
G E N E T I C P R O G R A M M I N G F O R L O W- R E S O U R C E S Y S T E M S

david r. white

PhD Thesis

University of York
Department of Computer Science

December 2009

David R. White: Genetic Programming for Low-Resource Systems, PhD
Thesis, © December 2009

For my family.

iv

A B S T R A C T

Embedded systems dominate the computing landscape. This domi-
nance is increasing with the advent of ubiquitous computing whereby
lightweight, low-resource systems are being deployed on a vast scale.
These systems present new engineering challenges: high-volume pro-
duction places a stronger emphasis on absolute cost, resources available
to executing software are highly constrained, and physical manufactur-
ing capabilities approach hard limits. Add to this the sensitive nature
of many of these systems, such as smartcards used for financial trans-
actions, and the development of these systems becomes a formidable
engineering challenge.

For the software engineer, the incentive to produce efficient and
resource-aware software for these platforms is great, yet existing tools
do not support them well in this task. It is difficult to assess the impact
of decisions made at the source code level in terms of how they change
a system’s resource consumption. Existing toolchains, together with the
very complex interactions of software and their host processors, can
produce unforeseen implications at run-time of even small changes.

We could describe such a situation as an instance of programming the
unprogrammable, and Genetic Programming is one solution method used
for such problems. Genetic Programming, inspired by nature’s ability to
solve problems involving complex interactions and strong pressures on
resource consumption, is a clear candidate for attacking the challenges
presented in these systems. Genetic Programming facilitates the creation
and manipulation of source code in a way that grants us fine control
over its measurable characteristics.

In this thesis, I investigate the potential of Genetic Programming as a
tool in controlling the non-functional properties of software, as a new
method of designing code for low-resource systems. I demonstrate the
feasibility of this approach, and investigate some of the ways Genetic
Programming could be utilised by a practitioner. In doing so, I also
identify key components that any application of Genetic Programming
to such a domain will require.

I review current low-resource system optimisation, Genetic Program-
ming and methods for simultaneously handling multiple requirements.
I present a series of empirical investigations designed to provide ev-
idence for and against a set of hypotheses regarding the success of
Genetic Programming in solving problems within the low-resource sys-
tems domain. These experiments include the creation of new software,
the improvement of existing software and the fine-grained control of
resource usage in general.

To conclude, I review the progress made, reassess my hypotheses,
and outline how these new methods can be carried forward to a wide
range of applications.

v

vi

D E C L A R AT I O N

I declare that all the work in this thesis is my own, except where
attributed to another author. Some ideas and figures have appeared in
the following publications:

David R. White and Simon Poulding. A Rigorous Evaluation of
Crossover and Mutation in Genetic Programming.

Proceedings: EuroGP 2009.

This paper [White and Poulding, 2009] is a demonstration of how to
execute rigorous empirical work when working with highly parame-
terised evolutionary algorithms. The methods explored in this paper
are subsequently used in Chapter 7 to investigate the importance of
certain parameters in the framework proposed there.

Andrea Arcuri, David R. White, John A. Clark, Xin Yao. Multi-Objective
Improvement of Software using Co-evolution and Smart Seeding.

Proceedings: SEAL 2008.

This paper [Arcuri et al., 2008] is the foundation of Chapter 7. It
outlines the framework used in that chapter, and includes two of the
case studies reported in the chapter. It answers some of the questions
investigated in Chapter 7, whilst the rest are in the paper described
below.

David R. White, John A. Clark, Jeremy Jacob, Simon Poulding. Search-
ing for Resource-Efficient Programs: Low-Power Pseudorandom Num-
ber Generators.

Proceedings: GECCO 2008.

This paper [White et al., 2008] corresponds closely to the work in
Chapter 6.

David R. White, Juan M. E. Tapiador, Julio Cesar Hernandez-Castro
and John A. Clark. Fine-Grained Timing using Genetic Programming.

Proceedings: EuroGP 2010.

This paper contains an abridged version of the work in Chapter 8,
with the same experimental results as reported therein.

vii

The following also contain ideas and figures within this thesis and is
currently under review:

David R. White, Andrea Arcuri and John A. Clark. Evolutionary Im-
provement of Programs.

Submitted for journal review.

This paper contains the work from Chapter 7 that was not published
at SEAL 2008. It has further case studies and more detailed empirical
exploration of the framework proposed.

viii

A C K N O W L E D G M E N T S

First and foremost: acknowledgments to John A. Clark for his support,
encouragement and guidance. Thanks to Jeremy Jacob for making
me think more rigorously and suggesting new lines of thought, and
to Susan Stepney for all her feedback, encouragement and insightful
observations. To Juan and Julio for the most enjoyable and exhausting
creative discussions I have encountered, with an extra thank you to
Juan for all the help and time he has given me during the last few
months of the thesis, to be repaid in full at Pivo.

Huge thanks to Paul for the countless hacking queries, housing me
and driving me through the winter to finish the thesis. To the patient
and fantastic Andrea for all our collaboration meetings, both inside
and outside of the pub. To Simon Poulding for his collaboration and
for answering many stats questions. To the proof readers: Martin, Rob,
Sevil, Ian, Peter, Jan and Iain (on so many occasions). Thanks to Paul
Cairns for his tuition and advice on stats and experimental method. To
Rob, Frantz and Paul for particular help in the summer when I needed
it most.

To the EPSRC for their financial support, on grant EP/D050618/1.
To everyone on the SEBASE project for their support and suggestions,
including Per Kristian and Andrea: their dedication took them as far
as Avalanche Peak. To Sean Luke and the ECJ team for producing
the best evolutionary computation framework I could have hoped to
find. To the support team at York for building a cluster to make my
experimentation possible.

To my family for giving me the courage to do something so daunting,
and for their unwavering support.

ix

“You shall have joy, or you shall have power, said God;
you shall not have both.”
Ralph Waldo Emerson.

x

C O N T E N T S

i introduction 1

1 motivation 3

1.1 Low-Resource Systems 3

1.2 Low-Resource Software 3

1.3 Traditional Low-Resource Software Development 4

1.4 Opportunities for Improvement 4

1.5 Genetic Programming 5

1.6 Research Goals 5

1.7 Structure of this Document 6

2 hypotheses 7

2.1 Introduction 7

2.2 Thesis Hypothesis 7

2.3 Summary 9

ii literature review 11

3 traditional resource optimisation 13

3.1 Introduction 13

3.2 Traditional Methods 13

3.3 Hardware Design 14

3.4 Operating System Optimisation 18

3.5 Compiler Optimisation 19

3.6 Software Design 21

3.7 Full System Synthesis 23

3.8 Limitations of Traditional Methods 23

3.9 Design Evaluation 24

3.10 Optimisation using Search 25

3.11 Summary 26

4 genetic programming 29

4.1 Introduction 29

4.2 An Overview of GP 29

4.3 Representation 30

4.4 Initialisation 33

4.5 Evaluation 35

4.6 Variation 37

4.7 GP Algorithm Summary 39

4.8 Theoretical Basis 40

4.9 Extensions to GP 46

4.10 Alternative Representations 47

4.11 The Problem of Bloat 48

4.12 Confidence in Results 50

4.13 Comprehending GP Output 50

4.14 No Free Lunch 51

4.15 Achievements of GP 51

4.16 Comparing GP to Random Search 52

4.17 Open Issues 52

4.18 Summary 53

5 multi-objective optimisation 55

5.1 Introduction 55

5.2 Problem Definition 55

xi

xii contents

5.3 Types of Multi-objective Optimisation 57

5.4 Aggregation of Objectives 57

5.5 Pareto-based Optimisation 59

5.6 Pareto-Based Algorithms 61

5.7 Coevolution 64

5.8 Multi-objective Genetic Programming 66

5.9 Summary 66

iii experimentation 67

6 evolving resource-efficient software 69

6.1 Introduction 69

6.2 Pseudorandom Number Generators 70

6.3 Power Simulation 71

6.4 GP Parameters 72

6.5 Fitness Measurement 72

6.6 Problem Summary 74

6.7 Implementation 74

6.8 Results 76

6.9 Summary 83

7 improving resource efficiency 85

7.1 Introduction 85

7.2 Problem Formulation 85

7.3 Target Platform 86

7.4 Proposed Framework 86

7.5 Case Studies 96

7.6 Implementation Issues 97

7.7 Experimental Method 100

7.8 Results 101

7.9 Limitations 122

7.10 Future Work 122

7.11 Conclusion 123

8 fine-grained control over timing 125

8.1 Introduction 125

8.2 Resource-Consumption as a Function 125

8.3 Evaluating Low-level Timing 125

8.4 Designing Specific Complexity 126

8.5 Time as a Functional Output 131

8.6 Timing Avalanche Criterion 134

8.7 Summary 140

iv conclusion 143

9 evaluation & future work 145

9.1 Introduction 145

9.2 H1: Capability of GP to make Trade-offs 145

9.3 H2: Improving Existing Software using GP 146

9.4 H3: Fine-Grained Control of Resource Consumption 147

9.5 Thesis Hypothesis 147

9.6 Original Contributions 148

9.7 Refining the Approach 149

9.8 Semantic Correctness 150

9.9 Further Applications 151

9.10 Final Words 152

bibliography 153

L I S T O F F I G U R E S

Figure 1 Visualising scalability in terms of energy versus
quality. 22

Figure 2 Tree representation of a function that calculates
fib(n). 31

Figure 3 Example Fitness Landscape, from the Huygens
Search and Optimisation Benchmarking Suite [2007]. 37

Figure 4 Crossover in Genetic Programming. 39

Figure 5 Mutation in Genetic Programming. 40

Figure 6 Koza’s schemata as subtree building blocks. 43

Figure 7 Schemata as tree fragments. 43

Figure 8 Schema composed of multiple tree fragments. 44

Figure 9 Rooted schema. 45

Figure 10 Even-4-parity function in a LISP S-Expression us-
ing an ADF. 47

Figure 11 A feasible region within a solution space. 55

Figure 12 Visualising trade-offs in objective space. 56

Figure 13 Limitations of the weighted sum method. 58

Figure 14 An example Pareto front in objective space. 60

Figure 15 MOGA rankings within the objective space. 62

Figure 16 An overview of fitness evaluation. 75

Figure 17 Example plot of sample size against fitness for
one program. 76

Figure 18 Archive at Generation 249, Experiment 1. The
graph shows the trade-offs made by programs
within the archive, between total power consump-
tion and error. For both objectives, lower values
are better. 77

Figure 19 Archives at Generation 249 for Experiments 1, 2

and 3. Similar trade-offs are discovered. 78

Figure 20 Function set usage across the archives in Genera-
tion 249 for Experiments 1, 2 and 3. 79

Figure 21 Distribution of bit flips of the best individual from
Experiment 2. 81

Figure 22 Distribution of bit flips of the median (by χ2 Fit-
ness) individual from Experiment 2. 81

Figure 23 Pareto front from Experiment 1 compared to Pareto
front without multiply function. 83

Figure 24 Evolutionary framework. 86

Figure 25 Tree representation of Sort1. 88

Figure 26 Optimising software by search and filter, rather
than semantics-preserving transformations. 91

Figure 27 The relationship between an input program and
the semantic test set population. 92

Figure 28 A Pareto front composed of five programs in ob-
jective space. 95

Figure 29 Boxplots illustrating the distribution of instruc-
tion counts for valid program outputs. The dashed
lines indicates the performance of the original
programs. 102

xiii

Figure 30 Source code of Triangle1. 103

Figure 31 Source code of Triangle2. 105

Figure 32 Source code of Sort1. 105

Figure 33 Source code of Sort2. 106

Figure 34 Source code of Factorial. 107

Figure 35 Source code of Remainder. 108

Figure 36 Source code of Swi10. 109

Figure 37 Source code of Select (continued overleaf). 110

Figure 37 continued. 111

Figure 38 Instruction counts for the ten best treatments of
Triangle1. 119

Figure 39 Comparing instruction counts using modelling
versus simulation. 119

Figure 40 Exploration of the objective space for Triangle1. 121

Figure 41 Evaluation of fine-grained timing. 126

Figure 42 Example test harness. 127

Figure 43 Example individual written out to C. 127

Figure 44 Test results for handwritten linear solution. 128

Figure 45 Evolved linear solution. 130

Figure 46 Test results for handwritten quadratic solution. 131

Figure 47 Visualising the use of timing in calculation. 132

Figure 48 Bit flip distributions for simple TAC. 137

Figure 49 Evaluation of both timing and functional proper-
ties. 138

Figure 50 Bit flip distributions for best TAC-SAC individ-
ual. 141

Figure 51 Bit flip distributions for best TAC-SAC individual
when used in randomised quicksort. 142

Figure 52 Variable fidelity in measuring the behaviour of
embedded software. 150

L I S T O F TA B L E S

Table 1 Example low-resource platforms. See [Cro, Xil,
Ali] for further details. 3

Table 2 GP parameter settings. 73

Table 3 Three example PRNGs of varying functional qual-
ity. 80

Table 4 ENT results for the best individual. 82

Table 5 Function types for all experiments. 89

Table 6 Summary of the programs used in the case study,
giving the number of lines of code (LOC), nodes
within the corresponding GP symbolic tree ex-
pression, their input data types and the number
of local variables. 96

Table 7 Primitives grouped by category. 98

Table 8 Experimental parameters. 101

Table 9 Summary of factorial experiments. 113

Table 10 Individuals sampled when constructing models. 114

Table 11 Accuracy of modelling. 115

xiv

List of Tables xv

Table 12 Best parameter settings for each problem. 116

Table 13 Number of top ten treatments containing high
values. 118

Table 14 Comparing instruction count distributions using
modelling versus simulation. 120

Table 15 Unique objective values sampled by weighted and
SPEA2 methods. 122

Table 16 Experiment A: Settings to evolve linear time be-
haviour. 129

Table 17 Function return and argument types. 129

Table 18 Experiment C: Settings to evolve a Boolean OR
function using time as an output channel. 133

Table 19 Experiment F: Settings to evolve an expression
with a good Timing Avalanche Criterion measure-
ment. 136

Table 20 Comparing the composition of best individuals
from Chapter 6, TAC only problem and TAC-SAC
problem, by the frequencies of each operation in
the individual. 140

Table 21 GCC-optimised code performance versus best in-
dividuals found using GP. 146

xvi List of Tables

Part I

I N T R O D U C T I O N

1M O T I VAT I O N

1.1 low-resource systems

Embedded systems are the dominant form of computing platform
[Mesman et al., 2002]. In the past, the trend in embedded systems de-
velopment has focused on miniaturisation [Heath, 1997]. However, for
over a decade the focus has shifted towards other concerns, in particular
the non-functional properties of theses systems. Ubiquitous consumer
devices and technologies such as wireless sensor networks (WSNs)
and radio frequency identification (RFID) chips are creating a new
generation of very low-resource platforms where hardware capabilities
are severely constrained [Sarrafzadeh et al., 2006]. Examples of such
platforms are listed in Table 1. The reduced capabilities of these plat-
forms result from very low production cost targets, physical footprint
limitations, and the goal of maximising battery life by reducing power
consumption.

Typically, the target markets for these devices are very demanding:
they are produced in high volume, costs must be minimised, and time-
to-market must be as short as possible. Products that share the same
specification may contain different components. The same code or
algorithm may be required to run on multiple different processors and
embedded in different environments.

Application-specific requirements place further demands on the de-
velopment of these systems. For example, it may be desirable or es-
sential to minimise communication frequency, to meet hard and soft
real-time constraints, or guarantee properties such as robustness, main-
tainability or security.

1.2 low-resource software

Software developers programming for these resource-limited systems
are presented with the problem of ensuring functional correctness
whilst simultaneously achieving the goals of satisfying multiple non-
functional requirements such as those described above. This is made more
difficult by the following concerns:

Device Processor Code Memory RAM Comms

Mica2 Wireless
Mote

7.3MHz
ARMega128L

128kB 4kB 38.4kbps

Crossbow
Telosb Mote

8MHz
TI-MSP430

16kB 10kB UART, 250kbps RF

Xilinx Spartan-6
XC6SLX4 FPGA

n/a 3840 cells 216kb n/a

Alien ALN-9640

RFID tag
n/a n/a 800 bits UHF

Table 1: Example low-resource platforms. See [Cro, Xil, Ali] for further details.

3

4 motivation

• There is a high-level of interdependency between requirements.
For example, there may be a direct trade-off between memory
and processor usage. Both memory usage and processor usage
also affect power consumption, which may be reduced by varying
processor speed [Jacome and Ramachandran, 2006].

• The relative importance of requirements may not be known. Ap-
proaching such problems by weighting the importance of each
factor then creates the problem of how to decide upon those
priorities and weightings [Berntsson Svensson et al., 2009].

• A single solution is vulnerable to change, as time-to-market is
typically short and system requirements can shift rapidly [Villela
et al., 2008].

• For a given problem, once a solution has been proposed it is
usually not possible to determine if the suggested solution is
optimal. Only by examining a set of alternative designs can the
quality of a given solution be estimated [Henzinger and Sifakis,
2007].

1.3 traditional low-resource software development

Whilst there has been a recent surge of interest in the design of both
hardware and software for embedded systems, non-functional require-
ments have been addressed in the past with only a limited range of
traditional methods. Techniques for satisfying all of the constraints and
requirements of these systems are dispersed across multiple areas of
expertise and are often applied separately to the design of different
system components.

Traditional techniques usually focus on a single objective, or a single
trade-off between two competing objectives. For example, a compiler
may present configurations (such as GCC’s “-Os” option) to prefer
code size minimisation over time efficiency where those objectives
conflict. The large number of potential trade-offs involved prohibits an
individual engineer from considering the impact of a design decision
on every requirement.

The point in the project lifecycle where these requirements are
addressed also limits the impact that particular techniques or pro-
cesses can have. Compiler-level optimisation, for example, is a post-
implementation optimisation. As a result, the optimisations produced
by a compiler tend to be localised, acting by transforming a small num-
ber of instructions rather than considering a more global view of the
software. A compiler cannot alter decisions taken by the programmer
that restrict what can now be achieved.

1.4 opportunities for improvement

Embedded systems software design has seen little focus on optimisation
at the algorithmic level, where there are potentially large optimisation
gains to be made from modifying or replacing a program or subpro-
gram with a different form of solution. Rather, traditional methods
have focused on small scale optimisation such as peephole optimisation
found in modern compilers. This is because completely general and

1.5 genetic programming 5

systematic methods for transforming software at a function-level (for
example) do not exist.

In recent years, the field of program search, including its most suc-
cessful branch of Genetic Programming (GP) [Koza, 1992], has shown
some promise as a semi-automated method of program development.
Integration of GP with multi-objective optimisation (MOO) techniques
[Deb, 2001] allows the algorithm to be employed to explore trade-off
surfaces, and the combination of MOO techniques with program search
may prove a useful tool in engineering low-resource system software.

1.5 genetic programming

Program search is a heuristic search technique that attempts to automate
the creation of program code to solve a problem, guided by a function
that will measure the success of a particular program in solving the
problem at hand. Genetic Programming [Koza, 1989] (GP) is the most
popular program search algorithm, and since its conception in the late
1980s over 6000 papers have been published in the field [Langdon et al.,
2009]. GP has been successfully applied to a range of application areas,
and has achieved some impressive results [Koza et al., 2003].

Search algorithms such as GP can evaluate a larger number of po-
tential solutions than human designers. They can also be used to solve
multiple objectives simultaneously, and to find trade-offs between these
objectives. Solutions can be presented “as is”, or they can be utilised
by human designers in gaining insight into a problem, for example by
giving an estimate of the range of trade-offs possible. Hence search may
accelerate the design process by focusing the engineer’s effort on the
most fruitful areas of the design space.

