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Abstract

The transcription factor NF-κB is a biological component that is central to the
regulation of genes involved in the innate immune system. Dysregulation of the
pathway is known to be involved in a large number of inflammatory diseases.
Although considerable research has been performed since its discovery in 1986,
we are still not in a position to control the signalling pathway, and thus limit the
effects of NF-κB within promotion of inflammatory diseases.

We believe that computational modelling and simulation of the NF-κB sig-
nalling pathway will complement wet-lab experimental approaches, and will fa-
cilitate a more comprehensive understanding of this example of a complex bio-
logical system. In this study, we have developed an agent-based model of the
IL-1 stimulated NF-κB signalling pathway, which has been calibrated to wet-
lab data at the single-cell level. Through rigorous software engineering, which
followed a principled approach to design and development by adherence to the
CoSMoS process, we believe our model provides an abstracted view of the un-
derlying real-world system, and can be used in a predictive capacity through in
silico experimentation.

A novel approach to domain modelling has been presented, which uses linear
and multivariate statistical techniques to complement the Unified Modelling Lan-
guage. Furthermore, in silico experimentation with the newly developed agent-
based model, has confirmed the robust yet fragile nature of the signalling pathway.
We have discovered that the pathway is robust to perturbations of cell membrane
receptor component number, intermediate component number, and the tempo-
ral lag between cell membrane receptor activation and subsequent activation of
IKK. Conversely however, in silico experimentation predicts that the pathway
is sensitive to changes in the ratio of free IκBα to NF-κB, and fragile to basal
dissociation of NF-κB-IκBα outside of a narrow range of probabilities.
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1 Introduction

This introductory chapter to the doctoral thesis presents: the motivation for
the work conducted during the PhD research; an overview to how the thesis
is structured; the objectives of the research project; and the contributions that
the research has made to the NF-κB modelling community in particular, and
the wider computational biology community, more generally. Firstly, section 1.1
provides the motivation behind the use of computational models to increase our
understanding of complex biological pathways. Secondly, section 1.2 presents an
outline of this doctoral thesis, along with the objectives of the research project,
and a summary of the structure that this thesis takes. Finally, section 1.3 presents
the contributions that this research project has made to the scientific community.

1.1 Motivation

Cells receive information from their environment through extracellular signals
interacting with a class of proteins located on their surfaces that are known as
receptors. Signal transduction involves the binding of these extracellular sig-
nalling molecules to the cell-surface receptors and the triggering of a cascade
of signalling events inside the cell. This intracellular signalling forms part of a
complex system of communication, that acts to regulate cell activity and action
relative to changes in the external environment. The ability of cells to perceive
and correctly respond to their environment is of particular importance for the
immune system and the combating of infection. Gene activations and alterations
to metabolism are examples of cellular responses to extracellular stimulation that
require signal transduction. Errors in the processing of extracellular signals are
responsible for the onset of many diseases. The NF-κB signalling pathway is
one of the key signal transduction pathways involved in control and regulation of
the immune system. It is hoped that through an increased understanding of cell
signalling pathways, such as NF-κB, diseases may be treated more effectively, or
even eradicated entirely through prevention of pathway dysregulation.

Scientists are designing and creating increasingly complex models and simula-
tions of cells and other biological entities. The modelling and simulation of cell
behaviour falls under the wider scope of a relatively new area of science which
has been termed Systems Biology. Systems biology begins with complex bio-
logical phenomena and aims to provide a simpler more abstract framework that
explains why these events occur the way they do. Simulation attempts to pre-
dict the dynamics of the systems so that the validity of the underlying assump-
tions can be tested. Within the process of modelling and simulation, detailed
behaviours of computer-executable models are compared with experimental ob-
servation. Models that survive this validation can then be used for predicting
behaviours which can be tested by experiments, as well as to explore questions
that are not amenable to experimental inquiry (Kitano, 2002a).
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Chapter 1. Introduction

The systems that biologists wish to analyse and model show an increasing
number of interdependencies and relationships, meaning that traditional mod-
elling tools are no longer as appropriate as they once were. Computational biolo-
gists and computer scientists are beginning to take a more realistic view of these
systems through recent advances in computational modelling techniques, such
as agent-based modelling and simulation. Furthermore, computational power is
advancing rapidly, providing the ability to run large-scale computer simulations
of biological systems, which would not have been plausible in the last century
(Macal and North, 2005).

Modelling is not the end goal in itself, but is instead a tool to increase our
understanding of the complex system in question. Models allow us to develop
more directed experiments and facilitate the forming of predictions (Banga, 2008).
It is hoped that an increased understanding of the design principles of protein
and gene regulatory networks during normal physiology and disease, will pinpoint
the underlying causes of diseases and lead to more rationalised and efficacious
treatment strategies.

1.2 Thesis Outline

This doctoral research project will use an agent-based modelling approach to ex-
plore the IL-1 stimulated NF-κB intracellular signalling pathway. Through an
interdisciplinary approach, we aim to use computational modelling and in silico
experimentation to generate predictions of system dynamics to help drive further
in vitro wet-lab experimentation. This work makes three major contributions:
firstly, to the development of new computational models of the NF-κB signalling
pathway, which can be used for hypothesis-generation to further our understand-
ing of recently discovered signalling components; secondly, to the growing knowl-
edge base regarding computational modelling and simulation of complex systems,
through reflection on the benefits, constraints and appropriateness of agent-based
modelling within computational biology research; and thirdly, to expand the cur-
rent models (which primarily focus on regulation at the level of the NF-κB-IκB
complex), to include events related to cell surface receptor complex formation
and activation, which induces the propagation of signal downstream to the gene
regulatory events.

We will use a principled approach to design and development of computational
models through use of the CoSMoS process (Andrews et al., 2010). The project
is organised around two iterations of the computational model, which provide
a baseline simulator to allow early experimentation, and an enhanced version
later on in the project. The first iteration involves development of a baseline
computational model of the NF-κB signalling pathway, which reproduces the
functionality from existing differential equation based approaches, but using an
agent-based approach. The second iteration involves augmentation of this model
for additional granularity of components at the cell membrane receptor complex.
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1.2.1 Project Objectives in Relation to Thesis

This thesis concerns the development of an agent-based model of the IL-1 stimu-
lated NF-κB signalling pathway, along with its subsequent use to perform novel
in silico experimentation. In order to ensure that the computational model is
fit for purpose, we will follow a principled approach to design, development and
testing of the computational model. Furthermore, in order to ensure that our in-
terpretations of simulation results are valid, we will utilise a number of statistical
techniques to qualify the significance of any differences between the results from
experimental conditions and those of baseline/control conditions. We believe that
statistical underpinnings, such as those used within this thesis, are essential for
interpreting the results of in silico experimentation, and also believe that without
such rigour, it will be hard for the niche area of computational biology to gain
credibility with the wider scientific community. This scope is reflected in the
thesis aim:

To develop an agent-based model of the IL-1 stimulated NF-κB sig-
nalling pathway in a quality assured manner, which uses leading prac-
tices for software engineering, calibration, verification and validation.
Furthermore, once developed, the agent-based model will be used to
perform novel in silico experimentation to extend our knowledge of
the signalling pathway.

The following research objectives will guide the work of this thesis towards the
overall aim:

Obj 1: Explore the role of diagrammatic and statistical techniques for developing
a domain model of the NF-κB case study.

Obj 2: Create an agent-based computational model of the core intracellular com-
ponents of the IL-1 stimulated NF-κB signalling pathway.

Obj 3: Investigate techniques for calibrating agent-based computational models
that have been developed using the FLAME simulation framework.

Obj 4: Perform novel in silico experimentation using the agent-based model.

Obj 5: Augment the agent-based model with additional upstream signalling com-
ponents related to the cell membrane receptor complex.

Obj 6: Perform novel in silico experimentation using the augmented simulator.

Obj 7: Investigate the suitability of using the FLAME simulation framework for
developing computational models of complex biological systems.

1.2.2 Thesis Structure

This doctoral thesis addresses the above research objectives over the next eight
chapters, the majority of which directly relate to deliverables (e.g. project arte-
facts) of the CoSMoS process. The structure of this thesis follows below, and
focuses on chapter content, relation of the chapter to the CoSMoS process, and
the contribution of the chapter in fulfilling the research objectives.
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Chapter 2 - Modelling and Simulation of Biological Systems

This literature review chapter provides a summary of computational biology and
simulation science, with initial focus on the theoretical underpinnings that stem
from: General Systems Theory and Network Theory; Systems Biology and how
the advancements in computer technology have led to the disciplines of Compu-
tational Biology and Computational Immunology; focus is then applied to two
main approaches - mathematical and agent-based - for computational modelling
of biological systems. The chapter concludes with an overview of project life-
cycles that may be appropriate for computational systems biology research, and
specifically the CoSMoS process, which is used within this project. This chapter
has no direct relationship to a CoSMoS project deliverable.

Chapter 3 - The Domain: NF-κB Signalling Pathway

This literature review chapter provides a detailed description of the IL-1 stimu-
lated NF-κB intracellular signalling pathway, which is the basis for our compu-
tational model. This initial section begins with an introduction to cell signalling
and an overview of the NF-κB transcription factor. It then progresses to a de-
tailed description of the NF-κB signalling pathway, consequences of dysregulation
of NF-κB, and discussion of the detailed components (receptors, co-receptors,
adaptor proteins and kinases) involved in the IL-1 stimulated NF-κB signalling
pathway. This initial section then concludes with discussion on recent approaches
to study NF-κB.

The chapter ends with a detailed overview of the extent to which the NF-κB
signalling pathway, in general, has been modelled, and more specifically the extent
to which the IL-1 stimulated NF-κB signalling pathway has been modelled. The
majority of these models have used mathematical descriptions (through ordinary
differential equations) and have been based on wet-lab biochemical data, thus
have utilised averaged dynamics. This final section begins with a discussion on
these equation based models, before progressing to agent-based models, which
have formed the basis of more recent work, a discussion of recent minimal models
that have been based on these previous models, and concludes with a discussion
around the need for a new computational model of the IL-1 stimulated NF-κB
signalling pathway. This chapter represents the domain of the CoSMoS process.

Chapter 4 - Domain Model of IL-1 Stimulated NF-κB Signalling Pathway

This chapter presents the domain model of the IL-1 stimulated NF-κB signalling
pathway, which will on the whole be modelled using the Unified Modelling Lan-
guage (UML) notation, but where UML is deficient will also utilise informal
cartoon diagrams. It also utilises a number of statistical techniques to model the
heterogeneity and temporal dynamics of wet-lab data, which UML is unable to
depict. This chapter represents the domain model from the CoSMoS process,
and provides critical reflections on the use of UML and statistical techniques for
domain modelling, thereby contributing to research objective 1.
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Chapter 5 - The Platform Model

This chapter presents the technical specification of the first iteration of the pro-
posed computational model in the form of a platform model (from the CoSMoS
process). As per the domain model, this is predominantly developed using UML,
but also includes diagrammatic notations that are specific to communicationg
X-Machines, which is the underlying technical architecture for the FLAME sim-
ulation framework.

Chapter 6 - Development and Calibration of the Simulation Platform

This chapter focuses on the technical aspects of constructing the first iteration
of the computational model. As the objective of this first iteration is to develop
a computational model that is calibrated to published wet-lab data, through use
of the FLAME simulation framework; any benefits, constraints, or limitations of
the FLAME simulation framework are documented here in order to investigate
its suitability for developing models of complex biological systems. The computa-
tional model associated with this chapter represents the simulation platform from
the CoSMoS process. Furthermore, this chapter addresses research objective 2
and 3, and contributes to research objective 7.

Chapter 7 - Experimentation using the Baseline Simulator

This chapter reports the results of novel in silico experimentation performed with
the baseline simulator, therefore addresses research objective 4. The simulation
results and subsequent data analysis form the basis of the results model from the
CoSMoS process.

Chapter 8 - The Augmented Simulator

This chapter focuses on extending the baseline computational model to incorpo-
rate the additional scope that has been defined for the second iteration. Specific
focus is applied to the augmentation of the computational model to incorporate
additional receptor complex components at the cell membrane. The chapter then
progresses to discuss novel in silico experimentation to predict the effects on sig-
nal transduction following perturbation of receptor complex formation at the cell
membrane. This chapter therefore reflects a second iteration of the CoSMoS pro-
cess, and defines the updated platform model, simulation platform, and results
model, along with further investigations on the suitability of FLAME for devel-
oping computational models of complex biological systems. As such, the chapter
addresses research objectives 5 and 6, and makes an additional contribution to
research objective 7.

Chapter 9 - Discussion, Conclusions and Further Work

This chapter concludes the thesis, and provides critical reflection on the work un-
dertaken, and research performed, within this doctoral research project. Three
key sections focus on: contributions to computational biology, including the fit-
ness of the FLAME simulation framework for modelling intracellular signalling
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pathways, and the fitness of the CoSMoS process in relation to this project; con-
tributions made to the NF-κB modelling community, and formal evaluation of
the research questions identified within the introduction chapter, and the thesis’
success in answering them; and future directions of research that result from this
thesis. In doing so, this chapter further contributes to research objectives 1, 3
and 7.

1.3 Thesis Contribution

This thesis contributes to the scientific research community in two main ways:
those reflecting a computer science bias, which are focused on the application of
computational approaches and software engineering principles to cell biology and
immunology; and those specific to NF-κB. These are summarised below, and are
also expanded upon in chapter 9, which concludes this thesis.

Contributions to the field of computational biology are as follows:

• Assessment of the ability of UML to define the domain model of the IL-1
stimulated NF-κB signalling pathway, and where limitations are found, the
ability of statistical techniques to plug these gaps (chapter 4).

• An interdisciplinary and collaborative calibration procedure, which was un-
derpinned by the transformation of single-cell analysis wet-lab data (from
the domain model) into desired ranges for output data (from the simulation
platform) of individual agent types (chapter 6).

• Build on the discussion by Read et al. (2012) of the necessity to establish
a calibrated baseline for the simulation platform, which has taken account
of the epistemic uncertainty of the underlying real-world biology, and the
aleatory uncertainty that arises through the stochasticity of the computa-
tional model (chapter 6).

• Development of a novel approach for using the Kolmogorov-Smirnov two-
sample test and the Vargha-Delaney A-Test for calculating the minimum
number of replicates required to ensure a stable median average of simula-
tion results. This was required because the previously published consistency
analysis technique by Read et al. (2012), could not be used due to the re-
source intensive nature of the FLAME simulation framework, making global
sensitivity and uncertainty analysis techniques intractable (chapter 6).

• Initiate a debate on the necessity for the computational biology commu-
nity to ensure a rigourous and robust statistical analysis is performed on
simulation results, in order to develop credibility with the wider scientific
community (chapters 6, 9 and Appendix B).

• Assessment of the suitability of the FLAME simulation framework to model
complex biological systems in general, and the IL-1 stimulated NF-κB sig-
nalling pathway in particular (chapters 5-8).

• Assessment of the CoSMoS process as a project lifecycle for computational
biology (chapter 9).
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In addition, the following contributions have been made to the specific field of
NF-κB:

• Review the existing literature around the complexity that is inherent to the
NF-κB signalling pathway; the way that computational approaches have
facilitated our increased understanding of the pathway; and justify the need
for a new computational model to extend our understanding even further,
with particular reference to the IL-1 stimulated pathway (chapter 3).

• Design and development of an agent-based model, calibrated to wet-lab
data at the single-cell level, through which in silico experimentation may
be conducted (chapters 5-8).

• Elucidation of the robust, yet fragile1, nature of the intracellular path-
way, with particular emphasis on the probabilistic nature of association
and basal-dissociation of the NF-κB-IκBα complex (chapter 7).

• Identification of the substantial robustness within the signalling pathway
with respect to the ratios between individual component numbers and their
associated interaction dynamics (chapter 7 and 8).

1See chapter 2. The term fragile in this context uses the systems biology definition, where the
concepts of robustness and fragility go hand-in-hand when used to describe characteristics of
communicating networks. For example, Albert et al. (2000) argue that biological networks dis-
play an unexpected degree of robustness, which allows their individual components to continue
to communicate even when under considerable presure from outside perturbations. However,
they continue by stating that error tolerance comes at a high price in that these networks
are extremely vulnerable to attacks that focus on certain key components within a network.
Kitano (2004a) takes this observation further by suggesting that there are trade-offs between
robustness, fragility, and overall system performance, and that these trade-offs can explain
system behaviour(s) under normal and dysregulated states, including the patterns of system
failure.
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2 Modelling and Simulation of
Biological Systems

During the latter half of the 20th century, biology was dominated by the reduc-
tionist approach, resulting in the examination of role and function of increasingly
smaller and smaller components within organisms. This approach has success-
fully generated a large amount of information about individual cellular compo-
nents and their functions. In fact, the past two decades have seen an acceleration
in reductionist approaches through emergence of high-throughput technologies,
leading to omic1 scale data sets. The resultant component-level information has
then been used in a ‘bottom-up’ attempt to infer the properties of the organism(s)
as a whole.

Reductionism has served well in the past, but a purely reductionist approach
is now openly questioned. A nice introduction to such questioning is Lazebnik’s
good humoured criticism in Can a Biologist Fix a Radio (Lazebnik, 2002). The
major drawback of the reductionist approach, which forms a consistent theme
through Lazebnik’s paper, is that it may promote overly simplified thinking, by
focusing on single levels of abstraction. Benoist et al. (2006) argue that this
results in the multiplicity of other influences on the chosen pathway being ig-
nored. As such, the emphasis is beginning to move towards a systems approach,
with analysis of complex systems using the data gained through reductionist ap-
proaches, but maintaining the context of abstraction level and scale. This ensures
that interpretations of the data take into account the different hierarchical levels
of living systems.

Traditionally, mathematical approaches were used to model the dynamics of
such complex biological systems, through for example differential equations, which
when solved, generate time-series dynamics at the system level. More recently
however, a number of computational approaches taken from the field of computer
science have been used that allow modelling at the level of the individual com-
ponents, and generate emergent system-level behaviour through the interactions
of the components. With particular reference to the immune system, this in-
terdisciplinary approach has led to the rapidly expanding field of Computational
Immunology.

2.1 Systems Theory

The idea that a theory could be constructed and used to explain the dynamics
of complex systems across multiple disciplines was first advocated by Ludwig

1Omic in this context refers to the very large number of measurements or extremely large
amounts of data collected from high-throughput experiments that look at genes (genomic),
proteins (proteomic), or metabolites (metabolomics).
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von Bertalanffy through discussions with his fellow biologists in the late 1920s
(von Bertalanffy, 1972). Along with von Bertalanffy, who came from a more
theoretical perspective, Norbert Weiner was also one of the early proponents for
system-level understanding, and his work led to the birth of cybernetics (Weiner,
1948). Following his early work, von Bertalanffy later went on to propose a
General Systems Theory (von Bertalanffy, 1950), where he advocates that the
reductionist approach should be extended to incorporate relationships between
components of a system so that judgements on the system as a whole, and not
components in isolation, may be made. He further postulated, that even though
the reductionist approach may provide complete explanations of all the individ-
ual processes within a complex system, without a more holistic view, we will be
unable to understand the integrated nature of the processes, and for example
would not be able to explain the total metabolism within a cell. The end goal
was to use mathematical terms for developing the general systems theory because
he believed mathematics to be an exact language that permitted rigorous deduc-
tions and confirmation (or refutal) of theory. von Bertalanffy (1972) states that
“a system may be defined as a set of elements standing in interrelation among
themselves and with the environment”. His general systems theory was conceived
as a working hypothesis, where theoretical models could be used to explain and
predict system-wide processes and events (von Bertalanffy, 1969). Furthermore,
during his latter years as a researcher, von Bertalanffy began to promote the
idea that systems theory provided the potential to ultimately ‘control’ system
responses, and highlighted how research into the control of biological systems
converges with network theory (von Bertalanffy, 1972).

Boulding (1956) built on von Bertalanffy’s initial work by suggesting that gen-
eral systems theory will become the ‘skeleton of science’, his emphasis was on bio-
logical sciences however, and he highlighted the importance of remembering that
functionality (e.g. homeostasis or growth) within these systems are multi-scale in
nature, moving from an atom to a cell, up through organs, and culminating with
an individual organism. Mesarovic (1968) subsequently built on this biological
systems theory when he merged control theory and molecular cell biology, and
formally developed the concept of systems biology. Furthermore, Barabasi (2003)
argues that in order to understand the inherent complexity within biological sys-
tems, it is essential that we move beyond the mere structure and topology of
the network of components, which only capture the ‘skeleton of complexity’, and
instead focus on the dynamics that take place along the links.

2.2 Network Theory

Investigators from many distinct fields, have over the past two decades discov-
ered that many networks, from the World Wide Web to metabolic pathways,
are dominated by a relatively small number of heavily connected nodes. These
heavily connected nodes are also known as hubs, and networks containing such
hubs, tend to be called ‘scale-free’, because such nodes have a seemingly unlimited
number of links and no node is typical of the others (Barabasi and Bonabeau,
2003; Albert, 2005). A reliance on hubs, depending on the system in question,
can have both advantages and disadvantages. For example, hubs provide a degree
of robustness to a given system, by providing resilience to random breakdown of
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nodes, however they also act as a point of fragility within the system, because if
the hub node breaks down, there is a high probability that the whole system will
be compromised (Kitano, 2004a, 2010).

Cells use complex networks of interacting molecular components to trans-
fer and process information. It is increasingly appreciated that the robustness
of various cellular processes is rooted in the dynamic interactions among its
many constituents (Bhalla and Iyengar, 1999), such as proteins, DNA, RNA
and small molecules. Barkai and Leibler (1997) advise that the “computational
devices of living cells” are responsible for many important cellular processes,
including metabolic pathways, signalling pathways and regulatory mechanisms.
Metabolism is ubiquitous in living cells, and due to the conversion of foodstuffs
into energy-rich molecules, is involved in essentially all cellular functions (Voet
and Voet, 1995). Signalling pathways allow living cells to sense, measure and
evaluate their environment, and to generate appropriate output responses. Sig-
nalling influences the cellular fate through initiation of one or more processes,
such as differentiation to a more specialised cell-type, replication, apoptosis (pro-
grammed cell death), or migration (Hancock, 1997). Signalling pathways have
traditionally been portrayed as linear chains of biochemical reactions and protein-
protein interactions, starting from receptors, which sense signals outside of the
cell, and progressing through intermediate components until they reach their ul-
timate target inside the cell, which is generally a specific region of DNA (Frank
et al., 2009). Finally, regulatory mechanisms ensure that the cellular components
involved in expression of genes following activation of signalling pathways are
tightly regulated (Palsson, 2011).

Cell biologists use visual representations of these networks, in the form of
graphs, to make sense of the myriad signal transduction cascades and metabolic
pathways. Graphs in this context, are mathematical diagrams consisting of nodes
to represent the system components, and edges to represent the links between
components (Diestel, 1997). In a protein interaction graph, for example, two
nodes (proteins) are connected by an edge if they interact physically. The inter-
pretation of a directed edge between two nodes (node A to node B) in a graphical
model is that an intervention on the first node (A) will alter the second node (B),
but that an intervention on the second node will not alter the first node (Blair
et al., 2012). Perhaps the most well known of all biological interaction graphs, is
the metabolic pathways map developed by Donald Nicholson in the 1960s, which
has now reached the 22nd edition (Nicholson, 2001).

Recently, however, it has emerged that more and more components are shared
by several pathways, and that these linear networks from individual pathways,
merge into large and complex interconnected networks when viewed from a sys-
tems perspective. Graph representations of biochemical and signal transduction
networks can be extremely useful for gaining systems-level insights into cellular
regulation. For example, the interconnected nature of these networks indicate
that perturbations of a single gene or protein within a pathway could have seem-
ingly unrelated effects to other pathways within the wider network (Albert, 2005).
Oltvai and Barabasi (2002) propose that we build on this approach and believe
that by viewing a cell as an interconnected network of genes and proteins, we
will be able to develop viable strategies for addressing the complexity of living
systems.

13



Chapter 2. Modelling and Simulation of Biological Systems

Despite the pivotal role that networks play within cell biology, until recently,
scientists have had little understanding of their structure and properties. It is
through the current drive towards systems biology approaches that we are be-
ginning to fill the gaps in our understanding. For example, recent research has
shown that scale-free networks exist among disease states (Frank et al., 2009),
and also uncovered a number of causes of diseases, such as cancer, based on the
malfunctioning of one or more nodes in complex genetic networks (Barabasi, 2009;
Kitano, 2004b, 2007).

2.3 Systems Biology

The concept attributed to Aristotle, that “the whole is more than the sum of
its parts”, suggests that dissecting an organism, tissue or cell into increasingly
smaller subunits and hoping to be able to piece it back together afterwards will
not work if the underlying mechanisms and relationships between these subunits
are anything but linear and static. While systems theory per se is hardly new,
having been based on the pioneering, although rather theoretical work of von
Bertalanffy (1950), and updated by Boulding (1956) to better reflect biology,
the notion of systems biology as the research approach that integrates biology,
medicine, computer science and technology to comprehend biological information
processing has recently been embraced by the scientific community at large. Un-
derstanding the nature of cause and effect is fundamental to all fields of scientific
investigation, but the concept of causality can present special difficulties in biol-
ogy (Mayr, 1961). Biological systems possess a high degree of complexity, with
the role of their constituent components not only being defined by their individual
function, but also by their interaction with other components (Kitano, 2002b).
The field of systems biology is concerned with understanding this complexity
by focusing on the interactions between the various components of living cells.
There is debate within the scientific community on the exact definition of systems
biology (Priami, 2009), however in general, it is the term used for the scientific
approaches which discover, model, and understand the dynamic relationships be-
tween the molecules that define living organisms at the genetic and molecular
levels, and to understand the emergent properties that emanate from these in-
teractions (Banga, 2008; Weston and Hood, 2004). Therefore, a systems biology
approach aims to understand how biological systems function at the system level
by studying at different abstraction levels the relationships and interactions be-
tween various parts (e.g. organelles, cells, metabolic pathways, and cell signalling
cycles), and produce results as close as possible to the dynamics and/or behaviour
of the biological reality (Corradini et al., 2005; Wolkenhauer, 2001). It uses an
integrative approach, combining experimental and computational techniques to
identify the molecular mechanisms underlying the properties and behaviours of
complex biological system (Mardinoglu and Nielsen, 2012).

2.3.1 Complexity

Biologists study various aspects of cells, and as stated earlier, have traditionally
analysed them in greater and greater detail through a reductionist approach. As
a convention, there are three standard levels described in biology textbooks: 1)

14



2.3. Systems Biology

cellular structure, 2) cellular function through metabolic processes, and 3) genetic
processing (Alberts et al., 1994; Voet and Voet, 1995). If we think of systems
theory as the study of organisation and behaviour, it may be natural for us to
consider systems biology as the application of systems theory to these three lev-
els of cellular function. Through work linking these different abstraction levels
together, it is becoming clear that even though the composition of living cells
is complex, the number of distinct behaviours (i.e. their phenotypes) that they
display is much fewer. Consequently, the principle of simplicity from complexity
is emerging from decomposition of gene expression data and from temporal de-
composition of complex metabolic models, which show that there are only a few
governing dynamic determinants (Palsson, 2000).

Cell function emerges through the control of dynamic intracellular processes
that both interact amongst each other (in a given network) and also respond to
extracellular signals (Rajapakse et al., 2012). Genetic and metabolic networks are
the two main targets of systems biology, because they control the fundamental
mechanisms that govern biological systems. In essence, physiological behaviour
emerges through the interactions between transcripts, enzymes, and metabolites,
which form the constituents of metabolism and regulatory networks (Sauer, 2006).
Both genetic and metabolic networks are highly complex, and consist of exten-
sive feedback regulation for the coordination of cell function (Wolkenhauer and
Mesarovic, 2005). Feedback loops imply before and after states, which mean
that any understanding of cell function should be based on the premise that a
cell is a dynamic system. The concept of feedback is one of the most funda-
mental methods of control in biological systems. An increase in the number of
interconnecting cycles in a cascade, or amplification through positive feedback,
increases the sensitivity of the target to the input signal, but may also change
steady-state responses and therefore facilitate the occurence of instabilities. Neg-
ative feedback on the other hand may instil a degree of robustness to parameter
variations within the feedback loop (Kholodenko, 2006). An important feature
of feedback in biological systems, which has consequences for the stability of sig-
nalling processes is that it is often subject to a delay owing to the time taken to
translocate molecules between the various cellular compartments (Wolkenhauer
and Mesarovic, 2005). This control of signalling pathways aligns well with the
physical sciences, as feedback control is a basic engineering strategy for ensuring
outputs of a system robustly track the desired value, independently of noise or
variations in system parameters (Yi et al., 2000).

Biological cells include numerous examples of constituent components whose
behaviours are regulated, often at multiple levels. A prime example is the reg-
ulation of gene transcription, and one protein complex that is involved in this
regulation of function is the nuclear transcription factor-kappa B (NF-κB), which
is itself regulated by a suite of enzyme reactions on associated molecules within
its signalling pathway, and indeed promotes the transcription of its own inhibitor
(Hoffmann et al., 2002). Cells closely regulate all such enzyme systems, and the
NF-κB complex can readily be converted between an inactive complex and an ac-
tive complex by association and dissociation of inhibitor of kappa B (IκB). Only
when the NF-κB complex is in its active form does it actually bind to the cognate
binding sites (DNA enhancer and promoter sequences) and promote gene tran-
scription within the nucleus (Wirth and Baltimore, 1988). All of the biochemical
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reactions upstream of NF-κB activation involve physical changes at the molecular
level. The various enzymes involved in the signalling pathway subtly change the
shape of proteins through glycosylation or through addition or removal of phos-
phate groups, for example. The latter mechanism facilitates the degradation of
IκB, which creates ‘free’ NF-κB. Additionally, complexity becomes evident when
it is realised that the individual enzymes (e.g. kinases and phosphatases) involved
in the signalling pathway are in turn regulated (at least in part), by the degree
of external stimulus to the cell, which activate cell membrane receptors (Karin
and Ben-Neriah, 2000).

2.3.2 Modularity

In engineering, a module is defined as a “functional unit that is capable of main-
taining its intrinsic properties irrespective of what it is connected to” (Sauro,
2008). This is an extremely important abstraction, because it allows engineers to
think of these functional units as building blocks, which may be joined together
to form systems that display predictable behaviours. With this in mind, modu-
larity can be thought of as either representing the dismantling of a system into
its constituent parts (in line with the reductionist thinking of biochemistry and
molecular biology), or the recomposition of the entire system from its compo-
nents (Luttge, 2012). Although quite a general definition, this applies to biology
because biological systems often reuse certain components (modules) in multiple,
and sometimes very different, applications (Navlahka and Bar-Joseph, 2011).

From a biological perspective, the concept of modularity assumes that func-
tionality within the organism can be divided into groups of components (often
proteins) that perform logically separable tasks, but work together to achieve
some well-defined overall function (Ravasz et al., 2002; von Dassow and Munro,
1999; Yook et al., 2004). In this way, a module may be thought of (at a high-level)
as a biological entity (a structure, a process, or a pathway) that is delineated from
other entities with which it interacts. A consequence of this modularity is that
the number of interactions between modules (intermodular connections) is low
compared to the number of interactions within a given module (intramodular
connections) (Bruggeman et al., 2002). The exact definition of a module within
systems biology however is context dependent: a computational biologist inter-
ested in network theory may view modules as loosely linked clusters of highly
connected nodes, whereas a biochemist or cell biologist may see parts of the cell
machinery as semi-autonomous modules.

Kitano (2001b) builds on these general definitions by advising that modular-
ity also reflects hierarchical organization of the system. With this in mind, the
hierarchical organization of modularity within biological systems can be consid-
ered to contain four main levels: individual components that can be deemed
the elementary units of the system; devices, that provide a minimum unit of
functional assembly; modules that comprise clusters of devices; and the system,
which is the top-level assembly of modules, and depending on perspective can be
a cell or the entire animal. Following this hierarchical organization, we can move
from individual genes or proteins (components), to co-expressed genes or multi-
protein complexes within signal transduction pathways (devices), to metabolic
or signalling pathways (modules), and culminating with a cell, organ, or entire
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organism (the system). In this way, the intractability of looking at all aspects
of a system simultaneously, may be overcome by the simplification that results
from applying modularity, as the system-wide behaviour can be considered as the
sum of all modular responses (Bruggeman et al., 2002). Furthermore, the physi-
cal partitions from such hierarchical organization provide a degree of robustness
to the system. Individual modules may be perturbed, however the effects are
generally localised, with limited propagation of perturbations to other modules
(Lorenz et al., 2011). Modularity therefore ensures that damage to lower levels of
the hierarchy does not spread throughout the entire system, and thus mitigates
the risk of system-wide failure resulting from an individual, localised perturbation
(Kitano, 2001b).

2.3.3 Robustness and Fragility

Kitano (2007) advises that complex biological systems, which have evolved to be
optimal, have a robust yet fragile nature. Robustness in the context of systems
biology is the ability of a biological process or system to withstand or over-
come perturbations, and thus maintain stable functionality of the system (Ki-
tano, 2004b). For a system to initiate a response to a perturbation, information
about the perturbation is required to spread within its network. The short path
lengths of biological networks (metabolic, signalling, and protein interaction) is
an extremely important feature, which facilitates fast and efficient reactions to
perturbations (Albert, 2005).

A system is robust as long as it maintains functionality, which within biol-
ogy commonly entails a state transition through a new steady-state when facing
stress conditions (Kitano, 2007). The mechanisms and components that pro-
mote robustness for a system, often provide the ability to maintain functionality
against a large variety of common perturbations, such as mutation, toxins and
environmental changes, but unfortunately may also introduce fragility of the sys-
tem to other, less common perturbations (Carlson and Doyle, 2002; Csete and
Doyle, 2002). This has been termed highly optimized tolerance by Carlson and
Doyle (1999), who propose that optimally robust systems are those that provide
a high degree of robustness towards common perturbations, but unfortunately
incur catastrophic failures when some rare variations of events occur (Carlson
and Doyle, 2000).

Complex biological systems, in particular the immune system, are successful
if they are robust against a wide range of external and internal perturbations.
It would however be both impractical and indeed undesirable for systems to be
robust to every change in external and internal conditions. For example, as Mo-
rohashi et al. (2002) state, “a system should be sensitive to particular types of
variation in inputs, otherwise it would not respond to anything!”. Examples of
system properties used in biological systems to maintain robustness include: tol-
erance of stochastic fluctuations in the dynamics of protein-protein interactions,
resilience to fluctuations in protein concentrations, tolerance of stochastic noise,
and adaptation to external signals and stimuli (Kitano, 2004b). These features
of robustness are enabled through feedback control systems (whether positive or
negative) in order to facilitate homeostasis; functional redundancy, via cellular
heterogeneity and the use of functionally equivalent modules that can substitute
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for each other; modularity, which prevents propagation or amplification of local
perturbations (within a module) to other parts of the system (Kitano, 2007); and
structural stability, to physically contain physiological effects (Kitano, 2004b).

Along with these features of robustness within complex biological systems,
there is a specific network architecture commonly observed in biological interac-
tion networks, called a bow-tie motif (Csete and Doyle, 2004). The bow-tie motif
has been found in various subsystems of living organisms, including metablic
networks, signalling networks and the immune system (Kitano, 2007). It is com-
posed of a highly conserved, and often robust core (the hub), connected by diverse
and redundant input and output subnetworks, potentially including a variety of
feedback control loops (see figure 2.1). Csete and Doyle (2004) and Barabasi
and Oltvai (2004) argue that such network architectures provide the biological
system with robust and flexible responses to various effector molecules (both
stimulatory and inhibitory) due to the high degree of redundancy in input and
output modules. However, Albert et al. (2000) and Kitano (2007) also argue that
the architecture is also inherently fragile in response to alterations in the network
hub, as these molecules may not be redundant, or may not be controlled through
regulatory feedback.

Figure 2.1: Example architecture of the bow-tie motif, which is commonly seen within
complex dynamical systems. Here specific emphasis has been given to signalling net-
works, with a diverse range of environmental stimuli being identified outside of the cell,
a centralised signalling pathway being initiated within the cell, and finally a plethora
of physiological responses enacted. After Csete and Doyle (2004).
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2.3.4 The Systems Biology Project Lifecycle

The merits of following a systems approach to biological research have been dis-
cussed in depth by Kitano (2001a, 2002b, 2004a), with his project lifecycle dia-
gram having the potential to become the classic diagrammatic representation of
how systems biology is underpinned by a hypothesis-driven research cycle (figure
2.2). Here, research begins through selection of a complex biological system with
underlying questions that need answering, and the development of a data-driven,
computational model that represents the system. In this respect, a model is a
partial representation of the system, that can be used to identify which features
are essential. Noble (2002) advises that partial representations of systems are es-
sential, because if a model provided a complete representation, we would be left
“just as wise, or ignorant as before”. Following development of the model, com-
putational in silico experiments (termed “dry” experiments by Kitano, as they
occur in a computer and not the wet-lab), such as simulation, are then performed.
Simulation attempts to predict the dynamics of systems, so that the validity of
the underlying assumptions behind the models can be tested. Any necessary
refinements to the model are made iteratively until the model is believed to be
consistent with the biological system in question (and at the appropriate level of
abstraction). Once the computational model is deemed fit for purpose, having
survived the initial validation, it can be used to generate predictions for further
wet-lab based experiments, and to explore questions that are not yet amenable
to wet-lab experimental inquiry2. The cycle is completed through comparison
of the results of these wet-lab experiments with the predictions from in silico
experimentation.

Over the past twenty years, a systems biology approach to research has be-
come more widespread, with researchers in the biological sciences increasingly
using computer models and simulations to better understand intercellular (be-
tween cells) and intracellular (within cells) processes of living organisms (Gier-
sch, 2000; Tieri et al., 2005; Young et al., 2008). One of the main strengths of
the systems biology approach is that it focuses on three key properties of com-
plex systems: 1) system structures, 2) system dynamics, and 3) system control
(Ideker et al., 2001). As discussed above, before a computational model can be
developed, an initial degree of understanding is required of the system’s struc-
ture and dynamics. Such understanding can be based around the network of gene
and metabolic interactions inherent in the system, as well as the mechanisms by
which these interactions modulate the physical properties of intracellular and
multicellular structures; or indeed how the system behaves over time under var-
ious conditions, and through identification of essential mechanisms underlying
specific behaviours. Once the model is developed, and confirmed through testing
to be a reasonable approximation to the real system, simulations may be per-
formed that apply various perturbations to the system so that an understanding

2An example of predictions made through in silico experimentation that are not yet amenable
to wet-lab experimental inquiry is the work of Williams et al. (2013). Here they used in silico
experimentation to develop hypotheses of dendritic cell mediated regulation of CD8 Treg cells
within murine Experimental Autoimmune Encephalomyelitis. The wet-lab technologies have
not yet developed sufficiently for these hypotheses to be tested, however this in no way reduces
the quality of the work, or its benefits towards increasing our understanding of the intercellular
dynamics leading to disease propagation and ultimately spontaneous recovery.
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of the mechanisms controlling the state of the system may be ascertained. Once
this latter goal is achieved, we may harness this knowledge to control the system
through modulation of system states. It is hoped that through such an ability
to control system states, we may be able to minimise malfunction and provide
therapeutic targets for treatment of disease (Weston and Hood, 2004). Kitano
(2000) believes that the future will transform biology and medicine into preci-
sion engineering through the use of systems biology and computer engineering to
design novel drugs as therapeutic treatments.

Figure 2.2: The hypothesis-driven research cycle in systems biology from Kitano
(2002b). Here Kitano advocates that systems biology research begins with the de-
velopment of a computational model of a complex biological system of interest, which
has questions that need answering. The model is tested through simulation against
biological data and underpinning assumptions, updated as necessary, and then used to
perform in silico experiments. Results of which are then used for hypothesis generation,
and the design of new wet-lab based experiments. Following wet-lab experimentation,
the results of the two approaches are then compared to test the predictions from in sil-
ico experimentation. Additionally, these wet-lab experiments may yield new facts/data
for use in augmenting the model, with the cycle continuing on an iterative basis.

2.4 Computational Biology

Advances in experimental approaches are expected to continue, however insights
into the functioning of biological systems will not result from purely intuitive
assaults alone, due to their intrinsic complexity (Kitano, 2002a). Navlahka and
Bar-Joseph (2011) argue that biological processes can be considered algorithms
that nature uses to solve problems, and that we can better understand their
properties by viewing them as information processing units. Recently, the sys-
tems biology approach, through harnessing advances in computer software and
computational power, has enabled the creation and analysis of reasonably realistic
computational models of biology. Models in this context are partial representa-
tions of biology, whose purpose is to facilitate a deeper understanding of the
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underlying biological system, through for example, identifying which features of
the system are necessary and sufficient to understand it (Noble, 2002). Kholo-
denko (2006) discusses how computational models based on networks, aim to
create in silico replicas that provide a framework for estimating the temporal
dynamics of causal relationships. An example where such computational models
are proving essential for advancing our knowledge of system dynamics is regula-
tory feedback (either positive or negative) within biological networks, along with
the phenomena of combinatorial complexity3, which often makes it difficult to
manually predict the various implications of hypothetical perturbations to the
network (Chakraborty and Das, 2010). Furthermore, Blair et al. (2012) advise
that computational models of biological networks can be used to perform in silico
experimentation to predict responses to genetic and environmental perturbations.
This approach of using computational models to further our understanding of the
underlying biology has been termed Computational Biology.

There are many analogous features between biological systems and engineered
computational systems. Firstly, like large-scale computing infrastructures, bio-
logical systems are distributed in nature, consisting of molecules, cells or organ-
isms that interact, coordinate and make decisions without central control (Seeley,
2002; Babaoglu et al., 2006). Secondly, just as computing systems are designed
with fault tolerance in mind, biological processes also need to be robust, in or-
der to successfully manage external threats and internal failures (Jeong et al.,
2000; Kitano, 2004a). Thirdly, both biological and computational networks are
necessary structures for the propagation of information (Alon, 2006) throughout
the systems to elicit relevant responses. Fourthly, in a similar way to the design
of object-oriented computer systems, biological systems are often modular, hav-
ing the capability to reuse certain components on multiple, and sometimes very
different applications (Navlahka and Bar-Joseph, 2011). Finally, as with com-
putational systems that employ pseudo-random number generators, biological
systems often comprise a number of stochastic processes (Kaern et al., 2005).

In general, the term computational biology can be defined as the study of how
computers and computational techniques are used to address issues relating to
biological structure and function. The precise definition however is a matter of
some debate, with the most narrow usage refering to the creation and manage-
ment of biological data, and the most broad usage covering all applications of
computers for solving problems in biology (Altman, 1998). In practice however,
computational biology can be thought of as having two distinct branches: knowl-
edge discovery or data-mining, which is also known as bioinformatics, and tries
to generate hypotheses by extracting the deep underlying patterns from massive
experimental datasets; and simulation-based analysis, which tests hypotheses us-
ing in silico experimental approaches, to generate predictions for testing through
additional in vivo (within a living organism) and in vitro (outside of a living or-
ganism) experimentation (see Kitano’s hypothesis-driven research cycle in figure
2.2). These theoretical investigations use programming languages to encode algo-

3Combinatorial complexity relates to network topologies where individual components are
linked to more than two other components. In such instances an individual component may
be connected to one or more input components and one or more output components. Any
increase in the total number of components, results in an even greater increase in the total
number of connections within the network. Within biological networks, this increase in total
connections often follows non-linear dynamics.

21



Chapter 2. Modelling and Simulation of Biological Systems

rithms4 that can be used to further our understanding of the temporal, spatial and
causal aspects of biological systems (Priami, 2009). Wada (2000) believes that
through the use of computational models, the biological sciences will be trans-
formed from a data-driven to a model-driven enterprise. Furthermore, Kitano
(2004b) and Slepchenko et al. (2002) believe that the theoretical investigations
(through in silico experimentation) into the underlying cellular dynamics of bio-
logical systems, followed up by verification in actual biological systems, needs to
be promoted as a new aspect of the scientific method.

Modern computer architectures and modelling frameworks can monitor and
record every possible event that could occur within a hypothetical network model
and uncover how particular network perturbations may influence overall network
dynamics. Computational models can therefore be useful tools for exploring the
behaviours and dynamics of biological systems, especially the networks that un-
derpin these systems (Andrews and Bray, 2004). Through in silico investigations,
these models provide a relatively easy mechanism for testing complex hypotheses
of how complex low-level system dynamics result in the myriad of system-wide
behaviours. For example, Noble (2006) describes a multi-scale computational
model of the heart, that utilises the low-level interactions of protein biochemistry
and through aggregation up the component hierarchy (protein to cell to tissue
to organ) simulates organ-level physiology. The Physiome Project5 is taking this
approach further by developing a framework for modelling the entire human body
using computational approaches (Bassingthwaighte, 2000). The range of spatial
and temporal scales is too great for a single model, therefore the project aims
to develop multiple computational models incorporating biochemical, biophysical
and anatomical data relating to cells, tissues and organs, and it is expected that
these will be linked (via aggregation of lower-level sub-system dynamics) to al-
low simulation of the entire human body (Hunter and Borg, 2003; Hunter et al.,
2006).

2.5 Computational Immunology

The discipline of computational biology is vast, encompassing all fields of biology
which have synergistically joined forces with computer science. Just as biology
can be broken down into sub-disciplines, such as cell biology, biochemistry, im-
munology, etc, a growing speciality within the discipline of computational biology
relates to the immune system, and has been termed computational immunology.
Like all scientific disciplines, breakthroughs in immunology are driven by experi-
mental observations. These observations provide the ability to record facts that
can be integrated into hypotheses and theoretical models, which are amenable to
further experimental tests (Chakraborty et al., 2003).

The immune system provides our primary protection mechanism against invad-
ing organisms (e.g. bacteria, viruses, fungi, or other microorganisms) and cells
that have become uncontrollably changed (Perelson and Weisbuch, 1997). It is
a highly concurrent system, with changes in the surrounding environment hav-
ing the potential to trigger multiple parallel processes. An example is that a

4These algorithms can be solved if encoded within a mathematical equation, or simulated if
encoded within a simulator

5http://www.physiome.org
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cell carries out multiple tasks in parallel, which may relate to the immunological
state, the phase of the cell within its cell-cycle, and the cells anatomical location
(Kam et al., 2001). Furthermore, the immune system functions over multiple
hierarchies, locations and timescales, which involve feedback to fine-tune the ap-
propriate defensive response (Murphy et al., 2008).

Defects in the detection of pathogens, signal transduction following pathogenic
attack, or cessation of the resulting immune response, form a number of the under-
lying causes of many diseases, and a greater understanding of these defects may
facilitate a therapeutic treatment. With this in mind, diseases can be viewed as
the malfunction of system robustness under normal physiological dynamics, and
re-establishment of robust and progressive disease states (Kitano, 2004b). One
reason for understanding these immune response (or disease state) network dy-
namics is to adapt system-wide control (i.e. alter the systems robustness under a
diseased state) for the design and development of therapeutic drug interventions
(Kitano, 2004b). Indeed, faulty receptors controlling signalling pathways can
be targeted with antibody drugs, whilst the individual components of signalling
pathways inside the cell are often targeted with small-molecule drugs (Kumar
et al., 2006). Finding such fragilities within systems that demonstrate a diseased
state, requires an in-depth understanding of the dynamics of the gene regulatory
and biochemical networks of the cells. It must be stated however, that most
diseases are far too complex to be determined by the activity of a single rogue
component (Aksenov et al., 2005). Due to the complexity of the immune system
containing parallel tasks, multiple locations and diversity of cells and signals;
computational immunology is becoming an essential component of modern im-
munological research and drug discovery. It aims to study the complex cellular
and subcellular interactions and networks, to elucidate a better understanding
of immune responses and their role during normal, diseased, and reconstituted
states (Tong and Ren, 2009), and ultimately to capture systematically the effect
of a given intervention strategy on complex molecular networks.

The complexity of the immune system due to it spanning multiple levels (genes
up to whole organisms), time scales (subsecond through lifetime), the large num-
ber of components (genes, proteins, cells, organs), and stochastic events, makes
it difficult to build simple models. Computational approaches to modelling have
a lot to offer towards this end, as techniques such as agent-based modelling and
simulation allow models to be developed at varying levels of abstraction, and are
able to generate bottom-up system dynamics over a number of hierarchies. Com-
putational models of immunological responses and disease take a systems biology
approach to understand the underlying complexity of the normal and abnormal
system dynamics (Dancik et al., 2010). Furthermore, computational modelling
provides an opportunity to integrate data generated from multiple types of exper-
imentation, to perform a kind of meta-analysis targeted to the immune response
in healthy and diseased states (Kleinstein, 2008).

Models and simulations are generally based on the tools available at the time,
and early examples used cellular automata for the simulation of the humoral
immune system (Seiden and Celada, 1992) and dynamics of HIV infection (dos
Santos and Coutinho, 2001), differential equations to model immune responses to
HIV (Perelson and Nelson, 1999), and development of a network of immune sys-
tem cells using petri nets (Ootsuki and Sekiguchi, 1999). With the advances over
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time to computing power, hardware (particularly graphics), and the widespread
use of object-oriented programming languages, immune system models evolved
to utilise parallel processing through advanced cellular automata (Bernaschi and
Castiglione, 2001), and more recently agent-based modelling and simulation. Ex-
amples of the latter include a model of immune system interactions (Kleinstein
and Seiden, 2000), a simulation depicting the dynamics of thymocyte development
(Efroni et al., 2007), and the use of a simulator to perform in silico experimen-
tation with an animal model of Multiple Sclerosis (Williams et al., 2013).

Although it is still very early in the lifetime of computational immunology, the
examples above indicate that computational models can be useful complements
to genetic and biochemical experiments. We expect these successes will encourage
further collaborations between wet-lab experimentalists and computer scientists,
aimed towards elucidation of the complex biology of cells. The development of
computational models of infection and disease, and their response to computer
generated perturbations allow the initial testing of hypotheses to be performed in
silico, which may then be validated through subsequent wet-lab experimentation.
Petrovsky and Brusic (2002) suggest that this offers the ability to accelerate the
drug discovery process relating to therapeutic treatment of diseases, by reducing
the number of potential hypotheses of drug targets through in silico experimen-
tation, to yield only those hypotheses with the greatest probability of success
during laboratory-based research and development, and resultant clinical trials.

The examples presented here illustrate the power of computational approaches to
complex immunological problems, however we believe there to be difficulties in
modelling the inherent scale of the immune system. To the best of our knowledge,
we are not aware of a model that has seemlessly passed information from one
level to another, building up a hierarchy analogous to the human body. Gary
An developed a multiscale model of acute inflammation6 through the NF-κB
signalling pathway (An, 2008), however upon close inspection it appears that the
model was in fact a proof of concept, which positioned an architecture based on
a set of separate models, developed at different levels of abstraction and linked
together in a hierarchical fashion. The first level was that of individual cells
within an immune response, notably endothelial cells, blood-borne inflammatory
cells, and epithelial cells. The second level was that of an organ, the examples
used being the gut, lung and the pulmonary system. Finally, the third level was
deemed the whole human body, although this was not visualised in the model, as
it consisted of the cumulative effects of the organs. A detailed inspection of the
model design shows that the organs are linked in a pair-wise manner, and resulting
cell dynamics are confined to movement between these two organs. As such, the
model does not represent a true multiscale hierarchy, as it does not conform to
the pyramid of life proposed by Oltvai and Barabasi (2002), but instead operates
at the level of a set of boundaries between pairs of organs, and therefore could
be thought of as more of a sandwich than a pyramid. We believe that this work
provides a useful incremental step towards the goal of multiscale modelling of
the immune system, but conclude that there is still plenty of work to do in this

6Inflammation is a hallmark of many human diseases, and is a localised physical reaction to
injury or infection. Elucidating the mechanisms of uncontrolled inflammation has long been a
key aim of immunological research (Chen et al., 2008).
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area. Indeed, a workshop held in Tokyo and consisting of systems biologists and
representatives of the pharmaceutical industry laid down a grand challenge to
create a ‘virtual human’ within the next 30 years (Jones, 2008).

2.6 Computational Modelling

The last half of the twentieth century saw phenomenal use of, and indeed success
with, the reductionist approach. This success comes at a cost however, and has
resulted in the prodigious challenge, which the first branch of computational bi-
ology (knowledge generation and data-mining) may be able to help with. Indeed,
the challenge from the huge amount of data generated was neatly summed up by
Denis Noble in 2002 when he asked what do all those data mean?. With regards
to the second branch of computational biology (modelling and simulation), it ap-
pears that the notion of modelling a biological process computationally is almost
as old as the electronic computer itself. Alan Turing, in 1952, modelled the move-
ment of chemical substances (which he termed morphogens) within a cell, along
with a number of basic chemical reactions associated with these morphogens, and
their diffusion across the cell membrane into other cells. Turing defined the state
of the system and how the state of an individual cell is determined by using the
state at a moment very shortly before. He modelled the chemical reactions using
linear differential equations, and when certain conditions were met regarding a
cell’s morphogen composition and concentrations, the cell’s state changed.

The complexity of systems now under consideration, along with the technical-
ities of the experiments and the non-linear nature of biochemical and molecular
interactions make it necessary to use computational modelling in the pursuit of
furthering our understanding of biology (Wolkenhauer et al., 2005). Computa-
tional models allow us to gain insights into the complex relationships between the
extracellular stimuli, the intracellular reactions, and the overall cellular responses.
They also provide an avenue for us to predict the mechanisms that are responsi-
ble for signal amplification, noise reduction and discontinuous bistable dynamics,
through for example feedback inhibition. It is believed that an increased under-
standing of protein, gene regulatory, and signalling networks will help identify the
critical controlling factors of human diseases (Kholodenko, 2006), in particular
complex diseases that cannot be mapped to a single gene or component, and that
this information will improve drug development efforts and ultimately lead to
preventive drugs (Weston and Hood, 2004). Sontag (2005) argues that cells can
be thought of as comprising a large number of subsystems that are involved in
various processes such as cell growth and maintenance, division, and death, and
that the study of these simpler subsystems is a first step towards understanding
the emergent properties of the cell as a whole. Along with a focus at the intra-
and inter-cellular levels to identify the controlling factors of diseases, modelling
efforts for drug discovery and development must also simulate responses at the
tissue or organ level, and as such are required to cover multiple hierarchies of
biological function. Multiscale models are however difficult to develop as they
require the efficient integration of molecular, cellular and organ levels within a
single model, which can require very large amounts of computational resources
using current software platforms. Furthermore, there are limitations in the ex-
tent of our bottom-up knowledge, hence our use of computational models as tools
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to extend our understanding; but also a lack of standardised experimental data
(i.e. using similar wet-lab methodologies and reagents) to validate these models
(Butcher et al., 2004). Agreement between the computational model and the true
underlying biology is a central goal of systems biology (Kitano, 2002a).

A variety of modelling approaches have been used within the systems biology
community to study complex biological systems. The quality of such models
is invariably related to the quality, completeness and detail of the data avail-
able (Giersch, 2000), and indeed the data will usually drive the approach to be
taken for modelling, e.g. a diagrammatic versus mathematic versus agent-based
approach. Traditionally, diagrammatic approaches have been used for modelling
biological systems, as they allow an easy and intuitive method for conceptualis-
ing our understanding of component interactions and hyothesising the underlying
mechanisms of system behaviour. Diagrammatic approaches suffer however from
the fact that they depict static representations of the system, and are therefore
unable to suitably convey dynamic representations of the system in time and
space. Other computational modelling approaches can be used to overcome these
limitations, and are providing increasingly powerful approaches that allow us to
elucidate underlying functional principles relating to the dynamics of biology.

In the context of systems biology, computational modelling can be divided into
two broad categories based on the way in which they describe system dynamics -
continuous or discrete event. The first category aims to convert a detailed concep-
tual model of the system in question (e.g. signalling pathway) and the measured
values of parameters (e.g. protein concentrations and chemical reaction rates) to
a computational model that may be used to evaluate quantitative hypotheses,
and generally use mathematical models (Chakraborty and Das, 2010). The sec-
ond category is more qualitative in nature and aims to study the mechanistic
behaviour of systems, and to generate new hypotheses for currently unexplained
phenomena. This latter category uses simulation-based approaches, and focuses
on the dynamics and interplay between biological components (such as cells,
tissues and organs) using a holistic approach rather than reductionism, which
typically excludes information regarding time and space (Ahn et al., 2006). This
rule-based approach provides the advantage of being able to distinguish individ-
ual components (e.g. cells and molecules) through their location, developmental
states, and specificities, whereas equations limit you to a homogenous popula-
tion (Woelke et al., 2010). Through the translation of biological knowledge into
equations or rules, a framework becomes available upon which descriptions, and
ultimately understanding of the system can be developed (Kirschner and Linder-
man, 2009). Furthermore, by extending and integrating the effects of assumptions
made in these mathematical and rule-based models at various levels of biological
organisation (e.g. cell, organ, organism, or population), these approaches allow
us to visualise hypothetical scenarios across time, space and hierarchies (Wilder-
muth, 2000).

2.6.1 Diagrammatic Modelling

Perhaps the simplest models of complex biology are diagrammatic in nature. Fol-
lowing on from early work visualising bicohemical pathways by joining individ-
ual enzyme-catalyzed reaction components, such as the citric acid cycle (Krebs,
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1940), and the consolidated network diagram of Nicholson (2001), a number of
new approaches have been used since the 1990s which have borrowed standardised
diagrammatic languages from computer science. One such standard is the Unified
Modelling Language (UML)7, which although originally developed to document
technical requirements for the analysis and design of computer systems (Booch
et al., 1998), has recently been used to model complex biological systems. The
UML specification (version 2.4) (Object Management Group, 2011) states that
“The objective of UML is to provide system architects, software engineers, and
software developers with the tools for analysis, design, and implementation of
software based systems as well as for modelling business and similar processes”.
The UML specification defines 14 separate diagramming notations, split across
three main groups: structure diagrams, which show the static structure of compo-
nents within a system; behaviour diagrams, which show the dynamic behaviour(s)
of components within a system; and implementation diagrams, which show the
hardware and software infrastructures within a system (see figure 2.3).

Figure 2.3: Taxonomy of UML diagramming notations (after Object Management
Group (2011)). Structure diagrams show the static structure of the components within
a system, and comprise: Class, Composite Structure, Package, Profile and Object dia-
grams. Behaviour diagrams show the dynamic behaviour of the components within a
system, and comprise: Activity, Sequence, Communication, State Machine, Use Case,
Interaction Overview, and Timing diagrams. Finally, implementation diagrams com-
prise Component and Deployment diagrams.

Webb and White (2005) and Bersini et al. (2012) argue that the principles of
object-oriented analysis and design inherent in UML can be directly applied to
the top-down modelling of cells, and bottom-up modelling of metabolic pathways
and cell signalling cycles. Examples of models that use UML include Kam et al.
(2001) who modelled T-cell activation using statecharts, which are the forerun-
ner to UML’s state machine diagram notation, and Webb and White (2004) who
extensively used UML to model the structure of a cell, by representing the re-
lationships/hierarchies and composition of various biological components, along

7UML is maintained by the Object Management Group, and is available from www.uml.org
Two useful books on the UML notations are (Fowler, 2004) and (Arlow and Neustadt, 2009).
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with a generic enzyme-catalysed biochemical reaction. Similarly, they later used
UML to graphically design an executable model of a simple biological control
system in which an enzyme (glycogen phosphorylase) continuously transforms
glycogen into a more readily usable sugar (Webb, 2007). More recently, UML
has been used to model the intercellular interaction network of Experimental Au-
toimmune Encephalomyelitis (an animal form of Multiple Sclerosis) (Read et al.,
2009a, 2014), the differentiation of T-cells during their normal lifecycle (Bersini
et al., 2012), and as part of the design process for an agent-based model of tissue
formation in the lymphoid organ (Alden et al., 2012; Patel et al., 2012).

Following on from the early days of visualising biological systems using UML,
there has recently been considerable activity around diagrammatic notations in
biology. A number of key advances have been: molecular interaction maps, which
have been used to model a generic G-protein coupled reaction at the plasma
membrane (Kohn et al., 2006); Biocharts, which have been used to represent
bacterial movement through chemotaxis (Kugler et al., 2009); and the Systems
Biology Graphical Notation (SBGN, (le Novere et al., 2009)), which extends the
principles inherent in UML and has been used to diagrammatically model the
Toll-like receptor network (Oda and Kitano, 2006), the mTOR signalling network
(Caron et al., 2010), and NF-κB related interactions (in supplementary figure 3
of le Novere et al. (2009)).

Of these newer diagrammatic notations, we believe that the SBGN has the
most potential to rival UML as the language of choice for diagrammatically mod-
elling complex biological systems. Kitano (2003) advises that most authors of
biological papers relating to biochemical networks use a standard notation of
arrow-headed lines and bar-headed lines to indicate activation and inhibition,
but then go on to use mixed and often inconsistent semantics for the low-level
details of the reactions. The SBGN was developed by an international collabo-
ration of biochemists, computational biologists and computer scientists, with the
overriding objective to allow scientists to diagrammatically represent networks of
biochemical interactions using standardised terminology and notation. Whereas
UML contains 14 different notations, the SBGN currently only contains 3, being:
the process diagram, the entity-relationship diagram8, and the activity diagram
(Kitano et al., 2005; le Novere et al., 2009; van Iersel et al., 2012).

Taking these 3 notations in turn, firstly, the process diagrams are used for
modelling the interactions that take place between biomolecules and the vari-
ous state-transitions that occur as part of the biochemical reaction. They are
able to convey the temporal aspects of molecular events occuring in biochemi-
cal reactions, and are analogous to UML sequence and communication diagrams.
The main drawback with process diagrams appears to be that a given compo-
nent must appear multiple times on the same diagram if it exists under several
states, whereas in UML you can have one object with several activities coming off,
that through the use of guard conditions, can specify which activity occur under
specific circumstances. Indeed, the requirement for SBGN process diagrams to
diagrammatically define all states that a component can take, can become prob-
lematic. For example, a biological component that acts as a hub in a network will
have a large number of connections and therefore possible network states. These

8The SBGN entity-relationship diagrams should not be confused with the Entity-Relationship
(ER) diagrams relating to database schema, i.e. normal form or Boyce-Codd normal form
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all have to be defined separately in process diagrams, which leads to the issue
of combinatorial explosion identified by Tiger et al. (2012). Secondly, the entity-
relationship diagrams are based on Kohn’s molecular interaction maps and are
used for modelling the relationships between biomolecules. These focus on the
influences that entities have on each other, but not the state transformations that
occur following interactions; they are akin to UML class diagrams and activity di-
agrams. Unlike the process diagrams, an entity appears only once, which is closer
to the approach of UML. An enhancement over UML with respect to modelling
biology is that these diagrams have specific notations for low-level biochemical
reactions such as phosphorylation, which can be displayed on specific amino acid
residues of protein entities. Finally, the activity flow diagrams, are used for mod-
elling the activities of biomolecules at a high-level of abstraction. They can be
used to convey component-level interactions (e.g. protein-protein), without the
need to show the detail of specific chemical reactions at the level of individual
amino acids (e.g. phosphorylation events). As the activity diagram ignores the
specific biochemical processes that entities are involved in, and their associated
state transitions, they are quite compact in nature, and can be thought of as
the typical network diagram found in traditional biochemical textbooks. As per
UML, these 3 notations complement each other and are used to diagrammatically
model different aspects/views of the biological system.

One of the most comprehensive examples of diagrammatic modelling using
SBGN is that of Mizuno et al. (2012), who constructed a comprehensive map
of the intra-, inter- and extra-cellular pathways involved in Alzheimer’s disease.
They manually curated over 100 review articles, and the resulting diagrammatic
network map consisted of 1,347 molecules and 1,070 biochemical reactions. These
diagrammatic models developed using UML and SBGN are useful for providing
a static picture of the biological system, but unfortunately describe to a lesser
extent the relationships between components that lead to system behaviours.
Therefore, in order to model the full behaviour of a system, we require more
dynamic approaches to computational modelling, that are capable of modelling
the systems associated component-level interactions in time and space.

