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Abstract

It is believed that fingerprints are determined in embryonic development. Unlike other

personal characteristics the fingerprint appears to be a result of a random process.

For example fingerprints of identical twins (whose DNA is identical) are distinct, and

extensive studies have found little evidence of a genetic relationship in terms of types

of fingerprint, certainly at the small scale. At a larger scale the pattern of ridges on

fingerprints can be categorised as belonging to one of five basic forms: loops (left and

right), whorls, arches and tented arches. The population frequencies of these types show

little variation with ethnicity and a list of the types occurring on the ten digits can be

used as an initial basis for identification of individuals. However, such a system would

not uniquely identify an individual although the frequency of certain combinations could

be extremely small. At a smaller scale various minutiae or singularities can be observed

in a fingerprint. These include ridge endings and bifurcations, amongst others. Typical

fingerprints have several hundred of these as well as two key points (with the exception

of a simple arch) referred to as the core and delta, which are focal points of the overall

pattern of ridges. Modern identification systems are based upon ridge endings and

bifurcations, not least because they are the easiest to determine automatically from

image analysis. The configuration of these minutiae is unique to the individual.

This research explores the relationship between the locations of minutiae to determine

if they can be modelled using a statistical process. In addition, since the approach

is based on how fingerprints can be examined in a forensic situation an algorithm is

created and tested which allows the strength of a match between a fingermark left at

a crime and a fingerprint from a known suspect to be calculated. Currently the result

of matching a fingermark and fingerprint is expressed as a categorical value of; match,

no match or inconclusive. The method in this research allows this to be expressed as a

numerical value allowing for a wider and more flexible use of fingerprint evidence.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fingerprint History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Existing Methods for Fingerprint Classification and Comparison . . . . 6

1.3.1 Fingerprint Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Forensic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Review of Literature 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Models for Fingerprint Generation . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Models To Compute Likelihood Ratios . . . . . . . . . . . . . . . . . . . 20

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Models to Assess Individuality Using PRC . . . . . . . . . . . . . . . . . 24

iii



CONTENTS iv

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Data 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Data sets from FSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Dummy Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 My Prints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Assessment of Complete Spatial Randomness 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Plotting Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Density Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Plotting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 K-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Size Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Model Fitting 56

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Investigation of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Strauss Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Isotropic Centred Poisson Process . . . . . . . . . . . . . . . . . . . . . . 61



CONTENTS v

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Matching Algorithm 66

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.2 Fingermark Simulation . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.3 Background to Transformations . . . . . . . . . . . . . . . . . . . 68

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 Candidate Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.3 The Unique Allocation Problem . . . . . . . . . . . . . . . . . . 75

6.2.4 Hungarian Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Final Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Simulation Experiments 80

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Theory for Calculating the Likelihood Ratio . . . . . . . . . . . . . . . . 82

7.3.1 Prosecutor Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.2 Defence Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3.3 Likelihood Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4 Results from Simulation Experiments . . . . . . . . . . . . . . . . . . . . 87

7.4.1 Results for Changes in Number of Minutiae . . . . . . . . . . . . 87

7.4.2 Results for Changes in σ . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS vi

8 Optimisation 100

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2 Method of Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Results from Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3.1 Results for Changes in Number of Minutiae . . . . . . . . . . . . 101

8.3.2 Results for Changes in σ . . . . . . . . . . . . . . . . . . . . . . . 105

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Expansion with Minutia Type 114

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.2 Method for Inclusion of Minutia Type . . . . . . . . . . . . . . . . . . . 114

9.3 Results from the Inclusion of Minutia Type . . . . . . . . . . . . . . . . 116

9.3.1 Results for Changes in Number of Minutiae . . . . . . . . . . . . 116

9.3.2 Results for Changes in σ . . . . . . . . . . . . . . . . . . . . . . . 122

9.4 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10 Conclusions and Further Work 128

10.1 Spatial Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.2 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.3 Further Work and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 130

References 132

Appendix A R code - Matching Algorithm 138

Appendix B R code - Additional Optimisation Steps 150

Appendix C R code - Extension to Minutia Type Steps 152



Chapter 1

Introduction

1.1 Motivation

Fingerprints are important since they offer a sound basis for identification; during much

of history fingerprints have been widely accepted for this use. Fingerprints are an im-

portant aspect of modern society; their benefits are currently utilised for commercial

activities (computing, security etc). However a more well known use of fingerprints is

in a forensic situation. The two ideas that make fingerprints so relevant are (i) perma-

nence, and (ii) individuality (Alonso et al., 2007); these advantages lend themselves to

forensics, where they can be used to establish a suspect’s placement at a crime scene.

In 2002 alone, in the UK 330,000 crime scenes yielded fingerprint evidence, this recov-

ered data led to the detection of 34,000 suspects (Great Britain Home Office, Forensic

Science Pathology Unit, United Kingdom, 2005).

Whilst the validity of the assertion of permanence has been “established by empirical

observations as well as based on the anatomy and morphogenesis of friction ridge skin”

(Jain et al., 2002), the claim of individuality (uniqueness) has not been formally as-

sessed despite it being commonly accepted as true. Since the Daubert v. Merrell Dow

Pharmaceuticals’ case in 1993 (Daubert v. Merrell Dow Pharmaceuticals Inc, 1993)

forensic evidence has been under increasing scrutiny in court. During this case the

Supreme Court ruled that expert forensic testimony must adhere to five criteria:

1. The technique or methodology must have been subjected to statistical hypothesis

1



CHAPTER 1. INTRODUCTION 2

testing,

2. Error rates must have been established,

3. Standards controlling the technique’s operation exist and have been maintained,

4. It has been peer reviewed and published,

5. It has general widespread acceptance.

Fingerprints were first challenged in court during a case in 1999 (U.S. v. Byron Mitchell,

1999) on the basis that they do not conform to all five criteria from Daubert v. Merrell

Dow Pharmaceuticals Inc (1993) (Cole, 2004). In particular, an expert witness for the

defense argued that the uniqueness of fingerprints has not been thoroughly tested and

potential matching error rates are unknown. The result of this challenge in court was a

five day Daubert hearing which concluded with the court “declining to decide whether

forensic fingerprint identification was properly labelled as scientific evidence” (Cole,

2004). Due to this there has been an increased amount of literature and research into

the area of fingerprint uniqueness. This is where this research comes in. The aim is to

understand the within and between fingerprint variability. By looking at how properties

of local features interact we are hoping to establish the underlying statistical structure

of fingerprints so that a strength of a match can be established. This may incorporate

different aspects of fingerprints such as level 1 patterns, minutiae types or even finger

type. We hope that by using statistics to model fingerprint features a likelihood ratio

can be calculated. Currently there is much work being done in presenting likelihood

ratios to a court in relation to DNA evidence (which is not given as a categorical decision

unlike fingerprints which are), this could be extended to take into account other forms

of evidence such as fingerprints, glass fragments, or hair fibres, amongst others.

It is worth noting that the issue of uniqueness of fingerprints can be viewed as a

“red herring”. We believe that although it is worth knowing about the uniqueness of

fingerprints (for intellectual understanding); in a forensic environment it isn’t entirely

relevant as two fingerprints are never compared. It is the case that a fingermark is

compared with a fingerprint. A mark will be of much lower quality and hence the

uniqueness of the print it came from is not useful for the comparison, a more interesting

question is the uniqueness of fingermarks. In addition when looking at likelihood ratios,



CHAPTER 1. INTRODUCTION 3

as this research intends to do, as long as the features are very rare the difference between

one in seven billion and one in four billion (for example) is negligible.

1.2 Fingerprint History

References to fingerprints exist throughout history. One of the earliest examples of the

use of fingerprints is found in a Chinese document entitled “The Volume of Crime Scene

Investigation—Burglary” which dates back to the Qin Dynasty (221BC — 206BC).

During the Tang Dynasty (617AD — 907AD) in China fingerprints were used as a

form of identification. Also in eighth century Japan fingerprints were used instead of a

signature on legal documents (Barnes, 2010). In 1823 Jan Purkinje published a thesis

(Cummins and Kennedy, 1940) within which he details nine fingerprint patterns. These

nine patterns correspond to (i) transverse curves (arch), (ii) central longitudinal stria

(tented arch), (iii) oblique stripe (loop left or right), (iv) oblique loop (loop left or

right), (v) almond (whorl), (vi) spiral (whorl), (vii) eclipse (whorl), (viii) circle (whorl),

and (ix) double whorl (whorl). Purkinje’s nine patterns can be seen to fit into the five

groups we use today as highlighted in brackets. However no distinction is made between

left and right loops but the whorls show more detailed subgroups.

William James Herschel played a key role in the development of the study of fingerprints

when he speculated on their uniqueness in 1859. At the time he was using fingerprints

instead of a signature on contracts in India (Barnes, 2010). In 1880 the first European

published work about fingerprints appeared, this was an article in Nature by Henry

Faulds (Faulds, 1880). He wrote about how fingerprints could be used for identifica-

tion and specifically for identifying criminals. In addition to this he sent his work to

Charles Darwin, who, in declining health, forwarded the work to Francis Galton, this

undoubtedly led to the publication Finger Prints (Galton, 1892). In fact Stoney (2001)

credits Galton with the first proposal of a statistical model for fingerprints when he

attempted to specify ridge details.

The Bertillon System was used for many years as a way of identifying criminals and

repeat offenders; it used measurements from eleven bony parts of the body as a way

of doing this, as well as scars, personality traits and other interesting aspects. This

method successfully identified its first criminal in 1883. The details were presented on
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record cards which were both time and space consuming to use. The main reason for the

abandonment of this system was its lack of uniqueness, in its place fingerprints began

being used as the best method of identification. In 1892 there was the first criminal

case involving fingerprints; this took place in Argentina and concerned the murder of

two boys by their mother (Barnes, 2010). In that same year Galton published Finger

Prints (Galton, 1892).

In the late 1800s Edward Henry worked in Bengal. Here with some fellow researchers the

Henry system was developed for classifying fingerprints (Barnes, 2010). This system

was used from the 1900s until the mid 1990s. It was a logical system for recording

fingerprints using a formula which assigns numbers to different patterns and finger

allocations. The method requires a full ten-print set, it’s basis is the presence of a

pattern in the ridge flow called a whorl, these are explained more fully in Section 1.3.1.

The method is as follows:

1. Label each finger with a number as in Figure 1.1, starting with the right thumb

(1) and ending with the left little finger (10),

2. Assign each finger a value based on whether the finger has a pattern called a

whorl, using Table 1.1 (zero otherwise) ,

3. Sum the values for the even and odd labelled fingers separately,

4. Add one to each of these sums,

5. Represent this as a value ranging from 1/1 to 32/32 (even/odd).

Finger Label Value for a whorl

1, 2 16

3, 4 8

5, 6 4

7, 8 2

9, 10 1

Table 1.1: A table showing the value for the presence of a whorl in the Henry System

A 1/1 is a set of prints with no whorls and a 32/32 is a set of prints with all whorls. For

example, if the fingers displayed in red in Figure 1.1 represent a whorl this pattern would
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Figure 1.1: Display of the method for the Henry system where the numbers represent

the label of the finger and red fingers are whorls
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be described as (16 + 4)/(4 + 1) = 20/5. This system was not unique but did in fact

make it easier to break down the large groups of fingerprint patterns. Since many record

cards were being created a better system was needed for searching and storing these

and hence automated fingerprint identification systems (AFIS) were created. These are

still in use today. The largest repository is in the United States of America (IAFIS)

and is governed by the Federal Bureau of Investigation. Today it holds around 100

million sets of prints.

1.3 Existing Methods for Fingerprint Classification and

Comparison

1.3.1 Fingerprint Patterns

It is important to investigate the different type of patterns and what is meant by the

terminology in this area. It is believed that the ridges and valleys that make up a

fingerprint are formed during the 11th and 27th weeks of fetal development (Babler,

1991). Some authors (Maltoni et al., 2003) believe that the specific features of a fin-

gerprint (including overall ridge flow, interruptions in ridge flow inter-ridge distances,

pores etc) are a result of changes in the local micro-environment in the amniotic fluid,

whilst others (Babler, 1991) think it is a combination of factors; additionally skeletal

formation and nerve distribution amongst others. Visually fingerprints are made up of

ridges and valleys, the overall ridge flow exhibited on a fingerprint can be categorised;

these are described as level one (global patterns). We currently distinguish five main

global patterns as determined by the Galton-Henry system of classification; these are

(i) right loop, (ii) left loop, (iii) whorl, (iv) arch, and (v) tented arch. These can be

seen by merely looking at the finger although in many cases the categorisation can be

ambiguous. The most common are the loops and whorls. A study of a sample of people

from 2008 gave the proportions to be 32%, 29%, 20%, 14% and 5% respectively (Srihari

et al., 2008). The five fingerprint patterns described can be seen in Figure 1.2. Two

other important features that can be identified at a global level are referred to as the

core and delta (Levi and Sirovich, 1972), these can be seen in Figure 1.2. In Maltoni

et al. (2003) these are described as the control points around which the ridge flow is

wrapped. A core can be seen in the level one types except arch and tented arch; it
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Figure 1.2: Display of the five main global fingerprint patterns, the red circle represents

a core and the blue triangle a delta

describes the central location in a fingerprint where the ridge flow changes direction

swiftly. A whorl is usually described as having two cores at either side of the changing

ridge flow. A delta is seen in all level one patterns (with most whorls having two) and is

described as a peak in the ridge flow. These global features are useful for classification.

When observing a fingerprint more closely changes in ridge-flow can be seen, these local

ridge characteristics are referred to as minutiae. These level two patterns (local) form

the basis of forensic identification since configurations of minutiae are believed to be

unique. From the literature (Su and Srihari (2008), Maltoni et al. (2003)) minutiae are

features within a fingerprint which can have type and orientation as well as location.

In many cases however, location is the key feature used to describe minutiae as this is

the only information available; in this situation they can often be referred to as simply

points with x and y coordinates. There are many documented types of minutiae (a

total of 150 according to Moenssens (1971)) but in a forensic situation only two are

used; ridge endings and bifurcations. A ridge ending is described by Maltoni et al.
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Figure 1.3: Display of several minutia patterns

(2003) as “the ridge point where a ridge ends abruptly” and a bifurcation as “the ridge

point where a ridge forks or diverges into branch ridges”. The use of only these two

types is for several reasons, the first is that they are the most common and easiest to

recognise. Secondly other types of minutiae can be described as combinations of ridge

endings and bifurcations. For example from the images in Figure 1.3 a lake can be

described as two adjoining bifurcations.

There are also level 3 patterns which include features such as pore detail on the ridges,

ridge width and inter-ridge distance. However these details are not usually used in

forensic identification since a mark left at a crime scene will typically be of poor quality

and these details would be very hard to locate with confidence. It is also interesting to

note that unlike DNA there is no relationship between family members and the location

and types of minutiae. People of the same race or social standing do not display similar

fingerprints. There has been a study to test the fingerprints of twins for similarities

(Srihari et al., 2008). Despite it concurring that level two patterns are not similar for

twins there was some evidence that identical twins are more likely to share the same

level one patterns.
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1.3.2 Forensic Methods

In a forensic context there are two types of patterns associated with fingers, these

are marks and prints. Fingermarks are predominately what is made by a finger and

constitute the evidence taken from a crime scene and are typically of poor quality. As

well as this they are usually incomplete, distorted or smudged. Fingerprints however,

are what is on the finger and can be recorded accurately if they are taken in controlled

circumstances from a person. They tend to be the whole finger pad and demonstrate

a complete image which is easy to analyse for minutiae. The basis for fingerprint use

in forensics is therefore matching a print to a mark.

Forensics is focused on two areas. These are (i) intelligence or investigation and (ii)

evaluation or assigning a weight of evidence. Intelligence is associated with findings

from a crime scene (e.g. a finger mark) which are then searched through a database

(AFIS) to find a matching print. Evaluation concerns a finger mark from a crime scene

and a fingerprint taken from a suspect, these are then compared in order to draw a

conclusion of match, non match or inconclusive (when there is insufficient evidence to

support either result). There is little work available in the area of evaluation. Most

of the work is from a computer scientist’s point of view and less from methods using

a probabilistic model to describe both intra- and inter-print variation. To clarify:

intelligence requires a finger mark (of varying quality) whereas evaluation requires both

a finger mark and a fingerprint.

1.4 Thesis Outline

Chapter 1 is an introductory chapter. It first outlines what the thesis is about and the

aim of the research. Then the structure of the thesis is given with a chapter by chapter

summary. Next details about the background to the topic, for example, information

about fingerprint patterns, why this research needs to be carried out, some fingerprint

history, and details about forensic methods.

Chapter 2 comprises of an in depth review of current literature on the topics of forensic

statistics (including the Aitken and Lucy methods), current research in the area of

fingerprints (fingerprint generation, likelihood ratios and probability of a random cor-

respondence), as well as any other general statistical knowledge needed for the research
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(point pattern analysis, likelihood ratios).

Chapter 3 introduces the data sets used in the research. It gives information about

how they were obtained and the information they contain. Also details are given of

any dummy data sets created for the purposes of the research, including information I

have extracted from my own prints when methods were tested on a single known print.

Chapter 4 contains preliminary work carried out on the data sets. This includes details

about plotting programs, density plots and initial plotting of functions (G, F, K).

Chapter 5 includes fitting models to the datasets provided by the Forensic Science

Service. The usefulness of built-in models will be assessed, and then they will be fitted

to the dataset. Information will be given about how parameters will be estimated from

the models and what these are before looking at maximising the likelihood ratios.

Chapter 6 outlines the method for calculating the matching algorithm between a fin-

germark and a fingerprint, including detailed identification of the candidate set, trans-

formation and the Hungarian Algorithm. This leads into Chapter 7 which details the

theory for calculating the likelihood ratio and the results from simulation experiments

using the matching algorithm from the previous chapter. This algorithm is optimised

in Chapter 8 and again simulation experiments are carried out. The final work on

the matching algorithm is done in Chapter 9 where the model is extended to include

minutiae types.

Finally in Chapter 10 conclusions from the whole thesis are drawn and some ideas for

ways to expand this piece of research are explored.



Chapter 2

Review of Literature

2.1 Introduction

This chapter focuses on reviewing relevant material in the area of fingerprint research.

Much of the research previously carried out features techniques based on the ridge

pattern created by realisations of a fingerprint. In contrast this research will focus

heavily on minutiae locations and the interaction between them. There will be three

main research areas outlined in this review, those being:

1. Models for fingerprint generation - these describe current methods for fingerprint

generation, most methods focus heavily on ridge flow which differs from the ap-

proach in this research which relates to minutiae locations

2. Models to compute likelihood ratios in forensic statistics - current methods used

for other types of forensic evidence and how this can be adapted to fingerprints

3. Models to assess individuality using probability of a random correspondence

(PRC) - this shows research into creating probabilities for a population of fin-

gerprints which we will need to know in order to evaluate a match.

11
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2.2 Models for Fingerprint Generation

2.2.1 Overview

Fingerprint generation is a general term used to describe techniques which create real-

istic fingerprints. It has many uses and plays an important role in improving current

techniques in both forensic and commercial markets. Many new security systems use

fingerprints as a type of person specific recognition to allow valid users access to a par-

ticular place or piece of equipment. By improving generation techniques these systems

would become more robust against impostor access as the initial fingerprint informa-

tion is broken down and stored within the system, by researching how this information

could be used to attack the system, this can be prevented from happening. In addition

developments would aid many forensic avenues by allowing experts to reconstruct real-

istic fingerprints using the information they have obtained from fingermarks at a crime

scene.

There have been several techniques proposed with a view to fingerprint generation.

They fall into two main categories; (i) fingerprint synthesis: the generation of a finger-

print image with a view to looking (and performing) like a true fingerprint, and (ii)

fingerprint reconstruction: this takes existing knowledge of a fingerprint that has been

stored in some way to create an image that is the same as the original. Many steps

in reconstruction and synthesis overlap. However, it is the original input that changes

the outcome. In this section both of these techniques are discussed since knowledge of

both is useful for our purpose.

Reconstruction techniques are currently predominantly used in security systems to see

how viable it is to create the original print from a stored minutiae template. When a

set of prints are first entered into the system, not all the information is stored. Instead

only the main features are stored. This can range from lots of information to only

the basics, for example aspects of the print such as: global pattern, minutia location,

orientation and type, fingerprint area, frequency image etc. It is widely believed that

these systems are one way and it is not possible to recreate the original print from

these details however there has been much new work in this area (Cappelli et al.,

2007; Jain et al., 2007; Feng and Jain, 2009). The main aim of these approaches are

the reconstruction of the ridge lines from the minutiae positions. Reconstructing an
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accurate print in this case still poses a difficult challenge. In Maltoni et al. (2003) the

aim of fingerprint synthesis is to allow large databases of realistic fingerprints to be

created so that fingerprint recognition algorithms can be effectively tested, evaluated

and, most importantly, compared with other algorithms. In a forensic scenario more

accurate methods for reconstruction could be developed by precisely modelling the

variation in fingerprints, specifically in minutia detail. Then the reconstructed image

accurately represents the original image, thus aiding the impact of fingerprints as a

form of both evidence and identification in cases where only low quality finger marks

are available.