Previously applications of search to other problems within software
engineering have been collectively known as Search-Based Software En-
gineering (SBSE) [Clark et al., 2003, Harman, 2007]. The most successful
area of SBSE has been in the domain of software testing, and the tech-
niques developed in that domain have shown potential in addressing
non-functional properties [Afzal et al., 2009]. The success of search in
these fields gives promise to the application of GP to non-functional
requirements in the embedded domain.

Genetic Programming has previously been applied to novel embed-
ded hardware design [Koza et al., 2005], and to non-functional require-
ments such as the size of source code [Langdon, 2000a]. However, its
potential is far from fully exploited in this domain. For example, it has
yet to be used to control dynamic properties of software such as power
consumption.

1.6 research goals

This research will investigate a new approach to designing software
for low resource systems using multi-objective Genetic Programming.
The techniques that this research aims to develop are intended to assist,
rather than replace, the developer by providing possible solutions and
information about trade-offs in order to help them gain insight into a
problem.

6 motivation

1.7 structure of this document

This document is divided into four parts: this introduction, a literature
review, experimental method and results, and a conclusion.

The final chapter in this part, Chapter 2, outlines the hypotheses of
the thesis. These are the result of the literature review that follows, but
they are outlined at the outset for clarity.

Part ii reviews the literature. After examining traditional methods
of creating resource-efficient embedded systems, as well as recent and
emerging techniques in Chapter 3, it proceeds to cover the two optimi-
sation methods central to this thesis: Genetic Programming in Chapter
4 and multi-objective optimisation in Chapter 5.

Part iii contains three strands of experimentation designed to test
the hypotheses in Chapter 2. The first, Chapter 6, attempts to create
low-power software from scratch using Genetic Programming. The
second, Chapter 7, aims to apply Genetic Programming to improve
the execution time of existing software. Third and finally, Chapter 8

demonstrates the application of search in establishing fine-grained
control over the non-functional behaviour of software.

Chapter 9 in Part iv reviews the hypotheses in the light of experimen-
tal results, and proposes future work to further develop and implement
the techniques studied.

2H Y P O T H E S E S

2.1 introduction

In this chapter, I detail the hypotheses that are the subject of investi-
gation within the thesis. Firstly, I give an overall hypothesis, before
subdividing this overarching statement into individual hypotheses that
will be separately addressed.

The very nature of the hypotheses, and their relation to the solving of
engineering tasks, means that this thesis must take the form of empirical
investigation. In some cases the hypothesis cannot be conclusively
proved or discredited: I can only present evidence that increases or
decreases our confidence in its correctness.

2.2 thesis hypothesis

The fundamental hypothesis of this research is:

Thesis Hypothesis: Program search is a versatile and effective
method that can be used to satisfy the conflicting requirements of
low-resource systems.

In order to validate or falsify this hypothesis, I propose three separate
strands of research:

1. Exploring the ability of GP to trade-off functionality against re-
source consumption for a given problem.

2. Determining whether GP can be used to improve existing soft-
ware, in terms of its resource consumption.

3. Investigating the use of GP to gain fine-grained control over
resource usage in general.

A hypothesis associated with each strand is now given.

2.2.1 Capability of GP to make Trade-offs

Hypothesis 1: Genetic Programming will be able to provide
graceful degradation in the trade-off between resource consump-
tion and functionality.

“Graceful degradation” is not easily quantified, but in general we
may consider that if we do not see a phase change in performance com-
pared to resource consumption, or a resource threshold below which
functionality will rapidly degrade, then GP is degrading gracefully.
As an illuminating example, consider the problem of evolving sorting
networks that will sort a list of inputs [Knuth, 1998]. If we restrict the
number of possible comparisons below the known minimum required
to completely sort the items, what can we achieve?

It is believed that GP will be able to achieve graceful degradation
by combining variation of its current solutions with feedback from

7

8 hypotheses

evaluating those individuals. It will then favour changes to an existing
solution that give the most efficient returns in terms of providing
functionality for a given resource level.

2.2.2 Improving Existing Software using GP

The potential of using Genetic Programming to improve existing soft-
ware, rather than create new software, will be investigated. Such a
line of research is interesting because it may prove more immediately
applicable to deployed software and platforms. It is likely that this ap-
proach will require development of new search methods, or the novel
combination of existing ones. The hypothesis of this research is:

Hypothesis 2: Genetic Programming will be able to optimise
non-functional properties of software to a level not achievable
by a compiler: in particular, solutions found by GP will Pareto-
dominate hand-written solutions optimised by a compiler such as
GCC.1

For example, we may hope that GP can use handwritten C code
as input, and produce optimised versions of that code consuming
less power or taking a shorter time to execute. The rationale behind
proposing such a hypothesis is that we may expect GP to manipulate
code at a larger scale than a compiler, that it might recombine or
replace subcomponents efficiently. In contrast, compilers are limited to
a restrictive set of mappings from source to optimised assembly.

2.2.3 Fine-Grained Control of Resource Usage

Traditional optimisation methods attempt to reduce resource usage, that
is they are concerned with transforming the resource usage of software
or a system to one that is more resource-efficient. It may however, be
desirable to exert much more precise control over resource consumption.
For example, we may wish to produce a resource consumption pattern
that relates the resources used to the numerical inputs of a program.
This would have applications in computer security, resource-bound and
resource-scalable functions.

The problem with obtaining such control is that precise resource
consumption is an emergent property of software, the compiler, the
system that executes it, and the machine state prior to that software’s
execution. Evolutionary computation has been show to cope well with
such complex relationships in other domains, and therefore I propose
Hypothesis 3:

Hypothesis 3: Genetic Programming can act as a mechanism
to improve fine-grained control over emergent properties aris-
ing from the interaction between compiled source code and the
host hardware platform by treating this system as a “black box”,
and discovering complex relationships through exploration of the
search landscape.

A human programmer would find such a task very challenging,
because a modern processor and compiler constitute a complex system
that makes it difficult to predict the impact of a change at source level

1 For the definition of Pareto-dominance, please see Chapter 5.

2.3 summary 9

on the behaviour of the resulting compiled code. However, GP does not
rely on logical analysis of a situation, rather it is a search mechanism
that will attempt to find a gradient it can follow. A human equivalent
to this would be a “trial and error” approach, but GP can automate this
process and carry it out in parallel through its search operators. GP also
does not carry the weight of experience or intuition, which may bias a
designer’s choices. Therefore, I expect GP to be effective in achieving
this control.

2.3 summary

I have listed the hypotheses this research will answer. Evidence regard-
ing Hypotheses 1, 2, and 3 will be presented in experimental chapters
6, 7 and 8 respectively.

Part ii of this thesis now reviews relevant literature in the area of
traditional optimisation of non-functional properties, and the two search
techniques central to the empirical work: Genetic Programming and
multi-objective optimisation.

10 hypotheses

Part II

L I T E R AT U R E R E V I E W

3T R A D I T I O N A L R E S O U R C E O P T I M I S AT I O N

3.1 introduction

This chapter reviews previous approaches to creating resource-efficient
embedded systems. Firstly, it covers the traditional methods used to
optimise embedded hardware and software designs. Whilst not ex-
haustive, this provides an overview of the issues involved and the
prevalence of trade-offs between competing concerns. Secondly, I ex-
amine areas where optimisation techniques such as heuristic search
algorithms have previously been applied. Finally, I consider methods
of evaluating designs and the limitations of current approaches.

3.2 traditional methods

The approaches covered span a range of fields without a unifying
methodology. Most techniques focus on a single part of the system, and
a single non-functional property – typically execution time, memory or
power consumption. The notable exceptions to such single-focus are
system synthesis and in particular hardware/software codesign [Vahid and
Givargis, 2008, Micheli et al., 1997], which is becoming increasingly
important due to the indivisible nature of system optimisation.

Whilst the embedded system design literature [Ganssle, 1999, Heath,
1997] is principally concerned with making decisions that trade-off prod-
uct costs, footprint size and technical capabilities, there is little emphasis
on actually exploring trade-off spaces in both manual decision-making
and automated techniques. Where automation is applied, the engineer
is often not presented with a choice of trade-offs, rather they are given
a single solution based on the approach a compiler author or hardware
designer has taken. This amounts to a static selection of weightings in
a multi-objective problem, as described in Chapter 5.

Increasingly, the importance of time-to-market has created a focus on
reducing development time, achieved by using generic hardware, cus-
tomising off-the-shelf components (for example, through programmable
logic) and relying more and more on software to provide optimisations
for a particular application. As software is the most expensive part of
the system to develop, Ganssle [1999] suggests that systems may be
built more effectively using a software-centric development process:

“It’s time to reverse the conventional design approach,
and let the software drive the hardware design.”

The most important non-functional properties in modern embedded
systems design are in general power consumption [Jacome and Ra-
machandran, 2006], physical and memory footprint size [Clausen et al.,
2000] and time efficiency, if we exclude “meta” properties such as pro-
duction cost. Requirements of increasing importance are considerations
of thermal properties, and security concerns regarding side-channel
analysis [Voyiatzis et al., 2006]. Memory efficiency has become less of a
concern as low-cost and physically compact RAM technologies have
become available. There are exceptions, for example in the area of RFID

13

14 traditional resource optimisation

design where the impact of memory requirements on cost is small but
significant when producing large volumes of such heavily constrained
systems.

The methods of providing resource efficiency are now examined in
reverse order of their proximity to the application level. In this thesis,
I target the application layer, but aim to transcend these divisions by
simulating the effects of application changes on the system in a holistic
sense. Low-level details such as transistor technologies are deliberately
omitted, because they are usually beyond the control of the system
designer.

3.3 hardware design

3.3.1 Processors

Modern processors are differentiated by their Instruction Set Architec-
tures (ISAs), and the level of integration they provide on-chip. The most
striking design choice is between Reduced Instruction Set Computing
(RISC) and Complex Instruction Set Computing (CISC) [Isen et al.,
2009]. RISC chips dominate the market at present, although manufac-
turers such as Intel are introducing CISC implementations in small
footprint, lower-power chip designs [Intel Atom Processor, 2009]. For
the moment, RISC prevails and is able to produce smaller and usu-
ally more power-efficient processors, with satisfactory and increasing
processing capability.

The uptake of RISC architectures was initially surprisingly slow. They
were first proposed in the 1970s, based on systematic analysis of the
code produced by compilers targeted for CISC platforms [Patterson and
Ditzel, 1980]. One study [Alexander and Wortman, 1975] demonstrated
that 80% of code used only 20% of the instructions provided, which
became known as the 80-20 rule. CISC architectures had even grown
to the extent that they included what Patterson described as irrational
instructions, whereby a specialised instruction was sometimes less effi-
cient than an equivalent sequence of simpler instructions within an ISA.
However, RISC architectures were practically abandoned until a decade
later. Fascinatingly, the reason for this was the limitations of the compiler
technology, an observation that can perhaps be mirrored in the work pre-
sented in Chapter 7. Compilers were in part memory-constrained and
also simply not sophisticated enough to produce efficient sequences
of RISC instructions to perform the same functions implemented in a
single CISC instruction. In a similar manner today, this thesis looks at
one method that could be used to improve the optimisations a compiler
can perform.

The choice of a RISC/CISC architecture presents a classic trade-off
decision to the engineer. RISC architectures are generally more power-
efficient and physically compact, but a larger number of instructions
are required to implement the same function compared to a CISC
architecture, and hence a greater amount of memory is used for code
storage.

Within specific ISAs, there are often developments of subsets or
extensions targeted for specific applications. The heavily promoted
MMX technology [Peleg and Weiser, 1996] used in Intel’s Pentium
line of processors is a good example: extra instructions were added to
targeted common functions used in handling multimedia. The ARM

3.3 hardware design 15

Thumb instruction set extension is another example [Seal, 2000]. More
generally, the concept of instruction subsetting can be used to implement
fewer instructions, i.e. sacrificing programmability, in order to improve
performance measures such as power consumption. Dougherty et al.
[1998] examine just such a method, and look at a range of trade-offs
rather than the two extremes. This is an example of hardware/software
codesign, in that the instruction set is chosen partly on the basis of the
software application.

Application-specific processors [Goodwin and Petkov, 2003] are be-
coming increasingly popular. The first examples of such tailoring of
hardware to application were Digital Signal Processors (DSPs) arriv-
ing in the 1980s, specifically targeting applications that require high-
throughput of data in order to perform filtering that was previously
implemented in analogue circuitry. DSPs are far more efficient than
employing a full microprocessor, and offer flexibility (another non-
functional requirement) and low cost that analogue circuitry cannot.

Whilst ISA choice is a macro-level design decision, manufacturers
have often resorted to much finer-grained optimisations. In the past
8-bit and (more briefly) 16-bit devices dominated the market. Manufac-
turing costs heavily dictated processor design, and processors such as
the Motorola MC68HC05 went so far as to trim individual bits from
physical register width to reduce the die size required.

A full history of processor design cannot be given here, but clearly
the development of processor technology in general, such as pipelining
and speculative branch execution, has impacted the field of embedded
systems: most such improvements have been applied to lines such as
ARM, PowerPC and Motorola’s processors. One popular example is the
voltage scaling used in PCs and embedded systems alike: see Section
3.4.1.

3.3.2 Memory Subsystems

Memory access is a major cause of latency in software execution, and
accessing off-chip memory can involve a latency of anywhere from 2

to 10 cycles [Heath, 1997]. Memory access, along with any external
communication, is usually the dominant cause of power consumption in
an embedded system. This subsystem is also a key factor in determining
footprint size. There are trade-offs contained within this system alone:
for example, delays can be reduced by increasing the bandwidth of
paths to memory, at the cost of increased power consumption. For a
detailed review, see Benini et al. [2003].

Embedded systems usually provide a combination of read-only mem-
ory (typically an EPROM or cheaper One-Time-Programmables) for
software storage along with working RAM. The latter is implemented
using DRAM or SRAM technology, which provides another excellent
example of the trade-offs involved: DRAM is much smaller (a single
transistor can represent a single bit) in its footprint, but it must be
constantly refreshed, resulting in higher power consumption and lower
performance. This is because the refresh cycle must be synchronised
with access to the memory.

Automated techniques can also be used to optimise a memory ar-
chitecture by exploring the design space. For example, Coumeri and
Thomas [2000] performed exhaustive search over a subset of the space
of memory hierarchies for embedded SRAM. They used linear regres-

16 traditional resource optimisation

sion to construct power, size and performance models after evaluating
the subset of possible designs using circuit simulators.

bus design Bus design is critical in determining software perfor-
mance, as memory access and bus contention can be a key bottleneck.
Memory access, along with other external resource access, is the slowest
activity in embedded systems. With the advent of processor pipelining,
bus contention became very important and this was reflected in the
separation of data and instruction buses in most systems.

The processor bus width can be increased to allow more data or in-
structions to be fetched in a single memory access and reduce execution
time, or conversely it may be decreased to reduce the space required
and the power consumption.

A serial bus may be employed to reduce the number of wires used,
or the data transmitted may be compressed [Yoshida et al., 1997]. For
example, Hatta et al. [2006] proposed replacing the instruction bus with
a serial bus. This requires extra logic for encoding and decoding. They
also employed differential data transfer, which uses a difference rather
than absolute encoding of data to reduce the amount of information
transmitted. They achieve impressive power savings of up to 66%,
together with a reduction in footprint size over a conventional bus.

Yoshida et al. [1997] reduced system power consumption by com-
pressing instructions using a table-lookup method. The frequency of
each instruction in the software is analysed and a compression table
constructed. Instructions are decompressed by a unit within the pro-
cessor prior to execution. This reduces RAM access and results in a
significant reduction in the amount of power consumed.

cache Caching instructions and data can be vital in improving per-
formance by reducing stalls caused by external memory access. Off-chip
memory access latencies are a major factor in performance, particularly
as CPUs have grown in speed compared to memory technologies, and
motivate the development of improved caching methods. Hardware
prefetching retrieves data from memory based on current accesses.
For example, as the end of the cached part of an array is reached it
may request the next part of that array. This is augmented by software
prefetching [Callahan et al., 1991], a technique that interestingly shifts
optimisation of memory access away from hardware support and onto
the compiler.

A design of increasing popularity in recent years is the inclusion of
scratchpad memories [Panda et al., 1999]. The relative benefits of scratch-
pad memory over standard cache are explored by Banakar et al. [2002],
and they evaluate the impact of the design decision on physical foot-
print and energy consumption. Scratchpad memory contents mirror
parts of the main system RAM and are determined prior to execution
by the programmer’s design, that is a traditionally hardware-based
mechanism is replaced by a compile-time optimisation.

Panda et al. [1999] explore the optimisation of the cache hierarchy
for embedded systems based on static analysis of the software to be
executed. They give pseudocode that examines the impact of decisions
across three components: memory size, cache size and cache line size.
Their method uses locality analysis and estimation of access costs to
select the locations of main memory to be cached in scratchpad memory,

3.3 hardware design 17

and approximates the overhead of memory access given the structure
of the cache hierarchy.

3.3.3 Networks

Embedded systems interact with networks via standard hardware com-
ponents in a WSN or LAN, and they can also incorporate network-
on-chip technologies [Kumar et al., 2002] that connect components of
the embedded system itself. On-chip networks are necessary due to
the increased number of components on a chip demanding high-speed
interconnect within stringent wiring requirements.

Trade-offs can be made between communication and other properties
of a system, in terms of the frequency and amount of communication
required. Significant energy savings can be made; for example, network
cards can be shut down, or placed in a low-power mode, and traffic
shaping and compression can be used to reduce the quantity of data
transmitted. Acquaviva et al. [2005] reduced the power consumption
of a wearable computer by replacing standard 802.11b Wi-Fi wireless
network power management with optimisation controlled by the server.
As the activity of the client is predictable, the required quantity of
data for a set time period can be transmitted in bursts, buffered, and
the wireless card can then sleep, in an example of collaborative power
management.

Shang et al. [2006] were the first to consider on-chip network opti-
misation in the context of thermal management. Their paper describes
a simulator and run-time router management scheme that allows the
design and control of on-chip routing mechanisms to prevent chip
temperatures from reaching unsafe thresholds. The routing works by
monitoring the temperature at points around the chip, and both throt-
tling and re-routing data across alternative paths when temperatures
are high at specific locations. There is a trade-off between temperature
management and performance, as re-routing can increase network la-
tency. The same technique could be applied to manage temperature
more generally across all system components, in a similar manner to
power management techniques.

3.3.4 Peripherals and Interrupts

Embedded systems, by their very definition, must usually interact
with external devices such as serial/parallel interfaces and analogue to
digital converters. These components can dictate the design choices of
the system, as they produce streams of data that require processing or
provision by system software. Mechanisms such as interrupts and Direct
Memory Access (DMA) can reduce the load on the main processor by
allowing external peripherals to access memory directly.

3.3.5 Power Management

A survey on power management techniques can be found in Benini
et al. [2000]. Power management reduces power consumption by incor-
porating low-power modes in system components. For example, hard
disks, memory components, displays and laptop processors have such
modes, commonly controlled through the Advanced Configuration and

18 traditional resource optimisation

Power interface (ACPI). Components change between modes that offer
different trade-offs between performance factors (such as operation
speed, responsiveness) and power consumption.

For power management to be successful, workload demands on a
system must vary over time and be to some extent predictable (often
difficult to achieve) such that a policy may be designed to capitalise on
expected idle time. Bouyssounouse and Sifakis [2005] state:

“Even though most of the publications on power management
are concerned with design-time techniques, their usefulness in
practice is quite limited. This is because in many practical cases,
it is not possible to characterise the workload with the required
level of precision.”

There is a gap between the creation of resource-efficient design meth-
ods and the reality of the way embedded systems are actually de-
veloped, which is ad hoc and most crucially usually involves fitting
software to a predetermined hardware design.

