philippines and North Borneo 

(Soares et al., 2008), also spreading to Peninsular Malaysia and as far east as Papua New 

Guinea (Friedlaender et al., 2007), despite the low number of E1a2 sequences reported. A 

subclade with np 16324, dating to ~4 ka, is seen in Sulawesi (Soares et al., 2008), and 

Southeast Peninsular Malay (this study). A second subclade has a loss at np 16223, dating to 

~5 ka and is seen in the Philippines (Soares et al., 2008) and South Borneo (Archaeogenetics 

Research Group, Huddersfield). 

We now turn to the HVS-I data in Figure 3.26 adapted from Hill (2005), which 

corresponds to the whole-mtDNA trees showing E1a and E1b have a very distinctive 

geographic distribution where these early Holocene haplogroups are largely restricted to 

ISEA. The most common E1* types are found in the Taiwanese Aboriginals, ISEA and 

Peninsular Malaysia. The E1* gives rise to another clade called E1b with a transition at np 

16261. E1b types are mainly found in ISEA, particularly Sulawesi, and some individuals 

from Peninsular Malaysia. 

Similar to haplogroup E1b, the HVS-I data of haplogroup E1a1a (recognisable in the 

HVS-I data) is most common in Eastern Indonesia, especially Sulawesi and northern Borneo 

(Figure 3.27). It is also found across the rest of ISEA, including Sumatra and the Philippines, 

at much lower levels. The root type is the most common type and mainly found throughout 

the region, but most commonly in Sulawesi and Taiwan. The others are mostly one-step 

derivatives, one type with transition at np 16185 is particularly prevalent in South Borneo 

(represented by a single sample in the complete mtDNA tree, Soares et al., 2008). 

The new analysis has also shown some sink recipients in Thailand (seen in subclade 

E1a1a1) and PNG (in E1a2 and E1b1). E1a1a1 is more diversified in ISEA and virtually 

absent in Taiwan, with a fairly recent migration into Thailand (possibly through Peninsular 

Malaysia). Again, strongly suggesting E1a and E1b both arose in ISEA and dispersed 

recently east and west. 
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Figure 3.26 HVS-I network of E1* and E1b. Figure adapted from Hill (2005). 

 

Figure 3.27 HVS-I network of E1a1a. Figure adapted from Hill (2005). 

3.6.3 Haplogroup E2 

E2 dates to ~11 ka (previously ~9.5 ka in Soares et al., 2008), and it is divided into E2a 

and E2b (Figure 3.28). E2a dates to ~8 ka (formerly ~6.7 ka in Soares et al., 2008), widely 

seen in the Philippines, Eastern Malaysia/Indonesia (Ingman and Gyllensten, 2003; Soares et 

al., 2008; Gunnarsdóttir et al., 2011a), Peninsular Malay (this study), and Papua New Guinea 
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(Archaeogenetics Research Group, Huddersfield). There are four subclades nested within 

E2a: E2a1, E2a3, and three other unnamed subclades. E2a1, dating to ~5.5 ka, restricted to 

the Philippines (Soares et al., 2008) with an instance of the Philippines negrito Mamanwa 

(Gunnarsdóttir et al., 2011a) nested within the Filipino subclade (Tabbada et al., 2010). E2a3 

dates to ~6 ka, and is seen in the Philippines (Soares et al., 2008; Gunnarsdóttir et al., 2011a) 

and Southeast Peninsular Malaysia (this study), with a subclade nested within (~6 ka) formed 

by lineages from Sulawesi (Soares et al., 2008).  

 E2a includes three other nested subclades. One is found in North Borneo and the 

Philippines (Soares et al., 2008); the second in Java and Manobo Filipinos (Soares et al., 

2008; Gunnarsdóttir et al., 2011a). Lastly, a subclade dating to ~2 ka, includes two Southeast 

Peninsular Malay, suggesting an arrival in the Peninsula from ISEA by about that time. 
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Figure 3.28 The tree of haplogroup E2. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. GU733721 is excluded from age estimations. (FIL – Philippines, JAV – Java, Indonesia, 

LSI – Lesser Sunda Islands, MAM – Philippines Mamanwa, MOL – Moluccas, Indonesia, NBO – North Borneo, 
PNG – Papua New Guinea, SBO – South Borneo, SEM – Southeast Peninsular Malay, SUM – Sumatra) 

 E2b dates to ~7 ka (previously ~4.3 ka in Soares et al., 2008) and divides into E2b1 and 

E2b2. E2b1 dates to ~4 ka, and is reported in Taiwan (Soares et al., 2008; Loo et al., 2011), 

Thailand (Pradutkanchana, Ishida and Kimura, 2010) and Palangkaraya in southern Borneo, 

Indonesia (Soares et al., 2008); one sequence (unusually, the root type of E2b1) is shared 

across all three of these regions. E2b2 is extremely rare and has been only seen in two 

individuals from the Philippines with a single identical sequence (Soares et al., 2008). 

Again, similar signals to E1a1 and E1a2 are seen in E2a and E2b. E2a dates older (~8 

ka) compared to E2b (~7 ka), and Taiwan (in this case, although, as well as Thailand) are 
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only seen within E2b1 and not E2a, indicating an origin in ISEA. Indeed, Soares et al. (2008) 

found that prior to the proposed Austronesian expansions from China/Taiwan, haplogroup E 

shows pattern of postglacial expansion and dispersal (on the basis of HVS-I data in Hill et al., 

2007). They suggested the spread of these genetic signatures is the impact on coastal-

dwelling populations of the rapid global warming and sea-level rises that led to the 

inundation of the Sunda shelf by meltwater at the end of the last Ice Age (Oppenheimer, 

1998; Lin et al., 2005). Sea levels began to rise gradually after the end of the LGM ~19 ka, 

probably in three major episodes of flooding due to ice sheet collapse. These events are 

sometimes referred to as Catastrophic Rise Events 1-3, at ~14.5 ka, 11.5 ka and probably also 

~7.5 ka (Blanchon and Shaw, 1995; Oppenheimer, 1998; Pelejero et al., 1999; Hanebuth et 

al., 2000; Voris, 2000; Lambeck and Chappell, 2001; Bird et al., 2005). It has been suggested 

that lineage expansions throughout Island SEA tend to coincide with the three rapid sea level 

rises and were preceded by long lineage lines indicating immediate loss as the sea level rose. 

These flooding episodes would have triggered major displacements of human groups living 

on the Sunda coastline and had an important role in shaping subsequent life in the region 

especially its maritime orientation and the development of sailing technology (Oppenheimer, 

1998; Solheim, 2006). 

3.7 Haplogroup M17 

Figure 3.29 is the phylogeny of haplogroup M17, a very rare and ancient Sunda-specific 

lineage, with a widespread relict distribution. Here I propose that M17 is re-defined by two 

polymorphisms at nps 930C and 12973 (excluding np 16209 as suggested by Phylotree) to 

include a basal lineage detected in Palangkaraya of South Borneo (Archaeogenetics Research 

Group, Huddersfield), dating to ~55 ka. M17a’c (newly named) is found mainly in 

MSEA/Malay Peninsula, though with isolated instances throughout Indonesia and the 

Philippines, and divides into subclades M17a and M17c at ~52 ka. M17a has undergone high 

drift resulting in a date of ~24 ka. Closely related M17a lineages are seen in the Kintak and 

Kensui Semang (Malay Peninsula), in Indonesia (Archaeogenetics Research Group, 

Huddersfield; Tabbada et al., 2010), in Thailand (Pradutkanchana, Ishida and Kimura, 2010), 

and in Vietnam (Peng et al., 2010). M17a1 dates to ~20 ka and a basal lineage is detected in 

Java (Archaeogenetics Research Group, Huddersfield). M17a1a, dating to ~16 ka, is found in 

MSEA: in Vietnam (Peng et al., 2010) and with Semang Kensiu nested in a subclade that 
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dates to ~2 ka. M17a2, dating to ~21 ka, is again confined to MSEA, being seen in Thailand 

(Pradutkanchana, Ishida and Kimura, 2010) and Vietnam (Peng et al., 2010). M17a expands 

around the end of the LGM on the Sunda shelf, with an offshoot arrives in the Semang who 

share the MRCA with Vietnam during the Pleistocene. 
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Figure 3.29 The tree of haplogroup M17. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CAM – Cambodia, FIL – Philippines, INA – Indonesia, JAV – Java, Indonesia, KEN – 

Semang Kensiu, NEM – Northeast Peninsular Malay, SBO – South Borneo, SUL – Sulawesi, THA – Thailand, VIE – 
Vietnam) 

 Haplogroup M17c has rare, isolated ‘Sunda’ occurrences throughout MSEA and ISEA 

dividing, ~47 ka, into M17c1 and M17c2. M17c1 dates to ~42 ka with a basal branch in a 

Northeast Peninsular Malay (this study). M17c1a, dating to ~36 ka, with a basal haplotype in 

Indonesia (Tabbada et al., 2010), with a further subclade M17c1a1, seen in Cambodia 

(Hartmann et al., 2009). Another subclade nested within, dating to ~9 ka, is again widespread 

in SEA being seen in a Northeast Peninsular Malay (this study) and a Filipino (Tabbada et al., 

2010). 
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 M17c2 dates to ~34 ka, and is seen in Vietnam (Peng et al., 2010). A subclade below 

dates to ~7 ka, again both from MSEA, in a Northeast Peninsular Malay, and ISEA in 

Sulawesi, Indonesia (Archaeogenetics Research Group, Huddersfield). 

 The HVS-I data indicated that M17a (previously known as M*) is found only in the 

Semang Kensiu and not elsewhere, emphasising its extreme rarity. The whole-mtDNA tree 

indicates that at least the M17a1a in Kensiu has a deep Sunda Origin, possibly centred in 

MSEA. 

3.8 Haplogroup M12’G 

M12’G is defined by a transition at np 14569, dividing into M12 and G ~60 ka (Figure 

3.30). The phylogeny of M12’G includes 104 complete sequences: 79 G and 25 M12. 48 of 

these came from Japan (Tanaka et al., 2004) and 23 from China (Kong et al., 2003a; Kong et 

al., 2006; Kong et al., 2011; Peng et al., 2011b; Zheng et al., 2011). The large number of 

Japanese complete sequences compared to Chinese potentially over-represented on the trees 

but they are highly diversified and localised in Japan. The HVS-I data pooled from several 

papers (of different sample size) by Tanaka et al. (2004) has shown that haplogroup G is 

found at high frequencies in the Japanese (6.86%), indigenous Ainu (4%) and Ryukyuan 

(9.8%), and Koreans (5.77%), followed by the Chinese and Central Asian at lower frequency 

(Table 2 in Tanaka et al., 2004).  

Haplogroup G includes subclades G1, G2, G3 and G4. Haplogroup G was initially 

thought to be a basal branch of haplogroup M, but it has now been subsumed by haplogroup 

M12’G which includes all the branches of haplogroup G and M12, the former with a broadly 

East Asian distribution (suggesting a likely source in China) and the latter found across 

Southeast Asia (mainly MSEA) and South China and more likely originating in MSEA. 

Haplogroup G and most of its subclades appear to have an origin and spread limited to China 

and significant spread to Japan, with several exceptions. These exceptions are reported at low 

levels: G1b is seen in a North Asian Eskimo, and G1c is reported in China as well as an 

Aboriginal Malay (Figure 3.30). G2a1, G2b and G3b all have representatives in India.  

Haplogroup M12 is divided into M12a and M12b. M12a may have an origin in 

MSEA/South China (there is a deep basal lineage in Northeast Malaysia: Figure 3.30) 



108 

 

Subclade M12a1b1 is reported in East Asia, South Asia and Northeast Peninsular Malay. On 

the other hand, M12b1 is found in SEA, while M12b2 in India. 

 

Figure 3.30 Schematic diagram of haplogroup M12’G and its major subclades distribution. (CAS – Central 

Asia, EA – East Asia, ISEA – Island Southeast Asia, JAP – Japan, MSEA – Mainland Southeast Asia, NAS – North 

Asia, NEM – Northeast Peninsular Malay, SAS – South Asia, SC – South China, SEA – Southeast Asia, SLT – 
Aboriginal Malay Seletar) 

3.8.1 Haplogroup G1 

G1 dates to the LGM ~22 ka and is divided into G1a, G1b and G1c (Figure 3.31). A 

lineage from Northern China (Zheng et al., 2011) is likely to show a reversion at np 150, 

which appears pre-G1a-like and dates to ~19 ka. G1a dates to ~19 ka and is commonly found 

in Japan and China (Kong et al., 2003a; Tanaka et al., 2004). G1a can be divided into two 

subclades: G1a1a and G1a+16189 (including G1a2 and G1a3). G1a1a dates to ~6 ka, and 

seen mainly from Japan (Tanaka et al., 2004). It has at least six subclades including G1a1a1, 

G1a1a2, G1a1a3, G1a1a4, and two other unnamed subclades. G1a1a1, dating to ~4 ka, seen 

in Japan and Inner Mongolia (Kong et al., 2003a). The rest of the subclades are only found in 

Japan: G1a1a2 dates to ~3 ka, G1a1a3 ~ 3 ka and G1a1a4 ~5 ka, as well as the two 

unnamed subclades. Subclade defined by a transition at np 6533 dates to ~2 ka, and subclade 

defined by a transition at np 16189, also ~2 ka. 

G1a2 and G1a3 shared the node G1a+C16184T, which dates to ~16 ka. G1a2 is 

represented here by one Chinese sample (Kong et al., 2006). G1a3 is a rare haplogroup 

estimated at ~7 ka, and is found to be localised in Japan (Tanaka et al., 2004). Both G1a1a 

and G1a3 could potentially be Neolithic dispersals into Japan/Korea. 
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Figure 3.31 The tree of haplogroup G1. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, ESK – Eskimo, JAP – Japan, MGL –  Inner Mongolia, China, SLT – 
Aboriginal Malay Seletar) 

 G1b is represented here by one lineage found in the Kamchatka Peninsula, Russia by 

Mishmar et al. (2003). G1c is a rare haplogroup, dating to ~13 ka, found at low levels in 

northeast China (Kong et al., 2003a; Zheng et al., 2011) and, interestingly, in the Seletar, 

Aboriginal Malay from the southern tip of the Malay Peninsula (Jinam et al., 2012), which 

indicates a northern/China origin for some of the Malay lineages. Besides, a complete 

mtDNA sequence of haplogroup G1c (not in the tree) is also reported in Korea (Derenko et 

al., 2007). 

3.8.2 Haplogroup G2 

 G2, dating to ~31.5 ka, and is found throughout China (Kong et al., 2006; Kong et al., 

2011; Zheng et al., 2011), Japan (Ingman et al., 2000; Tanaka et al., 2004; Nohira et al., 

2010), and at lower levels in India and Pakistan (Kong et al., 2006; Chandrasekar et al., 

2009). Detailed description is available in Appendix E.  
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However, the HVS-I data shows that G2 is relatively abundant in northern China and 

central Asia, reaching considerable high frequencies in the Mansi and Tuvinians in Southern 

Siberia (Tanaka et al., 2004). Subclades G2b1 and G2b2 indeed indicate here of deep 

ancestry in China before the LGM and very early expansions from East Asia into India, 

which is otherwise undetected by looking only at the HVS data because of the lack of HVS-I 

motifs.   

3.8.3 Haplogroups G3 and G4 

G3 occurred at lower levels in Japan (Tanaka et al., 2004) and China (Kong et al., 

2006). G4, dating to only ~3 ka, is a very rare haplogroup – it is only detected in two 

Japanese sequences reported by Tanaka et al. (2004). Detailed description is available in 

Appendix E.  

Haplogroup G and its major subclades pre-date the LGM and are widely distributed in 

northern and eastern China, Japan, South Asia including India and Pakistan, with several 

single instances from Russia (in G1b), the Aboriginal Malay Seletar (in G1c) and Georgia (in 

G2a1). Apart from the G1c (~13 ka) Aboriginal Malay Seletar lineage from Peninsular 

Malaysia (Jinam et al., 2012), lineages of haplogroup G are virtually absent in SEA and the 

Pacific. This brings to mind the traditional Orang Asli “layer-cake” theory (Cole, 1945; 

Carey, 1976; Birdsell, 1993) that suggested the Aboriginal Malays arrived in the final wave 

into Peninsular Malaysia (as the influx of Mongoloids together with the colonisation of the 

Indo-Malaysian Archipelago by the “Proto-Malays”), G1c lineage in Seletar has shown a 

longstanding relationship with the Han Chinese in northern China which indicates at least a 

small fraction of the Seletar did not came from ISEA, although it is only indicated by a 

singleton from Seletar.  

3.8.4 Haplogroup M12 

M12 dates to ~41 ka and is divided into M12a and M12b. There are three basal 

branches: M12a, M12b and a paraphyletic lineage seen a single Northeast Peninsular Malay 

(this study). The overall distribution suggests long-term ancestry in west Sunda/South China, 

with a (possibly recent) offshoot to India in the form of M12b2 (which the HVS-I database 

suggests it is also present in South China and Thailand). 

M12a dates to ~39 ka and is divided into M12a1 (~35 ka) and M12a2 (~24 ka) (Figure 

3.32). M12a1a dates to the LGM ~25 ka and the origin appears to lie in northern MSEA as  
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the basal lineages are found in Vietnam and South China (Peng et al., 2011b; Zheng et al., 

2011). M12a1a1, dating to ~11 ka, is found in South China and Vietnam. M12a1a2 dates to 

~25 ka and is found in Sumatra (Archaeogenetics Research Group, Huddersfield) and South 

China (Peng et al., 2011b).  
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Figure 3.32 The tree of haplogroup M12. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, IND – India, NEM – Northeast Peninsular Malay, NWM - Northwest 
Peninsular Malay, SUM – Sumatra, THA – Thailand, VIE – Vietnam) 

 Similar to M12a1a, M12a1b appears to have a pre-LGM origin in MSEA or South 

China (Figure 3.32). M12a1b1 (dates to ~17.5 ka) is seen in Northeast Peninsular Malaysia 

(this study), and nested within a subclade found in Yunnan, China (Peng et al., 2011b) and 

Gallong, India (Chandrasekar et al., 2009) ~14 ka. M12a1b2 (~27 ka) is seen in Guangdong 

China (Kong et al., 2003a) and nested within a small clade (~2 ka) in Vietnam 
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(Archaeogenetics Research Group, Huddersfield). M12a2 dates to ~24 ka and is seen 

exclusively in MSEA with a basal branch in Vietnam, and ~20 ka with derivative haplotypes 

in Vietnam (Peng et al., 2011b) and a Northeast Peninsular Malay (this study). 

 M12b dates to ~31 ka and the basal lineage is seen in Northern Thailand (Peng et al., 

2011b). M12b1 dates to ~7 ka and seen in Sumatra (Archaeogenetics Research Group, 

Huddersfield), and two nested clusters, one (~3 ka) represented in two Northwest Peninsular 

Malay and a Sumatran. The other, M12b2, dating to ~4 ka and is seen only in India 

(Chandrasekar et al., 2009). 

We can now turn to the HVS-I data, where the most derived types are seen in ISEA but 

MSEA has the highest levels of M12 types, with frequencies rise up to ~8 % in the 

southeastern parts of the region, ~2 % in northeastern MSEA, ~3 % in Malaysia, and ~1 % of 

the sample in Coastal China (frequency gradient distribution of M12 in Mormina, 2007). 

Considering the frequency gradient, the HVS-I data described above, and the 

phylogeographic distribution of M12, it is likely that haplogroup M12 have a pre-LGM origin 

in MSEA and a coastal distribution in MSEA, ISEA, and South China. Between the period of 

LGM and late Pleistocene, MSEA and ISEA would have joined as a single landmass, 

Sundaland, allowing M12 to spread along the northeastern coast, hence the extant relict 

descendants are preserved in the Peninsular Malay, Sumatra and India. 

3.9 Haplogroup M29’Q 

Haplogroup M29’Q dates to ~61 ka and is divided into M29 and Q (Figure 3.33). M29 

(or rather M29b) is represented in the tree by an instance from Papua New Guinea 

(Friedlaender et al., 2007). Haplogroup Q is an Oceanian haplogroup most commonly 

reported in Papua New Guinea and West Papua (Redd et al., 1995; Lum et al., 1998; 

Archaeogenetics Research Group, Huddersfield), and at lower levels in Vanuatu, Polynesia 

and Micronesia (Sykes et al., 1995; Lum et al., 1998; Hagelberg et al., 1999). The phylogeny 

of M29’Q includes 20 Q complete sequences, and one belonged to M29b. 

Haplogroup Q dates to ~46 ka, and can be divided into Q1’2 and Q3. Q1 dates to the 

LGM, ~24 ka, and includes subclades Q1+@T16233C (~24 ka) and an unnamed subclade 

(~1 ka), seen in PNG, the Cook Islands, Samoa, Vanuatu, Bougainville, two lineages from 

Peninsular Malaysia and one from the Philippines. Q1+@T16223C includes Q1a and Q1b 
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(both dating to the LGM ~21 ka and ~22 ka respectively) and Q1c (~1.4 ka), where the basal 

lineage is seen in Bougainville. Q1a (~19 ka) is seen in PNG (Ingman and Gyllensten et al., 

2003; Hartmann et al., 2009). Q1b is seen in the Philippines (Gunnarsdóttir et al., 2011a), 

and nested within is Q1b1 (dating to ~20 ka) found in PNG, with a nested subclade (~2.6 ka) 

in Vanuatu (Pierson et al., 2006). Q1c dates to ~1.4 ka and is restricted to Bougainville 

(Ingman and Gyllensten, 2003; Hartmann et al., 2009). 
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Figure 3.33 The tree of haplogroup M29’Q. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (BOU – Bougainville, COO – Cook Island, FIL – Philippines, NWM – Northwest 
Peninsular Malay, PNG – Papua New Guinea, SEM – Southeast Peninsular Malay, SMO – Samoa, VAN - Vanuatu) 

Q3 dates to ~39 ka and commonly found in PNG, with a basal lineage found in 

Northwest Peninsular Malaysia (this study). Q3a dates to ~33 ka, and subclades nested 

within date to ~18 ka and ~5 ka, and are restricted to PNG (Ingman and Gyllensten, 2003; 
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Hartmann et al., 2009). Q3b is represented here by an instance from PNG (Friedlaender et al., 

2007). 

We can now complement the whole-mtDNA tree with HVS-I data. The HVS-I network 

of haplogroup Q1 (Figure 3.34) shows a number of distinct lineages sampled in ISEA. It is 

found at low levels in Banjarmasin and Kota Kinabalu of Borneo, Bali, Manado, Toraja, 

Ujung Padang and Sumba of Indonesia, and Peninsular Malaysia (Hill, 2005; this study). 

Similarly to haplogroup P, the presence of haplogroup Q in ISEA suggests very recent 

Holocene gene flow across into ISEA as far as the Malay Peninsula from Near Oceania (as 

some ISEA lineages were also spreading the other way, e.g. haplogroup E).  

 

Figure 3.34 HVS-I network of Q1. Figure adapted from Hill (2005). 

3.10 Haplogroup M8 

M8, dating to ~ 45 ka, is divided into M8a and CZ (Figure 3.35). Haplogroup M8a is 

widely seen in China and Japan, and in one instance from Siberia, Russia, and is virtually 

absent in Southeast Asia. Haplogroup C, dating to ~27 ka, appears to have a northern origin 

in East Asia, and consists of haplogroups C1, C4, C5 and C7. C1 is mainly found in the 

Native American, except for subclade C1a seen in the Japanese and Siberian Russian. C4 

shows a basal lineage in northern China, and it is widely distributed across China, Russia and 

west into Kyrgyzstan. (Detailed descriptions for haplogroups M8a, C1 and C4 are available 
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in Appendix E). Similarly to C4, C5 is seen in Siberian Russian, China and Japan. C7 is seen 

in northern China, Thailand and Peninsular Malaysia, indicating this is likely a single 

instance of a long-range late glacial dispersal south. Similar to M8, haplogroup Z also 

appears to have a northern origin in East Asia, and includes subclades Z1, Z2, Z3, Z4 and Z5. 

Z1 is seen in Russia, Z2 in Japan, and Z3 in East and North Asia. Lastly, Z4 has a basal 

lineage in South China, its subclade Z4a has a basal lineage in the Philippines, and a further 

nested subclade Z4a1 is seen in China and Japan. The phylogeny of M8 includes 71 complete 

sequences: 17 M8, 37 C and17 Z. 

 

Figure 3.35 Schematic diagram of haplogroup M8 and the distribution of its major subclades. (AME – 

America, CAS – Central Asia, CHI – China, EA – East Asia, FIL – Philippines, JAP – Japan, MSEA – Mainland 
Southeast Asia, NAS – North Asia, SC – South China) 

C5 dates towards the end of the LGM ~19 ka (Figure 3.36). C5+T16093C dates to ~16 

ka, and is seen in northern China (Zheng et al., 2011), Japan (Tanaka et al., 2004) and 

Siberia, Russia (Starikovskaya et al., 2005). C5a1 (~3 ka) is restricted to Siberia 

(Starikovskaya et al., 2005; Kong et al., 2006; Hartmann et al., 2009) while C5b1a1 is 

represented by an instance from Siberia, Russia (Starikovskaya et al., 2005). 

Perhaps the most relevant haplogroup within M8 for this study is haplogroup C7a, 

dating to ~16 ka (Figure 3.36), which has basal lineages in Beijing (Zheng et al., 2011), 

Thailand (Pradutkanchana, Ishida and Kimura, 2010) and Northeast Peninsular Malaysia (this 

study). A subclade nested within is C7a1, dating to ~12 ka, is shared between instances from 

Liaoning, China (Kong et al., 2003a) and Northwest Peninsular Malaysia. Haplogroup C as a 

whole may have a northern origin in East Asia with a divergence time of ~27 ka. The relict 

descendants in Thailand and Peninsular Malaysia suggest a possible dispersal into MSEA 

from northern China in an upper bound of 12 ka since there is still a Chinese sample 
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diverging at this age (seen in C7a1), although it could have been very recent since it is 

extremely rare in the Malay. 
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Figure 3.36 The tree of haplogroups C5 and C7. Time estimates shown for clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, NEM – Northeast Peninsular Malay, SBR – 
Siberian Russia, THA – Thailand) 
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Figure 3.37 The tree of haplogroup Z. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, ESK – Eskimo, FIL – Philippines, JAP – Japan, SBR – Siberian Russia) 
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Similar to haplogroup C, haplogroup Z looks to have a northern origin in East Asia 

(Figure 3.37) and is divided into Z+T152C (assuming it is a true clade since np 152 is one of 

the fastest sites and not likely to define ancient subclades; dates to ~23 ka) and Z5, the latter 

is represented by a single instance from Japan (Tanaka et al., 2004). Z1 dates to ~19 ka and is 

seen in Southern Siberia (Starikovskaya et al., 2005) and Koryak, Eskimo (Mishmar et al., 

2003). Z2 (~4 ka) is restricted to Japan (Tanaka et al., 2004), and Z3 (~19 ka) is seen in 

Japan (Tanaka et al., 2004), northern China (Zheng et al., 2011) and northern Siberia 

(Hartmann et al., 2009). Z4 dates ~23 ka, where a basal lineage is seen in South China 

(Zheng et al., 2011), a single instance from the Philippines shared Z4a1, dating to ~21 ka, 

with lineages from Hubei, Central China (Kong et al., 2003a), South China (Zheng et al., 

2011) and Japan (Tanaka et al., 2004) ~13 ka. The Z4 carriers might just have gone across by 

land at low sea level considering the LGM date into the Philippines, but the most likely 

scenario could be quite recent given that is a date from one instance. 

3.11 Haplogroup M4’67 

Haplogroup M4’67 dates to ~48 ka, consists of subclades M4, M30 and M37, and two 

basal lineages from Thailand (Pradutkanchana, Ishida and Kimura, 2010) and Southeast 

Peninsular Malaysia (this study), all sharing the M4’67 diagnostic site of a transition at np 

12007 (Figure 3.38). M4’67 is largely seen in South Asia, especially in West India (Mellars 

et al., 2013), which suggests an ultimate source there. 

M4 is represented by an instance from West India (Thangaraj et al., 2006). It is also 

commonly found in the western region of South Asia including Rajasthan, Gujarat, 

Maharashtra, Pakistan and Punjab (Thangaraj et al., 2006; Chandrasekar et al., 2009; Mellars 

et al., 2013), also reported in Andhrapradesh in the south and Uttarpradesh of North India 

(Sun et al., 2006), but not included in this study due to time constraints. M30 dates to ~26 ka 

and it is found in Southern India (Ingman and Gyllensten, 2003) and Pakistan (Hartmann et 

al., 2009), while M30a1, dating to ~11 ka, is found in Southern India (Ingman and 

Gyllensten, 2003) and Northeast Peninsular Malaysia (this study). M37 dates to ~38 ka, and 

is found in West India (Thangaraj et al., 2006) and Southwest Peninsular Malaysia (this 

study). However, it is not possible to infer the origin of these lineages since there are single 

samples without MSEA specific clade to date. 
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Figure 3.38 The tree of haplogroup M4’67. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (IND – India, PAK – Pakistan, SEM – Southeast Peninsular Malay, SWM – Southwest 
Peninsular Malay, THA - Thailand) 

3.12 Haplogroup M5 

Haplogroup M5, dating to ~61 ka, is a South Asian haplogroup that is commonly seen 

in India, Nepal and Pakistan (Figure 3.39; Fornarino et al., 2009; Hartmann et al., 2009; 

Kong et al., 2011). M5a’d dates to ~30 ka and splits into M5a and M5d. M5d and M5c are 

represented by an instance each from Nepal (Fornarino et al., 2009). M5a, dating towards the 

end of LGM, ~19 ka, is seen in East India (Thangaraj et al., 2006) and Northwest Peninsular 

Malaysia (this study). Its subclade M5a2a (~12 ka) is seen in Pakistan (Hartmann et al., 

2009) with a subset of M5a2a1 (~9 ka) found in India (Fornarino et al., 2009) and Xinjiang, 

China (Kong et al., 2011), which suggests an early Holocene dispersal northwards into the 

northwest China. Although a Northwest Peninsular Malay is nested within M5a, it is not 

possible to infer a date of arrival in Peninsular Malaysia based on a single instance in SEA. 
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Figure 3.39 The tree of haplogroup M5. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (IND – India, NEP – Nepal, NWM – Northwest Peninsular Malay, PAK – Pakistan, XIN – 
Xinjiang) 

3.13 Haplogroup M24’41 

Haplogroup M24’41 is subdivided into M24 and M41. M41 appears to be confined to 

south and eastern India (Thangaraj et al., 2006; Chandrasekar et al., 2009), dating to ~40 ka 

(using the coding-region mutation rate produced by Mishmar et al., 2003) in Chandrasekar et 

al. (2009), although this mutation rate generally gives much older dates than the corrected 

mutation rate by Soares et al. (2009). Haplogroup M24 is a very rare Sunda haplogroup 

which is invisible with HVS-I data but appears at present to be restricted to Southeast Asia, 

with a basal lineage in Vietnam and a subclade found in both Vietnam and north-western 

ISEA (Figure 3.40). It was first reported and named by Scholes et al. (2011) on Palawan, the 

Philippines. M24 dates to the start of LGM ~25 ka. Its subclade dates to ~12.5 ka, and is 

shared by lineages from Vietnam, North Borneo of Malaysia (Archaeogenetics Research 

Group, Huddersfield) and the Philippines (Scholes et al., 2011). The Philippine lineage is 

sampled from one of the three non-negrito indigenous tribes called Tagbanua on Palawan, 

who practise small-scale agriculture and exhibit recent admixture with the Batak (Migliano et 

al., 2007). According to Scholes et al. (2011), haplogroup M24 in the Philippines is restricted 
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to the Tagbanua only. The whole-mtDNA tree shows M24 is present in SEA at the LGM, ~25 

ka and a late Pleistocene dispersal ~12.5 ka in ISEA. 
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Figure 3.40 The tree of haplogroup M24’41. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (FIL – Philippines, NBO – North Borneo, VIE – Vietnam) 

3.14 Haplogroup M13’46’61 

Haplogroup M13’46’61 dates to ~58 ka, with a possible origin in Southeast Asia/South 

China, where there is most of the deepest diversity in the tree, and the subclades spread from 

here in different directions, in particular, northeast into northern China and Japan as M13a1, 

India and Tibet as M61a and M13b2, and lastly, M13b1 in Peninsular and Aboriginal Malays 

and ISEA. The whole-mtDNA tree includes 30 complete sequences: 4 M46, 8 M61 and 18 

M13. (Note that I have amended certain branches of the tree but due to time constraints, dates 

are estimated mainly by ρ although certain ML dates are kept on the tree.) 

M13’46’61 is subdivided into two basal subclades consisting of M46 and M13’61. M46 

(Figure 3.41), despite diverging ~50 ka,  dates to only ~2 ka and is very rare; it is restricted to 

Thailand and the Moken (Dancause et al., 2009; Pradutkanchana, Ishida and Kimura, 2010). 

The Moken, also known as the sea gypsies of the Andaman Sea, speak a language belonging 

to the Malayo-Polynesian branch of the Austronesian language family (Larish, 1999; Gordon, 

2005). It is therefore of interest that their mtDNA affiliation (which also includes a 

preponderance of M21d lineages) relates more to their geography than their language. They 
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live off the coast of Myanmar and Thailand, subsisting through maritime foraging (Dancause 

et al., 2009). M46 has clearly undergone heavy drift, perhaps due to population subdivision in 

Thailand. 
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Figure 3.41 The tree of haplogroup M46 nested within M13’46’61. Time estimates shown for clades are ML (in 

black) and averaged distance (ρ; in blue) in ka. (THA – Thailand, TMK – Thailand Moken) 

Haplogroup M13 shares a transition at np 16381 with M61, and the putative node 

(M13’61) dates to ~46 ka by ρ, and >50 ka by ML (Figure 3.41). The control-region position 

16381 is a slow site, occurring five times compared to np 16362, 67 times, in a worldwide 

mtDNA tree (Soares et al., 2009). Therefore, contrary to PhyloTree Build 15 (2012), M61 

more likely clusters with M13 via np 16381 than with M46 via np 16362. There are three 

reversions of np 16381 seen in the Nepalese and Tibetan lineages within subclades M13a2 

and M13b, suggesting that position 16381 may revert faster than it mutates forwards. 

M61, dates to ~27 ka (ρ ~21 ka), and its subclades M61a and M61b each has different 

region distribution. M61a has a coalescence age ~10 ka (ρ ~7 ka) and is found in Yunnan, 

South China (Kong et al., 2011), apparently with a subsequent Late Holocene spread events 

into Tibet (Kong et al., 2011) and India (Chandrasekar et al., 2009) by ~4 ka. In HVS-I, M61 

and M61a appear to be centred on South China. M61b is seen in only two individuals, from 

Vietnam and North Borneo (Archaeogenetics Research Group, Huddersfield), diverging ~22 

ka (ρ ~18 ka); in the HVS-I database, M61b1 is seen only in Vietnam. 
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 A pre-M13 node defined by a transition at np 6023, dating to ~49 ka (ρ) (~52 ka with 

ML), is found in a single individual from Thailand (Pradutkanchana, Ishida and Kimura, 

2010), providing weak support for an origin in MSEA. M13 dates to ~48 ka (ρ) (~52 ka with 

ML) and it splits into M13a and M13b (Figure 3.42). M13a dates to ~18 ka (ρ) and is found 

only in East Asia; the main subclade M13a1 dates to the late Pleistocene ~13 ka (~11 ka by 

ρ) and seems to be restricted to north China (Kong et al., 2006) and Japan (Tanaka et al., 

2004); the latter forms a subclade, M13a1a, that dates to ~6 ka (ρ ~4 ka). Subclade M13a2 is 

found in a single individual from Tibet (Zhao et al., 2009). 
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Figure 3.42 The tree of haplogroups M46 and M13’61. Time estimates shown for clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. Certain branches of the tree are changed but some of the ML dates are kept on 

the tree. (CHI – China, IND – India, JAH – Semang Jahai, JAP – Japan, NEM – Northeast Peninsular Malay, NBO – 

North Borneo, NEP – Nepal, NWM – Northwest Peninsular Malay, SML – Aboriginal Malay Semelai, THA – 
Thailand, TIB – Tibet, VIE – Vietnam, XIN – Xinjiang, China) 

M13b dates to ~38 ka and is divided into M13b1 (~26 ka) and M13b2 (~7 ka) (Figure 

3.42). A subclade nested within M13b1, dating to ~9 ka, is found in the Northwest Peninsular 

Malay, and further nested within a subclade (~6 ka) consists of lineages from Northeast 
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Peninsular Malaysia, Aboriginal Malay Semelai (this study) and Nepal (Fornarino et al., 

2009). M13b2, dating to ~6.5 ka, is restricted to India (Chandrasekar et al., 2009) and then 

~2.4 ka a subclade is further formed and shared between India and Tibet (Kong et al., 2011).  

The HVS-I network (see Figure 3.10 in Section 3.3) shows a basal lineage of M13b1 

(previously M21b, but now recognisable as M13b1 in the HVS-I network) is reported in the 

Semang, Senoi (Hill, 2005) and Peninsular Malay, while the derivative types are found in 

Thailand, Sumatra, Borneo, Sulawesi, Aboriginal Malay, and Peninsular Malay (this study). 

This distribution in the HVS-I data is reflected in the whole-mtDNA analysis, where a basal 

lineage of M13b1 is seen in a Semang Jahai individual (Macaulay et al., 2005). An 

unclassified branch of M13 has also been seen shared between a Peninsula Malay and a Thai 

individual.  

Considering the basal pre-M13 lineage and the oldest subclade, M13b1, dating to ~26 

ka, are found in Thailand and the Malay Peninsula respectively, with clades in Japan and 

South Asia dating to the mid-Holocene, M13 may have had a MSEA/Sunda origin with 

several comparatively recent offshoots in different directions into North China/Japan as 

M13a1 by ~13 ka and M13b2 in India and Tibet by ~6.5 ka. In fact, the whole haplogroup 

M13’46’61 can be argued to be a deep Sunda haplogroup. Firstly, M61b (dates to the Late 

Glacial ~18-22 ka) is found in North Borneo and Vietnam, in what looks like the relict 

descendants of the first settlements on Sunda shelf. Secondly, M46 evolved earlier than 

M13’61 and is restricted to Thailand. In a similar pattern to subclades M13a1 and M13b2, 

M61a would have spreads northwards by ~10 ka into China and Tibet, to finally reach India 

by ~2 ka. 

3.15 Haplogroup M2 

Haplogroup M2a’b is basal to haplogroup M and dates to ~48 ka, reconstructed here by 

three complete sequences (Figure 3.43). M2 has been studied extensively by Kumar et al. 

(2008) and 76 complete sequences from India were used in their phylogenetic analysis. M2 is 

found widely distributed in India at high frequency (~10% of Indian M haplogroups; 

Bamshad et al., 2001; Metspalu et al., 2004), which is significantly more pronounced in 

southern India compared to north and possibly represent the earliest settlers in South Asia 

who colonised India through the southern coastal route. However, these complete sequences 

were not included in this study due to time constraints.  
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M2a1 has a region-specific distribution in India, mainly among the Indo-European 

speakers in western and central India (Kumar et al., 2008). In Figure 3.43, M2a1 dates to ~18 

ka and they are from Pakistan and Brazil (Hartmann et al., 2009). The presence of a sample 

from Brazil in the Indian haplogroup M2a, as well as R7a by Hartmann et al., (2009), is 

intriguing. Since it is only a single instance, this sample could have possibly migrated 

recently from India into South America. M2b is found at high frequency in Dravidian 

speakers of central and south India, and in the Korku, an Austro-Asiatic tribe of central India, 

but is virtually absent among Indo-European speakers of western and central India as well as 

Tibeto-Burman speakers of north-east India (Kumar et al., 2008). In this study, a Northwest 

Peninsular Malay shares six defining mutations with M2b. The pre-M2b Malay lineage 

represents the relict descendant in Peninsular Malaysia (although a Malay speaker) from the 

first settlers that arrived via the southern route from India ~37 ka (by ρ). On the other hand, 

the Malay HVS-I sequence almost matches one in the Apatani tribe in eastern India, so the 

split is likely to be very recent. 
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Figure 3.43 The tree of haplogroup M2. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (BRA – Brazil, NWM – Northwest Peninsular Malay, PAK – Pakistan) 
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3.16 Haplogroup M32’56 

Haplogroup M32’56 subdivides into M32 and M56. M56 is reported in the Austro-

Asiatic-speaking Korku tribe in central India, dating to ~15 ka using the Mishmar et al. 

coding-region mutation rate (Chandrasekar et al., 2009). M32 is a rare haplogroup, dating to 

~56 ka, and is subdivided into M32a and M32c (Figure 3.44). M32a appears to be 

exclusively restricted to Andaman Islands (Thangaraj et al., 2006) that have undergone high 

genetic drift, possibly resulting in young dates of ~12 ka, with a subclade nested within that 

dates to ~3 ka. M32c also experienced high drift, dating to ~8 ka and it is shared between a 

Southeast Peninsular Malay (this study) and interestingly in Madagascar (Dubut et al., 2009).  
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Figure 3.44 The tree of haplogroup M32. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (AND – Andaman Islands, MAD – Madagascar, SEM – Southeast Peninsular Malay) 

The native Madagascar speak Austronesian-languages, which belonged to the most 

widespread language family in the world, with a distribution extending more than half way 

around the globe from Madagascar to Easter Island (Bellwood et al., 2006). The Malagasy 

language in Madagascar nested within the Barito subgroup, on South Borneo, which was 

believed to have been in Madagascar since 400-500 A.D., although Adelaar (1994) claimed 

that this date is at least two centuries too early. Although it is impossible to know a direction 
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of migration with minimal complete sequences, the presence of M32c in Madagascar pre-

dates the Austronesian-speakers expansion to mid-Holocene. 
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Figure 3.45 The tree of haplogroup M47. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. 

3.17 Haplogroup M47 

M47 is a rare, possibly Sunda haplogroup in SEA (Figure 3.45). It dates to ~24 ka and 

found in Bangka, Sumatra (Archaeogenetics Research Group, Huddersfield) and Northwest 

Peninsular Malaysia (this study). There is potentially another M47 sample from Pekanbaru, 

Sumatra with similar HVS-I motif to the Bangka lineage and not seen anywhere else by the 

HVS-I database. Due to the low number of whole mtDNA sequences, the direction of 

migration remains unclear. 