2.2.2 Methods

The SFINGE Method

The main source in this area is the Handbook of Fingerprint Recognition (Maltoni

et al., 2003). This outlines a procedure for fingerprint synthesis using ‘The SFINGE

Method’. The fingerprint area is first generated using a model based on four elliptical

arcs and a rectangle, Figure 2.1 (Maltoni et al., 2003). This has five parameters; a1, a2,

b1, b2 and c as can be seen below, these determine the shape of the overall fingerprint.

Next the method generates an orientation image. First a level 1 pattern is randomly

chosen and positions of the core and delta are randomly selected, this is done according

to level 1 specific constraints, for example a whorl has two cores with a delta on either

side, these features are described in more detail in Section 1.3.1. Then an algorithm

weighted with piecewise linear functions from Vizcaya and Gerhardt (1996) is used

to give the general ridge flow. This is a variation on the Sherlock and Monro model

(Sherlock and Monro, 1993) and essentially locally corrects the orientation of the ridge

flow with respect to the level 1 features (core and delta). Following on from this a

frequency image is generated. This sets out the ridge pattern frequency, i.e. the distance

between ridges. SFINGE selects a feasible overall frequency from the distribution of

those in real prints with an average ridge/valley period of nine pixels. Since this method

will give a constant inter-ridge distance it is altered slightly in areas where we know the

frequency is lower, for example in the areas above the uppermost core and below the

lowest delta. The image is then perturbed and smoothed with the purpose of improving

the appearance of the print.
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Figure 2.1: Fingerprint area image
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Finally the ridge patterns are generated by iteratively enhancing an initial image using

Gabor filters, this initial image uses several starting points as Cappelli et al. (2000)

found that increasing the number of initial points gives a more realistic pattern of

minutiae in the final image. The use of Gabor filters is based on the work by Hong

et al. (1998) who proposed an effective method for the enhancement of a fingerprint

image by using them to filter out undesired noise. Gabor filters are represented by both

frequency and orientation (Daugman, 1985) which makes them ideal for use here as the

frequency and orientation of the filter can be determined by the local ridge frequency

and orientation. During this process minutiae are automatically generated at random

positions as the ridge pattern is being produced.

Basic Reconstruction Method

The reconstruction method starts with the locations, orientations and sometimes types

of minutiae and builds the other steps around these. Cappelli et al. (2007) give a basic

method for fingerprint reconstruction when you have information about the original

fingerprint. The fingerprint area is captured when a fingerprint is entered into the

system and this is described in the same way as in the SFINGE method (see Figure 2.1).

They also use the same method for determining the orientation image, however in

this case the positions of the singularities (core and delta) are not known (since the

reconstruction is from minutiae information only). In order to find the locations of the

core and delta (or maybe multiple as whorls can have two of each) the orientation of the

ridge flow associated with each minutia is taken into account. These are used to create

a simple version of the fingerprint’s ridge flow which is then compared to the Vizcaya

and Gerhardt (1996) algorithm for general ridge flow as in the SFINGE method. The

Nelder-Mead simplex algorithm (Nelder and Mead, 1965) then uses minimisation to find

the version of the Vizcaya and Gerhardt (1996) which most closely matches the ridge

flow created using the minutiae information. This was implemented using the method

from Press et al. (1988) Next the minutiae locations, orientations and types (bifurcation

and ridge ending) are fixed using a basic representation and these are used as the initial

points for the image to be built up as before by iteratively enhancing using Gabor filters.

The first step can be seen in Figure 2.2 (Cappelli et al., 2007) for different frequencies

T , which refer to ridge frequency, the Gabor filter also uses information about the

local ridge orientation. However when it comes to actually creating the ridge pattern
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Figure 2.2: Reconstruction of a fingerprint

four different images are produced with varying ridge frequencies (T as in Figure 2.2)

according to typical ridge frequencies from real prints. Again as with Maltoni et al.

(2003) the image is then rendered to give a realistic final image.

Other Reconstruction Methods

In Jain et al. (2007) a more complicated method is used for generating the orientation

image, instead using minutiae triplets to predict orientation in a given area. As with

Cappelli et al. (2007) the minutiae locations and orientations are known and fixed (since

this paper is concerned with reconstruction) so these are used for the minutiae triplets.

Jain et al. (2007) use the orientation image to find the core of the fingerprint. The

minutiae around the core are analysed to determine the type of level one pattern of the

fingerprint. Streamlines (using minutiae as seed points) and line integral convolution

(LIC) are further used to generate the ridge structure and give a textured appearance

by making use of the orientation image and pattern class. This is an iterative process

similar to using Gabor filters. The use of streamlines and LIC builds on earlier work

by Laidlaw et al. (2005) and Cabral and Leedom (1993), see these for more in depth

details, however these do not reference the application to fingerprints.

A paper which poses a completely different method is that of Feng and Jain (2009) which

uses an FM (frequency modulated) model where the continuous and spiral components

are generated separately and then combined, in order to have more control over the

minutiae. The key step is the reconstruction of the continuous component. Larkin and

Fletcher (2007) previously used a 2D amplitude and frequency modulated (AM-FM)

signal with respect to fingerprint structure. Feng and Jain (2009), however, just select

the phase component from this work which can then be decomposed into the continuous
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and spiral phase. The continuous phase is determined by ridge frequency and the spiral

phase corresponds to minutiae locations. Since, in a fingerprint reconstruction, there

is usually a record of minutiae locations but also the associated local ridge orientations

these are used in the method. After an orientation field has been generated using a

novel method; the print is divided into small non-overlapping blocks and then the local

minutiae are used to determine the orientation in a given block. It is then used to

reconstruct the continuous phase, this is then combined with the spiral phase to give

the reconstructed print. Although the results from this method appear successful the

authors provide little detail about the actual techniques used and how these could be

reproduced. The advantage of this method is that an orientation field can be generated

with as little as one minutia unlike the other methods.

2.2.3 Results

The SFINGE Method

Some of the methods described were tested so that their effectiveness could be eval-

uated. In Maltoni et al. (2003) people at a conference were asked to select the one

synthetic image from a group of four, only 23% of people correctly identified the syn-

thetic fingerprint amongst the real images, leading to the conclusion that the synthetic

print integrated well into the group. The SFINGE method for generating prints was

also tested by comparing its performance to genuine prints with respect to quantities

such as FMR (false match rate) and FNMR (false non-match rate), these showed sim-

ilar behaviour for both the generated and real prints. In this situation an FMR is

when a match is declared when in reality the two fingerprints do not come from the

same source, and an FNMR is when a non-match is declared when the two fingerprints

actually come from the same source.

Basic Reconstruction Method

In Cappelli et al. (2007) the reconstruction method (from a minutiae template) was

evaluated by reconstructing prints from known fingerprints taken under controlled con-

ditions. These two images were then compared visually, it was found that the images

appear very similar and many of the original minutiae feature in the reconstructed im-
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age in both the correct position and orientation. We would expect this to be the case as

the original locations and orientations associated with the minutiae template were used

as the basis for the reconstruction. The minutiae template doesn’t necessarily contain

all of the minutiae in a fingerprint though so the method creates more where ridge

flow merges, these were located in similar positions and orientations to those in the

original fingerprint. Although the orientations associated with the minutiae are used

to inform the orientation image, they are not exactly the same as this is smoothed for

the whole fingerprint, however it is reassuring that the reconstructed version is similar

to the original. The reconstructed image does contain more (spurious) minutiae than

the original. Also the orientation model derived from the template does not appear to

be entirely accurate. Cappelli et al. (2007) also carried out an experiment to investigate

the feasibility of an attack on several commercial fingerprint recognition algorithms. In

this context attack means that a reconstructed print using minutiae information from a

real print was presented to the system to see whether it was falsely matched against the

real print held in the database. The attack is successful if false matches are declared

at a high rate and the conclusion is that the reconstruction is very good or the system

is poor. It was in fact successful in many of these cases with a percentage of FMR over

90%. This clearly demonstrates that more research into the area of protecting against

these types of attacks is warranted.

Other Reconstruction Methods

Jain et al. (2007) assess their reconstructive model firstly by visual inspection as in

Cappelli et al. (2007). This gave them a satisfactory conclusion of visual similarity and

hence they moved on to investigate their model by matching the reconstructed prints

with the originals using a fingerprint identification system as with the other models.

However it is noted that the match rate is on average 23% which is lower than the two

other methods for fingerprint reconstruction.

In Feng and Jain (2009) the model is tested by attempting to attack a fingerprint

recognition system using the reconstructed fingerprint. We describe a type 1 attack

as one in which one query print is tested against one specific master print (i.e. one to

one) and type 2 as a query print tested against a whole data base of prints (i.e. one

to many). The experiment showed that the system was vulnerable to both type 1 and
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type 2 attacks with type 1 having a better success rate; the paper also shows that a

type 1 attack had an even higher identification rate than the genuine matches.

Feng and Jain (2009) used the same database that was used by Jain et al. (2007),

as well as the same minutiae detection and matching algorithm and hence it is easy

to compare these two models and their performance directly; as previously stated the

match rate for Jain et al. (2007) was 23% compared to Feng and Jain (2009) which had

a match rate of 98.1%. Results from Jain et al. (2007) and Feng and Jain (2009) cannot

be directly compared with those from Cappelli et al. (2007) since they only consider

type 1 attacks in their paper.

Although all the methods described work, in that they produce a fingerprint image,

they each have limitations that make them difficult to use in practice. The biggest

limitation in Jain et al. (2007) is that the model does not take into account the types

of minutiae and can only generate ridge endings. Hence the reconstructed image will

never fully represent the original image adequately. In this method the match rates

were increased if the class of the print is known (i.e. whorl, arch etc) instead of using

the method described to estimate class since the performance of this method is not

as good as current state of the art techniques. Jain et al. (2007) also suffer from the

same issue as the other methods in that the inter-ridge distance is constant throughout

the whole image, except in Maltoni et al. (2003) where it is manually changed in two

areas. However in a real print the inter-ridge is not constant and can vary over the

entire print and not just in the expected areas (above and below the core and delta

respectively). In addition Jain et al. (2007) outline that this method of ridge structure

is not as they desire and through just the minutiae information alone their model does

not have enough orientation information to perform well in the core and delta regions,

this leads to minutiae not matching up well in this region (with the original image) and

many missing minutiae in the reconstructed image around these two areas.

Cappelli et al. (2007) highlight that their method of reconstruction does not cope well

with low numbers of minutiae in the template since this results in wrong estimation of

the orientation image. Furthermore it is assumed that there is no significant rotation

of the original image. Also obvious issues with all the models are the structure around

the core region, local shape of minutiae and pore detail. Feng and Jain (2009) admit

that their model contains spurious minutiae in high curvature areas but propose some

methods to solve this. In addition Feng and Jain (2009) proposes the inclusion of
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details like ridge frequency and minutiae detail into their model in order to improve

the reconstructed image. The method of Cappelli et al. (2007) also suffers from the issue

of spurious minutiae which are added during the ridge pattern generation. In contrast

Maltoni et al. (2003) does not. In fact it could be argued that too few minutiae are

generated, resulting in very long ridges.

2.3 Models To Compute Likelihood Ratios

2.3.1 Overview

As previously discussed, there are two main aims in forensics: (i) intelligence, and (ii)

evaluation. Intelligence describes the methods where a trace from a crime scene is

searched through a relevant database to give a matching result; this can be thought

of as a one-to-many search. Alternatively evaluation is the method by which a trace

from a crime scene is compared against a known control piece of evidence taken from

a suspect; this describes a one-to-one search. The second method is the concern here.

Conventionally an expert will be requested in court to report a meaningful value in

order for the court to assess the strength of the forensic evidence in a given context

(Champod et al., 2005). In this scenario that means a finger mark will be lifted from

a crime scene and compared by a fingerprint examiner to a fingerprint from a known

suspect. They will then be requested in court to give testimony as to the match,

the results they provide to the court are limited to match, non-match or inconclusive.

Since the court is primarily responsible for interpreting the evidence and making a

judgement based on this, when using a biometric system we cannot simply return a

similarity measure or decision based on some threshold (Champod et al., 2005), hence

another measure is required. This is where likelihood ratios become relevant; they are

currently used in many areas of forensic evidence to give a score based result. It is

determined that the job of the forensic scientist is to submit an objective result so that

they comply with the conditions of the judicial procedures, and hence do not draw their

own conclusions or give a biased testimony in the court room.
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2.3.2 Methods

As with Neumann et al. (2012) (who use notation from Lindley (1977)), we start with

the general notation for using likelihood ratios in a forensic scenario which is taken

from Bayes Theorem, see also Champod et al. (2005):

p(Hp|E, I)

p(Hd|E, I)
=
p(Hp|I)

p(Hd|I)
× p(E|Hp, I)

p(E|Hd, I)
(2.1)

where Hp is the hypothesis that the evidence originates from the suspect, Hd the

hypothesis that the evidence originates from an unknown individual (these are also re-

ferred to as the prosecutor and defence hypothesis respectively), E denotes the forensic

information and finally I refers to the background information. A likelihood ratio can

then be formed on the basis of this, and hence ‘represents the strength of the analysis

of the forensic evidence in the inference from prior to posterior odds’ (Champod et al.,

2007):

LR =
p(E|Hp, I)

p(E|Hd, I)
. (2.2)

In Champod et al. (2005) values for both the numerator and denominator are then

discussed, it is argued that the numerator in 2.2 is found from information about the

within-source (intra-) variability of the specific forensic evidence and that the denom-

inator is obtained from knowledge of the between-source (inter-) variability for the

evidence. In our case this directly corresponds to the variability within a given fin-

gerprint and the variability within a whole population of fingerprints respectively. In

Fierrez-Aguilar et al. (2005) a table is given relating to the scale of likelihood ratios

and how these correspond to a verbal conclusion, for example a value between 1 and

10 is said to have ‘limited evidence to support’ and a value greater than 10,000 ‘very

strong evidence to support’. This system according to Fierrez-Aguilar et al. (2005) is

currently being used in DNA analysis and is being extended to other areas.

In Neumann et al. (2012), the form of the likelihood ratio is represented generally for

any item of evidence as:

LR =
fY,X|Hp,I(y, x|Hp, I)

fY,X|Hd,I(y, x|Hd, I)
(2.3)
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where f is the probability density function, Y is the collection of observations on

the trace and X is the collection of observations on the control. By making several

assumptions they then simplify this in such a way that will be useful for their later

analysis. Neumann et al. (2012) then propose a method which defines a configuration of

minutiae as a polygon, each minutia in the polygon has a feature array which contains

information about the radius, clockwise side length angle, area and type. The method

compares a configuration from a mark and print by minimising the distance between

a polygon in the mark and a polygon in the print (both of size k). In addition, a

weighting function is added to the new LR to ensure that when Hp is true (i.e. the

control and trace are known to be from the same source by using simulated sets) the

likelihood ratio is greater than one and when Hd is true the likelihood ratio is less than

one.

In Fierrez-Aguilar et al. (2005) two methods for estimating the between-source vari-

ability are discussed. The first is a non-parametric approach from Meuwly et al. (2003).

In its simplest form, it uses so-called histogram estimation; that is, the score axis is

divided into bins of length h so that if N samples are provided and kN of them are

in a given bin, then the probability density is estimated as kN/Nh. This can be gen-

eralised to kernel density estimation; see for example Silverman (1986). The second

method involves parametric estimation, based on Gonzalez-Rodriguez et al. (2003), us-

ing a mixture of Gaussian density functions. Here the EM (expectation-maximisation)

algorithm (Dempster et al., 1977) is used to identify the best-fitting model for the given

data based on G Gaussian density functions.

2.3.3 Results

It is argued in the papers by Neumann et al. (2012) and Fierrez-Aguilar et al. (2005)

that the biggest issue arises with estimating the between-source variability as the un-

derlying probability density functions for the population are not known and the sample

data set will always be considerably smaller than the population size. The experiments

in Fierrez-Aguilar et al. (2005) showed that better results were obtained for low num-

bers of mixture components (low G) in the parametric case since these gave better

results around a likelihood ratio of 1. It is claimed that with KDF low values of h

(where h is the window width) are beneficial however when there is a small sample
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size (which is usually the case) the probability density function does not accurately

represent the underlying distribution for the population. This is unlike the parametric

case which seems to demonstrate much similarity with the population. In Champod

et al. (2005) the same experiments were carried out. The paper again showed that

the performance of the system degraded when the sample size was small due to the

between-source distribution over fitting the data set giving an inflated estimate for the

likelihood ratio. This is not desirable in a forensic setting.

In Neumann et al. (2012) their methods were tested using real databases of finger-

prints and marks. A small experiment was carried out with positive results which

led to a larger experiment. In this large experiment there was obvious definition be-

tween LR(Hp) and LR(Hd), in most cases they fell as predicted with LR(Hp)>1 and

LR(Hd)<1. What is not obvious in the paper is how the k-configuration is chosen

in each fingerprint so that the configuration from the mark can be searched against

these. If a typical fingerprint has 120 minutiae, for example, do the authors search

every possible 10-point configuration from the 120 minutiae with every print in the

database to find the configuration with the smallest distance? If not, how do they

restrict the number of searches to be made? Obviously if every search is made this

would be very computationally expensive to carry out and would take a large amount

of time to process (Llewelyn, 2012).

2.4 Models to Assess Individuality Using PRC

2.4.1 Overview

Fingerprints have been an accepted form of identification for over a century. In 1892

Galton published a book (Galton, 1892) detailing global fingerprint patterns as well

as writing about their individuality and permanence. These are the two factors which

make fingerprints such an important aspect of modern society; many new devices, for

example laptops, have built in fingerprint recognition systems in order to identify a

user, as well as the more obvious practice of using fingerprints in forensics. Since the

Daubert v. Merrell Dow Pharmaceuticals’ case (Daubert v. Merrell Dow Pharmaceu-

ticals Inc, 1993) the Supreme Court ruled that expert forensic testimony must adhere

to five criteria. This has led to increased scrutiny of forensic evidence and poses many
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problems for the use of fingerprints. Many researchers have tried to establish a measure

of uniqueness of fingerprints using a technique called PRC (probability of a random cor-

respondence), in Dass et al. (2007) this is described as ‘the chance that an arbitrary

impostor fingerprint from a target population will share a sufficiently large number of

minutiae with the query print, i.e. to characterise fingerprint individuality. According

to several literature sources (Dass et al., 2007), (Dass et al., 2009), small values of the

PRC imply that it is unlikely that minutiae in a fingerprint from a given source will

match any other prints than those produced by the same source, which in turn indicates

low uncertainty and high levels of individualisation of fingerprints. From Dass et al.

(2009), we want to test the hypothesis of:

h0 : It 6= Ic vs. h1 : It = Ic (2.4)

where It is the print of unknown identity and Ic is the print of known identity.

Here some of the proposed models for describing PRC will be discussed and reviewed,

as well as their limitations examined.

2.4.2 Methods

A common theme here is the use of minutiae details. The locations and orientations

associated with the minutiae are the primary features in most models. A prominent

paper in this field is Jain et al. (2002) where the authors discuss present thoughts on

fingerprint individuality before making progress on deriving a method which is based

on a hyper-geometric distribution. They discuss how many sources have characterised

individuality by looking at the probability of a fingerprint configuration but there seems

to be no agreement on the result with the answers ranging greatly. In addition to the

investigation of other methods Jain et al. (2002) also propose one of their own. This is

based on an input print (which we refer to as a fingermark), I and an arbitrary print

(fingerprint) from a known source T . They state that a minutia from I corresponds

and hence gives a positive result with a minutiae in H if their locations are within a

specified distance r0. The probability of this occurring by chance is derived as:

P (corresponding locations by chance) =
area of tolerance

total area of overlap
=
πr20
A

=
C

A
, (2.5)
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where A is the total area of overlap between I and H which have been aligned using

the singularities (core and delta). If there is only one minutia in I then the probability

that it finds a corresponding minutia in H by chance is mC/A if there are m minutiae

in H. This can be generalised for n minutiae in I as:

P (A,C,m, n) =

(
n

1

)(
mC

A

)(
A−mC
A− C

)
. (2.6)

Jain et al. (2002) show that by using algebraic manipulation the probability of exactly

ρ corresponding minutiae between I and H with n and m minutiae respectively, is

given by:

p(M,m,n, ρ) =

(
m
ρ

)(
M−m
n−ρ

)(
M
n

) (2.7)

which is a hyper-geometric distribution of ρ with parameters M , m and n; with M =

A/C.

