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Abstract 

 

Introduction: The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2) 

transduces physical forces of blood flow into molecular signals responsible for a wide 

range of biological responses. KLF2 maintains a healthy, quiescent endothelial 

phenotype. I studied the expression and function of the zebrafish KLF2 ortholog klf2a in 

vascular biology.  

Materials and Methods: Expression patterns of genes were observed using Whole-

mount in situ hybridisation (WISH) technique. Relative expressions of genes were 

investigated using reverse transcription quantitative polymerase chain reaction (RT-

qPCR). Particle imaging velocimetry (PIV) method was used to measure blood flow 

velocities. Blood flow in zebrafish embryos was manipulated genetically and 

pharmacologically. Transcription Activator-Like Effector Nucleases (TALEN) were used 

to generate a stable klf2a mutant line. Western blot, mass spectrometry and 

immunoprecipitation techniques were used in Klf2a protein studies. klf2a mutant lines 

were crossed with several transgenic reporter lines to study the role of klf2a in vascular 

development and transcription.  

Results: I reproduced and extended previous studies of spatial and temporal klf2a 

expression patterns by showing strong vascular klf2a expression at 3dpf and by 

detecting klf2a mRNA in subintestinal veins, the hepatic vein and neuromasts. I 

confirmed that this expression is dependent on blood flow. Morpholino-mediated klf2a 

knockdown had no effect on cardiac output but induced upregulation of both cxcr4a 

and dll4 in embryonic zebrafish vasculature, although without detectable effects on 

vascular Notch signalling. 

I generated a stable klf2a mutant line using TALEN mutagenesis. klf2a mutants are 

viable to adulthood and fertile and display a subtle phenotype with faster heart rate and 

slower aortic blood flow velocity at 3dpf when compared to controls. However, klf2a 

mutation did not reproduce published morphant phenotypes nor did it affect cxcr4a or 

dll4 expression. The explanation for the differences between the observed klf2a 

morphant and mutant phenotypes remains unclear. 
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1.1 Endothelial cells and shear stress 

The endothelium is critically important for maintaining vascular homeostasis and plays 

an important role in processes such as regulation of vascular tone, inflammation, 

thrombosis, vasculogenesis/angiogenesis and atherosclerosis (Folkman and 

Haudenschild 1980; Gimbrone 1999; Ross 1999). Endothelium forms the interface 

between circulating blood and the inner layers of the vessel wall and surrounding 

tissue. Due to this location and function, endothelial phenotype can be affected by both 

biomechanical or biochemical factors such as blood flow, (Topper and Gimbrone 1999) 

endogenous factors such as cytokines or acetyloline (Busse, Trogisch et al. 1985; 

Schleef, Bevilacqua et al. 1988) or pharmacological agents (Parmar, Nambudiri et al. 

2005). 

Blood flow generates physical forces that act on the vessel wall. These have two major 

components. Shear stress is a frictional force exerted on the vessel wall with its vector 

parallel to the direction of flow whereas tensile stress represents a dilating force on the 

vessel wall with its vector perpendicular to the direction of flow (White and Frangos 

2007). 

It has been shown that it is not only the absolute magnitude of the shear stress but 

also, and more importantly, the flow pattern resulting in different shear stress wave 

forms that is important for the actual effects of shear stress on endothelial phenotype 

(Parmar, Larman et al. 2006). Atherosclerotic lesions occur in a non-random pattern 

and their distribution correlates with distinct types of shear stress waveforms. Arterial 

branch points and areas of major curvatures are associated with turbulent oscillatory 

flow patterns and significantly higher rates of atherosclerotic lesions when compared to 

sites exposed to pulsatile blood flow with laminar shear stress pattern (Gimbrone 1999; 

Parmar, Larman et al. 2006).  
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1.2 The KLF family of transcription factors 

Krϋppel-like factors (KLFs) are zinc finger transcription factors which were identified by 

their homology to the Drosophila melanogaster protein Krϋppel (Miller and Bieker 

1993). The mammalian KLF family comprises 17 members so far (van Vliet, Crofts et 

al. 2006). Each has 3 tandem C2H2 (cysteine-histidine type) zinc fingers  in  the C 

terminus of the protein with a consensus amino acid sequence F/Y-X-C-X2-4-C-X3-F-X5-

L-X2-H-X-R/K-X-H (X represents any amino acid, underscored C and H bind zinc 

atoms) connected by a characteristic linker T/S-G-E-R/K-P within the deoxyribonucleic 

acid (DNA) binding domain. These sequences are highly conserved in the KLF gene 

family (Ruppert, Kinzler et al. 1988; Oates, Pratt et al. 2001). In contrast to this 

similarity in their DNA-binding domains, the non-DNA-binding N-termini have some 

common conserved motifs that act as transactivation or repression domains, but exhibit 

much less similarity in their primary structure (Anderson, Kern et al. 1995; Oates, Pratt 

et al. 2001). KLFs act as transcriptional activators and repressors and are expressed in 

various types of tissues (Turner and Crossley 1999). Their zinc-finger motifs are able to 

bind to CG-rich sites of general structure CCN CNC CCN, such as CACCC-boxes in 

various promoters and enhancers (Klevit 1991; Miller and Bieker 1993).  

1.2.1 KLF2 

The majority of previous experimental work on KLF2 in relation to vascular biology has 

been performed in human and mouse with some work recently done on zebrafish 

animal model. KLF2 genomic structure and expression patterns in these species will be 

therefore briefly detailed. 

KLF2 was firstly characterised in 1995 through its homology with EKLF/KLF1 in mice 

(Anderson, Kern et al. 1995), followed by its characterisation in humans in 1999 (Wani, 
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Conkright et al. 1999) and zebrafish in 2001 (Oates, Pratt et al. 2001). Due to its high 

expression in murine lung it was originally termed lung Krϋppel-like factor (LKLF). The 

murine and human KLF2 proteins are >90% identical in primary structure (Wani, 

Conkright et al. 1999). Zebrafish have two KLF2 paralogs, klf2a and klf2b reflecting the 

partial genome duplication of the zebrafish genome after divergence of the teleost 

lineage during evolution (Taylor, Braasch et al. 2003). Zebrafish klf2a and klf2b are 

structurally related but exhibit different expression patterns and were reported to have 

different functions in developing zebrafish (Oates, Pratt et al. 2001). Zebrafish klf2a is 

considered to be the ortholog of human and murine KLF2 and like these, its expression 

in the zebrafish vasculature is blood-flow dependent (Oates, Pratt et al. 2001).  

In addition to the zinc finger containing DNA binding domain (AA 268-354) described in 

Section 1.2, work on murine Klf2 constructs localised a transcriptional activation 

domain between amino acids (AA) 1-110 and an inhibitory domain between AA 111-

267. This inhibitory domain directly interacts with the E3 ubiquitin ligase WWP1 which 

mediates ubiquitination and proteasomal degradation of KLF2 (Conkright, Wani et al. 

2001; Zhang, Srinivasan et al. 2004).  

1.2.1.1 KLF2 expression in human and mouse  

Northern blot analysis of adult human tissues detected KLF2 messenger ribonucleic 

acid (mRNA) in heart, lungs, skeletal muscle, pancreas and placenta (but not brain, 

liver or kidney), however, vascular tissues were not examined (Wani, Conkright et al. 

1999). Human and murine KLF2 expression patterns are generally similar (Wani, 

Conkright et al. 1999). Further experiments confirmed KLF2 expression in myeloid 

(Das, Kumar et al. 2006) and lymphoid cells (Riley, Mao et al. 2002). ISH performed on 

human vascular tissues from donors of various age (13 months to 76 years) and from 

different anatomical sites show that KLF2 is expressed in all sections of vasculature 

tested, but the signal strength differs with the predicted patterns of flow and levels of 
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shear stress at these sites; decreased KLF2 expression is seen at aortic bifurcations 

(Dekker, van Thienen et al. 2005). These sites are generally exposed to lower shear 

stress levels and disturbed flow patterns with atheroprone waveforms. KLF2 

expression levels negatively correlate with the presence of neointima in human iliac 

vessels (Dekker, van Thienen et al. 2005).  Within the vessel wall, KLF2 is selectively 

expressed in endothelium (Dekker, van Soest et al. 2002; Dekker, van Thienen et al. 

2005; Parmar, Larman et al. 2006). Later work showed that KLF2 is not only expressed 

in endothelium of large and medium-sized vessels but also in the hepatic, duodenal 

and glomerular microvasculature (Gracia-Sancho, Russo et al. 2011; Kobus, 

Kopycinska et al. 2012; Slater, Ramnath et al. 2012). 

Northern blot analysis of adult murine tissues shows highest Klf2 expression in lungs, 

with some expression detected in the heart, spleen, thymus, skeletal muscle, white and 

brown adipose tissue and testes (Anderson, Kern et al. 1995; Kuo, Veselits et al. 1997; 

Banerjee, Feinberg et al. 2003).  The site and level of Klf2 expression in murine 

embryonic endothelial cells corresponds to the predicted pattern of shear forces in the 

developing vasculature and remains shear stress dependent in adult murine 

endothelium (Dekker, van Thienen et al. 2005; Lee, Yu et al. 2006). Klf2 expression is 

detectable in endothelial cells from embryonic day 8.5 (E8.5). With onset of pulsatile 

blood flow between E8.5 and E10.5, Klf2 expression rises sharply in endothelial and 

endocardial cells – in a pattern corresponding to elevated shear. Klf2 expression 

becomes detectable only on the flow sides of the developing heart valves at E14.5, by 

E18.5 also in the endocardium lining the intraventricular papillary muscles (Lee, Yu et 

al. 2006). 

1.2.1.2 klf2a expression in zebrafish and comparison with klf2b 

klf2a is located on chromosome 22, has 3 exons and 2 small introns, transcript length 

of 2180bp, and codes for a 380 AA protein. Zebrafish klf2a and human KLF2 have 49% 
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protein identity. The level of identity is much higher in the region of 3 tandem zinc 

fingers - 78% for nucleotide identity and 90% for the primary protein structure. At 

sphere to 30% epiboly stage, klf2a can be detected in the extraembryonic enveloping 

layer. At 70% epiboly klf2a becomes expressed in the ventral, animal portion of the 

epiblast. Expression of klf2a at these very early stages is under control of the 

transcription factor Pou5f1/Oct1 (Oates, Pratt et al. 2001; Kotkamp, Mossner et al. 

2014). In later stages of epiboly klf2a expression extends vegetally. At 24 hours post 

fertilisation (hpf) klf2a expression is detectable in the anus, in small clusters of 

superficial cells lateral to the most posterior notochord, in the cells closely associated 

with the axial vessels (pronephric ducts), in head vessels and in the heart. This 

expression persists until 48hpf, when a faint signal is also detected in the distal margin 

of the caudal fin (the tail) and in the mesenchymal interior of the pectoral fin buds 

(Oates, Pratt et al. 2001; Wang, Zhang et al. 2011). Embryonic heart expression of 

klf2a becomes restricted to the AV canal in later stages (48-58hpf) (Vermot, Forouhar 

et al. 2009). 

klf2a expression in embryonic zebrafish vasculature is, like human and mouse KLF2,  

blood flow dependent. Vascular expression of klf2a can be detected in trunk 

vasculature from around 36hpf and is still present at 48hpf – the embryonic zebrafish 

heart begins to contract at 24-26hpf (Kimmel, Ballard et al. 1995). Whilst endothelial 

klf2a is clearly detectable in wild type (WT) embryos, it is lost in embryos with impaired 

blood flow, such as troponin t2 morphant (tnnt2) zebrafish which have a non-contractile 

heart or in embryos where flow was impaired pharmacologically with the local 

anaesthetic Tricaine or with the myosin ATPase inhibitor 2,3-butanedione 2-monoxime 

(BDM) (Stainier, Fouquet et al. 1996; Sehnert, Huq et al. 2002; Parmar, Larman et al. 

2006; Wang, Zhang et al. 2011). 
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klf2b is located on chromosome 18, has 3 exons, transcript length of 3626bp and 

codes for a 363 AA protein. A high degree of similarity exists between klf2b and klf2a 

(61% identity in both nucleotide sequences and in primary protein structure) and klf2b 

expression patterns partially overlap with klf2a during very early developmental stages. 

Later expression patterns become more distinct. Generally, klf2b has been far less 

studied than klf2a. klf2b can be detected in the ventral, animal portion of the epiblast 

from 30% epiboly and this expression becomes stronger in time. At 70% epiboly klf2b 

expression in ventral ectoderm is much stronger than klf2a. At the end of epiboly, klf2b 

expression diminishes in the animal-most one third and increases in a lateral band 

around the embryo. Similarly to klf2a, klf2b expression at these stages is under control 

of Pou5f1/Oct1 (Oates, Pratt et al. 2001; Kotkamp, Mossner et al. 2014). From 24hpf 

klf2b is expressed in large squamous epidermal cells but this expression decreases 

significantly by 36hpf. At this stage klf2b mRNA can be detected in 2 cords of 

superficial cells anteriorly and ventrally to pectoral fin buds. At 48hpf klf2b is expressed 

in the mesenchymal interior of the fin bud and in the cleithrum. Later on klf2b 

expression decreases in the proximal portion of the fin bud, but persists in the distal 

portion of the mesenchymal part of the fin to 5 days post fertilisation (dpf) (Oates, Pratt 

et al. 2001; Thisse 2001). klf2b expression in the pectoral fin bud, but not in cleithrum is 

under control  of transcription factor sox9 (Yokoi, Yan et al. 2009). Cardiac or vascular 

expression of klf2b has not been reported at any developmental stage.  

Little is known about klf2b function apart from its role (together with klf2a and klf4b) in 

differentiation of the extraembryonic enveloping layer and ectoderm in early zebrafish 

developmental stages (Kotkamp, Mossner et al. 2014). 
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1.3 Mechanotransduction and KLF2 expression 

The term mechanotransduction refers to multiple mechanisms by which cells convert 

mechanical forces applied at the cell surface into alteration of gene expression and 

subsequent changes in cellular signalling (Mammoto, Mammoto et al. 2012). 

Mechanotransduction is not yet fully understood but comprises multiple components 

localised in cellular membranes or in the cytosol to activate several cell signalling 

cascades that each interact. The final cellular response is based on the character of 

the mechanical stimulus. Mechanical forces acting on the apical surface of an 

endothelial cell are transmitted through 3D-changes of microtubular cytoskleleton to 

cell-cell and cell-matrix junctions consisting of multiple protein complexes that 

transduce signals from mechanical forces further into the cell (Davies 1997). One such 

complex consisting of platelet endothelial cell adhesion molecule (PECAM), vascular 

endothelial cell cadherin (VE-cadherin) and  vascular endothelial growth factor 2 

receptor (VEGFR2) leads subsequently to conformational activation of integrins that 

mediate the alignment of endothelial cells under  laminar flow conditions but also 

activation of the proinflammatory NF-κB pathway (Tzima, del Pozo et al. 2001; Tzima, 

Del Pozo et al. 2002; Tzima, Irani-Tehrani et al. 2005). 

Primary cilia are likely to play an accessory and signal-amplifying role in endothelial 

mechanotransduction. Primary non-motile cilia are present in ECs only exposed to low 

and disturbed flow patterns; ECs exposed to laminar flow shed primary cilia within 

several hours (Iomini, Tejada et al. 2004). Primary cilia increase EC response to 

laminar shear stress measured by induction of KLF2 which is significantly higher in 

ciliated ECs versus non-ciliated ECs (Hierck, Van der Heiden et al. 2008). Consistent 

with the central role of cytoskeleton in mechanotransduction, ECs chemically depleted 

of microtubules (Colchicine) or ECs where the microtubular network is stabilized 

(Taxol/Paclitaxel) show decreased or increased KLF2 induction by shear stress 
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(Hierck, Van der Heiden et al. 2008). Ultrastructurally, two ciliary proteins 

POLYCYSTIN-1 and POLARIS are necessary for correct shear sensing by primary cilia 

in ECs, resulting in changes of intracellular calcium and nitric oxide (NO) levels within 

the range of several seconds (Nauli, Kawanabe et al. 2008).    

Other cellular components that could serve as direct shear stress sensors include the 

glycocalyx, adhesion molecules such as integrins, cell membrane proteins (receptor 

tyrosine kinases such as VEGRF2 or G protein coupled receptors), caveolae and ion 

channels. All these ‘primary’ sensors are able to transduce the signal further either 

biochemically through cytoplasm or through the cytoskeleton (Tarbell, Weinbaum et al. 

2005; Ando and Yamamoto 2009). Immediate further steps include phosphorylation of 

various proteins that activate secondary signalling pathways (Davies 2009). Of 

particular interest in view of KLF2 are the mitogen activated protein kinases (MAPKs) 

that comprise 4 signalling routes: extracellular signal-regulated kinase (ERK)1/2, 

ERK5, Jun NH2-terminal kinase (JNK) and p38. MAPKs play essential roles in 

regulating multiple cellular processes and are responsible for transducing extracellular 

signals into the cells (Roberts, Holmes et al. 2009). The ERK5 signalling pathway plays 

a role in flow-mediated induction of KLF2 in endothelium as detailed later. 

Finally, a recent theory sees endothelial mechanotransduction as a two-step process: 

the first, immediate step includes ciliary bending with subsequent intracellular calcium 

increase and release of NO, endothelin and other vasoactive substances. In the later, 

prolonged response cytoskeletal deformations lead to changes in gene expression 

levels such as KLF2 which then orchestrate endothelial adaptation to mechanical force 

(Poelmann, Van der Heiden et al. 2008).  

At the time that KLF2 was found to be regulated by flow it was the first endothelial 

transcription factor reported to have this characteristic (Dekker, van Soest et al. 2002). 

In human umbilical vein endothelial cells (HUVECs) exposed to 24 hours of laminar 
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flow (25 dyne/cm2) KLF2 was one of 12 genes (from 18 000) identified to have at least 

5-fold increased expression compared to static culture. Following this, HUVECs were 

exposed to unidirectional pulsatile flow (19 ±12 dyne/cm2) for another 7 days and only 

3 of these 12 genes sustained at least 5-fold increased expression, including KLF2 (the 

remaing two being cytochrome P450 1B1 and diaphorase 4). The fact that pulsatile 

flow resulted in an additional 3-fold increase in KLF2 expression indicates that not only 

the absolute size of shear stress but also the flow pattern determines KLF2 expression 

(Dekker, van Soest et al. 2002). Further experiments confirmed that regulation of KLF2 

depends on the pattern of flow. HUVECs exposed to 24 hours of pulsatile shear with 

large net forward direction (12±4 dyne/cm2) exhibit a significant increase in KLF2 

expression. HUVECs exposed to oscillatory, atheroprone flow (1Hz 0.5±4 dyne/cm2) 

with low shear stress magnitude and little net forward direction show only a transient 

increase, followed by a continuous suppression of KLF2 expression (Wang, Miao et al. 

2006). 

These in vitro findings have been confirmed by in vivo experiments in several species. 

KLF2 levels in human adult vasculature correspond to local shear stress patterns as 

mentioned above. Similar findings are reported in mice implanted with carotid artery 

collars (Dekker, van Thienen et al. 2005) and in zebrafish embryos where preventing or 

stopping blood flow causes significant klf2a downregulation (Parmar, Larman et al. 

2006). Klf2 is highly expressed in rat aorta and on the medial aspect of the coeliac 

artery (areas exposed to high levels of laminar shear stress), but is low on the lateral 

aspect of coeliac artery at the branching point with aorta with atheroprone flow patterns 

(Wang, Miao et al. 2006). Taken together these findings confirm blood flow dependent 

regulation of KLF2 in all models and species examined. 
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1.4 Flow dependent regulation of KLF2 expression  

Figure 1.1 summarises the mechanisms of regulation of KLF2 transcription. The critical 

region required for shear stress induced expression of KLF2 lies -157 to -95bp 

upstream from the transcription start site and is highly conserved across species 

(Huddleson, Srinivasan et al. 2004). This region contains a single consensus myocyte 

enhancer factor 2 (MEF2) binding site (Kumar, Lin et al. 2005). MEF2 binding to this 

site is not significantly affected by exposure to flow. MEF2 transactivation through its 

phosphorylation is however critical for shear stress induced KLF2 upregulation and is 

mediated via its upstream mitogen-activated protein kinase ERK5 (Parmar, Larman et 

al. 2006). ERK5 is in turn specifically upregulated by its activating kinase MEK5 (also 

known as mitogen-activated protein kinase kinase 5) (Parmar, Larman et al. 2006). 

Another factor necessary for activation of the MEK5/ERK5/MEF2 pathway is AMP-

activated protein kinase (AMPK). AMPK lies upstream of MEK5/ERK5/MEF2 and its 

activation is critical for shear stress induced phosphorylation of ERK5 and MEF2 

(Young, Wu et al. 2009).  

Other co-factors involved in shear stress mediated KLF2 regulation include p300/CBP 

associated factor (PCAF), heterogenous nuclear ribonucleoprotein D (hnRNP-D) and 

nucleolin (Huddleson, Ahmad et al. 2005; Huddleson, Ahmad et al. 2006). PCAF and 

hnRNP-D induce KLF2 promoter chromatin remodelling via acetylation of histones H3 

and H4 with resulting promotion of KLF2 expression. PCAF and hnRNP-D act through 

a phosphatidylinositol 3-kinase (PI3K)-dependent, but Akt-independent pathway 

(Huddleson, Ahmad et al. 2005). 

Under static conditions or disturbed flow, histone deacetylase 5 (HDAC5) is bound to 

MEF2 on the KLF2 promoter and inhibits MEF2 transcriptional activity. Sufficiently high 

laminar shear stress (12 dyne/cm2) phosphorylates HDAC5 in a Ca2+/calmodulin 

dependent manner resulting in its dissociation from MEF2, allowing increased flow-
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dependent KLF2 transcription (Wang, Ha et al. 2010). Oscillatory shear stress 

promotes expression of class I HDAC (HDAC1/2/3) and class  II HDAC (HDAC3/5/7) 

and their association with MEF2 via PI3K/Akt pathway thus leading to downregulation 

of KLF2 expression, whereas pulsatile shear stress induces phosphorylation-

dependent class II HDAC (HDAC5/7) nuclear export leading to induction of KLF2 

expression (Lee, Lee et al. 2012).  

Endothelial thioredoxin interacting protein (TXNIP) is downregulated by steady laminar 

flow which leads to upregulation of thioredoxin activity and subsequent inhibition of EC 

inflammatory response to tumour necrosis factor α (TNFα) (Yamawaki, Pan et al. 

2005). Conversely, TXNIP is upregulated by disturbed flow and this promotes 

endothelial-leukocyte adhesion. TXNIP binds to shear responsive region of KLF2 

promoter (-157bp to -78bp) where it forms a part of a transcriptional repressing 

complex and inhibits KLF2 expression (Wang, Nigro et al. 2012).  

MicroRNAs (miRs) are small (18-24bp long) single-stranded non-coding RNAs that 

bind to 3 prime untranslated region (3`UTR) of their target mRNAs and thus regulate 

gene expression at the posttranscriptional level, either via translational inhibition or by 

degradation of mRNAs (Bartel 2004; Bartel 2009; Chekulaeva and Filipowicz 2009). 

miRs play a role in flow-mediated regulation of KLF2 expression as evidenced by the 

fact that knockdown of the critical component of miRs biosynthesis pathway Dicer in 

HUVECs increases KLF2 expression. 3`UTR region of KLF2 contains a miR-92a 

binding site and it was shown that laminar flow downregulates miR-92a and induces 

KLF2 expression, while miR-92a overexpression decreases expression of KLF2 

(Bonauer, Carmona et al. 2009) (Figure 1.1). 
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Figure 1.1 Molecular mechanisms involved in regulation of endothelial KLF2 

expression. 

Schematic diagram showing factors that stimulate (left side of diagram) and suppress 

(right side of diagram) endothelial KLF2 expression. Abbreviations: KLF2: Krüppel-like 

factor 2, MEK5: mitogen-activated protein kinase kinase 5, ERK5: extracellular signal-

regulated kinase 5, MEF2: myocyte inhancer factor 2, AMPK: AMP-activated protein 

kinase, PCAF: p300/CBP associated factor, hnRNP-D: heterogenous nuclear 

ribonucleoprotein D, HMG-CoA : 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 

GGPP: geranylgeranyl pyrophosphate, RhoA: Ras homolog gene family member A, 

TNFα: tumour necrosis factor alpha, IL-1: interleukin-1, oxLDL- oxidised LDL 

lipoprotein, TXNIP: thioredoxin interacting protein, FOXO1: forkhead box protein O1, 

HDAC3/4/5/7: histone deacetylase 3/4/5/7, miR-92a:microRNA-92a. 
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1.5 Non flow-dependent regulation of KLF2  

1.5.1 Factors stimulating KLF2 expression 

Statins are lipid-lowering drugs widely used in clinical practice. It has been suggested 

that their beneficial effects exceed those expected from lipid lowering alone (Bellosta, 

Ferri et al. 2000). Several statins induce KLF2 expression in a dose-dependent manner 

and KLF2 mediates the induction of endothelial NO synthase (eNOS), thrombomodulin 

(TM) and heme-oxygenase-1 (HO-1) by statins (Parmar, Nambudiri et al. 2005; Sen-

Banerjee, Mir et al. 2005). 

Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, 

a crucial enzyme in cholesterol synthesis. As a result of this, cells are depleted of 

mevalonate which is a precursor of isoprenoid intermediates such as farnesyl 

pyrophosphate and geranylgeranyl pyrophosphate (GGPP). Isoprenoids function as 

membrane anchors for various proteins, for example small GTPases from the Rho 

family. One of them, Ras homolog gene family member A (RhoA) undergoes 

posttranslational modification by geranylgeranylation and is then able to inhibit KLF2 

expression (Sen-Banerjee, Mir et al. 2005). Taken together, statins inhibit the 

mevalonate pathway and thus production of functionally active RhoA and the absence 

of RhoA has a positive effect on KLF2 expression (Sen-Banerjee, Mir et al. 2005) 

(Figure 1.1). 

Prolonged shear stress induces KLF2-mediated expression of eNOS and TM more 

than statins because shear stress is able to stabilize KLF2 mRNA via inhibition of PI3K. 

Specific inhibition of PI3K by LY294002 results in higher stability and thus higher levels 

of KLF2 mRNA (van Thienen, Fledderus et al. 2006). This negative role of PI3K-

pathway contradicts the described positive effect of PI3K-pathway on shear-specific 

nuclear binding of several factors that promote KLF2 transcription mentioned 
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elsewhere in this chapter. Shear stress and statins combined have an additive, not 

synergistic effect on KLF2, eNOS and TM expression in human endothelial cells 

(Rossi, Rouleau et al. 2010). 

Statins exert their pleiotropic effects via KLF2 not only in endothelial cells but also in 

macrophages and lymphocytes. Human macrophages treated with simvastatin exhibit 

upregulation of KLF2 expression and downregulation of several proinflammatory 

chemokines such as monocyte chemotactic protein-1 (MCP-1), macrophage 

inflammatory proteins-1a and β, interleukin-2 receptor-β, lymphotoxin β, vascular cell 

adhesion molecule 1 (VCAM-1) and tissue factor (TF) (Tuomisto, Lumivuori et al. 

2008). Human T-cells treated with simvastatin show significantly increased KLF2 

expression with decreased interferon gamma (IFN-γ) secretion and diminished T-cell 

proliferation (Bu, Tarrio et al. 2010). 

Several lines of evidence therefore suggest that some clinical effects of statins occur 

via upregulation of KLF2. Addition of simvastatin to the cold storage solution in which 

explanted healthy or steatotic rat livers are stored maintains Klf2 expression with 

resulting prevention of endothelial dysfunction (Russo, Gracia-Sancho et al. 2012; 

Gracia-Sancho, Garcia-Caldero et al. 2013). Atorvastatin increases Klf2 and decreases 

protease-activated receptor-1 (Par-1) expression in aortae of ApoE -/ - mice in keeping 

with its antiinflammatory effects (Yang, Zhou et al. 2013). 

Resveratrol, a polyphenol produced naturally in some plants and present in red wine 

(Baur and Sinclair 2006) is a potent inducer of KLF2 in HUVECs. This induction is 

mediated via NAD+-dependent deacetylase Sirtuin-1 (SIRT1) which in turn activates 

MEK5 and MEF2 (Gracia-Sancho, Villarreal et al. 2010) (Figure 1.1). 

Recently, the structurally and functionally abnormal tumour vasculature (Hanahan and 

Folkman 1996; Jain 2005; Hamzah, Jugold et al. 2008; Fukumura, Duda et al. 2010) 

was found to lack sympathetic innervation and dopamine regulation (Chakroborty, 

Sarkar et al. 2011). Exogenous administration of dopamine acting through D2 
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receptors can normalize abnormal tumour vessel morphology and leakiness resulting in 

improved blood flow and reduced tumour hypoxia. This effect may be explained by 

dopamine’s ability to upregulate KLF2 expression in tumour ECs and HUVECs through 

upregulation of ERK5 (Figure 1.1). Dopamine also directly upregulates angiopoietin-1 

(Ang-1) expression in tumour endothelial pericytes. This could be of therapeutic 

relevance because administration of DA increases concentration of chemotherapeutic 

agents in tumour tissues (Chakroborty, Sarkar et al. 2011).  

Rapamycin (sirolimus) is one of the drugs commonly eluted from coronary stents to 

reduce the recurrence of the vessel narrowing, the so-called restenosis. The effect of 

rapamycin on the endothelium is complex. Its potentially prothrombotic profile (Luscher, 

Steffel et al. 2007; Muldowney, Stringham et al. 2007; Jin, Ahn et al. 2009) might be 

counteracted by its ability to increase KLF2 expression in HUVECs (Ma, Nie et al. 

2012). The authors of this study postulate that KLF2 might be a downstream target of 

the PI3K/AKT/mTOR pathway. This is based on the fact that rapamycin inhibits the 

PI3K/AKT/mTOR pathway by inhibition of the mammalian target of rapamycin (mTOR) 

(Hay and Sonenberg 2004) and there have been reports showing that specific inhibition 

of PI3K by LY2940002 results in stabilisation of KLF2 mRNA (van Thienen, Fledderus 

et al. 2006). This is however in conflict with studies suggesting that a shear stress 

dependent binding of several co-factors necessary for KLF2 transcription is PI3K-

dependent (Huddleson, Ahmad et al. 2005).  

Even more surprisingly, the same group of researchers who initially suggested positive 

effect of rapamycin on KLF2 expression in HUVECs (Ma, Nie et al. 2012) soon after 

published another work suggesting the opposite effect of rapamycin on murine Klf2 

mRNA and protein expression in vivo. Here, the rapamycin-induced inhibition of Klf2 

expression in mice resulted in a significantly shorter time to FeCl3-induced murine 

carotid artery thrombotic occlusion (Nie, Su et al. 2013).  
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1.6 Factors inhibiting KLF2 expression 

Several inflammatory cytokines potently inhibit KLF2 expression. Exposure of HUVECs 

to interleukin 1β (IL-1β) results in a 4.7-fold decrease in KLF2 expression 

(SenBanerjee, Lin et al. 2004), and KLF2 expression is also reduced by treatment with 

TNFα (Lin, Kumar et al. 2005). TNFα-mediated repression of KLF2 occurs via the NF-

κB pathway, but does not depend on direct NF-κB binding to the KLF2 promoter. The 

p65 subunit of NF-κB cooperates with histone deacetylase 4 (HDAC4) to bind to the 

KLF2 promoter and inhibits MEF2-mediated induction of KLF2 (Kumar, Lin et al. 2005) 

(Figure 1.1). 

Normal and oxidised low-density lipoprotein (LDL and oxLDL) particles potently inhibit 

KLF2 expression in vitro in HUVECs (Li, Wang et al. 2011; Kumar, Kumar et al. 2013) 

(Figure 1.1). LDL particles exert their inhibitory effect on KLF2 expression 

epigenetically via stimulation of DNA methyltransferase1 - induced CpG dinucleotide 

methylation. Methylated CpG islands decrease MEF2 occupancy of the KLF2 promoter 

and promote assembly of a transcriptional repressor complex consisting of methyl-

CpG-binding protein 2 and histone methyltransferase enhancer of zeste homolog 2 

(Kumar, Kumar et al. 2013).  

High glucose levels (35 mmol/L) suppress KLF2 and eNOS expression levels in 

HUVECs and in carotid arteries of diabetic rats (Lee, Youn et al. 2012). This 

suppression of KLF2 is mediated by the forkhead box protein O1 (FOXO1) that directly 

binds to the KLF2 promoter (Figure 1.1). This could represent one possible 

mechanism of endothelial dysfunction in diabetics (Lee, Youn et al. 2012). Atorvastatin 

inhibits the negative effects of FOXO1 on KLF2 and eNOS and restores KLF2 and 

eNOS expression in HUVECs incubated in high glucose. Similar findings were 

observed in vivo in diabetic rats. Mechanistically, atorvastatin deactivates FOXO1 by its 

phosphorylation resulting in its translocalization from nucleus into cytoplasm (Lee, 
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Youn et al. 2013). Interestingly, active FOXO1 completely prevents KLF2 induction by 

atorvastatin (Lee, Youn et al. 2013). 

The adaptor protein p66shc promotes cellular oxidative stress (Migliaccio, Giorgio et al. 

1999) and has pro-apoptotic (Pacini, Pellegrini et al. 2004), pro-atherogenic (Napoli, 

Martin-Padura et al. 2003) and pro-angiogenic (De, Razorenova et al. 2005) effects. 

p66shc downregulates MEF2A expression resulting in downregulation of KLF2 and TM 

mRNA and protein. Conversely, p66shc knockdown increases KLF2 and TM mRNA 

and protein levels and decreases hydrogen peroxide levels in HUVECs (Kumar, 

Hoffman et al. 2009). 

p53 is a tumour suppressor gene which plays a crucial role in regulating the cell cycle, 

DNA repair and apoptosis (Levine 1997). p53 inhibits KLF2 expression in HUVECs 

through recruiting HDAC and binding to its p53 response element in KLF2 promoter 

(Figure 1.1) with resulting H3 histone hypoacetylation and subsequent transcriptional 

repression of KLF2 (Kumar, Kim et al. 2011).  

1.7 Functions of KLF2 

Below I summarise the existing literature on the functions of KLF2 in the vasculature 

(Figure 1.2). Because of the large number of studies and our increasingly complex 

understanding of how KLF2 influences vascular homeostasis I have divided this into 

sections, although as will be apparent, much overlap exists. 