2.6.2 Mathematical Modelling

Intercellular networks and the various metabolic and signalling pathways within
cells are complex and often display non-linear dynamics. Systems biologists of-
ten model these biological processes mathematically through equations, be they
reaction kinetics, which look at the rates of chemical processes, or differential
equations, which look at unknown functions within processes or systems, and link
these to a number of known input and output variables. Mathematical modelling
is interested in the quantitative dynamics of complex systems at the population
level of components, which for the immune system would be the population of
individual cells or biochemical/molecular components. It allows the investigation
and analysis of aspects of complex systems that we are unable to observe or un-
derstand directly. This may be due to difficulties in observing system dynamics
due to extremely short or indeed large timescales, to the magnitude of the system
to be observed (e.g. whole population), or to the location or complexity of the
system (Cho and Wolkenhauer, 2003).
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Fisher and Henzinger (2007) advise that “a mathematical model is a formal
model whose primary semantics is denotational; that is, the model describes
by equations a relationship between quantities and how they change over time”.
Equations are typically used to quantitatively describe patterns in data, and
extrapolate to predict dynamics outside of the range of the data from wet-lab ex-
perimentation. As described earlier, the immune system is a dynamic network of
components (e.g. cell type, protein species, etc), and these become the variables
of mathematical models, allowing the generation of time-dependent behaviour of
the component concentrations (if intracellular, e.g. protein) or the total number
of components within the population (if a cell type). Three interesting examples
of how mathematical modelling techniques can be applied to the immune system
have focused on the evolutionary dynamics of the Human Immunodeficiency Virus
(HIV). The first, by Sguanci et al. (2006), modelled the within-patient evolution-
ary process of HIV infection, using differential equations that contained variables
for mutant virus strains, along with cell surface receptors and co-receptors; they
hypothesise that accumulated mutations in HIV gained through molecular evo-
lutionary processes may enable interaction with other cell surface receptors over
time. The second, by Bagnoli et al. (2006), modelled the coexistence of different
HIV viral strains and the competition between them under different immune sys-
tem conditions. The third, Sguanci et al. (2007), presented a model of HIV early
infection, which describes the infection dynamics of different HIV viral species.

There are two main approaches to mathematically model the dynamics of bio-
logical systems: the deterministic approach or the stochastic approach (Gillespie,
1977). Deterministic reactions are assumed to take place in uniform (i.e. homoge-
nous) biochemical environments, such as the internal cellular compartments that
focus on energy production, e.g. the mitochondria, where large-scale biochemical
reactions take place to harness the energy stored within various sugars. Alterna-
tively, the stochastic approach to modelling is necessary for environments where
system components are not in such abundance, and where there is a degree of
random chance involved in a given reaction occuring (Sreenath et al., 2008).

Most metabolic pathways can be assumed to have components in large numbers
that are well mixed. In these circumstances, the dynamics of each component
population can be described mathematically by an Ordinary Differential Equation
(ODE, see below). ODEs simulate behaviour in a deterministic manner, and
are good for modelling population/system-level dynamics using continuous time
(Khan et al., 2003).

dxi
dt

=
∑

f(x)−
∑

g(x)

The generic ODE above can be used to describe the kinetics of a sys-
tem over continuous time. When solved it provides the total number
of system components (x) at a given time interval (t). This is made
up of the cumulative effects of all increases in the population through
function f(x) and all decreases in the population through function
g(x).

Situations where the components require separation into discrete locations
(such as organs or sub-cellular structures) cannot be effectively modelled us-
ing ODEs, and in this case require Partial Differential Equation (PDE) based
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models, where the dynamics of the system are situated within physical space.
Individual differential equations (whether ODE or PDE) can be coupled together
to form linked systems of differential equations, and this is where their power lies
to model complex biological behaviours.

Differential equations assume that each dynamical species (e.g. protein, RNA,
gene) of a system is present in large numbers, so that their spatial concentrations
can be treated as continuous variables. This assumption is usually fine for cer-
tain types of proteins, which may have an abundance in the tens (or hundreds)
of thousands, however genes and some mRNA may be present at far lower lev-
els, for example one or two molecules per cell (Behn, 2007; Ferrell, 2009). At
such low numbers, a mean average description is no longer justified because each
individual event becomes pivotal to cell dynamics. In this situation, the mod-
elling approach needs to take account of the probabilistic interactions within the
system, with one suitable mathematical approach being the use of Stochastic
Differential Equations (SDE), which are able to describe systems where the num-
ber of molecules involved is so small that microscopic fluctuations can produce
macroscopic effects (Alves et al., 2006). Furthermore, these SDEs are able to
approximate the dynamic behaviour of the system propagating through space,
for example subcellular compartmentalisation, or more specifically in relation to
the signalling pathways, the translocation of a molecule from the cytoplasm to
the nucleus. Stochastic modelling approaches are therefore more representative
of biological behaviour because they consider each molecule in the system as a
discrete entity and each productive collision of molecules as a discrete reaction
event. There are drawbacks however, in that they require each process within
the system to be described in terms of elementary reactions, therefore requiring a
much greater understanding of the in vitro or in vivo biology; they rely on the as-
sumption that system parameters do not change over time; they do not explicitly
account for spatial issues (i.e. actual cartesian co-ordinates); and more impor-
tantly from a computational perspective, they tend to be more computationally
intensive, especially when the models have large numbers (in the hundreds of
thousands) of molecules.

2.6.3 Agent-Based Modelling and Simulation

Although quantitative mathematical models are well established tools for mod-
elling complex biological phenomena, they require an exhaustive set of precise
parameters to be specified for each variable. This is fine for small models that
align to dynamics of a few components, however when the scale is increased to
capture a more realistic scope at the system-level (Acerbi et al., 2012), they begin
to suffer from limitations in accuracy as data for use in analysing the effective-
ness of differential equation models is often unavailable from wet-lab immuno-
logical experiments (Perelson and Weisbuch, 1997). Furthermore, as they rely
on population-level averaged dynamics, they are unable to model dynamics at
the individual component-level and therefore suffer considerably from their in-
ability to capture the natural variation inherent to all biological processes. An
alternative to these equation based approaches is to model molecules or cells in-
dividually and assign probabilities to each possible interaction or state change
through rule-based techniques. The individual component behaviours may then
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be aggregated up to system-level dynamics, which are then extrapolated in or-
der to make predictions of the system-level behaviours in real biology (Cohn and
Mata, 2007; Stark et al., 2007).

Cohen (2007) suggests that a computational model should comprise seven key
characteristics in order to make it suitable for simulation and generation of predic-
tions for biological system-level behaviours. First, the model must be data-driven
and therefore designed and developed from the bottom-up. Second, biologists ex-
periment at an abstracted level, focusing on molecules, cells and organisms; the
model should therefore take a rule-based approach based on these abstracted
‘objects’. Third, the model must be dynamic and not a static diagrammatic rep-
resentation. Fourth, in order to allow the emergence of system-level behaviour
from individual components, the model must be multi-scalar. Fifth, the model
must be designed and developed in a modular fashion, so that new functionality
can be added following advancements in wet-lab technologies and new knowledge
or information regarding the biological system. Sixth, in order to be useful the
computational model should be interactive, with the ability to peform novel in
silico experiments as a precursor to doing the real experiments in vivo or in vitro.
Finally, the model needs to be realistic, in that its design should be based on real
data (further emphasising the first key characteristic) and accepted knowledge
from the wet-lab, with the bare minimum of artistic license used for modelling
mechanistic behaviours, and where this is necessary it should be fully documented
as design assumptions.

Interestingly, it would appear that a large amount of data generated experi-
mentally in biology actually accumulates in an object-oriented manner. The re-
ductionist approach, which endeavours to look at systems using the smallest indi-
visible unit, is analogous to looking for ‘objects’ within nature. Object-oriented
approaches to modelling, therefore provide a useful formalism for constructing
computational models by designing systems from a bottom-up perspective and
organising information around individual objects (Kam et al., 2001). Agent-Based
Modelling and Simulation (ABMS) builds on the object-oriented paradigm, with
the key enhancement being that an agent is active rather than passive, and that
ABMS has multiple threads of control. Macal and North (2005) nicely describe
this by stating that the “fundamental feature of an agent is the capacity of the
component to make independent decisions”. For example, a given protein within
a biochemical pathway may be defined as an agent; as there are potentially tens
(if not hundreds) of thousands of such protein molecules within a cell, an agent-
based approach would allow each of these molecules to have their own distinct
life. The concept of an agent has been further defined by Wooldridge (1997),
who states that an agent is “an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that
environment, in order to meet its design objectives”. Jennings (2000) and Bauer
et al. (2009) extend the idea of an agent being situated (or embedded) within
a particular environment, by advising that they are asynchronous, thus do not
evolve at constant time-steps, but are instead interactive with the environment -
they will receive inputs related to the state of their environment through sensors,
and may act on the environment through effectors. Therefore, to formally define
agents, a model is needed which not only represents them as individuals, but
also provides the ability for individual agents to process information from the
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environment in which they are situated and to communicate with each other.
Fisher and Henzinger (2007) advise that an agent-based model “is a formal

model whose primary semantics is operational; that is, the model prescribes a
sequence of steps or instructions that can be executed by an abstract machine,
which can be implemented on a real computer”. The main roots of ABMS are
in modelling social networks of humans and the dynamics of their decision mak-
ing (Bonabeau, 2002). More specifically, it was developed to investigate complex
adaptive systems from a reductionist perspective, by using the underlying no-
tion that systems are built from the ground up, in contrast to the top-down
system view taken by systems theory (Macal and North, 2005). Since its incep-
tion, ABMS has rapidly expanded out of the realm of the social sciences, and
has received major interest from other fields, including biology and medicine. A
good example of research within medicine is the work of Zhang et al. (2007) who
developed a 3D multi-scale agent-based model of a brain tumour. This model in-
tegrated data and yielded experimentally testable hypotheses regarding switching
behaviour of tumour cells, which are able to proliferate, but do not do both at the
same time. They also showed that over time, proliferative and migratory cell pop-
ulations oscillate, suggesting a dynamic relationship, and indeed provided insight
into the growth of tumours through migration-proliferation oscillations. Agent-
based modelling at the cellular and subcellular levels is also becoming an area
of increasing research interest, due to the desire to understand cellular processes
at increasing levels of detail. Good examples include carbohydrate oxidation
through glycolysis and the TCA cycle (Corradini et al., 2005), the immune re-
sponse to atherogenesis due to low density lipoproteins (Pappalardo et al., 2008),
and the intracellular NF-κB signalling pathway (Pogson et al., 2006), which was
also used to predict that actin filaments of the cytoskeleton sequestered excess
IκB, which affected the control of NF-κB (Pogson et al., 2008).

Examples of the use of ABMS within computational biology include: Pap-
palardo et al. (2011) who used an agent-based model as a predictive tool for
novel wet-lab experimentation into tumour formation in skin cancer; Ray et al.
(2009) who investigated the role of Tumour Necrosis Factor (TNF) in the con-
trol of tuberculosis; and Patel et al. (2012) who predicted computationally that
lymphoid tissue initiator cells were not required for the initiation phase of cell
aggregation to form Peyers Patches, and subsequently confirmed this prediction
through wet-lab experimentation.

Communicating X-Machines

Agents can be represented through a number of different computational tech-
niques. The one thing these techniques have in common however is that they
portray the agent as having a defined state at any particular moment in time.
Representations of the agent may therefore be viewed as a state machine, where
the current input in combination with all past inputs (previous states) determines
the output (next state) of the agent. A finite state machine is an abstract mathe-
matical model that represents the computation of system dynamics as transitions
through a finite set of states (Kehris et al., 2000). As such, they provide an in-
tuitive means to describe the dynamical behaviour of systems, through use of a
formalised 8-tuple notation, as defined by Ipate and Holcombe (1998):
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X = (Σ,Γ,Q,M,Φ,F,q0,m0)

where:
- Σ and Γ are the input and output alphabets respectively.
- Q is the finite set of states.
- M is the (possibly) infinite set called memory.
- Φ, the type of the X-Machine X, is a set of partial functions ϕ that map an

input and a memory state to an output and a possibly different memory
state, ϕ : Σ x M → Γ x M.

- F is the next state partial function, F : Q x Φ → Q, which given a state
and a function from the type Φ determines the next state. F is often
described as a state transition diagram.

- q0 and m0 are the initial state and initial memory respectively.

Although X-Machines provide the ability to formally define a mathematical
model of an individual state machine, they do not have a mechanism for commu-
nication between state machines. As such, they are only able to model a single
component, and are therefore not suitable for agent-based modelling, as they
could only be used to model the system as a whole. An extended version of the
finite state machine has been proposed that allows communication between in-
dividual state machines, which has been termed the communicating X-Machine.
This is a formalised mathematical model that can be used to compute the func-
tional behaviour of smaller components (i.e. individual agents), whose dynamics
may be aggregated to generate the emergent behaviour within the entire system.
Like the finite state machine, the communicating X-Machine is based upon a
simple set of rules that describe what the agent must/could do under different
circumstances. The enhancement over finite state machine is that the state tran-
sitions are not simply labelled by inputs, but may include functions that operate
on these inputs, along with another attribute storing the memory state, thus
utilising a 10-tuple formal notation. Here CX

i represents the ith communicating
X-Machine component, and comprises the 8-tuple as per finite state machines,
along with an operational function that utilises the input messages and also pro-
duces output messages (Stamatopoulou et al., 2007):

CX
i = (Σi,Γi,Qi,Mi,Φi,Fi,q0i,m0i,IΦi,OΦi)

where:
- Σi,Γi,Qi,Mi,Φi,Fi,q0i,m0i are the same as in a finite state machine.
- IΦi is the communication interface for the input messages.
- OΦi is the communication interface for the output messages.

Holcombe (1988) defines an X-Machine as a system that has an internal com-
putational state and an internal memory, which can transition to another state
dependent on environmental input and their current internal state. The com-
municating X-Machine is therefore able to encapsulate both the dynamic and
functional behaviour of an agent, as well as the underlying data that it is mod-
elled on, in a single process specification (Barnard et al., 1996). Communication
between individual X-Machines occurs through a ‘communication matrix’, which
is essentially a message board that facilitates the reading and writing of informa-
tion between every X-Machine, allowing communication and interaction between
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the machines. Individual agents start with an initial computational state, and
upon receiving an external input (e.g. communication from another agent), they
update this state, based on the rule regarding their current state and the particu-
lar external input received (Balanescu et al., 1999; Kefalas et al., 2003). Following
this, it will change internal and/or memory state, potentially generate a message
for communication, or continue its current behaviour.

Flexible Large-scale Agent-based Modelling Environment

Agent-based modelling has proven itself to be a powerful technique for simulat-
ing the emergent behaviour of groups, through the use of communication between
the individual autonomous agents. As defined previously, these individual agents
behave according to predefined rules, and in most cases may be defined as com-
municating X-Machines. A consequence of designing and developing models using
such a bottom-up approach however, is that simulating many individual agents
is computationally expensive (Richmond et al., 2009), especially when the overall
scale of the model is increased to generate results consistent with system-level
dynamics from the real world domain, and furthermore when hundreds (if not
thousands) of replicates are required in order to provide a stable average, due to
the underlying stochasticity within individual simulation runs.

The Flexible Large-scale Agent-based Modelling Environment (FLAME9) was
developed by Simon Coakley during his PhD (Coakley, 2007) as a framework for
the simulation of large-scale agent-based models over high-performance comput-
ing clusters. Kiran et al. (2008) and Coakley et al. (2012) advise that FLAME
was designed and developed from the outset to be able to deal with massive sim-
ulations, incorporating a large scope with respect to the underlying real world
domain, and very large numbers of individual agents - in the order of hundreds
of thousands to millions. Furthermore, it appears that Coakley (2007) was mind-
ful that researchers were often hindered by complexities of ensuring simulations
can run across multiple operating systems or porting models on parallel plat-
forms. With this in mind, FLAME was developed to work across the various
scales of computer hardware, allowing initial development and testing on individ-
ual laptops or desktop computers (using Linux, UNIX, MAC OS or Windows),
and full-scale testing and simulation on large supercomputers utilising parallel
hardware platforms.

FLAME itself is not a true modelling platform in the purest sense, instead it
requires the modeller to use templates to define the agent-based model, and then
parse and compile these using the packaged parser and associated APIs (Coak-
ley et al., 2006a; Holcombe et al., 2006). Due to FLAME utilising the concept
of communicating X-Machines, the agents are modelled using XML templates
to define the attributes and internal states of the agent, and C code is used to
define the rule-based functions of the agent behaviour (see figure 2.4). Through
the use of messages to communicate changes within the system’s environment,
and transition functions, which define the rule-based logic of the computational
model, the agents are able to transition to a new state and update their in-
ternal memory as the simulation progresses. Once a model is specified using the
XML and C templates, the FLAME modelling framework is able to automatically

9http://www.flame.ac.uk/joomla/index.php
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generate simulation code (via the xparser programme) that allows communica-
tion between X-Machines (agents) through its own communication library, called
Message Board. Through interfacing to the Message Passing Interface (MPI)
communication framework, the simulation code is also fully compliant with par-
allel hardware platforms, enabling efficient communication between the individual
agents, and ensuring that concurrently executing agents remain in sync with each
other (Foster, 1995).

To date, FLAME has been used across a number of disciplines, ranging from Bi-
ology, to Economics, to transport and logistics of Utilities. A number of examples
where FLAME has been used for modelling the immune system are: the simu-
lation of wounded epithelial cells (Walker et al., 2004), intercellular signalling
via epithelial growth factor (Walker et al., 2006), and a hypothetical study of
Transforming Growth Factor-β1 in epidermal wound healing (Sun et al., 2009).

Figure 2.4: The underlying mechanics of FLAME rely on the parsing and subsequent
compilation into C files of the computational model. Simulations are run through point-
ing an initial starting parameters file (0.xml) towards the main C executable file. As
FLAME is a discrete-event simulator, it generates an individual output file for each
time-step within the simulation, which act as input parameter file for the subsequent
time-step. The blocks in blue are automatically generated through parsing and compi-
lation, whereas the blocks in green are modeller files (from Coakley and Kiran (2009)).

2.7 Project Lifecycles

As defined by The Project Management Institute (2004), a project is a “tempo-
rary endeavour undertaken to create a unique product, service or result”. This
means that every project has a defined beginning and end, and creates unique de-
liverables, potentially through progressive elaboration, by developing in steps and
continung by increments. Projects are carried out in an environment broader than
that of the project itself, and therefore require rigorous management to ensure
that they complete: within the allocated timescales; to budget; having developed
the agreed deliverables (scope); to an acceptable quality. Such management is
termed Project Management, and one of the most important aspects of project
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management is the adherence to a Project Lifecycle, which defines the phases that
facilitate progression of the project from its beginning to its end.

Until the turn of the millenia, implementation of software projects traditionally
used the waterfall model as the project lifecycle. The waterfall model is based on
a manufacturing approach for development, is sequential in nature, and requires
the completion of each phase before progression to the next, using a single pass
through all phases (Royce, 1970). Contemporary approaches for software devel-
opment however, especially within the rapidly growing areas of academic research
within computational biology, use a more iterative project lifecycle. Indeed, Ki-
tano’s hypothesis-driven research cycle within systems biology (see figure 2.2)
forms the basis of such a project lifecycle and can be broken down into four main
phases. The first phase investigates the underlying biology and poses research
questions of interest. The second phase develops computational models, which
are then used for in silico experimentation, analysis and hypothesis generation
for additional wet-lab experimentation. The third phase is where these additional
wet-lab experiments are performed, and finally the fourth phase is where the re-
sults of these wet-lab experiments are then analysed in relation to the original
research questions, with potential augmentation of the computational model, for
continuation of the cycle.

There are numerous software development project lifecycles in the commercial
world, indeed, most large software organisations will have their own in house
standards, but these will usually follow a generalised pattern. A good example is
Oracle Corporation’s Unified Method (OUM) which is used by their Consulting10

division. Whereas Kitano’s hypothesis-driven lifecycle has four phases, the OUM
(Oracle Corporation, 2012) has five, relating to: Inception, Elaboration, Con-
struction, Transition and Production. The inception phase is where the project
is planned, the functional and technical requirements are captured, and a pro-
totype is built, which is demonstrated to the end users through a Conference
Room Pilot (CRP). The elaboration phase is where the requirements are refined
following CRP1, the prototype is enhanced to transform into a full draft soft-
ware release (along with necessary peripheral code objects), before demonstrat-
ing through another CRP iteration. The construction phase is where the updates
and refinements from CRP2 are performed, and demonstrated within the final
CRP. Following CRP3, the individual software components are deemed to have
satisfied the functional requirements, and are then linked together for systems
integration testing, and subsequent user acceptance testing. The software is then
deemed to have passed all functional requirements tests, and the transition phase
is where the software is validated against full-volume data loads, and if being
developed to replace an existing system, is where a parallel run is performed for
verification purposes. Finally, the new system is switched on for end users (and
any corresponding old system turned off) within the production phase.

Recently, the Complex Systems Modelling and Simulation (CoSMoS)11 process
has been developed through a collaboration between the Universities of York,
Kent, Abertay and the University of the West of England (Andrews et al., 2010).
This process provides a framework of leading practice for developing and using
simulations to explore complex systems, and is comparable to project lifecycle

10www.oracle.com/uk/products/consulting/index.html
11www.cosmos-research.org
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methodologies used in industry. Like OUM, the CoSMoS process is organised
around phases, which contain a set of products (deliverables), and associated
activities. The CoSMoS process has three phases: the Discovery phase, which
establishes the scientific basis of the project, identifies and models the domain
of interest, and formulates scientific questions; the Development phase, which
produces the simulator; and the Exploration phase, which uses the simulator for
in silico experimentation, the results of which are used to explore the scientific
questions defined previously. Along with these phases, there are key products
associated with CoSMoS projects: Domain Model, Platform Model, Simulation
Platform, and Results Model (figure 2.5).

Figure 2.5: CoSMoS products and their relationships to each other and the biological
domain of interest. For the first iteration of phases within a CoSMoS project, there is
a distinct sequence for creation of the products, which are always developed with the
research context and the underlying domain of interest, in mind (figure 2.1 of Andrews
et al. (2010)).

The domain in this context represents the real-world system, or part of the
system due to an appropriate abstraction level. Similarly, the research context
in the CoSMoS process relates to the overall context and scope of the compu-
tational model. The research context is of paramount importance, and can be
thought of as the underlying thread of knowledge, scope and assumptions, that
runs throughout the entire CoSMoS project. The scope, abstraction level, as-
sumptions and constraints, provide the context behind how simulation results
should be validated, interpreted and evaluated (Andrews et al., 2011).

The domain model is an abstract representation of the actual biological area of
interest (the Domain), which documents our understanding of the domain into ex-
plicit statements, which may relate to assumptions, constraints and definitions of
the underlying biological mechanisms and data, or indeed the structure of biolog-
icals components and their relationships/interactions within real-world biology.
Andrews et al. (2011) advise that as the domain model focuses on the real-world
system, it should be free of any simulation language or hardware platform bias,
as the decisions on appropriate tools and technologies should be left until the
full scope of the functional requirements for the model are captured. One ap-
proach to documenting the domain model, which has been widely taken up by
the computer science community, uses UML. Webb and White (2005) describe a
process of diagrammatically modelling the content and functions associated with
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biological systems (in their case a cell) before development of a corresponding
computer simulation. The domain model should be developed in close collabora-
tion with domain experts, to ensure a solid foundation of the science, which the
subsequent platform model can build upon. The process starts with the identi-
fication of biological entities and their relationships with each other, progresses
through the gradual addition of details, and ends with an executable programme
that simulates biochemical pathways. Grizzi and Chiriva-Internati (2005) advise
that complex systems can be viewed from many perspectives, and therefore can
be described in many ways, each of which will be only partially true. There-
fore, a progression of UML models are needed during the development of the
domain model, as a starting point for more comprehensive exploration during the
discovery and exploration phases of a CoSMoS project.

The platform model builds on the knowledge gained through development of
the domain model, but focuses on the underlying systems engineering, and may be
seen as the technical design of the computational model. As such, a standardised
diagrammatic notation like UML and/or SBGN may again be used, however this
time they are focused on the interactions, assumptions, and constraints relevant
to the computational model. This is because the functionality (and mechanisms
behind the functionality) within computational models do not always match bi-
ological reality due to technological constraints (e.g. programming languages or
hardware architecture), thus requiring a computational workaround. Along with
identification of component interactions (the network) and any associated func-
tions and state transitions, it is also important to identify a set of parameters
associated with the system as a whole, because all computational results have
to be matched and tested against actual wet-lab experimental results (Kitano,
2001a). In the majority of cases, this parameter set may need to be estimated
based on experimental data, due to the differences in scale between the real-world
biological domain and its abstraction which has been represented through the do-
main model (Hamahashi and Kitano, 1999). Furthermore, in finding a parameter
set, it must be recognised that this may be one of multiple parameter sets that
generate simulation results equally fitted to experimental data, and that this is
due to the abstractions taken in design and development of the model, i.e. there
will be fewer parameters within the model than the real system in question. Ad-
ditionally, the platform model also includes instrumentation and interfaces which
may be required to visualise, record and analyse the simulation results.

The simulation platform encodes the platform model in software and hard-
ware platforms, and can be thought of as the fully developed and calibrated
computational model (simulator), whose execution culminates in a simulation.
As discussed previously, simulations can be used for in silico experimentation,
the results of which are captured within the results model. This results model
has a relationship to the simulation platform that is analogous to the relation-
ship betwen the real-world domain and the domain model. Following simulation
and development of the results model, it is therefore compared to the domain
model to establish whether the simulation platform provides an appropriate rep-
resentation of the real-world domain being investigated. All four products of a
CoSMoS project are dependent on the research context, and following the first
iteration through the lifecycle, the research context may be adjusted according
to the results model, or alternatively the domain model and/or platform model
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and/or simulation platform may be updated as part of another iteration through
the lifecycle to ensure the results model provides an appropriate representation
of the underlying real-world domain. Once this is achieved, the computational
model may be used for hypothesis-generation and design of new experiments on
the real-world domain. See figure 2.6 for a diagrammatic representation of the
CoSMoS phases, products and high-level activities.

Recent computational work, which used the CoSMoS process as the project
lifecycle for developing biological models include: Experimental Autoimmune En-
cephalomyelitis (Read et al., 2013; Williams et al., 2013; Greaves et al., 2013),
auxin transport in plants (Garnett et al., 2010), peyers patch formation in the
immune system (Alden et al., 2012), and tumour formation (Bown et al., 2012).

Figure 2.6: The CoSMoS process advocates an iterative lifecycle, consisting of three
separate phases (discovery, development and exploration), and creation of four key
project artefacts (domain model, platform model, simulation platform, and results
model). The discovery phase focuses on formulation of the problems to be investigated
through modelling, resulting in creation of a functional specification of the required
biological behaviour (domain model). The development phase focuses on transforming
the domain model into a technical specification (platform model) specific to the pro-
gramming language(s) and computer architectures to be used, and actual development
of the computational model (simulation platform), including calibration, validation
and verification. The exploration phase focuses on the in silico experimentation to
investigate the biological problems of interest, and generation of predictions (which are
documented in the results model), which facilitate generation of novel hypotheses for
subsequent testing in the biological arena. After Andrews et al. (2010)
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2.8 Summary

Systems theory in relation to biology has progressed a long way from its gener-
alised approach during the 1950s to its current targeted approach towards the
various biological subdisciplines, for example systems immunology and systems
phyisiology. Wolkenhauer et al. (2005) believe that we need to systematically
perturb a biological system in order to ascertain its behaviour under varying con-
ditions. Kitano (2007) however, takes this approach further by suggesting that
the use of control theory and communication theory from engineering can be used
to provide a theoretical foundation for a systems-oriented approach, with specific
emphasis on understanding how we can control the robustness of living systems,
in particular at the cellular level.

Over the past decade and a half, the use of computational approaches within
systems oriented biological research has progressed from mere data analysis (bioin-
formatics) to a new wave of complementary research (with respect to wet-lab
research) based around modelling and simulation. The techniques used within
computational biology have evolved from mathematical-based deterministic ap-
proaches, to mathematical-based stochastic approaches, and have culminated in
computational-based approaches such as agent-based modelling (ABM). An ad-
vantage of these computational approaches is that we have full control over the
mechanisms of the model, thus once a model is established, equation solving or
simulation allows quick studies of changes to the elements and associated pa-
rameter values. The results from in silico experimentation are therefore directly
related to the abstraction level and design of the model, and not due to other
factors outside of our control. This provides a more solid basis from which to test
our hypotheses on the mechanisms behind biological functionality than wet-lab
experimentation, where the large degree of variation, even within single cells of a
clonal population, introduces a degree of additional complexity that reduces the
certainty of our interpretations of experimental results (Elowitz et al., 2002).

Both mathematical and agent-based approaches can be used to model complex
systems. However, whereas a mathematical model is solved, an ABM is simulated
within a computer. Mathematical models require extensive use of system-level pa-
rameters for evaluating equations that produce evolutionary characteristics over
time. As such, mathematical approaches are better suited to domains where we
are interested in behaviour at a population level rather than an individual com-
ponent level. ABMs by comparison provide an ability to use differing levels of
parameters, and are much more efficient in modelling stochastic behaviour. This
facilitates emergent system-level behaviour, which is due to the aggregated dy-
namics of individual agents, and therefore not defined in the model design via
system-level parameters. Due to the object-oriented manner in which biology has
been observed (through the reductionist approach), experimentalists are likely to
feel more comfortable with modelling approaches that are visual and intuitively
realistic rather than mathematically abstract. Furthermore, an ABM allows the
modeller to take more precise (with respect to PDEs) 3-dimensional aspects into
consideration for each agent, which therefore allows the model to more accurately
reflect the biological system. Additionally, ABMs allow the collection of time-
series data (of individual components) to facilitate examination of the dynamical
nature of complex systems.
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Simulation often requires integration of models that have been developed at
multiple hierarchical levels, and therefore have orders of magnitude difference
with respect to scale, for example, gene regulation and biochemical networks
within cells, intercellular communication between cells, and the processes inher-
ent within whole organs. Similarly, from a time perspective, some biochemical
processes take place within a millisecond, with others taking hours or even days.
Although some of these processes can be modelled by either stochastic compu-
tation or differential equations alone (e.g. biochemical networks); many cell phe-
nomena require calculation of physical processes, such as structural dynamics,
and therefore require a combination of both methods. Indeed, Duan et al. (2000)
advise that the majority of attempts to model biological systems at various levels
in the hierarchy have demonstrated that a combination of discrete and stochastic
events need to be modelled, and classify these as hybrid systems.

The design and development of realistic computational models of biological net-
works is not a simple task, as the models will require multiple feedback signals,
non-linear dynamics, the estimation of numerous parameters that have a degree of
uncertainty (or even unknown) from wet-lab experimentation, and the introduc-
tion of stochastic noise to provide the range of dynamics seen across a population
of molecules and cells within the system (Csete and Doyle, 2002). ABM provides
a way to integrate multiple strands of data and knowledge (following the deep-
curation approach to design), along with the ability to turn conceptual models
into computational models that through simulation can test various hypothe-
ses on underlying biological mechanisms. Furthermore, the inherent capacity to
model non-deterministic and heterogeneous behaviours provides the opportunity
to investigate the role of natural variations in biological populations and generate
hypotheses for new wet-lab experiments (Walker and Southgate, 2009).

Advances in hardware architecture, capacity, and performance over the past
two decades has facilitated the development of new software technologies that
are able to cope with increasingly complex models that are simulating at scales
much more closely aligned to actual biology. For example, the development of
the FLAME simulation environment has the potential to run simulations for
models that comprise millions of agents, which is orders of magnitude higher
than previous approaches to simulating complex biological systems.

Following an increased adoption of computational approaches for investigating
biological questions, a number of groups within the complex systems research
community have advocated the use of a principled approach to design and de-
velopment of the requisite computational tools. In particular, Kitano advocates
a hypothesis-driven project lifecycle, which focuses on the biological questions of
the research, and uses an iterative approach to developing the computational tools
for advancement of biological knowledge. More recently, the CoSMoS project has
built on the high-level cycle advocated by Kitano, by focusing on the development
process of these computational tools. Like Kitano, CoSMoS advocates an iterative
approach to development, but explicitly advocates close liaison between domain
expert and modeller, to achieve a truly interdisciplinary approach, and not just
that of a biologist dabbling with technology, or a computer scientist using their
rudimentary knowledge of biology to design their models. The CoSMoS process
also goes further by detailing a number of key activities and project deliverables
associated with the various phases of its project lifecycle. Indeed, we believe this
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new approach to software engineering within the academic research domain has
begun to bridge the gap to comparable project lifecycles used in industry (such
as the Oracle Unified Method).

This chapter has provided an overview of the theoretical underpinnings behind
the technologies that will be used within this doctoral thesis. It began with an
introduction to systems theory and network theory, before discussing systems
biology, computational biology, and computational immunology. The chapter
also provided the background to the various diagrammatic and computational
approaches that are currently in use to develop computational models within bi-
ology, and in particular discussed the agent-based modelling paradigm and the
FLAME simulation framework, which is based on communicating X-Machine
architecture. Additionally, the chapter has introduced the concept of project life-
cycles for managing the different phases within a computational biology project,
and in particular has introduced the CoSMoS process, which provides a princi-
pled approach to design and development of computational models of complex
systems. We believe this background discussion to be pivotal for setting the
scene for this doctoral thesis, as we intend to follow the CoSMoS process for de-
sign and development of our agent-based model, using UML for the design and
the FLAME simulation framework for development. The next chapter will pro-
vide the necessary background to the IL-1 stimulated NF-κB signalling pathway
(our biological domain), and through discussion of the existing models will justify
the need for our work.
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3 The Domain: NF-κB Signalling
Pathway

The immune system is a complex system of molecules and cells that are dis-
tributed throughout our bodies, whose main goal is to distinguish self and non-
self (Voet and Voet, 1995), in order to provide us with a basic defence against
pathogenic organisms and cells that have become malignantly transformed (Perel-
son and Weisbuch, 1997). There are two types of responses in the human immune
system: the innate immune response, which is rapid, occurs on exposure to infec-
tious organisms, but does not provide lasting immunity and is not specific for any
individual pathogen; and the adaptive immune response, which takes days rather
than hours to develop, but is capable of eliminating infections more efficiently,
through for example the production of antibodies against a particular pathogen,
and develops during the lifetime of an individual (Murphy et al., 2008). Many
of the responses following identification of a foreign organism or toxic molecule
created by them, are destructive in nature, and facilitate the removal of the infec-
tious microorganism and/or parasite (Alberts et al., 1994). Following recognition
of pathogen, the plethora of immune responses develop over time, and through
stochastic interactions, signal amplification and feedback regulation, give rise to
the gross properties of the immune system (Germain, 2001).

The human immune system is controlled by the action of about 10 main types
of cells that participate in various aspects of the inflammatory response. Their
activity is controlled by a wide range of regulatory and effector molecules, with
many of these regulatory molecules being distributed across the various cell types,
even though their function or regulator capacity may be slightly different. The
elucidation of molecules important for the immune response is by no means com-
plete, and new molecules continue to be discovered. To date, they essentially
break down into three main groups: soluble molecules that transmit signals be-
tween cells; receptors; and intracellular signalling components that propagate
the stimulation of the cell surface receptors through the cell to activate a cell
response. Examples of such responses are expression of proteins to combat the
infection, or indeed initiation of apoptosis (programmed cell death) for the cell in
question (Perelson and Weisbuch, 1997). With responses including the immune
system initiated death of cells, it is extremely important that responses are un-
der tight control. With this in mind, Cohn and Langman (1990) suggest that
the immune response must not be too cold (i.e. too insensitive, too slow, or too
low a level of intensity) so that its response is overwhelmed by rapidly replicating
pathogen. Conversely, Germain (2001) counters that the immune response must
similarly not be too hot, because the responses used to combat pathogens are
themselves capable of causing substantial destruction to the host. The response
must therefore be just right, providing rapid, vigorous and properly modulated
defences against pathogenic invasion and malignantly transformed host tissue.
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3.1 Cell Signalling

Following the systems biology and network theory line of reasoning; for cells to
combine into networks that achieve higher levels of organisation (e.g. tissue and
organs), it is necessary for them to communicate. Communication in all organ-
isms bar the most basic, is mediated through complex networks that integrate
extracellular signals and intracellular processes for the generation of appropriate
cellular responses (Pfeifer et al., 2008). The basis for this intercellular communi-
cation are the receptors in the cell membrane and the extracellular signals released
by cells. Following the detection of extracellular signals, the transmission of in-
formation to the genes and gene-regulatory machinary occurs through a process
known as signal transduction1. Here, the stimulus associated with an external
signal received by a receptor at the cell membrane, is converted from one physical
form into another using intracellular biochemical reactions, and thus promotes the
relay of information, without physical flow of signal through the cell membrane
(Lodish et al., 2000; Krauss, 2003). In most cases the receptors are transmem-
brane proteins on the target cell surface, which become activated following the
binding of specific signalling molecules (ligands). Once activated, they propagate
the signal through a cascade of intracellular reactions that culminate in changes
to the rate of gene expression or enzyme activity (Downward, 2001). The con-
sequence of signalling through ligand binding is in most cases a modification of
the activity of intracellular enzymes or activation factors, e.g. transcription fac-
tors, which determine the reading and transcription of information encoded in the
genome. There are a number of well-defined signalling pathways in humans that
lead to activation of gene expression. Of these, the NF-κB pathway is believed
to be unique in the speed of its activation (Karin and Ben-Neriah, 2000), and
furthermore, it is central to regulation of inflammatory responses, as scientists
have not yet discovered an inflammatory gene that is not controlled, at least in
part, by NF-κB.

3.1.1 Example Signals within Cell Signalling

Every cell in the human body must have the ability to sense their surround-
ings for changes in conditions (for example through the detection of extracellular
molecules), and must be able to generate a range of responses to these changes
(Alberts et al., 1994). These detection and response systems need to be very
tightly controlled, and in humans this is performed through a complex network
of signalling pathways. There are a number of ways that cells may signal to each
other, which mainly depend on the concentration interactions involved. If cells
are adjacent, they may signal through membrane pores, or by membrane-bound
ligands of one cell being identified by a membrane receptor on a neighbouring
cell. If the cells are further apart, they may communicate through the release of

1All living cells sense and respond to their environment via a specific type of network termed a
signal transduction network. These networks consist of cell receptors at the cell membrane for
sensing the extracellular signals, various intermediate components within the cell for propaga-
tion of the signal, and culminate with components that upregulate the generation of specific
proteins for the relevant cellular response. Tiger et al. (2012) advise that there are four main
types of events within these networks: a) catalytic modification; b) bindings and interactions;
c) degradation and synthesis; and d) changes in localisation.
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signalling molecules, such as hormones, cytokines and growth factors (Hancock,
1997).

Hormones represent a broad category of signalling molecules that regulate
metabolism, growth, and differentiation, and travel over relatively large distances
within the body. They are produced in specialized cells of the endocrine glands,
which release hormone molecules into the extracellular medium, and may be sub-
sequently carried by the blood circulation to a new site of action, such as a dif-
ferent tissue (Creighton, 1999). Cytokines represent a group of protein molecules
that produce a more localised response, having their effect on other cells which
are close by, or even acting on the same cell that produced them (Krauss, 2003).
Specific to the immune system are the sub-groups of cytokines, for example: in-
terleukins (IL), tumour necrosis factors (TNF), and interferons (IFN). Examples
of growth factors include platelet derived growth factor, epidermal growth fac-
tor, and fibroblast growth factor (Hancock, 1997). The term growth factor was
originally used because the individual molecules in question were shown to be
involved in the growth and differentiation of cells. More recently however, it
has been shown that these molecules may also have other effects, including cell
migration, and functions within the immune response (Creighton, 1999).

3.1.2 Cell Membrane Receptors

Specialised proteins, termed receptors, are utilised for the detection of signals.
There are two principal ways for a signal to be detected: either the signal is
detected externally through binding and activation of a cell membrane receptor,
or it crosses the cell membrane and activates a receptor within the cell compart-
ment or nucleus (two different internal compartments) of the cell. As mentioned
above, most surface receptors are transmembrane in nature, and therefore span
the membrane; thus having both external and internal facing domains (Down-
ward, 2001). For the purposes of this research project, which is related to the
NF-κB intracellular signalling pathway, we will restrict discussion to receptors
of the cell membrane. Garrett and Grisham (1995) advise that there are three
main types of cell membrane receptors: ion-channel-linked, which are involved
in rapid signalling between synaptic cells (of the nervous system), and once ex-
cited through binding of the associated ligand (a neurotransmitter), permit the
movement of ions across the membrane; G-protein-linked, which along with the
extracellular binding site for the relevant ligand, also have an intracellular site
that associates with a GTP (guanosine 5’-triphosphate) intermediary for propa-
gation of the signal downstream; or enzyme-linked, which when activated, either
function directly as enzymes, or are associated with enzymes.

3.1.3 Intermediate Components and Adaptors

Once a cell membrane receptor receives a signal, through binding to its external
domain, it becomes activated, and in the case of G-protein-linked or enzyme-
linked, the intracellular domain induces a specific reaction on the cytosolic side,
which then transmits the signal onto other, intermediate components. G-protein-
linked and enzyme-linked receptors both operate through phosphorylation and
dephosphorylation cascades (Krebs, 1992). The former facilitate the binding of
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GTP to an intermediate protein within the intracellular pathway, whilst the latter
phosphorylates an intermediate protein through the action of a kinase enzyme
(Downward, 2001). The phosphorylation of the first intermediate protein, results
in a cascade of intracellular reactions to propagate the signal further downstream,
and in a large number of cases towards the nucleus, where they alter the expression
of genes and thereby alter the behaviour of the cell (Alberts et al., 1994).

Some proteins within a receptor complex, mediate the signal transduction be-
tween proteins of a signalling pathway by bringing them together, and are referred
to as adaptor proteins2. They are generally signalling components that bind the
receptor cytoplasmic domain and initiate the first steps of co-locating signalling
molecules into multiprotein signalling complexes. Formation of the receptor com-
plex and related events at the level of the receptor have a primary role in signal
transduction (Downward, 2001).

3.1.4 Crosstalk

Signalling pathways are often depicted diagrammatically as linear sequences of
events. This is a simplistic view, as signalling pathways often branch, and in-
deed multiple pathways may be integrated into a signalling network, much like
the metabolic pathways network of Nicholson (2001). Branching and network
formation may be mediated in two ways: a given signalling component can be
activated and can receive a signal from different upstream components, thus in-
tegrating different signals into a pathway; or a given signalling component may
generate different signals, thus branching into more than one downstream path-
way.

Cells receive signals relating to multiple signalling pathways in parallel to each
other. The integration of multiple upstream pathways and analogous divergence
into multiple downstream pathways facilitate the cells integration of these mul-
tiple stimuli. Signalling in one pathway may therefore influence the activity of
components of other signalling pathways. This interdependence of signalling is
termed crosstalk (Downward, 2001), and enables the cell to coordinate multiple
inputs at the level of signal transduction. See figure 3.1 for profiles of crosstalk
from two different cell membrane receptors.

3.1.5 Cell Signalling in Innate Immunity

In general, infectious agents are met by cells that mount the innate immune
response, such as macrophages3 (for bacterial invaders). These immune cells
try to contain the infection through a process known as phagocytosis, where
the pathogen is engulfed and internally degraded by the immune cell (Murphy
et al., 2008). Furthermore, immune response molecules, such as cytokines and
chemokines4 are secreted which initiate the process known as inflammation. In-

2Section 3.3 provides a detailed discussion of adaptor proteins involved within the NF-κB
signalling pathway.

3Macrophages are a type of white blood cell which phagocytose (engulf and then digest)
pathogens and cellular debris.

4Murphy et al. (2008) define cytokines as “a general name for any protein that is secreted by
cells and affects the behaviour of nearby cells bearing appropriate receptors”. Similarly, they
define chemokines as “secreted proteins that attract cells bearing chemokine receptors, such as
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flammation is part of a complex physiological response to pathogenic invasion,
and is beneficial to the combat of infection as it promotes eradication of the
pathogen through recruitment of cells and molecules of the innate immune sys-
tem out of the blood and into the infected tissue, where they act to destroy the
pathogen directly (Ryan, 1977).

A similar mechanism to the degradation that occurs with phagocytosis exists
to breakdown components within a cell. This mechanism is called autophagy (or
autophagocytosis), which is a homeostatic process whereby cells dispose of intra-
cellular organelles and protein aggregates (Levine et al., 2011). The autophagy
pathway is linked to most cellular stress-response pathways, and crucially has a
role in the control of inflammatory signalling (Levine and Kroemer, 2007). One
way in which autophagy is induced is through NF-κB dependent cytokine pro-
duction (Levine et al., 2011). In a simplified NF-κB model, spatial separation
across the three major compartments is involved in propagation of the signal by
extracellular signals binding to membrane receptors, a cascade of reactions occur-
ing in the cytoplasm, and translocation of NF-κB to the nucleus for upregulation
of gene transcription (Weng et al., 1999).

Figure 3.1: Generalised cell signalling pathway showing two distinct signals which ac-
tivate different receptors. Once receptor is enzyme-linked and upon activation initiates
a cascade of reactions, and the other is G-protein-linked, using a phosphate group from
GTP to activate a co-receptor which then initiates a cascade. These two separate sig-
nalling pathways converge on a common intermediate component, which translocates
across the nuclear membrane to activate transcription of specific genes, culminating
through a number of other biological processes in the synthesis of proteins.

neutrophils and monocytes out of the bloodstream and into infected tissue”.
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3.2 Overview of Transcription Factor NF-κB

Nuclear factor-kappa B (NF-κB)5 is a collective name for a family of inducible
dimeric transcription factors, and as such is an essential intracellular messenger,
which in conjunction with its signalling pathway connects various extracellular
stimuli to the induction of gene expression. NF-κB plays a critical role in inflam-
mation, immunity, cell proliferation, cell differentiation, and cell survival (Oeck-
inghaus and Ghosh, 2009). As a transcription factor, it activates the creation of
an equivalent copy of RNA from a DNA sequence (transcription), which is subse-
quently translated into the corresponding amino acid sequence as part of protein
synthesis. NF-κB was discovered just under 30 years ago by the laboratory of the
Nobel Laureate David Baltimore. Sen and Baltimore (1986a) discovered multiple
nuclear factor proteins that interacted with enhancers (regulators of DNA tran-
scription) of the immunoglobulin heavy chain and the κ light chain in B-cells (a
type of white blood cell, derived from the bone marrow, that produces antibod-
ies); they called these NF-α, NF-µ, and NF-κ. NF-κB was initially considered
to be B-cell specific, but was later shown to be ubiquitous - in all cells. It has
been found to regulate a diverse range of biological processes, for example cell
growth and survival, to immune response and inflammation (Sun and Liu, 2011).
Two recent special issues of Cell Research (2011, vol 21) and Nature Immunology
(2011, vol 12, no 8), were dedicated to NF-κB signalling and function.

3.2.1 Functions of the NF-κB Signalling Pathway

The choice between life and death of individual cells during infection of a host,
is one of the key events in the immune response (Karin and Lin, 2002). The
transcription factor NF-κB is a major player in the regulation of such life and
death decisions, and is involved in the transcriptional regulation of a large num-
ber of genes, particularly those involved in response to infections (through the
innate and adaptive immune systems), and other stressful situations (Tian and
Brasier, 2003; Pahl, 1999). For example, it has been shown that NF-κB is acti-
vated by cytokines (Stylianou et al., 1992), reactive oxygen species (Bubici et al.,
2006; Morgan and Liu, 2011), viral infection (Hiscott et al., 2006), bacterial cell
wall products (Laflamme and Rivest, 2001), DNA damage (Bender et al., 1998),
shear stress (Ganguli et al., 2005), shape changes (Nemeth et al., 2004), etc. In
keeping with the large number of extracellular signals that activate the NF-κB
signalling pathway, the transcription factor also upregulates a large list of target
genes (Pahl, 1999). This association between NF-κB and expression of genes used
within the immune response is thought to date as far back as insects in evolution-
ary terms (Siebenlist et al., 1994). Although NF-κB is ubiquitously expressed,
its action is regulated in a well controlled, cell-type and stimulus-specific manner,
which provides for a multitude of roles and effects (Brasier, 2006). In fact, one
of the first genes that NF-κB activates is actually one of its own inhibitors, IκB
(inhibitor of kappa B; Baeuerle and Baltimore 1988a,b; Sun et al. 1993). NF-κB
activation is therefore an inducible, but transient event in normal cells.

5The nuclear factor-kappa B gains its name following its discovery by Sen and Baltimore (1986a)
as an enhancer (regulator of DNA transcription) of the κ light chain (a sequence of amino acids)
in B cells (a type of white blood cell, that makes antibodies).
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The review by Pahl (1999) highlights that among other functions, NF-κB
is important for the production and/or regulation of enzymes that generate
prostaglandins (locally acting messenger molecules) and reactive oxygen species.
Of particular note to the immune system and the inflammatory response, is that
NF-κB regulates genes encoding many proinflammatory cytokines and chemokines,
for example interleukin 1b, interleukin 2, tumour necrosis factor, and transform-
ing growth factor (reviewed by Siebenlist et al. 1994), and interferon as part of
the antiviral response (Boehm et al., 1997). Furthermore, an important early
target of these cytokines and chemokines, is the vascular endothelium, whose
constituent endothelial cells must recruit white blood cells in the circulatory sys-
tem and then change their structural integrity to allow these blood cells to cross
the vascular membrane into the site of infection. This is mediated through the
expression of cell adhesion molecules, such as VCAM-I and ICAM-I (reviewed by
Baldwin 1996).

As reviewed by Baichwal and Baeuerle (1997) and Sonenshein (1997), NF-κB
activation protects most cells from apoptosis through induction of survival genes,
such as the antiapoptotic factor Bcl-2, although under certain conditions and in
certain cell types it may also induce apoptosis (Dutta et al., 2006). An example of
this is NF-κB’s involvement in development of mature B-cell and T-cell lympho-
cytes within the immune system. B- and T-cells that bind self-antigens with high
affinity are likely to be self-reactive, and therefore need to be removed from the
lymphocyte population through a process known as negative selection. NF-κB
is believed to facilitate negative selection through the induction of proapoptotic
genes. Surprisingly, NF-κB has also been linked to positive selection of T-cells as
well, where it performs an antiapoptotic role (reviewed in Hayden et al. 2006).

Along with involvement in the developmental cycle of lymphocytes, NF-κB is
also involved with activation of genes for immunoreceptors (e.g. T-cell Receptor
and Major Histocompatibility Complexes I and II) at the cell surface of these
lymphocytes (see review by Siebenlist et al. 1994), and in the upregulation of
CD80/CD86 on antigen presenting cells (APCs; e.g. dendritic cells) which are co-
stimulatory molecules, providing the second signal necessary for T-cell activation
(Pahl, 1999). Furthermore, NF-κB also plays an important role in the develop-
ment and function of primary and secondary lymphoid tissues. Primary (central)
lymphoid organs include the bone marrow and thymus, whereas secondary (pe-
ripheral) lymphoid organs include the lymph nodes, Peyer’s patches, and spleen
(Hayden et al., 2006).

Due to the wide ranging gene products that are regulated through NF-κB and
its associated signalling pathway, NF-κB has been deemed a ‘Master’ regulator
of inflammation (Brasier, 2006). See figure 3.2 for a high-level depiction of how
the multitude of inducers for NF-κB activation, and resulting gene products, has
led to the idea that NF-κB acts as the hub in a complex network of interactions
that gives rise to a bow-tie motif.
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Figure 3.2: High-level representation of how the multitude of inducers of the NF-κB
signalling pathway, which converge on the NF-κB signalling module (NF-κB, IκBα,
and IKK), before diverging to regulate a multitude of gene products, has the topol-
ogy of a Bow-Tie motif from systems biology. Pahl (1999) advises that there are over
150 known inducers of NF-κB activation, which can be categorised into: 1) bacteria,
e.g. Helicobacter, Salmonella, Staphyllococcus, and Listeria; 2) bacterial products, e.g.
lipopolysaccharides, exotoxins, and phospholipases; 3) viruses, e.g. Epstein-Barr virus,
HIV, hepatitis, influenza, and measles; 4) inflammatory cytokines, e.g. various inter-
leukins and tumour necrosis factors; 5) physiological stress conditions, e.g. hemorrhage,
hyperglycemia, ischemia, liver regeneration, and shear stress; 6) physical stress, e.g. ul-
traviolet radiation and gamma radiation; 7) oxidative stress, e.g. hydrogen peroxide or
ozone; 8) environmental hazards, e.g. lead and cobalt; 9) receptor ligands, e.g. CD28
ligand and CD40 ligand; 10) mitogens, growth factors and hormones. Similarly, Pahl
(1999) also advises that there are more than 150 known genes that are regulated by
NF-κB, which can be categorised into: 1) cytokines/chemokines, e.g. IFNγ, IL-1α, IL-
1β, IL-2, TNFα, TNFβ; 2) immunoreceptors, e.g. CD48, CD80, IL-2 receptor α-chain,
IgG heavy chain, MHC class 1, MHC class 2, TNF receptor; 3) cell adhesion molecules;
4) stress response genes; 5) cell surface receptors; 6) regulators of apoptosis; 7) growth
factors; 8) early response genes; 9) transcription factors, e.g. A20, IκBα, nfkb1 (p105
precursor), nfkb2 (p100 precursor), p53 (tumour suppressor).
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Class Protein Aliases Gene

I
NF-κB1 p105 -> p50 NFKB1
NF-κB2 p100 -> p52 NFKB2

II
RelA p65 RELA
RelB RELB
c-Rel REL

Table 3.1: The two NF-κB subfamilies and their associated proteins and genes. The
class I NF-κB subfamily contains the proteins p50 and p52, whereas the class II sub-
family contains RelA (also known as p65), RelB, and c-Rel. Table was developed from
the reviews by Baldwin (1996) and Oeckinghaus and Ghosh (2009).

3.2.2 Composition of NF-κB and the Role of its Inhibitor

NF-κB transcription factors are hetero- or homodimers containing members of
the Rel family of proteins. This family is composed of five distinct gene products
which are related by a conserved region known as the Rel Homology Domain
(RHD) that is responsible for nuclear localisation, DNA-binding (to κB sites),
and dimerisation (Ghosh et al., 1998). The NF-κB family is divided into two
functionally distinct subfamilies: the first are encoded by large precursor proteins
that are subsequently processed into smaller DNA-binding subunits with strong
DNA-binding activity and weak transcriptional activation potential (p105/NF-
κB1 and p100/NF-κB2); the second are translated as mature proteins that bind to
DNA weakly and contain potent transcriptional activation domains (RelA, RelB,
and c-Rel (Siebenlist et al., 1994; Baldwin, 1996)). See table 3.1 for mapping
between the two subfamily classes and the various NF-κB subunits and their
corresponding gene.

The subunit composition of the Rel/NF-κB dimers influences its subcellular
localisation and mode of regulation (Tian and Brasier, 2003). For example, ho-
modimers of NF-κB1 are primarily located within the nucleus, and have weak
transcriptional activation potential, whereas heterodimers of the prototypical
(first discovered, and most common) NF-κB complex consist of a p50 subunit
(lacking an activation domain) and a RelA subunit (containing an activation
domain; as noted in table 3.1, RelA is also known as p65), and are primarily cy-
toplasmic, due to regulation by their inhibitory subunits known as IκBs (Baeuerle
and Henkel, 1994). Like NF-κB, IκB is a member of a larger family of molecules
that include IκBα, IκBβ, IκBε, and IκBγ. The best characterised IκB is IκBα,
mainly because it was the first member of the family to be cloned (Ghosh et al.,
1998). The function and regulation of p50/RelA heterodimer of NF-κB is shown
in figure 3.3. The inactive form is a trimeric complex of NF-κB (p50/RelA)
bound to the inhibitor protein IκB, and remains within the cytosol due to mask-
ing of its nuclear localisation sequence (Shirakawa and Mizel, 1989). In response
to cellular stimulation however, the IκB subunit dissociates, thus releasing the
NF-κB complex, and due to unmasking of the nuclear localisation sequence, the
released p50/RelA complex enters the nucleus, where it becomes activated and
binds cognate binding sites to upregulate the transcription of target genes (Beg
et al., 1992).
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Figure 3.3: A high-level cartoon diagram of the p50/RelA NF-κB heterodimer and
its associated signalling pathway. Following activation of an enzyme-linked receptor
by an extracellular signal (such as IL-1), signal transduction is initiated through an
intracellular signalling cascade and culminates with the dissociation (and degradation)
of IκB from the inhibited NF-κB complex. The p50/RelA heterodimer is therefore
released (due to the unmasking of its nuclear localisation sequence) and translocates to
the nucleus where it activates transcription of target genes.

3.2.3 The NF-κB Signalling Pathway

Activation of the NF-κB transcription factor and signalling pathway is a tightly
regulated event, involving phosphorylation of several members of the NF-κB and
IκB protein families (Naumann and Scheidereit, 1994). NF-κB is normally se-
questered in the cytosol of non-stimulated cells, and consequently must be translo-
cated into the nucleus to function as a transcriptional activator of target genes.
NF-κB activation is induced by a wide variety of different extracellular stim-
uli, including proinflammatory cytokines (such as TNFα and IL-1), bacteria,
viruses, and physical and chemical stresses (Ghosh et al., 1998; Siebenlist et al.,
1994). Currently, NF-κB activation is thought to be controlled by two distinct
pathways, which have been termed the canonical and non-canonical pathways
(Karin, 1999a,b; Senftleben et al., 2001). The two pathways are induced by dif-
ferent extracellular stimuli, controlled by different intracellular kinases, operate
on different NF-κB complexes, and activate the transcription of different target
genes (Brasier, 2006). The canonical pathway controls nuclear translocation of
the p50/RelA (NF-κB1/RelA) heterodimer, whereas the non-canonical pathway
controls translocation of the p52/RelB (NF-κB2/RelB) heterodimer.

Following activation of a cell membrane receptor and propagation of the sig-
nal via intracellular signalling, both the canonical and non-canonical pathways
ultimately result in the signal reaching an IκB Kinase (IKK) complex. Israël
(2009) advises that the composition of the IKK complex is key to the separation
of canonical and non-canonical pathways. The IKK trimer within the canonical
pathway consists of two kinase subunits IKKα and IKKβ, along with the regu-
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latory subunit IKKγ (NF-κB Essential Modulator, or NEMO (Chen et al., 1996;
Mercurio et al., 1997; Zandi et al., 1997)). This pathway involves activation of the
IKK, with subsequent phosphorylation-induced degradation of IκB inhibitors for
release of NF-κB. By contrast, the IKK trimer within the non-canonical pathway
consists of two IKKα subunits and the NEMO subunit (Senftleben et al., 2001;
Oeckinghaus and Ghosh, 2009), but also requires activation of an NF-κB-inducing
kinase (NIK) for it to function (Xiao et al., 2004). NIK stimulates IKKα-induced
phosphorylation of the NF-κB2 (p100) precursor to yield NF-κB2. See figure 3.4
for a high-level overview of the canonical and non-canonical pathways.

Figure 3.4: Simplified diagram depicting the two NF-κB signalling pathways. The
canonical pathway on the left is initiated through extracellular stimuli, such as IL-
1, and through activation of the IKK complex, leads to the degradation of IκB, and
resultant release and translocation of the p50/RelA heterodimer into the nucleus for
transcriptional activation. The non-canonical pathway is initiated through extracellular
stimuli, such as Receptor Activation of NF-κB Ligand (RANKL; Novack 2011), and
activates NIK, which then activates the IKK complex, before processing of the p100
NF-κB2 precursor into p52, and subsequent translocation of the p52/RelB heterodimer
into the nucleus for transcriptional activation.

For the remainder of this thesis we will focus on the canonical pathway, and
specifically signal transduction through the p50/RelA NF-κB heterodimer, as
this is believed to be the most frequent Rel/NF-κB dimer in the majority of cells
(Baeuerle and Henkel, 1994). Under normal conditions, IκBs bind to NF-κB
dimers and sterically block their nuclear localisation sequences, thereby causing
retention of the transcription factor within the cytosol. Following phosphoryla-
tion of the IκB (in this case IκBα) by the IKK complex (DiDonato et al., 1997),
it undergoes a second modification called polyubiquitination6, which then targets
IκBα for rapid degradation (Brown et al., 1995). This degradation of NF-κB’s
inhibitor, exposes the nuclear localisation sequence, resulting in translocation of
the transcription factor from the cytosol to the nucleus (Silver, 1991), where it

6It should be noted that neither phosphorylation nor ubiquitination alone is sufficient to disso-
ciate the NF-κB-IκBα complex, hence, free NF-κB is only released after degradation of IκBα
(Alkalay et al., 1995a; DiDonato et al., 1995)
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is phosphorylated and becomes active (Sen and Baltimore, 1986b; Hoffmann and
Baltimore, 2006). The active NF-κB may then bind to promoter regions7 of tar-
get genes to activate their transcription. Interestingly, one of the first target
genes to be transcribed is the inhibitor IκBα (Sun et al., 1993) itself. Newly
synthesised IκBα accumulates within the cytosol before translocating to the nu-
cleus, where it binds DNA-bound NF-κB and induces translocation back into the
cytosol (Arenzana-Seisdedos et al., 1995). This negative feedback loop results in
transient activation of the NF-κB signalling pathway.

3.2.4 Consequences of Malfunctions within the NF-κB
Signalling Pathway

The most well defined function of NF-κB is its regulatory effects within the de-
velopment and activation of the immune system. Indeed, NF-κB regulation is
believed to be essential for the proper function of both the innate and adaptive
immune systems. Under physiological conditions for normal (non-maligned) cells,
NF-κB activation occurs transiently upon receiving a stimulus, due to the nega-
tive feedback regulation. Due to the very tight regulation involved with NF-κB
activation and the subsequent downstream effects on gene expression, particularly
in relation to immune responses to infection, any impairment of this regulation
may result in NF-κBs direct involvement in a wide range of human disorders,
including a variety of cancers (see special issues of Oncogene vol 18, 1999; and
vol 25 2006), neurodegenerative diseases (Grilli and Memo, 1999), cardiovascu-
lar diseases (Brasier, 2006), arthritis (Foxwell et al., 1998), and numerous other
inflammatory conditions (see special issue of Cell Research vol 21, 2010). In
such cases, NF-κB is believed to have lost its transient nature of activation and
to have become constitutively activated, leading to the uncontrolled expression
of genes (Sethi et al., 2008). A good example is when the NF-κB pathway be-
comes dysregulated, and allows various cytokines to constitutively activate the
pathway. This results in potential autoimmune responses, in particular within
the central nervous system, and resultant onset of demyelinating diseases such
as Multiple Sclerosis (MS) in humans, and the analogous Experimental Autoim-
mune Encephalomyelitis in animals (Karin and Lin, 2002). Bonetti et al. (1999)
advise that the nuclear localisation of NF-κB is upregulated in various immune
response cells (e.g. microglia and oligodendrocytes) that are located in active MS
lesions. They propose that in such autoimmune diseases, the activation of NF-κB
may exert an anti-apoptotic effect and contribute to the absence of apoptosis for
maligned immune response cells.

Of particular note to various cancers is that several gene products which neg-
atively regulate apoptosis in tumour cells (antiapoptotic, hence prosurvival) are
controlled by NF-κB activation. Indeed, NF-κB has been linked to antiapoptotic
function in tumours such as T-cell lymphoma and melanoma (Sethi et al., 2008),
and recently Bivona et al. (2011) have identified NF-κB as a potential compan-
ion drug target for treatment of lung cancers. Their studies found that increased
levels of IκB improved the response and survival of patients being treated for
EGFR-mutant (epidermal growth factor receptor mutant) lung cancer. Simi-

7Every gene has an associated region of DNA called a promoter region, which is a sequence of
DNA indicating where transcription of that gene should begin.
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larly, Flavell et al. (2010) state that the M2 phenotype of tumour associated
macrophages (macrophages stimulated by IL-3 or IL-4, and involved in tumour
promotion) are mediated by the p50 NF-κB subunit, and that TGFβ down-
regulates NF-κB in these macrophages. Furthermore, the metastasis of cancer
requires the migration of cancerous cells both into, and out of, the vasculature
that transport them around the body. As highlighted above (see section 3.2.1),
one consequence of NF-κB activation is the penetration of cells across the vascu-
lature through production of cell adhesion molecules (e.g. VCAM-I and ICAM-I)
within the endothelial cells of blood vessels.

A number of viruses induce NF-κB activation, some of these intriguingly have
also been found to contain NF-κB binding sites in their viral promoters (Pahl,
1999). As such, it is possible that viruses are able to hijack the transcriptional
upregulation that results from NF-κB activation and rapidly replicate within an
infected host. Thus the host’s own defensive machinery (through NF-κB’s ability
to induce production of defensive compounds), becomes turned against itself. For
example, it is thought that the presence of an NF-κB binding site in the HIV-
1 promoter region may be one reason for the virulence of the virus in infected
patients, and a low-level of NF-κB activation may help explain the mechanisms
behind chronic infections (Kovacs et al., 1995).

NF-κB has wide-ranging effects controlled by a complex regulatory network of
inhibitors and co-activators. Understanding the mechanisms that control NF-κB
activation/cellular signalling is important for exploiting therapeutic approaches
to treat human disorders due to its dysregulation. Specific targets for therapeutic
agents could be the transcription factor itself, or any of the associated components
within the pathway, including protein kinases and the IκB inhibitors themselves.
Gilmore and Herscovitch (2006) reviewed the known inhibitors of NF-κB, which
may provide a basis for research regarding pharmacological intervention.