The Jain et al. (2002) paper does highlight some major limitations for the given model.

The model is restricted to ridge ending and bifurcation minutiae alone (discounting

knowledge from ridge detail). This causes the model to miss some vital information.

The x and y coordinates for the locations of the minutiae within the print are assumed

to be from a uniform distribution for each, contradicting other literature which identifies

some clustering around points of significance (Dass et al., 2007). A further assumption

made by many models, including this one, is that of uniform ridge distance over both

the whole print and the whole population. This of course cannot be strictly true.

However the sort of variation required was too complex for many to include in their

research. With further statistical modelling it would be possible to introduce this

sort of variation. Unlike Jain et al. (2002), Dass et al. (2007) do not assume that

minutiae locations are distributed independently of orientation since it can be seen

that minutiae in differing regions are associated with differing orientations; extending

this point, minutiae in close proximity tend to have very similar orientations.

The generative model in Su and Srihari (2008) is based on the assumption of non-

independence of minutiae locations and orientations which differs from most of the

other models discussed. Srihari and Su claim that due to low quality in latent prints

ridge features need to be utilised and hence they embed this information into existing
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models by developing a distribution for ridge points. The aim of this method is to

establish a more precise representation of fingerprint individuality. As in Dass et al.

(2005) and Dass et al. (2007) the mixture model used consists of a mixture of com-

ponents; within each component, a bivariate Gaussian is used to represent minutiae

locations and an independent Von-Mises distribution for minutiae orientations. The

dependence therefore arises through the differences between the components. This

model is then used to give the PRC as from a Poisson distribution with parameter

from the model. Su and Srihari (2008) then build on the model proposed by Dass et al.

(2005) by incorporating a joint distribution for ridge points based on their location

and orientation. Srihari and Su use a Chi-squared test to assess the goodness-of-fit of

the mixture model containing ridge information and the one without; they found that

the model including ridge information offered a better fit to the observed fingerprints.

The PRC taken from the model with ridge information is never greater than the PRC

from the model without which implies that ridge information improves the quality of

the estimates and strengthens individuality. Another paper calculating individuality is

Dass and Zhu (2006) in which a compound stochastic model is used in the calculation.

They compare their estimates with that of Jain et al. (2002), despite the estimates

being of much higher magnitude. Dass et al. feel that the estimates are more realistic

since they closely match the empirical distribution from fingerprint data sets.

A recent innovative paper in this area is by Dass et al. (2009); here they investigate

fitting a hierarchical mixture model for the distribution of an observation of a print

in the population. Here the top level of the hierarchy corresponds to the groups or

individual fingers and the second level are representations of the fingers. Researching

available databases Dass and Li found a covariance structure that they feel represents

the population of fingerprints. Also in Dass et al. (2009) an approach using RJM-

CMC (Reversible Jump Markov Chain Monte Carlo) is used to explore the posterior

distribution resulting from the hierarchical mixture model.

2.4.3 Results

In Jain et al. (2002) the individual components of the model are derived by obtaining

many impressions of fingerprints and creating thousands of matches so as different

quantities can be established by averages etc. Dass et al. (2007) carry out an experiment
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by finding the best fitting mixture model for each finger in their database and testing

this in two ways. The first is by comparing the likelihood ratios based on the mixture

model and the uniform distribution for each finger. The second is by doing a goodness

of fit test (again for both the mixture model and uniform) with a large p-value (greater

than 0.01) corresponding to the adequacy of the tested model. These tests gave strong

evidence that the mixture model was preferred for their data set. Using current data

Dass et al. (2009) carried out some investigation into their hierarchical method. In a

real life scenario the print held in a database (for example AFIS) would have a large

number of minutiae and be very clear. However this contrasts to a mark lifted from

a crime scene which may only be a partial print, be of poor quality and contain few

minutiae. In this case the model by Dass and Li showed that the PRC could be as

large as 0.0614 making it more difficult to identify positively a suspect. Furthermore

the model proposed in Dass et al. (2009) has the main drawback that it involves a lot of

computing time and power, full mixing takes a very long time although this computing

would only need to be done once.

The work in Dass et al. (2007) can be improved upon by looking at the spatial depen-

dence between minutiae instead of assuming independence and also by investigating

other distributions for the model. Dass et al. (2009) have pointed out that their hi-

erarchical model can be developed in the future by incorporating hierarchical mixture

models containing minutiae locations and directions. In addition in Dass et al. (2007)

the standard mixture distributions were proposed for each fingerprint individually how-

ever a model for the minutiae distribution for a population of prints is needed so that

inferences can be made about the PRC for the population.

2.5 Conclusions

This review of current techniques has highlighted areas where the existing research is

lacking. Many proposals for fingerprint generation are available however none seem to

approach the issue from a statistical background; here this research would help develop

a novel technique. All of the methods involve some random elements and algorithms.

By representing the variability in fingerprints in a statistical way it will be easier to

see how current methods can be improved to produce more reliable results. Although

the approach in Champod et al. (2005) is valid for computing likelihood ratios, simply
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setting out a formula does not make it usable and hence more problems arise in trying

to implement this form of working. Due to this further research into modelling the

variability (both within and between sources) is needed in order to establish reasonable

results. A benefit of the Bayesian approach of investigating likelihood ratios means that

it allows a combination of different types of evidence that may present itself in a criminal

case and allows a universal way of representing evidence in court. Finally by using

statistical techniques to model the variability in fingerprints a better understanding of

the individuality of fingerprints will be gained.



Chapter 3

Data

3.1 Introduction

This chapter will provide details about the data used for this research, which is split

into three main types: data provided by the Forensic Science Service (FSS), a dataset

of dummy fingermarks and data obtained from my own fingerprints.

The first datasets were provided by the Forensic Science Service and consist of informa-

tion from roughly 12,000 real fingerprints which were taken under controlled conditions.

This dataset provides valuable knowledge about minutia location, orientation and type

amongst other details. We intend to use these to investigate the relationships between

minutiae locations, orientations and types of patterns. The different fingerprint pat-

terns are categorised by a “level one feature” which visually identifies it in comparison

with other fingerprints.

The second dataset used is referred to as dummy fingermarks. Dummy fingermarks

are artificially simulated utilising the fingerprints provided by the FSS to give realistic

representations of fingermarks which could be obtained from a crime scene i.e. finger-

marks that were not obtained under the controlled conditions of the first dataset. In

Section 3.3 further information is given about how these are generated from the FSS

datasets.

Finally in Section 3.4 I investigate my own fingerprints and obtain information from

them about minutia location, orientation and type so that some initial crude matching

29



CHAPTER 3. DATA 30

can be done to give an idea of how much variation there is between replicates of the

same fingerprint recorded at different times.

3.2 Data sets from FSS

Data was provided for this research from the FSS, consisting of a database with details

from 12,096 real fingerprints from approximately 12,000 people. The fingerprints were

captured using a digital scanner at 1:1 magnification and with a resolution of 500 pixels

per inch (ppi) and then the landmarks (minutiae, core and delta) were located using a

combination of software (landmark detection) and the human eye. The database holds

information about four different finger types, index, middle, ring and thumb, and also

three types of level one feature, arch, ulnar loop and whorl. The level one features for

arch and whorl are as shown in Figure 1.2, the ulnar loop could be what has previously

been described as a left or right loop, depending on which hand it is found. It specifies

the direction of the loop based on the ulnar bone in the arm, the opposite being a

radial loop (although these weren’t featured in our data set). Figure 3.1 demonstrates

the difference between radial and ulnar loops, essentially the turning point in the ridge

flow is on the side closest to the thumb for ulnar loops. Summary information from the

FSS dataset can be seen in Table 3.1.

Each dataset holds a significant amount of information about each type of fingerprint;

below in Figure 3.2 is a screen grab of part of the database illustrating a small section of

the information held in the database. In Figure 3.2 each row relates to one fingerprint

and details can be seen about the x and y co-ordinates for the core and delta for

each fingerprint as well as the orientation of these landmarks relative to the axes of

the x-y plane. In addition, further information is held in the datasets which cannot

be seen in Figure 3.2; this relates to information regarding the minutiae. For each

minutia in a fingerprint we have details about the x and y coordinates (for the location

at which the ridge flow is interrupted), the angle (given in degrees, where 0 degrees

corresponds to a horizontal vector from the origin along the x axis of the x-y plane and

moving anticlockwise. Angle is determined by the direction of ridge flow at the point

in the co-ordinate system where the ridge flow is interrupted by ending or forking, type

(bifurcation or ridge ending, as defined in Section 1.3.1) and an index for the specific

minutia. All of the coordinates (for the core, delta and minutiae) are given using the
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Figure 3.1: Simple pictorial representation of the difference between the two level 1 one

patterns; radial loop and ulnar loop. All are ulnar loops except the thumb which is a

radial loop.
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Finger
Level 1

Feature

Number of

Prints

Minutiae per Print

Min Quartile 1 Median Quartile 3 Max

Index

Arch 660 42 66.75 76 86.25 134

Ulnar loop 1996 44 75 85 95 150

Whorl 660 49 89 97 109 161

Middle

Arch 659 46 75.5 86 98 176

Ulnar loop 660 87 87 90 100.25 145

Whorl 659 60 89.5 100 111 163

Ring

Arch 660 30 74 84 97.25 155

Ulnar loop 659 50 82 94 105 161

Whorl 659 49 92 102 115 159

Thumb

Arch 830 43 88 102 118 192

Ulnar loop 1998 48 99 113 129 237

Whorl 1996 73 114 127 142 227

Table 3.1: A table showing the breakdown by finger type and level one pattern type of

the 12,096 fingerprints in the FSS database, where Min=minimum and Max=maximum

Cartesian coordinate system by using the bottom left of the scanned image as the

origin.

3.3 Dummy Marks

As the research progresses it becomes vital to use some fingermarks to compare against

the fingerprints obtained from the FSS database. However we do not have access to any

true fingerprint and fingermark pairings so it was necessary to simulate some from the

database of fingerprints that we already have (i.e. the FSS database of approximately

12,000 fingerprints). In order to create a dummy fingermark (FM) associated with a

given fingerprint (FP) we start by taking a subset of the FP from an area. To create a

FM with N minutiae we select a minutia at random from the FP and then take its N−1

nearest neighbours. Nearest neighbours are selected (as opposed to selecting minutiae

at random) as this gives the most realistic representation of the kinds of fingermarks

that are likely to arise in practice. This gives us a set with N minutiae. The locations

of this subset of minutiae need to be perturbed slightly to allow for the distortion that
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Figure 3.2: Screen grab from FSS database for the subset Index Ulnar Loop showing

details of the locations and orientations of the core and delta for each fingerprint, which

corresponds to each row in the spreadsheet

would occur when a fingermark is left at a crime scene or retrieved by the crime scene

technician. Distortion of fingermarks is a complicated process, the initial distortion

being the transfer of a 3D pattern into two dimensions which can be dependent upon

the pressure applied by a finger and surface that the finger is pressed against. However

this is complicated further by the fact that we are comparing two representations of this

process through the fingerprint and fingermark. Neumann et al. (2012) use a method

set out in Bookstein (1989) to model distortion in the fingermarks. However in this

research we do not use a distortion method which allows directional dependence (for

computational reasons), instead opting to use the Rayleigh distribution. The Rayleigh

distribution has probability density functions as follows (Cox and Cox, 2010):

f(r;σ) =
r

σ2
exp
−r2

2σ2
, (3.1)

where r is the length of the vector S = (x, y), it can be shown that this is equivalent

to a Bivariate Normal with a mean of zero, zero correlation and a variance of σ2. This

value changes for each experiment and is specified individually in each section.

Since minutia type is not always visible in fingermarks or recorded accurately the type

is retained with probability 0.9 and changed to the opposite minutia type (bifurcation

or ridge ending) with a probability of 0.1. An example of a FM and its corresponding

FP are given in Figure 3.3.
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Figure 3.3: Plot of locations of the minutiae in a simulated fingermark (red triangle) and

the associated fingerprint (black circle) where the locations are perturbed by sampling

from a Bivariate Normal distribution
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3.4 My Prints

In order to investigate the practicalities of matching fingerprints and fingermarks I

decided to analyse two scans of the same finger taken on separate occasions (these can

be seen below in Figure 3.4). I scanned my own fingerprints using a scanner donated by

the FSS; this scanner is also used in conjunction with software which processes the scan.

Next I needed some method for locating minutiae in both replicates so that we could

visually assess the match; I did this by using a crosshair program downloaded from the

internet from http://life.bio.sunysb.edu/morph/ called tpsDIG2. This program allows

you to locate points by clicking on an image; it then stores the locations of all of these

points in a new file. I used this program to compare the minutiae I could visually

detect from the two scans taken of the same fingerprint but on separate occasions.

I then plotted the file containing the locations of the minutiae obtained using the

crosshair program to provide a representation of the two scans; this can be seen below

in Figure 3.5. This plot shows that despite both of these scans being taken in controlled

conditions using the same scanner it is not a simple task to compare them; one obvious

issue is where in the capture window (or co-ordinate system) the finger is scanned.

Both times the fingerprint was taken using the scanner and I tried to scan my print in

the centre of the window but this cannot be done exactly and hence the representation

of the finger is different with each scan. Another element which contributes to different

representations of the same fingerprint is the amount of the actual finger scanned; this

depends on the angle and pressure used when scanning. All of these issues can explain

why the two sets of minutiae do not match up at all; and it is not clear (without seeing

Figure 3.4) how to try to “register” them.

Figure 3.6 shows a copy of my full set of prints taken using the scanner from the FSS;

a full set similar to this would be taken from a suspect in order to make multiple

comparisons from all possible fingermarks left at a crime scene. There are several

different types of fingerprints shown in this set including rolled and static prints for

the thumbs, and rolled prints for the other fingers individually, palm prints and the

writers palm. The most unusual of these is the writers palm; this is the side of the

hand running from the tip of the little finger to the wrist; it is called the writers palm

as it is typically the impression left by the side of the hand when you apply pressure

onto a writing surface.
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Figure 3.4: Two scans of the same finger (Left = replication 1, Right = replication 2)

taken on separate occasions using an electronic fingerprint scanner

3.5 Summary

This chapter outlined the three types of data used for the analysis in this thesis. The

three types of data are the database of real fingerprints provided by the Forensic Science

Service, the set of dummy fingermarks we simulated from the FSS database and finally

my own set of fingerprints which were obtained using a digital scanner. These various

types of data will be used in the analysis carried out in later chapters. We needed to

simulate fingermarks in order to evaluate matches between fingermarks and fingerprints

to obtain the probability that the fingermark is obtained from the same fingerprint; the

goal of this is so that a system can be used in court which relies on a numerical match

as opposed to a categorical decision of match, non-match or inconclusive.
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Figure 3.5: Plot of the minutiae from two scans of the same finger taken on different

occasions. The minutiae have been captured using a crosshair program. Replication 1

= black circle, Replication 2 = red square
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Figure 3.6: Full set of my prints taken using a digital scanner, including rolled and

static prints, in addition to the palm and writers palm



Chapter 4

Assessment of Complete Spatial

Randomness

4.1 Introduction

We can think of the minutiae in a fingerprint as events from a spatial point pattern;

each of these events could have a “mark” corresponding to the minutia type, either

ridge ending or bifurcation, or the minutia orientation, or both. In this chapter we

consider whether the point pattern of minutiae in a fingerprint adhere to the hypothesis

of Complete Spatial Randomness (CSR). In order for a point pattern to demonstrate

CSR (Diggle et al., 1983):

1. The number of events in a given region A with area |A| must follow a Poisson

distribution with mean λ|A|, and

2. Given n events xi in a region A, the xi are an independent random sample from

the uniform distribution on A.

We refer to λ as the intensity of the process; this is also equivalent to the mean number

of events per unit area. In order for a fingerprint pattern to be described as showing

CSR the intensity of minutiae must be constant over the whole area (or observation

window) of the fingerprint and the minutiae must not interact with each other, this

meaning that a minutia is not more or less likely to be at any position given the other

39



CHAPTER 4. ASSESSMENT OF COMPLETE SPATIAL RANDOMNESS 40

minutiae in the pattern. We are testing for CSR as although we know anecdotally

that the minutiae tend to be located around the singularities (core and delta) in a

fingerprint, this hasn’t been formally tested. Here we intend to do this so that we can

further our understanding of the distribution of minutiae within each fingerprint, in

order to assess whether there is a more complicated process taking place which we can

model.

This chapter focuses on the assessment of CSR for the fingerprints in the dataset

provided by the Forensic Science Service 3.2. There will be an initial visual assessment

of the fingerprints as well as a basic exploration of the location and orientation of the

minutiae, including density plots. In addition more sophisticated techniques such as

K-functions will be used to aid in the analysis.

4.2 Plotting Programs

Initially the datasets were explored by plotting the information for one fingerprint. The

datasets described in Section 3.2 provide information about a variety of aspects of the

fingerprint, some of which include; locations of minutiae, types of minutiae and orien-

tations of minutiae. Several stages to producing a plot of the fingerprint were carried

out, the first of these being to plot the x and y coordinates of the minutiae. This simple

plot can be seen in Figure 4.1; from this it is difficult to visually assess if the locations

of the minutiae are independent or if they show any dependent structure between their

locations. So next we moved on to add information about minutia orientation; this

is defined as the direction the ridge was flowing when the minutia occurred, the loca-

tions of the core and delta, and minutiae types. This can be seen in Figure 4.2. From

Figure 4.2 it is now obvious that the fingerprint is a loop as the information about

orientation gives us an idea of the ridge flow in the fingerprint.

Next we look at whether the relationship between locations and orientations of the

minutiae as well as if these variables could be independent. Initially we plot the minu-

tiae locations and orientations using the Uniform distribution, where the locations are

Uniform on [0, 1]x[0, 1] and the orientations independently Uniform on [0, 2π]. It can

be seen in Figure 4.3 that when locations and orientations for minutiae are generated

using this method the result does not look like a fingerprint and a level one pattern is



CHAPTER 4. ASSESSMENT OF COMPLETE SPATIAL RANDOMNESS 41

Figure 4.1: Plot of the x and y coordinates for a single fingerprint from the dataset

not identifiable. Figure 4.3 shows that at least the orientations of minutiae show some

relationship with the location of the core and delta since the ridge flow is not what

would be expected. Sherlock and Monro (1993) produced an algorithm for identifying

orientations of minutiae based on their location relative to the core and data. The

orientation θ at the point z = (x, y) is:

θ =
1

2

 nd∑
j=1

arg(z − dj)−
nc∑
i=1

arg(z − ci)

 (4.1)

where ci, i = 1 . . . nc and dj , j = 1 . . . nd are the coordinates of the cores and deltas

respectively. Usually for loops we have nc = nd = 1, for whorls nc = nd = 2 and arches

nc = 0, nd = 1. The result of using this algorithm for producing minutiae orienta-

tions can be seen in Figure 4.4. Despite locations of the minutiae still being random,
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Figure 4.2: Plot of the x and y coordinates for a single fingerprint from the dataset

with minutiae types, orientations and the core and delta identified

generated by a Uniform distribution, the plot looks like a realistic representation of a

fingerprint. This shows that orientation of the minutia is related to its location on the

print in relation to the core and delta and can be determined. In Figure 4.5 a visual

comparison of the orientations of minutiae in a real fingerprint and the orientations

produced by the Sherlock and Monro algorithm can be seen. The real orientations

are identified in red. In most parts of the fingerprint both sets of orientations are

very similar with the exception being the top right corner where the orientations differ

slightly.
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Figure 4.3: Plot showing minutiae locations and orientations as generated by a Uniform

distribution

4.3 Density Plots

Since we have established that the orientations of minutiae produced by the Sherlock

and Monro algorithm is fairly realistic, we move on to focus on minutiae locations. By

looking at density plots of the minutiae we can determine whether they are dense in

specific regions of the fingerprint.

Figure 4.6 shows a density plot for all minutiae in a fingerprint. It demonstrates that

minutiae are more clustered around the points of significance (i.e. core and delta). This

can also be seen in Figures 4.7 and 4.8 which are density plots categorised by minutiae

types.
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Figure 4.4: Plot showing minutiae with random locations and orientations generated

by the Sherlock and Monro algorithm

4.4 Plotting Functions

4.4.1 Scaling

In order to compare the fingerprints more formally using summary functions such as

the K-function we need to scale the fingerprints so that they are registered. It is useful

to have each fingerprint on the same scale; since fingerprints are not square we keep

the aspect ratio the same and scale the largest axis (be it horizontal or vertical) to 0

and 1 and then scale the other axis accordingly.