1.7.1 Maintenance of endothelial homeostasis 

KLF2 plays a critical role in flow mediated upregulation of multiple genes in 

endothelium. 15% of all genes known to be upregulated by flow (109 out of 716) are 

KLF2-dependent (Parmar, Larman et al. 2006). Later data suggest that KLF2 together 
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with nuclear factor erythroid2-related factor 2 (Nrf2) control expression of about 70% of 

shear stress-induced endothelial genes (Fledderus, Boon et al. 2008). KLF2 modulates 

expression of genes critical in regulating vascular tone, haemostasis and thrombosis, 

inflammation and regulates endothelial barrier function and its antioxidative capacity 

(Figure 1.2). KLF2 acts as a molecular switch between healthy inactivated and 

activated atheroprone phenotype with direct effects on pathogenesis of atherosclerosis 

(Parmar, Larman et al. 2006; Atkins, Wang et al. 2008). Hemizygous deficient Klf2 +/ - 

mice in ApoE -/ - background exhibit increased diet-induced atherosclerosis (Atkins, 

Wang et al. 2008). Levels of Klf2 expression in vulnerable aortic plaques are 

significantly decreased when compared to the Klf2 levels in stable plaques of ApoE -/ - 

mice (Yang, Zhou et al. 2013). KLF2 has distinct roles in developmental and adult 

vasculogenesis, angiogenesis and heart formation as detailed in separate sections. 
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Figure 1.2 Effects of KLF2 on endothelial homeostasis.  

Laminar and pulsatile blood flow induces KLF2 expression in endothelial cells. KLF2 

regulates expression of important endothelial genes involved in endothelial 

homeostasis. Abbreviations: KLF2: Krüppel-like factor 2, eNOS: endothelial nitric oxide 

synthase, NO: nitric oxide, CNP: C-natriuretic peptide, ET1: endothelin-1, ACE: 

angiotensin-converting enzyme, TM: thrombomodulin, tPA: tissue plasminogen 

activator inhibitor, vWF: von Willebrand factor, PAI-1: plasminogen activator inhibitor 1, 

VCAM: vascular cell adhesion molecule, Il-6 and IL-8: interleukin 6 and 8, MCP: 

monocyte chemotactic protein, CCL5: chemokine (C-C motif) ligand 5, Tgfβ: 

transforming growth factor β, MIRL: membrane inhibitor of reactive lysis, also known as 

CD59, cx37: connexin 37, NQO1: NAD(P)H dehydrogenase quinone 1, HO-1: heme 

oxygenase 1, GCLM: glutamate-cysteine ligase modifier subunit, CAT: catalase.  
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1.7.1.1 Vasoregulation 

Healthy endothelium is able to effectively regulate vascular tone. ECs produce several 

vasodilators such as NO from endothelial nitric oxide synthase (eNOS), C-natriuretic 

peptide (CNP) and adrenomedullin, or vasoconstrictive factors such as endothelin-1 

(ET1) and angiotensin-converting enzyme (ACE) (Malek, Greene et al. 1993; Drexler 

and Hornig 1999; Chauhan, Nilsson et al. 2003). KLF2 potently induces expression of 

eNOS and CNP and inhibits expression of ET1, angiotensin-converting enzyme (ACE) 

and adrenomedullin (SenBanerjee, Lin et al. 2004; Dekker, van Thienen et al. 2005). 

KLF2 directly binds to the eNOS promoter to increase its transcriptional activity and 

downregulates caveolin-1, a negative regulator of eNOS activity (Razani, Engelman et 

al. 2001; Parmar, Larman et al. 2006). 

eNOS and NO have multiple effects on endothelium. Apart from being a vasodilator, 

NO is antiinflammatory via inhibition of endothelial adhesion molecules ICAM-1 and 

VCAM-1 (De Caterina, Libby et al. 1995; Kaminski, Pohl et al. 2004) and antithrombotic 

(Tziros and Freedman 2006). Flow-mediated induction of eNOS through KLF2 

therefore represents an important mechanism by which shear stress mediates its 

effects on endothelium. 

1.7.1.2 Thromboprotection 

KLF2 regulates expression of key endothelial thrombotic factors and generally has an 

antithrombotic effect. Overexpression of KLF2 in HUVECs significantly increases 

expression and activity of antithrombotic thrombomodulin (TM) and mildly increased 

expression of tissue plasminogen activator (tPA). TM is a key cofactor in the thrombin-

induced activation of the anticoagulant protein C. KLF2 directly binds to the TM 

promoter to increase its expression. KLF2 overexpression inhibits expression of 

prothrombotic factors plasminogen activator inhibitor 1 (PAI-1) and Von Willebrand 
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factor (vWF) (Lin, Kumar et al. 2005). KLF2 overexpression inhibits cytokine-mediated 

induction of TF and PAI-1 and prevents TM inhibition (Lin, Kumar et al. 2005). In vitro 

assays show that perfusion of native human blood over HUVECs overexpressing KLF2 

significantly increases clotting time (Lin, Kumar et al. 2005), while KLF2 knockdown 

has the opposite effect with reduction of antithrombotic gene expression and induction 

of procoagulant factors (Lin, Kumar et al. 2005). 

Interestingly, in contrast to the above, another group observed approximately 2-fold 

induction of vWF mRNA and protein levels following lentiviral KLF2 overexpression in 

HUVECs. Following stimulation with thrombin and forskolin, both inducers of vWF 

release, a corresponding 2-fold increase of vWF protein was detected (Dekker, Boon et 

al. 2006). Additionally, several changes were observed in Weibel-Palade bodies, the 

storage organelles for vWF and other bioactive compounds. Weibel-Palade bodies in 

HUVECs overexpressing KLF2 are shorter, have lower content of proinflammatory 

angiopoietin-2 (Ang-2) and interleukin-8 (IL-8), but are more equally distributed with 

larger average number per cell across the population of HUVECs when compared to 

controls (Dekker, Boon et al. 2006; van Agtmaal, Bierings et al. 2012). 

KLF2 is involved in pathogenesis of the antiphospholipid syndrome (APS) 

characterised by production of antiphospholipid antibodies, particularly against β2-

glycoprotein 1 (β2GP1) resulting in thrombosis and recurrent miscarriage (Rand 2003). 

β2GP1 together with anti-β2GP1 cause endothelial cell activation that is central to APS 

pathogenesis (Simantov, LaSala et al. 1995; De Martin, Hoeth et al. 2000). β2GP1/ 

anti-β2GP1 inhibit, via yet unknown mechanisms, expression of KLF2 and KLF4. In the 

presence of low levels of KLF2 and KLF4, CBP/p300, a transcriptional co-activator of 

both NF-κB and KLFs, gets preferentially bound to NF-κB. This results in increased NF-

κB signalling and endothelial activation (Allen, Hamik et al. 2011).  
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1.7.1.3 Inflammation 

Adenovirally overexpressed KLF2 in HUVECs inhibits IL-1β, TNF-α and 

lipopolysaccharide (LPS)-mediated induction of adhesion molecules VCAM-1 and E-

selectin (Parmar, Larman et al. 2006). As a consequence, T-cell attachment and rolling 

is markedly attenuated. KLF2 also inhibits IL-1β-mediated production of inflammatory 

cytokines (Parmar, Larman et al. 2006).  KLF2 exerts antiinflammatory functions 

through competition for a transcriptional coactivator CBP/p300 with NF-κB pathway and 

subsequent decrease of NF-κB activity (SenBanerjee, Lin et al. 2004). Thrombin also 

mediates its proinflammatory effects via the NF-κB pathway. KLF2 inhibits expression 

of thrombin receptor PAR-1 and consequently thrombin-mediated NF-κB nuclear 

accumulation and DNA binding (Lin, Hamik et al. 2006). 

Decreased expression of KLF2 as a result of proinflammatory signalling activation 

(TNF-α through NF-κB) decreases levels of the antiinflammatory factor bone 

morphogenic protein endothelial precursor cell-derived regulator (BMPER). Low levels 

of BMPER enable increased expression of proinflammatory bone morphogenic protein 

2 (BMP2) resulting in decreased eNOS and increased ICAM-1 and VCAM expression 

and in induced leukocyte adhesion and extravasation. Overexpression of KLF2 in 

HUVECs increases BMPER expression and prevents TNF-α induced BMPER 

downregulation, providing another line of evidence for the antiinflammatory effects of 

KLF2 on endothelium (Helbing, Rothweiler et al. 2011). 

Antiinflammatory effects of prolonged shear stress have been linked to inhibition of 

certain MAPK pathways (Berk, Abe et al. 2001). JNK is an upstream kinase that 

activates both activator protein-1 (AP-1) components - activating transcription factor 2 

(ATF2) and c-Jun. AP-1 together with NF-κB and other co-activators like CBP/p300 

forms a transcriptional complex that potently induces expression of proinflammatory 

genes in endothelium in response to inflammatory cytokines and is therefore 
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considered as proinflammatory and proatherogenic (Kracht and Saklatvala 2002). 

ATF2 is constitutively expressed in human endothelium but is found in high amounts in 

its active phosphorylated form in endothelial cells overlying early atherosclerotic 

lesions. The observation that prolonged shear stress inhibits ATF2 function by 

inhibiting  nuclear localisation of phosphorylated ATF2 that is mediated by KLF2 

(Fledderus, van Thienen et al. 2007) was later expanded by the same group when they 

showed that the anti-inflammatory effects of KLF2 are mediated through actin 

cytoskeleton changes and require several days to reach full effect (Boon, Leyen et al. 

2010). In this model KLF2 inhibits phosphorylation of focal adhesion kinase (FAK) 

involved in actin cytoskeleton regulation (Kaunas, Usami et al. 2006) and in 

phosphorylation of JNK (together with actin filaments) (Shaik, Soltau et al. 2009). As a 

result JNK is not activated via phosphorylation and cannot activate both AP-1 

components ATF2 and c-Jun. The same effect can be observed following disruption of 

actin cytoskeleton by cytochalasin D confirming the link between KLF2 and inhibition of 

the JNK pathway via the actin cytoskeleton (Boon, Leyen et al. 2010). 

Regulation of KLF2 expression may differ at different developmental stages and may 

also depend on the animal model used. This is shown by the interplay between shear 

stress, KLF2 and transforming growth factor β (Tgfβ) signalling in HUVECs or human 

aortic endothelial cells (HAoECs) and murine embryonic endothelial cells on the other 

hand (Boon, Fledderus et al. 2007; Egorova, Van der Heiden et al. 2011).Tgfβ 

signalling in non-embryonic endothelial cells is considered to have proatherogenic 

effects because Tgfβ induces PAI-1, MCP-1 and endothelial oxidized-LDL receptor. 

Shear stress increases KLF2 expression in these cells and KLF2 subsequently inhibits 

Tgfβ signalling in two separate ways. Firstly, KLF2 induces Smad7 that inhibits 

phosphorylation of Smad2 and transcriptional activity of Smad3/4 which are all 

members of Tgfβ signalling pathway acting through the Tgfβ receptor Alk5. Secondly, 

KLF2 inhibits another Tgfβ signalling pathway by inhibiting phosphorylation of one of 
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the AP-1 components c-Jun (Boon, Fledderus et al. 2007). On the other hand, in 

murine embryonic endothelial cells increased shear stress activates Tgfβ/Alk5 

signalling. Alk5 in turn activates the MEK5/ERK5/MEF2 pathway and increases Klf2 

expression (Egorova, Van der Heiden et al. 2011). 

Thus in mouse embryonic endothelial cells shear stress-mediated Klf2 induction lies 

downstream of Tgfβ/Alk5/MEK5/ERK5 signalling. In HUVECs and HAoECs shear 

stress-mediated KLF2 induction is MEK5/ERK5/MEF2-dependent and KLF2 is 

upstream of Tgfβ/Alk5 signalling on which KLF2 has an inhibitory effect. 

1.7.1.4 Complement activation 

Endothelial exposure to laminar but not oscillatory shear stress leads to significant 

upregulation of membrane attack complex inhibitory protein CD59 (MIRL) on the 

endothelial surface with resulting decreased complement-mediated lysis of flow-

conditioned ECs. This effect of shear stress is mediated via ERK5/Klf2 signalling 

(Kinderlerer, Ali et al. 2008).  

1.7.1.5 Endothelial barrier function 

Klf2 +/- mice show increased endothelial leakage in response to an inflammatory 

stimulus (Lin, Kumar et al. 2005). This corresponds with in vitro experiments showing a 

protective effect of KLF2 overexpression in HUVECs on thrombin, H2O2 and histamine-

induced endothelial leakage. KLF2 upregulates expression of a key tight-junction 

protein occludin and decreases phosphorylation of myosin light chain which is a 

fundamental event in cell contraction (Lin, Natesan et al. 2010). Protective effects of 

Klf2 on endothelial barrier function were confirmed independently in a murine stroke 

model. Transient middle cerebral artery occlusion was induced in Klf2 -/ - mice, Klf2 

overexpressing mice and control mice and subsequently infarct volume and blood 

barrier function were analysed. Klf2 -/ - mice exhibited significantly larger infarct volume 
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and impaired blood-brain barrier function due to decreased expression of occludin. 

Overexpression of Klf2 reduced infarct volume and blood-brain barrier function was 

preserved (Shi, Sheng et al. 2013). 

Recent reports suggest that decreased KLF2 might be involved in pathogenesis of 

Alzheimer`s disease (AD) (Wu, Li et al. 2013). Blood-brain barrier dysfunction and 

impaired endothelial permeability have been implicated in pathogenesis of AD for some 

time (Strazielle, Ghersi-Egea et al. 2000). Klf2 mRNA and protein levels in Tg2576 

mouse model of AD are significantly reduced due to accumulation of amyloid beta. 

Amyloid beta acts through increased p53 levels that subsequently inhibit Klf2 

expression. Overexpression of KLF2 in human brain ECs completely rescues amyloid 

beta-mediated impairment of occludin  expression which is in keeping with the reported 

role of KLF2 in endothelial barrier function (Wu, Li et al. 2013). It must be noted 

however that potent KLF2 inducers statins have failed to decrease incidence of AD in 

randomised controlled trials in humans (McGuinness and Passmore 2010). 

1.7.1.6 Endothelial morphology and intercellular gap junctions 

It has been known that flow and shear stress influence endothelial actin cytoskeleton 

rearrangement and cell shape for more than two decades (Kim, Langille et al. 1989; 

Davies, Barbee et al. 1997). The central role of KLF2 in the cytoskeleton changes has 

now been elucidated. HUVECs exposed to shear stress (19±17 dyne/cm2 for 4 days) 

align in the direction of flow. This alignment is abrogated after siRNA-mediated KLF2 

silencing, whereas HUVECs overexpressing KLF2 exhibit a stretched shape as a result 

of reorganisation of the cytoskeleton with formation of stress fibres even in the absence 

of flow (Boon, Leyen et al. 2010). HUVECs overexpressing KLF2 also show increased 

cell density and decreased migration following wounding (Dekker, Boon et al. 2006).  

ECs from healthy arteries or ECs cultured under high laminar shear stress conditions 

exhibit high expression of connexin 37 (CX37) and its deletion in ApoE -/ - mice 
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accelerates atherosclerosis (Kwak, Mulhaupt et al. 2002; Wong, Christen et al. 2006). 

cx37 is a transmembrane protein that forms a gap junction in the form of two hexameric 

hemichannels on adjacent cells. Gap junctions represent a specialized intercellular 

connection that link the cytoplasm of two cells enabling direct communication through 

exchange of ions and small metabolites (Saez, Berthoud et al. 2003). KLF2 regulates 

CX37 expression in response to shear stress or simvastatin by directly binding its 

promoter. Deletion of KLF2 decreases passage of small molecules and ions through 

gap junctions in a EC monolayer, confirming the function of KLF2 in intercellular 

communication (Pfenniger, Wong et al. 2012). 

1.7.1.7 Oxidative stress 

HUVECs overexpressing KLF2 show upregulation of antioxidant genes such as 

NAD(P)H dehydrogenase quinone 1 (NQO1), heme oxygenase (HO-1), glutamate-

cysteine ligase modifier subunit (GCLM) and catalase (CAT) which are all target genes 

of Nrf2; one of the main antioxidant transcription factors upregulated by 

atheroprotective blood flow (Arai, Ohashi et al. 1998; Dekker, Boon et al. 2006; Lee, 

Youn et al. 2012). KLF2 promotes Nrf2 nuclear localization and activation necessary 

for its function and augments Nrf2-mediated protection against oxidative stress 

(Fledderus, Boon et al. 2008). 

Heme oxygenase 1 (HO-1) is the rate-limiting enzyme in heme catabolism that 

catalyses heme degradation into biliverdin, carbon monoxide and free iron (Ryter, Alam 

et al. 2006). Products of this pathway have antioxidant (Brunt, Fenrich et al. 2006), 

antiinflammatory (Otterbein, Zuckerbraun et al. 2003) and antiapoptotic (Brouard, 

Otterbein et al. 2000) effects on vasculature. Statins act as potent inducers of HO-1 

expression in a KLF2-dependent manner and their antioxidant effects have been 

shown to act through generation of biliverdin and ferritin following HO-1 activation (Ali, 

Hamdulay et al. 2007).  
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1.7.1.8 MicroRNA production 

HUVECs overexpressing KLF2 were examined for expression of miRs known to play 

roles in vascular homeostasis. Expression levels of miR-23b and miR-150 (which both 

have regulatory role in cell migration) were significantly increased. Expression levels of 

miR-146a and miR155 (role in inflammation), miR-181a (endothelial cell fate), and miR-

210 (angiogenesis and hypoxia response) were on the contrary reduced (Hergenreider, 

Heydt et al. 2012). Interestingly, expression of miR143/145 which has an 

atheroprotective effect on vascular smooth muscle cells (VSMC) was upregulated in 

HUVECs under shear stress and lentiviral overexpression of KLF2 (Hergenreider, 

Heydt et al. 2012). A novel mechanism has been described in which shear stress 

and/or KLF2 increases production of extracellular vesicles (ectosomes) in HUVECs 

expressing high levels of miR143/145 and these are secreted from HUVECs to induce 

a paracrine atheroprotective VSMC phenotype (Hergenreider, Heydt et al. 2012). This 

communication between endothelial cells and SMC might explain the deleterious effect 

of endothelial Klf2 knockdown on VSMC observed a decade earlier (Kuo, Veselits et al. 

1997; Wu, Bohanan et al. 2008). 

1.7.2 Haematopoietic stem cell development 

All vertebrates undergo 2 waves of haematopoiesis. In zebrafish, primitive 

haematopoiesis starts at around 11hpf in anterior lateral mesoderm (ALM) and 

intermediate cell mass (ICM) and its marker is the presence of embryonic globin 

proteins. Haematopoiesis in the ICM diminishes with onset of circulation at 24hpf. At 

around 26hpf definitive haematopoietic stem cells (HSCs) begin to emerge from the 

hemogenic endothelial cells from the ventral wall of dorsal aorta (DA) in the aorta-

gonad-mesonephros region (AGM). At approximately 48hpf HSCs migrate to caudal 

haematopoietic tissue (CHT) that represents another site of transient haematopoiesis 
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and also to the kidney marrow which will be the site of definitive adult haematopoiesis 

that gives rise to all blood lineages. Lymphoid progenitor cells migrate from AGM at 

approximately 54hpf to seed the thymus which will be the site of T cells maturation 

(Jing and Zon 2011). It has been recently shown that blood flow plays an important role 

in maintenance of HSC programming (Wang, Zhang et al. 2011). Zebrafish embryos 

without flow show normal primitive erythropoiesis, but expression of HSC markers 

runx1 and cmyb is downregulated in AGM and CHT from 36hpf onwards when 

compared to controls. Expression of thymic T cell marker rag1 is also diminished at 

4dpf in embryos lacking blood flow. It has been postulated that this blood flow 

dependent maturation of HSC is mediated via klf2a and subsequent NO signalling. 

ATG klf2a MO mediated klf2a knockdown resulted in decreased runx1 and cmyb 

expression in AGM and CHT from 36hpf onwards and was claimed to be partially 

rescued by administration of capped klf2a mRNA (Wang, Zhang et al. 2011). 

1.7.3 T-cell and B-cell biology 

T and B lymphocytes play distinct roles in atherosclerosis (Mallat, Taleb et al. 2009; 

Perry, Bender et al. 2012). I will therefore briefly describe the role of KLF2 in 

lymphocyte biology especially in regard to vascular pathophysiology. Klf2 plays an 

important role in maintaining a quiescent, non-activated T-cell phenotype. Klf2 

expression is developmentally induced in quiescent single-positive (SP) T-cells (either 

CD4+or CD8+), but is rapidly decreased following T-cell activation. Additionally, Klf2-

deficient chimeric mice develop a massive reduction in peripheral single-positive T-

cells which show a spontaneously activated cell surface phenotype and increased Fas-

mediated apoptosis (Kuo, Veselits et al. 1997). Klf2 maintains T-cell quiescence at 

least partially via negative regulation of the proto-oncogene c-Myc (Buckley, Kuo et al. 

2001). Maintenance of a quiescent T-cell phenotype by Klf2 might be physiologically 
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important due to the role of activated CD8+ T-lymphocytes in promotion of vulnerable 

atherosclerotic plaques in ApoE -/ - mice (Kyaw, Winship et al. 2013). Additionally, Klf2 

is necessary for peripheral T-cell recirculation. Klf2-deficient SP T-cells show impaired 

thymic emigration and deficient T-cell trafficking; the majority of Klf2 -/ - T-cells are 

found in the spleen with almost none in the blood or lymph nodes. Klf2 was 

subsequently shown to regulate thymocyte and T-cell trafficking into peripheral lymph 

organs by inducing expression of receptors critical for these processes, such as 

CD62L, β-integrin, CCR7 (T-cell trafficking) and S1P1 (thymocyte emigration) (Carlson, 

Endrizzi et al. 2006). 

A particular subset of T-cells, the CD4+CD25+Fox3p+ T regulatory cells (Tregs) known 

to have a role in maintaining immunological tolerance have inhibitory effects on 

development and progression of atherosclerosis (Ait-Oufella, Salomon et al. 2006; Mor, 

Planer et al. 2007). Tregs are able to upregulate KLF2 expression in HUVECs 

previously treated with oxidised LDL in a manner requiring direct cell contact (Li, Wang 

et al. 2011). 

Klf2 knockdown in B-cells also leads to decreased expression of trafficking molecules 

CD62L and β-integrin, but expression of S1P1 receptor remains almost unaffected. Klf2 

deficiency also causes impaired B-cell subset differentiation with increased number of 

marginal zone B cells and massively reduced number of atheroprotective B1 B cells 

(Kyaw, Tay et al. 2011). 

The antiatherogenic effects of KLF2 expression in lymphocytes are supported by the 

observation that simvastatin significantly increases KLF2 expression in murine and 

human T-cells in vitro and in vivo with resulting decreased IFN-γ secretion and 

diminished T-cell proliferation (Bu, Tarrio et al. 2010). 
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1.7.4 Monocyte and macrophage biology 

KLF2 is expressed in primary human monocytes, but its expression is reduced by 

cytokine or LPS activation or differentiation into macrophages. KLF2 expression is 

reduced by about 30% in monocytes of patients with extensive atherosclerosis 

compared to healthy controls (Das, Kumar et al. 2006). This is significant because 

monocyte activation and recruitment plays important roles in atherosclerosis (Libby 

2002).  

In mice, conditional Klf2 knockout in myeloid cell lineage in an atheroprone LDL 

receptor deficient background causes increased atherosclerosis (Lingrel, Pilcher-

Roberts et al. 2012) in keeping with increased atherosclerosis seen in Klf2 +/ - ApoE -/ - 

mice (Atkins, Wang et al. 2008). Myeloid Klf2 knockout increases monocyte and 

neutrophil adhesion to endothelial cells with resulting increased accumulation and 

activity in atherosclerotic plaques (Lingrel, Pilcher-Roberts et al. 2012), but this did not 

confirm increased lipid accumulation by macrophages as observed in Klf2 +/ - ApoE -/ - 

mice (Atkins, Wang et al. 2008). 

Overexpression studies show that KLF2 inhibits LPS-mediated activation of monocytes 

as evidenced by reduced secretion of cyclooxygenase 2, tissue factor, IL-1, Il-8, TNF-α 

and MCP-1. Overexpressed KLF2 also decreases phagocytic activity and surprisingly 

does not inhibit but rather increases recruitment of monocytes to sites of inflammation. 

Conversely, KLF2 knockdown increases monocyte expression of MCP-1, TF and 

cyclooxygenase 2. KLF2 exerts its antiinflammatory effects in monocytes by inhibiting 

the NF-κB and AP-1 signalling pathways (Das, Kumar et al. 2006). KLF2 does not alter 

NF-κB or AP-1 expression, nuclear accumulation or DNA binding, but reduces NF-κB 

and AP-1 transcriptional activities by interacting with the co-activator PCAF (Das, 

Kumar et al. 2006).  
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Macrophages represent a heterogenous cell population: M1 macrophages (activated 

by GM-CSF, TNF or LPS) represent a proinflammatory phenotype whereas M2 

macrophages are generally antiinflammatory, contributing to tissue repair but with a 

higher capacity to accumulate oxidized LDL due to higher number of scavenger 

receptors (Goerdt and Orfanos 1999; Peiser and Gordon 2001; Mantovani, Garlanda et 

al. 2009). KLF2 expression is higher in M2 than M1 macrophages. However, after 

exposure to oxidized LDL,  KLF2 expression decreases in M2 but remains unchanged 

in M1 macrophages. KLF2 knockdown in M2 macrophages leads to increased 

secretion of MCP-1 (van Tits, Stienstra et al. 2011). Overall, the above data suggest 

that KLF2 plays an antiinflammatory and antiatherogenic role in monocyte and 

macrophage biology.   

1.7.5 Vasculogenesis and angiogenesis  

Homozygous Klf2 deficient mice die between E12.5-14.5 from intra-embryonic and 

intraamniotic haemorrhaging associated with normal vascular patterning, but defects in 

blood vessel morphology - endothelial necrosis, cuboidal VSMCs, abnormally thin 

tunica media and aneurysms. Klf2 -/ - mice exhibit defective VSMCs and pericyte 

migration to endothelial tubes during vasculogenesis with subsequent loss of their 

stabilising and modulatory functions and failure to organize into a compact tunica 

media (Kuo, Veselits et al. 1997; Wu, Bohanan et al. 2008). There are however 

conflicting data about the effect of homozygous Klf2 deletion on murine embryonic 

development. Another group were able to confirm the stage of lethality in Klf2 -/ - 

embryos (E11.5-13.5) and reported retarded growth, craniofacial abnormalities, signs 

of anaemia and abdominal bleeding, but could not detect vessel wall abnormalities 

(Wani, Means et al. 1998). Mouse embryos with conditional endothelial or smooth and 

cardiac muscle Klf2 deletion confirm that endothelial Klf2 deletion is responsible for the 
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embryonic mortality around E14 (Lee, Yu et al. 2006). The cause of death was reported 

to be high-output cardiac failure caused by loss of smooth muscle tone and 

vasodilation. The reasoning that Klf2 deletion was responsible for the observed 

phenotype was supported by data obtained from klf2a morphant zebrafish embryos. 

These exhibited increased aortic blood velocity and pericardial oedema (Lee, Yu et al. 

2006). 

Vascular endothelial growth factor (VEGF-A) is a key regulator of physiologic and 

pathologic vasculogenesis and angiogenesis (Leung, Cachianes et al. 1989). VEGF-A 

also promotes vascular permeability, EC migration and survival, but can also act as a 

proinflammatory cytokine (Senger, Galli et al. 1983; Kim, Moon et al. 2001; Ferrara, 

Gerber et al. 2003; Maharaj and D'Amore 2007). VEGF-A effects are mediated by its 

receptor tyrosine kinases, of which VEGFR2 is the most important in endothelium 

(Waltenberger, Claesson-Welsh et al. 1994). The following sections describe the 

relationship of KLF2 to VEGF-A signalling showing these two factors act in various and 

context-dependent manners. 

klf2a (upregulated by flow) plays a positive role in angiogenesis in zebrafish by 

inducing expression of an endothelial-specific microRNA miR-126 which inhibits a 

VEGF signalling inhibitor spred-1. This therefore allows VEGF-A/VEGFR2 (fetal liver 

kinase 1 (flk1) or kinase insert domain receptor like (kdrl) in zebrafish) mediated 

angiogenesis to proceed. In the absence of flow, klf2a and miR-126 are down-

regulated and spred-1 inhibits angiogenesis by inhibiting VEGF-A/VEGFR2 signalling. 

This pathway was demonstrated on AA5x vessel angiogenesis which connects 5th and 

6th aortic arch vessels to lateral dorsal aortae. This pathway thus connects flow with 

klf2a and VEGF-A/VEGFR2 via mir-126 and suggests a stimulatory role of klf2a on 

VEGF-A/VEGFR2 signalling (Nicoli, Standley et al. 2010).  

The link between KLF2 and VEGF through miR-126 has been confirmed in human 

duodenal vasculature when duodenal biopsies from cirrhotic patients were compared to 
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healthy individuals. Increased duodenal angiogenesis in cirrhotic patients was 

demonstrated by increased capillary density in duodenal villi and by increased 

presence of endothelial markers CD31 and CD34 (Kobus, Kopycinska et al. 2012).  

Increased KLF2, miR-126, VEGF but also Ang-2 were detected in duodenal samples 

from cirrhotic patients suggesting KLF2 might play a role in formation of porto-systemic 

collateral vessels as a consequence of increased intrahepatic resistance and increased 

blood flow (Kobus, Kopycinska et al. 2012). 

Similarly, in embryonic endothelial cells of Xenopus, expression of Flk1 is 

independently activated by Klf2 and by one of the ETS transcription factors ETS-

related gene (ERG). Klf2 and ERG directly bind to Flk1 enhancer within the first intron 

of the Flk1 gene (Meadows, Salanga et al. 2009). Mutation of ERG or KLF binding sites 

results in complete or significant reduction of Flk1 expression respectively. Klf2 

knockdown inhibits Flk1 expression and causes significant defects in vasculogenesis. 

Additionally, Klf2 and ERG can form a protein complex with synergistic effects on Flk1 

expression in Xenopus embryonic endothelial cells (Meadows, Salanga et al. 2009). 

Vegf-1 is expressed in adult murine arterial ECs but not venous or capillary 

endothelium (dela Paz, Walshe et al. 2012). Shear stress potently activates VEGF 

signalling in HUVECs on various levels by increasing VEGF-A mRNA and protein 

levels and also increases expression and activation of VEGFR2 (dela Paz, Walshe et 

al. 2012). Increased VEGF-A/VEGFR2 signalling mediated via shear-dependent 

induction of KLF2 expression has protective effects on HUVECs by decreasing 

apoptosis compared to HUVECs in static conditions (dela Paz, Walshe et al. 2012). 

This is contradictory to previous work suggesting an inhibitory role of Klf2 on VEGF-

A/VEGFR2(FLK1) signalling in adult endothelial cells (Bhattacharya, Senbanerjee et al. 

2005; Dekker, Boon et al. 2006).  

Klf2 overexpression in a nude mouse model markedly attenuates VEGF-A-mediated 

angiogenesis and oedema. KLF2 overexpression in HUVECs also potently inhibits 
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VEGF-A mediated endothelial activation. KLF2 inhibits expression of VEGFR2 by 

directly competing with Sp1 for a binding site in the VEGFR2 promoter (Bhattacharya, 

Senbanerjee et al. 2005). Overexpression of KLF2 inhibits endothelial migration, most 

likely due to induction of an antimigratory factor semaphorin-3F and to some extent to a 

less pronounced induction of VEGFR2 (Dekker, Boon et al. 2006). These differences in 

the observed relationship between KLF2 and VEGF signalling may be explained by the 

different developmental stages and model organisms used (zebrafish and Xenopus 

embryonic angiogenesis and human adult angiogenesis versus murine adult 

angiogenesis). 

Consistent with an inhibitory role of KLF2 in adult angiogenesis is that KLF2 inhibits 

expression and function of hypoxia-inducible factor 1 (HIF-1) which is a central 

regulator of the hypoxic response and angiogenesis in many cell types. Under hypoxic 

conditions, KLF2 overexpressed in HUVECs inhibits (and KLF2 knockdown increases) 

expression of HIF-1 target genes such as IL-8, Ang-2 or VEGF and also inhibits 

endothelial tube formation on Matrigel (Kawanami, Mahabeleshwar et al. 2009). KLF2 

prevents the hypoxia-mediated accumulation of HIF-1α subunit of HIF and thus 

prevents HIF-1α translocation into the cell nucleus where it associates with oxygen 

insensitive HIF-1β subunit to form a functional HIF molecule. KLF2 inhibits HIF-1α 

interaction with its chaperone Hsp90 and thus promotes its proteasomal degradation 

(Kawanami, Mahabeleshwar et al. 2009). 

Angiopoietin-1 (Ang-1) and its receptor tyrosine kinase Tie2 are involved in maintaining 

vascular quiescence and angiogenesis (Wong, Haroon et al. 1997; Peters, Kontos et 

al. 2004). The ability to exert these distinct and opposite functions resides in the fact 

that in the presence of cell-cell contacts, Ang-1 induces trans-association of Tie2 and 

preferentially activates the Akt pathway, leading to vascular quiescence. In the 

absence of cell-cell contact Ang-1 induces Tie2 anchoring to intracellular matrix that 

preferentially activates the ERK1/2 pathway to promote angiogenesis (Fukuhara, Sako 
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et al. 2008; Saharinen, Eklund et al. 2008). KLF2 is one of the factors induced by trans-

associated Tie2 in the presence of cell-cell contacts promoting vascular quiescence. 

Ang-1/Tie2-mediated KLF2 induction depends on PI3K/Akt pathway which in turn 

activates transcriptional activity of MEF2 (Sako, Fukuhara et al. 2009). 

The Grb2-associated binder family docking proteins (Gab1-Gab3) play crucial roles in 

transmitting signals that control cell growth, differentiation and function from multiple 

receptors (Gu and Neel 2003). Gab1 has proangiogenic properties and plays a crucial 

role in postischaemic angiogenesis and arteriogenesis in mice. In this pathway 

hepatocyte growth factor stimulates Gab1 association with SHP2 (Src homology-2 

domain-containing protein tyrosine phosphatase2) and PI3K subunit p85. This complex 

positively regulates migration, proliferation and stabilisation of ECs via distinct MAPK 

pathways. Interestingly, Gab1/SHP2 stimulates KLF2 expression through ERK5 that 

might be contributing to the stabilising effects of this signalling cascade on EC 

(Shioyama, Nakaoka et al. 2011). Conversely, Gab1 conditional endothelial knockout in 

the ApoE -/ - background decreases Klf2 and Klf4 expression, increases production of 

proinflammatory TNFα, IL-1β and IL-6 and endothelial expression of VCAM-1 with 

resulting accelerated angiotensin 2 - mediated atherosclerosis and aortic aneurysm 

formation (Higuchi, Nakaoka et al. 2012). 