Power management features were first introduced in mainstream
processors in the 1980s, for example in the Intel 80386SL processor,
which included a power control model [Heath, 1997]. The Motorola
MPC603 is an example of one of the first embedded processors with
power management. Designing power-manageable components has
associated costs. Switching between different modes incurs transition
costs, including extra power consumption in some cases, and transition
times also affect overall responsiveness. It is possible to hide the delay
of restoration from a power-saving mode if the end of the idle period is
known in advance [Langen and Juurlink, 2007]

Zhang and Vahid [2002] give one example of a power-manageable
component, a power-configurable bus. It enables a software-selected
low-power mode that works by reducing the switching frequencies
of both data and address buses. This sacrifices 10ns of fetch time but
reduces the power consumption by up to 97% for a series of memory-
intensive example applications. A reduction in clock speed is required,
a small overhead compared to the power savings made.

3.4 operating system optimisation

Most embedded systems now contain an operating system, often a Real-
Time Operating System (RTOS) that provides context switching, mutual
exclusion and interprocess communication. Good OS design can be
used to improve the efficiency of the system as a whole. For example,
Park and Shin [2007] examine the impact of memory management
configuration in Linux, in terms of its overhead on system calls and
memory access, and demonstrate that reductions in execution time of
over 20% on a set of benchmarks can be gained through reconfiguration.

3.4.1 Scheduling

Modern processors support voltage scaling, which allows the processor
to run using different voltages at different clock frequencies. A lower
voltage corresponds to a slower execution speed, with a subsequent
power saving. Processors may support continuous variation of volt-
age, such as the XScale Series [2007], or discrete voltage settings. For

3.5 compiler optimisation 19

example, the Intel 80200 can be varied from 1 to 1.5V in small incre-
ments, with a corresponding change in frequency from 200 to 700MHz
[Jacome and Ramachandran, 2006]. Again, changing to more efficient
configurations has a transition cost that must be taken into account.

Voltage scaling can be exploited in the design stage to statically min-
imise power consumption, or the scheduler can respond dynamically
based on prior task execution data and heuristics. Jha [2001] surveys
power-aware scheduling algorithms that exploit dynamic voltage scal-
ing and dynamic power management.

Standard scheduling methods have been extended to incorporate
energy trade-offs as well as time and value constraints. For example,
Rusu et al. [2003] give a scheduling algorithm that is energy efficient,
whilst Hung et al. [2005] incorporate thermal concerns into scheduling.

Yavatkar and Lakshman [1995] describe a Dynamic Soft Real-Time
(DSRT) processor scheduler that is based on the supply of dynamic
information from executing tasks in order to create a schedule. Appli-
cations provide an estimate of required execution time to a Quality of
Service (QOS) manager, which cooperates with the scheduler to assign
priorities and CPU allocation dynamically.

Increasingly, modern RTOSs integrate with hardware power manage-
ment facilities (see Section 3.3.5) to provide a dynamic system-wide
power management policy. Applications effectively provide real-time
profiling information to the operating system; designing middleware
to fulfil this task is currently a popular area of research.

Static power dissipation is increasing as chips incorporate more
and more transistors when additional functionality is integrated. This
is raising the importance of both dynamic voltage scheduling and
power-saving CPU modes in conserving energy. Langen and Juurlink
[2007] explore the trade-offs between the two power-saving methods.
The most obvious technique of powering down for the slack after an
earliest-deadline first schedule (known as “schedule and stretch”) is
not the most efficient.

3.5 compiler optimisation

Nearly all software optimisation within embedded systems is carried
out by a compiler. Compilers optimise for processing speed, memory
usage and, increasingly, power consumption. There is a balance to
be struck between these factors, presented to the developer as a set
of fixed trade-offs. Compilers are limited in their effectiveness by the
information available about the software and by their place within the
design lifecycle. The field of compiler construction and optimisation is
vast: only a set of common optimisations is presented here.

In general, compilers optimise in two ways: firstly, by improving
individual operations and sets of operations and secondly by laying
out code and data in such a way as to reduce off-chip memory access.
The former type of compiler optimisations are localised within a small
section of the program, such as a sequence of consecutive instructions,
removing unnecessary code and modifying other code. For example,
unreachable code can be removed, or loops unrolled.

Compiler optimisations have significant implications for debugging:
the code can be transformed to such a degree that it may no longer be
possible to apply standard debugging tools. For example, instructions
may be replaced with alternatives – such as using an OR instruction

20 traditional resource optimisation

to zero a register. Symbol tables may be affected, making it difficult
to translate between actions in assembler and the original high-level
source code. It is this complex relationship between source and target
machine code that makes it so difficult for an engineer to finely tune
optimisations and trade-offs at the source-level. The difficulty devel-
opers have in estimating the size of compiled code given the original
source illustrates the complexity of this relationship.

3.5.1 Register Allocation

Lowering power consumption and improving execution speed by re-
placing memory access with cache and register usage is one of the
most effective types of compiler optimisation. Memory access usually
incurs a large clock-cycle overhead, as well as consuming more energy
through the use of external communication such as a bus interface to
DRAM. By allocating data to registers and on-chip memory, as well
as selecting register-based operations where possible, compilers can
improve the speed and energy efficiency of a program.

Lee et al. [2005] improve allocation of data to registers by profiling
program code, then producing traces of the most popular function
calls. This reduces program execution time and program size. Reducing
program size reduces the size of the ROM required in embedded
systems and hence the cost and physical footprint of the memory.

3.5.2 Cache Optimisation

Compilers can optimise memory access by using cache to hold fre-
quently accessed data. Data selection is based on locality analysis. For
example, array access has a strong degree of locality as many algorithms
will navigate the array by accessing successive locations in memory.

Unsal et al. [2003] introduce two techniques: the first is a combination
of compiler-driven optimisations and scratchpad memories, while the
second is a new cache architecture termed “cool-cache” that handles
non-scalar (i.e. array) memory access. Static analysis of scalar values
is used to utilise scratchpad memory efficiently, and both static and
dynamic techniques are implemented to improve cache performance
for non-scalar access. The techniques can optionally be supported by
custom hardware design.

3.5.3 Loop Optimisation

Loop optimisation transforms loops within a program to improve
efficiency. There are many types of loop transformations. One example
is loop unrolling, whereby the contents of a loop with n iterations are
repeated n times, removing the branch statement and conditional logic
of the loop. This reduces the number of branches required, and the
total number of executed instructions.

Another example is that nested inner and outer loops may be ex-
changed to improve the locality of data access. For example if a two-
dimensional array is being explored, the underlying array representa-
tion will favour continuous access across one dimension over the other.
This supports caching and improves the efficiency of memory access.

3.6 software design 21

More examples of loop optimisation are described by Aho and Ullman
[1977].

3.5.4 Peep-hole Optimisation

Peep-hole optimisation transforms a sequence of instructions based
on a ruleset. The rules include substitution of alternative op-codes
and rearranging existing instructions in order to improve efficiency.
For example, a multiplication by a power of two can be replaced by
a shift operation. More than one transformation may be applicable to
the same set of instructions, and a different ordering of transformation
applications can produce different results. Deciding the order to be
applied is known as the “phase ordering” problem. Most compilers use
a fixed ordering.

3.6 software design

Traditionally, hand-crafted (assembly-level) optimisations were made
in order to improve the efficiency of code, but such manually intensive
methods are now normally superceded by modern compiler optimi-
sation. Short time-to-market requirements in the embedded systems
industry have resulted in the adoption of high-level languages for
implementation.

High-level software design can easily outweigh the impact of opti-
misations made at lower levels of the system architecture, and some
examples of the impact modern software design can have at the high
level of abstraction follow.

3.6.1 Low-Energy Protocols

Network protocols can be designed to be power and communication-
efficient, as well as guaranteeing delivery and low latency. Wireless
sensor network protocols in particular [Akyildiz et al., 2002] are the
subject of intensive research, as communication dominates the power
consumption of these very resource-limited platforms.

For example, Mathew et al. [2005] modify the bootstrapping part of
a network protocol for Wireless Sensor Networks (WSNs) to reduce the
amount of transmission required and reduce the time spent listening
for incoming packets. They increase the power efficiency of the network
by providing longer windows of idle activity, during which time sensor
nodes can switch to low power modes.

In general, protocols for WSNs must aim to satisfy many objectives.
As well as guaranteed delivery, they may try to minimise the number of
hops taken to deliver a message from one node to another. This reduces
the number of nodes that must wake up and consume power in order
to deliver a message. These objectives may be met through designing
network topologies that facilitate these objectives, such as clustering
and routing graph planarisation [Zhao and Guibas, 2004].

3.6.2 Energy-Scalable Algorithms

Certain algorithms can be expressed in a scalable manner, to provide
continuous trade-offs between non-functional properties and quality

22 traditional resource optimisation

Quality

Energy

Algorithm II

Algorithm I

100%

Figure 1: Visualising scalability in terms of energy versus quality.

of service attributes. Sinha et al. [2000] show how algorithmic trans-
formation can be made to produce energy-efficient scalability in DSP
applications such as filtering, image decompression and beamforming.
Their notion of scalability requires incremental refinement, in the sense
that an output is continually improved as energy is used, and an energy-
scalable algorithm must be able to provide the largest returns at lower
levels of energy, with returns diminishing as the energy consumption
increases.

Figure 1, based on Sinha et al. , demonstrates how one algorithm may
be more scalable than another. Algorithm II is more energy-scalable.
They note the importance of such scalability:

“Algorithms that render incremental refinement of a certain qual-
ity metric such that the marginal returns from every additional
unit of energy is diminishing are highly desirable in embedded
applications.”

Resource-scalable algorithms are closely linked to the field of anytime
algorithm research [Zilberstein, 1996], although anytime algorithms
traditionally have focused on specific problems such as artificial intelli-
gence applications.

3.6.3 Resource-Efficient Design Patterns

Noble and Weir [2001] provide a collection of design patterns for en-
gineering low-memory software. These patterns are collected from
engineers and developed through experience of engineering such sys-
tems. These higher-level modifications to system design can have a
large impact on overall memory usage.

The techniques include the use of small memory architectures, taking
advantage of cheaper secondary storage, compression, lightweight
data structures and efficient memory allocation. The patterns are one
example of explicitly defining aspects of the design process that have
developed organically to satisfy non-functional requirements.

3.7 full system synthesis 23

3.6.4 High-Level Optimisation

Much less work has been published on direct optimisation of program
characteristics through altering source code, rather than the actions of
the compiler. It is obvious that the choice of algorithm may dominate
resource efficiency: this is the purpose of complexity theory, but there
has been little work on improving efficiency at the high-level, at least
in the context of embedded systems. One exception is the development
of portfolio algorithms [Gomes and Selman, 1997], which partition the
input space and choose an algorithm based on the input given, in order
to minimise resource consumption (usually time) for that input.

3.7 full system synthesis

System synthesis is normally used to describe the process of selecting
the correct hardware architecture and combination of components to
construct an embedded system. This involves taking into account the
software that will run on the platform, and other requirements such
as cost, speed and energy consumption. Tools exist that partially au-
tomate this process, for example Carro et al. [2000] proposed a CAD
environment that first analyses software to be run on a system and cre-
ates a profile that classifies a program as relatively memory, processor
or data-intensive. Potential components are similarly characterised by
their suitability for certain types of application. The CAD system can
then suggest the most suitable application platform according to these
profiles and the designer’s requirements.

A more traditional and manually-intensive method of exploring the
design space for a whole system is to use “suggest and simulate”. A
selection of proposed designs are supplied by engineers to be simulated
using both mathematical and physical models. This technique has been
used by NASA’s Jet Propulsion Laboratory to engineer space systems,
with demanding constraints on payload, trajectory, communication,
mass, performance and risk. The results from such experiments give
designers insight into the problem and feedback about their design
choices. More recently, this work has begun to incorporate automatic
optimisation techniques to reduce the length of the design process
[Terrile et al., 2005].

3.8 limitations of traditional methods

Hardware techniques dominate current methods of ensuring resource-
efficiency. These methods are in general limited in scope and usually
assume a fixed set of tasks that will be executed in an embedded system.
Whilst this was generally accepted in the past, modern embedded sys-
tems are increasingly based on general purpose hardware. For example,
multi-processor system on chip (MPSoC) devices [Jerraya and Wolf,
2005] are designed for a range of media processing tasks and WSN
motes must be flexible for use in different applications.

Established software optimisation is almost entirely focused on
compiler-level optimisation, but as Aho and Ullman [1977] observed
three decades ago:

“. . . the most important source of improvement in the running
time of a program often lies beyond the reach of the compiler.”

24 traditional resource optimisation

This statement alludes to the improvements in efficiency that can
be made at the algorithmic level, before the implementation is fixed
and the compiler is required to optimise within the constraints of the
implementation. Similarly, Kansal and Zhao [2008] present a tool to
allow engineers to address power concerns at the algorithmic level of
design, having noted the unexploited potential of application-specific
power efficiency. These observations provide motivation for the research
proposed in Chapter 2.

Compiler optimisation suffers from its position in the design process.
Re-targeting compilers efficiently for new platforms such as application
specific instruction processors (ASIPs) and DSP chips is not always
possible due to time and budget constraints. Improving the ability of
software to adapt to hardware platforms will therefore be of great
benefit to these new platforms and their potential applications.

3.9 design evaluation

Once design decisions have been made, and system software has
reached a functional state, the design can be evaluated. Typically, de-
signs are evaluated using one or more of the following:

• Construction of a prototype system and inspection of that system.

• Emulation by substituting components with alternatives that can
be controlled by a debugging system, such as an IDE on a PC.

• Full system simulation in software on a PC.

Inspection of a system may be performed unobtrusively by the use
of probe measurement, logical analysers and oscilloscopes, or it may
require modifying the system by instrumenting code and potentially
substituting system components to facilitate testing. Using this method
of emulation, it is often not possible to fully evaluate a design’s perfor-
mance as the timing properties of a system may be changed by manually
stepping a processor or using an emulator. Very large amounts of data
can be generated, and the difficulty of storing this onboard temporarily
or feeding it to a host PC is another problem.

Emulation is difficult in practice, because substitute emulation parts
may have different characteristics compared to the original components.
For example, additional logic, leads and extended pins may cause
extra delays, power consumption and timings may be slightly different,
and voltages and impedances might not match the specification of the
replaced component. This makes it difficult to debug subtle problems
in the design, and also to accurately estimate non-functional properties
such as execution time or power consumption.

Simulation of full systems has been limited in the past by avail-
able compute power. Although simulation remains computationally
intensive, I am able to make use of large numbers of simulations when
applying search methods in this thesis. For example, in 1995 one second
of processing on a 25MHz RISC processor could have been expected
to take around two hours of simulation time [Heath, 1997]. Nowadays
it is possible to run simulations of x86 platforms at speeds that allow
real-time use of Linux at a course-grained level of detail.

At the stage of evaluation, it is costly and time-consuming to redesign
the hardware platform. Therefore, optimisation of the software for a

3.10 optimisation using search 25

particular platform must be performed beforehand using simulation, or
else by accepting the hardware “as is” and adapting the software to it.
The latter approach is more common, because it is usual for a hardware
design and prototype to be delivered in advance of the software being
written – and it is difficult or impossible to write working software
without a hardware prototype with which to performing testing and
debugging. More information on the realities of commercial embedded
development can be found in Heath [1997] and Ganssle [1999].

3.10 optimisation using search

In the last decade, researchers have begun to use optimisation methods
such as heuristic search to aid the engineer in designing embedded
systems, from hardware design to software implementation. Here I give
representative examples of research in the areas previously discussed.

3.10.1 Hardware Design

Modern heuristic search and optimisation methods are being adopted
by embedded systems researchers. Sheldon and Vahid [2009] use Pareto-
based optimisation (see Chapter 5) to search the design space for FPGAs,
recognising that such methods offer the opportunity for comparison
between solutions and objectives.

3.10.2 High-Level Software Design

Risco-Martín et al. [2009] use evolutionary search to evolve dynamic
memory managers for embedded systems. They effectively tailor a
targeted system for the particular application software it will host,
improving its memory access times, overall usage and energy consump-
tion. This is in a similar vein to work by O’Neill and Ryan [1999], who
evolved cache replacement policies using evolutionary search.

Li et al. [2005] investigated the use of Genetic Algorithms to evolve a
hierarchical sorting algorithm that analyses the input to choose which
sorting routine to use at each intermediate sorting step. This is effec-
tively automatic creation of portfolio algorithms.

As work on traditional compiler optimisation has provided diminish-
ing returns in efficiency, new techniques have target high-level transfor-
mations to improve source code. These techniques rely on stochastic
selection of transformations, but only consider a very limited set of
changes to the source code. For example, Franke et al. [2005] consider a
subsequence of 81 possible transformations using a simple stochastic
method to improve performance on digital signal processors. In Chap-
ter 7, I allow arbitrary transformations to the source code and use more
sophisticated search to provide a path to optimisations beyond more
conservative approaches.

3.10.3 Improving Compiler Performance

There have been several attempts to apply the use of evolutionary tech-
niques at the compiler interface, to find the most effective combination
of compiler optimisations. Stephenson et al. [2003] used GP for solving
hyperblock formation, register allocation and data prefetching. Leven-

26 traditional resource optimisation

thal et al. [2005] used evolutionary algorithms for offset assignment
in digital signal processors, and Kri and Feeley [2004] used Genetic
Algorithms for register allocation and instruction scheduling problems.

Compilers use sequences of code optimisation transformations, and
these transformations are highly correlated to each other. In particular,
the order in which they are applied can have a dramatic impact on the
final outcome. The combination and order of selected transformations
can be optimised using evolutionary algorithms: for example, the use
of Genetic Algorithms to search for sequences that reduce code size has
been studied by Cooper et al. [1999], Wild [2002], Kulkarni et al. [2004]
and Fursin et al. [2008].

Compilers such as GCC give the user the choice of many optimisation
parameters, and to simplify their choice, predefined subsets of possible
optimisations (e.g., -Os, -O1, -O2 and -O3). However, the relative bene-
fits of a particular set over another are dependent on the specific code
undergoing optimisation. Hoste and Eeckhout [2008] therefore investi-
gated the use of a multi-objective evolutionary algorithm to optimise
parameter configurations for GCC.

3.10.4 Evolvable Hardware

Evolvable hardware is a relatively new discipline in electronics that first
appeared in the late 1990s. Evolvable hardware uses evolutionary search
in a similar manner to Genetic Programming described in Chapter 4.
The seminal work in this area was performed by Thompson et al. [1999],
whose initial work used a Genetic Algorithm to evolve configurations
for FPGAs. They addressed both behavioural and non-behavioural
requirements, the latter including size, weight, power consumption,
construction cost, robustness (see also Harrison and Foster [2004]) and
qualitative factors such as maintainability.

Thompson gives one of the reasons for adopting an evolutionary
approach to hardware design:

“It is partly the ability to embrace non-behavioural requirements
during all stages of an evolutionary design process, in combina-
tion with an exploration of new circuit structures and dynamics,
that provides the opportunity for better circuits to arise through
evolution.”

This is one of the motivations for adopting evolutionary techniques
for software design in low resource systems. Furthermore, the division
between hardware and software is blurring [Gorjiara et al., 2006], and
as a result evolutionary hardware and software for domains such as
embedded systems design are converging. In fact, Genetic Program-
ming is a popular method of evolving hardware [Koza et al., 2004b,
2005], and so it is expected that the work presented in this thesis will
also be applicable to programmable hardware development.

3.11 summary

In this chapter, I have summarised the traditional methods of optimising
the non-functional properties of embedded systems. Such systems
clearly occupy a large design space, composed of conflicting concerns
and compromises. Much previous work has focused on optimisation

3.11 summary 27

of individual hardware subsystems, although co-design is becoming
increasingly important.