Next we calculate a convex hull of the points, i.e. the smallest convex region containing

them, to ensure that we don’t have lots of white space around the edges and edge effects

are taken into account when calculating the functions. Figure 4.9 shows a plot with
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Figure 4.5: Plot showing a comparison of the orientations for a real fingerprint and

those orientations generated by the Sherlock and Monro algorithm

minutiae and the convex hull plotted around the points.

4.4.2 K-Functions

In order to look more formally at clustering of minutiae within fingerprints we make

use of K-functions. The definition of a K-function is (Ripley, 1977):

K(r) = λ−1E [number of further events within distance r of an arbitrary event] (4.2)

where λ is described as the intensity function; the mean number of events per unit area.

Comparison of the subsections within the database is considered in order to explore

the fingerprint data further. The K-function for every fingerprint in a given dataset is
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Figure 4.6: Density plot for all minutiae in a loop

found and the mean at each value of r is taken, this gives a “mean K-function”. All

minutiae from all fingerprints within a dataset are pooled and then a sample taken (say

150 minutiae) and then the K-function calculated, this is referred to as the “sample K-

function”. A comparison is then made between these two K-functions, this can be seen

in Figure 4.10 for the dataset Index Ulnar Loop. If there is simply varying intensity

between fingerprints we would expect these two values for the K-function to be very

similar and to not show any large differences, however if there is an actual dependence

structure between minutiae, it is not so obvious a result. Figure 4.10 shows that the

“sample K-function” and “mean K-function” are indeed very similar, although both

show a more clustered pattern than the theoretical K-function for a Poisson process

(complete spatial randomness) which is defined as πr2. A more clustered pattern is

demonstrated by one whose K-function falls left of the theoretical function since this

relates to more points per unit area. However despite both seeming slightly more
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Figure 4.7: Density plot for minutiae of type bifurcation in a loop

clustered they stay within the envelopes for small values of r. The envelopes are

calculated in R using the “spatstat” package and are pointwise envelopes.

Next an investigation was carried out into how the K-functions varied for each level one

pattern according to which finger they were on. The same test was done comparing

K-functions for each finger depending on the level one feature.

From visual inspection it is clear from Figure 4.11 and 4.12 that all four finger types do

not behave in the same way. Thumbs seem to be indistinguishable from the theoretical

K-function and hence we would conclude that they exhibit CSR. However the other

types do vary from this. Index and Middle fingers appear more clustered and Ring

fingers less clustered. Figure 4.13 also exhibits variation between patterns with Arch

being fairly typical of CSR and Loops and Whorls being clustered.
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Figure 4.8: Density plot for minutiae of type ridge endings in a loop

4.4.3 Size Analysis

The results in the previous section appear interesting however it is worth carrying

out some size analysis on the datasets to establish if the results actually represent an

artefact of the data based on different numbers of minutiae within the sets. In order

to explore this boxplots were created for the datasets based on level one pattern and

finger type. These can be seen in Figures 4.14 and 4.15.

In Figure 4.14 it can be seen that on average Whorls have more minutiae in each finger-

print in the datasets provided by the Forensic Science Service. When considering finger

type in Figure 4.15 thumbs have a higher mean number of minutiae. The Middle and

Ring fingers have very similar distributions in the box plot however their K-functions

are quite different.
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Figure 4.9: Plot showing minutiae locations and the corresponding convex hull

4.5 Summary

This chapter focused on investigating whether the pattern created by minutiae in fin-

gerprints can be described as random. This was done by using the datasets provided

by the Forensic Science Service and testing for complete spatial randomness. Initially a

visual assessment of the points was made before moving on to look at other techniques.

It was observed that minutiae tend to be located around the points of significance in

the fingerprint, these being the core and delta. This aligns with anecdotal evidence

from fingerprint examiners who observe a similar scenario where minutiae do not tend

to be as prevalent towards the edges of the fingerprint. Despite this there was only a

little evidence to suggest that the pattern made by minutiae in fingerprints demonstrate

some dependence structure.



CHAPTER 4. ASSESSMENT OF COMPLETE SPATIAL RANDOMNESS 50

Figure 4.10: Plot showing a comparison between the “mean K-function”, “sample K-

function” and theoretical function for the dataset “Index Ulnar Loop”. The grey band

is 5% to 95% pointwise envelopes under CSR.
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Figure 4.11: Plots showing the K-functions for each level one pattern according to

finger type. The thin black line shows a theoretical K-function and the grey band is

5% to 95% pointwise envelopes under CSR.
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Figure 4.12: Plots showing the K-functions for each level one pattern according to

finger type. The thin black line shows a theoretical k-function and the grey band is 5%

to 95% pointwise envelopes under CSR.



CHAPTER 4. ASSESSMENT OF COMPLETE SPATIAL RANDOMNESS 53

Figure 4.13: Plots showing the K-functions for each finger type according to level one

pattern. The thin black line shows a theoretical K-function and the grey band is 5%

to 95% pointwise envelopes under CSR.
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Figure 4.14: Boxplots showing the number of minutiae in each fingerprint according to

level one pattern
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Figure 4.15: Boxplots showing the number of minutiae in each fingerprint according to

finger type



Chapter 5

Model Fitting

5.1 Introduction

After tests for complete spatial randomness were carried out it was decided to pursue

the thought that minutiae in fingerprints show some dependence structure and follow

a pattern as opposed to being random. This was due to common thinking within the

forensic community that minutiae are located more densely in specific regions of the

fingerprint. In this chapter we will assess this notion more formally by trying to fit

point pattern models to the data we have and testing how well these models perform.

5.2 Investigation of Models

Initially research was carried out into different models and the varying features they

had. We narrowed down the wide selection of models by looking for one with a small

number of parameters as this would be easier to work with. In addition models which

are used to describe regular patterns were discounted as our data cannot be described

as regular. It was also considered that models with the ability to be extended to

multivariate data would be beneficial to this work as minutiae are described by two

types, bifurcations and ridge endings.

In addition we limit the models we investigate to finite point processes. This is due to

the fact that the fingerprint can be described as the realisation of the whole pattern.
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It could be argued that the pattern of minutiae would continue if a larger impression

of the finger were taken but this is certainly not infinite in a true sense. Furthermore

this makes it easier when thinking about the observation window of the pattern since

we assume we have viewed the whole pattern.

5.3 Strauss Model

Since we are looking for a model which takes into account that the points in the pattern

are not independent, we need to consider a process which involves interaction amongst

the points. There is reason to believe that the locations of minutiae in fingerprints

could rely on the locations of other minutiae in the pattern. Hence we need a process

in which we allow the points to interact. This leads to Gibbs processes (Cressie, 1993),

also referred to as Markov point processes. Gibbs processes are unlike the Poisson

process since the points in the pattern can interact with each other. In a Poisson

process the points do not interact with each other and are distributed within the given

area with intensity λ for a homogeneous process or λ(x) for an inhomogeneous process.

The simplest form of a Gibbs processes is with a fixed number of points (n) in a

given area (commonly called the window). The multivariate probability density for the

position of these n points is referred to as the location density function. For a Gibbs

process with n points the location density function is (Illian et al., 2008):

fn(x1, . . . , xn) = exp

[
−
n−1∑
i=1

n∑
j=i+1

φ(||xi − xj ||)
]/

Zn (5.1)

From this it can be seen that the interaction between points is taken into account by

looking at a function of the distance between xi and xj ; this function φ(r) is referred to

as the pair potential. Zn is a normalising constant which is calculated so fn integrates

to 1. The value of φ(r) determines the type of pattern the process describes. The

Strauss process (Strauss, 1975) is a type of Gibbs process which allows points within

a radius r to interact (Illian et al., 2008) and minutiae with an inter-point distance

greater than r to exhibit no interaction. Specifically it is defined as:

φ(r) =

{
β for r ≤ rmax
0 for r > rmax

(5.2)
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where β > 0 and rmax is the limit at which two points no longer exhibit interaction.

A feature of this model is that any two points that fall within a distance rmax of each

other have the same level of interaction, hence interaction does not vary as points are

closer together. This model can also be extended to a Multi-Strauss, which allows for

different types of points in the process; this is a useful option as minutiae types could

later be incorporated into the model.

We start by using the “Strauss” function which is built into the “Spatstat” package in

R. By inputing a value for rmax this function outputs the corresponding values for β

as described above and γ which is a function of the number of pairs of points that fall

within rmax. This function can’t be used to obtain rmax as this is the input value, the

values for β and γ are calculated in the function by maximising the pseudo-likelihood.

Once these parameters have been obtained the combination of the three are used to

simulate a Strauss process with these parameters. This process was carried out 1000

times and the corresponding K-functions were plotted along with the K-function for

a random fingerprint. The intention is that the K-function for both patterns, the

simulated Strauss process and fingerprint would be similar. The results of using the

value rmax = 0.02 to obtain the Strauss parameters for simulation can be seen in

Figure 5.1. Although the K-function for the fingerprint is within those for the Strauss

process it does not sit well within the values, and there seems to be a problem with

very low values of r. The whole process was repeated using different fingerprints as

the test print and values of rmax ranging from 0.01 to 0.1 increasing by 0.01 each time.

Another case where rmax = 0.05 can be seen in Figure 5.2. The result in this case was

very similar to the previous in that although the fit does seem to be better for low

values of r, for higher values it isn’t as good.

The Strauss process appears to fit the set of fingerprints better than the K-functions

for complete spatial randomness which were investigated in Section 4.4.2. However no

values of rmax fit the data as well as we would expect and little improvement in the fit

was obtained by doing this which led to the conclusion that the choice of model was

not correct.
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Figure 5.1: Plot comparing the K-functions for a specific fingerprint and simulated

Strauss processes with r = 0.02
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Figure 5.2: Plot comparing the K-functions for a specific fingerprint and simulated

Strauss processes with r = 0.05
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5.4 Isotropic Centred Poisson Process

The previous model used, a Strauss process, did not fit the data as we expected it to.

The process refers to a pattern which has clustering throughout whereas a fingerprint

can be described as the minutiae being more dense around points of significance (the

core and delta) and then the distribution of minutiae reducing as we move away from

these locations. For this reason an inhomogeneous Poisson process was examined in-

stead. This refers to a Poisson process where the intensity of points in the pattern is

not constant and thus changes depending on location, this is unlike the Gibbs process

where the points interact to cause clustering. Here the points are clustered because the

intensity varies across the window.

The model allows some level of randomness in the location of the points but also

demonstrates an amount of clustering around the centre of the pattern. This is done

specifically by creating an isotropic centred Poisson process. In this process the intensity

function (λ) which is constant in a homogeneous Poisson process, now varies and for a

point xi is described as (Illian et al., 2008):

λ(xi) = λ(ri) =
αm

πB
exp

{
−r2i
B

}
(5.3)

where ri is the distance of point i from the centre, α a scaling factor, m is the number

of points in the pattern and B is the parameter to be varied. Hence this is isotropic

since the intensity depends only on ri.

Using rejection sampling (see for example Ripley (1987); Lee (2004)) we can simulate an

isotropic centred Poisson process as follows Illian et al. (2008). In step 1 a homogeneous

Poisson process is simulated (this has constant intensity over the whole pattern). This

pattern should contain many more points than are required in the final pattern since

we now go on to thin these points using a thinning function which is determined by

the model we are fitting (see Equation 5.4), it is this choice of model which reflects the

experience of the fingerprint experts. This evidence from experts states that minutiae

are more likely to fall around points of significance (the core and delta) so we need

points closer to the centre of the pattern to be retained with a higher probability than

those further away from the centre. We use a thinning function where a point xi is

retained with probability:
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p(xi) = λ(xi)/λ
∗ (5.4)

where λ∗ is the number of points in the original pattern after step 1.

The parameter B from the intensity function will be estimated informally by trial

and error. By changing B the probability of retention changes which means that the

intensity of points moving away from the centre of the pattern changes also. We are

attempting to estimate B so that the subsequent K-function for the isotropic centred

Poisson process is similar to the K-function of any random fingerprint. In each case

1000 simulations are created for a given B. The results for different B can be seen in

Figures 5.3 and 5.4.

It can be seen from Figure 5.3 that a low B does not match the K-function for the

actual fingerprint very well but by increasing the value of B to 2 the fit is much better.

This makes the envelopes sit comfortably around the actual K-function. The fit of this

process is far better than both the Strauss process and for complete spatial randomness.

It seems realistic to think that the given fingerprint could have come from the process

used to create the simulated K-functions in Figure 5.4.

5.5 Summary

In order to represent the variability in the locations of minutiae in fingerprints we at-

tempted to fit a spatial point process to the data. Different models were investigated

for their suitability and then investigated by simulating from these models and com-

paring to the real data we have available to us. In the first case of the Strauss model

the variability in the fingerprints could not be accurately captured. However, in the

second model, the isotropic centred Poisson process, by changing the parameter B in

the intensity function we could recreate the same K-function as the actual fingerprint

used to create the simulation. It is useful to know this but in a forensic situation it

cannot help us since the K-function can be variable and so the K-function for many

different fingerprints could all be described by the same isotropic centred Poisson pro-

cess. Without a process which is unique and distinct for every fingerprint we cannot

successfully use the information to determine whether a fingermark from a crime scene

comes from the same process as a known fingerprint as this would not give us a distinct
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Figure 5.3: Plot comparing the K-functions for a specific fingerprint and simulated

isotropic centred Poisson processes with B = 0.1
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Figure 5.4: Plot comparing the K-functions for a specific fingerprint and simulated

isotropic centred Poisson processes with B = 2
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result. Instead we move on to look at a method which assesses the strength of a match

between a fingermark and print.



Chapter 6

Matching Algorithm

6.1 Introduction

In a forensic situation the aim is to assess the strength of a match between the features

in a fingermark taken from a crime scene and the features in a fingerprint from a known

suspect. This helps to establish a person’s presence at a crime scene and adds weight

to the other evidence collected; ultimately the preferred goal of investigators is to solve

a crime using the evidence from the scene. A fingermark is defined as an impression

from a real finger left on a surface unintentionally. The fingermark is usually of low

quality and can be distorted or incomplete; it is commonly referred to as a “partial

print”. Conversely, a fingerprint refers to a complete, undistorted version of the pattern

on a finger taken in controlled conditions. This is thought of as a true realisation of

the actual features displayed on the fingerpad.

As previously highlighted, currently a categorical system is used for the matching pro-

cess whereby the fingermark is assigned as either “match”, “no-match” or “inconclu-

sive” against the fingerprint. By creating a new algorithm for matching a fingermark

and a fingerprint we hope to introduce a numerical representation for the strength of

the match which can then be presented in court; this would lead to a fairer system

for analyzing evidence. In addition to this it would allow all matches to be presented

in court, even those which would previously have been discarded as being “inconclu-

sive”. This would allow the layman juror to make a judgment based on clearer, more

transparent results.

66
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It is intended to create the matching method by developing a statistical algorithm which

assesses the difference between a fingermark and a fingerprint and gives a quantitative

measure for the strength of the match. The method used for assessing the difference

will be based on the Euclidean distance between the sets of minutiae in the mark and

in the print. In real life the fingermark contains far fewer minutiae than the fingerprint,

and it can be thought of as being a subset of minutiae in the fingerprint. For this reason

it is important to design a method which can take into account differing numbers of

minutiae in the fingermark and fingerprint.

6.1.1 Method Summary

Details of the matching method developed, and references, are given in subsequent sec-

tions, but in outline it is as follows. Firstly, a triangle is defined within the fingermark

by choosing three of its minutiae at random, and a set of approximately matching

triangles in the fingerprint is determined and then called the candidate set. For each

candidate triangle from the fingerprint, a similarity transformation is found that maps

the initial triangle to the candidate triangle; this is then applied to the whole of the

fingermark. Within each transformed fingermark, all minutiae are matched to distinct

fingerprint minutiae, minimising the resulting sum of squared distances using a Hun-

garian Algorithm. The smallest such sum of squares, over all candidates, is a measure

of how well the mark matches the fingerprint. In order to implement this custom R

code can be found in Appendix A, this details the steps carried out in the method.

6.1.2 Fingermark Simulation

As there are no data about real fingermarks related to the fingerprints in the database

used, marks were constructed manually. This was done by creating dummy marks as

outlined in Section 3.3. To create a dummy fingermark with N minutiae a fingerprint

is selected and then a random minutia is selected within the fingerprint. This minutia

is used to find its N − 1 nearest neighbours; this creates a subset from the fingerprint

with N points. The N − 1 nearest neighbours to the original minutia are used since

this gives the most realistic version of a fingermark; a fingermark is usually just a small

section of the whole fingerprint and so we expect minutiae located close together to

be visible. Despite this, the method still holds true if some minutiae from the area of
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the fingerprint are not present in the fingermark or if a section of minutiae cannot be

determined, e.g. if the middle is smudged.

Some jitter is applied to the points to give a more realistic fingermark (i.e. to allow for

distortion, smudging etc). The jitter for each minutia is sampled independently from a

bivariate Normal distribution with zero mean, zero correlation and a variance of σ2 on

each coordinate, with a range of values of σ2 being used in the experiments described

below. Using a circular bivariate Normal distribution in this way is equivalent to adding

N(0, σ2) jitter to each coordinate independently. Sometimes the minutia type is not

recorded correctly since many fingermarks are of poor quality. To take account of this

in the fingermark we retain the original minutia type (bifurcation or ridge ending)

with probability 0.9 otherwise it is swapped to the other type, this value is based on

anecdotal evidence and experience of working with fingerprint examiners.

6.1.3 Background to Transformations

In order to match a fingermark to a fingerprint in this matching algorithm a method

of transformation is adopted. According to Cox and Cox (2010) the technique of

matching one configuration of points in a Euclidean space with another and producing

a measure of the match is called Procrustes analysis. That provides the basis for the

comparison of the minutiae in the fingermark with the minutiae in the fingerprint.

The theory used in this research is adopted from Cox and Cox (2010), in addition

to that we also use Dryden and Mardia (1998) as Cox and Cox (2010) refer to it as

a good introduction to Procrustes analysis. The specific transformation carried out

here is called a Euclidean similarity transformation and has 3 components: translation,

rotation and scale (referred to as dilation in Cox and Cox (2010)). A transformation

which does not include scale (simply translation and rotation) is called a rigid-body

transformation. From Cox and Cox (2010), the notation for a Euclidean similarity

transformation of any point Xi from the configuration of points in X is defined as:

X ′i = ρATXi + b, (6.1)

where ρ is the scale, A is the orthogonal rotation matrix, and b is the rigid translation

vector. In our case we specifically work with 2-dimensions.
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Procrustes analysis is a method of matching two (or more) shapes using a similarity

transformation which minimises the Euclidean distance between the two (or more) sets

of points. For the method developed to match a fingerprint and a fingermark we assess

the strength of the match based on the sum of squared distance, and so choosing a

transformation based on minimising this value, is useful. Dryden and Mardia (1998)

call this process “Full Ordinary Procrustes Analysis” (OPA); the squared distance

between them is known as the Ordinary Procrustes Sum of Squares (OSS).

According to Cox and Cox (2010) the first step is to centre the two configurations

around the origin. This is done by subtracting the mean vectors for the configurations

from each of the points. We give the notation here for calculating the OSS using the

techniques in Dryden and Mardia (1998) since the associated package in R, “shapes”,

is used to carry out the method. Dryden and Mardia (1998) show that the “global”

minimisation over all similarity transformations can be carried out in relatively simple

steps. Firstly the shapes X and Y are centred, to give Xc and Y c. Secondly Xc is

scaled by a factor ρ̂. Finally ρ̂Xc is rotated by a matrix Â. The OSS is then:

D2
OPA(X,Y ) = ‖Y − ρ̂XÂ‖2, (6.2)

where ‖Y ‖ is defined as the Euclidean norm (or the square root of the sum of squared

distance). The process for calculating ρ̂ and Â such that we have the minimal solution

can be found in Cox and Cox (2010), here as stated previously we use the package

“shapes” in R. To see this process carried out with notation specific to this application

see Section 6.2.2.

6.2 Method

6.2.1 Candidate Set

The first step in the method is to select a triangle in the fingermark. This is done by

picking three random minutiae and labeling them A,B and C to create triangle ABC.

The goal is to then find a corresponding triangle in the fingerprint which we call abc,

in Figure 6.1.