3.18 Haplogroup M26 

M26 is a rare clade that dates to ~55 ka and divides into M26a and M26b (Figure 3.46), 

both of which have distinctive HVS-I motifs. M26 has a deep and widespread Sunda 

distribution, across MSEA/Malay Peninsula and Sumatra. M26a dates to ~39 ka, with a basal 

lineage in a Northeast Peninsular Malay (this study), and a derived subclade, M26a1, also 

seen in Sumatra (Gunnarsdóttir et al., 2011b), dates to ~4 ka.  In the HVS-I database, both 
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derived and underived lineages are also seen (although very rarely) in Thailand and Eastern 

Indonesia. 
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Figure 3.46 The tree of haplogroup M26. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular Malay, SEM – 
Southeast Peninsular Malay, SUM – Sumatra, VIE – Vietnam) 

M26b dates to ~20 ka, with basal lineages in Vietnam and Northwest Peninsular 

Malaysia. There are two subclades, M26b1 and M26b2. M26b1 dates to ~4 ka and is seen in 

Vietnam only in the whole-mtDNA tree (Archaeogenetics Research Group, Huddersfield), 

but with single examples also in Sumatra and Lombok in the HVS-I database. M26b2 has an 

older date of ~8 ka and is found in Southeast Peninsular Malaysia (this study) and Sumatra 

(Archaeogenetics Research Group, Huddersfield). The distribution and age of M26 suggests 

an ancient root in the Sunda region dating to the first settlers ~55 ka. Although sample sizes 

are presently small, M26a1 could be a potential marker of Bellwood’s hypothesis (1990) 

regarding the Neolithic expansion of farmers along the coastlines dispersal from Peninsular 

Malaysia into Sumatra; although Bellwood no longer believes this (personal communication). 
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3.19 Haplogroup M1’20’51 

The putative haplogroup M1’20’51 dates to ~60 ka, defined by a transition at np 14110 

(which occurs only three times in a global phylogeny: Soares et al., 2009) and shared by 

haplogroups M1, M20 and M51. Relevant to this study are subclades M20 and M51 shown in 

Figure 3.47. There are 40 complete sequences on the tree: 13 belong to M20 and 26 to M51, 

and there is basal paraphyletic M1’20’51 lineage in Thailand (seen twice in Thailand in the 

HVS-I database). All subclade names are assigned here for the first time apart from subclades 

M51a to M51a1a (Peng et al., 2010). M20 and M51 both have deep roots within the Sunda 

regions, especially MSEA/Peninsular Malaysia. This deep ancestry may also point to an 

ultimately Southeast Asian source for the enigmatic Mediterranean and East African 

haplogroup M1 (Olivieri et al., 2006). 

M20 dates to ~41 ka and M20a to the end of LGM ~19 ka. Both have basal lineages 

seen in Northeast Peninsular Malay, indicating an origin lies somewhere in MSEA, and M20a 

is mainly seen in MSEA/South China in the HVS-I database, with  very few in ISEA. M20a1 

dating to before the second flooding of the Sunda shelf ~12.5 ka, includes basal lineages in 

the Bidayuh of Sarawak in North Borneo (Jinam et al., 2012) and Java (Archaeogenetics 

Research Group, Huddersfield). M20a1a, dating to ~10 ka, is divided into M20a1a1 and 

M20a1a2, with the basal lineages in Northeast Peninsular Malaysia (this study) and Vietnam 

(Archaeogenetics Research Group, Huddersfield). M20a1a1 dates to ~7 ka, where it is found 

in South China (Kong et al., 2011), Peninsular Malay (this study) and Sumatra 

(Archaeogenetics Research Group, Huddersfield). M20a1a2, dates to ~8 ka, is seen in 

Thailand (Pradutkanchana, Ishida and Kimura, 2010) and Southeast Peninsular Malaysia (this 

study). 

Subclade M20a1a2 is found in single individuals from Thailand and Peninsular 

Malaysia, while M20a1a1 is seen in several Peninsular Malay, and one each from Sumatra 

and South China. However, the age difference is not significant given the confidence 

intervals of estimation. The pattern suggests an ancient source centred on MSEA and most 

probably recent dispersals northwards into South China, and southwards in Sumatra, perhaps 

relating to the flooding of the Strait of Malacca in the early Holocene (Oppenheimer, 1998). 
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Figure 3.47 The tree of haplogroup M20. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (BID – Sarawak Bidayuh, CHI – China, JAV – Java, Indonesia, NBO – North Borneo, 

NEM – Northeast Peninsular Malay, Northwest Peninsular Malay, SEM – Southeast Peninsular Malay, SUM – 
Sumatra, THA – Thailand, VIE – Vietnam) 

M51 dates to ~37 ka and divides into M51a and M51b (Figure 3.48), which are seen 

across the Sunda area. M51a dates to ~33 ka, which again further subdivides into M51a1 

(~25.5 ka) and M51a2 (~31 ka). M51a1 dates to the LGM, its subclade M51a1a (~10 ka) is 

found in Vietnam (Peng et al., 2010) and a recent subclade nested within, dating to ~1 ka, is 

seen localised in Sumatra, suggesting a very recent dispersal from MSEA (Gunnarsdóttir et 

al., 2011b). M51a1b dates to ~10 ka and is seen in Java, Thailand (Archaeogenetics Research 

Group, Huddersfield) and Cambodia (Hartmann et al., 2009). 

The older subclade M51a2 pre-dates the LGM and has a basal lineage in Northeast 

Peninsular Malaysia (this study) and a subclade, M51a2a, dating to ~17 ka, shared between 

an instance from South Borneo (Archaeogenetics Research Group, Huddersfield) and two 

from Vietnam (Peng et al., 2010), the latter formed a further subclade, M51a2a1 (~7 ka).   
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Figure 3.48 The tree of haplogroup M51. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CAM – Cambodia, JAV – Java, Indonesia, LSI – Lesser Sunda Islands, NBO – North 

Borneo, NEM – Northeast Peninsular Malay, SBO – South Borneo, SEM – Southeast Peninsular Malay, SUM – 
Sumatra, THA – Thailand, VIE - Vietnam) 

M51b dates to ~35 ka, and is divided into M51b1 (~33 ka) and M51b2 (~19 ka). 

M51b1 and M51b1a (~26 ka) both date to before the LGM; the former includes a basal 

lineage seen in Brunei, North Borneo, while the latter has a basal lineage in Vietnam 

(Archaeogenetics Research Group, Huddersfield). A subclade nested within, M51b1a1 (~12 

ka), is shared between single individuals from Vietnam (Peng et al., 2010) and Southeast 

Peninsular Malaysia (this study). 

Basal lineages of both M51b2 and M51b2a are seen in Northeast Peninsular Malay 

(this study), separating towards the end of the LGM, ~19 ka (~20 ka and ~18 ka by ρ 

respectively). M51b2a1 dates to ~14 ka with a basal lineage in Mataram (in the Lesser Sunda 

Islands), and a subclade, M51b2a1a, dating to ~2 ka and seen in Vietnam (Archaeogenetics 

Research Group, Huddersfield). 
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We can confirm the overall distribution with HVS-I data. Peng et al. (2010) found 

several unclassified haplogroups observed in their Cham and the Kinh Vietnamese samples to 

cluster with previously reported (more than 3000) unclassified mtDNA HVS-I sequences 

from ISEA, and one of the haplogroups they recognised was M51. According to their 

reduced-median HVS-I network (Fig. 3 in Peng et al., 2010) M51 is widely distributed 

almost exclusively in Southeast Asia, in particular the southern pole of MSEA such as 

Vietnam, Thailand, Peninsular Malaysia, and Borneo and Indonesia in ISEA. Haplogroup 

M51a1, recognisable by a transition at np 16294, has root types found in Indonesia, 

Cambodia and Thailand. Its derivatives are restricted to MSEA in Cambodia, Thailand and 

Vietnam. Haplogroup M51b1, defined by a transition at np 16311, has the root type seen in 

Vietnam and Indonesia, and the derived types are found in Vietnam, Peninsular Malaysia and 

Indonesia. Lastly, haplogroup M51b2 is also recognisable on the network, defined by a 

transition at np 16189. M51b2 is predominantly found at high diversity in Indonesia, with 

minor sharing of the root type with Vietnam (the exact breakdown of frequency was not 

available in Peng et al., 2010). Its derivatives are also found in Peninsular Malaysia. The 

HVS-I signals are therefore similar to those observed in the whole-mtDNA tree: M51, similar 

to M20, is a deep Sunda haplogroup in MSEA and widely distributed throughout ISEA 

spread from the beginning of the Late Glacial onwards, the time at which sea-levels began to 

rise – possibly implying an impact of sea-level rise in MSEA comparable to that in ISEA. 

3.20 Haplogroup M50 

M50 spread through the Sunda region, dating to ~55 ka and split into M50a and M50b, 

both of which appear to have their origins in MSEA (Figure 3.49). M50a dates to ~48 ka, and 

it is seen in Northwest Peninsular Malay (this study). The lineage appears also in Northeast 

Peninsular Malaysia as subclade M50a1 ~11 ka, from where it may have spread into Vietnam 

and Sumatra, Indonesia (Archaeogenetics Research Group, Huddersfield) as M50a1a ~9 ka, 

a further subclade of M50a1a, aged around 3 ka, indicates lineages in Vietnam (Peng et al., 

2010) and off the southeastern Sunda shelf in Sulawesi, Indonesia (Archaeogenetics Research 

Group, Huddersfield). 
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Figure 3.49 The tree of haplogroup M50. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular Malay, SUL – 
Sulawesi, SUM – Sumatra, THA – Thailand, VIE – Vietnam) 

The long branch of M50b indicates high drift resulting in a date of ~6 ka, and is also 

characteristic to Northeast and Northwest Peninsular Malaysia (this study). A further 

subclade defined by a transition at np 16526, dating to ~2 ka, and is found mainly in Thailand 

(Pradutkanchana, Ishida and Kimura, 2010) but also Northwest Peninsular Malay (this study), 

suggesting recent northern spread. 

3.21 Haplogroup M71 

Haplogroup M71 dates to ~39 ka and is subdivided into three subclades, M71a, M71b 

and M71c. M71 appears to have an early origin in northern mainland SEA/South China with 

subsequent spread on the Sunda shelf. The phylogeny of M71 includes 16 complete 

sequences (Figure 3.50). M71a, dating to ~35 ka, is widely distributed in South China, the 

Sunda shelf and beyond, with the basal lineage seen in South China (Tabbada et al., 2010). It 

is further divided into M71a1 and M71a2. M71a1, dating to ~18 ka, is seen in South China. A 

subclade nested within M71a1 is found in South China (Kong et al., 2011) and Northeast 

Peninsular Malay (this study). M71a2 dates to ~17 ka, and is restricted to ISEA in the 



133 

 

Philippines (Tabbada et al., 2010) and Sumba of Lesser Sunda Islands (Archaeogenetics 

Research Group, Huddersfield). 
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Figure 3.50 The tree of haplogroup M71. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, LSI – Lesser Sunda Islands, NEM – Northeast 
Peninsular Malay, SEM – Southeast Peninsular Malay, THA – Thailand, VIE – Vietnam) 

M71b is so far confined to MSEA and South China, dating to ~39 ka, with the basal 

lineages being found in Thailand (Archaeogenetics Research Group, Huddersfield) and 

Southeast Peninsular Malay (this study). A subclade M71b1 dates to ~9 ka, and appears in 

Vietnam (Archaeogenetics Research Group, Huddersfield) and South China (Kong et al., 

2011). 

The third M71 branch, M71c dates to ~7 ka, is so far confined to northern MSEA in 

Vietnam as a basal branch (Peng et al., 2010) and in Thailand (Pradutkanchana, Ishida and 

Kimura, 2010) as M71c1 ~3 ka. 

3.22 Haplogroup M72 

Haplogroup M72 is another primary M branch based in northern MSEA/South China 

(Figure 3.51). It experienced genetic drift with its expansion dating to the LGM (~18 ka), and 

Sunda spread from the Late Glacial onwards.  A basal lineage of M72 is seen in South China 

(Kong et al., 2011). This haplogroup is seen, albeit at low levels, throughout the Sunda shelf 

and beyond as clustered subclades. M72a dates to ~15 ka with basal lineages found both in 
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Vietnam (Tabbada et al., 2010) and the Philippines (Peng et al., 2010). M72a1, dating to ~11 

ka, is divided into M72a1a ~4 ka, and M72a1b ~2 ka. M72a1a shows local MSEA spread in 

Vietnam (Archaeogenetics Research Group, Huddersfield) and Northeast Peninsular Malay 

(this study), while M72a1b is detected in Southwest Peninsular Malay (this study) and 

Mataram, Indonesia (Archaeogenetics Research Group, Huddersfield). 
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Figure 3.51 The tree of haplogroup M72. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, LSI – Lesser Sunda Islands, NEM - Northeast Peninsular 
Malay, SWM - Southwest Peninsular Malay, VIE - Vietnam) 

3.23 Haplogroup M42’74 

Haplogroup M42’74 dates to ~60 ka, and appears to be of early Sunda origin with very 

early spread throughout ISEA, on southwards to Australia and later north to South China. It is 

divided into M42 and M74 (Figure 3.52). A complete sequence from Vietnam 

(Archaeogenetics Research Group, Huddersfield) shares a transition at np 8251 which defines 

the pre-M42’74 node, and dates to ~60 ka too. M42 (or M42a) is represented here by a 

singleton from an Australian Aborigine (Ingman et al., 2000). The link may however be 

spurious, as np 8251, which is the sole position defining the combined clade, is very fast-

evolving (Soares et al., 2009). Haplogroup M74 includes 14 complete sequences, and is seen 

commonly from China through MSEA and ISEA to the Philippines. 
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M74 dates to ~47 ka, and has two subclades: M74a and M74b. M74a dates to ~11 ka, 

and is, so far, only seen in South China (Kong et al., 2011) and Vietnam (Archaeogenetics 

Research Group, Huddersfield). M74b dates to ~31 ka and while a basal lineage is seen in 

Yunnan China (Kong et al., 2011), two nested subclades are confined to the Sunda shelf. One 

of these, M74b1 dates to ~4 ka and is seen both in Northwest Peninsular Malay (this study) 

and different locations of ISEA: Sumatra (Gunnarsdóttir et al., 2011b) and Java, Indonesia 

(Archaeogenetics Research Group, Huddersfield), and the Mamanwa and Philippines 

(Gunnarsdóttir et al., 2011a). 

M74b2 dates to ~9 ka, with basal branches in Vietnam, as well as Mataram and 

Sumatra in Indonesia (Gunnarsdóttir et al., 2011b; Archaeogenetics Research Group, 

Huddersfield). A further subclade nested within, defined by a transition at np 8426, dating to 

~7 ka and is seen in ISEA: Java, Indonesia (Archaeogenetics Research Group, Huddersfield) 

and a Bidayuh in Sarawak in North Borneo (Jinam et al., 2012). 
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Figure 3.52 The tree of haplogroup M42’74. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (AUS – Australia, BID – Sarawak Bidayuh, CHI – China, FIL – Philippines, JAV – Java, 

Indonesia, LSI – Lesser Sunda Islands, MAM – Philippines Mamanwa, NWM – Northwest Peninsular Malay, SUM – 
Sumatra, VIE – Vietnam) 
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3.24 Haplogroup M73’79 

Haplogroup M73’79 is a deep primary Sunda lineage, spreading widely and early in 

SEA. It dates to ~61 ka, and divides into M73 (~45 ka) and M79 (~21 ka). The phylogenetic 

tree of M73’79 includes 14 complete sequences: eleven M73 and three M79 (Figure 3.53). 

M73a dates to ~30 ka, and subdivides into M73a1 and M73a2, the former in MSEA and 

the latter in ISEA. M73a1, dating to ~20 ka, and is seen in Vietnam (Tabbada et al., 2010) 

and Thailand (Peng et al., 2010). M73a2, dating to ~26 ka, and is found in Alor, Indonesia 

(Archaeogenetics Research Group, Huddersfield) and the Philippines (Tabbada et al., 2010). 

M73b, dating to ~39 ka, is seen mainly in ISEA: in North Borneo and Sumatra, 

Indonesia (Archaeogenetics Research Group, Huddersfield) as well as in MSEA. M73b1 

dates to ~29 ka and a basal branch is again seen in MSEA: Vietnam (Archaeogenetics 

Research Group, Huddersfield). A further subclade, M73b1a, dating to ~11 ka, and is further 

divided into two branches, one in ISEA, the other in MSEA. The first branch dates to ~5 ka 

and is found in Brunei, North Borneo (Archaeogenetics Research Group, Huddersfield), 

Sumatra and elsewhere in Indonesia (Tabbada et al., 2010), while the second branch, ~11 ka, 

is seen in Vietnam (Peng et al., 2010) and a Southwest Peninsular Malay (this study). 

We now look at the HVS-I network of haplogroup M73 (Figure 3 in Peng et al., 2010). 

Haplogroup M73a, recognisable by a transversion at np 16184A in the figure, has its root 

types found in Peninsular Malaysia and Indonesia, and the derivatives are seen in Cambodia 

and Thailand. Haplogroup M73b1a, recognisable by a transition at np 16354, is found in 

Vietnam and Peninsular Malaysia. The results corresponded with the whole-mtDNA tree that 

M73 indeed have origins confined to SEA. 

M79 is a rare haplogroup that dates to the LGM ~21 ka, where a basal lineage is seen in 

Yunnan, South China (Kong et al., 2011). A subclade nested within, dating to ~20 ka, is 

shared between Vietnam and Java, Indonesia (Archaeogenetics Research Group, 

Huddersfield). Similar to M73, M79 is restricted to the relict descendant on the Sunda shelf 

since the LGM. 
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Figure 3.53 The tree of haplogroup M73’79. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, INA – Indonesia, JAV – Java, Indonesia, LSI – Lesser 
Sunda Islands, NBO – North Borneo, SUM – Sumatra, THA – Thailand, VIE – Vietnam) 
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Figure 3.54 The tree of haplogroup M77. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (JAV – Java, Indonesia, NEM – Northeast Peninsular Malay, VIE – Vietnam) 
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3.25 Haplogroup M77 

Haplogroup M77 is a rare primary Sunda M haplogroup that has undergone genetic 

drift and found both in MSEA and ISEA (Figure 3.54). The HVS-I sequences for M77 are 

reported so far in Vietnam and Peninsular Malaysia only (Peng et al., 2010). Meanwhile, my 

results show that this haplogroup dates to ~17 ka, and a basal lineage is found in a Northeast 

Peninsular Malay (this study). A Holocene subclade M77a, dating to ~8 ka, and is found both 

in MSEA (Vietnam: Peng et al., 2010) and ISEA (Java, Indonesia: Archaeogenetics Research 

Group, Huddersfield).  

3.26 Haplogroup D 

Haplogroup M80’D has been inferred (Scholes et al., 2011; Phylotree by van Oven and 

Kayser, 2009) by a shared transition at np 4883 between a singleton M80 found among the 

Batak negrito of the Philippines and the very large D haplogroup (Figure 3.55). The latter is 

present in significant frequency and diversity in MSEA (based on the HVS-I data in Laos 

reported in Bodner et al., 2011) and lower frequency throughout ISEA, while it is widespread 

and very common throughout East Asia and the New World (Derenko et al., 2010). This 

background, and the single deep link with ISEA, raises the possibility that the ancestry of 

haplogroup D may originally have lain on the Sunda shelf, even the southern part of it.  

Haplogroup D dates to ~52 ka, and has two major subclades: the primary branch D4 

(includes D1) estimated at ~29 ka and D5’6, or D4+16189C which, if a true ancestral node, 

would date similarly to D overall, ~52 ka. D5 dates to ~43 ka and D6 ~31 ka. The 

phylogenetic tree of haplogroup D includes 339 complete sequences: 279 D4 (and D1), 50 

D5 and 10 D6. I have also included 35 Chinese complete sequences (Zheng et al., 2011) in 

the tree but they were not included in ML estimations because of time constraints.  

Haplogroup D is mainly a Northern Asian haplogroup, encompasses almost 20% of the 

total mtDNA variation in most of northern Asia and retains a very high overall frequency in 

all regional northern Asian groups (11-34%), central Asian (14-20%) and eastern Asian (10-

43%) populations (Derenko et al., 2010), so that Northern Asian lineages occur throughout 

the tree. While few of them are specific for northern Asian populations, D is also very 

common in eastern, central Asia and America (ref e.g. Derenko et al., 2010). D1, a subclade 

subsumed by D4, is found in the Americas. D4 is the most represented of D subclades and are 
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found at high frequencies in China, Japan and Korea (Mormina, 2007). D4e appears to have a 

root in Japan, where subclade D2 is found in North Asia, and D4e1a is found in Japan as well 

as Thailand. D4h has four subclades, D4h1 is almost entirely found in Japan and at much 

lower levels in China. D4h2, D4h3 and D4h4 are each represented by one complete sequence, 

and they are found respectively in North Asia, Brazil and Japan. D4a, D4i, D4j and D4m are 

widely found in China and Japan. Subclade D4a3b is found in China and Northwest 

Peninsular Malaysia. D4+195 includes subclades D4k, D4o and D4p, all showing root types 

in Japan, with the exception of D4o2 which is found in China and North Asia. 

 

 

Figure 3.55 Schematic diagram of haplogroup D and its major subclades distribution. (AME – America, BRA 

– Brazil, CHI – China, EA – East Asia, FBT – Philippines Batak, FIL – Philippines, ISEA – Island Southeast Asia, 
JAP – Japan, NAS – North Asia, NWM – Northwest Peninsular Malaysia, THA - Thailand) 

Haplogroup D5 and its subclades are also found mainly in China and Japan (Figure 

3.55). However, D5a3a is seen rarely in North Asia, and D5b1c in China and the Philippines. 

It reaches the highest frequencies in Korea and Northeast China (Mormina, 2007). 

Haplogroup D6 is a small haplogroup and is divided into D6a and D6c. D6a1 is seen in China 

and Japan, D6a2 on the other hand is seen in ISEA. D6c is found in South China and then it 

spreads into ISEA. Additionally, the Laotian HVS-I data indeed complement the whole-

mtDNA picture by showing the presence of D4b1b, D4b2b, D4e1’3, D4g2a, D5b, D5a2a1 

and D* in MSEA (Laos in Bodner et al., 2011), when the whole-mtDNA trees appear to be 

mainly restricted to East Asia. 
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3.26.1 Haplogroup D4 

In general, haplogroup D4a seems to have originated in China dating to the Late Glacial 

based on the paraphyletic basal lineages. The whole-mtDNA tree suggests several dispersals, 

some may be earlier and some later, from China to Japan roughly in the early to mid 

Holocene. In Figure 3.56, D4a is mainly seen in Japan (Tanaka et al., 2004) and it dates to 

~17 ka, but the basal lineages are restricted to China: one in the South and three in the North 

(Zheng et al., 2011). D4a includes four subclades, D4a1, D4a2, D4a3 and D4a+C16294T 

(D4a4). D4a1 dates to ~7 ka, and so far has been identified five subclades: D4a1a, D4a1b, 

D4a1c, D4a1d and D4a1e. D4a1e is represented here by one Japanese complete sequence. 

D4a2 dates to ~11 ka, and subclade D4a2a around 2 ka. D4a3 dates to ~14 ka, and subclades 

D4a3a remains seen in Japan (Tanaka et al., 2004) ~3 ka. D4a3b is seen in northeastern 

China (Kong et al., 2003a) and Northwest Peninsular Malaysia (this study) around 7 ka. 

D4a+C16294T dates to ~13 ka and is restricted to Japan. D4a3 types are also found in South 

China in the HVS database. The lineage of Northwest Peninsular Malay within D4a3b, 

similar to the Thai lineage within subclade D4e1a, can be seen as an intrusive dispersal from 

northern China in an upper bound of ~7 ka. However, seeing that they were extremely rare in 

Malaysia, these lineages could have arrived there quite recently. Detailed description for 

haplogroup D4 is available in Appendix E. 

151
650r

6524s
13650Gs
14560s

9341Ts
14180ns

6899s
14226ns
15355s
15757s

5582nc
15119ns

14053ns
16325

14053ns
16325

3206r
8473s

14979ns
16129

M
C

2
1

10410t

A
P

0
0

8
6

4
1

5261s

15314ns

D4a1a1

D4a1a

A
P

0
0

8
7

8
6

@3206r

A
P

0
0

8
3

9
8

A
P

0
0

8
3

9
9

A
P

0
0

8
6

7
5

A
P

0
0

8
7

4
5

6494s
16209

13651ns

D4a1b

A
P

0
0

8
3

1
4

A
P

0
0

8
7

8
7

16309

D4a1b1

A
P

0
0

8
2

9
6

A
P

0
0

8
3

6
9

A
P

0
0

8
3

3
4

533
6524s

A
P

0
0

8
3

1
8

A
P

0
0

8
3

6
6

15645ns

A
P

0
0

8
6

5
5

@16129

A
P

0
0

8
2

5
5

16270

A
P

0
0

8
8

4
4

5147s
14755s

7822s

D4a1c

A
P

0
0

8
6

0
2

A
P

0
0

8
3

1
2

A
P

0
0

8
8

6
9

146

A
P

0
0

8
4

4
9

A
P

0
0

8
3

9
5

9123s

6039ns

16286

D4a1d

A
P

0
0

8
8

7
1

A
P

0
0

8
5

0
1

A
P

0
0

8
8

0
5

1709r
2356r

151
15697s

A
P

0
0

8
6

1
4

7364s
16256

D4a1e

8614s
9254s

A
P

0
0

8
4

9
7

A
P

0
0

8
4

4
4

146
735r

1053Tr

A
P

0
0

8
5

8
9

7789s

A
F3

4
6

9
9

0

A
P

0
0

8
5

6
5

16140
16311

A
P

0
0

8
5

7
8

16192

A
P

0
0

8
3

3
7

16320

A
P

0
0

8
6

3
6

2140r

A
P

0
0

8
7

7
0

A
P

0
0

8
3

2
0

12957s

D4a2

3531s
8296r

10005t

D4a2a

A
P

0
0

8
4

7
9

A
P

0
0

8
8

3
9

A
P

0
0

8
7

5
9

241

15868s

A
P

0
0

8
7

6
5

15052s
15622s

5466ns
16249

15412s

D4a3a

3396s
14013s

14577ns
15448s
16093

A
P

0
0

8
9

0
7

5237s
9545s

A
P

0
0

8
8

6
2

15776ns

7912s

D4a3b

1520r
13834ns

16311

7861s
15481s
16278

A
Y

2
5

5
1

6
0

5460ns
6022ns
16234

16294

D4a+16294

A
P

0
0

8
8

8
8

469G
4248s

8659ns
9109ns

D4a4

9569s

A
P

0
0

8
5

8
2

5744nc
6551s

9197ns481

6.8(3.3-10.4)ka
6.1(3.7-8.4)ka

16.6(8.9-24.5)ka
10.7(6.2-15.2)ka

1.9(0-4981.3)ka
0.9(0-2.6)ka 4.7(1.0-8.4)ka

6.8(2.1-11.7)ka

4.0(0-8.1)ka
3.1(1.0-5.3)ka

2.2(0-5.2)ka
1.7(0-4.1)ka

3.2(0-11.4)ka
2.6(0-6.0)ka

1.6(0-3.8)ka
1.7(0-4.1)ka

3.9(0.1-7.9)ka
3.5(0-6.9)ka

11.1(2.9-19.7)ka
8.6(1.3-16.1)ka

2.0(0-4.7)ka
1.7(0-4.1)ka

14.0(7.0-21.3)ka
19.7(10.1-29.8)ka

3.3(0-7.1)ka
3.9(0-8.4)ka

6.7(0-14.0)ka
7.9(1.6-14.5)ka

13.1(4.3-22.4)ka
10.6(3.2-18.4)ka

D4a

D4a1

D4a3

N
A

1
8

5
9

1

N
A

1
8

6
4

8

N
A

1
8

5
6

5

H
G

0
0

4
2

1

507
5673t
8410s
9845s

13650s
13966ns
15883s
15889t
16263

5582nc
8683ns
14443s

15596ns

146
13350s
16265
16270

C
H

I

C
H

I

C
H

I

C
H

I

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

N
W

M

C
H

I

JA
P

JA
P

 

Figure 3.56 The tree of haplogroup D4a. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, NWM – Northwest Peninsular Malay) 

3.26.2 Haplogroup D5 

Haplogroups D5 (~43 ka) and D6 (~31 ka) share the ancestral node diverged from D 

and defined by a transition at np 16189 that dates (similar to haplogroup D overall) to ~52 ka. 

Haplogroup D5 is prevalent in China (<10%; Yao et al., 2002a) and much lower frequency in 
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southern Siberia (1.5%; Derenko et al., 2003), but rare in ISEA (~3 %) although it 

reaches >10% in some parts of Sulawesi (Hill et al., 2007), or absent in Central Asia 

(Kolman et al., 1996). D5a is found in Liaoning, Wuhan, Xinjiang and Qingdao in northern 

China (Yao et al., 2002a). Detailed description is available in Appendix E. 

D5b dates to ~27 ka and it is divided into subclades D5b1, D5b2 and newly named 

D5b3 (Figure 3.57). The root type of D5b is found in the Laotian HVS-I data (Bodner et al., 

2011). D5b1 dates to ~20 ka and it includes D5b1a, D5b1b, D5b1c and D5b1d, all restricted 

to Japan and China. Both subclades D5b1a and D5b1b, dating to ~12 ka and ~13 ka 

respectively, are found only in Japan (Tanaka et al., 2004). D5b1c has a basal lineage found 

in Yunnan, South China (Kong et al., 2003a) and its subclade D5b1c is seen in north China 

(Zheng et al., 2011) and the Philippines (Tabbada et al., 2010). D5b1d is found in two 

instances from northern China (Zheng et al., 2011). The HVS-I database shows that D5b1c 

(previously classified as D5d1 and dated to ~4 ka in Hill et al., 2007) is also seen quite 

frequently in Indonesia, especially Sulawesi and Taiwan. The root type of this branch (D5b1c) 

is not found in Taiwan, but three derived types are found there, suggesting that the root type 

may have been lost due to drift. Although there are very few whole-mtDNAs in D5b1c, 

considering the HVS-I database and as suggested by Hill et al. (2007), it can be plausibly 

ascribed to a mid-Holocene Out of Taiwan event through the Philippines into ISEA. 

D5b2 dates to ~10 ka and found only in two individuals from Japan (Tanaka et al., 

2004). D5b3 dates to ~5 ka and it is found in one individual each from Thailand 

(Archaeogenetics Research Group, Huddersfield) and Southeast Peninsular Malaysia (this 

study). D5b3 is not recognisable by the HVS-I motifs alone, and since there are only two 

instances within D5b3, it is difficult to phylogenetically infer any further. D5c is a small 

subclade found in China (Zheng et al., 2011) and two individuals in Japan (Tanaka et al., 

2004) ~3 ka as D5c1. 
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Figure 3.57 The tree of haplogroups D5b and D5c. Time estimates shown for clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, JAP – Japan, SEM – Southeast Peninsular 

Malay, THA – Thailand) 

3.26.3 Haplogroup D6 

Haplogroup D6 dates to ~31 ka, and includes subclades D6a and D6c (Figure 3.58). D6 

is more commonly found in SEA (more specifically in ISEA) compared to D5. The 

phylogeny does not suggest an MSEA origin, nor one in China, but includes Philippines 

haplotypes (including Mamanwa aboriginals) in both primary branches. This finding is not 

inconsistent with the M80 Philippines link above. D6a dates to ~28 ka and it further splits 

into D6a1 and D6a2. D6a1 is seen in South China (Zheng et al., 2011) and Japan (Tanaka et 

al., 2004), and dates to ~7 ka (but dated with ρ only, due to time constraints). D6a2 also dates 

to ~7 ka, and is seen in a single individual from Alor Island (Archaeogenetics Research 

Group, Huddersfield) and three from the Philippines (including a Mamanwa sequence; 

Tabbada et al., 2010; Gunnarsdóttir et al., 2011a).  The HVS-I database shows that it is also 

seen in several Taiwanese aboriginal groups; all share the same HVS-I haplotype (matching 

the one seen in the tree here). 

D6c dates to ~12 ka, with a basal type seen in South China (Kong et al., 2003a) and a 

subclade including two haplotypes from the Philippines (Tabbada et al., 2010) and one from 

Southern Borneo (Leeds Archaeogenetics Research Lab) ~7 ka. Given the errors on the age 
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estimates, both D6a2 and the Southeast Asian subclade of D6c are candidates as markers for 

the Austronesian dispersal. 
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Figure 3.58 The tree of haplogroup D6. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, LSI – Lesser Sunda Islands, MAM – Philippines 

Mamanwa, SBO – South Borneo) 
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Figure 3.59 The tree of haplogroups novel M* and M78 (Zhang et al., 2013). Time estimates shown for clades 
are ML (in black) and averaged distance (ρ; in blue) in ka. (SUL – Sulawesi, THA – Thailand, VIE – Vietnam) 
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3.27 Novel M* Haplogroups 

Several basal M* haplogroups/lineages (this study) are found in SEA and not elsewhere 

in Asia (Figure 3.59). However, the first haplogroup has been recently named M78 (Zhang et 

al., 2013) which is found in Thailand and Sulawesi, Indonesia (Archaeogenetics Research 

Group, Huddersfield) and dates to ~52 ka (~54 ka in Zhang et al., 2013). According to Zhang 

et al. (2013), M78 is subdivided into two subclades, the first includes four lineages from the 

Austro-Asiatic-speakers Stieng tribe of Cambodia, where the Sulawesi lineage (MND59) 

shares a transition at np 5147 out of the 9 variants. The second subclade includes three 

previously unclassified lineages: two from Myanmar (JX289097, JX289130; Summerer et al., 

2014) and one from Tibet (HM030537; Kong et al., 2011), where the Thai lineage (THA164) 

would share all 8 defining variants and nest within the same subclade (see Figure 4 in Zhang 

et al., 2013).  

The second haplogroup, defined by variants at nps 3828 and 16249, is seen in Vietnam 

and Sulawesi, Indonesia, dating to ~54 ka. They both show deep common ancestry between 

far-flung parts of the Sunda shelf, or close to it. 
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4 Results and Discussion: Haplogroup N 

Haplogroup N is defined by transitions at nps 8701, 9540, 10398 and 10873, and a 

reversion at np 15301. It includes the major haplogroup R, which I deal with separately 

below. As shown in Figure 4.1, the other main branches in East and Southeast Asia are N9 

(Tanaka et al., 2004; Kong et al., 2006; Metspalu et al., 2006; Derenko et al., 2007), N21, 

N22 (Macaulay et al., 2005; Pierson et al., 2006; Hill et al., 2007; Tabbada et al., 2010) and 

A (Tanaka et al., 2004; Kong et al., 2006; Derenko et al., 2007; Achilli et al., 2008), as well 

as three other smaller subclades N8, N10 and N11 (Kong et al., 2011).  

 

Figure 4.1 Schematic diagram of haplogroup N’s major subclades present in Southeast Asia. 

4.1 Haplogroup N9 

Haplogroup N9, which is commonly distributed across Asia, is defined by a transition at 

np 5417 and dates to ~55 ka with three subclusters, N9a, N9b and Y. N9a has seven 

subclades, which are N9a1’3, N9a2’4’5, N9a6, N9a7, N9a8, N9a9 and N9a10. The N9 tree 

has includes a total of 125 complete sequences: 86 N9a, 19 N9b and 20 Y. Most of N9 

subclades appear to be commonly found in China and Japan, with the deepest branches in 

China, which indicates it does not originate in Japan.  The exception is N9a6, which is found 

mostly in ISEA. N9b has three subclades, N9b1, N9b2 and N9b3, which are reported in Japan 

only. Y can be divided into Y1 and Y2, where the basal lineages are found in China and 

Japan. Y2a is, however, found mostly in ISEA (Figure 4.2). 



146 

 

 

Figure 4.2 Schematic diagram of haplogroup N9 and its major subclades. (EA – East Asia, SEA – Southeast 
Asia) 

4.1.1 Haplogroup N9a 

N9a has a divergence time of ~20 ka and it consists of seven subclades, N9a1’3, 

N9a2’4’5, N9a6, N9a7, N9a8, N9a9 and N9a10 (Figure 4.3). 
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Figure 4.3 The tree of haplogroup N9a showing the subclades of N9a1’3, N2’4’5, N9a6, N9a7, N9a8, N9a9 and 

N9a10. Time estimates shown for clades are ML (in black) and averaged distance (ρ; in blue) in ka. (CHI – China, 
FIL – Philippines, JAP – Japan) 

 N9a1’3 is weakly defined by a single, fast-evolving control region mutation at np 

16129, dating to ~18 ka. Nested within this haplogroup are N9a1 and N9a3, both of which 

are found in East Asia. Subclade N9a1, dating to ~8 ka, and is found in south China (Kong et 
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al., 2003b; Tanaka et al., 2004; Zheng et al., 2011). N9a3 dates to ~9 ka, and has been 

reported in China and Japan (Tanaka et al., 2004; Zheng et al., 2011). 

 There is only a single, Japanese, individual belonging to N9a7 represented in the tree 

(Tanaka et al., 2004). N9a8 is found in Japan (Tanaka et al., 2004) and south China (Zheng et 

al., 2011) dating to ~14 ka (ρ ~12 ka). N9a9 is found in Beijing, China (Zheng et al., 2011), 

and dates to ~14 ka (ρ ~9 ka). N9a10 dates to ~16 ka with the deepest-branching lineage 

found in south China (Zheng et al., 2011), and a subclade dating to ~8 ka seen in an 

Austronesian-speaking Filipino Ivatan (Loo et al., 2011) and a northern Chinese individual 

(Zheng et al., 2011). Ivatan Islanders are Austronesian speakers from Orchid Island and the 

Batanes archipelago located between Taiwan and the Philippines. They have been suggested 

to have a close cultural relationship with the Yami tribe in Taiwan, which is the only non-

Formosan Austronesian speakers among Taiwan Aborigines (Blust, 1999), although Loo et 

al. (2011) found very little gene flow between Yami and Ivatan (i.e. as indicated by the 

limited sharing of mtDNA haplogroup B4a1a4 and O1a1* MSY lineage). (N9a2’4’5 see 

Appendix E). 

   

16292

11253ns

1
3

6
B

1
4

7
A

260

6956ns
7746ns
8640s

K
S3

1

8251ns
16304

4856s

379
11914s
16297
16330

R
P

3
2

3849s
12501s

13708ns
16311

M
I4

1

H
M

5
9

6
7

0
3

195
3010r
16309

207
10017t
16136

H
M

5
9

6
6

4
4

H
M

5
9

6
6

5
7

13742ns
15080ns

16294

16.3(8.1-24.7)ka
14.5(6.1-23.2)ka

13.3(5.7-21.2)ka
11.8(5.1-18.7)ka

7.6(0.1-15.4)ka
7.0(2.2-12.0)ka

4.6(0-9.3)ka
2.9(0.5-5.4)ka

2.5(0-7.1)ka
1.7(0-4.1)ka

10530Cns
14364s
16342

1.6(0-4.8)ka
0.2(0-0.5)ka

A
P

0
1

2
3

9
3

A
P

0
1

2
3

9
5

A
P

0
1

2
3

9
6

A
P

0
1

2
3

9
7

A
P

0
1

2
3

9
8

A
P

0
1

2
3

9
9

A
P

0
1

2
4

0
1

A
P

0
1

2
4

1
3

A
P

0
1

2
4

0
2

A
P

0
1

2
4

0
3

A
P

0
1

2
4

0
4

A
P

0
1

2
4

0
8

A
P

0
1

2
4

1
1

A
P

0
1

2
4

1
2

A
P

0
1

2
4

1
0

3422Gns

5036s
7424s
16362

A
P

0
1

2
3

4
7

A
P

0
1

2
3

4
8

A
P

0
1

2
3

5
5

A
P

0
1

2
3

5
8

A
P

0
1

2
3

5
9

A
P

0
1

2
3

6
2

A
P

0
1

2
3

6
6

A
P

0
1

2
3

6
8

310

A
P

0
1

2
4

2
1

A
P

0
1

2
3

7
2

310

A
P

0
1

2
3

7
3

A
P

0
1

2
3

6
9

A
P

0
1

2
3

8
4

1.2(0-15.5)ka
0.3(0-1.0)ka

N9a6

N9a6a

N9a6b

N9a

N
EM

N
W

M

SU
M

SU
M

JA
H

TEM

TEM

K
EN

JA
H

B
ID

B
ID

SEL

SEL

 

Figure 4.4 The tree of haplogroup N9a6. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (JAH – Semang Jahai, NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular 

Malay, SEL – Aboriginal Malay Seletar, TEM – Aboriginal Malay Temuan, SUM – Sumatra, BID – Sarawak 
Bidayuh) 
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N9a6 is defined by transitions at nps 4856 and 16292, whereas a Kelantanese from 

northeast Peninsular Malaysia is found to possess only the transition at np 4856; the ‘pre-

N9a6’ node (assuming it does not result from a reversion at np 16292) dates to ~16 ka 

(Figure 4.4). N9a6 dates to ~13 ka with derivatives found in all three main Orang Asli 

groups, Malay and across Indonesia. Subclade N9a6a dates to ~7.5 ka. This subclade is seen 

in Sumatra, Indonesia (Gunnarsdóttir et al., 2011b), the Orang Asli Semang, and the Bidayuh 

of Sarawak (Jinam et al., 2012). The Jahai (Jinam et al., 2012) and Kensiu (Semang, Orang 

Asli) shared the branch defined by a transition at np 11253 and its age has been estimated at 

~5 ka. The Aboriginal Malay Temuans nested within this subclade, defined by a transition at 

np 260, dating to ~2.5 ka (ρ ~2 ka); the Temuans here come from this study as well as one in 

Jinam et al. (2012). N9a6b is dated with a recent age of ~1.6 ka and it is found only in the 

Aboriginal Malay Seletar (Jinam et al., 2012). 

 

Figure 4.5 Network of N9a* and N9a6 from HVS-I data. Figure adapted from Hill (2005). 

N9a6 seems to have dispersed widely southwards from Mainland Southeast Asia into 

the Sunda during the Late Glacial period ~16 ka, and ultimately fissioned between all three 

Orang Asli groups and the Peninsular Malay, with some gene flow into Sumatra and ISEA. 

We can explore the distribution more comprehensively by turning to control-region data. In 

the HVS-I network in Figure 4.5, the root type of haplogroup N9a is found in China, Japan, 
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Russia and Kyrgyz of Central Asia, and derived types are commonly found in China, Japan 

and Korea (Hill, 2005). The subclade of N9a mtDNA types defined by a transition at np 

16292, now labelled N9a6 in the complete-mtDNA tree, is found amongst the Orang Asli in 

the Senoi as well as Semang and Aboriginal Malays, Sumatran, Sulawesi, Borneo and 

Thailand. The network shows some overlap between Malay and all Orang Asli groups. The 

distribution of N9a6 suggests an origin in mainland Southeast Asia with spread into island 

Southeast Asia. 