Proangiogenic cells (PACs), also known as endothelial progenitor cells are bone 

marrow-derived cells which circulate in the blood stream and are able to take part in 

angiogenesis (Asahara, Murohara et al. 1997). PACs numbers and their 

neovascularisation properties are negatively affected by risk factors for ischaemic heart 

disease such as age, hypertension or smoking (Vasa, Fichtlscherer et al. 2001). KLF2 

overexpression in human PACs increases their number by 60% in vitro and improves 

neovascularisation abilities of aged murine PACs in an ischaemic hind limb model in 

vivo (Boon, Urbich et al. 2011). A particular subset of PAC, endothelial colony-forming 

cells have the ability to form de novo vessels in vivo and react to laminar and pulsatile 
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flow in a similar manner to adult EC, with increased KLF2 and decreased ET1 and 

VCAM1 expression (Egorova, DeRuiter et al. 2012).  

1.7.6 Valvulogenesis 

Cardiac valves form in vertebrates from endocardial cushions arising in the 

atrioventricular (AV) canal. Formation of endocardial cushions involves several steps 

starting with specification of a subset of endocardial cells in the AV canal and ending in 

their epithelial-to-mesenchymal transformation (EMT). Endocardial cushions then go on 

to form the AV complex and after further remodelling become functional valve leaflets 

(Armstrong and Bischoff 2004). There are several lines of evidence that suggest KLF2 

plays an important role in EMT. 

Before functional valves develop, anterograde and retrograde (reversing) blood flows 

exist between atrium and ventricle. Eventually with development of mature valves only 

anterograde flows become possible. Experiments with alteration of the proportion of 

retrograde flow to the length of a cardiac cycle (the so-called retrograde flow fraction 

(RFF) showed that decreased RFF was linked with severe defects in valve formation in 

zebrafish (Vermot, Forouhar et al. 2009). klf2a is upregulated by retrograde flow in the 

AV canal of zebrafish hearts and conversely is downregulated when RFF decreases. 

Interestingly, klf2a knockdown results in valvular defects similar to those observed in 

zebrafish with decreased RFF suggesting an important role of klf2a and its target 

genes notch1b (zebrafish Notch homolog), bmp4, edn1 and nrg1 in blood flow 

dependent valvulogenesis (Vermot, Forouhar et al. 2009).   

Another line of evidence that klf2a might be involved in heart valve formation comes 

through identification of a novel zebrafish mutant with defective endocardial cushion 

formation named bungee (bng jh177) with a deactivating mutation in protein kinase 2 

(pkd2) that leads to impaired phosphorylation of Hdac5. Hdac5 thus remains in its 



38 

 

active state bound to the klf2a promoter and inhibits klf2a expression in the AV region 

leading to decreased notch1b signalling and defective valve formation (Just, Berger et 

al. 2011). 

Interestingly, the role of KLF2 in murine cardiac valve development is strain-specific. 

FVB/N Klf2 -/ - mice exhibit defective EMT and delayed formation of the atrial septum 

whereas C57BL/6 Klf2 -/ - mice experience delayed atrial septal formation but their AV 

cushions develop normally. FVB/N Klf2 -/ - mice at E9.5 show multiple layers of 

dysmorphic endothelial cells lining the AV cushions that fail to undergo the EMT 

properly resulting in hypocellular AV cushions at E10.5 and abnormal cardiac function. 

Mechanistically, KLF2 regulates several genes involved in AV cushion development 

such as Gata4, Tbx5, Sox9 and Ugdh (Chiplunkar, Lung et al. 2013). 

1.8 KLF4 and its role in vascular biology 

KLF4/GKLF (gut-enriched KLF) was initially named epithelial transcription factor 

(Shields, Christy et al. 1996). KLF4 has functions in terminal differentiation and 

regulation of growth of gut and skin epithelium (Shields, Christy et al. 1996; Segre, 

Bauer et al. 1999; Katz, Perreault et al. 2005). Klf4 null mouse newborns die soon after 

birth due to loss of skin barrier function and subsequent dehydration (Segre, Bauer et 

al. 1999). KLF4 endothelial expression was suggested by cloning from a human 

vascular endothelial cell complementary DNA (cDNA) library (Yet, McA'Nulty et al. 

1998). KLF4 was identified as another blood flow dependent transcription factor in vitro 

and in vivo in human and mouse endothelial cells (McCormick, Eskin et al. 2001; 

Hamik, Lin et al. 2007). KLF4 endothelial expression is similarly to KLF2 upregulated 

by laminar shear stress and statins, but is also upregulated by proinflammatory 

cytokines TNFα, IL-1β and IFNγ (Hamik, Lin et al. 2007; Ohnesorge, Viemann et al. 
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2010). KLF4 strongly induces antiinflammatory and antithrombotic eNOS, TM and tPA 

and inhibits proinflammatory and procoagulant factors MCP-1, regulated on activation, 

normal T-cell expressed and secreted (RANTES), PAI-1 and IL-6. Conversely, KLF4 

knockdown enhanced TNFα - mediated induction of VCAM-1, E-selectin and TF 

(Hamik, Lin et al. 2007; Methe, Balcells et al. 2007). To sum up, the phylogenetically 

close transcription factors KLF2 and KLF4 (Bieker 2001) have many overlapping 

functions in ECs. Their cooperation - together with other factors - seems to maintain 

functional levels of anti and proinflammatory factors in endothelium under basal and 

inflammatory conditions (Hamik, Lin et al. 2007). 

1.8.1 klf4a and klf4b expression patterns and functions 

Zebrafish have two KLF4 paralogs termed klf4a and klf4b, however klf4b has been 

recently named klf17 (Kotkamp, Mossner et al. 2014). klf4a is considered to be the 

zebrafish ortholog of human KLF4. Zebrafish klf4a shares approximately 67% AA 

similarities with human and murine KLF4/Klf4 (Li, Chan et al. 2011). klf4a was shown to 

have antiproliferative effects in zebrafish intestinal epithelium. klf4a also regulates 

differentiation of goblet cells in zebrafish embryonic intestinal epithelium and these 

functions are in keeping with previously described Klf4 functions in mice (Katz, 

Perreault et al. 2002; Li, Chan et al. 2011). At 48hpf klf4a expression was detected in 

epidermis, pectoral fins, pharynx, retina and olfactory bulbs. To my knowledge klf4a 

was not detected in zebrafish vasculature in any developmental stage. 

Recent synteny studies showed that klf4b is related to Klf17 (also called Neptune) in 

Xenopus and is therefore now named klf17 (Kotkamp, Mossner et al. 2014). The 

original name biklf stands for blood island Krüppel-like factor and indicates that 

biklf/klf4b/klf17 is expressed in blood islands throughout zebrafish embryogenesis and 

plays important role in primitive erythropoiesis (Kawahara and Dawid 2001; Oates, 
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Pratt et al. 2001; Gardiner, Gongora et al. 2007). biklf/klf4b/klf17 is expressed in the 

hatching gland precursors (pre-polster and polster) and eventually in the  hatching 

gland itself and is essential for its development. This transient organ secretes enzymes 

that help the embryos escape from its enveloping coats (Gardiner, Daggett et al. 2005). 

Finally, biklf/klf4b/klf17 is strongly present in neuromasts that form the lateral line 

(Oates, Pratt et al. 2001). The lateral line is a sensory system that detects changes in 

the motion of water (Ghysen and Dambly-Chaudiere 2004). To my knowledge 

biklf/klf4b/klf17 was not detected in zebrafish vasculature at any stage. 

1.9 Chemokine receptor CXCR4 is involved in collateral 

vessel formation 

Our group have previously shown that vascular expression of cxcr4a, a zebrafish 

ortholog of CXCR4 is influenced by blood flow (Packham, Gray et al. 2009). 

C-X-C chemokine receptor type 4 (CXCR4) is a G-protein-coupled receptor for a 

chemokine stromal cell derived factor 1α (SDF1α)/CXCL12 (Bleul, Farzan et al. 1996). 

CXCR4 is expressed on several cell types and SDF1α/CXCR4 system plays a role in 

various physiological processes such as haematopoiesis and organ development (Zou, 

Kottmann et al. 1998), lymphohaematopoiesis or leukocyte trafficking (Kim and 

Broxmeyer 1999). CXCR4 is important in mobilisation of vascular stem/progenitor cells 

(Peled, Petit et al. 1999) and plays a role in collateral vessel formation in mice and 

zebrafish (Kim and Broxmeyer 1999; Packham, Gray et al. 2009). Importantly, 

SDF1α/CXCR4 system is involved in metastasis of several malignancies (Schrader, 

Lechner et al. 2002; Taichman, Cooper et al. 2002; Uchida, Begum et al. 2003).  
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Our group have shown that cxcr4a is expressed at similar levels in both control MO 

and flow deficient tnnt2 MO morphants at 36hpf. At 48hpf cxcr4a is rapidly down-

regulated in the embryos with intact blood flow, whereas in the absence of flow cxcr4a 

continues to be expressed in the vasculature up to 60hpf and promotes collateral 

vessel formation (Packham, Gray et al. 2009). This was shown by the observation that 

the MO-mediated cxcr4a knockdown in gridlock mutants significantly reduced their 

ability to restore blood flow to the occluded aorta by forming collateral vessels 

(Packham, Gray et al. 2009). 

1.10 Hypoxia inducible factor (HIF) and Von Hippel -  

Lindau protein (pVHL) in hypoxic signalling 

Recently published work from our group links blood flow as mechanical force to the 

vascular phenotype of zebrafish vhl mutant embryos with excessive aberrant 

angiogenesis and to changes in vascular expression of some components of Notch 

signalling (Watson, Novodvorsky et al. 2013). 

Metazoan cells react to low oxygen levels by transcriptional adaptations aiming to 

restore homeostasis. Hypoxia inducible factor (HIF) is a key transcriptional factor 

involved in these adaptation processes (Semenza and Wang 1992; Kaelin 2005). HIF 

is a heterodimer that consists of a constitutively expressed HIF1-β subunit and a 

hypoxia regulated HIF1-α subunit. Under normoxic conditions HIF1-α undergoes 

hydroxylation and rapid proteasomal degradation by a multi-subunit E3 ubiquitin ligase 

complex containing pVHL. Under hypoxic conditions or in the absence of functional 

pVHL, HIF1-α is translocated to the nucleus where it meets with HIF1-β and forms a 

functional HIF (Kaelin 2005). HIF then regulates expression of multiple hypoxia-
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inducible genes such as erythropoietin (Semenza and Wang 1992) or angiogenic 

growth factors VEGF (Liu, Cox et al. 1995), platelet-derived growth factor (PDGF) 

(Gleadle, Ebert et al. 1995), PAI-1 (Kietzmann, Roth et al. 1999), angiopoietin 2 (Ang-

2) (Oh, Takagi et al. 1999), SDF-1 and CXCR4 (Kryczek, Lange et al. 2005). 

VHL tumour suppressor gene codes for Von Hippel-Lindau protein (pVHL) that acts as 

a recognition component for hydroxylated HIF1-α in the E3 ubiquitin ligase complex. 

Following pVHL binding, HIF-α undergoes ubiquitination and proteasomal degradation. 

Not surprisingly, mutations in the VHL gene result in states with increased 

erythropoiesis such as Chuvash polycythemia or VHL disease which is characterised 

by the presence of highly vascularised tumours in multiple organs (Ang, Chen et al. 

2002; Kaelin 2005). 

Vhl knockout mouse die in utero due to haemorhagic lesions in placenta (Haase 2005). 

Identification of a zebrafish VHL ortholog vhl and its subsequent mutagenesis therefore 

created a useful tool for further vhl studies (van Rooijen, Voest et al. 2009). This 

mutant is identified as vhl hu2117 and has a nonsense mutation in the HIF1-α recognition 

site. vhl hu2117 are viable and fertile in heterozygous state. Homozygous vhl hu2117 

mutants demonstrate features of upregulated hypoxic signalling such as increased 

expression of vegfa, vegfa receptors flt1, kdr (kdrl) and kdr-like, lactate dehydrogenase 

or erythropoietin. vegfa driven excessive angiogenesis demonstrates itself from 58hpf 

onwards by aberrant angiogenic sprouting from intersegmental vessels (ISVs) and 

increased number of cranial vessels (van Rooijen, Voest et al. 2010). vhl hu2117 mutants 

develop high-output cardiac failure from 4dpf onwards with cardiomegaly and 

pericardial oedema that results in the death between 8dpf and 11dpf (van Rooijen, 

Voest et al. 2009). Oliver Watson from our group recently showed that the excessive 

angiogenic sprouting in vhl hu2117 mutants is blood flow dependent. Excessive 

angiogenesis with increased endothelial cell numbers, increased vessel diameter and 
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length in vhl hu2117 mutants is abolished in embryos where blood flow has been removed 

without affecting normal vessel patterning. The mechanism of how blood flow 

influences vhl signalling remains unclear (Watson, Novodvorsky et al. 2013). 

1.11 Notch signalling 

The Notch signalling pathway is one of the major intercellular signalling pathways that 

is highly conserved between species (Andersson, Sandberg et al. 2011). Despite the 

fact that the canonical Notch signalling pathway is rather simple, Notch effects on 

various cell types at various developmental stages and in multitude of species are  

pleiotropic (Andersson, Sandberg et al. 2011). In relation to cardiovascular system 

Notch regulates among others the processes of arteriovenous specification and 

endothelial sprouting and branching during physiological and pathological angiogenesis 

(Gridley 2010). 

Mechanistically, canonical Notch signalling refers to cell-cell interactions in a juxtacrine 

manner where Notch ligands Delta-like 1,3 and 4 (DLL1,DLL3 and DLL4) and Jagged1 

and 2  localised on plasma membranes of signalling cells bind to transmembrane 

Notch receptors (NOTCH1-4) localised on adjacent (receiving) cells. This results in a 

series of proteolytic cleavages of the transmembrane Notch receptor with subsequent 

translocation of Notch intercellular domain (NICD) from the plasma membrane into the 

nucleus. NICD forms a transcriptional complex with CBF1/Suppressor of Hairless/LAG-

1 (CSL) DNA-binding protein, Mastermind-like 1 protein  and histone acetyltransferases 

leading to transcriptional activation of Notch target genes. In the absence of NICD in 

the nucleus, CSL binds to specific regulatory sequences of Notch target genes and 

inhibits their expression. Numerous auxiliary proteins modulate canonical Notch 

signalling as well (Andersson, Sandberg et al. 2011). 
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Additionally, various types of non-canonical Notch signalling have been described 

(D'Souza, Meloty-Kapella et al. 2010; Heitzler 2010). These do not require a canonical 

Notch ligand or the activation and proteolytic cleavage of Notch receptor for the 

initiation of Notch signalling. In other forms of non-canonical Notch signalling there is 

no CSL involvement reflecting possible involvement of other signalling pathways 

upstream of the NICD-CSL interaction (Heitzler 2010).  

Our group have recently shown that blood flow suppresses vascular Notch signalling in 

developing zebrafish embryos via suppressing the expression of dll4 (Watson, 

Novodvorsky et al. 2013). Cessation of flow in zebrafish embryos caused increased 

dll4 expression resulting in increased activity of Notch signalling pathway at 48hpf and 

72hpf. This was evidenced by increased vascular fluorescence in a transgenic 

zebrafish line Tg(CSL:venus)qmc61 (expresses the yellow fluorescent protein 

derivative venus driven by concatemerized CSL-binding sites) (Watson, Novodvorsky 

et al. 2013). This was the first time that blood flow as a mechanical force has been 

found to alter Notch signalling in vivo. 

1.12  Zebrafish as a model for cardiovascular studies 

Zebrafish (Danio rerio) are small freshwater fish that originate from Southeast Asia. 

Adult fish are able to produce several hundreds of eggs per week and these are 

fertilised externally by males and also develop externally independently of the mother. 

This, together with their optical clarity makes them very useful in studying vertebrate 

developmental processes in vivo (Chico, Ingham et al. 2008). Zebrafish embryos 

develop rapidly so that at 24hpf they have a contracting two-chambered heart. 

Functional axial vessels and blood flow that can be visualized in vivo by applying 

simple light microscopy. Genetic factors that drive zebrafish cardiovascular 
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development are largely conserved between mammals and zebrafish with zebrafish 

orthologs identified for many important genes in these processes such as Notch , Sonic 

hedgehog, VEGF or KLF2 (Stainier 2001; Lawson, Vogel et al. 2002). Zebrafish 

embryos are not dependent on oxygenation via blood circulation up to 5dpf as they are 

able to obtain sufficient amounts of oxygen via simple diffusion. This makes them very 

useful for studying the role of blood flow as a haemodynamic force on endothelial 

physiology, vasculogenesis and angiogenesis (Pelster and Burggren 1996; Chico, 

Ingham et al. 2008).  

Improvements in techniques used to create stable transgenic lines (Bussmann and 

Schulte-Merker 2011) enable creation of multiple zebrafish transgenic lines that allow 

in vivo localization of fluorescent reporters labelling cell types and tissues relevant to 

cardiovascular research (Quaife, Watson et al. 2012).  

Methods of both forward and reverse genetics have been successfully employed in 

zebrafish to gain more insight into cardiovascular development. More than 100 mutants 

with abnormalities in cardiovascular system were identified by introduction of random 

mutations followed by observations for abnormal phenotypes (Chen, Haffter et al. 

1996).  

Gene function can also be studied in zebrafish using Morpholino oligonucleotides 

(MO). These are synthetic oligomers about 25bp long that bind to complementary RNA 

sequences and either block the initiation of translation or modify pre-mRNA splicing 

(GENE TOOLS). Injections of a specific MO into the fertilised zebrafish egg at very 

early stages of its development (1 to 4-cell stage) induces a specific, but temporary 

gene knockdown (MO effect wears off after 3-5 days) (Nasevicius and Ekker 2000). 

Unfortunately, MO-mediated gene knockdown has several disadvantages – incomplete 

loss of function, off-target effects and non-specific toxicity and aforementioned 
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temporary effect to mention the most important ones (Eisen and Smith 2008; Bill, 

Petzold et al. 2009). 

In recent years novel methods and techniques of site-targeted mutagenesis have been 

developed enabling generations of stable zebrafish mutant lines. Zinc Finger Nuclease 

(ZFN) engineering by context-dependent assembly (CoDA) (Sander, Dahlborg et al. 

2011), Transcription Activator-Like Effector Nucleases (TALEN) (Cermak, Doyle et al. 

2011) and most recently Clustered Regularly Interspaced Short Palindromic 

Repeats/CRISPR-associated systems (CRISPR/Cas9) (Hwang, Fu et al. 2013) are 

powerful tools for targeted zebrafish genome editing. This enables creations of 

mutations that are stable and transmitted through the germ line (Cermak, Doyle et al. 

2011; Sander, Dahlborg et al. 2011).   

High fecundity, small size, rapid embryonic development, optical clarity, existence of 

many tissue-specific transgenic lines but also aquatic environment and permeability of 

zebrafish embryonic tissues make zebrafish embryos a useful tool for high throughput 

screening for novel therapeutic  agents (Novodvorsky, Da Costa et al. 2012). Small 

molecule screens have been for example employed in a search for novel antiarrhytmics 

(Peal, Mills et al. 2011), inhibitors of intestinal lipid absorption (Clifton, Lucumi et al. 

2010) or antiangiogenic drugs (Serbedzija, Flynn et al. 1999). 

Despite above advantages zebrafish represent a non-mammalian model. Zebrafish 

genome  underwent  partial genome duplication after divergence of the teleost lineage 

during evolution (Taylor, Braasch et al. 2003), and has therefore in many cases two 

copies of a single mammalian gene. This makes the interpretation of the relevance of 

the results of single gene knockdown in zebrafish challenging (Chico, Ingham et al. 

2008). Equally, there are substantial anatomic differences between humans and 

zebrafish. The zebrafish heart is two-chambered with no pulmonary circulation. The 
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anatomy of the zebrafish embryonic aorta differs to the one of adult human, not only by 

its diameter (the diameter of zebrafish embryonic aorta is 30-50µm which is similar to 

that of an adult human arteriole – 10-150µm)  but also in the histology of both vessel 

walls. Human aorta contains a thick tunica media whereas in zebrafish a thin layer of 

mural cells forms at 72hpf (zebrafish equivalent to embryonic smooth muscle cells in 

higher vertebrates) (Chico, Ingham et al. 2008; Santoro, Pesce et al. 2009). 

1.13 Aims of my research  

My aims were to utilise the advantages of zebrafish animal model in further studies of 

klf2a functions in vascular biology. 

1.14 Hypotheses 

klf2a is expressed in embryonic zebrafish vasculature in response to blood flow 

kf2a acts as a negative regulator of vascular cxcr4a expression in zebrafish  

klf2a is involved in blood flow mediated regulation of vascular Notch signalling in 

zebrafish  

klf2a acts as a link between blood flow and excessive angiogenesis observed in vhl 

mutants 

Experiments on klf2a mutant embryos will confirm and extend the data obtained by 

MO-specific klf2a knockdown  
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1.15 Objectives 

These hypotheses were tested by completing the following experimental objectives: 

 Examine klf2a expression patterns in developing zebrafish embryos 

 Examine klf2a involvement in blood flow dependent regulation of cxcr4 expression 

in endothelium 

 Examine klf2a involvement in blood flow dependent regulation of endothelial Notch 

signalling 

 Examine klf2a involvement in blood flow dependent signalling leading to  excessive 

angiogenesis observed in vhl mutants 

 Generate a stable klf2a mutant zebrafish line 

 Establish the phenotype of the klf2a mutant line especially with regards to 

cardiovascular system 

 Compare the klf2a mutant phenotype to the data obtained by MO-mediated klf2a 

knockdown studies 
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2.1 Zebrafish husbandry 

2.1.1 Home Office regulations 

All studies performed on zebrafish were conformed to Home Office regulations and 

were carried out in accordance with project licence 40/3434 held by Dr T.J. Chico, 

project licence 40/3082 held by Dr F. van Eeden and personal licence 40/10149 held 

by myself. Zebrafish were raised in the Centre for Developmental and Biomedical 

Genetics aquaria and fed artemia nauplii (ZM SYSTEMS) by aquaria staff. Zebrafish 

were kept on a constant 14 hour on /10 hour off light cycle at 28°C. 

2.1.2 Wild type zebrafish strains 

AB wild type (AB WT) strain or Nacre wild type (Nacre WT) without neural crest-derived 

melanophores were used (Lister, Robertson et al. 1999). 

2.1.3 Mutant zebrafish lines 

Gridlock mutants are homozygous for a recessive m145 allele of the gridlock gene 

coding for a transcription factor from the Hairy/Enhancer-of-split related (Hesr) protein 

family (Zhong, Rosenberg et al. 2000). Their blood flow to the trunk is impeded by a 

localised vascular defect in the anterior trunk (Weinstein, Stemple et al. 1995). Gridlock 

embryos were a kind gift of Dr Randall Peterson from Massachusetts Institute of 

Technology, Cambridge, Massachussetts, USA.  

vhl hu2117 mutants have a nonsense mutation in the HIF1-α recognition site and were 

obtained from Hubrecht institute in Utrecht, Netherlands (van Rooijen, Voest et al. 

2009).  
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By using TALEN mutagenesis I generated 4 novel klf2a mutant alleles named 

klf2ash306, klf2ash307, klf2ash310 and klf2ash317. 

2.1.4 Transgenic reporter lines 

The Tg(CSL-venus)qmc61  represents a notch reporter line that expresses the YFP 

derivative venus driven by 12 concatemerized CSL-binding sites. This was a kind gift 

from Dr M. Gering from University of Nottingham, Nottingham, UK. 

vhl hu2117 line was crossed to Tg(fli1:eGFP) line which labelled endothelial cytoplasm 

with green fluorescence (Lawson and Weinstein 2002).  This line was obtained from 

Zebrafish International Resource Centre, University of Oregon, USA. 

klf2ash317 line was crossed to a double transgenic line  

Tg(kdrl:HRASmCherry;flk1:EGFP-nls). Tg(kdrl:HRASmCherry) labels  endothelial cell 

membranes with red fluorescence (Hogan, Bos et al. 2009) and Tg(flk1:EGFP-nls) 

labels endothelial nuclei with green fluorescence (Blum, Belting et al. 2008). These 

were a kind gift from Dr M. Affolter from University of Basel, Switzerland. klf2ash317 line 

was also crossed to Tg(CSL-venus)qmc61 and to vhl hu2117 +/ - ;Tg(fli1:eGFP) lines to 

study the effects of klf2a on various signalling cascades. 

2.2 Manipulation with zebrafish 

2.2.1 Embryo collection and storage 

To obtain clutches of embryos of mixed parentage, collection tanks consisting of an 

opaque plastic tank with a wire mesh separator and marbles were placed into adult fish 

tanks on the previous evening. For pair-mating, individual male and female adult fish 

were placed into a tank divided by a transparent plastic separator. Plastic separators 
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can be removed at a preferred time-point on the next morning to control the time when 

eggs are produced.  Eggs were removed from the plastic tank and placed in a Petri 

dish (STERILIN) with 40ml fresh E3 medium at a density of 50 eggs per dish to 

maintain adequate aeration. Fertilised eggs were incubated in E3 medium at 28˚C up 

to 5.2dpf when they were either euthanised using Tricaine (MS222) (SIGMA) and 

bleached or started on a feeding regimen under Home Office regulations.  

2.2.1.1 E3 medium 

1 litre of 10x stock concentration contains: 2.87g Nacl, 0.13g KCl, 0.48g CaCl2.2H2O, 

0.82g MgSO4.7H2O. To make 1xE3, 100ml of 10x E3 was made up to 1 litre with 

filtered water (dH2O). 3 drops of 0.5% (wt/vol) methylene blue were added in order to 

suppress mold growth. 

2.2.2 Morpholino microinjections 

Morpholinos (MOs) were custom made and purchased from GENE TOOLS and diluted 

to a stock concentration of 1mM. MOs were aliquoted and either stored at room 

temperature (RT) or at -20˚C. Before injecting, MOs which were stored at -20˚C were 

defrosted and put in a 65˚C water bath for 5 -10min to overcome potential aggregation. 

MOs were subsequently diluted with miliQ water and phenol red (enables visualisation 

of injection) to the desired concentration.  

MOs were injected into one-cell stage zebrafish embryos. Microinjection capillary tubes 

(TW100F-4 or TW120-4 by WORLD PRECISION INSTRUMENTS) were prepared on a 

micropipette puller (Model P-97 by SUTTER INSTRUMENTS). Capillary tubes were 

loaded with MOs and inserted into the micromanipulator attached to a pneumatic 

PicoPump PV 820 (WORLD PRECISION INSTRUMENTS). The end of the 

micropipette was removed by fine forceps. The exact amount of MOs injected was 
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quantified and adjusted using a graticule (PYSER-SGI) with a small drop of immersion 

oil. Selected embryos were lined up against a microscope slide and injected into the 

yolk-cell boundary under direct visualisation. Injected embryos were immediately 

placed in E3 medium and incubated at 28ºC. MOs used in this project are listed in 

Table 1. 

 

Table 1. Morpholino (MO) sequences and mechanism of action 

MO name Sequence (5`-3`) 
Amount 
injected 

Mechanism of 
action 

control MO CCTCTTACCTCAGTTACAATTTATA 2ng no target 

tnnt2 MO  CATGTTTGCTCTGATCTGACACGCA 0.8-2ng translation block 

SB klf2a MO CTCGCCTATGAAAGAAGAGAGGATT 0.5-2ng 
pre-mRNA splice 
block 

ATG klf2a 
MO 

GGACCTGTCCAGTTCATCCTTCCAC 2ng 
? (see section 
2.2.2.2) 

klf2b MO AGTGTCAAATACTTACATCCTCCCA 2.2ng 
pre-mRNA splice 
block 

 

2.2.2.1 Splice blocking klf2a morpholino (SB klf2a MO) 

The splice-blocking klf2a morpholino (further annotated as SB klf2a MO) was initially 

used by Nicoli et al. (Nicoli, Standley et al. 2010). SB klf2a MO binds to the exon 3 (E3) 

splice acceptor site of klf2a sequence with resulting inclusion of a 105bp long intron 2 

(I2) (Figure 2.1a). Primers designed around klf2a I2 (F and R-RT-PCR klf2a) amplified 

a 293bp fragment in case of a properly spliced klf2a transcript, while inclusion of I2 

resulted in a production of 398bp fragment. As shown in Figure 2.1b there was still a 

significant proportion of correctly spliced klf2a mRNA present even in embryos injected 

with the highest dose of SB klf2a MO used (2.5ng per embryo). This level of klf2a 

knockdown was however reported to be sufficient to cause a biological effect and 
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subsequent klf2a RT-qPCR demonstrated decreased levels of wild type klf2a transcript 

in SB klf2a MO injected morphants in comparison to controls (Figure 2.1c) (Nicoli, 

Standley et al. 2010).  Unfortunately, the published sequence for R-RT-PCR primer 

was incorrect. A new set of primers spanning klf2a I2 named L and R klf2a E2E3 

(Table 2) was designed (Figure 2.2a). These primers amplified a 562bp polymerase 

chain reaction (PCR) product in case of correct klf2a pre-mRNA splicing and this was 

confirmed by subsequent sequencing. Inclusion of klf2a I2 produced a 667bp fragment.  

Due to high and unpredictable levels of SB klf2a MO toxicity lower than published 

doses of SB klf2a MO had to be injected. Eventually a dose of 1.1ng of SB klf2a MO 

per embryo was established and used in subsequent experiments. Increasing levels of 

unspliced 667bp fragment were observed in embryos injected with increasing doses of 

SB klf2a MO (Figure 2.2b).  As expected, PCR on cDNA from uninjected embryos 

produced a single 562bp indicating correct and complete klf2a intron 2 splicing in 

zebrafish klf2a mRNA. PCR on genomic DNA (gDNA) extracted from identical 

uninjected controls produced a single 667bp fragment correctly indicating the presence 

of intronic sequences in zebrafish gDNA (Figure 2.2c).  
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Figure 2.1 Verification of klf2a splice-blocking morpholino, as per Nicoli,Standley 

et al. 2010 

(a) klf2a intron-exon structure with locations of primers for RT-PCR (F-RT-PCR and R-

RT-PCR) and for qPCR (F-qPCR and R-qPCR). (b) RT-PCR of a fragment spanning 

klf2a intron 2 (I2). Increasing proportion of a 399bp unspliced fragment is seen with 

increasing amounts of SB klf2a MO injected per embryo but a significantly strong 

293bp band representing correctly spliced klf2a mRNA is seen even at the highest 

amount of SB klf2a MO injected. (c) qPCR indicates decreased relative expression of 

correctly spliced klf2a in SB klf2a MO injected embryos when compared to controls. 

Adapted by permission from Macmillan Publishers Ltd: [NATURE] (Nicoli, Standley et 

al. 2010), copyright (2010). 
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Figure 2.2 Verification of klf2a splice-blocking morpholino 

(a) klf2a intron-exon structure with RT-PCR primers binding sites (L klf2a E2E3 and R 

klf2a E2E3). (b) Increasing amounts of a 667bp unspliced fragment are seen with 

increasing amounts of SB klf2a MO injected per embryo. (c) Reverse transcription is 

performed with (+RT) and without (-RT) reverse transcriptase on RNA extracted from 

uninjected embryos at 48hpf. Subsequent PCR with L and R klf2a E2E3 primers do not 

produce any product in case of mock RT (-RT) confirming the absence of genomic 

DNA contamination in cDNA samples. Abbreviations: L: Hyperladder IV (NEB), 

un.cDNA: complementary DNA from uninjected controls, RNA extracted at 48hpf, 

gen.DNA: genomic DNA extracted from wild type embryos at 48hpf, B: Blank (no 

template added to PCR reaction). (d) WT Klf2a and SB klf2a MO protein domain 

structures with indicated AA lengths and predicted molecular weights in kilodaltons 

(kDa) (free public domain http://www.bioinformatics.org/sms/prot_mw.html). 

http://www.bioinformatics.org/sms/prot_mw.html
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2.2.2.2 Translation-blocking klf2a morpholino (ATG klf2a MO) 

The second klf2a morpholino I used is designed to block initiation of klf2a mRNA 

translation by binding to a region around the translational start (further annotated as 

ATG klf2a MO). This morpholino was previously used by 2 different research groups 

(Nicoli, Standley et al. 2010; Wang, Zhang et al. 2011). Wang et al. injected 2-10ng per 

embryo. I established that a dose of 4.1ng per embryo was the highest possible dose 

to give acceptable mortality and toxicity rates - around 20-30% death rates at 24hpf 

and up to 50% of healthy looking embryos with unimpeded blood circulation. 

Surprisingly, later analysis of the ATG klf2a MO sequence showed that it does not 

target the region around the AUG translational start of klf2a mRNA as expected, but it 

targets a region 74 bases 3` downstream from the AUG translational start at the start of 

exon 2 (Figure 2.3a). According to GENE TOOLS, morpholinos targeted more than 

about 30 bases 3' to the AUG translational start site do not block translation (GENE 

TOOLS). Alternatively, there is an ‘in frame’ AUG codon in the close proximity of the 

ATG klf2a MO binding site (Figure 2.3a). The likelihood that this AUG represents an 

important alternative translational start site is low, given the fact that the first 34 amino 

acids (AA) of KLF2 protein (encoded between the original and putative alternative 

translational start) are conserved across the species (Figure 2.3b). In addition, this 

putative translational start is not present in human or mouse KLF2/Klf2 genomic 

sequence in this region. Following the discussion with GENE TOOLS,  an RT-PCR on 

RNA extracted from control MO (cont MO) and ATG klf2a MO morphants with primers 

that amplify the whole klf2a coding sequence (klf2a cds F1 and R1, see Table 2) was 

performed to detect the possibility of interference with klf2a pre-mRNA splicing. This 

revealed that ATG klf2a MO might be causing partial and complete inclusion of klf2a 

intron 1 (414bp) as shown in Figure 2.3c.  
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Figure 2.3 Verification of ATG klf2a morpholino  

(a) Schematic drawing of klf2a intron-exon and mRNA structure with RT-PCR primers 

binding sites (L and R klf2a cds). The 2 ATGs (klf2a gene) and AUGs respectively 

(klf2a mRNA) indicate the original and putative translational start sites. E1-E3: exon 1-

exon 3, I1-I2: intron 1- intron 2. ATG klf2a MO bidning site is underlined in red, the ‘in 

frame’ ATG codon is highlighted in bold. (b) Comparison of initial 34 AAs of KLF2 
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proteins across the species. Translation of the coding sequence between the two AUG 

codons in zebrafish klf2a mRNA gives a 34 AA sequence (AAs coded by E1 are in 

black, AAs coded by E2 are in blue). Comparison of first 34 AAs of KLF2 proteins 

across the species shows relatively high levels of conservation. (c) RT-PCR on cDNA 

extracted from control MO and ATG klf2a MO morphants shows the presence of two 

additional bands at approx. 1400bp and 1600bp in the case of ATG klf2a MO likely 

representing the partial and complete inclusion of 414bp intron 1 sequence. A band of 

1569bp would be expected in the case of complete intron 1 inclusion. 1155bp band in 

both cont MO and ATG klf2a MO lanes represents the correctly spliced klf2a mRNA. 

klf2a cds F and R primers that amplify the whole klf2a coding sequence (cds) were 

used. Abbreviations: L: Hyperladder II (NEB). (d) WT Klf2a and ATG klf2a MO protein 

domain structures with indicated AA lengths and predicted molecular weights in 

kilodaltons (kDa) (free public domain http://www.bioinformatics.org/sms/prot_mw.html). 
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2.2.3 Tricaine treatment for anaesthesia or temporary 

blockage of embryonic heart contractions 

Tricaine (3-amino benzoic acidethylester) was purchased in a powdered form (SIGMA). 