3.3 Receptors, Co-Receptors, Adaptor Proteins and
Kinases

In addition to the various NF-κB dimers, IκB inhibitor proteins and IKK com-
plexes, there are a large number of upstream components that facilitate signal
transduction through the NF-κB signalling pathway. Section 3.1.2 highlighted
the three main types of cell membrane receptors within the immune response,
and one particularly important family of receptors linked to the NF-κB signalling
pathway within the innate immune system are the Toll-like receptors. Along with
these system signalling cell membrane receptors, there are also co-receptors (ad-
ditional cell membrane proteins), which are able to better recognise extracellular
signals (Murphy et al., 2008). Upon extracellular signal recognition, the receptor
becomes activated through a number of conformational changes being induced
on its intracellular surface, which allows the binding of proteins within the cyto-
plasm. Once active, these receptor/co-receptor complexes are able to propagate
signal transduction through a number of intermediate components, encompass-
ing adaptor proteins and protein kinases, before reaching the IKK complex for
subsequent activation of NF-κB.
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3.3.1 Toll-like Receptors and the IL-1R Superfamily

The Toll-like receptor (TLR) family are important components of the innate im-
mune system that recognise a wide range of microbial products, which possess
pathogen-associated molecular patterns8 (Doyle and O’Neill, 2006). There are
10 TLR proteins in humans9, each of which recognises a distinct set of signal
patterns, that are not represented within normal vertebrates, i.e. they recognise
bacterial, viral and fungal proteins (Murphy et al., 2008). TLR1 & TLR2 and
TLR2 & TLR6 form heterodimers and recognise bacterial lipoproteins; TLR3
recognises viral double-stranded RNA; TLR4 recognises Gram-negative bacterial
lipopolysaccharides (LPS); TLR5 recognises bacterial flagellin (tail-like protru-
sion that functions in cell movement); TLR7 and TLR8 recognise viral single-
stranded RNA; and TLR9 recognises specific DNA motifs that exist in viruses
and bacteria (Doyle and O’Neill, 2006). Finally, TLR10 remains the only mam-
malian Toll-like receptor to which ligands have not yet been characterised, and
forms heterodimers with TLR1 and TLR2 (Hasan et al., 2005).

TLRs were named following the discovery that they were homologous to a trans-
membrane protein named toll, which is necessary for embryo development (Ander-
son and Nusslein-Volhard, 1984) and defence against fungal infection (Lemaitre
et al., 1996) in the fly Drosophila melanogaster. Furthermore, DNA sequencing of
toll protein, highlighted high homology to the human interleukin 1 receptor (IL-
1R; Gay and Keith 1991). The homology between toll and IL-1R was within their
cytosolic (intracellular) regions, and the domain was termed the Toll/IL-1R resis-
tance (TIR) domain (Doyle and O’Neill, 2006). Due to this homologous intracel-
lular region, TLR and IL-1R have been grouped into a superfamily, with the TLR
subgroup possessing an extracellular domain containing leucine-rich repeats, and
the IL-1R subgroup possessing an extracellular immunoglobulin domain (O’Neill
and Dinarello, 2000). Hultmark (1994) discovered that the macrophage differen-
tiation marker MyD88 was a member of the TLR/IL-1R superfamily. It was later
found that MyD88 connected the TIR domain of receptor proteins to downstream
signalling components, and due to its lack of extracellular domain, it was deemed
to be an adaptor protein (Wesche et al., 1997).

3.3.2 CD14, MD2 and TILRR Co-Receptors

The most well defined TLR protein is TLR4, and following ligation with LPS, it
dimerises (Poltorak et al., 1998)10 and associates with CD14 (a co-receptor for
LPS) and an additional cellular protein MD2 (Murphy et al., 2008) in order to
signal the presence of the bacterial product. There are two forms of the CD14
co-receptor: the membrane CD14 (mCD14), which is present at the surface of
myeloid cells; and the soluble CD14 (sCD14), which facilitates the binding of
LPS in cells that do not possess mCD14, such as endothelial cells, and is also
secreted by the liver (Wright et al., 1990). Similarly, the MD2 protein associates
with TLR4 on the cell membrane and also facilitates the response to LPS (Re
and Strominger, 2002; Shimazu et al., 1999).

8Pathogen-associated molecular patterns (PAMPs) are a class of conserved microbial structure
9TLRs 3, 7 and 9 are intracellular, and therefore are not membrane-bound receptors.
10The laboratory lead for this paper, Bruce Beutler, was later awarded a Nobel prize in Medicine

and Physiology for discoveries concerning the activation of innate immunity.
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Recently, Zhang et al. (2010, 2012) discovered another co-receptor involved
in the NF-κB signalling pathway. They have termed this co-receptor a Toll-
like/IL-1 Receptor Regulator (TILRR), due to its association with (and activation
of) IL-1R type I (IL-1RI). Furthermore, the TILRR/IL-1RI complex was also
found to magnify the NF-κB inflammatory response by enhancing association
with the MyD88 adaptor protein, and also to link TIR domain activation with
mechanotransduction11 through regulation of the Ras GTPase.

3.3.3 Adaptor Proteins and Kinases

A large degree of the specificity inherent within signal transduction pathways
depends on the recruitment of multiple signalling components such as protein
kinases and G-protein GTPases into short-lived active complexes in response
to an activating signal such as a cytokine or bacterial product binding to its
receptor. Adaptor proteins are proteins that lack any intrinsic enzymatic activity
themselves, but instead mediate specific protein-protein interactions that drive
the formation of protein complexes (Murphy et al., 2008). Following recognition
of foreign material, the TLR and IL-1R superfamily utilise adaptor proteins to
facilitate the formation of receptor complexes, many of which involve protein
kinases, for propagation of signal via a cascade of phosphorylation steps within
the NF-κB signalling pathway (Kawai and Akira, 2006)

One of the initial adaptor proteins encountered following ligand binding to
TLR4 or IL-1RI, is MyD88. Once associated with the cell membrane receptor,
MyD88 recruits members of the interleukin-1 receptor-associated kinase (IRAK)
family (Wesche et al., 1997). To date, four IRAKs have been identified (IRAK1,
IRAK2, IRAK4, and IRAK-M), with IRAK1 and IRAK4 possessing kinase abil-
ity. Upon recruitment to the receptor-MyD88 complex, IRAK4 and/or IRAK1
are sequentially phosphorylated (Cao et al., 1996a), before becoming dissociated
from MyD88. The phosphorylated IRAK propagates the signal by activating
tumour necrosis factor receptor-associated factor 6 (TRAF6; Cao et al. 1996b),
which activates transforming growth factor-β-activated protein kinase 1 (TAK1;
a member of the mitogen-activated protein kinase kinase kinase (MAP3K) fam-
ily), that subsequently activates the IKK (IκB kinase) complex for degradation
of IκBα and release of NF-κB (Doyle and O’Neill, 2006; Kawai and Akira, 2006).
Along with MyD88, another adaptor protein termed Toll interacting protein (Tol-
lip) mediates IRAK to IL-1R associations, however in this instance, the adaptor
protein is believed to inhibit IRAK phosphorylation, and thus also inhibit the
interaction of IRAK with downstream kinases (Burns et al., 2000).

Oda and Kitano (2006) present a comprehensive map of TLR and IL-1R sig-
nalling networks, which is based on published papers. They show that TLR
signalling pathways can be approximately divided into four possible subsystems,
of which the main subsystem contains MyD88-IRAK4-IRAK1-TRAF6 as a pos-
sible core process for the activation of NF-κB and the MAPK cascade, leading to
the induction of the range of target genes (such as cytokines) that are essential
for the innate immune response. Their map highlights extensive crosstalk and
they propose MyD88 to be a non-redundant core element.

11Mechanotransduction is the mechanism by which cells transform mechanical stimulus into
chemical activity.
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3.4 Recent Experimental Approaches to Study
NF-κB

The NF-κB signalling pathway has been extensively studied over the past 28
years since its first discovery. The majority of research has focused on large-scale
biochemical dynamics, which require several thousands of cells at a time, that
need to be killed in order for results to be obtained. Subsequent results gained
are therefore at the level of the entire group, and essentially provide an average
of the dynamics being studied (this is akin to the use of ordinary differential
equation models discussed in section 2.6.2), and as such effectively hides the large
differences in behaviour between cells. It is repeatedly observed within biology
that genetically identical, individual cells in a standardised environment often
display significant differences in their response to perturbations (Tijskens et al.,
2003). To be able to look at these variations in detail, scientists have used single-
cell analysis. Here, observations are made, and data collected, on individual
living cells, allowing the variety of behaviours (between cells) throughout the
time-course of experiments to become evident (this is akin to the use of agent-
based modelling discussed in section 2.6.3).

The work of Carlotti et al. (1999) used an experimental technique for analysing
signalling pathways, which involves the expression of exogenous fluorescently
tagged proteins to see the effects on the cell. They used a set of enhanced green
fluorescent protein (EGFP) and RelA constructs to analyse the IL-1 induced
activation of NF-κB. Analysis of these effects was performed at the single-cell
level using confocal laser scanning microscopy12. This was the first published
example of single-cell analysis of the NF-κB signalling pathway. An example of
the images generated by the Qwarnstrom group using fluorescent tagging and
confocal microscopy is shown in figure 3.5. Through using a series of single-cell
analysis experiments, they determined the kinetics of nuclear uptake of NF-κB in
response to IL-1 stimulation13. Furthermore, they found that the signal transduc-
tion pathway propagating signals from IL-1RI to activation of NF-κB is saturable
with respect to RelA concentration and displays modest amplification of signal
throughout the signalling cascade. The authors built on this work a year later
by using additional fluorescent protein constructs and a nuclear export inhibitor
to study the two-way translocation between the cytosol and nucleus of NF-κB
and IκBα (Carlotti et al., 2000). They developed a mathematical model of the
association and dissociation of the NF-κB-IκBα complex, and import/export of
components to demonstrate shuttling kinetics across the nuclear membrane. With
this model they demonstrated a modest rate-limiting step for nuclear transloca-
tion, which was due to upstream effects (limitations) in the signal transduction
pathway, and also predicted that ∼17% of cellular NF-κB is free of IκBα. This
nuclear shuttling of NF-κB and IκBα, was confirmed by Schooley et al. (2003),

12Confocal microscopy requires molecules to be fluorescently tagged, and allows their behaviour
to be observed as it is able to focus on a thin layer of a cell at a time, thus allowing the nucleus
and cytoplasm to be distinguished.

13Interleukin (IL)-1 refers to two cytokines, IL-1α and IL-1β, which are key components in the
regulation of inflammatory processes, as they promote recruitment of inflammatory cells at
the site of inflammation through the expression of adhesion molecules and chemokines (Gabay
et al., 2010).
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using the technique of immunocytochemistry, who also showed that control of en-
dogenous levels of NF-κB subunits exhibited the same cell-to-cell variation, and
thus was a real biological event and not due to transfection.

Work within the group then focused on the degradation and translocation of
IκBα and how this affected the dynamics of NF-κB. Yang et al. (2001) discov-
ered that degradation and translocation of IκBα was dependent on the level of
cytoplasmic expression, i.e. the level of degradation demonstrates a positive cor-
relation with the level of the inhibitor protein within the cytoplasm (see figure
3.6). They later demonstrated that translocation, phosphorylation, and NF-κB-
IκBα complex formation are all critical for regulation of IκBα steady-state levels
by NF-κB (Yang et al., 2003). This latter work also highlighted that both the
extent and affinity of the NF-κB/IκBα interaction plays a key role in system
regulation, affecting both basal levels and those induced in response to incoming
signals. This technique of using fluorescent constructs of components within the
NF-κB signalling pathway as part of single-cell analysis, has since been used to
assess the TNF induced activation of the pathway by several other groups who
have confirmed the advantages it provides in obtaining detailed information of
pathway regulation (Nelson et al., 2004; Ashall et al., 2009; Lee and Covert, 2010).
Indeed, Lee and Covert (2010) suggest that single-cell analysis is advantageous
over traditional biochemical techniques because they provide better time resolu-
tion of different responses between cells, higher sensitivity, automation, and richer
datasets. Along with IL-1 mediated induction of NF-κB and IκBα dynamics, the
group has also researched mechanotransduction (Ganguli et al., 2005).

Figure 3.5: Image of an individual cell’s NF-κB molecules using EGFP tagging and
confocal microscopy following IL-1 induced stimulation. Images correspond to 0, 5,
10, 20, 30 and 60min following IL-1 induced stimulation, and the dark region at the
centre of the cell at 0min is the nucleus, which can clearly be seen to be free of NF-κB.
As time progresses, the intensity of fluorescence within the nucleus increases markedly,
corresponding to an increase in NF-κB in this cell compartment. Figure from Carlotti
et al. (1999).
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Figure 3.6: Five time-series images generated using confocal microscopy of fibroblasts
following transfection with IκBαEGFP and RelA. The time-series clearly shows the
degradation of IκBα following stimulation with IL-1β. Reproduced from figure 1a of
Yang et al. (2003).

3.5 Current Computational Models of NF-κB

A formidable body of knowledge has been generated through wet-lab experimen-
tation since the discovery of NF-κB in 1986, and more recently through interdis-
ciplinary studies using computational models of the pathway. Segel (1995) has
said that one of the hallmarks of a complex system is that it is a system that
cannot be described by a single model. In this respect, we need to look no further
than the recent work to model the NF-κB cell signalling pathway. Following the
move by a large section of the scientific community away from the reductionist
approaches and towards a systems-level understanding, the use of computational
modelling and simulation has been adopted by a growing number of well known
labs within the NF-κB arena. Various individuals, and indeed different research
groups, have made use of fundamentally different computational methods to ex-
plore NF-κB transcriptional activation. As the field of computational modelling
is maturing, the computational approaches that have been used are beginning
to pay dividends. Recently, equation-based and agent-based models have been
used within a predictive capacity to generate hypotheses for testing through ad-
ditional wet-lab experimentation. We will review these existing computational
models throughout the rest of this section.

3.5.1 Deterministic Ordinary Differential Equation Models

It is generally accepted that the first mathematical model of NF-κB dynamics was
developed by Carlotti et al. (2000). This model focused on IκBα association and
dissociation rates, along with IκBα and NF-κB translocation between the cyto-
plasm and the nucleus (see figure 3.7). Their reaction kinetics model consisted of
six variables (NF-κB, IκB, and NF-κB-IκB concentrations in both the cytoplasm
and nucleus) and ten reaction processes. They examined each pair of processes in
turn to determine the net effect on system variables, and extrapolated the system
conditions required for dynamic equilibrium.

We believe the first model of the wider NF-κB signalling pathway however, was
that of Hoffmann et al. (2002). They developed an ODE-based computational
model using the Gepasi software (version 3.1; Mendes (1993, 1997)). They were
particularly interested in the temporal control of NF-κB activation by the coordi-
nated degradation and synthesis of IκB proteins. The model therefore focuses on
reactions that govern IκB metabolism, including synthesis, degradation, cellular
localisation, and association/dissociation with NF-κB.
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Figure 3.7: Reaction kinetic model of nuclear-cytoplasmic shuttling by Carlotti et al.
(2000). This model consists of 6 variables and 10 processes. The variables correspond to
concentrations of NF-κB, IκB, and NF-κB-IκB in both the cytoplasm and nucleus. The
processes correspond to the kinetics of NF-κB and IκB association and dissociation,
along with the translocation kinetics of each component across the nuclear membrane.

This mathematical model comprised a system of 24 ODEs describing reac-
tion kinetic equations of the change in concentration (with respect to time) of
cytoplasmic and nuclear NF-κB, cytoplasmic and nuclear IκB (-α, -β, and -ε),
cytoplasmic IKK, and resultant complexes that they may form. A number of bio-
chemical reactions were grouped to reduce complexity of the model, two examples
are: (i) IκB proteins are degraded via phosphorylation by IKK, then polyubiq-
uitination and subsequent degradation by the proteasome, however the model
combines these into a single IKK-dependent degradation reaction; (ii) mRNA
synthesis, translocation to cytoplasm, and translation into protein, was treated
as a single-step process of IκB protein synthesis. The model also contained 30
parameters, including: (i) synthesis of each IκB isoform; (ii) stability of free
NF-κB-bound IκB proteins; (iii) formation of IKK-IκB-NF-κB complexes; (iv)
enzymatic rate constants of IKK-containing complexes; and (v) transport rates
affecting localisation of IκBα, β, ε and NF-κB and their complexes. The pa-
rameter values used were gained using a mixture of biochemical experimentation
within their lab, review of published literature, and estimation through model
fitting techniques. An example of this latter approach are the five parameters
that were used to capture steady-state nuclear and cytoplasmic localisation of
NF-κB and IκB proteins.

Alongside the computational modelling, the authors performed wet-lab exper-
imentation to study the dynamics of NF-κB-IκB signalling through measuring
NF-κB activity (over time), not by single-cell analysis, but instead by using elec-
trophoretic mobility shift assay (EMSA) and western blots for IκB. They were
interested in the differential functions of IκBα, β, and ε isoforms on regulation of
NF-κB activation, and used knockout mice for the three isoforms, and cross-bred
these to yield double-knockout cells where NF-κB was inhibited by a single IκB
isoform. These cells were stimulated with TNFα in order to induce the NF-κB
signalling response. Their conclusions from wet-lab experimentation were that
coordinated degradation, synthesis and localisation of all three IκB isoforms is
required to generate the characteristic NF-κB activation profile.
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Three computational models were developed to represent these double knock-
outs: β-/-ε-/- (IκBα), α-/-ε-/- (IκBβ), and α-/-β-/- (IκBε), which were calibrated so
that simulation results were consistent with wet-lab dynamics. The three compu-
tational models were then combined to form a single model that was believed to
represent wild-type cells, and used as a basis for predicting wild-type dynamics.
Through varying the relative contributions of IκB isoforms, the model was used
to predict the discrete functional roles of IκB proteins in NF-κB regulation. The
combined model has IκBβ and -ε synthesised at a steady rate throughout simula-
tions, and increasing IκBα synthesis following NF-κB activation. The IκBβ and
-ε genes within the model are therefore not under the control of NF-κB. Because
of this subtlety, the authors were able to use model fitting to determine IκBβ
and -ε mRNA synthesis parameters to calibrate simulation responses to those of
experimental wild-type responses. Simulation yielded two very different results,
predicting that (i) IκBα mediates rapid NF-κB activation and strong negative
feedback regulation, resulting in an oscillatory NF-κB activation profile, and (ii)
that IκBβ and IκBε respond more slowly to IKK activation and act to dampen
the long-term oscillations of the NF-κB response.

The authors believe that the outputs of the wild-type model are in good agree-
ment with their wet-lab data, and therefore that the model may be used for
predictive purposes. We agree with this statement in so far as the predictions
are to be made in relation to the very small scope of the original model. Hoff-
mann et al. (2002) modelled a very small subset of the NF-κB signalling pathway,
which they termed the IκB-NF-κB signalling module (IKK, NF-κB, and IκB),
and therefore quite heavily abstracted the model away from biological reality.
Their reasoning is that the majority of upstream activities converge at the IKK
complex, and therefore activation of the complex would be an appropriate input
for the model. Similarly, as NF-κB may act as a transcriptional activator for
a number of target genes, they deemed its activation and translocation to the
nucleus to be an appropriate output for the model. Although we understand,
and indeed agree with this reasoning, the model has become very generalised
regarding NF-κB responsive genes (there is no detail regarding actual gene tran-
scription other than IκBα), and furthermore, although the authors state that the
IKK complex becomes activated following TNFα stimulation, the amount of ab-
straction inherent to the model means that this could actually be any stimulatory
signal. We therefore believe that the initial model may have been heavily tuned
in order to align with their wet-lab experimental dynamics.

Recently, Cheong et al. (2006, 2008) have reviewed this initial work and argue
that the functions of the three IκB isoforms combine to allow the signalling mod-
ule to distinguish between short and long lasting stimuli. Furthermore, Kearns
et al. (2006) through augmentation and simulation of the model, discovered that
IκBε provides negative feedback to control NF-κB dynamics, and Kearns and
Hoffmann (2009) have also updated the model to contain 73 parameters. Like the
original model, they have used various sources for the parameter values: a third
coming from in vitro measurements and quantitative cell biology (in particular
reactions of IKK-mediated IκB phosphorylation and degradation), a third from
published literature (e.g. half-lives, transport rates, and NF-κB-IκB affinities),
and the remaining third from parameter fitting. Following additional wet-lab
experimentation, they also hypothesise that the relative strength of IκBα and
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IκBε feedback mechanisms and their temporal relationships to each other may
account for cell type-specific regulation of NF-κB dynamics. Basak et al. (2007)
have also updated the model to introduce the p100 protein, which is part of
the non-canonical signalling pathway, and LPS induction of IKK-mediated IκB
degradation. They showed that p100 acts as an inhibitor of NF-κB activation,
and termed this IκBδ as it was found to be a bona fide IκB protein. They used
the model to explore feedback regulation and dynamics of p100, and suggest there
may be crosstalk between the canonical and non-canonical signalling pathways.
More recently, Shih et al. (2009) have further augmented the model to simulate
the effects of the newly discovered inhibitor IκBδ, and found that it provides
negative feedback in the presence of persistent, pathogen-triggered signals, by
dampening NF-κB responses during sequential stimulation events. The authors
subsequently updated this model to make specific to dendritic cells (DC), and
discovered that RelB regulation during DC activation integrates the canonical
and non-canonical pathways (Shih et al., 2012). We believe that this computa-
tional model is the first to model the kinetics of both RelA and RelB containing
dimers.

Despite the successes of the two models (initial and revised) from the Hoff-
mann lab, they appear to have a number of weaknesses. The models were cal-
ibrated against wet-lab experimentation that used the average of multiple cells
rather than single-cell analysis; as such, they did not reflect the large variation
in behaviours between individual cells that is inherent to the NF-κB signalling
pathway. With this in mind, the work by Nelson et al. (2004) built on the early
population-based model from the Hoffmann group to incorporate functionality
for single-cell dynamics, as seen in their wet-lab results. They used fluorescence
imaging of RelA and IκBα to study oscillations in RelA nucleus-cytoplasm locali-
sation in HeLa14 cells and SK-N-AS cells (human s-type neuroblastoma cells that
possess deregulated NF-κB signalling). Their work showed that single-cell time-
lapse imaging and computational modelling of RelA localisation showed asyn-
chronous oscillations following cell stimulation that decreased in frequency with
increased IκBα transcription. The authors used the ODE-based model developed
by Hoffmann et al and validated against their own single-cell experimental data.
Through simulation, they were the first to discover that nuclear-cytoplasmic os-
cillation, damping, and peaks of RelA (through TNFα stimulation), are highly
evident in single-cell analysis, but that this was not apparent at the averaged
population-level due to phase differences in the dynamics of the individual cells.
They also discovered that continuous TNFα stimulation elicited oscillations in
IκBα expression, which were out of phase with RelA nuclear-cytoplasmic oscil-
lations. Furthermore, they highlighted that changes to parameter values for free
IKK and IκBα were intimately coupled to the oscillation dynamics of nuclear NF-
κB, and suggested that these NF-κB oscillations could repeatedly deliver newly
activated NF-κB into the nucleus, maintaining a high nuclear ratio of active-
inactive NF-κB. They tested this in the wet-lab using a nuclear export inhibitor
(leptomycin B) to trap RelA in the nucleus, with results supporting the earlier
work of Carlotti et al. (2000), who showed that rapid dephosphorylation of NF-
κB in the nucleus may be a key factor in the switch-off of NF-κB-dependent

14HeLa cells are human cervical carcinoma cells, named after Henrietta Lacks, from whom the
cell line was derived (Lucey et al., 2009)
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gene expression. Using these simulation and wet-lab experimental results, they
proposed that oscillations in NF-κB localisation, coupled to cycles of RelA and
IκBα phosphorylation, maintain NF-κB-dependent gene expression.

Lipniacki et al. (2004) used the Hoffmann model as a baseline, and amended
in three main ways. Firstly, the kinetics of the nuclear and cytoplasmic com-
partments were refined to take into account differences between their volumes
when calculating concentrations of components - Hoffmann et al. had assumed
the sum of cytoplasmic and nuclear concentrations of diffusing substrates to be
constant; this holds true when cytoplasmic and nuclear volumes are equal, but in
most cases the cytoplasm is substantially larger than the nucleus (Alberts et al.,
1994). Secondly, they made use of additional information (i.e. assumptions and
considerations from publications by external groups) regarding IκBα interactions
within the system; for example Carlotti et al. (1999) and Rice and Ernst (1993)
suggest that only 10-15% of total NF-κB is not complexed to IκBα in a rest-
ing cell15. Thirdly, they re-estimated the mRNA transcription and translation
coefficients through the use of published molecular level data. This latter point
reflected the need to introduce granularity around formation and dissociation
of complexes, mRNA synthesis (transcription), translocation to cytoplasm, and
translation into proteins.

Lipniacki et al. (2004) utilised a high degree of abstraction, and again focused
on the NF-κB-IκB signalling module by using 15 ODEs to model kinetics of
IKK, NF-κB, IκBα, and the IKK inhibitor A20 within the nuclear and cyto-
plasmic compartments of cells. They removed IκBβ and IκBε and approximated
the collective action of all IκB isoforms by IκBα, which is the most active and
abundant one. They also added three new assumptions around the dynamics of
the IKK complex: (i) resting cells have a neutral form IKKn; (ii) stimulated cells
have an active form IKKa, which phosphorylates IκBα; and (iii) Krikos et al.
(1992) showed that IKK can be inactivated by a protein named A20, which like
IκBα, experiences strong transcriptional activation by NF-κB. This inhibition of
IKK was incorporated into the model, with A20 converting IKKa into the inactive
form IKKi, which no longer phosphorylates IκBα.

The model by Hoffmann et al. had assumed that ubiquitination and degrada-
tion of IκBα immediately followed its phosphorylation by IKK. Lipniacki et al.,
through reference to Yang et al. (2001), believe this to take several minutes in
reality, and therefore modified the NF-κB nuclear transport coefficient to incor-
porate a longer time delay between the IKK-mediated phosphorylation of IκBα
within the NF-κB-IκBα complex, and the translocation of free NF-κB from the
cytoplasm into the nucleus. This modification enabled the model to also take
into account the time needed for ubiquitination and proteolysis, within a single
coefficient. Additional assumptions were built into this revised model around the
IKK complex: (i) each form of IKK (IKKn, IKKa, and IKKi) were to degrade
with the same rate; (ii) IKKa would form transient complexes with IκBα, but
following IκBα phosphorylation, the IκBα degrades, whereas the IKK molecule
remains; (iii) there would be constant synthesis of new IKK to replenish those
that have degraded; (iv) A20 synthesis is also induced by NF-κB nuclear activity,

15The work by Pogson et al. (2008) suggesting that 66% of IκBα binds to the cytoskeleton had
not taken place yet.
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but when synthesised (located within the cytoplasm) it inhibits IKK, and has
the effect of decreasing IKK-mediated degradation of IκBα, therefore resulting
in more IκBα and thus less activated NF-κB. Their model therefore incorporates
two negative feedback loops for NF-κB activation, one involving inhibition of
free NF-κB via the binding of IκBα, and the other involving the inhibition of
IKK by A20. The amendments were made to the existing code (from Hoffmann
et al. 2002) which was written in Gepasi, and additional scripts to analyse the
resulting simulation data were also developed, but this time in Matlab16. The
model was validated against published data of Lee et al. (2000) regarding A20-
mediated dynamics, and the model dynamics of Hoffmann et al. (2002). After
parameter fitting, the authors believed that the model successfully reproduced
time behaviour of wild-type and A20 deficient cells.

Following the publication of this augmented computational model, the Hoff-
mann group (Cheong et al. (2006)) reimplemented their model using Cellerator
(Shapiro et al., 2003), updated their parameter values to take account of the re-
visions from Lipniacki et al, and extended the model scope to incorporate IKK
activation. They complemented this computational work with additional wet-lab
experimentation (at the population-level of cells) that focused on constant stim-
ulation with varying TNFα doses. They found that both duration and dose of
TNFα have little effect on the duration of the initial NF-κB response, and that
NF-κB responds sensitively to a wide range of TNFα concentrations. Their in
silico experimentation predicted that these signal transduction properties were
crucially dependent on the transient nature of IKK activity. Furthermore, they
found the dynamics of IKK activity to be non-linear in nature, which they con-
jecture could be the basis for ensuring robust TNFα-induced NF-κB responses
to offset limitations imposed through diffusion of the ligand within the extra-
cellular environment. More recent work by Tay et al. (2010) and Turner et al.
(2010) who incorporated a number of stochastic processes within their compu-
tational models (see semi-stochastic models below), have shown that in contrast
to these population-level studies, that the NF-κB response is heterogeneous at
the single-cell level, with fewer cells responding to lower doses of TNFα, due to
the individual cell responses being controlled by a stochastic threshold, and thus
yielding an all-or-nothing response (Turner et al., 2010).

Finally, the most recent deterministic model that we are aware of was developed
by Choudhary et al. (2013), who predicted through in silico experimentation
(and validated using siRNA knockdown wet-lab experiments), that the canonical
and non-canonical pathways are coupled through the action of TNF associated
factor 1 (TRAF1) and NF-κB inducing kinase (NIK). They demonstrated that
TNF stimulation (of the canonical pathway) induces TRAF1 expression, and
that the newly expressed TRAF1 binds to NIK (of the non-canonical pathway)
with high avidity. They conjecture that the TRAF1-NIK complex is a central
component for cross-talk between the two NF-κB pathways, as the TNF-induced
delayed activation of the non-canonical pathway is dependent upon a feed-forward
mechanism activated by TRAF1 expression from the canonical pathway.

16http://www.mathworks.com/products/matlab/
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3.5.2 Semi-Stochastic (Hybrid) Differential Equation Models

Following on from these initial ODE models, Lipniacki et al. have published two
subsequent increments of their model, by adding stochastic gene activation (Lip-
niacki et al., 2006), and then stochastic receptor activation by TNFα (Lipniacki
et al., 2007); with the wider group also publishing two additional increments, by
adding granularity at the single-cell level (Tay et al., 2010), and incorporating
positive feedback through TNFα expression (Pekalski et al., 2013). The first in-
crement continued to use ODEs (14 this time around) with the Gepasi software
and also introduced a stochastic switch to account for the activity of the genes
relating to A20 and IκBα. They did this by using 4 equations which account
for binding and dissociation probabilities of NF-κB molecules to regulatory sites
(in DNA) for A20 and IκBα promoters, the gene transcription into mRNA and
the resultant translation into A20 and/or IκBα proteins. This stochastic gene
activation facilitates the variability of protein concentrations within simulated
cells that is akin to that seen in biology, e.g. the stochastic switch allows large
variances in simulations due to amplifying effects of mRNA synthesis and protein
translation. We believe Lipniacki et al. (2006) were the first to have successfully
modelled the amplification cascade (of the NF-κB signalling pathway) following
gene activation.

The second increment by Lipniacki et al., was again built on their previous
work, but was entirely re-written using Matlab. They once again used differen-
tial equations (15 this time around) to model the kinetics of NF-κB signalling,
but this time further increased the scope to incorporate the TNFα cell mem-
brane receptor and the enzyme IKK kinase (IKKK), which activates the IKK
complex. The TNFα receptor was incorporated into the amplification cascade
described above (for the second generation Lipniacki model) through its activa-
tion being stochastic. The authors performed manual parameter fitting for this
receptor activation so that 90% of simulated cells are activated in the first 10min
of TNFα stimulation, and claim that predictions from their single-cell level sim-
ulation results agree qualitatively with published IKK and NF-κB activity data
of the population-level results from Cheong et al. (2006). However, unlike the
population-level results of Cheong et al. that suggest TNFα dose has little effect
on the duration of the initial NF-κB response, their in silico experiments show
that at low TNFα dose only a fraction of cells are activated, but that in these acti-
vated cells the amplification mechanisms assure that the amplitude of the NF-κB
nuclear translocation remains above a threshold. Additional in silico experiments
showed that low nuclear NF-κB concentration only reduces the probability of gene
activation, but does not reduce the gene expression of those responding. They
hypothesise that the two effects provide stochastic robustness in responding cells,
allowing cells to respond differently to the same stimuli, but causing their indi-
vidual responses to be unequivocal. This suggests that amplification-saturation
dynamics are present within the model, due to the final cell response at the level
of NF-κB target genes being approximately equal, regardless of whether a sin-
gle receptor or 100 receptors were activated. It is currently unknown whether a
single activated receptor is sufficient to initiate a response of this magnitude in
biological systems, so further wet-lab experimentation is required in parallel to
the computational work of this group.

The third increment, was developed by Tay et al. (2010), who augmented the
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mathematical model with additional parameters so that it may be used with high-
throughput single-cell resolution wet-lab experimental data. The model contains
16 differential equations (some of which are stochastic in nature) and 34 rate con-
stants, 20 of which used fixed constants from published data, and the remaining
14 were manually fitted in order to calibrate simulations against single-cell traces.
The most intriguing finding from their wet-lab and in silico experiments, which
were also independently discovered by Turner et al. (2010) during a similar time
period, was that not all cells responded to TNFα and that the fraction of acti-
vated cells decreased with decreasing TNFα dose, thus representing the discrete
nature of single-cell activation. The also found that early gene expression was
not dependent on the intensity of the inducing signal, but instead relied on the
high amplitude of the NF-κB, which supported their earlier hypothesis of robust
NF-κB responses, even with relatively few cells responding. This model has been
used by Fallahi-Sichani et al. (2012) as the intracellular basis of a hybrid model,
by linking to an existing high-level agent-based model of macrophage responses
to Mycobacterium tuberculosis (TB) infection. They surmise that through ma-
nipulating NF-κB mediated responses (particularly macrophage activation and
TNFα expression), you can improve the function of a TB granuloma to contain
the infection.

The fourth and final increment from the Lipniacki group, was developed by
Pekalski et al. (2013), who built on the model of Tay et al. (2010) by adding the
positive feedback associated with the expression of TNFα. Their premise was that
the first phase of the innate immune system detects pathogens through membrane
and cytoplasmic receptors, and that this leads to activation of transcription fac-
tors (such as NF-κB) and the production of proinflammatory cytokines, such as
TNFα. The secretion of these cytokines, then leads to the second phase of the
innate immune response in cells that have not yet encountered the pathogen;
with these cytokine-activated cells producing and secreting the same cytokine,
and thus propagating the immune response through this positive feedback. They
discovered that the introduction of positive feedback changes system dynamics,
and may lead to long-lasting NF-κB oscillations in wild-type cells and persistent
NF-κB activity in A20-deficient cells.

Additional work using hybrid models at the single-cell level has been performed
by Ashall et al. (2009) and Paszek et al. (2010). Ashall et al. built on the find-
ings of Nelson et al. (2004) who had used real-time fluorescence imaging and
computational modelling to show that the NF-κB system can be oscillatory to
TNFα stimulation. Instead of using the computational modelling in a predictive
capacity, Ashall et al. first commenced with wet-lab experimentation, and then
developed both deterministic and semi-stochastic models to simulate the cellu-
lar behaviours. During the wet-lab experimental phase, they exposed individual
cells to pulses of TNFα at various time intervals between the pulses, to mimic
the pulsatile nature of inflammatory signals. They discovered that lower fre-
quecy stimulations using 200min intervals generated synchronous translocations
of NF-κB across the nuclear membrane of equal magnitude with successive pulses;
whereas higher frequency stimulations using 60min or 100min intervals generated
synchronous translocations with reduced magnitude for successive pulses. They
suggest that this indicates a failure of the system to reset at these higher fre-
quency intervals, and conjecture that this is due to the length of time associated
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with the negative feedback by IκBα within the system. Following wet-lab ex-
perimentation, they then developed a new deterministic model, which modified
the core network of IKK-NF-κB-IκBα along with the A20 inhibitor, that was
the basis for Lipniacki et al. (2004). This new model was able to replicate the
TNFα pulsatile stimulation data at the population-level, using a single parame-
ter set. As the deterministic model was unable to elucidate the heterogeneity of
single-cell responses to TNFα pulsatile stimulation, they augmented the model
with stochastic processes for three negative feedback mechanisms: transcription
of IκBα, transcription of A20, and delayed transcription of IκBε. Like the de-
terministic model, this semi-stochastic model was able to simulate the wet-lab
experimental results, but also predicted: persistent oscillations of similar ampli-
tude in both wild-type and IκBε-deficient cells after TNFα stimulation; and that
stochastic variation due to the delayed transcription of IκBε may generate in-
creased cell-to-cell heterogeneity in wild-type cells as compared to IκBε-deficient
cells.

Paszek et al. (2010) subsequently built on this work of Ashall et al. by aug-
menting the transduction pathway of the computational model with the kinase
IKKK, and calibrating the semi-stochastic behaviour to the results of their new
single-cell (wet-lab) experimentation into the kinetics of IκBα and IκBε activa-
tion. Through the use of TNFα and IL-1β cytokines, and the synthetic stimulus
PMA (phorbol ester differentiation factor phorbol 12-myristate 13-acetate), they
discovered a transcriptional delay between IκBα and IκBε (under TNFα and
IL-1β stimulation); with IκBα transcription increasing immediately after stimu-
lation and reaching a maximum at 30min (under IL-1β stimulation), but show-
ing no transcription for IκBε before 35min and a maximum at approximately
120min (under either TNFα or IL-1β stimulation). Furthermore, they discovered
that PMA stimulation results in a 45min delay to transcription of both IκBα
and IκBε genes, and that this delay did not substantially change the average
timing or amplitude of NF-κB oscillations at the population-level, but instead
affected the single-cell timing of the oscillations to maximise the heterogeneity
of oscillation phasing between individual cells. They therefore hypothesise that
the network topology of the NF-κB signalling system is stimulus-dependent, and
that the generation of cellular heterogeneity maintains functional responsiveness
of individual cells, to promote tissue robustness.

Through these separate iterations, the models of Lipniacki et al., Tay et al.,
Ashall et al. and Paszek et al. have now refined the initial Hoffmann model, and
indeed investigated new areas of the signalling pathway from a computational
perspective. We believe that the major achievements are: consideration of the
different nuclear and cytoplasmic volumes; introduction of stochasticity regarding
cell membrane receptor activation and gene activation, to facilitate modelling at
the single-cell level; the use of more accurate data as parameter values; and
perhaps most importantly, the rewriting of the model using Matlab, which is a
more contemporary software development tool for computer scientists.

70



3.5. Current Computational Models of NF-κB

3.5.3 Stochastic Agent-Based Models

Although quantitative mathematical models are well established tools for mod-
elling complex biological phenomena, they require an exhaustive set of precise
parameters to be specified for each variable. This is fine for small models that
align to dynamics of a few components, however when the scale is increased to
capture a more realistic scope at the system-level (Acerbi et al., 2012), they begin
to suffer from limitations in accuracy as data for use in analysing the effectiveness
of differential equation models is often unavailable from wet-lab immunological
experiments (Perelson and Weisbuch, 1997). As such, equation-based methods
are unable to fully model system dynamics at the individual component-level,
and therefore suffer considerably from their inability to capture the natural vari-
ation inherent to all biological processes. An alternative to these equation-based
approaches is to model molecules or cells individually and assign probabilities to
each possible interaction or state change through rule-based techniques. The indi-
vidual component behaviours may then be aggregated up to system-level dynam-
ics, which are then extrapolated in order to make predictions of the system-level
behaviours in real biology (Cohn and Mata, 2007; Stark et al., 2007).

Following on from the early successes with equation-based computational mod-
els, Pogson et al. (2006) took the modelling of the pathway’s stochastic behaviour
one step further, by developing an agent-based model of the NF-κB signalling
module. This computational model was developed in Matlab, and utilised the
concept of communicating X-Machines (Barnard et al., 1996) to represent the
individual agents and their associated interactions. They chose to break away
from the pattern of using differential equations which relied on the assumption
that a cell is homogenous with respect to its chemical constituents. We agree
with this stance, and believe that such an assumption will not be valid due to the
cells internal compartmentation, and non-uniform distribution of key molecules
(Alberts et al., 1994). An important aspect of communicating X-Machines is that
each agent has memory, which in this instance holds current physical location and
current state, and may also contain a set of randomised parameter values (from a
given distribution of suitable parameter values), to further instil stochasticity into
the model. Pogson et al. used a set of autonomous agents within their model that
correspond to: NF-κB dimer, IκBα, cell membrane receptor, nuclear importing
receptor, and nuclear exporting receptor. Furthermore, they used a greater level
of detail regarding translocation of molecules across the nuclear membrane, and
added a 3-dimensional spatial dimension using continuous space to the model,
which the differential equations used by Hoffmann et al. and Lipniacki et al.
are unable to represent, and to a higher degree of granularity than the partial
differential equations (PDEs) used by Terry and Chaplain (2011) and Ohshima
et al. (2012) could represent.17

17Terry and Chaplain (2011) developed a 2D (X,Y cartesian co-ordinate) spatial model of
a cell, where the movement of molecules by diffusion within the cytoplasmic and nuclear
compartments, and translocation of molecules across the nuclear membrane, was explicitly
considered. Through simulations using a variety of cell geometries, they discovered that
sustained oscillations in NF-κB are robust to changes in the shape of the cell, or the shape,
size and location of the nucleus within the cell. Ohshima et al. (2012) subsequently built on
this work through development of a 3D spatial model. They discovered that the default kinetic
parameters for previous ODE and PDE models were unable to replicate NF-κB oscillations,
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The mathematical underpinning of the agent-based model by Pogson et al.
is based on generalised biochemical reaction kinetics of two substrate molecules
interacting and forming a product molecule. Graphical visualisation of the re-
actions allows us to view the increase of product (e.g. NF-κB-IκBα complex)
and associated decrease in substrate molecules (e.g. free NF-κB and free IκBα)
during an inhibitory reaction. As the relevant components are located within
3-dimensional space (X, Y, Z co-ordinates), the authors built in an interaction
radius to each molecule to ensure a chemical reaction only occurs when the req-
uisite substrate molecules come within a certain distance of each other. They
abstracted the interaction radius of molecules to be a sphere; clearly, a number of
biochemical components have orientations, through for example polarity and non-
symmetrical quarternary structure, however we believe this to be an appropriate
approximation to biology for the purposes of the model.

Simulations (using the model) run as a discrete-event system, with each itera-
tion of the simulation run representing a defined period within time, i.e. constant
time step. The authors validated the model against single-cell analysis wet-lab
data of Carlotti et al. (1999, 2000) and Yang et al. (2003), which used fluores-
cent tagging and confocal microscopy to observe IκBα degradation and NF-κB
shuttling dynamics. Successive time-step iterations were therefore able to re-
late directly to real-time single-cell analysis; and the model therefore reflects the
discrete stochastic nature of subcellular events.

Careful review of the model has exposed six main limitations. It may be argued
that three of these (points 3-5) may be due to the abstraction level taken (i.e. like
the previous mathematical models, a very limited part of the pathway), however
they are detailed here for completeness:

1. Only possibility of interaction between NF-κB and IκBα was considered,
and occurs as fait accompli. The process of actual interaction (inhibition of
NF-κB by IκBα) e.g. stochasticity of binding was not considered.

2. If two IκBαmolecules are within the interaction radius of a NF-κB molecule,
the model currently chooses which one to interact with at random. A more
physically realistic decision making process would be beneficial, through for
example interacting with the closest IκBα molecule.

3. Considers TIR-mediated activation of NF-κB signalling pathway, although
due to the level of abstraction taken, this could be any receptor associated
within the pathway. Furthermore, although the generic cell membrane re-
ceptors are modelled as agents, the corresponding extracellular signals are
not, therefore activation of the receptors is assumed to have occurred at the
start of simulations, and to have been uniform in signal strength, i.e. vari-
ation in ligand concentration and length of stimulation is not considered.

and that a new set of parameter values needed to be ascertained in order to calibrate this 3D
model to system dynamics. They also discovered the system to be sensitive to the nuclear-
to-cytoplasmic ratio of NF-κB and IκBα, the translocation coefficients, and the diffusion
coefficients. Unfortunately, the 3D environment was not a true sphere (did not use continuous
space), because in order to make the computation of local diffusion gradients tractable, they
used a number of cubes that were oriented to approximate to a sphere.
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4. No explicit transcription, translation and translocation of IκBα back to
nucleus following translocation of free NF-κB to nucleus. Uses creation of
a temporary agent with a time delay, which then changes state to IκBα in
the cytoplasm.

5. At the beginning of simulations, following TIR activation, temporary agents
are created with internal time delays to account for the cell signalling cas-
cade upstream of the NF-κB signalling module (from receptor to IKK that
triggers IκBα phosphorylation).

6. The model was scaled down (regarding the number of agents) to improve
computation time. The model had approximately 1,000 molecules in to-
tal, whereas biological cells have approximately 60,000 NF-κB molecules
and 180,000 IκBα molecules. This is justified however as the model was
calibrated against wet-lab data, but does position the model at a highly
abstracted level.

Pogson et al. later updated the original 2006 model and performed in silico
experimentation to predict internal cell structural components in regulating the
NF-κB signalling pathway (Pogson et al., 2008). This revised model made the
IKK complex explicit (as an agent), and introduced the transcription and transla-
tion of the three IκB isoforms (IκBα, IκBβ, and IκBε) as per the Hoffmann et al.
model. A detailed review of the scope and design of this model, has identified
an additional limitation (over and above those described previously) regarding
these isoforms however. Although Pogson et al. have introduced IκBβ and IκBε
into this augmented model, these do not appear to have any function other than
to introduce stochasticity in inhibition of NF-κB, i.e. an IκBα molecule within
the NF-κB interaction radius will form a bond and inhibit NF-κB; IκBβ or IκBε
within the interaction radius do not bind, but have created an effective colli-
sion in 3-dimensional space for the relevant time-step(s), so reduce the overall
probability of NF-κB-IκBα complex formation. As per the 2006 model, this aug-
mented model was also validated against the single-cell analysis data generated
from the Qwarnstrom lab, and sensitivity analysis demonstrated a narrow range
of acceptance for IKK levels, robustness to NF-κB and IκBα levels, and im-
portantly greater sensitivity to IκBα than for NF-κB. Furthermore, simulation
results yielded the negative feedback loop consistent with the Hoffmann et al.
and Lipniacki et al. models.

The authors hypothesised that the actin cytoskeleton might be a depot for
the excess IκBα within cells. They estimated the number of binding sites on
the cytoskeleton that could be available for the interaction and then used the
agent-based model to compare simulation results under different concentrations
of free IκBα. Simulations of actin-IκB interactions yielded a maximal NF-κB-
IκB complex formation at a 1:3 ratio NF-κB:IκBα. Without actin, the maxi-
mal was reached at a 1:1 concentration ratio, which confirmed previous work.
The authors hypothesise that this key role for actin-IκBα interactions, sustains
optimal pathway regulation by adjusting the NF-κB-IκB complex formation at
the steady-state, and to control negative feedback following activation of the
signalling pathway. Additional wet-lab experiments from the Qwarnstrom lab
supported these findings and demonstrated a ratio of actin-bound to free IκBα
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of 2:1 in unstimulated cells, indicating two-thirds of IκBα may be bound to the
cytoskeleton at steady-state.

3.5.4 Peer-Validation of these Computational Models

Adverse effects of over-transfection was initially observed by Carlotti et al. (1999)
and Yang et al. (2003), who compared control of exogenous, tagged intermediates,
with results from immunocytochemical experiments to identify transfection limits
in regards to cell-to-cell variations and regulation of NF-κB. This risk of over-
transfection was leveraged by Barken et al. (2005) as a limitation of the work by
Nelson et al. (2004). However, this debate has recently been resolved, and the
initial observations by Nelson et al. confirmed, through the work of Tay et al.
(2010) and Sung et al. (2014) on stable cell lines, and the work of Sung et al.
(2009) and Zambrano et al. (2014a) on p65 EGFP knock-in transgenic animals.

We also believe that continued refinement and augmentation of these existing
models will in all likelihood yield a computational model that will be able to
accurately predict observed biological phenomena across both single-cell and av-
eraged population levels, and suggest that the recent work of Tay et al. (2010)
and Turner et al. (2010) has made an important contribution towards this end.
They have both shown through single-cell analysis with TNFα, and associated
stochastic modelling, that NF-κB activation is heterogeneous and is a digital pro-
cess, with fewer cells responding at low doses. Additionally, Turner et al. also
found that cells display analogue processing to modulate system dynamics, by
controlling NF-κB peak intensity, response time, and number of oscillations.

Further work, building on the model by Hoffmann et al. has been performed
by a number of groups around the world. Sung and Simon (2004) removed the
IκBβ and IκBε components, before augmenting the model with a number of
novel inhibitors to examine components within the signalling network that could
be targeted for therapeutic interventions. They found the system to behave dif-
ferently depending on which molecule is targeted within the signalling network, in
particular by upstream inhibition (IKK activity and IκB degradation) producing
similar system dynamics, whereas direct inhibition of NF-κB translocation re-
sulted in distinct dynamics. Werner et al. (2005) focused on the temporal control
of IKK activity, by looking at TNFα and LPS induction and the effects of A20
deficiency. Through k-means cluster analysis of the 627 distinct IKK activity pro-
files, they suggest that the NF-κB signalling module is particularly sensitive to
sustained low IKK activity, but robust to transient perturbations. Furthermore,
they predict that long-lasting NF-κB activity may be mediated by unexpectedly
low amplitudes of IKK activity, whereas transient NF-κB activity requires a much
higher increase in IKK activity. Hayot and Jayaprakash (2006) incorporated the
Gillespie algorithm (Gillespie, 1977) into the model for the study of cell-to-cell
variability, along with the replacement of the quadratic (second order) nuclear
NF-κB-induced synthesis of IκBα with a linear (first order) term, following the
reasoning of Nelson et al. (2004) and Lipniacki et al. (2004). This augmented
model found the fluctuations of NF-κB to agree with Hoffmann et al. (2002), and
predicted that fluctuations are small when transcription is strong (as used within
the Hoffmann model), whether transcription is linear or quadratic, but that in-
trinsic fluctuations can be strong, and indeed as significant as any extrinsic noise
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if the rate of promoter binding is small. They therefore advise that it is essential
for transcription rate constants to be determined experimentally if models are to
be developed using differential equations.

Additionally, the model has been used by other groups to validate their in
house wet-lab experimental data, including: Ihekwaba et al. (2004, 2005), who
performed a parameter refit for IκBβ and IκBε, and through using sensitivity
analysis discovered the model is particularly sensitive to parameters relating to
IKK and IκBα, and that overexpression of IκBα in transfected cells would yield
a minimal perturbation to the system; Mathes et al. (2008) who added IκBα
degradation functionality for both IKK-mediated degradation of NF-κB-bound
IκBα, and IKK-independent degradation of free IκBα; and Wang et al. (2011)
who adapted the model to simulate single-cell data using short and strong pulses
of TNFα, and found that weak pulses provide a rich variety of non-linear temporal
signalling dynamics, which may account for the diversity of expression patterns
for the multitude of target genes in the signalling pathway.

Similarly, the model of Lipniacki et al. (2004), has also been used with data
from other labs, including: Yue et al. (2006) who performed a sensitivity analysis,
focusing in particular on local sensitivities through bifurcation/pairwise studies;
Joo et al. (2007) who propose that the IKK-NF-κB-IκBα-A20 interaction network
is the key portion of the wider pathway, as these components have critical kinetic
rate variables for IKK activation; and Ashall et al. (2009) who treated cells with
short pulses of TNFα to mimic pulsatile inflammatory signals, and predicted that
negative feedback loops regulate both the resetting of the system and cellular
heterogeneity. See figure 3.8 for a diagrammatic representation of the evolution
and chronology of these computational models.
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Figure 3.8: Dendrogram of the existing computational models of the NF-κB signalling
pathway. It can clearly be seen that all roads lead from the nuclear-cytoplasmic shut-
tling model of Carlotti et al. (2000), however the ODE-based model of Hoffmann et al.
(2002) is generally considered to be the first computational model involving the wider
signalling pathway. It can also be seen that the Hoffmann model has been the basis
for considerable reimplementations and developments over the decade since it was first
published, with a number of groups using the equation-based approach as the basis
for their modelling. More recently however, Pogson et al. (2006) have used an agent-
based approach to model the spatio-temporal aspects of the system, and to allow the
agents (instantiations of individual NF-κB and IκB molecules) to possess stochastic
behaviour. * Werner et al. (2005) actually builds upon the work of Kearns et al. (2006)
- we therefore assume that the Kearns paper was submitted first, but took longer to
become published, hence the non-intuitive order (with respect to publication year) in
the dendrogram. The dotted line from Cheong et al. (2006) represents the fact that al-
though this model was an extension of Hoffmann et al. (2002), it also took the updated
parameter values from the work of Lipniacki et al. (2004).
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3.5.5 Minimal Models

The models discussed above, have represented mathematical and computational
abstractions of the major components of the NF-κB signalling pathway. It has
recently been argued by a number of different groups however, that the complex
nature of these models makes them computationally expensive to run, and also
requires complicated analysis techniques in order to make inferences from sim-
ulation results. As such, these groups have developed what have been termed
minimal models that are able to replicate the majority of the phenomenological
behaviours of the more complex computational models, but use the minimum
number of equations possible. We therefore discuss within this section the four
minimal models from Krishna et al., Yde et al., Longo et al., and Zambrano et al.,
along with the model reduction algorithm developed by West et al.

To the best of our knowledge, the first minimal model after that of Carlotti
et al. (2000) was developed by Krishna et al. (2006), and focused on a small core
network of the pathway that drove oscillatory behaviour. Through reducing the
model of Hoffmann et al. down to a core feedback loop of three coupled ODEs,
they were able to ascertain the minimal model required to generate oscillations.
This simplified model was validated against the work of Hoffmann et al. and
Nelson et al., and was able to simulate: the sustained oscillations obtained with
only the IκBα isoform of IκB; the damped oscillations in wild-type cells that
included the other forms of IκB (e.g. IκBβ and IκBε); the spikiness of nuclear
NF-κB and asymmetry of cytoplasmic IκB oscillations; and the phase difference
between NF-κB and IκB. Their key finding was that saturation degradation of
cytoplasmic IκB in the presence of IKK was crucial for oscillatory behaviour,
because it sets an upper limit within the system for the degradation rate, and
thus allows IκB to accumulate and remain in the system for longer than with
linear degradation rates. They conjecture that this effectively introduces a time
delay into the negative feedback loop, which is known to generate oscillations.

The authors were subsequently involved in the development of another mini-
mal model (Yde et al., 2011). Here they modelled amplification of the immune
response, following cytokine mediated activation of the NF-κB pathway, and the
positive feedback that occurs through upregulation of cytokine expression - as
previously modelled by Werner et al. (2005). The ODE model was developed
at the tissue-level (cell population level), with the detailed network dynamics of
the NF-κB signalling pathway within individual cells abstracted away. In fact,
they discovered that tissue-level immune responses were able to emerge within
the minimal model through using only three (high-level) variables, relating to:
NF-κB, a generic regulator, and a generic inhibitor. The model predicts that
cytokines produced by the stimulated cell(s) at the site of infection, diffuse away
from this primary infection site and trigger the transient response of the NF-κB
pathway for the production of cytokines in neighbouring cells. They conjecture
that this generates a propagating wave of NF-κB induction and cytokine produc-
tion throughout the infected tissue.

Like the minimal model of Krishna et al. (2006) above, Longo et al. (2013)
also used the Hoffmann model as the basis for developing a minimal model of
negative feedback within the NF-κB signalling pathway. This new model used
a single delayed compound-reaction, to replace the cascading reactions that had
been utilised previously (Hoffmann et al., 2002). They used this to investigate
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the underlying mechanisms involved with oscillations and the dampening of os-
cillations that emerged through the two negative feedback loops of the inhibitors
IκBα and IκBε. Through investigating the oscillatory responses using the single
negative feedback associated with IκBα, they discovered that both the frequency
and decay rate of the oscillations are highly dependent on the internal parameters
of the core network of the signalling module, but are not sensitive to extracellu-
lar stimuli levels. They suggest that the oscillatory frequency within the system
can therefore not be encoding information about the stimulus, and conjecture
that stimulus-specific gene expression is therefore unlikely to be determined by
stimulus-specific frequencies of NF-κB oscillations, and therefore may involve
amplitude modulation over time. Furthermore, upon introduction of IκBε into
the model, the authors were able to reproduce the findings of their previous work
(Kearns et al., 2006), where the oscillations caused by persistent stimulation were
now significantly dampened. They suggest that the second negative feedback
mechanism (IκBε), may have evolved to produce dampening of the oscillatory
behaviour of the first feedback mechanism (IκBα).

The three minimal models above all utilised the technique of reducing the total
number of equations by developing a smaller set of compound equations that were
grouped according to sequences of reactions within the signalling network. An al-
ternative approach has been taken by Zambrano et al. (2014b) however, whereby
the ODE-based model is developed according to the different layers of processes
within the cell environment. They have used a three layer approach, with the first
layer representing the transcription and translation of new IκBα molecules; the
second layer representing the NF-κB signalling module and its negative feedback
by IκBα; and the third layer representing the commencement and propagation
of signal following the recognition of extracellular stimuli at the cell membrane,
down to activation of IKK. Their model was able to replicate both the hetero-
geneity of the system seen in the models of Tay et al. (2010), Paszek et al. (2010),
and Sung et al. (2009), along with the spiky oscillations shown by Krishna et al.
(2006). As such, the authors believe that the community should make more use
of minimal models as a basis for investigating the underlying mechanisms of the
NF-κB signalling pathway, and that the reliance on complicated computational
models should be minimised because they incur the risk of being overfitted to the
specific wet-lab experiments from individual groups, and thus may not be used
by the wider community who use different in vitro models.

Finally, along with the explicit development of minimal models by individual
groups, recent work by West et al. (2014) has focused on the development of
algorithmic methods to enable a principled approach for reducing existing dif-
ferential equation based models into new minimal models. Their algorithmic
approach is based on quasi-steady-state approximations, and produces a set of
ranked variables according to how quickly they approach their momentary steady-
state. Once ranked, the developer may then eliminate variables at each step
within the related equation-based model, whilst preserving the system-wide dy-
namics. The authors tested their reduction algorithm on the two feedback (IκBα
and A20) model of Ashall et al. (2009) and the original ODE model by Krishna
et al. (2006) (upon which the minimal model was extracted), and report that the
system dynamics that emerge from the reduced models compare favourably with
the original, more complex models.
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3.5.6 The Need for a New Computational Model of NF-κB

The complexity of the innate immune system, and in particular the inflamma-
tory process has been difficult to fully investigate using reductionist and linear
approaches alone, since it is characterised by non-linear kinetics as well as nu-
merous feedback loops. Several signalling pathways relating to the combating of
various pathogenic infections converge on NF-κB activation, resulting in a highly
complex regulatory system for the innate immune response. We therefore believe
the NF-κB signalling pathway to be a good candidate for research that follows
a systems biology approach to further our understanding. Computational mod-
elling to date, has successfully complemented traditional wet-lab techniques to
generate hypotheses on the mechanistic behaviour of the various components of
the signalling pathway (see table 3.2 for the major computational modelling ad-
vancements). As such, these in silico derived predictions are helping to further our
understanding of in vitro system dynamics, in particular, how signals received by
the IKK complex are propagated down the signal transduction pathway through
activation of the NF-κB signalling module. This computational experimentation
has given rise to the belief that IKK regulatory mechanisms may represent sen-
sitive clinical targets in diseases with aberrant innate immune system activity.
There appears to be opportunity to expand the scope of current models however,
to also encompass upstream events prior to IKK activation, thus incorporating
a greater degree of granularity for cell membrane receptor complexes in order to
capture the induction of the pathway through various extracellular signals, and to
include downstream events to capture actual activation of transcription for target
genes (other than IκB isoforms) that are relevant to the inflammatory response,
for example various cytokines.

NF-κB has wide-ranging effects controlled by a complex regulatory network of
inhibitors and co-activators. Understanding the mechanisms that control NF-κB
activation/cellular signalling is important for exploiting therapeutic approaches
to treat human disorders due to its dysregulation. Specific targets for therapeutic
agents could be the transcription factor itself, or any of the associated components
within the pathway, including protein kinases and the IκB inhibitors themselves.
Gilmore and Herscovitch (2006) reviewed the known inhibitors of NF-κB, which
may provide a basis for future research regarding computational modelling, and
subsequent pharmacological intervention.

We therefore believe that computational models tightly coupled to wet-lab ex-
perimental analysis will be indispensable to furthering our understanding of the
NF-κB signalling pathway. Furthermore, with the advances in software modelling
technologies and computational power over the past decade, we believe that the
timing is right for development of agent-based models of the NF-κB signalling
pathway on a scale that has not been seen before. New technologies, such as
Java Mason (Luke et al., 2005), which allows large agent-based simulations to be
developed that can be manipulated in real-time during simulations, or FLAME
(Coakley et al., 2006b, 2012), which has recently been used to model the Euro-
pean economy, and the GPU version of FLAME (Richmond et al., 2009), allow
massively parallel agent-based simulations to be run. Along with these advances
in technology, recent developments in cell biology have also advanced our corre-
sponding understanding behind the pathway. We believe a number of key ques-
tions may be answered through development of large-scale computational models
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of NF-κB. From a cell biology perspective, these relate to research objectives 2, 4,
5 and 6 of this thesis, and are: (i) what can in silico experimentation tell us about
the relative roles of the intermediate components within the signal transduction
events; (ii) what can in silico experimentation tell us about the various receptors,
co-receptors, and adaptor proteins, and their role(s) in signal transduction events;
(iii) what can in silico experimentation tell us about the dysregulation that can
occur (regarding NF-κB activation and IκBα degradation and resynthesis) when
cells are in diseased states, and how can we perturb the system back to a healthy
state; and (iv) what can in silico experimentation tell us about the cross-talk
that occurs when various extracellular signals (e.g. LPS, TNFα, IL-1) and other
environmental stimuli (e.g. bacteria, UV radiation, phsyical stress) converge on
the NF-κB signalling module. There are also a number of key questions from a
modelling perspective, which relate to research objectives 2, 3 and 5 of this thesis,
and are: (i) does abstraction level affect the accuracy of simulation-driven predic-
tions; (ii) does the resolution level (e.g. number of agents) affect the accuracy of
simulation-driven predictions; (iii) does the simulation platform (different tech-
nology, e.g. equation-based versus agent-based) affect the accuracy of predictions;
(iv) what are the relative merits of averaged population data versus single-cell
data for calibration and validation of computational models; and (v) what are
the advantages and limitations of using massively parallel computing architec-
tures, for reproducing the large-scale variation (as seen in biological systems)
into computational simulations.

3.6 Summary

This chapter has provided the background to the NF-κB signalling pathway in
general; has highlighted the central role that NF-κB plays in a large number of
human diseases and illnesses; and has defined our Domain of interest (as per the
CoSMoS process), which is the IL-1 stimulated NF-κB signalling pathway. Addi-
tionally, the chapter has reviewed the existing computational models of the NF-
κB signalling pathway, and has identified the need for a new computational model
specific to IL-1 stimulation, which uses the agent-based modelling paradigm.

The next chapter will define our domain model of the IL-1 stimulated NF-κB
signalling pathway, which will be used as functional specification for our compu-
tational model. The chapter will also reflect on the use of UML and statistical
techniques for domain modelling.
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Chapter 3. The Domain: NF-κB Signalling Pathway
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4 Domain Model of IL-1 Stimulated
NF-κB Signalling Pathway

As discussed previously, biological systems are complex, with behaviours and
characteristics that result from a highly connected set of interaction networks that
function through time and space. The first product developed during a project
following the CoSMoS process is the domain model. The domain model docu-
ments the complex behaviours and characteristics of the system, and as stated by
Andrews et al. (2010): “encapsulates understanding of appropriate aspects of the
domain into explicit domain understanding”. Whereas the domain is the general
area of study, which in this case is the IL-1 stimulated NF-κB signalling path-
way, the domain model is the description of the domain that reflects the scientific
basis for development of a simulation. By its very nature, the domain model is
therefore an abstraction of the area of interest, and should capture at an agreed
level, the scientific details of relevance to the future computational model. This
chapter will define our domain model of the IL-1 stimulated NF-κB signalling
pathway, and also explore the role of diagrammatic and statistical techniques for
domain modelling, to fulfill research objective 1.

4.1 Overview of Domain Modelling

The iterative process of domain modelling helps the modeller to explore the bio-
logical domain in conjunction with one or more domain experts before develop-
ment of the computational model. Once complete, and validated by the domain
expert(s), the domain model acts as the functional specification for the compu-
tational model, and provides a comprehensive and transparent understanding of
the domain that underpins the in silico experimentation performed as part of the
exploration phase of a CoSMoS project. As such, the domain model is an essen-
tial project deliverable that provides an audit trail on how the real-world biology
is linked, through abstractions, assumptions, and constraints, to the functionality
of the computational model.

Although domain models of complex biological systems may require many di-
verse sources of information, the actual domain modelling process may be cate-
gorised into either the data-driven or deep-curation approaches. The data-driven
approach utilises techniques from bioinformatics and relies on the network topol-
ogy, reaction kinetics and other model parameters being inferred from large
high-throughput datasets, whereas the deep-curation approach develops a do-
main model through manual integration of knowledge from published literature,
databases and empirical data gained from more traditional, non-omic scale ex-
periments (Ghosh et al., 2012).