4.1.2 Haplogroup N9b 

N9b dates to ~25 ka and the entire clade is found only in Japan (Tanaka et al., 2004). 

Detailed description is available in Appendix E. 

4.1.3 Haplogroup Y 

Haplogroup Y is further sub-divided into Y1 and Y2 (Figure 4.6). Y1 is seen in Japan 

and China, whereas Y2, especially Y2a, is commonly seen in mainland and island SEA. 

Haplogroup Y1 dates to ~15 ka and divides into Y1a and Y1b. Y1a is defined by transitions 

at nps 7933 and 16189, which has been seen in an Eskimo reported by Mishmar et al. (2003). 

Y1b dates to ~4 ka and is seen in Xinjiang China (Kong et al., 2003b) and Aichi Japan 

(Tanaka et al., 2004). The HVS-I database confirms that it is largely restricted to East Asia, 

extending only as far south as South China. It is therefore likely to have an East Asian origin.  

Y2 dates to ~9.5 ka. Several basal lineages, including Y2b, are seen in Chongqing 

China (Kong et al., 2006) and Aichi Japan (Tanaka et al., 2004), again suggesting a likely 

origin in East Asia. It can be divided into Y2a and Y2b. Y2a dates to ~7 ka. There is a basal 

lineage in the Taiwanese Saisiat ethnic group (Tabbada et al., 2010), possibly suggesting an 

origin amongst aboriginal Taiwanese. Y2a1 dates to ~5.5 ka, and has spread widely in Island 

Southeast Asia, including both the Philippines (Gunnarsdóttir et al., 2011a), and Indonesia 

(Tabbada et al., 2010), but also to the Malay Peninsula. There are two subclades nested 

within Y2a1. The first subclade gained a transition at np 228, dated to ~4.5 ka, and is found 

in two Malay from Kedah and Perak, and Sumatra, Indonesia (Gunnarsdóttir et al., 2011a). 

The second subclade has a transition at np 146, dated to ~4 ka, and is seen in the Philippines 

(Tabbada et al., 2010) and the negrito Mamanwa (Gunnarsdóttir et al., 2011a). Y2b is 

defined by a transition at np 338, which is only represented here by a sample from Aichi 
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Japan reported by Tanaka et al. (2004), again indicating an East Asian origin for Y2 and 

recent dispersal into the Sunda region, possibly via the Philippines. 
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Figure 4.6 The tree of haplogroup Y. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, ESK – Eskimo, FIL – Philippines, INA – Indonesia, JAP – Japan, MAM – 
Philippines Mamanwa, NWM – Northwest Peninsular Malay, TAI – Taiwan, XIN – Xinjiang) 

 

Figure 4.7 HVS-I network of Y2. Figure adapted from Hill (2005). 

Based on the published HVS-I data, we know that Y1 is commonly found in Japan, 

Korea, and the Kamchatka peninsula of North-East Russia with low frequency in China (Oota 
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et al., 1995; Horai et al., 1996; Lee et al., 1997; Pfeiffer et al., 1998; Schurr et al., 1999; Yao 

et al., 2002a, 2002b). Figure 4.7 shows the HVS-I network of Y2. Y2 HVS-I root types are 

found in Sumatra, Java, Sulawesi, Borneo, the Philippines, Taiwan, the Malay of Peninsular 

Malaysia, and one individual from Shanghai, and the derived ones are found in China, 

Sumatra, Bali and the Philippines. The Malay individuals overlap with those from ISEA at 

this level of resolution. 

4.2 Haplogroup N21 

N21 is basal within N (Macaulay et al., 2005; Soares et al., 2009) and the phylogeny is 

reconstructed by 15 complete mtDNA sequences. This haplogroup dates ~21 ka. The deeper 

lineages appear to be restricted to MSEA, detected in Thailand, Vietnam (Peng et al., 2010) 

and Yunnan China (Kong et al., 2011). The recent expansion events brought the lineages into 

Peninsular Malaysia and the Aboriginal Malays, and also Indonesia (Figure 4.8). 
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Figure 4.8 The tree of haplogroup N21. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, LSI – Lesser Sunda Islands, NEM – Northeast Peninsular Malay, SML – 

Aboriginal Malay Semelai, SUM – Sumatra, SWM – Southwest Peninsular Malay, TEM – Aboriginal Malay 
Temuan, THA – Thailand, VIE – Vietnam) 

Subclade N21a dates to ~ 19 ka, where it is seen in the Cham individuals of Bin Thuan 

Vietnam (Peng et al., 2010), Chinese in Lijiang Yunnan (Kong et al., 2011), and Mataram in 
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Lombok Indonesia (Archaeogenetics Research Group, Huddersfield). N21a1 dates to ~9 ka 

and is seen in Aboriginal Malays, a Malay from Kelantan (this study), as well as singletons in 

Vietnam and Sumatra. N21a1 is divided into N21a1a and N21a1b. The Aboriginal Malays 

and a southwest Malay are nested within clade N21a1a, which dates to ~4 ka, including six 

Aboriginal Malays: Semelai (Macaulay et al., 2005), Temuan (Jinam et al., 2012) and a 

Malay Minangkabau from Southwest Peninsular Malaysia (this study). The Minangkabau 

have an ancestry that can be traced very recently to West Sumatra in Indonesia. N21a1b dates 

to ~6 ka and is found in two individuals from Bin Thuan of Vietnam (Peng et al., 2010) and 

Sumatra, Indonesia (Gunnarsdóttir et al., 2011b).  

In Hill et al. (2006), the root type of N21 (when using HVS-I data) is found in Bali, 

Sulawesi (Palu), and Malaysia. One of the branches nested within this root type is 

characterised by a transition at np 16344 and is found in Sumatra (Palembang) and Peninsular 

Malaysia (Zainuddin and Goodwin, 2004). The second branch is defined by a transition at np 

16291 is now identified as N21a1 and is found in Alor, the Semelai, the Temuan and 

Peninsular Malaysia (Figure 4.9). 

 

Figure 4.9 HVS-I network of N21. Denotation “Malay” is the Malay data used in Hill et al. (2006), “Malay 

ZZ” is the new data from Zafarina Zainuddin (personal communication). Figure adapted from Hill (2005). 

4.3 Haplogroup N22 

In Figure 4.10, N22 is basal to N and the tree is reconstructed using 10 complete 

mtDNA sequences. N22 is defined by transitions at nps 150, 942, 7158, 9254, 11365, 16168 

and 16249 (Macaulay et al., 2005). It dates to ~29 ka and the tree indicates it as a deep Sunda 

haplogroup, since it is only seen in SEA, in particular the Aboriginal Malays, Malaysia, 
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Indonesia although also the Philippines. N22 diverged into subclades N22a and N22b – the 

latter being a newly defined haplogroup. 
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Figure 4.10 The tree of haplogroup N22. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (FIL – Philippines, LSI – Lesser Sunda Islands, SUM – Sumatra, SWM – Southwest 
Peninsular Malay, TEM – Aboriginal Malay Temuan) 

 

Figure 4.11 HVS-I network of N22. Figure adapted from Hill (2005). 

One non-negrito Philippine Cuyonin tribe (Scholes et al., 2011) was found to be basal 

within N22. The older subclade, N22b, dating to ~25 ka and is detected in one Minangkabau 

sequence from Negeri Sembilan which has accumulated a high number of private mutations 

on its tip. N22b is also seen in Indonesia (one Sumba from this study and one in Sumatra 
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(Gunnarsdóttir et al., 2011b) and the Philippines (Tabbada et al., 2010), which formed a 

subclade dating to ~1.4 ka. N22a is much more recent, with a ~2.5 ka divergence time, and 

highly localised in the Temuan population, which has been subjected to founder effect and 

genetic drift (data from this study, Macaulay et al., 2005 and Jinam et al., 2012).   

In Figure 4.11, the network for HVS-I Orang Asli data shows haplogroup N22 is seen 

only in the Aboriginal Malay Temuan characterised by nps 16168 and 16249. The root type 

of N22 is found in the Temuan and Peninsular Malaysia, with its derived types found in 

Temuan and Sumba. The network shows a sharing of lineage type between Malay and 

Aboriginal Malays.   

4.4 Haplogroup N8 

N8 is a basal haplogroup that has undergone high drift as seen with the long internal 

branch resulting in a divergence time of ~22 ka (Figure 4.12). The N8 tree is reconstructed by 

7 complete mtDNA sequences. It is characterised by nps 2760, 3027, 7885, 7961, 8188, 

10398, 13710, 15211, 16263, 16274, 16311, 16343 and 16357 (Kong et al., 2011). N8 is 

mostly seen in Mainland and Island SEA, like N22, is largely a Sunda lineage. The deep 

lineages are found in northern Mainland SEA especially in North Thailand and North 

Vietnam, which appears to have originated in northern Mainland SEA and then expanded into 

Island SEA. The HVS-I data (it was called haplogroup N6 in Mormina, 2007) showed that 

N8 is found in West Indonesia, Peninsular Malaysia and MSEA.  

N8 is divided into N8a and N8b; both are annotated here for the first time. N8a is 

defined by a transition at np 16129, with an estimated date of ~16 ka. N8a is seen in Jawa 

Malay of Southeast Peninsular Malaysia (this study) and one Thai individual 

(Archaeogenetics Research Group, Huddersfield). N8b is characterised by np 152, dating to 

~21 ka, which can be further divided into two subclades, N8b1 and N8b2. N8b1 is defined by 

transitions at nps 103, 151, 260, 3565, 15746 and 15924, and dated ~3 ka. N8b1 is detected in 

Guizhou China (Kong et al., 2011) and Vietnam (Archaeogenetics Research Group, 

Huddersfield). N8b2 is defined by a transition at np 10694 and estimated at ~18 ka. It is 

found on the Tengger Island in Java Timur Indonesia as well as Thailand (Archaeogenetics 

Research Group, Huddersfield; Hill et al., 2006; Mormina, 2007). 
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Figure 4.12 The tree of haplogroup N8. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, JAV – Java, SEM – Southeast Peninsular Malay, THA – Thailand, VIE – 
Vietnam) 

4.5 Haplogroup N10 

N10 (Kong et al., 2011) dates to ~63ka – approximately the age of haplogroup N itself 

(Figure 4.13). The N10 tree includes six complete mtDNA sequences from South China, and 

one individual each from Northeast Peninsular Malaysia and South Borneo, which may 

suggest an ancient origin in southern China/Mainland SEA.   

In Figure 4.13, N10 diverges into two subclades, N10a and N10b. N10a dates to ~55 

ka. N10a is further divided into N10a1 and N10a2. N10a1 dates to ~2.5 ka. N10a1 is seen, so 

far, only in SEA (Northeast Peninsular Malaysia: this study) and South Borneo, Indonesia 

(Archaeogenetics Research Group, Huddersfield). N10a2 has an estimated age of ~29 ka.  It 

is seen in Yunnan China (Kong et al., 2011) before spreading into the north in Beijing (Zheng 

et al., 2011) and Xinjiang China (Kong et al., 2011) ~7 ka. Lastly, N10b is seen in a 

Guangdong individual, where the same HVS-I haplotypes are present in southern Chinese: 

Shanghai and Jiangsu (Kong et al., 2011). The long internal branches in the phylogeny 

suggest founder effect and genetic drift, again indicating N10 have an origin in South 

China/Mainland SEA. 
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Figure 4.13 The tree of haplogroup N10. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, NEM – Northeast Peninsular Malay, SBO – South Borneo) 

4.6 Haplogroup N11 

N11 is an ancient basal haplogroup defined by a transversion at np 11581A that dates to 

~68 ka. The tree of N11 is built from 18 complete mtDNA sequences. One subclade, N11a, is 

found in Inner Mongolia, China and Tibet, and the other, N11b, in the negrito Mamanwa of 

the Philippines. 

N11a dates to ~20 ka (Figure 4.14). It looks to have an origin in northeast Asia. It is 

detected in Inner Mongolia of China (Kong et al., 2003), and further diverged into N11a1, 

which dates to ~11 ka. Nested within N11a1 are individuals from Sichuan, China and Naqu, 

Tibet (Kong et al., 2011). 

 N11b dates to ~7 ka (ρ ~10 ka). This deeply-diverged subclade appears to belong 

exclusively to the negrito Mamanwa of the Philippines (Gunnarsdóttir et al., 2011a). N11b 
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has long internal branch probably due to high drift and population subdivision in the 

Mamanwa. A subclade defined by polymorphisms at nps 152, 3644 and 8026T within N11b 

includes the majority of the sequences and dates to only ~1 ka. These results do not indicate 

that the Mamanwa share a common ancestor with other negrito groups, such as the Semang in 

Peninsular Malaysia, the Andaman Islanders and the Filipino Aeta, none of which carry this 

clade. 
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Figure 4.14 The tree of haplogroup N11. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. The Mamanwa sequences (Gunnarsdóttir et al., 2011a) with gaps are highlighted in red, 

and they were assumed not to carry private mutations in those gaps for the purpose of dating. (TIB – Tibet, CHI – 
China, MGL –  Inner Mongolia, China, MAM – Philippines Mamanwa, and FIL – Philippines) 
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4.7 Haplogroup A 

 

Figure 4.15 Schematic diagram of haplogroup A and its major subclades. (AME – America, EA – East Asia, 

NAS – North Asia) 

Haplogroup A is one of the more frequent East Asian haplogroups, reaching very high 

frequencies in northeast Asia (Kivisild et al., 2002) and dates to ~27 ka. The phylogeny 

includes 78 complete mtDNA sequences: 49 A5, 21 A4, and 8 from minor subclades. 

Haplogroup A has three subclades, A5, A8, and A+152, where the latter includes A2, A3, 

A4, A7 and A11. 

The use of np 152 and np 146 in Phylotree (van Oven and Kayser, 2009) to define 

subclades A+152 and A+146 are very problematic. These nucleotide positions are fast-

evolving sites identified by Soares et al. (2009) and their evolutionary histories are 

sometimes difficult to track. For example, nesting in A4 of Native Americans within 

Japanese lineage is probably an artefact. They are unlikely to be true clades but retain here 

due to its presence in Phylotree.  

Figure 4.15 shows the schematic diagram of phylogeny A with its distribution. The 

whole haplogroup is commonly found across China and Japan. Analyses carried out with 

HVS-I data have shown that haplogroup A is commonly reported across China, Japan and 

Korea (Lee et al., 1997; Nishimaki et al., 1999; Kivisild et al., 2002; Yao et al., 2002a; Yao 

et al., 2002b). A4 and A5 are the most diversified subclades, while A2, a subclade of A4, is 

found in northeast Asia and America. In the whole-mtDNA trees, A5 has deepest roots in 

China, while the roots for A4 lie in Japan. So far the reported haplogroup A lineage is limited 
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from SEA except for a Southeast Peninsular Malay from Johor Malaysia, belonging to A5b 

(this study). 

A5 dates to ~21 ka, and consists of A5a, A5b and A5c. A5a is mainly a Japanese 

haplogroup (Tanaka et al., 2004), dates ~9 ka and has diverged into A5a1 (~8 ka), A5a2 

(dates to ~2 ka, restricted to Tokyo and Aichi) and A5a3 (6 ka, restricted to Tokyo and Aichi).  

Detailed description is available in Appendix E. 

In Figure 4.16, A5b dates to ~14 ka. A single example is found in a Bugis Malay in 

Southeast Peninsular Malaysia (this study). The main subclade nested within A5b is defined 

by a transition at np 16235, which is found in China around ~13 ka. A further nested subclade 

dates to ~3 ka and is found in Japan (Tanaka et al., 2004) and Korea (Mishmar et al., 2003). 

A5c, like A5a, is an entirely Japanese clade reported by Tanaka et al. (2004), dating to ~6 ka. 

The main nested subclade dates to ~4 ka and is found in Aichi, Chiba and Tokyo. 
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Figure 4.16 The tree of haplogroup A5b and A5c. Time estimates shown for the clades are ML (in black) and 
averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, KOR – Korea, SEM – Southeast Peninsular Malay) 

One A8 sample is represented in the tree and found in Siberian Russia by Starikovskaya 

et al. (2005) (Figure 4.17). In control-region data, it is indeed most frequently seen in the 

Kamchatka Peninsula of northeast Siberia, but has also been seen, with low variation, in 

Mongolia, Japan and Kazakhstan (Kolman et al., 1996; Horai et al., 1996; Comas et al., 

1998; Schurr et al., 1999).  

Haplogroup A+152 (retained here due to its presence in PhyloTree, but this is 

extremely unlikely to represent a true clade since np 152 is an extremely fast-evolving site: 

Soares et al., 2009) dates to ~21 ka, and includes A3, A4, A7 and A11, of which A4 is by far 

the most frequent and widespread. This notwithstanding, the tree suggests an origin in China 
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alongside the other haplogroup A subclades, with some lineages spreading into Japan and 

northeast Asia, and ultimately (as haplogroup A2) into the Americas. A4a1 dates to ~11 ka 

and is seen in Mongolia (Hartmann et al., 2009) and Japan (Tanaka et al., 2004). A4b and 

A4c1 are represented by an individual from Siberia, Russia (Starikovskaya et al., 2005) and 

one Chinese from Naxi China (Hartmann et al., 2009) respectively.  

A4+146 is again present in PhyloTree but extremely implausible as a true clade since 

np 146 is another extremely fast-evolving site, is the putative pre-A2 node nested within A4 

and hence, the basal lineage possibly present in Japan (Tanaka et al., 2004). A2 dates to ~11 

ka, where it spreads north into Chukchi Russia (Ingman et al., 2000). This Siberian individual 

is the only A2b1 represented in this tree. Lastly, a subclade nested within A2 is divided into 

A2g and A2r, and dating to ~9 ka. This subclade is largely a Native American lineage 

(Hartmann et al., 2009). One sample represents each haplogroup in this subclade (Figure 

4.17), A2r is seen in a Native American (Mishmar et al., 2003), A2g surprisingly by a sample 

of Iberia ancestry as noted by Hartmann et al., (2009), and one undefined lineage from 

Columbia (Hartmann et al., 2009).  

A3 dates to ~9 ka; it is seen only in Japanese from Tokyo (Nohira et al., 2010) and 

Aichi (Tanaka et al., 2004). A6 dates to ~11 ka and seen in individuals reported by Kong et 

al. (2003b) from Hubei China and Macaulay et al. (2005) in Tujia China. A4+11456 is a 

subclade dated to ~14 ka and seen in south China (Zheng et al., 2011). A4e dates to ~13 ka, 

and is observed in Japan and China. Although each subclade is only represented by one 

sample, they are from Beijing China for A4e1 and A4e3 (Zheng et al., 2011), and A4e2 in an 

Ehime Japanese (Nohira et al., 2010). A7 is represented here by a sample from Japan (Tanaka 

et al., 2004). Similarly, A11b is seen here from a Naxi China sample (Hartmann et al., 2009). 

Haplogroup A dates to pre-LGM ~27 ka. Haplogroup A5 and its subclades are highly 

diversified and commonly found in Japan. A5a started to spread during the early Holocene 

~21 ka throughout Japan, which has only one lineage from Inner Mongolia found nested 

within A5a1a1. A5b dates to the late Pleistocene ~14 ka. The lineage found in Southeast 

Peninsular Malaysia may suggest a relict that survived since the beginning of sea-level rise 

~15 ka in the Sunda region. The bigger subclade of A5b has basal lineages found in South 

and North China, which appears to spread ~13 ka from China into Japan and Korea recently 

~3 ka. A5c as mentioned before has arrived in Japan during the early Neolithic ~6 ka to ~4 

ka. Similar to A5, A4 dates to the end of LGM ~19 ka, but A4 and its subclades are 
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commonly found in China, largely arrived by the early Holocene. Considering the fact that 

A5b has a date older than A5a and A5c, and that A5b is present in Peninsular Malaysia and 

South China, A5 in overall might have a pre-LGM southern origin before expanded into 

North Asia after early Holocene. 

A2, together with B2, C1, and D1, are the four main “pan-American” haplogroups that 

dispersed into the New World (Achilli et al., 2008; Bandelt et al., 2008). A2 dates to the early 

Holocene, ~11 ka in Russia, and a subclade nested within, dating to ~9 ka, is seen in the 

America continent in the Native American, Colombian, and surprisingly, a single instance of 

Iberian ancestry (Hartmann et al., 2009). 
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Figure 4.17 The tree of haplogroup A8 and A+152. Time estimates shown for the clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (SBR – Siberian Russia CHI – China, JAP – Japan, MGL –  Inner Mongolia, 
China, RUS – Russia, IBE – Iberian Peninsula, AME – America, COL – Columbia) 
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5 Results and Discussion: Haplogroup R 

Haplogroup R branches from the root of N with transitions at nps 12705 and 16223, 

dated by ML to ~68 ka. Several major Asian R haplogroups found in this study are shown in 

Figure 5.1, they include: B4, B5, R11’B6, R12’21, R22, R9, and P, and other rarely seen 

haplogroups in Asia including R6, R7, R23, R30, and U.  

 

Figure 5.1 Schematic diagram of haplogroup R’s major subclades present in Southeast Asia. 

5.1 Haplogroup B 

Haplogroup B nested within R+T16189C, which can be divided into B4’5 and R11’B6. 

B4’5 is one of the most common haplogroups in ISEA, consisting of haplogroups B4 and B5. 

Haplogroup B4’5 is defined by a 9 base-pair deletion at nps 8281-8289 in the COII/tRNA
Lys

 

intergenic region and a transition at np 16189 (Soares et al., 2007; Hartmann et al., 2009; 

Kong et al., 2011; Soares et al., 2011), dates by ML to ~62 ka, and B4 ~51 ka (estimated at 

~44 ka in Soares et al., 2011) (Figure 5.3).  Haplogroup R11’B6 is divided into R11 and B6, 

where R11 is mainly restricted to China, and B6 is widely distributed in SEA. B6 shares the 

defining node of B (R+T16189C) with B4’5 that is hypervariable, they are most likely 

phylogenetically unrelated. 

The phylogeny of B4 is reconstructed from 300 complete mtDNA sequences: 163 B4a, 

44 B4b, 68 B4c, 9 B4d and 16 in minor subclades. The schematic diagram below (Figure 5.2) 
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shows B4 and its major subclades have deep ancestral roots and are widespread across East 

Asia and SEA, with more recent dispersals of some subclades into the Pacific (Lum et al., 

1998; Pfeiffer et al., 1998; Kivisild et al., 2002; Yao et al., 2002b). Some of the subclades 

have been subjected to founder effect during the secondary expansions. The subclades more 

commonly seen in SEA are B4a1a, B4a1c4, B4a2a, B4g1a, B4b1a2, B4c1b2a2 and B4c2. 

B4a1c2 is seen in north Eurasia (Russia and Eskimo), and B4a1a1a and B4a1a1b have risen 

to high frequency and are almost fixed in Near Oceania (Soares et al., 2011). Overall, the 

pattern suggests an ancient ancestry in East Asia and dispersal into SEA after the LGM 

(Soares et al., 2011).  

 

Figure 5.2 Schematic diagram of haplogroup B4 and its major subclades distribution. (EA – East Asia, NA – 

North Asia, NEU – North Eurasia, SEA – Southeast Asia and NO – Near Oceania) 

5.1.1 Haplogroup B4+C16261T  

 B4+C16261T dates to ~33 ka, and is divided into B4a, B4g, B4h and B4i (Figure 5.3). 

B4a dates to ~26 ka and has four subclades. B4a2 dates to ~17 ka. B4a2a dates to ~9 ka and 

is found mainly in Taiwan (Trejaut et al., 2005), and much more rarely in the Philippines, 

Sumatra and Banjarmasin in southern Borneo, Indonesia. There are two subclades within 
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B4a2a; the first, dating to ~1.2 ka, is seen in the Ami people in Taiwan and the Philippines 

Batan archipelago (Trejaut et al., 2005; Loo et al., 2011) and the second in Sumatra, 

Indonesia, dating to ~1.4 ka (Gunnarsdóttir et al., 2011b; Soares et al., 2011). The HVS-I 

data shows B4a2 is found mainly among Taiwanese aboriginals, and it is not represented in 

MSEA (Mormina, 2007). B4a2b dates to ~14 ka, and is seen in Gifu, Japan (Tanaka et al., 

2004) and north China (Zheng et al., 2011). 
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Figure 5.3 The tree shows haplogroup B4a excluding B4a1a and B4a1c. Time estimates shown for the clades 

are ML (in black) and averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, VIE – Vietnam, BID – 
Sarawak Bidayuh, FIL – Philippines, KOR – Korea, TAI – Taiwan, SUM – Sumatra, SBO – South Borneo) 

B4a3 is represented here by one Japanese Aichi individual reported by Tanaka et al. 

(2004). B4a4 dates to ~16 and is seen in north China (Zheng et al., 2011). A further mutation 

at np 709 defines a subclade dated to ~12 ka, it then obtained np 5201 which dates to ~7 ka, 

seen in south China (Zheng et al., 2011) and Tokyo Japan (Tanaka et al., 2004). 

 B4a1 has four subclades, B4a1a, B4a1+16311 (which includes B4a1b), B4a1c and 

B4a1d. B4a1b dates to ~7 ka and is restricted to China and Japan. B4a1b1 dates to ~4 ka, 

with a nested subclade B4a1b1a, dating to ~2 ka, and is seen in Japan (Tanaka et al., 2004) 

and Korea (Ingman et al., 2000). On the other hand, B4a1d is seen in two individuals from 

Vietnam (Soares et al., 2011) and its age is estimated at ~15 ka.  
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Figure 5.4 The tree of haplogroup B4a1c. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (JAP – Japan, SML – Aboriginal Malay Semelai, NWM – Northwest Malay, CHI – China, 
SBR – Siberian Russia MGL –  Inner Mongolia, China, Tai - Taiwan) 
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Figure 5.5 The tree of haplogroup B4a1a excluding B4a1a1. Time estimations shown for the clades are ML (in 

black) and averaged distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, JAV – Java, LSI – Lesser Sunda 

Islands, MAM – Philippines Mamanwa, MOL – Moluccas, NEM – Northeast Peninsular Malay, NBO – North 

Borneo, NWM – Northwest Peninsular Malay, SBO – South Borneo, SUL – Sulawesi, SUM – Sumatra, SWM – 
Southwest Peninsular Malay, TAI – Taiwan, THA – Thailand, PNG – Papua New Guinea) 

B4a1c dates to ~20.5 ka and its three subclades, B4a1c1, B4a1c3 and B4a1c+146, are 

seen in East Asia, North Asia, Peninsular Malaysia with, interestingly, a fourth basal lineage 

seen in the Aboriginal Malay Semelai (Figure 5.4). B4a1c1 and B4a1c3 both date to ~18 ka 
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and are seen only in Japan (Tanaka et al., 2004). B4a1c with np T146C dates to ~17 ka, and 

includes B4a1c2 and B4a1c4, and a subclade in China. B4a1c+146 is seen in China, Siberian 

Russia, Taiwan and Peninsular Malaysia. B4a1c2 dates to ~3.5 ka, and is seen in two Russian 

Siberians (Starikovskaya et al., 2005) and a Southeastern Siberia Eskimo (Mishmar et al., 

2003). B4a1c4 dates to ~14 ka and is observed in southern China (Guizhou) (Kong et al., 

2006), Mongolia (Hartmann et al., 2009), Taiwan (Soares et al., 2011) and Peninsular 

Malaysia (this study).  

 B4a1a dates to ~8 ka (Figure 5.5). Basal lineages are commonly seen throughout SEA, 

including the Philippines, Indonesia (Gunnarsdóttir et al., 2011b; Soares et al., 2011), 

Peninsular Malaysia (this study), Thailand (Pradutkanchana, Ishida and Kimura, 2010), and 

Aboriginal Taiwan Ami and Tsou (Soares et al., 2011), as well as Papua New Guinea 

(Pierson et al., 2006). This starburst pattern points to a dramatic expansions across the region, 

centred on ISEA, in the early Holocene, similar to that seen in haplogroup E (Soares et al., 

2008). It has four major subclades: B4a1a1, B4a1a3, B4a1a4 and B4a1a5, with two other 

unnamed subclades. 

 B4a1a3 dates to ~6 ka. A subclade with np 16223 dates to ~5 ka and a single basal 

lineage for each are seen in Taiwanese Ami and Siraya tribes, respectively (Soares et al., 

2011). A further subclade dates to ~4 ka, and is seen in Kota Kinabalu Malaysia (Soares et 

al., 2011), with a further nested subclade nested within, dating to ~2 ka, seen in the 

Philippines Manabo (Gunnarsdóttir et al., 2011a) and Sumba Indonesia (Soares et al., 2011). 

This nesting relationship might imply (although with very few samples) dispersal from 

Taiwan into ISEA ~4 ka, although in the context of an earlier dispersal in the reverse 

direction, given the major earlier radiation in ISEA of basal B4a1a lineages.  

 B4a1a4 dates to ~3 ka and seen in the Yami of Taiwan and the Philippine Ivatan (Loo 

et al., 2011). Also see N9a10. B4a1a5 dates to ~6 ka, with single instances seen in Sumatra, 

Indonesia (Gunnarsdóttir et al., 2011b), the Philippines (Tabbada et al., 2010) and Kota 

Kinabalu, Malaysia (Soares et al., 2011). 

 B4a1a1 (Figure 5.6) dates to ~7 ka and nested within are B4a1a1a, B4a1a1b, two small 

unnamed subclades and several paraphyletic lineages. B4a1a1b dates to ~4 ka and is seen in 

Kapingamarangi and Majuro Atolls, Micronesia only (Pierson et al., 2006). The first 

unnamed subclade defined by a transition at np 6905 and dated to ~3 ka, while the second 

unnamed subclade is defined by a transition at np 16129 with a date of ~5 ka. The majority of 
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the B4a1a1 lineages are seen in Near Oceania, Remote Oceania, and Indonesia (Hartmann et 

al., 2009; Soares et al., 2011), and to a much lesser extent in the Philippines (Tabbada et al., 

2010), Peninsular Malaysia (this study) and the Bidayuh of Sarawak (Jinam et al., 2012). 

Near Oceania (in the western Pacific) includes New Guinea, the Bismarck Archipelago, 

Bougainville, and the Solomon Islands. Remote Oceania includes Melanesia Islands 

(including Vanuatu and Fiji), Polynesia and Micronesia.    
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Figure 5.6 The tree of haplogroup B4a1a1 excluding B4a1a1a1 and B4a1a1a4. Time estimates shown for 

clades are ML and averaged distance (ρ) in ka. (BIS – Bismarck Island, BOU – Bougainville, COO – Cook Island, 

FIL – Philippines, JAV – Java, LSI – Lesser Sunda Islands, MIC – Micronesia, MOL – Moluccas, NWM – Northwest 

Peninsular Malay, SBO – South Borneo, SMO – Samoa, SUL – Sulawesi, TON – Tonga, PNG – Papua New Guinea, 
VAN – Vanuatu, WNG – West New Guinea) 
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Figure 5.7 The tree of haplogroup B4a1a1a1 and B4a1a1a4. Time estimates shown for clades are ML and 
averaged distance (ρ) in ka. (COO – Cook Island, PNG – Papua New Guinea, SMO – Samoa, VAN - Vanuatu) 
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B4a1a1a dates to ~6 ka, and includes B4a1a1a1, B4a1a1a4, and other unnamed 

subclades (Figure 5.7). B4a1a1a1 dates to ~5.5 ka and is seen only in Near Oceania and 

Remote Oceania (Ingman and Gyllensten, 2003; Soares et al., 2011). B4a1a1a4 dates to ~4 

ka and is found in the Bismarck Archipelago (Soares et al., 2011). B4a1a1a2, not shown in 

the tree, carries nps 1473 and 3423A – the defining markers of the so-called “Malagasy 

motif”, identified in Madagascar by Razafindrazaka et al. (2010).   

We can confirm this distribution with HVS-I data. Figure 5.8 shows the network for 

B4a1a1a, although it is labelled as B4a1 because it cannot be recognised with low-resolution 

HVS-I data. Furthermore, np 16247 is the control-region marker for B4a1a1a. Haplogroup 

B4a1a1a is common across Micronesia and Polynesia, but less common elsewhere. As seen 

in Figure 5.8, the majority of the root type is reported from coastal Papua New Guinea, where 

haplotypes from Eastern Indonesia (Moluccas and Nusa Tenggara) are much more diverse 

than those from the previous locations (Redd et al., 1995). In ISEA, B4a1a1a is found in 

Alor, Ambon, Banjarmasin, Lombok, Manado, Toraja and Ujung Padang – located to the east 

of Southeastern Borneo and Lombok. The root type is seen in Sulawesi, but no derived types 

were found by Hill et al. (2007) hence suggesting a recent migration to Peninsular Malaysia 

from ISEA. 

In Figure 5.9, B4g dates to ~25 ka with a single basal lineage seen in China (Zheng et 

al., 2011). It then diverged into B4g1, dating to ~22 ka, which can be divided into B4g1a, 

dating to ~13 ka and seen in China (Kong et al., 2003b), Thailand (Pradutkanchana, Ishida 

and Kimura, 2010) and Vietnam (Soares et al., 2011), and B4g1b, dating to ~7 ka and seen in 

China (Zheng et al., 2011). It is clearly recognisable by its HVS-I motif, and the HVS-I 

database confirms that it is found widely across southern China, Thailand and Vietnam.  

B4+C16261T with a transition at np 16129 defines the pre-B4h node, it dates to ~30 ka 

and seen in the Siraya Taiwan (Soares et al., 2011). It then diverged into B4h, which dates to 

~20 ka, and seen only in China (Soares et al., 2011; Zheng et al., 2011). 
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Figure 5.8 HVS-I network of B4a1 (it is in fact B4a1a1a). Figure adapted from Hill (2005). 
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Figure 5.9 The tree of haplogroup B4g, B4h and B4i. Time estimates shown for clades are ML and averaged 
distance (ρ) in ka. (CHI – China, TAI – Taiwan, THA – Thailand, VIE - Vietnam) 
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5.1.2 Haplogroups B4b’d’e’j and B4f 
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Figure 5.10 The tree of haplogroup B4b1 excluding B4b1a2. Time estimates shown for clades are ML and 

averaged distance (ρ) in ka. (CHI – China, JAP – Japan, MGL – Inner Mongolia, China, RUS – Russia, VIE - 
Vietnam) 
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Figure 5.11 The tree of haplogroup B4b1a2. Time estimates shown for clades are ML and averaged distance 

(ρ) in ka. Sequences marked by “*” are erroneous and not used in age calculation. Sequences with “**” have np 310 

removed as artefact since it forms incorrect evolutionary pathways in the clade. (CHI – China, FIL – Philippines, 

JAP – Japan, MAM – Philippines Mamanwa, NWM – Northwest Peninsular Malay, SBO – South Borneo, TEM – 
Aboriginal Malay Temuan) 

B4b’d’e’j dates to ~45 ka and can be divided into B4b, B4d, B4e and B4j (Figure 5.10). 

Detailed descriptions for haplogroups B4d and B4f are available in Appendix E. B4b1 dates 
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to ~32 ka and the basal lineage is seen in south China (Zheng et al., 2011). Two subclades 

nested within B4b1, B4b1a and B4b1+16218 (includes B4b1b and B4b1c). B4b1a dates to 

~26 ka with a basal lineage seen in Siberia, Russia (Starikovskaya et al., 2005). A further 

transition at np 207 dating to ~25 ka is the MRCA for B4b1a1 and B4b1a2. B4b1a1 is 

entirely a Japanese clade (Tanaka et al., 2004), dated to ~6 ka, and includes subclades 

B4b1a1+16357 and B4b1a1a, both dated to ~3 ka and ~4 ka respectively. 

B4b1a2 dates to ~23 ka (Figure 5.11) and is seen occasionally in Japan, China, 

Peninsular Malaysia and the Aboriginal Malay Temuan, but is most common in the negrito 

Mamanwa and the Philippines (six basal lineages). The ultimate source for B4b1 and B4b1a 

may be China, but the source for this subclade might therefore be Southeast Asia. B4b1a2 is 

divided into B4b1a2a, B4b1a2b, B4b1a2c, and B4b1a2d, of which the latter three are all 

restricted to the Philippines, and also include many paraphyletic lineages, found in the Malay 

Peninsula as well as the Philippines, with few in East Asia. B4b1a2a dates to ~23 ka where it 

is seen in the Temuan (Jinam et al., 2012), before it splits into China, Guangdong (Kong et 

al., 2003b) and Beijing (Zheng et al., 2011) ~4 ka. 

B4b1a2b dates to ~3 ka and seen in the Philippines Manobo and Surigaonon tribes 

(Gunnarsdóttir et al., 2011a). Manobo is a non-negrito group and Surigaonon, an urban group 

in the Philippines. B4b1a2c dates to ~2 ka and found exclusively in the negrito Mamanwa 

(Gunnarsdóttir et al., 2011a). B4b1a2d dates to ~2 ka, where it is seen only in the 

Surigaonons. 

Haplogroup B4b (recognisable as B4b1 in HVS-I) is comparatively less common than 

B4a based on the HVS-I data. Figure 5.12 shows diverse haplogroup B4b types (derived and 

underived in HVS-I) are seen widely in SEA (in Ambon, Banjarmasin, Pekanbaru, Palu, 

Manado and Kota Kinabalu) and Taiwan, indicating a sampling lacuna in the whole-mtDNA 

data. One Malay individual is found with the root type and present at low levels similar to 

those from China, Korea, Mongolia, Taiwan Aborigines and one sample from Peninsular 

Malaysia (Figure 5.12). The derivative types can be seen in one from Banjarmasin with an 

additional mutation at np 16261 and an individual with a further transition at np 16380 from 

Singapore; another is seen in Palu with a transition at np 16300, which was also reported in 

three Eastern Indonesians by Redd et al. (1995) and is evident in the whole-mtDNA tree, 

represented by three samples from the Philippines. The pattern seems to suggest an ancient 
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East Asian source and more recent (but nevertheless possibly pre-Holocene) arrival in 

Taiwan, Peninsular Malaysia and ISEA. 

 

 

Figure 5.12 HVS-I network of B4b1. Figure adapted from Hill (2005). 

 

5.1.3 Haplogroup B4c 

 B4c dates to ~40 ka and can be divided into B4c1 and B4c2 (Figure 5.13). B4c is an 

entirely restricted to China and Japan except for B4c1b2a2, which is seen in SEA. Detailed 

descriptions for B4c1a and B4c1b are available in Appendix E. 

B4c1b2a2 dates to ~9 ka, and is widely distributed in SEA including the Philippines, 

Taiwan, Peninsular Malaysia, and Indonesia (Figure 5.14). At least four subclades nested 

within B4c1b2a2 that belong to the Philippines. The first subclade is defined by transitions at 

nps 3221, 12192, 13934 and 15734, which is seen only in the Manobos Philippines 

(Gunnarsdóttir et al., 2011a). The second subclade is defined by a transition at np 4226 and 

dates to ~9 ka in Ivatan Philippines (Loo et al., 2011), and it then further diverged into the 

Manobo (Gunnarsdóttir et al., 2011a) ~1 ka. The third subclade dates to ~2 ka and seen in the 

Manobo and Surigaonon (Gunnarsdóttir et al., 2011a). Lastly, the fourth subclade dates to ~9 

ka and seen in the Ivatan Philippines (Loo et al., 2011) and Sumatra (Gunnarsdóttir et al., 
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2011b). B4c1b2a2 is also widely seen in Peninsular Malaysia. Two Minangkabau Malay 

formed a subcluster defined by transitions at nps 3666 and 15884, which dates to ~4 ka. The 

whole-mtDNA tree possibly suggests an origin of B4c1b2a in China at the beginning of sea-

level rise ~15 ka, a time when Taiwan, Sumatra and Borneo might have been connected. The 

initial spreads might have taken along the Chinese and Sunda eastern coastlines towards 

Borneo and ultimately getting to the Philippines rather than via Taiwan. 
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Figure 5.13 The tree of haplogroup B4c1 excluding B4c1b2a2. Time estimates shown for clades are ML and 

averaged distance (ρ) in ka. (CHI – China, JAP – Japan) 
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Figure 5.14 The tree of haplogroup B4c1b2a2. Time estimates shown for clades are ML and averaged distance 

(ρ) in ka. (FIL – Philippines, NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular Malay, SEM - 
Southeast Peninsular Malay, SUM – Sumatra, SWM – Southwest Peninsular Malay, TAI - Taiwan) 
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Figure 5.15 The tree of haplogroup B4c2. Time estimates shown for clades are ML and averaged distance (ρ) 

in ka. (CHI – China, KIN – Semang Kintak, SEL – Aboriginal Malay Seletar, SMI – Senoi Semai, SUM – Indonesia 
Sumatra, SWM – Southwest Peninsular Malay, THA – Thailand, UZB – Uzbekistan, VIE – Vietnam) 

 

Figure 5.16 HVS-I network of B4c1b. Figure adapted from Hill (2005). 
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B4c2 dates to ~9 ka and there are two subclades, B4c2a and B4c2b (Figure 5.15). B4c2 

is seen in China (Peng et al., 2010), Uzbekistan, Vietnam (Peng et al., 2010; Archaeogenetics 

Research Group, Huddersfield), Thailand (Ingman and Gyllensten, 2003; Pradutkanchana, 

Ishida and Kimura, 2010), Peninsular Malaysia Malay and Orang Asli (the Semang Kintak 

and Aboriginal Malay Seletar), and Indonesia (Gunnarsdóttir et al., 2011b). B4c2a dates to 

~6 ka and seen in Uzbekistan (Ingman et al., 2000) and Thailand (Ingman and Gyllensten, 

2003). B4c2b dates to ~4 ka and it is seen in the Senoi Semai, Aboriginal Malay Seletar 

(Jinam et al., 2012), Peninsular Malaysia, and Vietnam (Peng et al., 2010; Archaeogenetics 

Research Group, Huddersfield). 

Similar to haplogroup B4b, haplogroup B4c is also less common than B4a. Previous 

studies found B4c (recognisable as B4c1b in HVS-I) at relatively low levels in China, 

Taiwan, Peninsular Malaysia, Eastern Indonesia and Japan (Redd et al., 1995; Seo et al., 

1998; Kivisild et al., 2002; Yao et al., 2002a; Tajima et al., 2003; Zainuddin and Goodwin, 

2004). Among the ISEA samples in Hill (2005), haplogroup B4b1c was found in 9 

individuals from Sulawesi (two Manado, three Ujung Padang and four Toraja), Pekanbaru, 

Sumatra, and lesser in Alor, Bali, Borneo and Sumatra. Figure 5.16 shows the root type of 

B4c1b was found in China and Sulawesi, where modern Malay also found to have the same 

type. The one-step derivatives were seen in individuals from Alor and Bali with transition at 

np 16235, one Malay individual with a further np 16291, and three from China at np 16311. 