In order to make 500ml of stock concentration solution (4 mg/ml), the following was 

combined: 2.0 g Tricane powder, 490ml miliQ water. The solution was buffered with 1M 

Trizma base (SIGMA) (pH 10) to pH 7 and stored in the fridge (4˚C) for up to 2 weeks 

or in the freezer (-20˚C) long term. 

For anaesthesia, 4.2ml of Tricaine stock solution (4mg/ml) was added to 100ml of 

acquarium water giving a final Tricaine concentration of 0.168 mg/ml. For temporary 

blockage of embryonic heart contraction, Tricaine was diluted in E3 to a final 

concentration of 0.66mg/ml. Up to 50 embryos were put into a Petri dish with 40ml of 

E3 with Tricaine at 32hpf and were incubated under standard conditions (28ºC) until 

48hpf. This treatment reproducibly stopped erythrocyte circulation in the dorsal aortae 

(DA) of embryos within 30min. Embryos treated with this Tricaine concentration fully 

recovered circulation within 30min when put back into E3 and continued to develop 

normally beyond 5.2dpf. At 48hpf embryos were euthanised and used for RNA 

extraction or fixed for subsequent whole-mount in situ hybridisation (WISH). For AA5x 

angiogenesis experiments embryos were treated with the same Tricaine dilution 

(0.66mg/ml) in E3 medium from 46hpf until 70hpf.  

2.2.4 Dechorionation 

Wild type zebrafish embryos required for experiments before hatching (2-3dpf) 

(Kimmel, Ballard et al. 1995) were manually dechorionated under a stereomicroscope 

using a pair of Dumont #5 tweezers (WORLD PRECISION INSTRUMENTS). In mutant 
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lines or MO-injected embryos, hatching was delayed beyond this stage and these 

required manual dechorionation even at later developmental stages.  

2.2.5 Fin-clipping of adult zebrafish 

The adult zebrafish were briefly anaesthetised with Tricaine (0.168 mg/ml). The distal 

third of caudal fin was removed using fine scissors and placed into a marked tube. 

Zebrafish were immediately put into a marked tank with acquarium water.  

2.2.6 Fin-clipping of zebrafish embryos at 3dpf  

The progeny of an incross of 2 heterozygous carriers of the klf2ash317 allele had to be 

genotyped prior to protein extraction for Western blotting at 5dpf. This protocol was 

developed in our centre (Wilkinson, Elworthy et al. 2013). Anaesthetized embryos were 

placed on the dissection surface made from petri dish lined with a strip of an autoclave 

tape. The tip of the caudal fin distally to blood circulation was removed under direct 

visual control using a stereomicroscope and a micro scalpel (WORLD PRECISION 

INSTRUMENTS). Individual embryos were transferred into labelled dishes. Fin 

biopsies were transferred into 96-well plates containing 50µl methanol (SIGMA), placed 

into an open PCR block and heated at 80ºC until all methanol was evaporated. Next 

10µl TE Tween (2.9ml TE pH 8.0 + 50µl 20% Tween) was added to each well and the 

block was heated to 98°C for 10min and cooled. Finally, 5µl of proteinase K (25 mg/ml) 

(ROCHE) was added to each well and the mixture was incubated in a PCR block at 

55°C for 1 hour and at 98°C for 10min to deactivate proteinase activity. This genomic 

DNA solution was added directly into a PCR reaction (1-2µl). 
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2.2.7 Phenylthiourea (PTU) treatment to inhibit embryonic 

pigment formation 

Addition of 1-phenyl 2-thiourea (PTU) (SIGMA-ALDRICH) into the E3 medium after 

shield stage, but earlier than at 24hpf, inhibited melanin formation in the skin 

melanophores of zebrafish embryos with resulting increased transparency for vascular 

imaging. 80 mg of PTU was dissolved in 25ml of phosphate buffered saline (PBS) to 

give a stock concentration of 3.2 mg/ml. 400µl of stock concentration PTU was added 

to 10ml of E3 giving final PTU concentration 0.00128% (w/v). 

2.2.8 Microscopy 

2.2.8.1 Light Microscopy 

Visual assessment of embryos, monitoring of WISH staining and heart rate counting 

were performed using a Leica S6E stereo microscope (LEICA MICROSYSTEMS). 

Images of live embryos and WISH images were taken using a Leica M165 FC 

fluorescent stereo microscope with Leica DFC310 FX camera (both by LEICA 

MICROSYSTEMS). When imaging embryos after WISH, an external Zeiss KL1500 

LCD light source (CARL ZEISS MICROSCOPY) was used and embryos were mounted 

in 100% glycerol in a watch glass.  

2.2.8.2 Fluorescence Microscopy 

Identification of fuorescent transgenic zebrafish embryos was done using a Leica M165 

FC fluorescent stereo microscope (LEICA MICROSYSTEMS). Fluorescence 

microscopy was performed using UltraVIEW Vox spinning disc confocal microscope 

and Volocity v5.3.2 imaging software (both by PERKIN ELMER). Zebrafish embryos 

were anaesthetised with Tricaine and mounted on a cover slip in 1% low-melting point 
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agarose prior to imaging. Images were taken in 2µm slices across the region of interest 

and were then digitally processed by focal plane merging (Z stacking). Merged images 

were further analysed by using ImageJ software (version 1.45s public domain software 

http://imagej.nih.gov/ij ). 

2.3 Statistical analysis  

All statistical analysis was carried out using GraphPad Prism v5.04 software. Data 

were presented in an appropriate graphical form as mean ± standard error of the mean 

(SEM). Statistical test alongside the post-test analysis used to analyse significance is 

annotated in the individual figure. Statistical significance was annotated as follows: ns 

= non-significant, * = p<0.05, ** = p<0.01, *** = p<0.001, **** = p<0.0001. Number of 

embryos analysed was annotated by an n number.  

2.4 Molecular biology methods 

2.4.1 Primers design 

PCR primers were designed using Primer3 software (v.0.4.0. public domain software 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/). Primers used in this project are listed in 

Table 2. 

 

Table 2. List of primers 

Name Sequence 

L klf2a E2E3  ACGGACCTGTACGAGGAATG 

http://imagej.nih.gov/ij
http://bioinfo.ut.ee/primer3-0.4.0/primer3/
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R klf2a E2E3  TCTGATGAATTGACCCGTCA 

SP6 primer CCCAAGCTTGATTTAGGTGAC 

T7 primer AATACGACTCACTATAG 

klf2a cds F1 (Peter F1) GGATCCATGGCTTTGAGTGGAACG 

klf2a cds R1 (Peter R1) GAATTCCTACATATGACGTTTCAT 

klf2a TAL XcmI L1             CAGGCGACTACAGAATGCAA 

klf2a TAL XcmI R1 GCCCTCTTGTTTGACTTTGG 

TAL_R2 GGCGACGAGGTGGTCGTTGG 

SeqTALEN_5-1 CATCGCGCAATGCACTGAC 

gapdh F AGGCTTCTCACAAACGAGGA 

gapdh R GCCATCAGGTCACATACACG 

vhl F TAAGGGCTTAGCGCATGTTC 

vhl R CGAGTTAAACGCGTAGATAG 

klf2b L1 CATTAACCCTCACTAAAGGGAACGTGGACATGGCTTTACCTT 

klf2b R1 TAATACGACTCACTATAGGGATGGGAGCTTTTGGTGTACG 

klf4a L1 CATTAACCCTCACTAAAGGGAATTGATAGCATGGCACTGAGC 

klf4a R1 TAATACGACTCACTATAGGGCCTGCGGAAATCCAGAATAA 

klf4b L1 CATTAACCCTCACTAAAGGGAAACCCCGGACATGAATTATCA 

klf4b R1 TAATACGACTCACTATAGGGTGTCCGGTGTGTTTCCTGTA 

 

2.4.2 RNA extraction 

RNA was extracted either from approximately 20 to 30 pooled intact zebrafish embryos 

or from tail sections of 30 embryos. Embryos were collected in 1.5ml Eppendorf tubes 

(EPPENDORF) and washed with diethylpyrocarbonate (DEPC) – treated water (LIFE 

TECHNOLOGIES). Next, DEPC water was removed and 250µl of TRIzol (LIFE 

TECHNOLOGIES) was added and tissues immediately homogenised using a 1ml 

syringe (PLASTIPAK BD) and 25 gauge needle (MICROLANCE 3 BD). Tail sections 

that were previously put into TRIzol and snap frozen in liquid Nitrogen were defrosted 
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on ice and homogenised as described above. Subsequently 50µl of chlorophorm 

(SIGMA ALDRICH) was added to the homogenate, mixed and left at RT for 3min and 

then centrifuged at 13000rpm for 15min at 4˚C. The aqueous supernatant containing 

the RNA was carefully removed, precipitated in 85µl of isopropanol (SIGMA ALDRICH) 

and pelleted by centrifugation (13000rpm, 15min at 4˚C). Isopropanol was then 

completely removed and the RNA pellet was resuspended in 15µl of RNAse free water 

(miliQ water).  RNA was quantified by spectrophotometry (Nanodrop ND100 

spectrophotometer, THERMO FISHER SCIENTIFIC) and a sample was run on a gel 

prior to storage at -80˚C. 

2.4.3 cDNA synthesis by reverse transcription (RT) of RNA 

cDNA synthesis was performed using the VERSO cDNA Synthesis Kit (THERMO 

SCIENTIFIC). A reaction was set up as follows: 5x cDNA synthesis buffer: 4µl, dNTP 

mix: 2µl, RNA primer (anchored oligo dT): 1µl, Verso enzyme mix: 1µl, RNA template: 

1ng (1-5µl), miliQ water: up to 20µl. Reaction mix was heated to 42ºC for 30min and 

followed by a 95ºC enzyme inactivation for 2min. cDNA was quantified by 

spectrophotometry and stored at -20ºC. 

2.4.4 Real-time reverse transcription polymerase chain 

reaction (RT-qPCR) 

All reagents and equipment for RT-qPCR assays came from LIFE TECHNOLOGIES 

unless stated otherwise. TaqMan Gene Expression assays were used for cxcr4a, dll4 

(ID: Dr03428642_m1) and ef1 (Assay ID: Dr03432748_m1) which did not require prior 

primer optimisation protocols. 
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A reaction was set up as follows: 2x Mastermix: 10µl, 20x TaqMan gene expression 

assay (contains forward and reverse primers and a TaqMan probe): 1µl, cDNA sample 

(1µl = 50ng cDNA) and 8µl miliQ water to a final volume of 20µl. Serial dilutions of 

cDNA from wild type embryos (starting at 150ng) were run in duplicate for each 

TaqMan gene expression assay in order to calculate the efficiencies of TaqMan assays 

from the seven point standard curve.  

The 7900HT FAST REAL-TIME PCR System (APPLIED BIOSYSTEMS) based in the 

Core Genomic Facility, Medical School of the University of Sheffield was used to 

perform the RT-qPCR reaction in a 384-well plate.  

2.4.4.1 Analysis of RT-qPCR data 

SDS 2.3 software was used for the initial analysis of raw data in order to set an optimal 

threshold value and obtain corresponding ct values. Standard curve calculations and 

further RT-qPCR data analysis was performed using Microsoft Excel software 

(MICROSOFT) and GraphPad Prism 5.04 software. 

Efficiency of RT-qPCR assay was calculated by using the standard curve method. Next 

I used the Pfaffl method of relative quantification for calculation of fold changes of gene 

expression levels (Pfaffl 2001).  

2.4.5 klf2ash317 mutant line cDNA sequencing 

RNA from 30 pooled embryos of the F3 generation of homozygous carriers of klf2a sh317 

allele was extracted at 4dpf as described elsewhere. A set of primers named klf2a cds 

F1 and R1 that amplify the whole 1155bp long klf2a coding sequence (cds) were 

designed (Table 2). Following RNA extraction, cDNA was synthesised by RT reaction 

and klf2a cds was PCR amplified in a single step using Superscript III One-Step 

reverse transcription polymerase chain reaction (RT-PCR) kit with Platinum Taq 
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Polymerase (INVITROGEN).  A reaction was set up as follows: 2x Reaction Mix: 10µl, 

klf2a cds F1 and R1 primers (10µM): 1µl each, SuperScript III RT/Platinum Taq Mix: 

0.5µl, RNA template (c = 675ng/µl): 1µl, miliQ water up to final Volume of 20µl. This 

reaction was then put into a thermal cycler to undergo a following 3-step protocol (A-C): 

A (cDNA synthesis and pre-denaturation): one cycle of 50ºC for 30min and 94 ºC for 

2min. B (PCR amplification): 35 cycles of: 94 ºC for 2min, 56ºC for 30 seconds, 68 ºC 

for 1min. C (final extension): 68 ºC for 5min. PCR product was then purified using 

QIAquick PCR purification kit (QIAGEN). Purified PCR product was cloned into a p-

GEM T-Easy Vector (PROMEGA) using the TA cloning method. The following ligation 

reaction was set up: 2x Rapid Ligation Buffer: 5µl, p-GEM T-Easy Vector (c = 50ng/µl): 

1µl, T4 DNA ligase (3 Weiss units/µl): 1µl, PCR product (c = 182ng/µl): 0.3µl, miliQ 

water up to final Volume of 10µl. The reaction was incubated at RT for 1 hour. p-GEM 

T-Easy Vector with cloned klf2a cds was transformed into 10-beta competent E.coli 

(New England Biolabs - NEB) following the manufacturer`s protocol exactly and grown 

on selective media (Ampicillin/X-Gal) overnight at 37ºC. Next day, 23 well-separated 

white colonies were inoculated into LB broth with Ampicillin and grown overnight at 

37ºC shaking. Amplified plasmids were purified using QIAPrep SpinminiPrep kit 

(QIAGEN) and submitted for sequencing with SP6 and T7 primers (Table 2). 

2.4.6 Genomic DNA extraction  

Genomic DNA (gDNA) extraction was performed using a modified protocol for 

REDExtract-N-Amp™ Tissue PCR kit (SIGMA-ALDRICH). Residual ethanol (in case of 

resected fin tissue) or E3 medium (in case of whole embryo gDNA extraction) were 

completely removed because these interfere with the extraction process or subsequent 

PCR. 25µl of Extraction Solution and 6.25µl of Tissue Solution were added to each 

tissue sample and vortexed for 15 seconds. Tissues were subsequently incubated at 
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RT for 15min to complete the digestion process and vortexed. Next tissues were 

heated at 95°C for 3min to denature the digestion enzyme. Finally, 25µl of 

Neutralisation Solution was added per tissue sample. This solution of extracted gDNA 

can be directly added to a standard PCR mixture or can be long-term stored at -20°C. 

2.4.7 vhl hu2117 genotyping 

A 414bp region of gDNA around the site of vhl hu2117 point mutation (C/T) was PCR 

amplified with vhl F and R primers (Table 2) by setting up the following reaction mix: 

Biomix (BIOLINE): 10µl , vhl F and R primers: 0.5µl both, gDNA 4µl, miliQ water 5µl. 

For amplification, the following PCR programme was used (Table 3): 

 

Table 3. PCR programme used for vhl hu2117 genotyping  

Step  Temperature Time 

1. Initialisation  94ºC 4min 

2. Denaturation 92ºC 1min 

3. Annealing 56ºC 30sec 

4. Elongation 72ºC 40sec 

5. Cycle to step 2 – 39x   

6. Final elongation 72 ºC 10min 

7. Final hold 4 ºC hold 

 

vhl hu2117 point mutation (C/T) results in a loss of restriction site for BciVI enzyme (NEB). 

vhl PCR product was incubated with BciVI enzyme (NEB) to identify wild type, 

heterozygous and homozygous vhl hu2117 mutants. The following reaction was set up: 

vhl PCR product: 5µl, BciVI (NEB): 0.2µl, NEBuffer IV (NEB): 1.8µl, miliQ water 13µl. 

This was incubated at 37ºC overnight. The whole digest reaction (20µl) was then 
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electrophoretically separated on a 1.5% agarose gel. vhl hu2117 homozygous mutants 

were identified by the presence of a single 414bp band. vhl hu2117 heterozygous carriers 

by the presence of an undigested 414bp band as well as digested approximately 200bp 

long band. Wild type fish were identified by a complete BciVI (NEB) digest resulting in 

the presence of approx. 200bp bands on a gel.  

2.4.8 DNA sequencing 

DNA sequencing was performed at the Core Genomic Facility at the Medical School of 

the University of Sheffield. DNA samples were submitted at approximate 

concentrations of 50ng/µl and primers were submitted at approximate concentrations of 

10 pmol/µl. DNA sequencing data were analysed using Finch TV software, version 

1.4.0 public domain software http://www.geospiza.com/Products/finchtv.shtml . 

2.5 Measurement of cardiovascular parameters 

2.5.1 Measurement of heart rates 

Heart rates in developing zebrafish embryos depend among other factors on 

environmental temperature (Barrionuevo and Burggren 1999). Embryos were therefore 

kept in individual dishes and removed from the 28ºC incubator individually immediately 

before measurement took place. Heart beats were measured under direct visual control 

by using stereomicroscope. Beats perminute were counted for 30 seconds and then 

doubled to give beats per minute rate (bpm). 

http://www.geospiza.com/Products/finchtv.shtml
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2.5.2 Blood flow velocity analysis 

Zebrafish embryos were anesthetised with Tricaine and imaged at 10x magnification 

and at 300 frames/second using a high speed camera (OLYMPUS IX81) and Video 

Savant 4.0 digital video recording software (IO INDUSTRIES). Mounting in low melting 

point agarose was not necessary due to a short imaging time of approx.1.33 second – 

so that 400 images in .tiff format per each embryo were recorded. A region of DA 

around cloaca was arbitrarily chosen as a site for measuring erythrocyte velocities due 

to its easy anatomical location. Images were analysed using ImageJ software in order 

to obtain a kymograph with lines representing movements of individual erythrocytes in 

real time. When a rectangle was drawn across a particular line, the width of such 

rectangle represented the distance that particular erythrocyte travelled and the height 

of a rectangle represented the time in which this distance was travelled. Knowing the 

ratios of pixel/µm (0.8 pixel/µm or 1.25µm/pixel in 10x magnification), pixel/frame (1:1 

because each rectangle drawn over the aorta will be 1 pixel high) and knowing the rate 

of imaging (300 frames/second), the velocity (v) was calculated by using a formula 

v=distance/time [µm/sec]. Velocity calculated in such way represented an average 

erythrocyte velocity per single cardiac cycle. If this velocity exceeded certain value so 

that a particular kymograph is not able to capture the movement of a single erythrocyte 

throughout one complete cardiac cycle, erythrocyte velocity was calculated by using 

CORRELATOR software (custom made software by Scott Reeve). Kymograph files 

were imported into the CORRELATOR which calculates instantaneous erythrocyte 

velocities throughout the whole cardiac cycle for each embryo. An average erythrocyte 

velocity per single cardiac cycle was now calculated by averaging all instantaneous 

velocities measured in that particular cardiac cycle. This value therefore corresponded 

to an average erythrocyte velocity calculated in ImageJ. Additionally, when cardiac 

cycles of all embryos from the same treatment group were put in phase average 
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instantaneous erythrocyte velocities for each frame were calculated and plotted as a 

single velocity curve. 

2.5.3 Digital motion analysis 

Zebrafish embryo angiograms and images of zebrafish embryonic hearts were 

constructed by using particle imaging velocimetry (PIV) software DaVIS (LAVISION). 

Angiograms were then imported into ImageJ software and further analysed. 

2.5.4 Calculations of retrograde flow fraction (RFF)  

RFF calculations were performed following a protocol published by Vermot et. al 

(Vermot, Forouhar et al. 2009). Embryos were imaged on Leica DFC310 FX camera 

(LEICA MICROSYSTEMS) at 300fps and angiograms were constructed using ImageJ 

software. Angiograms were analysed frame by frame and erythrocyte flow direction in 

the AV canal between embryonic atrium and ventricle was recorded per each frame. 

Anterograde flow represented a flow direction from atrium to ventricle. Retrograde flow 

represented an erythrocyte flow from ventricle back to atrium. No erythrocyte 

movement in particular frame was annotated by 0. RFF was calculated as the number 

of frames in which the direction of flow was retrograde divided by a total number of 

frames per single cardiac cycle.  

2.5.5 Endothelial nuclei quantification 

Confocal extended images of a Tg(kdrl:HRASmCherry;flk1:EGFP-nls) reporter line in 

various genetic backgrounds were used for endothelial nuclei quantifications as an 

indication of the number of endothelial cells. Endothelial nuclei number was counted 

manually in a 3 somite region in the middle of the trunk (dorsally of cloaca) including 4 
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ISVs and a corresponding region of dorsal longitudinal anastomotic vessel (DLAV). 

Endothelial nuclei of DA were not considered.  

2.5.6 Measurements of mean fluorescence in 

Tg(CSL:venus)qmc61 zebrafish line  

Zebrafish embryos at 2 and 3dpf were mounted laterally in 1% low-melting point 

agarose on a cover slip. A trunk section around the cloaca was chosen for imaging due 

to easy anatomical location. Embryos were imaged on confocal microscope as detailed 

elsewhere. Merged images were analysed using ImageJ software. Fluorescence was 

measured in the DA by drawing a line across the whole image to cover the longest 

section possible. Aortic fluorescence was normalised to fluorescence of neural tube 

which was also measured across the whole image to obtain representative average 

values. This was done due to the high variability of venus fluorescence observed 

among individual embryos even when from the same pair of parents.    

2.6 Whole mount in situ hybridisation (WISH) 

2.6.1 Synthesis of klf2a riboprobe 

An expressed sequence tag (EST) clone IMAGp998A0510285Q containing full-length 

klf2a cDNA sequence (approx. 2.1 kB) in pT7T3D-PacI vector was purchased from 

IMAGENES (now LIFE SCIENCES). EST clone was stepwise amplified in selective 

media, checked with a restriction enzyme digest (EcoRI and NotI (NEB) and purified 

using QIAPrep SpinminiPrep kit and HiSpeed Plasmid Midi kit (both from QIAGEN). A 

double enzymatic digest of EST clone with XbaI and EcoRI (both NEB) resulted in a 

1144bp klf2a cDNA fragment. This was inserted into XbaI and EcoRI digested 
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Bluescript KS and subsequently used for the klf2a riboprobe synthesis. A shorter than 

full-length klf2a riboprobe was chosen to improve its tissue penetration. 

2 restriction reactions with XBaI and EcoRI (both from NEB) were carried out. First 

reaction involved 4 µg of EST clone IMAGp998A0510285Q, 4µl 10x NEBuffer 4, 0.4µl 

100x BSA, 1.5µl EcoRI, 1.5µl XbaI (all from NEB) and miliQ water up to final volume 

40µl. Second reaction involved 10 µg of Bluescript KS vector, 4µl 10x NEBuffer 4, 0.4µl 

100x BSA, 1.5µl EcoRI, 1.5µl XbaI and miliQ water up to final volume 40µl. Both 

restriction reactions were incubated for 4 hours at 37˚C and run on a 0.8% agarose gel 

made up with SYBR® Safe DNA gel stain (LIFE TECHNOLOGIES). Bands of 

appropriate sizes were cut out from the agarose gel and purified using QIAquick Gel 

Extraction Kit (QIAGEN). 

Next, the fragment containing first 1144bp of klf2a cDNA and 3kB Bluescript KS 

fragment were ligated. A 20µl ligation reaction was set up with following reagents: 50ng 

3kB Bluescript KS fragment (vector), 5ng 1.1 kB klf2a cDNA fragment (insert), 2µl 10x 

T4 DNA ligase buffer,1µl T4 DNA ligase  (both from NEB), miliQ water up to 20µl and 

incubated overnight at 16˚C. Ligated plasmid was purified using MinElute PCR 

Purification Kit (QIAGEN) and transformed into MegaX DH10B T1 Electrocomp Cells 

(INVITROGEN) as follows: 1µl of ligated plasmid was mixed with 25µl of Electrocomp 

cells (thawed on ice). This mixture was then put into a chilled 0.1cm cuvette and 

electroporated using Bio-Rad GenePulser II electroporator. Immediately afterwards 1ml 

of recovery solution (thawed to RT) was added and the solution was placed into a 

sterile Falcon tube and shaken at 225rpm for 1 hour at 37˚C. 50µl of solution was 

spread on ampicillin plate with Xgal to enable for blue/white screen and was incubated 

overnight at 37˚C. On the following morning single white colonies were picked, 

stepwise amplified in selective media and purified using QIAPrep SpinminiPrep kit and 

HiSpeed Plasmid Midi kit (both from QIAGEN). Purified Bluescript KS with 1kB klf2a 

cds fragment was stored at -20˚C. 
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Bluescript KS with 1kB klf2a cds fragment was subsequently linearized either with 

EcoRI or XbaI (both NEB) in order to obtain a template for synthesis of antisense and 

sense klf2a riboprobes, respectively. The following reactions were set up: anti-sense  

klf2a riboprobe: 1 µg of EcoRI linearized plasmid, 2µl of T7 polymerase, 2µl 10x DIG 

RNA labelling mix, 2µl 10x transcription buffer, 1µl RNase inhibitor (all reagents from 

ROCHE), and miliQ water up to final volume of 20µl. Sense  klf2a riboprobe: 1 µg of 

XbaI linearized plasmid, 2µl of T3 polymerase, 2µl 10x DIG RNA labelling mix, 2µl 10x 

transcription buffer, 1µl RNase inhibitor (all reagents from ROCHE), and miliQ water up 

to final volume of 20µl. Reactions were mixed and incubated for 2 hours at 37˚C. 2µl of 

DNase I (ROCHE) were added to each reaction and incubated at 37˚C for another 

30minutes. Transcribed riboprobes were purified by adding 10µl 7.5M ammonium 

acetate and 60µl 100% ethanol (both ice-cold) and centrifuged at 13300rpm for 15min 

at 4˚C. Pellets were washed with 100µl 70% ethanol and centrifuged at 13300rpm for 

5min. Both sense and antisense klf2a riboprobes were dissolved in 30µl miliQ water 

and 70µl formamide and stored at -80˚C. 

2.6.2 Synthesis of klf2b, klf4a and biklf/klf4b/klf17 

riboprobes  

Total embryo RNA was extracted at 48hpf. For each gene, a set of primers was 

designed that amplified approximately 1000bp PCR product. T3 promoter sequence 5` 

CATTAACCCTCACTAAAGGGAA 3` was added to 5` end of each of the forward (F) 

primers and T7 promoter sequence 5` TAATACGACTCACTATAGGG 3` was added to 

5` end of each of the reverse (R) primers (Table 2). RT-PCR and subsequent PCR 

amplification of corresponding cDNA was done in a single step using Superscript III 

One-Step RT-PCR kit with Platinum Taq Polymerase (INVITROGEN).  For each 

riboprobe 7 reactions (20µl each) were set up as follows: 2x Reaction Mix: 10µl, 
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corresponding F and R primer (10µm): 1µl each, SuperScript III RT/Platinum Taq Mix: 

0.5µl, RNA template: approx. 500ng, miliQ water up to final volume of 20µl. These 

reactions were then cycled in this 3-step gradient PCR protocol (A-C): A (cDNA 

synthesis and pre-denaturation): one cycle of 50ºC for 30min and 94 ºC for 2min. B 

(PCR amplification): 35 cycles of: 94ºC for 2min, 45-56ºC for 30 seconds, 68ºC for 

1min. C (final extension): 68 ºC for 5min. All 3 sets of primers for klf2b, klf4a and 

biklf/klf4b/klf17 amplified templates across the whole annealing temperature range and 

PCR products could be therefore merged and purified together using QIAquick PCR 

purification kit (QIAGEN). In the next step sense and antisense riboprobes were 

synthesised as described in section 2.5.1.  

Remaining riboprobes used in this project have been kindly donated by other research 

groups in expression plasmids. These plasmids were linearized by corresponding 

enzymes and riboprobes were synthesised using appropriate RNA polymerase as 

detailed in Table 4. 

 

Table 4. WISH riboprobes 

Probe  RNA 
polymerase 

Restriction 
site 

Reference 

klf2a T7 EcoRI own riboprobe 

cxcr4a T7 Not1 (Knaut, Werz et al. 2003) 

dll4   T7 SpeI (Leslie, Ariza-McNaughton et al. 2007) 

runx-1   T7 HindIII (Kalev-Zylinska, Horsfield et al. 2002) 

c-myb T7 EcoRI (Thompson, Ransom et al. 1998) 

klf2b T7 N/A own riboprobe 

klf4a T7 N/A own riboprobe 

biklf/klf2b/klf17 T7 N/A own riboprobe 
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2.6.3 WISH protocol 

WISH was performed according to the protocols from Thisse and Thisse  (Thisse and 

Thisse 2008) and from Dr Robert Wilkinson (Wilkinson 2008). 

Preparation of reagents used in this protocol is detailed in Table 5. Dechorionated 

zebrafish embryos were initially fixed in 4% (wt/vol) paraformaldehyde (PFA) solution 

(at least) overnight at 4˚C and dehydrated by incubations in successive dilutions of 

methanol (MeOH) in PBS (vol/vol): 5min in 25% MeOH, 5min in 75% MeOH and 5min 

in 100% MeOH, 100% MeOH was then changed for a fresh 100% MeOH and embryos 

were stored at -20˚C for at least overnight. 

At day 1 of the WISH protocol zebrafish embryos were rehydrated by incubations in 

successive dilutions of MeOH in PBT (vol/vol): 5min in 75% MeOH, 5min in 50% 

MeOH, 5min in 25% MeOH and 4x5min in 100% PBT. Embryos were then 

permeabilized by digestion with proteinase K (ROCHE) (15 µg/ml) diluted in PBT for 

following times depending on the age of embryos: 0min (24hpf), 15min (36hpf), 40min 

(48hpf), 80min (72hpf), 100min (4dpf) and 150min (5dpf). Proteinase K digestion was 

stopped by 2x5min rinsing with 2% glycine (SIGMA) in PBT (wt/vol) and embryos were 

re-fixed in 4% PFA for 20min. Embryos were rinsed 5x5min in PBT (shaking) then put 

into 50%PBT/50% hybridization mix+ (HM+) (vol/vol) solution for 5min and pre-

hybridized in HM+ for at least 1 hour at 65˚C. Subsequently embryos were put into 

1:200 (vol) riboprobe solution in HM+ and hybridized overnight at 65˚C. 

At day 2 riboprobe solution was removed and retained for further hybridizations (can be 

reused several times). Embryos were then washed in pre-warmed (65˚C) solutions of 

75% HM-/25% 2xSSC (vol/vol), 50% HM-/50% 2xSSC (vol/vol), 25% HM-/75% 2xSSC 

(vol/vol) and 2xSSC for 10min each wash, and then in 0.2xSSC for 4x15min. Next, 

embryos were put through washes of successive dilutions of 0.2xSSC in maleic acid 

buffer with tween 20 (0.1%) (MABT) (vol/vol) at RT on a rocking table: 5min in 75% 
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0.2xSSC/25% MABT, 5min in 50% 0.2xSSC/50% MABT, 5min in 25% 0.2xSSC/75% 

MABT and 5min in MABT. Embryos were then incubated in 2% Blocking reagent 

(ROCHE) in MABT (wt/vol) for at least 1 hour. At the end of the day 2, embryos were 

put into 1:5000 (vol) dilution of anti-digoxigenin-AP Fab fragments (ROCHE) in 2% 

Blocking reagent and incubated at 4˚C overnight on a rocking table protected from 

light. 

At day 3, antibody solution was removed and embryos washed in MABT for 8x15min 

and subsequently equilibrated with developing buffer Bcl-III for 3x5min (all washes 

done on a rocking table and protected from light). For staining embryos were put into a 

1:1 (vol/vol) solution of BM Purple (ROCHE) in Bcl-III buffer and kept protected from 

light. The level of staining was regularly checked under dissecting microscope. When 

the desired staining intensity was reached, the reaction was stopped with 3 brief 

washes with PBT. Embryos were then post-fixed in 4%PFA for 20min. When 

necessary, embryos (older than 24hpf) were bleached in bleaching solution for up to 

30min on daylight to get rid of the pigment. After a series of 4 short washes with PBT, 

embryos were stepwise put through 30%, 50% and 80% glycerol in miliQ (vol/vol) for 

long-term storage. 

 

Table 5. WISH reagents 

Reagent Description 

Phosphate buffered saline 

(PBS) 

One tablet (SIGMA) dissolved in 200ml of miliQ water (yields 

0.01M phosphate buffer, 0.0027M potassium chloride and 

0.137 M sodium chloride, pH 7.4) and then autoclaved 

1M Tris-HCl 121.1 g of Trizma base (SIGMA) in 1l of miliQ water, pH is 

then adjusted to 9.5 with hydrochloric acid (HCl) and 

autoclaved 

20xSSC 175.3 g sodium chloride (NaCl) and 88.2 g citric acid (both 

from SIGMA) dissolved in 1l miliQ water and autoclaved 

PBT add 50µl Tween20 (SIGMA) into 49.95ml PBS 
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Hybridization mix + (HM+) 5ml 99% formamide (SIGMA), 2.5ml 20xSSC, 10µl Tween20, 

92µl 1M citric acid (filter sterilized), 5µl heparin (100mg/ml) 

(SIGMA), 1ml tRNA (5mg/ml) (BOEHRINGER) and miliQ 

water up to 10ml 

Hybridization mix - (HM-) the same as HM+ but no heparin and tRNA 

Bcl-III buffer  5ml 1M Tris-HCl  (ph 9.5), 1ml 5M NaCl, 5ml 0.5M 

magnesium chloride, 50µl Tween20, miliQ up to 50ml 

Maleic acid buffer (MAB) 5.804 g maleic acid (SIGMA) and 4.383g NaCl dissolved in 

400ml miliQ water, pH adjusted to 7.5 with sodium hydroxide 

and then miliQ added up to 500ml 

 

2.7 Transcription Activator-Like Effector Nucleases 

(TALEN) mutagenesis protocol 

This protocol is based on the method and reagents published by Cermak, Doyle et 

al.(Cermak, Doyle et al. 2011) and was modified by Dr Stone Elworthy.  