Fine tuning of the impact of software on the non-functional properties
of a system is often neglected, because it is manually intensive and
resolving the large-scale issues of system design is difficult enough.
As such, the focus is on high-level properties such as the amount of
communication and thus power used by a node in a network, or the
scheduling demands of software. These are important large-scale aspects
of a system’s non-functional behaviour, but the ability of software
design to impact on this behaviour is yet to be fully exploited.

Individual instructions consume varying amounts of power, for exam-
ple, and the interaction between software and the hardware executing
it is a complex relationship that demonstrates emergent behaviour. In-
creased control over this behaviour may enable designers to improve
the non-functional properties of systems, and to find trade-offs not
previously locatable. How to achieve such a level of control? The next
chapter introduces Genetic Programming as a means to this end.

28 traditional resource optimisation

4G E N E T I C P R O G R A M M I N G

4.1 introduction

Genetic Programming refers to a set of stochastic heuristic search
methods that can be used to locate expressions such as programs or
mathematical functions. It does so by exploiting the information gained
by repeatedly evaluating the quality of a population of potential solu-
tions, and varying these solutions accordingly. It takes loose inspiration
from Biology in its overall architecture and the operators employed to
produce new candidate solutions.

It was Alan Turing [Turing, 1948] who in 1948 first proposed the
use of a “genetical search” to automatically develop a machine by
modifying its constituent functions, twenty years before Genetic Al-
gorithms [Holland, 1975] were first used to tackle problems involving
decision variables. Practitioners in Genetic Algorithms and the associ-
ated fields of Production and Classifier Systems went on to apply their
search methods to program spaces, before more direct manipulation of
program structures led to the advent of Genetic Programming.

Genetic Programming as a field arose in the 1980s, where papers
by the likes of Smith [1980] and Cramer [1985] took the first steps
towards a generalised method, but it was the voluminous work of Koza
[Koza, 1992, 1995b, Koza et al., 1999, 2003] that crystallised the field,
and Koza’s terminology and many of his design decisions are still the
de facto standard in modern applications.

In this chapter I first present an overview of the Genetic Programming
method in its simplest, tree-based, form. I will examine the current
theoretical understanding of the algorithm, before illustrating how
it has been extended and modified by practitioners in an attempt to
improve its performance, versatility, or the type of structures it evolves.

Further introductory material can be found in Banzhaf et al. [1998]
and Poli et al. [2008].

4.2 an overview of gp

GP could be described as a program search algorithm, a biologically-
inspired optimisation method, or a problem solving technique that
employs heuristic search. Turning away from the viewpoint of biological
analogy, I present it here as a heuristic search method.

Michalewicz and Fogel [2000] insightfully explore the concepts of
problem-solving using heuristic search, and reduce the essence of the
techniques to the following components:

• The representation it uses for an individual solution.

• The method of evaluation used to rate each solution.

• The operations used to vary existing solutions and continue the
search.

29

30 genetic programming

Whilst this is too limiting to encompass all potential search meth-
ods (consider hyper-heuristics [Burke et al., 2003], for example), it is
certainly expressive enough to capture most existing algorithms.

Genetic Programming is a heuristic search method, and as such it
consists of three central components: a representation, evaluation of
solutions in that representation, and variation of those solutions. Due
to its origins in biological analogy, a single cycle of evaluating and
varying its current solution set is termed a generation. This is a useful
term to describe a step in the search, although it does not necessarily
correspond correctly to many implementations that rely upon steady-
state evolution.

Note that Genetic Programming is an ambiguous label that can refer
to a variety of algorithms, without any agreed ordering of effectiveness
or relationship between problem characteristics and solution method.
The strain most commonly encountered is undoubtedly traditional
tree-based GP, and here this variety is presented before the alternatives.

4.3 representation

4.3.1 Population

GP maintains a set (population) P of candidate solutions. These can-
didate solutions are drawn from a search space X, which contains all
valid individuals defined by the representation. P ⊆ X.

4.3.2 Individuals

An individual p ∈ P is represented by a finite non-empty tree of
arbitrary shape. The nodes represent functions, and the children of a
node are inputs to their parent function. Leaf nodes are referred to as
terminals, and can be regarded as functions of arity zero. In some of
the literature a distinction is often made between non-terminal and
terminal nodes. Here I make no such distinction and denote the set of
possible functions as N.

As an example of a tree, consider Figure 2, which represents an
expression to calculate the nth number in the Fibonacci sequence. It is
equivalent to the following expression in Polish notation (with added
parentheses for readability):

(if (≤ n 1) n (+ (fib (− n 1)) (fib (− n 2)))

Thus, in conventional tree-based GP, an individual is a rooted acyclic
connected graph. The acyclic nature of the representation implies a
lack of reuse: to use the same expression twice within a tree, it must
be replicated in its entirety. This limitation is addressed by alternative
representations and variation operators, described in Section 4.9.2.

Note that at this point, we have not expressed any constraints that
refer to the type of arguments a function may require or return: that is,
closure of the function set is a prerequisite such that all functions must be
type-compatible with each other: usually this is achieved by ensuring
all functions return and accept as arguments floating point values.

Functions can be arbitrarily defined, such that for example they may
execute commands in a control system, sort data, or draw lines in a
turtle drawing package [Koza et al., 2005, Agapitos and Lucas, 2006,

4.3 representation 31

Figure 2: Tree representation of a function that calculates fib(n).

Comisky et al., 2000]. One common inclusion is the use of Ephemeral
Random Constants, or ERCs, which are used in a great deal of appli-
cations including symbolic regression. ERCs are constants initialised
at random prior to execution of the main GP algorithm, based on the
random seed supplied to the system. They therefore differ across runs
with different seeds and may be combined, often ingeniously, by the
search to produce other constant values.

In this simple representation, we have a single output returned
from evaluating the symbolic expression tree. Multiple outputs are
not catered for. One commonly implemented method of escaping this
limitation is to rely on functions with side-effects, that is their evalua-
tion affects the state of the executing program rather than just its final
output, a step removed from a purely functional representation.

This representation is limiting when evolving programs with se-
quences of instructions. To implement sequences, it is common practice
to introduce a node that may have several statements as its children,
and in LISP this is achieved through the use of the PROGN function,
which evaluates each of its child arguments in turn and then returns
the result of evaluating its last argument. The potential use of these
PROGN functions is mostly determined by the initial population. A
fixed arity representation will not allow a new instruction to be added
as an argument to an existing PROGN node and thus incremental
changes to a series of instructions such as adding or removing a single
instruction within a sequence cannot take place.

4.3.3 Search Space

Immediately we may see limitations in this representation: the same
mathematical function can be represented by structurally distinct trees,
thus there is much redundancy in the search space. The most simple
example is the permutation of arguments to a commutative function.
Unless our representation has a bias towards duplicating desirable func-
tions more than undesirable ones, then it is an inefficient representation.
This limitation underlies the issue of bloat (see Section 4.11) that is a
major problem in practice.

32 genetic programming

The reason that this adopted representation is so inefficient is because
its origins are in programming languages such as Lisp, and hence
a human-readable representation was adopted rather than one that
creates a minimal search space. This representation stands in stark
contrast to the Genetic Algorithm [Holland, 1975], GP’s close cousin and
a very compact representation based on a vector of decision variables.

This representation also places restrictions on the types of functions
we may use. For example, we cannot use conventional division due
to the closure requirement, or else we may divide by zero. Therefore
practitioners usually implement a form of protected division [Koza,
1992]. In work described in Chapter 7, we encounter similar evaluative
or run-time errors that cannot be prevented, and instead individuals
must be punished by modifying their fitness.

Another feature is the discrete nature of the representation: an instruc-
tion is either present or it is not; it is located prior to or after another
instruction. In particular, the heavy dependence on the ordering of
instructions and their interactions can make the search discontinuous.
Fogel and Atmar [1990] observed the importance of continuity:

“Successful adaptive procedures must retain a sufficient link
between parent and offspring to ensure that advances are main-
tained.”

The operators described in Section 4.6.2 must provide meaningful
variation. The parents and offspring should be semantically similar,
and the operators must be capable of exploring the search space in a
continuous manner. This choice of representation creates a challenging
problem of selecting a method of variation.

search space size The size of the search space considered is lim-
ited by the maximum depth of a tree, or else by the maximum number
of nodes it can contain. Taking the former approach, we can specify c(d),
the number of possible trees of depth d, by the following recurrence
relation:

c(d)


n0 for d = 1

max

∑
a=0

na · c(d− 1)a for d > 1
(4.1)

Here, na is the number of functions in N that have arity a. max is
the maximum arity of functions in the function set. This formula is a
generalisation of one for binary trees found in Ebner [1999], and can
also be found in a tutorial given at the GECCO 2009 conference by Poli
and Langdon [2009].1

We may consider some typical search space sizes. For an experiment
using Boolean functions and including True, False, AND, OR in the
function set, the number of possible trees is 2, 10, 202, 81610 and
3.5× 1020 for tree depths of 1 through 5 respectively.

Consider the size of the largest search space for the experimentation
reported in Chapter 6. There are over 5.07 × 10125421 possible trees
in the search space, given a maximum depth of 17 (actually, this is

1 Acknowledgments to Jeremy Jacob for a simplification of this formula.

4.4 initialisation 33

a conservative estimate – assuming only a single instantiation of an
ephemeral random constant). The search space for GP is vast.

This equation also tells us that functions with a high arity have a
strong impact on the size of the search space. This may lead us to
conclude that it may be preferable to avoid high-arity functions when
designing our function set. It also illustrates the importance of depth
in determining search space size, which is the reason that it is used
as a limiting parameter in standard toolkits. The maximum tree depth
dominates the memory requirements of a GP system.

Langdon and Poli [2002] have demonstrated both empirical and the-
oretical results that examine the distribution of program behaviour as a
function of increasing program length. Program behaviour converges
on a fixed distribution as the size grows, at which point increasing the
maximum program length does not alter the density of solutions within
the search space. This ratio may be critical in determining the difficulty
of a task: benchmarks such as the parity problem have needle-in-a-
haystack search spaces, whereas other functions have higher solution
densities. GP will not be able to outperform random search in any
situation unless there is a guiding gradient, such as the existence of
building blocks within the search space, or a fitness “hill” that can be
climbed through crossover and mutation.

There is an unstated assumption we may make when designing our
function set: we assume that solutions exist within the search space.
In some applications of Genetic Programming, such as those found in
Chapters 6 and 7 in this thesis, we may be aware of an existing solution
within the search space. In other cases, such as in Chapter 8, we cannot
be so sure.

4.4 initialisation

The initial population P0 must be generated prior to the commence-
ment of the main algorithm. This is most often achieved with Koza’s
ramped half-and-half method [Koza, 1992], which itself is a composite of
two individual methods: the grow method and the full method. Both
methods rely on a maximum depth parameter to be chosen, which is
varied when employing Koza’s ramped half-and-half method.

The full method generates full trees such that all leaves are at the
same depth, by selecting non-zero-arity functions from the function
set at random when generating the tree and restricting that choice to
zero-arity functions at the final depth. Pseudocode for the full method
is given in Algorithm 1.

The grow method works similarly, but does not generate full trees.
Instead, the choice of shape of tree is determined stochastically by
the selection of functions from N. If a terminal is chosen, then that
particular branch of the tree can be “grown” no further. If the function
set contains a high proportion of zero-arity functions, then shorter trees
will dominate. Pseudocode is given in Algorithm 2.

Koza’s ramped half-and-half method is given in Algorithm 3. Here,
the maximum depth for a particular tree is chosen at random up to the
depth specified, and then one of the two methods is selected randomly
according to a parameterised probability.

The heavy reliance on stochastic initialisation may well be questioned,
as it does not incorporate any prior knowledge about the problem at
hand (see Section 4.4.1), and it will also introduce a bias towards

34 genetic programming

Algorithm 1 Full Tree Initialisation.
1: function full(maxdepth)
2: if maxdepth = 1 then
3: node⇐ n ∈ N, arity(n) = 0
4: else
5: node⇐ n ∈ N, arity(n) 6= 0
6: for i = 1 to arity(n) do
7: addChild(node, f ull(maxdepth− 1))
8: end for
9: end if

10: return node
11: end function

Algorithm 2 Grow Tree Initialisation.
1: function grow(maxdepth)
2: if maxdepth = 1 then
3: node⇐ n ∈ N, arity(n) = 0
4: else
5: node⇐ n ∈ N
6: for i = 1 to arity(n) do
7: addChild(node, grow(maxdepth− 1))
8: end for
9: end if

10: return node
11: end function

Algorithm 3 Ramped Half-and-Half Initialisation.
1: function ramped(maxdepth, growprob)
2: depth⇐ randint(1, maxdepth)
3: if rand(0, 1) < growprob then
4: return grow(depth)
5: else
6: return f ull(depth)
7: end if
8: end function

4.5 evaluation 35

smaller trees over the depth range as the grow method’s depth will be
dependent on a series of Bernoulli trials. The latter bias can be removed
by using an improved method such as Langdon’s ramped uniform
initialisation [Langdon, 2000b], at the cost of extra computation.

4.4.1 Seeding

Alternative methods of seeding exist, based on solutions created manu-
ally and also through other automated methods. The results of previ-
ous heuristic search algorithms such as Genetic Algorithms [Langdon,
1996a,b] and depth first search [Westerberg and Levine, 2001] have been
used, and in both cases superior results to randomised initialisation
were found. Manually created solutions were used as a starting point
in Langdon and Nordin [2000] and Marek et al. [2003].

In Chapter 7 I suggest and test some alternative seeding methods
that take an existing manually written solution and manipulate it to
create the initial population. Subsequently, Schmidt and Lipson [2009]
have also examined some of these methods.

It is well known that the starting point of a search within the solution
space can have a large impact on its outcome. It may be considered
surprising, then, that more research has not focused on the best methods
to sample the search space when creating the initial generation within
GP. The crucial importance of domain-specific knowledge in solving
optimisation problems is also clear; yet still it is the case that in general
little sound advice can be given on how best to incorporate existing
information, such as low-quality or partially complete solutions to a
problem, into an evolutionary run. There are examples in the literature
where such seeding has been employed [Koza et al., 2004a].

The most relevant application of seeding in the literature is from
Langdon and Nordin [2000], who employed a seeding strategy in order
to improve one aspect of a solution’s functional behaviour: its ability
to generalise. Their initial population was created based on perfect
individuals, where the goal of the evolutionary run was to produce
solutions that were more parsimonious and had an improved ability
to generalise. This mirrors the concern with improving a separate
non-functional aspect of existing software in Chapter 7.

4.5 evaluation

The fitness of an individual program, f (p), is a numeric representation
of its ability to solve the problem at hand and is usually evaluated
at each generation. This is achieved through the use of a fitness func-
tion, also known as an evaluation function or cost function (when it
is to be minimised). To evaluate the function, an individual must be
interpreted or executed, and the fitness assigned as a result. A compi-
lation stage may be required, and the fitness evaluation of a program
in general is more computationally expensive than in other heuristic
search algorithms. We may also include some kind of state, such as an
array or temporary data. This increases the memory and computational
requirements of evaluation.

It is often the case in GP that an individual will be assigned a fitness
derived from the results of executing a range of test cases. For example,
a common application is symbolic regression, where an individual will
be evaluated on a set of datapoints, and the squared error between the

36 genetic programming

observed and desired output is used as a fitness value to be minimised.
This is important, because it has implications in regard to the No Free
Lunch theorem (see Section 4.14).

The choice of whether a high or low fitness value is considered desir-
able is arbitrary, though it would appear to be sensible in most cases to
use a cost function, as the overwhelming majority of GP applications
measure fitness as a reduction in error or resource consumption. It
is usually possible to define the lowest possible error value, whereas
determining an upper cost value for an individual in a way that may
generalise to other problems is not normally possible.

It is standard procedure in the field to normalise fitness values, so
that they lie in [0, 1]. Koza [1992] defines raw fitness as the initial score,
perhaps the squared difference between the expected and actual values
across a range of data points, for example. Standardised fitness restates
the raw fitness if necessary as a cost function. Adjusted fitness reverses
this and furthermore normalises the fitness as such:

a(p) =
1

1 + s(p)
(4.2)

Here, a is adjusted fitness and s is standardised fitness. Koza refers to
normalised fitness, yet another measure, as the fitness of an individual
over the summation of the fitnesses of all individuals in the population.

The drawback to such normalisation is that the figures become unin-
tuitive to the practitioner. With large fitness values, there is the risk of
over-stretching the resolution of floating point representations. When
combining multiple objectives or fitness values (see multi-objective
optimisation in Chapter 5), there is also a danger that we may lose sight
of the problem of setting relative weightings, and the fact that those
weightings exist implicitly even if we use normalisation of some kind.

4.5.1 Fitness Landscapes

In introductory search texts, it is common to find fitness landscapes used
as an aid to understand the behaviour of an algorithm. This is typically
illustrated using a 3D plot with two axes referring to two decision
variables and the remaining axis giving the fitness of an individual, a
measure of its quality. An example is shown in Figure 3. If we consider
an algorithm that works locally, then we can visualise its behaviour as
selecting decision variables and evaluating the fitness function at each
point. In this way, an algorithm may “climb” up a fitness gradient by
repeatedly selecting adjacent points in the (x, y) plane and following
the improvement in fitness value.

However, this analogy is not useful in explaining the behaviour of
Genetic Programming. Firstly, because the dimensionality of the search
space is vast: it is equal to the maximum number of nodes a tree may
contain. Consider a binary tree of depth 20: the equivalent plot would
have 1048576 dimensions. Second, GP is a population-based or global
search algorithm, where there is no single step from one solution to
the next without involving the other individuals in the population. As
such, it is not possible to order trees on such a plot in a way that creates
a meaningful geometric proximity between points within the search
space. The potential neighbourhood of subsequent points to sample
is in fact the entire search space if arbitrary mutation is permitted (see
Section 4.6.2).

4.6 variation 37

Figure 3: Example Fitness Landscape, from the Huygens Search and Optimisa-
tion Benchmarking Suite [2007].

4.6 variation

To create new individuals, that is to explore the search space, Genetic
Programming provides a relation that stochastically maps one popula-
tion onto another, to create the next generation of individuals. There is
a sense of neighbourhood, as we might find in other search algorithms
such as evolutionary strategies or simulated annealing. However, the
neighbourhood size is potentially enormous, due to the representation
we saw in Section 4.3. Until a better understanding of GP’s crossover
operator is developed, we can only regard the variation operators as
mutation procedures that search an area loosely determined by an
individual’s existing tree structure [Banzhaf et al., 1998].

To carry out variation in an evolutionary algorithm, we must first
select those individuals that we wish to use as the basis for the genera-
tion of new potential solutions, and we must then decide upon how to
change those individuals to create new solutions.

4.6.1 Selection

Selection is invariably based on fitness, following a traditional Dar-
winian viewpoint of survival of the fittest. The most common operator
in Genetic Programming publications is tournament selection, probably
due to its presence in several major framework implementations, as
well as its simplicity and the fact that it may be implemented in a dis-
tribution fashion without knowledge of state of the entire population.

tournament selection Tournament Selection selects a group of
n individuals uniformly from the population with replacement such
that the same individual may be selected more than once. The fitnesses
of the individuals are then compared, and the best individual is selected

38 genetic programming

from the group. We may vary n to increase the selection pressure on the
population.