21 Malay individuals are found with haplogroup B4c1* which is further defined by a 

transition at np 16335, previously found in one Alor by Hill (2005). Now it is evident from 

the whole-mtDNA tree that this represents subclade B4c1b2a2, which possibly suggests it has 

a source in SEA during early Holocene ~9 ka. 

5.2 Haplogroup B5 

The other major branch of B is haplogroup B5, dating to ~52 ka. The B5 tree here 

includes 82 complete sequences, equally representing the two subclades: 41 B5a and 41 B5b. 

Figure 5.17 shows the major further subclades of haplogroup B5. Like B4, B5 seems to have 

a southern origin in MSEA/southern China and then spread into SEA, shows particularly in 

subclades B5a1a, B5a1b, B5a1c and B5b1c.  
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Figure 5.17 Schematic diagram of haplogroup B5 and its major subclades distribution. (EA – East Asia, 
MSEA – Mainland Southeast Asia, SC – Southern China, SEA – Southeast Asia) 

5.2.1 Haplogroup B5a 

B5a dates to ~32 ka and it has two subclades, B5a1 and B5a2. B5a1 dates to the LGM 

~22 ka and is divided into B5a1a, B5a1b, B5a1c, and B5a1d (Figure 5.18). B5a1a dates to ~8 

ka and it is widely seen in SEA, including Peninsular Malaysia, the Semang Batek (and one 

Senoi Temiar from HVS-I), Cambodia (Hartmann et al., 2009), Indonesia Sumatra 

(Gunnarsdóttir et al., 2011b), Thailand (Pradutkanchana, Ishida and Kimura, 2010), Vietnam 

and the Nicobar Islands (Thangaraj et al., 2005). B5a1a includes B5a1a1 and five other 

unnamed subclades. B5a1a1 is exclusively seen in the Austro-Asiatic-speaking inhabitants of 

the Nicobar Islands (Thangaraj et al., 2005) and dates to ~4 ka. Other documented Austro-

Asiatic speakers nested within B5a1a including the so-called negrito Semang Batek (who 

speaks Northern Aslian) and Senoi Temiar (Central Aslian-speaker, HVS-I data).  

Subclade B5a1a with a further transition at 16293 dates to ~6 ka and is seen in 

Northeast and Southeast Peninsular Malaysia (this study). Subclade B5a1a with a further 

transition at np 16362 dates to ~7 ka and it is seen in Northeast Peninsular Malaysia (this 

study) and Cambodia (Hartmann et al., 2009). Subclade B5a1a with a transition at np 5894 is 

seen in Northwest Peninsular Malaysia (this study) and dates to ~2 ka. Subclade B5a1a with 

two transitions at nps 8134 and 16167 dates to ~3 ka and is seen in Northeast Peninsular 

Malaysia (this study). Lastly, subclade B5a1a with a transition at np 146 dates to ~6 ka and 

this subclade is seen in Vietnam (Archaeogenetics Research Group, Huddersfield) and 

Thailand (Pradutkanchana, Ishida and Kimura, 2010). It is clear that B5a1a and its subclades 

are restricted to MSEA, Peninsular Malaysia and Nicobars Islands. Bellwood (1997) 

suggested that the Austro-Asiatic-speaking foragers have an origin in South China during 
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middle Holocene. The whole-mtDNA tree appears to be consistent to Bellwood’s view that 

the Austro-Asiatic-speakers can trace their origin to South China/Mainland SEA during 

middle Holocene ~8 ka. Bellwood (2001) also pointed out that one of the characteristics that 

indicates the spread of a linguistic family together with a Neolithic farming expansion is the 

rapid spread of a language over a large area. The fact that B5a1a and its subclades dispersed 

across MSEA, Peninsular Malaysia and Nicobar Islands between 2 ka to 7 ka correspond to 

the coastal Neolithic expansions suggested by Bulbeck (2008), perhaps in several events (also 

Higham, 2004). Although in this case, the lineages from Peninsular Malaysia and Sumatra, 

Indonesia would be the Austronesian-speaking farmers, who have arrived in Sumatra from 

MSEA and Peninsular Malaysia and not via the “Out of Taiwan” route. 

B5a1b dates to ~12 ka, where the basal lineage is seen in Hubei China (Kong et al., 

2003b). It then dispersed ~10 ka into the Philippines (Tabbada et al., 2010) and Northwest 

Peninsular Malaysia. B5a1d dates to ~11 ka, it is seen in northern Peninsular Malaysia (this 

study), Sumatra, Indonesia (Gunnarsdóttir et al., 2011b) and Thailand (Pradutkanchana, 

Ishida and Kimura, 2010), the latter forms a subclade which dates to ~2 ka. B5a1c dates to ~9 

ka, and a subclade nested within dates to ~7 ka. B5a1c is restricted to south China only 

(Zheng et al., 2011). In general, B5a1 shows a post-glacial Sunda distribution with recent 

offshoots. The small subclade of B5a1b is likely to show the relict descendants that survived 

since the early Holocene dispersal and found in Hubei China, the Philippines and Peninsular 

Malaysia.  

B5a2 dates to pre-LGM ~26 ka and the basal lineage is seen in south China (Figure 

5.19; Zheng et al., 2011). It is further divided into B5a2a, dating to ~18 ka, nesting an 

aboriginal Taiwanese lineage (Pierson et al., 2006), which in turn nests a subclade seen only 

in Japan (Tanaka et al., 2004), dating to ~8 ka – a pattern suggesting a dispersal from 

Southeast Asia into Northeast Asia by the early Holocene. 
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Figure 5.18 The tree of haplogroup B5a1. Time estimates shown for the clades are ML (in black) and averaged 
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Figure 5.19 The tree of haplogroup B5a2. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, TAI – Taiwan) 

 

5.2.2 Haplogroup B5b 

B5b dates to ~33 ka and divided into B5b1, B5b2 and B5b3 (Figure 5.20). B5b1 dates 

to ~28 ka and single basal lineages are seen in Japan (Tanaka et al., 2004) and China (Zheng 

et al., 2011), likely to have an origin in China. B5b1 has two subclades, B5b1a’b and B5b1c. 
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B5b1a’b, seen only in Japan, dating to ~22 ka and divided into B5b1a and B5b1b. B5b1a 

dates to ~8 ka and is found in Japan Aichi and Tokyo (Tanaka et al., 2004). B5b1b dates to 

~5 ka, and nested within a subclade defined by a transition at np 14959 dates to ~2 ka, and 

found in Tokyo, Chiba and Aichi. 

B5b1c has a very distinctive distribution in the context of B5b. There are basal lineages 

in the Semang Batek, Peninsular Malaysia, and the Philippines (Tanaka et al., 2004; 

Gunnarsdóttir et al., 2011a; Loo et al., 2011), dating to ~11 ka. A potential subclade nested 

within B5b1c is seen in the Philippine negrito Mamanwa clustering with the Manobos 

(Gunnarsdóttir et al., 2011a); although these sequences were not used in age estimations 

since there were many gaps. These lineages possibly are the relict descendants that survived 

in the Sunda after the second flood, about 11 ka, and incidentally linking the Austro-Asiatic-

speakers Semang Batek and the Austronesian-speakers Philippines Mamanwa within the 

same clade. 
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Figure 5.20 The tree of haplogroup B5b1. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (BAT – Semang Batek, CHI – China, FIL – Philippines, JAP – Japan, MAM – Philippines 
Mamanwa, NEM – Northeast Peninsular Malay, SEM – Southeast Peninsular Malay) 
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Figure 5.21 The tree of haplogroup B5b2 and B5b3. Time estimates shown for the clades are ML (in black) 

and averaged distance (ρ; in blue) in ka. (BID – Sarawak Bidayuh, CHI – China, FIL – Philippines, JAP – Japan, 
SBR- Siberia, Russia) 

 

Figure 5.22 HVS-I network of B5a. Figure adapted from Hill (2005). 

B5b2 dates to ~25 ka and consists of two subclades, B5b2a and B5b2c, distributed 

mainly across China and Japan (Figure 5.21). B5b2a dates to ~23 ka, with a basal lineage 

seen in Beijing, China (Zheng et al., 2011). B5b2a has two subclades, B5b2a1 and B5b2a2 

(newly named here). B5a2a1 dates to ~20 ka, with a single basal lineage in Russian Siberia 

(Starikovskay et al., 2005), and two subclades: B5b2a1a and B5b2a1b, dating to ~6 ka and 
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~10 ka respectively, seen only in Japan (Tanaka et al., 2004) and China (Kong et al., 2003b). 

B5b2a1 looks to have an origin in China, dispersing into Japan in roughly the mid-Holocene. 

B5b2c dates to ~12 ka, and shows a roughly similar pattern to B5b2a1, with a basal 

lineage in south China (Zheng et al., 2011), and the main subclade seen in Japan (Tanaka et 

al., 2004) around 8 ka. B5b3 is represented here by a sample from Japan (Tanaka et al., 

2004). 

Figure 5.22 shows the HVS-I data network of B5a adapted from Hill (2005). It is very 

poorly resolved in comparison with the whole-mtDNA tree, as there are few informative 

HVS-I sites within the tree. B5a1d and B5a2a are recognisable and outlined in the network. 

Apart from those already present in the whole-mtDNA B5a1 tree (such as MSEA, Peninsular 

Malaysia and Nicobar Islands), other potential B5a1 lineages might include the Aboriginal 

Taiwanese, Sulawesi, Java, Moluccas of Indonesia, and Singapore. The network also shows 

that B5a1d may expand as far east as Sulawesi, and B5a2a may not just restricted to Japan 

but the root type was also found in Korea. 

Similar to most HVS-I network, network of B5b has low resolution and lack of 

informative HVS-I sites compared with the whole-mtDNA tree. In previous studies, 

haplogroup B5b was commonly found in China, Japan, Korea, the Philippines and 

Micronesia (Lee et al., 1997; Lum et al., 1998; Seo et al., 1998; Yao et al., 2002a, 2002b). 

We now know from the whole-mtDNA tree that B5b1a’b and subclades are restricted to 

Japan, and B5b1c are seen only in Peninsular Malaysia and the Philippines. The possible 

B5b1c lineages recognisable from the HVS-I network include Sulawesi, Borneo, East 

Indonesia, Sumatra, Lombok, and Singapore, where the “Malay ZZ” and Semang Batek are 

represented in the whole-mtDNA tree. Haplogroups B5b2 and B5b2a1a are recognisable in 

the HVS-I network and outlined in Figure 5.23. The network is consistent with the results 

shown in the whole-mtDNA tree, where B5b2 has an East Asia origin, where plenty of 

derived sequences are found in China, Korea, Japan, and one each from Inner Mongolia and 

Kyrgyz. The Sumatran lineage might possibly correspond to the lineages from the Philippines 

and Bidayuh, North Borneo in the whole-mtDNA of subclade B5b2a2. The much better 

resolution afforded by the whole-mtDNA tree shows that the Southeast Asia clades are 

shallower, so that the suggestion in the HVS-I network that a Southeast Asian origin might be 

possible is not supported by the new analysis. The source most likely lies in China with 

greatest diversity and with post-glacial dispersals both ways. 
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Figure 5.23 HVS-I network of B5b. Figure adapted from Hill (2005). 
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Figure 5.24 The tree of haplogroup R11. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, NEM – Northeast Peninsular Malay, VIE – Vietnam) 
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Figure 5.25 The tree of haplogroup B6. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, FIL – Philippines, NWM – Northwest Peninsular Malays, SEM – Southeast 
Peninsular Malay, SWM – Southwest Peninsular Malay, TEM – Aboriginal Malay Temuan, VIE – Vietnam) 

5.3 Haplogroup R11’B6 

R11’B6 appears to originate in South China and dates to ~56 ka, and it is divided into 

R11 and B6 (Figure 5.24). Despite the name and Phylotree (van Oven and Kayser, 2009), B6 

is clearly not related to B4’5, as the 9-bp deletion appears to be a parallelism, and the 

transition at np 16189 is a very fast site. The phylogeny includes 19 complete sequences: nine 

R11 and ten B6. R11’B6 also appears in MSEA (Northeast Peninsular Malay). Both 

haplogroups are very rare (although they are difficult to recognise in HVS-I, as they are 

defined by very unstable positions), and they have quite dissimilar distributions. 

R11 is found primarily in China (Kong et al., 2003b; Zheng et al., 2011). R11 dates to 

~24 ka, dividing into R11a and R11b. R11b dates to ~17 ka; there are three subclades nested 

within R11b (Figure 5.24). A subclade defined by transitions at nps 5836, 14322 and 16399 is 

dated to ~11 ka, and is seen in single individuals from Vietnam (Archaeogenetics Research 

Group, Huddersfield) and Northeast Peninsular Malay (and also probably Thailand, in the 

HVS-I database). The other two subclades are seen in China, and all remaining candidates in 

the HVS-I database are from China. 
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B6, on the other hand, is found predominantly in MSEA/Malay Peninsula and dates to 

~27 ka (Figure 5.25). It is divided into B6a and B6b (new nomenclature). A basal type of B6 

is seen in Vietnam (Archaeogenetics Research Group, Huddersfield). B6a dates to ~18 ka, 

with a basal lineage in the Philippines (Tabbada et al., 2010) and a subclade, B6a1 dating to 

~10 ka with a basal lineage in Thailand. It further diverges into a subclade, B6a1a, which 

appears restricted to the Malay Peninsula, dating to ~7 ka, and shared by several Malay and 

Temuan Aboriginal Malay (one of them is reported by Jinam et al., 2012).  

B6b dates to ~23 ka, and even rarer, seen in one individual from China (Kong et al., 

2003b) and one from Vietnam (Archaeogenetics Research Group, Huddersfield).  

5.4 Haplogroup R12’21 

R12’21 is basal to haplogroup R. The ancestral node is inadequately dated to ~72 ka by 

ρ since the mtDNA sequence of R12 Aboriginal Australian sample is an incomplete sequence 

with a gap between np 16384 and np 434 (Kivisild et al., 2006; Hudjashov et al., 2007). The 

R12 sequence is also excluded from ML calculation for this reason. The R21 tree includes 14 

complete sequences. The unique deep phylogenetic link to Australia, however, supports the 

great local antiquity of this lineage on the Sunda shelf in SEA, whatever the uncertainty on 

the ρ age estimate (Figure 5.26).  

R21 dates to ~12 ka, where the root type splits between the Orang Asli and Malay in 

Kelantan Malaysia. The young divergence time of R21 is due to genetic drift and population 

subdivision of the Orang Asli. They form a clade, R21a, which dates to only ~6 ka. It is 

concentrated in the northern Semang, especially the Jahai (Jinam et al., 2012) and Senoi 

Temiar, the latter borders the Jahai in Kelantan. Jahai are reported to be in frequent contact 

with speakers of Malay, and many share settlements with speakers of Temiar (a Central 

Aslian language) (Burenhult, 2001). The deep diversity preserved in the Malay shows that 

although it has undergone drift, the ancient diversity captured in the large Malay population 

indicates a markedly greater diversity than in the small relict Orang Asli populations. 
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Figure 5.26 The tree of haplogroup R12’21. DQ112752 is missing nps 16384-434 (Kivisild et al., 2006). Time 

estimates shown for the clades are ML (in black) and averaged distance (ρ; in blue) in ka. (AUS – Australia, BAT – 

Semang Batek, JAH – Semang Jahai, KEN – Semang Kensiu, LAN – Semang Lanoh, NEM – Northeast Peninsular 
Malay, TMI – Senoi Temiar) 

5.5 Haplogroup R22 

 Haplogroup R22 is basal within R and dates to ~46 ka (Figure 5.27). R22 has three 

distinctive subclades, which are hereby nominated as R22a, R22b and R22c. R22 is here 

reconstructed from eight complete sequences. Haplogroup R22a and R22b appeared to have 

experienced high drift.  

R22a dates to ~19 ka. It is seen in Perak and Kelantan of northern Peninsular Malaysia 

(this study), and Bin Thuan, Vietnam (Peng et al., 2010). R22b dates to ~15 ka and the root 

type is seen in Javanese from Semerah of Johor, another from Muar Johor and a Malay from 

Kelantan. R22c dates to ~46 ka and is seen in two individuals, one from Thailand (Peng et al., 

2010) and a Javanese of Johor Muar. 
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Figure 5.27 The tree of haplogroup R22. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular Malay, SEM – 
Southeast Peninsular Malay, THA – Thailand, VIE – Vietnam) 

 

 

Figure 5.28 HVS-I network for R22 from HVS-I data. Figure adapted from Hill (2005). 

R22 was previously identified via HVS-I data in Malay of Peninsular Malaysia, Bali, 

Lombok, Sumba, Banjarmasin, Sumatra, Sulawesi, Java and Borneo (Hill, 2005), the Nicobar 
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Islands (Prasad et al., 2001) and Thailand (Yao et al., 2002b). HVS-I data (Figure 5.28) 

showed that R22a includes individuals from Bali, Borneo, Sumba, Lombok and Thailand. An 

HVS-I subclade defined by a reversion at np 16304, which is likely to be R22b, is seen in 

Sumatra, Sumba, Sulawesi, and Lombok. The HVS-I signature of the Nicobar Islanders 

simply form a new R22 subclade. 

R22 appears to be a surviving lineage from the initial founding of the Sunda shelf 

region and is widespread and present in mainstream indigenous groups. The origin of R22, 

given the age and distribution of the analysis, would have been Sundaland. 

5.6 Haplogroup R9 

R9 is defined by polymorphisms at nps 3970, 13928C and 16304, with two main 

branches: R9b and R9c (which includes F) (Kong et al., 2003b; Soares et al., 2009). These 

two diverged from the R9 root ~55 ka. The phylogeny of R9 here includes 201 complete 

sequences: 24 R9b, 8 R9c1 and 168 F. R9 appears, from the pattern shown in the schematic 

diagram below (Figure 5.29), to have originated in MSEA and spread both ways throughout 

China and SEA. R9b has deep roots in MSEA and the sink recipients for R9b1a, R9b1b and 

R9b1c are seen in ISEA in the south and East Asia in the north. R9c is further divided into 

R9c and F. R9c1 is a rare haplogroup that has two subclades, R9c1a and R9c1b. R9c1a has 

dispersed into ISEA, while R9c1b is seen in China and Vietnam, again indicating an origin in 

MSEA. Haplogroup F has four subclades, F1, F2, F3, and F4. F1 is split into F1+16189 and 

F1a’c’f. F1+16189 is common in China and Japan. On the other hand, F1a’c’f appears to 

have deep roots in SEA, where the subclades are widely distributed throughout Island and 

Mainland SEA. F1f potentially has a source in western Sunda and dispersed into ISEA. 

However, several subclades like F1c1, F1a1b, F1a1c, and F1a3a1, appear to settle recently in 

China and Japan; while F1a2 in South China. F2 suggests a root in China and Japan for its 

five subclades, except for F2e1 that is seen in MSEA. F3 is widely distributed throughout 

East Asia and SEA. F4 is seen in China and Japan, where the sink recipients of F4b are 

almost entirely restricted to Taiwan and also seen in SEA. 
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Figure 5.29 Schematic diagram of haplogroup R9 and its major subclades distribution. (EA – East Asia, ISEA 

– Island SEA, JAP – Japan, MSEA – Mainland Southeast Asia, SAS – South Asia, SC – South China, SEA – 
Southeast Asia, TAI – Taiwan) 

5.6.1 Haplogroup R9b 

Subclade R9b is seen at low levels in MSEA: West Malaysia (Malay and Aboriginal 

Malays, both Semelai and Temuan; Hill et al., 2006), Vietnam, Thailand, and also in 

Indonesia (Hill et al., 2007). R9b has also been found at low rates in the Yunnan and Guangxi 

provinces of South China (Yao and Zhang, 2002). R9b dates to ~46 ka, and is divided into 

R9b1 and R9b2. R9b1 dates to ~25 ka and it has three subclades: R9b1a, R9b1b and R9b1c 

(Figure 5.30). The deepest lineages of R9b1 are found both in South China (Kong et al., 

2003b) and MSEA: Vietnam (Hill et al., 2006). Similarly, R9b1b and R9b1c, dated to ~4 ka 

and ~11 ka respectively, are both found only in China (Zheng et al., 2011) and Vietnam (Hill 

et al., 2006).  

R9b1a dates to the LGM ~20 ka, and includes two nested subclades, R9b1a1 and 

R9b1a2 (Figure 5.30). The basal branch of R9b1a1 is seen in the Philippine negrito 

Mamanwa (Gunnarsdóttir et al., 2011a), and an additional nested subclade, R9b1a1a, is 

found only in MSEA and the Greater Sundas, dating to ~10 ka. R9b1a2 dates to ~6 ka, and is 

found both in China (Kong et al., 2003b) and Vietnam (Hill et al., 2006). R9b1a1a has three 

subclades, found only in SEA: R9b1a1a1 dates to ~7 ka and is seen only in Indonesia 

(Sumatra, Java and Sulawesi); R9b1a1a2 dates to ~8 ka and, being confined to MSEA, 

presumably took the Peninsular route from Thailand (Hill et al., 2006) into the Aboriginal 

Malays (Semelai) ~1 ka; R9b1a1a3 presumably also spread south down the Malay Peninsula 

~10ka, where it is now found among Northeast Peninsular Malay, as well as forming a 

subclade aged around ~5 ka among the Semang Kintak of the north-western interior and 

Aboriginal Malays further south, the former forming a further subclade dating to ~1 ka. 



189 

 

Haplogroup R9b2 dates to ~6 ka, and, again, is found only in MSEA: Thailand, Vietnam 

(Hill et al., 2006; Pradutkanchana, Ishida and Kimura, 2010) and Northeast Peninsular 

Malay. 
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Figure 5.30 The tree of haplogroup R9b. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (ABM – Aboriginal Malay, JAH – Semang Jahai, JAV – Java, Indonesia, KIN – Semang 

Kintak, MAM – Philippines Mamanwa, NEM – Northeast Peninsular Malay, SML – Aboriginal Malay Semelai, SUL 
– Sulawesi, SUM – Sumatra, THA – Thailand, VIE – Vietnam) 

 

Figure 5.31 HVS-I network of R9b1 types. Figure adapted from Hill (2005). 



190 

 

Figure 5.31 shows the HVS-I network of haplogroup R9b (R9b1 in current whole-

mtDNA nomenclature). In this early representation, the more basal types with the transition 

at nps 16192 (recognisable as R9b1a in the HVS-I network) are found in Thailand and South 

China (Yunnan, Guangxi; Yao et al., 2002b) and Xinjiang of North China (Yao et al., 

2002a). The types with a further transition at np 16288 (currently R9b1a1a in the whole-

mtDNA tree) are found in Borneo, Lombok, Sulawesi and Java. The most common type in 

this early survey was represented largely by one sequence type in the Aboriginal Malays 

(Semelai and Temuan) (Hill et al., 2007) and one “Malay ZZ” (identifiable now as R9b1a1a2 

in HVS-I network).  The dotted line in Figure 5.31 showed that the HVS-I network was not 

able to clarify the polarity of evolution at np 16192 (Hill, 2005; Hill et al., 2006), but with the 

new whole-mtDNA data presented here, it confirms that the Aboriginal Malays and “Malay 

ZZ” (and a Thai lineage in Figure 5.30) has loss np 16192. Although the HVS-I network 

seems to point to an origin in China, the whole-mtDNA tree indicates that the source was 

most likely Sundaland, given the age and taking into account the distribution of R9b2 in 

Vietnam and the Malay. 

5.6.2 Haplogroup R9c1 

R9c1 dates to ~33 ka and includes two small subclades (Figure 5.32). R9c1a dates to ~8 

ka; it is recognisable from a clear diagnostic HVS-I motif and is seen in most frequently in 

Taiwan, and less commonly in the Philippines and Indonesia. Two of the Philippine negrito 

Batak (Scholes et al., 2011) lineages form a nested subclade that dates to ~6 ka. The Batak, 

one of the Philippine negrito groups found on Palawan Island, speak Austronesian languages 

instead of the non-Austronesian languages thought to have been spoken before the Holocene 

(Reid, 1994; Gray et al., 2009) and lead a hunter-gatherer lifestyle. Their geographically 

interesting location offers the possibility of movement via near-land-bridges between Sabah 

in East Borneo and Palawan in the Philippine Archipelago, in regards to historical population 

interactions in the region (Scholes et al., 2011), though the presence of a Taiwanese 

haplotype in R9c1a could also suggest a north-south (or south-north) maritime movement. 

The Philippine Batak appears to have common ancestry with the non-negrito on Palawan as 

well as the neighbouring regions, which is observed in R9c1a. 

R9c1b (Figure 5.32), dating to ~15 ka, is seen in only three individuals from South 

China and Vietnam (Zheng et al., 2011; Archaeogenetics Research Group, Huddersfield); in 

the HVS-I database it is recognisable by default as R9c1 lacking the full R9c1a motif and is 
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seen across southern China/MSEA, where it likely originated, with occasional individuals in 

ISEA and Taiwan.  
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Figure 5.32 The tree of haplogroup R9c1. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, INA – Indonesia, FBT – Philippines Batak, FIL – Philippines, TAI – 
Taiwan) 

5.6.3 Haplogroup F1 

Haplogroup F is the main subclade of R9c and dates to ~51 ka, dividing into F1, F2, F3 

and F4, with no basal lineages seen to date, either for F or for its major subclade, F1. The 

main subclade of F, haplogroup F1, dating to ~38 ka, and has two subclades called F1+16189 

(the hypothetical immediate precursor of F1b, F1d, F1e and F1g) and F1a’c’f. F1+16189, if it 

represented a true clade, would date to ~35 ka and with an origin in China and Japan. For 

detailed descriptions of haplogroups F1b, F1d and F1e, all not seen in Malaysia, see 

Appendix E. 

 In Figure 5.33, F1a’c’f dates to ~29 ka. The clade is represented extensively both in 

China and SEA. It includes F1c and F1a’c’f+16172 (including F1a and F1f). From the 

complete mtDNA tree, with only a few sequences, it appears that F1c and F1f have quite 

different distributions, but as they are not distinguishable in HVS-I it is impossible to confirm 

or augment this observation with more data at present. F1c1, the sole branch of F1c, dating to 

~19 ka with basal branches seen in Japan (Tanaka et al., 2004) and China (Kong et al., 

2003b; Zheng et al., 2011). F1a’f dates to ~25 ka. F1f dates to ~6 ka and is seen in Malay 
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from across the Peninsula (including a direct match to several Bidayuh from Borneo, at the 

root of F1f), the Sarawak Bidayuh (Jinam et al., 2012) and Sumatrans (Gunnarsdóttir et al., 

2011b), with a single individual from Beijing, China (Zheng et al., 2011). Several Sumatrans 

form a subclade that dates to ~2.5 ka, with a further transition at np 8490 dating to ~1 ka. 

This shows a close connection between Peninsular Malay and likely source populations in 

Sumatra and, especially Sarawak in Borneo, who all speak the Austronesian Malayo-

Polynesian languages. The results here therefore show that F1f is likely to have a source in 

west Sunda with dispersal into ISEA ~6 ka.  
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Figure 5.33 The tree of haplogroup F1a’c’f excluding F1a1. Time estimates shown for the clades are ML (in 

black) and averaged distance (ρ; in blue) in ka. (** – np 310 removed; BID – Bidayuh Sarawak, CHI – China, FBT – 

Philippines Batak, FIL – Philippines, JAP – Japan, NEM – Northeast Peninsular Malay, NWM – Northwest 
Peninsular Malay, SUM – Sumatra, SWM – Southwest Peninsular Malay) 

F1a is found extensively across China, Southeast Asia and Japan and dates to ~23 ka. It 

can be divided into three branches, F1a1’4, F1a2 and F1a3a. F1a2 dates to ~10 ka and so far 

is seen only in South China (Kong et al., 2003b, 2006). Similarly, F1a3a dates to ~10 ka, and 

is so far reported in Northwest Peninsular Malay, the Philippine Batak (Scholes et al., 2011) 
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and a Filipino (Family Tree DNA, 2006; Loo et al., 2011). A small subclade nested below 

named F1a3a1, dating to~6 ka, and so far is only seen in Japan (Tanaka et al., 2004). F1a3 

was considered a possible marker for Austronesian dispersal by Hill et al. (2007); its age and 

distribution now make this less likely. 

F1a1’4 dates to ~20 ka and splits into F1a4a and F1a1, dating to ~7 ka and 15 ka 

respectively. The HVS-I database shows that F1a4a is dispersed thinly but widely in South 

China, Taiwan aboriginals and both MSEA and ISEA, with examples in the complete-

mtDNA tree from the Northeast Peninsular Malay, Sumatra and the Philippines 

(Gunnarsdóttir et al., 2011a; Loo et al., 2011). F1a4 was proposed as a possible marker for 

the Austronesian dispersal in Hill et al. (2007).  

F1a1 (Figure 5.34) is widespread in MSEA, ISEA, China, Japan and Taiwan. It dates to 

~15 ka, with four substantial subclades: F1a1a, F1a1b, F1a1c, and F1a1d. Basal F1a1 

lineages are seen in China (Zheng et al., 2011), Japan (Tanaka et al., 2004) and Peninsular 

Malaysia, and in HVS-I F1a1* lineages are seen in Korea, Indonesia, Vietnam and Thailand. 

F1a1b dates to ~5 ka and is entirely a Japanese clade. F1a1c dates to ~11 ka with the basal 

lineages found in China (Zheng et al., 2011) and Japan (Tanaka et al., 2004). A separate 

subclade, defined by a transition at np 16224, is seen in one Northwest Peninsular Malay, 

dating to ~9 ka, and presumably dispersed from there into the Moken maritime minority off 

western Thailand (Pradutkanchana, Ishida and Kimura, 2010) as F1a1c1, dating to ~4 ka. 

F1a1d dates to ~5 ka and is reported in a single Northeast Peninsular Malay, a single 

Philippine individual (Tabbada et al., 2010), and several aboriginal Taiwanese groups, 

especially the Yami, where it reaches 23% (Loo et al., 2011), and where it further diversified 

as a subclade ~1.5 ka. 

F1a1a is a common subclade dating to ~11 ka, and is widespread in MSEA and the 

Malay Peninsula (5.7% in Table 3.4; Figure 5.34). Basal lineages are found in single 

individuals from South China (Kong et al., 2003b) and Sumatra (Gunnarsdóttir et al., 2011b), 

with multiple individuals from Peninsular Malaysian Orang Asli and Malay (this analysis). 

The Semang Jahai (Jinam et al., 2012) and Senoi Temiar share a subclade defined by a 

transition at np 6040 dating to ~4 ka; and another subclade within F1a1a1 with the same age. 

The derived cluster, F1a1a1 dates overall to ~9 ka, and seen is only in Peninsular Malaysia 

and MSEA, where it is common; since it is not found in Indonesia, and given the prevalence 

of East Asian basal lineages in F1a1, an early Holocene migration from South China into 
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MSEA through Peninsular Malaysia might be indicated (matching the Malay/MSEA subclade 

of F1a1c), perhaps coinciding with the spread of the “coastal Neolithic” in MSEA (Higham, 

2004; Bellwood, 2001).  

A nested F1a1a1 subclade, defined by a transition at np 16147, dating to ~4 ka, and is 

seen in an Aboriginal Malay (Jahai) and a Northwest Peninsular Malay. As noted above, 

another F1a1a1 subclade, defined by a transition at np 12820 and a reversion at np 16304, is 

found in the Semang Jahai (Jinam et al., 2012) and Senoi Temiar, dating to ~4 ka. The 

Nicobars (Thangaraj et al., 2005) and Cambodia (Macaulay et al., 2005) share another 

subclade defined by a transition at np 16311 dating to ~6 ka. Lastly, another subclade, dating 

to ~2 ka, consists of the Moken and Thai lineages (Pradutkanchana, Ishida and Kimura, 

2010) only. Bellwood (1993, 1997) proposed a model for colonisation of SEA that simplified 

the number of migrations to 2, and explaining how such migrations may have occurred and 

their relation to language distribution. Southeast Asia’s negrito, including the Semang, would 

represent the relict descendants of SEA’s original “Australo-Melanesian” foragers. During 

the middle Holocene, both Austro-Asiatic and Austronesian languages arose in South China 

and were introduced to SEA with the Neolithic expansion of farmers (of Mongoloid physical 

appearance). Austro-Asiatic speakers took a mainland route southwards into MSEA, 

including Peninsular Malaysia and Nicobar Islands, whereas Austronesian speakers spread 

along the island arc from Taiwan to the Philippines, and then Indonesia and Malaysia. In the 

Malay Peninsula, interaction between immigrant farmers and resident foragers resulted in the 

mixed phenotype of certain groups, in particular the Senoi, as well as language shift by the 

Semang to Aslian (Hill et al., 2006).  

We can confirm the distribution found in the whole-mtDNA phylogeny by looking at 

the HVS-I networks. Figure 5.35 shows the HVS-I network of F1a* (i.e., in HVS-I, F1a* 

excluding F1a1). The root type of F1a is most common in Yunnan of South China. A 

derivative branch, F1a4, defined by a transition at np 16294, consists mostly of Island 

Southeast Asian types (Hill et al., 2007). 

Figure 5.36 shows the HVS-I root type of F1a1 remains most commonly found in South 

China and the Taiwanese Aboriginals, followed by several individuals from Eastern 

Indonesia, Sumba, Borneo and Malay. Derivatives are found at low levels in Borneo, 

Sulawesi and Bali. One Malay individual falls on a branch with an additional transition at np 

16335 with those from China and Singapore (represented in the whole-mtDNA tree, basal to 
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F1a1 in Figure 5.34). Another Malay falls in same branch with previously identified Malay 

individual with a transition at np 16224, which is identified as F1a1c now. F1a1* types are 

rarely seen in ISEA and the result indeed complement the whole-mtDNA tree suggesting a 

possible Malay origin in Austronesian dispersal from South China and Taiwan. 
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Figure 5.34 The tree of haplogroup F1a1. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CAM – Cambodia, CHI – China, FIL – Philippines, JAH – Semang Jahai, JAK – 

Aboriginal Malay Jakun, JAP – Japan, NEM – Northeast Peninsular Malay, NIC – Nicobars, NWM – Northwest 

Peninsular Malay, SEM – Southeast Peninsular Malay, SUM – Sumatra, TAI – Taiwanese Aboriginals, THA – 
Thailand, TMI – Senoi Temiar, TMK – Thailand Moken) 

 

 

Figure 5.35 HVS-I network of F1a*. F1a is further defined by transitions at nps 16129 and 16172 (van Oven 
and Kayser, 2009). Figure adapted from Hill (2005). 
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Figure 5.36 HVS-I network of F1a1. Figure adapted from Hill (2005). 

 

Figure 5.37 HVS-I network of F1a1a. Figure adapted from Hill (2005). 

F1a1a is widespread and relatively common in East and Southeast Asia (Figure 5.37), 

though it is most common in eastern MSEA (Mormina, 2007). In HVS-I, the root type of 

F1a1a is most commonly found in Thailand (~15% of the sample), Vietnam (~8%), coastal 

China (~4%), Peninsular Malaysia (the Senoi at ~40% and Malay ~8%), and ~3% in West 

Indonesia, and not found in Japan/Korea and Taiwanese Aborigines (Mormina, 2007). Its 

derivative types are detected in Sumatra, Bali, Sumba, Borneo and Peninsular Malaysia (the 

Orang Asli and Malay). One Peninsular Malay has an additional transition at np 16234, 

followed by a one-step derivative type from Bali with a transition at np 16299, and a further 

np 16092 in two Malay individuals (represented in the whole-mtDNA tree Figure 5.34). 
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Overall the pattern is similar to the distribution of basal lineages in the complete genome tree, 

although the HVS-I network suggests that China may be under-represented in the complete-

mtDNA tree.  

However, haplogroup F1a1a is most diverse in South China and MSEA (see Figure 67 

in Mormina, 2007), along with its high levels of F1a* and F1a1*, suggesting an origin in 

South China or MSEA followed by migratory events into Peninsular Malaysia and, to a lesser 

extent, ISEA (see also Hill et al., 2006). The whole-mtDNA F1a1a tree indicates an origin in 

South China followed by very rapid spread into MSEA in the early Holocene, coinciding 

with the “coastal Neolithic”. Interestingly, F1a1a appears to spread right down into Malaysia, 

rather than then hopping again in the mid to late Holocene into the Peninsula as proposed by 

Bellwood’s model for the spread of Austro-Asiatic speakers. It then seems to have entered 

the ancestors of the Senoi from within the Peninsula around 4 ka, which would correspond 

with the Bellwood model (1993, 1997) for the appearance of Austro-Asiatic in the timing that 

the Neolithic was brought into Peninsular Malaysia who intermarried with indigenous groups 

to create the ancestors of modern Senoi, but not the immediate source. 

5.6.4 Haplogroup F2 

F2 is an uncommon F branch, being predominantly found in China, with occasional 

instances in Japan and MSEA (Vietnam and Thailand), suggesting minor, recent movements. 

Detailed description is available in Appendix E.  

5.6.5 Haplogroup F3 

F3 dates to ~33 ka, and diverged into F3a and F3b (F3b1), estimated at ~25 ka and ~10 

ka respectively (Figure 5.38). F3 has a wide distribution in China (Kong et al., 2003b; Zheng 

et al., 2011) and SEA. F3a sub-divides into F3a1 and F3a2, both of which are found in China 

and MSEA. F3a1 dates to ~12 ka and is seen in one individual from China and a Northwest 

Peninsular Malay. The HVS-I database shows that it is present in South China and also, with 

very low diversity (and lacking the 16093 variant), in Vietnam and Thailand. F3a2 dates to 

~12 ka with a single basal lineage found in China and a subclade dating to ~10 ka in single 

individuals from Vietnam (Archaeogenetics Research Group, Huddersfield) and Northeast 

Peninsular Malay. The HVS-I database confirms its distribution in these three regions and 

also its extreme rarity.  
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Figure 5.38 The tree of haplogroup F3. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, FBT – Philippines Batak, INA – Indonesia, NBO – North Borneo, NEM – 

Northeast Peninsular Malay, NWM – Northwest Peninsular Malay, TAI – Taiwan, VIE – Vietnam, XIN – Xinjiang, 
China) 

Potential F3b* lineages (lacking the 16311 variant) are found in several South Borneo 

individuals and a single South China individual in the HVS-I database. F3b1 has basal 

lineages seen in Taiwan (Tabbada et al., 2010), and indeed is common in the database 

exclusively amongst aboriginal Taiwanese. It diverged into F3b1a ~8 ka, with a basal branch 

seen in a Northeast Peninsular Malay. In the HVS-I data, F3b1a* lineages are mainly found 

across Borneo, with single individuals in Taiwan aboriginals and Eastern Indonesia. F3b1a 

subsequently divided into F3b1a1 and F3b1a2, both of which are found in ISEA. F3b1a1 

dates to ~4 ka and is found in the Philippine Batak (Scholes et al., 2011) (and the general 

Philippine population in the HVS-I data) and North Borneo. F3b1a2 dates to ~5 ka, and is 

primarily found in Taiwanese aboriginals (as confirmed by the HVS-I database) and also a 

single individual from Indonesia (Tabbada et al., 2010). 
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5.6.6 Haplogroup F4 

F4 dates to ~42 ka, and is divided into F4a1 and F4b (Figure 5.39). The age of F4a1 is 

estimated at ~22 ka and further diverged into F4a1a ~4 ka in China (Ingman et al., 2000; 

Hartmann et al., 2009). A small clade nested below appears to have migrated by ~1 ka into 

Japan (Tanaka et al., 2004). F4b dates to ~19 ka, with a deep-rooting lineage found in China 

(Zheng et al., 2011) and a derived subclade F4b1 ~10 ka, which appears to have spread into 

Northwest Peninsular Malay and (perhaps via there) India (Ingman and Gyllensten, 2003). 

The HVS-I database shows that F4b1 is found mainly in Taiwanese aboriginals, albeit with 

low diversity, and in several individuals in Sumatra, two of which share the 16170 variant 

with the Malay individual, pointing to a likely source for the Malay lineage seen here. 
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Figure 5.39 The tree of haplogroup F4. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, IND – India, JAP – Japan, NWM – Northwest Peninsular Malay) 

5.7 Haplogroup P 

Haplogroup P dates to ~66 ka and is divided into P+C16176T (including P1 and P2’10), 

P3, P4, P5, P6, P7 and P9. Phylogeny P includes 33 complete sequences: 16 P+16176, five 

P3, seven P4, and five for P5, P6, P7 and P9. The entire haplogroup P has long terminal 

branches indicating genetic drift. Figure 5.40 shows haplogroup P and its major subclades 
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have deep ancestral roots and are widespread across Melanesia and Micronesia, Oceania. 

Several subclades that are found at low frequency elsewhere include P1d in the Peninsular 

Malay, and P9 and P10 in the Philippines. P3, P4a, P5, P6 and P7 are also found in the 

Australian Aborigines. 

 

Figure 5.40 Schematic diagram of haplogroup P and its major subclades distribution. (AUS – Australia, FIL – 
Philippines, INA – Indonesia, PEM – Peninsular Malaysia, OCE – Oceania) 

In Figure 5.41, P+C16176T dates to ~66 ka, and it subdivided into subclades P1 and 

P2’10. P1 dates to ~40 ka, and the basal lineages are seen in Papua New Guinea (PNG; 

Ingman et al., 2000; Ingman and Gyllensten, 2003; Hartmann et al., 2009). The Peninsular 

Malay are nested within subclade P1d1, and dates its arrival in Peninsular Malaysia during 

the late Pleistocene ~13 ka. (Detailed descriptions of other haplogroups are available in 

Appendix E). 

The HVS-I network in Figure 5.42 shows the branch defined by transitions at nps 16176 

and 16266 (P1 in current nomenclature) is relatively common in Papua New Guinea and 

Vanuatu but not found in Micronesia. Elsewhere, haplogroup P is reported at low levels in 

East Indonesia, Sumba, Sulawesi and Peninsular Malaysia (Redd et al., 1995; Hill, 2005; 

Zainuddin and Goodwin, 2004). As shown by the high-resolution whole-mtDNA tree and the 

HVS-I database, the deep ancestry is indeed found in Melanesia, it is almost certain that 

haplogroup P is an indigenous Melanesian haplogroup. Its presence in the Malay samples 

from Peninsular Malaysia and Indonesia indicates a certain degree of Melanesian 

contribution to the genetic make-up of ISEA. 
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Figure 5.41 The tree of haplogroup P1+C16176T. Time estimates shown for the clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (FIL – Philippines, NEM – Northeast Peninsular Malay, SWM – Southwest 
Peninsular Malay, PNG – Papua New Guinea) 

 

 

Figure 5.42 HVS-I network for P1. Figure adapted from Hill (2005). 
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5.8 Haplogroup R6 

R6 is a rare haplogroup with deep root in India that dates to ~52 ka. Figure 5.43 shows 

the phylogeny is constructed with 8 complete sequences. R6a and R6a1 date to ~52 ka and 

~37 ka respectively, where the basal lineages are seen in Uttarpradesh, North India 

(Palanichamy et al., 2004). R6a1a (dates to ~13 ka) and its subclade R6a1a1 (~3 ka) are in 

central and southeastern coast of India (Chaubey et al., 2008; Sharma et al., 2012). 
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Figure 5.43 The tree of haplogroup R6. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (IND – India, NEM – Northeast Peninsular Malay, THA – Thailand) 

R6a1b dates to ~37 ka, where the basal lineage is present in the Northeast Peninsular 

Malay (this study). Subclade R6a1b2, dating to ~14 ka, is seen in South India (Palanichamy 

et al., 2004) and Thailand (Archaeogenetics Research Group, Huddersfield). R6a1b shows 

early expansions from possibly South India into MSEA. The deep ancestry of R6a1b appears 

to be preserved in the Peninsular Malay population, and most of the lineages have undergone 

drift over time. However, it is known that the immigrants from India has arrived in the Malay 

Peninsula around the 17
th
 century, this is likely to arrive recently. 