Figure 2.4 shows a structure of a TALEN. The klf2a TALEN used in this project has 

been chosen as an example. Each TALEN is a heterodimer with a left (L) and right (R) 

subunit. Each subunit contains a C-terminal catalytic domain of Fok1 endonuclease 

and an N-terminal site-specific DNA binding domain. Fok1 is functional as a dimer and 

therefore L and R subunits of TALEN bind to opposing DNA strands across a spacer 

over which the Fok1 domains come together and introduce double-strand DNA breaks 

(DSBs) in the specific genomic region. DSBs are repaired mainly by non-homologous 

end joining (NHEJ) which is error-prone with resulting small insertions and deletions 

(indels). This enables creations of mutations that are stable and are transmitted 

through the germ line (Cermak, Doyle et al. 2011; Sander, Dahlborg et al. 2011).  As 

shown in Figure 2.4 DNA binding specificity of TALENs is provided by transcription 
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activator-like (TAL) effectors (Bogdanove, Schornack et al. 2010). TAL central domain 

consists of tandem, 33-35 AA repeats followed by a single truncated 20 AA repeat. A 

polymorphic pair of adjacent AAs at positions 12 and 13, the so-called repeat-variable 

di-residue (RVD) specifies the target in a way that the four most common RVDs 

preferentially bind to one of the four nucleotide bases (Figure 2.4) (Boch, Scholze et al. 

2009; Moscou and Bogdanove 2009; Cermak, Doyle et al. 2011).  

2.7.1 Choosing a TALEN target site and TALEN design 

A corresponding genomic sequence is entered into the freely accessible Old TALEN 

Targeter software at https://tale-nt.cac.cornell.edu/node/add/talen-old. Parameters are 

recommended to be set as follows: Spacer length should be 15-18bp and should be 

flanked at both ends by a T so that the final RVD for each subunit is NG (binds to T, 

see Figure 2.4). Repeat array length should be between 15 and 21.  

A target site that includes a wide spanning restriction enzyme site within the spacer is 

preferably chosen for further easy detection of mutagenesis by loss of restriction site. 

PCR primers should be designed at this stage around the TALEN target site to give a 

100bp to 300bp PCR product. A test digest with the wide-spanning restriction enzyme 

is then performed on PCR product from wild type embryonic cDNA to optimize the 

conditions of the digest. This method will be used for checking the efficiency of 

mutagenesis as well as for genotyping of individual embryos and adult fish at later 

stage. 

 

 

 

 

https://tale-nt.cac.cornell.edu/node/add/talen-old
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Figure 2.4 Structure of a TALEN 

Structure of klf2a-specific right TALEN subunit (top part of the figure) with target klf2a 

genomic sequence (bottom part of the figure) is shown. This TALEN was used in klf2a 

mutagenesis described in this thesis. Right klf2a TALEN subunit contains 15 repeat-

variable di-residues (RVDs) and left klf2a TALEN subunit contains 17 RVDs. DNA 

binding domain (in orange) consists of tandem, 33-35 AA repeats followed by a 

truncated 20 AA repeat. Primary sequence of one of the AA repeats is shown at the 

top. AAs at the position 12 and 13 (in bold) represent the repeat-variable di-residue 

(RVD) and determine the nucleotide binding specificity of the AA repeat. The four most 

common RVDs used in TALEN design are shown together with the nucleotides they 

bind to (HD → C; NI → A; NG → T; NN → G). Both right and left TALEN subunits are 

required to meet at the target site so that the Fok1 endonuclease can dimerize and 

cleave DNA as indicated by the red arrows. Abbreviations: NLS: nuclear localization 

signal. Figure after (Cermak, Doyle et al. 2011). 

 

 



81 

 

2.7.2 TALEN assembly 

TALEN assembly is done in two stages using Golden Gate Assembly (NEB) with type 

IIS restriction endonucleases BsaI or Esp3I (both NEB) that cleave outside their 

recognition sites and leave 4bp overhangs. Thus digesting and ligating of all 

constituent plasmids that are needed for a particular assembly can be done in a single 

reaction (Engler, Kandzia et al. 2008; Engler, Gruetzner et al. 2009; Cermak, Doyle et 

al. 2011). 

2.7.2.1 TALEN assembly stage 1 

At this stage the left and right TALEN subunit were each constructed in two parts 

named A and B. A part contains first 10 RVDs, B part contains remaining RVDs apart 

from the last truncated RVD which was added in stage 2. Parts A and B were 

assembled from constituent plasmids, each of which contains a specific RVD for a 

particular position in the assembly. All constituent plasmids came from the AddGene 

non-profit repository. The plasmids were labelled according to the plate key on 

http://www.addgene.org/TALeffector/goldengate/voytas/Plate1/ . 

All 4 Golden Gate reactions were assembled separately. For each A part mix 1µl each 

RVD plasmid (150ng/µl), 1µl pFusA plasmid (150ng/µl), 2µl T4 DNA ligase (NEB), 2µl 

10x T4 DNA ligase buffer (NEB),1µl BsaI, 4µl miliQ water. For each B part mix 1µl each 

RVD plasmid (150ng/µl), 1µl pFusB plasmid (150ng/µl), 2µl T4 DNA ligase, 2µl 10x T4 

DNA ligase buffer 1µl BsaI, miliQ water up to 20µl. All 4 reactions were then incubated 

for 10x (37˚C/5min + 16˚C/10min) + 50˚C/5min + 80˚C/5min. After completion 1µl of 

plasmid-safe ATP-dependent DNase + 0.3µl of 25mM ATP (both form EPICENTRE) 

were added and incubated at 37˚C for 1 hour. 

Assembly plasmids were then transformed into NEB 10-beta competent E.coli (NEB) 

following the manufacturer`s protocol exactly and grown in selective media 

http://www.addgene.org/TALeffector/goldengate/voytas/Plate1/
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(spectinomycin + Xgal) at 37˚C overnight and purified using the QIAprep Spin Miniprep 

kit (QIAGEN). 

2.7.2.2 TALEN assembly stage 2 

A and B part of each subunit were first tested with a double restriction enzyme digest 

with NheI and XBaI (both NEB). The expected band sizes were 2132bp, 1050bp and 

266bp for A plasmid and 2132bp, 266bp and 500-1100bp (depending on number of 

RVDs) for B part. 

A and B part from R and L subunit were combined together with the last truncated RVD 

and cloned into a backbone plasmid in following reaction: 4µl of each purified plasmids 

A and B, 1µl E4 plasmid (150ng/µl), 1µl pCAGT7TALEN plasmid, 2µl 10x T4 DNA 

ligase buffer,), 2µl T4 DNA ligase, 1µl Esp3I, 5µl miliQ water. Both reactions were then 

incubated for 10x (37˚C/5min+16˚C/10min) + 50˚C/5min + 80˚C/5min. 

L and R subunit plasmids were transformed into 10-beta competent E.coli (NEB) 

following the manufacturer`s protocol exactly and grown in selective media 

(carbenicillin + Xgal) at 37˚C overnight and purified using the NucleoBond® Xtra 

Midi/Maxi kit (MACHEREY-NAGEL). 

Both L and R plasmids were sent for sequencing using TAL_R2 and SeqTALEN_5-1 

primers (Table 2). L and R plasmids were also checked with a double restriction 

enzyme digest with BamHI and XbaI (NEB).  

2.7.3 Capped mRNA synthesis and injections into zebrafish 

embryos 

L and R plasmids were linearized in following reaction: 6µg of each L and R plasmid, 

30µl 10x NEB3 buffer, 3µl BSA (NEB), 2.5µl NotI, miliQ water up to 300µl. 
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Capped TALEN mRNA was synthesized from the NotI linearized plasmids using 

MessageMAX T7 ARCA-capped Message Transcription kit (EPICENTRE) following the 

manufacturer`s protocol exactly and subsequently purified using RNeasy MinElute 

Cleanup kit (QIAGEN). 

Capped TALEN mRNA was injected into one-cell stage zebrafish embryos in various 

amounts either neat or mixed with phenol red to determine the dose which gives many, 

but not all embryos free of toxic effects at 24hpf. Typical toxic effects would be death, 

dorsalisation and small heads. Thus the highest possible capped mRNA injection dose 

was established and this dose was then injected to maximise the mutagenesis rate.  

2.7.4 Mutation analysis of injected embryos 

Genomic DNA was extracted from individual embryos injected with capped TALEN 

mRNA at 3-4dpf. Somatic mutation rate induced by the TALEN was assessed by 

subsequent PCR across the target site and restriction enzyme digest with a wide 

spanning restriction enzyme. 

2.7.4.1 PCR and restriction enzyme test used in klf2a TALEN 

mutagenesis 

klf2a TAL XcmI L1 and R1 primers (Table 2) amplified a 281bp region.  Following 

reaction was set up:  klf2a TAL XcmI L1 and R1 primers (10µM): 1µl each, 2xBioMix 

(BIOLINE): 10µl, genomic DNA: 1-2µl, miliQ water: up to final volume of 20µl. PCR 

programme used in this reaction is detailed in Table 6. 

Following the PCR 0.5µl of XcmI restriction enzyme (NEB) was added into each 

reaction and reaction was incubated for 3 hours at 37ºC. 15µl of the enzymatic digest 

was then separated via agarose gel electrophoresis using a 2.5% LE agarose (LONZA) 
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gel. Detection of an uncut 281bp band showed the occurrence of site-targeted 

mutagenesis.  

 

Table 6. PCR programme used for genotyping in klf2a TALEN mutagenesis 

Step  Temperature Time 

8. Initialisation  94ºC 2min 

9. Denaturation 94ºC 20 sec 

10. Annealing 52.5ºC 20 sec 

11. Elongation 72ºC 45 sec 

12. Cycle to step 2 – 34x   

13. Final elongation 72 ºC 3min 

14. Final hold 4 ºC hold 

 

2.7.5 Screening for founder fish 

Once the injected embryos were grown up, a proportion of them had mosaic germlines 

such that some of their offspring were carried for a TALEN induced mutation. In order 

to identify such founder fish they were outcrossed and put into individual tanks. The 

progeny of this outcross was then tested using a PCR and restriction enzyme test. 

From each potential founder, 8x3 = 24 embryos at 72hpf were analysed by PCR and 

restriction enzyme digest.  Only the progeny of fish found to transmit any mutant allele 

(identified by the presence of an uncut band) were raised. 

2.7.6 Screening for F1 generation of heterozygous carriers 

The progeny of mosaic germ line founder fish included fish that are carriers of mutant 

allele. Once the F1 generation of fish reached sexual maturity (2-3 months of age), 



85 

 

they were identified by PCR and restriction enzyme digest. Larger insertions and 

deletions can be seen on the agarose gel without the need for a restriction enzyme test 

as long as primers are designed to give a small amplicon (<150bp). All fish identified to 

carry any mutation were genotyped by PCR and subsequent sequencing. Fish 

identified to carry identical mutant allele were put into a separate tank. Heterozygous 

carriers for a particular mutant allele were further outcrossed to other transgenic lines. 

Alternatively, incross of two F1 heterozygous carriers for a particular mutant allele gave 

rise to a F2 generation progeny of which 25% was homozygous carriers and 50% 

heterozygous carriers and the remaining 25% wild type. These embryos can be used 

for experiments up to 5.2dpf or can be raised. F2 generation embryos used for 

experiments will require subsequent genotyping unless the homozygous or 

heterozygous carriers exhibit an obvious easily detectable phenotype.  

2.7.7 Experiments on F2 and F3 generation of klf2a mutant 

line 

Homozygous carriers for a particular allele from F2 generation were incrossed once 

they reached sexual maturity (2-3 months of age). The progeny represented an F3 

generation which will be a maternal mutant line without any possible maternal zygotic 

contribution. Additionally, no further genotyping of such a progeny was necessary since 

100% of progeny were homozygous mutants. Another way of excluding maternal 

zygotic contribution was an incross of a female homozygous carrier for a particular 

mutant allele with a heterozygous male carrier. In this case 50% of progeny was 

maternal mutants and 50% heterozygous carriers and genotyping was necessary. 
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2.8 Klf2a protein analysis 

2.8.1 Western blot analysis 

Protein was extracted from previously genotyped zebrafish embryos at 5dpf (4 

embryos per group) using RIPA lysis buffer (SIGMA-ALDRICH) with added Halt 

Protease and Phosphatase inhibitor cocktail (THERMO SCIENTIFIC). Embryos were 

homogenised using Eppendorf pestle (SIGMA-ALDRICH) and left on ice for 30min. 

Lysate was centrifuged at 14000rpm for 10min at 4ºC and the resulting supernatant 

was separated and protein amounts quantified using a standard Bradford assay. 

Protein samples were then mixed with 1M dithiothreitol (DTT) (SIGMA-ALDRICH) and 

NuPAGE LDS Sample Buffer (LIFE TECHNOLOGIES) heated to 95ºC for 5min and 

loaded onto a NuPAGE NOVEX 4-12% Bis-Tris gel (LIFE TECHNOLOGIES). After the 

electrophoretic separation, proteins were transferred to Immobilon-P PVDF transfer 

membranes (MILLIPORE) using the Xcell II Blot Module (LIFE TECHNOLOGIES). 

After blocking with 5% non-fat milk for 1 hour at RT, transfer membranes were 

incubated with rabbit anti-mouse Klf2a polyclonal antibody (1:500) (MILLIPORE) which 

use on zebrafish was previously published (Wang, Zhang et al. 2011) or with 

antibodies against housekeeper genes – either with a rabbit anti-human 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) monoclonal antibody (1:1000) 

(CELL SIGNALLING) or a rabbit anti-human β-actin antibody (1:10000) (CELL 

SIGNALLING) overnight. Membranes were washed in TBSTw (Tris buffer saline plus 

Tween 20: 136,8mM NaCl, 24.8mM Tris, 0.1% Tween 20 (vol/vol) (all from SIGMA), pH 

7.6) for 3x5min on a rocker and then incubated with a secondary antibody (goat anti-

rabbit polyclonal antibody with conjugated horseradish peroxidase (HRP), 1:1000) 

(DAKO) for 45min on a rocker. After thorough washing of the membranes, immobilised 
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proteins were detected by the EZ-ECL Chemiluminiscence Detection Kit (BIOLOGICAL 

INDUSTRIES). 

2.8.2 Klf2a protein immunoprecipitation (IP)  

Protein extract from approximately 130 Nacre WT 5dpf old zebrafish embryos was 

used for Klf2a protein immunoprecipitation in order to detect the Klf2a protein via 

following MS. Protein concentration in the lysate was estimated by a standard Bradford 

assay to be 3.37 µg/µl . A total volume of 890µl of this lysate was used, giving the total 

amount of protein to be 3 mg. In parallel, the same amount of lysate was used for a 

control Immunoglobulin G (IgG) IP. Following the overnight incubation of the lysate with 

30µl of neat rabbit anti-mouse Klf2a polyclonal antibody (MILLIPORE) or with 7.5µl of 

non-specific Normal rabbit IgG antibody (CELL SIGNALLING), IP samples were 

incubated with 60µl Protein G-coupled Sepharose beads (produced locally in the 

centre) 50% slurry mixed with RIPA lysis buffer (SIGMA-ALDRICH) for 60min at 4ºC on 

a rotator. IP samples were then washed in RIPA lysis buffer (SIGMA-ALDRICH) and 

centrifuged at 14000rpm for 1min. IP supernatants from both samples were carefully 

removed and kept for further analysis. Remaining IP precipitates were mixed with 30µl 

of 2x SDS sample buffer (LIFE TECHNOLOGIES) with 100µM DTT (SIGMA-ALDRICH) 

and boiled at 100ºC for 5min. Samples were centrifuged at 14000rpm for 30 seconds 

and supernatants with eluted Klf2a protein were removed. These samples, together 

with IP supernatants were run on a Klf2a Western blot to check for the correct 

precipitation of Klf2a and IgG proteins. IP protein samples were stored at -20ºC before 

they were used for the Mass Spectometry (MS).  
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2.8.3 Mass Spectometry 

Protein samples were extracted and electrophoretically separated on a polyacrylamide 

gel in parallel to Western blot as described in the Western blot section. Protein bands 

were then visualised using SimplyBlue Safe Stain (LIFE TECHNOLOGIES). Bands 

identified to contain proteins of interest (according to their molecular weight) were cut 

out from the gel in a laminar fume hood using a clean scalpel blade (WORLD 

PRECISION INSTRUMENTS), put into siliconized Eppendorf tubes (EPPENDORF) 

and de-stained. Following the reduction and alkylation of proteins, gel pieces were 

washed and dried in a vacuum concentrator (H.SAUR). Proteins embedded in the gel 

were then subjected to an overnight digest with Chymotrypsin (PROMEGA). Digested 

peptides were extracted from the gel and slowly dried down (overnight at 37ºC) in the 

vacuum concentrator. Such samples were submitted for MS. MS and subsequent MS 

data analysis was performed by Dr Richard Beniston at the Biomedical Mass 

Spectometry Facility (biOMICS) of the University of Sheffield using the Orbitrap Elite 

mass spectrometer and the Proteome Discoverer software (both from THERMO 

SCIENTIFIC) . 
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Chapter 3                                

klf2a expression patterns and 

morpholino - mediated klf2a 

knockdown experiments 
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3.1 Introduction 

Spatial and temporal patterns of klf2a expression in developing zebrafish embryos from 

earliest stages up to 48hpf have been previously studied using WISH protocols (Oates, 

Pratt et al. 2001; Kotkamp, Mossner et al. 2014). Some scattered data on klf2a 

expression patterns at later stages come from other groups (Parmar, Larman et al. 

2006; Vermot, Forouhar et al. 2009; Nicoli, Standley et al. 2010; Wang, Zhang et al. 

2011), but a thorough analysis of klf2a expression patterns beyond 48hpf has not been 

available so far. Endothelial early expression of klf2a in zebrafish vasculature has been 

shown to be blood flow dependent however (Parmar, Larman et al. 2006; Nicoli, 

Standley et al. 2010; Wang, Zhang et al. 2011). I therefore went on to examine klf2a 

expression patterns in zebrafish embryos up to 5dpf and sought to confirm that klf2a 

endothelial expression is blood flow dependent by using several ways to interefere with 

embryonic blood flow.  

Methods of reverse genetics used in klf2a studies in zebrafish have relied exclusively 

on morpholino-mediated klf2a knockdown so far. I therefore started my klf2a studies by 

using previously published klf2a morpholinos (Vermot, Forouhar et al. 2009; Nicoli, 

Standley et al. 2010; Wang, Zhang et al. 2011). Our research group have previously 

shown that several endothelial factors and signalling cascades such as cxcr4a and 

Notch signalling are downregulated by blood flow (Packham, Gray et al. 2009; Watson, 

Novodvorsky et al. 2013). I hypothesised that klf2a as one of the major endothelial 

mechanosensitive transcription factors might play a role in these processes.  
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3.2 Results  

3.2.1 klf2a expression patterns in developing zebrafish 

embryos 

I de novo synthesised a klf2a ribopobe in order to study klf2a expression patterns in 

developing zebrafish embryos. As shown in Figure 3.1, at 24hpf klf2a expression is 

present in the cloaca, in cells lateral to the most posterior notochord and faint signal 

becomes detectable in pronephric ducts, but no expression is detected in axial vessels. 

From 36hpf onwards klf2a becomes detectable in the heart and in the vasculature - 

mainly in ISVs but also in DA, caudal vein (CV) and posterior cardinal vein (PCV) and 

head vessels (Figure 3.1). This corresponds with the fact zebrafish embryos develop a 

contracting heart and therefore blood circulation at approximately 24-26hpf (Kimmel, 

Ballard et al. 1995). At 48hpf vascular expression becomes much stronger and appears 

also in the DLAV. From 48hpf onwards klf2a mRNA becomes also expressed in 

pectoral fins (Figure 3.1). The expression patterns from 24 to 48hpf therefore 

correspond to previously published data (Oates, Pratt et al. 2001; Vermot, Forouhar et 

al. 2009; Wang, Zhang et al. 2011). At 72hpf klf2a mRNA becomes detectable in trunk 

vasculature (DA, ISVs, DLAV, CV, PCV) and also in subintestinal veins (Figure 3.2). 

klf2a continues to be expressed in the heart region, pectoral fin, cloaca and cells lateral 

to the most posterior notochord (Figure 3.2). At 72hpf klf2a becomes also expressed in 

neuromasts. Neuromasts form a lateral line sensory organ located within the skin 

epithelium that is stimulated by local water vibrations (Raible and Kruse 2000). From 

4dpf onwards vascular klf2a mRNA signal becomes significantly reduced (Figure 3.2). 

At 4dpf klf2a expression in the heart region, pectoral fins, neuromasts and cells lateral 

to the most posterior notochord becomes weaker, but remains strongly expressed in 

the cloaca. Strong klf2a mRNA signal from cloaca is present at 5dpf as well, but klf2a 



92 

 

expression in the heart and in cells lateral to the most posterior notochord is almost lost 

at this stage (Figure 3.2). klf2a mRNA signal becomes also detectable in the 

developing hepatic portal vein (green arrow in Figure 3.2, image of 5dpf old embryo).  

Next I performed cross sections on AB WT zebrafish embryos following klf2a WISH at 

48hpf. This was done to prove that the vascular staining pattern of klf2a WISH 

described above really represents klf2a mRNA expression in endothelial cells. These 

cross sections clearly demonstrate klf2a expression in the DA, parachordal vessel, 

ISVs and DLAV at several anatomical locations (Figure 3.3). 
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Figure 3.1 klf2a expression patterns in AB WT embryos at 24 to 48hpf.  

klf2a antisense riboprobe was used to visualise klf2a expression patterns. klf2a sense 

riboprobe wasused as a negative control. Red arrow points at trunk vasculature, black 

arrow points at cells lateral to the most posterior notochord, thick black arrow points at 

pronephric ducts, black arrow points at cells lateral to the most posterior notochord, 

black arrowhead points at the heart region, grey arrowhead points at the cloaca. 

Numbers in top right corners indicate number of embryos with identical staining 

patterns out of total number of embryos examined. Scale bar = 500µm. 
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Figure 3.2 klf2a expression patterns in AB WT embryos at 3 to 5dpf.  

klf2a antisense riboprobe was used to visualise klf2a expression patterns. klf2a sense 

riboprobe was used as a negative control. Red arrow points at trunk vasculature, green 

arrow points at subintestinal veins (3dpf) and hepatic portal vein (5dpf), black arrow 

points at cells lateral to the most posterior notochord. Thick black arrow points at 

pronephric ducts, black arrow points at cells lateral to the most posterior notochord, 

black arrowhead points at the heart region, grey arrowhead points at cloaca and white 

arrowhead points at neuromasts. Numbers in top right corners indicate number of 

embryos with identical staining patterns out of total number of embryos examined. 

Scale bar = 500µm. 
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Figure 3.3 Cross sections of an AB WT zebrafish embryo at 48hpf after klf2a 

WISH.  

Red lines indicate anatomical positions of sections 1 to 5.  Red arrow points at dorsal 

aorta (DA) black arrow points at parachordal vessel, black arrowhead points at one of 

the intersegmental vessels (ISVs) and dotted black arrow points at dorsal longitudinal 

anastomotic vessel (DLAV). On the cross section images dorsal is up and ventral is 

down as indicated by the arrows in top left corner. Scale bar = 500µm (top panel) or 

100µm (bottom panel). 
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3.2.2 klf2a vascular expression is blood flow dependent 

Next I wanted to confirm that endothelial klf2a expression in developing zebrafish 

embryos is blood flow dependent. I performed 3 experiments in which blood flow in 

trunk vasculature is either permanently or temporarily hindered. I performed klf2a 

WISH at 48hpf on these embryos alongside a batch of wild type embryos at the same 

developmental stage. 48hpf time point was chosen because klf2a vascular expression 

in a wild type embryo is strongest at this stage.  

Initially, I used gridlock mutants with proximal occlusion of the dorsal aorta. These 

mutants experience no blood flow distal to the occlusion until collateral vessels form 

and bypass the occlusion (up to 80% of embryos develop collaterals by 5dpf) (Zhong, 

Rosenberg et al. 2000; Gray, Packham et al. 2007). As shown in Figure 3.4, klf2a 

vascular expression in gridlock mutants is completely abolished whilst klf2a expression 

in the heart, in pectoral fins, in the cloaca and the cells lateral to the most posterior 

notochord remains unchanged.  

Secondly I used tnnt2 morphants which experience no cardiac contraction and 

therefore have no flow due to blockage of expression of one of the key elements of 

cardiac contractile apparatus troponin t2 (tnnt2) by a morpholino (Stainier, Fouquet et 

al. 1996). klf2a vascular expression in tnnt2 MO morphants is significantly decreased 

(Figure 3.4) with preserved klf2a expression in the heart, in pectoral fins, in the cloaca 

and the cells lateral to the most posterior notochord.  

Lastly, I temporarily stopped cardiac contraction with local anaesthetic Tricaine from 

32hpf onwards. These embryos experienced blood flow from its onset at 24-26hpf until 

32hpf, but Tricaine treatment resulted in significantly reduced klf2a vascular expression 

at 48hpf (Figure 3.4). Interestingly Tricaine treatment also significantly reduced klf2a 

expression in the heart and in the cells lateral to the most posterior notochord. klf2a 

expression in pectoral fins and in the cloaca remained unchanged (Figure 3.4).  
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Figure 3.4 klf2a vascular expression is blood flow dependent.  

klf2a is expressed in zebrafish embryonic vasculature of a WT embryo at 48hpf. 

Cessation of blood flow in the truncal vasculature by an occlusion of proximal aorta in 

the gridlock mutants (indicated by a green arrow) results in a complete loss of klf2a 

vascular expression distally to the occlusion. Blockage of embryonic heart contractions 

by tnnt2 MO results in significantly decreased klf2a vascular expression. 

Pharmacological inhibition of heart contractions by Tricaine from 32 to 48hpf results in 

significantly decreased klf2a vascular expression. Interestingly Tricaine also reduces 

klf2a expression in the heart region and in the cells lateral to the most posterior 

notochord. Red arrow points at truncal vasculature, black arrow points at the cells 

lateral to most posterior notochord, white arrow points at pectoral fins, black arrowhead 

points at the heart region and white arrowhead points at cloaca. Numbers in top right 

corners indicate the number of embryos with identical staining pattern out of all 

embryos examined. klf2a riboprobe used. Scale bar = 500µm. 
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3.2.2.1 SB klf2a MO and ATG klf2a MO do not impair cardiac 

performance of zebrafish embryos at 48hpf 

Heart rates and blood flow velocities in DA were measured in morphants injected with 

SB klf2a MO and ATG klf2a MO compared to cont MO injected embryos at 48hpf prior 

to their experimental use. As shown in Figure 3.5, SB klf2a MO and ATG klf2a MO 

injected at doses mentioned in Table 1 (Chapter 2: Materials and Methods) do not 

cause any significant impairment of heart rates or blood flow velocities in DA at 48hpf 

when compared to controls. Additionally, all SB klf2a MO, ATG klf2a MO and cont MO 

morphants that were used in experiments described in this thesis were checked for the 

presence of functional blood circulation under dissecting microscope. 
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Figure 3.5 Comparison of heart rates and blood flow velocities of cont MO, SB 

klf2a MO and ATG klf2a MO morphants at 48hpf 

(a) There are no significant differences in heart rates between the cont MO, SB klf2a 

MO and ATG klf2a MO morphants at 48hpf. (b) Instantaneous blood flow velocities 

were measured throughout a single cardiac cycle individually in altogether 25 embryos 

from each group. These values were then averaged and plotted on a graph as a single 

velocity curve. Velocity curves of cont MO, SB klf2a MO and ATG klf2a MO morphants 

are almost identical at 48hpf. (c) Bar graph shows an average velocity from all 

measured instantaneous blood flow velocities during a single cardiac cycle for cont 

MO, SB klf2a MO and ATG klf2a MO morphants. No statistically significant differences 

in average blood flow velocities could be detected at 48hpf. Summary of 3 independent 

experiments. In total 25 embryos were examined per group. 
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3.2.3 cxcr4a vascular expression is upregulated in a 

proportion of SB klf2a MO and ATG klf2a MO injected 

morphants at 48hpf  

Our group previously showed that at 36hpf cxcr4a is expressed in zebrafish embryonic 

vasculature at similar levels in both control MO and tnnt2 MO morphants. Later on 

cxcr4a is rapidly downregulated in the control group whereas cxcr4a continues to be 

expressed in the vasculature in the absence of blood flow up to 48hpf and beyond and 

mediates collateral vessel formation (Packham, Gray et al. 2009). The exact 

mechanism by which endothelial cells sense blood flow as mechanical force leading to 

downregulation of cxcr4a expression after 36hpf remains unclear. I hypothesised that 

the flow dependent regulation of cxcr4a expression in endothelium could be mediated 

via klf2a. 

In order to test this hypothesis I performed WISH for cxcr4a in SB klf2a MO and ATG 

klf2a MO morphants at 48hpf. As shown in Figure 3.6, a proportion of both SB klf2a 

MO and ATG klf2a MO injected embryos showed increased vascular presence of 

cxcr4a up to the levels observed in tnnt2 MO morphants that do not experience any 

blood flow. WISH experiments were repeated several times with reproducible results 

and similar proportions of SB klf2a MO and ATG klf2a MO morphants showing 

increased vascular cxcr4a expression were detected each time.  
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Figure 3.6 cxcr4a vascular expression is upregulated in a proportion of SB klf2a 

MO and ATG klf2a MO morphants at 48hpf. 

Vascular expression of cxcr4a is downregulated in control MO morphants (white arrow) 

at 48hpf but remains highly expressed in tnnt2 MO morphants (red arrow). SB klf2a 

MO and ATG klf2a MO morphants exhibit various levels of increased cxcr4a 

expression when compared to controls (red arrows). Numbers in bottom left corner 

indicate the number of embryos with identical staining patterns out of total number of 

embryos examined. Representative images from a total of 4 (cont MO, tnnt2 MO, SB 

klf2a MO) or 2 (ATG klf2a MO) independent experiments are shown. Scale bar = 

500µm. 
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3.2.3.1 RT-qPCR data do not show any significant increase in 

relative cxcr4a expression in SB klf2a MO and ATG klf2a 

MO morphants at 48hpf  

I used RT-qPCR performed on whole-embryo cDNA to quantify the observed 

upregulation of cxcr4a vascular expression in the proportion of SB klf2a MO and ATG 

klf2a MO morphants. As expected, cxcr4a expression was upregulated in tnnt2 MO 

morphants by approximately 2.5-fold thus representing a positive control (Figure 3.7)  

Uninjected embryos were also examined for relative cxcr4a expression to demonstrate 

that injections of control MO have no real effect on cxcr4a expression levels (Figure 

3.7). Surprisingly, neither SB klf2a MO nor ATG klf2a MO morphants showed any 

significant increase of relative cxcr4a expression when compared to controls (Figure 

3.7). 
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Figure 3.7 RT-qPCR from whole embryonic cDNA comparing relative expression 

of cxcr4a at 48hpf. 

RT-qPCR performed in duplicate on 3 independent experiments (3 separate pools of 

20 embryos). Elongation factor 1 (ef1) used as a reference gene. cxcr4a expression in 

control MO morphants taken as a reference sample (control).  Pfaffl method of relative 

quantification used. Error bars represent mean ± SEM. **** = p<0.0001. 
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3.2.4 Does klf2a play a role in flow dependent regulation of 

Notch signalling in embryonic zebrafish vasculature? 

Our group has shown that blood flow suppresses vascular Notch signalling in 

developing zebrafish embryos via suppressing vascular dll4 expression.  Cessation of 

blood flow in zebrafish embryos caused increased vascular dll4 expression resulting in 

increased activity of Notch signalling pathway at 48hpf and 72hpf. (Watson, 

Novodvorsky et al. 2013).  

This was for the first time that blood flow as a mechanical force has been found to alter 

Notch signalling in vivo and I aimed to find out whether klf2a plays a role in this 

process. I performed a WISH for dll4 on SB klf2a MO and ATG klf2a MO morphants at 

48hpf (Figure 3.8). As expected, increased vascular dll4 expression was detected in 

tnnt2 MO morphants confirming our previously published data. Interestingly, increased 

vascular dll4 expression was noticed also in a large proportion of SB klf2a MO and 

ATG klf2a MO morphants (Figure 3.8). This suggests that the flow-mediated regulation 

of endothelial Notch signalling in embryonic zebrafish vasculature might be mediated 

by klf2a.  
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Figure 3.8 dll4 vascular expression is upregulated in a proportion of SB klf2a MO 

and ATG klf2a MO morphants at 48hpf. 

dll4 vascular expression is downregulated at 48hpf in the presence of blood flow (white 

arrow) as shown in the control MO injected embryos, but increases in the absence of 

blood flow - tnnt2 MO morphants (red arrow). A significant proportion of SB klf2a MO 

and ATG klf2a MO morphants exhibit increased vascular dll4 expression when 

compared to controls (red arrows). Numbers in left bottom corners indicate the number 

of embryos with identical staining patterns out of total number of embryos examined. 

Representative images from 3 independent experiments are shown. Scale bar = 

500µm. 
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3.2.4.1 klf2a MO morphants do not exhibit increased CSL:venus 

fluorescence in DA at 48hpf and 72hpf 

I wanted to examine whether the increased dll4 expression in the vasculature of SB 

klf2a MO morphants at 48hpf resulted in increased vascular Notch activity. I therefore 

examined the activity of CSL in SB klf2a MO morphants using the 

Tg(CSL:venus)qmc61 line that expresses the yellow fluorescent protein derivative 

venus under the control of CSL. Tg(CSL:venus)qmc61 zebrafish adults were 

outcrossed to wild type zebrafish line. Progeny of such an outcross were then injected 

with control MO or SB klf2a MO. Embryos coming from a particular pair of parents were 

kept separate and were screened for fluorescence at 48hpf. The fact that around 50% 

of the progeny displayed fluorescence (the remaining 50% showed no fluorescence) 

was considered as a confirmation that the fluorescent fish contained only a single copy 

of the transgene. Mean intensity of venus fluorescence in dorsal wall of DA was 

measured at 2dpf and 3dpf as detailed in Section 2.5.6. As shown in Figure 3.9, SB 

klf2a MO morphants do not show any significant difference in aortic venus fluorescence 

at this stages when compared to controls. Increased venus fluorescence could be 

confirmed in tnnt2 MO morphants without flow at 3dpf confirming previously published 

data (Watson, Novodvorsky et al. 2013) (data not shown).  
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Figure 3.9 Comparison of the mean venus fluorescence in dorsal wall of DA 

between SB klf2a MO and cont MO morphants at 48hpf and 72hpf. 

(a) Representative images show a region around the cloaca which was chosen for the 

fluorescence measurements. White arrows point at dorsal aortae and white 

arrowheads point at neural tubes. Scale bar = 190µm (48hpf) or 80µm (72hpf). (b)-(c) 

Quantification of venus fluorescence in dorsal wall of DA normalised to the 

fluorescence of neural tube. SB klf2a MO morphants do not show any significant 

difference in this parameter when compared to controls at 48hpf or 72hpf. tnnt2 MO 

morphants exhibit increased mean venus fluorescence at 72hpf in keeping with 

previously published data. Unpaired t-test (48hpf) or 1way ANOVA with Bonferroni post 

test used (72hpf). Error bars represent mean ± SEM. **** = p<0.0001. 
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3.3 Discussion 

I reproduced and extended the studies on spatial and temporal klf2a expression 

patterns in developing zebrafish embryos especially beyond 72hpf. I achieved this by 

performing a series of whole mount in situ hybridisations (WISH) using a de novo 

synthesized klf2a riboprobe. For the first time I detected klf2a expression in 

subintestinal veins and hepatic portal vein as well as in neuromast cells forming the 

lateral line organ. I reproducibly detected klf2a vascular expression from 36hpf until 

72hpf. It is very likely that klf2a is expressed in vasculature also in later developmental 

stages, but the riboprobe penetration into zebrafish tissues beyond 48hpf has been 

reported to be problematic and represents one of the main limitations of the WISH 

technique (Thisse and Thisse 2008). The rather strong vascular signal I was able to 

detect at 72hpf is a result of optimised WISH protocol with extended proteinase K 

treatments. 