The data-driven approach uses computational algorithms to infer causal re-
lationships among system components from high-throughput experimental data.
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These high-volume datasets are usually collected under varying experimental con-
ditions where functionality of components (both individual and groups of) are
systematically perturbed (Schadt et al., 2009). Once the network topology is
inferred from the datasets, it is then developed further into a domain model that
focuses on the mechanisms of interactions between the components (Ghosh et al.,
2012). This approach is expected to be useful for developing computational mod-
els over multiple scales, as the algorithms are able to find causal relationships both
within a given hierarchical level (e.g. gene-gene or protein-protein) and between
hierarchical levels (e.g. gene-protein).

The deep-curation approach also requires generation of a detailed topology of
system components and their interactions, but instead of generating these auto-
matically from high-throughput datasets, relies on manual creation from readily
available data in the form of journal articles, databases, and publicly available
datasets (Ghosh et al., 2012). Although potentially more time-consuming than
the data-driven approach, deep-curation does have the advantage that modellers
can add their own mechanistic details to the network structure, to act as hypothe-
ses on how the various components may interact for the generation of system-wide
behaviours. This, along with the need for precise and detailed knowledge of com-
ponent interactions for the design and development of computational models,
makes the deep-curation approach more relevant to the needs of modellers.

The domain model may be a collection of informal notes relating to relevant
aspects of the domain, but may also include informal sketches (such as cartoons),
more formal diagrams (such as those produced with UML), mathematical equa-
tions, scientific constants (e.g. biochemical rate constants), and physical descrip-
tors (such as size, quantity, location, and speed). The key constraint of the
domain model is that it should remain free from an implementation specific focus
and should therefore not contain any reference to the programming languages or
workarounds which may be required during development of the simulator. As
such, the domain model should be focused on the scientific domain, and not
design considerations for the resulting computational model and simulator. One
final point is that the domain model must be developed at the correct abstraction
level to answer the questions of scientific interest; for example, the single-cell data
relating to NF-κB pathway dynamics, means that the initial model should be at
the level of subcellular interactions and biochemical reactions within a single cell.

4.2 UML and Domain Modelling

UML has been used by a number of groups to semi-formally define domain mod-
els relating to biological systems of interest. For example, Webb and White
(2005) used UML to model the biochemical reactions within a cell that relate
to sugar metabolism, through the glycolytic metabolic pathway. They devel-
oped the model using class inheritance and containment diagrams, sequence di-
agrams, containment cartoon diagrams, state machine diagrams, and cartoon
activity diagrams. More recently, Read et al. (2009a, 2014) used a number of di-
agrammatic techniques to develop a domain model of experimental autoimmune
encephalomyelitis. They used a cartoon diagram to capture the cell interaction
network; an expected behaviours cartoon diagram to capture the phenomena that
we as scientists may observe from the biological domain, with cell interactions
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that are hypothesised to occur in order to produce these observable phenomena;
tables to document the timings of key events within the domain; and when using
UML focused their attention to class, activity and state machine diagrams.

We have chosen to follow the approach of Webb and White (2005) and Read
et al. (2009a, 2014) in using UML as the basis to semi-formally define the domain
model of of our biological system. Along with a number of UML diagrammatic
notations, we have also chosen to deviate from the somewhat rigid framework and
have used less formal cartoon diagrams where necessary to ensure the biological
meaning can be conveyed efficiently. As advised above, the domain model may be
developed using conventions outside of diagrammatic ones, and where necessary
we have used a number of mathematical and statistical approaches to complement
the diagrammatic models of the NF-κB signalling pathway.

4.3 The Domain Model

This section presents a domain model of the IL-1 stimulated NF-κB signalling
pathway. The first subsection focuses on the use of diagrammatic domain mod-
elling techniques, largely expressed using UML, whereas the second subsection
focuses on the use of statistical techniques for modelling the dynamic system-
wide observable behaviours.

The current state of scientific understanding of the domain dictates that certain
aspects of the signalling pathway are unknown, or contested, within the literature.
The process of developing a rigorous and comprehensive domain model highlights
these areas of inconsistency within the literature, and gaps in the scientific knowl-
edge, which must be overcome through the use of documented assumptions of the
domain.

There exists substantial quantities of literature on the NF-κB signalling path-
way, and various aspects of the pathway are independently studied by a wide
variety of labs. It is generally understood that representing every aspect of a
real-world system in models and simulations is computationally intractable. As
such, a subset of the properties and behaviours from the real-world system need
to be defined for subsequent investigation. One of the primary purposes of the
domain model is to capture this subset of real-world system properties, and there-
fore provide a definition of the abstraction level taken for the modelling project.

The various iterations of the domain model are validated by the domain ex-
pert, facilitating a common understanding that underpins the subsequent in silico
experimentation, to ensure simulation results are interpreted within the correct
biological context. As such, the domain model is a key CoSMoS project de-
liverable, that provides an auditable link between the simulation work and the
real-world domain. As discussed in chapter 2, the platform model, which will
be presented in the next chapter, provides additional details (from a technical
perspective) that define how the domain model will be implemented using suit-
able programming frameworks to yield the actual computational model (i.e. the
simulation platform).

The present domain model represents the most recent iteration, and has focused
on the subset of signalling components investigated by the Qwarnstrom lab. Focus
has been applied to the observations of NF-κB and IκBα dynamics from Carlotti
et al. (1999, 2000) and Yang et al. (2001, 2003).
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4.3.1 Diagrammatic Domain Modelling

The diagrammatic model has been developed using the deep-curation approach,
with particular attention paid to the literature surveyed in chapter 3 and per-
sonal communication with the domain expert. Initial focus will be the emergent
system-wide behaviours of the pathway, before increasing the level of detail to
the interactions between system components, and then the dynamics of individ-
ual components. The diagrammatic domain model is presented in a top-down
manner, comprising three levels of abstraction, as defined below:

1. A system-level overview of the domain model. This highly abstract level
provides an outline of the biology of the NF-κB signalling pathway. Par-
ticular focus is made to the behaviours of the system following induction
by extracellular signal, and how these are believed to correspond to phe-
nomena observed in the real-world domain. This abstraction level of the
domain model does not make use of UML, but instead utilises less formal
cartoon diagrams to convey system-wide properties.

2. Modelling component-level interactions of the domain model. This medium
level abstraction, decomposes the IL-1 stimulated NF-κB signalling pathway
into its constituent molecular components. This level models an abstracted
view of the key biochemical and molecular interactions between the com-
ponents, that together give rise to the emergent behaviours of the system.
A cartoon diagram, along with UML activity, class, and sequence diagrams
have been used in modelling these component-level interactions.

3. Modelling individual component dynamics. This level of abstraction pro-
vides the greatest detail within the domain model, through modelling the
dynamics of individual components within the system. UML state machine
diagrams have been used in expressing these models.

Modelling System-Level Properties

Since its discovery by the laboratory of the nobel laureate David Baltimore in
1986, there has been a prolific amount of published research into the NF-κB sig-
nalling pathway, with focus on: the NF-κB dimer; its inhibitors; the extracellular
stimuli inducing the pathway; and indeed the associated genes that are upregu-
lated. For example, a PubMed Central literature search in March 2014 indicated
that there were over 49,000 articles and 4,500 reviews published on NF-κB. It is
computationally intractable to represent every aspect of the real world domain in
computational models, and therefore a subset of the system needs to be defined
in order to represent an abstracted view of the system.

Following the approach of Andrews et al. (2010) and the example of Read
et al. (2009a), we have chosen to commence the domain modelling process with a
cartoon-like diagram (i.e. not UML), termed an expected behaviours diagram (see
figure 4.1). This diagram depicts the observable phenomena of the IL-1 stim-
ulated NF-κB signalling pathway, along with the known interactions between
system components that generate system-wide behaviours. The diagram also
provides us with an opportunity to define a number of hypotheses on how these
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known component interactions may yield the observable phenomena. The ex-
pected behaviours diagram therefore provides a diagrammatic view of the rela-
tionship between the real-world domain and the domain model (Read, 2011).

The top section of figure 4.1 defines the observable phenomena of the IL-1
stimulated NF-κB signalling pathway, in that the pathway results in an inflam-
matory response against extracellular stimuli, and that after a period of time,
this inflammatory response ceases. The dotted horizontal line demarcates these
observable phenomena from hypotheses that are believed to be responsible for
their emergence. These hypotheses consist of expected behaviours (boxes anno-
tated with ‘<<expected>>’ tags) that emerge through the interactions of the
underlying system components. The known interactions between system compo-
nents are represented through a set of solid, directed lines, whilst the expected
behaviours are linked to these system components through a set of dashed lines.

As discussed in chapter 3, wet-lab experimental research into NF-κB since its
discovery, has identified that a large number of inflammatory signals (extracellular
stimuli) activate cell membrane receptors to initiate its signalling pathway. It is
believed that signal transduction through the intracellular network, via activation
of various intermediate signalling components, amplifies the signalling cascade so
that a short, transitory burst of stimuli, may result in a more prolonged immune
response, through transcription of inflammatory genes and translation of the
corresponding mRNA into inflammatory proteins. Furthermore, it is also believed
that one of these inflammatory response proteins, is the inhibitor IκBα, which
results in negative feedback to dampen the inflammatory response.

The intracellular interactions outlined above, and within figure 4.1, are pur-
posefully defined at a very abstract level of detail in order to provide a sim-
plified system-level overview of the IL-1 stimulated NF-κB signalling pathway.
Increased levels of detail, along with an examination of how the expected be-
haviours may emerge from the underlying intracellular component interactions,
will follow within the subsections on ‘modelling component-level interactions’ and
‘modelling individual component dynamics’.

The spatial relationships of the components detailed within the expected be-
haviours diagram can be seen in the cartoon diagram of figure 4.2, which provides
an abstract representation of a Eukaryotic cell. For the purposes of modelling
the IL-1 stimulated NF-κB signalling pathway, the cellular structure can be ab-
stracted away to contain just three containment structures: the cell membrane,
which for our purposes contains the cell membrane receptor and co-receptor pro-
teins; the cytoplasm, which contains the cytosol (intracellular fluid) that further
contains the adaptor proteins, intermediate signalling components, NF-κB, and
IκBα, and the mRNA generated from gene transcription; and the nucleus, which
contains DNA, its nuclear membrane, which houses the nuclear membrane trans-
porter proteins involved in translocation, and the NF-κB and IκBα that have
been translocated from the cytoplasm.
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Figure 4.2: Cartoon-like containment diagram showing the components involved in
the NF-κB signalling pathway and the physical environment in which they are situated
within a Eukaryotic cell. Developed from the review of Hoffmann and Baltimore (2006).

Modelling Component-Level Interactions

We believe that the quintessential diagrammatic notation within science broadly,
and biology in particular, is the cartoon diagram. The NF-κB signalling path-
way can be described from a high-level perspective using such a convention to
communicate the interactions between system components, and in this instance
the diagram can also act as a network map and illustrate the sequence of inter-
actions between components (see figure 4.3). As discussed in chapter 3, following
an extracellular ligand (signalling molecule) binding to a member of the TLR or
IL-1R superfamily, the receptor dimerises, and co-receptors such as CD14 and
MD2 (in the case of TLR4) help facilitate and amplify the receptor response.
In situations where the Tollip adaptor protein binds, it mediates association of
IRAK to IL-1RI, but inhibits IRAK. Conversely, in situations where the MyD88
adaptor protein binds, it mediates association of the receptor complex with IRAK
protein kinase, which in turn activates TRAF6 through phosphorylation. Once
activated, TRAF6 continues signal transduction through activation of TAK1,
which subsequently activates the IKK complex. The activated IKK complex may
then dissociate the IκBα molecule from the inhibited NF-κB complex. The IκBα
molecule is then degraded by the proteasome (not shown), whereas the released
NF-κB is able to translocate from the cytosol to the nucleus, where it is subse-
quently activated and upregulates the transcription of target genes. Furthermore,
if TILRR binds to (the extracellular portion of) IL-1RI, it potentiates (enhances)
the recruitment of MyD88, which leads to amplification of the signalling cascade.
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Figure 4.3: Simplified diagram depicting the high-level interactions between the TLR
or IL-1R superfamily of receptors, the co-receptors and adaptor proteins, and the pro-
tein kinases within the NF-κB canonical signalling pathway. Diagram developed from
findings of Akira and Takeda (2004); Burns et al. (2000); Doyle and O’Neill (2006);
Kawai and Akira (2006); Zhang et al. (2010).

These relationships between components can be described in more detail using
the UML class and sequence diagram notations (see figures 4.4 and 4.5 respec-
tively). The class diagram defines the relationships between components within
the system, and can be used to convey aggregation and inheritance. Indeed, de-
velopment of the class diagram facilitated discussion on the relationships between
signalling pathway components responsible for the initiation and propagation of
the inflammatory response. An example of aggregation within the system is
that the inhibited NF-κB-IκBα complex contains an NF-κB dimer along with an
IκBα molecule. Similarly, an example of inheritance within the system is that the
exporting and importing nuclear receptors are both sub-types of a more generic
nuclear receptor for translocation of molecules across the nuclear membrane. The
sequence diagram, represents another view of the system by explicitly defining
the order of events within the signalling pathway.

Both of the diagrams commence with activation of the cell membrane receptor
complex by extracellular stimuli. The receptor complex is then able to bind to
adaptor proteins, which mediate the association of the complex to IRAK1. Fur-
thermore, if a TILRR co-receptor is part of this cell membrane receptor complex,
an amplification of the receptor response occurs through the increased recruit-

1Note, that as the domain model is an abstract representation of the real-world domain, we
have purposefully chosen to omit the detailed biochemical reactions inherent to the binding of
molecules, such as phosphorylation of specific amino acid residues, or conformational changes
of the protein’s structure, and have instead chosen to consider the high-level relationships
between molecules.
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ment of MyD88 adaptor protein. IRAK may then propagate the signal through
a cascade of intermediate molecules along the signalling pathway (abstracted to
contain TRAF6 and TAK1 in our domain model), before activation of the ki-
nase IKK. Active IKK may then bind to the inhibited NF-κB-IκBα to form the
trimeric complex IKK-NF-κB-IκBα, where it acts to facilitate degradation of the
IκBα molecule2 and release free NF-κB. The released NF-κB dimer may then
move freely around the cytoplasm, and if it moves into the interaction bound-
ary of an importing nuclear receptor, may bind to the receptor, for subsequent
translocation into the nucleus. Once in the nucleus, the NF-κB dimer may be-
come activated, bind to the promoter region of a target inflammatory response
gene, for transcription of the gene into its corresponding mRNA sequence, and
subsequent translation into the inflammatory response protein3. As discussed
previously, one of the first target genes is that of the inhibitor IκBα, and fol-
lowing the generation of new IκBα molecules in the cytoplasm, they are able
to translocate to the nucleus (via the importing nuclear receptors), bind to the
activated NF-κB complex to reinhibit the molecule and release it from the pro-
moter region of DNA, to stop transcription of any more mRNA (resulting in
negative feedback). The released NF-κB-IκBα molecule is then translocated out
of the nucleus and back into the cytoplasm via an exporting nuclear receptor, for
completion of the signalling pathway.

Although the UML class diagram (figure 4.4) and sequence diagram (figure 4.5)
provide useful notations for defining the overall relationships between components
and associated events within the NF-κB signalling pathway, they lack the ability
to show the concurrency of activities inherent to the system. Specifically, the
UML sequence diagram incorrectly provides the perception that all molecules of
a give type (e.g. IRAK molecules) are in the same biological state at any given
moment in time. As such, the implication is that once the receptor complex has
been activated, that all IRAK molecules are activated at the same time, and that
the cascade of reactions is performed in a synchronised manner for all molecules
involved. This could not be further from the truth, as complex biological systems
invariably have molecules that are out of phase (i.e. differing biological states)
to other molecules of the same molecular type. For example, any given NF-κB
dimer within this signalling pathway may be in either inhibited, free, or active
states, and if free, may also be located in either the cytoplasm or the nucleus.
Fortunately, the UML standard contains another notation which may help convey
the sequence of activities for any given parts of the system.

2Note that chapter 3 advised IKK functions to dissociate the IκBα molecule from the NF-κB
dimer, and that the proteasome subsequently degrades it following polyubiquitination. For the
purposes of our domain model however, we have chosen to asbtract away some of these details
in the UML class diagram, and have merged the dissociation by IKK, polyubiquitination and
degradation by the proteasome into a single degradation step mediated by IKK.

3The processes of transcription and translation are complicated, requiring a large number of
other components than those described above. As the focus of our computational model will be
the dynamics relating to NF-κB activation and IκBα degradation, we have chosen to abstract
away the details into simple one-step transcription and translation processes.
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Chapter 4. Domain Model of IL-1 Stimulated NF-κB Signalling
Pathway

As UML activity diagrams focus on activities and not components, they are
able to convey the individual interactions (expressed as activities) that give rise to
the emergent behaviour of the system. Furthermore, the focus on activities allows
us to aggregate sets of individual interactions into functional modules. As dis-
cussed in chapter 3, the NF-κB signalling pathway can be logically separated into
three key functional modules relating to cell membrane receptor activation, acti-
vation of the NF-κB signalling module, and generation of new IκBα to dampen
the response through negative feedback regulation. The activities inherent to the
functional modules are modelled using UML activity diagrams in figures 4.6, 4.7
and 4.8 respectively.

Figure 4.6: UML activity diagram of cell membrane receptor activation within the
IL-1 stimulated NF-κB signalling pathway. Developed from the review of O’Neill and
Dinarello (2000).
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4.3. The Domain Model

As per the UML sequence diagram in figure 4.5, activities within the system
begin with extracellular stimuli and the formation of the active receptor complex
(figure 4.6). The associated signal transduction then follows, with the first ac-
tivity being the activation of IRAK, which then propagates the stimuli-related
signal through the pathway via phosphorylation of intermediates. Upon phospho-
rylation of the IκBα inhibitor which is bound to NF-κB, the activity splits into
two branches: a) phosphorylated IκBα is released from the NF-κB complex and
becomes degraded via the proteasome, and b) the NF-κB dimer is released, binds
to an importing nuclear receptor, is translocated from the cytosol to the nucleus,
and is then activated (figure 4.7). Once active, the NF-κB dimer may bind to
the promoter region of an inflammatory response gene and initiate transcription,
which ultimately generates new inflammatory response proteins. As we are only
concerned with generation of new IκBα within our research, we ignore generic
inflammatory response proteins, and only model (in the UML) the activities that
culminate in the negative feedback regulation of the pathway (figure 4.8). As
shown in figure 4.9, UML also allows multiple activity diagrams to be linked to-
gether, and the swim-lane convention provides us with an opportunity to convey
the biological location of these activities.

Figure 4.7: UML activity diagram for activation of the NF-κB signalling module.
Developed from the review of Hayden et al. (2006).
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Chapter 4. Domain Model of IL-1 Stimulated NF-κB Signalling
Pathway

Figure 4.8: UML activity diagram for inflammatory gene transcription and transla-
tion, which culminates in the generation of new IκBα inhibitor proteins, for reinhibition
of the NF-κB complex. Developed from the review of Brasier (2006).
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4.3. The Domain Model

Figure 4.9: Full UML activity diagram for the NF-κB signalling pathway using the
concept of swim-lanes to convey sub-cellular location of components. Developed from
the reviews of O’Neill and Dinarello (2000), Hayden et al. (2006), and Brasier (2006).
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Chapter 4. Domain Model of IL-1 Stimulated NF-κB Signalling
Pathway

Modelling Individual Component Dynamics

The final set of UML diagrams that represent the domain model, refer to low-
level dynamics of individual components and use the UML state machine diagram
notation. Figures 4.10 to 4.16 represent the state machine diagrams for the flow
of components within the NF-κB signalling pathway, from the cell membrane
receptor, through to the intermediate components (including IKK), IκBα, NF-
κB, nuclear membrane transporters, and the inflammatory gene and mRNA that
give rise to the inflammatory response.

Figure 4.10 defines our abstracted view of the cell membrane receptor within
the signalling pathway. It can be seen that the receptor initially starts off in a
dormant state, but may become active upon binding of co-receptor and MyD88
adaptor protein (defined using an adapted version of UML guard notation), along
with subsequent binding of the external stimuli. Conversely, and as discussed pre-
viously, the cell membrane receptor may also become inhibited upon binding of
Tollip. As defined in the previous cartoon and UML diagrams, following activa-
tion of cell membrane receptor, the extracellular signal is propagated through the
signalling pathway through activation of intermediate components, culminating
with activation of IKK. For the purposes of the domain model, we have abstracted
away the IRAK, TRAF6, TAK1 and IKK components to that of a generic inter-
mediate component, which by default is dormant, but becomes active following
phosphorylation as the signal is propagated through the transduction cascade
(figure 4.11).

Figure 4.10: UML state machine diagram for a cell membrane receptor involved in
the NF-κB signalling pathway Burns et al. (2000) and O’Neill and Dinarello (2000).

Figure 4.11: UML state machine diagram for a generic intermediate component in-
volved in the propagation of signal from the cell membrane receptor to NF-κB.
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4.3. The Domain Model

Within the NF-κB signalling module, the IκBα inhibitor molecule by default
(i.e. following creation through transcription and translation) is unbound (free),
but may probabilistically bind to NF-κB when it enters an interaction bound-
ary, to enter an inhibiting state. Following activation of the IKK enzyme, and
its binding to the inhibited NF-κB-IκBα complex, the IκBα becomes phospho-
rylated and releases the NF-κB dimer, to again enter the free state. This time
however, the free IκBα undergoes polyubiquitination and becomes degraded by
the proteasome (figure 4.12). Similarly, the NF-κB dimer, is by default in an
inhibited state within the system due to IκBα inhibition (figure 4.13). Following
phosphorylation of IκBα, it becomes free, and able to translocate to the nucleus
where it may become active (note the guard condition), to facilitate the upregula-
tion of inflammatory gene transcription. Should the NF-κB dimer spontaneously
unbind from the promoter region of the inflammatory gene, it will once again
enter the free state, or alternatively new IκBα molecules (this time within the
nucleus) may also bind, to return the NF-κB dimer to an inhibited state.

Figure 4.12: UML state machine diagram for the inhibitor IκBα within the NF-κB
signalling pathway. By default, IκBα is free (indicated by the blacked-out circle),
however it can probabilistically bind to NF-κB, thus entering an inhibiting NF-κB
state. Upon phosphorylation by IKK, it returns to a free state for degradation by the
proteasome, and removal from the system (indicated by the concentric circle symbol).
Developed from Baeuerle and Baltimore (1988a) and Karin and Ben-Neriah (2000).

Figure 4.13: UML state machine diagram for the NF-κB dimer. By default, within
our abstracted view of the system, NF-κB is in an inhibited state. Following IKK-
mediated degradation of IκBα, it enters a free state, and if located within the nucleus
may become activated. If it becomes bound again to IκBα, it again enters an inhibited
state, or alternatively it may naturally dissociate from the DNA sequence to become
free. Developed from Baeuerle and Baltimore (1988a,b) and Siebenlist et al. (1994).
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Chapter 4. Domain Model of IL-1 Stimulated NF-κB Signalling
Pathway

As per the UML class association diagram (figure 4.4), sequence diagram (figure
4.5) and activity diagram (figure 4.9), binding of an IκBα molecule or NF-κB
dimer to a nuclear membrane transporter, transitions the transporter protein
from a dormant to an active state for the translocation of the ligand from either
the cytoplasm to the nucleus, or vice versa (figure 4.14). Following translocation
of an NF-κB dimer to the nucleus and its binding to the the promoter region of
an inflammatory gene, the gene transitions from a dormant to an actively being
transcribed state (figure 4.15) for generation of mRNA. Upon creation, the new
mRNA is translocated to the cytoplasm (see figure 4.5), where it is translated
into new inflammatory protein by the ribosome (figure 4.16).

Figure 4.14: UML state machine diagram for the nuclear membrane transporter
within the NF-κB signalling pathway.

Figure 4.15: UML state machine diagram for a generic gene within the NF-κB sig-
nalling pathway.

Figure 4.16: UML state machine diagram for a generic mRNA molecule within the
NF-κB signalling pathway.
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4.3. The Domain Model

Modelling Numerical Aspects of the System

The three different views outlined above provide a top-down perspective of the
NF-κB signalling pathway, which reflects the hierarchical nature of complex sys-
tems per Oltvai’s pyramid of life (Oltvai and Barabasi, 2002), discussed in chapter
3. The UML and cartoon-like diagrams used so far, have been useful for semi-
formally defining the relationships and dynamics at the system, component, and
intra-component levels, however they have not been able to appropriately capture
the numerical aspects of the signallng pathway.

The diagrammatic technique of mindmapping was therefore used to convey a
number of detailed aspects of the domain that could not be modelled above (see
figure 4.17). This mindmap documents (within a single diagram) a number of
key rates, ratios, and physical attributes associated with the NF-κB signalling
pathway. For example, we have found UML to be deficient in its ability to model
details regarding the ratios of NF-κB molecules (in free and inhibited states)
against free IκBα molecules across the cytoplasmic and nuclear compartments.
Similarly, we have been unable to convey nuclear translocation dynamics or details
of IκBα degradation within UML in a form that would be intuitive to biologists.
The following points from Carlotti et al. (1999, 2000) and Pogson et al. (2008)
are key to the activation and propagation of the signalling pathway:

• The cytoplasmic to nuclear ratio of NF-κB is 10:1 under non-stimulated
conditions

• There is approximately 17% free NF-κB (not bound to IκBα) in resting cell

• The ‘bindable’ NF-κB to IκBα is approximately 1:1

• The total NF-κB to IκBα is 1:3 with the excess sequestered to the actin
cytoskeleton

• Under IL-1 stimulation, there is a 20% decrease in cytoplasmic NF-κB; a
40-fold increase in nuclear NF-κB (moves from 1:10 to 4:1 location ratio);
and an 8-fold increase in transfected versus endogenous NF-κB

• There are approximately 60,000 RelA (NF-κB) molecules in an endoge-
nous cell; approximately 66,000 IκBα molecules (10% excess with respect
to NF-κB); and approximately an additional 135,000 IκBα molecules in an
endogenous cell, which are sequestered to the actin cytoskeleton

• The approximate cell volume of a fibroblast cell is 2000 µm3. The approxi-
mate volume of the nucleus is 100 µm3

• Phosphorylation of IκBα molecules peaks at 10min, and ubiquitination
peaks at 30min post IL-1 stimulation

• IκBα degradation rates are approximately as follows: 40% degraded after
10min, 60% after 30min, and 80% after 60min
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4.3. The Domain Model

4.3.2 Statistical Analysis to Complement the UML Domain
Model

The use of cartoon and UML diagrams are an essential first step towards devel-
opment of a domain model, however we believe that in isolation they are not
enough to provide a comprehensive model. In particular, they have been unable
to convey the dynamics of IκBα degradation (along with the associated NF-κB
release and subsequent activation), or indeed model the quantitative aspects of
the signalling pathway. We have therefore used a number of univariate and mul-
tivariate statistical techniques to complement the UML diagrams, in order to
develop a more comprehensive domain model of the NF-κB signalling pathway.

Initial Univariate Statistical Analysis

As discussed within chapter 3, a degree of variance is inherent to all aspects of
biology due to the underlying stochastic physiological events of individual cells.
The single-cell fluorescence data of Yang et al. (2001, 2003) encapsulates this
stochasticity, and we feel that this should be explored further within the domain
model. For predictive purposes, and indeed to indicate the types of statistical
tests that should be used in the future (and which graphical representations
are best suited), it is often desirable to understand the shape of the underlying
distribution of the data. To determine the underlying distribution, it is common
to fit the observed data to a theoretical distribution by comparing the frequencies
observed in the data to the expected frequencies of the theoretical distribution.
We have used Chi-squared (χ2) goodness of fit tests (see Appendix A) to ascertain
that the single-cell analysis (IκBα degradation) fluorescence data (at time 0min)
of Yang et al. (2001) approximates to a Negative Binomial distribution, which
we believe follows the usual patterns in biology of variation due to stochasticity
(Bliss and Fisher, 1953; White and Bennetts, 1996; Tijskens et al., 2003).

The data contained measurements from single-cell analysis performed on 88
cells: 52 were transfected with IκBα Enhanced Green Fluorescent Protein (EGFP)
and stimulated with IL-1; and 36 were transfected with IκBα-EGFP, but not
stimulated with extracellular ligand, thus representing a control group. Single-
cell analysis occurs on live cells, with the same set of cells being followed over
time. All measurements within the data related to cytoplasmic fluorescence and
were taken over a period of one hour, at intervals corresponding to 0, 10, 30
and 60 min. Figure 4.18 represents the control data with integer binning and a
superimposed curve that follows the negative binomial distribution with median
average of 1.947153 (calculated from the control data). Similarly, figure 4.19 rep-
resents the IL-1 stimulated data with integer binning and a superimposed curve
that follows the negative binomial distribution with median average of 1.729876
(calculated from the IL-1 stimulated data).

The purpose of this statistical domain modelling is to document the statistical
summaries of the single-cell data, to describe the differences between control
and IL-1 stimulated cells, and to define whether there are any natural groupings
within the observations. Both univariate and multivariate statistical analysis
was performed, with the multivariate analysis comprising both supervised and
unsupervised techniques, on account that the dataset size is borderline acceptable
for creating the training and test sets used within supervised techniques.
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Figure 4.18: Histogram of control observations that have been binned (grouped) using
an integer interval of initial (time 0min) fluorescence. The superimposed line represents
a negative binomial distribution, using the median calculated from the raw data (Yang
et al., 2003). The median average has been calculated as 1.947153.

Figure 4.19: Histogram of IL-1 stimulated observations that have been binned
(grouped) using an integer interval of initial (time 0min) fluorescence. The super-
imposed line represents a negative binomial distribution, using the median calculated
from the raw data (Yang et al., 2003). The median average has been calculated as
1.729876.
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4.3. The Domain Model

The negative binomial distribution is an alternative to the Poisson distribu-
tion, and is especially useful for data over an unbounded positive range whose
sample variance exceeds the sample mean. Due to the large variance inherent
in a negative binomial distribution; plotting a time course graph of mean aver-
age cytoplasmic fluorescence with standard deviation or variance as error bars,
may be misleading due to the potential for the error bars to represent a negative
fluorescence. We have therefore used box-whisker plots to represent a simple pic-
ture of cytoplasmic fluorescence based on the range of the data and values of the
quartiles (Upton and Cook, 1996). Box-whisker plots provide a convenient way
to compare multiple distributions, as evident in figure 4.20, which represents the
cytoplasmic fluorescence change over a 1hr period for the transfected cells from
Yang et al. (2003). These plots clearly show the large variability in fluorescence
of cells at particular time points, the increased variability following IL-1 stimu-
lation (depicted by the increased number of outliers), and also that those cells
that were transfected with RelA or RelA-p50 along with IκBα show a marked
decrease in fluorescence after a 1hr period - corresponding to a marked increase
in the degradation of IκBα over the time course.

Figure 4.20: Box-whisker plots of cytoplasmic fluorescence for the control and IL-1
stimulated observations over a 1hr period from Yang et al. (2003). There were three
levels of transfected cells representing: 1) IκBα, on the left hand side; 2) IκBα + RelA,
down the centre; and 3) IκBα + RelA + p50, on the right hand side. The increased
number of outliers highlight that the data is more dispersed under IL-1 stimulation.
Furthermore, it can be seen that the addition of RelA or RelA-p50 generates a marked
decrease in fluorescence, corresponding to an increase in the degradation of IκBα.

The data suggests that there is a residual/basal level of IκBα degradation
within the system, and that following IL-1 stimulation this degradation rate in-
creases. However, as a first step to allow IκBα degradation to be compared
within unstimulated and IL-1 stimulated environments, we believe that the flu-
orescence data should be transformed so that each observation (an individual
cell) become its own control, by dividing the cells’ fluorescence reading at various
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time-steps by its initial fluorescence reading (at time 0min). This converts the
fluorescence for time 0min for each cell to 1.0 (arbitrary units), and standardises
the ensuing degradation over a 1hr period4. Figure 4.21 is a graph of the control
(unstimulated) and IL-1 stimulated data using a subset of data that had initial
fluorescence upto and including 1.5 arbitrary fluorescence units using median av-
erage5 and variance bars for interquartile ranges (25th to 75th percentiles). It
can be seen that good separation is gained at 30min onwards, with a little overlap
still apparent at 10min. The rates of degradation are 0.366 fluorescence units per
hour for control and 0.864 fluorescence units per hour for IL-1 stimulated.

An alternative view in analysing the full time-series data is to visualise the four
time measurements for each of the 88 observations using a scatterplot matrix (as
suggested by Maindonald and Braun (2010)). The most striking feature is that
the data does not separate very well into simple groupings by stimulation status,
i.e. control versus IL-1 stimulated (figure 4.22), although there may be small re-
gions of clustering at the lower levels of cytoplasmic fluorescence. This suggestes
that the dataset is either not independent, and as such may have dependencies
between the underlying components of the system, or that the inherent stochas-
ticity within the signalling pathway has yielded variation within the fluorescence
measurements that prevents conclusions to be drawn using simple univariate sta-
tistical analysis.

Figure 4.21: Graph of median average fluorescence for control and IL-1 stimulated
observations from Yang et al. (2003). The data has been transformed so that each
cell has become its own control. The error bars illustrate the spread of observations
between the 25th and 75th percentiles.

4Our transformation of the data so that each observation becomes its own control at time
0min, is consistent with Bliss and Fisher (1953). They advise that an adequate fit of data to
the negative binomial distribution provides a justification for transformation of the data to
stabilize the variance, as a preparatory step for further statistical analysis by other techniques.

5The representation of this data as an average is not novel to this thesis, as Yang et al. (2003)
displayed as mean averages, however it does represent another dimension to the domain model.
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Figure 4.22: Scatterplot matrix of the single-cell fluorescence data from Yang et al.
(2003) coloured by IL-1 stimulation (red) and control (blue), with both axes therefore
representing fluorescence. Although no clear separation between the measurements is
visible, it can be seen that partial clustering occurs within the lower levels of cytoplasmic
fluorescence.

Hierarchical Cluster Analysis

Due to the poor separation gained using the scatterplot matrix, hierarchical clus-
ter analysis6 was used so that data may be quickly visualised in an alternative
way using a multivariate technique (Bridges, 1966; Fraley and Raftery, 1998).
Hierarchical clustering was performed using seven different clustering algorithms
(Ward, single, complete, average, McQuitty, median and centroid). The resulting
dendrograms for each method were consistent, in that no clear clustering was
evident to group control cells and to group those stimulated with IL-1. There
were however a few areas where clustering may be evident, and therefore ap-
propriate for further investigation to ascertain any natural groupings within the
data. Of note are the three main clusters obtained by scaling the data and us-
ing the complete clustering method (figure 4.23). The first cluster (left) groups
IL-1 stimulated observations with an initial cytoplasmic fluorescence (at 0min)
less than 3 fluorescence units (IL1 1 to IL1 34) and control observations with an
initial cytoplasmic fluorescence less than 2.079 fluorescence units. There are a
few anomalous observations (IL1 37 to IL1 40), but overall the cluster looks very

6The raw data was transformed so that the meaurement category (IL1 v No IL-1) and repetition
number were encoded, to produce a single label for each observation, e.g. observation 1 was
coded as IL1 1 and related to the first single-cell observation with IL-1 stimulation.
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clean. The second cluster, groups control observations 21 to 24 (No IL1 21 to No
IL1 24) with initial cytoplasmic fluorescence of 2.079 to 8.0 and IL-1 stimulated
observations IL1 41 to IL1 45, along with IL1 32, IL1 35 and IL1 36, which may
be anomalies. The final cluster (actually clusters 3 and 4, but cluster 3 only has a
single observation - IL1 52) groups both IL-1 stimulated and control observations
with initial cytoplasmic fluorescence greater than 8.0 fluorescence units.

Scaling the data, slightly decreases the correlation coefficient of the test data
(between the distance matrix and the cophonetic distance) from 0.9159 to 0.8982,
but enhances the clustering of IL-1 stimulated observations with each other, and
control observations with each other (i.e. IL-1 stimulated observations group to-
gether and control observations group together), within the three main clusters.
We believe that this slight reduction in correlation may be due to an amplification
of standard error within the observations, however the correlation score is still
high, and therefore we believe that the resulting dendrogram may be deemed an
appropriate summary of the data.

Figure 4.23: Dendrogram representing the clustering of observations from Yang et al.
(2003) by hierarchical cluster analysis. The red boxes indicate that hierarchical cluster
analysis identifies the three forced clusters as observations having an initial cytoplasmic
fluorescence less than 3.0, between 3.0 and 8.0, and above 8.0 fluorescence units.

Principal Component Analysis

The scatterplot matrix and hierarchical cluster analysis provide preliminary in-
dications of groupings/relationships between the data, however as no clear clus-
tering is evident, a more powerful technique is required. Principal Component
Analysis (PCA) is an unsupervised multivariate technique, which determines new
variables (inherent to the dataset) based on the direction of maximum variance
(Pearson, 1901). As such, it can be used to reduce the dimensionality of data
for detecting underlying structures (Wold et al., 1987). The scree plot (figure
4.24) shows the variance corresponding to each principal component within the
data of Yang et al. (2003). It flattens out after principal component 1 (PC1),
indicating that only a single principal component is required for the variation
seen in the data. The cumulative proportions of variance (table 4.1) reinforce
this hypothesis.
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Figure 4.24: Scree plot of the principal components from principal component analysis
of observations from Yang et al. (2003). Each bar corresponds to its respective principal
component; bar heights are the variances of the principal components.

PC1 PC2 PC3 PC4
Standard Deviation 6.241 0.65322 0.48826 0.21399

Proportion of Variance 0.982 0.01076 0.00601 0.00115
Cumulative Proportion 0.982 0.99283 0.99885 1.00000

Table 4.1: Summary of principal component analysis of the single-cell fluorescence
data, showing the standard deviation, proportion of variance and cumulative proportion
of variance for each principal component.

A bi-plot of PC1 and PC2 provides another visual representation of these prin-
cipal component loadings. Figure 4.25 shows that all four time measurements
contribute to the separation of the data (through PC1), with times 0, 10 and
30min having the greatest effect. Furthermore, it was found that: PC1 was
dominated by measurements at times 0, 10 and 30min; PC2 was dominated by
measurements at times 0 and 30min; PC3 was dominated by measurements at
times 0 and 60min; and PC4 was dominated by measurements at times 0 and
10min.

Further analysis was performed on all pair-combinations (six in total) of prin-
cipal components, and colour-coded depending on the relevant category to which
they belong. Initially only two categories were used, representing control and
IL-1 stimulated observations, however this did not yield a clean separation of
observations. Analysis on pair-combinations was therefore extended to comprise
additional categories, which correspond to control and IL-1 stimulated observa-
tions further divided by initial (time 0min) cytoplasmic fluorescence ranges. The
best separation by principal components occurred using initial fluorescence ranges
of 0-1.5, 1.5-3.0 and greater than 3.0 fluorescence units.
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Figure 4.25: Bi-plot of PC1 and PC2 from principal component analysis of observa-
tions from Yang et al. (2003). This plot shows that measurements for times 0, 10 and
30min contribute equally to the separation of PC1 due to their virtually equivalent
arrow lengths. They are not fully parallel to the PC1 axis however, and therefore also
contribute slightly to PC2.

Complete separation does not occur for any of the six pair-combinations, how-
ever separation emerges for initial cytoplasmic fluorescence upto 1.5 fluorescence
units against the rest of the data (i.e. observations with initial fluorescence of 0-
1.5 units, separate away from observations with initial fluorescence greater than
1.5 units). Figure 4.26 represents the plot of PC1 versus PC2, which has been
colour-coded to categorise control and IL-1 stimulated observations that have
been grouped by their initial cytoplasmic fluorescence. Along with the sepa-
rartion of control and IL-1 stimulated observations with initial fluorescence less
than 1.5 fluorescence units, there is also partial separation within the range 1.5 to
3.0 fluorescence units. Observations with initial cytoplasmic fluorescence greater
than 3.0 fluorescence units show no identifiable separation between control and
IL-1 stimulated conditions. Evidence for the separation of control and IL-1 stim-
ulated observations with initial cytoplasmic fluorescence upto 3.0 fluorescence
units is further provided through the plot of PC1 loadings against observation
number (figure 4.27). This plot of loadings also confirms the good separation of
observations with initial cytoplasmic fluorescence upto 1.5 fluorescence units.

Multidimensional scaling and Kruskal’s non-metric scaling were also performed
on the data, and these tests yielded very similar results to the PCA analysis above
(data not shown).
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Figure 4.26: PCA plot of principal components 1 and 2, colour-coded by observation
category, i.e. control versus IL-1 stimulated and range of initial cytoplasmic fluores-
cence. The six categories are: IL-1 stimulated/0-1.5 = Blue, IL-1 stimulated/1.5-3.0 =
Red, IL-1 stimulated/>3.0 = Black, control/0-1.5 = Yellow, control/1.5-3.0 = Green,
and control/>3.0 = Purple. The plot shows good separation of observations with initial
fluorescence < 1.5 units from the rest of the data, with only a small amount of overlap
between the control and IL-1 stimulated observations. There is also a degree of sep-
aration between observations with initial fluorescence values of 1.5-3.0 units from the
rest of the data, however the amount of overlap between control and IL-1 stimulated is
more significant here.

Figure 4.27: Plot of loadings for principal component 1 following PCA. PC1 was
chosen because this is the component which contributes most to separation of the
data. It can be seen that observations with initial fluorescence between 0-3.0 and
>3.0 can be separated easily as the observation between 0-3.0 units have negative
loadings and >3.0 have positive loadings. Furthermore, observations for cells with
initial fluorescence between 0-1.5 tend to have relatively stable loadings (around -4.5),
whereas those between 1.5-3.0 begin to have more variable loadings.
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4.4 Reflections on the use of UML and Statistical
Techniques for Domain Modelling

This reflective section draws upon the experience of developing the domain model
of the IL-1 stimulated NF-κB signalling pathway. Emphasis is focused on the
strengths and weaknesses of UML for domain modelling complex biological sys-
tems, and statistical techniques have been found to complement UML, thus fa-
cilitating the development of a more complete domain model.

The reflective analysis commences with section 4.4.1, through an examination
of the benefits of a top-down approach to developing the domain model, which
increased the granularity of detail from system-wide behaviours, down to com-
ponent interactions, and finally individual component dynamics. Section 4.4.2
reflects on the suitability of UML for developing domain models of complex bio-
logical systems, with particular emphasis on the use of UML class, activity, se-
quence and state machine diagrammatic notations. Finally, section 4.4.3 reflects
on the use of univariate and multivariate statistical techniques to complement
UML in developing domain models of complex biological systems.

4.4.1 Reflections on the Process used for Domain Modelling

As discussed in chapter 3, the NF-κB signalling pathway is a complex intracellular
network that manifests in stochastic and dynamic responses to inflammatory
stimuli. The system-wide behaviours, generated as an inflammatory response to
pathogenic invasion and other physiological perturbations, emerge through the
cumulative effect of low-level intracellular interactions within an individual cell,
being amplified to a large-scale across a population of immune response cells.
As such, the inherent complexity of the signalling pathway and its associated
stochasticity and dynamics, renders the process of domain modelling both time
consuming and non-trivial in nature. We have therefore chosen to use a top-
down approach for domain modelling, which allows a succession of models to be
developed in an iterative manner, at increasing levels of detail.

Domain modelling, as specified by the CoSMoS process, follows an iterative
process, where the various views of the system (in this case biological views)
are refined until agreement is gained between the modellor and domain expert.
As discussed previously, we have chosen to use the deep-curation approach for
domain modelling. This relies upon the manual curation of relevant facts and
information from the published literature, experimental datasets, and interac-
tions with the domain expert, to develop an initial model in a quasi-top-down
manner. As described in section 2.7, the domain model is akin to a functional
requirements document used in software engineering, and therefore provides a
transparent definition of the real world domain behaviour (i.e. functionality) that
will be required in future iterations of the resulting computational model. This
iterative approach, with close liaison between modellor and domain expert, en-
sures that an extended period of time is set aside for comprehensive exploration
of the real-world domain before simulation development, and furthermore ensures
the modellor has sufficient understanding of the scientific domain before design
and implementation of the resulting in silico experimentation that completes the
CoSMoS lifecycle (as per figure 2.6).
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The top-down approach for developing the domain model is represented through
the three levels of UML models in section 4.3.1. We have commenced by mod-
elling the system-level properties using a cartoon-like expected behaviours diagram
(see figure 4.1) as advocated by Andrews et al. (2010) and Read et al. (2009a).
We believe that this provides a concise way to diagrammatically convey not only
the component interactions within the complex biological system, but also an
ability to define the observable phenomena from the system-wide dynamics. Im-
portantly, this diagram also links the two concepts together through the ability
to define hypotheses on how the interactions generate the emergent behaviours of
the system. Although the diagram is not part of a UML notation, and therefore
has no formal requirements, it is useful in identifying the behaviours, interac-
tions, and components in the biological domain that are to be included in the
domain model. Furthermore, as shown in section 4.3.1, a number of additional
diagrammatic views were developed to complete the system-level domain model.

Following the domain modelling of system-level properties, the top-down ap-
proach led us to model the component-level interactions of the NF-κB signalling
pathway. UML was used as the basis for modelling, and the process of semi-
formally defining the molecular interactions within the signalling pathway gave
rise to a large number of questions regarding: the abstraction level to be used
for the computational model; the dynamics of interactions between the different
types of molecular species; the quantities for each component within the system;
and whether there were any rate constants for more generalised biological pro-
cesses that are involved in the signalling pathway (for example, diffusion kinetics
or Brownian motion). The process of modelling these molecular interactions also
served to inform and guide the functional specification of individual component-
level dynamics.

Our reflections above are therefore in agreement with Read (2011), who ar-
gues that the process of domain modelling using a top-down approach is more
intuitive than a bottom-up approach. This is because the concept of expanding
functional aspects of complex systems through increasing the detail of lower level
interactions, e.g. from their system-level properties, through to component inter-
actions and individual component dynamics, is more intuitive than the ability to
conceptualise system-wide behaviours from individual component-level dynamics
by reporting them first, and then building up levels of the functional hierarchy.

4.4.2 Reflections on the Suitability of UML for Domain
Modelling

As mentioned previously, the domain model is analogous to a functional speci-
fication from software engineering and development projects from industry. As
such, the primary purpose is to unambiguously capture our abstracted view of the
functionality of the real world domain, which will be incorporated within future
iterations of the resulting computational model. This ensures that the developer
and domain expert are in full agreement on the scope of the CoSMoS project. In
addition to capturing the functional requirements, we have also discovered that
the actual process of developing the domain model in conjunction with the do-
main expert has facilitated a much more in-depth understanding of the domain,
than would have been gained through reading published literature alone. Fur-
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thermore, due to the complex, stochastic nature of the NF-κB signalling pathway,
we have been unable to develop a single diagrammatic view which could capture
the various components, interactions, and dynamics of the system. It has there-
fore been necessary to utilise a number of different cartoon and UML notations
in order to complete the domain modelling exercise, thus confirming the expe-
riences of Read et al. (2014). These different diagrammatic views allow us to
capture the initiation and propagation of the signalling pathway, across the in-
herent hierarchies of the system (i.e. system-wide, component interactions, and
individual component dynamics). We believe this to be a natural progression
when domain modelling, and suggest that the different views reflect the modular
nature of biology, as emphasised through systems biology.

Perhaps one of the simplest diagrammatic views of a complex system such as
the NF-κB signalling pathway is that of its physical environment, which in this
case is a Eukaryotic cell. Unfortunately, UML being a very prescriptive notation
is not very effective in succinctly capturing the essence of component containment
within a cell membrane that we require (figure 4.28). As the language is more
relevant for designing software systems, it may be of more use within this goal
for the subsequent platform model, we therefore believe that the cartoon-type
diagram used for figure 4.2 better serves our needs for presenting a view of physical
containment within the domain model.

Following on from containment and physical structure, another UML diagram
focused on the types of components (termed classes) within a system is the in-
heritance class diagram (see figure 4.29). We believe that this UML notation
is useful for illustrating the functional similarities between the components, but
again, seems very technical for the intended audience (i.e. biological domain ex-
perts) at the stage where we prepare the domain model. We believe that a table
may suffice to express the same information, and would also be more intuitive
to a biologist. As per the UML class containment diagram, this notation had
its merits when it comes to defining the technical requirements of the resulting
computational model as part of the platform modelling process. Once the dia-
grammatic views representing containment and inheritance have been developed,
the next step in the process of eliciting component-level interactions is to develop
a full UML class association diagram (as per figure 4.4). This class association
diagram depicts the full spectrum of relationships between components within
the domain.

To make the diagram more intuitive to an audience of biologists, we have or-
dered the associations sequentially, to follow the spatial cascade of the NF-κB
signalling pathway, from the cell membrane to the nucleus. We have also pur-
posefully omitted the concept of cardinality from the relationships to ensure the
diagram is not too cluttered. This does however expose a problem with interpre-
tation. As it stands, the class diagram incorrectly suggests that every cell will
become stimulated by extracellular signal, however this is not correct, as there
may be some cells that are never exposed to inflammatory stimuli throughout
their lifetime. Conversely, for a cell to become stimulated, it must simultaneously
perceive a number of IL-1 molecules exceeding a given threshold. We therefore
believe the use of class diagrams for modelling stochastic and dynamic systems
may lead to a degree of confusion and misleading interpretations of system be-
haviours. As such, we believe that they should be constrained to providing a view
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of static relationships between system components.
The UML notations used thus far, have focused on the static relationships be-

tween system components. Although this has been useful to gain a feel for the
physical structure of the signalling pathway and functional relationships between
the components, the class diagrams (full association, inheritance, and contain-
ment) have not allowed us to express any of the dynamic relationships relating to
the components following activation of the cell membrane by a suitable stimulat-
ing ligand. UML sequence diagrams provide a mechanism to show the order of
events that occur within the complex system and how these relate to interactions
between the individual components (see figure 4.5).

Although easy to follow from a chronology of interactions perspective, we be-
lieve that sequence diagrams may not be the most suitable of UML notations
for expressing biological information succinctly. A good example relates to the
phenomena of feedback within complex systems. As the sequence diagram con-
veys time linearly along one dimension (in our case vertically, from top to bottom
through the use of lifelines), this prevents the diagrammatic expression of feed-
back loops. Specifically to our domain, the IL-1 stimulated NF-κB signalling
pathway is unlike most complex systems, in that it does not possess a positive
feedback loop which propagates the signal, but instead contains negative feed-
back, through the production of its inhibitor IκBα as part of the upregulation
of inflammatory genes during the immune response (see steps 8.1 to 8.5 in fig-
ure 4.5). Fortunately, UML employs another notation that may be used in the
form of communication diagrams (see figure 4.30). Here the developer is free to
position the individual components where they deem appropriate within the di-
agram (unlike the rigid temporal sequence from top-to-bottom used in sequence
diagrams) and the order of interactions is denoted through numbering the events
on the links between components. As per the association class diagram (figure
4.4), we have positioned the components within the communication diagram to
match the spatial dimension with a Eukaryotic cell to make the diagram more
intuitive to biologists.

An alternative view to the UML sequence and communication diagrams, which
convey the interactions between components, is the activity diagram, which con-
veys the network of activities being performed within the system. Figures 4.6,
4.7 and 4.8 illustrate respectively the activities being performed within cell mem-
brane receptor activation, the NF-κB signalling module, and transcription (and
translation) of inflammatory response genes (and proteins)7. The UML activity
diagram notation has been updated and refined since its initial draft standard,
and now benefits from a number of advanced concepts for conveying complex
aspects of activities within a system. Figure 4.31 utilises the concepts of dis-
crete parameter sets for receptor complex formation, and decision points for the
ligand-induced activation or inhibition of receptor.

The negative feedback within the system is hard to convey using UML notation
when the activities of the whole system are divided into a number of discrete
functional modules. The individual UML activity diagrams (figures 4.6 - 4.8)

7The activities on the activity diagrams are expressed at the level of a single cell. It must be
noted however, that the inflammatory response acts upon a population of cells, and therefore
a large number of cells will be undergoing similar processes concurrently, and may be out of
phase.
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can therefore be linked to form a large end-to-end UML activity diagram that
commences with the activation of a cell membrane receptor and culminates with
the generation of new IκBα and inhibition of the NF-κB complex. Furthermore,
another concept within the UML notation standards that may be beneficial for us
to introduce the sub-cellular location within our diagrams is that of swim-lanes8.
Figure 4.9 links the three individual activity diagrams into a single end-to-end
activity diagram, and also incorporates the concept of swim-lanes to convey the
location of these activities within the cell.

Although portraying temporal interactions as per UML sequence diagrams, we
believe that UML activity diagrams are more intuitive for non-Computer Science
audiences as they are more flexible in relation to the position of components
within the system, thus allowing the positioning of components to approximate to
the spatial locations within a Eukaryotic cell. We believe that end-to-end activity
diagrams that utilise swim-lanes provide a very useful diagrammatic view of the
NF-κB signalling pathway, but also due to the ability to print onto a single page
using A3-sized paper, provide the ability for the developer and domain expert
to discuss the scope of the computational model and the finer details of the
underlying wet-lab biology.

It must be noted however that care is required when interpreting activity dia-
grams. We believe they are a very useful notation to convey the order in which
activities are performed by system components, but may mistakenly provide the
impression that a component performing an activity may become inactive after-
wards. This is not always the case, as components may go on to perform other
functions that are not depicted on an individual activity diagram, that is being
used to convey a particular view of the complex system.

The final UML diagrammatic notation that we have found useful for develop-
ment of the domain model are state machine diagrams. These provide a useful
mechanism to convey low-level dynamics within individual components of the
system. Individual state machine diagrams have been generated for all compo-
nents within the pathway that actively change state within the system (see figures
4.10 to 4.16). As per the individual activity diagrams, they can also be joined
sequentially and through embedding within a high-level state machine diagram
for the entire Eukaryotic cell, can also convey the location of the state machines
(figure 4.32).

8Activity diagram swim-lanes are utilised within the UML standards to convey responsibility
for an activity. We believe however, that a degree of flexibility should be utilised in the precise
semantics of the UML standards when modelling biological systems. As such, we believe that
swim-lanes are an ideal mechanism to convey location of activities within a UML activity
diagram.
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4.4.3 Reflections on the use of Statistical Techniques to
Complement UML in Domain Modelling

We believe that univariate and multivariate statistical analysis of the data has
provided a complementary view to the domain model that UML alone would
not be able to capture. Through visualising the data as histograms (figures
4.18 & 4.19), it quickly became evident that the data was highly skewed, and
that any assumptions to a normal distribution, which requires a symmetrical
distribution around the modal value, would be incorrect. Due to the uncertainty
about direction of difference, two-tailed χ2 goodness of fit tests were therefore
used to identify the type of distribution that the data approximated to.

It appears that although the full dataset is clearly not normally distributed,
there is a subset of observations within the 0-3.0 fluorescence units range, which
does tend to Normality9. The χ2 scores therefore need to be interpreted in con-
text to the dispersal across the x-axis. Although the χ2 scores show no significant
difference from the expected values that relate to a normal distribution (for the
0-3.0 fluorescence range), the actual normal distribution with mean and standard
deviation calculated from the data subset would contain negative fluorescence
values. As this will not occur in reality, we are left assuming the data approxi-
mates to a normal distribution, with the caveat that this only occurs for a portion
of the distribution. Therefore, although the χ2 tests allow an approximation to
normality, we believe that it is more accurate to approximate to a negative bino-
mial distribution, which can be approximated across the full range of observable
fluorescence. This is in keeping with the findings of White and Bennetts (1996)
and Bliss and Fisher (1953), who advise that biological populations, be that cell
or organism level, often approximate very closely to negative binomial distribu-
tions. As such, future statistical tests on the data, and indeed any simulation
level data produced from in silico experimentation, should be non-parametric in
nature as these are applicable to any distribution, and do not assume normality.
Furthermore, due to its non-parametric nature, the central measure used should
be the median average, as this is not affected to the same extent from skewed
data as the mean average (Siegel, 1957).

Results of the hierarchical cluster analysis highlighted evidence of separation of
observations into three groups relating to initial cytoplasmic fluorescence: 0-1.5,
1.5-3.0 and >3.0 fluorescence units (see figure 4.23). The correlation between the
distance matrix and cophonetic distance for the dendrogram with unscaled data
(complete method) was 0.9159 and with scaled data (again using the complete
method) was 0.8982 and therefore provides evidence that the dendrograms are a
reasonable graphical summary of the dataset. Although the scaled data provided
the dendrogram with the best clustering, it was only slightly better than that
gained using unscaled data, and the correlation was also slightly worse than
that gained with unscaled data. This may have been due to the scaling process
amplifying stochastic variation, and therefore subsequent analysis was performed
using unscaled data.

9Transfection is an unnatural state for a living cell. The system appears to cope with a certain
degree of excess protein, but at some stage (i.e. with fluorescence units more than 2.0-3.0),
the system shuts down. Therefore, in the group of functional cells, with fluorescence between
0-3.0, the distribution approximates to Normality.

124



4.5. Summary

Principal component analysis, being an unsupervised technique may be relied
upon to be a good summary of the data. Analysis suggested that a single prin-
cipal component was needed for separation of the data; therefore separation was
visually displayed by using PC1 and PC2 (see figure 4.26). As per the hierarchical
cluster analysis, PCA showed good separation with respect to the observations
that could be grouped into 0-1.5, 1.5-3.0 and>3.0 ranges of initial cytoplasmic flu-
orescence. Furthermore, PCA showed reasonable separation between control and
IL-1 stimulated observations in the 0-1.5 initial cytoplasmic fluorescence range,
with a small amount of overlap between the two groups. Similarly, there was
partial grouping of observations within the 1.5-3.0 and >3.0 fluorescence ranges,
however within these groups there was no discernible separation of control versus
IL-1 stimulated observations. The bi-plot (see figure 4.25) shows that PC1 is
dominated by measurements at times 0, 10 and 30min, with those for 10 and
30min being virtually parallel with the PC1 axis, indicating that these measure-
ments are the most important for separation of observations. The plot of PC1
loadings (see figure 4.27) provides very strong evidence that observations relating
to cells with initial cytoplasmic fluorescence between 0-1.5 units can be separated
from the rest of the observations.

Overall, it is possible to conclude that multivariate statistical techniques may
be used to classify observations into groups dependent on their initial cytoplasmic
fluorescence, and to separate control from IL-1 stimulated observations within
the range 0-1.5 fluorescence units. Through analysing the dendrogram, bi-plot
and PC1 versus PC2 plot, it can be deduced that there is evidence of partial
separation of control versus IL-1 stimulated upto 3.0 fluorescence units, however
the inherent variance associated with the data becomes too great beyond that.
We believe that the large variability of observations is due to normal stochasticity
within cell and molecular biology, and also more specifically in this case, a certain
degree of over-transfection of the fluorescent protein constructs (e.g. IκBαEGFP),
as pointed out by Carlotti et al. (2000) and Yang et al. (2001, 2003) because the
cell effectively stops working. We therefore believe that in the short term, for the
goal of developing an initial agent-based model of NF-κB dynamics, it would be
appropriate to focus on a subset of the experimental data. As the advantage of
single-cell analysis is lost if you pool the data and calculate an average, and with
the results of the above multivariate statistical tests in mind, we propose that data
relating to initial fluorescence <1.5 be used for development and calibration of
the model. We also believe that in order to get rational results, each cell needs to
form its own control (which was also the approach taken for the model of Pogson
et al. (2006)), in order to eliminate the wide variations observed when averaging
dynamics over multiple cells, and by implication simulations. Furthermore, it is
believed that such an approach would yield more consistent results as cell time-
course dynamics would be expressed as a percentage of initial fluorescence for
each cell.

4.5 Summary

We believe that domain modelling is an essential part of the scoping and designing
phase of simulation development within computational immunology. Although
the use of UML is a tried and tested approach to semi-formally define software
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implementations in industry, and indeed is a useful tool for domain modelling,
it can only take us so far. Like Read et al. (2014), we have found UML to
be expressive for static and relational aspects of complex biological systems, but
deficient when trying to convey the stochastic and dynamic aspects of the system.
Furthermore, following unsuccessful attempts to define the signalling pathway
in a single UML diagram, we have concluded that the domain model should be
developed using multiple views of the system, which build upon, and complement
each other to provide the comprehensive view that we require.

Through the process of domain modelling described above, we have discovered
that the diagrammatic domain model using UML, benefits from the additional
perspectives that statistical analysis provides, and furthermore also benefits from
the flexibility offered through other diagrammatic techniques such as the car-
toon diagram, or mindmapping. We therefore suggest that on its own, UML is
not enough for developing comprehensive domain models of complex biological
systems, and should be complemented by other approaches.

This chapter has addressed research objective 1: Explore the role of diagram-
matic and statistical techniques for developing a domain model of the NF-κB
case study. Furthermore, it has contributed to the wider field of computational
biology, through the critical reflections on the ability of UML to model the com-
plex behaviours and dynamics of intracellular signalling pathways, and the way
in which various statistical techniques may be used to complement UML.
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5 The Platform Model

The second product of a CoSMoS project, as described by Andrews et al. (2010),
is the platform model, which “comprises design and implementation models for
the simulation platform, based on the domain model and research context”. As
discussed previously, whereas the domain is the general area of study, which in
this case is the IL-1 stimulated NF-κB signalling pathway, and the domain model
is the description of the domain that reflects the scientific basis for development
of the simulation; by its very nature, the platform model is an implementation
specific abstraction of the domain model, and is focused on the technical aspects
of the future simulator.

Due to the incremental approach for development of the computational model
in this thesis, we have attempted to capture within our domain model all of the
components of the signalling pathway that will be relevant to us during the life-
time of this project. Conversely however, the iterative approach to development,
will result in a number of iterations of the platform model, which define the func-
tionality required of the various releases of the computational model. The initial
version, represented in this chapter, will in effect reproduce the functionality of
the model from Pogson et al. (2006), following reverse engineering of the published
functionality of the model1, and redevelopment using the FLAME agent-based
simulation framework. The second version of the computational model will in-
corporate increased granularity of components at the cell membrane, to extend
the scope of in silico experimentation to components upstream of the NF-κB
signalling module.

5.1 Overview of Platform Modelling

As per the domain model, the platform model may be a collection of informal
notes relating to relevant aspects of the domain, but may also include informal
sketches (such as cartoons), more formal diagrams (such as those produced with
UML), mathematical equations, scientific constants (e.g. biochemical rate con-
stants), and physical descriptors (such as size, quantity, location, and speed) of
simulation components and functions. Unlike the domain model, the key differ-
entiator of the platform model is that it is required to include an implementation
specific focus and should therefore document programming language specific re-
quirements and/or workarounds, which may be required due to the programming
language or computer architecture constraints during development of the simu-
lator. For example, FLAME was developed using the concept of X-Machines,
and in particular communicating stream X-Machines (see figure 5.1), therefore
the platform model will need to cater for this technical framework. The platform

1We have been unable to gain the code for this Matlab model as the publication preceeded the
now generally agreed principle of publishing your code with the empirical research paper.
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model also has a wider scope, outside of the specific simulation platform, in that it
also includes the concept of instrumentation, which allows observation of system
dynamics (through for example a visual front-end); the extraction of simulation
data from the simulation platform; and analysis of this data as the basis for the
results model.

The aims and objectives of this first version of the platform model are to semi-
formally document the technical requirements for the simulator, which will be
developed as part of the first iteration. Briefly, this first iteration will reproduce
the functionality inherent in the agent-based model previously published by Pog-
son et al. (2006). This model was developed at a fairly high-level of abstraction,
and contained five main agent types: cell membrane receptor, NF-κB, IκBα,
nuclear transporter protein, and the enzyme IKK. Unfortunately, this work was
published before the widespread use of supplementary material and open access
to computer programme code, and therefore access to the underlying detail of the
model has been limited. Initial development of the platform model has therefore
relied on the process of reverse engineering their computational model via a de-
tailed manual walkthrough of the functionality described in the two publications
(Pogson et al., 2006, 2008). As such, reproduction of functionality in the resul-
tant simulation platform will be based at a qualitative level through the process
of calibrating system dynamics to published results (i.e. curve fitting).

Figure 5.1: Generic communicating stream X-Machine diagram. Here it can be seen
that a set of input messages are read by an agent, and state transitions may be produced
using information from these messages, along with the agents current state and current
memory. Following the functions being performed, the agents memory will be updated,
along with its state if applicable.
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5.2 The Diagrammatic Platform Model

Discrete event simulation is an approach in which the state of the computational
model is updated at discrete times within the lifetime of an individual simulation.
It is particularly suited to simulations with a large number of stochastic events,
such as those defined in agent-based modelling. Indeed, the underlying basis of
an agent-based model is the actual agents themselves, and it is through the inter-
actions of the individual agents that the emergent behaviour of the system arises.
There are five main agents (cell membrane receptor, IKK, IκBα, NF-κB, and
nuclear transporter) within the simulator for iteration 1, along with a number of
other components that essentially represent simulation compartments and space
(cell, cell membrane, nuclear membrane, cytoplasm and nucleus). These are rep-
resented through a class inheritance diagram (figure 5.2) and a class containment
diagram (figure 5.3).