203 

 

5.9 Haplogroup R7 

Haplogroup R7 dates to ~63 ka, and it is widely found in India, in particular the eastern 

coast (Figure 5.44). The basal lineage of R7 is seen in Andhra Pradesh of southeastern India 

(Fornarino et al., 2009). The bigger clade nested within R7 dates to ~55 ka, and the basal 

lineage is interestingly found in Kota Kinabalu, North Borneo (Archaeogenetics Research 

Group, Huddersfield), suggesting an early arrival of modern human in SEA. R7a’b, dating to 

~38 ka, is divided into R7a and R7b. R7a dates to ~18 ka, and R7a1 ~10 ka, where the basal 

lineages are mostly seen in India (Palanichamy et al., 2004; Chaubey et al., 2008; Sharma et 

al., 2012), and one instance from Southwest Peninsular Malay (this study). R7a1 has two 

subclades, R7a1a and R7a1b. R7a1a dates to ~4 ka, where it is found in Brazil, South 

America (Hartmann et al., 2009) with a subclade nested within (~3 ka) in India (Chaubey et 

al., 2008) and Pakistan (Fornarino et al., 2009). Since it is only a single instance of Brazilian 

sample in a predominantly Indian haplogroup, this sample could be possibly migrated 

recently from India into South America. R7a1b dates to ~7 ka, and its subclades are confined 

to India (Chaubey et al., 2008). 

R7b dates to ~29 ka and it is divided into R7b1 (~18 ka) and R7b2 (~15 ka). The entire 

R7b is restricted to central and southeastern India (Palanichamy et al., 2004; Chaubey et al., 

2008; Rani et al., 2010). R7 clearly has a deep root in India, probably along the southeastern 

region with some offshoots arrived in North Borneo as early as ~55 ka and a Southwest 

Peninsular Malay lineage is found within R7a1, dating to ~10 ka. Considering the known 

history of Indian immigrants into Peninsular Malaysia during the 17
th
 century, the Malay 

lineage is most likely to have arrived quite recently. 
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Figure 5.44 The tree of haplogroup R7. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (BRA – Brazil, IND – India, NBO – North Borneo, PAK – Pakistan, SWM – Southwest 
Peninsular Malay) 

5.10 Haplogroup R23 

Figure 5.45 shows R23 is a rare haplogroup and undergone high drift resulting in a date 

of ~9 ka. It is represented here by two complete mtDNA sequences from Vietnam (Peng et 

al., 2010) and Sumba of Lesser Sunda Islands, Indonesia (Archaeogenetics Research Group, 

Huddersfield). The HVS-I data showed that R23 is seen in Sumba and Bali, Indonesia (Hill et 

al., 2007), suggesting that this rare relict subclade most likely has a root on the Sunda shelf. 

Also shown in Figure 5.45 are three R* lineages from Peninsular Malaysia and Thailand. 
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Figure 5.45 The tree of haplogroup R23 with three R* lineages. Time estimates shown for the clades are ML 

(in black) and averaged distance (ρ; in blue) in ka. (LSI – Lesser Sunda Islands, SWM – Southwest Peninsular 
Malay, THA – Thailand, VIE – Vietnam) 

5.11 Haplogroup R30 

R30 dates to ~66 ka and is divided into R30a and R30b. It is mainly found at low levels 

in South Asia. Detailed description is available in Appendix E.  

5.12 Haplogroup U 

Haplogroup U is uncommon in Asia but more diversified in Europe and the Near East, 

but the lineages seen in the Malays are largely those seen in Southwest and South Asia. 

Haplogroup U dates to ~61 ka and is divided into U1, U2’3’4’7’8’9, U5 and U6 (Figure 

5.46). Haplogroup U is under-represented by 19 complete mtDNA sequences, mainly to show 

the phylogenetic relationships of the Peninsular Malay in the tree. 

U1a dates to ~26 ka, which further diverged into U1a1 ~20 ka, seen here in southern 

India (Ingman and Gyllensten, 2003) and Russia (Hartmann et al., 2009), while U1a3 is 

represented by a single instance from the Northeast Peninsular Malay (this study).  

U2 dates to ~57 ka, and nested within is U2b1 which is represented by an instance from 

the Northwest Peninsular Malay and U2e1 in a Caucasian from North America (Mishmar et 

al., 2003). U4’9 dates to ~50 ka and found restricted to India (Fornarino 2009) and Pakistan 
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(Hartmann et al., 2009). U7a dates to ~23 ka and U7a2 is found in Israel (Hartmann et al., 

2009) while U7a3 in Northwest Peninsular Malay (this study). U5 dates to ~37 ka, and its 

subclades U5a (~27 ka) and U5b (~25 ka) are represented by instances from France, Italy, 

and Israel. U6a1a is seen in a single instance from Algeria (Hartmann et al., 2009). 
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Figure 5.46 The tree of haplogroup U. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (ALG – Algeria, AMC – American, Caucasian, EUR – Europe, FRA – France, IND – 

India, ISR – Israel, ITA – Italia, NEM – Northeast Peninsular Malay, NWM – Northwest Peninsular Malay, PAK – 
Pakistan, RUS – Russia) 
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6 Bayesian Skyline Plot (BSP) 

Periods of major expansion (population growth) can be reconstructed using Bayesian 

Skyline Plots (BSPs), using the Bayesian evolutionary analysis by sampling trees (BEAST)  

software package, when the data are sufficiently informative about the population 

(Drummond et al., 2007). See more in Section 2.9.3. 

Recent BSP studies in SEA include the Philippine populations (n = 92) (Gunnarsdóttir 

et al., 2011a), Malaysian indigenous people (n = 86) (Jinam et al., 2012), and Indonesia (n = 

2104, but unusually using control-region, rather than whole-mtDNA, sequences) (Guillot et 

al., 2013), where a characteristic general pattern of growth during the Pleistocene and recent 

decline was detected. In the Philippines, the BSPs using whole-mtDNA genomes for the 

Mamanwas (negrito), Manobos and Surigaonons indicate population growth from ~50 ka 

until ~30-35 ka, followed by population stasis until ~6-8 ka, at which point population size 

decreases. Additionally, the Surigaonons differ from the other groups in showing another 

signal of population growth beginning ~2-3 ka (Gunnarsdóttir et al., 2011a). 

Jinam et al. (2012) generated BSPs using coding-region mtDNA sequences from the 

Malaysian indigenous populations (Semang Jahai, Aboriginal Malays Temuan and Seletar, 

and Austronesian-speaking Bidayuh in Sarawak). They observed an increase in population 

size ~60-40 ka and stasis from 30-10 ka, followed by a decline which lasted until several 

hundred years before present. Their BSPs also showed a slight increase of population size in 

all four groups after ~1 ka; but a possible cause was not offered in the study (Jinam et al., 

2012). 

Guillot et al. (2013) used low resolution HVS mtDNA sequences but large sample size 

(n = 2104) from four islands of the Indonesian archipelago (Bali, Flores, Sumba and Timor) 

and found little evidence for large fluctuations in effective population size. Their studies 

found a slow population growth during the late Pleistocene that peaked 15-20 ka, with 

subsequent slow decline into the Holocene. They suggested that this pattern may reflect 

population declines caused by the flooding of lowland hunter/gatherer habitat during sea-

level rises following the LGM. The weaker signal may reflect the lower resolution of the 

data, however the same inference could apply to the early Holocene decline in the Philippine 

populations noted by Gunnarsdóttir et al. (2011a). 
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 Figures 6.1 and 6.2 show my BSPs in Peninsular Malaysia. I first performed the BSP 

analysis on the Orang Asli populations, including all six Semang sub-groups (Kensiu, Kintak, 

Batek, Jahai, Mendriq and Lanoh), two Senoi (Semai and Temiar) and three Aboriginal 

Malay (Jakun, Semelai and Temuan). The second BSP includes all 186 modern Malay 

complete sequences in this study. 

 

Figure 6.1 Bayesian skyline plot (BSP) indicating hypothetical effective population size over time of Orang Asli 

populations. The posterior effective population size through time is represented by the black line. The blue region 
represents the 95% confidence region. Effective population size is plotted on a log scale. 

There is a significant expansion ~49-fold in the Orang Asli plot between ~44 ka to ~30 

ka (Figure 6.1), likely to coincide with the emergence of subclades M22a, M13b1 and N22. 

The effective population size peaks at the LGM, ~22 ka, with a plateau between ~35 ka and 

~15 ka. It then shows an early Holocene crash falling to about a quarter of the peak size by 

the mid-Holocene, indicating a major bottleneck, and starts to rise again after ~4 ka with the 

final effective population size restored to almost to the same as during the Late Pleistocene. 

The recent rise fits well with the emergence of haplogroups M21a1b in the Semang and 

Aboriginal Malay; N22a in the Aboriginal Malay Temuan; N21a1a in Temuan and Semelai; 

N9a6a in the Semang Jahai, Kensiu, the Aboriginal Malay Temuan and Seletar; R21a1 in 

Semang and Senoi Temiar; and R9b1a1a3 in Kintak, Jahai and Aboriginal Malay. 
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Figure 6.2 Bayesian skyline plot (BSP) indicating hypothetical effective population size over time of Peninsular 

Malay populations. The posterior effective population size through time is represented by the black line. The blue 
region represents the 95% confidence region. Effective population size is plotted on a log scale. 

Both plots show, what is presumably the same expansion from the same ancient Sunda 

source in Peninsular Malaysia, but the signal is better preserved in the modern Malay data 

due to the smaller impact of recent genetic drift, which has been extremely pronounced in 

some Orang Asli groups with very small population sizes, especially the Semang and Senoi 

(Carey, 1976). Figure 6.2 shows the initial Palaeolithic expansion of the Peninsular Malay, 

occurring from 50 ka to 36 ka with an estimated 277-fold increase – a signal of the first 

colonisation of Southeast Asia during the African exodus (based on the phylogenetically 

more complete Malay data; for the Orang Asli, the increase is ~49-fold between 44 ka and 30 

ka). This is likely shown by the emergence of ancient haplogroups for examples M4’67, 

M13b, M21c’d, M50, M17c, M12, M26a, M1’20’51, M71, R22, R7, F, B4c and B5a’b. 

We need to remember that the Orang Asli sample is made up of a number of very 

different sub-groups that are conflated into a single BSP. The effects of very recent crashes 

are probably minimized because different Orang Asli groups preserve different fragments of 

the overall diversity. Similar effects are possibly detected by Jinam et al. (2012) but the small 

dips appeared to be much more recent, ~1 ka (See Figure 6 in Jinam et al., 2012). On the 

other hand, the modern Malay preserve much more, including lineages from ISEA not seen in 
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the Orang Asli, as well as indigenous Malay Peninsula lineages that have been lost by drift 

from the Orang Asli. 

Both also show quite ancient crashes in the Holocene, which was not seen previously in 

lower-resolution studies in human populations of SEA (Gunnarsdóttir et al., 2011a; Jinam et 

al., 2012; Guillot et al., 2013). The Malay crash during the early Holocene ~11 ka, 

recovering in the mid-Holocene ~5 ka; the Orang Asli probably show the same signal, but 

with less clarity, due to more recent drift effects and possibly also substructure. The crash 

was predicted from the long branches evident in haplogroup E in ISEA (Soares et al., 2008) 

and the re-expansion probably represents the mid-Holocene starbursts that we see e.g. in 

haplogroups E and B4a1a. The crash (also unique to the Sunda populations) coincides with 

the sea-level rises over the huge Sunda shelf – the population peak is at the LGM, 22 ka, and 

there is a dramatic rise of ~13-fold from 7.5 ka, with the final effective population size about 

~3-fold the size it was during the Late Pleistocene. This fits well the model of Oppenheimer 

(1998) and Soares et al. (2008) that proposes an initial catastrophic effect on the people of the 

region between the LGM and the final sea-level rise (~7.5 ka) and a major recovery as some 

populations re-adapt to coastal living and expand along the extended coastlines now 

available. 
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7 Discussion and Conclusions 

The ancient continent of Sundaland (today’s Mainland Southeast Asia, Sumatra, Borneo 

and Java) is thought to have been one of the key areas of primary settlement of the 

anatomically modern humans who dispersed along the coastal route of Indian Ocean into 

Asia and Australia. Previous mtDNA studies on relict populations from the Malay Peninsula 

identified novel basal M, N and R lineages in the Orang Asli groups in Peninsular Malaysia, 

suggesting these three founders moved along the south coast of Asia ~50–60 ka, reaching 

Southeast Asia and the Sahul continent (Australia and New Guinea) by ~50 ka. It seems 

likely that these deep rooted haplogroups found in Peninsular Malaysia can be traced back to 

the original inhabitants of Southeast Asia, who first colonised the Sunda area ~50–60 ka. 

Semang and Senoi differ greatly in the extent and composition of Holocene genetic 

introgression from outside, although they share several indigenous Pleistocene mtDNA 

lineages (M21a, M13b, and R21). The ancestors of the Semang negrito are generally 

supposed to be the least changed in all respects, physical and cultural, while the ancestors of 

the Senoi adopted hill rice farming. The Aboriginal Malays have distinct and indigenous 

Pleistocene founding mtDNA lineages different from Semang/Senoi (such as M7c3c, M22, 

N21, and N22) and tend to horticulture rather than rice farming (Oppenheimer, 2011). 

The ancestry of the lineages is shown by the assignment of Orang Asli lineages (using 

control-region data) to putative proximal source regions on the basis of standard 

phylogeographic principles, so that a majority of basal (or deep) lineages within a cluster in 

one region was taken to indicate that that region was the likely source for the cluster. For 

example, the deeper branches in M17 (indeed almost all the lineages) are largely restricted to 

MSEA, the Malay Peninsular and western Indonesia, suggesting a Sunda source. 

I divided the putative sources into three regions: East Asia, ISEA and MSEA/Sunda 

(Table 7.1). Table 7.1 shows that ~89% of the Orang Asli lineages are most likely indigenous 

to MSEA/Sunda shelf, dating between the late Pleistocene to the early Holocene (~50-8.5 

ka). ~7% of the total lineages appear to illustrate gene flow from ISEA around the mid-

Holocene, between ~8.5 ka to ~2.5 ka. Haplogroups B4a1c and M7c1a, representing ~0.7% 

of the lineages, can be traced back to East Asia. Lastly, ~4% consist of M* and B* that are 

not able to be assigned to a source because of the low resolution of the HVS-I data. 
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Table 7.1 Assignment of Orang Asli lineages to putative proximal source regions. Figures taken from Table 3.3. (EA – East Asia, ISEA – Island Southeast Asia, MSEA/SUN – 
Mainland Southeast Asia/Sunda) 

Haplogroup 
Putative 
proximal 
source 

Semang Senoi Aboriginal Malay/Proto-Malay 

Total % 
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B4a1c EA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0.5 

M7c1a EA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.2 

Total East Asia                                       0.7 

B5b1c ISEA 13 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 15 3.4 

E ISEA 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 3 0 0 6 1.4 

M7c3c ISEA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 9 2.1 

Total ISEA                                       6.9 

B4c2 MSEA/SUN 0 0 0 0 2 0 0 0 0 1 0 0 1 0 0 0 0 0 4 0.9 

B5a MSEA/SUN 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 3 0.7 

F1a1a MSEA/SUN 0 5 6 5 5 0 0 0 5 6 5 37 1 0 0 0 4 1 80 18.3 

M13b MSEA/SUN 0 2 0 0 1 2 0 0 0 0 0 1 0 0 0 0 4 2 12 2.8 

M17a1a MSEA/SUN 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.5 

M21a MSEA/SUN 19 9 5 11 15 31 5 5 0 0 0 5 0 0 0 0 2 2 109 25.0 

M21c MSEA/SUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0.5 

M22 MSEA/SUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 1.4 

N9a6 MSEA/SUN 0 9 0 1 1 0 0 0 0 0 0 4 0 0 0 2 1 4 22 5.0 

N21 MSEA/SUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 7 27 6.2 

N22a MSEA/SUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 1.1 

R9b MSEA/SUN 0 2 0 0 2 0 0 0 0 0 0 0 1 0 0 0 17 7 29 6.7 

R21 MSEA/SUN 1 33 4 18 2 2 0 0 0 0 0 22 1 0 0 0 2 0 85 19.5 

Total MSEA/SUN                                       88.5 

B* Uncertain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0.7 

M* Unknown 0 0 0 0 0 0 0 0 0 0 0 2 1 4 5 0 1 1 14 3.2 

Total unknown                                       3.9 

Total 

 

34 60 15 37 28 37 5 5 5 7 5 72 7 5 5 5 66 38 436 100.0 
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7.1 Semang and Senoi 

In order to establish whether the Semang are the descendants of the earliest settlers, it is 

helpful to look at the extent of the indigenous Semang lineages not found elsewhere, as 

opposed to lineages shared with other populations. A very small component of these lineages 

at ~0.5% is found only in the Semang, amongst the Orang Asli groups – for instance 

haplogroup M17a1a. M17a1a dates to the late glacial period ~15.5 ka and is found in 

Vietnam, with a branch dating to ~2.4 ka in the Semang. The rest of the Semang lineages, 

including their most frequent haplogroups M21a and R21 (below), are shared variously with 

Senoi and Aboriginal Malays (as well as some modern Malay) indicating some degree of 

genetic admixture amongst the Orang Asli groups. 

Finding Semang, Senoi, Aboriginal Malays and Malay in M13b1 within haplogroup 

M13b and alongside other MSEA and ISEA types, which are found on all primary 

M13’46’61 branches, might indicate an overall MSEA/Sunda origin for the whole 

M13’46’61 clade dating to the Pleistocene ~58 ka. Two of the recent offshoots indicated by 

subclades M13b2 and M61a have expanded into India and Tibet respectively at ~6.5 ka and 

4.1 ka (more discussion below). The whole-mtDNA tree of M13’46’61 (~46 ka) indicates an 

ancient period on the Sunda shelf before South Asian populations began to differentiate 

significantly. 

M21 and R21 were the first predominant, basal Orang Asli haplogroups identified by 

Macaulay et al. (2005). However, it has become clear that, unlike originally supposed, these 

clades are not unique to the Orang Asli, as they are found at lower rates elsewhere in 

Southeast Asia. Nevertheless, M21 was thought by Hill et al. (2006) to represent a 

component of deep Upper Pleistocene ancestry within the Malay Peninsula, and this study 

confirms that haplogroup M21 has a deep Sunda origin (~60 ka), as it is mainly found in the 

Malay Peninsula/South Thailand, with only a few sporadic cases further afield. 

My whole-mtDNA study also confirms HVS-I evidence suggesting that the Semang and 

Senoi remain confined to and predominant (17/24) within the largest clade (M21a1b), which 

dates only to ~6 ka, in Peninsular Malaysia, with five instances of the same haplotype in 

Aboriginal Malay within the largest subclade of M21a1b (Figure 3.8). The remainder of the 

M21a diversity is rather preserved within the Malay (and one Aboriginal Malay) and adjacent 

populations, with the earliest branch seen in a single Philippine individual. Only a small 
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subclade of M21a1b, and dating ~3 ka, is restricted solely to Semang (including Batek, 

Lanoh, and Jahai). Meanwhile, the second, larger subclade of M21a1b, dates to ~3.5 ka and, 

with two non-OA MSEA exceptions (a modern Malay and a Thai), is found only in Semang 

(Kensiu, Kintak, Mendriq and Jahai) and five Aboriginal Malay Temuan. Complete mtDNA 

sequence M21c was only found in two Semelai and is not readily recognisable as a clade by 

using HVS data only and so it was not possible to ascertain the distribution of M21c further 

with HVS data.  

The most likely explanation for this pattern in the ‘young’ peninsular M21a1b cluster 

within M21a1 is local genetic drift among ancestors of the Semang, shortening the 

coalescence time, and recent gene flow from Semang and/or Senoi into the Aboriginal Malay 

Temuan, as well as into the modern Malay and Thai, rather than a local Holocene founding 

event. However, M21a1 (~14 ka), along with M21c and M21d, have a much wider 

distribution centred on the Sunda region, seen in the modern Malay, MSEA and South 

Borneo, extending in several sampled individuals to the Philippines and Sulawesi. The 

ancient ancestry of M21a (and M21 as a whole) therefore appears to be more fully captured 

by in other “non-relict” populations around the Sunda shelf, indicating a Pleistocene Sunda 

origin rather than that M21 first spread out from Orang Asli populations. The significance of 

the predominance of M21 among the negrito Semang, when compared with other Orang Asli 

groups and Sunda as a whole, may simply reflect isolation and less admixture with later 

influxes.  

R21 is present (to very different extents) in all six Semang groups and predominant in 

two out of six, but it is present (and common) in only one out of six Senoi groups and present 

at only low rates in two out of six Aboriginal Malay groups. R21 was previously undated, but 

shown to diverge basally (or almost so) from the ancestor of haplogroup M to ~60 ka using 

coding-region data by Macaulay et al. (2005) and thought to be a possible sister clade of 

haplogroup R9 by sharing a transition at np 16304 (Hill et al., 2006). However, the new 

whole-mtDNA phylogenies, including this study, show that R9 and R21 belong to different 

haplogroups. This study dates R21 to ~12 ka with R21a (at ~ 6 ka) remaining highly localised 

within the northern Semang, especially the Jahai and in Senoi Temiar groups (Figure 5.26). 

However, one Malay complete sequence lineage has been found in this study, basal to R21, 

which has preserved a deeper ancestry no longer seen in the extant Orang Asli population, 

resulting in the deeper age estimate for R21 as a whole. Even so, whilst Hill et al. (2006) 
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identified R21 as a component of deep Upper Pleistocene ancestry within the Malay 

Peninsula, my study shows that sampled R21 lineages coalesce only at the end of the 

Pleistocene (~12 ka) presumably as a result of genetic drift and population subdivision of the 

Orang Asli, as with M21a. However, R21 appears to share a very deep ancestry with the 

Aboriginal Australian haplogroup R12, linking the Sunda and Sahul shelves at high time 

depth (an especially imprecise estimate, but >44 ka). 

The cultural counterparts of M21 and R21 are suggested by Bulbeck (2011) to be the 

core- and cobble-based stone tool assemblages that led to ‘bifacial Hoabinhian’ assemblages 

in Peninsular Malaysia by 15 ka. M22 appears to have a Pleistocene source in MSEA/Malay 

Peninsula, dating back to ~50 ka, and the Aboriginal Malay Temuan and Peninsular Malay 

are found within subclade M22a2 (Figure 3.11). Bulbeck (2011) suggested that M22a2 may 

spread down the Peninsula under the same cultural category (the core- and cobble-based 

stone tool assemblages) with M21 and R21 even though it is found only in Temuan. 

The distribution amongst the Temiar is very intriguing. It is worth noting that the Jahai 

share settlements with the Central-Aslian-speaking Temiar and they are in frequent contact 

with the modern Malay (Burenhult, 2001), which may be reflected by the evidence in this 

study within subclade R21a.  

N9a has a much more widespread distribution. It is common across East Asia and 

Taiwan; however, subclade N9a6 is entirely restricted to MSEA, Peninsular Malaysia and 

ISEA, and entirely absent in Taiwan and the Philippines. N9a6 appears to have an origin in 

MSEA, with dispersals southwards through the Sunda shelf during the Late Glacial period 

~16 ka, with deep branches in Malay, Aboriginal Malay and Sumatra and a derived subclade, 

within N9a6a, comprising Semang and Senoi dating to less than 5 ka. This broadly 

substantiates a previous study based on the HVS-I analysis suggesting that N9a6 had a 

Holocene intrusion from Indo-China (Hill et al., 2007), although the details remain elusive.  

The age of the Semang N9a6a subclade dates to ~5 ka, might suggest a correlation with 

the early Neolithic in Peninsular Malaysia, although the correlation suggested by Bulbeck 

(2011) was based on earlier estimates (based on Hill et al., 2007) that are revised 

substantially upwards here. Bulbeck suggested a source for the Peninsular Malaysia’s early 

Neolithic in North Vietnam’s Bacsonian (11,000-7,000 BP) and/or Dabutian (6,500-4,500 

BP) sites, pointing to a linked introduction of the N9a6 haplogroup and the Neolithic from 
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North Vietnam to Peninsular Malaysia (Bulbeck, 2011). The deeper time depth estimated 

here suggests rather an earlier, Late Glacial dispersal south. 

B5a as a whole represents ~10% of the sample in MSEA and among the modern Malay 

and the highest frequency in China is in Southwest and coastal China at ~7% (Mormina, 

2007). The diversity of this clade is also at its highest in MSEA, suggesting an origin in 

MSEA during the LGM, ~22 ka. B5a1 shows a post-glacial Sunda distribution with recent 

offshoots. B5a1a and its subclades illustrate a starburst expansion ~8 ka (Fig 5.18) clearly 

centred on MSEA and Peninsular Malaysia, with one branch extending into the Nicobar 

Islands at ~4.3 ka. B5a1a may therefore correspond to a hunter-gatherer dispersal that took 

place in the early Holocene, correlating with Bulbeck’s (2008) hypothesis of the expansions 

of the coastal Neolithic Da But culture from around 6,000 BP (see also Higham, 2004).  

A similar early Holocene starburst with a northern source is clearly seen in haplogroup 

B5b1, which has a likely origin in South China ~28 ka, while its derived subclade B5b1c 

dates to the early Holocene ~11 ka, and has a very distinctive distribution in the Sunda 

region, found only in the Semang Batek, Peninsular Malay and the Philippines (Figure 5.20). 

Haplogroup B5b1c in Semang and Malay may again represent descendants of the coastal 

Neolithic hunter-gatherers surviving on the peninsular remnant of  the Sunda shelf after the 

second rapid sea level rise (~11.5 ka), in this case linking two distinct negrito populations – 

the Austro-Asiatic-speaking Semang Batek and the Austronesian-speaking Philippines 

Mamanwa, on the other side of the Huxley Line (see Figure 23 in Oppenheimer, 1999), 

within the same clade; a link not found in previous studies (e.g. multidimensional scaling 

analysis by Heyer et al., 2013). Unfortunately, a more precise phylogeographic link between 

the negrito populations cannot be established because of the gaps present in the Philippine 

sequences (Gunnarsdóttir et al., 2011a). 

Haplogroup B4c2 is another lineage cluster that encompasses all three Orang Asli 

groups (Figure 5.15) as well as modern Malay, Sumatra and MSEA, with the centre of 

gravity of B4c pointing to deeper ancestry to the north. Two Semang Kintak, a Senoi Semai, 

an Aboriginal Malay Seletar and four southwest Peninsular Malay all occur in different 

positions within this haplogroup, which again appears to have an early Holocene ancestry 

within MSEA/Sunda dating to ~8.5 ka. The Senoi Semai and Aboriginal Malay Seletar share 

a younger clade of B4c2b (dating to ~4 ka) with three modern Malay and two Vietnamese. 

This possibly again indicates an eastern coastal Neolithic expansion from MSEA down the 
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Peninsula. Similarly, it has been suggested that F1a1a in the Senoi suggests the same 

immigration route correlating with coastal Neolithic expansion across the Gulf of Siam into 

Peninsular Malaysia via the Isthmus of Kra, perhaps with several entries (Oppenheimer, 

2011, discussed more below). 

The Semang and Senoi therefore share a common, predominantly local population 

ancestry but the ancestors of the Senoi have evidently undergone quantitatively more genetic 

and cultural admixture from outside than the Semang. This is primarily from Indo-China 

(Fix, 2011; Burenhult et al., 2011; Oppenheimer, 2011), except for the intrusive B5b in the 

Batek and Mendriq Semang (Table 7.1). The Semang overall show less genetic intrusion than 

the Senoi, and paralleled by less change of lifestyle and physical morphology. The Senoi, 

although of a similar physical nature to Semang, tend to show plesiomorphic physical traits 

and have much higher rates of genetic intrusion from Indo-China, as illustrated by 

haplogroups N9a6, F1a1a, B5a1a and B4c2b (also see Oppenheimer, 2011). Like the 

Semang, the Senoi populations do not seem to show any recent mtDNA genetic source from 

India nor from any other region outside MSEA (Table 7.1), either of which might be 

expected according to the traditional and oversimplified layer-cake model.  

There are lineages apparently indigenous to the southern Peninsula among the Senoi, 

like M13b1, consistent with the local differentiation model (Rambo, 1988; Benjamin, 1985, 

1986). Other lineages among the Senoi are intrusive from Indo-China (i.e. northern MSEA). 

In my new whole-mtDNA phylogeny (Figure 5.34), haplogroup F1a1a in most of the Senoi 

groups (as well as, to a lesser extent, in the Semang, Aboriginal Malay and Malay) appears to 

have a source in northern MSEA, possibly further up the Mekong. As previously suggested 

(Hill et al., 2006), this lineage may have accompanied the movement of the Aslian-languages 

into the Malaysian Peninsula, possibly along the Gulf of Siam via the Isthmus of Kra 

(Oppenheimer, 2011). Haplogroup N9a6 appears consistent with a northern source and Late 

Glacial dispersal, while several haplogroups point to a later, coastal Neolithic expansion from 

northern MSEA, possibly coinciding with the spread of the Da But culture as suggested by 

Bulbeck (2008).   

7.1.1 The “Negrito Hypothesis” 

The negrito hypothesis anthropologically categorised various contemporary groups of 

hunter-gatherers in Southeast Asia, in particular the Andaman Islands, the Malay Peninsula, 
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and the Philippines, who share the phenotypes of dark skin, short stature, and tight curly hair. 

The shared phenotypes could be due to a common descent from a region-wide, pre-Neolithic 

substrate of humanity, as the hypothesis suggests, or alternatively, convergent evolution. 

Since the hypothesis remains unproven, it has been suggested that the designation be 

presented lowercase, as “negrito” avoid creating a possibly spurious unity amongst 

potentially disparate groups of people (Endicott, 2013). 

 Under this hypothesis, language shifts must have occurred at some time, except 

possibly in the case of the Andamanese. All Philippine negritos speak Austronesian 

languages similar to those of other Philippine populations, and all Malaysian negritos (the 

Semang) speak languages in the nuclear Mon-Khmer branch of Austro-Asiatic. The 

Andamanese remain distinct, showing possible limited affinity with a few small isolates in 

New Guinea and eastern Indonesia, and no widely accepted interpretation of the relationship 

of the Andamanese languages to the extant linguistic families of the South Asian region 

(Blevins, 2007). Blust (2013) suggested, in favour of the Negrito hypothesis, a common 

cultural and linguistic past for the Malaysian and Filipino negrito populations at a time which 

probably preceded the end of the Pleistocene, with the Andamanese possibly separating 

earlier.  

Although a number of linguists have been in favour, osteological and population genetic 

studies have provided little evidence for the Negrito hypothesis. For example, Stock (2013) 

found no differences between the stature of Andaman Islanders and Filipino Aeta foragers in 

relation to phenotypic variation among hunter-gatherer groups more globally. Bulbeck (2013) 

found Andamanese and Semang (and Senoi) people to be osteologically more similar to each 

other, while Philippine negritos were dissimilar to both. 

Both Chaubey and Endicott (2013) and Jinam et al. (2013) have studied the negrito 

populations using genome-wide autosomal SNP data and found relatively recent admixture 

from adjacent regional populations. They found some possible ancestral links between some 

of the groups, but no evidence of a single ancestral population for all of the different groups 

traditionally defined as ‘negritos’ in Southeast Asia. Various phylogeographic studies of the 

negrito populations using mtDNA and Y chromosome have found unique haplogroups in 

each negrito population, but none in common between them. For instance, Y-chromosome 

haplogroups C-RPS4Y and K-M9 (Delfin et al., 2011) and mtDNA lineages B4b1 and P9 (as 

well as P10) are found in the Philippine negritos (Heyer et al., 2013), M31 and M32a in the 
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Andamanese (Thangaraj et al., 2005, 2006), and M21, M22 and R21 in the Semang (Hill et 

al., 2006, 2007). 

Moreover, McAllister et al. (2013) analysed the mtDNA haplogroups by SNP 

hierarchical typing of short-statured Australian Aboriginal groups in Far North Queensland 

(FNQ) and Tasmania and found that they carry lineages found in other Aboriginal Australian 

groups, and not those found in Southeast Asian negritos. Their result coincides with two Y 

chromosome haplogroups, C-RPS4Y and K-M9 in the Filipino negritos that are also shared 

with indigenous Australians (Delfin et al., 2011). 

This study also confirmed previous findings in Hill et al. (2006) that two haplogroups 

predominantly found in the Semang, M21a and R21, are not found in the Philippines, nor 

among Andamanese negritos. Intriguingly, a Batak negrito from the Philippines is seen to 

carry a lineage within the M21c1 subclade, which dates to ~31 ka, and which is shared with 

another Filipino, a Lesser Sundanese, an Aboriginal Malay Semelai and modern Malay in 

Peninsular Malaysia, but not with any Semang (Figure 3.9). Haplogroup B5b1c dates to soon 

after the second flood ~11 ka, incidentally linking a cluster of Austro-Asiatic-speaking 

Semang Batek and the Austronesian-speaking Philippine Mamanwa within the same clade – 

but diverging from the root, ~11 ka, and including other Filipinos and Malay within its 

diversity. Apart from haplogroups B4b1a2c and P9, haplogroups N11b (in negrito 

Mamanwa) and M80 (negrito Batak) are also found predominantly in the Philippine negrito 

and not elsewhere. 

The genetic link between Malaysian negrito and other negrito populations in Southeast 

Asia therefore remains tenuous. My results appear consistent with Delfin and colleagues’ 

(2011) view that there are no grounds for any inference of unique common ancestry. Rather 

there seems to be a common substrate for all of the populations throughout Southeast Asia. 

Indeed, haplogroups M42’M74 and R12’R21 both share a deep, ancient splits with 

Aboriginal Australian lineages (Figures 3.52 and 5.26 respectively), implying deep common 

links between the inhabitants of the Sunda and Sahul shelves. Convergent evolution, whilst a 

possibility, may in fact not be the only alternative hypothesis, as implied by Endicott (2013). 

My results support rather the mode of settlement captured in the single southern coastal route 

dispersal model (Macaulay et al., 2005), with the implication that the various scattered 

negrito might themselves have remained relatively physically less changed from the early 

settlers, and their African ancestors, than other Eurasians, who adapted morphologically to 
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environments further north in Southeast Asia and then re-expanded southwards again from 

the Late Glacial onwards. 

7.2 Aboriginal Malays (aka ‘Proto-Malays’) 

As mentioned above, Aboriginal Malays share several intrusive lineages with the 

Semang and Senoi (such as N9a6, B5a1a, B4c2b and F1a1a) that appear to come into the 

Peninsula from northern MSEA during the late Pleistocene or early Holocene. However, the 

main intrusive lineage in Aboriginal Malays during the Holocene is R9b, which amount to 

almost a quarter of Temuan and Semelai lineages (Table 7.1). They also harbour indigenous 

Pleistocene founding mtDNA lineages (N21 and M22) distinct from those of the Semang and 

Senoi. N22 (or N22a on the whole-mtDNA tree) was also previously thought to be one of the 

Pleistocene founding lineages in Aboriginal Malays, but my study has shown that N22a 

expanded among Temuan Aboriginal Malays more recently (~2.5 ka; Figure 4.10). This 

might be associated with an arrival of Austronesian-speakers in Peninsular Malaysia from 

ISEA, but nevertheless the whole-mtDNA tree, although based on few samples, remains 

consistent with an indigenous origin within the Sunda region. 

The source for R9b has also been controversial (Hill et al., 2006). The deepest branches 

of the tree suggest a South Chinese or MSEA source, but the situation after ~20 ka remains 

unclear. The Aboriginal Malay lineages all cluster within R9b1a1a, dating to ~10 ka (Figure 

5.30), which includes a further basal subclade restricted to the Peninsula (including Semang 

as well as Malay and Aboriginal Malay) and several in ISEA. An early Holocene dispersal 

into the Malay Peninsula/Sumatra seems the most likely explanation, but the nesting 

Philippine Mamanwa lineage makes a source in ISEA a possibility. 

A dispersal south in the early Holocene from MSEA into the Peninsula might coincide 

with van Heekeren’s (1972) traditional view that the Hoabinhian originated in South China 

before spreading south to Peninsular Malaysia and North Sumatra around the terminal 

Pleistocene/Holocene period (Hill et al., 2006). However, Mokhtar (2006) and subsequently 

Bulbeck (2011) argued that this is contradicted by archaeological evidence for the 

predominantly local development of the Malayan Hoabinhian evident at Bukit Bunuh, 

Malaysia. Bulbeck (2011) therefore suggests a terminal Pleistocene dispersal of R9b1a1a, 

~10 ka, from northern Vietnam (then host to Hoabinhian/Bacsonian industries) or central 
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Thailand to central-western Sundaland and its southwards spread into southern Peninsular 

Malaysia as postglacial sea levels rose (see also Oppenheimer, 2011). 

 N21 and N22a both appear to be largely restricted to the Aboriginal Malay and are not 

found in the other Orang Asli groups (Figure 4.8), confirming the findings by Hill et al. 

(2007). Hill et al. (2007) also inferred from the HVS-I data that both N21 and N22 showed 

evidence of recent gene flow from ISEA. N21a1 is seen in both Aboriginal Malay and 

Peninsular Malay. However, in contrast to this, my resolved whole-mtDNA study shows that 

the deeper lineages of N21 appear to be restricted to MSEA/Sunda, suggesting a possible 

Late Glacial (~19 ka) MSEA origin with an early Holocene eastern Sunda spread. Similarly 

to R9b, an early Holocene expansion (~9 ka) from northern MSEA may have brought the 

N21 lineages into Peninsular Malaysia and the Aboriginal Malay, and also Indonesia, rather 

than an offshore source in ISEA. The Aboriginal Malays are nested within subclade N21a1a 

dating to ~4 ka, again indicating a certain degree of population subdivision. 

The rarer haplogroup N22 shows a deep ancestry in Southeast Asia (~29 ka) with the 

Aboriginal Malay nested within the basal N22a (Figure 4.10), dating to ~2.5 ka, the long 

branch to this subclade suggesting substantial genetic drift. One interpretation might be that 

this suggests the arrival of Austronesian speakers from southern ISEA, east of Sumatra, in 

Peninsular Malaysia around 2.5 ka, in line with the standard model of Aboriginal Malays 

origins (Bellwood, 1997). This receives some support from the fact that its much more 

diverse sister clade, N22b, which dates to the LGM at ~25 ka, is shared across ISEA, and a 

third basal singleton lineage is seen in the Philippines. However, N22b shows a deep split 

dating to the LGM between the Malay Peninsula and ISEA lineages. It is therefore possible 

that N22 has an origin in glacial Sundaland, spreading across to the Philippines to the east. In 

any case, contrary to previous conclusions (Hill et al., 2006), N22a does not seem to be one 

of the Pleistocene founding mtDNA lineages of the Aboriginal Malay. 

The M7c3c starburst (Figure 3.15) offers a possible signal for the postulated 

Austronesian-speaking Neolithic dispersal from South China and Taiwan through ISEA into 

Peninsular Malaysia (Bellwood, 1997; Hill et al., 2007). Given the confidence intervals on 

the age estimates, this remains possible. The estimated ages of M7c3c and M7c3c1 (~7.5 ka 

and ~6 ka) seem slightly too old for that archaeo-linguistic model, however, the 

phylogeography of the M7c3c1 clade might be more consistent with a Philippine/ISEA origin 

and a reverse migration to Taiwan. Archaeologically, red-slipped pottery is found at Gua 
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Kecil in Peninsular Malaysia, which is interpreted as reflecting late Neolithic or Early Metal 

Phase influence (Dunn, 1964). Red-slipped pottery is one of the suggested markers of 

Austronesian linguistic expansion (Bellwood, 1997; Bulbeck, 2008), and so its presence in 

Peninsular Malaysia could suggest an Austronesian association. Although red-slipped pottery 

appeared late in the Peninsular Malaysia sequence, and is found southwards in the vicinity of 

Gua Kecil (where Aboriginal Malays, both Southern Aslian and Malayic, are located), the 

M7c3c confidence intervals still fall within the window for this model with the introduction 

of haplogroups M7c3c as well as N22a, in Peninsular Malaysia, hence I cannot rule it out. 

In conclusion, the whole-mtDNA analyses show that the Aboriginal Malay do not 

harbour any lineages that are clearly indigenous to the Peninsula, although some may be 

indigenous to MSEA/Sunda as a whole. As shown in Table 7.1, only haplogroups E and 

M7c3c indicate migrations from ISEA into the Aboriginal Malay, correlating with 

Bellwood’s model but comprising only a small fraction of the total lineages (15/126 or 12%). 

The East Asian lineages of B4a1c and M7c1a are found in Semelai Aboriginal Malay but 

these singletons from Semelai could have been recent one-off occurrences in the Peninsular 

Malaysia samples, and may therefore be insignificant (discussed further in 7.3.3). The great 

majority of the Aboriginal Malay thus appears to derive their mtDNA ancestry from 

MSEA/Sunda, possibly including South China, a signal previously observed by Hill et al. 

(2006) and elaborated upon by Bulbeck (2008) and Oppenheimer (2011). 

7.3 Modern Malay (aka ‘Deutero-Malay’) 

In contrast to the Orang Asli (in particular the Aboriginal Malays – also known as 

‘Proto-Malays’), the mainstream Malay population of the Malay Peninsula (also known as 

‘Deutero-Malay’) have been argued to be more recent immigrants from ISEA over the past 3-

3.5 ka, bringing Austronesian languages and genes (ultimately originating in Taiwan in that 

model), en bloc to the Peninsula and largely replacing more ancient indigenes of the 

Peninsula (Bellwood, 1997). Predictions of this ISEA immigrant model can be tested on 

broad phylogeographic principles, by comparing the source of lineages found in the Malay 

populations surveyed here. Table 7.2 assigns Malay lineages (based on whole-mtDNA 

sequences) to one of four putative proximal source regions: East Asia, Island Southeast 

Asia/New Guinea, Mainland Southeast Asia/Sunda (i.e. ancient lineages indigenous to 
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Mainland Southeast Asia, including those found evenly in both in MSEA and western ISEA) 

and South Asia. 