By performing cross sections on a fixed 48hpf embryo following a klf2a WISH I proved 

that the klf2a mRNA signal from the trunk is truly vascular in origin. I was able to 

localise not only the major embryonic trunk vessels such as DA or DLAV, but also 

vessels such as ISVs and parachordal vessels. 

Next I confirmed that klf2a expression in endothelial cells of developing zebrafish 

embryos is blood flow dependent by showing the loss of klf2a vascular expression in 

three different zebrafish models of hindered blood flow. Initally I used gridlock mutants 

with occlusion of the proximal DA. Secondly I achieved complete cessation of cardiac 

contractions by knocking down troponin t2 by a specific morpholino (tnnt2 MO 

morphants). Thirdly I stopped cardiac contractions pharmacologically with local 

anaesthtic Tricaine. Vascular klf2a expression was abolished or significantly reduced in 

all three cases. In gridlock mutants and tnnt2 MO morphants, klf2a expression in all 
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other anatomical locations remained unchanged. Tricaine treatment resulted in 

decreased klf2a expression in the heart region and in the cells lateral to the most 

posterior notochord. This descriptive name denotes cells within the posterior somites 

from which later posterior myotomes develop. It is currently not known what function 

klf2a has in these cells and I can equally not explain why klf2a expression diminished 

in these cells following treatment with Tricaine. In general, embryos were treated with 

the lowest possible dose of Tricaine that would visibly stop erythrocyte movements in 

the DA from 32hpf to 48hpf. Weak cardiac contractions were still present in these 

embryos. These contractions were apparently strong enough to maintain klf2a 

expression in the heart at a detectable level.   

For morpholino-mediated klf2a knockdown studies I used two previously published 

klf2a MOs (Vermot, Forouhar et al. 2009; Nicoli, Standley et al. 2010; Wang, Zhang et 

al. 2011). 

The splice-blocking klf2a morpholino I used (SB klf2a MO) is intended to cause an 

inclusion of intron 2 in the klf2a mRNA (Nicoli, Standley et al. 2010). In the original 

work, SB klf2a MO could only cause an incomplete knockdown even in the case of the 

highest dose of MO injected per embryo (2.5ng) as shown by the subsequent RT-PCR 

(Supplementary Figure 7 in the original work and also Figure 2.1). This level of klf2a 

knockdown was however reported to be sufficient to cause a biological effect and 

subsequent klf2a RT-qPCR demonstrated decreased levels of wild type klf2a transcript 

when compared to controls (Supplementary Figure 7 in the original work and also 

Figure 2.1) In my hands, SB klf2a MO proved to be very difficult to work with due to its 

unpredictable toxicity levels. Due to this fact, lower than previously published doses 

had to be used (1.1ng per embryo).  

Another klf2a MO I used is intended to block initiation of klf2a translation by binding to 

and around the translational start of the klf2a mRNA. On closer examination of the ATG 
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klf2a MO sequence I found out that it binds to a region 74bp 3` downstream from the 

translational start of klf2a mRNA at the 5` end of klf2a exon 2 and would therefore not 

be able to interfere with klf2a translation (GENE TOOLS). I was able to detect a 

putative alternative translational start for klf2a mRNA downstream to the ATG klf2a MO 

binding site. It is unlikely that this ATG in primary gene structure represents a true 

alternative translational start for two reasons. Firstly, the 34 AA-polypeptide coded by 

klf2a mRNA sequence between the original and putative translational starts is highly 

conserved among the species. It is therefore unlikely to be missed out by using the 

alternative translational start. Secondly, this putative translational start is not present in 

mouse or human KLF2/Klf2 genomic sequence in this region which makes the 

possibility of a simple mistake more likely. Given the above circumstances it is rather 

surprising that I could observe changes in vascular expression levels of cxcr4a and dll4 

and these changes were in keeping with my previously postulated hypotheses. This 

made me to further examine the possible mechanism of action for this morpholino. 

Given the fact that the ATG klf2a MO binds closely to the intron 1 - exon 2 splice 

junction site, I performed an RT-PCR spanning klf2a exon 1 and exon 3 to see whether 

ATG klf2a MO interferes with klf2a pre-mRNA splicing. I could indeed detect the 

presence of additional bands in ATG klf2a morphants indicating a possible partial and 

total inclusion of klf2a intron 1. Similar changes in vascular expression of cxcr4a and 

dll4 seen in SB klf2a MO and ATG klf2a MO morphants would be in keeping with these 

findings. 

In my studies I sought to distinguish between the effects of blood flow as mechanical 

force and the specific effects of klf2a as one of the main endothelial mechanosensitive 

transcription factors. It was therefore of great importance to make sure that the 

injections of both klf2a morpholinos did not cause impairment of cardiac output and 

subsequent reduction of blood flow by the mechanism of simple morpholino toxicity. I 
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confirmed that heart rates and blood flow velocities in SB klf2a MO and ATG klf2a MO 

morphants did not differ significantly when compared to the control MO morphants. 

This suggests that the observed changes in gene expression levels are not caused by 

morpholino-mediated impairment of cardiovascular performance. 

The SDF chemokine receptor CXCR4 has 2 zebrafish paralogs. One of them, cxcr4a 

was shown by our group to be negatively regulated by blood flow in the developing 

zebrafish vasculature and to contribute to collateral vessel formation (Packham, Gray 

et al. 2009). I found that a significant proportion (approximately 50%) of both SB klf2a 

MO and ATG klf2a MO morphants had increased vascular cxcr4a expression at 48hpf 

despite intact blood flow. I therefore hypothesised that klf2a could play a role as a 

negative regulator of cxcr4a in the vasculature. In this scenario, klf2a gets upregulated 

in the presence of blood flow and subsequently inhibits cxcr4a expression. In the 

absence of blood flow, the inhibitory function of klf2a diminishes and this allows for 

increased cxcr4a vascular expression and its contribution towards formation of the 

collateral vessels. Surprisingly the RT-qPCR data did not confirm a significant increase 

in relative cxcr4a expresssion in klf2a MOs morphants as it was the case in tnnt2 MO 

morphants without flow. The calculated cxcr4a TaqMan probe efficiency was 105.4% 

which is within the acceptable range (90-110%). I hypothesised that the changes in 

klf2a expression in endothelial cells are not sufficient to cause a statistically significant 

difference when cDNA from whole embryos is used as a template for RT-qPCR in the 

case of klf2a MO morphants. I therefore performed an RT-qPCR on cDNA isolated 

from trunks of zebrafish embryos. Unfortunately, I was not able to demonstrate 

significantly increased levels of relative cxcr4a expression even in the tnnt2 MO 

morphants that should represent a positive control in this experiment. A possible 

explanation in this case is a technical error, because the calculated efficiency of cxcr4a 

TaqMan probe in this case was 122.8% which is outside acceptable levels. The 
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intensity of cxcr4a signal in the vasculature of a significant proportion of SB klf2a MO 

morphants is clearly comparable to the intensity of cxcr4a signal in tnnt2 MO 

morphants (Figure 3.6). The discrepancy between the in situ data and the RT-qPCR 

data could be addressed by simply repeating the RT-qPCR from the cDNA of whole 

embryos and the cDNA isolated from the trunks of embryos. If no technical difficulties 

occured and similarly discrepant results were detected a different cxcr4a TaqMan 

probe could beused to address this issue further. At that stage of my project, I 

generated a stable klf2a mutant line and sought for a definitive answer to this 

hypothesis by performing the experiments on this mutant line.  

One potential link between klf2a and cxcr4a could be miR-150. miR-150 expression is 

known to be stimulated by KLF2 in HUVEC (Hergenreider, Heydt et al. 2012) and 

stimulates endothelial cell migration (Zhang, Liu et al. 2010). Interestingly, Cxcr4 was 

found to be downregulated by miR-150. Under the hypoxic conditions of myocardial 

infarction model in mouse, miR-150 expression is downregulated and results in an 

increase of Cxcr4 positive mononuclear cells in bone marrow as well as in peripheral 

blood (Tano, Kim et al. 2011). 

Another work that connects CXCR4 and KLF2 was performed by Uchida et al. They 

showed that Vesnarinone, a chemotherapeutic agent used in treatment of oral 

squamous cell carcinoma in humans was found to downregulate CXCR4 expression in 

several human oral cancer cell lines. Vesnarinone increases KLF2 expression and 

potentiates direct binding of KLF2 to the CXCR4 promoter (Uchida, Onoue et al. 2009). 

When I examined the effects of klf2a on Notch signalling pathway I found increased 

endothelial expression of Notch ligand dll4 in most SB klf2a MO and ATG klf2a MO 

morphants at 48hpf. The increase in dll4 expression was similar to the levels seen in 

the embryos without blood flow - tnnt2 MO morphants. Subsequent RT-qPCR on cDNA 

from the trunks of embryos unfortunately could not detect any significant increase in 
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relative dll4 expression even in the positive controls (tnnt2 MO morphants) and could 

not be therefore be interpreted. I am not sure what could be the cause of this failure 

since the technique of extracting RNA from the trunks of zebrafish embryos has been 

used successfully in our group in the past. Calculated TaqMan probe efficiencies were 

within the acceptable limits (97% for dll4 and 110% for ef1) this time. A dll4 RT-qPCR 

from whole-embryo cDNA was not performed because brain tissues contain high 

amounts of active Notch signalling throughout the embryonic development and could 

therefore interfere with the assay (Cau and Blader 2009). Again,as in the case if 

cxcr4a, a repeated RT-qPCR on cDNA from the trunks of zebrafish embryos could be 

tried to exlude other potential technical errors or different dll4 TaqMan probe could be 

used to address this discrepancy. 

For further studies of klf2a involvement in Notch signalling cascade I used a fluorescent 

transgenic reporter line Tg(CSL-venus)qmc61. This line expresses yellow fluorescent 

protein venus under direct control of the canonical Notch transcription factor CSL. I 

examined whether the increased vascular expression of the canonical Notch ligand dll4 

seen in SB klf2a MO morphants resulted in increased vascular Notch activity. This 

would be reflected by increased vascular venus fluorescence in this model. Although I 

could see a trend towards increased venus fluorescence in the SB klf2a MO morphants 

at 48hpf, this was not significant. At 3dpf this trend was reversed, but not significant 

either. Increased venus aortic fluorescence was detected in tnnt2 MO morphants at 

3dpf confirming previously published data (Watson, Novodvorsky et al. 2013). Instead 

of repeating the above experiments using klf2a morpholinos, I chose to perform these 

experiments on the klf2a mutant zebrafish line which I generated around that time.  To 

my knowledge no direct link between Notch signalling and KLF2/Klf2/klf2a has been 

established so far. 

In the next chapter I detail my generation of stable klf2a mutants to extend these 

studies. 
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Chapter 4                       

Generation of a stable klf2a 
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4.1 Introduction 

The advent of new techniques and protocols for site-targeted mutagenesis in recent 

years has made it possible to generate mutations in genes of choice. A significant 

number of mutant lines has now been generated this way, driven by the problems 

associated with morpholino use, mainly time-limited and incomplete knockdown and 

off-target effects. Generation of a stable klf2a mutant line would enable comparison 

with the data obtained by the morpholino-mediated klf2a knockdown. It would equally 

represent an excellent tool for studying the role of klf2a in vascular biology exploiting 

the advantages the zebrafish model has to offer in this field.  

4.2 Results 

4.2.1 klf2a targeted mutagenesis by Transcription 

Activator-Like Effector Nucleases (TALEN)  

The TALEN approach to genome-wide editing has been recently published and made 

available for wide laboratory use (Cermak, Doyle et al. 2011). One of the main 

advantages of TALENs when compared to CoDA ZFN protocols is the availability of 

candidate cleavage sites. Whereas a potential CoDA ZFN target site can be found only 

every 400bp in a protein coding transcript (Sander, Dahlborg et al. 2011), TALEN 

candidate cleavage sites were reported to be found on average every 35bp in 9 genes 

initially tested (Cermak, Doyle et al. 2011). A design of a klf2a-specific TALEN was 

therefore chosen as a next step towards generation of a stable klf2a mutant line. 
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4.2.1.1 klf2a TALEN design 

A detailed general protocol for TALEN mutagenesis is included in the Materials and 

Methods chapter. Here are presented the important steps and results in the klf2a 

TALEN mutagenesis. All enzymes used in this project were purchased from New 

England Biolabs (NEB). 

From the designs suggested by the TALEN targeter software, a TALEN was chosen 

that comprises of 15 RVDs in the R subunit and of 17 RVDs in the L subunit and has 

got a 19bp long spacer with a wide-spanning restriction enzyme XcmI site within it 

(Figure 4.1). This TALEN binds to a sequence in klf2a Exon 2 closer to its 5` end that 

is upstream of the three tandem zinc fingers coding sequence as indicated in Figure 

4.1. Any missense mutation in the gene region would cause a premature stop codon 

resulting in a translation of a truncated Klf2a protein without its key DNA binding motif – 

the 3 tandem zinc fingers. 

4.2.1.2 Test PCR across the klf2a TALEN target site and XcmI 

digest 

Before the actual TALEN assembly was started, a pair of PCR primers (named as klf2a 

TAL XcmI L1 and klf2a TAL XcmI R1) was designed to span a 281bp region around the 

klf2a TALEN mutagenesis target site. Genomic DNA from WT zebrafish embryos was 

used as template for the PCR. Following the PCR, a restriction enzyme digest with 

XcmI was set up. As shown in Figure 4.2, this PCR produced a single band of 

expected size and subsequent XcmI digest for 1 hour at RT resulted in complete digest 

of the PCR product leaving 2 products of 180bp and 101bp size respectively. This was 

important because this PCR and XcmI digest were to be used as a test of klf2a TALEN 

efficiency and also for further genotyping of mutant embryos and adult zebrafish 
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Figure 4.1 klf2a TALEN mutagenesis  

(a) Schematic structure of klf2a gene. Dark blue colour of the 3` end of Exon 2 and the 

whole Exon 3 highlights the coding sequence for 3 tandem C2H2 zinc-fingers which 

represent the DNA binding motif  of KLF family of transcription factors. Black arrow 

indicates the site of klf2a TALEN mutagenesis. Below, sequence of the + strand  of 

klf2a gene at the site of mutagenesis is shown with L and R klf2a TALEN subunit 

binding sites marked with red lines and XcmI restriction enzyme site of general 

structure CCANNNNNNNNNTGG (N represents any nucleotide) underlined in green. 

19bp spacer between the L and R klf2a TALEN binding sites is highlighted in bold. (b) 

AA structure of the RVDs in the klf2a TALEN of choice. RVDs determine the nucleotide 

binding specificity of each AA repeat of the array (see also Figure 2.4). 
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Figure 4.2 Test PCR across klf2a TALEN mutagenesis target site 

PCR across klf2a TALEN target site with a wild type zebrafish genomic DNA confirmed 

a single 281bp product. Subsequent XcmI digest resulted in a complete PCR product 

digest leaving 2 bands of 180bp and 101bp. Abbreviations: L: Hyperladder IV (NEB). 
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4.2.1.3 klf2a TALEN assembly and mRNA synthesis 

Following the stage 1 assembly A and B parts of L and R TALEN subunit were checked 

by a double restriction enzyme digest with NheI (NEB) and XbaI (NEB) which 

confirmed the predicted sizes of products (Figure 4.3a). Similarly, after the assembly 

stage 2, the double restriction enzyme digest with BamHI (NEB) and XBaI (NEB) was 

run alongside the NotI (NEB) linearized L and R TALEN plasmids and the correct band 

sizes were confirmed (Figure 4.3b). Additionally, sequencing confirmed the correct 

assembly of all RVDs within the expression plasmids and capped klf2a TALEN mRNA 

could be synthesized. Following the synthesis and purification the presence of klf2a 

TALEN mRNA was checked by agarose gel electrophoresis (Figure 4.3c).  

4.2.1.4 klf2a TALEN mRNA injections and mutation analysis of 

injected embryos 

The optimal injection dose of klf2a TALEN mRNA was established to be approximately 

1.5ng per embryo. Injected embryos were raised and genomic DNA from individual 

injected embryos together with DNA from uninjected littermates was extracted at 3dpf. 

PCR across the klf2a TALEN target site and subsequent XcmI restriction enzyme 

digest showed the presence of an uncut 281bp band in PCR products from klf2a 

TALEN mRNA injected embryos suggesting loss of XcmI restriction site caused by 

klf2a TALEN induced mutagenesis (Figure 4.4).  
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Figure 4.3 klf2a TALEN assembly. Control enzymatic digests and capped mRNA 

synthesis   

(a) NheI and XbaI digest of LA, LB, RA and RB parts of klf2a TALEN showed bands at 

2132bp, 1100bp and 266bp (LA and RA), at 2132bp, 550bp and 266bp (LB) and at 

2132bp, 770bp and 266bp (RB). (b) BamHI and XbaI digest of L and R klf2a TALEN 

expression plasmids showed bands at 5323bp and 2207bp (L) and bands at 5323bp 

and 2411bp (R). NotI linearization bands are a mixture of L (7530bp) and R (7743bp) 

linearized plasmids. (c) Capped klf2a TALEN mRNA visualised on an agarose gel.  
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Figure 4.4 klf2a TALEN F0 generation mutation analysis. 

klf2a TALEN mRNA injected  embryos (M1-M3) exhibit the presence of a 281bp uncut 

band (red arrows)  following a PCR across the mutagenesis site and restriction enzyme 

digest with XcmI suggesting the loss of restriction enzyme site due to klf2a TALEN 

targeted mutagenesis. PCR across the same region with subsequent XcmI digest on 

genomic DNA from control embryos (C1-C3) resulted in a complete digest and 

detection of 180bp and 101bp bands.  Genomic DNA was extracted at 3dpf. 
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4.2.1.5 Screening for potential founder fish and identification of 

4 klf2a mutant alleles 

A proportion of klf2a TALEN mRNA injected embryos (F0 generation) had mosaic 

germlines so that some of their offspring would be carriers for the klf2a TALEN induced 

mutations. Once the F0 generation reached sexual maturity (2-3 months), individual 

fish were outcrossed to Nacre WT adults. F0 generation fish that produced progeny 

were kept in individual tanks and their progeny were tested at 3dpf with a PCR and 

XcmI restriction digest. In total 29 F0 generation fish were pair-mated with Nacre WT 

out of which 20 produced progeny which was subsequently tested. Altogether 6 out of 

20 fish annotated as T1, T2, T15, T18, T20 and T27 were founders that passed the 

mutations to some of their offspring (Figure 4.5). The remaining 14 fish were 

euthanised. Undigested bands from the progeny of fish T1, T2, T15, T18, T20 and T27 

were cut out from the gel, purified and sequenced. Fish T20 and T27 transmitted an 

allele with 3bp and 6bp deletion that would not cause a frame shift and were therefore 

euthanised. Sequencing confirmed an allele with 1bp deletion in the T1 progeny, 

another 1bp deletion in progeny of T2 and T15 fish and several alleles (3bp deletion, 

14bp deletion, 1bp substitutions and other not clearly identifiable mutations) in T18 

progeny. These alleles were named: klf2ash306 and klf2ash307 carry  different 1bp 

deletions, klf2ash317 carries a 14bp deletion and klf2ash310  carries a 7bp deletion which - 

as found out later re-created the XcmI restriction enzyme site sequence preventing 

easy genotyping by PCR and XcmI restriction enzyme digest. Sequences of mutant 

alleles, translated proteins and predicted molecular weights are shown in Figure 4.6. 
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Figure 4.5 Screening for potential klf2a TALEN founder fish.  

T1-T27 klf2a TALEN F0 generation fish were outcrossed with Nacre WT fish and their 

progeny were tested for the presence of any mutant klf2a allele. Each sample well 

contains genomic DNA from 3 embryos following a genomic DNA extraction at 3dpf, 

PCR and restriction enzyme test with XcmI. Up to 3x8 i.e. 24 embryos were tested per 

fish or all embryos produced if that was less than 24. Fish T1, T2, T15, T18, T20 and 

T27 were found to pass mutant klf2a allele(s) to a proportion of their progeny as 

indicated by the presence of an uncut 281bp band in some of the wells. Abbreviations: 

L: Hyperladder IV (NEB).  
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Figure 4.6 Identification of 4 klf2a mutant alleles 

(a) Wild type klf2a gene, genetic code at the site of mutagenesis with indicated klf2a 

TALEN 19bp spacer in bold. XcmI restriction site is underlined in green. In klf2ash310 

allele a new XcmI restriction site of general structure CCANNNNNNNNNTGG was 

generated due to the 7bp deletion (b) klf2a mutant alleles identified by sequencing of 

the progeny of a klf2a TALEN F0 generation outcross with Nacre WT fish. Mutations 

are indicated by the base pairs highlighted in red or by the red and purple arrow lines in 

the wild type sequence (a). (c) Primary protein structure of Klf2a wild type and mutant 

proteins with indicated AA lengths, predicted molecular weights in kilodaltons (kDa) 

(free public domain http://www.bioinformatics.org/sms/prot_mw.html) and schematic 

drawing of protein domains. 
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4.2.1.6 Generation of klf2a TALEN mutant lines  

F0 generation founder fish T1, T2, T15 and T18 transmitting frame shift mutations were 

outcrossed to Nacre WT to generate an F1 generation of klf2a mutant fish in WT 

background without skin pigmentation that was to be used for WISH experiments.  

klf2a TALEN founder fish were also outcrossed to Tg(CSL:venus)qmc61 and 

Tg(kdrl:HRAS-mCherry;flk1:EGFP-nls) zebrafish to generate transgenic lines in klf2a 

mutant background as tools for studying the role of klf2a in vascular development. 

Once the F1 generation of fish reached sexual maturity, individual fish were genotyped 

by fin-clipping and subsequent PCR and XcmI restriction digest. All individual fish that 

were shown to be heterozygous carriers for any klf2a mutant allele (50% of the 

progeny) were also confirmed to carry a mutant klf2a allele by sequencing. This was 

absolutely necessary in the progeny of T18 fish which transmitted several mutant 

alleles some of which did not cause frame shits. An example of such genotyping is 

shown in Figure 4.7a. Heterozygous carriers for a particular klf2a allele in a particular 

genetic background were put into separate fish tanks and appropriately labelled. WT 

siblings of F1 fish were euthanised. Heterozygous F1 fish were then ready to be used 

for experiments. An incross of 2 such fish would give rise to 25% homozygous carriers, 

50% heterozygous carriers and 25% WT fish in the F2 generation. These F2 

generation fish would have to be genotyped following any experiment performed on 

them. WT siblings would represent an important negative control in experiments carried 

out on these fish. 

A proportion of F2 generation of fish were raised and genotyped when they reached 

sexual maturity. An example of such genotyping is shown in Figure 4.7b. Homozygous 

carriers for a particular allele in any given genetic background were separated from 

heterozygous carriers, put into separate fish tanks and labelled appropriately. These 
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fish were then incrossed and produced an F3 generation of mutant zebrafish embryos 

which were used in experiments. Progeny of an incross of F2 generation homozygous 

carriers for particular klf2a allele (i.e. the F3 generation) would represent a maternal 

mutant line without any possible maternal zygotic mRNA or protein contribution.  

F2 generation klf2ash317 mutant fish were outcrossed to Tg(vhl hu2117+/- ;fli1:eGFP) 

zebrafish line. Once this progeny reached sexual maturity, they were fin-clipped and 

genotyped for both klf2ash317 and vhl hu2117 alleles. Heterozygous carriers for both 

mutant alleles were kept separate and used for further experiments as detailed in 

Chapter 5. 
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Figure 4.7 Genotyping of klf2a mutant zebrafish 

Fin clips from individual F1 or F2 generation zebrafish were labelled according to their 

position in a 96-well plate. Following genomic DNA extraction, genotyping was done via 

PCR and XcmI restriction enzyme digest. (a) Genotyping of F1 generation of klf2a 

mutant zebrafish Heterozygous F1 carriers were identified by the presence of 3 

bands, the uncut 281bp band and two 180bp and 101bp bands. PCR products from 

gDNA form WT siblings underwent a complete XcmI digest indicated by the absence of 

an uncut 281bp band. (b) Genotyping of F2 generation of klf2a mutant zebrafish. 

Homozygous carriers for a mutant klf2a allele were identified by the presence of a 

single 281bp uncut band. Heterozygous carriers were identified by the presence of 3 

bands, the uncut 281bp band and two 180bp and 101bp bands. PCR products from 

gDNA form WT siblings underwent a complete XcmI digest indicated by the absence of 

an uncut 281bp band. Abbreviations: L: Hyperladder IV (NEB). 
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4.2.2 Assessment of the effects of klf2a mutation on klf2a 

mRNA transcription and Klf2a protein translation 

Predicted sequences for all F1generation heterozygous carriers of any of the 4 klf2a 

mutant alleles were confirmed by sequencing as described above. Apart from the 

confirmation of altered primary DNA sequence I sought to confirm that the mutations in 

klf2a gene resulted in transcription of altered klf2a mRNA and translation of altered, 

truncated Klf2a protein. 

4.2.2.1 klf2ash317 cDNA sequencing 

Whole embryo RNA from 30 pooled embryos from the F3 generation of homozygous 

carriers of klf2ash317 allele was extracted at 4dpf. In the following step cDNA was 

synthesised and klf2a coding sequence (cds) was PCR amplified. klf2a cds was then 

cloned into a pGEM-Teasy vector and  transformed into bacterial cells. 24 well-

separated colonies were picked up, grown in selective media and submitted for 

sequencing with SP6 and T7 primers (Table 2) to ensure that the whole klf2a cds 

would get sequenced. Sequencing of 23 colonies confirmed the expected sequence for 

klf2ash317 mRNA without any additional sequences thus reliably excluding the presence 

of any klf2a splice variants (Figure 4.8).  
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Figure 4.8 klf2ash317 cDNA sequencing 

(a) Wild type klf2a genomic sequence around the klf2a TALEN mutagenesis site. klf2a 

TALEN 19bp spacer in bold. klf2ash317 14bp deletion indicated by red arrow line. (b) 

klf2ash317 genomic sequence around the region where klf2a TALEN mutagenesis took 

place. (c) klf2ash317 cDNA sequencing confirmed the expected sequence. 
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4.2.2.2 Klf2a Western blot  

I sought to find out whether the confirmed changes in klf2a DNA and mRNA structure 

induced by TALEN mutagenesis resulted in translation of incomplete, truncated Klf2a 

protein. I performed Western blot (WB), firstly on the whole embryo protein extracted 

from F2 generation of homozygous carriers of klf2ash317 allele and secondly on the 

protein extracted from the F3 generation of homozygous klf2ash317 mutants with similar 

results. As shown in Figure 4.9, a significant reduction of the intensity of a 43 

kilodalton (kDa) band was detected in klf2ash317 homozygous carriers. This band 

represents a full-length Klf2a protein. Additionally two new bands that run at 

approximately 33kDa (or at 24kDa – WB on F2 generation of klf2ash317 homozygotes – 

data not shown) have been detected in the klf2ash317 homozygous mutants that could 

represent the truncated Klf2a protein. 

4.2.2.3 Identification of Klf2a proteins by Mass spectrometry 

analysis 

Klf2a WB performed on the klf2ash317 homozygous embryos showed significantly 

decreased intensities of the 43kDa band representing the full-length Klf2a protein and 

detected a new 24-33kDa band that could represent the truncated Klf2a protein. The 

predicted molecular mass of the klf2ash317 protein is 13.15kDa and I therefore wanted to 

verify that this band really represents the predicted truncated Klf2a protein by 

performing MS analysis. Unfortunately, no Klf2a protein could be detected via MS in 

the protein samples from klf2ash317 homozygous embryos or Nacre WT zebrafish. Given 

the fact that Klf2a is a transcription factor that might be present in cells in low 

abundance, increased numbers of 5dpf old Nacre WT embryos (approximately 140) 

were used for whole-embryo protein extraction in the next step. Additionally, Klf2a 

immunoprecipitation (IP) was used prior to MS in order to concentrate Klf2a wild type 
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protein. Unfortunately, due to technical difficulties the IP did not work optimally and the 

following MS could not detect any Klf2a protein in these samples either.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



132 

 

 

 

 

Figure 4.9 Klf2a Western blot 

Substantial reduction of a 43kDa band representing the full-length Klf2a protein can be 

seen in a Western blot performed on whole-embryo protein sample extracted from the 

F3 generation of klf2ash317mutant embryos at 5dpf when compared to Western blot on 

WT embryos and heterozygous klf2ash317 carriers. Additionally, two bands that run at 

approximately 33kDa of have been detected in klf2ash317 mutants that could represent 

the truncated Klf2a protein. β actin Western blot used as a loading control.  
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4.2.2.4 Maternal klf2a mRNA is not present in unfertilised 

zebrafish eggs 

Lastly, I wanted to assess whether there is any maternal klf2a mRNA present in 

zebrafish embryos prior to the activation of zygotic transcription - the maternal to 

zygotic transition (MZT) (Kane and Kimmel 1993; Harvey, Sealy et al. 2013). 

RNA from a pool of unfertilised wild type eggs was extracted and reversely transcribed 

into a cDNA. klf2a cds L and R primers (Table 2) amplify the whole klf2a cds giving a 

1155bp PCR product. In case of genomic DNA contamination, primers would amplify a 

1674bp product due to the presence of klf2a intronic sequences in gDNA. As shown in 

Figure 4.10, no 1155bp PCR product representing maternal klf2a mRNA was detected 

in the cDNA sample from unfertilised zebrafish eggs thus ruling out the presence of 

maternal klf2a mRNA in zebrafish embryos. The absence of a 1674bp PCR product in 

this sample ruled out gDNA contamination. On the contrary, gapdh mRNA was 

detected in the unfertilised embryos being a positive control (Figure 4.10). 

The fact that maternal klf2a mRNA is not present in zebrafish embryos is important in 

regards to experiments performed on F2 generation of klf2a mutant zebrafish embryos. 

These embryos are progeny of an incross of two F1 generation heterozygous carriers 

of a particular klf2a mutant allele. If klf2a mRNA was detected prior to MZT, the wild 

type klf2a mRNA from the heterozygous mother could influence embryonic 

development in the genotypically homozygous klf2a mutant embryos. Due to the 

absence of maternal klf2a mRNA homozygous klf2a mutants from F2 generation could 

be considered equal to the klf2a maternal zygotic mutants from the F3 generation.  
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Figure 4.10 Test for the presence of maternal mRNA in unfertilised zebrafish 

eggs 

klf2a cds F1 and R1 primers were used to amplify klf2a coding sequence giving a 

1155bp PCR product. No band was detected in the sample with cDNA from unfertilised 

embryos (unf. cDNA) suggesting the absence of maternal klf2a mRNA in unfertilised 

embryos. On contrary, a band of expected size was detected in the sample with control 

cDNA originating from 48hpf wild type zebrafish embryos (cont cDNA). No 1674bp 

band was detected in unf. cDNA or cDNA sample confirming the absence of genomic 

DNA contamination of the samples (explanation in the text). gapdh primers that amplify 

a 1019bp PCR product  were used as a positive control. A band of expected size was 

detected in both the unfertilised eggs cDNA and control cDNA lanes indicating the 

presence of maternal gapdh mRNA in unfertilised zebrafish eggs. Abbreviations: -E: 

negative control with no reverse transcriptase added during reverse transcription (RT).  

-RNA:  negative control with no RNA added during RT. B: blank, no template added to 

the PCR reaction. Abbreviations: L: Hyperladder II (NEB). 
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4.3 Discussion 

Recent advances in targeted genome editing made novel mutagenesis techniques 

available to broad research community. Despite these advances targeted mutagenesis 

still remains a time consuming process with uncertain outcome. In my pursuit for a 

stable klf2a mutant line I initially used ZFN engineering by CoDA (Sander, Dahlborg et 

al. 2011) and designed altogether 3 distinct klf2a ZFN constructs. Genomic DNA from 

30 pooled embryos injected with the ZFN capped mRNA construct was isolated and 

submitted for 454 sequencing to The Centre of Genomic Research in The University of 

Liverpool. In the case of the first klf2a ZFN construct, although essentially functional, 

the mutagenesis rate was too low to make the identification of individual zebrafish 

embryos carrying the mutant alleles in their germlines feasible. The following two klf2a 

ZFN constructs were designed alongside the klf2a TALEN construct. klf2a TALEN 

mutagenesis design did not require any 454 sequencing step. Once the klf2a TALEN 

construct was established to be functional (via the loss of XcmI restriction enzyme site), 

I did not proceed with klf2a ZFN mutagenesis and focused on the characterisation of 

this TALEN induced mutant line.  

The TALEN mutagenesis site was chosen upstream of the 3 tandem zinc fingers 

coding sequence. The spacer between the binding sites of both klf2a TALEN 

heterodimers contained a XcmI wide-spanning restriction enzyme site so that the 

targeted mutagenesis could be easily confirmed by the loss of restriction enzyme site 

as mentioned above. The chosen klf2a TALEN construct was found to be functional 

and effective enough to generate a stable klf2a mutant line. 4 novel klf2a mutant alleles 

with frame shift mutations causing changes in the reading frame were identified. I 

chose the klf2ash317 allele with 14bp deletion for further validation and experiments 
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however some experiments were performed using the other mutant alleles as 

described in Chapter 5. 

In the next step I wanted to ascertain that the mutation in klf2a could not be overcome 

by a generation of an alternative klf2a transcript in the mutants. Sequencing of 23 full-

length klf2a cDNA clones made from RNA from klf2ash317 homozygous mutants 

confirmed the presence of predicted mutant klf2a mRNA in all cases. No other cDNA 

sequences indicating alternative klf2a splicing that would result in novel Klf2a protein 

isoform were detected. 

Recent experience with generation of mutant zebrafish lines in our centre has shown 

that zebrafish possess the ability to overcome missense mutations by employing 

alternative pre-mRNA splicing of the paralog gene to the gene affected by the mutation. 

In this particular case a mutagenesis in transactive response DNA-binding protein gene 

(tardpb) causes alternative splicing of a paralog gene tardpb-like (tardpbl). This 

alternative splicing includes tardpbl intronic sequence that is almost identical to the 

coding sequences of tardpb lost by the mutagenesis. The alternatively spliced paralog 

translates into a protein almost identical to the wild type protein and rescues the 

phenotype expected from the original gene mutation (Hewamadduma, Grierson et al. 