Figure 5.2: UML inheritance class diagram for the platform model. The functionality
of iteration 1 can be achieved using a small number of agent types, with essentially
two main categories of agents representing receptors (cell membrane and nuclear trans-
porter) and biomolecules (IL-1, NF-κB, IκBα, and IKK). There are also environmental
factors relating to membranes (cell membrane and nuclear membrane) and cellular
organelles, which in this case are restricted to the cytoplasm and the nucleus.

From a technical perspective, all system components are generalisable as cell
components, and will contain a standard set of attributes (e.g. 3D coordinates,
along with movement parameters and functions). Below this system-level general-
isation, there are four key categories of components, which relate to: an organelle,
which for our purposes has been abstracted away to consist of only the cytoplasm
and the nucleus; a receptor, which can be either the IL-1R cell membrane receptor
or a nuclear transporter (importing or exporting); a membrane, which has been
asbtracted away to only incorporate the cell membrane or the nuclear membrane;
and biomolecules, which reflect the key signalling proteins of IL-1 extracellular
stimuli, NF-κB, IκBα, and IKK.

Regarding the containment of agents, the cell membrane, nuclear membrane,
cytoplasm and nucleus effectively operate as the simulation environment as they
provide the necessary cell structure within which the NF-κB, IκBα and IKK
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agents interact. The cell membrane receptors (IL-1R) are confined to the cell
membrane, and the nuclear transporters to the nuclear membrane. The IKK and
NF-κB-IκBα complex agents are confined to the cytoplasm, however free NF-κB
and IκBα agents are able to move between the cytoplasm and nucleus, mediated
by the nuclear transporters.

Figure 5.3: UML containment class diagram for the platform model. The cell mem-
brane, nuclear membrane, cytoplasm and nucleus can be thought of as cellular struc-
tures within the computational model, and are static components, forming the physical
environment of the computational model, within which the other agents are spatially
located. The cell membrane receptor is localised to the cell membrane, and the nu-
clear transporters are localised to the nuclear membrane. The IKK and NF-κB-IκBα
complex agents are restricted to the cytoplasm, whereas the unbound NF-κB and IκBα
agents are able to translocate across the nuclear membrane and may be located in either
the cytoplasm or nucleus.
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Chapter 5. The Platform Model

The class association diagram (figure 5.4) specifies the high-level interactions
between the different agent types within the system. This stage of the technical
specification is intentionally focused on the static relationships between agent
types. It can be seen that a number of components and events defined in the
domain model (from chapter 4) have been abstracted away to simplify the initial
computational model, and to allow focus on the dynamics of NF-κB activation
and IκBα degradation. As such, we have abstracted away the detail of: the co-
receptor and adaptor proteins at the cell membrane, which are captured within
the IL-1R cell receptor component; the intermediate components between the
cell membrane receptor and the NF-κB signalling module, which are represented
by IKK (acting as a generic intermediate) component; and the transcription and
translation processes, which are not modelled, as we focus on the signalling path-
way up to and including the activation of NF-κB. Pogson et al. (2006) state that
their model used a temporary agent for IKK that used an ‘internal time delay’,
however there was no detail regarding the actual time of the delay, how long the
agent was active, or indeed how many agents became instantiated following acti-
vation of the cell membrane receptor. We believe that a more suitable approach
for agent-based modelling is to incorporate an internal time delay for activation
into the individual IL-1R agents, and once active, propagate the signal transduc-
tion cascade through their probabilistic binding with IKK, which facilitates the
emergent and stochastic behaviour of the system through the various downstream
interactions.

As per the domain model, the order of interactions within the system is high-
lighted through use of sequence and communication diagrams. The sequence
diagram (figure 5.5) specifies the desired system functionality under control con-
ditions, where there is no IL-1 stimulation. As such, the dynamics provide a
continuous degree of IκBα inhibition of NF-κB, a basal level of dissociation back
to free NF-κB and IκBα, and a small level of shuttling of free NF-κB and IκBα be-
tween the cytoplasm and nucleus. Following the system achieving control starting
dynamics, where the required ratio of agents and their associated states has been
achieved between the cytoplasm and nucleus, a copy of the resulting XML file was
taken to act as the starting parameters file for IL-1 stimulation simulations. Here,
the association of NF-κB and IκBα, along with their basal dissociation continues,
however the presence of external stimulation via IL-1 will activate the IL-1R cell
membrane receptors, which facilitate the activation of IKK. Once IKK is active,
it will probabilistically bind to inhibited NF-κB-IκBα complex, to release NF-
κB and degrade the IκBα (see figure 5.6). The free NF-κB may then continue
movement within the cytoplasm, and once it binds to an importing transporter
will be translocated to the nucleus, for subsequent activation. Although UML
sequence diagrams were found to have limited benefits with respect to commu-
nication diagrams during the domain modelling phase, they are more powerful
when platform modelling, as they are able to convey the relevant messages sent
by agents (e.g. location and finalbond) and received by agents (e.g. newbond)
during each time-step of a discrete event simulation.

As previously discussed in the domain model, the communication diagram (see
figure 5.7) provides a UML notation, which allows the designer more freedom in
where the various components (classes) are located on the page. As such, we have
positioned the various components in their approximate locations for the relevant
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interactions within a cell. The functionality follows that of the IL-1 stimulation
sequence diagram. An alternative view of the required system dynamics can be
seen in the activity diagram of figure 5.8, which along with a focus on activities,
also utilises the concept of swim-lanes to specify the spatial aspects of behaviours
within the computational model.

Figure 5.5: UML sequence diagram for control conditions, representing the sequential
order of agent interactions for iteration 1. The system dynamics begin with all NF-κB
and IκBα agents being free within the cytoplasm, and moving randomly in 3D space.
Once a free NF-κB agent moves within the interaction radius of a free IκBα agent,
a probabilistic binding can occur, which creates an NF-κB-IκBα inhibited complex.
There is also a basal probability of a spontaneous dissociation back to free NF-κB and
free IκBα agents. Furthermore, free NF-κB and IκBα agents may also translocate
across the nuclear membrane via the nuclear transporters.
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Figure 5.6: UML sequence diagram for IL-1 stimulated conditions, representing the
sequential order of agent interactions for iteration 1. Activation of the system begins
when the extracellular stimuli (IL-1) rises above a given threshold, which activates the
IL-1R cell membrane receptor agents. We have approximated this biological behaviour
through the use of a countdown timer from commencement of the simulation, which
after a pre-defined period of time (number of simulation time-steps) makes all IL-1R
agents active. Once activated, these IL-1R agents initiate the signalling cascade through
activation of IKK, which then dissociates the NF-κB-IκBα complex, upon which the
free NF-κB is able to continue random movement and ultimately translocate to the
nucleus. Conversely, following dissociation, the IκBα agent becomes degraded, and is
therefore removed from the simulation. In a similar way to IL-1R activation, we have
also used a countdown timer to approximate the lag time before IKK activation.

Figure 5.7: As per the domain model, a UML communication diagram can be used as
an alternative representation of agent interactions within the computational model. As
per the sequence diagram for IL-1 stimulated dynamics, activation of the IL-1R agents
propagates a cascade of interactions, culminating in the activation of NF-κB in the
nucleus, which in biology would lead to the transcription of inflammatory genes, but
in our model is out of scope and therefore not represented in the platform model.
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Finally, the low-level detail of system components can be specified by either
UML state machine diagrams or X-Machine diagrams. As we have decided to use
the FLAME agent-based simulation framework, which is based on the concept
of communicating stream X-Machines, we have utilised X-Machine diagrams to
specify the internal states and associated messages of the agents (see figures 5.9),
along with a set of linked UML state machine diagrams to represent the system
as a whole (figure 5.10). This approach of modelling the low-level system detail of
the signalling pathway as discrete signalling modules follows Neves and Iyengar
(2002), who advocate the use of modules to focus on the receiving of inputs,
processing of the relevant information, and generation of outputs.

Figure 5.9: X-Machine diagrams for the platform model, showing the internal state
changes of the individual agents. Each iteration within a FLAME simulation com-
mences with internal state 0, generates a set of messages, and may potentially update
its internal memory at each internal state transition. The generated messages are sent
to an external message list, and may be read by other agents during the input data stage
(S1 to S2) of their internal state transitions. (A) represents an IκBα X-Machine, (B)
represents a NF-κB X-Machine, (C) represents an IKK X-Machine, and (D) represents
a nuclear receptor X-Machine.
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In general, the various agents within an agent-based model form the network
of components of a communicating and processing system. These agents are able
to hold information pertinent to their own status, receive external information,
process this information, act upon any results that may change their status, and
then send this updated information externally so that other agents may respond
accordingly. As advocated by Barnard et al. (1996), a set of communicating X-
Machines were constructed in a modular fashion to ensure that the various func-
tions within the computational model can be constructed independently. This
approach is further supported by the fact that communication between the X-
Machines is indirect, as the modelling paradigm makes use of a centralised mes-
sage board. Thus, each X-Machine can be constructed and modified without it
affecting other processes/functions as long as the interfaces between components
remains the same.

The diagrammatic model of an X-Machine relates to the system state transi-
tions and not the biological (domain specific) states. These internal state tran-
sitions are via transition functions, which contain rules that change the agents
memory, and send and receive messages via the input and output ports of the
X-Machine. These in turn are connected to message lists that hold the messages
used for communication between the agents. There is a global simulation time-
step after all the X-Machines in a model have completed one transition function,
with the end and start of transition functions, effectively acting as a way to
synchronise the processing of X-Machines and the communication of messages.

When communicating X-Machines are used to represent agents in an agent-
based model, communication is usually restricted to interactions with neighbour-
ing agents that are located close to one another (Coakley et al., 2006b). The
types of messages used within our signalling pathway model would fall into two
broad categories relating to location messages and bonding messages. Location
messages would be used to determine whether an agent is within the interaction
zone, and once the most suitable agent within the interaction zone is identified,
bonding messages would then be used to communicate this bond to the relevant
agents.

An alternative representation, which incorporates the various agents, their in-
ternal states, and the messages used for communication is the X-Machine state-
graph (figure 5.11). This latter diagram provides a more detailed representation
of the internal dynamics of each X-Machine, and how they communicate with
each other through various message types. The separation of agent behaviours
into individual functions such as outputting location and state data, checking to
see if a bond is available, or movement, allows the modularisation of agent func-
tionality so that different versions can be easily swapped in and out with minimal
changes needed to the rest of the model description.
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Chapter 5. The Platform Model

5.3 Biological State Changes

Along with the internal transition states, which relate to the X-Machine under-
pinnings of FLAME (see figure 5.9), there are also biological states, which the
agents need to represent. These are held within the memory of the individual X-
Machines, in order for the simulation to generate emergent behaviour analogous
to biology. For instance, the various agents may transition through a number of
biological states, which are related to their binding status and location. A good
example is that of NF-κB (figure 5.12), which can be free in either the cytoplasm
or nucleus, inhibited by IκBα in the cytoplasm, active in the nucleus, or bound
to one of the nuclear transporters. Similarly, IκBα can be free in the cytoplasm
or nucleus, inhibiting NF-κB in the cytoplasm, or bound to a nuclear transporter
(Baeuerle and Baltimore, 1988a; Karin and Ben-Neriah, 2000).

Figure 5.12: NF-κB biological state transition flowchart diagram for the platform
model. It can be seen that NF-κB in the cytoplasm can be either free or inhibited,
and that free cytoplasmic NF-κB can bind to the importing receptor for translocation
to the nucleus. Similarly, NF-κB in the nucleus can be free, inhibited, or activated
(transcribing). This time however, both free and inhibited NF-κB can bind to the
exporting receptor for translocation into the cytoplasm.
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5.4 Assumptions and Constraints

Along with the intracellular relationships and individual component dynamics as
defined in the previous UML diagrams, there are also a number of assumptions
and constraints, which underpin the platform model. These assumptions predom-
inantly relate to the abstractions required when moving from the domain model
to the platform model, but also a number of technical workarounds to make our
model computationally tractable (Neves and Iyengar, 2002). The assumptions
and constraints specific to our platform model are listed below:

1. We are modelling the NF-κB intracellular signalling pathway and not the
actual innate immune response. We do not therefore need to cater for the
actual cell being dormant or active as a high-level entity itself, because we
are developing a stochastic model at the level of the individual cell, and
not a multi-scale model where the status of individual cells is aggregated to
form the basis of an organism-level response. Refers back to Domain Model
figures 4.4, 4.5, 4.9, and 4.17.

2. NF-κB is modelled as a dimer (RelA and p50), as the functionality related
to the individual monomers or alternative dimers between other rel family
members, is not the focus of our research. Refers back to Domain Model
figure 4.4.

3. IκBα is the only isoform of IκB that is considered in the model. Although
there is natural turnover of molecules within resting cells (i.e. degradation
and regeneration), this is assumed to be at equilibrium, and therefore no
degradation of IκBα will occur in control (unstimulated) conditions within
our computational model. This is in line with von Bertalanffy (1969) who
advises that although chemical reactions are continually going on within the
system, they are regulated by the law of mass action, so that the formation
and disappearance is in balance. Refers back to Domain Model figures 4.5
and 4.17.

4. Only IκBα that has undergone IKK-mediated dissociation from NF-κB can
be degraded. Although there is a lag-time between dissociation and degra-
dation of IκBα due to phosphorylation and polyubiquitination, for the pur-
poses of our computational model we will remove the IκBα agent from
the system immediately, following the IKK-mediated dissociation. Further-
more, due to our focus on network dynamics up to and including NF-κB
only, we do not model the synthesis (transcription and translation) of new
IκBα. Refers back to Domain Model figures 4.5 and 4.7.

5. Only a single type of cell surface receptor is modelled (IL-1R). Dimerisation
of the individual IL-1R agents, along with the binding of co-receptor and
adaptor proteins is abstracted away, as we merge these processes into the
single activity of cell membrane receptor activation. Refers back to Domain
Model figures 4.4 and 4.10.

6. There are no agents for extracellular signals. We propose to use a con-
centration parameter that increases each time-step from the beginning of
a simulation. The IL-1R agents become active once a specific threshold
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concentration is reached. We therefore treat the extracellular stimuli as a
whole chemical entity, where the temporal rise in its concentration effec-
tively works as a switch, with a time lag before switching. Refers back to
Domain Model figure 4.10.

7. In vivo, molecules will have orientation due to shape and polarity, however
as per Andrews and Bray (2004), we approximate to a sphere in the compu-
tational model by using a point in 3D space that has a spherical interaction
zone. This point uses cartesian (X,Y,Z) coordinates, which represent the
centre of mass of the agent.

8. Constant volume is assumed for the cell environment. Most systems that
we identify in systems biology correspond to some biological entity. Such
entities may be an organelle, like the nucleus or the mitochondria, or it
may be the whole cell. Cells and cellular compartments typically have
fluctuations in their volume, however this is mathematically difficult to
model (Palsson, 2011). Furthermore, as the focus of our research is the
activation dynamics of NF-κB and the degradation dynamics of IκBα within
the signalling pathway, there is no need to incur this level of computational
overhead in our simulations.

9. The finer architecture of the cell, over and above the cell membrane, nuclear
membrane, cytoplasm and nucleus is not considered. Cells are highly struc-
tured, however rapidly diffusing compounds such as metabolites and ions
will distribute quickly throughout the compartment and one can justifiably
consider the concentration to be relatively uniform once a steady-state has
been found. Refers back to Domain Model figure 4.2.

10. The direction of movement of molecules within a cell may be affected by
a number of factors, including chemical concentration gradients and sub-
cellular structure. However, as our focus is on the dynamics of NF-κB
and IκBα, we have decided to abstract away the detailed mechanisms, and
instead approximate movement within the cell to 3D Brownian motion.
Furthermore, the size of molecules is assumed to be sufficiently small that
collisions between them can be neglected for the purposes of movement.

11. Cell surface receptors and nuclear membrane transporters also move, how-
ever these movements are restricted to the corresponding membrane. We
approximate their movement within our computational model through ran-
dom movements along an orbital plane (i.e. along the surface of a sphere).

12. The intermediate signalling components between the cell membrane recep-
tor and the IKK molecule will be abstracted away. As such, IKK agents
may be considered intermediate components, which link active IL-1 recep-
tors to the NF-κB signalling module. Within biology, the signal becomes
amplified as it is propagated, with each component in the pathway having
the ability to interact with more than one downstream component. As such,
the IKK enzyme will become activated once a given concentration thresh-
old of upstream components has been reached. As per IL-1R activation, we
also utilise a countdown timer to approximate the lag-time associated with

142



5.4. Assumptions and Constraints

reaching the concentration threshold of upstream components. Refers back
to Domain Model figure 4.11.

13. Binding occurs through agents entering each others interaction boundary
(calculated as a sphere around the cartesian co-ordinates of the agent),
generation of a probability (0.0 to 1.0) using a pseudo-random number
generator, and comparison against a binding probability parameter that has
been assigned to the agent. Binding will occur if the generated probability
falls within the probability range of binding for the agents in question.

14. Both the binding of NF-κB and IκBα to form the inhibited complex, and
the basal dissociation (without IKK mediation) back to free components
can occur in the presence or absence of external stimuli. The dynamics of
basal dissociation will be gained through calibration of the computational
model against control observations from Carlotti et al. (2000). Refers back
to Domain Model figures 4.12, 4.13 and 4.17.

15. All NF-κB and IκBα agents are located in the cytoplasm at the start of
a control simulation. Following calibration of parameter values, movement
(via 3D Brownian motion) and stochastic binding will result in the simula-
tion reaching the required ratios of free NF-κB, free IκBα, and NF-κB-IκBα
complex across the cytoplasmic and nuclear compartments. The XML out-
put file for this iteration will be used as the starting parameters file for
subsequent IL-1 stimulated simulations.

16. NF-κB and IκBα agents are able to translocate across the nuclear mem-
brane. The dynamics of translocation during control conditions will be cal-
ibrated against wet-lab data. Conversely, the NF-κB-IκBα complex does
not translocate into the nucleus, but instead only into the cytoplasm follow-
ing inhibition of NF-κB within the nucleus. Refers back to Domain Model
figures 4.4 and 4.9.

17. Constant temperature is assumed, as larger organisms have the capability to
control their temperatures. As rate constants are normally a strong function
of temperature, we have chosen to treat cells as isothermal systems, to
allow a simplification whereby kinetic properties (system dynamics) emerge
through agent interactions.

18. Osmotic balance is ignored. Molecules possess various physico-chemical
attributes such as osmotic pressure and electrical charge, which impact the
dynamic states of networks. For instance, in cells that do not have rigid
cell walls (i.e. non-plant cells), the osmotic pressure has to be balanced
inside and outside the cell, so that it does not split/burst. As our focus
is specific to NF-κB activation and IκBα degradation dynamics within the
signalling pathway, we believe it is suitable to abstract away details relating
to osmotic balance.

19. Electroneutrality is assumed. Molecules tend to be charged positively or
negatively. As our focus is restricted to the translocation of NF-κB and
IκBα agents between the cytoplasmic and nuclear compartments, we do not
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need to model the detailed physico-chemical properties of agents, and there-
fore assume the system remains in electroneutrality when agents translocate
across the nuclear membrane.

20. System-wide simulation parameters that give rise to the emergent behaviour
of the signalling pathway will be restricted to: speed of agents, basal disso-
ciation probability of NF-κB-IκBα complex, binding probability of agents,
rebind delay of nuclear transporters following translocation of NF-κB or
IκBα, rebind delay of IκBα following basal dissociation, rebind delay of
IKK following dissociation of NF-κB and IκBα from the inhibited complex.
These will need to be calibrated as part of the development of the compu-
tational model in order to approximate qualitatively to biological system
dynamics from Carlotti et al. (1999, 2000) and Yang et al. (2003).

5.5 The Cell Environment

The cell environment, within which the simulation will be situated has been
abstracted to be two concentric spheres, with the spherical nuclear compartment
being situated within a larger spherical cell. Both compartments are bounded
by the notion of membranes, being the nuclear membrane and cell membrane
respectively. The membranes not only represent physical barriers to the respective
compartments, but are also where the relevant receptors, e.g. nuclear receptors
(importing and exporting) and IL-1 cell surface receptors are located.

As a physical instantiation of the actual membrane in the form of an agent, is
not possible within FLAME, we have instead developed within our computational
model the notion of the relevant membrane barriers through the use of cartesian
coordinates to define the surface of the spherical membranes in 3D space. A
number of rules have then been developed for the various signalling components
to ensure that their movements are realistic with biology, for example agents
within the cytoplasm are not able to move outside of the cell (see section 5.6), or
membrane-bound agents are not able to move away from the membrane surface
(see section 5.7).

The volume of a sphere has been used to extrapolate the relevant radii for these
two compartments so that the relative ratio of Cell:Nuclear volume is consistent
with the domain model (i.e. Cell:Nucleus ∼20:1 for a fibroblast cell). As the
volume of a sphere is defined by the equation 4

3
πr3, and we have arbitrarily defined

our cell radius as 10,000 points in simulation space, the approximate radii of the
nucleus to maintain the 20:1 volume ratio, will be 3,750.

Along with the assumptions and constraints listed above (see section 5.4), there
are also a number of numerical requirements for the platform model. In partic-
ular, it would be too computationally expensive to model biologically realistic
numbers of agents (e.g. 60,000 RelA molecules as per the domain model), there-
fore we are forced to proportionately scale down the number of agents in our
simulations. Furthermore, the stochasticity inherent to biological systems dic-
tates that we do not calibrate the model to an absolute value, such as a median
average, but instead calibrate within a defined range of values around the median.
The mindmap (see figure 5.13) documents the relevant numerical requirements of
the platform model regarding the size of the cellular and nuclear compartments
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and the number of NF-κB and IκBα agents in their associated states in both
control and IL-1 stimulated conditions. An arbitrary provision has been made
for the number of IL-1R and IKK agents, as the emergent dynamical behaviour
of the system will be calibrated using these numbers.
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5.6 Movement of Agents within the Cell

As defined above, the cell environment is abstracted to consist of just the nucleus
within the cell (two concentric spheres), and therefore does not contain any of
the additional internal organelles or cytoskeleton inherent to a biological cell. We
are therefore also able to abstract away the movement of agents being affected by
diffusion gradients or any affects by organelle structures, so that the movement
of agents may approximate to Brownian motion (random movement) in 3D space
(Einstein, 1905). As such, agents that are located within either the cytoplasm or
nucleus can move randomly in their respective 3D compartment, however should
they inadvertently move outside of the given compartment within an iteration,
functionality is required to mirror their location back into the relevant compart-
ment. For example, if an agent is within the cytoplasm, but moves outside the
cell membrane boundary, we will need to mirror the coordinates back into the
cytoplasm, and similarly, we will mirror an agent back into the cytoplasm if it
moves into the nucleus, or back into the nucleus if it moves into the cytoplasm
(figure 5.14).

Figure 5.14: Mirroring functionality following the random 3D movement of an agent
outside of its associated compartment (cytoplasm or nucleus). For example, agent X1
is an NF-κB molecule located in the cytoplasm that through random 3D movement at
a given time-step has new coordinates outside of the cell (position A). We therefore
need to mirror these new coordinates back inside the cytoplasm at the same angle and
distance that it is outside of the cell (position A’). Similar mirroring will be required for
agents at positions B and C, where they have moved from the nucleus to the cytoplasm,
and cytoplasm to nucleus respectively.
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5.7 3D Orbital Movement of Membrane Receptors

In a similar way to the NF-κB, IκBα and IKK agents, the cell membrane receptor
and nuclear transporter agents move randomly within simulations, however this
time they move randomly across a 3D orbital plane (sphere). Spherical coordi-
nates determine the position in 3D space based on the distance ρ (rho) from the
origin (i.e. radius of cell for cell membrane receptor positions) and two angles
θ (theta) and φ (phi). Figure 5.15 depicts these relationships in 3D cartesian
coordinate (X,Y,Z) space. The distance ρ (represented by the red line) is the
distance from point P to the origin. If the point Q is the projection of point P
to the X-Y plane (represented by the blue line), then θ is the angle between the
positive X-axis and the line segment from the origin to point Q (represented by
the green line). Lastly, φ is the angle between the positive Z-axis and the line
segment (red line) from the origin to point P (Nykamp, 2011).

Figure 5.15: Definition of 3D spherical coordinates ρ, θ, and φ for a point P, which
provides the underlying mathematical basis for 3D orbital movement of membrane
receptors within our computational model. Used with permission of D Q Nykamp
under a Creative Commons License (Nykamp, 2011).

Figure 5.16: Diagrammatic definition of the process to transform spherical coordi-
nates ρ, θ, and φ for a point P, to their respective cartesian coordinates X,Y,Z. Used
with permission of D Q Nykamp under a Creative Commons License (Nykamp, 2011).
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The relationship between the cartesian coordinates (X,Y,Z) of point P and
its spherical coordinates (ρ,θ,φ) on a 3D orbital plane can be calculated using
trigonomtery. Figure 5.16a highlights the relationship between the spherical co-
ordinates and the cartesian coordinates. The red right-angled triangle at the top
of part A is defined by the vertices at the origin, the point P, and its projection
onto the Z-axis. Due to the hypotenuse having length ρ, and φ is the angle be-
tween the hypotenuse and the length of the side along the Z-axis, the Z-coordinate
of P, representing the height of the right-angled triangle is Z = ρcosφ. Similarly,
the length of the third side of the right-angled triangle is the distance from P to
the Z-axis, which is ρsinφ.

The cyan right-angled triangle in the 3D coordinate system of figure 5.16a
shows that the distance of point Q from the origin is the same as the distance
for point P to the Z-axis. This is further emphasised in figure 5.16b, which de-
fines the right-angled triangle in a 2D XY-plane, whose vertices are the origin
the point Q, and its projection onto the X-axis. Here, the distance of point Q to
the origin, which is the length of the hypotenuse for the right-angled triangle is
labelled r. As θ is the angle that the hypotenuse makes with the X-axis, the other
two sides are represented by the distances along the X-axis and Y-axis, which are
the same as the X- and Y- components of the point P (from figure 5.16a). These
distances are defined by X = rcosθ and Y = rsinθ. As the distance from point
P to the Z-axis and point Q to the origin (distance r) are the same distances,
we can also state that r = ρsinφ. As such, we can substitute the definitions for
r, and rewrite the distances along the X-axis and Y-axis as X = ρsinφcosθ and
Y = ρsinφsinθ. Therefore, in summary, the formulae for cartesian coordinates in
terms of spherical coordinates are:

X = ρsinφcosθ
Y = ρsinφsinθ
Z = ρcosφ

5.8 Reversible Inhibition of NF-κB

In biology, when NF-κB and IκBα interact to form an inhibited complex, the
individual molecules are conserved, i.e. the two NF-κB molecules (dimer) and the
IκBα molecule remain within the complex. It would be ideal to use this approach
within the computational model, however this would incur significant overheads
due to the X-Machine nature of how FLAME functions. As such, if we were to
try and mirror the biology, we would be required to link the 3D coordinates of the
NF-κB dimer to the 3D coordinates of the IκBα agent. Following movement of
the inhibited complex within the simulation, we would then be required to have
a step that takes the new 3D coordinates of one agent and attach these to the
remaining agent, to ensure that both agents within the inhibited complex (NF-
κB dimer and IκBα) occupy the same point in cartesian space. As this approach
would incur considerable computational overhead, we decided to simplify the
technical aspects of the computational model by using the NF-κB dimer as the
driving agent, so that upon binding with IκBα, its biological state is updated to
inhibited and the IκBα agent is immediately removed from the simulation. Thus,
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movement of the inhibited complex now solely relies on a single NF-κB agent,
and removes the need for computationally expensive mapping of 3D coordinates
between NF-κB and IκBα agents.

Due to the nature of biological reactions being reversible, we have had to build
in functionality for the inhibited NF-κB-IκBα complex to spontaneously disso-
ciate back to its constituent components, i.e. NF-κB + IκBα 
 NF-κB-IκBα.
This is straightforward for the NF-κB agent as it just requires an update to its
biological state attribute; the IκBα agent however is required to be newly gener-
ated. We make the assumption here that the newly generated IκBα will initially
take the same 3D coordinates as the respective NF-κB agent that it dissociated
from. This does pose a small issue however, in that the individual NF-κB and
IκBα agents are immediately within each others interaction zone following disso-
ciation, so that they instantaneously bind back to the inhibited complex at the
next simulation time-step. This is clearly unacceptable, so a rebind delay counter
is linked to the newly generated IκBα to enable it to move out of the interaction
zone of the corresponding NF-κB agent (Andrews and Bray, 2004).

Movement of molecules within the simulation is approximated to 3D Brownian
motion. At each time-step within the simulation, random movement along the
3 axes within cartesian space is calculated through taking the distance to be
moved across the X, Y, and Z axes, and then calculating the new 3D coordinate
by adding these to the current location. Molecules are assumed to collide with the
compartment boundary (i.e. cell membrane or nuclear membrane). We assume
elastic collision, so that if the molecules are destined to move outside of their
current compartment, they will be bounced back into the cytoplasm or nucleus.

As discussed previously, the individual agents are located in the simulation as
points in space. In order to simulate interactions between agents, the concept of
an interaction zone is used. Interactions between agents are possible if they move
within each others interaction zone and are of complementary type (e.g. NF-κB
and IκBα agents, but not two NF-κB agents). If more than one complementary
agent is within anothers interaction zone, then the model will need a method to
choose the most suitable agent to bind to. One approach would be to randomly
choose an agent out of a set of complementary agents, and with a large number
of agents this would be of little consequence, however as the initial models are
expected to use in the region of 2,000 - 3,000 total agents, we need a more
physically realistic decision process.

A spherical interaction volume is an approximation to the actual region inside
which another agent must be to initiate binding. In biology, the orientation of
molecules due to shape and polarity is vital for interaction, however we have
deemed knowledge of the orientation of molecules to be out of scope for the pur-
poses of our model, as it does not form the basis for any of our research questions,
and can therefore be abstracted away. It could be argued that as attraction of
molecules in biology will not be the same in all directions, we could utilise a
randomness in the decision of interaction to account for the mutual orientation of
agents, as well as how close they may have been during the simulation time-step.
We have instead chosen to capture this stochastic nature through enforcing the
choice of binding agent to be the nearest neighbour, through simple geometry
calculations on all complementary agents within the interaction boundary, and
the use of a probabilistic binding parameter to convey the likelihood of actual
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binding. Additionally, the size of molecules is assumed to be sufficiently small
that collisions between them can be neglected for the purposes of movement.
This allows us to calibrate simulation dynamics to the wet-lab data of Carlotti
et al. (2000, 1999) and Yang et al. (2003) based on interactions at the level of the
agent, and negate the need to enforce complex physical rules for binding at the
level of individual amino acids within the agent.

5.9 Instrumentation

Development of an agent-based computational model is a major necessary step,
however on its own, it will not allow us to perform in silico experimentation.
In order to run simulations and analyse the resultant data, we also require de-
velopment of a number of peripheral computational tools (termed instruments).
For this project, we require the following instrumentation tools to be developed:
Python2 scripts to allow the generation of XML starting parameters files for
running simulations in FLAME; Ruby3, MS DOS batch, and Unix shell scripts
to allow the submission of simulation runs to computing resources; Python and
Matlab4 scripts to transform and process output XML files to CSV files; Matlab
and R5 scripts to analyse the data and automatically generate various graphs;
a visualisation front-end to provide an animated view of system dynamics over
time; and Python and Matlab scripts to analyse the output data for statistical
significance using the Kolmogorov-Smirnov test (Massey, 1951), and effect magni-
tude using the A-Test (Mann and Whitney, 1947; Vargha and Delaney, 2000) (see
Appendix B for supporting material on these two statistical techniques). These
instrumentation tools along with the actual agent-based model are represented
by the UML Package diagram (see figure 5.17).

5.10 Summary

As per the domain model, class diagrams were used in our platform model to
represent the containment, inheritance and association characteristics of agents.
These UML diagrams are now much more useful (than when used in the domain
model) as they are able to convey technical specifications for the computational
model. The developed class diagrams are intentionally not fully complete (with
respect to the UML standard) as they omit a number of key details, such as
multiplicity (i.e. how many of each agent will be used within simulations), con-
straints, and dependencies, but this is to ensure the readability of the diagrams,
with the additional information being conveyed elsewhere within the platform
model. Regarding the containment of agents, the cell membrane, nuclear mem-
brane, cytoplasm and nucleus, effectively operate as the simulation environment
as they provide the necessary structure, within which the NF-κB, IκBα and IKK
agents interact and yield the emergent behaviour of the signalling pathway.

The order of interactions within the system has again been documented through

2www.python.org
3www.ruby-lang.org/en/
4www.mathworks.co.uk/products/matlab
5www.r-project.org/
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Figure 5.17: UML package diagram for the platform model, representing the four
agent definitions within the agent-based model, along with the associated instrumen-
tation tools for generating parameter files, running simulations, transforming and
analysing the output data, and visualising the simulation.

UML sequence, communication and activity diagrams. State machine diagrams
were also used to express the detailed biological state changes of individual sys-
tem components, however as we will be using the FLAME simulation framework
to develop the computational model, these were complemented with X-Machine
diagrams to express the detailed internal state changes of individual system com-
ponents. Development of these diagrams has raised a number of key questions
around the temporal dynamics of the system, in particular the lag times be-
tween cell membrane receptor activation and dissociation of the NF-κB-IκBα
complex, the degradation of IκBα, and the subsequent translocation of NF-κB
to the nucleus. These will be resolved through the calibration exercise, once the
compuational model has been developed.

As found when developing the domain model, we believe that the activity
diagram with swim-lanes has been the most useful notation for conveying the
technical specifications of the system regarding the consequences of interactions
between components, and that state machine diagrams are the most useful no-
tation for defining the technical specification of individual system components.
Unlike the domain model, the platform model also includes implementation spe-
cific details and as per Andrews et al. (2008) we have found it useful to document
the various assumptions and constraints (see section 5.4) regarding the technical
scope of the computational model. These bullet points, along with the UML
diagrams (in section 5.2) and mindmap (in section 5.5) define the most recent
platform model for iteration 1. However, as the basis of the CoSMoS process is
an iterative approach to design and development, future iterations that augment
the functionality within the computational model will require the platform model
to be updated.
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One of the key strengths of the CoSMoS process is the advocation of separat-
ing the abstracted view of biology (documented within the domain model) from
the technical specification of the computational model (documented within the
platform model). This separation ensures the abstracted view of biology and the
technical specifications of the system remain discrete models, and thus aims to
minimise confusion during the development of the computational model around
what aspects of the programming code relate to biology requirements, and what
aspects are necessary as technical workarounds due to constraints of the spe-
cific programming frameworks being used (e.g. communicating X-Machines and
FLAME). As such, we believe the process of platform modelling to be an integral
part of the development lifecycle for computational models of biological systems,
and believe that the platform model presented in this chapter will provide an
unambiguous specification for the simulation platform which is developed and
calibrated in the next chapter.
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6 Development and Calibration of
the Simulation Platform

The third product of a CoSMoS project, is the simulation platform, which “en-
codes the platform model into a software and hardware platform upon which
simulations can be performed”. Whereas the platform model is the implementa-
tion specific abstraction of the domain model, which in this case was developed
using UML and other diagrammatic and statistical approaches, the simulation
platform is the instantiation of this in actual code. The completed simulation
platform will encode the default settings for the architecture and parameters, to
realise the control (unstimulated) and IL-1 stimulated dynamics of the IL-1 stim-
ulated NF-κB signalling pathway, as abstracted within the platform model for
iteration 1. This chapter will develop a computational model (research objective
2) that is calibrated against biological data (research objective 3) and provides
functionality to facilitate in silico experimentation around the interactions of
various signalling pathway components, and how these give rise to the emergent
behaviour of the system (research objective 4).

6.1 Development of the Simulation Platform

The agent-based computational model was developed using the FLAME simula-
tion framework, according to the technical specification defined in the platform
model (see chapter 5). The FLAME simulation framework has been developed
in line with the agent-based modelling paradigm, by utilising the concept of
X-Machines to represent logical entities (the agents) within the programme. Fur-
thermore, through the use of communication streams between these X-Machines,
they are able to maintain their own individual states. As discussed in section
2.6.3, FLAME agents are defined within an XML template, which specifies the
agent attributes and internal (X-Machine) states, and requires an additional set
of C files, where the rule-based functionality associated with agent interactions
is defined. Following model specification within these templates, the FLAME
modelling framework parses the XML and C code to generate executable simu-
lation code (see figure 2.4). The FLAME simulation framework also provides a
simulation engine that manages the execution of simulations, and the interactions
between the X-Machine agents (through a centralised message board). Time is
discretized into time-steps, and within every time-step the individual X-Machines
iterate through their internal states (as per figure 5.9), which may culminate in
interactions with other X-Machines, and updates to their biological states.

Two main technical issues were encountered during the development of the
computational model, which were due to the background design decisions taken
during the development of the FLAME simulation framework (Coakley, 2007) and
the associated mechanisms for processing the internal state transitions of the X-
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Machines. The first issue related to the efficient handling of basal dissociation of
the NF-κB-IκBα inhibited complex back to free NF-κB agents and IκBα agents.
The second issue related to the use of a pseudo-random number generator, and
the need to set an associated seed value at the simulation level. These two issues
will be discussed in turn, below.

Basal Dissociation Issue

An agile approach to development (Janzen and Saiedian, 2005; Shore and War-
den, 2008) was used to increase the functionality of the computational model in
small incremental steps. Although minor issues relating to the normal coding
lifecycle were encountered (and quickly resolved) along the way, a major issue
was encountered when functionality was added for basal dissociation of the NF-
κB-IκBα inhibited complex. For computational efficiency reasons, upon binding
of IκBα with NF-κB to form the inhibited complex, instead of the IκBα agent
having its 3D cartesian (X, Y, Z) coordinates set at each time-step to mirror
that of the the relevant NF-κB agent, we instead chose to update the status of
the NF-κB agent to be that of the inhibited (bound) complex, and removed the
IκBα agent from the system. This results in a reduction in the total number of
individual agents within the system, but as the new status of the NF-κB agent
models that of the inhibited complex, it can be argued that the total number
of NF-κB and IκBα molecules within the system from a biological perspective
remains consistent, and therefore respects the principle of the conservation of
mass (Beard et al., 2004). Functionality to provide a small degree of basal dis-
sociation of the complex following its formation, required the updating of the
NF-κB agent’s state from inhibited to free, via a straightforward update to the
X-Machines internal memory, but it was necessary to introduce new IκBα agents
back to the simulation to model the release of inhibitor back in to the system.

The simplest approach to provide this functionality would be to use a global
counter, initially set to the highest agent ID of the set of IκBα agents at the start
of a simulation. Upon inhibition of NF-κB by a free IκBα agent, the NF-κB agent
state is updated to reflect that it is now inhibited and the corresponding IκBα
agent is removed from the system. Upon basal dissociation, the NF-κB agent
would return to a free state, and a new IκBα agent would be added back in to the
simulation, with an agent ID equivalent to the global counter value incremented
by one (for this new agent). Unfortunately, as FLAME was developed to run
across multiple clusters using parallel processing functionality, the concept of
a global mutable parameter does not exist, as this would make the running of
simulations extremely inefficient due to the issue of concurrency locking1.

We were therefore unable to use a global counter for generating the ID of the
new agents, and therefore tried to generate the ID using a pseudo-random num-
ber generator, which generated numbers above an arbitrary value of 5,000,000 to
ensure we did not overwrite existing agents2. Unfortunately, due to the number of

1Individual nodes may be dependent on the current value of a global parameter, which may be
being processed by another node. This would require nodes to wait until they ascertained the
global parameter was not being processed, thus incurring a significant overhead regarding the
wallclock time of simulation time-steps, and offsetting the benefits of parallel processing.

2FLAME requires that each agent within a specific agent type (e.g. IκBα) possesses a unique
agent ID. If a new agent is created with the ID of an existing agent, the original agent becomes
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IκBα agents within the simulation, and the number of iterations required to reach
steady-state-like dynamics, the calibration exercise for basal dissociation yielded
a large number of basal dissociation reactions. These basal dissociation reactions,
in turn generated a large set of new IκBα agents. As discussed above, the IDs
of these new agents were generated using a pseudo-random number generator,
however due to the large number of basal dissociation reactions per simulation
time-step, there was a correspondingly large set of random numbers generated,
which resulted in the generation of duplicate IDs. This had the effect of overwrit-
ing a number of the newly generated IκBα agents, therefore reducing the total
number of IκBα agents over time, as they were essentially removed from the sim-
ulation. We therefore encountered an issue regarding the conservation of mass,
as the dynamics of the computational model resulted in a reduction in the total
amount of IκBα under control (non-stimulated) conditions (see figure 6.1). This
issue was finally resolved by adding a local attribute to the NF-κB definition,
which would store the relevant ID of the IκBα agent that it became inhibited
by. If basal dissociation was to occur under this scenario, the stored ID could be
retrieved and assigned to the newly generated IκBα agent.

Figure 6.1: IκBα Conservation of Mass Issue. Due to the FLAME simulation frame-
work being developed for a parallel processing architecture where simulations are run
over multiple nodes, we were unable to use a global mutable parameter and therefore
had to find a workaround for generating new agent ID values. The initial workaround,
which used a pseudo-random number generator, resulted in duplicate IDs being gener-
ated, and the overwriting of newly created agents (their removal from the simulation).

overwritten, and thus removed from the system.
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Pseudo-Random Number Generation Issue

The use of a Pseudo-Random Number Generator (PRNG) is required to build in
probabilistic behaviour, such as agent interactions, to our computational model.
Furthermore, in order to ensure our computational model is not overtuned to the
data during the calibration exercise, we will run multiple replicate simulations
that utilise different PRNG seed values, in order to generate the stochasticity
over multiple cells (as per figures 4.18 and 4.19). The theory behind setting a
seed for a pseudo-random number generator (PRNG) is that you set once, and
use many times (Barry, 2011; van Niel and Laffan, 2011). Unfortunately, FLAME
does not allow you to do this very easily, as the only way to set the PRNG seed is
within the definition of an agent (the C functions file). As discussed above, due
to the parallel nature of FLAME, there is no opportunity to set a global constant
from within a simulation run, as it would be inefficient for this to propagate across
the multiple nodes within the computer cluster/grid. As such, not only can you
not update a global variable, such as total counts, but you are unable to set the
PRNG seed at the global level. You therefore encounter the issue of either not
being able to set your own PRNG seed, and thus relying on the seeds generated
using the system clock, or to develop a workaround where the PRNG seed is set
within an individual agent’s definition (see figure 6.2).

Figure 6.2: The levels at which the pseudo-random number generator seed value can
be set within FLAME. Although we require to set the seed value once per iteration, but
use many times for the generation of pseudo-random numbers, FLAME unfortunately
does not allow the concept of a global mutable parameter. As such, FLAME requires
all functionality to be written at the level of agents, be that agent-types, i.e. function
called once per agent-type per iteration, or indivdual agents, i.e. function called once
for each agent and for each iteration.

Unfortunately, by setting the seed at the level of an agent function, you en-
counter the issue of resetting the seed each iteration, and thus do not gain any
real stochasticity. This is because the process of setting the seed value generates
a deterministic (hence the use of the prefix pseudo) list of random numbers to
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be used within probabilistic functions (van Niel and Laffan, 2003). The resetting
of the seed value within an agent function (with the same seed value), therefore
results in the same pseudo-random number list being generated as per the pre-
vious iteration, which is further compounded by the simulation returning to the
beginning of the list, and not commencing from where you got up to previously.
For example, when setting the seed value at the level of an individual agent for
a simulation that contains 1,000 NF-κB and IκBα agents over 25,000 iterations,
you effectively reset the seed value 25,000,000 times. Similarly, when setting the
seed value at the level of an agent type, you effectively reset the seed value 50,000,
which although orders of magnitude smaller, still affects the ability of the PRNG
to incorporate stochasticity into the simulation.

One approach to gain stochasticity between simulation runs is to run simula-
tions in Production mode within FLAME, which uses the system clock to generate
the seed value. This is not ideal however, as we will not be able to exactly re-
produce individual simulation runs (for example, when debugging during model
development), as the system clock is perpetually changing with the progression
of time. The only workaround that was found to resolve this issue was to create
a dummy agent as part of our system design, which sets the PRNG seed value
in the first iteration of an individual simulation. This functionality was achieved
by utilising an agent-level counter (with respect to the iteration number), and
logic to set the PRNG seed value when the counter equals zero, but does nothing
when the counter is equal to 1 or more. Furthermore, to keep the simulator tidy
of computational artefacts, the agent is also removed from the simulation once
the counter reaches a pre-specified number (see figure 6.3).

Figure 6.3: Updated UML class association diagram, which represents the addition
of the dummy agent as a separate class (in red), which is not associated to any other
classes. This dummy agent has the sole purpose of setting the PRNG seed value in the
first iteration of a simulation, and then disappears from the simulation.
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6.2 Calibration of Simulation Platform for Control
Dynamics

Before in silico experimentation can begin, the various parameter values, such
as rate constants (e.g. speed of agents), concentrations (i.e. number of agents in
cytoplasm and nucleus), and probabilities of particular events (e.g. binding, dis-
sociation and translocation) need to be estimated. This step, termed calibration,
is an important activity within simulation platform development, as it aims to
align the simulation dynamics with the emergent behaviour of the underlying
biological system.

6.2.1 Calibration Process

Andrews et al. (2010) advise that in the context of a CoSMoS project, calibration
is achieved through a series of in silico experiments that adjust the parameters
and mechanistic behaviours of the simulation platform, in order to discover the
relationships between the simulator and the behaviours observed in the real-
world domain. The calibration of our agent-based model of the NF-κB signalling
pathway was a collaborative effort between the modeller (Richard Williams) and
the domain expert (Eva Qwarnstrom). The computational model was calibrated
against published literature and the domain expert’s understanding of the IL-1
stimulated NF-κB signalling pathway. The contribution of the domain expert in
this calibration activity has been essential to ensure the simulation platform is
not only grounded in the domain, but also adheres to the scope of the domain
and platform models. As discussed by Kirschner et al. (2007), there are several
approaches for estimating the parameter values of computational models during
the calibration process: 1) direct experimental determination of a parameter; 2)
simultaneous estimation of several parameters at once by fitting experimental
data to a model; and 3) estimation of a parameter based on known values for a
similar system.

The calibration process that we utilised to align the behaviour of our computa-
tional model with that of the underlying biological system used a mixture of the
three approaches discussed by Kirschner for parameter value estimation. Envi-
ronmental parameter values such as cell and nuclear diameter have been approxi-
mated from the literature. A number of parameter values regarding agent interac-
tions were arbitrarily set, such as the interaction radius within which agents need
to enter before they are eligible for probabilistic binding, and the delay applied to
nuclear receptors following translocation of an agent before they may translocate
another agent. Additionally, the parameters that we believe are fundamental to
the emergent behaviour of our computational model were estimated through a
process of varying parameter values during multiple simulation runs, until sim-
ulation dynamics approximated (through qualitative curve-fitting) to those of
the wet-lab data of Carlotti et al. (2000) and Yang et al. (2003). Calibration
through varying parameter values, was therefore iterative, with each parameter
being the focus of investigation, and required consultation between the modeller
and domain expert until a parameter space was found that yielded qualitative
alignment to the underlying biological data on which the computational model
was designed.
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The six key parameter values that are required for generating an approximation
of simulation results to wet-lab biology are:

1. Differential Time - The multiplication factor used within the system to
calculate the distance moved by agents per time-step.

2. Rebind Delay - The time delay introduced to an IκBα agent following its
basal dissociation from an NF-κB agent. This ensures that the agents have
sufficient time to move outside of each others interaction boundary, so that
they do not rebind at the next time-step.

3. Association Rate - The probability of binding following the movement of
an agent into the interaction boundary of a complementary agent.

4. Basal Dissociation Rate - The probability of spontaneous dissociation
of an NF-κB-IκBα complex to form free NF-κB and free IκBα agents.

5. Nuclear Import Rate - The probabilistic translocation of free NF-κB
and free IκBα agents from the cytoplasm in to the nucleus.

6. Nuclear Export Rate - The probabilistic translocation of free NF-κB and
free IκBα agents from the nucleus in to the cytoplasm.

Stepney (2012) advocates the need for a translation step in ascertaining values
required for calibration of computational models. For example, the domain model
may comprise both parameter values and experimental data (di) derived from
wet-lab experimentation, which following scientific analysis yields domain results
data (dr) (see figure 4.17 domain model mindmap). To move to the simulated
world, the domain model data needs to be translated to appropriate simulation
platform values si through the generation of a platform model (see figure 5.13
platform model mindmap). A simulation experiment, given input data si, and
using the simulation parameters, functions and methods (Tds) called within the
computational model during simulation runs, will produce raw simulation results
data sr. Through the use of multiple simulation replicates, this raw simulation
results data is then processed to generate simulation output data (so), which
could comprise of the median averages of the individual sr data. The calibration
exercise is to adjust the simulation parameters and translation functions Tds to
achieve an approximation of domain results data to simulation results data (dr
∼ sr). The relationship between domain and simulation results does not need
to be exact, because a certain degree of variation is required to produce the
stochasticity inherent to biology; it does need to be statistically similar, or show
qualitative agreement however. The approach taken here is qualitative in nature,
as we are essentially curve-fitting the simulation results to that of the wet-lab
data. For example, following calibration to control dynamics, we would need the
NF-κB and IκBα agents apportioned between the cytoplasm and nucleus in their
associated biological states, as shown in the translation table below (table 6.1).
Additionally, as expected for control conditions, all of the IKK agents will all be
located within the cytoplasm in an inactive state; all of the IL-1R receptor agents
will be orbiting the cell membrane in an inactive state; and all of the nuclear
receptors (both import and export) will be orbiting the nuclear membrane.
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Agent Location dr si s̃r sr Range

Free NF-κB
Cytoplasm 9,000 498 90 65 - 125

Nucleus 1,000 1 10 5 - 20

Free IκBα
Cytoplasm 9,900 496 90 65 - 125

Nucleus 1,100 2 10 5 - 20

NF-κB-IκBα
Cytoplasm 45,000 3 360 250 - 450

Nucleus 5,000 0 40 30 - 55

Table 6.1: Calibration translation table as advocated by Stepney (2012). This trans-
lates/maps: 1) the approximate numbers and locations of components from wet-lab
experimentation, which forms the domain results data dr; 2) the initial simulation
platform values (si), which are used to commence simulation runs during the calibra-
tion process; and 3) the desired simulation results data sr (median average and range),
which needs to be attained during the calibration process. Values for dr are extrapo-
lated from Carlotti et al. (2000) and values for sr were calculated as part of platform
modelling.

6.2.2 Differential Time

There is a global constant within the model which relates to the speed of move-
ment of non-membrane bound agents, i.e. IKK, NF-κB and IκBα agents. Figure
6.4 illustrates how the speed at which agents move within a single time-step can
affect the behaviour of the system as a whole. Agents moving at high speeds
may pass through the interaction boundary of reciprocal agents within a given
time-step, and therefore reduce the likelihood of inhibitory and translocation in-
teractions, thus severely affecting the emergent behaviour of the system.

Figure 6.4: Cartoon illustration of the affects that the speed of agent movement within
a given time-step (differential time) may have on the dynamics of the system as a
whole. A shows an abstracted view of normal behaviour in the biological system. B
shows an abstracted view of movement within our computational model, using IκBα
agents at three different speeds. An IκBα agent with single DT may move into the
interaction boundary of a reciprocal NF-κB agent within a given time-step, and if it
does not probabilistically bind, may move outside of the boundary at the next time-step.
Conversely, an IκBα agent with a smaller or higher DT, may not enter the interaction
boundary, or may pass straight through, within a single time-step.

162



6.2. Calibration of Simulation Platform for Control Dynamics

One-at-a-time factorial analysis (Cuthbert, 1973) was performed to understand
how the distance moved per simulation time-step affected the dynamics of the
computational model. The Differential Time (DT) parameter value, which essen-
tially acts as a multiplier for the distance moved at each time-step, was adjusted
to 0.5, 1, 2, 2.5, 4, 5, and 10. It was discovered that DT=2 provides an optimal
balance between the speed of the simulation versus the quality of the simulation
output. With DT=2, we were able to reduce the lag period to reach control-
like dynamics, where the ratio of free and complexed NF-κB and IκBα agents
(located across the cytoplasmic and nuclear compartments) were beginning to
approximate to the sr range (with respect to table 6.1). This can be explained
through reference to the previous cartoon diagram (figure 6.4). A DT <2 means
that agents may not enter the interaction boundary within a given time-step, and
furthermore, may alter direction at the next time-step, thus not having a chance
to probabilistically bind, and therefore requiring longer simulation runs (increased
numbers of time-steps) to generate the required control dynamics. Conversely, a
DT >2 means that agents may pass straight through the interaction boundary of
a reciprocal NF-κB agent in a single time-step, which also reduces the likelihood
of probabilistic binding within the simulation.

6.2.3 Rebind Delay

A rebind delay is required to ensure that the free NF-κB and IκBα agents resulting
from basal dissociation at a given time-step do not immediately rebind at the next
time-step. This is achieved by setting a countdown timer, which acts as a delay to
rebinding, and thus allows the agents to move outside of each others interaction
boundaries.

Two-at-a-time factorial analysis (Saltelli et al., 2009) was performed to find
an appropriate rebind delay through varying the basal dissociation probability
and rebind delay parameter values (see figure 6.5). As expected, it was found
that a rebind delay of zero yielded no difference in simulation dynamics when
varying basal dissociation as every NF-κB-IκBα complex that dissociated, would
probabilistically bind in the next time-step as there was no ability for the agents
to move outside of each others interaction boundary. Interestingly, it was also
discovered that simulation dynamics when using rebind delays of 1 or 2 time-steps
suffered from an issue with the conservation of IκBα agents, with simulation runs
appearing to lose IκBα agents temporarily. Investigations highlighted that the
issue was an artefact of the computational model, which was due to the underlying
mechanism of FLAME when adding new agents to a simulation. It appears a lag
period is introduced by the FLAME simulation framework between functions
being called to generate a new IκBα agent (following basal dissociation), and the
actual incorporation of the new agent in to the simulation - the new IκBα agent
is added to the simulation at the end of the next time-step and not at the end
of the current one in which it was requested. Further analysis shows that this
is an artefact of the system at low rebind delay values however, as when values
>3 are used, the computational model conserves the IκBα agents as expected.
A rebind delay of 3 was therefore chosen as part of the calibration process for
control dynamics.
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Figure 6.5: 3D surface heat map showing the two-at-a-time factorial analysis for basal
dissociation and rebind delay, with specific reference to total IκBα within the system.
A rebind delay of zero does not alter the dynamics of the system, however a rebind
delay of 1 or 2 time-steps appears to be affected by a system artefact introduced by the
underlying mechanisms of the FLAME simulation framework. This results in an issue
with the conservation of mass within the system, through the temporary loss of IκBα
agents. Rebind delay parameter values >3 do not appear to suffer from this system
artefact.

6.2.4 Basal Dissociation versus Association

The basal dissociation and association rates are required to provide functionality
that approximates to the reversible reactions between molecules, i.e. NF-κB +
IκBα 
 NF-κB-IκBα. For example, when an IκBα agent moves within the
interaction boundary of a free NF-κB agent, there is a probability that it will
bind to form the inhibited NF-κB-IκBα complex - the probability that binding
occurs is captured by the association parameter. Similarly, following binding,
there is also a probability, albeit a lot smaller, that the inhibited complex will
dissociate to yield free NF-κB and free IκBα - this probability is captured by the
basal dissociation parameter.

Two-at-a-time factorial analysis was performed, through varying the associa-
tion and basal dissociation parameter values. An initial set of 121 experiments
using 0.1 increments (between 0.0 and 1.0) for both parameters, found that sys-
tem dynamics were incredibly sensitive to changes in basal dissociation. In fact,
these initial experiments showed that although a basal dissociation of 0.0 pro-
vided agents that spanned the desired range (sr range with respect to table 6.1),
from 0.1 onwards there appeared to be no NF-κB-IκBα complexes, as they had
all dissociated to the free NF-κB + IκBα agents.

As per the parameter estimation for the rebind delay parameter, we also en-
countered a conservation of mass issue regarding IκBα agents within the system
when basal dissociation rates were greater than 0.1, as the total number of IκBα
agents were falling below the expected 501 (see figure 6.6). However, this system
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artefact disappeared when basal dissociation parameter values between 0.000001
- 0.0001 range were used, indicating that the FLAME computational model is
more stable at these very low probability ranges of basal dissociation. Further
investigation identified that basal dissociation probabilities between the 0.000001
- 0.00001 range provide variable system dynamics within the required range for
calibration. Basal dissociation parameter values >0.1 generate no NF-κB-IκBα
complexes in the cytoplasm, suggesting that the system is fragile at these higher
levels of basal dissociation.

System dynamics in relation to the association parameter indicate an upward
trend in NF-κB-IκBα complexes within the cytoplasm as the parameter value
increases, and a downward trend in NF-κB-IκBα complexes within the nucleus.
Association parameter values between 0.8 - 1.0 have the highest number of NF-
κB-IκBα complexes in the cytoplasm, and the lowest number in the nucleus,
however these are outside of our desired calibration range (sr range with respect
to table 6.1), which suggest a degree of co-dependency with the import and export
parameters associated with nuclear translocation.

Figure 6.6: 3D surface heat map showing the two-at-a-time factorial analysis for asso-
ciation and basal dissociation, with specific reference to total IκBα within the system.
Basal dissociation rates >0.1 encounter a conservation of mass issue regarding IκBα
agents, which like the similar issue encountered during rebind delay parameter estima-
tion, is again a system artefact caused by the underlying mechanisms of FLAME.

165



Chapter 6. Development and Calibration of the Simulation Platform

6.2.5 Nuclear Import versus Export Rates

Investigations to estimate parameter values for import and export probabilities
(across the nuclear membrane) highlighted that the export parameter is co-
dependent on the import parameter, and is in effect redundant regarding its
effects on system dynamics under control conditions. The import probability
appears to affect dynamics across the full probability range however (0.0 - 1.0).
With low import probabilities, we have correspondingly higher levels of free NF-
κB and free IκBα in the cytoplasm, but NF-κB and IκBα within the nucleus are
within the required calibration range. It was also discovered that at low import
probabilities, the system is very sensitive to dissociation rate, but comparatively
stable to association rate, suggesting that the import parameter is co-dependent
to varying degrees on both the basal dissociation parameter value and the asso-
ciation parameter value.

The export parameter value was therefore arbitrarily set to 0.5 to allow the
maximum scope for movement during any subsequent in silico experimentation
following the calibration exercise for IL-1 stimulated dynamics. Additional analy-
sis was performed on the co-dependencies between the import, basal dissociation
and association parameters. The desired range of agent states and locations (sr
range with respect to table 6.1) were generated by the computational model with
basal dissociation values between 0.0000025 and 0.000005, association values be-
tween 0.6 and 0.75, and an import value between 0.03 and 0.05.

6.2.6 Calibrated Control Dynamics

Following parameter estimation experiments, the following parameter values were
used to generate control dynamics of the NF-κB signalling pathway: DT = 2;
Rebind Delay = 3; Basal Dissociation = 0.0000025; Association = 0.65; Import
= 0.03; and Export = 0.5 (see figure 6.7).

Figure 6.7: Calibrated control dynamics for the NF-κB signalling pathway. The com-
putational model, using the parameters estimated in sections 6.2.2 to 6.2.5 generates
emergent behaviour over a 25,000 iteration simulation that corresponds to the desired
calibration range of agent states and locations (sr range with respect to table 6.1).
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6.3 Uncertainty Analysis

As discussed by Read et al. (2012) and Alden et al. (2013), there are two sources
of uncertainty within computational models of real-world domains that require
analysis before the results of in silico experimentation may be used within a
predictive capacity. The first source, epistemic uncertainty, arises because our
knowledge of the real-world system that we are modelling is incomplete, and
therefore we do not have complete assurance that the parameter values derived
through the literature, the domain experts professional opinion, and the calibra-
tion process, are wholly accurate (Helton, 2008). The second source, aleatory
uncertainty, arises from the inherent stochasticity in systems, be that the com-
putational model itself, or the underlying biological system (Helton, 2008).

6.3.1 Epistemic Uncertainty Analysis

As it is intractable to model every aspect of the real-world domain, our com-
putational models are simplified versions of reality, with no direct one-to-one
translation between the computational model and the real-world domain. The
calibration process therefore compensates for this loss of granularity, to ensure
that simulation dynamics approximate to the dynamics of the real-world do-
main. The relationship between the abstracted computational model and the
biological system (in our case the IL-1 stimulated NF-κB signalling pathway) is
critical for using the results of in silico experimentation in a predictive capacity
to generate novel hypotheses for testing within the wet-lab. As such, epistemic
uncertainty analysis focuses on the lack of knowledge regarding certain parameter
values (Helton, 2008), the abstracted nature of computational models, and the
effects of varying the absolute parameter values that have been defined through
the calibration process (Alden et al., 2013).

Our epistemic uncertainty analysis followed the recent work of Read et al.
(2012), but instead of using a global sensitivity analysis, such as the latin hy-
percube (McKay et al., 1979), we were forced to use3 a mixture of robustness
analysis, through the perturbation of parameter values for a single parameter
(one-at-a-time approach), and local sensitivity analysis for co-dependent param-
eters through a two-at-a-time approach (Saltelli et al., 2009).

Our focus will remain on five of the parameters from the calibration process:
Differential Time, Rebind Delay, Basal Dissociation, Association, and Nuclear
Import. By considering the results of this robustness and sensitivity analysis in
the context of the domain specific knowledge of NF-κB, we are able to qualify
the implications of epistemic uncertainty on in silico experimentation and the
subsequent simulation derived predictions of the underlying biological system.

3Due to the resource intensive nature of FLAME, in particular the extremely large amount
of fast disk space required to store the XML output files generated with each simulation, we
were not able to perform a global sensitivity analysis, which would adjust all of the parameter
values in parallel, so instead utilised local sensitivity analysis approaches. Although we do
not believe that this has detracted from our epistemic uncertainty analysis, the reduction in
storage requirements, had a concomitant increase in experimental design for the sensitivity
analysis simulations, as we could not rely on any preceded tools, but had to manually design
the one-at-a-time and two-at-a-time perturbations to simulation parameter values.
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Differential Time

Differential Time (DT) was perturbed around the calibrated value of 2 time-steps
by performing sensitivity analysis experiments between 0.25 to 10 time-steps at
0.25 increments4. Figure 6.8 shows the results of this sensitivity analysis, with
respect to the total number of NF-κB and IκBα agents in their corresponding
states and locations. The profiles for cytoplasmic NF-κB, NF-κB-IκBα and IκBα
are relatively smooth and show a progressive change with increasing DT. The
profiles of agents within the nucleus are very noisy however, further highlighting
how small changes in absolute numbers of agents in the nucleus are amplifying
noise. This sensitivity analysis also shows that the computational model is very
sensitive to DT, as the cytoplasmic NF-κB and IκBα agent numbers are only
within our calibration range when DT parameter values are between 1.25 and
3.0, implying a fragility for agent movement (as per figure 6.4).

Rebind Delay

The rebind delay parameter was initially perturbed around the calibrated value of
3 using one-at-a-time factorial analysis, by running simulations with rebind delay
values between 0 and 15 time-steps (see figure 6.9). The results of this sensitivity
analysis show the computational model is robust to perturbations of the rebind
delay value with respect to the cytoplasmic agents, but sensitive with respect to
the nuclear agents. We initially suspected that this was another example of the
low absolute numbers of nuclear agents in the calibrated model, however further
investigation suggested a co-dependence on another parameter may result in this
complex non-linear behaviour with respect to agents located within the nucleus.

Through two-at-a-time sensitivity analysis, it was discovered that this co-
dependence was between the rebind delay parameter value and the association
parameter value, as shown in the 3D heatmaps of figure 6.10. All cytoplasmic
agents show significant robustness to rebind delays between 2-5 time-steps and as-
sociation >0.3. However, the agents located within the nucleus display robustness
when the rebind delay and association parameter values are constrained between
specific ranges: NF-κB-IκBα agents within the nucleus are robust with rebind
delay between 3-5 and association between 0.25-0.65; NF-κB agents within the
nucleus are robust with rebind delay between 2-4 and association between 0.35-
0.75; and, IκBα agents within the nucleus are robust with rebind delay between
3-5 and association > 0.55.