Table 7.2 Assignment of Malay lineages to putative proximal source regions. Figures taken from Table 3.4. 

(EA – East Asia, ISEA/NG – Island Southeast Asia/New Guinea, MSEA/SUN – Mainland Southeast Asia/Sunda, SAS 
– South Asia) 

Haplogroup 
Putative 

proximal source NEM NWM SEM SWM Total % 

A EA 0 0 1 0 1 0.3 

B4a EA 3 5 1 2 11 3.7 

B4b1 EA 0 1 0 0 1 0.3 

B5b EA 0 3 1 0 4 1.3 

C7a EA 1 1 0 0 2 0.7 

D4a3 EA 1 0 0 0 1 0.3 

D5b EA 0 0 1 0 1 0.3 

F4b EA 0 2 0 0 2 0.7 

M7b EA 1 2 0 7 10 3.4 

M7b3 EA 0 0 2 0 2 0.7 

N10 EA 2 3 0 0 5 1.7 

R11b EA 2 0 0 0 2 0.7 

Total East Asia           14.1 

B4a1a ISEA 4 3 1 0 8 2.7 

B4c1b2 ISEA 3 4 4 10 21 7.1 

E1a1a ISEA 2 1 7 0 10 3.4 

E1a2 ISEA 0 0 3 0 3 1.0 

E1b ISEA 3 3 1 0 7 2.4 

E2a ISEA 0 0 4 0 4 1.3 

F3b ISEA 1 0 0 0 1 0.3 

M7c3c ISEA 8 3 3 0 14 4.7 

P1d ISEA/NG 1 0 1 0 2 0.7 

Q1 ISEA/NG 0 0 1 0 1 0.3 

Q3 ISEA/NG 0 1 0 0 1 0.3 

Y2a ISEA 0 5 1 0 6 2.0 

Total ISEA/NG           26.3 

B4c2 MSEA/SUN 1 4 0 0 5 1.7 

B5a MSEA/SUN 9 4 4 0 17 5.7 

B6a1a MSEA/SUN 0 1 1 3 5 1.7 

F1a1 MSEA/SUN 2 2 0 0 4 1.3 

F1a1a MSEA/SUN 8 7 2 0 17 5.7 

F1a3 MSEA/SUN 2 1 0 0 3 1.0 

F1a4 MSEA/SUN 1 2 0 0 3 1.0 

F1f MSEA/SUN 6 2 0 1 9 3.0 

F3a MSEA/SUN 1 2 0 0 3 1.0 

M* MSEA/SUN 2 2 3 0 7 2.4 

M12 MSEA/SUN 3 2 0 0 5 1.7 
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M13 MSEA/SUN 1 2 0 0 3 1.0 

M17c MSEA/SUN 5 1 0 0 6 2.0 

M20 MSEA/SUN 6 2 3 0 11 3.7 

M21a MSEA/SUN 1 3 0 1 5 1.7 

M21c MSEA/SUN 2 1 0 0 3 1.0 

M21d MSEA/SUN 1 1 0 0 2 0.7 

M22a MSEA/SUN 0 2 0 0 2 0.7 

M22b MSEA/SUN 0 0 0 1 1 0.3 

M26a MSEA/SUN 3 0 1 0 4 1.3 

M26b MSEA/SUN 0 1 1 0 2 0.7 

M47 MSEA/SUN 0 1 0 0 1 0.3 

M50 MSEA/SUN 3 2 0 0 5 1.7 

M51 MSEA/SUN 3 0 1 0 4 1.3 

M71 MSEA/SUN 1 0 1 2 4 1.3 

M72 MSEA/SUN 1 0 0 1 2 0.7 

M73 MSEA/SUN 0 0 0 1 1 0.3 

M74b MSEA/SUN 0 3 0 0 3 1.0 

M77 MSEA/SUN 1 0 0 0 1 0.3 

N9a6 MSEA/SUN 1 0 0 1 2 0.7 

N21 MSEA/SUN 2 1 0 1 4 1.3 

N22 MSEA/SUN 1 0 0 1 2 0.7 

N8 MSEA/SUN 0 0 1 0 1 0.3 

R* MSEA/SUN 0 5 0 0 5 1.7 

R21 MSEA/SUN 1 0 0 0 1 0.3 

R22 MSEA/SUN 2 1 5 0 8 2.7 

R9b MSEA/SUN 4 0 0 0 4 1.3 

Total MSEA/SUN           55.6 

M2b SA 0 1 0 0 1 0.3 

M30 SA 1 0 0 0 1 0.3 

M32c SA 0 0 1 0 1 0.3 

M37 SA 0 0 0 1 1 0.3 

M5 SA 0 1 0 0 1 0.3 

R6a SA 1 0 0 0 1 0.3 

R7a SA 0 0 0 1 1 0.3 

U1a SA 1 0 0 0 1 0.3 

U2b1 SA 0 1 0 0 1 0.3 

U7 SA 0 3 0 0 3 1.0 

Total South Asia 
     

4.0 

Total   109 98 56 34 297 100.0 

 

7.3.1 MSEA/Sunda haplogroups in the modern Malay 

The ancient MSEA/Sunda haplogroups are found in more than half of the Malay 

samples at ~56% (Table 7.2). Many of the traces of ancient Sundaland are extremely rare in 
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the extant Malay populations where these lineages spread thinly across both MSEA and 

ISEA, and are putatively demonstrated by haplogroups M73’79, M47, M77, M71 and M72. 

Some examples from the results are highlighted here.  

A particularly intriguing major clade is the putative M42’74, which appears to be of 

early Sunda origin, dating to ~60 ka, and has three basal lineages (Figure 3.52). M74 is seen 

across the Sunda region, with a Northwest Peninsular Malay found within subclade M74b1. 

There is also a basal paraphyletic lineage seen in a single Vietnamese individual, whereas 

M42 is seen in Aboriginal Australians, pointing to a deep ancestral connection between the 

first inhabitants of Sunda and Sahul that we would anticipate, given the southern route 

settlement model, but for which there is little direct evidence in the rest of the whole-mtDNA 

tree.  

M13’46’61 shows deep links between South and Southeast Asia (Figures 3.41 and 

3.42), which are not very common elsewhere in the mtDNA tree, although their significance 

is not yet clear. The Orang Asli and Malay are predominantly found within M13b1 dating to 

the LGM ~25 ka. Considering the basal pre-M13 lineage and the oldest subclade, M13b1 are 

found in Thailand and the Malay Peninsula respectively, whilst rare subclade M61b dates to 

the LGM and has been found in Vietnam and North Borneo, the evidence strongly indicates 

they are the relict descendants of the first settlers on the Sunda shelf. M61a shows a similar 

pattern to subclades M13a1 and M13b2, spreading northwards ~10 ka into China and Tibet, 

finally entering India more recently. 

Haplogroup M1’20’51 also indicates a deep Sunda root at the time of primary 

settlement, found especially in MSEA/Peninsular Malaysia (Figures 3.47 and 3.48). The 

signal most probably indicates recent dispersals northwards into South China, and southwards 

in Sumatra, perhaps relating to the flooding of the Strait of Malacca in the early Holocene. 

M17 is an ancient Sunda haplogroup, dating to ~55 ka (Figure 3.29). The Semang Kensiu are 

found within subclade M17a, dating to the LGM, where MSEA lineages predominate. The 

Malay, on the other hand, belong to haplogroup M17c, dating to ~47 ka. The M17 phylogeny 

overall is now widespread across Southeast Asia with long terminal branches indicating the 

preservation of ancient lineages in both Mainland and Island Southeast Asia. M50 is an 

ancient western Sunda lineage dating to ~55 ka with recent gene flow into ISEA. M12 dates 

to ~41 ka and predate the LGM. The overall distribution again suggests long-term ancestry in 

west Sunda/South China. 
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F1f shows a close connection between Malay and likely source populations in West 

Sunda and, especially, Sarawak in Borneo, who all speak the Austronesian Malayo-

Polynesian languages. The results here therefore indicate that the F1f carriers in ISEA can 

trace their ancestry to western Sunda ~6 ka (Figure 5.33). F1a is found extensively across 

East Asia and Southeast Asia and dates to the LGM (Figures 5.33 and 5.34). F1a1a most 

likely originated in South China followed by rapid spread into MSEA in the early Holocene, 

perhaps coinciding with the coastal Neolithic dispersals. Interestingly, F1a1a appears to 

spread right down into Malaysia, rather than moving again in the mid- to late Holocene into 

the Peninsula. The latter movement was predicted by Bellwood’s (1997) model for the spread 

of Austro-Asiatic speakers in the mid- to late Holocene into the Malay Peninsula in 

conjunction with south Thailand’s Ban Kao culture. F1a1a then seems to have entered the 

ancestors of the Senoi and Aboriginal Malay from within the Peninsula ~4 ka, which would 

correspond with Bellwood’s model (1993, 1997) for the appearance of Austro-Asiatic with 

respect to the timescale in which the Neolithic was brought into the Malaysian indigenous 

groups to create the ancestors of modern Senoi, but not the immediate source. F1a1a is well-

represented at locations along the Mekong valley (Oppenheimer, 2011), and the early 

inhabitants of Laos appear to have been a suitable biological precursor for Thailand’s late 

Neolithic to Bronze/Iron Age populations. Therefore, the evidence is at least consistent with 

Bulbeck’s (2011: Figure 5) suggestions that F1a1a carriers took the Mekong route for early 

Austro-Asiatic dispersal and south into Peninsular Malaysia via the Isthmus of Kra (Sidwell 

and Blench, 2011). Once again, a greater diversity of F1a1 lineages seems to have been 

preserved in the modern Malay than in the Orang Asli. One small subclade is exclusively 

shared between a single modern Malay individual and an Aboriginal Malay. 

There are single instance of Malay lineages within haplogroups F1a3a and F1a4a 

(Figure 5.33). Both of these haplogroups have been previously proposed as possible markers 

for Austronesian-speaker dispersals in Hill et al. (2007). The age of F1a3a, at ~10 ka, and its 

current distribution make this unlikely in this case. On the other hand, F1a4a dates to ~7 ka 

(with a 95% interval of ~2–11 ka), and considering it is dispersed thinly but widely in South 

China, Taiwan aboriginals and both MSEA and ISEA, F1a4a remains a possible candidate 

marker. 

F3 has a wide but extremely rare distribution in China and MSEA, in particular for 

subclade F3a, while F3b1 is also found in South China, Taiwan, ISEA and modern Malay 
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(Figure 3.58). The Malay F3a carriers appear to have a northern MSEA/China origin with an 

upper bound on their dispersal south of ~12 ka.  Taking another route, F3b1 probably has a 

source in South China and dispersed into Taiwan and ISEA by the mid-Holocene, with 

subsequent dispersal into ISEA and then Peninsular Malaysia ~4 ka. 

R22 appears to be a surviving lineage from the initial founding of the Sunda shelf 

region, dating back to ~46 ka, and is widespread and present in mainstream indigenous 

groups throughout Mainland and Island SEA, including the Nicobars (Figure 5.27). These 

groups speak the Mon-Khmer language branch of the Austro-Asiatic family. This 

corresponds with Bellwood’s (1997) and Higham’s (2004) model for a Neolithic rice-farmer 

expansion in which Austro-Asiatic speakers arose in South China and, in parallel with 

Austronesian dispersals through Taiwan and ISEA, dispersed through MSEA, as far as the 

Nicobar Islands. However, we only have the HVS-I data of the Nicobars and no complete 

mtDNA sequences to examine this link more precisely. 

N8 shows a deep Sunda distribution dating to the LGM, ~22 ka (Figure 4.12). The 

N8b2 lineages from Java, Indonesia and Thai appear to share a deep root centred on MSEA 

rather than in ISEA, although they were still connected as a single landmass before the first 

rapid sea-level rise ~14.5 ka. R11 is mainly restricted to China, and B6 is widely distributed 

in SEA. Both haplogroups R11 and B6 are rare and also present in MSEA (Northeast Malay) 

and they have quite dissimilar distributions. A modern Malay and Vietnamese nested within a 

Chinese clade R11b, dating to ~11 ka (Figure 5.24). B6 is largely found in MSEA/Peninsular 

Malaysia and dates to ~27 ka (Figure 5.25). Several Malay and Temuan have been found 

confined to B6a1a, dating to ~7 ka, most likely to follow the MSEA route into Peninsular 

Malaysia. 

A very large fraction of modern Malay lineages therefore trace their ancestry to the 

ancient Sunda region. This implies very substantial recruitment locally from within the 

Peninsula by assimilation from Orang Asli groups as the modern Malay expanded, although it 

may also be the case that some arrived from ISEA within the last few thousand years, where 

they may have had an ancient Sunda origin in, for example, Sumatra or Borneo.  Those with a 

more clearly offshore source are described next. 
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7.3.2 ISEA haplogroups in the modern Malay 

Table 7.2 shows there are ~26% of the modern Malay lineages with characteristic ISEA 

origins in the Malay Peninsula (which include ~1.3% of Melanesian/New Guinean lineages P 

and Q; see below). Haplogroup E is an important component of mtDNA diversity in 

ISEA/Taiwan, which evolved in situ over the last 35 ka and dispersed extensively throughout 

ISEA in the early to mid-Holocene (Soares et al., 2008). The Malay have low frequencies of 

E1a1 (Figure 3.23), E1a2 (Figure 3.25), E1b (along with Aboriginal Malays, Figure 3.23) and 

E2a (Figure 3.28), all dating to almost 8 ka. These lineages are likely to have arrived from 

ISEA in Peninsular Malaysia between ~4–8 ka. The genetic signature of haplogroup E may 

indicate the impact on coastal-dwelling populations of the rapid global warming that 

coincided with the three rapid sea-level rises, in particular its maritime orientation and the 

development of sailing technology (Oppenheimer, 1998; Solheim, 2006; Soares et al., 2008), 

as seems to be also reflected in the BSPs for both the Malay and the Orang Asli. 

B4a1a dates to ~8 ka and it is commonly seen throughout ISEA and in aboriginal 

Taiwanese, including Peninsular Malaysia and Thailand, as well as Papua New Guinea 

(Figure 5.5). Its starburst pattern points to a dramatic expansions across the region, centred on 

ISEA, in the early Holocene, similar to that seen in haplogroup E, i.e. too early for the out-of-

Taiwan archaeo-linguistic hypothesis (Soares et al., 2011). 

Y2a1 does seem to fit better the out-of-Taiwan model for Neolithic Austronesian-

speakers (Figure 4.6). Y is part of N9 and Y1 is restricted to northern East Asia, as with most 

of the N9 subclades, suggesting an origin in East Asia. Y2a dates to ~7 ka with a basal 

lineage found in the Taiwanese Saisiat ethnic group (Tabbada et al., 2010), possibly 

supporting an origin amongst aboriginal Taiwanese. Y2a1 dates to ~5.5 ka, and has spread 

widely in ISEA, including both the Philippines (Gunnarsdóttir et al., 2011a), and Indonesia 

(Tabbada et al., 2010), and also to the Malay Peninsula. The two Northwest Peninsular 

Malays are of Acheh and Banjar ethnic groups that are commonly found in Northern 

Sumatra. Y2b is only represented here by a sample from Aichi in Japan, reported by Tanaka 

et al. (2004), again indicating an East Asian origin for Y2 and a recent dispersal into the 

Sunda region, possibly via Taiwan and the Philippines. 
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New Guinean Melanesian haplogroups in the Modern Malay 

New Guinean/Melanesian influences in Peninsular Malaysia are signalled by 

haplogroups Q and P, which amount to ~1.3% of the total. Haplogroup Q is an Oceanian 

haplogroup most commonly reported in Papua New Guinea and West Papua and at lower 

levels in Vanuatu, Polynesia and Micronesia (Figure 3.33). The HVS-I database shows it is 

also found at low levels in Banjarmasin and Kota Kinabalu of Borneo, Bali, Manado, Toraja, 

Ujung Padang and Sumba, and Peninsular Malaysia. There are only three Southeast Asian 

whole-mtDNA lineages (two Peninsular Malays and one Filipino) indicating haplogroup Q 

and clearly we need more extensive sampling within ISEA for a better phylogeographic 

picture. The most likely explanation is very recent Holocene gene flow from Near Oceania 

into ISEA as far as the Malay Peninsula, but more ancient minor dispersals into ISEA remain 

possible. 

Haplogroup P is an indigenous Melanesian haplogroup. The modern Malay lineages are 

nested within subclade P1d1 (Figure 5.41), and similar to haplogroup Q, this could be the 

result of recent gene flow from Melanesia into ISEA. Intriguingly though, they form a 

subclade with a Late Glacial coalescence time; similarly, a Philippine subclade also has an 

ancient mid-Holocene date. In the case of the Malay subclade, the HVS-I network implies the 

existence of a related cluster that is indeed restricted to ISEA, indicating a small but 

significant and possibly ancient dispersal from New Guinea into ISEA, although it may only 

have reached the Malay Peninsula within the last few thousand years. 

7.3.3 East Asian haplogroups in the modern Malay 

Table 7.2 shows that about ~14% of the modern Malay lineages have a likely source in 

East Asia.  In haplogroup M7b, several instances of both Aboriginal Malays and modern 

Malays are scattered throughout the tree. The M7b Temuan and Malay lineages (of different 

subclades) appear to have maternal origin in East China during the late Pleistocene (~16 ka) 

and early-Holocene dispersals (~12-10 ka) south, rather than a Neolithic event coming from 

offshore. In a similar pattern, an Aboriginal Malay Seletar is found in G1c dating to ~13 ka, 

where G1 is largely found in East Asia and virtually absent in SEA and the Pacific. B4 likely 

originated in China and later dispersed both into northeast Asia and SEA, as seen also in 

B4b1a2 and minor other instances. Likewise, B4a1c shows a northern source in China dating 

to ~21 ka; an Aboriginal Malay Semelai and two Northern Peninsular Malay have been found 
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within this clade. Similar to the abovementioned sporadic instances, inferences about timing 

are difficult based on a few sequences, although they seem likely to be recent. Moreover, 

none of these subclades is identifiable by HVS data (and therefore it is not possible to show 

the detailed lineages in Table 7.1), and these occurrences could have been one-offs among the 

modern Malay samples. 

A few modern Malay are found within several predominantly East Asian clades. Two 

are found in the Chinese and Japanese clades of D4a3 and D5b. Both Malay lineages may 

indicate intrusive dispersals from the north with an upper bound of ~7 ka and ~5 ka 

respectively – again, likely much more recent. C7a1 appears to have a far northern origin in 

north China dating to the Late Glacial ~16 ka, and although it is seen in Thailand and 

Peninsular Malaysia, they could be a result of a fairly recent event. A single Peninsular 

Malay lineage is found within subclade A5b sharing with lineages from China and Japan. 

Given that they are all vanishingly rare in Malaysia, they probably arrived quite recently; for 

example, there is a known history of immigrant influx from China and India since the 15
th
– 

17
th
 centuries. 

N10 shows a rare, deep and ancient root in East Asia (Figure 4.13). The Peninsular 

Malay lineage is found within a tiny clade N10a1 with an Indonesian lineage from South 

Borneo in Sunda, and the clade has a recent age ~2.5 ka, possibly due to genetic drift given 

then preceding long branch. Again, the timing is hard to infer based on so few sequences. 

7.3.4 South Asian haplogroups in the modern Malay 

Haplogroup M2b is commonly found in the Dravidian speakers of central and south 

India, and in Korku, an Austro-Asiatic-speaking tribe of central India (Kumar et al., 2008); 

unfortunately these complete sequences were not included in phylogenies for this study due 

to time constraints. The Malay lineage shares six M2b defining mutations (Figure 3.43), and 

M2b is estimated at ~13 ka by Soares et al. (2009), but my rho estimation is ~27 ka, implying 

a more ancient split. As with the Chinese lineages, the arrival time might well be very recent, 

within the last few centuries. Similarly, several Malay lineages are found within South Asian 

subclades M4’67 (including M37 and M30) and M5a, all dating to the Pleistocene (Figure 

3.38). The Malay Peninsula has known historical contacts since around the 17
th
 century, and 

these lineages again almost certainly arrived very recently.  
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On the other hand, the split time between M32a and M32c is at least consistent with the 

initial peopling process during the out of Africa dispersal. Interestingly, M32 was initially 

thought to be a specifically negrito Andamanese haplogroup that evolved within the 

Andaman Islands, but recent autosomal studies have suggested that the Andamanese are 

likely to have a Southeast Asian rather than indigenous or South Asian origin (Chaubey and 

Endicott, 2013). However, none of the negrito Semang lineages belongs to the haplogroup 

M31 and M32, lineages of the Andaman Islands, as discussed earlier. 

Other smaller clades among the Malay haplogroups with Indian influences can be seen 

in haplogroups R6a (Figure 5.43) and R7a, both showing deep roots in India. R6a dates to 

~52 ka and singleton Malay and Thai lineages are nested within subclade R6a1b (~37 ka). A 

Southwest Peninsular Malay lineage is seen within the derived Indian subclade R7a1a, dating 

to ~4.4 ka (Figure 5.44). Given the known historical connections between India and the 

Malay Peninsula, this is likely to have arrived recently in Malaysia. 

On the other hand, a novel singleton branch found in this study in North Borneo very 

deep within R7 (Figure 5.44), suggests a potentially much earlier dispersal between South 

and Southeast Asia, possibly dating back as early as 55 ka, in which case it may date to the 

time of the southern-route dispersal from South to Southeast Asia itself. 

7.4 Conclusions 

This characterisation of the whole-mtDNA of the Orang Asli and modern Malay 

populations of Peninsular Malaysia shows the presence of both indigenous clades and genetic 

influences from outside the Peninsula. In the case of all three groups of Orang Asli, 

especially the Semang, it shows that they have experienced high levels of genetic drift 

resulting in a small number of sequence types elevated to very high frequencies, as 

demonstrated by haplogroups M21a1b, M22a2, N21a1a, N22a, N9a6 and R21. However, 

paradoxically, given their traditional status as relative newcomers to the Peninsula, much 

higher levels of clearly indigenous diversity remain among the modern Malay. 

All three Orang Asli groups appear to mainly descend from indigenous Pleistocene 

populations and to have received substantial multiple maternal lineage influences from 

northern Indo-China during the Holocene, before the spread of rice agriculture. It is apparent 

that the traditional models are too simple to explain the complexity of population history in 
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Peninsular Malaysia. The assumption of unchanged relicts of earlier population waves seems 

completely unfounded. All three Orang Asli groups have local roots that trace back to ~50 ka, 

and all have been affected to a greater or lesser extent by subsequent migrations to Peninsular 

Malaysia. The Semang and Senoi show much lesser haplogroup diversity compared to the 

Aboriginal Malays. The latter show some connections with ISEA and even East Asia, but 

they harbour haplogroups that are either novel or rare elsewhere, a diverse composition 

matching the mtDNA gene pool of modern Malay in Peninsular Malaysia. While some of the 

ancestors of the Aboriginal Malays could have taken part in the colonisation of the Indo-

Malaysian Archipelago during the past 3–3.5 ka, it is apparent that these would represent 

only a small portion of the maternal lineages. Despite the large cultural impact of the 

Austronesian expansion, there are only minor impacts from the Neolithic incursions on both 

maternal and paternal gene pool in the Peninsula. 

The Aboriginal Malays have some indigenous ancestry that is as deep as that of the 

Semang and Senoi in Peninsular Malaysia. They exhibit less extreme patterns of genetic drift 

than the Semang, perhaps reflecting their larger population size (~40,000) compared with the 

Semang (~2000) (Senoi ~49,000 in year 2000; Benjamin, 2002b). The Senoi, although now 

the largest group in census size, appear to have undergone more recent drift than the 

Aboriginal Malays. This may be due to the initial processes of ethnogenesis or subsequent 

founder effects, such as the proposed expansion of the Temiar eastwards in recent times 

(Benjamin, 2002a).  

The MSY (male-specific region of the Y chromosome) studies of the Austronesian-

populations in ISEA (as well as Oceania) showed the majority of their paternal heritage 

tracing to the first Pleistocene settlers, with a smaller fraction tracing to more-recent 

immigration from northern MSEA (Capelli et al., 2001; Karafet et al., 2010; He et al., 2012). 

A similar signal was found by Simonson et al. (2011) in the Austronesian-speaking Iban of 

Sarawak, except there is no northern influence such as from Taiwan found in the Iban. The 

autosomal SNP markers indicated a majority of the populations in the vicinity have a 

Pleistocene source in ISEA (Abdulla et al., 2009). Wong et al. (2013) found rare low-

frequency variants in the Singaporean Malay that were not found before, a finding perhaps 

implying, in similar fashion to the findings of the present study, that the range of ancient 

Sundaland mtDNA lineage diversity is preserved better in the modern Malay than in the 

Orang Asli. More autosomal data from additional populations combined with demographic 
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modelling are required to sort out the relative roles of residence pattern, society structure, 

amount of admixture, and subsequent role of migration and drift in shaping the gene pool of 

the region (Friedlaender et al., 2008; Kayser et al., 2008). 

The study of modern Malay complete-mtDNA sequences has shown a high diversity of 

mtDNA lineages in Peninsular Malaysia and demonstrated the maternal contribution of 

several distinct regions to the history and ancestry of the Malay Peninsula: perhaps even more 

than most populations, the Malay are a composite with many different ancestries. The high 

level of maternal diversity indicates that the Malay have remained at a much larger effective 

population size over long periods of time, and thus have not been as susceptible to genetic 

drift as the Orang Asli groups. The Malay lineages have specifically shown many ancestral 

indigenous lineages related to those of the Orang Asli, which have evidently been lost from 

the Orang Asli but survived at a significant level in the Malay populations – indeed, forming 

a majority of the maternal lineages of the Malay. This implies that the most powerful 

approach to phylogeographic analysis of modern human populations, where possible, is to 

combine the use of “relict” and mainstream population lineages for a full phylogeographic 

picture, and not just to focus on the former.  

Apart from the many indigenous lineages that can be traced to the first settlers in 

Sundaland, which form a majority of the Malay maternal ancestry, the Malay populations 

appear to have had extensive maternal genetic influences from both East Asia and ISEA, as 

far east as Near Oceania, as well as (to a lesser extent) the Indian Subcontinent, at different 

periods of time. The conventional Bellwood model (1993, 1997) suggested that most of the 

Malay ancestors would have come into the Malay Peninsula over the past 3,000 years as 

intrusive migrations from ISEA. My data have indicated that they form a diverse, composite 

group, rather different from the populations of ISEA, with lineages from ISEA making up 

little more than a quarter of Malay maternal ancestry. This includes extensive sharing with 

Sumatra and Borneo, but further analysis will be necessary to tease out the timing and 

direction of migrations at this level.  

These signals reflect a complex and dynamic demographic history among the 

populations in Peninsular Malaysia as a result of climate change which is unique to 

Sundaland. The Bayesian Skyline Plots (BSPs) suggest a decline in the effective population 

size after the LGM and a major crash after ~11 ka – likely due to the devastating effect of 

sea-level rises – followed by rapid recovery ~7 ka, as some populations re-adapted to coastal 
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living and expanded along the extended coastlines that had become available. This was 

previously predicted for ISEA from the phylogeography of haplogroup E, but the fact that it 

is echoed in the BSP for the Orang Asli indicates that it affected MSEA as well as ISEA 

populations, as would be expected from their common ancestry in the Pleistocene Sunda 

population. 

The high resolution of complete-mtDNA sequencing of samples from Peninsular 

Malaysia and the phylogeographic analysis, in this study and others, have been crucial to this 

improved understanding at a fine level of detail the genealogical relations and ages of 

lineages both within these populations and with other groups throughout Southeast Asia, 

Taiwan and East Asia, and even with South Asia and the western Pacific, in order to untangle 

their complex history of migration and settlement. Clearly, the history of Peninsular Malaysia 

is much too complex to be explained by any simple model. The huge reservoir of variation 

revealed by this study suggests that simple migration and replacement models are far too 

crude to explain the data. Some migratory events have clearly taken place but not from only 

one direction, and in each case since the first settlement they can be seen as having enriched 

the variation already present. 
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Appendices 

Appendix A 

The three-letters codes used to show the locations or regions of the complete sequences in the 

phylogeography analysis. 

Code Location No. of Complete Sequences 

AFR African 1 

ALG Algeria 1 

AMC American, Caucasian 1 

AME American, Native  6 

AUS Australia 11 

BGL Bangladesh 1 

BIS Bismarck Islands 23 

BOU Bougainville 5 

BRA Brazil 5 

BRU Brunei, North Borneo 2 

CAM Cambodia 4 

CHI China 303 

MGL China, Inner Mongolia 17 

XIN China, Xinjiang 14 

COL Colombia 1 

COO Cook Island 3 

ESK Eskimo 9 

EUR Europe 2 

IBE Europe, Iberian Peninsular 1 

FRA France 1 

GEO Georgia 1 

IND India 76 

AND India, Andaman Islands 5 
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HIM India, Himalaya 1 

NIC India, Nicobars 5 

INA Indonesia 6 

JAV Indonesia, Java 20 

LSI Indonesia, Lesser Sunda Islands 18 

MOL Indonesia, Moluccas 5 

SBO Indonesia, South Borneo 19 

SUL Indonesia, Sulawesi 21 

SUM Indonesia, Sumatra 81 

WNG Indonesia, West New Guinea 2 

ISR Israel 2 

ITA Italy 3 

JAP Japan 670 

KOR Korea 2 

KYR Kyrgyzstan 1 

MAD Madagascar 1 

ABM Malaysia, Aboriginal Malay 1 

JAK Malaysia, Aboriginal Malay, Jakun 1 

SEL Malaysia, Aboriginal Malay, Seletar 21 

SML Malaysia, Aboriginal Malay, Semelai 11 

TEM Malaysia, Aboriginal Malay, Temuan 24 

NBO Malaysia, North Borneo 12 

NEM Malaysia, Northeast Peninsular Malays 73 

NWM Malaysia, Northwest Peninsular Malays 64 

BID Malaysia, Sarawak, Bidayuh 23 

BAT Malaysia, Semang, Batek 5 

JAH Malaysia, Semang, Jahai 26 

KEN Malaysia, Semang, Kensiu 7 

KIN Malaysia, Semang, Kintak 5 

LAN Malaysia, Semang, Lanoh 2 

MEN Malaysia, Semang, Mendriq 1 
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SMI Malaysia, Senoi, Semai 1 

TMI Malaysia, Senoi, Temiar 7 

SEM Malaysia, Southeast Peninsular Malays 33 

SWM Malaysia, Southwest Peninsular Malays 18 

MEX Mexico 3 

MIC Micronesia 4 

MYA Myanmar 2 

NEP Nepal 5 

PAK Pakistan 10 

PNG Papua New Guinea 50 

FIL Philippines 123 

FBT Philippines, Batak 5 

MAM Philippines, Mamanwa 38 

RUS Russia 2 

SBR Russia, Siberian 28 

SMO Samoa 4 

SRI Sri Lanka 1 

TAI Taiwan 41 

THA Thailand 64 

TMK Thailand, Moken 24 

TIB Tibet 19 

TON Tonga 2 

TUN Tunisia 1 

UZB Uzbekistan 1 

VAN Vanuatu 14 

VIE Vietnam 80 

 

Total 2206 
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Appendix B 

Variant positions for 91 Orang Asli HVS-I sequences analysed in Section 3.1. Sequences 

provided by K.C. Ang (unpublished data). 

Samples Haplogroup HVS-I Total 

PMJakun4 B4c 16140 16189 16213 16217 16274 16335 16519 1 

PMSemelai1 B5a 16140 16189 16261 16266A 16519  1 

PMJakun2, PMJakun3, 

PNKanak2, PMSeletar2, 

PMSeletar3, PMSeletar4  

E 16223 16291 16362 16390 16519 6 

PMJakun5, PMSemelai3, 

PMSemelai5 
F1a1a 16108 16129 16162 16172 16189 16304 16519 3 

PMKuala2, PMKuala3 M 16189 16223 16278 2 

PMKuala4 M 16214A 16223 16278 1 

PMKuala1 M 16189 16223 16278 16354 16519 1 

PMKuala5 M 16086 16223 16259 16278 16319 16399 16526 1 

PNKanak1, PNKanak3, 

PNKanak4, PNKanak5 
M 16093 16209 16223 16224 16263 16278 16319 4 

NBatek1, NBatek2, 

NBatek3, NBatek4, 

NBatek5, SCheWong2, 

SCheWong4, SCheWong5 

M21a 16129 16223 16256 16271 16362 8 

SCheWong1, SCheWong3 M21a 16129 16140 16223 16256 16271 16362 2 

PMTemuan5 M21a 16093 16129 16192iC 16223 16256 16362 1 

NMendrik1, NMendrik2, 

NMendrik3, SJahHut1, 

SJahHut2, SJahHut3, 

SJahHut4, SJahHut5 

M21a 16093 16129 16217 16223 16256 16271 16362 8 

NMendrik4 M21a 
16093 16100T 16129 16223 16256 16271 

16284 16362 
1 

NMendrik5 M21b 16093 16129 16223 16256 16263 16381 16519 1 

PMSemelai2 M7c3c 16223 16295 16362 16519 1 

PMTemuan1, 

PMTemuan4 
N21 16193 16291 16519 2 

PMSemelai4 N21 16193 16291 16327 16519 1 

PMTemuan2 N22 16168 16223 16249 1 

PMSeletar1, PMSeletar5 N9a6 16223 16257A 16261 16292 16342 16519 2 
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PMTemuan3 R21 16295 16296 16304 1 

NJahai1 R21 16086 16295 16296 16304 1 

NLanoh1, NLanoh2, 

NLanoh6, SSemai1, 

Ssemai2, SSemai3, 

SSemai5 

R21 16168 16295 16296 16304 7 

NLanoh3, Nlanoh4, 

NLanoh5, SSemai4 
R21 16168 16295 16296 16304 16519 4 

STemiar3 R21 16086 16168 16197A 16296 16304 1 

SMahMeri2, SMahMeri3, 

SMahMeri4, SMahMeri5 
R21 16086 16168 16192 16197A 16296 16304 4 

SSemokBeri1, STemiar1, 

STemiar5 
R21 16086 16168 16197A 16295 16296 16304 3 

STemiar2, STemiar4 R21 16086 16168 16197A 16296 16304 16519 2 

SMahMeri1 R21 
16086 16168 16192 16197A 16296 16304 

16519 
1 

SSemokBeri2, 

SSemokBeri3, 

SSemokBeri5 

R21 
16086 16168 16197A 16271 16295 16296 

16304 
3 

SSemokBeri4 R21 
16086 16168 16197A 16295 16296 16304 

16519 
1 

NJahai2, NJahai3, 

NJahai4, NJahai5, 

NKensiu1, NKensiu2, 

NKensiu3, NKensiu4, 

NKensiu5, NKintak1, 

NKintak2, NKintak3, 

NKintak4, NKintak5 

R21 
16086 16168 16192G 16197A 16295 16296 

16304 
14 

PMJakun1 R9b 16086 16170 16223 16288 16304 16309 16390 1 
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Appendix C 

List of 226 complete mtDNA genomes of Orang Asli and Peninsular Malays, and the world 

regional distributions of each complete sequence haplogroup. 

Haplogroup Semang Senoi Aboriginal 

Malay 

Peninsular 

Malays 

Total Regional distribution 

in this study & review 

A5b    1 1 China, Japan, SEM 

B4a1a    7 7 ISEA 

B4a1a1a    1 1 Oceania 

B4a1c   1  1 Japan, China, North 

Asia 

B4a1c+146    1 1 China, North Asia, 

MSEA 

B4a1c4    1 1 China, North Asia, 

MSEA 

B4b1a2    1 1 China, Japan, ISEA 

B4c1b2a2    10 10 Taiwan, ISEA, 

Peninsular Malaysia 

B4c2 2   2 4 MSEA 

B4c2b  1  2 3 MSEA 

B5a1a 1   9 10 SEA 

B5a1b    1 1 China, Philippines, 

Peninsular Malaysia 

B5a1d    2 2 SEA 

B5b1c 1   2 3 South China 

B6a1a   1 3 4 Peninsular Malaysia 

C7a    1 1 MSEA, northern 

China 

C7a1d    1 1 Peninsular Malaysia 

D4a3b    1 1 Peninsular Malaysia, 
northern China 

D5b3    1 1 MSEA 

E1a1a    4 4 Taiwan, ISEA, 

Peninsular Malaysia 

E1a1a1    1 1 SEA 

E1a2    2 2 ISEA, Peninsular 

Malaysia, PNG 

E1b+16261    3 3 ISEA, Peninsular 

Malaysia, PNG 

E2a    2 2 ISEA, Peninsular 

Malaysia, PNG 

E2a3    1 1 ISEA, Peninsular 

Malaysia 

F1a1    2 2 South China, SEA 

F1a1a  1  6 7 Peninsular Malaysia, 

ISEA, South China 

F1a1a1  3 1 5 9 SEA 

F1a1c    1 1 China, Japan, MSEA 

F1a1d    1 1 SEA, Taiwan 

F1a3a    1 1 SEA, Japan 

F1a4a    1 1 SEA 

F1f    4 4 SEA 

F3a1    1 1 North China, 

Peninsular Malaysia 
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F3a2    1 1 North China, MSEA 

F3b1a    1 1 SEA, Taiwan 

F4b    1 1 China, India, 

Peninsular Malaysia 

M*    1 1  

M12    1 1 MSEA 

M12a1b1    1 1 MSEA, India 

M12a2    1 1 MSEA 

M12b1    2 2 SEA 

M13'46'61+163

62 

   1 1 East Eurasia 

M13b1   1 2 3 Peninsular Malaysia 

M17a1a 2    2 MSEA 

M17c    3 3 SEA 

M20    1 1 MSEA 

M20a    1 1 SEA 

M20a1a    1 1 SEA 

M20a1a1    3 3 SEA 

M20a1a2    1 1 SEA 

M21a1a    1 1 ISEA 

M21a1b 7   1 8 MSEA 

M21a1c   1 2 3 SEA 

M21c    1 1 SEA 

M21c1    1 1 SEA 

M21c2    1 1 SEA 

M21d1a    2 2 MSEA 

M22a2    2 2 Peninsular Malaysia 

M22b1    1 1 MSEA 

M26a    1 1 SEA 

M26a1    1 1 SEA 

M26b    1 1 MSEA 

M26b2    1 1 SEA 

M2a'b    1 1 Peninsular Malaysia, 

Pakistan, Brazil 

M30a1    1 1 India, Peninsular 

Malaysia 

M32c    1 1 Peninsular Malaysia, 

Madagascar 

M37e    1 1 India, Peninsular 
Malaysia 

M4"67    1 1 SEA, Australia 

M47    1 1 SEA 

M50a    1 1 SEA 

M50a1    1 1 SEA 

M50a1a    1 1 SEA 

M50b    2 2 MSEA 

M51a2    1 1 SEA 

M51b1a1    1 1 Vietnam 

M51b2    1 1 MSEA 

M51b2a    1 1 Vietnam 

M5a    1 1 South Asia, 

Peninsular Malaysia 

M71a1    1 1 MSEA 

M71b    1 1 MSEA 

M72a1a    1 1 MSEA 

M72a1b    1 1 SEA 

M73b1a    1 1 SEA 
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M74b1    1 1 SEA 

M77    1 1 SEA 

M7b1'2'4-

8+16189 

   3 3 China, Japan, 

Peninsular Malaysia 

M7b3a    1 1 East Eurasia 

M7b7    1 1 North China, 

Peninsular Malaysia 

M7c3c   1 6 7 ISEA, Taiwan, 

Micronesia 

N10a1    1 1 SEA 

N21   1 2 3 MSEA 

N22a   1  1 Peninsular Malaysia 

N22b    1 1 SEA 

N8a    1 1 MSEA 

N9a    1 1 China, Japan 

N9a6    1 1 SEA 

N9a6a 1  2  3 SEA 

P1d1    2 2 PNG, Peninsular 

Malaysia 

Q1+@16223    1 1 PNG, SEA 

Q3    1 1 PNG, SEA 

R*    2 2  

R11b    2 2 MSEA 

R21 3 3  1 7 Peninsular Malaysia 

R22a    2 2 MSEA 

R22b    3 3 Peninsular Malaysia 

R22c    1 1 MSEA 

R6a1b    1 1 India, MSEA 

R7a1    1 1 South Asia, 
Peninsular Malaysia, 

Brazil 

R9b1a1a 2  3 1 6 SEA 

R9b2    1 1 MSEA 

U1a3    1 1 Peninsular Malaysia 

U2b1    1 1 Peninsular Malaysia 

U7a3    2 2 Peninsular Malaysia 

Y2a1    2 2 ISEA, Peninsular 

Malaysia 

Total 19 8 13 186 226  
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Appendix D 

List of the mtDNA genomes completely sequenced in the present study. 