Initially, we allow some finite amount of error in the matching and so we come up with
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a candidate set of possible triangles. To find triangles which fit into the candidate set

we initially look for pairs of points in the fingerprint with distances similar, within some

degree of error, to AB, AC and BC. This results in three tables, for example, the first

table will contain information about the index of the pairs of points in the fingerprint

ab which have a similar distance to that of AB in the fingermark. These three sets of

pairs are then cross referenced to find triangles which would satisfy all three distances

and then these are added to the candidate set. For example if an index for a appears

in both sets for ab and ac then the set for bc is searched to see if the indexes for b and

c occur together and so represent a similar distance to BC.
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Figure 6.1: Plot showing the minutiae in the fingermark with the triangle ABC la-

belled (top) and three triangles with similar side lengths in the fingerprint labelled abc

(bottom)
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6.2.2 Transformation

Next a transformation of the fingermark is required. This is done by taking each

abc from the candidate set in turn and looking for the similarity transformation of

ABC that most closely matches it to abc. The transformation used is referred to

as a Euclidean similarity transformation (Cox and Cox (2010), Dryden and Mardia

(1998)) and consists of a translation, rotation and scale. This is described in more

detail in Section 6.1.3. To carry out this analysis, elements of the “transformation”

function in the “shapes” library of R were used. This function calculates the similarity

transformation between two configurations based on the work of Dryden and Mardia

(1998).

The transformation provided should match the two triangles of points, ABC and abc,

as closely as possible by minimising the sum of squares (Euclidean) distance between

the two sets of points. Cox and Cox (2010) show that this optimal matching can be

carried out in the following steps. First the two triangles (ABC from the mark and abc

from the print) are centred at the origin. This is done by calculating the mean of the

x and y coordinates in each case and subtracting these means from each minutia. For

ABC this is defined as:

ABCi
centered = ABCi −ABC (6.3)

for i ∈ ABC. The value ABC is referred to as the translation vector for ABC. In

terms of scale ideally this could be set to one as we don’t want to change the scale of

the fingermark at all. However the way we have defined the candidate set forces the

scale to be very close to one in practice anyway, and small changes in scale may be

realistic for some fingermarks, so we leave the scale unconstrained. Fixing the scale, i.e.

assuming congruence, would be a viable alternative. In fact the scale is calculated by

finding a scale factor so that the root mean square distance of the points to the origin

is 1. We do this using the Euclidean distance as calculated by:

|pq| =
√

(px − qx)2 + (py − qy)2 (6.4)

where p = (px, py) and q = (qx, qy). The scale factor (SF) is found by calculating:
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SFABC =

√√√√∑
i

|ABCiABC|2
3

(6.5)

The scaled and translated ABC can now be written as:

ÂBC =
ABCcentered

SFABC
(6.6)

The final step is to rotate ÂBC to minimise the Euclidean distance between it and âbc.

To find the rotation matrix, R, we define Q such that

abcTABC = ‖ABC‖‖abc‖Q (6.7)

where ‖ABC‖ = {trace(ABCTABC)}1/2, then carry out the singular value decompo-

sition of Q to get

Q = V ΛUT (6.8)

and set

R = UV T . (6.9)

Finally to get the new translated, rotated and scaled ABC (ÃBC) back onto the

original scale as the fingerprint we simply carry out:

A′B′C ′ = (ÃBC ∗ SFabc) + abc (6.10)

We apply the transformation, based on mapping ABC to abc, to the whole of the

fingermark A,B,C . . . , N by calculating:

X ′ =

{(
X −ABC
SFABC

)
×R× SFabc

}
+ abc forX ∈ {A,B, . . . N}. (6.11)

This gives a transformed mark based on the mapping between ABC and abc which is

referred to as A′, B′, C ′ . . . , N ′. An example of this process can be seen in Figure 6.2.
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After this has been completed for one value of abc in the candidate set it is then repeated

for all of the others.

Figure 6.2: Plot showing the minutiae in a fingermark with the triangle ABC labelled

(top left), the minutiae in the fingerprint with abc labelled (top right), the transformed

fingermark overlayed on the the fingerprint based on the transformation from ABC to

abc (bottom)
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6.2.3 The Unique Allocation Problem

Based on each candidate triangle abc, we now have a transformation that maps all N

minutiae in the fingermark, A,B,C, . . . , N say, on to points A′, B′, C ′, . . . , N ′ in the

same space as the fingerprint minutiae, with A′B′C ′ close to abc. If the fingermark

really does come from this area of this fingerprint we would expect there to also be

minutiae d, . . . , n close to D′, . . . , N ′. To assess this more formally, we need to look for

a set of distinct fingerprint minutiae, a∗, . . . , n∗ say, such that,

|A′a∗|, |B′b∗|, . . . , |N ′n∗| (6.12)

are all small, given that

|A′a∗| =
√

(Ax
′ − ax∗)2 + (Ay

′ − ay∗)2. (6.13)

It is important to note that we do not necessarily have a∗ = a, b∗ = b and c∗ = c since

that may not be the “best” (based on minimum Euclidean distance) way to match

all A′, B′, C ′, . . . , N ′ uniquely. Also in order to minimise the overall distance between

the minutiae in the fingermark and the minutiae in the fingerprint and to ensure the

allocation is unique, d∗, say, may not actually be the closest minutia to d. Finding

a∗, b∗, . . . , n∗ is an example of what is called an assignment problem in mathematics.

In this application, that refers to assigning each minutia in the transformed fingermark

to a unique minutia in the fingerprint, doing this in such a way as to minimise the

overall distance between the transformed mark and selected minutiae in the print. The

next section describes an algorithm which exactly solves this problem.

6.2.4 Hungarian Algorithm

The Hungarian Algorithm (Kuhn, 1955) is an optimisation algorithm which is designed

to solve a linear sum assignment problem. Given a simple example where you want

to assign n men to n jobs, this would correspond to a total of n! possible assignments

of men to jobs (Munkres, 1957). For small n the options would be easy to list but

for larger n this becomes difficult to see all possible assignments. Now say, each of

the n men had a preference for each of the n jobs we could produce an n × n matrix
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where each entry corresponds to the preference for each man to job assignment. The

Hungarian Algorithm is an algorithm which finds the optimal assignment based on

those preferences from the n! possible options. Using the notation in Burkard et al.

(2009), given an n× n matrix C of costs, we want to select n elements of C such that

we have one element in each row and column only, in such a way that the sum of the

corresponding costs is minimised (Burkard et al., 2009).

Here we give an example using fingerprints and fingermarks, the Hungarian Algorithm

is implemented using the actual steps outlined in Flood (1956). In this case we are

comparing N minutiae in the fingermark with P minutiae in the fingerprint with N ≤
P . Table 6.1 shows a small example with N = 3 minutiae in the fingermark and P = 5

minutiae in the fingerprint.

Fingerprint

a b c d e

Transformed Fingermark

A′ 1.4 0.7 1.2 2.0 0.9

B′ 0.2 0.9 1.9 1.4 1.1

C ′ 1.5 0.8 1.2 0.6 1.7

Table 6.1: Small example of data with 3 minutiae in the fingermark and 5 minutiae in

the fingerprint, the values in the table correspond to the distances between the minutiae

in the mark and the minutiae in the print

Here we have n = P = 5 columns and N = 3 rows. In order to carry out the Hungarian

Algorithm the matrix must be square so we add two dummy rows, the values placed in

the dummy rows are equal to the highest value in the table. This is shown in Table 6.2.

a b c d e
A′ 1.4 0.7 1.2 2.0 0.9
B′ 0.2 0.9 1.9 1.4 1.1
C ′ 1.5 0.8 1.2 0.6 1.7
D1 2.0 2.0 2.0 2.0 2.0

D2 2.0 2.0 2.0 2.0 2.0

Table 6.2: Data from Table 6.1 with dummy rows added

The cost assigned to each element is the squared Euclidean distance between each

minutia in the transformed mark and each minutia in the fingerprint. The element in
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the i-th row and j-th column corresponds to the squared Euclidean distance between

i-th minutia in the fingermark and the j-th minutia in the fingerprint. An assignment

of minutiae in the print and mark is then found based on minimising the overall sum

of the squared Euclidean distances.

Now to carry out the Hungarian Algorithm the minimum value in each row is deducted

from that row as shown in Table 6.3. The same is repeated for columns, i.e. the

minimum value in each column is deducted from the whole column. With the example

we are using there is already a zero in each column so the table will stay the same as

shown in Table 6.3.

a b c d e
A′ 0.7 0 0.5 1.3 0.2
B′ 0 0.7 1.7 1.2 0.9
C ′ 0.9 0.2 0.6 0 1.1
D1 0 0 0 0 0

D2 0 0 0 0 0

Table 6.3: Table 6.2 with the minimum from each row deducted

Next the zero elements are covered with as few lines as possible; this can be seen for

the example in Table 6.4.

a b c d e
A′ 0.7 0 0.5 1.3 0.2
B′ 0 0.7 1.7 1.2 0.9
C ′ 0.9 0.2 0.6 0 1.1
D1 0 0 0 0 0

D2 0 0 0 0 0

Table 6.4: Table 6.3 with the zero elements covered

If the minimum number of lines taken to cover the zeros is equal to the number of

columns (P = 5) then we can stop and move to the last step. If not add the minimum

uncovered element to all of the covered elements (adding twice if covered twice) and

repeat the above process of subtracting the minimums for rows and columns and cov-

ering the zero elements. Once a stage has been reached where the minimum number

of lines taken to cover the zero elements is equal to the number of columns the process

is complete; all that is left to do is to choose a set of zeros so that there is only one
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selection in each row and column. For our example the process was complete after one

round of covering the zero elements and the selections can be seen in Table 6.5. The

result after removing the dummy rows is A′ → b, B′ → a and C ′ → d with the overall

cost being 0.7 + 0.2 + 0.6 = 1.5.

a b c d e

A′ 0.7 0 0.5 1.3 0.2

B′ 0 0.7 1.7 1.2 0.9

C ′ 0.9 0.2 0.6 0 1.1

D1 0 0 0 0 0

D2 0 0 0 0 0

Table 6.5: Table showing the chosen set of zeros so that there is only one selection in

each row and column.

6.3 Final Step

From the Hungarian Algorithm (see Section 6.2.4) we have a unique allocation for the

N minutiae in the transformed fingermark to the minutiae in the fingerprint. We also

have the overall sum of squared Euclidean distances for this specific allocation, which

is:

SabcABC = |A′a∗|2 + |B′b∗|2 + . . .+ |N ′n∗|2. (6.14)

The whole process is repeated for all triangles in the candidate set which leaves a set of

allocations with corresponding sum of squared values for each fit. We take the fit with

the smallest overall sum of squares to be the optimal match for this fingerprint and

use this in our analysis; this can be described as the minimum SabcABC . So for a specific

fingerprint X, the match to the fingermark used for the analysis is:

S(X) = min(SabcABC) for all abc in X (6.15)
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6.4 Summary

In conclusion the method described above demonstrates how to match a fingermark

to a fingerprint in order to give a value for a how closely they match. In each case a

candidate set of similar points is found, a transformation for each value in the candidate

set is performed and then a Hungarian Algorithm is used to give a unique allocation

before calculating the sum of squared distances between the mark minutiae and the

print minutiae. The smallest of these values is selected to represent the optimal match

between this specific mark and print. The whole process is then repeated many times

with the same fingermark but different fingerprints to give us a set of possible matches

which can later be analysed, ranked and communicated as required to the necessary

parties. This chapter provides a measure of distance between a fingermark and any

given fingerprint. To determine the strength of the match requires investigating the

distance in relation to the rest of the general population and calculating a likelihood

ratio which can be seen in Chapter 7 along with the results from some simulated

experiments.



Chapter 7

Simulation Experiments

7.1 Introduction

This chapter focuses on using the matching algorithm from the previous chapter to carry

out simulation experiments so that we can assess how well the algorithm performs.

In this artificially constructed case where a dummy fingermark is matched to many

fingerprints, we would hope the algorithm will find the best match to the fingerprint

which it comes from (i.e. the original fingerprint used to construct the fingermark), this

is referred to as the “correct” fingerprint. The algorithm will hopefully perform well if

the distortion in the fingermark is small enough, and if the fingermark is similar enough

in form to what is implicit in the algorithm, that is independent, isotropic, bivariate

normal errors. We then rely on the best fitting triangle and the best optimised fit for the

whole fingermark based on that triangle to be similar enough to the original fingerprint

to be identified as coming from that print. In this situation theoretical results would

be difficult to obtain due to the complexity of the geometry and multi-stage nature of

the algorithm, hence we use simulation experiments as the appropriate way forward.

These simulation experiments can only cover selected cases however we have tried to

give a wide range of the key variables; number of minutiae and variance of errors, this

should give insight into the usefulness of this approach.

Overall selecting the “correct” fingerprint as the best match to the fingermark relates

to the “correct” fingerprint having the lowest sum of squares value amongst the whole

set and hence producing the largest likelihood ratio (LR) when making a comparison

80
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over the whole set. A large LR, when comparing a specific fingerprint to the whole

set for each experiment, would show that the fingermark matches substantially better

to this specific print than the others. Within the correct fingerprint the best match

(i.e. the lowest sum of squares value for that fingerprint’s candidate set) should yield

the correct allocation from the Hungarian Algorithm. Since the fingermark has been

constructed artificially from a fingerprint the index of each minutia is known and the

index of each point in the fingermark should match to the allocation given by the

Hungarian Algorithm.

By matching a specific fingermark to multiple fingerprints and then analysing the re-

sults from this it can be seen whether our method picks the correct fingerprint from

the set as the best match. Also an observation can be made on whether, within the

correct fingerprint, the allocation of minutiae is correct. This should be straightfor-

ward to check because, as the data are artificially generated, how well the algorithm is

progressing can be tracked in real time.

7.2 Setup

To carry out simulation experiments using the matching algorithm, data is needed.

For this study data was provided by the Forensic Science Service. These data contain

information about each fingerprint including minutiae locations and types, fingerprint

pattern and finger type amongst other information. As described previously, finger-

marks are required which are not in the database. For this reason dummy fingermarks

were created using the information from real fingerprints. For more information about

the origin of the fingerprints and dummy fingermarks see Chapter 3.

Each individual run in an experiment is started by creating the dummy fingermark with

standard deviation σ. Then 100 random fingerprints are selected plus the “correct”

fingerprint giving 101 fingerprints in the set. Here “correct” fingerprint refers to the

original print used to create the dummy fingermark. Then the matching algorithm is

carried out between the fingermark and each fingerprint. In each case the best possible

match in each fingerprint is selected and the information about this match is stored,

for example the sum of squares. This whole process is repeated for 100 runs each with

a different fingermark and a random sample of the fingerprints from the whole data set
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of 12,096 fingerprints.

In order to make the matching as realistic as possible the initial fingerprint used to

create the fingermark is randomly selected and then the 100 other fingerprints to be

matched against are also randomly selected. However when selecting 100 fingerprints for

the matching set these are sampled from the whole set of fingerprints based on the rough

population densities of their level 1 patterns. That is, the sampling is stratified so as

to match population proportions rather than proportions in the data set. For example

since loops are most prevalent in the population these are sampled with probability of

0.6.

In addition to the above, during each run the finger type and pattern type is tracked

in each case as the information may be required later.

7.3 Theory for Calculating the Likelihood Ratio

In this section we show how to use the sum of squared distances (refer to Chapter 6)

between the fingermark and the fingerprint to calculate the likelihood ratio. In Sec-

tion 2.3 we discussed how forensic data is handled in a mathematical way via the use

of likelihood ratios. The basic formula we use when working with likelihood ratios is

taken from Bayes Theorem, see e.g. Champod et al. (2005):

p(Hp|E, I)

p(Hd|E, I)
=
p(Hp|I)

p(Hd|I)
× p(E|Hp, I)

p(E|Hd, I)
(7.1)

where Hp is the hypothesis that the evidence originates from the suspect, Hd the

hypothesis that the evidence originates from an unknown individual (referred to as the

Prosecutor and Defence hypotheses respectively), E is the forensic information and I

is background information. On the basis of this we have a likelihood ratio (Champod

et al., 2007):

LR =
p(E|Hp, I)

p(E|Hd, I)
. (7.2)

For this work we ignore various other effects, such as the uncertainty associated with

the similarity transform in Section 6.2.2. We have found a sum of squared distances
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for the minutiae in the transformed mark A′, B′, C ′, . . . , N ′ to their best allocation

in the specific fingerprint we are testing against a∗, . . . , n∗, the suspect’s fingerprint.

We assume that the N minutiae are modelled by m = 2n coordinates having Normal

distributions with known means µ0 = (µ0,1, µ0,2, . . . , µ0,m) and unknown variance v =

σ2. We treat µ0 as known, even though in practice it has been “estimated” using

the matching procedure; this ignores the uncertainty associated with the similarity

transform and other steps in the matching, and is equivalent to ignoring the contribution

of other allocations apart from the best one. On the other hand, we do allow for the

uncertainty in the variance v of the error (due to smudging of the fingermark etc.) in

the locations of the minutiae, since in practice this will be unknown and estimated from

a relatively small number of observations. To allow for the uncertainty in v, rather than

making a point estimate, we take a Bayesian approach and put a prior distribution on

v. Our likelihood ratio is then based on integrating out v, given the data, rather than

plugging in a point estimate for v such as its maximum likelihood estimator. As such,

it can be seen as a compromise between the usual likelihood ratio and the Bayes factor

which would be obtained if we allowed for all of the uncertainty mentioned above.

7.3.1 Prosecutor Hypothesis

In order to explicitly calculate these values from the sum of squared distances found

in Chapter 6 we first consider p(HP |E). Since the locations of minutiae in fingerprints

are not affected by gender, age or other exterior factors, for simplicity we remove I

from calculations. We use the known means µ0 = (µ0,1, µ0,2, . . . , µ0,m) and unknown

variance v = σ2 as defined in the previous section and write y = (y1, . . . , ym) for the

evidence (E is the notation of Champod et al. (2005)). Then we have:

p(Hp|y) =

∫
v
p(µ0, v|y)dv

=

∫
v

p(y|µ0, v)p(µ0)p(v)

p(y)
dv

=
p(µ0)

p(y)

∫
v
p(y|µ0, v)p(v)dv.

(7.3)

As stated previously, we have a distribution of observations of independent Normal

random variables (shown by y) given the true values. An Inverse Gamma prior distri-
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bution with hyperparameters α and β, is used for the variance, for tractability. Then

following Gelman et al. (2003) we have:

p(Hp|y) =
p(µ0)

p(y)

∫
v

[ m∏
i=1

1√
2πv

exp

{
− 1

2v
(yi − µ0,i)2

}]
× v−(α+1) exp(−β/v)

βα

Γ(α)
dv

=
p(µ0)

p(y)

∫
v
(2π)−

m
2 v−(α+

m
2
+1) exp

{
−1

v

[∑m
i=1(yi − µ0,i)2

2
+ β

]}
βα

Γ(α)
dv.

(7.4)

By using the probability density function (pdf) for the Inverse Gamma distribution we

can represent 7.4 as:

p(Hp|y) =
p(µ0)

p(y)
(2π)−

m
2
βα

Γ(α)

∫
v
v−(A+1) exp(−B/v)dv (7.5)

where

A = α+
m

2
(7.6)

B = β +

∑m
i=1(yi − µ0,i)2

2

= β +
SSD

2

(7.7)

and SSD denotes Sum of Squared Distances. Since we know that the pdf of the Inverse

Gamma distribution integrates to 1 we can simplify this to:

p(Hp|y) =
p(µ0)

p(y)
C

(
β +

SSD0

2

)−A
(7.8)

where

C =
(2π)−

m
2 βα

Γ(α)
Γ(A). (7.9)

7.3.2 Defence Hypothesis

Using the same principles as with the Prosecutor hypothesis we can establish values

for the Defence hypothesis. The only difference here is that we are measuring against



CHAPTER 7. SIMULATION EXPERIMENTS 85

a population of fingerprints so we need to average the results over all of these values.

In principle we have:

p(Hd|y) =

∫
µ

∫
v
p(µ, v|y)dvdµ. (7.10)

However, we must approximate the outer integral using the available sample of k fin-

gerprints, where k is the number of fingerprints in the sample, giving:

p(Hd|y) =

k∑
j=1

[∫
v
p(µj , v|y)dv

]

=

k∑
j=1

[∫
v

p(y|µj , v)p(µj)p(v)

p(y)
dv

]

=
1

p(y)

k∑
j=1

[
p(µj)

∫
v
p(y|µj , v)p(v)dv

]
.