In experimentation reported in this thesis I did not find that a large
tournament selection size led to any significant improvement in perfor-
mance (see Chapter 7).

roulette-wheel selection In roulette wheel selection [Gold-
berg, 1989], individuals are chosen from the population in proportion
to their fitness as follows:

prob(selected(p)) =
f (p)

∑
|P|
k=1 f (pi)

(4.3)

This method is simple to implement, but it may lead to a single
individual dominating the population depending on the absolute fitness
values used to carry out the selection. Rank selection aims to improve
upon this method.

rank selection In rank selection, the probability of an individual
being selected is based on its fitness ranking within the population,
rather than their absolute fitness value. The individuals are ranked by
fitness, 1 being the lowest rank, and then a mapping from this ranking
to their probability of selection is applied. Ties between individuals
with the same fitness values may be allowed for:

f ′(p) =
rmax − rmin
|P| · ri (4.4)

The ranking is interpreted in many ways, for example the following
exponential function is taken from Eiben and Smith [2003] given a
constant scaling factor k:

prob(selected(pi)) =
1− eri

k
(4.5)

4.6.2 Genetic Operators

To explore the search space, new individuals are created based on
those individuals selected as described in the previous section. It is
important to recognise that it is a copy of the individuals that is passed
to the operators: selection is performed with replacement, and duplicate
individuals may be created by repeated application of the operators.

In GP the following three operators predominate, whilst alternatives
and variants proposed have not been widely adopted:

• Crossover,

• Reproduction, and

• Mutation.

Usually, crossover between two selected parents is used to create two
children, with a given probability, prob(crossover). Reproduction is used
instead with probability 1− prob(crossover). Subsequently, mutation
is applied to each child with probability prob(mutation): importantly

4.7 gp algorithm summary 39

First Parent Second Parent

First Child Second Child

Figure 4: Crossover in Genetic Programming.

this is on a per-individual basis rather than a per-node basis, differing
significantly from Genetic Algorithms.

Crossover is illustrated in Figure 4. A node is independently selected
within each tree, and the two subtrees rooted at that node are exchanged.
Reproduction passes a copy of each parent into the next generation
without alteration. Mutation selects an individual node with a tree and
replaces it with a randomly generated subtree as illustrated in Figure
5. The new subtree is usually created through the methods used in
standard initialisation algorithms (see Section 4.4).

Both crossover and mutation can be constrained according to the
probabilities of selecting a particular node. For this purpose we may
differentiate between the root node, internal nodes or leaf nodes, with
an associated probability of choosing each.

The role of crossover and mutation in exploring the search space is
controversial. Banzhaf et al. [1998] refer to crossover as “the eye of the
storm”, as it is not clear that it is anything more than a macromutation
operator; however for some problems I have empirically demonstrated
that a crossover-based search outperforms a mutation-based algorithm
[White and Poulding, 2009].

4.7 gp algorithm summary

Given that the components of the algorithm have been introduced,
pseudocode for Genetic Programming is given in Algorithm 4. The
practitioner must choose termination criteria, that is a Boolean function
that determines if the search may halt. This function may simply always
return false, if it is desired that termination should occur after the
maximum number of generations has been executed. Alternatively, the
search may terminate if an adequate (or theoretically optimal) fitness
value has been reached. For example, in a regression problem we may

40 genetic programming

Selected Individual Generated Subtree

Offspring

Figure 5: Mutation in Genetic Programming.

seek to find a system that matches the observations (utilised as test
cases) within a desired precision.

4.8 theoretical basis

Having described the basic algorithm, it is not immediately clear as
to why we should expect Genetic Programming to find good solutions.
The lack of a satisfactory answer to this question is also the root cause
of the plethora of GP variants available and the lack of consensus as to
which proposed extensions to adopt and those to discard.

The success of the algorithm is inevitably dependent on the skills of
the practitioner: for example, the search space defined by a choice of
function set must contain desirable solutions. However, given sufficient
care in the construction of the function set, why should we expect GP
to outperform random search, for instance?

This question is not yet fully answered, although significant advances
in Genetic Programming theory have been achieved in the last few years.
There are two main lines of attacking this question in the literature:

• Schema theories.

• Markov Models.

In addition, empirical analysis of specific search spaces provides
useful insights such as Langdon and Poli’s observations on the limiting
distribution of program behaviours as their size increases, which they
later formalise [Langdon, 2002, Langdon and Poli, 2005].

4.8 theoretical basis 41

Algorithm 4 Pseudocode for Genetic Programming.
1: tmax ∈N

2: {pc, pm} ∈ [0, 1]
3: t⇐ 1
4: initialise population P1
5: for all pi ∈ P1 do
6: evaluate fitness f (pi)
7: end for
8: while t ≤ tmax and termination criteria not satisfied do
9: while |Pt+1| < |Pt| do

10: select parents p1, p2 ∈ Pt by some fitness-based selection
11: if rand ≤ pc then . 0 ≤ rand ≤ 1
12: child c1 ⇐ p1 xo p2
13: child c2 ⇐ p2 xo p1
14: else
15: children c1, c2 ⇐ p1, p2
16: end if
17: Pt+1 ⇐ Pt+1 ∪ {c1, c2}
18: end while
19: for all pi ∈ Pt+1 do
20: if rand ≤ pm then
21: mutate pi
22: end if
23: end for
24: for all pi ∈ Pt+1 do
25: evaluate f (pi)
26: end for
27: t⇐ t + 1
28: end while
29: return {pi ∈ P | ∀pj ∈ P, f (pi) ≤ f (pj)}

42 genetic programming

4.8.1 GP Schema Theory

Schema theory is inspired by similar analysis in the field of Genetic
Algorithms [Holland, 1975]. It is an attempt to describe the operation of
the search algorithm in terms of the exploration of subsets of the search
space defined by tree shapes and some of their constituent nodes. By
relating the concentration of certain forms of tree from one generation
to the next, schema theorems hope to demonstrate that the algorithm
will on average explore trees of improving fitness. The canonical form
of the Genetic Algorithm schema theory is given by Goldberg [1989]:

m(H, t + 1) ≥ m(H, t) · f (H)
f̄

[
1− pc ·

δ(H)
l − 1

− o(H) · pm

]
(4.6)

This inequality relates the current concentration of a schema at gen-
eration t to its subsequent concentration at generation t + 1. A schema
in a binary string GA is a specification of some values of the digits in
the string, so that any solution containing those specified digits belongs
to that schema. The inequality states that the number of individuals
m sampling the schema H at the next generation t + 1 is proportional
to the relative fitness of individuals within the schema and two other
terms. Those terms represent the probability that the schema will be
disrupted or “broken up” by crossover (dependent on the defining
length δ of a schema, i.e. the probability that a crossover operation
will separate the specified values) and the probability mutation will
move an individual outside of a schema (i.e. the number of points with
specified values, termed “order” and denoted o).

The related building block hypothesis states that building blocks (sub-
strings in a binary GA) that perform well in different individuals will
be exchanged amongst the population and combined with others to
produce fitter individuals.

The difficulty with applying schema theory to GP is the problem
of defining a schema in a tree representation, and justifying the idea
that subtree crossover will meaningfully explore these schemata. A
definition must also incorporate the notions of “defining length” and
“order” to assess the probability that it will be disturbed by variation
operators.

Different definitions of schemata for Genetic Programming are pro-
posed by O’Reilly and Oppacher [1994], Rosca [1997], Whigham [1995]
and Poli and Langdon [1997]. The approaches generally fall into two
categories: those that consider schemata as individuals containing the
same subtrees, and those considering schemata as rooted subtrees with
“don’t care” element placeholders. The latter is far more restrictive on
the membership of a particular schema, but results in a more tractable
problem. A thorough discussion of early GP schema theory is given in
Langdon and Poli [2002].

subtree schemata Koza [1992] suggests a GP equivalent of GA
schemata:

“...a schema is a set of LISP S-Expressions containing common
features...”

In defining the schema, Koza does not use wildcards, as is the case
in GA schema. By Koza’s definition a subtree is rooted from one point

4.8 theoretical basis 43

-

x

*

5

+

x xx x

* *

x x

*

Schema Instantiation

Figure 6: Koza’s schemata as subtree building blocks.

-

x

*

5

+

x xx x

* *

x

*

Schema Instantiation

1

2 3

Figure 7: Schemata as tree fragments.

within the containing tree and extends to the terminal nodes. An ex-
ample of a Koza schema and its instantiation within an individual
is given in Figure 6. The schema is instantiated in two places within
the individual. These multiple instantiations differ greatly from the
traditional schema definition of Genetic Algorithms.

Contrastingly, O’Reilly and Oppacher [1994] introduce the concept
of tree fragments as potentially incomplete subtrees. As in Genetic Algo-
rithms, a schema may be defined using wildcards, where a “#” symbol
represents a “don’t care” position. For example, (+ # b) includes sub-
trees such as (+ 1 b) and (+ (* a 2) b). A “#” can be replaced by any
subtree. Extending this concept, O’Reilly proposed that a schema be
an ordered list of multiple fragments, all of which must be instantiated
within an S-Expression in order for that expression to be considered
a member of the schema. A schema may also require that a particular
subtree exists in a specified number of places within a containing tree.

An example of a tree-fragment schema is given in Figure 7. The indi-
vidual instantiates the schema three times. If a schema strictly specifies
that fragments must occur a number of times, such as {(*(# x)),2}, then
the situation is slightly different and illustrated in Figure 8. Note that
in both cases the schema is instantiated in three different ways, and
such cases highlight the difficulty of analysing such schemata.

44 genetic programming

-

x

*

5

+

x xx x

* *

x

*

Schema Instantiation

1

2

3

x

*

Figure 8: Schema composed of multiple tree fragments.

It is apparent that the defining length and order of a schema will
vary between instantiations in O’Reilly’s interpretation. This means that
the same conclusions derived from the GA theorem cannot be drawn
because the impact of this factor cannot be estimated, despite O’Reilly’s
formulation of a schema theorem. Perhaps more importantly, O’Reilly
notes that:

“...it is empirically questionable whether building blocks always
exist because partial solutions of consistently above average fit-
ness and resilience to disruption are not assured...”

4.8.2 Rooted Tree Schemata

An alternative definition (and perhaps the most successful) of schemata
is of rooted trees such as that proposed in Poli and Langdon [1997]
alongside initial work by Rosca [1997]. This definition is more closely
related to the schema theory of GAs. Rooted schemata are complete
trees composed of function nodes, terminal nodes, and don’t-care sym-
bols conventionally (and somewhat confusingly) marked by “=” . The
don’t-care symbol can be replaced only by a single node, not an arbi-
trary size subtree as in O’Reilly’s definition. Therefore, an instantiation
of the schema will be an individual tree with the same size and shape
as the schema itself. Figure 9 illustrates one rooted schema and its
instantiation. The schema has order 8 and a defining length of 11. The
order of a schema is the number of nodes that are not marked as “don’t
care” functions, and the defining length of a schema is the total number
of nodes in the schema.

Originally, Poli introduced the concept of one-point crossover for
GP in order to restrict the disruption that crossover could have on
schema membership. A similar restriction was used by Whigham [1995]
in earlier work. Later, in Langdon and Poli [2002] this restriction was
lifted and the potential for construction of schema instantiation is taken
into account.

Through the introduction of a new Cartesian model of schemata, Poli
and McPhee [Poli and McPhee, 2003] produced the first schema theo-
rem for standard subtree-exchanging crossover and used the results to
provide individual insights into features of Genetic Programming. This
work is currently the most complete schema theorem for Genetic Pro-

4.8 theoretical basis 45

-

x

*

5

+

x xx x

* *

Schema Instantiation

-

x

*

=

=

x x= x

* *

Figure 9: Rooted schema.

gramming, although it is still open to some of the traditional criticisms
of schema theory.

4.8.3 Limitations of GP Schema

The problems with attempting to devise a schema theorem for Ge-
netic Programming lie in the fundamental differences between Genetic
Algorithms and Genetic Programming.

When using GAs to find an optimal combination of parameters
encoded as a binary string, provided one-point crossover is used, the
exchange of genetic material will always lead to a straightforward
exchange of values at given positions on the genome. Contrastingly,
this will not be the case with subtree building blocks in GP and it is
not necessarily valid to assume that a subtree that contributes well to
overall fitness in one position of an individual will similarly contribute
well to fitness in another position within a similar individual. The
rate of dispersal of good building blocks through the population will
therefore rely on the ability of those building blocks to “perform” in
any program position they find themselves within. As a procedural
program is by its definition linear in operation, we cannot assume that
most segments of sequential program code have this desirable property.

4.8.4 Markov Models

As with other evolutionary algorithms, GP can be described as a
discrete-time Markov chain using transition matrices [Mitavskiy and
Rowe, 2006, Poli et al., 2004]. This approach is much less developed than
GP schema theory, and has only been applied to algorithms with more
limited behaviour such as homologous crossover, based on the schemata
defined by Poli and McPhee in developing a general schema theory.
It is most likely the tractability of the problem that slows progress in
developing such models.

46 genetic programming

4.9 extensions to gp

4.9.1 Typing

If we wish to have a compact representation, then we must introduce
the notion of typing into our representation. Without typing, we cannot
elegantly incorporate into our tree higher-level mathematical primitives
such as matrices and computational elements such as loop constructs
and storage access. There is a second use for typing mechanisms: by
constraining the set of allowed structures, we may define our search
space to exclude trees that we do not expect to be useful. For example,
Montana [1995] gives one example where Strongly Typed GP reduces
the order of the search space size from 1019 to 105.

If we try to restrict the structure of individuals without introducing
a type system, then we are forced to “mend” or “punish” undesirable
individuals created by our variation operators, or else constrain the
operators themselves. This alternative may be simpler to implement,
but it also inefficient and can strongly bias our search.

There are two ways of introducing typing to GP: the first is to use a
grammar, which involves adopting a fundamentally different represen-
tation, for example in Grammatical Evolution [O’Neill and Ryan, 2003]
or in work by Whigham and Rosca [1995]. The second is to use atomic
and set-typing, introduced by Montana [1995] as Strongly Typed GP
(STGP), which removes the requirement for closure of the function set.

STGP works by assigning each node and argument a type, and re-
stricts population initialisation, crossover and mutation such that they
obey type rules. Hence STGP ensures that only valid individuals are
produced as a result of these operations. For example, in the initialisa-
tion process given in Algorithm 1 an extra constraint must be added to
lines 3 and 5 that ensures the child is type-compatible. When selecting
a child at line 5, we must also ensure that we take a path through the
type system that will enable us to produce a tree of the requested depth.
Strongly Typed GP is used when evolving programs in a subset of the
C language in Chapter 7.

An interesting alternative method of allowing multiple types to be
used without introducing problems in the evaluation process is to use
an alternative form of evaluation such as in stack-based PushGP (see
Section 4.10.1).

4.9.2 Automatically Defined Functions

ADFs were first suggested by Koza [1992]. One or more separate LISP
trees (S-Expressions) termed “Automatically Defined Functions” are
evolved as the lefthand subtree(s) of the individual, and the righthand
subtree contains the value-returning branch. An example based on
Koza [1992] is given in Figure 10. The ADF and main program tree
together compose the even-4-parity function. The main tree is able to
invoke the ADFs within its program and the ADFs have access to the
same input variables. Thus ADFs allow the problem to be addressed
using repeated references to the same subfunction, which may be
parametrised. Intuitively, this method improves the scalability of GP as
it removes the requirement that identical or similar subtrees be evolved
at different points in the tree.

4.10 alternative representations 47

LIST2

ADF0
Definition OR

ARG0 ARG1

AND

NOT

AND

ARG0

ADF0

D0 D1

AND

D2

ADF0

D3

AND

NOT

ARG1

ADF0

Value-Returning
Branch

Figure 10: Even-4-parity function in a LISP S-Expression using an ADF.

ADFs are therefore particularly useful in solving problems where
the solution is easily decomposed into subunits. For example, Koza
demonstrated that solving Boolean problems such as the even-arity
function can be achieved more time-efficiently by utilising ADFs.

An alternative approach to Koza’s ADFs was described by Angeline
and Pollack [1993], referred to as “module acquisition”. A subtree is
selected randomly from an individual during the run, and this is added
to a library of such subtrees. The subtree itself is replaced by a refer-
ence to the library. The members of this library may then be referenced
by other individuals in the population. Alternatively, under certain
conditions a subtree is partially extracted such that it is parametrised.
Automatically acquired modules may be “uncompressed”, in that the
library member may replace a reference to it and the individual ex-
panded. This facilitates the return of genetic material to the population
such that subcomponents of it may be shared with other individuals,
i.e. it retains genetic diversity.

The various methods of implementing ADFs were subsequently
generalised by Koza [1995a] into a taxonomy of what Koza described
as architecture-altering operations.

4.10 alternative representations

Alternative representations have been utilised for application-specific
purposes, and in some cases to alleviate some of the weaknesses of
GP-based search. Traditional tree-based GP remains the most popular
method, which reflects both the fact that alternative representations
have as yet to provide any significant generalised benefit over tree-based
GP, and also the simplicity of implementing a tree-based approach.

Examples include Stack-based PushGP [Spector and Robinson, 2002],
CartesianGP [Miller and Thomson, 2000], Gene Expression Program-
ming [Ferreira, 2001], Grammatical Evolution [O’Neill and Ryan, 2003]
and Linear Genetic Programming [Brameier and Banzhaf, 2007]. Two
examples are discussed below.

4.10.1 Stack-based PushGP

PushGP [Spector and Robinson, 2002] uses a linear representation
and stack-based execution. This supports multiple data types (whilst
preserving the validity of child programs) through the provision of

48 genetic programming

type-specific stacks. Treating the code itself as a first-class data type, it
allows code-manipulating operations such as the definition of variables
and the creation of control structures and subroutines. The focus of
PushGP is on what the authors term “autoconstructive evolution”,
or allowing self-adaptation of individuals through code-manipulating
operators.

An individual is composed of a string containing data items and oper-
ators. Data items are pushed onto the appropriate stack, and operators
pop their required arguments from the appropriate data stacks. The use
of multiple stacks is in contrast to other stack-based GP systems such
as FIFTH [Holladay et al., 2007], which ensures program validity by
analysing the data types required to be on top of the stack before a code
fragment executes (and those it leaves behind) in order to determine if
two lists of instructions should be exchanged. Through the choice of
a different representation, PushGP creates a rich set of features for a
standard GP algorithm to exploit. However, this greatly enlarges the
search space and it does not necessarily follow that providing the search
algorithm with a potential method of achieving scalability means that
the algorithm will be able to exploit that potential.

4.10.2 Cartesian GP

Cartesian GP [Miller and Thomson, 2000] uses a method that draws
inspiration from electronic circuit layout, which is one of its key target
domains. CGP originally used a two dimensional grid for layout of com-
ponents that contain particular functions. A linear genome represents
the interconnections of the nodes, and their functions. From left to right
on the grid a program is divided into “stages”. The interconnections
between stages can be subject to constraints, such as restricting the
distance (in stages) that the output of one function node can travel to
the input of another. The result is that crossover and mutation operators
are more intuitively appealing, in that they attempt to preserve context
and support evolution in an incremental manner rather than the less
subtle approach of GP subtree crossover.

Not all functional elements are necessarily used, and some units may
be redundant and outputs left “dangling”. There is an explicit amount
of neutrality in this representation, an important concept in Biology
and demonstrated to be advantageous on benchmark search problems
[Miller and Thomson, 2000]. This method of interpreting an integer
genome to create a phenotype that is guaranteed to be valid is similar
to the grammar-based mapping in Grammatical Evolution [O’Neill and
Ryan, 2003].

4.11 the problem of bloat

Bloat is an emergent property of GP, where an exponential or poly-
nomial [Langdon, 2000a] increase in program size is observed in the
absence of any improvement in fitness. Bloat creates large trees that are
expensive to store, manipulate and evaluate. Therefore it is undesirable
and a great deal of effort has been spent trying to understand and
counteract the phenomenon.

This increase in program size corresponds to a similar increase in
the amount of introns in the program tree. Introns are named after a
term taken from Biology. In GP they refer to ineffective code, such

4.11 the problem of bloat 49

as (∗ x 1). This code has no effect on a program’s overall behaviour
but does contribute to its size and therefore the possible location of
crossover points.