2013). The in silico analysis of klf2b intronic sequences could exclude this possibility. 

Next I wanted to find out whether the klf2ash317 allele translated into a truncated Klf2a 

protein. I used a polyclonal rabbit anti-mouse KLF2 antibody which was recently 

published to detect zebrafish Klf2a protein by WB (Wang, Zhang et al. 2011). To my 

knowledge this has been the only published zebrafish Klf2a WB so far. WB was initially 

performed on the F2 generation of klf2ash317 homozygous and heterozgygous carriers 

and on their WT siblings. In order to do so I used a novel zebrafish embryonic fin-

clipping protocol developed in our centre (Wilkinson, Elworthy et al. 2013). Zebrafish 

embryos were genotyped at 3dpf before zebrafish embryonic proteins were extracted 
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at 5dpf. Secondly I repeated Klf2a WB on the klf2ash317 maternal zygotic mutants from 

the F3 generation. In both experiments I saw a substantial reduction of the intensity of 

the 43kDa band representing the full-length Klf2a protein in the klf2ash317 homozygous 

fish. The fact that a 43kDa band can still be detected in the mutant fish samples is 

likely to be explained by the polyclonal character of the anti-mouse KLF2 antibody used 

and might be a background band (indeed several other likely nonspecific bands were 

seen). Additionally two bands of increased intensity were detected in klf2ash317 mutants. 

These bands have an apparent molecular weight of approximately 33kDa (WB on F3 

generation of klf2ash317 mutants).  WB on F2 generation of klf2ash317 mutants showed a 

single band with apparent molecular weight of 24kDa (data not shown). The predicted 

molecular mass for Klf2a sh317 protein is approximately 13.15kDa, Discrepancies 

between the apparent and predicted molecular masses could be explained by 

posttranslational modifications of this novel protein, such as phosphorylation or 

ubiquitination. Secondly, SDS-PAGE is not a reliable method for accurately 

determining molecular weight of proteins and its accuracy depends on the uniform 

binding of the SDS to the protein which can differ significantly among various proteins 

(as per QIAGEN).   

Given the above discrepancies a mass spectrometry approach was taken to confirm 

the presence of the Klf2a peptides in the 43kDa and 33kDa bands. Unfortunately no 

Klf2a peptides could be detected either in the WT nor the mutant zebrafish samples. 

Immunoprecipitation of Klf2a protein from a protein sample extracted from 

approximately 140 WT embryos did not result in increased concentration of Klf2a 

protein (data not shown) and the subsequent repeated attempt to detect Klf2a protein 

via MS was again unsuccessful. It is likely that the Klf2a protein as a transcription 

factor is present in the cells in low number of copies and a more robust and therefore 

more costly approach would be necessary in order to detect any Klf2a peptides via MS.  
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Lastly, I proved that maternal klf2a mRNA is not present in zebrafish embryos by 

demonstrating its absence in unfertilised zebrafish eggs. This was important, because 

it showed that the zygotic klf2a mutants that arise from an incross of 2 adults from the 

F1 generation of heterozygous carriers for a klf2a mutant allele can be considered to 

be equal to maternal zygotic mutants form the F3 generation of fish that arise from an 

incross of 2 homozygous mutants. There is however a possibility of a klf2a maternal 

effect that is caused by maternal Klf2a protein deposited in the egg during oocyte 

maturation and the presence of such protein in the zygote has not been excluded at 

this stage. The existence of any maternal zygotic contribution in case of klf2a is rather 

unlikely given that there was no phenotypical difference between zygotic klf2a mutant 

embryos from the F2 generation and maternal zygotic mutants form the F3 generation 

of klf2a mutant fish in any of the experiments I have performed so far as detailed in the 

next chapter. 

To my knowledge no data on any klf2a mutant line have been published so far. 

However, I am aware some other research groups are pursuing generation of a klf2a 

mutant line. 

In the next chapter I evaluate the phenotype of this novel mutant line.  
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Chapter 5             

Characterisation of the klf2a 

mutant zebrafish line 
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5.1 Introduction 

Following the generation of 4 klf2a mutant lines and their outcrossing to several 

transgenic lines I went on to characterise the effects of klf2a mutation on developing 

zebrafish embryo and adult zebrafish especially with regards to cardiovascular system. 

5.2 Results 

Much of my characterisation of a klf2a mutant line has been done on klf2ash317 allele. It 

was this particular mutant line that has been used in the experiments required for 

validation of klf2a mutant lines as described in previous chapter. Carriers of this allele 

have also been crossed with several transgenic lines useful in characterisation of 

zebrafish cardiovascular system. However, there are no reasons to believe that any 

other from the 3 remaining alleles would have different phenotypic effects on zebrafish 

embryos than the klf2ash317 allele. 

5.2.1 klf2a mutant zebrafish do not show any 

morphological abnormalities 

Homozygous carriers of all 4 klf2a mutant alleles are viable to adulthood and fertile. As 

shown in Figure 5.1, klf2a mutant embryos do not have any morphological 

abnormalities or differences when compared to WT embryos and there were no 

differences noticed beyond 5dpf up to adulthood either. In particular, no formation of 

pericardial oedema has been noted at 72hpf or at any other developmental stage 

contradicting the previously published data (Lee, Yu et al. 2006). Importantly, klf2a 

mutant fish do not morphologically differ in anatomical locations where klf2a expression 

is high during early developmental stages, such as cloaca or pectoral fins (Figure 5.2).  
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Figure 5.1 Comparison of wild type and klf2a mutant zebrafish embryos 

There are no obvious morphological differences between Nacre WT zebrafish embryos 

and klf2ash317 mutant embryos in Nacre background until 5dpf and also beyond (not 

shown). Scale bar = 500µm. 
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Figure 5.2 Comparison of morphology of zebrafish embryonic structures with 

high klf2a expression 

Nacre WT and klf2ash317 mutant embryos compared at 5dpf. klf2ash317 embryos do not 

show any obvious morphological abnormalities in regions with previously detected high 

klf2a expression such as cloaca (top panel, red arrow points at cloaca, longitudinal 

view) or pectoral fins (bottom panel, green arrowheads point at pectoral fins, ventral 

view). Representative images shown. Scale bar = 500µm. 
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5.2.2 Characterisation of cardiovascular system 

Next I aimed to characterise cardiovascular system of klf2a mutant embryos in more 

detail. Previous works suggested grossly normal vascular patterning in klf2a MO 

injected zebrafish embryos, apart from the formation of a small connecting vessel 

between the 5th and 6th aortic arch vessels, the so-called AA5x vessel which formation 

was postulated to be klf2a-dependent (Lee, Yu et al. 2006; Nicoli, Standley et al. 2010). 

Functionally, high-output cardiac failure with increased aortic blood flow velocities 

(measured at 54hpf) and presence of pericardial oedema (at 72hpf) were described in 

klf2a MO morphants (Lee, Yu et al. 2006).  

5.2.2.1 klf2a mutant embryos exhibit normal vascular patterning 

klf2ash317 mutant embryos were observed under dissecting microscope at several 

developmental stages (1-5dpf) and compared to WT embryos. No obvious vascular 

defects were detected and circulating erythrocytes were observed in both wild type and 

klf2ash317 embryos in the axial vasculature, ISVs and head vessels in corresponding 

developmental stages as expected. Tg(kdrl:HRAS-mCherry;flk1:EGFP-nls) embryos in 

WT or klf2ash317 mutant background were imaged at 3dpf on confocal microscope and a 

compound figure was made showing the entire vascular anatomy of these embryos. As 

shown in Figure 5.3, vascular patterning of both WT and klf2ash317 mutants is identical 

and no gross vascular abnormalities can be seen in the klf2ash317 embryos.  
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Figure 5.3 Vascular anatomy of a WT and klf2ash317 embryo at 3dpf 

Tg(kdrl:HRAS-mCherry;flk1:EGFP-nls) embryos in WT or klf2ash317 mutant background 

imaged at 3dpf. Normal vascular patterning could be detected in klf2ash317 embryos. 

Representative images shown. Scale bar = 200µm. 
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5.2.2.2 klf2a mutants exhibit normal AA5x angiogenesis  

Nicoli et al. report that the formation of a connecting vessel between the 5th and 6th 

aortic arch (further referred to as AA5x) occurs via angiogenesis that is  blood flow 

dependent as well as klf2a - dependent (Nicoli, Standley et al. 2010). 

I initially verified that AA5x formation is blood flow dependent. I used 2 different ways of 

preventing blood flow in developing zebrafish embryos. Firstly I treated the 

Tg(kdrl:HRAS-mCherry;flk1:EGFP-nls) zebrafish embryos with local anaesthetic 

Tricaine in a concentration (0.66 mg/ml) and at developmental stage (46-65hpf) 

identical to published data (Nicoli, Standley et al. 2010). As shown in Figure 5.4b, 

cessation of embryonic blood flow due to the arrest of heart contractions by Tricaine 

prevented formation of AA5x vessels bilaterally as opposed to control non-treated 

embryos. Secondly, embryos were treated with the myosin ATPase inhibitor BDM 

(15mM, 46-65hpf) and cessation of flow caused by BDM identically resulted in 

abrogation of AA5x formation (Figure 5.4b). These experiments confirmed that AA5x 

angiogenesis is blood flow dependent as described before (Nicoli, Standley et al. 

2010).  

Next I examined AA5x formation in klf2ash317 mutant embryos. As shown in Figure 

5.4c, all klf2ash317 mutant embryos examined formed AA5x vessels bilaterally 

suggesting that AA5x formation is klf2a-independent contradicting the previously 

published data (Nicoli, Standley et al. 2010). 
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Figure 5.4 AA5x angiogenesis is blood flow dependent but is unaffected in 

klf2ash317 mutants 

(a) Vascular anatomy of a zebrafish embryo at 3dpf. Anatomical location of 3rd – 6th 

aortic arch (AAs) is indicated by the white rectangle. DA indicates location of dorsal 

aorta. (b) AA5x vessel formation is blood flow dependent. Presence of AA5x is 

indicated by white arrowheads. Cessation of flow, with Tricaine or with BDM results in 

abrogation of AA5x formation as published before (Nicoli, Standley et al. 2010). 

Absence of AA5x is indicated by green arrowheads. White arrows point at lateral dorsal 

aortae. DA indicates location of dorsal aorta. (c) All klf2ash317 mutants examined formed 

AA5x vessel bilaterally suggesting AA5x formation is klf2a-independent. Presence of 
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AA5x is indicated by white arrowheads. White arrows point at lateral dorsal aortae. DA 

indicates location of dorsal aorta. 

Summary of 3 biological replicates (except BDM - 2 biological replicates). Total number 

of embryos examined: n=23 (untreated controls), n=15 (Tricaine), n=5 (BDM), n=9 (WT 

embryos), n=16 (klf2ash317 mutants). Tg(kdrl:HRAS-mCherry;flk1:EGFP-nls) zebrafish 

line in WT or in klf2ash317 mutant background used ( (a) is a lateral view, (b)-(c) are 

dorsal views. Representative images of all groups of embryos are shown at 3dpf. Scale 

bar = 200µm. 
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5.2.2.3 klf2a mutation does not affect endothelial cell numbers 

in ISVs and DLAV 

Our group has recently shown that blood flow cessation significantly reduces 

endothelial cell nuclei numbers (and therefore endothelial cell numbers) in ISVs and 

DLAV of vhl mutants (vhl -/- ) which exhibit excessive hypoxia-driven angiogenesis, 

although it has no effect on endothelial cell numbers in WT embryos (Watson, 

Novodvorsky et al. 2013).  I was therefore interested whether the klf2a had any effect 

on endothelial cell numbers in this region. In order to do so I used a double-transgenic 

line Tg(kdrl:HRAS-mCherry;flk1:EGFP-nls) (where flk1 labels endothelial nuclei green 

with GFP and kdrl labels endothelial membrane red with red fluorescent protein (RFP) 

derivative mCherry) in  klf2ash317 mutant background. I counted endothelial nuclei 

dorsally of DA in a 3 somite region in the middle of the trunk, including 4 ISVs and a 

corresponding region of DLAV. As shown in Figure 5.5, klf2a mutation had no effect on 

endothelial cell numbers in ISVs and DLAV in a developing zebrafish embryo.  
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Figure 5.5 Quantification of endothelial cell nuclei in a region of 4 ISVs and 

corresponding part of DLAV: klf2ash317 versus WT at 3dpf 

(a) Representative images of a wild type and klf2ash317 embryos in a double transgenic 

background Tg(kdrl:HRAS-mCherry;flk1:EGFP-nls). 4 ISVs closest to cloacal opening 

and a corresponding region of DLAV were chosen for endothelial nuclei counting. Only 

endothelial nuclei dorsally from DA were included. (b) Quantification and comparison of 

endothelial nuclei numbers between wild type and klf2ash317 embryos did not show any 

significant differences. Error bars represent mean ± SEM; unpaired t test used. Scale 

bar = 70µm. 
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5.2.2.4 klf2a mutant embryos exhibit decreased blood flow 

velocities and increased heart rates at 72hpf. 

Comparison of heart rates and blood flow velocities in DA throughout a single cardiac 

cycle showed no differences between klf2ash317 mutants and WT embryos at 48hpf 

(Figure 5.6).  

At 72hpf significantly slower blood flow velocities in DA were detected in klf2ash317 

mutants and this was accompanied by increased heart rates when compared to WT 

embryos (Figure 5.7). Generally, there is a trend towards slower blood flow velocities 

and higher heart rates at 72hpf when compared to 48hpf even in the WT embryos. This 

trend is more accentuated in klf2ash317 mutants than in WT embryos at 72hpf with 

resulting significant differences at this developmental stage.  

These data together with the previously described absence of pericardial oedemas in 

klf2ash317 mutants exclude the high output cardiac failure phenotype previously 

described in klf2a MO morphants  (Lee, Yu et al. 2006). It is important to mention that 

WT embryos represent an independent cross to maternal klf2a mutant embryos in this 

experiment. Although both WT and klf2ash317 embryos were in the same genetic 

background (Nacre WT), detected heart rate and blood flow velocity differences at 3dpf 

might simply reflect variablilty between two independent crosses. 

Another, more interesting explanation for decreased aortic blood flow velocities 

detected in klf2ash317 mutants at 3dpf would be the abnormal valvulogenesis which has 

been described in klf2a MO morphants before (Vermot, Forouhar et al. 2009). Valve 

dysgenesis would thus cause increased blood regurgitation from ventricle into the 

atrium with resulting decreased blood volumes propelled into the aorta and decreased 

blood flow velocities. My preliminary data shown in Figure 5.8 are not suggestive of 

this however. A much stronger line of evidence against valve dysgenesis in klf2a 

mutants is the fact that they are viable and fertile and do not suffer from heart failure. 
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Figure 5.6 Comparison of heart rates and blood flow velocities of Nacre WT and 

klf2ash317 mutants at 48hpf  

(a) There are no significant differences in heart rates between the Nacre WT embryos 

and klf2ash317 mutants at 48hpf. (b) Instantaneous blood  flow velocities were measured 

throughout a single cardiac cycle individually in altogether 24 embryos from each 

group. These values were then averaged and plotted on a graph as a single velocity 

curve. Velocity curves from Nacre WT and klf2ash317 embryos are almost identical at 

this stage. (c) Bar graph shows an average velocity from all measured instantaneous 

blood flow velocities during a single cardiac cycle for Nacre WT and klf2ash317 embryos. 

No statistically significant differences in average blood flow velocities could be detected 

at 48hpf. Summary of 3 independent experiments. In total 24 embryos examined per 

group. 
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Figure 5.7 Comparison of heart rates and blood flow velocities of Nacre WT and 

klf2sh317 mutants at 72hpf  

(a) klf2ash317 mutants show significantly higher heart rates when compared to Nacre WT 

at 72hpf. (b) Instantaneous blood flow velocity curves show differences between 

velocities at each stage of cardiac cycle - lower systolic velocities could be observed in 

klf2ash317 mutants when compared to Nacre WT embryos (c) Bar graph reflects the 

differences observed in velocity curves - lower average blood flow velocity was 

observed in klf2sh317 mutants when compared to Nacre WT embryos at 72hpf. 

Summary of 3 independent experiments. In total 24 embryos were examined per 

group. 
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Figure 5.8 Comparison of transvalvular blood flow patterns in Nacre WT and 

klfa2sh317 embryos with retrograde flow fraction (RFF) quantifications 

Embryos were imaged on a high-speed camera (300fps) and angiograms were 

constructed using ImageJ software. The shape of embryonic hearts is indicated by the 

black lines. A indicates cardiac atrium and V indicates cardiac ventricle. The site of flow 

direction measurements was the AV canal which location is indicated by red arrows. 
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Average transvalvular flow directions throughout single cardiac cycle are summarised 

in the flow diagrams below each figure. Retrograde flow from ventricle to atrium is 

shown in red (-), no flow in AV canal is shown in white (0) and anterograde flow from 

atrium to ventricle is shown in black (+). Retrograde flow fractions (RFF) indicate the 

duration of retrograde flows through AV canal relative to the duration of a single cardiac 

cycle which length is shown in miliseconds (ms) below the actual figure. Preliminary 

data, 3 embryos per group examined. Scale bar = 200µm.   
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5.2.2.5 klf2a mutant embryos do not show increased vascular 

cxcr4a expression 

Earlier I detected increased vascular cxcr4a expression in SB klf2a MO and ATG klf2a 

MO morphants at 48hpf up to the levels seen in tnnt2 MO morphants which experience 

no blood flow. Increased vascular cxcr4a expression could not be confirmed by 

subsequent RT-qPCR. I therefore aimed to repeat the cxcr4a WISH on klf2a mutant 

embryos to assess the role of klf2a in regulation of vascular cxcr4a expression. 

I performed a WISH with cxcr4a riboporobe on 3 different klf2a mutant lines (klf2ash334, 

klf2ash307 and klf2ash317) and on Nacre WT embryos at 48hpf. I also included control MO 

or tnnt2 MO injected embryos at 48hpf as positive and negative controls respectively. 

Increased cxcr4a vascular expression was detected in tnnt2 MO morphants as 

expected but cxcr4a mRNA could not be detected in vasculature of klf2a mutant 

embryos. klf2a mutant embryos showed cxcr4a staining pattern identical to the one 

seen in Nacre WT embryos at 48hpf (Figure 5.9). These results obtained from klf2a 

mutant embryos thus do not support the previously postulated hypothesis that klf2a 

might mediate the flow dependent cxcr4a regulation of its vascular expression.  
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Figure 5.9 klf2ash317 mutant embryos do not show increased cxcr4a vascular 

expression at 48hpf. 

Vascular cxcr4a expression in all imaged embryos is indicated by black arrows. cxcr4a 

expression in vasculature is inhibited by flow in both control MO morphants and in 

Nacre WT embryos. cxcr4a vascular expression in klf2ash317 mutants is also inhibited 

and the cxcr4a staining pattern is identical to Nacre WT and cont MO injected embryos. 

tnnt2 MO morphants with no blood flow were previously shown to have increased 

vascular expression of cxcr4a (Packham, Gray et al. 2009) and represent a positive 

control. Number of embryos with identical staining patterns out of total number of 

embryos examined is shown in bottom left corner of each image. Summary of 3 

independent experiments. Representative images shown. Scale bar = 500µm. 
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5.2.2.6 Flow dependent regulation of Notch signalling is not 

affected in klf2a mutant zebrafish embryos 

Our group has recently shown that blood flow influences Notch signalling in zebrafish 

embryos. tnnt2 morphants lacking blood flow exhibited increased activity of csl 

transcription factor and showed increased vascular staining for one of the canonical 

Notch ligands dll4  (Watson, Novodvorsky et al. 2013).  klf2a MO morphants also 

showed increased vascular staining for dll4 at 48hpf although the activity of csl 

transcription factor was unchanged compared to controls. I therefore examined 

whether a similar response was seen in klf2a mutants. 

Male zebrafish from Tg(CSL:venus)qmc61 line in klf2ash306 heterozygous background  

were crossed with klf2ash317 homozygous females. This cross was done due to high 

levels of variablilty of venus fluorescence in progeny of different adult carriers of single 

copy of (CSL:venus)qmc61 transgene. Thus it was made sure that fluorescence of only 

a progeny of a single pair of fish would be compared. Equally there were no klf2ash306 

homozygous adult fish available at the time and klf2ash317 were used instead. Progeny 

of each pair of this cross were kept separate and screened for fluorescence at 48hpf 

prior to imaging. Numbers of fluorescent and non-fluorescent embryos were 

approximately equal in each pair tested confirming the presence of a single copy of 

(CSL:venus)qmc61 transgene in the parents. Multiple and different numbers of 

(CSL:venus)qmc61 copies would prevent correct measurement and subsequent 

comparison of fluorescence between the groups. Following confocal microscope 

imaging all embryos were genotyped for the klf2a mutant status. As shown in Figure 

5.10, klf2ash306/sh317 mutant embryos did not show any significant difference in the CSL 

venus activity in DA when compared to the klf2ash306 heterozygous siblings.  
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Figure 5.10 klf2ash306/sh317 mutant embryos do not show any changes in vascular 

activity of Notch transcription factor CSL Venus.  

(a) Confocal images of klf2ash306 heterozygotes and klf2ash306/sh317 mutants. White 

arrows point at dorsal aortae and white arrowheads point at neural tubes of imaged 

embryos. Representative images shown. Scale bar = 80µm. (b)-(c) (CSL:venus)qmc61 

fluorescence was measured at 48hpf (b) and at 72hpf (c) and normalised to the 

fluorescence of neural tube. No significant differences have been observed at these 

developmental stages. Summary of 3 independent experiments. Total numbers of 

embryos per group are indicated by the n numbers in the graphs. Error bars represent 

mean ± SEM. 
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Figure 5.11 klf2ash317 mutant embryos do not show increased dll4 vascular 

expression at 48hpf 

Vascular expression of dll4 in klf2ash317 mutant embryos is not detectable at 48hpf and 

is identical to dll4 staining pattern observed in Nacre WT embryos (indicated by black 

arrows in both figures). Embryos lacking flow (tnnt2 MO morphants) were included as 

positive control - dll4 vascular expression in tnnt2 MO morphants is upregulated 

(indicated by a red arrow) when compared to control MO injected embryos (indicated 

by a black arrow) as published before (Watson, Novodvorsky et al. 2013). Number of 

embryos with identical staining patterns out of total number of embryos examined is 

shown in bottom left corner of each image. Summary of 3 independent experiments. 

Representative images shown. Scale bar = 500µm. 

 

 

 

 

 

 

 

 



160 

 

5.2.2.7 Blood flow mechanotransduction critical for aberrant 

angiogenic phenotype of vhl mutants in not affected in 

klf2a mutant zebrafish embryos  

vhl mutant embryos (vhl -/- ) have constitutively activated HIF-mediated hypoxic 

signalling. This results in excessive and aberrant angiogenic sprouting of the ISVs that 

can be observed from 3dpf onwards. Oliver Watson from our group recently showed 

that this excessive angiogenesis is blood flow dependent (Watson, Novodvorsky et al. 

2013). The exact mechanism of how blood flow induces this effect remains to be 

elucidated. I was therefore interested whether klf2a as one of the major 

mechanosensitive endothelial transcription factors was involved in this process. I 

incrossed zebrafish heterozygous for klf2ash317 and vhl hu2117 in Tg(fli1:eGFP) 

background. 1/16 of a progeny of such cross would be double mutants and I wanted to 

find out whether these double mutant zebrafish embryos still exhibited the aberrant 

angiogenic phenotype. Embryos were initially sorted out for fluorescence and the easily 

observed vhl -/ - vascular phenotype under fluorescence microscope at 3dpf.16 vhl hu2117 

-/ - ;Tg(fli1:eGFP) embryos were imaged  using confocal microscope and subsequently 

genotyped for klf2ash317 mutant status. Out of these 16, 2 were WT, 10 were klf2ash317 +/- 

and 4 were klf2ash317 mutants. The presence of vhl -/- angiogenic phenotype in klf2ash317 

mutant background in expected numbers suggests that the blood flow 

mechanotransduction critical for vhl -/ - angiogenic phenotype is klf2a - independent 

(Figure 5.12). 
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Figure 5.12 Blood flow mechanotransduction critical for vhl -/- angiogenic 

phenotype is unaffected in klf2ash317 mutant embryos 

Confocal images of Tg(fli1:eGFP) zebrafish embryos in various genetic backgrounds at 

3dpf. Wild type embryos exhibit angiogenesis typical for this developmental stage (top 

left panel, white arrow). vhl -/- embryos show enlargement of vessels (ISVs and DLAV) 

with increased tortuosity and looping of the DLAV (top right panel, right arrow). The 

same vascular phenotype can be observed in vhl -/- embryos in klf2ash317 mutant 

phenotype (bottom right panel, right arrow). Representative images shown. Scale bar = 

70µm (wild type) or 200µm (all other figures). 
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5.2.2.8 Blood flow dependent HSC maturation is not affected in 

klf2a mutant zebrafish embryos 

It has been postulated that HSC maturation in zebrafish embryos is a blood flow 

dependent process mediated by klf2a/NO signalling cascade (Wang, Zhang et al. 

2011). I wanted to examine this in klf2a mutant embryos. WISH on Nacre WT and 

klf2ash317 mutant embryos (in Nacre background) were performed for HSC markers 

runx1 and cmyb at 36hpf. As shown in Figure 5.13, removal of blood flow by  tnnt2 

knockdown reduced runx1 expression in AGM confirming previously published data 

(Wang, Zhang et al. 2011). Expression of runx1 in AGM however did not differ between 

the Nacre WT and klf2ash317 mutant embryos (Figure 5.13). Expression of another HSC 

marker cmyb in AGM and CHT was also reduced in tnnt2 morphants in keeping with 

previously published data (Wang, Zhang et al. 2011) (Figure 5.14).  Again, I could not 

detect any difference in cmyb expression between Nacre WT and klf2ash317 mutant 

embryos (Figure 5.14).  

Cont MO and tnnt2 MO morphants in these experiments were in AB WT genetic  

background. runx1 and cmyb expression in these embryos cannot be therefore directly 

compared to runx1 and cmyb expression in Nacre WT or klf2ash317 mutant embryos 

(also in Nacre WT background).  Nevertheless, these data suggest that HSC 

maturation in zebrafish embryos is dependent on blood flow, but is not affected in klf2a 

mutant embryos. 
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Figure 5.13 klf2a mutants do not show differences in expression of HSC marker 

runx1 at 36hpf 

Expression of HSC marker runx1 in AGM region (indicated by black arrows in all 4 

images) does not differ between Nacre WT and klf2ash317 mutant embryos (top panel). 

Expression of runx1 is significantly diminished in tnnt2 MO morphants lacking blood 

flow when compared to cont MO morpahnts (bottom panel). Cont MO and tnnt2 MO 

morphants are in AB WT genetic background and therefore runx1 expression in these 

cannot be directly compared to runx1 expression in Nacre WT or klf2ash317 embryos 

which are in Nacre WT background. This is indicated by the black line between the top 

and bottom panel. Figures in top right corner indicate the number of embryos with 

identical staining patterns out of total number of embryos examined. Scale bar = 

500µm. 
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Figure 5.14 klf2a mutants do not show differences in expression of HSC marker 

cmyb at 36hpf 

Expression of HSC marker cmyb in AGM (indicated by black arrows) and CHT 

(indicated by red arrows) does not differ between Nacre WT and klf2ash317 mutant 

embryos (top panel). Expression of cmyb is significantly diminished in tnnt2 MO 

morphants that do not experience blood flow when compared to control MO morphants 

(bottom panel). Control MO and tnnt2 MO morphants are in AB WT genetic 

background and cmyb expression in these cannot be therefore directly compared to 

cmyb expression in Nacre WT or klf2ash317 embryos which are in Nacre WT 

background. This is indicated by the black line between top and bottom panel. Figures 

in top right corner indicate the number of embryos with identical staining patterns out of 

total number of embryos examined. Scale bar = 500µm. 
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5.2.2.9 klf2b is detected in vasculature of a proportion of WT 

and klf2a mutant zebrafish embryos 

All experiments performed on the klf2a mutant embryos so far failed to reproduce the 

previously published data obtained by morpholino-mediated klf2a knockdown studies. 

Equally, data obtained by myself using MO-mediated klf2a knockdown described in 

Chapter 3 could not be reproduced in klf2a mutants. This leads to a possibility that 

zebrafish are able to compensate for the loss of function of klf2a by a yet unknown 

mechanism. In the first instance I tried to assess the role of the klf2a paralog klf2b in 

klf2a mutant embryos. I wanted to find out whether klf2b compensates for potential 

klf2a loss of function in the vasculature via expression in endothelial cells. In order to 

do so I de novo synthesised a klf2b ISH riboprobe and performed WISH on WT and 

klf2a mutant embryos at 48hpf and 72hpf. These developmental stages were chosen 

because vascular expression of genes studied could be easily detected at these 

stages. Additionally, most experiments performed so far were done using zebrafish at 

these developmental stages.  

As shown in Figure 5.15, klf2b signal could be detected in the pectoral fin, in the 

cleithrum and some epidermal klf2b signal could be detected in the Nacre WT embryos 

as well confirming previously published data (Oates, Pratt et al. 2001; Thisse 2001). 

With longer staining time epidermal presence of klf2b could be detected also in 

klf2ash317 mutant embryos.  Additionally, klf2b mRNA was detected in the heart quite 

early in both the Nacre WT and the klf2ash317 mutant embryos. In a small proportion of 

both Nacre WT and klf2ash317 mutants, klf2b mRNA could be detected in ISVs as shown 

in Figure 5.15c. The proportion of embryos with vascular staining for klf2b mRNA was 

higher in Nacre WT embryos than in klf2ash317 mutants. This is for the first time that 

klf2b expression was reported in the heart an in the vasculature of zebrafish embryos. 
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Admittedly only a small number of embryos have been studied so far and some degree 

of variability in staining of embryos has been noted as well.  

At 72hpf, klf2b expression patterns in Nacre WT and klf2ash317 embryos did not show 

any differences either. klf2b mRNA could be initially detected in the mesenchyme of 

pectoral fins and some signal was also detected from the area of aortic arch arteries for 

the first time (Figure 5.16, top panel). With longer staining time more klf2b signal could 

be detected in the epidermis in the majority of the embryos examined. Small proportion 

of both Nacre WT and klf2ash317 embryos clearly exhibited klf2b mRNA in the ISVs and 

also in the subintestinal veins (SIVs) which has not been reported before. There was 

however no concordance in klf2b mRNA presence in ISVs and SIVs. All 4 

combinations of klf2b staining patterns (no vascular staining, klf2b detected only in 

ISVs, klf2b detected only in SIVs, klf2b detected in both ISVs and SIVs) could be seen 

in both Nacre WT and klf2ash317 embryos (Figure 5.16, bottom panel).  

Overall, I did not detect increased klf2b vascular expression in klf2a mutant embryos in 

comparison to WT embryos of the same developmental stage. I cannot exclude 

however that low levels of klf2b expression suffice to rescue any klf2a mutant 

phenotype. 
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Figure 5.15 klf2b expression patterns in Nacre WT and klf2ash317 mutants at 48hpf  

(a) Comparison of WISH staining patterns for klf2b using a de novo synthesised klf2b 

sense (left) and klf2b antisense (right) riboprobe. (b) klf2b expression patterns in Nacre 

WT and klf2ash317 embryos at 48hpf do not show any differences. A proportion of 

zebrafish embryos were stained for less time to study the staining patterns in more 

detail. klf2b mRNA can be detected in the cleithrum and mesenchyme of pectoral fins 
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(black arrows) as well as in developing heart (black arrowheads) Top panel represents 

lateral view, bottom panel represents dorsal view. (c) Remaining embryos were stained 

for longer period of time. A significant proportion of embryos showed klf2b expression 

(apart from the above described anatomical structures) on the surface (red 

arrowheads) most likely representing epidermal cells as described before. A smaller 

proportion of both Nacre WT and klf2ash317 embryos clearly exhibited klf2b mRNA 

presence in distal ISVs (red arrows). Figures in bottom left corner of each image 

indicate the number of embryos with identical staining patterns out of total number of 

embryos examined. Scale bar = 500µm. 
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Figure 5.16 klf2b expression patterns in Nacre WT and klf2ash317 mutants at 72hpf  

klf2b expression patterns in Nacre WT and klf2ash317 embryos at 72hpf do not show any 

differences. A proportion of zebrafish embryos were stained for shorter time (top part of 

the figure) to study the staining patterns in more detail. klf2b mRNA could be initially 

detected in the mesenchyme of pectoral fins (black arrows) and some signal came 

from the area of aortic arch arteries (black arrowheads). With longer staining times 

(bottom part of the figure), more klf2b signal could be detected in the epidermis (red 

arrowheads) in the majority of the embryos examined. Small proportion of both Nacre 

WT and klf2ash317 embryos clearly exhibited klf2b mRNA in the ISVs (red arrows) and 

also in the subintestinal veins (SIVs)(green arrow). There was however no 

concordance in klf2b mRNA presence in ISVs and SIVs in Nacre WT or klf2ash317 

embryos.  Figures in bottom left corner of each image indicate the number of embryos 

with identical staining patterns out of total number of embryos examined. Scale bar = 

500µm. 

 

 



170 

 

5.2.2.10 AA5x angiogenesis is not affected in klf2ash317 mutant 

embryos injected with klf2b MO 

Vascular klf2b expression was observed in some of the Nacre WT and klf2ash317 

embryos. I was therefore interested whether klf2b knockdown in klf2a mutant 

background could prevent AA5x vessel angiogenesis. For klf2b knockdown I used a 

klf2b morpholino that binds to E1I1 splice donor site and should therefore cause partial 

or total inclusion of klf2b intron 1. These were the last experiments I managed to do in 

this project and due to shortage of time I did not check for the level of klf2b knockdown 

caused by the klf2b MO via RT-PCR. I tested several klf2b MO doses and used the 

highest dose that did not haemodynamically compromise the embryos.  As shown in 

Figure 5.17a, injection of 2.1ng of klf2b MO into klf2ash317 heterozygous embryos does 

not cause any significant changes in heart rate when compared to control MO injected 

siblings at 48hpf or 72hpf. In relation to AA5x vessel formation, klf2b knockdown in 

klf2a mutant embryos does not cause any disruption in AA5x angiogenesis in any of 

the embryos examined (Figure 5.17b). 
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Figure 5.17 Comparison of heart rates and AA5x angiogenesis in klf2b MO 

injected homozygous and heterozygous klf2ash317 carriers 

(a) Heart rates of control MO and klf2b MO injected klf2ash317 heterozygots do not differ 

significantly at 48hpf or 72hpf. Error bars represent mean ± SEM. (b) AA5x vessel 

(white arrowheads) angiogenesis is intact in all klf2b MO injected klf2ash317 mutant 

embryos examined. White arrows indicate lateral dorsal aortae. DA stands for dorsal 

aorta. Scale bar = 200µm.  
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5.2.2.11 klf4a and biklf/klf4b/klf17 are not expressed  in the 

vasculature of wild type or klf2a mutant embryos 

KLF4/Klf4 is expressed in human and murine vasculature and its effects are similar to 

those of KLF2/Klf2 as detailed in Section 1.8 of this thesis.  I therefore examined 

whether any of the 2 zebrafish KLF4 paralogs - klf4a or biklf/klf4b/klf17 could 

compensate for the loss of klf2a function in the vasculature of the klf2ash317 mutant 

embryos. In order to do so I performed WISH for klf4a and biklf/klf4b/klf17 on Nacre 

WT and klf2ash317 mutants at 48hpf with de novo synthesised klf4a and biklf/klf4b/klf17 

ISH probes. This developmental stage was chosen because vascular expression of 

genes studied could be easily detected at this time point. As shown in Figure 5.18, 

klf4a mRNA could not be detected in the vasculature of Nacre WT or klf2ash317 mutants 

at this stage. klf4a mRNA was detected in the epidermis and pectoral fins in keeping 

with previously published data (Li, Chan et al. 2011). Similarly, biklf/klf4b/klf17 

expression could not be detected in the vasculature of Nacre WT or klf2ash317 mutants 

at 48hpf. biklf/klf4b/klf17 expression was detected in the neuromast cells that form the 

lateral line organ and in the hatching gland  (Figure 5.18), again in keeping with 

previously published data (Oates, Pratt et al. 2001; Gardiner, Daggett et al. 2005). 