(7.11)

Using A, B and C as defined in 7.6, 7.7 and 7.9 respectively we can represent 7.11 as:

p(Hd|y) =
1

p(y)

k∑
j=1

[
p(µj)C

(
β +

SSDj

2

)−A]

=
C

p(y)

k∑
j=1

[
p(µj)

(
β +

SSDj

2

)−A]
.

(7.12)

7.3.3 Likelihood Ratio

If we assume that there is no prior knowledge about the suspect then we can conclude

that every member of the population is equally likely to be the best match for the

fingermark. Hence:

p(µ1) = p(µ2) = . . . = p(µk) (7.13)
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with

p(Hp) = p(µ0) (7.14)

p(Hd) =

k∑
j=1

p(µj) = kp(µ1) (7.15)

say since we are approximating the population with the sample of size k. We can use

7.13 to represent 7.12 as:

p(Hd|y) =
C

p(y)

k∑
j=1

[
p(µ1)

(
β +

SSDj

2

)−A]

=
C

p(y)
p(µ1)

k∑
j=1

(
β +

SSDj

2

)−A

=
C

p(y)

p(Hd)

x

k∑
j=1

(
β +

SSDj

2

)−A
.

(7.16)

Now we can replace these values into our original equations to find a useable LR:

p(Hp|y)

p(Hd|y)
=
p(Hp)

p(Hd)
×

(
β + SSD0

2

)−A
∑k

j=1
1
k

(
β +

SSDj

2

)−A . (7.17)

Hence

LR =
p(y|Hp)

p(y|Hd)

=

(
β + SSD0

2

)−A
∑k

j=1
1
k

(
β +

SSDj

2

)−A . (7.18)

Now that we have a method for calculating the LR, we need a way to interpret the

results. In Evett (1998) a scale is proposed for interpreting the likelihood ratios and

the strength of support for the evidence that this represents. This is done in a way

which can be expressed verbally. This was later modified slightly in Fierrez-Aguilar
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et al. (2005) and can be seen below in Table 7.1, this is used for expressing the strength

of DNA evidence. For example, if we obtained a LR of 50 from the matching algorithm

we could say verbally that we have “moderate evidence to support the proposition that

the fingermark originated from the specified fingerprint”.

LR Strength of Support

1 to 10 Limited Evidence to Support

10 to 100 Moderate Evidence to Support

100 to 1,000 Moderately Strong Evidence to Support

1,000 to 10,000 Strong Evidence to Support

Over 10,000 Very Strong Evidence to Support

Table 7.1: A table showing a scale for likelihood ratios and the strength of support for

the evidence they represent

7.4 Results from Simulation Experiments

7.4.1 Results for Changes in Number of Minutiae

In a true forensic scenario the number of minutiae in a fingermark is not fixed. Some-

times the fingermark may be of particularly good quality and contain a lot of minutiae

(upwards of 20). However more often than not they will have far fewer than this

present. To make the results of the matching algorithm as realistic as possible the

matching programme was carried out when different numbers of minutiae were present

in the fingermark. Testing with numbers from 8 to 18 was performed as these numbers

are reasonable to expect from a fingermark (based on experience). In each case match-

ing was performed on 100 fingermarks comparing each of these to 100 fingerprints plus

the correct print (making 101 in total). The value of σ during these experiments was set

to 4, as this value represents a fingermark which looks realistic. The value of σ will be

varied during Section 7.4.2 as a sensitivity study. In all experiments the values for the

hyperparameters α and β were set to 0.1. In order to give a proper and uninformative

prior they were set to values which were small in comparison to m and SSD. Initially

some experiments were carried out with a range of values for α and β but as it was

insensitive to the choices 0.1 was decided on.
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After calculating the likelihood ratio of the correct fingerprint for each fingermark, logs

are taken for a better visual assessment as it was difficult to differentiate between the

values in the plot. As logs have been taken this will need to be taken into account

when the results are interpreted in relation to the values in Table 7.1. In Figure 7.1 it

can be seen that as the number of minutiae in the fingermark increase so does the log

likelihood ratio. From Table 7.1 it can be seen that in general as the LR (and hence

log likelihood ratio) increases the strength of the evidence to support the proposition

increases. As these experiments propose that the fingermark comes from the correct

fingerprint (defined as the original fingerprint used to generate the fingermark), an

increase in the log likelihood ratio would suggest that the evidence supports this as

the number of minutiae in the fingermark increases. This is what would be expected

intuitively, as an increase in minutiae in the fingermark gives more information for the

matching algorithm to use. It is also apparent from Figure 7.1 that in general the

number of log likelihood ratios greater than zero increases as the number of minutiae

increase. A log likelihood ratio of zero corresponds to a LR of 1 and hence can be

described as the minimum value needed to provide limited evidence to support the

proposition. If we look at the strongest level of support given in Table 7.1, that being a

LR over 10,000, then Table 7.2 shows the number from each of the 100 runs for different

minutiae levels that were over this threshold.
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Figure 7.1: Plot showing the log likelihood ratios for the best matches for different num-

bers of minutiae in the fingermarks. Each is labelled with a number which demonstrates

how many from 100 runs have a log likelihood ratio greater than zero

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. with LR>10,000 for

Correct Fingerprint as Best Match 0 0 2 1 5 14 27 28 39 47 46

Table 7.2: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing numbers of minutiae in the fingermark

(out of 100) with a likelihood ratio greater than 10,000

In order to assess if the algorithm is matching well by chance we remove the “correct”

finger (the fingerprint that is used to simulate the fingermark) and rerun the calculation
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for the log likelihood ratio using a randomly selected fingerprint as the one to match

against. The results of this can be seen in Figure 7.2 compared with the results from us-

ing the “correct” fingerprint. This also shows the number of times the log likehood ratio

is greater than zero, where this represents limited evidence to support the proposition

that the fingermark comes from the fingerprint tested against. We can conclude from

this that the matching algorithm shows no evidence to support a fingerprint which the

fingermark doesn’t originate from but in many cases gives us at least limited evidence

if the fingerprint is the “correct” fingerprint for the associated fingermark.

Figure 7.2: Plot showing the log likelihood ratios for the best match in a randomly se-

lected fingerprint for different numbers of minutiae in the fingermarks. Each is labelled

with a number which demonstrates how many from 100 runs have a log likelihood

ratio greater than zero (black circles = “correct” fingerprint, red crosses = random

fingerprint)
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Next, we focus on the allocations made by the matching algorithm. The fingerprint

that we know to be the correct match to the fingermark can be selected and we can

observe how well the algorithm is allocating each minutia in the fingermark to the

corresponding minutia in the fingerprint. Ideally all N minutiae would match, however

this is not always the case; see Figures 7.3 and 7.4. These plots illustrate that the

majority of the time, well over 50%, the algorithm is matching all N minutiae to the

right locations with others matching at N − 1 or N − 2 minutiae. Between 4% - 29%

of the time the matching algorithm gets all N minutiae wrong however the higher

percentage values correspond to lower minutiae numbers in the fingermark overall,

which can be expected. It is expected that there are relatively high numbers which

allocate zero minutiae correctly compared to the middle numbers of three to six (say),

as if one or two minutiae in the fingermark are allocated wrongly this may displace the

others in the mark as we only allow unique allocation.

Although it is relevant to know how well the algorithm performs when allocating in

the correct fingerprint, it is also useful to know how many times the correct fingerprint

was identified as the best match to the fingermark. The matching algorithm identifies

the fingerprint with the lowest sum of squares as the “best match” as this will give the

highest log likelihood ratio when compared to the other fingerprints in the set. The

results can be seen in Table 7.3 which shows that as the number of minutiae increase

the number of correct fingerprints identified as the best match also generally increases.

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. with Correct Fingerprint

Identified as Best Match 11 20 42 43 64 58 71 72 75 81 75

Table 7.3: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing numbers of minutiae in the fingermark

(out of 100)

7.4.2 Results for Changes in σ

Simulation experiments were also carried out where σ is changed. This value for σ refers

to the original construction of the fingermark and relates to how similar the fingermark

is to the original fingerprint it came from; see Section 3.3. For the experiments σ
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Figure 7.3: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint (minutiae numbers 8-13)
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Figure 7.4: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint (minutiae numbers 14-18)
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has been varied from 1 to 6. As stated in Section 7.4.1 each test matched a total of

101 fingerprints to each mark, including the correct fingerprint, and was repeated with

different fingermarks 100 times. These experiments are carried out with 10 minutiae in

the fingermark.

Again, once the log likelihood ratio has been found, it was plotted for the changes

in σ to see how well the matching algorithm was performing. Results can be seen in

Figure 7.5. From this plot it can be seen that the matching algorithm works better

as σ decreases, this is to be expected as a lower σ represents a fingermark which is

more similar to the original fingerprint it is simulated from hence we would expect the

matching algorithm to perform better in these circumstances. For lower values of σ,

the majority of the matches showed distinction from the rest of the population (i.e.

the set), this is shown by having a log likelihood ratio greater than zero. Again as

in Section 7.4.1, it is interesting to look at the number of cases where the LR shows

“very strong evidence to support” the proposition that the fingermark comes from the

“correct” fingerprint (taken from Table 7.1). The results of this can be seen in Table 7.4.
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Figure 7.5: Plot showing the log likelihood ratios for the best matches for various

values of σ in the construction of the fingermarks. Each is labelled with a number

which demonstrates how many from 100 runs have a log likelihood ratio greater than

zero. The number of minutiae is 10 throughout

Value of σ 1 2 3 4 5 6

No. with LR>10,000 for

Correct Fingerprint as Best Match 98 65 13 2 0 0

Table 7.4: A table showing the number of times the matching algorithm identified

the correct fingerprint as the best match for differing values of σ (out of 100) with a

likelihood ratio greater than 10,000. The number of minutiae is 10 throughout.

the process of comparing a randomly selected fingerprint (that we know not to be the
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“correct” fingerprint) is carried out. The results can be seen in Figure 7.6 which shows

that the matching algorithm does not produce a good match if a random fingerprint

is used. There are only a limited number of cases where a log likelihood ratio greater

than zero is found.

Figure 7.6: Plot showing the log likelihood ratios for the best match in a randomly

selected fingerprint for various values of σ in the construction of the fingermarks. Each

is labelled with a number which demonstrates how many from 100 runs have a log

likelihood ratio greater than zero. The number of minutiae is 10 throughout. (black

circles = “correct” fingerprint, red crosses = random fingerprint)

When looking specifically at the correct fingerprint it can be seen from Figure 7.7 that

the matching algorithm allocates the minutiae in the fingerprint well for small values

of σ. However with values of σ = 5 and especially σ = 6 the matching algorithm does
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not do a very good job. This is also evident in Table 7.5 which shows that for the lower

three values of σ the matching algorithm is identifying the correct fingerprint as the

best match most of the time; however, for the higher three values of σ it is very rarely

doing this.

Value of σ 1 2 3 4 5 6

No. with Correct Fingerprint

Identified as Best Match 99 99 65 42 12 4

Table 7.5: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing values of σ (out of 100). The number

of minutiae is 10 throughout.

7.5 Discussion

In both sets of results, changes in number of minutiae and changes in σ, high numbers

of minutiae allocated correctly in the right fingerprint also corresponded with the al-

gorithm identifying the correct print as the best match. These cases also correspond

with higher values for the log likelihood ratio. This shows that when the algorithm

allocates the minutiae in the correct way the method would give a positive result as

the correct fingerprint would be identified as the best match from the population. This

is further supported by the lack of cases during the random fingerprint testing which

showed a large value (greater than zero) for the log likelihood ratio. The results here

show that the method works most efficiently (i.e. getting the correct results most of the

time) when we have large numbers of minutiae in the fingermark and low values for σ,

which corresponds to small amounts of distortion in the fingermark.

7.6 Summary

This chapter has examined how well the matching program performs when using it

with real data to assess a match between a fingermark and a fingerprint. A technique

has been developed for taking the results from the algorithm into a usable format and

then analysed different scenarios. These two experiments looked at different numbers of

minutiae in the fingermark and varying the value of σ when constructing the fingermark.
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Figure 7.7: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint with varying σ
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Although the results from the simulation experiments are promising they do not give

the accuracy and reliability being sought. Ideally the algorithm would identify the

correct fingerprint as the best match more often (especially with higher values of σ)

and also to deliver a higher value for the likelihood ratio. If the value of the likelihood

ratio is clearly above zero in most cases then a good result has been attained.



Chapter 8

Optimisation

8.1 Introduction

The results from the simulation experiments were not as successful as would have

been desired and hence this chapter will investigate optimising the matching algorithm

to produce better results when matching a fingermark to a fingerprint. Then the

simulation experiments will be repeated and compared to see how optimisation affects

the results.

8.2 Method of Optimisation

The method of optimisation is based on performing a second transformation. The R

code which was written to carry out this step of optimisation can be found in Ap-

pendix B, this is run additionally to the previous code in Appendix A. In summary

the matching algorithm, from Chapter 6, assigns an initial triangle in the fingermark

and finds a candidate set of points in the fingerprint which are similar to this triangle.

For each case in the candidate set, a transformation is applied based on matching the

triangle in the mark to the triangle in the print and then the Hungarian Algorithm is

used to find a unique allocation of all N minutiae from the transformed mark. Once this

unique allocation has been obtained, the sum of squared Euclidean distances between

the minutiae in the fingermark and the minutiae in the fingerprint is found.

100
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To carry out optimisation, another transformation after the Hungarian Algorithm is

performed based on all N minutiae instead of 3 minutiae (ABC) which was done pre-

viously. The transformed mark A′, B′, C ′, . . . , N ′ has had every element allocated to

a minutia in the fingerprint to give a∗, . . . , n∗ using the Hungarian Algorithm. We

now carry out another transformation by centering both sets and calculating the scale

parameter and rotation matrix using ordinary Procrustes analysis (Dryden and Mar-

dia, 1998) as done previously in Section 6.2.2. The results of this are then applied

to A′, B′, C ′, . . . , N ′ to give A′′, B′′, C ′′, . . . , N ′′. The sum of the squared Euclidean

distances is then calculated using:

SabcABC = |A′′a∗|2 + |B′′b∗|2 + . . .+ |N ′′n∗|2. (8.1)

This process is repeated for every triangle in the candidate set for that fingerprint. We

select the smallest overall sum of squares (the minimum SabcABC) to be the best match

for that fingerprint. Hence for fingerprint X in the analysis we use the best match,

which is described as:

S(X) = min(SabcABC) for all abc in X. (8.2)

The first translation to A′, B′, C ′, . . . , N ′, can be thought of as getting the mark into the

right region, whilst the second to A′′, B′′, C ′′, . . . , N ′′, refines the location to provide

a better match. By doing this second transformation it is anticipated that this will

reduce the overall sum of the squared Euclidean distances and hence a stronger match

can be identified.

8.3 Results from Optimisation

8.3.1 Results for Changes in Number of Minutiae

These results are based on the same experiments as those in Section 7.4.1 where the

value for N varies between 8 and 18, and σ is fixed at a value of 4. Before optimisation it

was observed that the log likelihood ratio tended to increase as the number of minutiae

in the fingermark increased. This is also true post optimisation. However Figure 8.1
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illustrates that optimisation in all cases increases the number of log likelihood ratios

greater than zero which relates to the best match fingerprint being clearly better than

the other fingerprints in the set at matching the fingermark, and hence provides evidence

to support the conclusion that the fingermark came form the “correct” fingerprint. It

can be seen that for lower numbers of minutiae in the mark, optimisation has greatly

increased this distinction, for example for N = 11 this number has increased from 41 to

71. The number of cases where the LR is greater than 10,000, corresponding to “very

strong evidence to support” the proposition, can be seen in Table 8.1. Except when

the number of minutiae in the fingermark is 8 the optimisation step has increased the

number of cases where there is very strong evidence that the fingermark came form the

“correct” fingerprint.
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Figure 8.1: Plot showing the log likelihood ratios for the best matches for different

numbers of minutiae in the fingermarks, each is labelled with a number which demon-

strates how many from 100 runs have a log likelihood ratio greater than zero (black

circles = pre-optimisation, red crosses = post-optimisation)

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. with LR>10,000 for

Correct Fingerprint as Best Match 0 1 3 4 15 37 43 66 73 79 87

Table 8.1: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing numbers of minutiae in the fingermark

(out of 100) with a likelihood ratio greater than 10,000

As in Section 7.4.1 we repeated the calculations after removing the “correct” fingerprint
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and using a randomly selected fingerprint to match again. In this case we know that

the fingermark does not originate from the chosen fingerprint. The results of this can

be seen in Figure 8.2, it shows again quite clearly that the matching algorithm produces

different results if the chosen fingerprint is not the one which the fingermark originates

from as there are only a small number of cases with even the lowest level (limited) of

evidence to support the match.

Figure 8.2: Plot showing the log likelihood ratios for the best match in a randomly se-

lected fingerprint for different numbers of minutiae in the fingermarks. Each is labelled

with a number which demonstrates how many from 100 runs have a log likelihood ratio

greater than zero (black circles = “correct” fingerprint post-optimisation, red crosses

= random fingerprint)
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Again, as can be seen in Figures 8.3 and 8.4, optimisation has a positive effect on the

results as the number of minutiae in the fingermark matching to correct locations in the

fingerprint increases, as well as the number where all N match increasing. Table 8.2

shows that the number of allocations remaining unchanged post-optimisation is similar

across changes in minutiae numbers, however in all cases between 5% and 22% have

some change in minutiae allocation within the correct fingerprint.

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. of Allocation Changes 20 22 9 18 16 15 13 14 13 11 5

Table 8.2: A table showing the number of times the allocation of minutiae in the

fingermark to the correct fingerprint changed post-optimisation

When investigating how often the matching algorithm identifies the correct fingerprint

as the best match for the fingermark, we see that optimisation only makes this better.

In all cases optimisation increases the proportion of times the correct fingerprint is

identified as the best match. It can be seen that for N = 10 over half the correct

fingerprints are now being identified, unlike pre-optimisation (Table 8.3).

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. with Correct Fingerprint

Identified as Best Match (Pre) 11 20 42 43 64 58 71 72 75 81 75

No. with Correct Fingerprint

Identified as Best Match (Post) 17 29 57 71 84 83 86 88 84 92 94

Table 8.3: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing numbers of minutiae in the fingermark

(out of 100)

8.3.2 Results for Changes in σ

Optimisation also has an effect when the value of σ is varied and N = 10 as in Sec-

tion 7.4.2. Figure 8.5 shows that as with pre-optimisation the log likelihood ratio

decreases as the value of σ increases. In addition to this, optimisation increases the

number of values with a log likelihood greater than zero, this value is still however quite

low for σ = 5 and σ = 6. Similarly for the higher threshold of a LR greater than 10,000
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Figure 8.3: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint (minutiae numbers 8-13)



CHAPTER 8. OPTIMISATION 107

Figure 8.4: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint (minutiae numbers 14-18)
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the number of cases passing this decreases as σ increases, the results can be seen in

Table 8.4. For the lower values of σ however, we see that in the majority of cases there

is very strong evidence to support the proposition that the fingermark came from the

“correct” fingerprint.

Value of σ 1 2 3 4 5 6

No. with LR>10,000 for

Correct Fingerprint as Best Match 100 84 25 3 0 0

Table 8.4: A table showing the number of times the matching algorithm identified

the correct fingerprint as the best match for differing values of σ (out of 100) with a

likelihood ratio greater than 10,000. The number of minutiae is 10 throughout.

When randomly selecting a fingerprint we know not to be the one that the fingermark

originated from and using this as our comparison print we would expect as in Sec-

tion 7.4.2 that the results would show no evidence to support the match. The results

can be seen in Figure 8.6, here only one case passes the lowest threshold of evidence.

We would expect there to be an odd occurrence of this just by chance, however we

would want the number of these to be low as is the result presented.



CHAPTER 8. OPTIMISATION 109

Figure 8.5: Plot showing the log likelihood ratios for the best matches for changes of σ in

the construction of the fingermarks, each is labelled with a number which demonstrates

how many from 100 runs have a log likelihood ratio greater than zero (black circles =

pre-optimisation, red crosses = post-optimisation)
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Figure 8.6: Plot showing the log likelihood ratios for the best match in a randomly

selected fingerprint for various values of σ in the construction of the fingermarks. Each

is labelled with a number which demonstrates how many from 100 runs have a log

likelihood ratio greater than zero. The number of minutiae is 10 throughout. (black

circles = “correct” fingerprint post-optimisation, red crosses = random fingerprint)

The process of optimistion has a lesser effect on the changes in σ as many of the lower

values matched very well to begin with. It can be seen in Table 8.5 that for the values

of 1 to 4 optimisation changes none of the allocations however for higher values of σ,

which don’t fit very well, optimisation changes the allocation in many cases. Figure 8.7

shows how many minutiae in the fingermark are allocated to the correct minutiae in the

correct fingerprint. Again it can be seen that for values of 1 to 4 there are no changes,

however, for values of σ = 5 and σ = 6 the optimisation has a great effect as many
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more cases allocate all N = 10 minutiae correctly.