There are many theories of why bloat occurs, and no agreement as
to which is correct, including the theories of hitchhiking, disruptive
crossover, removal bias, search space bias and crossover bias. Lang-
don [1998] suggests that bloat is a general phenomenon particular to
“discrete variable length representations using simple static evaluation func-
tions”, caused by the crossover operator and the potential survival
advantages that longer programs will have. The competing theories are
discussed below.

4.11.1 Disruptive Crossover

The disruptive crossover (or “defence against crossover” or “replication
accuracy”) theory of bloat asserts that introns exist to provide protection
for effective code from the disruptive nature of crossover. As discussed
previously, crossover can be a disruptive mechanism and can destroy
building blocks in a similar manner to GAs. However, building blocks
in GP are likely to have a larger defining length than those in GAs and
therefore are more prone to disruption. The effect of this disruption
is that an individual will have a higher effective fitness if it is capable
of avoiding the break-up of effective code. Through the inclusion of
introns, there is a smaller probability that crossover will disrupt useful
code. Therefore, a program’s effective fitness i.e. its ability to survive and
also replicate accurately, will be increased. Angeline [1994] was one of
the first to observe that the disruptive nature of subtree crossover may
be a prime cause of bloat in GP.

Reverting to a linear structure such as that used in Machine Code
GP [Nordin, 1998] can constrain the relocation of genetic material. As
individuals do not vary in shape, the crossover can ensure that genetic
material is exchanged at the same points on the genome. However, the
fragility of the representation remains, as a small change in one part of
the program can have disastrous consequences for the semantics of the
remainder of the program.

4.11.2 Removal Bias

Other theories view introns as a symptom of bloat, rather than the
cause. The Removal Bias theory of bloat, suggested in Soule and Foster
[1998], postulates that bloat is caused by the nature of subtree exchange.
Removing a subtree from an area of the program that is inviable (it
is not executed or has no impact on the program’s behaviour) will
have no impact on the program’s fitness. Such subtrees are smaller
than the program’s overall size, and will usually be much smaller.
Therefore, selecting a small subtree, rather than a larger one, is more
likely not to reduce the fitness of an individual: there is a bias towards
removing smaller rather than large subtrees. However, when inserting
a replacement subtree into the position chosen, the size of the inserted
subtree has no impact on the program’s fitness (as it is in an inviable
area), and over time selection will produce larger and larger trees.

50 genetic programming

4.11.3 Search Space Bias

The Search Space Bias (or “diffusion”) theory [Langdon and Poli, 1997]
states that there are more large-size highly-fit trees than there are
small-size ones. Therefore the system will move away from smaller
individuals. The crossover-bias theory of bloat similarly states that the
disparity in solution quality between small and large trees will cause
the larger produced by the crossover operator to prosper and thus
increase average program size [Dignum and Poli, 2007].

4.11.4 Bloat Control

In order to counteract the emergence of bloat, practitioners can ap-
ply bloat control. The simplest is parsimony pressure [Koza, 1992],
which introduces an extra component into the fitness function using a
weighted sum as described in Section 5.4.1. This relies on a fixed trade-
off between functionality and bloat prevention, which can be explored
more fully using multi-objective optimisation [Jong and Pollack, 2003,
Bleuler et al., 2001].

An alternative method is to change the algorithm itself, by biasing
the crossover mechanism [Silva and Almeida, 2003], whereas perhaps
the most precise approach is to control average program size based on
size evolution equations, derived by Poli and McPhee [2008].

4.12 confidence in results

Heuristic search algorithms are a method of balancing solution quality
and the time taken to find a solution. This allows us to approximately
solve problems that cannot be solved by more conventional methods,
but the trade-off is that we must be prepared to accept imperfect solu-
tions. In some cases of automated programming, this is not acceptable,
as the utility of a solution to a domain user may be Boolean. This is
a major obstacle to the wider adoption of a method such as Genetic
Programming in finding solutions. It is arguably an interesting psy-
chological phenomenon that we are willing to accept human-written
solutions that have been subject to less testing than to those created
by GP. We may argue that humans are more methodical, that they
arrive at the solutions through rational thought, but it is not clear that
evolutionary systems are any less successful.

Confidence can be increased through testing, though testing cannot
show the absence of bugs, and it is usually the case that we run the
results of GP on a large validation set for this purpose.

Alternative directions are to produce artefacts that can be subject to
model checking [Johnson, 2007], or formal proof methods [Chen et al.,
2004]. For applications that have a Boolean level of acceptability, such
approaches appear to be the most appropriate research directions.

4.13 comprehending gp output

Related to the confidence we can have in the results produced by GP
is the readability of the output solution. If it is not human-readable,
then we cannot expect to manually verify its correctness or satisfactory
design. There are three ways we can improve the readability of output:

4.14 no free lunch 51

• Constrain the search.

• Make readability an explicit goal of the search.

• Carry out post-processing in order to simplify solutions.

Haynes et al. [1995] argue that one application of Strongly Typed GP
is to produce more comprehensible solutions, by restricting the struc-
ture of programs in the solution space. The role of bloat in increasing
the obscurity of output is important, and parsimony measures have
been shown to improve the readability of results [Jong and Pollack,
2003]. Post-processing involves removing inactive code, simplifying
subexpressions and transformations. Smith and Bull [2007] apply both
a parsimony pressure and post-processing to simplify the results of a
set of data-mining problems using Genetic Programming.

4.14 no free lunch

The No Free Lunch (NFL) theorem for search and optimisation is one
of the most controversial theorems in the field of heuristic search.
Wolpert and Macready [1997] introduced the NFL theorem in 1997 as
an argument against the ability of heuristic search methods to generalise
over all problems. What they proved was that any algorithm would
perform equivalently over all possible problems, where a problem is
defined by a mapping from the solution space X to the space of fitness
values. However, due to the assumptions it makes, and the nature of
problems of practical and commercial value, the NFL is of much less
concern than was originally feared.

In particular, “the set of all problems” that the theorem reasons about
must be a set closed under permutation and there are many counter-
arguments to the existence of such situations in GP [Poli and Graff,
2009]. One example arises from the way that individuals are often
evaluated over a series of test cases using the sum of squared errors as
the fitness measure, which can prohibit the possibility of closure under
permutation.

4.15 achievements of gp

Initial interest in GP arose from its performance when compared to
other artificial intelligence and machine learning methods on a range of
standard benchmark problems such as the Santa Fe ant trail and sym-
bolic regression. It also managed to solve these problems through appli-
cation of the same method: the tree-based algorithm remained mostly
the same, although determining the fitness function requires a problem-
specific approach and can be a non-trivial task. This widespread ap-
plicability, as opposed to more specialised techniques such as neural
networks, and the relative simplicity of the GP algorithm has encour-
aged its rapid adoption and experimentation across a wide variety of
platforms, domains and applications.

Genetic Programming had by 2003 produced 36 “Human Compet-
itive” results detailed by Koza et al. [2003], and many more since at
the GECCO Hummie awards. Koza defines human competitive by a
number of criteria that places GP in direct competition with the pre-
vious work of designers and engineers. This demonstrates a focus on

52 genetic programming

novelty and invention through the use of search, rather than the spe-
cific types of results achieved. The majority of the problems are circuit
layout problems rather than programs, and this supports Fogel and At-
mar [1990]’s observation that the applicability of GP (and evolutionary,
crossover-based programming in general) may be limited to a subset of
problems that have a low degree of epistasis.

Koza et al. [2003] discusses the relationship between Moore’s Law
and the number of human-competitive results in GP. The relationship
is such that the results of applying GP is improving directly with the
increase in computing power. However, the implication of this trend is
that the technique of GP itself is not improving.

4.16 comparing gp to random search

With a great deal of foresight, Fogel and Atmar [1990] criticised the
method of evolutionary search using crossover in machine learning
applications where behaviour-defining structures undergo genetic ma-
nipulation. Their comparisons to mutation-based search demonstrated
there was no advantage to using crossover. Their conclusion was that
this may limit the applicability of crossover-based search to specific
applications that have a low degree of inter-dependence between sub-
components of a solution.

More specifically, Luke and Spector [1997, 1998] compared GP to
mutation-based search. Their mutation operator replaces a randomly
selected subtree with a randomly generated one. They found stan-
dard GP offered little improvement over mutation-only search on a
range of problems from the GP literature. Furthermore, they found a
large dependency on the choice of parameters in order to ensure this
small improvement was achieved. Similarly, Angeline compared GP to
“Headless Chicken Crossover” [Angeline, 1997], whereby a randomly
constructed second parent is generated to participate in crossover. He
found similar results to those of Luke and Spector. I have recently
applied rigorous experimentation to this comparison and found that
crossover is beneficial for some of the problems investigated [White
and Poulding, 2009].

4.17 open issues

4.17.1 Theory of Bloat

No agreed explanation for the phenomenon of bloat in a GP run has
been proposed. This problem appears amenable to experimentation,
and with a systematic methodology it may be possible to eliminate
some of the theories of bloat. It is clear that the use of crossover directly
or indirectly causes bloat, and by varying the rules of this operator it
may be possible to eliminate some of the proposed explanations.

4.17.2 Scalability

Much of the GP literature has focused on small examples as a basis for
theoretical study, experimentation of extensions to GP, or comparison
to proposed alternative algorithms. In particular, amongst researchers
there is a concern about the reach of GP: beginning at a given level of

4.18 summary 53

abstraction, how much can GP achieve for itself? For example, given
machine code instructions as its function set, will it be able to solve
the same problems that it would if Fast Fourier Transforms and vector
operations were included in the function set? This is actually two
questions: will the algorithm ever be able to solve the problem without
the higher-level functions made available to it? Will it be able to solve
the problem in an acceptable amount of time?

4.17.3 Theoretical Basis and Justification

As we have seen, there have been several attempts to devise a general
schema theorem for GP. Whilst progress has been made, it is not clear
that these results provide a formal explanation as to why GP should be
selected as a method for program space search. The outstanding prob-
lem is to demonstrate both empirically and theoretically that building
blocks exist in GP regardless of the problem domain, that they are the
rule rather than the exception, and that subtree crossover is the most
effective way to exchange these building blocks.

4.18 summary

In this Chapter, I have given an overview of the field of Genetic Pro-
gramming. In the previous chapter, I outlined methods that can be used
to optimise the non-functional properties of embedded systems. What
remains now is to combine the two: to examine applying Genetic Pro-
gramming to control the non-functional properties of software. There is
a related and well-established line of research in this area: the control
of bloat (see Section 4.11), although we do not usually treat bloat itself
as a program characteristic: it is an artefact of the search algorithm.
Bloat presents a second objective for the search, casting our problem
as a multi-objective optimisation (MOO) problem. All optimisation
considering multiple properties of a solution can be formulated as a
MOO problem, and therefore at this point it is necessary to introduce
the field of MOO, which I do in the next chapter.

54 genetic programming

5M U LT I - O B J E C T I V E O P T I M I S AT I O N

5.1 introduction

Low-resource systems design involves multiple conflicting constraints,
and multi-objective optimisation (MOO) methods offer the ability to
find solutions that satisfy and trade-off such multiple criteria. In this
chapter, I give a general review of MOO methods and also look at pre-
vious applications of MOO techniques relevant to the work presented
in this thesis.

These techniques fall broadly into two categories: aggregation and
Pareto-based methods. Pareto-based methods are usually implemented
using evolutionary algorithms, which is part of the motivation for
adopting these methods in this thesis. A detailed discussion of the
strengths and weaknesses of these methods is given by Freitas [2004],
who finds that the Pareto-based approaches are more principled than
aggregation methods, which tend towards trial-and-error.

The most cited texts on multi-objective evolution are Coello Coello
et al. [2002] and Deb [2001].

5.2 problem definition

Multi-objective problems are defined by a set of objectives represented
by multiple fitness functions f1, f2, . . . , fk, and a series of constraints
that restrict the search space to C ⊆ X, a feasible subset of X. For
example, Figure 11 illustrates a feasible region within the solution
space, where a solution p is a pair of parameter values x1 and x2. The
feasible region of a problem is not necessarily continuous.

Coello Coello [2000] defines multi-objective optimisation as optimis-
ing a vector-valued fitness function with n components:

F(p) = (f1(p), f2(p), . . . , fn(p)) (5.1)

x1

x2

Feasible Region

Figure 11: A feasible region within a solution space.

55

56 multi-objective optimisation

f 1

f 2

y1

Figure 12: Visualising trade-offs in objective space.

subject to m inequality constraints:

gi(p) ≥ 0, i = 1, 2, . . . , m (5.2)

and q equality constraints:

hi(p) = 0, i = 1, 2, . . . , q (5.3)

A multi-objective search algorithm must attempt to optimise each
component of the fitness vector, and explore the trade-offs between
components. In a low-resource system, the objectives are both functional
and non-functional requirements. Where they conflict, we see trade-off
spaces as in Figure 12.

5.2.1 Objective Space

The range of F can be visualised in objective space. Each feasible point
p ∈ C in solution space is mapped to a point y in the objective space.
Trade-offs between objectives can be visualised by their location in
this space. For example, in Figure 12, y1 minimises objective f1 at
the expense of f2, and the two objectives are conflicting. Automated
exploration of this space may aid an engineer in assessing where the
design limits are, and the nature of the trade-offs involved. The gradient
of the relationship may indicate where most is to be gained from
sacrificing one objective for another.

5.2.2 Separation of Constraints and Objectives

In low resource system design, it is usually the case that non-functional
requirements can be decomposed into a constraint and an objective
[Dick and Jha, 1997]. For example, if the system CPU has already been
specified, then it is essential that the software solution be efficient
enough so that scheduling the given set of tasks on the processor is
feasible. It may also be desirable that the software use fewer CPU cycles
and hence reduce its power consumption.

Constraints can be satisfied using a penalty fitness function compo-
nent, and some multi-objective algorithms treat them entirely separately
[Aguirre et al., 2004].

5.3 types of multi-objective optimisation 57

5.3 types of multi-objective optimisation

There are two major classes of multi-objective search methods. Firstly,
those often described as classical methods, which I refer to here as
aggregation-based methods. Secondly, Pareto-based methods that utilise
the concept of Pareto non-dominance to find a set of competing so-
lutions. Aggregation-based methods are limited in that they do not
consider more than a single solution at a time. Any method or tool that
provides an engineer with a single solution in the face of conflicting
trade-offs restricts the information available. A compiler is typically
such a tool: it has an implicit bias in the solutions it will generate.

5.4 aggregation of objectives

Aggregation techniques attempt to aggregate the separate requirements
of a problem into a single overarching objective. The fitness function F
is collapsed into a scalar-valued function. As such, aggregation methods
attempt to find a single solution that is in some sense optimal. Here I
describe three of the most popular aggregation methods.

5.4.1 Weighted Sum

The most common aggregation technique is the weighted sum approach,
using a fitness function specified as follows:

F(p) =
n

∑
k=1

wk · fk(p) (5.4)

where

n

∑
k=1

wk = 1 (5.5)

Often, the objective values themselves are normalised to lie within
[0, 1]. The approach of a simple weighted sum fitness function is easily
implemented and is commonly used where there is a clear priority
between objectives, or the objectives conflict to a small or no extent. The
relative weightings of the different objectives must be decided, i.e. the
weightings must be normalised. This is often difficult or impossible to
achieve in the embedded domain and can involve changing political and
economic factors [Berntsson Svensson et al., 2009]. For example, how
many units of power saved can be described as equivalent in cost to a
quantified increase in response time? This may lead to experimentation
in weighting, which is computationally expensive.

Weighted sums define a single maximum value for an individual’s
fitness. Automated optimisation methods will attempt to locate this
value and, if successful, the population will converge to this optimum.
In the bounds of the search space however, one program may minimise
processor time required but use a large amount of memory. Another
solution may minimise memory usage but create more communica-
tion overhead. The opportunity for an engineer to make comparisons
between such alternatives is lost.

The weighted sum approach cannot locate all of the possible levels of
trade-off between objectives for some problems, and it cannot converge

58 multi-objective optimisation

Figure 13: Limitations of the weighted sum method.

on a solution it if lies on the surface of a concave region in objective
space, such as that highlighted in Figure 13. In this space, for a given
fitness value we can plot a line with gradient −w1/w2, a contour linking
all points with that value. We wish to minimise this value, so we can
see that the optimal point for any given set of weightings will be the
point that lies on a tangent to the feasible region.

Figure 13 shows the optimal point y that will have the best fitness
value when w1 = w2 i.e. when the weightings are equally balanced.
By varying the relative weightings of the two objectives, different solu-
tions will be considered optimal. As no tangent can exist that passes
through the points in the concave region, these points cannot be found
regardless of the weightings used. However these points are potentially
desirable, as they represent unique trade-offs between the two objec-
tives. A rigorous argument of this limitation is given by Das and Dennis
[1996].

5.4.2 Goal Programming

Goal programming is a long-established set of methods that direct the
search to a designated aim, such as a fixed target value Ti for each
objective. The algorithm then attempts to satisfy these goals, even if
this results in a suboptimal solution. This method was introduced over
half a century ago by Charnes et al. [1955].

The goal for each component of the fitness vector can take the form
of an exact value or an inequality, where an inequality will specify an
acceptable range of values for that fitness measure. The fitness of an
individual is measured by the distance between its current fitness vector
and the goal fitness vector. The objective is to optimise this distance, a
simple example being to minimise:

k

∑
i=1
| fi(p)− Ti| (5.6)

Different distance metrics are used in different implementations. If
the goal is to attain a fitness less than (or more than) a particular value,
the deviation is the distance from achieving this goal, or zero if the goal
is achieved. An interval can be treated as a pair of goal inequalities.

These multiple deviation values must then be aggregated into an
overall fitness function, which faces the same problems as any other

5.5 pareto-based optimisation 59

aggregation method, such as deciding upon suitable weight values or
priorities between objectives. The method may lead to a suboptimal
solution as the algorithm will only attempt to satisfy the goals supplied.

Goal programming assumes a decision maker can set targets for
optimisation. In low-resource systems we often wish simply to know
the extent to which we may reduce resource requirements. Goal pro-
gramming does not provide an estimation of what is possible, but will
only try to achieve the goals set by a designer for a particular problem.

5.4.3 ε-Constraint Method

The ε-constraint method first proposed by Haimes et al. [1971] over-
comes some of the limitations of a weight-based summation by consid-
ering each individual fitness component in turn. Whilst component fi is
being optimised, all fk, k 6= i are subject to a set of supplied constraints.
Thus the aim of the algorithm is then to find the minimal value for fi
whilst working within the restrictions of the constraints on the other
fitness components. A vector of ε-values is used to effectively constrain
the search to a region of the objective space. Each search within a partic-
ular fitness component attempts to finds a Pareto-optimal solution (see
Section 5.5.1), such that repeated searches can be used to enumerate
the Pareto-front.

The process of individually exploring each fitness component is
computationally expensive, although less so than an exploration of the
space of all possible weights when using a weighted-sum method. The
engineer must provide a vector of constraint values, and this selection
will affect the quality of solutions that the method can discover. It places
extra burden on the decision-maker to provide information that may
not be available.

5.5 pareto-based optimisation

5.5.1 Pareto Fronts

Pareto-based optimisation searches for multiple solutions rather than
a single point. Unlike aggregation methods it does not require that
the fitness vector of an individual be reduced to a single scalar value.
The search algorithm aims to discover a surface in the objective space
known as a Pareto front. When objectives conflict, these methods output
a set of solutions offering the opportunity for comparison.