ID Haplogroup Variants Location 
Ethnic/Sub-
location 

BG101 A5b 

73 152 235 263 315.1C 522-523d 663 750 961 965.2C 
1438 1709 1736 2706 4248 4769 4824 5054C 7028 8260 
8563 8794 8860 11536 11719 12705 14766 15326 15442 
16126 16223 16290 16319 16519 

Pontian, Johor Bugis 

BCK03 B4a1a 

73 146 263 292 309.2C 315.1C 522-523d 750 1438 2706 
4769 5465 6719 7028 8281.9BPd 8860 9123 10238 11719 
12239 14766 15326 15746 16086 16182C 16183C 16189 
16217 16261 16519 

Bachuk, 
Kelantan 

Bachok 

BCK04 B4a1a 

73 146 263 309.2C 315.1C 522-523d 750 1438 2706 4209 
4769 5465 6719 7028 8281.9BPd 8860 9123 10238 11719 
12239 14766 15326 15746 16181 16182C 16183C 16189 
16217 16261 16519 

Bachuk, 
Kelantan 

Bachok 

BJ153 B4a1a 

73 146 263 309.2C 315.1C 522-523d 750 1438 2706 4769 
5465 6719 7028 8281.9BPd 8860 9123 10238 11719 
12239 14766 15326 15746 16178 16182C 16183C 16189 
16217 16261 16519 

Parit Buntar, 
Perak 

Banjar 

BJ156 B4a1a 

73 146 263 309.2C 315.1C 522-523d 750 1438 2706 3777 
4769 5465 6719 7028 8281.9BPd 8860 9123 10238 11339 
11719 12239 14766 15326 15746 16182C 16183C 16189 
16217 16261 16399 16519 

Parit Buntar, 
Perak 

Banjar 

MI36 B4a1a 

73 146 263 309.2C 315.1C 522-523d 750 1438 2706 4769 
5465 6719 7028 8281.9BPd 8860 9123 10238 11719 
12239 14587 14766 15326 15746 16182C 16183C 16189 
16217 16261 16519 

Sri Menanti, 
Negeri Sembilan 

Minangkabau 

RW162 B4a1a 

73 146 263 309.2C 315.1C 522-523d 750 1438 2706 3606 
4769 5465 6719 7028 8281.9BPd 8860 9123 10238 11719 
12239 14766 15326 15746 16182C 16183C 16189 16217 
16261 16519 

Gopeng, Perak Rawa 

RW174 B4a1a 

73 146 263 309.1C 315.1C 522-523d 750 1438 2706 4769 
5072 5465 6719 7028 8281.9BPd 8860 9123 10238 11719 
12239 13260 14766 15326 15746 16182C 16183C 16189 
16217 16230R 16261 16519 

Gopeng, Perak Rawa 

BJ119 B4a1a1a 

73 146 263 315.1C 522-523d 750 1438 2706 4769 5465 
6719 7028 8281.9BPd 8860 9123 10238 11719 12239 
14022 14766 15326 15746 16182C 16183C 16189 16217 
16247 16261 16519 

Kuala Kurau, 
Perak 

Banjar 

105A B4a1c 

73 263 310 315.1C 477 522-523d 709 750 1438 2706 4769 
5147 5465 7028 7262 8281.9BPd 8860 9123 10238 11719 
12192 14766 15016 15326 15784 16129 16182C 16183C 
16189 16217 16261 16519 

Pos Orang Asli 
Aboriginal 
Malay Semelai 
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KDH03 B4a1c 
73 146 263 309.2C 315.1C 522-523d 709 750 1438 2706 
4769 5094 5465 7028 8281.9BPd 8860 9123 10238 11719 
13182 14766 15326 16182C 16183C 16189 16217 16519 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

MB10 B4a1c4 

73 146 263 315.1C 522-523d 709 750 1438 2706 4769 
5465 7028 8281.9BPd 8860 9123 10238 10907 11719 
12904 14766 15326 16129 16182C 16183C 16189 16217 
16261 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

BJ135 B4b1a2 

73 204 207 263 315.1C 499 750 827 1438 2706 3308 4769 
4820 6023 6216 6413 7028 8281.9BPd 8860 11719 13590 
14766 15326 15535 16093 16136 16182C 16183C 16189 
16194C 16195 16217 16519 

Kuala Kurau, 
Perak 

Banjar 

BG094 B4c1b2a2 

73 146 150 195 263 309.1C 315.1C 709 750 1119 1438 
2706 3497 3571 4769 7028 7079 8281.9BPd 8772 8860 
11719 14766 15301 15326 16346 16111G 16140 16182C 
16183C 16189 16217 16274 16335 16519 

Pontian, Johor Bugis 

BJ133 B4c1b2a2 

73 146 150 195 263 310 315.1C 709 750 1119 1438 2706 
3497 3571 4769 7028 8281.9BPd 8772 8860 11719 14766 
15301 15326 15346 16140 16182C 16183C 16189 16217 
16274 16278 16335 16519 

Kuala Kurau, 
Perak 

Banjar 

JW62 B4c1b2a2 

73 146 150 152 195 263 309.1C 315.1C 709 750 1119 1438 
2706 3497 3571 4769 7028 8281.9BPd 8772 8860 10160 
11719 11887 14766 15301 15326 15346 15943G 16140 
16182C 16183C 16189 16217 16274 16519 

Semerah, Johor Jawa 

MB34 B4c1b2a2 

73 146 150 195 263 309.1C 315.1C 709 750 1119 1438 
2706 3497 3571 4769 7028 8281.9BPd 8772 8860 11719 
14766 15301 15326 15346 16140 16182C 16183C 16189 
16217 16220 16274 16335 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

MI28 B4c1b2a2 

73 146 150 195 263 309.2C 315.1C 709 750 1119 1438 
2706 3497 3571 4769 7028 8281.9BPd 8772 8860 11719 
14766 15301 15326 15346 16140 16182C 16183C 16189 
16217 16274 16335 16519 

Sri Menanti, 
Negeri Sembilan 

Minangkabau 

MI30 B4c1b2a2 

73 146 150 195 263 309.2C 315.1C 709 750 1119 1438 
2706 3497 3571 4769 7028 8281.9BPd 8772 8860 11719 
14766 15301 15326 15346 16140 16154 16182C 16183C 
16189 16217 16274 16335 16519 

Sri Menanti, 
Negeri Sembilan 

Minangkabau 

MI50 B4c1b2a2 

73 146 150 195 263 309.1C 315.1C 709 750 1119 1438 
2706 3497 3571 3666 4769 7028 8281.9BPd 8772 8860 
11719 14180 14766 15301 15326 15346 15884 16140 
16182C 16183C 16189 16217 16274 16335 16519 

Lenggeng, 
Negeri Sembilan 

Minangkabau 

MI61 B4c1b2a2 

73 146 150 195 263 309.1C 315.1C 709 750 1119 1438 
1719 2706 3497 3571 3666 4769 7028 8281.9BPd 8772 
8860 11719 14766 15301 15326 15346 15884 16140 
16182C 16183C 16189 16217 16240 16274 16335 16519 

Lenggeng, 
Negeri Sembilan 

Minangkabau 

RP02 B4c1b2a2 

73 146 150 195 263 309.2C 315.1C 709 750 1119 1438 
2706 3497 3571 4769 7028 8281.9BPd 8772 8860 11150 
11719 13720 14452 14766 15301 15326 15346 16140 
16182C 16183C 16189 16213 16217 16274 16335 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 
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RW179 B4c1b2a2 

16T 73 146 150 195 263 315.1C 709 750 1119 1438 2706 
3497 3571 4769 7028 8281.9BPd 8772 8860 11368 11719 
14766 15172 15301 15326 15346 16140 16182C 16183C 
16189 16217 16274 16311 16335 16519 

Gopeng, Perak Rawa 

KT36 B4c2 

73 263 315.1C 750 1119 1438 2706 4769 5108 5471 7028 
8281.9BPd 8860 11719 14088 14209 14319 14766 15326 
15346 16147 16183C 16184A 16189 16192 16217 16235 
16519 

Pengkalan Hulu, 
Perak 

Semang 
Kintak 

KT43 B4c2 

73 263 315.1C 750 1119 1438 2706 4769 5108 5471 7028 
8281.9BPd 8860 11719 14088 14209 14319 14766 15326 
15346 16147 16183C 16184A 16189 16192 16217 16235 
16519 

Pengkalan Hulu, 
Perak 

Semang 
Kintak 

BJ126 B4c2 

73 263 309.1C 315.1C 750 1119 1438 2706 4769 5108 
6221 7028 8281.9BPd 8860 11719 14088 14209 14766 
15326 15346 16147 16183 16184A 16189 16217 16235 
16519 

Kuala Kurau, 
Perak 

Banjar 

BJ127 B4c2 

73 263 309.2C 315.1C 750 1119 1438 2706 4769 5108 
7028 8281.9BPd 8860 11719 14088 14209 14766 14793 
15326 15346 16147 16183C 16184A 16189 16217 16235 
16235 16519 

Kuala Kurau, 
Perak 

Banjar 

KS05 B4c2b 

73 263 309.2C 315.1C 750 1119 1438 2706 4769 5108 
6221 7028 8281.9BPd 8654 8860 11719 14088 14209 
14766 15326 15346 16147 16183C 16184A 16189 16217 
16235 16519 

Baling, Kedah Senoi Semai 

BJ132 B4c2b 

73 204 263 309.1C 315.1C 750 1119 1438 2220.1T 2706 
4769 5108 5752d 6221 7028 8281.9BPd 8860 11719 
14088 14209 14766 15326 15346 16147 16183C 16184A 
16189 16217 16235 16261 16356 16519 

Kuala Kurau, 
Perak 

Banjar 

BJ154 B4c2b 

73 263 309.2C 315.1C 750 1119 1438 2706 4769 5108 
6221 7028 7501 8281.9BPd 8860 11719 14088 14209 
14766 15326 15346 16147 16183C 16184A 16189 16217 
16235 16519 

Parit Buntar, 
Perak 

Banjar 

60B B5a1a 

73 210 263 309.1C 315.1C 522-523d  709 750 1438 2706 
3537 4562 4769 6960 7028 8281.9BPd 8584 8860 9670 
9950 10398 10915 11719 13145 13395 14766 15235 
15326 16140 16183C 16189 16266A 16519 

Jeli, Kelantan Semang Batek 

BCK10 B5a1a 

73 210 263 309.2C 315.1C 522-523d 709 750 1438 2706 
3537 4769 6746 6960 7028 8134 8281.9BPd 8584 8860 
9950 10398 11719 13145 13395 14766 15235 15326 
16140 16167 16183C 16189 16266A 16519 

Bachuk, 
Kelantan 

Bachok 

BJ134 B5a1a 

73 210 263 309.1C 315.1C 522-523d 709 750 1438 2706 
3537 4769 5894 6960 7028 8281.9BPd 8584 8860 9950 
10398 11719 13145 14766 15235 15326 16140 16183C 
16189 16266A 16519 

Kuala Kurau, 
Perak 

Banjar 

BJ142 B5a1a 

73 210 263 309.2C 315.1C 522-523d 709 750 1438 2706 
3537 4769 5894 6960 7028 8281.9BPd 8584 8860 9950 
10398 11719 13145 13395 14766 15235 15326 16140 
16183C 16189 16266A 16519 

Parit Buntar, 
Perak 

Banjar 
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JW85 B5a1a 

73 210 263 315.1C 522-523d 709 750 1438 2706 3537 
4769 6340 6960 7028 8281.9BPd 8584 8680 8860 9950 
10398 11719 13145 13395 14766 15235 15326 16140 
16183C 16189 16266A 16293 16519 

Muar, Johor Jawa 

JW89 B5a1a 

73 210 263 315.1C 522-523d 709 750 1438 2706 3537 
4769 6368G 6960 7028 8281.9BPd 8584 8860 9950 10398 
11719 13145 13395 14766 15235 15326 16140 16169A 
16183C 16189 16209 16266A 16519 

Muar, Johor Jawa 

MB31 B5a1a 

73 210 263 309.1C 315.1C 522-523d 709 750 1438 2706 
3537 4769 5821 6960 7028 8020 8281.9BPd 8584 8860 
9950 10398 11446 11719 13145 13395 14766 15235 
15326 16140 16183C 16189 16207 16266A 16311 16362 
16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

MC03 B5a1a 

73 210 263 315.1C 503 522-523d 709 750 1438 2706 3537 
4769 7028 7394 8281.9BPd 8584 8860 9950 10398 11719 
13145 13395 14766 15235 15326 16140 16183C 16189 
16266A 16293 16519 

Machang, 
Kelantan 

Machang 

RP14 B5a1a 

73 210 263 309.1C 315.1C 522-523d 709 723 750 1438 
2706 3537 4769 6960 7028 8281.9BPd 8584 8860 9950 
10398 11719 13145 13395 14766 15235 15326 16140 
16183C 16189 16266A 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

RP31 B5a1a 

73 210 263 309.1C 315.1C 522-523d 709 750 1438 2706 
3537 4769 6960 7028 8134 8281.9BPd 8584 8860 9950 
10398 11719 13145 13395 14766 15235 15326 15628 
16140 16167 16183C 16189 16266A 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

RW164 B5a1b 

73 210 263 315.1C 522-523d 709 750 1438 2706 3537 
4769 6960 7028 7852 7864 8281.9BPd 8584 8860 9950 
10398 10754 11719 14766 14989 15235 15326 16140 
16183C 16189 16266A 16519 

Gopeng, Perak Rawa 

BJ145 B5a1d 

73 152 210 263 309.2C 315.1C 522-523d 709 750 1438 
2706 3537 4086 4769 6960 7028 8281.9BPd 8584 8860 
9950 10398 11465 11662 11719 14766 15235 15326 
16140 16182C 16183C 16189 16214 16223 16261 16266A 
16270 16519 

Parit Buntar, 
Perak 

Banjar 

MC14 B5a1d 

73 152 210 263 315.1C 522-523d 709 750 1438 2706 3537 
4086 4769 6960 7028 8281.9BPd 8584 8860 9950 10398 
11465 11608 11719 14766 15235 15326 16140 16182C 
16183C 16189 16261 16266A 16519 

Machang, 
Kelantan 

Machang 

JW83 B5b1c 

10 73 103 152 204 263 315.1C 522-523d 709 750 960.1C 
1438 1598 2706 3480 3565 3819 4769 5836 7028 7771 
8281.9BPd 8467 8584 8784 8829 8860 8943 9950 10274 
10398 11506 11719 12361 12858 14766 15223 15326 
15508 15662 15851 15927 16067 16140 16183C 16189 
16243 16519 

Muar, Johor Jawa 
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RW161 B5b1c 

73 103 152 263 315.1C 522-523d 709 750 960.1C 1438 
1598 2706 3480 3819 4769 5836 7028 7771 8281.9BPd 
8467 8584 8784 8829 8860 9950 10274 10398 11719 
12361 14766 15223 15326 15508 15662 15851 15927 
16140 16183C 16189 16243 16519 

Gopeng, Perak Rawa 

8A B5b1c 

73 103 152 204 263 309.1C 315.1C 522-523d 709 750 
960.1C 1438 1598 2706 3480 3819 4769 5836 7028 7771 
8281.9BPd 8467 8584 8784 8829 8860 9950 10274 10398 
11719 12361 14766 15223 15326 15508 15662 15851 
15927 16140 16183C 16189 16243 16294 16354 16519 

Semang Batek Semang Batek 

137A B6a1a 

73 263 309.1C 315.1C 356.1C 750 1438 1719 2706 4093 
4769 5894C 6758 7028 8281.9BPd 8860 9452 11719 
11914 12950 13928C 14305 14766 15326 16051 16183C 
16189 16519 16527 

Pilah Temuan, 
Negeri Sembilan 

Aboriginal 
Malay 
Temuan 

AC11 B6a1a 

73 263 315.1C 356.1C 750 1187 1438 1719 2706 4093 
4615 4769 5893.2C 5894C 6758 7028 8281.9BPd 8860 
9452 11719 11914 12950 13928C 14305 14766 15326 
16051 16183C 16189 16194C 16195 16239 16519 16527 

Yan, Kedah Acheh 

JW69 B6a1a 

73 195 263 309.1C 315.1C 356.1C 750 1438 1719 2706 
4047 4093 4769 5894C 6758 7028 8281.9BPd 8860 9452 
11719 11914 12141 12950 13928C 14305 14766 15326 
16051 16183C 16189 16266A 16519 

Semerah, Johor Jawa 

MI49 B6a1a 

73 263 315.1C 356.1C 750 1187 1438 1719 2706 4093 
4615 4769 5893.2C 5894C 6758 7028 8281.9BPd 8860 
9452 11719 11914 12950 13928C 14305 14766 15326 
16051 16183C 16189 16194C 16195 16519 16527 

Sri Menanti, 
Negeri Sembilan 

Minangkabau 

MB02 C7a 

44.1C 73 249d 263 315.1C 489 750 1438 2706 3552A 4715 
4769 5821 6338 7028 7196A 7853 8584 8701 8860 9540 
9545 10398 10400 10873 11719 11914 12705 13263 
14318 14766 14783 15043 15301 15326 15487T 16223 
16298 16327 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

KDH14 C7a1d 

73 146 249d 263 297 315.1C 489 750 1438 2706 2905 
3552A 4715 4769 5821 6338 7028 7196A 7853 8584 8701 
8860 9540 9545 10398 10400 10873 11719 11914 12705 
12957 13263 13879A 14318 14766 14783 14978 15043 
15301 15326 15487T 16086 16223 16242 16256 16298 
16327 16519 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

RP05 E1a1a1 

73 146 150 263 315.1C 489 522-523d 750 1438 2706 3027 
3197 3229.1A 3705 4248 4491 4769 6023 6620 7028 7598 
8701 8843 8860 9540 10398 10400 10834 10873 11719 
12705 13254 13626 14577 14783 15043 15301 15326 
16223 16288 16291 16362 16390 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

KDH06 F1a1 

73 249d 263 309.1C 315.1C 522-523d 750 1438 1860 2706 
3970 4086 4769 6392 6962 7028 8589 8860 9053 9548 
10310 10609 11719 12406 12634 12882 13759 13928C 
14766 15326 15884 16129 16162 16172 16304 16519 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 



272 

 

MB25 F1a1 

73 249d 251 263 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 8860 9053 9548 10310 10463 
10609 11719 12406 12630 12882 13759 13928C 14766 
15326 16129 16162 16172 16304 16335 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

20B F1a1a 

73 152 249d 263 315.1C 522-523d d 750 1438 2706 3970 
4086 4769 6040 6392 6962 7028 8149 8860 9053 9548 
10310 10609 11719 12406 12882 13759 13928C 14766 
15326 16108 16129 16162 16172 16304 16519 

Kuala Betis, 
Kelantan 

Senoi Temiar 

BCK02 F1a1a 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2483 2706 
3777 3970 4086 4769 6392 6962 7028 8149 8860 9053 
9548 10310 10609 11719 12406 12882 13759 13928C 
14766 15326 16108 16129 16162 16172 16304 16519 

Bachuk, 
Kelantan 

Bachok 

BJ125 F1a1a 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 8149 8281.9BPd 8860 9053 
9548 10310 10609 11719 12406 12882 13759 13928C 
14766 15326 16108 16129 16162 16172 16304 16368 
16519 

Kuala Kurau, 
Perak 

Banjar 

JW66 F1a1a 

73 249d 263 315.1C 522-523d 750 1438 2706 3777 3970 
4086 4769 6392 6962 7028 8149 8860 9053 9548 10310 
10609 11719 11923 12406 12882 13759 13928C 14470 
14766 15326 15773 16108 16129 16162 16172 16304 
16519 

Semerah, Johor Jawa 

KDH16 F1a1a 

73 249d 263 309.1C 315.1C 750 1438 2706 3777 3970 
4086 4534 4769 6392 6962 7028 8149 8658 8860 9053 
9548 10310 10609 11719 12406 12882 13759 13928C 
14766 15326 16108 16129 16162 16172 16304 16519 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

KDH26 F1a1a 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 8149 8860 9053 9260 9468 
9548 10310 10609 11719 12406 12882 13759 13928C 
14766 15326 16092 16108 16129 16162 16172 16234 
16299 16304 16519 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

TPT01 F1a1a 

73 249d 263 309.1C 315.1C 438 522-523d 750 1438 2706 
3970 4086 4769 6392 6962 7028 8149 8860 9053 9548 
10310 10609 11719 12406 12882 13329 13759 13928C 
14766 15326 16108 16129 16162 16172 16183C 16189 
16234 16519 

Tumpat, 
Kelantan 

Tumpat 

136A F1a1a1 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 8149 8860 9053 9548 10310 
10609 11215 11719 12406 12882 13759 13928C 14766 
15326 16108 16129 16147 16162 16172 16304 16519 

Pilah, Negeri 
Sembilan 

Aboriginal 
Malay Jakun 

159B F1a1a1 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6797 6962 7028 8149 8860 9053 9548 
10310 10609 11215 11719 12406 12820 12882 13759 
13928C 14766 15326 16108 16129 16162 16172 16274 
16519 

Gombak, 
Selangor 

Senoi Temiar 

LN12 F1a1a1 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 8149 8860 9053 9548 10310 
10609 11215 11719 12406 12820 12882 13759 13928C 
14766 15326 16108 16129 16162 16172 16519 

Lenggong, Perak Senoi Temiar 
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LN13 F1a1a1 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 8149 8860 9053 9548 10310 
10609 11215 11719 12405 12406 12820 12882 13759 
13928C 14766 15326 16108 16129 16172 

Lenggong, Perak Senoi Temiar 

BJ143 F1a1a1 

73 249d 263 315.1C 750 1438 2706 3970 4086 4769 6392 
6962 7028 8149 8860 9053 9548 10310 10463 10609 
11215 11719 12406 12882 13759 13928C 14766 15326 
16108 16129 16162 16172 16294 16304 16362 16519 

Parit Buntar, 
Perak 

Banjar 

JW71 F1a1a1 

73 249d 263 309.1C 315.1c 522-523d 750 1438 2706 3970 
4086 4769 6253 6392 6962 7028 8149 8860 9053 9377 
9548 10310 10609 11215 11719 12406 12882 13759 
13928C 14766 15326 16108 16129 16162 16172 16188 
16304 16519 

Semerah, Johor Jawa 

KDH08 F1a1a1 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 7270 8149 8860 9053 9548 
10187 10310 10609 11215 11719 12406 12882 13759 
13812 13928C 14766 15326 16108 16129 16162 16172 
16239 16304 16327 16519 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

RP18 F1a1a1 

73 249d 263 315.1C 522-523d 750 1438 2706 3970 4086 
4769 6392 6917 6962 7028 8149 8860 9053 9548 10310 
10609 11215 11719 12406 12882 13153 13759 13928C 
14766 15326 16108 16129 16147 16162 16172 16304 
16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

RP20 F1a1a1 

73 249d 263 315.1C 522-523d 750 1438 2706 3970 4086 
4769 6392 6962 7028 8149 8860 9053 9548 10310 10609 
11215 11719 12406 12882 13759 13928C 14766 15326 
16108 16129 16162 16172 16304 16357 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

AC01 F1a1c 

73 249d 263 315.1C 522-523d 548 750 1438 2706 3970 
4086 4769 6392 6962 7028 8860 9053 9548 10211 10310 
10609 11593 11719 12406 12882 13135 13759 13928C 
14766 15326 16129 16162 16172 16224 16304 16519 

Yan, Kedah Acheh 

BCK09 F1a1d 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4086 4769 6392 6962 7028 8860 9053 9548 10310 10609 
11380 11719 12406 12882 13753 13759 13928C 14766 
15326 16129 16162 16172 16304 16399 16519 

Bachuk, 
Kelantan 

Bachok 

BJ131 F1a3a 

73 236 249d 263 309.1C 315.1C 522-523d 750 1438 2706 
3970 4086 4769 6392 6962 7028 8860 9053 9554 9944 
10310 10609 11719 11899 12406 12882 13748 13759 
13928C 14233 14766 15326 15565 16129 16172 16304 
16311 16519 

Kuala Kurau, 
Perak 

Banjar 

MB39 F1a4a 

73 152 249d 263 309.1C 315.1C 520d 521d 522-523d 750 
1438 2706 3970 4086 4769 5985 6392 6962 7028 8277 
8860 8998 9053 9548 10310 10609 11719 12406 12882 
13422 13759 13928C 14766 15326 15445 16129 16172 
16294 16304 16362 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

BJ147 F1f 

73 249d 263 315.1C 522-523d 750 1438 1457 2706 3970 
4715 4769 5147 6353 6392 6515 6962 7028 8860 9053 
10310 10609 11719 12406 12771 12882 13759 13928C 
14766 15326 16129 16172 16183C 16189 16304 16519 

Parit Buntar, 
Perak 

Banjar 
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MB09 F1f 

73 249d 263 315.1C 522-523d 750 1438 2706 3970 4715 
4769 6392 6515 6962 7028 8860 9053 10310 10609 11719 
12406 12771 12882 13759 13928C 14766 15326 16129 
16172 16304 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

MC24 F1f 

73 249d 263 279 309.1C 315.1C 522-523d 750 1438 2392 
2706 3970 4715 4769 6392 6515 6962 7028 8860 9053 
10310 10609 11719 12151 12406 12771 12882 13759 
13928C 14766 15326 16129 16172 16291 16304 16519 

Machang, 
Kelantan 

Machang 

MI56 F1f 

73 249d 263 309.1C 315.1C 522-523d 750 1438 2706 3970 
4715 4769 6392 6515 6962 7028 8860 9053 10310 10609 
11719 12406 12771 12882 13759 13928C 14766 15326 
16129 16172 16301 16304 16400 16519 

Lenggeng, 
Negeri Sembilan 

Minangkabau 

KDH05 F3a1 

73 207 249d 263 309.1C 315.1C 709 750 1438 2706 3434 
3970 4769 4824 4991 5585 5894 5913 5978 6392 7028 
8860 10310 10320 11065 11719 12621 13928C 14766 
14971 15326 15412G 16260 16298 16355 16362 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

MB33 F3a2 

73 152 195 207 249d 263 309.1C 315.1C 750 1438 2706 
3390 3434 3970 4769 5585 5913 5978 6392 7028 7094 
8860 10310 10320 11065 11719 12237 12621 13928C 
14766 15326 16209 16298 16355 16362 

Kota Bahru, 
Kelantan 

Kota Bahru 

MC01 F3b1a 

73 150 152 249d 263 309.1C 315.1C 750 1438 2706 3434 
3970 4769 5076 5585 5913 5978 6392 6791 7028 8838 
8860 9947 10310 10320 11209 11719 13928C 14766 
15326 15784 16220C 16265 16298 16311 16362 

Machang, 
Kelantan 

Machang 

RW172 F4b 

73 249d 263 309.1C 315.1C 573.3C 750 1438 2706 3970 
4769 5263 6392 6653 7028 8020 8575 8603 8860 10097C 
10310 11719 11908 12630 13928C 14766 15326 15670 
16170 16218 16304 16311 16526 

Gopeng, Perak Rawa 

BCK06 M12 

73 263 297 315.1C 489 522-523d 750 960.1C 1438 2706 
3579 4170 4769 5036 5580 7028 8251 8701 8781 8860 
9540 10398 10400 10873 11569 11719 12030 12372 
12705 13242 14364 14569 14727 14766 14783 15010 
15043 15301 15326 16223 16234 16239 16290 16309 
16362 16391 

Bachuk, 
Kelantan 

Bachok 

RP21 M13'46'61 

73 146 152 195 263 315.1C 489 522-523d 750 951 1438 
2706 4226 4769 5262 5773 7028 7040 7232 8701 8860 
9540 10398 10400 10873 11719 12705 13359 14766 
14783 15043 15301 15326 15601 16223 16311 16362 
16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

KT05 M17a1a 

64 73 150 263 309.1C 315.1C 489 522-523d 750 862 930C 
1438 2706 4769 7028 7170 8251 8701 8860 9540 10324 
10398 10400 10873 11016 11719 11908 12705 12711 
12804 12973 14716 14766 14783 15043 15301 15326 
15530 15802 15941 16093 16129 16209 16223 16261 
16278 16325 16519 

Pengkalan Hulu, 
Perak 

Semang 
Kensiu 

KT18 M17a1a 

64 73 150 263 309.1C 315.1C 489 522-523d 750 862 930C 
1438 2706 4769 7028 7170 8251 8701 8860 9540 10202 
10398 10400 10873 11016 11719 11908 12705 12711 
12804 12973 14716 14766 14783 15043 15301 15326 
15530 15802 15941 16093 16129 16209 16223 16261 
16278 16325 16519 

Pengkalan Hulu, 
Perak 

Semang 
Kensiu 
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MB27 M17c 

73 152 259 263 315.1C 489 522-523d 750 930C 1438 1598 
2706 3316 3766 4316 4769 5074 5822 7028 7346 8701 
8860 9377 9540 10398 10400 10873 11002 11150 11253 
11719 12705 12973 13767 13830 14766 14783 15043 
15301 15326 16111A 16150 16209 16223 16304 

Kota Bahru, 
Kelantan 

Kota Bahru 

MC06 M17c 

73 263 315.1C 489 522-523d 709 750 930C 1438 1598 
1943 2706 4769 4917 7028 8701 8860 9540 10103 10166 
10398 10400 10873 11204 11719 12012 12705 12973 
13651 14766 14783 15043 15301 15326 15853 16209 
16223 16233 16274 16304 

Machang, 
Kelantan 

Machang 

BCK08 M20 

73 150 152 249d 263 315.1C 316 455.1T 489 750 1438 
2706 2963 4697A 4769 4772 6915 7028 8639G 8701 8853 
8860 9540 10253 10398 10400 10873 11719 11914 12354 
12705 13708 14110 14766 14783 15043 15301 15326 
16223 16272 

Bachuk, 
Kelantan 

Bachok 

RP33 M20a 

73 199 249d 263 309.2C 315.1C 316 489 522-523d 750 
1438 2706 3200 3714 4385T 4769 4772 7028 7433 8701 
8853 8860 9127 9254 9512 9540 10274 10398 10400 
10873 11350 11719 11914 12354 12705 14082 14110 
14766 14783 15043 15226C 15301 15326 15497 15691 
16129 16209 16223 16272 16311 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

MB03 M20a1a 

73 146 225 249d 263 315.1C 316 489 522-523d 750 1438 
2706 3200 3714 4385T 4769 4772 7028 7433 8701 8853 
8860 9127 9512 9540 10274 10398 10400 10679 10873 
11150 11719 11914 12354 12705 14110 14766 14783 
14974 15043 15301 15326 15691 16129 16209 16223 
16272 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

JW74 M20a1a1 

73 143 152 225 249d 263 315.1C 316 489 520d 521d 522-
523d 750 1438 2706 3200 3714 4385T 4769 4772 7028 
7433 8701 8853 8860 9127 9512 9540 10274 10398 10400 
10679 10873 11719 11914 12354 12705 14110 14766 
14783 14974 15043 15301 15326 15691 16086 16129 
16209 16223 16272 16519 16527 

Semerah, Johor Jawa 

KDH17 M20a1a1 

73 143 152 225 249d 263 315.1C 316 489 522-523d 750 
1438 2706 3200 3714 4385T 4769 4772 7028 7433 8701 
8853 8860 8974 9127 9512 9540 10274 10398 10400 
10679 10873 11719 11914 12354 12705 13659 14110 
14766 14783 14974 15043 15301 15326 15691 16086 
16129 16209 16223 16272 16519 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

MB24 M20a1a1 

73 152 225 249d 263 315.1C 316 489 520d 521d 522-523d 
750 1438 2706 3200 3714 4385T 4769 4772 7028 7433 
8701 8853 8860 9127 9512 9540 10274 10325 10398 
10400 10679 10873 11719 11914 12354 12705 14110 
14766 14783 14974 15043 15301 15326 15691 16086 
16129 16209 16223 16266 16272 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 
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JW82 M20a1a2 

73 152 225 249d 263 309.1C 315.1C 316 489 522-523d 
750 956 1438 2706 3200 3714 4385T 4769 4772 5529T 
7028 7433 7912 8701 8853 8860 9127 9512 9540 10274 
10398 10400 10679 10873 11719 11914 12354 12705 
14110 14766 14783 14974 15043 15301 15326 15691 
16129 16209 16223 16249 16272 16519 

Muar, Johor Jawa 

RP07 M21c1 

73 152 195 263 309.1C 315.1C 489 522-523d 750 1438 
2706 3915 4769 5108 6287 7028 7765 7861 8293 8701 
8860 9116 9540 10398 10400 10873 11482 11719 12705 
12940 13590 14766 14783 14809 15043 15301 15326 
16093 16223 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

BJ137 M21c2 

73 146 263 315.1C 489 522-523d 750 1415 1438 1808 
2706 4769 5054 5108 5186 6923 7028 7861 8701 8860 
9210 9449 9540 10057 10302 10398 10400 10873 11482 
11719 12612 12705 13105 13329 14766 14783 15043 
15250 15301 15326 15955.1A 16093 16223 16274 16278 
16519 

Kuala Kurau, 
Perak 

Banjar 

KDH13 M26b 

73 146 249 263 315.1C 489 522-523d 750 1438 1719 2706 
3531 4021 4769 4901 6026T 7028 7289 8563 8701 8860 
8970 9380 9540 10256 10398 10400 10873 11140 11425 
11719 12705 13708 14040 14766 14783 15043 15301 
15326 15514 16111 16129 16140 16172 16189 16194C 
16223 16278 

Lembah Bujang, 
Kedah 

Lembah 
Bujang 

JW91 M26b2 

73 249 263 309.1C 315.1C 319 489 522-523d 750 1438 
2706 4021 4769 4901 7028 8701 8860 8970 9380 9540 
10256 10398 10400 10873 11140 11719 12705 12741 
13708 14040 14766 14783 15043 15301 15326 15574 
15850 16092 16093 16140 16169 16172 16189 16223 
16278 

Muar, Johor Jawa 

MB18 M30a1 

73 150 195A 263 315.1C 489 513 522-523d 750 1438 2162 
2706 4216 4769 6366 7028 8701 8860 9540 10398 10400 
10873 11719 11928 12007 12211 12705 14766 14783 
15043 15301 15326 15431 16223 

Kota Bahru, 
Kelantan 

Kota Bahru 

MI37 M37e 

73 263 315.1C 489 522-523d 551 750 1438 2706 4769 
7028 8701 8860 9509 9540 10398 10400 10556 10873 
11050 11719 11974 12007 12705 14766 14783 15043 
15262 15301 15326 16111 16184 16189 16223 16295 
16296 16311 16519 

Sri Menanti, 
Negeri Sembilan 

Minangkabau 

MC05 M50a1 

73 146 199 263 309.1C 315.1C 489 522-523d 750 1438 
2706 3316 4769 7028 7226 7844 8701 8860 9540 9608 
9629 10398 10400 10538A 10873 11365 11719 12705 
14182 14766 14783 15043 15301 15326 15616 15663 
16209 16223 16224 16263 16278 16319 

Machang, 
Kelantan 

Machang 

RP09 M50a1a 

73 146 150 151 263 309.2C 315.1C 489 522-523d 750 
1438 2706 3316 4769 7028 7226 8701 8860 9540 9608 
10398 10400 10538A 10873 11365 11719 12705 14182 
14766 14783 15043 15301 15326 15616 15663 16093 
16209 16223 16224 16263 16278 16319 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 
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MB44 M72a1a 

73 263 309.1C 315.1C 489 750 1438 1872 2706 4058 4769 
7028 8701 8860 9540 10398 10400 10873 11719 12705 
12753 13281 14233 14766 14783 15043 15301 15326 
15644 15820 15932 16124 16166d 16175 16214 16223 
16263 16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

MI35 M72a1b 

73 263 309.1C 315.1C 489 573.2C 750 1438 1872 2706 
4769 7028 8701 8860 9540 10398 10400 10873 11719 
12705 12753 13176 14233 14766 14783 15043 15301 
15326 15644 15820 16124 16166d 16214 16223 16362 

Sri Menanti, 
Negeri Sembilan 

Minangkabau 

RP10 M77 

73 194 263 309.1C 315.1C 489 522-523d 750 1409d 1438 
2706 4065 4769 7028 8419 8701 8860 9540 10398 10400 
10873 11719 12705 13105 13407 13542 14178 14544 
14766 14783 15043 15301 15326 16093 16129 16189 
16213 16218 16223 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

100B M7c3c 

73 146 199 263 309.1C 315.1C 489 522-523d 750 1438 
2706 3606 4071 4769 4850 5442 6455 7028 8701 8860 
9540 9824 10398 10400 10873 11335 11665 11719 12091 
12705 14766 14783 15043 15236 15301 15326 16223 
16295 16362 16519 

Pos Orang Asli 
Aboriginal 
Malay Semelai 

BJ136 M7c3c 

73 146 199 263 309.1C 315.1C 489 522-523d 750 1438 
2706 3606 4071 4769 4850 5442 6455 7028 8701 8860 
9540 9824 10398 10400 10873 11665 11719 12091 12705 
14766 14783 15043 15236 15301 15326 16223 16295 
16362 16519 

Kuala Kurau, 
Perak 

Banjar 

JW73 M7c3c 

73 146 199 263 309.1C 315.1C 489 522-523d 750 1438 
2706 3606 4071 4769 4850 5442 6455 7028 8701 8860 
9389 9540 9824 10398 10400 10873 11665 11719 12091 
12705 14766 14783 15043 15236 15301 15326 16223 
16362 16519 

Semerah, Johor Jawa 

JW78 M7c3c 

73 150 199 263 309.1C 315.1C 489 522-523d 750 1438 
2706 3606 4071 4769 4850 5267 5442 6455 7028 8701 
8860 9540 9824 10398 10400 10873 11665 11719 12091 
12705 14766 14783 15043 15236 15301 15326 16187 
16223 16295 16362 16519 

Muar, Johor Jawa 

MB15 M7c3c 

73 146 199 263 309.1C 315.1C 489 522-523d 750 1438 
2706 3606 4071 4769 4850 5442 6455 7028 8701 8860 
9540 9824 10398 10400 10873 11665 11719 12091 12705 
14766 14783 15043 15236 15301 15326 16223 16295 
16355 16362 16519 16524 

Kota Bahru, 
Kelantan 

Kota Bahru 

RP04 M7c3c 

73 146 199 204 263 309.2C 315.1C 489 522-523d 750 
1438 1819 2706 3606 4071 4769 4820 4850 5442 6455 
7028 8701 8860 9540 9824 10398 10400 10873 11665 
11719 12091 12705 14766 14783 15043 15236 15301 
15326 16093 16223 16295 16362 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

RP26 M7c3c 

73 146 199 263 309.2C 315.1C 489 522-523d 750 1438 
2706 3606 4071 4769 4850 5442 6455 7028 8701 8860 
9540 9824 10398 10400 10873 11665 11719 11914 12091 
12705 13884 14766 14783 15043 15236 15301 15326 
16176G 16223 16295 16296 16362 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 
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BCK01 N21 

73 150 195 263 309.2C 315.1C 337d 532 750 961 1438 
2706 4769 6752 7028 8701 8860 9512 10583 11719 12358 
12705 13135 13437 14560 14766 15326 16179 16193 
16223 16291 16519 

Bachuk, 
Kelantan 

Bachok 

MI54 N21 

73 150 195 263 309.1C 315.1C 337d 750 1438 2706 3552 
4769 6752 7028 8701 8860 9512 10583 10752 11368 
11719 12705 13135 13437 14560 14766 15326 16193 
16291 16519 

Lenggeng, 
Negeri Sembilan 

Minangkabau 

110B N21a1a 
73 150 195 263 315.1C 337d 750 1438 2706 3552 4769 
6752 7028 8701 8860 9512 10583 11719 12705 13135 
13437 14560 14766 15326 16193 16291 16327 16519 

Pos Orang Asli 
Aboriginal 
Malay Semelai 

MC11 R11b 

73 185 189 263 315.1C 709 750 1438 2706 4769 5836 
7028 8281.9BPd 8860 10031 10398 11061 11719 12950 
13269 13681 14322 14766 15326 16086 16182C 16183C 
16189 16239 16309 16311 16390 16399 16519 

Machang, 
Kelantan 

Machang 

MB16 R6a1b 

73 215 228 263 315.1C 522-523d 750 1438 2706 4769 
7028 8860 8958 11075 11464A 11719 12088 12285 14058 
14153 14582 14766 15326 16129 16274 16284 16362 
16519 

Kota Bahru, 
Kelantan 

Kota Bahru 

KT03 R9b1a1a 

73 143 146 183 263 309.1C 315.1C 522-523d 573.2C 750 
1438 1541 2706 3970 4017 4769 7028 7633 7849 8302 
8860 11719 12714 13928C 14766 15326 16093 16192 
16288 16304 16309 16390 16519 

Pengkalan Hulu, 
Perak 

Semang Jahai 

KT38 R9b1a1a 

73 143 146 183 263 309.1C 315.1C 522-523d 573.2C 750 
1438 1541 2706 3970 4017 4769 7028 7633 7849 8860 
11719 12714 13928C 14766 15326 16093 16192 16288 
16304 16309 16390 16519 

Pengkalan Hulu, 
Perak 

Semang 
Kintak 

100A R9b1a1a 

73 143 152 183 263 309.1C 315.1C 522-523d 573.2C 750 
1438 1541 2706 3970 4017 4769 7028 7849 8860 9221 
11719 12714 13928C 14766 15326 16086 16170 16223 
16288 16304 16309 16390 

Pos Orang Asli 
Aboriginal 
Malay Semelai 

101A R9b1a1a 

73 143 152 183 263 309.1C 315.1C 522-523d 573.2C 750 
1438 1541 2706 3970 4017 4769 7028 7849 8860 9221 
11719 12714 13928C 14766 15326 16086 16170 16223 
16288 16304 16309 16390 

Pos Orang Asli 
Aboriginal 
Malay Semelai 

108A R9b1a1a 

73 143 152 183 263 309.1C 315.1C 522-523d 750 1438 
1541 2706 3970 4017 4769 7028 7849 8860 9221 11719 
12714 13863 13928C 14766 15326 16086 16170 16223 
16288 16304 16309 16390 

Pos Orang Asli 
Aboriginal 
Malay Semelai 

RP15 R9b1a1a 

73 143 146 183 263 315.1C 522-523d 573.1C 750 1393 
1438 1541 2706 3970 4017 4769 7028 7849 8860 10237 
10694 11719 12714 13928C 14766 15326 16192 16288 
16304 16309 16390 16519 

Rantau Panjang, 
Kelantan 

Rantau 
Panjang 

RW160 U7a3 

73 151 152 188 263 309.1C 315.1C 522-523d 750 980 
1438 1811 2706 3741 3834 4769 5360 6164 7028 8137 
8684 8860 10142 11467 11719 12308 12372 12618 13500 
14218 14569 14766 15326 16187 16207 16243 16309 
16318T 16519 

Gopeng, Perak Rawa 
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RW166 U7a3 

73 151 152 188 263 309.1C 315.1C 522-523d 750 980 
1438 1811 2706 3741 3834 4769 5360 6164 7028 8137 
8684 8860 10142 11467 11719 12308 12372 12618 13500 
14218 14569 14766 15326 16187 16207 16243 16309 
16318T 16519 

Gopeng, Perak Rawa 

AC02 Y2a1 

73 228 234 263 309.1C 315.1C 482 522-523d 709 750 
1438 2706 4769 5147 5417 6791 6941 7028 7859 8392 
8567 8860 10398 11299 11719 12161 12705 14178 14693 
14766 14914 15244 15301 15326 16126 16231 16311 

Yan, Kedah Acheh 
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Appendix E – Haplogroups not found in Malaysia  

Haplogroup M7a 
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Figure E.1 The tree of haplogroup M7a. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (JAP – Japan) 

  There are two main clades in M7a: M7a+T16324C (includes M7a1) and M7a2 (Figure 

E.1). M7a+T16324C dates to the LGM at ~23 ka, and M7a1 ~19.5 ka, which further 

diverged towards the end of Ice Age into M7a1a (~13.5 ka) and M7a1b (~1.5 ka). Figure 

shows that M7a2 dates to the LGM at ~22 ka and a basal lineage is seen in Shizuoka Japan 

(Nohira et al., 2010), and its subclades M7a2a1 (dates to ~6 ka) is seen in Chiba (Nohira et 

al., 2010) and Aichi (Tanaka et al., 2004), and M7a2a2 (~7 ka) found in Gunma (Nohira et 

al., 2010) and Aichi (Tanaka et al., 2004). The whole-mtDNA tree shows M7a has a pre-

LGM ancestry in Japan. 
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Haplogroup M9a1a1c 
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Figure E.2 The tree of haplogroup M9a1a1c. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, HIM – Himalaya, JAP – Japan, MGL –  Inner Mongolia, China, TIB – 
Tibet, XIN – Xinjiang) 

Figure E.2 shows M9a1a1c has a divergence time of ~13 ka, and subclade M9a1a1c1 

(~11 ka) both have basal lineages seen in Northwestern China (Peng et al., 2001). 