Value of σ 1 2 3 4 5 6

No. of Allocation Changes 0 0 0 0 36 37

Table 8.5: A table showing the number of times the allocation of minutiae in the

fingermark to the correct fingerprint changed post-optimisation

The number of correct fingerprints identified as the best match from the matching

algorithm increases after optimisation. Table 8.6 shows us that the matching algorithm

now performs well for values of σ up to 4 and especially well for the values 1 to 3 in

which nearly every case is identified properly.

Value of σ 1 2 3 4 5 6

No. with Correct Fingerprint

Identified as Best Match (Pre) 99 99 65 42 12 4

No. with Correct Fingerprint

Identified as Best Match (Post) 100 100 90 57 16 10

Table 8.6: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing values of σ (out of 100)

8.4 Discussion

The results above show that optimisation has improved the strength of the match

between the best matching fingerprint and the fingermark, whilst also maintaining a

result of no or limited evidence to support the match when this is not the case. This is

shown by an increase in the number of “correct” fingerprints with a log likelihood ratio

greater than zero. It can also be seen that for low numbers of minutiae (N = 8, 9, 10)

the algorithm is allocating the minutiae well in the correct fingerprint but the number of

cases where the correct fingerprint is identified as the best match is still low. This could

be attributed to the optimisation step improving the strength of the match between

the best matching fingerprint and the fingermark even if it is the wrong fingerprint.

The same situation occurs with large values of σ.
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Figure 8.7: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint with varying σ



CHAPTER 8. OPTIMISATION 113

8.5 Summary

The previous sections have shown that the method of optimisation employed here,

namely carrying out a second transformation, works well with this data. It strengthens

the matches between the fingermark and the correct fingerprint by increasing the log

likelihood ratio and in many cases pushing this above zero. In addition to this, the

optimisation step increases the number of correct allocations we see in all cases as well

as increasing the number of occasions where the correct fingerprint is identified as the

best match by the matching algorithm.



Chapter 9

Expansion with Minutia Type

9.1 Introduction

The optimisation step of the algorithm explored in the previous chapter certainly adds

value to the method and increases the performance by increasing the log likelihood ratio

for the match between the fingermark and correct fingerprint. In order to improve the

method further minutiae types are now incorporated into the algorithm. By extending

the method in this way another layer of detail is taken into account which should output

more reliable results. The previous simulation experiments from Sections 7.4 and 8.3

will be repeated on the updated algorithm and the results will be compared to those

obtained post optimisation.

9.2 Method for Inclusion of Minutia Type

The previous matching algorithm devised in Chapter 6 randomly selects a triangle

in the fingermark and then searches the fingerprint for similar triangles to create a

candidate set of triangles. For each of the triangles (abc) in this candidate set, a

value for the transformation of this triangle in the fingerprint to the triangle (ABC)

in the fingermark is calculated which is then applied to the whole of the fingermark

to give A′, B′, C ′ . . . , N ′. The key step is the application of the Hungarian Algorithm

which finds a unique allocation of the N minutiae in the transformed fingermark to

corresponding points in the fingerprint which minimises the sum of squared Euclidean

114
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distance between the two sets of minutiae. The set of minutiae from the fingerprint

relating to this allocation are a∗, . . . , n∗. The optimisation step (see Chapter 8 for more

details) then applies another transformation, however this time instead of being based

on the triangle of minutiae it is based on all N minutiae in the fingermark, this gives,

A′′, B′′, C ′′, . . . , N ′′. Now minutia A′′ in the transformed (and optimised) fingermark is

allocated to minutia a∗ in the fingerprint.

The basis of this extension to the method is to compare the minutiae types of the

N minutiae in A′′, B′′, C ′′, . . . , N ′′ with that of a∗, . . . , n∗. If the type of A′′ does not

match with a∗ then we apply a penalty to the sum of squared Euclidean distance. This

method of applying a penalty to the minutiae types element of the matching algorithm

is not necessarily modelled in a formal way by building on the Likelihood, instead the

penalty builds on the sum of squares approach. The method used is both intuitive and

computable hence the results are interpretable. The method can be written as:

SabcABC = {|A′′a∗|2 + |B′′b∗|2 + . . .+ |N ′′n∗|2}pw (9.1)

where p is the penalty applied for an incorrect minutia type and w is the number of

incorrect minutiae types. A correct minutia type is essentially multiplied by 1 so that

the value for the sum of squared distance stays the same. Since a small value for the

sum of squared distance between two minutiae represents a good match we want the

penalty to increase the value of the sum of squared distance for a wrong match of

minutiae types. For the experiments below we set the penalty to be p = 1.2. This

value for p was based on some initial experiments to obtain a value for p which fit our

requirements. The aim of including minutiae types is to strengthen the match between

a fingermark and a fingerprint in that the minutiae are similar in both locations and

types, this is done by applying a penalty if the type of the minutia in the fingermark

is different from the minutia it is allocated to in the fingerprint. However, we know

anecdotally that minutiae types are not always labelled correctly due to both human

error and poor quality of fingermarks. For this reason it was important that the penalty

wasn’t too high that it excluded the correct fingerprint if only one or two minutiae were

“typed” incorrectly. This led to a value of p = 1.2 being selected. We then take the

value of the lowest overall sum of squares to be the best match for that fingerprint, this

is described as:
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S(X) = min(SabcABC) for all abc in X. (9.2)

It is intended that this extension to include minutiae types should increase the strength

of the match between the fingermark and the correct fingerprint since the locations of

the minutiae will be similar as well as the types of minutiae. The additional custom R

code required to implement this step is located in Appendix C.

9.3 Results from the Inclusion of Minutia Type

9.3.1 Results for Changes in Number of Minutiae

The simulation experiments carried out to assess whether optimisation was beneficial

were repeated here, where the results of including minutiae types in the matching

algorithm were compared with the results post optimisation. We anticipate that by

including minutiae types this would enhance the performance of the model further. As

with previous experiments in Section 8.3.1 the number of minutiae in the fingermark

was varied and the value for σ was set to 4.

The inclusion of minutiae types shows a similar increasing pattern of log likelihood ratio

as N increases, this was also seem in previous experiments. In most cases including

minutiae types in the algorithm increases the number of cases where the log likelihood

ratio exceeds zero, in two cases it stays the same as the number for post optimisation,

and in one case (N = 17) decreases, these results can be seen in Figure 9.1. For larger

numbers of minutiae the extension of the algorithm seems to have little effect since the

method already performs well however for lower numbers of minutiae, N = 8− 10 the

extended algorithm shows a marked improvement. If we look specifically at how many

of these LR are now greater than 10,000 and show “very strong evidence to support”

the match between the fingermark and the “correct” fingerprint we see that in all cases

including minutiae types increases the number of cases crossing this threshold. The

results can be seen in Table 9.1, for the higher numbers of minutiae in the fingermark

the majority of cases are matching with the highest level of support from Table 7.1.

With the inclusion of minutiae types in the matching algorithm we compare a random

fingerprint to the fingermark and assess how good the match is. The results can be
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Figure 9.1: Plot showing the log likelihood ratios for the best matches for different

numbers of minutiae in the fingermarks, each is labelled with a number which demon-

strates how many from 100 runs have a log likelihood ratio greater than zero (black

circles = post-optimisation, red crosses = post-minutiae types)

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. with LR>10,000 for

Correct Fingerprint as Best Match 2 7 25 29 60 70 79 86 83 89 94

Table 9.1: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing numbers of minutiae in the fingermark

(out of 100) with a likelihood ratio greater than 10,000
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seen in Figure 9.2 and show that whilst there are some cases with a log likelihood ratio

greater than zero these numbers are low and don’t happen very often. The number of

these false positives is very infrequent when comparing these cases to the use of the

“correct” fingerprint for matching.

Figure 9.2: Plot showing the log likelihood ratios for the best match in a randomly se-

lected fingerprint for different numbers of minutiae in the fingermarks. Each is labelled

with a number which demonstrates how many from 100 runs have a log likelihood ratio

greater than zero (black circles = “correct” fingerprint post-minutiae types, red crosses

= random fingerprint)

By comparing Figures 9.3 and 9.4 to the corresponding plots in Section 8.3.1 we can

see that in most cases the percentage of times when all N minutiae have been allocated

correctly has increased or stayed the same (except for N = 17). This implies that the
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matching algorithm has been improved by extending it to include minutiae types since

this is increasing the number of correct allocations of minutiae in the fingermark to

minutiae in the original fingerprint it was simulated from. It can also be seen that

post optimisation the percentage of cases where zero minutiae were allocated correctly

ranged between 3% and 22%, here this has dropped to between 1% and 19%.

Table 9.2 shows the number of times the allocation of minutiae in the fingermark to

the correct fingerprint changed after the algorithm was extended. By inspection it can

be seen that there were a similar number of allocation changes for all N ranging from

4% to 13%.

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. of Allocation Changes 13 11 4 9 6 9 7 7 12 8 5

Table 9.2: A table showing the number of times the allocation of minutiae in the

fingermark to the correct fingerprint changed after the inclusion of minutiae types

When thinking about the best match that can be made it is hoped that this will be

the correct fingerprint which is defined as the fingerprint that the fingermark originates

from. In all cases the number of times where the correct fingerprint is the best match

has increased or stayed the same as post optimisation except again for N = 17 where

there seems to have been one case where including minutiae types has changed how

that simulation performed. The results can be seen in Table 9.3, it is also worth noting

that the algorithm has increased the number of correct matches identified as the best

match by a large amount for low numbers of minutiae.

No. of Minutiae in Fingermark 8 9 10 11 12 13 14 15 16 17 18

No. with Correct Fingerprint

Identified as Best Match 17 29 57 71 84 83 86 88 84 92 94

(Post-optimisation)

No. with Correct Fingerprint

Identified as Best Match 41 54 79 85 91 90 92 88 86 91 94

(Post-minutiae types)

Table 9.3: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing numbers of minutiae in the fingermark

(out of 100)
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Figure 9.3: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint (minutiae numbers 8-13)
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Figure 9.4: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint (minutiae numbers 14-18)
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9.3.2 Results for Changes in σ

The inclusion of minutiae types into the matching algorithm also had an effect on the

simulation experiments where the value of σ was varied. As in previous chapters the

value for N (the number of minutiae) was fixed at 10. As expected the values for the

log-likelihood ratio decrease as σ increases, this implies that as the distortion in the

fingermark decreases the algorithm provides a stronger match between the best match

within a fingerprint and the fingermark. This can be seen in Figure 9.5. The number of

cases where the log-likelihood ratio is greater than zero (hence providing some evidence

that the fingermark comes from the “correct” fingerprint) has also increased especially

for the higher values of σ. If we look at the higher threshold for the LR which relates

to very strong evidence to support the proposition that the fingermark originated from

the “correct” fingerprint we can see that for low values of σ the matching algorithm

produces a positive results and for higher values of σ cases are starting to cross this

threshold. Results can be seen in Table 9.4.

Value of σ 1 2 3 4 5 6

No. with LR>10,000 for

Correct Fingerprint as Best Match 100 93 57 25 0 1

Table 9.4: A table showing the number of times the matching algorithm identified

the correct fingerprint as the best match for differing values of σ (out of 100) with a

likelihood ratio greater than 10,000. The number of minutiae is 10 throughout.

By repeating the experiments using a random fingerprint to compare against the fin-

germark and not the one we know to be “correct” we see in Figure 9.6 that in only a

small number of cases (for higher values of σ) does the log likelihood ratio exceed zero

and in these cases it is still a low value. This means that in these cases we would say

that there is “limited evidence to support” a match between the fingermark and the

fingerprint.
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Figure 9.5: Plot showing the log likelihood ratios for the best matches for changes of σ in

the construction of the fingermarks, each is labelled with a number which demonstrates

how many from 100 runs have a log likelihood ratio greater than zero (black circles =

post-optimisation, red crosses = post-minutiae types)
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Figure 9.6: Plot showing the log likelihood ratios for the best match in a randomly

selected fingerprint for various values of σ in the construction of the fingermarks. Each

is labelled with a number which demonstrates how many from 100 runs have a log

likelihood ratio greater than zero. The number of minutiae is 10 throughout. (black

circles = “correct” fingerprint post-minutiae tpes, red crosses = random fingerprint)

Since many of the lower values of σ already performed well (both before and after

optimisation) we would expect there to be few changes in the allocation after includ-

ing minutiae types, this is reflected in Table 9.5 where the low values of σ show no

changes and the higher values have some. When we consider the correct fingerprint

(the fingerprint that the fingermark was created from) we look at how many minutiae

in the fingermark are allocated to the correct minutiae in the original fingerprint. In

Figure 9.7 it can be seen that there are no changes in the number of times the algorithm
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matches all N = 10 minutiae correction for σ = 1 and 2, this corresponds with Ta-

ble 9.5 which also showed no changes for these values. However by taking into account

minutiae types in the matching algorithm the results show that for higher values of σ

the number of times all ten minutiae are allocated correctly increases. In addition the

number of cases where zero minutiae are correctly allocated decreases after taking into

account minutiae types.

Value of σ 1 2 3 4 5 6

No. of Allocation Changes 0 0 5 4 15 26

Table 9.5: A table showing the number of times the allocation of minutiae in the

fingermark to the correct fingerprint changed after the inclusion of minutiae types

One of the most important factors in the simulation experiments is observing how many

times the fingerprint which the fingermark originates from (the “correct fingerprint”)

is identified as the best match of all the fingerprints tested in that experiment. The

result of this from the 100 experiments can be seen in Table 9.6 along with how this

compares to the performance of the algorithm after optimisation. For all values of σ

incorporating minutiae types into the method has increased the number of cases where

the correct fingerprint is determined as the best match.

Value of σ 1 2 3 4 5 6

No. with Correct Fingerprint

Identified as Best Match (Post-optimisation) 100 100 90 57 16 10

No. with Correct Fingerprint

Identified as Best Match (Post-minutiae types) 100 100 93 79 44 23

Table 9.6: A table showing the number of times the matching algorithm identified the

correct fingerprint as the best match for differing values of σ (out of 100)

9.4 Discussion and Summary

Minutiae types were included into the already optimised algorithm by applying a

penalty to cases where the minutiae allocations didn’t match in type. After including

minutiae types in to the matching algorithm its performance increased, particularly

when σ was varied. For most values of σ investigated the algorithm worked well, the
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Figure 9.7: Barplot showing how many correct allocations were made in each experi-

ment between the fingermark and the correct fingerprint with varying σ
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performance increased as σ decreased. The results are not so clear for changes in N ,

although the algorithm can be described as working well for larger values of N this

pattern is less obvious. For the larger numbers of minutiae the results are fairly similar

and show no distinction. Despite the lack of obvious distinction for higher values of

N it is true to say that extending the model to include minutiae types has made a

positive difference. There was one occasion where this extension didn’t help, for one

experiment for N = 17 including minutiae types had a negative impact. Although this

is not ideal it is to be expected that the model will not always perform perfectly but

only one occurrence of this is not alarming.

For these experiments the value of the penalty was set to p = 1.2. This was based on

a compromise between wanting to strengthen the match between a fingermark and a

fingerprint where the minutiae types were the same but also not wanting to exclude a

correct or good matching fingerprint if minutiae types had been identified wrong in the

first case (i.e. if the fingermark is of poor quality). Despite this other values for p were

tried. A smaller set of experiments were carried out on a substantially different value

set as p = 2. This was found to be clearly too high as the algorithm performed much

worse than the original simple matching algorithm and in most cases struggled to find

the correct fingerprint that the fingermark originated from, even in cases of small σ or

large N where the algorithm is known to perform well. Due to this it is obvious that

the optimum value for p lies somewhere below this value.



Chapter 10

Conclusions and Further Work

10.1 Spatial Modelling

This research started by carrying out some preliminary investigations into fingerprints.

Contrary to many current methods involving fingerprints which focus on simulating

ridge flow, and treating minutiae as a secondary feature to be added later, this work

places the priority the other way around. By plotting minutiae and investigating how

the direction of ridge flow can be determined by the location in relation to the core and

delta of the fingerprint it was decided that focusing on minutiae was a more interesting

avenue. It is also the case that, for a forensic investigation, minutiae are the main

feature in a fingerprint and a fingermark from a crime scene which are compared.

Hence any research into minutiae specifically would be novel and valuable.

How minutiae within a fingerprint interacted with each other was investigated by car-

rying out initial tests for complete spatial randomness to assess whether the pattern

of minutiae displayed on real fingerprints could be described as random. By looking

visually at density plots it was clear that minutiae are more likely to be located around

points of significance (namely the core and delta). Despite this the K-functions only

showed weak evidence that the patterns did not adhere to complete spatial randomness.

Since anecdotally from fingerprint examiners, minutiae are considered clustered it was

decided to try and extend the work by fitting spatial models to the fingerprint data to

find a spatial point process which describes the locations of minutiae. Two models were

128
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considered: the Strauss process and an Isotropic Centred Poisson Process. Whilst the

Strauss process was a good starting point and had characteristics which were applicable

in the context of fingerprints (for example, points in the pattern interact), simulations

of the model did not realistically represent the data from the Forensic Science Service’s

dataset of approximately 13, 000 fingerprints. However the Isotropic Centred Poisson

Process fared better; this didn’t allow the minutiae to interact, but had an intensity

function which varied with location. This is specified in such a way that a point is

more likely to be located close to the centre of the pattern. Parameter values chosen

by a trial and error search appeared to fit the data well.

It was concluded that although it was informative to find a spatial point process which

reflected real fingerprint data this method still wouldn’t be of much use since that

same process with the same parameters could be used to describe many fingerprints.

So without being unique to a single fingerprint the model can’t be used to help match

a fingermark from a crime scene to a fingerprint from a suspect.

10.2 Matching Algorithm

The second half of the thesis focuses on creating a method to match a fingermark

to a fingerprint. The algorithm essentially starts with a simulated fingermark and

locates a triangle within this which it matches to approximately matching triangles

in a fingerprint to create a candidate set. For each of these we calculate a similarity

transformation mapping the triangle in the fingermark to one in the fingerprint. This

transformation is applied to the whole mark and, using a Hungarian Algorithm, a

unique allocation for each minutia in the fingermark to a minutia in the fingerprint is

obtained. Once we have this allocation a sum of squared distances can be calculated for

the minutiae. This is repeated for all instances in the candidate set and the minimum

sum of squared distances is determined to be the optimal match for that fingerprint.

In order to assess how well the model performs, this process was repeated many times

and for different numbers of minutiae in the mark and values of σ, which corresponds

to how close the fingermark is to the original fingerprint it was simulated from. The

method performed adequately but we felt it could be optimised by including another

transformation after the Hungarian Algorithm, basing this transformation on all points
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in the fingermark. This second optimisation can be thought of as refining the match

to minimise the sum of squared distances between the whole of the fingermark and the

fingerprint. The results from including this step were positive and the performance of

the method improved; it increased the amount of times the original fingerprint used

to simulate the fingermark was defined as the best match in the experiment and addi-

tionally increased the number of times all N minutiae were allocated correctly for this

fingerprint.

A final refinement was made to the algorithm by extending it to include minutiae types;

bifurcations and ridge endings. When the types of the minutiae in the allocation of

the points in the fingermark and fingerprint differed, we applied a penalty increasing

the sum of squares so that this was not as favourable a match. A penalty factor

value of 1.2 was selected through trial and error; this value is low enough that an

initial misidentification of minutia type would not adversely affect the results of the

matching algorithm. This was increased depending on how many minutiae types did

not match. This extension of the model also improved its performance in similar ways

to the optimisation step above although it is probably fair to say that it didn’t have as

strong an improvement as the initial optimisation.

Overall the matching algorithm performs well and in many cases selects the correct

fingerprint as the best match.

10.3 Further Work and Discussion

There are many ways in which this work could be extended. This area has the potential

to be of significant benefit to the forensic science community, especially if the methods

could be extended to incorporate other types of forensic evidence. Many other types of

forensic evidence could be added into the model to enhance its overall power, one of the

obvious ones is DNA evidence which already uses a numerical representation for the

strength of the weight of the match. Previous work has been carried out using likelihood

ratios to explain DNA and combining this with the fingerprint method derived here

could be extraordinarily useful.