4As discussed in section 6.2.2, the DT parameter acts as a multiplier to calculate the distance
moved per time-step, as such it does not need to be an integer value.
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Figure 6.8: Sensitivity analysis of the differential time parameter, and its effects on
the total number of NF-κB and IκBα agents and their respective states and locations
after 25,000 iteration simulation runs. A shows the variation in the number of NF-κB
agents within the cytoplasm. B shows the variation in the number of NF-κB agents
within the nucleus. C shows the variation in the number of NF-κB-IκBα agents within
the cytoplasm. D shows the variation in the number of NF-κB-IκBα agents within the
nucleus. E shows the variation in the number of IκBα agents within the cytoplasm. F
shows the variation in the number of IκBα agents within the nucleus. The dotted red
lines show the calibration range for the agents. It can be seen that the computational
model is relatively robust to DT parameter value changes as a whole, but is very
sensitive for cytoplasmic NF-κB and IκBα, where DT needs to be between 1.25 and 3.
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Figure 6.9: Sensitivity analysis of the rebind delay parameter, and its effects on the
total number of NF-κB and IκBα agents and their respective states and locations after
25,000 iteration simulation runs. A shows the variation in the number of NF-κB agents
within the cytoplasm. B shows the variation in the number of NF-κB agents within
the nucleus. C shows the variation in the number of NF-κB-IκBα agents within the
cytoplasm. D shows the variation in the number of NF-κB-IκBα agents within the
nucleus. E shows the variation in the number of IκBα agents within the cytoplasm. F
shows the variation in the number of IκBα agents within the nucleus. The dotted red
lines show the calibration range for the agents. It can be seen that the computational
model is relatively robust to rebind delay parameter value changes for agents located
within the cytoplasm, but sensitive for agents located within the nucleus.

170



6.3. Uncertainty Analysis

Figure 6.10: Sensitivity analysis of the rebind delay and association parameters, and
the effects of their co-dependence on the total number of NF-κB and IκBα agents and
their respective states and locations after 25,000 iteration simulation runs. A shows the
variation in the number of NF-κB agents within the cytoplasm. B shows the variation
in the number of NF-κB agents within the nucleus. C shows the variation in the number
of NF-κB-IκBα agents within the cytoplasm. D shows the variation in the number of
NF-κB-IκBα agents within the nucleus. E shows the variation in the number of IκBα
agents within the cytoplasm. F shows the variation in the number of IκBα agents
within the nucleus. As per figure 6.9, it can be seen that the computational model
is relatively robust to rebind delay parameter value changes for agents located within
the cytoplasm. In addition however, it can be seen that the computational model is
robust for: NF-κB-IκBα agents located within the nucleus with rebind delay between
3-5 and association between 0.25-0.65; NF-κB agents in the nucleus with rebind delay
between 2-4 and association between 0.35-0.75; and IκBα agents in the nucleus with
rebidn delay between 3-5 and association greater than 0.55.
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Basal Dissociation versus Association

Due to the co-dependence between the basal dissociation and association param-
eters, two-at-a-time perturbations were performed around the calibrated values.
As the calibrated association parameter value was 0.65, we ran sensitivity analysis
using parameter values rising at 0.05 increments across the full probabilistic range.
As the basal dissociation parameter was found to be extremely fragile during the
calibration process, we performed sensitivity analysis within close proximity of
the calibrated value (0.000001-0.000009), and then at orders of magnitude higher
ranges (e.g. 0.00001-0.00009, 0.0001-0.0009, 0.001-0.009, 0.01-0.09, 0.1-1.0). 3D
heatmaps of this sensitivity analysis (figure 6.11) clearly show the fragile nature
of the system with respect to the basal dissociation parameter values.

The 2D heatmaps within figure 6.12 display a subset of data from the basal
dissociation sensitivity analysis. As per previous sensitivity analysis, the compu-
tational model appears to be relatively robust for cytoplasmic agents, with the
NF-κB agents being robust when association >0.50 and dissociation <0.00003;
the NF-κB-IκBα agents being robust when association >0.50 and dissociation
<0.00007; and the IκBα agents being robust when association >0.35 and disso-
ciation <0.00003. The NF-κB-IκBα agents within the nucleus were found to be
robust when association is between 0.3-0.65 and dissociation <0.0001. The NF-
κB and IκBα agents within the nucleus showed very complex dynamics, which
we again believe are due to the small fluctuations in absolute numbers giving
rise to large variances away from the desired calibration range. It can be seen
however that association between 0.4-0.65 and dissociation <0.00001 provides
an extremely small range of parameter space where the computational model
remains within the calibration range.

Nuclear Import

The overwhelming feature of translocation across the nuclear membrane following
analysis through the calibration process, was that the nuclear export parameter
appeared to be redundant under control (non-stimulated) conditions, with the
export dynamics being dependent on the nuclear import parameter value. We
initially suspected an issue with the underlying code, however code walkthroughs
by the developer and various members of the York Computational Immunology
Lab, and debugging tests, indicated that this was not the case. We therefore
believe that this may be an artefact of the computational model under control
conditions, which may be due to the small absolute numbers of agents within the
nucleus with respect to the cytoplasm.

Due to this redundancy, focus was applied to the nuclear import parameter,
through perturbations around the calibrated value using one-at-a-time sensitivity
analysis (figure 6.13). It is clear that the system is very sensitive to changes in the
import parameter value, with the numbers of cytoplasmic agents falling outside
of the calibration range with import parameter values >0.1, and the numbers
of nuclear agents falling outside of the calibration range with import parameter
values >0.05. As such, the computational model is fragile with respect to the
nuclear import parameter, with calibration dynamics only being gained through
a very narrow range of values (0.03-0.05).
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Figure 6.11: Sensitivity analysis of the association and dissociation parameters, and
the effects of their co-depenence on the total number of NF-κB and IκBα agents and
their respective states and locations after 25,000 iteration simulation runs. A shows
the variation in the number of NF-κB agents within the cytoplasm. B shows the
variation in the number of NF-κB agents within the nucleus. C shows the variation
in the number of NF-κB-IκBα agents within the cytoplasm. D shows the variation in
the number of NF-κB-IκBα agents within the nucleus. E shows the variation in the
number of IκBα agents within the cytoplasm. F shows the variation in the number
of IκBα agents within the nucleus. It can be seen that the computational model is
relatively robust to association parameter value changes, but is extremely fragile for
basal dissociation parameter values, with the computational model only staying within
the calibrated range of agents with extremely low basal dissociation parameter values.
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Figure 6.12: Sensitivity analysis of the association and dissociation parameters using
a subset of the dissociation parameter values around the actual calibrated value. A
shows the variation in the number of NF-κB agents within the cytoplasm. B shows the
variation in the number of NF-κB agents within the nucleus. C shows the variation in
the number of NF-κB-IκBα agents within the cytoplasm. D shows the variation in the
number of NF-κB-IκBα agents within the nucleus. E shows the variation in the number
of IκBα agents within the cytoplasm. F shows the variation in the number of IκBα
agents within the nucleus. As per the calibration process, agents within the cytoplasm
were found to be more robust to perturbations than those in the nucleus. It was
discovered that an extremely narrow range of association and dissociation parameter
values provided dynamics within the desired calibration range, comprising association
between 0.5-0.65 and dissociation <0.00001.
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Figure 6.13: Sensitivity analysis of the nuclear import parameter, and its effects on
the total number of NF-κB and IκBα agents and their respective states and locations
after 25,000 iteration simulation runs. A shows the variation in the number of NF-κB
agents within the cytoplasm. B shows the variation in the number of NF-κB agents
within the nucleus. C shows the variation in the number of NF-κB-IκBα agents within
the cytoplasm. D shows the variation in the number of NF-κB-IκBα agents within the
nucleus. E shows the variation in the number of IκBα agents within the cytoplasm. F
shows the variation in the number of IκBα agents within the nucleus. The dotted red
lines show the calibration range for the agents. It can be seen that the computational
model is sensitive to changes in the nuclear import parameter value, with only a small
range (0.03-0.05) providing agent numbers within the desired calibration range.
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6.3.2 Aleatory Uncertainty Analysis

Following the parameter estimation process (section 6.2), which generated a cali-
brated computational model for control (non-stimulated) dynamics, and the epis-
temic uncertainty analysis discussed above, it is essential that we investigate the
noise (aleatory uncertainty) due to the stochastic nature of the computational
model. Such aleatory uncertainty can severely effect our ability to compare exper-
imental results against reference dynamics (e.g. the calibrated control dynamics or
the calibrated IL-1 stimulated dynamics, which will be discussed in section 6.4),
and thus interpret the simulation results with respect to the real-world domain
(Harris et al., 1987). For example, the use of pseudo-random number generators
are widely accepted as essential tools to generate heterogeneity within simulation
results, even though the underlying parameter values of each simulation run are
identical. This being the case, aleatory uncertainty analysis allows us to investi-
gate the uncertainty that is introduced through the use of PRNGs (with different
seed values), and to calculate a minimum number of replicate simulation runs to
generate a stable median average of the simulation results (Read et al., 2012).
The calculation of the minimum number of replicates, and its use within future
in silico experimentation to generate a stable median average, allows us to mit-
igate stochastic effects and thus develop confidence that simulation results are
representative of the condition(s) on which the simulation was run, and not an
artefact of our computational model that is caused by the specific PRNG seed
value.

Our aleatory uncertainty analysis closely followed the recent work of Alden
et al. (2013), but instead of using their Spartan tool-chain, we developed our own
analysis scripts using Matlab. Our analysis involved the running of 300 replicate
simulations with different PRNG seed values to generate stochastic variation
between the simulation runs. The stochastic nature of the computational model is
clear to see (figure 6.14), with variation evident in the numbers of each agent state
and location combination. It can be seen that the variation in free NF-κB, free
IκBα, and NF-κB-IκBα within the cytoplasm is relatively smooth, denoted by
the smooth red median average line. The replicate distributions of agents within
the nucleus appear at first inspection to be less smooth, however we believe that
this may be a direct consequence of the low absolute numbers of agents within the
nucleus at calibrated dynamics. Thus, even small differences in absolute numbers
over the 300 replicate simulation runs, equate to large percentage differences, and
amplify the aleatory uncertainty for agents located within the nucleus.

The aleatory uncertainty was analysed by calculating median average distribu-
tions from subsets (increasing by 10 replicates) of these 300 replicate simulation
runs. Briefly, we calculated median average distributions from 10, 20, 30, 40,
....., 300 replicate simulation run subsets, and utilised the Kolmogorov-Smirnov
(KS) test (Massey, 1951) and the Vargha and Delaney non-parametric A-Test
(Vargha and Delaney, 2000) to investigate the differences between these median
average simulation results (see Appendix B for supporting material on these sta-
tistical tests). The KS-Test is used to understand the statistical significance of
differences between two distributions, and the A-Test is used to understand the
scientific significance (or effect magnitude) of differences between two distribu-
tions. In our analysis, we used the KS-Test and A-Test to interpolate when a
stable median average was gained, to predict the minimum number of replicates
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Figure 6.14: The computational model, using different PRNG seed values with the
parameters estimated in sections 6.2.2 to 6.2.5, shows stochastic behaviour of the cali-
brated control dynamics over 300 replicate simulations. Replicate simulation runs are
shown individually as blue curves, with the corresponding median average shown as a
red curve. A shows the variation in the number of NF-κB agents within the cytoplasm.
B shows the variation in the number of NF-κB agents within the nucleus. C shows
the variation in the number of NF-κB-IκBα agents within the cytoplasm. D shows
the variation in the number of NF-κB-IκBα agents within the nucleus. E shows the
variation in the number of IκBα agents within the cytoplasm. F shows the variation
in the number of IκBα agents within the nucleus. It can be seen that the variation
within the cytoplasm for all agents is smooth. Whereas the variation in the nucleus
appears to be very noisy. We believe that this is due to the low absolute calibrated
values within the nucleus, so that even small variations around this value yield a large
variance, thus acting to amplify the aleatory uncertainty.
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required for in silico experimentation. This was performed by testing the median
average distributions against each other, for example, by comparing the 10- and
20-replicate median average distributions, then the 20- and 30-replicate median
average distributions, and continuing up to the 290- and 300-replicate median
average distributions. Figure 6.15 shows a plot of the resulting p-values from the
KS-Test, which shows that all agent states of interest stabilise at approximately
175 replicates, apart from the IκBα agents located in the nucleus. As before,
we believe that this is due to the small absolute numbers involved, having an
amplifiying effect, which in this case is on the p-value scores, even though the
difference in absolute numbers may be small.

As stated above, the KS-Test provides an indication of statistical significance
of the goodness of fit between two distributions. In our case, results of the KS-
Test suggest that the aleatory uncertainty can be minimised, with a 7.5% level
of significance, by generating a median average distribution from 175 replicate
simulation runs. To provide additional confidence that 175 replicate simulation
runs is the minimum number of replicates to achieve a stable median average dis-
tribution, we also analysed the data from the 300 replicates using the Vargha and
Delaney A-Test. This test is usually performed to understand the scientifically
significant (effect magnitude) difference between two median average distribu-
tions, and therefore normally uses A-Test scores <0.29 and >0.71 (indicating a
large effect magnitude difference) in order to determine significant difference.

Figure 6.15: Graph of the Kolmogorov-Smirnov p-values, which were calculated from
the median average subsets of 300 replicate simulation runs of the calibrated control
dynamics. Median average distributions were generated, which increased by 10 repli-
cates (i.e. 10, 20, 30, ..., 300) and compared using the KS-Test. It can be seen that
all agent states stabilise at approximately 175 replicates, apart from the IκBα agents
located in the nucleus. The dotted black line represents a p-value of 0.925, which we
have used to signify stability.
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We are using the A-Test in the opposite way here however, as we wish to
ascertain the number of replicates required to provide a stable median average
distribution, through the A-Test scores progressing towards 0.50, which signifies
that the two distributions are the same. A cautionary note is required here
however, as previous research (Read et al., 2012; Alden et al., 2013) has advised
that median average distributions can always be forced to converge if enough
replicates are run, therefore we need to choose a replicate number large enough
for medians to stabilise, but small enough to ensure stochasticity continues. We
therefore believe that the minimum number of replicates can be extrapolated
through the use of A-Test scores between 0.47 and 0.53. We believe that this will
minimise the aleatory uncertainty inherent to our computational model, but will
also allow stochasticity, so will reduce the risk of overtuning the computational
model by running large numbers of replicates that force the A-Test score to 0.50.

Figure 6.16 shows the corresponding A-Test score for each of the replicate sub-
sets that were tested (cumulatively increasing subset of replicates, as per the KS-
Test). In a similar manner to the KS-Test, it can be seen that agents within the
cytoplasm stabilise relatively quickly (approximately 30 replicates), with those in
the nucleus requiring more replicates, and continue to suffer from noise through-
out throughout the full range of 300 replicates. For example, the NF-κB-IκBα
complex within the nucleus seems to stabilise at approximately 40 replicates;
the NF-κB agents within the nucleus also begin to stabilise by 110 replicates,
and have stabilised by 150 replicates; with the IκBα agents within the nucleus
showing the highest variability, by beginning to stabilise after approximately 100
replicates, but having an additional two spikes just outside of our stable A-Test
score range of 0.47 to 0.53 at 150 and 250 replicates, respectively. As per our
previous analysis, we again believe that this is due to the amplifying effect of
small differences in absolute numbers at the desired calibrated range for control
dynamics. As such, we believe that the A-Test has confirmed the results of the
previous KS-Test, and conclude that the minimum number of replicates required
to generate a stable median average distribution is 175 replicates.

Figure 6.17 shows the calibrated control dynamics that relate to the median
average generated from the 175 replicate simulation runs. As expected, the curves
closely follow the single simulation run dynamics displayed in figure 6.7, however
closer inspection shows that the curves are considerably smoother. The actual
median average simulation output values (so) are shown in the updated simulation
platform translation table (see table 6.2), and can be seen to fall within the desired
simulation results range (sr Range).
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Figure 6.16: A-Test scores, which were calculated from the median average subsets
of 300 replicate simulation runs using calibrated control dynamics. Median average
distributions were generated, which increased by 10 replicates (i.e. 10, 20, 30, ..., 300)
and compared using the A-Test. It can be seen that as per the KS-Test, all agent states
stabilise at approximately 175 replicates, apart from the IκBα agents located in the
nucleus. The dotted red lines represent the A-Test scores of 0.47 and 0.53, which we
have used as the boundaries to signify stability. A shows the variation in the number
of NF-κB agents within the cytoplasm. B shows the variation in the number of NF-κB
agents within the nucleus. C shows the variation in the number of NF-κB-IκBα agents
within the cytoplasm. D shows the variation in the number of NF-κB-IκBα agents
within the nucleus. E shows the variation in the number of IκBα agents within the
cytoplasm. F shows the variation in the number of IκBα agents within the nucleus.
It can be seen that the variation is consistent with that from the KS-Test, with the
cytoplasm stabilising relatively quickly, and the nucleus taking longer, and continuing to
appear noisy even after the 175 replicates has been run (although the noise is contained
within the A-Test score boundaries). As before, we believe that this is due to the low
absolute calibrated values within the nucleus, with even small variations having the
effect of amplifying the aleatory uncertainty.
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Figure 6.17: Calibrated control dynamics using the median average distributions of
175 replicate simulation runs using different PRNG seed values. It can be seen that
although the curves closely follow the single simulation run curves from figure 6.7, the
use of 175 replicates has generated smooth curves. We believe that this signifies a
decrease in the aleatory uncertainty of our computational model.

Agent Location dr si sr Range so

Free NF-κB
Cytoplasm 9,000 498 65 - 125 96

Nucleus 1,000 1 5 - 20 11

Free IκBα
Cytoplasm 9,900 496 65 - 125 88

Nucleus 1,100 2 5 - 20 17

NF-κB-IκBα
Cytoplasm 45,000 3 250 - 450 365

Nucleus 5,000 0 30 - 55 30

Table 6.2: Calibration translation table as advocated by Stepney (2012), following
aleatory uncertainty analysis, and the use of 175 replicate simulation runs to generate
median average distributions. In a similar manner to table 6.1, this translates/maps: 1)
the approximate numbers and locations of components from wet-lab experimentation,
which forms the domain results data dr; 2) the initial simulation platform values (si),
which are used to commence simulation runs during the calibration process; 3) the
desired range of simulation results data (sr Range), which needs to be attained during
the calibration process; and 4) the simulation output so, which represents the median
average values generated through the use of 175 replicate simulation runs.
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6.4 Calibration of Simulation Platform for IL-1
Stimulated Dynamics

The IL-1 stimulated dynamics within our computational model relate to the IKK-
mediated release of NF-κB from the NF-κB-IκBα complex, the associated degra-
dation of IκBα, and the translocation of the free NF-κB (that had been released
via IKK) in to the nucleus. As iteration 1 relies on a countdown timer for acti-
vation of the cell membrane receptor, there are only three additional parameters
that require calibration for IL-1 stimulated dynamics:

1. IKK Rebind Delay - The time delay associated with an IKK agent,
following its interaction with an NF-κB-IκBα complex.

2. Nuclear Import (IL-1 stimulated) Probability - The probability of
free NF-κB (released by IKK) binding to a nuclear import receptor to facil-
itate translocation from the cytoplasm into the nucleus. This is in addition
to the standard parameter, which is used under control dynamics, and en-
sures that the nuclear translocation has a higher probability under IL-1
stimulated dynamics.

3. IKK Binding Probability - The probability of binding following the
movement of an IKK agent into the interaction boundary of a NF-κB-IκBα
complex.

As per the calibration process for control dynamics, we calibrated our compu-
tational model for IL-1 stimulated dynamics through varying parameter values,
either one-at-a-time or two-at-a-time were there was co-dependence with another
parameter. Again, this calibration process required consultation between the
modeller and domain expert until a parameter space was found that yielded qual-
itative alignment to the underlying biological data on which the computational
model was designed.

Carlotti et al. (1999) show a 40-fold increase in nuclear NF-κB following IL-1
stimulation. An increase of this level, using the 1:10 ratio of nuclear to cyto-
plasmic NF-κB from control dynamics and total of 500 NF-κB agents within our
computational model, would push the ratio between the compartments to unnat-
ural levels, i.e. 400 NF-κB agents in the nucleus and 100 NF-κB agents in the
cytoplasm. As the transfected cells had 8 times more NF-κB than endogenous
levels, we believe that it would be inappropriate to calibrate the IL-1 stimulated
dynamics of our computational model for this level of increase, and have chosen
to calibrate to a 5-fold increase in nuclear NF-κB numbers5.

Due to the first iteration of our computational model focusing on the NF-κB
signalling module, with a high-level abstraction of upstream events (e.g. cell mem-
brane receptor activation, through to IKK activation), and no downstream events
following NF-κB activation (e.g. transcription of gene products), we do not model
the generation of new IκBα agents or the subsequent inhibition of active NF-κB
in the nucleus, to facilitate negative feedback. This being the case, it would be

5Carlotti et al. (1999) have a 40-fold increase in nuclear NF-κB following IL-1 stimulation, with
8-fold higher numbers in transfected cells v endogenous. We have therefore chosen to use the
quotient of 40/8, providing a 5-fold increase for our calibration requirements.
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inappropriate to calibrate the model for IκBα numbers, and we therefore focus on
calibrating the IL-1 stimulated dynamics for NF-κB agents only. Furthermore,
as the Carlotti work looked at total NF-κB (both free and inhibited), we will
calibrate the IL-1 stimulated dynamics to total NF-κB between the nucleus and
cytoplasm. Table 6.3 represents the translation table for calibration of our compu-
tational model against IL-1 stimulated dynamics. The initial simulation platform
values (si), which are used to commence simulation runs for the IL-1 stimulation
calibration process are actually the median averaged simulation results (so) of the
control calibration dynamics. The range of agent numbers from control dynamics
calibration (sr range) has also become the associated range for initial simulation
platform values (si range), to facilitate a translation to the required simulation
results range (sr range) for calibration against IL-1 stimulated dynamics, incor-
porating the 5-fold increase in nuclear NF-κB, and the corresponding decrease in
cytoplasmic numbers.

Location State si si Range sr Range

Nucleus
NF-κB 11

35 - 75 175 - 375
NF-κB-IκBα 30

Cytoplasm
NF-κB 96

425 - 465 125 - 325
NF-κB-IκBα 365

Table 6.3: Translation table as advocated by Stepney (2012), for calibration of the
computational model to IL-1 stimulation dynamics. This translates/maps the approx-
imate numbers and locations of components from the calibrated control dynamics (si
median average and range), which form the starting conditions of IL-1 stimulated sim-
ulation runs, against the required simulation results (sr Range), which represent the
calibrated dynamics of our computational model for IL-1 stimulation. Cytoplasmic
values for si Range and sr Range are the difference between the total number of NF-κB
agents and the numbers extrapolated for the nucleus. Values for sr Range are extrapo-
lated from Carlotti et al. (1999) using a 5-fold increase (instead of a 40-fold) in nuclear
numbers following IL-1 stimulation, as described in footnote 5 above.
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6.4.1 IKK Rebind Delay

The IKK rebind delay parameter showed a remarkable degree of robustness during
the calibration process. Figure 6.18 higlights that computational model dynamics
are sensitive when simulations use IKK rebind delays between 1 to 4 time-steps,
but very stable with values between 4 to 18 time-steps. We have therefore chosen
to use a rebind delay of 10 time-steps, corresponding to the mid-point of this
stable range.

Figure 6.18: Calibration for IKK rebind delay during IL-1 stimulation. A shows the
variation in the number of NF-κB agents within the cytoplasm. B shows the variation
in the number of NF-κB agents within the nucleus. C shows the variation in the number
of NF-κB-IκBα agents within the cytoplasm. D shows the variation in the number of
NF-κB-IκBα agents within the nucleus. It can be seen that system dynamics are robust
for IKK rebind delay parameter values between 4 to 18.
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6.4.2 Nuclear Import Probability under IL-1 Stimulation

Initial calibration simulations focused on the nuclear import (under IL-1 stimu-
lation) parameter value in isolation. This showed unstable dynamics as seen in
figure 6.19, and we were unable to interpolate a calibrated parameter value. It
can be seen that the nuclear import (under IL-1 stimulation) parameter value
provides reasonably stable dynamics for NF-κB agents within the cytoplasm be-
tween 0.3 to 0.65; NF-κB-IκBα agents within the nucleus between 0.5 to 0.8; and
NF-κB agents within the nucleus between 0.5 to 0.7. NF-κB-IκBα agents within
the cytoplasm appear to be unstable. As Carlotti et al. (1999) looked at total
NF-κB (both free and inhibited) however, graphs of these total NF-κB agents
within the cytoplasm and nucleus (see figure 6.20) suggest a degree of stability,
which we conjecture to represent non-linear dynamics of the nuclear import (un-
der IL-1 stimulation) parameter, that may be co-dependent on IKK mediated
dissociation through the IKK binding parameter.

Figure 6.19: Calibration for nuclear import during IL-1 stimulation. A shows the
variation in the number of NF-κB agents within the cytoplasm. B shows the variation
in the number of NF-κB agents within the nucleus. C shows the variation in the number
of NF-κB-IκBα agents within the cytoplasm. D shows the variation in the number of
NF-κB-IκBα agents within the nucleus. It can be seen that system dynamics are
relatively stable for NF-κB agents within the cytoplasm, NF-κB-IκBα agents within
the nucleus, and NF-κB agents within the nucleus, but are unstable for NF-κB-IκBα
agents within the cytoplasm.
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Figure 6.20: Calibration of nuclear import during IL-1 stimulation, for total NF-κB
agents. A shows the variation in the total number of NF-κB agents within the cyto-
plasm. B shows the variation in the total number of NF-κB agents within the nucleus.
The red dotted lines represent the desired calibration range (sr Range) from table 6.3.
It can be seen that total NF-κB agent numbers are within the desired calibration range
for only a small section of parameter values.

6.4.3 IKK Binding Probability

To confirm any co-dependence between nuclear import (under IL-1 stimulation)
and IKK binding, we performed two-at-a-time analysis, and focused on total NF-
κB agent numbers across the nucleus and cytoplasm. The resulting 2D heatmaps
(figure 6.21) suggest that desired total NF-κB agent numbers (with respect to
the translation table 6.3) within the nucleus and cytoplasm are generated when
nuclear import (under IL-1 stimulation) parameter value is between 0.75 to 1.0,
and when the IKK binding parameter value is between 0.75 to 1.0. We have
therefore chosen to set both these parameters to 0.85 for the IL-1 stimulation
calibrated dynamics, to provide a degree of robustness.

Figure 6.21: Calibration of nuclear import and IKK binding during IL-1 stimulation,
for total NF-κB agents. A shows the variation in the total number of NF-κB agents
within the cytoplasm. B shows the variation in the total number of NF-κB agents
within the nucleus. It can be seen that total NF-κB agent numbers are within the
desired calibration range when both parameter values fall between 0.75 to 1.0.
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6.4.4 Calibrated IL-1 Stimulated Dynamics

Following parameter estimation experiments, the following parameter values were
used to generate IL-1 stimulation dynamics of the NF-κB signalling pathway. DT
= 2; Rebind Delay = 3; Basal Dissociation = 0.0000025; Association = 0.65;
Import = 0.85; Export = 0.5; IKK Rebind Delay = 10; and IKK Binding Proba-
bility = 0.85. The median average simulation dynamics (using 175 replicates) are
shown in figure 6.22 for a 50,000 iteration run, which was the time period used
to reach calibration dynamics. See Appendix C for an example 0.xml parameters
file depicting the calibrated parameter values and examples of the relevant agent
definitions for iteration 1.

Figure 6.22: Calibrated IL-1 stimulation dynamics for the NF-κB signalling pathway.
The computational model, using the parameters estimated in sections 6.2.2 to 6.2.5 for
control dynamics, and 6.4.1 to 6.4.3 for IL-1 stimulation dynamics generates emergent
behaviour over a 50,000 iteration simulation that corresponds to the desired calibration
range of agent states and locations (sr range with respect to table 6.3).

6.4.5 Calibration for Physical Time

The key agent for calibrating the simulation with respect to physical time is the
increase in nuclear NF-κB, as its curve in the calibration graph (figure 6.22)
bisects both the cytoplasmic NF-κB agents and the cytoplasmic NF-κB-IκBα
agents. The wet-lab data from Yang et al. (2003) has a corresponding bisection
of the curves for nuclear NF-κB and cytoplasmic NF-κB at approximately 1,070
seconds. Within our calibrated computational model, this occurs at approxi-
mately 33,750 iterations, which provides a ratio of 31.5 iterations per second.
However, as the computational model will be used to convey qualitative differ-
ences in experimental dynamics, we have chosen to approximate the calibrated
ratio to 30 iterations per second.

The 50,000 iteration graph (see figure 6.22) allowed calibration to desired ratios
of agent states, however in order to provide a reference point or baseline behaviour
for future experiments, we believe that the simulation dynamics should be allowed
to progress for a longer period, which nears completion of the chemical reactions.
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Using the calibrated time interval of 30 iterations per second, this equates to 1,800
iterations per minute, or 108,000 iterations per hour. As such, 432,000 iterations
(4 hours) will be used to illustrate the running of the system to completion, as
there is no negative feedback through IκBα transcription and translation (figure
6.23). Finally, the 3D visualisation of the calibrated computational model is
shown in figure 6.24, and highlights the two concentric circles (cytoplasm and
nucleus) that represent the cell environment, along with the various membrane-
bound and nuclear/cytoplasmic agents.

Figure 6.23: IL-1 stimulation dynamics for the NF-κB signalling pathway calibrated
against real-world time. The computational model, using the calibrated parameter
values generates emergent behaviour over a 432,000 iteration simulation. Through
extrapolation of the dynamics from Yang et al. (2003), time has been calibrated to
108,000 iterations approximating to 1 hour of real-world time.

Figure 6.24: 3D visualisation of an IL-1 stimulated simulation. The cytoplasmic and
nuclear locations of the cell envrionment are represented through the use of two con-
centric circles, with NF-κB and IκBα agents located throughout.
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6.5 Implications of Hardware on Performance of
Simulations

The initial simulations that were run as part of the calibration process, were run
on a Windows desktop PC, which had quad-core processor and 8GB RAM. Even
though three simulations could be run in parallel using a distributed mode, it
quickly became evident that although the FLAME framework had been written
in C to optimise performance, it still required a prohibitive amount of resources.
For example, the 50,000 iteration simulations (for the IL-1 stimulated dynamics)
took ∼8hr to run, with an additional 10hr to transform and process the XML
results data to more usable CSV files through Python scripts. Another obser-
vation is that the simulator generates vast amounts of XML output data, with
the raw XML files from FLAME amounting to 30GB and the Python scripts
generating another 10GB per 50,000 iteration simulation run. This is because
FLAME utilises the concept of communicating stream X-Machines, and gener-
ates a separate XML file (containing the parameter values and states for every
instantiated agent) for each time-step. Therefore a 50,000 iteration run with
2,000 agents, generates 50,000 separate XML output files, each containing the
detailed XML-tagged information relating to every single one of the 2,000 agents
at that moment in time.

Diagnostic tests regarding the performance of FLAME indicated the length of
time required to complete single simulation runs increases linearly with respect
to the number of iterations in the simulation. It also became evident that the
rate-limiting step of simulations was the Input/Output (I/O) speed, which was
a direct consequence of the need to create a separate XML output file for each
iteration. As the output XML file for a given iteration, becomes the input XML
file for the next iteration, a performance bottleneck is formed, relating to the
speed of writing to, and reading from the storage disk. To confrm this, we per-
formed replicate simulations using the same Windows desktop PC, but this time
writing output files to an external USB hard drive. As suspected, the perfor-
mance was much worse, due to the flow of data across the USB port. Additional
tests were performed using an Apple Mac mini with Solid State Disk (SSD) and
the Northern Eight Universities Consortium (N8) High-Performance Computing
(HPC) architecture. The Apple Mac mini with Solid State Disk (SSD), was found
to be 28% faster than the Windows PC with internal disk (or 38% faster than the
Windows PC with external USB hard drive), and reduced the running time of a
50,000 iteration simulation by two hours. Similarly, the N8 HPC was found to
be 85% faster than the Mac mini with SSD, and reduced the running time down
to just over 2 hours.

6.6 Summary

We have encoded the technical specification, as defined by the platform model,
into a simulation platform that is suitable for in silico experimentation. The
Flexible Large-scale Agent-based Modelling Environment (FLAME) was used, as
this allows the modeller to focus on the agent and environment definitions, as the
simulation framework takes care of the necessary parsing of the C and XML code
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into executable code, and scheduling of the X-Machine functions throughout each
iteration of a simulation run. Although the developmental approach advocated
by the FLAME simulation framework is relatively intuitive to modellers familiar
with the object-oriented and agent-based paradigms, it does suffer from a number
of limitations, which resulted in technical issues during the development of the
simulation platform. The two main limitations were the absence of functionality
to utilise global mutable parameters, and the inability to set the PRNG seed value
at the simulation level. Unfortunately, these limitations are direct consequences
of the underlying design of FLAME, because it was developed to run individual
simulations across multiple clusters using parallel processing functionality. Two
critical issues resulted from these limitations, the first resulting in a loss of IκBα
agents during basal dissociation of NF-κB-IκBα complexes (the conservation of
mass issue), and the second resulting in simulation runs not fully benefitting
from the stochastic behaviour that should emerge through the use of pseudo-
random number generators. Fortunately, a number of workarounds were found to
resolve these technical issues, however we believe that future users of the FLAME
simulation framework should be mindful of these limitations.

Following development of these workarounds, the simulation platform was cal-
ibrated using one-at-a-time and two-at-a-time parameter estimation. Our com-
putational model was calibrated against wet-lab data of Carlotti et al. (2000)
and Yang et al. (2003). The calibration process was iterative, with each param-
eter being the focus of investigation, until a multidimensional parameter space
was found that yielded qualitative alignment to the underlying biological data on
which the computational model was designed. Parameter estimation initially fo-
cused on differential time, IκBα rebind delay, agent association, basal dissociation
of the NF-κB-IκBα complex, and nuclear translocation. Once the computational
model was calibrated for control dynamics, the parameter estimation process was
repeated for IL-1 stimulation dynamics, by focusing on IKK binding, nuclear
import under IL-1 stimulated conditions, and IKK rebind delay. Through the
calibration process, it became evident that the computational model suffers from
a conservation of mass issue for particular regions of parameter space where basal
dissociation is >0.1 and IκBα rebind delay is <3.

Epistemic and aleatory analysis were performed to understand the uncertainty
arising from our incomplete knowledge of the real-world system that we are mod-
elling, and the uncertainty arising from the stochastic nature of systems. The
computational model was found to be very sensitive to the distance that agents
move per time-step (differential time parameter), nuclear import under control
conditions, the basal dissociation of NF-κB-IκBα complexes, IKK binding and
nuclear import (under IL-1 stimulation) parameters. Conversely, the compu-
tational model was found to be robust to perturbations of IκBα rebind delay
(when >3), and IKK rebind delay. This sensitivity analysis also highlighted
the co-dependence between: association and basal dissociation; association and
IκBα rebind delay; and IKK binding and nuclear import under IL-1 stimulation.
We believe the results of this epistemic uncertainty analysis are consistent with
the findings of Kitano (2004a), who conjectures there to be a delicate balance
between robustness and fragility within complex dynamical biological systems.
Furthermore, aleatory analysis not only confirmed the stochastic nature of our
computational model, but was used to interpolate that a minimum of 175 replicate
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simulation runs are required to mitigate the uncertainty within our simulations
that is introduced through the use of PRNGs.

These preliminary simulations, which have formed the basis of development,
calibration and uncertainty analysis have also provided an insight to the resource
intensive nature of FLAME, and the implications for future in silico experimenta-
tion. Due to FLAME utilising the concept of communicating stream X-Machines,
even relatively small simulations can generate a disproportionate amount of data.
Diagnostic tests regarding the performance of FLAME indicated that the rate-
determinant step for the total time taken to run a simulation was the I/O speed
of the stroage medium. This, in conjunction with the requirement to run 175
replicates in order to gain stable median averages of simulation dynamics, means
that desktop hardware is unsuitable for running simulations of our computational
model. Access to high-performance computing architecture is therefore essential
to ensure that our computational model can be used for in silico experimenta-
tion, with a view to furthering our understanding of the IL-1 stimulated NF-κB
signalling pathway.

This chapter has addressed reasearch objective 2: Create an agent-based com-
putational model of the core intracellular components of the IL-1 stimulated NF-
κB signalling pathway; research objective 3: Investigate techniques for calibrating
agent-based computational models that have been developed using the FLAME
simulation framework; and research objective 4: Perform novel in silico experi-
mentation using the agent-based model. Furthermore, it has also contributed to
research objective 7: Investigate the suitability of using the FLAME simulation
framework for developing computational models of complex biological systems.
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7 Experimentation using the
Baseline Simulator

The fourth and final product of a CoSMoS project, is the results model, which
Andrews et al. (2010) state should “encapsulate the understanding that results
from simulation: the simulation platform behaviour, results of data collection
and observations of simulation runs.” Whereas the simulation platform is the
computational implementation of the platform model, which in our case was
developed using FLAME (C and XML) and various python, ruby, and Matlab
scripts (to pre-process, transform, and analyse data), the results model is the
understanding of the system that has been gained through actual simulation
runs, and the analysis of system dynamics1.

Following the development and calibration of the simulation platform, along
with the epistemic and aleatory uncertainty analysis, we are now in a position
to perform in silico experimentation to increase our understanding of the un-
derlying mechanistic behaviours of the NF-κB signalling pathway. As discussed
in chapter 2, agent-based models lend themselves to investigating the temporal
and spatial dynamics of systems, allowing us to investigate the consequences of
perturbations to component interactions. This chapter therefore represents fur-
ther novel in silico experimentation in to the IL-1 stimulated NF-κB signalling
pathway (research objective 4).

Section 7.1 defines the motivation for the chapter. There are four areas for
experimentation reported here for iteration 1: section 7.2 discusses the first ex-
periment, which investigates the effects of varying basal dissociation of the NF-
κB-IκBα complex; section 7.3 discusses the second experiment, which investigates
the effects on system dynamics of varying the number of IKK agents; section 7.4
discusses the third experiment, which investigates the effects on system dynamics
of varying the number of IκBα agents; and section 7.5 discusses the fourth exper-
iment, which investigates the effects of varying the lag-time between activation
of IL-1 cell membrane receptors and the subsequent activation of IKK. Finally,
section 7.6 concludes this chapter.

1Note there is ongoing debate on whether the results of uncertainty analysis can be considered
part of the results model. We have decided to decouple the results of uncertainty analysis (which
was used to understand the effects of our incomplete knowledge of the real-world system and
the stochastic nature of our computational model) from the results of more formal in silico
experiments. This was achieved by merging the aleatory and epistemic uncertainty analysis
into chapter 6, which focused on simulation platform development and calibration, and using
chapter 7 as a standalone chapter to look at the experimentation involved with iteration 1.
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7.1 Motivation behind In Silico Experimentation for
Iteration 1

This chapter directly addresses research objective 4: perform novel in silico ex-
perimentation using the agent-based computational model of NF-κB. In addition
to providing a contribution to the field of NF-κB computational research, these
in silico experiments allow us to consider the extent to which our principled ap-
proach to development, and the agent-based modelling technique, explored in
this thesis, provide confidence in simulation results being representative of the
real-world domain.

There are four sets of in silico experiments reported in this chapter. Section 7.2
investigates the effects of varying basal dissociation of the NF-κB-IκBα complex,
through four different experimental setups that varied the basal dissociation pa-
rameter value away from the calibrated value. The basal dissociation parameter
was identified as a point of fragility within the signalling pathway during epis-
temic uncertainty analysis, and this experiment allows us to qualify the extent of
this fragility using tests for statistical significance (KS-Test) and effect magnitude
(A-Test).

The second theme of experimentation, presented in section 7.3, examines the
effects of varying IKK numbers on the signalling pathway dynamics. An arbi-
trary number of IKK agents (50 agents) was used during simulation development,
with the subsequent calibration exercise that focused on the six key parameters
(differential time, rebind delay, basal dissociation, association, nuclear import,
and nuclear export) compensating for this assumption. This experiment there-
fore allows us to qualify the change in system dynamics along with the extent of
robustness (or indeed fragility) within the system that is directly attributable to
IKK number.

The third theme of experimentation, presented in section 7.4, examines the
effects of varying IκBα numbers on the signalling pathway dynamics. This is
of particular importance due to IκBα’s role in masking the nuclear localisation
sequence of NF-κB dimers, and thus restricting them to the cytoplasmic compart-
ment of cells when bound to form NF-κB-IκBα complexes. Furthermore, Pogson
et al. (2008) showed through computational studies that excess free IκBα per-
turbs system dynamics, and that normal dynamics can be regained if we assume
the excess IκBα is sequestered to cytoskeleton within the cell. This experiment
therefore allows us to qualify the change in system dynamics with the incorpora-
tion of 3-fold IκBα that is either free within the cytoplasm, or sequestered to the
cytoskeleton.

The fourth theme of experimentation, presented in section 7.5, examines the
effects of varying the lag-time between cell membrane receptor activation and
the subsequent IKK activation within the cytoplasm. An arbitrary count of 500
iterations (or 17 seconds) was used as the lag-time between the commencement of
IL-1 stimulated simulations and the activation of IKK agents during simulation
development. This experiment therefore allows us to qualify the change in system
dynamics, along with the robustness of the system, that is directly attributable
to the lag-time between the commencement of IL-1 stimulated simulation runs
and the activation of IKK agents.
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7.2 Basal Dissociation of the NF-κB-IκBα Complex

Sensitivity analysis of control dynamics has highlighted that the system is very
sensitive to changes in the basal dissociation parameter value. It has been shown
that free cytoplasmic NF-κB (following basal dissociation) does not become acti-
vated to transcribe the relevant genes, but instead requires IKK-mediated release
from the inhibited complex, and following translocation to the nucleus (Carlotti
et al., 1999) may then be activated. Furthermore, this IKK-mediated release of
NF-κB, is also linked to the phosphorylation and subsequent polyubiquitination
and proteasomal degradation of the associated IκBα molecule (Alkalay et al.,
1995b).

Carlotti et al. (2000) investigated the shuttling of NF-κB (RelA) and IκBα
between the cytoplasm and nucleus. They postulated that the shuttling is a
consequence of cytoplasmic dissociation of the NF-κB-IκBα complex, rather than
the direct nuclear import of the NF-κB-IκBα complex, degradation of IκBα, and
subsequent resynthesis of IκBα.

With increased basal dissociation, you would expect to see less degradation
of IκBα within the system, and less NF-κB capable of promoting the transcrip-
tion of genes within the nucleus. Similarly, you would expect to see a higher
level of free NF-κB and IκBα within the nucleus due to the increased degree of
shuttling between the cytoplasm and nucleus. This increase in nuclear NF-κB
would support the mathematical model predictions of Carlotti et al. (2000), who
suggested changes in association-dissociation would have a pronounced impact
on nuclear NF-κB levels, and we believe may be useful for stimuli that mod-
ify IκBα inhibitory dynamics without resulting in its degradation. The Carlotti
model was based around control (non-stimulated) dynamics of NF-κB and IκBα
shuttling between the cytoplasm and nucleus, this allows us to perform in silico
experimentation using our computational model to further their predictions to
IL-1 stimulated dynamics. Our two working hypotheses are that an increase in
basal dissociation of the inhibited NF-κB-IκBα complex to yield its constituent
components will: 1) reduce the likelihood of activated NF-κB accumulating in
the nucleus; and 2) increase the levels of free IκBα and NF-κB in the cytoplasm.
Converting these to null hypotheses, we have:

H10 An increase in basal dissociation of the inhibited NF-κB-IκBα complex to
yield its constituent components will not reduce the likelihood of activated
NF-κB accumulating in the nucleus.

H20 An increase in basal dissociation of the inhibited NF-κB-IκBα complex to
yield its constituent components will not increase the levels of free IκBα
and NF-κB in the cytoplasm.

7.2.1 Experimental Procedure

Experimentation into the effects of varying basal dissociation of the NF-κB-IκBα
complex, is conducted through perturbation of the basal dissociation prob simu-
lation parameter. By default, this parameter is set to 0.000003, representing a
probability of 0.0003% that an individual NF-κB-IκBα agent will basally disso-
ciate at any given time-step within a simulation run. To test the two null hy-
potheses above, we ran four sets of in silico experiments using 10x, 100x, 1,000x

195



Chapter 7. Experimentation using the Baseline Simulator

and 10,000x calibrated dissociation values (i.e. 0.00003, 0.0003, 0.003, and 0.03,
respectively). For each set of 175 simulation replicates, the median distributions
of cytoplasmic NF-κB, nuclear NF-κB, cytoplasmic NF-κB-IκBα, nuclear NF-
κB-IκBα, cytoplasmic IκBα and nuclear IκBα over the lifetime of the simulation
runs are interpolated. These distributions are contrasted with the baseline be-
haviour that results from simulations using the default (calibrated) parameter
value. KS-Tests are then performed to understand whether there are any sta-
tistically significant differences from baseline behaviour (requiring p-values below
0.05), and A-Tests are also performed to understand the effect magnitude of these
differences, assuming ‘large’ differences of < 0.29 and > 0.71 to be scientifically
significant.

7.2.2 Results

Results indicate that the system is fragile to perturbations involving basal disso-
ciation of the NF-κB-IκBα complex. Figure 7.1 depicts the effects on cytoplasmic
IκBα numbers when the basal dissociation prob parameter value is set to: 10x,
100x, 1,000x and 10,000x with respect to the default parameter value. As the
parameter value increases up the orders of magnitude, the system appears to
spontaneously dissociate large numbers of NF-κB-IκBα agents to their respec-
tive free agents immediately after simulation runs begin. Indeed, with 1,000x
and 10,000x default, the system appears to dissociate virtually all of the NF-κB-
IκBα complexes into their respective NF-κB and IκBα agents within a minute.

Figure 7.2 depicts the effects on nuclear NF-κB numbers when the parame-
ter value for basal dissociation prob is perturbed. It is clear that increases in
basal dissociation probabilities, result in a reduction of NF-κB agents within
the nucleus. Similarly, figure 7.3 depicts the effects on cytoplasmic NF-κB-IκBα
numbers when the parameter value is perturbed. Here it is clear that cytoplasmic
numbers markedly reduce, with increasing basal dissociation.

Figure 7.1: Cytoplasmic IκBα dynamics for the four sets of experiments into basal
dissociation of the NF-κB-IκBα complex, which have been compared against baseline
IL-1 stimulated dynamics.
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Figure 7.2: Nuclear NF-κB dynamics for the four sets of experiments into basal dis-
sociation of the NF-κB-IκBα complex, which have been compared against baseline IL-1
stimulated dynamics.

Figure 7.3: Cytoplasmic NF-κB-IκBα dynamics for the four sets of experiments into
basal dissociation of the NF-κB-IκBα complex, which have been compared against
baseline IL-1 stimulated dynamics.
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Tables 7.1 and 7.2 depict the associated KS-Test p-values and A-Test scores
resulting from the perturbations to the basal dissociation parameter with respect
to the default value. It can be seen that all perturbations to the basal dissociation
probability provide statistically significant differences (with respect to baseline
dynamics) across all agent states, apart from nuclear IκBα for the 10x default
basal dissociation probability. This is due to the KS-Tests generating p-values
less than 0.05 for all agent states apart from IκBα for the 10x default in basal
dissociation probability, which has p-value 0.4931. Furthermore, although KS-
Tests with p-values below 0.05 indicate a statistically significant difference, the
A-Test is used to calculate whether these differences yield a significant effect
magnitude. Scientifically significant differences exist for: cytoplasmic NF-κB in
all experiments; cytoplasmic NF-κB-IκBα in 10,000x default; nuclear NF-κB-
IκBα in all experiments; nuclear NF-κB and activated NF-κB in all experiments
apart from 10x default; cytoplasmic IκBα in all experiments; and nuclear IκBα
in all experiments apart from 10x default.

Agent State 10x 100x 1,000x 10,000x
NF-κB Cyto 0.0 0.0 0.0 0.0
NF-κB-IκBα Cyto 0.0035 0.0008 0.0 0.0
NF-κB-IκBα Nuc 0.0 0.0 0.0 0.0
NF-κB Nuc 0.0 0.0 0.0 0.0
Active NF-κB Nuc 0.0 0.0 0.0 0.0
IκBα Cyto 0.0 0.0 0.0 0.0
IκBα Nuc 0.4931 0.0 0.0 0.0

Table 7.1: KS-Test scores for the four sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. All scores apart from IκBα Nu-
cleus for the 10x default in basal dissociation probability show statistically significant
differences, as they represent p-values below 0.05.

Agent State 10x 100x 1,000x 10,000x
NF-κB Cyto 0.2482 0.0101 0.0006 0.0006
NF-κB-IκBα Cyto 0.4401 0.4111 0.5653 0.9969
NF-κB-IκBα Nuc 0.9419 0.9919 0.9969 0.9969
NF-κB Nuc 0.6072 0.8010 0.9297 0.9774
Active NF-κB Nuc 0.6074 0.8019 0.9308 0.9781
IκBα Cyto 0.1343 0.0 0.0 0.0
IκBα Nuc 0.4678 0.1841 0.0036 0.0031

Table 7.2: A-Test scores for the four sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. A-Test scores show scientifically
significant differences for: cytoplasmic NF-κB in all experiments; cytoplasmic NF-κB-
IκBα using 10,000x default; nuclear NF-κB-IκBα in all experiments; nuclear NF-κB
and activated NF-κB in all experiments apart from 10x default; cytoplasmic IκBα in
all experiments; and nuclear IκBα in all experiments apart from 10x default.
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7.3 Effect of IKK Numbers

Following IL-1 stimulation and activation of receptor complex components, the
signal transduction reaches the NF-κB-IκBα signalling module (Hoffmann et al.,
2002), with the key step being the IKK-mediated dissociation (and resultant
degradation) of IκBα (Chen et al., 1996). This causes release of NF-κB, and
facilitates its translocation into the nucleus and subsequent activation, to initiate
transcription of genes for the inflammatory response.

Simulation dynamics have been calibrated using 501 IκBα and 502 NF-κB
(both in various states of free, bound, cytoplasmic and nuclear), along with 500
IL-1R, and 50 IKK agents. This provides an opportunity for us to investigate the
effects of varying IKK numbers (akin to varying concentration in wet-lab experi-
ments), and whether the system is robust to such perturbations. As there is an
amplification step, i.e. one IKK agent can facilitate dissociation of many NF-κB-
IκBα complexes over the lifetime of a simulation, it is expected that an increase
in IKK numbers would increase the rate at which active NF-κB accumulates in
the nucleus. Converting this to null hypotheses, we have:

H30 An increase in IKK concentration will not increase the rate of dissociation
of NF-κB-IκBα complexes, and resultant degradation of IκBα.

H40 An increase in IKK concentration will not increase the rate at which acti-
vated NF-κB accumulates in the nucleus.

7.3.1 Experimental Procedure

Experimentation into the effects of varying IKK numbers, is conducted through
perturbation of the total number of IKK agents. By default, there were 50 IKK
agents within the calibrated simulation platform. To test the two null hypothe-
ses above, we ran six sets of in silico experiments using a tenth, a fifth, a half,
2x, 5x, and 10x default numbers (i.e. 5, 10, 25, 100, 250 and 500 IKK agents,
respectively). For each set of 175 simulation replicates, the median distributions
of cytoplasmic NF-κB, nuclear NF-κB, cytoplasmic NF-κB-IκBα, nuclear NF-
κB-IκBα, cytoplasmic IκBα and nuclear IκBα over the lifetime of the simulation
runs are interpolated. These distributions are contrasted with the baseline be-
haviour that results from simulations using the default number of IKK agents.
KS-Tests are then performed to understand whether there are any statistically
significant differences from baseline behaviour (requiring p-values below 0.05),
and A-Tests are also performed to understand the effect magnitude of these dif-
ferences, assuming ‘large’ differences of < 0.29 and > 0.71 to be scientifically
significant.

7.3.2 Results

Results indicate that the system is sensitive to perturbations involving the total
number of IKK agents, which when using stable numbers of NF-κB and IκBα
agents, has the effect of altering the ratio of IKK to NF-κB and the ratio of IKK to
IκBα. Figure 7.4 depicts the effects on cytoplasmic IκBα numbers when the total
number of IKK agents is set to: 10%, 20%, 50%, 200%, 500% and 1,000% of the
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default number. It can be seen that increasing the number of IKK agents, has the
effect of decreasing the number of IκBα agents within the cytoplasm. Similarly,
figure 7.5 depicts the effects on cytoplasmic NF-κB-IκBα numbers, and figure 7.6
depicts the effects on cytoplasmic NF-κB numbers when the total number of IKK
agents is perturbed. Here it can be seen that an increase in IKK numbers results
in both a decrease in cytoplasmic NF-κB-IκBα numbers, but also an increase in
the rate of dissociation of the NF-κB-IκBα complexes. The effects on cytoplasmic
NF-κB numbers are not as straight forward to interpret, as there appears to be
a non-linear temporal component at play, whereby an increase in IKK numbers
results in an initial increase in cytoplasmic NF-κB numbers upto approximately
15min, after which there is a sharp decrease, resulting in a negative relationship
between the number of IKK agents and the number of cytoplasmic NF-κB agents
at the end of simulation runs.

Figure 7.4: Cytoplasmic IκBα dynamics for the six sets of experiments into IKK
concentration, which have been compared against baseline IL-1 stimulated dynamics.

Figure 7.5: Cytoplasmic NF-κB-IκBα dynamics for the six sets of experiments into
IKK concentration, which have been compared against baseline IL-1 stimulated dy-
namics.

200



7.3. Effect of IKK Numbers

Figure 7.6: Cytoplasmic NF-κB dynamics for the six sets of experiments into IKK
concentration, which have been compared against baseline IL-1 stimulated dynamics.

Tables 7.3 and 7.4 depict the associated KS-Test p-values and A-Test scores
resulting from the perturbations to IKK numbers with respect to the default
number. It can be seen that all perturbations to IKK numbers provide statisti-
cally significant differences (with respect to baseline dynamics) across all agent
states, apart from nuclear IκBα, and the cytoplasmic and nuclear NF-κB-IκBα
agent states when 50% of default IKK numbers are used (i.e. 25 IKK agents).
This is due to the KS-Tests generating p-values less than 0.05 for all agent states
apart from the cytoplasmic NF-κB-IκBα agents, which have a p-value of 0.0803,
and nuclear NF-κB-IκBα agents, which have a p-value of 0.0979, when 50% of
default IKK numbers are used. Furthermore, the A-Test was used to calculate
the corresponding effect magnitude due to the perturbations, and whether scien-
tifically significant differences result. Scientifically significant differences exist for:
cytoplasmic NF-κB-IκBα in all perturbations, nuclear NF-κB and active NF-κB
for perturbations that used 10%, 20%, 500% and 1,000% IKK (with respect to
default); and cytoplasmic IκBα for perturbations that used 10% and 20% of IKK
(with respect to default).

Agent State 10% 20% 50% 200% 500% 1,000%
NF-κB Cyto 0.0 0.0 0.0 0.0 0.0 0.0
NF-κB-IκBα Cyto 0.0 0.0 0.0803 0.0001 0.0 0.0
NF-κB-IκBα Nuc 0.0342 0.0102 0.0979 0.0008 0.0005 0.0001
NF-κB Nuc 0.0 0.0 0.0 0.0 0.0 0.0
Active NF-κB Nuc 0.0 0.0 0.0 0.0 0.0 0.0
IκBα Cyto 0.0 0.0 0.0 0.0 0.0 0.0
IκBα Nuc 1.0 1.0 1.0 1.0 1.0 1.0

Table 7.3: KS-Test scores for the six sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. All scores apart from IκBα Nu-
cleus (for all experiments) and NF-κB-IκBα in the cytoplasm and nucleus for the
perturbation that used 50% IKK (with respect to default) show statistically significant
differences.
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Agent State 10% 20% 50% 200% 500% 1,000%
NF-κB Cyto 0.319 0.3263 0.3857 0.617 0.6873 0.7077
NF-κB-IκBα Cyto 0.0402 0.0939 0.2550 0.7492 0.8961 0.9465
NF-κB-IκBα Nuc 0.4599 0.5713 0.5342 0.5581 0.5025 0.4763
NF-κB Nuc 0.9120 0.8583 0.7059 0.3284 0.2364 0.2133
Active NF-κB Nuc 0.9117 0.8581 0.7059 0.3283 0.2364 0.2133
IκBα Cyto 0.1582 0.2022 0.3376 0.6229 0.6786 0.6922
IκBα Nuc 0.5 0.5 0.4985 0.5 0.5 0.5

Table 7.4: A-Test scores for the six sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. These scores suggest there to be
scientifically significant differences for cytoplasmic NF-κB-IκBα in all perturbations,
nuclear NF-κB and active NF-κB for perturbations that used 10%, 20%, 500% and
1,000% IKK (with respect to default), and cytoplasmic IκBα for perturbations that
used 10% and 20% of IKK (with respect to default).

7.4 Effect of IκBα Numbers

IκBα molecules inhibit NF-κB by masking their nuclear localisation sequence
(NLS), thus restricting the NF-κB dimers to the cytoplasm. Carlotti et al. (2000)
have shown that free IκBα competes with free NF-κB for translocation to the
nucleus, and that approximately 17% of NF-κB remains free within resting cells,
and does not form an inhibited complex with IκBα. Similarly, Yang et al. (2003)
and Carlotti et al. (1999) predicted a larger total number of IκBα molecules than
NF-κB molecules within cells (approximately 3:1 ratio). Furthermore, Pogson
et al. (2008) have shown through computational modelling, that the system is
more sensitive to changes in IκBα concentration than NF-κB concentration. They
assumed unchanged levels of the inhibited complex, so linked excess IκBα to
cytoskeletal sequestration in order to maintain the 17% free NF-κB predicted
by Carlotti et al. (2000). They found maximal inhibited complex formation was
reached at a 3:1 ratio of IκBα to NF-κB, confirming the earlier predictions of
Yang et al. (2003) and Carlotti et al. (1999), and concluded that the excess IκBα
was sequestered to the actin cytoskeleton.

Our calibrated simulation platform contains similar numbers of IκBα and NF-
κB agents (501 v 502). This provides an opportunity to investigate the effects
on control and IL-1 stimulated dynamics of perturbing the system through a 2-
fold increase of free and sequestered IκBα agents. We believe the addition of
excess free IκBα will generate catastrophic failures to system dynamics, but that
addition of excess IκBα that is sequestered within the cell, will result in behaviour
similar to that of the calibrated system. Converting this to null hypotheses, we
have:

H50 The addition of excess free IκBα within the cytoplasm will not perturb
system dynamics into a fragile state.

H60 The addition of excess IκBα sequestered within the cell will not result in
stable system dynamics.
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7.4.1 Experimental Procedure

Experimentation into the effects of varying IκBα numbers, is conducted through
perturbation of the total number of IκBα agents. By default, there were 501
IκBα agents within the calibrated simulation platform. To test the two null
hypotheses we ran four sets of experiments, two under control (non-stimulated)
conditions and two under IL-1 stimulated conditions, using: 1,500 IκBα all free
within the cell for control dynamics; 1,500 IκBα agents, corresponding to 500 free
and 1,000 sequestered within the cell for control dynamics; 1,500 IκBα agents us-
ing the new pseudo steady-state dynamics from the control experiment using
excess free IκBα, for IL-1 stimulated dynamics; and 1,500 IκBα agents, using
the new pseudo steady-state dynamics from the control experiment using excess
sequestered IκBα, for IL-1 stimulated dynamics. For each set of 175 simulation
replicates, the median distributions are interpolated. These distributions are con-
trasted with the control behaviour (for non-stimulated conditions) and baseline
behaviour (for IL-1 stimulated conditions) that result from simulations using the
default number of IκBα agents. KS-Tests and A-Tests are then performed to
investigate significant differences from control or baseline behaviours.

7.4.2 Results

Results indicate that the system is fragile to perturbations involving the numbers
of free IκBα. Figure 7.7 depicts the effects on cytoplasmic NF-κB numbers,
and figure 7.8 depicts the effects on the number of cytoplasmic NF-κB-IκBα
complexes, when perturbations for 3-fold free IκBα and 3-fold with 66% actin-
bound IκBα are applied. It can be seen that the addition of 1,000 actin-bound
IκBα agents, results in the system approximating to baseline IL-1 stimulated
dynamics. Conversely, with the addition of 1,000 free IκBα agents, the system
is significantly perturbed, resulting in an initial spike of free cytoplasmic NF-κB
between 5 - 10min, a corresponding decrease in cytoplasmic NF-κB-IκBα, then
a rapid decrease in cytoplasmic numbers due to nuclear translocation.

Figure 7.7: Cytoplasmic NF-κB dynamics for perturbations that used 3x free IκBα
and perturbations that used default levels of free IκBα with the additional being se-
questered by the actin cytoskeleton.
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Figure 7.8: Cytoplasmic NF-κB-IκBα dynamics for perturbations that used 3x free
IκBα and perturbations that used default levels of free IκBα with the additional being
sequestered by the actin cytoskeleton.

Tables 7.5 and 7.6 depict the associated KS-Test p-values and A-Test scores
resulting from the perturbations to IκBα numbers with respect to the default
number. It can be seen that all perturbations using 3-fold IκBα numbers result
in statistically and scientifically significant differences for cytoplasmic NF-κB.
Additionally, the KS-Test and A-Test results indicate there to be both statisti-
cal and scientific significant differences for cytoplasmic and nuclear NF-κB-IκBα,
when perturbations of 3-fold free IκBα under non-stimulated conditions are ap-
plied, and for all agent states, apart from cytoplasmic IκBα, when 3-fold free
IκBα under IL-1 stimulation is applied.

Agent State 3x Free 3x Seq 3x Free (IL-1) 3x Seq (IL-1)
NF-κB Cyto 0.0 0.0 0.0 0.0
NF-κB-IκBα Cyto 0.0 0.9999 0.0 0.9913
NF-κB-IκBα Nuc 0.0 1.0 0.0 0.9999
NF-κB Nuc 1.0 0.9869 0.0 0.3264
Active NF-κB Nuc 1.0 1.0 0.0 0.9999
IκBα Cyto 1.0 1.0 0.0 0.3774
IκBα Nuc 1.0 1.0 0.0 1.0

Table 7.5: KS-Test scores for the four sets of in silico experiments, which have been
compared against control (non-stimulated) and baseline IL-1 stimulated dynamics. Sta-
tistically significant differences are shown for: cytoplasmic NF-κB under all conditions;
cytoplasmic and nuclear NF-κB-IκBα for perturbations that applied 3-fold free IκBα
under non-stimulated conditions; and all agent states for perturbations that applied
3-fold free IκBα under IL1-stimulated conditions.
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Agent State 3x Free 3x Seq 3x Free (IL-1) 3x Seq (IL-1)
NF-κB Cyto 0.9022 0.5022 0.9221 0.5054
NF-κB-IκBα Cyto 0.0829 0.4935 0.9541 0.4999
NF-κB-IκBα Nuc 0.6536 0.5108 0.9992 0.5306
NF-κB Nuc 0.9907 0.5346 0.0645 0.4976
Active NF-κB Nuc 0.5 0.5 0.0644 0.4978
IκBα Cyto 0.0 0.4987 0.3889 0.5099
IκBα Nuc 0.0369 0.493 0.0 0.5

Table 7.6: A-Test scores for the four sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. These scores indicate scientifically
significant differences for: all agent states with perturbations that applied 3-fold free
IκBα under non-stimulated conditions, apart from nuclear NF-κB-IκBα and active
NF-κB; and all agent states with perturbations that applied 3-fold free IκBα under
IL1-stimulated conditions apart from cytoplasmic IκBα.

7.5 Effect of Lag-Time before IKK Activation

Our calibrated simulation platform for the first iteration, contains a lag-time
(countdown timer) between the physical commencement of simulation runs and
activation of the IKK agents within these simulations, due to the activation of the
cell membrane receptor complexes being abstracted away (although the focus of
iteration 2 in chapter 8). Currently, iteration 1 has a 250 iteration (approximately
8.5 seconds) lag-time before all IL-1R agents are activated, and then a further 250
iteration lag-time (i.e. 500 iterations in total or 17 seconds) before IKK agents
are activated. This provides an opportunity for us to investigate whether varying
the lag-time before IKK activation has any effect on overall system dynamics,
or whether it simply delays activation of the pathway, using the following null
hypothesis:

H70 An increase in lag-time for IKK activation will only act to delay pathway
dynamics, and will not affect the overall dynamics regarding IκBα degra-
dation and NF-κB activation.

7.5.1 Experimental Procedure

Experimentation into the effects of varying the lag-time before IKK activation,
is conducted through perturbation of the IKK stimulation delay simulation pa-
rameter. By default, this parameter is set to 500, which approximated to 17s of
physical time. To test the null hypothesis, we ran five sets of in silico experi-
ments under IL-1 stimulated conditions, using the following real-world lag-times
for IKK activation: 15s (∼ default), 1min (∼4x default), 2.5min (∼10x default),
5min (∼20x default), and 10min (∼40x default). For each set of 175 simulation
replicates, the median distributions of cytoplasmic NF-κB, nuclear NF-κB, cyto-
plasmic NF-κB-IκBα, nuclear NF-κB-IκBα, cytoplasmic IκBα and nuclear IκBα
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over the lifetime of the simulation runs are interpolated. These distributions are
contrasted with the baseline behaviour that results from simulations using the
default parameter value. KS-Tests and A-Tests are then performed to investigate
significant differences from baseline behaviour.