The Pareto front is defined by the concept of Pareto non-dominance,
which relates one solution to another in terms of each fitness component,
and is denoted p1 � p2. Solution p1 ∈ C dominates solution p2 ∈ C,
that is p1 � p2 iff:

∀i : fi(p1) ≤ fi(p2) ∧ ∃j : f j(p1) < f j(p2) (5.7)

The Pareto-optimal set is composed of individuals that are non-
dominated. A solution pn is non-dominated iff:

¬∃k : pk � pn (5.8)

Intuitively, solution pn is non-dominated if there does not exist an
alternative solution pj that has both a better (lower) value for one or

60 multi-objective optimisation

f 1

f 2

Pareto
front

Figure 14: An example Pareto front in objective space.

more of the components of the fitness vector, and no worse (higher)
value for any of the other components.

Figure 14 illustrates a Pareto front in objective space. The front con-
tains all non-dominated solutions, i.e. all points where an improvement
can be made to one fitness component only at the expense of another
fitness component. This illustrates the main limitation of aggregation-
based methods: they can locate at most only a single point on the
front.

It is not usually possible to predict in advance where the Pareto
front will lie, and it is not possible to know if a given set of solutions
accurately describes a Pareto front for the problem. As a result, Pareto-
based algorithms attempt to continually improve an approximation to
this front.

5.5.2 Elitism

As described by Zitzler et al. [2001], elitism is a crucial component of
any evolutionary multi-objective optimisation algorithm. Elitism is the
process whereby solutions can survive from one generation to another
without undergoing manipulation through genetic operators such that
its genome remains intact. Multi-objective evolutionary algorithms
usually implement this technique by retaining a separate set of non-
dominated individuals distinct from the main population. Elitism is
effective because it prevents the loss (break-up) of a non-dominated
individual through genetic manipulation.

Some problems have Pareto fronts with sparsely populated areas, i.e.
where there exist few solutions that achieve certain trade-off values. In
order to retain these solutions, it is necessary to use elitism to ensure
these “lonely” individuals survive, as it is the group of non-dominated
solutions that together compose the estimation of the Pareto front.

5.5.3 Selection and Niching

As an evolutionary algorithm searches the solution space, it will find
progressively fitter individuals. In the case of Pareto-based optimisa-
tion, the algorithm must discover a surface in this space. The danger of
selection-based methods is that they may strongly favour an individual
that represents a step improvement over the current population. This
will then encourage the collapse of the front as the inferior, yet poten-

5.6 pareto-based algorithms 61

tially useful, solutions that are located in other parts of the search space
are removed by their lower performance. Even without this fitness
pressure, populations may converge to a small area of the objective
space due to genetic drift. It must be ensured that the search does not
converge to a single area of the Pareto front, but instead maintains a set
of individuals that incrementally progresses across the objective space.

If we are to explore the variety of trade-offs available when creating
low-resource software, we must maintain a set of solutions. The compo-
sition of the set will harbour useful information that a single solution
cannot. For example, the location of “sweet spots”, that is points of
inflection in the relationship.

Maintaining this diversity of points within the current estimate of the
Pareto front is achieved in two ways. Firstly, by assigning fitness values
in terms of relative performance of an individual over the population
through Pareto dominance. Secondly, by punishing solutions that are
closely co-located in the trade-off space through a density function that
reduces the fitness of individuals in heavily populated regions.

Individuals are ranked (the exact manner depends on the particu-
lar algorithm involved) according to their non-dominance within the
population. Usually, the population is divided into “fronts”, where non-
dominated individuals are repeatedly selected within the population,
allocated a ranking and then removed from consideration. This ensures
the survival of weaker individuals, provided they can perform well on
some fitness components or find less explored areas of the search space.
The application of this concept is referred to as niching, and is also used
elsewhere in evolutionary computation to favour exploration (usually
of the search space) rather than exploitation.

Niching works by reducing the probability that an individual in a
densely populated region of the objective space will be selected to
be a parent. Sareni and Krahenbuhl [1998] generalise this idea as an
adjustment of fitness thus:

f ′(p) =
f (p)
m(p)

(5.9)

where m is a niching factor calculated using a sharing function that
estimates the crowding in a given area of the search or objective space:

m(p) = ∑
p′∈P

s(p, p′) (5.10)

The sharing function s is based upon some distance metric such
as tree edit distance in the Genetic Programming search space, or
Euclidean distance in objective space. The two MOO algorithms detailed
in Section 5.6 employ forms of sharing.

Alternative methods of niching exist, though they are in general
much less popular than fitness sharing. For example restricting the
crossover of individuals to those within a certain proximity, encouraging
speciation amongst the population. The expense of such niching is often
in computational complexity, as individuals must be widely compared.

5.6 pareto-based algorithms

There have been many different implementations of Pareto-based tech-
niques, and here I describe two algorithms representative of those

62 multi-objective optimisation

f 1

f 2

1

1

1

1

2

1

4
6

Figure 15: MOGA rankings within the objective space.

proposed. Many individual algorithms are in fact modifications or opti-
misations of previous techniques. In this thesis I use SPEA2, because it
has previously been successfully applied to related MOO problems in
combination with Genetic Programming [Weise and Geihs, 2006].

No algorithm is guaranteed to converge to an exact representation of
the Pareto front, only an approximation of it. The efficacy of a particular
Pareto-based algorithm in locating this front is dependent on the nature
of the objective space and the parameters of the algorithm.

5.6.1 MOGA

The Multi-objective Genetic Algorithm (MOGA) [Fonseca and Fleming,
1993] is one of the original multi-objective evolutionary algorithms in
the literature. Fonseca and Fleming focus on the role of multi-objective
algorithms in providing a set of alternative solutions to a decision-
maker, and suggest modifications to facilitate the input of guidance
and feedback from the decision-maker into the algorithm. MOGA gives
each individual a ranking as follows:

rank(pi, t) = 1 + dt
i (5.11)

The ranking of an individual pi at generation t is 1 if it is non-
dominated, otherwise it is 1 plus the number of individuals it is domi-
nated by in the current population. Figure 15, based on Fonseca and
Fleming, illustrates rank assignments within the objective space. Not all
values of rank will necessarily be attributed to one or more individuals
in any given population.

Algorithm 5 illustrates how MOGA calculates fitness. Each compo-
nent within the fitness vector of an individual is evaluated. The ranking
of each individual is calculated, and then interpolated. The fitness
values of individuals with the same rank must be averaged, to ensure
they will be sampled at the same rate using fitness-based selection. An
example interpolation step given by Deb [2001] is as follows:

f (pi) = N −
ri−1

∑
k=1

µ(k)− 0.5(µ(ri)− 1) (5.12)

Here, N is the number of objectives, ri is shorthand for rank(pi), the
rank of the individual, and µ(k) is the number of solutions of rank k.

5.6 pareto-based algorithms 63

Algorithm 5 Pseudocode for MOGA Fitness Assignment.
1: ∀pi ∈ Pt evaluate F(pi)
2: ∀pi ∈ Pt, dt

i ⇐ |{pj : pj ∈ Pt ∧ pj � pi}|
3: ∀pi ∈ Pt, rank(pi, t)⇐ 1 + dt

i
4: ∀pi ∈ Pt, f (pi)⇐ interpolate rank(pi, t)

To maintain the diversity of solutions and accurately estimate the
Pareto front, a niching mechanism is used. The MOGA method uses
fitness sharing, which creates selection pressure to maintain diversity
through a component in the fitness function. The level of niching
required must be set using a niching size σshare. Niching is performed
over the objective space, and σshare defines the limiting distance two
individuals can be apart before their fitness is affected by the niching
mechanism. This presents a problem if the practitioner does not have
an accurate expectation of the nature of the Pareto front. For example,
Fonseca and Fleming estimate the value of σshare required based on
the size of the trade-off surface. However, using their method would
require knowledge of the extreme values of the front – and wishing
to discover such extremes is often part of the original motivation of
applying MOO methods.

Rodriguez-Vazquez et al. [1997] present a multi-objective Genetic
Programming algorithm (MOGP), which is based on MOGA. As MOGA
uses fitness space-based ranking and niching, these concepts can be
applied directly to Genetic Programming. They apply MOGP to system
identification problems with up to seven distinct objectives.

5.6.2 SPEA2

SPEA2 [Zitzler et al., 2001] is the revision of the Strength Pareto Evolu-
tionary Algorithm. The algorithm maintains both a general population
and a fixed-size archive, which contains the non-dominated individuals
found so far. The algorithm employs fine-grained fitness assignment to
carefully preserve diversity within its current solution set.

An individual’s fitness is determined by both Pareto-based ranking
and density information. The strength S(pi) of an individual is defined
as the number of others that it dominates:

S(pi) = |{pj : pj ∈ Pt ∪ P̄t ∧ pi � pj}| (5.13)

where P̄t is the archive, and � is the Pareto-dominance relation. The raw
fitness of an individual is the strength of the individuals it is dominated
by:

R(pi) = ∑
pj∈Pt∪P̄t ,pj�pi

S(pj) (5.14)

The second component of the fitness function is the density estima-
tion of the individual, given by the distance from a solution pi to its kth
nearest neighbour, σk

i . The density component is:

D(pi) =
1

σk
i + 2

(5.15)

64 multi-objective optimisation

The fitness of an individual is then:

F(pi) = R(pi) + D(pi) (5.16)

The archive for the next generation is generated based on this com-
bined fitness measure. Only those non-dominated individuals that are
sufficiently dispersed across the current front are allowed to enter the
selection process, i.e. only the individuals in the archive are allowed to
mate. Algorithm 6 gives the pseudo-code for the algorithm.

The run-time of SPEA2 is dominated by the niching calculation, and
has complexity O(M2 log M) where M = |P|+ |P̄t|, the combined size
of the population and archive.

Algorithm 6 Pseudocode for SPEA2.
1: t⇐ 1
2: archive P̄t ⇐ ∅
3: initialise general population Pt
4: loop
5: for all pi ∈ Pt ∪ P̄t do
6: evaluate objective values of each individual pi
7: end for
8: for all pi ∈ Pt ∪ P̄t do
9: S(pi)⇐ |{pj : pj ∈ Pt ∪ P̄t ∧ pi � pj}|

10: end for
11: for all pi ∈ Pt ∪ P̄t do
12: R(pi)⇐ ∑pj∈Pt∪P̄t ,pj�pi

S(pj)
13: end for
14: for all pi ∈ Pt ∪ P̄t do
15: D(pi)⇐ 1/(σk

i + 2)
16: F(pi)⇐ R(pi) + D(pi)
17: end for
18: P̄t+1 ⇐ {pj : pj ∈ Pt ∪ P̄t ∧ ∀pk ∈ Pt ∪ P̄t, pj � pk }
19: if |P̄t+1| < archive size then
20: fill archive with dominated individuals
21: end if
22: if |P̄t+1| > archive size then
23: truncate archive based on density
24: end if
25: t⇐ t + 1
26: if termination criteria satisfied then
27: return P̄t
28: end if
29: create Pt from P̄t+1 using selected algorithm
30: end loop

5.7 coevolution

Coevolution is the process of evolving multiple populations simul-
taneously, where each population solves a different but inter-related
problem. Coevolution has three main applications:

• It can be used in combination with Pareto-based optimisation to
satisfy multiple objectives in a scalable manner.

5.7 coevolution 65

• It can be employed to improve the performance of algorithms in
finding generalising solutions and identifying difficult test cases.

• If a solution can be decomposed into several distinct parts then
coevolution can be used to produce compatible components. For
example, a compression and a corresponding decompression
algorithm.

Coevolution is either competitive or cooperative. Under competitive
evolution, the fitness of one population is defined by its relative per-
formance compared to another, much like predator-prey relationships
in the physical world. In cooperative evolution, separate populations
work together to solve a problem, for example by dividing a task into
subproblems and solving those problems individually. Both methods
have applications within multi-objective optimisation.

Coevolution is used in this thesis to ensure that solutions maintain
functional generality when optimising their non-functional properties.
This is important because including non-functional properties in fitness
measurement offers an individual solution the opportunity to survive
by discarding functionality. Test cases must be capable of exposing the
omission of functionality, and coevolution increases the fitness pressure
on the evolving solutions.

5.7.1 Competitive Evolution of Test Cases

Competitive evolution can be used to coevolve a population of test
cases alongside the solution population. The solution population is
tested against the test population (or a sample).

This approach can be used in situations where exhaustive testing is
not possible, and it is not clear what subset of test cases will achieve
the best results. Alternatively, if it is required that only a subset of test
cases are used (in order to reduce the computational cost of testing
and execution time) competitive evolution can find a suitable subset.
Competitive evolution may also be used in order to discover particularly
difficult test cases for a given set of potential solutions. This avoids the
problems of over-fitting test data and unacceptably poor performance
on pathological test cases. As Angeline [2000] points out, the real
advantage to using a competitive evolutionary approach is that it scales
well: the test cases will evolve to stretch the current solutions as much
as necessary.

Coevolution of test cases was used by Hillis to evolve minimal sorting
networks [Hillis, 1990]. Whilst he successfully produced correct sorting
networks without coevolution, he was unable to match the best results
designed by human engineers using a simple objective of minimising
the number of connections. The most challenging test cases for a candi-
date solution were dependent on the structure of the candidate itself.
Test cases were therefore coevolved with the solution population and
found to improve the results of the algorithm. This motivates my use
of competitive coevolution in Chapter 7.

One weakness of this approach is the task of ensuring that the two
populations evolve in synchrony [Miconi, 2009]. If the test data popula-
tion becomes too difficult before the algorithm has found solutions that
can at least solve some of the test cases, then the fitness of individuals
in the population will be indistinguishable, and no information will
be available to guide the search. Similarly, genetic drift or other bias

66 multi-objective optimisation

in the search method may lead to the state of disengagement, where
the two populations are no longer reacting to each other but instead
following a direction determined by other selection pressures. At the
other extreme, the two populations may become closely intertwined so
that the solutions evolve only to solve the coevolved test cases and no
longer generalise over the remainder of the test case space.

5.8 multi-objective genetic programming

Combining MOO and GP is a central component of this thesis, and
there has been a certain amount of work in this area in the past. By far
the most common of such applications is the use of MOO to encourage
parsimony and thereby avoid the emergence of bloat in GP [Bleuler
et al., 2001]. This has also been used to encourage generalisation and
to improve the comprehensibility of output. Jong and Pollack [2003]
carried out a study of bloat control methods on example problems, but
also note the importance of diversity-preserving techniques to ensure
bloat control is not exerted at the cost of exploration of the search space.

Perhaps the only work that uses MOO to improve existing programs
to achieve desirable non-functional properties is that on program com-
pression by Langdon and Nordin [2000], where the authors attempted
to reduce the size of existing programs using GP. They use a multi-
objective approach to control program size, having started with existing
solutions in a similar manner to the seeding used in Chapter 7. They
applied this approach to classification and image compression prob-
lems. They were particularly interested in the impact such a method
would have on the ability of final solutions to generalise.

Weise and Geihs [2006] used GP to evolve an election algorithm for a
wireless sensor network, a similar platform to those targeted here. They
use a fitness function with a parsimony component as well as explicitly
specifying minimal use of memory and communication as objectives.
This very relevant work achieved initial results but no follow up has
been published.

Applications with many objectives can be found in Koza’s work in
evolving analogue circuits from the late 1990s onwards. For example,
evolving an amplifier circuit [Koza et al., 2004a] with 16 different
desired properties, such as gain, supply current and offset voltage. This
required multiple types of evaluation for each individual, and overall
fitness was calculated by a weighted sum of the components.

5.9 summary

In this chapter, I have introduced the fundamental concepts of multi-
objective optimisation, the use of coevolution in a similar context, and
examples of relevant work combining MOO with Genetic Programming.
After Chapter 3 introduced the problems of engineering low-resource
embedded systems, this and the previous chapter have outlined meth-
ods for attacking those problems. Over the next three chapters, I apply
these techniques to example problems in the embedded domain, demon-
strating the potential of these search and optimisation algorithms to
explore design spaces in powerful new ways.

Part III

E X P E R I M E N TAT I O N

6E V O LV I N G R E S O U R C E - E F F I C I E N T S O F T WA R E

6.1 introduction

A common form of non-functional requirement in embedded systems
is the demand to minimise a property such as power consumption.
Power consumption has become of increasing importance as modern
deployment paradigms such as Wireless Sensor Networks [Akyildiz
et al., 2002] and SmartDust [Warneke et al., 2001] demand the minia-
turisation of the system, including the battery. Consequently, battery
capacities are small and harvesting energy from a system’s physical
environment is the object of intensive research [Paradiso and Starner,
2005]. In this chapter, I investigate the ability of Genetic Programming
to find solutions with low power requirements, creating software that
aids the system goal of reducing resource consumption.

When selecting an example application for this experimentation,
there were two goals in mind. Firstly, the application must be software
that is typically executed with high frequency within an embedded
system, such that its power consumption contributes significantly to
overall system power usage. Secondly, it must be small enough to allow
large experimental evolutionary runs to take place on a single PC. The
choice made in this chapter is to evolve low power pseudorandom
number generators (PRNGs). PRNGs are a common component in
embedded systems, for example to be used in communication protocols
or security applications, and as such they are of practical interest to a
developer.

In reducing power consumption, there is often an explicit trade-
off between performance and consumption, or even functionality and
consumption. Rather than simply considering “this is what we must
do: minimise the power required”, we can consider a potentially more
useful question: “given this much power, how well can we achieve
our functional goals?”. Thus in this chapter we consider the trade-offs
between the quality of PRNGs against the power that they consume.

A combination of MOO and GP is used to explore solution and
objective spaces, both to generate PRNGs and to provide insight into
the trade-offs that can be made between different objectives. Specific
uses for such an approach are:

• Satisfying exact constraints specified as a requirement.

• Finding the extent to which objectives may be balanced: is the
number of distinct individuals in the Pareto front large or small?

• Identifying how many different distinct values of each objective
are represented within the Pareto Front, i.e. what level of granu-
larity of trade-off exists?

• Empirically quantifying the relationships between multiple objec-
tives: how much energy can be saved by increasing the available
processing time, for example?

69

70 evolving resource-efficient software

• Finding a set of programs offering multiple different trade-offs.
A solution may be chosen from this set depending on future re-
quirements, whether statically at design-time or dynamically at
run-time. For example, a new target platform may have fewer re-
sources, or a different mode of operation may reduce the amount
of available processing time.

This chapter is based upon work in White et al. [2008].

6.2 pseudorandom number generators

PRNGs are important program components that generate a stream of
pseudorandom numbers, where the precise definition of “random” is
dependent on the way in which the output will be used [Knuth, 1997].
PRNGs are often found in embedded systems. For example, they may
be used for key generation in cryptographic applications or within
communication protocols for collision resolution. Typically, PRNGs
are small code fragments that are frequently used and thus random
number generators with specific non-functional properties are a useful
tool.

PRNGs have been produced using both GP [Koza, 1991, Jannink,
1994, Hernandez et al., 2004, Lamenca-Martinez et al., 2006] and other
bio-inspired techniques (for example, [Sipper and Tomassini, 1996]).
Where heuristic search techniques have been applied in the past, the key
difference between alternative methods has been the fitness function
selected to establish how good a candidate PRNG is. Knuth [1997]
gives an extensive review of tests to measure the “randomness” of a
sequence, that are potential candidates for a fitness measure, although
more stringent tests are required for cryptographic primitives. No
previous work has explicitly targeted low power as an objective when
searching for PRNGs.

6.2.1 Producing PRNGs with GP

Koza [1991] demonstrated the ability of GP to evolve pseudorandom
number generators, outputting a stream of binary digits when given
as input a sequence 1, 2, 3, . . . , 214. He used an entropy-based mea-
sure that summarised the measurement of the distribution of possible
subsequences. By this measure, for a sequence of N integers where
each integer can take k different values, the desired probability of
each possible subsequence occurring is 1

kN . Koza’s experiments suc-
cessfully produced individual programs that provide sequences with
high entropy, and perform well when measured against commercial
randomisers under two statistical methods from Knuth [1997]. Koza
notes that in some sense the distributions are too perfect, in that the
divergence from an ideal distribution is so small that the output could
be considered unlikely to be from a truly “random” source.