 

 

 

 

 



173 

 

 

 

 

Figure 5.18 Expression patterns of klf4a and biklf/klf4b/klf17 in Nacre WT and 

klf2ash317 mutants at 48hpf  

klf4a expression was detected in epidermis (black arrows) and pectoral fins (red 

arrowheads) of both Nacre WT and klf2ash317 mutants in keeping with previously 

published data. No klf4a vascular expression could be detected in any of the Nacre WT 

or klf2ash317 mutants examined. biklf/klf4b/klf17 expression was detected in neuromasts 

of lateral line organ (red arrows) and in hatching glands (black arrowheads) of both 

Nacre WT and klf2ash317 mutants in keeping with previously published data. No 

biklf/klf4b/klf17 vascular expression could be detected in any of the Nacre WT or 

klf2ash317 mutants examined. Figures in bottom left corner of each image indicate the 

number of embryos with identical staining patterns out of total number of embryos 

examined. Scale bar = 500µm. 
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5.3 Discussion 

I created a stable klf2a mutant zebrafish line which is viable to adulthood and fertile in 

its homozygous state. This alone represents a contradiction to previously published 

which suggest that MO-mediated klf2a  knockdown causes high-output cardiac failure 

with pericardial oedema  in early developmental stages of zebrafish embryos (Lee, Yu 

et al. 2006). Although the authors do not comment on the long-term effects of these 

observed features it is difficult to imagine that embryos with such severe impairment of 

cardiovascular system would be viable to adulthood and fertile.  

Another confirmation of the absence of this phenotype in klf2a mutants comes from the 

direct morphological observations and measurements of heart rates and blood flow 

velocities. klf2a mutant embryos do not morphologically differ from WT embryos at any 

developmental stage, nor do the adult mutant zebrafish differ from adult WT zebrafish. 

There is no pericardial oedema detected in the klf2a mutant embryos and there are no 

morphological differences in the anatomical areas with previously detected high klf2a 

expression such as cloaca or pectoral fin. Heart rates and blood flow velocities in DA in 

WT and klf2a mutants are identical at 48hpf.  At 72hpf blood flow velocities in DA 

generally tend to slow down in both WT and klf2a mutants. This trend is much stronger 

in klf2a mutants so that a significant difference in this parameter can be detected at this 

stage when compared to WT embryos. Comparatively heart rates of both WT and klf2a 

mutant embryos get faster at 72hpf when compared to 48hpf but this trend is again 

more accentuated in klf2a mutants. It is reasonable to think that klf2a mutant embryos 

compensate for slower blood flow velocities with increased heart rates to maintain the 

cardiac output level with the WT embryos of the same stage. This is therefore another 

argument against a high-output heart failure phenotype at this stage which is around 

the time when the high-output cardiac failure features were observed in the klf2a MO 

morphants. It should be noted however that WT embryos and maternal klf2a mutant 
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embryos in this experiment represent two independent crosses. Despite the fact that 

both WT embryos and klf2a mutants are in Nacre WT background the observed 

changes could be explained by variability between two independent corsses. In order 

to exclude this possibility, this experiment needs to be repeated on a progeny of 2 

heterozygous carriers for klf2a mutant allele. I did not manage to carry out this 

experiment due to the shortage of time. It would be interesting to measure heart rates 

and blood flow velocities beyond 72hpf, but this might be technically challenging. Heart 

rates and blood flow velocities at 48hpf and 72hpf were measured by direct observation 

without the need for light Tricaine anaesthesia which itself influences these 

parameters. Embryos older than 72hpf have more developed nervous system and 

would require anaesthesia to stop them moving for a period of time necessary for the 

measurements. This would thus introduce another significant variable into this 

experiment. 

An interesting theory that could explain the differences in blood flow velocities 

observed in klf2a mutant embryos at 72hpf comes from the previously published data 

suggesting a role of klf2a in AV valve development (Vermot, Forouhar et al. 2009). 

klf2a knockdown was reported to cause AV valve dysgenesis (scored at 4dpf) and 

resulting dysfunctional valve. Valve dysgenesis causes increased RFF which would 

manifest itself as slower blood flow in DA. Unfortunately, in the original work, there 

were no RFF measurements on klf2a MO morphants performed at 4dpf. RFFs were 

only measured at 48hpf and they did not differ significantly between WT and klf2a MO 

morphants at this stage (Vermot, Forouhar et al. 2009). Given these inaccuracies in the 

original work, I went on to ascertain whether there was any valve dysgenesis in klf2a 

mutant zebrafish embryos at various developmental stages. So far, I only examined a 

limited number of embryos and cardiac cycles. My preliminary data show differences in 

RFF between WT and klf2a mutant zebafish at 48, 72 and 96hpf. At 72hpf when the 

difference in blood flow velocity was noticed, RFF in WT and klf2a embryos seems to 
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be very similar. Certainly, more cardiac cycles and more embryos need to be examined 

before any conclusion can be made in this respect. Again, a strong argument against 

any significant valve dysgenesis in klf2a mutant zebrafish is the fact that they are viable 

and fertile in the adulthood and do not suffer from heart failure. 

To my knowledge mouse represents the only species in which homozygous Klf2 

deficiency has been described so far. Homozygous Klf2 deficient mice die between 

E12.5-14.5 from intraembryonic and intraamniotic haemorrhaging associated with 

endothelial necrosis, cuboidal VSMCs, abnormally thin tunica media and aneurysms. 

Defective VSMC and pericyte migration to endothelial tubes result in the loss of their 

stabilising and modulatory functions and failure to organize into a compact tunica 

media (Kuo, Veselits et al. 1997; Wu, Bohanan et al. 2008). Experiments on mouse 

embryos with conditional Klf2 knockout in various tissues confirm that it is the 

endothelial Klf2 deletion that is responsible for the embryonic mortality around E14 

(Lee, Yu et al. 2006). This group did not report the VSMC defects or haemorrhages 

however. The cause of death was reported to be cardiac defects and high-output 

cardiac failure caused by loss of smooth muscle tone and vasodilation (Lee, Yu et al. 

2006). 

Zebrafish adult VSMCs develop from vascular mural cells (MCs). MCs found in 

zebrafish embryos share many of the characteristics of embryonic VSMCs and 

pericytes found in higher vertebrates (Santoro, Pesce et al. 2009). Specific MC 

markers such as acta2 and transgelin can be found in the perivascular regions of the 

zebrafish vasculature from 72hpf. At 20dpf several layers of undifferentiated VSMCs 

can be observed around DA and at 3 months a thick layer of fully differentiated VSMCs 

surround endothelial cells of DA (Santoro, Pesce et al. 2009). It is therefore interesting 

that klf2a mutation in zebrafish does not appear to have any significant effect on the 

development of VSMC given the viability and fertility of adult klf2a mutants. It would be 
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interesting to perform sections of adult klf2a mutants and investigate the morphology 

and molecular markers of the VSMC layer in klf2a mutants in more detail.  

Further examination of cardiovascular system in klf2a mutant embryos revealed normal 

vascular patterning and circulatory patterns which is in concordance with previously 

reported data obtained by MO-mediated klf2a knockdown (Nicoli, Standley et al. 2010). 

This group however reported that a formation of a tiny vessel connecting the 5th and 6th 

aortic arch termed AA5x is dependent on blood flow which effects are mediated by the 

flow dependent transcription factor klf2a. klf2a then induces miR-126 that inhibits Vegfa 

inhibitor spred-1 thus allowing Vegf-mediated angiogenesis to proceed. My data 

indicate that AA5x angiogenesis is blood flow dependent but is not affected in klf2ash317 

mutants. All klf2ash317 mutants examined formed AA5x vessel bilaterally. Aditionally, my 

preliminary data on klf2a mutant embryos where klf2b was knocked down by klf2b MO 

show that AA5x angiogenesis is intact in these morphants as well. It has to be said that 

due to the shortage of time I did not manage to check for the actual level of klf2b 

knockdown and simply used the highest non-toxic klf2b MO dose. With respect to the 

original work it would be interesting to find out whether AA5x angiogenesis is really 

dependent on miR-126 and spred-1 as originally suggested (Nicoli, Standley et al. 

2010). 

Next I was interested whether klf2a mutation has any effect on the number of 

endothelial cells in the developing zebrafish vasculature. This hypothesis comes from 

an observation that the vhl -/- phenotype of excessive and aberrant hypoxia-driven 

angiogenesis with increased vessel length and increased endothelial cell numbers was 

found to be blood flow dependent (Watson, Novodvorsky et al. 2013). I showed that 

klf2a mutation does not have any effect on endothelial cell number at the very early 

stages of zebrafish embryonic development.  
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The actual fact that the above mentioned vhl -/- phenotype of aberrant angiogenesis 

was dependent on blood flow as mechanical force led me to investigate whether the 

klf2a mutation in vhl -/- background would similarly result in the abrogation of vhl -/- 

angiogenic phenotype. vhl -/- fish are not viable beyond 11dpf (van Rooijen, Voest et al. 

2010) and therefore I incrossed double heterozygous line klf2ash317+/- ;vhl hu2117+/ - in 

Tg(fli1:eGFP) background. 1/16 of the progeny of such cross would be double mutants 

klf2ash317-/- ;vhl hu2117 -/ - and I was interested whether or not these embryos exhibited the 

typical vhl -/- angiogenic phenotype. The easily observed vhl -/ - vascular phenotype 

was examined under fluorescent microscope and thus vhl hu2117 -/- ;Tg(fli1:eGFP) 

embryos could be sorted out. A group of these embryos were then imaged and 

subsequently genotyped for klf2a mutant status. Out of 16 embryos examined 4 were 

in klf2ash317mutant background suggesting that mutation of klf2a does not abrogate 

formation of excessive angiogenic phenotype in vhl mutant embryos. This indicates 

that klf2a is unlikely to be the crucial link between blood flow and angiogenic vhl -/- 

phenotype which thus remains to be identified yet. 

I was also interested to find out whether klf2a plays any role in blood flow dependent 

regulation of cxcr4a expression. My initial observation of increased vascular cxcr4a 

mRNA presence in SB klf2a MO and ATG klf2a MO morphants could not be confirmed 

via qRT-PCR from whole embryonic cDNA. I could not detect any increased cxcr4a 

vascular expression in klf2a mutant embryos at 48hpf. cxcr4a expression in klf2a 

mutants remains supressed to the level seen in WT embryos. I was able to repeatedly 

confirm that removal of blood flow increases cxcr4a vascular expression but the actual 

mechanosensation in this pathway is likely to be mediated via a different mechanism 

than klf2a. 

Similarly I wanted to clarify whether klf2a is involved in the recently discovered blood 

flow mediated regulation of canonical Notch signalling (Watson, Novodvorsky et al. 
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2013). Initial observations suggested that dll4 expression was increased in SB klf2a 

MO and ATG klf2a MO morphants at 48hpf, although this did not reflect in increased 

activity of Notch transcription factor CSL. Surprisingly, dll4 vascular expression 

remained unchanged in klf2a mutants when compared to controls at 48hpf. Removal of 

blood flow resulted in increased vascular dll4 expression confirming previous data. 

Additionally, CSL activity in DA measured via fluorescence of YFP derivative venus 

using Tg(CSL:venus)qmc61 transgenic reporter line remained unchanged in klf2a 

mutants at 48 and 72hpf. This again suggests that klf2a is not involved in 

mechanosensation related to vascular Notch signalling cascade.  

Another recent work on zebrafish related to klf2a linked HSC maturation to a blood flow 

dependent klf2a-NO signalling cascade (Wang, Zhang et al. 2011). Blood flow has 

been shown to be indispensable for the maintenance of HSC programming. Expression 

of HSC markers runx1 and cmyb significantly decreased when blood flow was 

removed. Similar reduction of runx1 and cmyb expression was reported in ATG klf2a 

MO morphants. I therefore performed WISH for runx1 and cmyb on klf2a mutant 

embryos. I could not detect any diminished expression of any of these HSC markers, 

but I noticed a degree of variability in the levels of runx1 and cmyb staining among 

embryos of the same group. Consistent with previous results, HSC markers were 

diminished in tnnt2 MO morphants without blood flow. This group claimed that they 

could partially rescue the diminished runx1 and cmyb by injecting a full-length capped 

klf2a mRNA (Wang, Zhang et al. 2011). I have been kindly donated the expression 

plasmid that was supposed to contain the full-length klf2a cDNA sequence. 

Unfortunately when I sequenced this expression plasmid I found out that the whole 

klf2a exon 1 and initial parts of exon 2 were missing. This truncated klf2a cDNA still 

contained an ‘in frame’ ATG which happens to be the same ATG that the ATG klf2a 
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MO is targeting. The functional relevance of this ATG remains questionable due to the 

reasons I explained elsewhere in this thesis.  

The lack of phenotype in the klf2a mutant zebrafish (apart from the changes in heart 

rate and blood flow velocity at 3dpf) as well as the fact that experiments on klf2a 

mutant embryos failed to confirm previous data obtained by MO-mediated klf2a 

knockdown made me to investigate whether zebrafish embryos possess any 

mechanism by which the klf2a mutation could be compensated. Following the 

exclusion of alternative klf2a splicing, my attention moved towards klf2a paralog klf2b. 

klf2b has been very little investigated so far and its vascular expression has not been 

reported yet. I managed to reproduce and extend the studies on spatial and temporal 

klf2b expression patterns by performing a series of WISH experiments. I confirmed 

klf2b expression in the epidermis, cleithrum and pectoral fin bud at 48hpf. I extended 

klf2b expressional studies by detecting klf2b expression in the hearts and ISVs in a 

proportion of both WT and klf2a mutant embryos at 48hpf. Later on at 72hpf, klf2b 

vascular expression persisted in ISVs and extended also to the area of aortic arches 

and subintestinal veins in a small proportion of embryos examined. Altogether I could 

not detect any differences in klf2b staining patterns between WT and klf2a mutant 

embryos. Despite these data, I can not exclude the possibility that low levels of 

endothelial klf2b expression, non-detectable via WISH technique compensate for any 

klf2a mutant phenotype. Preliminary data from MO-mediated klf2b knockdown in klf2a 

mutant embryos did not show any difference in the phenotype in relation to embryonic 

morphology, heart rates or vascular patterning. A generation of klf2b mutant line and 

subsequent phenotyping of a double klf2a/klf2b mutant line would bring the definitive 

answer to the issue of gene reduncancy in this case. 

KLF4 was identified as another blood flow dependent transcription factor in human and 

murine endothelial cells (McCormick, Eskin et al. 2001; Hamik, Lin et al. 2007). KLF4 
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endothelial expression is similarly to KLF2 upregulated by laminar shear stress and 

statins, but is also upregulated by proinflammatory cytokines (Hamik, Lin et al. 2007; 

Ohnesorge, Viemann et al. 2010). KLF2 and KLF4 thus have many overlapping 

functions in ECs (Bieker 2001). I therefore considered KLF4 as another relevant 

candidate gene which could compensate for the loss of klf2a function in zebrafish 

vasculature.  Zebrafish have two KLF4 paralogs termed klf4a and klf4b, however klf4b 

has been recently named klf17 (Kotkamp, Mossner et al. 2014). WISH for klf4a and 

biklf/klf4b/klf17 confirmed previously published staining patterns for these genes 

(Oates, Pratt et al. 2001; Gardiner, Daggett et al. 2005; Li, Chan et al. 2011). I 

observed identical staining patterns for klf4a and biklf/klf4b/klf17 in WT and klf2a 

mutant embryos. I could not detect any vascular expression of klf4a and biklf/klf4b/klf17 

in any WT or klf2a mutant embryos examined. Thus it seems unlikely that any of the 

two zebrafish KLF4 paralogs compensate for the klf2a mutation in the vasculature of 

klf2a mutant embryos, although again I can not exclude the possibility that low levels of 

endothelial klf4a or biklf/klf4b/klf17 expression, non-detectable via WISH technique 

compensate for any klf2a mutant phenotype. 
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Chapter 6                           

General discussion 
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In the first part of this project I reproduced and extended the previous studies on spatial 

and temporal klf2a expression patterns in developing zebrafish embryos. I detected 

klf2a expression in subintestinal veins, hepatic portal vein and in neuromasts for the 

first time. It is not certain what functions klf2a has in anatomical locations such as 

neuromasts, pectoral fin, cloaca or cells in the posterior somites lateral to the most 

posterior notochord in which klf2a expression is high during early developmental 

stages. However, as detailed later, all these parts and organs seem to develop 

normally in klf2a mutant fish. In my project I focused on klf2a function in the 

vasculature. It was therefore important that I localised klf2a expression to the 

vasculature by performing cross sections on fixed zebrafish embryos following WISH 

for klf2a. I also confirmed that endothelial klf2a expression in zebrafish embryos is 

blood flow dependent using three distinct models of altered blood flow. 

In the next part of the project I used methods of reverse genetics to study the functions 

of klf2a in zebrafish vasculature. At the start of this project, the morpholino (MO) 

antisense technology represented the gold standard for reverse genetics studies in 

zebrafish. I therefore used two previously published klf2a MOs (Vermot, Forouhar et al. 

2009; Nicoli, Standley et al. 2010; Wang, Zhang et al. 2011) to achieve a temporarily 

knockdown of klf2a expression. The use of both SB klf2a and ATG klf2a morpholinos 

proved to be technically challenging and also led to detection of a potentially different 

mechanism of action in the case of ATG klf2a MO as detailed in the discussion to 

Chapter 3 of this thesis. 

I detected increased vascular expression of cxcr4a in a significant proportion of SB 

klf2a MO and ATG klf2a MO morphants at 48hpf. The levels of cxcr4a expression were 

comparable to the levels seen in tnnt2 MO morphants lacking blood flow. This finding 

would be in keeping with the hypothesis that the flow dependent transcription factor 

klf2a acts as a negative regulator of vascular cxcr4a expression. 
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When I examined the effects of klf2a on Notch signalling pathway I found increased 

endothelial expression of Notch ligand dll4 in most of the SB klf2a MO and ATG klf2a 

MO morphants at 48hpf. The increase in dll4 expression was similar to the levels seen 

in tnnt2 MO morphants without flow. Surprisingly, the increased levels of dll4 

expression in the vasculature of SB klf2a MO and ATG klf2a MO morphants did not 

result in increased vascular Notch activity measured by the aortic venus fluorescence 

in the transgenic reporter line Tg(CSL-venus)qmc61. 

The subsequent RT-qPCR was not able to detect any significantly increased relative 

expression of cxcr4a or dll4 in klf2a MO morphants and this discrepancy is discussed 

elsewhere in this thesis. 

I found significant discrepancies between the observed effects of MO-mediated klf2a 

knockdown and the phenotype of the klf2a mutant line. Althouh there are several 

hypotheses that could account for the ‘lack of phenotype’ in the klf2a mutant line as 

detailed later in this discussion, it is also necessary to comment on the effects seen in 

the SB klf2a MO and ATG klf2a MO morphants. Based on my findings it is possible that 

both klf2a morpholinos I used in this project interfere with klf2a pre-mRNA splicing. 

Their effect on cxcr4a and dll4 expression is similar and these effects can not be seen 

in the klf2a mutants. It is therefore likely that both SB klf2a MO and ATG klf2a MO 

induce expressional changes not only in klf2a but also in other off-target genes such as 

p53 and other unknown genes and the resulting morphants represent a ‘compound 

knockdown’ phenotype. Clearly, further work needs to be done to better understand 

and explain these differences. 

In the next part of this project I generated a stable klf2a mutant line using a TALEN 

mutagenesis technique. I isolated 4 novel klf2a mutant alleles with frame shift 

mutations causing changes in the reading frame. I proved that the mutations in klf2a 

gene resulted in the transcription of predicted mutant klf2a mRNA. I could exclude 
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alternative mRNA splicing as a compensation mechanism for the loss of non-mutant 

klf2a sequence. By performing a Western blot I saw a substantial reduction of the 

intensity of the 43kDa band representing the full-length Klf2a protein in klf2a mutants. 

Additionally I detected the presence of smaller bands most likely representing the 

truncated Klf2a protein. Lastly I proved that maternal klf2a mRNA is not present in 

zebrafish embryos by demonstrating its absence in unfertilised zebrafish eggs. 

klf2a mutant zebrafish are viable to adulthood and fertile. They exhibit normal 

development of cardiovascular system based on the observations I managed to 

accomplish so far with the exception of slower blood flow velocities and increased heart 

rates at 72hpf. Notably no high-output cardiac failure or pericardial oedema were 

detected which contradicts previously published data (Lee, Yu et al. 2006). The 

formation of AA5x vessel was intact in all klf2a mutants examined, but I could confirm 

that AA5x angiogenesis was blood flow dependent which therefore partially contradicts 

another work in this field (Nicoli, Standley et al. 2010). My preliminary data also 

indicate that the previously reported klf2a function in AV valve development (Vermot, 

Forouhar et al. 2009) might not be reproduced in klf2a mutant embryos. Based on 

these findings I conclude that klf2a mutations at the genomic sites I generated do not 

affect vasculogenesis and angiogenesis in early stages of embryonic zebrafish 

development.  

The blood flow dependent vhl -/- phenotype of excessive and aberrant hypoxia-driven 

angiogenesis is not affected by klf2a mutation. This is indicated by the existence of 

double mutant klf2ash317-/- ;vhl hu2117 -/- zebrafish embryos with this phenotype in 

expected numbers following an incross of zebrafish lines heterozygous for klf2ash317 

and for vhl hu2117. Experiments into the role of klf2a in cxcr4a regulation of expression 

show that klf2a mutation does not affect vascular cxcr4a expression. These findings 

thus do not confirm my previous observations made on klf2a MO morphants. Similarly, 

experiments into the role of klf2a in the recently discovered blood flow mediated 
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regulation of canonical Notch signalling suggest that klf2a in not involved in 

mechanosensation related to vascular Notch signalling cascade. Notably, vascular dll4 

expression in klf2a mutant embryos does not differ from WT controls at 48hpf. This 

again contradicts my data obtained from klf2a MO morphants.  

Despite the well known role of KLF2 in endothelial biology as described in the 

introduction to this thesis, only several works have been published on the role of KLF2 

zebrafish ortholog klf2a in zebrafish vascular biology (Oates, Pratt et al. 2001; Lee, Yu 

et al. 2006; Parmar, Larman et al. 2006; Vermot, Forouhar et al. 2009; Nicoli, Standley 

et al. 2010; Wang, Zhang et al. 2011). One of them links HSC maturation to a blood 

flow dependent klf2a-NO signalling cascade (Wang, Zhang et al. 2011). Experiments 

on klf2a mutant embryos could not establish a link between klf2a nonsense mutation 

and difference in expression of HSC markers runx1 and cmyb as described before yet 

again contradicting the previously published data. Flow dependent regulation of these 

markers could be confirmed, however. 

To summarize, klf2a mutant does not exhibit any phenotype apart from changes in the 

heart rate and blood flow velocity at 3dpf. On one side this lack of phenotype is rather 

surprising given the previously published data based on MO-mediated klf2a 

knockdown. On the other hand, in the light of the most recently published works on 

large-scale phenotyping of zebrafish mutants, these findings appear to be less of a 

surprise. The zebrafish mutation project (ZMP) aims to identify and phenotype 

disruptive (nonsense or missense) mutations in every protein coding gene 

(Kettleborough, Busch-Nentwich et al. 2013). So far they were able to identify 

potentially disruptive mutations in approximately 40% of all zebrafish protein-coding 

genes. 1216 alleles were further analysed for phenotype. Only around 6% of alleles 

were found to have a phenotype within the first 5dpf in their homozygous state 

(Kettleborough, Busch-Nentwich et al. 2013). This number is surprisingly low even 

when taking into account that only morphological and behavioural changes in the first 
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5dpf were examined. The authors of the project discuss that some more phenotypes 

might be detected on closer observation and phenotypic analysis of older zebrafish 

larvae. Gene redundancy due to partial genome duplication as an explanation for the 

lack of phenotypes in some of the mutant genes is also mentioned. Data generated by 

this group are freely available. In relation to klf2a they report identification of a 

nonsense mutation (A→T) in exon 3 of klf2a gene in the F1 generation 

(http://www.sanger.co.uk/projects/D_rerio/zmp).   

In my search for a gene that could compensate for the potential loss of klf2a function I 

analysed vascular expression of several candidate genes in klf2a mutant background. 

The candidate genes were chosen based on their phylogenetic proximity to klf2a 

(Figure 6.1). Firstly I assessed vascular expression of klf2a paralog klf2b. I was able to 

detect klf2b mRNA in the vasculature of some WT and klf2a mutant embryos, but 

vascular presence of klf2b mRNA in klf2a mutant embryos was by no means more 

intense than the one detected in WT embryos. These findings however do not exclude 

the possibility that low levels of klf2b mRNA in the vasculature compensate for any 

klf2a mutant phenotype.Given more time I would strive for a generation of a klf2b 

mutant line. Subsequent phenotypisation of a double klf2a/klf2b mutant line would 

answer the question of gene redundancy in this case. Next I examined vascular 

expression of both zebrafish KLF4 paralogs klf4a and biklf/klf4b/klf17 because apart 

from klf2b, these 2 genes are phylogenetically closest to klf2a (Figure 6.1). KLF4 

vascular expression has been well described in other species as detailed in the 

introduction to this thesis. I confirmed the previously described expression patterns for 

both of these transcription factors at 48hpf. I could not detect any vascular expression 

of klf4a and biklf/klf4b/klf17 neither in WT nor in klf2a mutant embryos at 48hpf. It is 

possible that the gene X that compensates for the potential loss of klf2a function in 

klf2a mutant background exists, but I have not managed to identify it. Despite the initial 

http://www.sanger.co.uk/projects/D_rerio/zmp
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negative results, klf2b still remains the most likely candidate. A zebrafish-specific 

member of KLF gene family, klfd could represent another candidate (Figure 6.1) 

(Oates, Pratt et al. 2001). klfd is highly expressed in haematopoietic system of 

developing zebrafish embryo and plays a role in embryonic zebrafish α-globin 

synthesis (Oates, Pratt et al. 2001; Fu, Du et al. 2009). klfd could therefore 

compensate for some klf2a functions related to HSC development (Oates, Pratt et al. 

2001; Wang, Zhang et al. 2011). To my knowledge klfd vascular expression has not 

been described. 

It is also possible that klf2a mutants retain functions that might be not mediated by the 

3 tandem zinc fingers of the Klf2a protein, but rather by the N-termial part of the Klf2a 

protein that is not affected by the induced mutation. To confirm these conclusions a 

total knockout of klf2a would be required in order to establish whether or not there is 

residual klf2a function in the klf2a mutant alleles I examined. 

Alternatively it is possible that zebrafish possess an as yet unidentified mechanism by 

which they are able to compensate for the loss of function of a single gene. If I had 

more time, I would perform RNA sequencing profile in klf2a mutant and WT embryos 

thus comparing the transcriptomes of both groups. I am sure that this would shed more 

light into the functions of klf2a in zebrafish in general and also help in identifying 

candidate genes that could compensate for the potential loss of klf2a function in klf2a 

mutants if such gene(s) exist. 

Overall, the most important scientific question of this project remains the discrepancy 

between the phenotypes observed by other research groups and by myself achieved 

by MO-mediated klf2a knockdown and the phenotype (or the lack of one) observed in 

the klf2a mutant line so far. I have therefore briefly summarised both main approaches 

in reverse genetics studies currently used – the morpholino antisense technology and 

the more novel approaches including TALENs and CRISPR/Cas9 system. This is 
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followed by recommendations for future reverse genetics studies in zebrafish based on 

the experience I have gained during this project. 

Morpholino oligonucleotides have been introduced to zebrafish research in 2000 

(Nasevicius and Ekker 2000) and in following years became the most widely used tool 

for reverse genetics studies in zebrafish. Their use is not without potential caveats 

however. Off-target effects of MOs have been well described (Eisen and Smith 2008; 

Bill, Petzold et al. 2009). Off-target effect means that the MO inhibits the function of an 

irrelevant gene instead of, or in addition to the intended gene. This might also relate to 

the fact the amount of MO typically injected into the 1-cell stage embryo (1ng) is in a 

vast molar excess (approx. 2x104-fold) to the amount of available target mRNA so the 

likelihood of binding other RNA is rather high (Schulte-Merker and Stainier 2014). A 

very common off-target effect is activation of p53-induced apoptosis observed in 15-

20% of all MOs (Robu, Larson et al. 2007). Some researchers have therefore used the 

p53 MO in addition to the MO against the gene of interest. The interpretation of a gene 

knockdown phenotype in a p53-defficient background might be difficult though 

(Schulte-Merker and Stainier 2014). One method to distinguish between an off-target 

and a specific MO effect is the usage of two non-overlapping MOs against the same 

gene. Both of them might be causing an off-target effect, but the chance of the two off-

target effects being the same is considerably lower (Eisen and Smith 2008). There are 

also other ways how to distinguish between off-target and specific MOs effects such as 

co-injection of 2 MOs at low levels or a rescue experiment with synthetic mRNA 

encoding the protein from the targeted locus (Eisen and Smith 2008). With the advent 

of new genome editing technologies (ZFNs, TALENs and CRISPR/Cas9) a generation 

of several mutant zebrafish lines has been described in which – similarly to the klf2a -  

the phenotype observed in MO knockdown studies could not be reproduced in the 

mutants (van Impel, Zhao et al. 2014).  This means that any future report of a ‘gene-

specific’ knockdown based solely on MO knockdown should be viewed very critically 
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(Schulte-Merker and Stainier 2014). On the other hand, there are examples of 

morpholinos that work very well and appear to work specifically, such as the tnnt2 MO I 

used in this project. Even in the times of CRISPR/Cas9 systems, morpholinos are still 

the easiest, quickest and cheapest method for gene knockdown studies in zebrafish.  

The novel techniques for site-specific mutagenesis, especially TALENs and 

CRISPR/Cas9 have only become available for the wide research community in recent 

years (Cermak, Doyle et al. 2011; Hwang, Fu et al. 2013). These platforms enable 

generation of capped mRNA contructs within two weeks (TALENs) or even within one 

week in case of CRISPR/Cas9 that can be injected to zebrafish embryos. TALENs and 

CRISPR/Cas9 systems have certain common features. They use contructs which 

consist of specific sequences that bind to genomic region of interest (TAL effectors in 

TALENs or gRNA in CRISPR/Cas9) and of an endonuclease – dimeric Fok1 in case of 

TALENs and monomeric Cas9 in case of CRISPR/Cas9. These contructs cause double 

stranded DNA breakdowns which get repaired by error-prone non-homologous end 

joining (NHEJ) resulting in genomic mutations (Cermak, Doyle et al. 2011; Hwang, Fu 

et al. 2013). The current opinion is that TALENs and CRISPR/Cas9 systems do have 

only minimal off-target effects in comparison to morpholinos (Hruscha, Krawitz et al. 

2013) although non-specific binding has been decribed in both platforms (Reyon, Tsai 

et al. 2012; Fu, Sander et al. 2014). The numerous candidate cleavage sites available 

for both platfroms enable generation of multiple mutant alleles for genes studied.This 

means that we can study and compare the pehnotypes of different mutant alleles and 

thus gain more information about the functional domains of the protein coded by the 

studied gene. On the other hand the process of generating a stable mutant line is, and 

will always be quite time consuming. Although some TALEN and CRISPR/Cas9 

constructs are reported to be efficient enough to cause phenotypes in F0 generation of 

fish, these will inevitably be mosaics for induced mutations and are likely to contain 

different mutations in different cell populations. This can make interpretation of the 
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phenotypes difficult .To overcome this one would need to wait for the F1 generation to 

reach sexual maturity which will be 4-6 months at best. In the case of a need for a 

maternal mutant (F3 generation) this will be even 2-3 months longer. Thirdly the recent 

experience of our group with generating CRISPR/Cas9 constructs is that by far not all 

contructs do work as expected for various and yet unknown reasons. 

Based on the above considerations if one was to study a fuction of a zebrafish gene 

using methods of reverse genetics my recommendations would be following: A method 

of choice based on local expertise and experience - either TALENs or CRISPR/Cas9 

systems should be employed to generate several mutant alleles in different genomic 

sites of the gene studied. This would be based - if known - on the existence of any 

functional domains in the studied gene. Additionally, given the partial genome 

duplication in zebrafish, the generation of a mutant for a paralog gene should be 

attempted at the same time.  Simultaneously a pair of morpholinos, ideally those which 

interfere with pre-mRNA splicing should be obtained and injected using all standard 

controls. The phenotypes observed in the mutants should be compared with the ones 

observed in the morpholino morphants. If there is concordance, the morpholino can be 

used for further studies due to easier manipulation and possibility to inject into 

transgenic lines of choice. If there is discrepancy the interpretation of the pehnotypes 

becomes more difficult and there is currently no clear answer to this question. The next 

step I suggest is to study the phenotype of the duble mutant line generated by an 

incross of mutant lines for both paralog genes. I suspect however that the gene 

redundancy won`t be an answer to all the differences between morphants and mutants 

and only the future will bring a definitive answer to this issue. 
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Figure 6.1 Gene tree showing phylogenetic relations of zebrafish klf2a 

Zebrafish klf2a gene (in red) is most closely related to its zebrafish paralog klf2b as far 

as zebrafish genes concerned. Other closely related zebrafish genes are klf4a and 

klf4b (now renamed to biklf/klf17) and a zebrafish-specific member of KLF gene family 

klfd. Zebrafish genes are in blue. Genes from other species are in black. Adapted from 

Ensembl (http://www.ensembl.org/index.html). 
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