7.5.2 Results

Results unanimously indicate the system is robust to perturbations involving
the lag-time delay (upto 40x default) between activation of the cell membrane
receptors and the resultant activation of IKK. Figure 7.9 depicts the effects on
cytoplasmic IκBα numbers when the IKK stimulation delay simulation parameter
value is set to: approximately equivalent, 4x, 10x, 20x and 40x default parameter
value. No appreciable difference can be seen following increases (upto 40x) in
the lag-time before IKK activation. Similarly, figure 7.10 depicting the effects on
nuclear NF-κB numbers, and figure 7.11 depicting the effects on nuclear NF-κB-
IκBα numbers, provide further support that there is no appreciable difference on
system dynamics following perturbations (upto 40x) to the lag-time between cell
membrane receptor activation and subsequent IKK activation.

Tables 7.7 and 7.8 depict the associated KS-Test p-values and A-Test scores
resulting from the perturbations to the lag-time before IKK activation. It can
be seen that the only statistically significant difference occurs to nuclear NF-κB-
IκBα under a 40x default value in lag-time, due to the p-value of 0.0427. The
corresponding A-Test score indicates no scientifically significant difference, and
indeed there are no significant A-Test scores for any of the perturbations.

Figure 7.9: Cytoplasmic IκBα dynamics for the five sets of experiments varying the
lag-time before IKK activation, which have been compared against baseline IL-1 stim-
ulated dynamics.
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Figure 7.10: Nuclear NF-κB dynamics for the five sets of experiments varying the lag-
time before IKK activation, which have been compared against baseline IL-1 stimulated
dynamics.

Figure 7.11: Nuclear NF-κB-IκBα dynamics for the five sets of experiments varying
the lag-time before IKK activation, which have been compared against baseline IL-1
stimulated dynamics.
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Agent State ∼ default ∼ 4x ∼ 10x ∼ 20x ∼ 40x
NF-κB Cyto 0.9976 0.9976 0.9535 0.9181 0.0979
NF-κB-IκBα Cyto 0.9976 0.9775 0.9181 0.9535 0.5566
NF-κB-IκBα Nuc 0.0979 0.4931 0.9535 0.9976 0.0427
NF-κB Nuc 0.9913 0.9999 0.1706 0.1185 0.3264
Active NF-κB Nuc 0.9181 0.9999 0.9775 0.9976 0.3264
IκBα Cyto 0.8718 0.9181 0.9181 0.9976 0.2391
IκBα Nuc 1.0 1.0 1.0 1.0 1.0

Table 7.7: KS-Test scores for the five sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. The scores indicate that only
nuclear NF-κB-IκBα using 40x default value has a statistically significant difference
from baseline IL-1 stimulated dynamics.

Agent State ∼ default ∼ 4x ∼ 10x ∼ 20x ∼ 40x
NF-κB Cyto 0.4988 0.5037 0.4945 0.4956 0.4684
NF-κB-IκBα Cyto 0.5022 0.4999 0.4877 0.4777 0.4527
NF-κB-IκBα Nuc 0.4623 0.5551 0.4936 0.5076 0.4957
NF-κB Nuc 0.5067 0.4992 0.5144 0.5182 0.551
Active NF-κB Nuc 0.5066 0.4988 0.5143 0.518 0.5506
IκBα Cyto 0.4933 0.505 0.4852 0.4918 0.4565
IκBα Nuc 0.5 0.5 0.5 0.5 0.5

Table 7.8: A-Test scores for the five sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. The scores indicate that there is
no scientifically significant difference between any of the experiments or the baseline
IL-1 stimulated dynamics.
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7.6 Discussion

This chapter has reported the four in silico experiments that were performed
using the simulation platform developed for iteration 1. The motivation behind
these four experiments was presented in section 7.1, with the actual experimental
procedures and simulation results being presented in sections 7.2 to 7.5.

Section 7.2 presented the background, experimental procedure, and results of
in silico experimentation into basal dissociation of the NF-κB-IκBα complex.
As the work of Carlotti et al. (2000) focused on control (i.e. non-stimulated)
dynamics, and due to our epistemic uncertainty analysis on control dynamics
(see section 6.3.1) indicating that the system is very sensitive to changes in the
basal dissociation parameter value, this provided an ideal opportunity to test
whether perturbations to basal dissociation of the NF-κB-IκBα complex also
have an effect on system dynamics under IL-1 stimulation. We hypothesised that
an increase in basal dissociation of the inhibited NF-κB-IκBα complex would
reduce the likelihood of activated NF-κB accumulating in the nucleus, and also
increase the levels of free NF-κB and IκBα in the cytoplasm (these were converted
to their respective null hypotheses).

Results indicate that an increase in basal dissociation leads to: a decrease
in both cytoplasmic and nuclear NF-κB-IκBα complexes; an increase in cyto-
plasmic NF-κB, with an associated decrease in nuclear NF-κB; and an increase
in cytoplasmic IκBα, with a small increase in nuclear IκBα. From a biological
perspective the reduction in nuclear NF-κB and cytoplasmic NF-κB-IκBα com-
plexes, will be because an increase in basal dissociation results in a reduction of
the total numbers of NF-κB-IκBα complexes in the cytoplasm, and thus a reduc-
tion in the IKK-mediated release of NF-κB, which further causes a reduction in
the number of NF-κB agents that become activated following their translocation
to the nucleus.

KS-Tests and subsequent A-Tests indicated scientifically significant differences
exist for all scenarios, apart from: nuclear IκBα under 10x default value for basal
dissociation, which we believe may be due to the low absolute numbers of agents
located within the nucleus; and cytoplasmic NF-κB-IκBα using 10x, 100x, and
1,000x default values, which we believe may be due to an inability of the A-Test
to account for the convergence of baseline, 10x and 100x data curves at approx-
imately 1hr, and their convergence with the 1,000x data curve at approximately
2hr (see figure 7.3). We therefore believe that the A-Test scores, when viewed in
isolation would yield a false negative in relation to the cytoplasmic NF-κB-IκBα
complex. Through analysing the full suite of results (individual figures, KS-Test
p-values, and A-Test scores), we believe there is a significant difference across all
agent states under the basal dissociation experiments. As such, we reject both
H10, that an increase in basal dissociation of the inhibited NF-κB-IκBα complex
to yield its constituent components will not reduce the likelihood of activated
NF-κB accumulating in the nucleus; and H20, that an increase in basal dissoci-
ation of the inhibited NF-κB-IκBα complex to yield its constituent components
will not increase the levels of free IκBα and NF-κB in the cytoplasm. Further-
more, we also conclude that the system is fragile to perturbations involving basal
dissociation for both control conditions, as shown through epistemic uncertainty
analysis (see section 6.3.1) and IL-1 stimulation conditions.

209



Chapter 7. Experimentation using the Baseline Simulator

Section 7.3 presented the background, experimental procedure and results of in
silico experimentation into the effect of varying IKK numbers. Following the dis-
covery of Chen et al. (1996), that the signal-induced activation of NF-κB requires
phosphorylation of the inhibitory IκBα molecule (within the inhibited NF-κB-
IκBα complex), and its subsequent proteolytic degradation, we now know that
the initial phosphorylation to dissociate the IκBα molecule and release free NF-
κB is performed by IKK. This has provided us with an opportunity to investigate
the effects of varying IKK number within the calibrated simulation platform for
iteration 1. As there is an amplification step in the signalling pathway (i.e. one
IKK agent can facilitate dissociation of many NF-κB-IκBα complex over time),
we hypothesised that an increase in IKK numbers would increase the numbers
of free NF-κB and free IκBα (due to the increased dissociation of the inhibited
complex), and increase the accumulation of active NF-κB in the nucleus (these
were converted to their respective null hypotheses).

Results indicate that the system is stable to perturbations in IKK numbers
within a small range either side of the default value (i.e. between 50% and 200%),
but sensitive to more extreme perturbations (i.e. 10%, 20%, 500%, and 1,000%).
Using these higher IKK numbers (i.e. 500% and 1,000% of the default value),
results also indicate that an increase in the number of IKK agents, leads to: a
decrease in cytoplasmic IκBα; a decrease in both cytoplasmic and nuclear NF-
κB-IκBα complex, along with an associated increase in the dissociation of the
complexes; and no significant change to either nuclear NF-κB-IκBα complexes or
nulcear IκBα, although we suspect that this is due to the small absolute numbers
that are associated with the calibrated simulation platform. Additionally, a small
change in cytoplasmic IκBα was found when perturbing the system with low IKK
numbers (i.e. 10% and 20% of the default value).

KS-Tests and subsequent A-Tests provide additional support to these interpre-
tations, by indicating scientifically significant differences for cytoplasmic NF-κB-
IκBα complexes under all perturbations to IKK number, and nuclear (both free
and active) NF-κB under all perturbations to IKK number, apart from 50% and
200% of the default value for IKK numbers. Unfortunately, the effects on cyto-
plasmic NF-κB are not as straight forward to interpret, as non-linear temporal
dynamics emerge, which we believe have yielded false negative A-Test scores in a
similar manner to those seen under the previous in silico experimentation around
basal dissociation of the inhibited complex. We believe that these non-linear dy-
namics of cytoplasmic NF-κB are due to the rapid increase in dissociation of
NF-κB-IκBα complexes to yield free NF-κB, and then subsequent translocation
to the nucleus whereby these IKK-mediated free NF-κB agents become activated
and remain in the nuclear compartment. As such, we believe that an increase
in IKK numbers generates an initial increase in cytoplasmic NF-κB, which then
slowly reduces over time through translocation to the nucleus. Once in the nu-
cleus, the NF-κB becomes activated and thus remains there until the end of the
simulation, due to the abstractions that we have taken as part of our platform
model. We therefore reject both H30, that an increase in IKK concentration will
not increase the rate of dissociation of NF-κB-IκBα complexes, and resultant
degradation of IκBα; and H40, that an increase in IKK concentration will not
increase the rate of at which activated NF-κB accumulates in the nucleus.

Section 7.4 presented the background, experimental procedure and results of in
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silico experimentation into the effect of varying IκBα numbers. As discussed in
chapter 3 where we focused on the biological domain, IκBα is the key inhibitory
molecule, which masks the nuclear localisation sequence of NF-κB molecules, to
restrict the NF-κB-IκBα complexes within the cytoplasm, and thus mitigate the
activation of NF-κB and its subsequent promotion of the transcription of inflam-
matory proteins. Yang et al. (2003) and Carlotti et al. (1999) predicted a larger
total number of IκBα molecules than NF-κB molecules within cells (approxi-
mately 3:1 ratio). Pogson et al. (2008) have recently shown through computa-
tional modelling, that the excess IκBα was sequestered to the actin cytoskeleton.
This has provided us with an opportunity to investigate the effects of increasing
the levels of free IκBα to 3x the default value, and the effects of adding excess
IκBα agents that are sequestered within the cell (i.e. to the cytoskeleton).

Results indicate that the system in both control (non-stimulated) and IL-1
stimulated conditions, is fragile to perturbations that increase the number of free
IκBα agents to 3x the default value, but stable when the excess IκBα agents are
sequestered to the cytoskeleton. Under control conditions, the excess free IκBα
results in the system settling at a pseudo steady-state away from our calibrated
dynamics, as indicated by statistically significant KS-Test p-values and scientifi-
cally significant A-Test scores for: cytoplasmic NF-κB, cytoplasmic NF-κB-IκBα
complexes, and nuclear NF-κB-IκBα complexes. Conversely, the results of excess
sequestered IκBα agents, show no scientifically significant differences, as indi-
cated by a tendency towards A-Test scores of 0.5. We believe that these results
for control dynamics are consistent with the findings of Pogson et al. (2008).

Results of excess free IκBα during IL-1 stimulation also show significant dif-
ferences, and in fact generate an initial spike in free NF-κB between 5 - 10min,
with a corresponding decrease in cytoplasmic NF-κB-IκBα complexes, before a
rapid decrease in cytoplasmic numbers due to their translocation to the nucleus.
We believe that these phenomena may be due to the extremely low numbers
of free NF-κB at the beginning of simulations, as the pseudo steady-state dy-
namics following excess free IκBα under control conditions, had resulted in the
overwhelming majority of NF-κB agents to be complexed with IκBα within the
cytoplasm. KS-Test p-values and A-Test scores indicate scientifically significant
differences for all agent states under IL-1 stimulated conditions with excess free
IκBα, apart from cytoplasmic IκBα. Furthermore, as per the control conditions
experiment, the addition of excess sequestered IκBα had no effect on the system.
We therefore reject both H50, that the addition of excess free IκBα within the
cytoplasm will not perturb system dynamics into a fragile state; and H60, that
the addition of excess IκBα sequestered within the cell will not result in stable
system dynamics.

Section 7.5 presented the background, experimental procedure and results of
in silico experimentation into the effect of varying the lag-time before IKK ac-
tivation. Simulation platform development and calibration has yielded a default
lag-time for IKK activation within our computational model of 500 iterations,
which approximates to 17 seconds. This has provided us with an opportunity
to investigate the effects of varying the lag-time between cell membrane receptor
activation and the subsequent activation of IKK within the cytoplasm. Results
indicate that the system is robust to perturbations involving the lag-time before
activation of IKK. Increases of upto 40x to the lag-time (with respect to the
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default value) between cell membrane receptor activation and the subsequent ac-
tivation of IKK within the cytoplasm, showed no appreciable difference for any
of the seven agent states (i.e. cytoplasmic and nuclear NF-κB, cytoplasmic and
nuclear NF-κB-IκBα, active NF-κB, cytoplasmic and nuclear IκBα).

KS-Test p-values and A-Test scores confirm these findings, as it can be seen
that only nuclear NF-κB-IκBα under 40x default lag-time yields a statistically
significant difference (p-value of 0.0427), but the associated A-Test score indicates
that although statistically significant, the difference does not generate a sufficient
effect magnitude for us to conclude a scientifically significant difference, i.e. the
effect of the difference would not be appreciable in the real world. We are there-
fore unable to reject H70, and believe that the system is stable to perturbations
extending the lag-time (upto 40x default or 10min) before IKK activation.

This chapter has addressed research objective 4: to perform novel in silico ex-
perimentation using the agent-based model. Through in silico experimentation,
it provides contributions to the field of research into the IL-1 stimulated NF-κB
signalling pathway, and additionally provides a platform for exploring how mod-
elling techniques may assist wet-lab research in furthering our understanding of
complex biological systems. This is the subject of the following chapter, where
the simulation platform for iteration 1 is augmented to provide further granular-
ity of components and interactions associated with the cell membrane receptor
complex.
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As discussed previously, the CoSMoS process was defined to be iterative in na-
ture, and therefore allows (and indeed expects) multiple versions of computational
models, which incrementally increase the functionality of the model with respect
to the real-world system under investigation. The initial version of our computa-
tional model, focused on the NF-κB-IκBα-IKK signalling module, with minimal
functionality for the cell membrane receptor, through use of a single generic IL-1R
agent. Iteration 1 was defined from a technical perspective in the platform model
of chapter 5; developed and calibrated into the simulation platform documented
in chapter 6, where uncertainty analysis was also performed to ascertain the
various uncertainties emerging from our understanding of the real-world system
(epistemic uncertainty) and the stochastic processes within the computational
model itself (aleatory uncertainty); and experimented with in chapter 7. The
second version of the computational model will incorporate increased granularity
of components at the cell membrane, and before activation of IKK, to extend
the scope of in silico experimentation to components upstream of the NF-κB
signalling module.

This chapter focuses on the second version of the computational model. Section
8.1 commences with the motivation for augmenting the model; section 8.2 defines
the augmented platform model; section 8.3 presents the new simulation platform
and associated dynamics (research objective 5); section 8.4 investigates the effects
of perturbing the numbers of various cell membrane receptor components through
in silico experimentation (research objective 6); whilst section 8.5 concludes this
chapter.

8.1 Motivation behind Augmenting the
Computational Model

As discussed in section 3.3, in addition to the various NF-κB dimers, IκB in-
hibitors, and IKK complexes, there are a large number of upstream components
which facilitate signal transduction through the NF-κB signalling pathway. Per-
haps the most important of these upstream components are those that make up
the cell membrane receptor complex. With specific reference to the IL-1 stimu-
lated NF-κB signalling pathway, these upstream components include the actual
IL-1 receptors themselves, along with various co-receptors, adaptor proteins and
kinases. Upon recognition of appropriate extracellular signal, the receptors un-
dergo conformational changes at their intracellular surfaces to facilitate binding
of proteins within the cytoplasm, and resultant propagation of signal inside the
cell. We therefore have an opportunity to extend the computational model devel-
oped for iteration 1, with additional functionality for receptor complex formation
at the cell membrane. As such, the simulation platform will be updated to incor-
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porate dimerisation of the IL-1 receptors, binding of the adaptor protein MyD88,
and binding of the IRAK and TRAF6 kinases, before the activation of IKK for
propagation of the signal. Our approach to augmenting iteration 1 with addi-
tional functionality adheres to the recent work of Greaves et al. (2012, 2013), that
discusses a process for augmenting existing computational models with additional
pathway components.

8.2 The Augmented Platform Model

Due to the CoSMoS framework advocating an incremental approach to developing
model functionality, we have attempted to capture within our domain model all
of the components of the signalling pathway that will be relevant to us during
the lifetime of the project. As such, the existing domain model presented in
chapter 4, continues to be appropriate for our augmented computational model
developed as part of iteration 2. This iterative approach to development, ensures
that the underlying basis of iteration 2 is the technical infrastructure previously
developed as part of the first iteration. We therefore believe it appropriate to
utilise a number of UML diagrams previously developed for iteration 1 (defined
in chapter 5), as the basis for the augmented platform model, and have highlighted
the additional components, interactions, and activities for this second iteration
in the colour red, as this ensures a quick and easy differentiation of the platforms
for the two iterations.

Along with the five main agents from iteration 1 that consisted of the IL-1R cell
membrane receptor, IKK, IκBα, NF-κB, and nuclear transporter; we have now
added three additional agents relating to MyD88, IRAK, and TRAF6. Within our
abstracted technical view of the system, these additional components are subtypes
of the generic Receptor component, as highlighted in the updated inheritance class
diagram of figure 8.1, and interact with the IL-1 receptor components to form the
IL-1R receptor complex, as highlighted in the updated containment class diagram
of figure 8.2.

The class association diagram (figure 8.3) specifies the additional high-level
interactions for cell membrane receptor complex formation. It can be seen from
this diagram and the updated sequence and communication diagrams (figures
8.4 and 8.5) that the additional functionality incorporated through the MyD88,
IRAK and TRAF6 components is modular in nature, being a discrete additional
step over-and-above that for iteration 1. As such, the incorporation of the ad-
ditional components has no affect on the existing functionality once the IL-1R
complex has become activated. To further support the idea that these additional
components represent extra granularity within the receptor activation module,
the activity diagram of figure 8.6 provides an updated partial view of the sys-
tem, which focuses on the activities upto and including IKK activation, as the
downstream activities remain consistent with figure 5.8 for iteration 1. Finally,
the low-level detail of the system components for iteration 2 are specified in the
state machine diagram (figure 8.7), which specifies the various agent states, and
the corresponding X-Machine stategraph diagram (figure 8.8), which along with
specifying the agent states, also defines the flow of methods within individual
agents and the communication between agent types.
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Figure 8.1: UML inheritance class diagram for the augmented platform model. The
inheritance class diagram for iteration 1 has been augmented with the addition of
MyD88, IRAK and TRAF6, which are subtypes of the generic receptor component.

Figure 8.2: UML containment class diagram for the augmented platform model. Con-
tainment continues to follow that for iteration 1, apart from the addition of MyD88,
IRAK and TRAF6. These additional components interact with IL-1R to form the
IL-1R receptor complex at the cell membrane.
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Figure 8.5: UML communication diagram for the augmented platform model. As
per previous UML diagrams, the version from iteration 1 has been updated with the
additional MyD88, IRAK and TRAF6 components, and their associated interactions.

Figure 8.6: UML activity diagram for the augmented platform model. This UML di-
agram focuses explicitly on the activities associated with the additional MyD88, IRAK
and TRAF6 components, as the other downstream activities remain the same as iter-
ation 1.
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8.3 The Augmented Simulation Platform

As discussed in chapter 6, the initial agent-based computational model was devel-
oped using the FLAME simulation framework, against the technical specification
defined in the platform model from iteration 1 (see chapter 5). This platform
model was intentionally designed to be modular in nature, which has allowed the
augmentation for additional components (MyD88, IRAK and TRAF6) to be a
relatively straightforward process, as defined in the previous section. Similarly,
as the simulation platform is the physical embodiment of the platform model
in computer code, this too followed a modular architecture, which has again fa-
cilitated a relatively straightforward process for augmenting the code with the
additional functionality for the formation of the cell membrane receptor com-
plexes. Furthermore, as the augmentation of the simulation platform required
the addition of extra granularity with an existing functional module (i.e. of the
process of cell receptor complex activation, and the subsequent activation of IKK
within the cytoplasm), we did not need to recalibrate the simulation platform for
iteration 2, as the downstream mechanisms following IKK activation remained
the same as the first iteration. Unfortunately, two major technical issues were
encountered during the augmentation of the simulation platform for iteration 2
functionality, which related to the requirement for agents to only interact with
their nearest neighbour, and poor performance of the hardware architecture when
running simulations, due to the resource intensive nature of the FLAME simula-
tion framework.

The first issue relates to the fact that Communicating X-Machines interact
through the generation of messages by agents, which are posted to a centralised
message board. Agent behaviour (state changes) are then generated through fil-
tering these messages and acting accordingly. Unfortunately, the agents within
a biological simulation probabilistically bind to their nearest neighbours, and
it was the calculation of nearest neighbours that caused issues in the system.
During cell receptor complex formation, a defined sequence of bindings needs
to occur: 1) IL-1R dimerisation, 2) IL1R-MyD88, 3) IL1R-MyD88-IRAK, and 4)
IL1R-MyD88-IRAK-TRAF6. It became evident that agents within the cytoplasm
(IKK, NF-κB and IκBα) were consistently within the interaction radius of cell
receptor components, and were affecting the dynamics of cell receptor complex
formation. We mitigated this issue through introducing additional message types
for interactions between cell receptor complex components and for interactions
between the activated cell receptor complex and dormant IKK. This allowed an
intrinsic filtering system, as only cell receptor components could read their mes-
sage type, so mitigating any issues arising from agents in the cytoplasm being
closer in 3D space. We therefore required a message type for cell receptor compo-
nents (Membrane Messages), a message type for IKK activation by the activated
cell receptor complex (IKK Activation Messages), and a third message type for
the cytoplasm and nuclear components. Figure 8.9 depicts a 3D visualisation of
the additional components IL-1R, MyD88, IRAK and TRAF6 orbitting within
the vicinity of the cell membrane.

The second issue relates to the high-volume of data produced by the FLAME
simulation framework, and the resultant resource intensive nature of running
replicate sets of simulations. The 0.xml starting parameters file for iteration 2
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has grown in size to approximately 1.4MB, due to defining separate instantiations
of the 500 MyD88, 500 IRAK and 500 TRAF6 agents within simulation runs. An
in silico experiment from iteration 1 ran simulations for 324,000 iterations (∼3hr
biological time), which generated approximately 454GB of cumulative XML out-
put files. The issue was then further compounded by our requirement to run
175 replicates to minimize aleatory uncertainty (see section 6.3.2), which is pre-
dicted to generate approximately 80TB of data. We brought down the Northern
8 Universities Consortium (N8) High Performance Computing Cluster (HPC) on
a number of occasions during our initial development of the simulation platform,
which we were later informed was due to running out of storage space as the
N8 HPC had 100TB of fast Lustre storage. Due to the fact that other users
required access to fast storage space, we were forced to run a maximum of 50
replicates at a time to mitigate the risk of the N8 HPC running out of fast stor-
age space. Unfortunately, our performance issue was further compounded by the
fact that the 324,000 time-step simulations took over 48hr to run, which exposed
an additional issue with the setup and configuration of the N8 HPC. The N8 HPC
technical design committee had previously decided that all jobs would be stopped
upon reaching 48hr of wall clock (physical) time, to ensure that no single user
was disproortionately using this shared computing resource. We were unfortu-
nately unable to overturn this decision, and therefore had to reduce the number
of time-steps for individual simulation runs, from 324,000 (∼3hr biological time)
to 270,000 (∼2.5hr biological time), to ensure they could run to completion.

Figure 8.10 represents the baseline IL-1 stimulated dynamics of the augmented
simulation platform, whilst table 8.1 provides the results of the associated statis-
tical tests (KS-Test and A-Test) that were performed against the IL-1 stimulated
baseline of iteration 1. It can be seen by the KS-Test p-values that there are
no statistically significant differences, and by the A-Test scores that there are
no scientifically significant differences, between the two sets of simulation data
distributions. This confirms that the augmentation of the simulation platform for
additional functionality at the cell membrane receptor, has not perturbed sim-
ulation dynamics with respect to the calibrated simulation platform of the first
iteration.

Agent State KS-Test p-value A-Test Score
NF-κB Cyto 0.1891 0.4943
NF-κB-IκBα Cyto 0.9997 0.4741
NF-κB-IκBα Nuc 0.4375 0.5305
NF-κB Nuc 0.9999 0.5228
Active NF-κB Nuc 0.9999 0.5228
IκBα Cyto 0.998 0.4899
IκBα Nuc 1.0 0.5

Table 8.1: KS-Test p-values and A-Test scores for the baseline IL-1 stimulated dy-
namics of iteration 2 against the baseline IL-1 stimulated dynamics of iteration 2. The
scores indicate no statistically or scientifically significant difference between the two
distributions of simulation data.
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Figure 8.9: 3D visualisation of the spherical orbitting of IL-1R and the additional
MyD88, IRAK and TRAF6 components for iteration 2. The cytoplasmic and nuclear
locations of the cell envrionment are represented through the use of two concentric
circles. The IKK, NF-κB and IκBα agents have been omitted to reduce confusion and
ensure focus is applied to the vicinity of the cell membrane.

Figure 8.10: Median average IL-1 stimulation baseline dynamics for the augmented
simulation platform, following 175 replicates. As discussed above, simulations could
only run for a maximum of 270,000 iterations, which equates to approximately 2.5
hour of real-world time.
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8.4 Effect of Cell Receptor Complex Component
Numbers

As previously discussed in chapter 3 (The Domain), the extracellular signal is
propagated through the signalling pathway via the cell membrane receptor com-
plex, intermediate components, the NF-κB signalling module, and the transcrip-
tion and translation machinery for generation of inflammatory response proteins.
Whereas experiments 1-4 investigated the effects of perturbing the system with
respect to the NF-κB signalling module, experiment 5 focuses on investigating
IKK activation dynamics through perturbations of cell membrane receptor com-
plex formation. Investigations will therefore focus on varying the number of
adaptor protein (MyD88) and kinase (IRAK and TRAF6) agents within the sys-
tem.

Simulation dynamics have been calibrated using 500 agents for each of the
IL-1R, MyD88, IRAK and TRAF6 components. This provides an opportunity
for us to investigate the effects of varying the numbers of these cell receptor
complex components (akin to varying the concentration in wet-lab experiments),
and whether the system is robust to such perturbations. As there is a direct
sequence of binding events within our computational model for formation of the
active cell membrane receptor, it is expected that an increase in numbers for each
of the individual components will increase the speed at which IKK is activated,
and thus affect the IκBα degradation and NF-κB activation dynamics. It is
also expected that an increase in adaptor protein and kinase numbers (MyD88,
IRAK and TRAF6), whilst maintaining the numbers of IL-1R agents, will also
increase the rate of activated cell membrane receptor complexes, and thus the
IκBα degradation and NF-κB activation dynamics. Converting these to null
hypotheses, we have:

H80 An increase in the numbers of each cell membrane receptor complex com-
ponent (e.g. IL-1R, MyD88, IRAK and TRAF6) will not affect the overall
dynamics regarding IκBα degradation and NF-κB activation.

H90 An increase in the numbers of adaptor protein (MyD88) and kinase (IRAK
and TRAF6) components will not affect the overall dynamics regarding
IκBα degradation and NF-κB activation.

8.4.1 Experimental Procedure

Experimentation into the effects of varying cell membrane receptor complex com-
ponent numbers, is conducted through perturbation of the total numbers of indi-
vidual components. By default, there were 500 IL-1R agents, 500 MyD88 agents,
500 IRAK agents, and 500 TRAF6 agents, within the calibrated simulation plat-
form. To test the two null hypotheses above, we ran four sets of in silico ex-
periments using half of each component (i.e. 250 of each type of agent), double
each component (i.e. 1,000 of each type of agent), half adaptor protein and ki-
nase components (i.e. 500 IL-1R, but 250 MyD88, IRAK and TRAF6 agents), and
double adaptor protein and kinase components (i.e. 500 IL-1R, but 1,000 MyD88,
IRAK and TRAF6 agents). For each set of 175 simulation replicates, the median
distributions of cytoplasmic NF-κB, nuclear NF-κB, cytoplasmic NF-κB-IκBα,
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nuclear NF-κB-IκBα, cytoplasmic IκBα and nuclear IκBα over the lifetime of
the simulation runs are interpolated. These distributions are constrasted with
the baseline behaviour that results from simulations using the default number
of the cell membrane receptor complex agents. KS-Tests are then performed to
understand whether there are any statistically significant differences from base-
line behaviour (requiring p-values below 0.05), and A-Tests are also performed to
understand the effect magnitude of these differences, assuming ‘large’ differences
of < 0.29 and > 0.71 to be scientifically significant.

8.4.2 Results

Results indicate that the system is relatively robust to perturbations involving the
total numbers of individual cell membrane receptor complex components. Figure
8.11 depicts the effects on cytoplasmic IκBα numbers when the component num-
bers are: all halved, all doubled, constant IL-1R with halved adaptor protein and
kinases, and constant IL-1R with doubled adaptor protein and kinases. It can
be seen that none of these perturbations has an effect on the overall temporal
profile of IκBα agents within the cytoplasm. Similarly, figure 8.12 depicts the
effects on cytoplasmic NF-κB-IκBα numbers, and figure 8.13 depicts the effects
on cytoplasmic NF-κB numbers when perturbing the system. Here it can be seen
that the experimental setups for baseline and doubling of non-IL-1R agents, and
for halving all agents and halving the non-IL-1R agents, show very similar tempo-
ral profiles, with the only appreciable difference resulting from the experimental
setup that utilised a doubling of all agents.

Figure 8.11: Cytoplasmic IκBα dynamics for the four sets of experiments into recep-
tor complex component numbers, which have been compared against the baseline IL-1
stimulated dynamics of iteration 2.
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Figure 8.12: Cytoplasmic NF-κB-IκBα dynamics for the four sets of experiments into
receptor complex component numbers, which have been compared against the baseline
IL-1 stimulated dynamics of iteration 2.

Figure 8.13: Cytoplasmic NF-κB dynamics for the four sets of experiments into re-
ceptor complex component numbers, which have been compared against the baseline
IL-1 stimulated dynamics of iteration 2.

Tables 8.2 and 8.3 depict the associated KS-Test p-values and A-Test scores
resulting from the perturbations to cell membrane receptor complex component
numbers. It can be seen that only the cytoplasmic NF-κB when perturbed with
halving of all agents and halving of non-IL-1R agents; and additionally the nuclear
NF-κB-IκBα when perturbed with halving of all agents, doubling of all agents,
and doubling of non-IL-1R agents; show statistically significant differences from
the baseline dynamics. This does not translate to a scientifically significant dif-
ference however, as none of the A-Test scores yield a high difference from baseline
dynamics.
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Agent State Half all
agents

Double
all agents

Half non-
IL-1R
agents

Double
non-IL-
1R agents

NF-κB Cyto 0.0279 0.3939 0.0386 0.9601
NF-κB-IκBα Cyto 1.0 1.0 1.0 1.0
NF-κB-IκBα Nuc 0.0000 0.0001 0.3939 0.0031
NF-κB Nuc 0.9875 1.0 0.9999 1.0
Active NF-κB Nuc 0.9978 0.9999 0.9999 1.0
IκBα Cyto 0.6599 0.9978 0.8394 1.0
IκBα Nuc 1.0 1.0 1.0 1.0

Table 8.2: KS-Test scores for the four sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. The scores indicate statistically
significant differences for cytoplasmic NF-κB when perturbed with halving of all agents
and halving of non-IL-1R agents; and additionally nuclear NF-κB-IκBα when perturbed
with halving of all agents, doubling of all agents, and doubling of non-IL-1R agents.

Agent State Half all
agents

Double
all agents

Half non-
IL-1R
agents

Double
non-IL-
1R agents

NF-κB Cyto 0.4938 0.4979 0.5042 0.4978
NF-κB-IκBα Cyto 0.4623 0.522 0.4619 0.5058
NF-κB-IκBα Nuc 0.3599 0.4099 0.5103 0.3995
NF-κB Nuc 0.5384 0.4849 0.5343 0.5001
Active NF-κB Nuc 0.5381 0.4843 0.5339 0.4999
IκBα Cyto 0.4715 0.5065 0.4873 0.4946
IκBα Nuc 0.5 0.5 0.5 0.497

Table 8.3: A-Test scores for the four sets of in silico experiments, which have been
compared against baseline IL-1 stimulated dynamics. The scores indicate that there is
no scientifically significant difference between any of the experiments or the baseline
IL-1 stimulated dynamics.
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8.5 Discussion

This chapter has reported the augmentation of the previously developed com-
putational model. The motivation behind augmenting the computational model
with additional granularity of components at the cell membrane was presented
in section 8.1, with the actual technical design (augmented platform model) and
augmented simulation platform being presented in section 8.2 and 8.3. Further-
more, section 8.4 presented the background, experimental procedure, and results,
of in silico experimentation into the effects of perturbing component numbers
within the cell membrane receptor complex.

As discussed in section 8.2, our domain model (see chapter 4) was developed to
capture the overall functional aspects of this project in its entirety, and therefore
did not need to be augmented, as it defined the underlying biological behaviour
for both iterations, and therefore continues to be appropriate. We were how-
ever required to develop a new platform model, and due to the modular nature
of our design, we were able to utilise the UML diagrams that were previously
developed for iteration 1 (see chapter 5) as the basis for our augmented plat-
form model. This was achieved through the additional technical aspects for the
computational model being added to the existing UML notations, and using a
red colour-coding to provide an easy differentiation between the two platforms.
The three additional agents relating to MyD88, IRAK and TRAF6, are all sub-
types of the generic Receptor component (as defined in the updated inheritance
class diagram of figure 8.1), and confined to the vicinity of the cell membrane
as defined in the updated containment diagram (see figure 8.2). The resultant
high-level interactions between these three additional agents and the existing IL-
1R agent have also been specified in the updated class association, sequence, and
communication diagrams (see figures 8.3-8.5 respectively). It is clear from these
three UML notations that the additional functionality for iteration 2 is modular
in nature, which has also been reinforced through the updated activity diagram
(see figure 8.6), which shows the additional activities upto and including IKK
activation. Finally, the low-level dynamics for the additional agents were defined
in the end-to-end state machine diagram (see figure 8.7) and updated X-Machine
stategraph diagram (see figure 8.8).

Due to this modular nature, the simulation platform was relatively straight-
forward to augment for the additional functionality of cell membrane receptor
complex formation. Furthermore, as the augmentation did not alter any of the
logic or functionality following activation of IKK, the simulation platform did not
require recalibration. Unfortunately, two additional issues with the FLAME sim-
ulation framework were identified during this iteration of the CoSMoS process.
These were similar to those identified during simulation platform development
in iteration 1, with the first relating to probabilistic binding of agents through
the use of the central message board to communicate the location of nearest
neighbours, and the second relating to the resource intensive nature of running
simulations. The first issue, once identified was relatively straight forward to
resolve, and required the use of a new message type, that was specific to the
IL-1R, MyD88, IRAK and TRAF6 agents. The second issue could not be fully
resolved due to the design and policy decisions taken by the N8 HPC technical
committee, and as such, our only option was to reduce the size of our simulation
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runs from 324,000 iterations to 270,000 iterations, and to reduce the number of
parallel jobs that could be submitted to the HPC at any given time. Although
this facilitated our simulations to run to completion (and therefore not fail), it
incurred considerable time delays on running experiments.

Section 8.4 presented the background, experimental procedure, and results of
in silico experimentation into the effect of varying the numbers of cell membrane
receptor complex components. Simulation platform development and calibration
utilised a default number of 500 agents for each receptor complex component
(IL-1R, MyD88, IRAK and TRAF6). This has provided us with an opportunity
to investigate the effects of varying the numbers of all components, and indeed of
varying the numbers of adaptor protein and kinase components, whilst maintain-
ing a stable number of IL-1R agents. We hypothesised that an increase in the
number of each individual type of receptor complex component will increase the
speed at which IKK is activated, and thus increase the rate of IκBα degradation
and NF-κB activation; and that an increase in adaptor protein and kinase num-
bers, whilst maintaining IL-1R numbers, would also increase these rate dynamics,
As per iteration 1 in silico experimentation, these were also converted to their
respective null hypotheses.

Results indicate that the system is robust to perturbations involving the total
numbers of receptor complex components. Although correlations were found in
the temporal profiles (with respect to cytoplasmic NF-κB-IκBα and cytoplasmic
NF-κB) for baseline and doubling of non-IL-1R agents conditions, and for the
halving of all agents and the halving of non-IL-1R agents, no scientifically sig-
nificant difference was found, following the use of the Kolmogorov-Smirnov and
Vargha-Delaney A-Tests. We are therefore unable to reject either H80, that an
increase to receptor complex component numbers will not affect system dynam-
ics, or H90, that an increase in adaptor protein and kinase numbers will not affect
system dynamics.

This chapter has addressed research objective 5: Augment the agent-based
model with additional upstream signalling components related to the cell mem-
brane receptor complex; and research objective 6: Perform novel in silico exper-
imentation using the augmented agent-based model. This augmented computa-
tional model provides additional contributions, which are over and above those
from chapter 7, to the field of research into the IL-1 stimulated NF-κB signalling
pathway. It provides a useful platform for the research community to explore the
mechanistic rules that underpin cell receptor complex formation, in particular
through the rule-based interactions and associated ratios of the respective re-
ceptor complex components (IL-1R, MyD88, IRAK, and TRAF6). Furthermore,
this chapter also makes an additional contribution to research objective 7: Inves-
tigate the suitability of using the FLAME simulation framework for developing
computational models of complex biological systems, which are over and above
those previously made within chapter 6.
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9 Discussion, Conclusions and
Further Work

This final chapter concludes the work of this doctoral thesis, which had the overall
aim:

To develop an agent-based model of the IL-1 stimulated NF-κB sig-
nalling pathway in a quality assured manner, which uses leading prac-
tices for software engineering, calibration, verification and validation.
Furthermore, once developed, the agent-based model will be used to
perform novel in silico experimentation to extend our knowledge of
the signalling pathway.

The chapter commences in section 9.1, with discussion of the contributions made
to computational biology, that include: reflections on the completeness of UML
for modelling complex biological systems; reflections on the suitability of FLAME
for modelling complex biological systems; reflections on the CoSMoS process as a
project lifecycle for modelling complex biological systems; and reflections on the
necessity for statistical rigour. Section 9.2 discusses the contributions to NF-κB
modelling, whilst section 9.3 provides a chapter-by-chapter summary of the thesis
content and contributions. Section 9.4 presents three broad areas for further in-
vestigation, including: additional modelling and simulation of NF-κB signalling;
further investigation into the use of UML and statistics to define complex biologi-
cal systems; and investigations into the effects that different modelling paradigms
(e.g. equation-based versus agent-based), or modelling frameworks (e.g. FLAME
versus FLAME GPU versus Java MASON) may have on simulation results, and
whether the results from in silico experiments that utilise different approaches are
comparable. Finally, section 9.5 presents the concluding remarks of this doctoral
thesis.

9.1 Contributions to Computational Biology

Biological systems are complex, with behaviours and characteristics that result
from a highly connected set of interaction networks that function through time
and space. One of the main strengths of the systems biology approach, is that
it focuses on three key properties of complex systems: 1) system structures,
2) system dynamics, and 3) system control (Ideker et al., 2001). Simulation
attempts to predict the dynamics of systems, so that the validity of the underlying
assumptions behind the models can be tested. As such, computational modelling
and simulation can be useful tools for exploring the behaviours and dynamics of
biological systems. Through in silico experimentation, these models provide a

233



Chapter 9. Discussion, Conclusions and Further Work

relatively easy mechanism for testing complex hypotheses of how complex low-
level system dynamics, result in the myriad of system-wide behaviours.

For these models to be successful in fulfilling their role as computational ab-
stractions of real-world biology, it is essential that the chosen modelling system
is able: to effectively capture system structure and dynamics; is scalable with re-
spect to the hierarchical-level of biology, e.g. molecules, to cells, to tissues/organs;
is modular, so that additional real-world functionality can be applied in an incre-
mental basis, without having to re-engineer the existing models; and lends itself to
rigourous interrogation through statistical analysis of simulation results. We will
reflect on these various aspects for the remainder of this section, with initial focus
applied to the use of UML for defining system structure and dynamics, before
turning to the suitability of FLAME for modelling complex biological systems.
We then complete this section through an evaluation of the CoSMoS process as
a project lifecycle for design and development of computational models, and re-
flections on the necessity for statistical rigour when calibrating computational
models and interpreting simulation results.

9.1.1 Reflections on the Completeness of UML for Domain
Modelling of Complex Biological Systems

As discussed in chapter 4, we have developed a domain model of the IL-1 stimu-
lated NF-κB signalling pathway, for use as functional specification for our agent-
based model. As per Read et al. (2009b) and Bersini (2012), we agree that a
subset of UML notations are able to efficiently represent elements of the domain
model of biological systems. We have found activity diagrams and communication
diagrams particularly effective at depicting system-wide behaviours; communica-
tion diagrams to be effective at depicting relationships between components; and
state machine diagrams effective at depicting low-level dynamics within individual
components. Furthermore, we have found that activity diagrams are particularly
effective when used in conjunction with swim-lanes to convey the location (e.g.
cytoplasm or nucleus) of activities, and sequentially-linked state machine dia-
grams are particularly effective at depicting the end-to-end state changes within
a system.

Although we have found UML to be particularly useful in these cases, it does
have a number of deficiencies however. Along with the issues found by Read
et al. (2009b, 2014), we have discovered a number of additional areas where
the current UML standards have deficiencies in modelling biology. For exam-
ple, although UML facilitates detailed information to be depicted as attributes
of individual components, it relies on the reader to unpick the multitude of dia-
grams to collate all of the information, for example parameter values (such as size
of cell, and speed of movement of intracellular components) and rate constants
(such as degradation of IκBα, and translocation of components across the nuclear
membrane). We believe that a table of such information would provide a more
effective mechanism to convey this information, than to over-engineer a UML
diagram. Furthermore, although UML allows the range of individual objects to
be depicted through multiplicity, in the form of a zero to many ‘0..*’ association,
this does not effectively convey the degree of simultaneous interactions between
agents. Similarly, it is well understood that observations of genetically identical,
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individual cells in a standardised environment often display significant differences
in their response to perturbations (Tijskens et al., 2003), thus leading to the large
degree of inherent variation within biological populations (be they cells, organ-
isms, or communities). At a molecular level, this may be due to the varying
numbers of particular proteins within a population of cells. UML does not have
the ability to depict this variation, and nor was it designed to.

We agree with Cook (2012) that “UML is likely to influence model-driven
development for the foreseeable future”, but counter that UML should not be
seen as the only tool to be used in the domain modelling process. Our domain
modelling work, found a number of linear and multivariate statistical techniques
to be key to gaining a fuller understanding of the domain, and for scoping the
abstraction of the domain to be taken forward into the simulation. Likewise,
UML does not currently have the ability to depict patterns within wet-lab data,
which we believe is an essential component of the domain model for complex
biological systems. We therefore believe that domain models developed using
UML, benefit from the complementary views that emerge from statistical analysis.
Furthermore, Rumpe and France (2011) advise that different stakeholders and
modellers from different domains have varying interpretations of what constitutes
an appropriate UML diagram. They further advise that as the UML specification
allows for a wide variety of semantic variations1, diagrams can be tailored to
better support the varied requirements of individual modellers, stakeholders, and
their respective domains. We therefore suggest that the statistical techniques used
within this case study, along with the various cartoon-like diagrams for modelling
the expected behaviours of the system (see figure 4.1) and physical containment
of components (see figure 4.2) represent an example semantic variation point for
modelling complex intracellular signalling pathways.

Furthermore, we believe that community and industry standards are important
for improving the communication between developers and domain experts. The
use of these standards, should make the reimplementation of models by different
researchers (and labs) easier, and indeed should reduce the duplication of work,
and more importantly reduce implementation errors, which may become intro-
duced through reverse engineering of existing models and manual walkthroughs
of published papers. The use of cartoon and UML diagrams are an essential first
step towards development of a domain model, which may be published along-
side the results of in silico experimental papers; however in isolation they are
not enough to provide a comprehensive model, which other researchers and labs
may use to reproduce computational models. In particular, cartoon and UML
diagrams have been unable to convey the dynamics of IκBα degradation (along
with the associated NF-κB release and subsequent activation), or indeed model
the quantitative aspects of the signalling pathway. We therefore conclude that
the use of linear and multivariate statistical techniques to complement the UML
diagrams, can aid the development of more comprehensive domain models of
complex biological systems, such as the IL-1 stimulated NF-κB signalling path-
way, and that on its own, UML is not enough for developing domain models of
complex biological systems.

1Semantic variation points are where part of the semantics of individual UML notations are
not specified in detail, thus allowing the user to augment with additional semantics to tailor
for their domain.
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9.1.2 Reflections on the Suitability of FLAME for Modelling
Complex Biological Systems

As discussed in chapter 2, FLAME is a discrete-event, agent-based, modelling
and simulation framework, whose underlying design principles are based on the
communicating X-Machine architecture. Kiran et al. (2008) and Coakley et al.
(2012) advise that FLAME was designed and developed from the outset to be able
to deal with massive simulations, incorporating a large scope with respect to the
underlying real-world domain, and very large numbers of individual agents - in
the order of hundreds of thousands, to millions, of agents. Through interfacing to
the Message Passing Interface (MPI) communication framework, the simulation
code is also fully compliant with parallel hardware platforms, enabling efficient
communication between agents, and ensuring that concurrently executing agents
remain synchronised with each other (Foster, 1995). One of the main advantages
of FLAME is that it allows the modeller to focus on agent and environment
definitions, through C and XML templates, and therefore removes the distractions
associated with writing parsers and scheduling routines. Given a set of predefined
code templates for agent definitions and their associated behaviours, the template
engine generates custom simulation code which can be compiled and executed
(Kiran et al., 2010).

Although the developmental approach advocated by FLAME is relatively intu-
itive to modellers familiar with the object-oriented and agent-based paradigms,
the development and in silico experimental work performed within this doctoral
thesis, has unfortunately shown that FLAME suffers from a number of serious
limitations. The first of which, is that the requirement to utilise nearest-neighbour
functionality for agent-binding, means that we are unable to harness the ability
to run our simulations across parallel hardware (even though the framework has
been developed to mitigate routing deadlock); as we would encounter message-
dependent deadlocks across nodes due to the necessity to update various internal
agent variables, and generate various binding related messages, during the in-
teractions between complementary agents (e.g. NF-κB and IκBα to form the
inhibited complex).

The second major limitation is linked to the first, in that the ability to run
simulations across parallel architectures has forced the designers to ban the use of
global mutable parameters in models. This limitation generated a number of is-
sues in the development of our simulation platform, which are evidenced through:
our inability to easily set the pseudo-random number generator seed value; and
our inability to easily set the ID of new IκBα agents upon basal dissociation of
the NF-κB-IκBα complex, which led to the conservation of mass issue due to our
loss of IκBα agents throughout the timecourse of simulations. As discussed in
chapter 6, workarounds were developed to resolve these technical issues, however
we believe that future users of FLAME should be mindful of these limitations, in
particular because the simulation framework has been positioned by a number of
the original development team as being suitable for domain experts who have very
little computational or programming competence. We believe that this message
should be tempered, as domain experts will in all probability not have the tech-
nical experience or competence to diagnose and resolve the kinds of issues that
we have experienced within this case study. As an alternative, we believe that
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adherence to the CoSMoS process, where a close collaborative environment exists
between modeller and domain expert, would mitigate propagation of such tech-
nical issues into the production code and associated publication to the scientific
community.

The third major limitation relates to the extremely resource intensive nature of
FLAME. As discussed in chapter 6, a number of performance issues were encoun-
tered during development, calibration and in silico experimentation. Stochastic
agent-based models can be computationally expensive, with our model taking
in excess of 20 hours for each 324,000 time-step simulation run on the N8 High
Performance Computer (N8 HPC). Diagnostic tests on the N8 HPC indicated
the length of time required to complete single simulation runs increases linearly
with respect to the number of iterations (time-steps) in the simulation. They also
indicated that FLAME simulations were Input-Output (IO) rate-limited, and not
Central Processing Unit (CPU) rate-limited, which was a direct consequence of
the need to create a separate XML output file for each iteration, due to it being
underpinned by communicating X-Machine architecture. As such, an XML out-
put file needs to be produced at the end of each time-step to record the ending
states (and internal memory) of each agent, which is then read in at the begin-
ning of the next time-step to set the starting states (and internal memory) of
each agent. A performance bottleneck is therefore formed, relating to the speed
of writing to, and reading from, the storage disk.

This issue was compounded following aleatory uncertainty analysis, as the min-
imum number of replicates required to gain stable median dynamics was 175
replicates, which generated over 56 million read-write accesses in total. There
exists a trade-off during aleatory uncertainty between selecting high numbers of
replicates to ensure the most stable meduan average simulation results, and the
computational resources required to consistently run these high numbers of repli-
cate experimental simulations. The number of replicate simulations must there-
fore represent a balance between minimising the effects of aleatory uncertainty,
and the computational expense that can be accepted for the project. As such,
completion of each set of 175 replicates within this project required a consider-
able amount of computational resources indeed, and was found to be a pragmatic
balance between minimising aleatory uncertainty and being able to complete in
silico experiments in a timely manner.

The fourth major limitation relates to the predefined sequence of events of the
FLAME scheduler, which is not accessible to the modeller, and controls the itera-
tion through the sequence of internal X-Machine states and the addition/removal
of agents from the system. Through the calibration process, it became evident
that our computational model suffered from a conservation of mass issue. Sim-
ulation dynamics when using rebind delays of 1 or 2 time-steps (for the newly
re-introduced IκBα following basal dissociation of the inhibted complex), or basal
dissociation rates between 0.000001 - 0.0001, suffered from an issue with the con-
servation of IκBα agents, with simulation runs temporarily losing these newly
re-introduced agents. Investigations indicated that the issue was due to the
underlying scheduler for FLAME when adding new agents to a simulation. It
appears that a lag period of one time-step is introduced by the FLAME simu-
lation framework between functions being called to generate a new IκBα agent
(following basal dissociation), and its actual incorporation into the simulation.
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The fifth major limitation once again links to the resource intensive nature of
FLAME, however this time relates to epistemic uncertainty analysis during simu-
lation platform development. As discussed in chapter 6, our epistemic uncertainty
analysis followed the recent work of Read et al. (2012), but instead of using a
global sensitivity technique, such as the latin hypercube (McKay et al., 1979), we
were forced to use a mixture of robustness analysis through the perturbation of
parameter values for a single parameter (one-at-a-time analysis), and local sen-
sitivity analysis for co-dependent parameters through a two-at-a-time approach
(Saltelli et al., 2009). A global sensitivity approach, such as the latin hypercube,
would have been beneficial as there is currently a risk that we may have calibrated
our simulation platform to a local minima within parameter space, however with
single simulations taking approximately 20 hours to run; the 175 replicates gen-
erating approximately 80TB of data; and the need to ensure other users of the
N8 HPC are able to run their code; it would have been intractable in the lifetime
of a 3 year doctoral research project to have used such a technique.

Finally, we would like to state that although a number of the original develop-
ment team have positioned FLAME as running efficiently across all architectures;
from laptop, to desktop, to HPC; we believe that its resource intensive nature
for complex biological systems that use nearest-neighbour functionality (as ev-
idenced through this case study), makes large-scale simulations intractable on
anything other than HPCs, and even these need vast amounts of fast solid state
disk storage in order to cope with the IO issue - our minimal model generated
80TB of data per 175 replicate simulation run, and we were forced to schedule a
maximum of 50 replicates at a time to ensure other users were also able to utilise
the N8 HPC.

9.1.3 Reflections on the CoSMoS Process as a Project
Lifecyle for Modelling Complex Biological Systems

“Scientists are taught the scientific method from the time they perform their first
experiments. Similarly, software engineers are taught about the software develop-
ment lifecycle before they write their first ‘if ’ statement” (Baxter et al., 2006).

The CoSMoS process, reviewed in chapter 2, and used as the project lifecycle
for this doctoral thesis, merges these two approaches, by advocating a princi-
pled approach to design and development of computational models and their
subsequent use for in silico experimentation. We believe that such a merging
of approaches is paramount for the successful management and implementation
of computational biology projects - it is all to easy for modellers (software de-
velopers) to get carried away with the technology and technical aspects of the
software development, and deviate away from the overall objectives of using the
computational model to investigate various scientific questons of interest. We
have found the CoSMoS project lifecycle to be extremely useful in ensuring the
modeller is always cognisant of the real-world context behind the computational
modelling work, and therefore focused on the objective of investigating the real-
world domain, and not just developing the most elegant, efficient, and technically
proficient code. This finding agrees with Read (2011), who previously reported
that the creation of separate artefacts for the functional specification (domain
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model), technical specification (platform model), and physical software (simula-
tion platform), provides confidence that the computational model’s mechanics
are a faithful representation of the target domain.

One of the major strengths of the CoSMoS process is its advocation of separat-
ing the abstracted view of biology (domain model) from the technical specification
of the computational model (platform model). This separation ensures the ab-
stracted view of biology and the technical specifications of the system remain
discrete models, and thus aims to minimise confusion during the development of
the computational model around what aspects of the programming code relate to
biological requirements, and what aspects are necessary as technical workarounds
due to constraints of the specific modelling frameworks being used (e.g. commu-
nicating X-Machines and FLAME).

The CoSMoS process was defined to be iterative in nature, and therefore ex-
pects multiple iterations of the domain model, platform model and simulation
platform before the final versions are agreed. We believe this to be valuable, in
particular because the iterative process of domain modelling, helps the modeller
to explore the biological domain in conjunction with one or more domain ex-
perts, in order to ensure the functional requirements of the computational model
are captured, and formally agreed to define the scope of the project, before de-
velopment begins. Similarly, once the domain model has been completed, the
CoSMoS process advocates an incremental approach to development of the plat-
form model and simulation platform over the lifetime of a CoSMoS project. The
use of modularisation within our platform model and simulation platform, which
were underpinned by an object-oriented approach to design and development,
ensured that development activities were performed in a quality assured manner,
and that the various increments of our simulation platform were easily verified
against the associated platform model, and validated against the domain model.

Although we have found the CoSMoS project lifecycle to be suitable for modelling
and simulation projects within computational biology, we believe that it could be
extended further, through augmentation with additional details relating to the
various activities that are performed, and processes that are followed, during the
three CoSMoS phases (discovery, development, and exploration). For example,
the use of UML to document part (or indeed all) of a domain model is now becom-
ing normalised, following the recent work of Read et al. (2009a, 2014) on Exper-
imental Autoimmune Encephalomyelitis, Alden et al. (2012) on Peyer’s patches,
and chapter 4 within this doctoral thesis, which advocates the use of statistics
to complement UML when documenting the multiple hierarchical abstractions of
domain models. Similarly, recent work by Ghetiu et al. (2010) advocates the use
of argumentation-driven approaches (using Goal Structured Notation) for the
validation process when developing computational models of complex systems.
Additionally, Stepney (2012) has advocated a process for mapping the real-world
data to the various artefacts developed within a CoSMoS project. For complex
biological systems, this would require mappings between the in vitro or in vivo
experimental data and the domain model; the domain model and the platform
model; the platform model and the simulation platform; and the results model
back to the real-world biological domain. Furthermore, there has recently been
considerable work from the York Computational Immunology Lab (YCIL) on cal-
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ibration and uncertainty analysis for agent-based modelling, and the need for a
solid statistical underpinning to ensure the results of in silico experimentation
can be translated back to the real-world domain in order to ensure predictions
are based on the underlying mechanisms of the real-world system, and are not
simply due to the random nature of stochastic simulations. We believe that our
revised CoSMoS project lifecycle diagram (figure 2.6) provides an indication of
where additional details relating to activities and processes should be aligned.

Along with the technical activities and processes for design and development of
computational models, there are also essential project management related activ-
ities and processes. We therefore believe that any updates and enhancements to
the CoSMoS process should also incorporate elements of project management in
order to ensure that CoSMoS projects are not only quality assured in relation to
development of artefacts, but also adhere to leading practices in project manage-
ment, to mitigate negative impacts from non-technical areas of the project. The
project management approach does not need to be overly administrative, bureau-
cratic or burdensome, but may in fact consist of a light-touch approach, utilising
concepts from the Project Management Institute (2004) and the Unified Soft-
ware Development Process (Arlow and Neustadt, 2009), which is closely aligned
to UML, and would lend itself to the development of the domain model, plat-
form model, simulation platform, and results model, which are the four artefacts
required from a CoSMoS project.

We believe that the nine knowledge areas from the PMI PMBoK along with
two processes from the Oracle Unified Method (OUM), could be used to augment
the current CoSMoS process, and facilitate its tranformation from a high-level
project lifecycle, into a development method for the modelling and simulation
of complex systems. The nine knowledge areas from the PMI PMBoK cover:
Integration Management, Scope Management, Time Management, Cost Manage-
ment, Quality Management, Staff Management, Communication Management,
Risk Management, and Procurement Management. Similarly, the two processes
that we believe may be useful from the OUM, relate to Configuration Management
and Infrastructure Management. These additional project management knowl-
edge areas and processes, can be grouped into three high-level phases, which
relate to Project Startup, Project Execution and Control, and Project Closure.

The Project Startup phase precedes the Discovery phase from the CoSMoS pro-
cess, and is where the project planning activities take place, and where the objec-
tives of the project are defined. The Project Execution and Control phase covers
the project management activities and processes that are involved in the full
CoSMoS project lifecycle as it currently stands (Discovery, Development and Ex-
ploration phases, along with development of the domain model, platform model,
simulation platform and results model). Finally, the Project Closure phase oc-
curs after completion of all in silico experimentation and development of the final
version of the results model. During this phase, the CoSMoS project will be for-
mally closed from an administrative perspective. This will include ensuring the
various increments of the project artefacts are archived within an institutional
repository, publishing any outstanding results in relevant academic outlets (peer-
reviewed journal articles, or presentation at conferences), uploading of code to
institutional and preferably public repositories, and capturing of lessons learned
from the project, for example what aspects of the project worked well, what could
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have been improved, and where did any limitations and/or constraints arise - the
previous subsection of this discussion provided an example of such a reflective
lessons learned commentary on the FLAME simulation framework. In order to
provide a single diagrammatic representation of how a future CoSMoS project
lifecycle may look, we have overlaid these three high-level project management
phases over our CoSMoS process diagram from chapter 2 (see figure 9.1).

Figure 9.1: The proposed augmented CoSMoS process continues to advocate an it-
erative lifecycle, but this time also contains three project management phases, along
with the existing three implementation phases.
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9.1.4 Reflections on the Necessity for Statistical Rigour

As discussed in chapter 2, the choice of which modelling paradigm to employ
is guided by multiple factors, including the real-world questions that you wish
to ask, the assumptions that can be made when abstracting the real-world do-
main into the domain model, the availability of data relating to individual model
parameters, and the computational expense of running the model. Agent-based
models, being based at the level of the individual component and stochastic in
nature, are able to reveal emergent behaviours resulting from the interactions
of agents within time and space. Unfortunately, ABMs require a larger number
of parameters than both ODE and PDE models, and because these are often
estimated within ABMs during the calibration process, it is not often possible
to generate exact matches between parameters from the real-world system (from
in vitro and in vivo experimentation) and those defined within computational
models.

Our agent-based model takes an abstracted view of the real-world biology (see
chapters 5 and 6) in terms of both the agent types, and indeed the numbers of the
respective agents. As such, we cannot directly compare an executing model to
the wet-lab data, and utilised the process advocated by Stepney (2012) in order
to translate the real-world biological data into an appropriate range of numbers
for calibration of the simulation platform. We therefore believe that a rigourous
framework for calibration, uncertainty analysis, and interpretation of simulation
results, is therefore essential to ensure that the model adequately relates back to
the underlying real-world domain, and furthermore that we can have confidence
that the results of in silico experimentation are reflective of the experimental
conditions and not a mere random occurence due to the stochastic nature of the
model.

As with all agent-based models that utilise stochastic behaviours and set dif-
ferent pseudo-random number generator seed values for each replicate, there is
significant aleatory uncertainty within our model. Such aleatory uncertainty can
severely effect our ability to compare experimental results against reference dy-
namics. This being the case, aleatory uncertainty analysis allows us to investigate
the uncertainty that is introduced through the use of PRNGs, and to calculate
a minimum number of replicate simulations to generate a stable median average
of the simulation results. The calculation of the minimum number of replicates,
and its use within in silico experimentation to generate a stable median, allows
us to mitigate stochastic effects and thus develop confidence that our simulation
results are representative of the condition(s) on which the simulation was run,
and not an artefact of our computational model that is caused by any specific
PRNG seed value.

Our aleatory uncertainty analysis followed the recent work of Alden et al.
(2013), but instead of using their Spartan tool-chain, we developed a novel
approach using the Kolmogorov-Smirnov two-sample test (for statistical signifi-
cance) and the Vargha-Delaney A-Test (for effect magnitude), for calculating the
minimum number of replicates require to ensure a stable median average of sim-
ulation results. This was required, because the Spartan tool-chain, and previous
work by Read et al. (2012), upon which Spartan was based, use global sensitivity
and uncertainty analysis techniques, which would be intractable for this doctoral
thesis, due to the resource intensive nature of FLAME. As discussed in chapter
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6, the KS-Test indicated that all agent states of interest stabilised at approxi-
mately 175 replicates (with p-values >92.5), apart from the IκBα agents located
in the nucleus, which we believe is due to the small numbers involved, and re-
sultant small absolute differences in agent numbers having a disproportionately
large effect on the p-value. The A-Test was therefore used to provide additional
confidence that 175 replicate simulation runs is the minimum number of repli-
cates to achieve a stable median average distribution, with stabilisation of the
A-Test scores between 0.47 and 0.53.

Along with aleatory analysis to understand the uncertainty due to the stochas-
tic nature of the agent-based model, we also performed epistemic uncertainty
analysis to look at the uncertainty due to the model’s design, which is based on
our abstracted view of the real-world system. Results indicate that the system
is robust to perturbations involving Rebind Delay, Nuclear Import and Nuclear
Export parameters, sensitive to the Differential Time parameter, and displayed
fragility with respect to the Basal Dissociation parameter. We believe that the
effect of this uncertainty must be considered when interpreting the results of
in silico experimentation back to the real-world system, as predictions may only
hold for a small area of parameter space, which could be smaller than the range of
possible values reported in the biological literature. Finally, due to the stochastic
nature of agent-based models, a rigourous statistical underpinning is required in
order to interpret the results of in silico experimentation against reference data,
such as baseline or control dynamics. As discussed in the empirical chapters for
the baseline simulator (chapter 7) and the augmented simulator (chapter 8), and
the supplementary material (Appendix B), we have also used the KS-Test and
A-Test to ascertain statistical significance and scientific significance.

We believe that rigourous statistical underpinnings, such as those used within
this doctoral thesis, are not an added extra, but are in fact an essential part of
simulation platform development and analysis of in silico experimental results.
We also believe that without such rigour, it will be hard for the niche area of
computational biology to gain credibility with the wider scientific community.

9.2 Contributions to NF-κB Modelling

As discussed in chapter 4, the IL-1 stimulated NF-κB signalling pathway is a
complex dynamical biological system, which activates transcription of a large
number of inflammatory response genes. The system is multi-dimensional, be-
ing influenced by numerous intermediate components within the network, being
regulated through temporal and spatial interactions of components, and being
regulated by both positive and negative feedback loops. Through design and de-
velopment of our computational model, and subsequent in silico experimentation,
we have investigated both the dynamics of the system, and tested the validity
of our assumptions behind the model. We will reflect on how these various as-
pects have contributed to the body of knowledge around modelling the NF-κB
signalling pathway, within this section. Initial focus will be applied to domain
modelling and simulation platform development, before discussing how the re-
sults of sensitivity and uncertainty analysis (of the model) may be used to make
predictions on real-world system dynamics, and finally discussing how the results
of our in silico experimentation can be translated back to real-world biology.
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9.2.1 Reflections on the Domain Model

We found the iterative process of domain modelling using the deep-curation ap-
proach to be extremely helpful in allowing the modeller to explore the biological
domain (in conjunction with the domain expert) before development of the com-
putational model. There exists substantial quantity of literature on the NF-κB
signalling pathway, and various aspects of the pathway are independently studied
by a wide variety of labs. It is generally understood that representing every aspect
of a real-world system in models and simulations is computationally intractable.
As such, a subset of the properties and behaviours from the real-world system
need to be defined for subsequent investigation. One of the primary purposes
of the domain model is to capture this subset of real-world system properties,
and therefore provide a definition of the abstraction level taken for the modelling
project. The present domain model represents the most recent iteration, and has
focused on the subset of signalling components investigated by the Qwarnstrom
lab; with focus applied to the observations of NF-κB and IκBα dynamics from
Carlotti et al. (1999, 2000) and Yang et al. (2001, 2003) using single-cell analysis.