M9a1a1c1a dates to ~7 ka and is seen in Japan (Tanaka et al., 2004), Northern China and 

Tibet (Kong et al., 2003a, Peng et al., 2011a). M9a1a1c1b dates to ~8.5 ka and the basal 

lineage is seen in Sichuan, China. The majority of the derivative types are nested within a 

subclade defined by a transition at np 711 that dates to ~5.5 ka, seen mostly in Tibet, and 

pointing to a settlement in Tibet from China ~5 ka, possibly with the Neolithic (Peng et al., 

2011a). There are two subclades nested within this branch, the first one is defined by a 

transition at np 16129, dating to ~4 ka and seen in Tibet. The second subclade is defined by a 

transition at np 16189, dating to ~2 ka, and is seen once in Tibet and once in Inner Mongolia. 

Haplogroup G2 

It can be divided into G2a and G2b (Figure E.3). G2a dates to the LGM ~21 ka and it 

split into G2a1 and G2a+T152C (including G2a2, G2a3, G2a4 and G2a5; however, only 

G2a5 is represented in the tree). G2a5 dates to ~2 ka, and is found at low levels in Tokyo, 

Japan (Tanaka et al., 2004). 
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Figure E.3 The tree of haplogroup G2a. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, GEO – Georgia, IND – India, JAP – Japan, XIN - Xinjiang) 

G2a1 dates to ~19 ka and it is commonly seen in Japan, and seen at lower levels in 

China, India, and Georgia (Tanaka et al., 2004; Kong et al., 2011; Zheng et al., 2011). 

Subclade nested within G2a1d1 is defined by an insertion of a cytosine at np 16188, so the 

age is not determined by ML. G2a1d2 (~3 ka) is seen only in China (Kong et al., 2011; 

Zheng et al., 2011). The other branch nested within G2a1+T16189C, defined by a transition 

at np 16234 and dates to ~12 ka, is seen in India (Chandrasekar et al., 2009) and Georgia 

(Mishmar et al., 2003). The HVS-I database suggests this branch (although usually lacking 

the transition at np 16189) is found across East and Central Asia, to the Caucasus in the west. 

G2b dates to ~27 ka, and can be divided into G2b1 and G2b2 (Figure E.4). Similar to 

G2a, G2b is commonly found in China (Kong et al., 2003a; Zheng et al., 2011), Japan 

(Hartmann et al., 2009; Nohira et al., 2010) and India (Chandrasekar et al., 2009). G2b1, 

dating to ~21 ka, is divided into G2b1a and G2b1b. G2b1a dates to ~7 ka and seen in China. 

G2b1b dates to ~9 ka, and a further subclade dates to ~6 ka are restricted to India. G2b2 
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dates to ~23 ka, and is found in Japan (Hartmann et al., 2009; Nohira et al., 2010) and China 

(Zheng et al., 2011). Nested within is G2b2a (dates to ~18 ka) that is seen in India 

(Chandrasekar et al., 2009). 
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Figure E.4 The tree of haplogroup G2b. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, IND – India, JAP – Japan, MGL – Inner Mongolia, China)  

Haplogroups G3 and G4 

Figure E.5 shows G3 (dates to ~31 ka) which can be divided into G3a1’2 (~22 ka) and 

G3b (~16.5 ka). G3a1’2 has two subclades, G3a1 and G3a2, and occurred at lower levels in 

Japan (Tanaka et al., 2004) and China (Kong et al., 2006). Only one sequence represented 

G3a1 from China, and hence no age estimations. G3a2 dates to ~2 ka and seen in China, 

which spreads into Japan (no dates for subclades defined by indels).   

G3b dates to ~17 ka with basal lineages seen in China (Kong et al., 2006) and India 

(Chandrasekar et al., 2009). G3b1 is restricted to India and Pakistan dating to ~14 ka 

(Ingman et al., 2000; Kong et al., 2006; Chandrasekar et al., 2009). Although the HVS-I data 

shows that G3 is predominantly found in Japan (Tanaka et al., 2004), the older lineages on 

the whole-mtDNA tree are found in China dating to the LGM. Similarly observed in G2b1 
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and G2b2, G3b again suggests an ancient haplogroup G population in China before the LGM 

from which numerous lineages dispersed together into India and Japan around the LGM 

onwards.  
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Figure E.5 The trees of haplogroup G3 and G4. Time estimates shown for clades are ML (in black) and 
averaged distance (ρ; in blue) in ka. (CHI – China, IND – India, JAP – Japan, PAK - Pakistan) 
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Figure E.6 The tree of haplogroup M8a. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, SBR – Siberia, Russia) 

M8a, dating to ~26 ka, is divided into M8a1 and M8a2’3, and is mainly restricted to 

China and Japan as mentioned earlier (Figure E.6). M8a1 has a recent date of ~3 ka and 

found only in Aichi Japan (Tanaka et al., 2004). M8a2’3 and M8a2 date to the LGM, ~22 ka 

and ~19 ka respectively, and are seen in Japan (Tanaka et al., 2004) and China (Kong et al., 

2003a; Zheng et al., 2011), with M8a2b (~4.6 ka) also seen in a single Siberian Russian 

(Starikovskaya et al., 2005). M8a3 is represented by a single instance from China (Zheng et 

al., 2011). 

We can then complement the whole-mtDNA tree with the control-region data included 

in Tanaka et al. (2004; Table 2 & 3 in the paper), where they found M8a at high frequency in 

South and Eastern China, Taiwan, Korea and Japan. Unfortunately, the frequency table of the 

HVS-I data were segregated according to different papers instead of by populations/locations, 

for e.g. population “Ch1” (Table 3 in Tanaka et al., 2004) consists of Lioning and Shandong 

in the north, Yunnan in the south and Changsha in central China, while “Ch2” includes 



286 

 

samples from Xinjiang, Qinghai, Xi’an, Yunnan, Shanghai and Mongolia. Nonetheless, 

similar to the whole-mtDNA tree, HVS-I data shows M8a is virtually absent in SEA, it is 

most likely an East Asia haplogroup that pre-dates the LGM. 

Haplogroups C1 and C4 

Haplogroup C1 dates to the LGM ~23 ka (Figure E.7). It is seen in single instances 

from Japan (Tanaka et al., 2004) and Siberian Russia (Starikovskaya et al., 2005) as C1a 

(~13 ka), and in Native Americans (Ingman et al., 2000; Mishmar et al., 2003) and Mexico 

(Hartmann et al., 2009) as C1b (~20 ka), C1c1a and C1d1 (~1 ka). C1c1a is represented by a 

single instance from Mexico (Hartmann et al., 2009). 

In Figure E.8, C4, dating to ~23 ka, with a single basal lineage seen in northern China 

(Zheng et al., 2011). It is reported to be specific for Altai region in Southern Siberia, although 

it is also seen in northeastern Asia, East Asia, India as well as Europe (Derenko et al., 2010). 

C4a, dating to ~21 ka, is divided into C4a1’5 and C4a2’3’4. Figure shows C4a1+16129+195 

dates to ~12 ka and subclade C4a1b is seen in Xinjiang (Kong et al., 2003a) and southern 

China (Zheng et al., 2011) dating to ~7 ka. C4a1c1a dates to ~7 ka and seen in Evenk, 

Eskimo (Mishmar et al., 2003) and Siberian Russian (Starikovskaya et al., 2005). C4a2’3’4 

dates to ~20 ka, and represented by a single instance in each subclade; C4a2 is seen in Evenk, 

Eskimo (Ingman et al., 2000; Starikovskaya et al., 2005) and C4a3 in Beijing, China (Zheng 

et al., 2011) respectively. Additionally, subclades C4a1b, C4a2a2 and C4a2b (and C7a1a 

below) are reportedly predominantly Indian haplogroups (Derenko et al., 2010). According to 

the whole-mtDNA tree published by Derenko et al. (2010), the Indian subclades nested 

within C4a2 that have older dates compared with C4a1 seems to suggest an Indian origin 

dating to the LGM with east- and northwards late glacial spread into East Asia, Southern 

Siberia and northeastern Asia. 

C4b dates to ~12 ka, and includes subclades C4b1, C4b2, C4b3 and C4b8, where the 

last three are represented by single/similar instance each from Koryak, Eskimo in northeast 

Siberia, Inner Mongolia and the Nganasan in northern Siberia (Figure E.8). C4b1 (dates to ~6 

ka) is seen, albeit at lower levels, in Southern Siberia, Russia (Starikovskaya et al., 2005), 

Eskimo Udegei in eastern Siberia (Mishmar et al., 2003), Kyrgyzstan (Ingman et al., 2000) 

and Inner Mongolia, China (Kong et al., 2006). 
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Figure E.7 The tree of haplogroup C1. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (AME – America, JAP – Japan, MEX – Mexico, SBR – Siberian Russia) 
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Figure E.8 The tree of haplogroup C4. Time estimates shown for clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, ESK – Eskimo, KYR – Kyrgyzstan, MGL –  Inner Mongolia, China, SBR – 
Siberian Russia, XIN – Xinjiang, China) 
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Haplogroup M10 

M10 dates to ~33 ka, and can be divided into the major M10a (Yao et al., 2002a; Kong 

et al., 2003a) and the minor M10b; the latter is a newly proposed subclade in this study 

(Figure E.9). M10 is reconstructed by 15 complete sequences: 13 M10a and 2 M10b. M10 is 

mainly found in China and Japan, and at lower levels in Vietnam and India.  

M10a dates to ~21 ka with a basal lineage is seen in Japan (Tanaka et al., 2004), as well 

as two Late Glacial subclades, M10a1 (~18 ka) and M10a2 (~15 ka). M10a1 has a basal 

lineage in northern China (Zheng et al., 2011), and a nested subclade M10a1a, dating to ~14 

ka. M10a1a1 dates to ~5 ka and is found in South China (Kong et al., 2003a) and Japan 

(Tanaka et al., 2004), while M10a1a2, dates to ~10 ka, and single instances are seen in 

northern China (Zheng et al., 2011) and Vietnam (Archaeogenetics Research Group, 

Huddersfield), suggesting a migration south from China within the last 10 ka. M10a2 is seen 

in North and South China (Kong et al., 2003a; Zheng et al., 2011) with a single individual in 

India (Chandrasekar et al., 2009), suggesting a migration east from China since 15 ka, while 

M10a2a is restricted to North China (Zheng et al., 2011) and Japan (Tanaka et al., 2004) and 

dates to ~8 ka. 

M10b has undergone very heavy drift resulting in a younger, Neolithic date of ~5 ka 

when compared with M10a, which dates to the LGM. M10b is found in an instance each from 

South China (Kong et al., 2006) and Vietnam (Archaeogenetics Research Group, 

Huddersfield). Considering the overall whole-mtDNA tree, M10 appears to have a northern 

origin in China, and may have arrived in Vietnam since the early Holocene (considering both 

M10a1a2 and M10b, and assuming they might have dispersed together). 

 



289 

 

8919s
12360s
16320

709r
4140s
8793s

12549s
13152s

14502ns
15040s

15071ns
16311

32.5(19.7-45.9)ka
29.6(18.1-41.5)ka

M10

3172.1Cr
7250s
8856s

10646s
15218ns

21.3(10.2-32.9)ka
19.7(13.1-26.5)ka

M10a

D
Q

2
7

2
1

1
6

V
N

M
3

6
4

953r
4823s
9644s

9729ns
12976s
16256
16299

2289r
3172.1Cr
12613ns
12640ns

16093
16357
16497

14.1(6.0-22.5)ka
14.5(7.4-21.9)ka

16066

14.8(6.8-23.1)ka
11.1(6.3-16.0)ka

M10a2

A
P

0
0

8
7

8
3

V
N

M
2

6
1

9650s
10529s
16293C

3083r
7948s

14337ns

A
Y

2
5

5
1

7
8

4181ns
14533s

12696s
16266

A
P

0
0

8
7

1
9

A
P

0
0

8
7

5
2

A
Y

2
5

5
1

5
4

A
P

0
0

8
5

9
9

FJ3
8

3
6

5
0

15172s
15924t

7897s
8886s

15852ns

5.2(0-11.9)ka
5.2(0-10.8)ka

4.9(0-10.6)
3.9(0-8.4)ka 200

@15218ns

N
A

1
8

6
4

9

3882s
14569s

H
G

0
0

5
5

9

N
A

1
8

7
4

9

4023s
7660s
8820s

14128ns
15769s
16092

152
4035s

13602s
14755s
16086

146
16193

N
A

1
8

7
6

0

93
@263

14564ns
15323ns
@16093

13135ns
16129

10
13477ns
14311s

14870ns
N

A
1

8
5

7
7

5471s
9932s

10245s
11732s
15109s
16086
16172

18.2(7.6-29.5)ka
21.4(11.4-31.9)ka

10.0(2.5-17.8)ka
10.6(3.7-17.9)ka

8.0(0-16.8)ka
6.6(0.8-12.5)ka

M10a1a1

C
H

I

IN
D

C
H

I

C
H

I

JA
P

C
H

I

JA
P

C
H

I

JA
P

V
IE C

H
I

C
H

I

C
H

I

V
IE

M10b M10a1a

M10a1a2
M10a2a

M10a1

M

 

Figure E.9 The tree of haplogroup M10. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, IND – India, JAP – Japan, VIE – Vietnam) 

Haplogroup M60 

M60 is basal to haplogroup M, and dates to ~36 ka (Figure E.10). It is divided into 

M60a (~23 ka) and M60b (~33 ka), and both are mainly restricted to northeast India 

(Chandrasekar et al., 2009). M60b is found elsewhere in Palangkaraya of South Borneo 

(Archaeogenetics Research Group, Huddersfield). Only one possible M60 lineage is found in 

the HVS-I database in Banjarmasin, South Borneo, which shares the M60b HVS-I motif 

16266 and 16284 with the Palangkaraya sample, with a further transition at np 16290. 

However, since there is limited number of complete sequences, it is likely a recent migration 

from India to Borneo. 
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Figure E.10 The tree of haplogroup M60. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (IND – India, SBO – South Borneo) 
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Figure E.11 The tree of haplogroup M76. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, JAV – Java, Indonesia, VIE – Vietnam) 
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Haplogroup M76 

M76 dates to ~39 ka and it is divided into M76a and M76b (Figure E.11). Although 

extremely rare, M76 is restricted to South China/Sunda and may have originated in the 

region. M76a, dates recently to ~3 ka, is seen in two South Chinese individuals (Kong et al., 

2011). M76b and M76b1 pre-date the LGM; a basal lineage is seen in Java (Archaeogenetics 

Research Group, Huddersfield), a nested lineage in South China (Kong et al., 2011), and a 

further nested subclade shared between Vietnam and Java (Archaeogenetics Research Group, 

Huddersfield), dating to the end of the LGM, ~19 ka. 

 

Haplogroup D4 

In Figure E.12, haplogroup D1 dates to the LGM ~22 ka, and it is seen in Native 

Americans (Ingman et al., 2000; Mishmar et al., 2003) and Brazil (Hartmann et al., 2009). 

D4b dates to ~28 ka, and as mentioned earlier, D4b is mainly seen in Japan and at lower 

levels in China. D4b1 dates to ~22 ka, and nested within are D4b1a and D4b1b’d. D4b1a 

splits into D4b1a1 and D41a2a, the latter is not dated due to time constraint, which is seen in 

northern China (Zheng et al., 2011). D4b1a1 dates to ~3 ka, and its subclade D4b1a1a ~2 ka, 

found only in Japan (Tanaka et al., 2004). 
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Figure E.12 The tree of haplogroups D1 and D4b1. Time estimates shown for clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (AME – America, BRA – Brazil, CHI – China, JAP – Japan) 
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Figure E.13 The tree of haplogroup D4b2a. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (JAP – Japan) 
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Figure E.14 The tree of haplogroup D4b2b. Time estimations shown for clades are ML (in black) and 
averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan) 

D4b1b’d dates to ~20 ka, and includes subclades D4b1b and D4b1d (Figure E.12). 

D4b1b and its subclades are commonly found only in Japan (Tanaka et al., 2004), where the 

root type of D4b1b is found in the Laotian HVS-I data (Bodner et al., 2011). D4b1b2, dating 

to ~11 ka, is seen in Japan (Tanaka et al., 2004) and China (Kong et al., 2003a). D4b1d is 

seen in China (Kong et al., 2011; Zheng et al., 2011), but ML date for D4b1d is not available 

because as mentioned above, the Chinese lineages (Zheng et al., 2011) were not included in 

ML estimations due to time constraint (likewise for the rest of haplogroup D). According to 

the whole-mtDNA tree, the results potentially indicate an expansion into Northeast Asia. The 

Chinese lineages do tend to fall into deeper branches so it seems reasonable that the 



294 

 

expansion was from China to Japan, happened perhaps during the Late Glacial/early 

Holocene before Japan split off from the mainland. 

D4b2 also dates to the LGM ~20 ka, and has two subclades: D4b2a and D4b2b. As 

shown in Figure E.13, D4b2a dates to ~18 ka and its subclades D4b2a1 and D4b2a2 are only 

found in Japan (Tanaka et al., 2004). Again, suggesting that Northeast Asia was settled early 

by D4 carriers in the Late Glacial. In Figure E.14, D4b2b dates to ~13 ka, and includes 

subclades D4b2b1, D4b2b2, D4b2b3, a rare subclade D4b2b4 with four paraphyletic lineages 

(one Japan, two northern China and one South China). The root type of D4b2b is also found 

in the Laotian HVS-I data (Bodner et al., 2011), which implies dispersals of D4b2b south into 

North MSEA. D4b2b1 dates to ~7 ka, and is found only in Japan (Tanaka et al., 2004). 

D4b2b2 dates to ~11 ka, and is found in northern China (Kong et al., 2011; Zheng et al., 

2011) and Japan (Tanaka et al., 2004). D4b2b3 dates to ~4 ka and found in Japan (Tanaka et 

al., 2004). As a whole, the whole-mtDNA provides evidence that the clade D4b2b overall 

spread from south to north as indicated by the basal lineages in South China and the HVS-I 

root type in NMSEA since the main northern subclades being mid to late Holocene. 

D4c dates to ~25 ka, and is subdivided into D4c1 and D4c2 (Figure E.15). It is entirely 

a Japanese (Tanaka et al., 2004) haplogroup. D4c1, dating to ~20 ka, and includes D4c1a (~6 

ka) and D4c1b (~10 ka). On the other hand, a young subclade nested within D4c, D4c2c, 

dating to ~3 ka and confined to Japan. Although the root types of D4c are found in South 

China in the HVS-I database (Archaeogenetics Research Group, Huddersfield), it still looks 

to have a very early northern expansion. 

D4e dates to ~24 ka, and includes subclades D4e1’3, D4e2 and D4e5 (Figure E.16). 

The root type of D4e1’3 is found in the Laotian HVS-I data (Bodner et al., 2011).  D4e1 

dates to ~21 ka, and it has two subclades D2 and D4e1a. D2 is subdivided into D2a and it is 

seen in Chukchi, Aleut and Athapaskans of northern Eskimos, while D2b found only in 

Siberia (Tamm et al., 2007). In the whole-mtDNA tree, D2, or rather D2a1b is represented 

here by a singleton from Siberia, Russia (Ingman et al., 2000).  
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Figure E.15 The tree of haplogroup D4c. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (JAP – Japan) 
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Figure E.16 The tree of haplogroup D4e. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (JAP – Japan, THA – Thailand, SBR – Siberian, Russia) 

D4e1a dates to ~11 ka, where the basal lineages are seen in Japan (Tanaka et al., 2004) 

and Thailand (Pradutkanchana, Ishida and Kimura, 2010). Its subclades D4e1a1 and D4e1a2 
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are found in Japan (Tanaka et al., 2004), both date to ~4 ka and ~2 ka respectively. The Thai 

lineage can therefore be inferred as intrusive dispersal from the north since there is just the 

one and there are quite a few Japanese lineages. 

D4e2 dates to ~5 ka, and subclades D4e2a, D4e2b, D4e2c and an unnamed subclade 

defined by a transition at np 16129, all date between ~2 ka and ~4 ka. D4e5, on the other 

hand, is represented by a single instance. D4e is entirely seen in Japan, and its starlike 

phylogeny suggests a population expansion there ~5 ka (Tanaka et al., 2004). 
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Figure E.17 The tree of haplogroups D4f and D4g. Time estimates shown for clades are ML (in black) and 
averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan) 

Figure E.17 shows haplogroup D4f, dating to ~5 ka, and is seen only in Japan (Tanaka 

et al., 2004). D4g (~28 ka) and it is divided into D4g1 and D4g2, both are largely restricted to 

Japan (Tanaka et al., 2004). D4g1 dates to ~6 ka, and nested within including subclades 

D4g1a, D4g1b and D4g1c, all date between ~1 ka and ~4 ka. D4g2 dates to ~23 ka, which 

again is further subdivided into D4g2a (~20 ka) and D4g2b (~1 ka). D4g2a1 is found in 

South China (Zheng et al., 2011) and Japan (Tanaka et al., 2004). While haplogroup D4g is 

largely confined to Japan, the HVS-I sequences shown potentially the root type for D4g1 is 

found in China and D4g2a in Laos (Bodner et al., 2011), China and Taiwan (Kong et al., 

2006; Metspalu et al., 2006). 
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Figure E.18 The tree of haplogroup D4h. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (BRA – Brazil, CHI – China, JAP – Japan, SBR – Siberian, Russia) 
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Figure E.19 The tree of haplogroups D4d, D4l1a, D4k, D4o and D4p. Time estimates shown for clades are ML 

(in black) and averaged distance (ρ; in blue) in ka. (CHI – China, ESK – Eskimo, JAP – Japan, MGL – Inner 
Mongolia, China, SBR – Siberian, Russia, VIE – Vietnam) 

Figure E.18 shows D4h dates to ~24 ka, and includes subclades D4h1, D4h2, D4h3 and 

D4h4. However, D4h2, D4h3 and D4h4 are represented each by an instance from Russian Far 

East (Starikovskaya et al., 2005), Brazil (Hartmann et al., 2009) and Japan (Tanaka et al., 

2004). Tamm et al. (2007) reported that haplogroup D4h3 is found between Alaska to Tierra 

del Fuego, and has been recently identified in Alaskan skeletal remains dating to ~10.3 ka 

(Kemp et al., 2007). D4h1 dates to ~20 ka and found in Japan (Tanaka et al., 2004) and 
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North China (Zheng et al., 2011). The subclades of D4h1 are all found in Japan only (Tanaka 

et al., 2004). On the other hand, the HVS-I data shows the root type is widely distributed 

across East Asia albeit at a minor frequency (Kong et al., 2006). The overall haplogroup D4h 

suggests early settlements in Japan during the LGM and a likely southern source in China. 

In Figure E.19, D4d and D4p are represented here by an instance each from Japan 

(Tanaka et al., 2004). D4l, as D4l1a, dating to ~9 ka and seen in two individuals from Japan 

(Tanaka et al., 2004). Subclade D4 with a further transition at np 195 dates to ~24 ka where 

the basal lineages are seen in Japan (Tanaka et al., 2004) and Vietnam (Archaeogenetics 

Research Group, Huddersfield) and the haplogroup further subdivided into D4k, D4o and 

D4p. D4k dates to ~8 ka, and the nesting of its subclades suggest that lineages may have 

migrated from Japan (Tanaka et al., 2004) to Qinghai and Beijing in northern China (Kong et 

al., 2006; Zheng et al., 2011) within ~5 ka (the Zheng et al., 2011 sequences were not 

included in the ML estimations due to time constraints). However, this nesting pattern is 

unusual as most of the dispersals go from the southern mainland into Japan and not the other 

way round, therefore it may be an artefact of the few samples. D4o (~20 ka) includes two 

subclades: D4o1a, ~5 ka, is seen in Japan, and D4o2, ~5 ka, in Inner Mongolia, China (Kong 

et al., 2006), Northern Siberia (Starikovskaya et al., 2005) and Eskimo in Russian Far East 

(Mishmar et al., 2003). 

In Figure E.20, D4i dates to ~18 ka, and is mainly seen in Japan (Tanaka et al., 2004) 

and North China (Zheng et al., 2011). D4j dates to ~17 ka, and the paraphyletic lineages are 

seen in Japan (Tanaka et al., 2004), South and North China (Kong et al., 2003a; Zheng et al., 

2011). Subclade D4j3a is seen in Japan (Tanaka et al., 2004) and Beijing, China (Zheng et al., 

2011), but I was not able to date it due to time constraints, same for D4m. D4m is seen in a 

sequence from North China (Zheng et al., 2011), and nested within is a subclade, D4m1 ~4 

ka, seen in Japan (Tanaka et al., 2004). D4n dates to ~8 ka, and subclades D4n1 and D4n1a 

both date to ~3 ka and ~1 ka respectively, found entirely in Japan (Tanaka et al., 2004). 

Consistent with the majority of D4 carriers, subclades D4i, D4j, D4m and D4n are likely to 

have a Late Glacial source in China, potentially somewhere in the southern region. 
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Figure E.20 The tree of haplogroups D4i, D4j, D4m and D4n. Time estimates shown for clades are ML (in 
black) and averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan) 

Haplogroup D5a 

In Figure E.21, D5a dates to ~29 ka and it includes subclades D5a1, D5a2 and D5a3. 

D5a1 is seen in Japan (Tanaka et al., 2004) with an estimated age of ~9 ka. D5a3 is 

represented by an instance from Russian Siberia (Starikovskaya et al., 2005). The branch of 

D5a with a reversion at np 1438 consists of subclade D5a2, as D5a2a, and is seen in a single 

basal branch in Japan (Tanaka et al., 2004). Unfortunately, no D5a2* lineages are represented 

in the tree due to time constraints, although it is found in North East India (Chandrasekar et 

al., 2009; van Oven and Kayser, 2009). Besides, the mtDNA HVS-I database shows that 

D5a2 is seen in South China, indicating that that is the source, and that D5a2a is also seen 

much more commonly in South China than Japan and Korea in HVS-I.  

D5a2 is seen in South China in HVS-I, a source in South China, and it is also seen 

much more commonly in South China than Japan and Korea in HVS-I (Archaeogenetics 

Research Group, Huddersfield). D5a2a dates to ~12 ka and it is divided into two subclades: 

D5a2a1’2 and D5a2a1 with a transition at np 16164 (Figure E.21). Subclade D5a2a1 and 

D5a2a2 are commonly seen in Japan (Tanaka et al., 2004), China (Kong et al., 2003a; Zheng 

et al., 2011), and two instances from Russia (Starikovskaya et al., 2005; Hartmann et al., 

2009), suggesting another mid-Holocene data for the entry to Northeast Asia. Subclade 

D5a2a+16164 shares the same defining transition np16164 with D5a2a1, quite possibly 

showing two parallel mutations; the basal lineages are seen in Japan (Tanaka et al., 2004) and 

northern China (Zheng et al., 2011) but no date is available due to time constraints. 
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Figure E.21 The tree of haplogroup D5a. Time estimates shown for clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, SBR – Siberian Russia) 

Haplogroup N9a2’4’5 

 N9a2’4’5 dates to ~18 ka and consists of N9a2, N9a4 and N9a5 (Figure E.22). N9a2 is 

entirely found in Japan (Tanaka et al., 2004), although an early-branching south Chinese 

individual reported recently by Zheng et al. (2011) might suggest an origin in China ~16 ka 

at the branch of N9a2’4’5. N9a2, dating to ~12 ka, shows a highly localised and diversified 

phylogeny in Japan, divided into N9a2a, N9a2c and N9a2d. N9a2a dates to ~6 ka. N9a2a can 

then be divided into N9a2a1, N9a2a2, and N9a2a3. However, only one sample is represented 
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in the tree for N9a2a1 (Aichi, Japan) and N9a2a3 (Tokyo, Japan; Tanaka et al., 2004). 

N9a2a2 is detected in Chiba, Aichi and Tokyo with an age of ~2 ka.  

Tanaka et al. (2004) reported three Japanese individuals from Aichi and Tokyo that 

belonged to N9a2c, dating to ~4 ka. Only one individual of N9a2d in this study is observed 

in Japan by Tanaka et al. (2004). 

 N9a4 dates to ~7.5 ka, and the nesting relationships suggest an origin in Japan before 

spreading into China within the last few thousand years (Figure E.22). Subclade N9a4a, 

dating to ~3 ka,  is only found in Aichi (Tanaka et al., 2004), while N9a4b, at ~5 ka, has its 

root type found in Tokyo and spread ~2 ka into south and north China (Zheng et al., 2011). 

N9a5, also a Japanese clade, dates ~8 ka. This subclade has been reported in Chiba and 

Tokyo by Tanaka et al. (2004). 
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Figure E.22 The tree of haplogroup N9a2’4’5. Time estimates shown for the clades are ML (in black) and 

averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan) 

Haplogroup N9b 

N9b can be sub-divided into N9b1, N9b2 and N9b3. Haplogroup N9b1 diverged at ~19 

ka and can be divided into N9b1a, N9b1b and N9b1c (Figure E.23). N9b1a has an estimated 

age of ~17 ka. N9b1a likely dispersed from Aichi into Chiba, Japan around ~15 ka with an 

additional transition at np 16319. N9b1b dates to ~4 ka and has been reported in two Aichi 

individuals. N9b1c dates to ~13 ka and is also found in Aichi, Japan. N9b1c1 dates to ~11 ka. 

Nested within is a subclade with a divergence time of ~10 ka, and is found in Aichi and 

Kanagawa individuals (Tanaka et al., 2004). 
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Figure E.23 The tree of haplogroup N9b. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (JAP – Japan) 

 

N9b2 appears to be localised in Aichi only; it is defined by a transition at np 16294 and 

dates to ~22 ka. A further node with an additional transition at np 16309 dates to ~19 ka, and 

more recently with a transition at np 41 that dates to ~16 ka. Lastly, N9b3, which is found in 

Chiba and Tokyo, dates to ~10 ka (although with ρ it dates to only ~5 ka). 

Haplogroup A5a 

A5a1 and its subclades are generally found in Aichi, Chiba and Tokyo (Tanaka et al., 

2004), with the only exception of an Inner Mongolian reported by Kong et al. (2006) nested 

within the Japanese in haplogroup A5a1a1 (Figure E.24). 



303 

 

8563ns
11536s

2156.Ar
4655s

11647s
16187

A5a

A
P

0
0

8
2

6
5

A
P

0
0

8
8

8
3

A
P

0
0

8
8

2
2

10235s
10325s

A
P

0
0

8
3

2
2

153

A
P

0
0

8
7

4
3

629t
5582nc

A
P

0
0

8
8

3
5

16291

A
P

0
0

8
7

4
7

12909s
15341ns

7637ns
9422Ts

@11536s
14118s

A
P

0
0

8
6

9
4

9386s
14094s

A
P

0
0

8
3

4
0

13461s

A5a2

1420r

A
P

0
0

8
7

9
1

A
P

0
0

8
8

6
7

A
P

0
0

8
8

5
3

16160

A5a1b

A
P

0
0

8
5

6
2

16291
702

1892r
16189

10801s

A5a1a

A
P

0
0

8
9

1
4

152
10685s
16287

A
P

0
0

8
3

4
3

13928Cns
16296

8628s
6956s

A5a1a2

A
P

0
0

8
5

9
6

8701ns
16172

A
P

0
0

8
5

3
8

8167s
@16187

5773t
12880ns

A
P

0
0

8
6

2
2

A
P

0
0

8
2

7
6

A
P

0
0

8
7

4
8

A
P

0
0

8
7

6
2

A
P

0
0

8
5

1
0

A
P

0
0

8
5

7
6

D
Q

2
7

2
1

2
3

A
P

0
0

8
3

2
4

A
P

0
0

8
8

9
3

8020s

A
P

0
0

8
6

0
6

291.1A
309.2C
12280t
16311

A
P

0
0

8
6

4
4

16093

A
P

0
0

8
7

8
5

@11536s

A
P

0
0

8
7

6
1

3368ns
7964ns
8757s

A
P

0
0

8
5

8
1

A
P

0
0

8
3

6
3

A
P

0
0

8
3

4
9

A
P

0
0

8
4

3
3

A
P

0
0

8
5

4
7

A
P

0
0

8
4

7
1

15427s

5147s
5821t

7235s
9174s

12816s

16093

146
318

16092

A
P

0
0

8
5

3
2

4736s

A
P

0
0

8
3

9
6

5237s

A
P

0
0

8
8

7
8

13221s

A
P

0
0

8
2

9
0

5460ns
7492t

13225ns

16147

5.6(1.3-9.9)ka
6.6(0.8-12.5)ka

9.2(5.8-12.7)ka
11.6(5.2-18.2)ka

2.1(0-12.6)ka
0.9(0-2.6)ka

20.8(11.6-30.5)ka
22.4(11.9-33.4)ka

8.2(4.8-11.7)ka
11.5(3.6-19.6)ka

7.3(4.3-10.4)ka
9.0(2.6-15.7)ka

4.6(2.5-6.6)ka
3.7(2.4-5.1)ka

3.4(1.0-5.8)ka
5.2(0.1-10.5)ka

1.5(0-5.1)ka
1.3(0-3.8)ka

4.1(0-8.6)ka
5.2(0.1-10.5)ka

5.6(0.7-10.6)ka
5.2(0.1-10.5)ka

A5a1a1a

A5a1a1

A5a1a1b

14944s

A5a1

A5

A5a3

JA
P

M
G

L

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

JA
P

 

Figure E.24 The tree of haplogroup A5a. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (JAP – Japan, MGL – Inner Mongolia, China) 
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Figure E.25 The tree of haplogroup B4b’d’e and B4f. Time estimates shown for clades are ML and averaged 
distance (ρ) in ka. (CHI – China, JAP – Japan, SBR – Siberia) 

B4d dates to ~32 ka with a basal lineage seen in Japan (Figure E.25; Tanaka et al., 

2004). The main subclade is B4d1’2’3, dating to ~24 ka, with a basal lineage seen in Siberia 

(Starikovskaya et al., 2005). B4d1’2’3 includes subclades B4d1, B4d2 and B4d3. B4d1 dates 
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to ~11 ka, and is found in China (Kong et al., 2003b; Zheng et al., 2011) and Japan (Nohira 

et al., 2010). B4d3 dates to ~11 ka, with a basal lineage in China (Zheng et al., 2011), and a 

small derived subclade B4d3a1, dating to ~4 ka, in Japan (Tanaka et al., 2004; Nohira et al., 

2010). There is just a single instance of B4e, seen in Japan. 

B4f is a minor basal B4 clade dating to ~19 ka and restricted to Japan (and Korea in 

HVS-I) (Tanaka et al., 2004).  Its distribution further strengthens the phylogeographic case 

that B4 likely originated in China and later dispersed both into northeast Asia and SEA, as 

seen primarily in B4b1a2 and minor other instances. 

Haplogroup B4c1 

B4c1 dates to ~35 ka, and has two main subclades, B4c1c and B4c1a’b. B4c1c1 dates 

to ~3 ka and it is seen only in Japan (Tanaka et al., 2004). B4c1a’b dates to 32 ka; it has two 

subclades, B4c1a and B4c1b. B4c1a is an East Asian clade seen mostly in Japan, with a 

single basal lineage in China (Tanaka et al., 2004; Zheng et al., 2011), and dates to ~11 ka. 

B4c1b dates to ~27 ka, and it is divided into B4c1b1 and B4c1b+16335. B4c1b1 dates to ~6 

ka and is restricted to Japan (Tanaka et al., 2004). B4c1b+16335 dates to ~24 ka and  has a 

basal lineage in Japan, and dispersed into China ~21 ka through two branches, B4c1b2a and 

B4c1b2c. B4c1b2a is seen in China Liaoning (Kong et al., 2003b) and this subclade dates to 

~15 ka. B4c1b2c dates to ~13 ka and seen in Beijing (Zheng et al., 2011). However, the 

HVS-I data shows that this subclade is mainly found amongst Aboriginal Taiwanese and is 

also widely dispersed across Southeast Asia (Archaeogenetics Research Group, 

Huddersfield). 

Haplogroups F1b, F1d and F1e 

In Figure E.26, F1b1 (the sole basal branch of F1b after Kong et al., 2006) dates to ~14 

ka and is extremely widespread, seen in the HVS-I database across China, Northeast Asia and 

Central Asia, as far west as Iran, the Caucasus and Turkey. The basal lineages of F1b1 are 

reported from northern China (Zheng et al., 2011), Japan (Tanaka et al., 2004) and Siberia 

(Kong et al., 2006), with F1b1a (confined to Japan) being the only substantial branch. F1b1a 

diversified locally in Japan, with starlike subclades appearing ~5–6 ka. F1b appears likely to 

have a northern, Late Glacial origin. 
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Figure E.26 The tree of haplogroup F1b. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, SBR – Siberia) 

Figure E.27 shows haplogroup F1d is a minor, quite starlike subclade that dates to ~11 

ka, with 4/5 basal branches represented in China (Zheng et al., 2011), and 2/5 in Japan 

(Tanaka et al., 2004). One subclade dates to ~7 ka and is represented in Japan, north China 

and Nepal (Fornarino et al., 2009). F1d dates to ~11 ka and is seen in north and south China 

(Zheng et al., 2011) and Japan (Tanaka et al., 2004). A subclade dates to ~7 ka in Japan and a 

subclade nested within is seen in China (Zheng et al., 2011) and Nepal (Fornarino et al., 

2009) ~4 ka. 

F1e, like F1d, is another minor subclade that is mainly represented in China and Japan. 

F1e dates to ~26 ka and splits into F1e1 and F1e+195 (Figure E.27). F1e1 is seen in South 

China (Zheng et al., 2011) ~23 ka and presumably spread recently into Japan (Tanaka et al., 

2004; Nohira et al., 2010) ~1.5 ka. F1e+195 dates to ~23 ka, similar to F1e1, both indicating 

a root in China (supported by the distribution of the 16300 variant in the HVS-I database). A 

subclade nested, defined by transitions at nps 150 and 16300, dating to ~13 ka and is 

observed in South China (Zheng et al., 2011) and Sumatra, suggesting limited dispersal to 

ISEA (Gunnarsdóttir et al., 2011b), but this is not seen in the HVS-I database. 
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Figure E.27 The tree of haplogroup F1d and F1e. Time estimates shown for the clades are ML (in black) and 
averaged distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, NEP – Nepal, SUM – Sumatra) 
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Figure E.28 The tree of haplogroup F2. Time estimates shown for the clades are ML (in black) and averaged 

distance (ρ; in blue) in ka. (CHI – China, JAP – Japan, VIE – Vietnam) 
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Haplogroup F2 

Haplogroup F2 clade dates to ~25 ka (Figure E.28). It is divided into F2a, F2b, F2c, F2d 

and F2e. F2a dates to ~16 ka, with the basal types seen in northern China (Kong et al., 

2003b; Zheng et al., 2011). A subclade defined by a transition at np 16291 and estimated at 

~12 ka is found in China and Japan (Tanaka et al., 2004; Zheng et al., 2011) and, much more 

rarely, in Vietnam and aboriginal Taiwanese (Mormina, 2007). F2b dates to ~20 ka and F2b1 

~9 ka is reported in northern China (Kong et al., 2003b; Zheng et al., 2011) with occasional 

examples in Thailand (Mormina, 2007). F2c2, dating to ~7 ka, and F2d, dating to ~16 ka, are 

both seen in northern China (Zheng et al., 2011). F2e dates to ~20 ka, including F2e1, dating 

to ~12 ka, is reported from Vietnam (Archaeogenetics Research Group, Huddersfield) and 

China (Zheng et al., 2011). Overall, F2 is a haplogroup broadly centred on China that point to 

minor instances of gene flow both north and south. 

Haplogroup P 

P2’10 dates to ~63 and it is divided into P2 and P10. Haplogroups P2 dates to ~30 ka, 

where the whole clade is restricted to PNG (Ingman and Gyllensten, 2003; Pierson et al., 

2006; Friedlaender et al., 2007). P10 undergone high drift and dates to Neolithic ~5 ka where 

it is found in the Philippines (Tabbada et al., 2010 and Archaeogenetics Research Group, 

Huddersfield). 

P3 dates to ~49 ka, and is divided into P3a and P3b (Figure E.29). P3a dates to ~30 ka 

and is found in the Australian Aboriginals (Ingman and Gyllensten, 2003). P3b dates to ~42 

ka in PNG, and its subclade P3b1 is seen in Australia (Friedlaender et al., 2007) dating to the 

LGM ~25 ka. 

P4 dates to ~63 ka, and it is divided into P4a and P4b (Figure E.29). P4a dates to ~23 

ka and together with its subclade P4a1 are predominantly found in PNG (Friedlaender et al., 

2007), with a basal lineage seen in Sulawesi, Indonesia (Archaeogenetics Research Group, 

Huddersfield). P4b (~48 ka) and P6 (~62 ka), similar to P3a, are found in the Australian 

Aboriginals (Ingman and Gyllensten, 2003). Besides, three basal to haplogroup P lineages: 

two from the Australian Aboriginals was proposed by Ingman and Gyllensten (2003) as 

‘subclades’ P5 and P7, and one Filipino as P9 (Tabbada et al., 2010).  
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Figure E.29 The tree of haplogroups P3, P4, P5, P6, P7 and P9. Time estimates shown for the clades are ML 

(in black) and averaged distance (ρ; in blue) in ka. (AUS – Australia, FIL – Philippines, SUL – Sulawesi, PNG – 
Papua New Guinea) 

 

Haplogroup R30 

The subclades of this rare R30 haplogroup have undergone genetic drift. R30a dates to 

~ 37 ka (Figure E.30) and a single basal lineage is seen in Sumatra (Archaeogenetics 

Research Group, Huddersfield), while nested within is a smaller subclade seen in Sri Lanka 

(Chaubey et al., 2008) and Nepal (Fornarino et al., 2009). A single instance representing 

R30b (R30b1) is found in Punjab of northern India (Chaubey et al., 2008). Generally, R30 

shows early expansions from India into SEA and the relict descendant is found in Sumatra. 
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Figure E.30 The tree of haplogroup R30. Time estimates shown for the clades are ML (in black) and averaged 
distance (ρ; in blue) in ka. (IND – India, NEP – Nepal, SRI – Sri Lanka, SUM - Sumatra) 
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