Another obvious improvement to the method would be to carry out more testing with

other combinations of minutiae numbers and changes in σ. By looking at different
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combinations of these two parameters this might give a more robust definition of when

the method performs well and help to draw significant conclusions about when it could

be applied to real scenarios. Since this would give a measure for when the results

could be trusted. Along a similar thread a more systematic approach to fingerprint

and fingermark distortion could be investigated. This wasn’t investigated heavily dur-

ing this research but could easily be a subject of its own. There is much scope for

assessing whether the distortion in real fingermarks is independent (as modelled in this

work) or whether there is usually some underlying dependence structure between the

variation in the location of points between the mark and known print. For example

if a fingermark has been smudged it is reasonable to believe that there may be some

directional dependence in the locations of the minutiae in the fingermark. In addition

to this the surface that the fingermark is lifted from may introduce some dependence

in the distortion of minutiae locations. An example of this is if a fingermark is lifted

from a curved surface (like a glass) we would expect that this might introduce a level

of distortion which could be modelled specifically.

Another extension to the model would be to further investigate the penalty applied

to non-matching minutiae types in Chapter 9. The method used in this research built

on the sum of squares approach and was multiplicative; an additive method could also

be investigated. In addition a more formal method based on the likelihood could be

developed as well as more tests which explicitly look at optimising the value of the

penalty. Finally a useful piece of work would be to investigate how the value for the

penalty fundamentally interacts with the probability of error in classifying minutiae

types in the fingermark.

The most obvious way that this work would benefit from extension is by using real fin-

germarks. Since we didn’t have access to a real set with the corresponding fingerprints,

we simulated them. However, undoubtedly there is no replacement for carrying out

these tests using real fingermarks that are of poor quality and assessing how well the

algorithm matches them to their corresponding fingerprint. This would give more reli-

ability and better trust in the performance of the matching algorithm and subsequent

extensions (optimisation, inclusion of minutiae types etc. ).
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Appendix A

R code - Matching Algorithm

##########################################

### Author: Stephanie Llewelyn ###

### Date: June 2013 ###

### Description: R code to calculate matching algorithm and then ###

### likelihood ratio for one fingermark (including generation of this ###

### fingermark) against 100 fingerprints plus the original fingerprint ###

### that the mark was simulated from. For the fingermark in this ###

### script number of minutiae = 10, sigma squared = 4. ###

##########################################

### Step 1: load relevant libraries ###

library(MASS)

library(shapes)

library(clue)

library(gtools)

### Step 2: Load in the 12 separate datasets creating two new columns ###

138
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### for fingertype (from: index/middle/ring/thumb) and pattern type ###

### (from: arch/ulnar loop/whorl/arch) ###

a1<-read.csv("Index_arch.csv")

a1[,1]<-"I"

a1[,2]<-"A"

colnames(a1)[1]<- "FingerType"

colnames(a1)[2]<- "PatternType"

a2<-read.csv("Index_Ulnar_loop.csv")

a2[,1]<-"I"

a2[,2]<-"L"

colnames(a2)[1]<- "FingerType"

colnames(a2)[2]<- "PatternType"

a3<-read.csv("Index_whorl.csv")

a3[,1]<-"I"

a3[,2]<-"W"

colnames(a3)[1]<- "FingerType"

colnames(a3)[2]<- "PatternType"

a4<-read.csv("Middle_arch.csv")

a4[,1]<-"M"

a4[,2]<-"A"

colnames(a4)[1]<- "FingerType"

colnames(a4)[2]<- "PatternType"

a5<-read.csv("Middle_Ulnar_loop.csv")

a5[,1]<-"M"

a5[,2]<-"L"

colnames(a5)[1]<- "FingerType"

colnames(a5)[2]<- "PatternType"

a6<-read.csv("Middle_whorl.csv")
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a6[,1]<-"M"

a6[,2]<-"W"

colnames(a6)[1]<- "FingerType"

colnames(a6)[2]<- "PatternType"

a7<-read.csv("Ring_arch.csv")

a7[,1]<-"R"

a7[,2]<-"A"

colnames(a7)[1]<- "FingerType"

colnames(a7)[2]<- "PatternType"

a8<-read.csv("Ring_Ulnar_loop.csv")

a8[,1]<-"R"

a8[,2]<-"L"

colnames(a8)[1]<- "FingerType"

colnames(a8)[2]<- "PatternType"

a9<-read.csv("Ring_whorl.csv")

a9[,1]<-"R"

a9[,2]<-"W"

colnames(a9)[1]<- "FingerType"

colnames(a9)[2]<- "PatternType"

a10<-read.csv("Thumb_arch.csv")

a10[,1]<-"T"

a10[,2]<-"A"

colnames(a10)[1]<- "FingerType"

colnames(a10)[2]<- "PatternType"

a11<-read.csv("Thumb_Ulnar_loop.csv")

a11[,1]<-"T"

a11[,2]<-"L"

colnames(a11)[1]<- "FingerType"

colnames(a11)[2]<- "PatternType"
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a12<-read.csv("Thumb_whorl.csv")

a12[,1]<-"T"

a12[,2]<-"W"

colnames(a12)[1]<- "FingerType"

colnames(a12)[2]<- "PatternType"

### Step 3: Join the 12 datasets together ###

dbp<-smartbind(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12, fill=0)

### Step 4: Randomly select 1 fingerprint to use to simulate the fingermark

###

z1<-seq(22,ncol(dbp)-4,by=5)

mnum<-sample(1:nrow(dbp), 1)

x<-as.numeric(dbp[mnum,z1+1])

y<-as.numeric(dbp[mnum,z1+2])

t<-as.numeric(dbp[mnum,z1+4])

b<-x[(x>0)|(y>0)]

d<-y[(x>0)|(y>0)]

e<-t[(x>0)|(y>0)]

mintype<-as.factor(e)

xdf<-data.frame(b,d)

qxdf<-as.matrix(dist(xdf))

### Step 5: Simulation of fingermark with 10 minutiae and sigma = 4 ###

mpoint<-sample(1:nrow(xdf), 1)

sortnn<-sort(qxdf[mpoint,])

nnset<-sample(sortnn[2:10],9, replace=FALSE)

ss<-rbind(xdf[mpoint,], xdf[which(qxdf[mpoint,]==nnset[1]),],

xdf[which(qxdf[mpoint,]==nnset[2]),], xdf[which(qxdf[mpoint,]==nnset[3]),],

xdf[which(qxdf[mpoint,]==nnset[4]),], xdf[which(qxdf[mpoint,]==nnset[5]),],
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xdf[which(qxdf[mpoint,]==nnset[6]),], xdf[which(qxdf[mpoint,]==nnset[7]),],

xdf[which(qxdf[mpoint,]==nnset[8]),], xdf[which(qxdf[mpoint,]==nnset[9]),])

mins<-rbind(mpoint, which(qxdf[mpoint,]==nnset[1]),

which(qxdf[mpoint,]==nnset[2]), which(qxdf[mpoint,]==nnset[3]),

which(qxdf[mpoint,]==nnset[4]), which(qxdf[mpoint,]==nnset[5]),

which(qxdf[mpoint,]==nnset[6]), which(qxdf[mpoint,]==nnset[7]),

which(qxdf[mpoint,]==nnset[8]), which(qxdf[mpoint,]==nnset[9]))

tmarkmin<-mintype[mins]

jittermintype<-0

protyperetained<-rbinom(length(tmarkmin),1,0.9)

for (i in 1:length(tmarkmin)){

if (protyperetained[i]==1) jittermintype[i] = tmarkmin[i] else if

(tmarkmin[i]==1) jittermintype[i]=2 else jittermintype[i]=1

}

jitmark<-ss+ rnorm(2*nrow(ss), 0, 4 )

mark<-data.frame(jitmark)

q2<-as.matrix(dist(mark))

### Step 6: Sample 100 fingerprints from the rest of the fingerprints ###

### with the probability of picking each pattern type set using prior ###

### knowledge ###

probmark=c(rep(0.1,nrow(a1)),rep(0.6,nrow(a2)),rep(0.3,nrow(a3)),

rep(0.1,nrow(a4)),rep(0.6,nrow(a5)),rep(0.3,nrow(a6)),

rep(0.1,nrow(a7)),rep(0.6,nrow(a8)),rep(0.3,nrow(a9)),

rep(0.1,nrow(a10)),rep(0.6,nrow(a11)),rep(0.3,nrow(a12)))

probmark[mnum]=0

pnum<-sample(1:nrow(dbp), 100, replace = FALSE, prob=probmark)

### Step 7: Set up empty matrices used during the method ###
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newtransss<-matrix(0,1,0)

newtransall<-matrix(0,nrow(mark), 0)

empty20<-matrix(0, 1, 0)

empty21<-matrix(0, nrow(mark), 0)

pmt<-matrix(0, 1, 0)

pmt2<-matrix(0, nrow(mark), 0)

### Step 8: Matching algoirthm repeated separately to find the best ###

### match in all 100 fingerprints selected ###

for (p in 1:100){

### Step 9: Set up the data frame from the fingerprint information ###

z1<-seq(22,ncol(dbp)-4,by=5)

x1<-as.numeric(dbp[pnum[p],z1+1])

y1<-as.numeric(dbp[pnum[p],z1+2])

t1<-as.numeric(dbp[pnum[p],z1+4])

b1<-x1[(x1>0)|(y1>0)]

d1<-y1[(x1>0)|(y1>0)]

e1<-t1[(x1>0)|(y1>0)]

minuttype<-as.factor(e1)

xdf1<-data.frame(b1,d1)

### Step 10: Randomly select 3 minutiae to form a triangle and find a ###

### candidate set of similar triangles in the fingerprint ###

q1<- as.matrix(dist(xdf1))

nn1<-q2[1,2]

indnn1<-which(q2[1,] == nn1, arr.ind=T )

candset<-which( q1 < nn1+10 & q1> nn1-10, arr.ind=T )

nn2<-q2[1,3]
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indnn2<-which(q2[1,] == nn2, arr.ind=T )

As<-candset[,1]

w1<-which(q1[,As]<nn2+10 & q1[,As]>nn2-10,arr.ind=T)

candset2<-cbind(As[w1[,2]], w1[,1])

BC<- q2[indnn1, indnn2]

Bs<-candset[,2]

w2<-which(q1[,Bs]<BC+10 & q1[,Bs]>BC-10,arr.ind=T)

candset3<-cbind(Bs[w2[,2]], w2[,1])

M=outer(candset[,2], candset3[,1], "==")

I<-row(M)[M]

J<-col(M)[M]

AB<-candset[I,]

C<-candset3[J,2]

empty<- cbind(AB,C)

newemp<-empty[,c(1,3)]

colab<-apply(newemp,1, paste, collapse="")

colcd<-apply(candset2,1, paste, collapse="")

newset<-unique(empty[which(colab%in% colcd),])

### Step 11: Find the transformation of the triangle in the mark to ###

### each individual triangle in the candidate set and apply this ###

### transofrmation to the whole fingermark ###

empty5<-matrix(0,0,1)

for (q in 1:nrow(newset)){

ABC<-array(c(mark[1,1], mark[indnn1,1],mark[indnn2,1],mark[1,2],

mark[indnn1,2],mark[indnn2,2]), c(3,2,1))

orig<-array(c(xdf1[newset[q,1],1], xdf1[newset[q,2],1],

xdf1[newset[q,3],1],xdf1[newset[q,1],2], xdf1[newset[q,2],2],

xdf1[newset[q,3],2]), c(3,2,1))

abcprint<-t(t((((t(t(mark)+transformations(orig, ABC)$translation[,1]))

*transformations(orig, ABC)$scale[1])%*%transformations(orig, ABC)

$rotation[,,1]))+ colMeans(orig[,,1]))

for (r in 1:nrow(mark)){
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empty5<-rbind(empty5, abcprint[r,1])

}

for (k in 1:nrow(mark)){

empty5<-rbind(empty5, abcprint[k,2])

}

}

transmark<-array(empty5 , c(nrow(mark),2,nrow(newset)))

### Step 12: For each transformed mark (for each case in the candidate ###

### set) run the Hungarian Algorithm to find the unique allocation of ###

### minutiae in the mark to minutiae in the print ###

distance<-0

empty11<-matrix(0,nrow(mark),0)

for(s in 1:nrow(newset)){

testmark<-transmark[,,s]

empty10<-outer(testmark[,1], xdf1[,1],"-")^2 + outer(testmark[,2],

xdf1[,2],"-")^2

solution<-solve_LSAP(empty10)

empty11<- cbind(empty11, solution)

}

### Step 13: Calculate the sum of squared distance between the fingermark ###

### and fingerprint based on this unique allocation for every case in ###

### the candidate set ###

di<-0

empty13<-matrix(0,nrow(mark),0)

for (v in 1:ncol(empty11)){

testmark<-transmark[,,v]

for(w in 1:nrow(testmark)){

di[w]<-(testmark[w,1]-xdf1[empty11[w,v],1])^2+(testmark[w,2]-

xdf1[empty11[w,v],2])^2

}
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empty13<-cbind(empty13, di)

}

sumempty13<-colSums(empty13)

### Step 14: Select the member of the candidate set with the lowest ###

### sum of squared distance since this represents the best match for ###

### that fingerprint - repeat for other 99 fingerprints ###

empty20<- cbind(empty20, min(colSums(empty13)))

empty21<- cbind(empty21, empty11[,which.min(colSums(empty13))])

}

### Step 15: Repeat the above process for the fingerprint that the ###

### fingermark was simulated from ###

z1<-seq(22,ncol(dbp)-4,by=5)

x1<-as.numeric(dbp[mnum,z1+1])

y1<-as.numeric(dbp[mnum,z1+2])

t1<-as.numeric(dbp[mnum,z1+4])

b1<-x1[(x1>0)|(y1>0)]

d1<-y1[(x1>0)|(y1>0)]

e1<-t1[(x1>0)|(y1>0)]

minuttype<-as.factor(e1)

xdf1<-data.frame(b1,d1)

q1<- as.matrix(dist(xdf1))

nn1<-q2[1,2]

indnn1<-which(q2[1,] == nn1, arr.ind=T )

candset<-which( q1 < nn1+10 & q1> nn1-10, arr.ind=T )

nn2<-q2[1,3]

indnn2<-which(q2[1,] == nn2, arr.ind=T )

As<-candset[,1]

w1<-which(q1[,As]<nn2+10 & q1[,As]>nn2-10,arr.ind=T)

candset2<-cbind(As[w1[,2]], w1[,1])

BC<- q2[indnn1, indnn2]
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Bs<-candset[,2]

w2<-which(q1[,Bs]<BC+10 & q1[,Bs]>BC-10,arr.ind=T)

candset3<-cbind(Bs[w2[,2]], w2[,1])

M=outer(candset[,2], candset3[,1], "==")

I<-row(M)[M]

J<-col(M)[M]

AB<-candset[I,]

C<-candset3[J,2]

empty<- cbind(AB,C)

newemp<-empty[,c(1,3)]

colab<-apply(newemp,1, paste, collapse="")

colcd<-apply(candset2,1, paste, collapse="")

newset<-unique(empty[which(colab%in% colcd),])

empty5<-matrix(0,0,1)

system.time(for (q in 1:nrow(newset)){

ABC<-array(c(mark[1,1], mark[indnn1,1],mark[indnn2,1],mark[1,2],

mark[indnn1,2],mark[indnn2,2]), c(3,2,1))

orig<-array(c(xdf1[newset[q,1],1], xdf1[newset[q,2],1],

xdf1[newset[q,3],1],xdf1[newset[q,1],2], xdf1[newset[q,2],2],

xdf1[newset[q,3],2]), c(3,2,1))

abcprint<-t(t((((t(t(mark)+transformations(orig, ABC)

$translation[,1]))*transformations(orig, ABC)$scale[1])%*%

transformations(orig, ABC)$rotation[,,1]))+ colMeans(orig[,,1]))

for (r in 1:nrow(mark)){

empty5<-rbind(empty5, abcprint[r,1])

}

for (k in 1:nrow(mark)){

empty5<-rbind(empty5, abcprint[k,2])

}

})

transmark<-array(empty5 , c(nrow(mark),2,nrow(newset)))

distance<-0
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empty11<-matrix(0,nrow(mark),0)

system.time(for(s in 1:nrow(newset)){

testmark<-transmark[,,s]

empty10<-outer(testmark[,1], xdf1[,1],"-")^2 + outer(testmark[,2],

xdf1[,2],"-")^2

solution<-solve_LSAP(empty10)

empty11<- cbind(empty11, solution)

})

di<-0

empty13<-matrix(0,nrow(mark),0)

system.time(for (v in 1:ncol(empty11)){

testmark<-transmark[,,v]

for(w in 1:nrow(testmark)){

di[w]<-(testmark[w,1]-xdf1[empty11[w,v],1])^2+(testmark[w,2]-

xdf1[empty11[w,v],2])^2

}

empty13<-cbind(empty13, di)

})

empty20<- cbind(empty20, min(colSums(empty13)))

empty21<- cbind(empty21, empty11[,which.min(colSums(empty13))])

### Step 16: Calculate the likelihood ratio that the fingermark came ###

### from the original fingerprint compared to the other 100 ###

m<- nrow(ss)

n<- 2*m

alpha<-0.1

beta<-0.1

A<- alpha + n/2

Phpy<- (beta + (empty20[101])/2)^-A

Phdy<- sum((beta + (empty20[-101])/2)^-A)
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LR<- Phpy / Phdy



Appendix B

R code - Additional Optimisation

Steps

### Step 1: Find the transformation from the whole fingermark to its ###

### unique allocation in the fingerprint and apply this to the whole ###

### mark. Calculate the squared distance for each point in the ###

### transformed mark to the corresponding point in the print ###

indivssoptim<-matrix(0,nrow(mark),0)

for (ij in 1:ncol(empty11)){

allocation<-empty11[,ij]

bestmatch<-array(transmark[,,ij], c(nrow(mark),2,1))

bestmatchmat<-matrix(bestmatch, ncol=2)

trueloc<-array(c(xdf1[allocation,1], xdf1[allocation,2]), c(nrow(mark),2,1))

secondtrans<-t(t((((t(t(bestmatchmat)+transformations(trueloc, bestmatch)

$translation[,1]))*transformations(trueloc, bestmatch)$scale[1])%*%

transformations(trueloc, bestmatch)$rotation[,,1]))+ colMeans(trueloc[,,1]))

newtransssind<-(secondtrans[,1]-xdf1[allocation,1])^2+(secondtrans[,2]

-xdf1[allocation,2])^2

indivssoptim<-cbind(indivssoptim, newtransssind)

}
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### Step 2: Calculate the sum of squared distance for each case in the ###

### candidate set and select the lowest sum of squared distance ###

### between the transformed fingermark and the fingerprint ###

sumindivssoptim<-colSums(indivssoptim)

newtransss<-cbind(newtransss, min(colSums(indivssoptim)))

newtransall<-cbind(newtransall, empty11[,which.min(colSums(indivssoptim))])

### Step 3: Calculate the likelihood ratio that the fingermark came ###

### from the original fingerprint compared to the other 100 ###

NewPhpy<- (beta + (newtransss[101])/2)^-A

NewPhdy<- sum((beta + (newtransss[-101])/2)^-A)

NewLR<- NewPhpy / NewPhdy



Appendix C

R code - Extension to Minutia

Type Steps

### Step 1: Calculate the number of times the n minutiae in the ###

### fingermark have the same type as the corresponding ###

### minutiae in the fingerprint (for every case in the candidate ###

### set). Create a multiplicative factor based on this, here the ###

### penalty for none matching type is set to 1.2 ###

newfact<-0

for (xyz in 1:ncol(empty11)){

allocationmin<-empty11[,xyz]

alloctype<-minuttype[allocationmin]

yes<- sum(jittermintype==alloctype)

no<- nrow(q2)-yes

multfactor<-1^yes*1.2^no

newfact<-cbind(newfact, multfactor)

}

newfact<-newfact[-1]

### Step 2: Multiply the sum of squared distance for each case in the ###
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### candidate set by the corresponding penalty factor. Select the ###

### lowest sum of squared distance between the transformed ###

### fingermark and the fingerprint ###

postmintype<-sumindivssoptim*newfact

pmt<- cbind(pmt, min(postmintype))

pmt2<- cbind(pmt2, empty11[,which.min(postmintype)])

### Step 3: Calculate the likelihood ratio that the fingermark came ###

### from the original fingerprint compared to the other 100 ###

TypePhpy<- (beta + (pmt[101])/2)^-A

TypePhdy<- sum((beta + (pmt[-101])/2)^-A)

TypeLR<- TypePhpy / TypePhdy