The use of cartoon and UML diagrams were an essential first step towards
development of our domain model, however in isolation they were not enough
to provide a comprehensive model. In particular, they were unable to convey
the dynamics of IκBα degradation (along with the associated NF-κB release and
subsequent activation), or indeed model the quantitative aspects of the signalling
pathway. We therefore used a number of univariate and multivariate statistical
techniques to complement the UML diagrams, in order to develop a more com-
prehensive domain model of the NF-κB signalling pathway. Following completion
(by the modeller), and validation (by the domain expert), the domain model acted
as functional specification for our agent-based model, and furthermore provided a
comprehensive and transparent understanding of the domain that underpins the
in silico experimentation performed as part of the exploration phase of this CoS-
MoS project. As such, we believe that the domain model is an essential project
deliverable that provides an audit trail on how the real-world biology is linked,
through abstractions, assumptions, and constraints, to the functionality of the
computational model. We also believe that our domain model can be utilised
by other modellers from the Qwarnstron group, and indeed modellers from other
research groups, in order to ensure a consistent abstraction level (with respect to
real-world biology) for future work around the IL-1 stimulated NF-κB signalling
pathway at the single-cell level.

Aside from its use as functional specification, the domain model in conjunction
with published literature, has also indicated the NF-κB signalling pathway to be
a good candidate for forming a scale-free network (Kitano, 2004a; Albert, 2005).
Scale-free networks are identified by the fact that most nodes have relatively low
numbers of connections, but that some nodes have very high numbers of connec-
tions, and are termed hubs. These network topologies are able to tolerate random
removal of nodes, such as the individual extracellular signals or inflammatory gene
products, but are vulnerable to loss of the interactive hubs, which in this case
is the NF-κB-IκBα signalling module. As such, the inflammatory gene networks
linked through the NF-κB signalling pathway can be considered highly connected
hubs of signal transduction, and if perturbed through mutation or disease, may
lead to eventual collapse of the system-wide inflammatory response.

244



9.2. Contributions to NF-κB Modelling

9.2.2 Reflections on the Simulation Platform

“The scientific goal of systems biology is not merely to create preci-
sion models of cells and organs, but also to discover fundamental and
structural principles behind biological systems that define the possi-
ble design space of life. The value of understanding fundamental and
structural theories is that they provide deeper insights into the gov-
erning principles that complex evolvable systems including biological
systems follow.” (Kitano, 2007)

As elegantly quoted above by Kitano, the goal of systems biology is not merely to
develop a precision model, but also to utilise the model to investigate the under-
lying principles of the real-world system. As such, computational models provide
not only a means to rigorously think about and describe complex dynamical sys-
tems, but also provide an opportunity for us to extend our knowledge of system
dynamics through performing novel in silico experimentation, and extrapolating
these results back to the real-world system.

Our agent-based simulation platform contains additional granularity at the
cell membrane receptor complex with respect to existing models, through ex-
plicit modelling of the IL-1R, MyD88, TRAF, and IRAK components. It has
been developed using the concept of communicating X-Machines, which should
ensure the model can be run across multiple computing architectures (e.g. lap-
top, desktop, cluster and grid), and calibrated against wet-lab data of Carlotti
et al. (2000) and Yang et al. (2003), to ensure that the model can be used for
predictive purposes against the IL-1 stimulated NF-κB signalling pathway, at the
single-cell level. As such, we believe that our simulation platform can be used by
other modellers from the Qwarnstrom group, and indeed modellers from other
research groups, to perform additional in silico experimentation around the IL-1
stimulated NF-κB signalling pathway.

One of the key strengths of the FLAME simulation framework is its flexibility,
in that once the highly technical underpinning of a model has been developed
(e.g. the 3D Brownian movement of agents, the mirroring effect to contain agents
within the correct compartment, and PRNG seed setting functionality), the ad-
dition of new functionality and agent types is relatively straightforward due to
its modular agent architecture (XML agent definition and C agent functions).
Furthermore, due to our principled approach to design and development, which
followed the CoSMoS process, and our rigourous calibration phases and uncer-
tainty analysis, we believe that the model will provide a useful way for wet-lab
biologists and computational biologists (who do not have the depth of technical
expertise to develop their own models) to perform novel in silico experimentation
in a predictive capacity and for the purpose of hypothesis generation. In this way,
the biologists and computational biologists who subsequently use our model will
be able to close the loop, with respect to the hypothesis-driven systems biology
lifecycle advocated by Kitano (see figure 2.2).
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9.2.3 Reflections on Sensitivity and Uncertainty Analysis

As discussed in chapter 6, there are two main types of uncertainty within compu-
tational models: epistemic uncertainty, which arises from our incomplete knowl-
edge of the real-world system that we are modelling; and aleatory uncertainty,
which arises from the stochasticity within both the real-world system, and in-
deed our computational model due to the use of probabilistic interactions and
pseudo-random number generators.

Our epistemic uncertainty analysis followed the recent work of Read et al.
(2012), but instead of using a global sensitivity analysis, such as the latin hy-
percube (McKay et al., 1979), we were forced to use a mixture of robustness
analysis, through the perturbation of parameter values for a single parameter
(one-at-a-time approach), and local sensitivity analysis for co-dependent param-
eters through a two-at-a-time approach (Saltelli et al., 2009); due to the extremely
resource intensive nature of FLAME making a global approach intractable. Our
analysis identified that: 1) the profiles of agents within the nucleus are very noisy,
which we believe is due to the small absolute numbers following calibration, and
that even small changes in absolute numbers (of agents in the nucleus) promote
amplification of this noise; 2) the system is robust to perturbations of the rebind
delay value with respect to the cytoplasmic agents, but sensitive with respect to
the nuclear agents; 3) there is co-dependence between the rebind delay parameter
value and the association parameter value; 4) the system is extremely fragile to
perturbations of basal dissociation between the NF-κB and IκBα agents in the
inhibited complex; 5) the nuclear export parameter appeared to be redundant
under control (non-stimulated) conditions, with the export dynamics being de-
pendent on the nuclear import parameter value, although we suspect that this
may be a system artefact of our abstraction level (i.e. reduction of ∼60,000 NF-κB
agents down to ∼500, and the small absolute number of agents in the nucleus);
and 6) the system is sensitive to changes in the import parameter value. We
believe the results of this epistemic uncertainty analysis are consistent with the
findings of Kitano (2004a), who conjectures there to be a delicate balance between
robustness and fragility within complex dynamical biological systems.

Our aleatory uncertainty analysis closely followed the recent work of Alden
et al. (2013), but instead of using their Spartan tool-chain, we developed our own
analysis scripts using Matlab. This involved the running of 300 replicate simula-
tions with different PRNG seed values to generate stochastic variation between
the simulation runs, and utilised the Kolmogorov-Smirnov test to understand sta-
tistical significance and the Vargha-Delaney A-Test to understand effect magni-
tude difference. Our analysis indicates that 175 replicate simulations are required
when using our computational model for in silico experimentation. We believe
that this will minimise the aleatory uncertainty inherent to our computational
model, but will also allow stochasticity, so will reduce the risk of overtuning the
computational model by running large numbers of replicates.

The calculation of the minimum number of replicates, and its use within fu-
ture in silico experimentation to generate a stable median average, allows us to
mitigate stochastic effects and thus develop confidence that simulation results are
representative of the condition(s) on which the simulation was run, and not an
artefact of our computational model that is caused by the specific PRNG seed
value.
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9.2.4 Reflections on In Silico Experimentation

Following the development and calibration of the simulation platform, and sub-
sequent epistemic and aleatory uncertainty analysis, we were able to perform in
silico experimentation to increase our understanding of the underlying mecha-
nistic behaviours of the NF-κB signalling pathway. As discussed in chapter 2,
agent-based models lend themselves to investigating the temporal and spatial
dynamics of systems, and this allowed us to investigate the consequences of per-
turbations to component interactions.

Four sets of in silico experiments were performed on the initial version of the
simulation platform (discussed in chapter 7). These investigated: the effects of
varying basal dissociation of the NF-κB-IκBα complex; the effects of varying IKK
numbers on the signalling pathway dynamics; the effects of varying IκBα num-
bers on the signalling pathway dynamics; and the effects of varying the lag-time
between cell membrane receptor activation and the subsequent IKK activation
within the cytoplasm.

The first experiment was important because the work of Carlotti et al. (2000),
which focused on control (i.e. non-stimulated) dynamics, postulated that shut-
tling of free NF-κB and IκBα was a consequence of basal (i.e. non-IKK-mediated)
dissociation of the NF-κB-IκBα complex within the cytoplasm, rather than the
direct nuclear import of the NF-κB-IκBα complex, degradation of IκBα, and
subsequent resynthesis of IκBα. Our results under IL-1 stimulated conditions,
indicate that an increase in basal dissociation leads to: a decrease in both cyto-
plasmic and nuclear NF-κB-IκBα complexes; an increase in cytoplasmic NF-κB,
with an associated decrease in nuclear NF-κB; and an increase in cytoplasmic
IκBα, with a small increase in nuclear IκBα. From a biological perspective the
reduction in nuclear NF-κB and cytoplasmic NF-κB-IκBα complexes, will be be-
cause an increase in basal dissociation results in a reduction of the total numbers
of NF-κB-IκBα complexes in the cytoplasm, and thus a reduction in the IKK-
mediated release of NF-κB, which further causes a reduction in the number of
NF-κB agents that become activated following their translocation to the nucleus.
We also conclude that the system is fragile to perturbations involving basal dis-
sociation for both control conditions, as shown through epistemic uncertainty
analysis (see section 6.3.1) and IL-1 stimulation conditions.

Results of the second experiment indicate that the system is stable to pertur-
bations in IKK numbers within a small range either side of the default value
(i.e. between 50% and 200%), but sensitive to more extreme perturbations (i.e.
10%, 20%, 500%, and 1,000%). Using these higher IKK numbers (i.e. 500% and
1,000% of the default value), results also indicate that an increase in the number
of IKK agents, leads to: a decrease in cytoplasmic IκBα; a decrease in both cy-
toplasmic and nuclear NF-κB-IκBα complex, along with an associated increase
in the dissociation of the complexes; and no significant change to either nuclear
NF-κB-IκBα complexes or nulcear IκBα, although we suspect that this is due
to the small absolute numbers that are associated with the calibrated simulation
platform. Non-linear dynamics of cytoplasmic NF-κB were also identified, which
we believe are due to the rapid increase in dissociation of NF-κB-IκBα complexes
to yield free NF-κB, and then subsequent translocation to the nucleus whereby
these IKK-mediated free NF-κB agents become activated and remain in the nu-
clear compartment. As such, we conjecture that an increase in IKK numbers
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generates an initial increase in cytoplasmic NF-κB, which then slowly reduces
over time through translocation to the nucleus.

Results of the third experiment indicate that the system in both control (non-
stimulated) and IL-1 stimulated conditions, is fragile to perturbations that in-
crease the number of free IκBα agents to 3x the default value, but stable when
the excess IκBα agents are sequestered to the cytoskeleton. Under control condi-
tions, the excess free IκBα results in the system settling at a pseudo steady-state
away from our calibrated dynamics, whereas excess sequestered IκBα agents, con-
versely show no scientifically significant differences. We believe that these results
for control dynamics are consistent with the findings of Pogson et al. (2008).
Results of excess free IκBα during IL-1 stimulation also show significant differ-
ences, generating an initial spike in free NF-κB (with a corresponding decrease
in cytoplasmic NF-κB-IκBα complexes), before a rapid decrease in cytoplasmic
numbers due to their translocation to the nucleus. We conjecture that these phe-
nomena may be due to the extremely low numbers of free NF-κB at the beginning
of simulations, as the pseudo steady-state dynamics following excess free IκBα
under control conditions, had resulted in the overwhelming majority of NF-κB
agents to be complexed with IκBα within the cytoplasm. Furthermore, as per
the control conditions experiment, the addition of excess sequestered IκBα had
no effect on the system.

Results of the fourth experiment indicate that the system is robust to pertur-
bations involving the lag-time before activation of IKK. Increases of upto 40x to
the lag-time (with respect to the default value) between cell membrane receptor
activation and the subsequent activation of IKK within the cytoplasm.

Finally, the second iteration of the computational model (as discussed in chap-
ter 8) incorporated increased granularity of components at the cell membrane, to
extend the scope of agent interactions upstream of the NF-κB signalling module.
Along with the five main agents from iteration 1 that consisted of the IL-1R cell
membrane receptor, IKK, IκBα, NF-κB, and nuclear transporter; the second it-
eration included three additional agents relating to MyD88, IRAK, and TRAF6.
This allowed us to investigate through in silico experimentation, the effects of
varying the numbers of these cell receptor complex components (akin to vary-
ing the concentration in wet-lab experiments), and whether the system is robust
to such perturbations. Results of this fifth (and final) experiment indicate that
the system is relatively robust to perturbations involving the total numbers of
individual cell membrane receptor complex components.

These in silico experiments demonstrate the robust, yet fragile, nature of the
intracellular pathway. Furthermore, along with the results from epistemic uncer-
tainty analysis, they also demonstrate the importance of appreciating the effect(s)
that arbitrarily assigned parameter values (defined during platform model devel-
opment) may have on results of subsequent simulations using the calibrated sim-
ulation platform. We therefore agree with Read (2011) that “in silico predictions
that rest on arbitrarily assigned parameter values should be challenged.”
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9.3 Thesis Summary and Contribution

This section returns to the overall purpose and specific objectives of this doctoral
thesis, and provides a summary of how the individual objectives were met, and
the contributions that were made in doing so. Seven research objectives were
identified (see chapter 1) to guide the work in this thesis towards the development
of an agent-based model of the IL-1 stimulated NF-κB signalling pathway, along
with its use to perform novel in silico experimentation. These were as follows:

Obj 1: Explore the role of diagrammatic and statistical techniques for developing
a domain model of the NF-κB case study.

Obj 2: Create an agent-based computational model of the core intracellular com-
ponents of the IL-1 stimulated NF-κB signalling pathway.

Obj 3: Investigate techniques for calibrating agent-based computational models
that have been developed using the FLAME simulation framework.

Obj 4: Perform novel in silico experimentation using the agent-based model.

Obj 5: Augment the agent-based model with additional upstream signalling com-
ponents related to the cell membrane receptor complex.

Obj 6: Perform novel in silico experimentation using the augmented simulator.

Obj 7: Investigate the suitability of using the FLAME simulation framework for
developing computational models of complex biological systems.

The remainder of this section provides a chapter-by-chapter summary of this
doctoral thesis, which maps the specific research objectives and contributions
against the chapter where they were achieved.

Chapter 1: The motivation for investigating the IL-1 stimulated NF-κB sig-
nalling pathway through agent-based modelling is provided, along with the
seven research objectives, and an overview of the thesis structure.

Chapter 2: A review of the theoretical underpinning to the computational as-
pects of this work is provided. Emphasis was placed on General Systems
Theory, Network Theory, Systems Biology, Computational Biology and
Computational Immunology. The chapter also discussed the equation-based
and agent-based approaches for modelling complex biological systems, and
gave an overview of the CoSMoS process.

Chapter 3: A review of the cell biology at the level of detail required to un-
derstand the IL-1 stimulated NF-κB intracellular signalling pathway, and
the potential consequences from dysregulation. The single-cell experimen-
tation performed by the Qwarnstrom lab is described. The complexity of
the signalling pathway is used to motivate the benefits of computational
modelling, and indeed a thorough review of the existing equation-based
and agent-based models was provided. This chapter forms the domain of
the CoSMoS process.
Contributions:
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• Review the existing literature around the complexity that is inherent to
the NF-κB signalling pathway; the way that computational approaches
have facilitated our increased understanding of the pathway; and the
need for a new computational model to extend our understanding even
further, with particular reference to the IL-1 stimulated pathway.

Chapter 4: Defines a domain model of the IL-1 stimulated NF-κB signalling
pathway. This domain model was developed using cartoon and UML di-
agrammatic notations, and complemented through univariate and multi-
variate statistical techniques. Critical reflections were provided on the ap-
propriateness of UML for modelling complex biological systems, and where
deficiencies were perceived, discussion was made on how statistical techn-
ques may complement UML, to develop a more complete domain model.
In terms of the CoSMoS process, this chapter translates the real-world do-
main into our abstracted view, which will be used to define the scope of our
agent-based model. This chapter addressed research objective 1.
Contributions:

• A complete and comprehensive domain model of the IL-1 stimulated
NF-κB signalling pathway. No such model existed prior to the work
detailed in this doctoral thesis.

• A detailed analysis of UML’s ability to define the complex structural,
temporal, and interaction dynamics, which are inherent to complex
dynamical biological systems.

• An investigation into the ability of statistical techniques to comple-
ment UML where deficiencies have been found.

Chapter 5: A platform model for the first iteration of our agent-based model,
which is implementation platform specific (i.e. the FLAME simulation frame-
work). Along with various UML notations, the platform model also utilises
communicating X-Machine diagrams for the individual agents, and a state-
graph for the communication between agents. In terms of the CoSMoS
process, this chapter translates the abstracted view of the underlying bio-
logical functionality into a technical specification.
Contributions:

• Design of an agent-based model at the single-cell level, through which
in silico experimentation may be conducted.

Chapter 6: A calibrated simulation platform for iteration 1, which has under-
gone aleatory and epistemic uncertainty analysis. In terms of the CoSMoS
process, this chapter defines the translation of the platform model into our
actual agent-based model, which has been calibrated to wet-lab dynamics,
and is therefore ready for in silico experimentation. The chapter reports the
novel calibration technique, which uses the mapping approach advocated by
Stepney (2012) to translate the results of wet-lab biology (from the domain
model) into a desired range of agent numbers (median and interquartile
range) for our calibrated simulation platform. This chapter addresses re-
search objective 2 and 3, and contributes to research objective 7.
Contributions:
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• An interdisciplinary and collaborative calibration procedure, which
was underpinned by the transformation of single-cell analysis wet-lab
data (from the domain model) into desired ranges for output data
(from the simulation platform) of individual agent types.

• Design and development of an agent-based model, calibrated to wet-lab
data at the single-cell level, through which in silico experimentation
may be conducted.

• Build on the discussion by Read et al. (2012) of the necessity to estab-
lish a calibrated baseline for the simulation platform, which has taken
account of the epistemic uncertainty of the underlying real-world biol-
ogy, and the aleatory uncertainty that arises through the stochasticity
of the computational model.

• Development of a novel approach for using the Kolmogorov-Smirnov
two-sample test and the Vargha-Delaney A-Test for calculating the
minimum number of replicates required to ensure a stable median av-
erage of simulation results. This was required because the previously
published consistency analysis technique by Read et al. (2012), could
not be used due to the resource intensive nature of the FLAME sim-
ulation framework, making global sensitivity and uncertainty analysis
techniques intractable.

• Initiate a debate on the necessity for the computational biology com-
munity to ensure a rigourous and robust statistical underpinning to
simulation platform development, in order to develop credibility with
the wider scientific community.

• Assessment of the suitability of the FLAME simulation framework to
model complex biological systems in general, and the IL-1 stimulated
NF-κB signalling pathway in particular.

Chapter 7: The simulation platform developed for the first iteration of our agent-
based model has been used for novel in silico experimentation, which forms
the basis of the results model - the fourth and final artefact from a CoSMoS
project. The first experiment into basal dissociation of the NF-κB-IκBα
complex, identified the fragility of the system with respect to perturbations
involving basal dissociation in both control and IL-1 stimulated conditions.
The second experiment into varying IKK numbers, indicated that the sys-
tem is stable to perturbations within a small range either side of the default
value, but sensitive to more extreme perturbations. The third experiment
into the effect of varying IκBα numbers, identified that the system is fragile
to perturbations that increase the number of free IκBα agents, but stable
when the excess agents are sequestered within the cell, through for example
the cytoskeleton. Finally, the fourth experiment into the effects of varying
the lag-time between cell membrane receptor activation and the subsequent
IKK activation, indicated that the system is robust to increases in lag time.
This chapter addresses research objective 4.
Contributions:

• Elucidation of the robust, yet fragile, nature of the intracellular path-
way, with particular emphasis on the probabilistic nature of association
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and basal-dissociation of the NF-κB-IκBα complex.

• Identification of the substantial robustness within the signalling path-
way with respect to the ratios between individual component numbers
and their associated interaction dynamics.

• Assessment of the suitability of the FLAME simulation framework to
model complex biological systems in general, and the IL-1 stimulated
NF-κB signalling pathway in particular.

Chapter 8: Discusses the second iteration of the CoSMoS project, through devel-
opment of the augmented platform model and simulation platform, which
added increased granularity of components at the cell mebrane receptor
complex. In silico experimentation into the effects of varying component
numbers within the receptor complex, indicate the system to be robust to
such perturbations. This chapter addresses research objectives 5 and 6, and
makes an additional contribution to research objective 7.
Contributions:

• Design and development of an agent-based model, calibrated to wet-lab
data at the single-cell level, through which in silico experimentation
may be conducted.

• Identification of the substantial robustness within the signalling path-
way with respect to the ratios between individual component numbers
and their associated interaction dynamics.

• Assessment of the suitability of the FLAME simulation framework to
model complex biological systems in general, and the IL-1 stimulated
NF-κB signalling pathway in particular.

Chapter 9: The concluding chapter of this doctoral thesis. Discussion has been
made on: the completeness of UML for domain modelling of complex bio-
logical systems; the suitability of FLAME for modelling complex biological
systems; the appropriateness of the CoSMoS process as a project lifecycle
for modelling complex biological systems; and the necessity for statistical
rigour when interpreting simulation results. Similarly, the contributions
that in silico experimentation has made to the real-world NF-κB signalling
pathway, have been discussed. The contributions of this doctoral thesis are
summarised, specific areas for further work are presented, and final con-
cluding remarks are made. This chapter makes additional contributions to
research objectives 1, 3 and 7.
Contributions:

• Assessment of the CoSMoS approach as a project lifecycle for compu-
tational biology.

• Discussion of the necessity for the computational biology community
to ensure a rigourous and robust statistical analysis is performed on
simulation results, in order to develop credibility with the wider sci-
entific community.
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9.4 Further Work

The contributions of this doctoral thesis have identified a number of areas for fur-
ther work, which are discussed in this section. Three broad areas of further work
are identified, relating to: further investigations of the NF-κB signalling path-
way; additional work qualifying the advantages and disadvantages of using UML
to develop domain models of complex biological systems, and how alternative
techniques such as statistics may provide a complementary approach; and inves-
tigations into the effects that the underlying modelling paradigm (e.g. equation-
based versus agent-based) and modelling framework (e.g. FLAME versus Java
MASON) may have on simulation results.

9.4.1 Further Investigation of NF-κB

This thesis has described a principled approach to design, development and cali-
bration of an agent-based model of the IL-1 stimulated NF-κB signalling pathway;
along with subsequent in silico experimentation to investigate various aspects of
the pathway at the component-level, to provide insight to the nature of the under-
lying mechanisms and dynamics. Although we are confident that the simulation
platform has adhered to good software engineering practices, the modelling activ-
ities were not the end goal itself, but were instead incremental activities for the
development of a tool to increase our understanding of the signalling pathway. As
such, it is hoped that future researchers will use our agent-based model to perform
additional, novel, in silico experiments around the mechanisms and dynamics of
the NF-κB-IκBα signalling module in particular, and the wider pathway more
generally. We believe that an increased understanding of the pathway under nor-
mal physiology and disease, will elucidate the underlying causes of inflammatory
diseases, and lead to new treatment strategies.

The most significant finding from our in silico experimentation, is confirmation
that the system is fragile to perturbations around basal dissociation dynamics, as
conjectured by Carlotti et al. (2000). We believe further work is required to fully
define the dynamics of this reversible reaction; with initial focus applied to global
sensitivity analysis techniques (such as the latin hypercube), before subsequent
confirmation in the wet-lab.

The second significant finding was the robustness of system dynamics follow-
ing perturbations to the numbers of IL-1R, MyD88, TRAF and IRAK agents.
We believe that additional in silico experimentation around cell membrane re-
ceptor complex formation are required, in order to further investigate the mech-
anisms and dynamics behind receptor complex formation, receptor activation,
and propagation of the signal from extracellular space into the cytoplasm. Our
augmented simulation platform contained the receptor agent IL-1R, the adaptor
protein MyD88, and the generic kinases TRAF and IRAK. This provides a ba-
sis for augmentation with additional granularity for the kinases IRAK1, IRAK4,
TRAF6 and TAK1; the recently discovered co-receptor TILRR; and the inhibitory
adaptor protein Tollip. Furthermore, there is also potential to provide additional
granularity at the sub-component level through modelling the individual NF-κB
units (e.g. RelA and p50) and the individual IKK units (e.g. NEMO, IKKα and
IKKβ).
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Expansion of the computational model (in this way) would then allow in silico
experimentation into potential targets for therapeutic agents to treat diseases and
disorders due to pathway dysregulation. Such targets could be the transcription
factor itself, or any of the associated components within the pathway, that lead
to induction of gene activation. Given that the signalling pathway is a multi-
component pathway, there are numerous targets for therapeutic interventions,
including cell membrane receptors (e.g. anti-IL-1R antibodies), adaptor proteins
(e.g. ubiquitinase inhibitors), IKK, IκB stabilization, cytoplasmic retention of
NF-κB, or direct inhibition of NF-κB (Gilmore and Garbati, 2011). Due to the
complex nature of the signalling pathway in time and space, and its cross-talk
with other pathways, it is unclear whether targeting of specific individual pathway
components, or inhibition by broader activity against multiple components in the
pathway, will show the greatest degree of clincial efficacy and safety. Gilmore and
Herscovitch (2006) reviewed the known inhibitors of NF-κB, which may provide
a basis for research regarding pharmacological intervention.

Given that our simulation platform is based at the single-cell level, we believe
there is merit in extending the scope of the model to simulate responses at the
tissue and organ levels. We note however that multiscale models are difficult
to develop as they require the integration of molecular, cellular and organ level
data, within a single model. In addition, due to the limitations that we have
encountered with the FLAME simulation framework, which requires very large
amounts of computational resources, this may be intractable with our current
simulation platform. As such, we believe that the domain model (in chapter
4) should be used as the basis for our model to be ported to the GPU-based
version of FLAME (currently in beta version), which has been reported to improve
performance over the CPU-based version that we have used, and also has the
capability of real-time visualisation as the data from each iteration is persistent
in the GPU memory (Richmond et al., 2010).

To complete this subsection, we believe there are a number of key questions
that may be answered through development of large-scale computational models
of NF-κB. From a cell biology perspective, these are: 1) what can in silico exper-
imentation tell us about the relative roles of the intermediate components within
the signal transduction events; 2) what can in silico experimentation tell us about
the various receptors, co-receptors, and adaptor proteins, and their role(s) in sig-
nal transduction events; 3) what can in silico experimentation tell us about the
dysregulation that can occur (regarding NF-κB activation and IκBα degrada-
tion and resynthesis) when cells are in diseased states, and how can we perturb
the system back to a healthy state; and 4) what can in silico experimentation
tell us about the cross-talk that occurs when various extracellular signals (e.g.
LPS, TNFα, IL-1) and other environmental stimuli (e.g. bacteria, UV radiation,
physical stress) converge on the NF-κB signalling module.
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9.4.2 Defining Complex Biological Systems with UML and
Statistics

The Unified Modelling Language (UML) has become one of the de facto notations
in industry for documenting the functional requirements and technical specifica-
tions of software systems. Biologists have also attempted to use UML to model
biological systems, and to this end, we have developed a domain model of the
NF-κB signalling pathway, for use as functional specification for our agent-based
computational model. As discussed in the reflective section of chapter 4, we be-
lieve that UML is a useful tool for defining the static characteristics and linear
interactions of components within a complex biological system, but that it suf-
fers from a number of serious deficiencies when trying to define the non-linear
dynamics and heterogeneity inherent to such systems.

We have previously discussed our reflections on UML within this chapter, how-
ever would like to add here that we agree with Chaudron et al. (2012) that “even
if the UML syntax may not be followed very precisely, the concepts of UML form
the de facto language for discussing model designs”, and reiterate that on its own,
UML is not enough for developing domain models of complex biological systems.
We therefore believe that further work should be performed into the suitability
of UML for defining domain models of complex biological systems, which builds
on this thesis and the previous work of Read et al. (2009a,b, 2014) and Bersini
et al. (2012). Where deficiencies are exposed, further investigation will then be
needed to define workarounds using semantic variation points, and the use of
complementary approaches (such as statistical techniques), to facilitate a more
complete diagrammatic approach for developing domain models.

9.4.3 Investigating the Effects of Modelling Paradigm on
Simulation Results

Over the last two decades there has been a significant expansion in computational
biology research, primarily led by academia, but also in the pharmaceutical indus-
try for the purposes of drug target discovery and drug design. The computational
biology community has spoken at length on the need to standardize tools, in
particular simulation platforms such as Systems Biology Workbench and CellDe-
signer, and especially the output format of results (e.g. a variant of XML, such as
the Systems Biology Markup Language). However, just because the community
may use the same toolset, it does not mean that research is comparable. There
are various reasons for this inability to compare results, including differences in
the design approaches taken, differences in the approaches taken for calibration
and optimization, differences in the level and approach taken for quality assur-
ance (validation, verification and testing), and more interestingly, differences in
the modelling paradigm used (i.e. equation-based versus agent-based) as noted
by Ray et al. (2009) who gained subtley different results from their agent-based
model when replicating their previous equation-based work.

We believe that this is symptomatic of the underlying mechanistic differences
between modelling paradigms, and differences between the architectures of mod-
elling frameworks. This is exemplified by the fact that functionality within com-
putational models does not always match biological reality due to technological
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constraints, and thus requires a computational workaround, which is based on
the specific architecture and programming approach of the modelling paradigm
and framework being used. For example, the development of an equation-based
model using Matlab or CellDesigner would require a different approach to han-
dling computational workarounds than an agent-based model using Java-MASON
or FLAME.

We believe that this area of computational biology requires urgent attention
in order to identify and qualify the effects that specific modelling paradigms and
frameworks, may have on the results of in silico experimentation, so that the com-
munity may better appreciate the hidden aleatory uncertainty inherent to differ-
ent modelling approaches. We therefore advocate that our domain model be used
to develop three new platform models and associated simulation platforms for:
1) differential equation-based model using CellDesigner; 2) Java-MASON agent-
based model, which will be simulated in distributed mode; and 3) FLAME GPU
agent-based model, which will be simulated in parallel mode. We suggest that fo-
cus should be applied to investigating the similarities and differences between the
three platform models, and compare the simulation results and associated pre-
dictions from the three different software frameworks. With specific reference to
agent-based modelling, further work into the impact of different pseudo-random
number generators (PRNGs) and associated seed values on the simulation results
and associated predictions, would also be beneficial to the community. Following
the development of these three additional models, we believe that it would also
be beneficial to develop interfaces for Java-MASON and FLAME GPU software
frameworks into the Systems Biology Workbench platform, so that all three com-
putational models may be interfaced to a common analysis and results platform.

As computational models are increasingly being used to generate predictions
that have clinical implications, through for example predictions on the robustness
and fragility of disease networks, we urgently require a new framework that incor-
porates the effects that different software platforms have on simulation results,
and that will instill trust in the associated simulation-based predictions. We be-
lieve that development of such a framework, and its wide-spread adoption by the
community, will instill trust in predictions from computational models, through
providing the ability to interpret simulation results not only in the context of the
model’s design (i.e. domain model), but also in the context of the specific software
platform used. Additionally, we believe the following key questions should also
be investigated to instill trust in simulation results (by the wider scientific com-
munity): 1) does the abstraction level affect the accuracy of simulation-driven
predictions; 2) does the resolution level (e.g. number of agents) affect the accu-
racy of simulation-driven predictions; 3) what are the relative merits of averaged
population data versus single-cell data for calibration and validation of computa-
tional models; and 4) what are the advantages and limitations of using massively
parallel computing architectures, for reproducing the large-scale variation (as seen
in biological systems) into computational simulations.
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9.5 Concluding Remarks

Although the relationship between mathematics and biology has been established
for a considerable period of time, early work was limited to the power of the calcu-
lating machines available at the time. The application of mathematics and com-
puter science to develop complex models of real-world biology has only recently
gained acceptance in the scientific community at-large, following the significant
advancements to computer hardware and software technologies over the past two
decades.

There are many advantages to using theoretical models over wet-lab experimen-
tal studies in the initial phases of scientific studies. For example, mathematical
and computational models are generally far less expensive to setup, calibrate and
run, are less time consuming (with respect to the scientists time for each exper-
imental run), and are more flexible to changes in environmental conditions and
parameter ranges. As such, these models provide a cost effective mechanism to
perform in silico investigations with a view to acting as a plausibility filter, for
the generation of new hypotheses for future in vitro or in vivo experimentation.
The major drawback however, is that theoretical models can only be as good as
the data that they are designed and calibrated against, and the theory that they
are based on (Woelke et al., 2010).

It is important to emphasize that a good model does not have to be complete
(with respect to the real-world domain), as arguably all of the models that are
currently accepted by the scientific community researching NF-κB are incomplete
to some degree or other (see chapter 3). We therefore believe that a good model
should incorporate the minimum set of components that are sufficient to repro-
duce the emergent behaviour of interest, and be designed and developed to high
software engineering standards, in order to ensure rigourous calibration, valida-
tion, and verification, so that we may understand how the simulation outputs
relate to the real-world system under study (Bown et al., 2012). We also believe
that no computational model should be deemed to be conclusive, as at best it
is an approximation to the real-world system, which as shown through the two
iterations of the simulation platform in this thesis, needs to be progressively up-
dated through additional functionality and potentially corrections to parameter
values and rate constants.

The use of computational modelling and simulation has begun to pose new
challenges to scientific research. Traditionally, scientific journals required a com-
plete and rigorous Materials and Methods section to all manuscripts, however
with the rapid increase in theoretical and computational studies over the past
decade, this requirement appears to have been dropped, which has only recently
been recognised as cause for concern. As discussed in this thesis (chapters 5 and
6), replication and reproduction of computational work can become extremely dif-
ficult due to reliance on simulation code, analysis scripts, datasets, pre-processing
and transformation scripts, and initialisation parameter files. Without access to
the full suite of simulation code and associated instrumentation tools used by the
original researchers who performed the initial model development and in silico ex-
perimentation, it is almost impossible to replicate the work, and requires a dispro-
protionate amount of effort (with respect to the rewards generated) to reproduce
the computational model, which generally requires the design and development
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of the model from scratch, relying on the discursive sections of published material
to reverse engineer the design, and the published figures to retrofit simulation dy-
namics through the process of qualitative curve-fitting. We therefore applaud the
growing movement within the computational biology community who advocate
not only the need for open access publications, but also the need for open access
code and the requirement to fully document our complete computational meth-
ods within the supplementary material sections of journal manuscripts (Mesirov,
2010).

Finally, we agree with Kitano (2004b) and Slepchenko et al. (2002) that the
theoretical investigations (through in silico experimentation) into the underlying
cellular dynamics of biological systems, followed up by verification in actual bio-
logical systems, needs to be promoted as a new aspect of The Scientific Method,
and that the CoSMoS process can be used to aid in this promotion.
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A χ2 Goodness of Fit Tests

Given two sets of data, we can test to ascertain whether they come from the
same population distribution using a number of statistical techniques. The ac-
cepted test for differences between non-continuous (binned) distributions is the
chi-square (χ2) test, whereas the Kolmogorov-Smirnov test is used for continu-
ous data (Press et al., 2007). The single-cell analysis fluorescence data of Yang
et al. (2003) contains 36 observations for control (unstimulated) dynamics and 52
observations for IL-1 stimulated dynamics. These observations can be grouped
into regular intervals (binned), and are therefore amenable to the two-tailed χ2

goodness of fit test to ascertain whether the data (control and IL-1 stimulated) ap-
proximates to known mathematical distributions, which in this case was revealed
to be either a Normal or Negative Binomial distribution under visual inspection.

Initial χ2 tests were performed on the data with integer binning intervals.
Figure A.1 represents the control observations with integer binning intervals,
along with a superimposed line to represent a Normal distribution using the mean
and standard deviation calculated from the data. The associated χ2 calculations
for this integer binning interval are displayed in table A.1. The hypothesis H10

is that the control observations from the full dataset approximate to a Normal
distribution. The χ7

2 threshold for 97.5% is 16.01 and 99% is 18.48. As the χ2

score for the data is 19.35, we reject H10. Similarly, figure A.2 and table A.2
represent the IL-1 stimulated observations with integer binning intervals. The
hypothesis H20 is that the IL-1 stimulated observations from the full dataset
approximate to a Normal distribution. The χ16

2 threshold for 97.5% is 28.85 and
99.9% is 39.25. As the χ2 score for the data is 94.16, we again reject H20.

Due to the first phase of χ2 tests rejecting an approximation (by the full
dataset) to a Normal distribution, the second phase of tests were performed on a
subset of the data, using initial fluorescence from 0 to 3.0 fluorescence units. Fig-
ure A.3 represents the control observations with integer binning, that have initial
fluorescence between 0 and 3.0 units. It is evident that an integer interval is too
high a binning interval, and in effect hides detail. An alternative representation
is given in figure A.4, which uses a binning interval of 0.5 fluorescence units. This
provides a greater spread of frequencies, and the associated χ2 calculations are
displayed in table A.3. The hypothesis H30 is that the control observations from
the partial dataset approximate to a Normal distribution. The χ4

2 threshold for
97.5% is 11.483, and as the χ2 score for the data is 3.099, we accept H30. This
tested whether the subset of data approximated to a Normal distribution using
positive values of fluorescence only. Although not physically possible, i.e. you
cannot gain a negative fluorescence value using microscopy, we also believed that
it was pertintent to test against the wider Normal distribution that also included
negative fluorescence values within its tail. Figures A.5 and A.6 utilise the integer
and 0.5 interval binning as per figures A.3 and A.4, but this time incorporating
the wider tails of the Normal distribution. Similarly, table A.4 provides the asso-
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ciated χ2 calculations. The hypothesis H40 is again that the control observations
from the partial dataset approximate to a Normal distribution. The χ6

2 threshold
for 97.5% is 14.45, and as the χ2 score for the data is 7.512, we accept H40. Fig-
ures A.7 and A.8 represent the IL-1 stimulated partial dataset superimposed with
the wider normal distribution, using integer and 0.5 interval binning respectively.
The associated χ2 calculations are displayed in table A.5. The hypothesis H50 is
that the IL-1 stimulated observations from the partial dataset approximates to a
Normal distribution. The χ6

2 threshold for 97.5% is 14.45, and as the χ2 score
for the data is 14.29, we accept H50.

Although tables A.4 and A.5 provide the χ2 scores that allow us to accept
H40 and H50 that the control and IL-1 stimulated observations from the par-
tial dataset follow a Normal distribution, the superimposed Normal distribution
curves on figures A.5 to A.8 raise the concern that the requirement to include
negative fluorescence values within the test does not reflect the underlying biolog-
ical data. As such, the third phase of χ2 tests were performed on a mathematical
distribution (the negative binomial distribution) that mandates positive x-axis
values, and thus will better reflect the underlying biological data. Figure A.9
represents the control data with integer binning, with a superimposed curve that
follows the negative binomial distribution with median average of 1.947153. The
associated χ2 calculations for this integer binning interval are displayed in table
A.6. The hypothesis H60 is that the control observations from the full dataset
approximate to a negative binomial distribution. The χ4

2 threshold for 97.5% is
11.483, and as the χ2 score for the data is 0.84, we accept H60. Similarly, figure
A.10 represents the IL-1 stimulated data with integer binning, with a superim-
posed curve that follows the negative binomial distribution with median average
of 1.729876. The associated χ2 calculations for this integer binning interval are
displayed in table A.7. The hypothesis H70 is that the IL-1 stimulated observa-
tions from the full dataset approximate to a negative binomial distribution. The
χ10

2 threshold for 97.5% is 20.483, and as the χ2 score for the data is 20.07, we
accept H70.

With the above χ2 tests in mind, we conclude that the full wet-lab dataset
of Yang et al. (2003) may be deemed to approximate to a negative binomial
distribution.
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Figure A.1: Histogram of control observations that have been binned (grouped) to
integer values of fluorescence. The superimposed line represents a Normal distribution,
using the mean and standard deviation calculated from the raw data. The mean has
been calculated as 2.3995.

Figure A.2: Histogram of IL-1 stimulated observations that have been binned
(grouped) to integer values of fluorescence. The superimposed line represents a Normal
distribution, using the mean and standard deviation calculated from the raw data. The
mean has been calculated as 3.1987.
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Figure A.3: Histogram of control observations from the partial dataset (with initial
fluorescence 0 to 3.0) that have been binned (grouped) to integer values of fluorescence.
The superimposed line represents a Normal distribution, using the mean and standard
deviation calculated from the raw data. The mean has been calculated as 1.282673.

Figure A.4: Histogram of control observations from the partial dataset (with initial
fluorescence 0 to 3.0) that have been binned (grouped) using a 0.5 interval of fluores-
cence. The superimposed line represents a Normal distribution, using the mean and
standard deviation calculated from the raw data. The mean has been calculated as
1.282673.
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Figure A.5: Histogram of control observations from the partial dataset (with initial
fluorescence 0 to 3.0) that have been binned (grouped) to integer values of fluorescence.
The superimposed line represents a Normal distribution with a negative fluorescence
tail, using the mean and standard deviation calculated from the raw data. The mean
has been calculated as 1.282673.

Figure A.6: Histogram of control observations from the partial dataset (with initial
fluorescence 0 to 3.0) that have been binned (grouped) using a 0.5 interval of flu-
orescence. The superimposed line represents a Normal distribution with a negative
fluorescence tail, using the mean and standard deviation calculated from the raw data.
The mean has been calculated as 1.282673.
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Figure A.7: Histogram of IL-1 stimulated observations from the partial dataset (with
initial fluorescence 0 to 3.0) that have been binned (grouped) to integer values of
fluorescence. The superimposed line represents a Normal distribution with a negative
fluorescence tail, using the mean and standard deviation calculated from the raw data.
The mean has been calculated as 1.156009.

Figure A.8: Histogram of IL-1 stimulated observations from the partial dataset (with
initial fluorescence 0 to 3.0) that have been binned (grouped) using a 0.5 interval of
fluorescence. The superimposed line represents a Normal distribution with a negative
fluorescence tail, using the mean and standard deviation calculated from the raw data.
The mean has been calculated as 1.156009.
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Figure A.9: Histogram of control observations from the full dataset that have been
binned (grouped) using an integer interval of fluorescence. The superimposed line
represents a negative binomial distribution, using the median calculated from the raw
data. The median average has been calculated as 1.947153.

Figure A.10: Histogram of IL-1 stimulated observations from the full dataset that
have been binned (grouped) using an integer interval of fluorescence. The superimposed
line represents a negative binomial distribution, using the median calculated from the
raw data. The median average has been calculated as 1.729876.
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Value Observed (Oi) Expected (Ei) Oi-Ei (Oi-Ei)2 / Ei

< -2 0 0.83206980 -0.83206980 0.83206980
-2 to -1 0 1.39094496 -1.39094496 1.39094496
-1 to 0 0 2.76233004 -2.76233004 2.76233004
0 - 1 12 4.48308720 7.51691280 12.60380970
1 - 2 7 5.94606600 1.05399400 0.18682990
2 - 3 7 6.44527800 0.55472200 0.04774290
3 - 4 3 5.70973320 -2.70973320 1.28598900
> 4 7 8.43049080 -1.43049080 0.24272650

Total 36 36 0 19.35244280

Table A.1: χ2 test for full dataset control observations approximating to a Normal
distribution

Value Observed (Oi) Expected (Ei) Oi-Ei (Oi-Ei)2 / Ei

< -5 0 0.89847576 -0.89847576 0.89847576
-5 to -4 0 0.75232248 -0.75232248 0.75232248
-4 to -3 0 1.21064944 -1.21064944 1.21064944
-3 to -2 0 1.82360256 -1.82360256 1.82360256
-2 to -1 0 2.57122216 -2.57122216 2.57122216
-1 to 0 0 3.39350440 -3.39350440 3.39350440
0 - 1 21 4.19232320 16.80767680 67.38459460
1 - 2 8 4.84802760 3.15197240 2.04927260
2 - 3 7 5.24764760 1.75235240 0.58516490
3 - 4 4 5.31702600 -1.31702600 0.32622700
4 - 5 1 5.04279360 -4.04279360 3.24109640
5 - 6 2 4.47685160 -2.47685160 1.37033670
6 - 7 2 3.72026200 -1.72026200 0.79545510
7 - 8 0 2.89383120 -2.89383120 2.89383120
8 - 9 1 2.10702960 -1.10702960 0.58163140
9 - 10 1 1.43604240 -0.43604240 0.13240070
> 10 5 2.06844040 2.93155960 4.1548130
Total 52 52 0 94.1646287

Table A.2: χ2 test for full dataset IL-1 stimulated observations approximating to a
Normal distribution

Value Observed (Oi) Expected (Ei) Oi-Ei (Oi-Ei)2 / Ei

< 0.5 6 4.5310330 1.4689670 0.4762411
0.5 - 1.0 6 5.0231740 0.9768260 0.1899574
1.0 - 1.5 4 6.1155432 -2.1155432 0.7318276
1.5 - 2.0 3 5.2569530 -2.2569530 0.9689713
> 2.0 7 5.0732968 1.9267032 0.7317106
Total 26 26 0 3.0987080

Table A.3: χ2 test for partial dataset control observations approximating to a Normal
distribution
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Value Observed (Oi) Expected (Ei) Oi-Ei (Oi-Ei)2 / Ei

< -0.5 0 0.42573856 -0.42573856 0.42573856
-0.5 to 0 0 1.19235714 -1.19235714 1.19235714
0 - 0.5 6 2.91293730 3.08706270 3.27159670

0.5 - 1.0 6 5.0231740 0.9768260 0.1899574
1.0 - 1.5 4 6.1155432 -2.1155432 0.7318276
1.5 - 2.0 3 5.2569530 -2.2569530 0.9689713
> 2.0 7 5.0732968 1.9267032 0.7317106
Total 26 26 0 7.51215930

Table A.4: χ2 test for partial dataset control observations approximating to a Normal
distribution with negative fluorescence tail

Value Observed (Oi) Expected (Ei) Oi-Ei (Oi-Ei)2 / Ei

< -0.5 0 0.63275940 -0.63275940 0.63275940
-0.5 to 0 0 1.91269908 -1.91269908 1.91269908
0 - 0.5 8 4.72651992 3.27348008 2.26713780

0.5 - 1.0 13 7.89639840 5.10360160 3.29856070
1.0 - 1.5 2 8.92127520 -6.92127520 5.36964160
1.5 - 2.0 6 6.81655680 -0.81655680 0.09781550
> 2.0 7 5.09379120 1.90620880 0.71334530
Total 36 36 0 14.29196

Table A.5: χ2 test for partial dataset IL-1 stimulated observations approximating to
a normal distribution with negative fluorescence tail.

Value Observed (Oi) Expected (Ei) Oi-Ei (Oi-Ei)2 / Ei

< 1 12 11.225772 0.774228 0.0533976
1 - 2 7 8.7013764 -1.7013764 0.3326694
2 - 3 7 5.917482 1.082518 0.1980311
3 - 4 3 3.8369432 -0.8367432 0.1824827
> 4 7 6.3186264 0.6813736 0.0734764

Total 36 36 0 0.8400572

Table A.6: χ2 test for full dataset control observations approximating to a negative
binomial distribution.
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Appendix A. χ2 Goodness of Fit Tests

Value Observed (Oi) Expected (Ei) Oi-Ei (Oi-Ei)2 / Ei

< 1 21 15.9764696 5.0235304 1.5795641
1 - 2 8 11.3233276 -3.3233276 0.9753764
2 - 3 7 7.8343252 -0.8343252 0.0888524
3 - 4 4 5.3764620 -1.3764620 0.3523967
4 - 5 1 3.6742108 -2.6742108 1.9463781
5 - 6 2 2.5050012 -0.5050012 0.1018068
6 - 7 2 1.7049656 0.2950344 0.0510540
7 - 8 0 1.1590748 -1.1590748 1.1590748
8 - 9 1 0.7872644 0.2127356 0.0574857
9 - 10 1 0.5343520 0.4656480 0.4057776
> 10 5 1.1245468 3.8754532 13.3557247
Total 52 52 0 20.0734913

Table A.7: χ2 test for full dataset IL-1 stimulated observations approximating to a
negative binomial distribution.
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B Supporting Material for
Statistical Techniques

Statistics does not tell us whether we are right about our interpetations of em-
pirical data, but instead tells us the probability of being wrong. For example,
replicates of experiments that are based on stochastic systems (in vitro, in vivo
or in silico), will never yield exactly the same results. Instead, the repeated mea-
surements will span a range of values, due to the inherent heterogeneity of the
biological system(s) under investigation, and also the precision limits of our mea-
suring equipment (Krzywinski and Altman, 2013). With such uncertainty within
the data, it is important to use appropriate statistical techniques in order to cap-
ture the role of chance within our experiments, and to assign confidence levels to
the experimental data, so that we may determine whether our measurements are
compatible with our experimental hypotheses. For the purposes of this thesis, we
have chosen to use the Kolmogorov-Smirnov test (Massey, 1951) to investigate
the statistical significance of our experimental data against baseline/control data,
and the Vargha-Delaney A-Test (Vargha and Delaney, 2000) to investigate the
effect magnitude (size difference) between the data. Through this dual-test ap-
proach, we are able to confer scientifically significant difference on experimental
data that has been found to contain significant differences under both tests.

B.1 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (KS-Test) is a non-parametric test of the equal-
ity of continuous, one-dimensional probability distributions that can be used to
either compare a sample against a reference probability distribution (one-sample
KS-Test), or to compare two samples (two-sample KS-Test) against each other.
The two-sample KS-Test is considered to be one of the most useful non-parametric
methods for comparing two continuous datasets, because it is sensitive to differ-
ences in both location and shape of the cumulative distribution functions of the
two samples.

As the data generated through simulation is continuous (with respect to time)
and one-dimensional in nature (as each agent state can be separated out from
the data), we have used the two-sample KS-Test that was pre-built into Matlab,
in order to investigate whether there is any significant difference between our
experimental and baseline/control datasets. This is performed through genera-
tion of a cumulative distribution for each dataset of interest (i.e. different cu-
mulative distributions for each agent type), and testing whether the underlying
one-dimensional probability distributions differ between experimental conditions
and baseline/control conditions. The KS-Test generates a p-value, and we have
taken a p-value <0.05 to indicate a statistically significant difference between the
two distributions of experimental data.
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Appendix B. Supporting Material for Statistical Techniques

B.2 The Vargha-Delaney A-Test

The Vargha-Delaney A-Test, is a non-parametric test that indicates the signifi-
cance of any differences in size (termed effect magnitude) between two populations
of data (Vargha and Delaney, 2000). Through comparison of the two distributions
(A and B), for example by comparing an experimental dataset against a reference
(baseline or control sample) dataset, the A-Test investigates whether a randomly
chosen data point from distribution A is larger than a randomly chosen data point
from distribution B. The resulting A-Test score, has a value between 0.0 and 1.0,
and indicates the probability that the two distributions of experimental data are
taken from different populations. Vargha and Delaney (2000) suggest a number
of threshold values (for the A-Test scores) to indicate significant differences be-
tween the two distributions (see table B.1). A value of 0.5 is used to indicate no
difference between the distributions, whereas values < 0.29 and > 0.71 are used
to indicate large differences.

Difference Large Medium Small None Small Medium Large
A-Test Score <0.29 <0.36 <0.44 0.50 >0.56 >0.64 >0.71

Table B.1: The effect magnitude (A-Test score) thresholds, as indicated by Vargha
and Delaney (2000). We take the large difference, with A-Test scores <0.29 and >0.71
for samples that have already yielded a statistically significant difference from the
KS-Test, to indicate scientifically significant differences.

The following Matlab code is used to generate the Vargha-Delaney A-Test score.
It was generously provided by Dr Mark Read, who was a fellow researcher within
the York Computational Immunology Lab. A caveat needs to be applied, in that
the code only works if the two distributions being compared contain exactly the
same number of data points.

functionA = Atest(X, Y )

[p, h, st] = ranksum(X, Y, ‘alpha′, 0.05);

N = size(X, 1);

M = size(Y, 1);

A = (st.ranksum/N − (N + 1)/2)/M ;
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C Example 0.XML Parameters File

<states>
<itno>0</itno>
<environment>
<simulation seed>1</simulation seed>
<stimulation status>1</stimulation status>
<recdelay constant>10</recdelay constant>
<biomolecule speed ave>20</biomolecule speed ave>
<biomolecule speed range>10</biomolecule speed range>
<biomolecule angle range>0.314159</biomolecule angle range>
<nuclear receptor speed ave>20</nuclear receptor speed ave>
<nuclear receptor speed range>5</nuclear receptor speed range>
<nuclear receptor angle range>0.314159</nuclear receptor angle range>
<dt>2</dt>
<nuclear radius>3750</nuclear radius>
<cell radius>10000</cell radius>
<basal dissociation prob>0.000003</basal dissociation prob>
<binding prob biomolecules>0.65</binding prob biomolecules>
<binding prob importreceptor>0.03</binding prob importreceptor>
<binding prob exportreceptor>0.5</binding prob exportreceptor>
<binding prob ikk>0.75</binding prob ikk>
<binding prob il importreceptor>0.85</binding prob il importreceptor>
<binding prob il exportreceptor>0.5</binding prob il exportreceptor>
<default ikk rebinddelay>10</default ikk rebinddelay>
<rebind delay>3</rebind delay>

</environment>
<xagent>
<name>NFkB</name>
<id>1</id>
<postheta>0.519620</postheta>
<posphi>-1.164042</posphi>
<posr>4992.761417</posr>
<posx>1714.567424</posx>
<posy>980.830804</posy>
<posz>-4585.400315</posz>
<movetheta>-1.928947</movetheta>
<movephi>-0.748157</movephi>
<mover>10.174385</mover>
<state>1</state>
<ikk id>0</ikk id>
<ikk boundcounter>5</ikk boundcounter>
<iradius>100</iradius>
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Appendix C. Example 0.XML Parameters File

<ikba id>560</ikba id>
</xagent>

.... Additional NF-κB Agents ....

<xagent>
<name>IkBa</name>
<id>500</id>
<postheta>1.165670</postheta>
<posphi>1.108712</posphi>
<posr>9685.570796</posr>
<posx>1701.861737</posx>
<posy>3968.444144</posy>
<posz>8669.798114</posz>
<movetheta>-0.270213</movetheta>
<movephi>-6.707881</movephi>
<mover>24.655802</mover>
<state>100</state>
<iradius>100</iradius>
<rebinddelay>0</rebinddelay>

</xagent>

.... Additional IκBα Agents ....

<xagent>
<name>IKK</name>
<id>2000</id>
<postheta>0.612705</postheta>
<posphi>0.072128</posphi>
<posr>6235.363700</posr>
<posx>5087.860270</posx>
<posy>3576.523137</posy>
<posz>449.355767</posz>
<movetheta>9.514695</movetheta>
<movephi>2.001282</movephi>
<mover>10.900060</mover>
<state>200</state>
<iradius>100</iradius>
<stimulationdelay>500</stimulationdelay>
<ikkrebinddelay>10</ikkrebinddelay>

</xagent>

.... Additional IKK Agents ....

<xagent>
<name>Nuclear Receptor</name>
<id>1000</id>
<postheta>183.606789</postheta>
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<posphi>-180.958286</posphi>
<posr>3750.000000</posr>
<posx>204.929407</posx>
<posy>1149.782568</posy>
<posz>3563.496034</posz>
<movetheta>0.000096</movetheta>
<movephi>0.000024</movephi>
<mover>0.000000</mover>
<state>400</state>
<recdelay>0</recdelay>
<boundindex>587</boundindex>
<iradius>100</iradius>

</xagent>

.... Additional Nuclear Receptor Agents ....

<xagent>
<name>IL1R</name>
<id>2501</id>
<postheta>186.459726</postheta>
<posphi>-183.881180</posphi>
<posr>10000.000000</posr>
<posx>438.828713</posx>
<posy>874.617350</posy>
<posz>-9952.008534</posz>
<movetheta>-0.000116</movetheta>
<movephi>-0.000089</movephi>
<state>300</state>
<stimulation delay>250</stimulation delay>

</xagent>

.... Additional IL1 Cell Membrane Receptor Agents ....

</states>
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Abbreviations

ABMS Agent-Based Modelling and Simulation
API Application Programming Interface
CoSMoS Complex Systems Modelling and Simulation
DNA Deoxyribonucleic Acid
EAE Experimental Autoimmune Encephalomyelitis
EGFP Enhanced Green Fluorescent Protein
FLAME Flexible Large-scale Agent-based Modelling Environment
GTP Guanosine 5’-Triphosphate
HIV Human Immunodeficiency Virus
IκB Inhibitor of Nuclear Factor-kappa B
IκBα Inhibitor of Nuclear Factor-kappa B alpha
IκBβ Inhibitor of Nuclear Factor-kappa B beta
IκBδ Inhibitor of Nuclear Factor-kappa B delta
IκBε Inhibitor of Nuclear Factor-kappa B epsilon
IKK Inhibitor of Nuclear Factor-kappa B Kinase
IL-1 Interleukin-1
IRAK Interleukin-1 Receptor-Associated Kinase
LPS Lipopolysaccharide
mRNA Messenger Ribonucleic Acid
NEMO NF-κB Essential Modulator
NF-κB Nuclear Factor-kappa B
ODE Ordinary Differential Equation
PC Principal Component
PCA Principal Component Analysis
PDE Partial Differential Equation
RNA Ribonucleic Acid
SBGN Systems Biology Graphical Notation
SDE Stochastic Differential Equation
TAK Transforming Growth Factor-β-Activated Protein Kinase
TILRR Toll-like/IL-1 Receptor Regulator
TLR Toll-Like Receptor
TNF Tumour Necrosis Factor
TRAF Tumour Necrosis Factor Receptor-Associated Factor
UML Unified Modelling Language
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Glossary

Adaptive Immune Sys-
tem

The second line of defence within the immune sys-
tem, which unlike the innate immune system that
acts generically, provides a specific immune re-
sponse. The cells and tissues of the adaptive im-
mune system are capable of recognising individual
pathogens, and are able to provide a targeted re-
sponse. Furthermore, following the successful de-
fence against a pathogen, cells within the adap-
tive immune system that provided specificity to
the pathogen are maintained, in order to provide
a memory of the pathogenic attack, and thus pro-
vide long lasting immunity against the pathogen.

Agent-Based Modelling A computational modelling approach, in which
each individual component (such as individual
biologocal molecules) are explicitly represented.
The emergent behaviour that is generated through
agent-based simulations is the result of pre-
specified rules, that define the possible interactions
between components and state changes of compo-
nents.

Cytokine A broad category of small-protein signalling
molecules secreted by cells. They generally mi-
grate away from the secreting cell to act on other
cells, however in some circumstances, may remain
in the vicinity of the secreting cell and act upon
it, thus forming a feedback loop.

Domain The real-world system of interest that is the sub-
ject of our investigation, which in this case is the
IL-1 stimulated NF-κB Signalling Pathway.
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Domain Model The abstracted view of our understanding of the
domain. The concept of the domain model was
defined within the CoSMoS approach, and may
represent both the current view of the underly-
ing real-world system, and our hypotheses on the
mechanistic interactions and processes within the
system. The CoSMoS approach does not spec-
ify what techniques should be used for develop-
ing the domain model, and therefore the modeller
and subject matter expert(s) are free to utilise the
best tools available, such as diagrammatic mod-
elling using cartoon and UML notations, statistical
modelling, and kinetic modelling using the various
types of equations.

Epithelial Cell A cell of the epithelium, which is a tissue that lines
the surfaces of structures throughout the body,
and also forms many glands. Epithelial cells have
many functions, including the secretion and selec-
tive absorption of extracellular signals, protection
against infection, and transcellular transport.

Fibroblast Cell A cell common to the connective tissue in animals,
due to their synthesis of extracellular matrix and
collagen - the structural framework for animal tis-
sues. They also play a critical role in wound heal-
ing.

IL-1 Interleukin-1. A family of cytokines, involved in
the regulation of immune and inflammatory re-
sponses due to infection. IL-1 is produced by a
large number of cells related to the immune re-
sponse, such as tissue macrophages, monocytes, fi-
broblasts, and dendritic cells, but is also produced
by epithelial cells.

Immune System The term given to the internal system that en-
sures organisms can defend themselves against at-
tack from bacteria, virus’ and toxic chemicals. The
immune system comprises specific cells, tissues and
organs, that produce immune response molecules
for the maintainence of a healthy state for the or-
ganism as a whole.

Inflammatory Response The inflammatory response is initiated by the in-
nate immune system, and is a protective tissue re-
sponse to injury or destruction of tissue-cells. Its
aim is to destroy, dilute, or quarantine both the
pathogenic/toxic agent and the injured tissues.
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Innate Immune System The first line of defence within the immune system,
which acts through a system-wide response, and
thus non-specific to the pathogenic threat. The
cells of the innate immune system recognise and
respond to pathogenic threats in a generic way,
and therefore unlike the adaptive immune system,
it does not confer long-lasting or protective immu-
nity to the host.

In Silico An approach that uses computers to perform ex-
perimentation (i.e. in silicon chip), rather than
the more traditional laboratory-based experimen-
tal approaches, which are performed in glass or in
living organisms.

In Vitro An approach that performs experimentation out-
side of a living organism, although it may utilise
cells and tissues harvested from a living organism.
Such experiments are traditionally performed in a
laboratory environment, and may be confined to a
test tube, petri dish, or other suitable container.

In Vivo An approach that performs experimentation
within a living organism.

Kolmogorov-Smirnov
Test

A non-parametric statistical test, which is used on
continuous, one-dimensional distributions. It can
be used to compare a sample with a reference prob-
ability distribution (one-sample KS test), which
was the application for our work, or to compare
two samples (two-sample KS test).

Membrane Receptor A protein complex located in a cellular membrane,
such as the cell surface membrane, which binds
signal molecules (e.g. cytokine), and once activated
may propagate the signal from the outside of the
cell to the inside of the cell for propagation of the
signal.

Model An abstracted view of a real-world system, theory
or phenomenon. There are many different types
of models, however for the purposes of this thesis,
they may be thought of as conceptual, computa-
tional, mathematical and statistical.

ODE Abbreviation for Ordinary Differential Equation.
This mathematical approach is usually used to
investigate the temporal dynamics of population-
level phenomena, using a series of linked differen-
tial equations.
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Pathogen An infectious agent, such as a virus, bacterium, or
parasite, that may cause disease in the host.

Platform Model The technical specification from a CoSMoS
project, which translates the functional require-
ments of the system (as documented in the domain
model), into a software platform specific design, for
subsequent coding into the actual computational
model (the simulation platform).

Sensitivity Analysis The investigation using statistical techniques, of
how a system (e.g. a computational model) re-
sponds to perturbations of input parameter values
away from their calibrated values.

Simulation An instantiation (i.e. execeution with specific pa-
rameter values) of a computational model.

TNFα Tumour Necrosis Factor alpha. A type of cy-
tokine, secreted by a broad range of cells, such
as cells from the innate and adaptive immune sys-
tem, along with epithelial and fibroblast cells. It
primarily acts to regulate the action of immune
cells, by inducing apoptotic cell death, inflamma-
tion, and the inhibition of viral replication. It may
also propagate the immune response through in-
ducing the production of further cytokines, such
as IL-1.

UML The Unified Modelling Language. A diagrammatic
notation, which is maintained and administered by
the Object Management Group. Although orig-
inally developed for software engineering, where
it was used to define the functional, technical and
process related aspects of computer systems, it has
recently been applied within the complex systems
analysis community.

Vargha-Delaney A-Test A non-parametric statistical technique to test the
effect magnitude of the difference between two con-
tinuous, one dimensional distributions. On its
own, the test does not provide an indication of
significant difference, however when used on dis-
tributions that have been shown to contain statis-
tically significant differences (through for example
p-values < 0.05 from the KS-Test), a large effect
magnitude is deemed indicative of a scientifically
significant difference.
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