Jannink [1994] used GP to predict the outputs of existing commer-
cial generators, as a measure of their quality. He then took a similar
approach to creating new randomisers, by using coevolution (see Sec-
tion 5.7) to competitively evolve generators and predictors, thus using
competition to determine fitness in place of statistical measures of ran-
domness. The function set provided to GP was similar to that used in
this chapter, though Jannink included memory reading and writing

6.3 power simulation 71

operations. Evaluating the success of the evolved generators against
standard battery tests was not included in the paper, and therefore
it is difficult to make comparisons between the effectiveness of this
coevolutionary approach and those that define fitness using statistical
measures.

Hernandez et al. [2004] also applied GP to PRNG creation. Part of
the stated aim of their work was to consider not only the functionality
of PRNGs but also the efficiency of the evolved solution, and hence
this work is closely related to the aims of this chapter in satisfying
non-functional requirements. This work was continued and expanded
upon by Lamenca-Martinez et al. [2006]. Much of the experimental
work reported here is based on this later work. In particular, the fitness
measure and choice of function set are taken from these papers. The
fitness function used measures the nonlinearity of a PRNG’s output, as
an alternative to statistical measures of randomness. Further details of
the fitness function are given in Section 6.4.

In order to produce efficient PRNGs, Hernandez et al. [2004] and
Lamenca-Martinez et al. [2006] restricted the function set to contain
operations that could be executed quickly, and attempted to evolve a
“minimalist’s PRNG”. Direct measurements of efficiency were not made,
and both papers comment on whether the inclusion or exclusion of
a MULT (multiply) function would be appropriate due to its relative
expense. This chapter extends their work by explicitly examining a
non-functional property of the solutions: power consumption. It also
provides a method of comparing the impact of the MULT function on
efficiency-functionality trade-offs for a specific target architecture.

6.3 power simulation

In this work, I make use of the SimpleScalar simulator [Burger et al.,
1996] in combination with the Wattch power consumption model
[Brooks et al., 2000]. I use an unmodified version of the simulator,
which targets the 64-bit PISA instruction set, a similar design to the
MIPS-IV ISA [Price, 1995]. The simulator’s default settings include two
8kB level 1 cache banks, one for instruction and one for data, and a
unified 256kB level 2 cache. The specific choice of architecture does
not concern us too much: only that it is consistent in relative measure-
ments between two individuals, as we are interested in designing a
generalisable method independent of target platform.

System calls are intercepted by the simulator, so that without loading
an operating system it is possible to capture functional behaviour.

Wattch is a cycle-level power simulator based on a parameterised
processor model, and provides overall power estimates for a program’s
execution, calculating power consumption Pd for different logic units
using the following equation:

Pd = CV2
dda f (6.1)

C is the load capacitance, Vdd the supply voltage, f the clock frequency
and a an activity measure that estimates the amount of transistor
switching. The values of these parameters are partly estimated; however
more detail of how they are derived and a good validation of their
results is given by Brooks et al. [2000].

72 evolving resource-efficient software

Wattch was designed as a tool to explore trade-offs in processor
architecture design, and to enable compiler writers to optimise their
software. Whereas its original intended use was to allow designers to
investigate speed versus power consumption trade-offs in hardware
design, here I use it to measure trade-offs between the functional quality
and power consumption of software. As a result of the design objectives
of Wattch, care has been taken to ensure it is relatively fast to execute
hence a program can be evaluated in tens of seconds, an expensive
fitness evaluation but viable when used in a parallelised framework.

6.4 gp parameters

Parameters for the GP search are given in Table 2. The table shows
the major parameters of the search, which was implemented using
the ECJ 16 Toolkit [ECJ, 2009]. The settings for parameters not listed
here are given by the parameter files koza.params, simple.params and
ec.params supplied with the toolkit. All of these parameters were taken
from Lamenca-Martinez et al. [2006], with the exception of tournament
size (since none was given) and the parameters for the multi-objective
Strength Pareto Evolutionary Algorithm 2 (SPEA2), since SPEA2 was
not used in that paper. The ECJ default was selected for tournament
size. The aims of these experiments were to demonstrate the validity
and potential of the multi-objective approach to explore functional
trade-offs in general, and so no parameter tuning was attempted.

No typing mechanism was employed, and all arguments and return
types are handled as unsigned integers. Fitness evaluation was per-
formed in C, by converting the GP tree to a C expression and enclosing
it within a function, and then compiled. As some of the members of
the function set are not available as native C functions (CSL, CSR), they
were implemented as functions within the test harness code and the
output of an individual from ECJ was altered to replace the relevant
infix expressions with function calls. This has implications for power
efficiency, which is discussed further in Section 6.8.2.

6.5 fitness measurement

The fitness of an individual is determined by its ability to satisfy two
objectives: reducing power consumption and optimising functionality
or “randomness”. In fact, its fitness is also dependent on the other
individuals within the population due to the fitness sharing used
by SPEA2, which incorporates the concept of Pareto dominance (see
Section 5.6.2 for further details). Within this chapter, “performance”
will be used to refer to the functional objective of improving the quality
of the PRNG.

6.5.1 PRNG Quality

An individual’s performance as a PRNG is measured by the way its
output varies when a single input bit is changed. Ideally, when a single
bit in the input is flipped, on average half of the output bits should
change.

To describe in more detail: to evaluate the performance of the ith indi-
vidual as a PRNG, a set of 8 random 32-bit integer inputs a0, a1, . . . , a7

6.5 fitness measurement 73

Problem Description Find p(a0, a1, . . . , a7) where p
minimises the χ2 fitness metric
defined by the strict avalanche
criterion.

Function set MULT, AND, SUM, NOT, OR,
XOR, Logical Shift Left (LSL),
LSR, Circular Shift Left (CSL),
CSR

Terminal set a0, a1, . . . , a7 and Integer
Ephemeral Random Constants
(ERCs)

Population Size 150

Generations 250

Crossover Probability 0.8

Reproduction Probability 0.2

Mutation Probability 0.0

SPEA2 Archive Size 100

Selection method Tournament Selection, size 7

Table 2: GP parameter settings.

is generated by a Mersenne Twister PRNG [Mersenne Twister PRNG,
2009]. The output pi(a0, a1 . . . , a7) of the individual for these inputs
is evaluated, this is also a 32-bit integer. Then one randomly selected
bit of one randomly selected integer input is flipped to provide a new
set of inputs b0, b1, . . . , b7 and pi(b0, b1, . . . , b7) is evaluated. This data
constitutes the result of one test case, and 4096 such test cases are used
to completely evaluate one individual.

This fitness component of an individual is then calculated as defined
by the Strict Avalanche Criterion (SAC), first introduced by Webster
and Tavares [1986] and analysed in detail by Forré [1990]. The crite-
rion measures nonlinearity, specifically the expected distance between
outputs given a single bit flip in the input. Each output bit should
have a probability of 0.5 of being flipped when a single input bit is
changed, in order to maximise the nonlinearity of the PRNG. Hence,
the Hamming distance between the two outputs should follow the bino-
mial distribution B(n, 1

2). By recording the Hamming distance between
pi(a0, a1, . . . , a7) and pi(b0, b1, . . . , b7) for each test case, a χ2 squared
goodness-of-fit measure can be calculated against the ideal binomial
distribution of bit flips. The performance measure of an individual i is
given by:

n

∑
i=0

(Ci − Ei)2

Ei
(6.2)

Here, n is the number of possible bit flips (0, 1, . . . , 32), Ci is the
observed frequency of test cases that resulted in i bit flips, i.e. where the
Hamming distance was i between pi(a0, a1, . . . , a7) and pi(b0, b1, . . . , b7),
and Ei is the expected frequency of tests with i bit flips according to the
binomial distribution. Our aim is to minimise this statistic, and reduce
the deviation from the ideal distribution.

74 evolving resource-efficient software

Note that in order to test an evolved PRNG, I employ a Mersenne
Twister PRNG! This circularity does not, however, pose a problem
for fitness evaluation. The only danger would be if an evolved PRNG
managed to “take advantage” of some predictable characteristics of
the input integers, generated by the Mersenne Twister. Given that the
Mersenne Twister algorithm is designed not to betray such characteris-
tics, this appeared to be an unlikely outcome!

6.5.2 Employing Multi-objective Optimisation

This is a bi-objective problem and hence I use Genetic Programming
combined with a suitable MOO method, SPEA2. This enables me to
examine a wide range of possible solutions, as opposed to a single
one located by a weighted sum method, or a subset found using other
techniques. Discovering a range of trade-offs is important here because
we wish to answer questions about the impact of design decisions on
the objective space as a whole. As noted in Section 1.2 such questions
can only be answered in a relative sense.

An implementation of the SPEA2 algorithm was written as an exten-
sion to ECJ, which followed precisely the original algorithm specified
by Zitzler et al. [2001]. For details of SPEA2, see Section 5.6.2. The
archiving is effectively elitist, and counteracts the emergence of bloat
in GP, because a larger individual will only survive if it makes an
improvement over the existing archive in at least one objective. This is
an important feature in attempting to evolve low power individuals,
because unchecked bloat would increase the number of instructions in
individual solutions. In the case where those instructions are ineffective
yet executed code (for example, identity function execution), this would
result in increased power consumption.

6.6 problem summary

To summarise, the problem to be solved was to find a Pareto front of
programs, where each program implemented a function p(a0, a1 . . . , a7).
The two objectives, both of which were cost functions to be minimised,
were the power consumption of the program and the measure of ran-
domness given by the χ2 goodness-of-fit measure.

6.7 implementation

Figure 16 gives an overview of the way that the ECJ-based framework
measures the fitness of a program. The PRNG is a symbolic expression,
and is written out to a file as a C function. This file is then cross-
compiled for the MIPS architecture (on a Linux host) and linked with
test harness code, which measures the fitness of a program using the χ2

measure. The test cases are generated using a Mersenne Twister PRNG.
The program is then run on the Sim-Wattch simulator, which produces
power statistics along with redirected program output from the test
harness i.e. the χ2 measure. These fitness values are used by SPEA2

to assign fitness scores based on Pareto non-dominance and a niching
function.

An alternative arrangement considered was to pass test case informa-
tion to and from the simulator via streams or sockets, but this proved

6.7 implementation 75

Raw Fitness Values

ECJ
GP & SPEA2

PRNG
source

Test Harness
source

Mersenne
Twister source

GCC Object Code

Sim-Wattch

Power
Statistics

Test Harness
Output

Figure 16: An overview of fitness evaluation.

too inefficient to be feasible. By placing the entire fitness evaluation
(test case creation, the program under test and the goodness-of-fit
calculation) within the simulator, the run-time of a single program
evaluation was greatly reduced. As a further improvement, the ex-
pected distribution for a given number of test cases was calculated once
and hard-coded in the test source. However, even with this efficient
arrangement, a single evaluation of an individual over 4096 test cases
took approximately half a minute on a 4200+ AMD processor. Most of
this time was spent within the Sim-Wattch simulator, hence the only
remaining target for optimisation was to reduce the sample size.

6.7.1 Reducing Sample Size

The paper that this work builds upon [Lamenca-Martinez et al., 2006]
used 16384 test cases, whereas in this work I chose to use only 4096 test
cases. This section justifies that decision.

To reduce the number of test cases required, I evaluated the variance
of functional fitness measures on smaller sample sizes using a boot-
strapping resampling technique [Berthold and Hand, 1999]. Firstly, I
executed a single run using the larger test sample size over 4 days and
logged each individual in the archive. A selection of 5 individuals were
chosen across a range of different fitness values to provide the required
data. These individuals were evaluated and the p(a0, a1, . . . , a7) and
p(b0, b1, . . . , b7) values logged over 16384 test cases. This allowed me to
employ statistical bootstrapping methods to determine whether smaller
sample sizes were effective in estimating the χ2 measure.

An example plot is given in Figure 17. This illustrates for a single
program the impact of varying the sample size on the resulting fitness
measure. The sample sizes run from 0 to 16384 in powers of 2. Each
point is the result of using bootstrapping with 30 bootstrap samples.
Other results had similar or smaller variance, and from these plots I
concluded a sample size of 4096 was sufficient. It was necessary to
ensure that the smaller sample size did not adversely affect power
consumption statistics, and similarly the variance of the power statistics
for each program was empirically found to be very low at a sample
size of 4096. Note that during the experiments each individual was also
re-evaluated at each generation, reducing the chance of a single outlier

76 evolving resource-efficient software

xx

x

xx

x

x

xx

x

x

xx

x

x

x

x

xx

x

x

x

x
x

x

x

xxxx

x

x

x

x

xx

x

x

xx
x

x

x

x

x

x

x

x

x

xxx

x

x

xxxx

xx

x

x

x
x

x
x

xxxx

x
x
xx

xx

xx
x
x

x

x
x
x

x

x

x

x

x

x
x

x

x
x
xx
xx
x

x
xx
x

x

x

x
x
x
x
x
xxxx
xx

xx

x

x

xxxx
x
x
x
xxx
xxxx
x
xxxx
x xx

x
xxxx
x
xxxxx
xxxxxx
x

xxxxxxxxxxxxxx
xxxxxx xxxxxxxx

xxxxxxx
xxxxx xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx

0 2 4 6 8 10 12 14

2
4

6
8

1
0

log2 (Sample Size)

lo
g

1
0
 (

Χ
2
 F

itn
e
ss

)

Figure 17: Example plot of sample size against fitness for one program.

fitness measure incorrectly giving an individual a higher priority when
populating the next archive.

6.8 results

6.8.1 Example Pareto Fronts

Figure 18 shows the archive at generation 249 of Experiment 1, where
each point corresponds to a program’s properties in objective space. The
power consumption is the total power consumed by each individual
across all 4096 test cases, and includes that consumed by the test
harness. Fitness is the goodness-of-fit measure as described in Section
6.5.1. Note that the archive is not always composed entirely of non-
dominated individuals for two reasons: firstly it may be “topped up”
with dominated ones by the SPEA2 algorithm when there are too few
non-dominated individuals to fill the archive completely, and also due
to the variance in fitness values (which are input-dependent) when the
archive is re-evaluated at each generation.

This graph demonstrates that functional trade-offs are indeed possi-
ble for this problem. The most impressive PRNGs, at the bottom-right
corner of the diagram, have a small deviation from the binomial distri-
bution, and these require the most power. Very poor pseudorandom
number generators, with lower power requirements, are at the top-left
of the diagram. This diagram allows us to visualise the relationship
between power consumption and functionality of the problem.

There is a discontinuity in the archive, where a step improvement in
the nonlinearity of the evolved PRNGs is observed. This is caused by

6.8 results 77

x xx
xxx xxx

x

x
x

x

xx
xx

x
xxxx xx

x

x
x x
xxx

xxxxx

x xxx x

x

x
xx

x

x

x xx

x xxx

x

xx

x

xx

xxxxx

x x

x

x

x

x x

x

x

x

x
x

x

xx

x

x

x

x

x

xxxxx

xxx

xx

x

xx

x

x

2.95e+08 3.05e+08 3.15e+08 3.25e+08

0
2

4
6

8
1
0

Power Consumption (Sim-Wattch Units)

lo
g
1
0
 (

Χ
2
 F
itn

e
s
s
)

Figure 18: Archive at Generation 249, Experiment 1. The graph shows the trade-
offs made by programs within the archive, between total power
consumption and error. For both objectives, lower values are better.

78 evolving resource-efficient software

x xx
xxxxxx

x

x
x

x

xx
xx

x
xxxx xx

x

x
xx
xxx

xxxxx

x xxxx

x

x
xx

x

x

x xx

x xxx

x

xx

x

xx

xxxxx

x x

x

x

x

x x

x

x

x

x
x

x

xx

x

x

x

x

x

xxxxx

xxx

xx

x

xx

x

x

2.9e+08 3.0e+08 3.1e+08 3.2e+08 3.3e+08 3.4e+08 3.5e+08

0
2

4
6

8
1
0

Power Consumption (Sim-Wattch Units)

lo
g
1
0
 (

Χ
2
 F
itn

e
ss

)

oo
o

o
o

oooo
ooo oo

ooooo
o

oo
oo

oo
o o ooo o

o

o

ooooo

oo

ooo

oo

o

o

ooo

o

o

o

o

oo

o

o

oo

o
ooooo

oooo

o

oooo

o

o

o
o

oo

o

o

o ooo

o
o

oooo ooooo

o

Experiment 1
Experiment 2
Experiment 3

Figure 19: Archives at Generation 249 for Experiments 1, 2 and 3. Similar trade-
offs are discovered.

the simple niching function used by SPEA2 algorithm, which works
on Euclidean distance between points in objective space. As the fitness
values are not normalised, from this point to the right of the graph the
power consumption, rather than the PRNG performance, dominates the
niching function. This will have some impact on the variety of solutions
produced, depending on how often the niching function is used by the
search. The use of a more sophisticated niching function would enable
further control on how the archive approximates the Pareto front.

Figure 19 shows three archives resulting from three separate experi-
ments, with different seeds for ECJ being the only difference between
each experiment. Similar trade-offs are achieved, although Experiment
2 shows better performance in terms of optimising functional fitness.

These results are an order of magnitude worse, in terms of the func-
tional fitness (SAC) than the results presented by Lamenca-Martinez
et al. [2006]. The aim of this work is not to improve on those results,
however Experiment 2 was extended for an extra 50 generations (i.e.
fifty further generations after the archive in Figure 19 had been pro-
duced) to demonstrate that the quality of solutions found was not
compromised by employing MOO. The Pareto front was improved by a
small amount and χ2 values as low as 0.00195 were obtained1. The p
value for this result, effectively giving the probability that this sample
is drawn from the ideal Binomial distribution, is 1.00 (to 3.s.f). This is

1 Please note that the results reported in Lamenca-Martinez et al. [2006] and White et al.
[2008] are based on counts rather than frequencies: to compare those values to these
results it is necessary to divide by the sample size used. For example, Lamenca et al.
report a value of 12.7 over one set 16384 samples, giving a χ2 value of 0.00775

6.8 results 79

Figure 20: Function set usage across the archives in Generation 249 for Experi-
ments 1, 2 and 3.

an excellent result: see Figure 21 for an indication of the quality of the
best individual from the extended run of Experiment 2.

6.8.2 Function Usage

Figure 20 shows the number of programs using each function in the
function set for the 300 individuals contained in the final archives from
Experiments 1, 2, and 3. For each function, the count represents the
number of individuals that the function was used within. This diagram
gives an intuitive impression of how important each function within the
function set was for developing useful trade-offs. The figure begins to
answer the question of whether the MULT function should be included
in the function set: at this stage it does indeed appear to be a useful
tool in making trade-offs, as it is used by most of the programs on the
Pareto front. This question is addressed in more detail in Section 6.8.4.

From the chart, the most striking feature is the lack of Circular Shift
Left (CSL) and Circular Shift Right (CSR) function calls. As C does not
provide these operators, they were included within the test harness
as functions (in the same way as Lamenca-Martinez et al. [2006]). The
function calls are expensive, both because of the overhead in calling a
function, and because the CSL and CSR functions required several lines
of code. Hence they were discarded by the search. However, instruction
sets for processors such as the Z80 do provide such rotate instructions.
By evolving programs in assembly language, the search could take
advantage of these commands. This raises an important issue of how
the target language impacts the ability of search to make trade-offs.

6.8.3 Example Individuals

Three example individuals are shown in Table 3. These individuals
are the best (in terms of functional SAC) from the extended run of
Experiment 2, and the worst and median from Experiment 1. The χ2

measure of the best individual is the average of 10 runs over 16384 test
cases, as the variance in the fitness function becomes significant at very
low χ2 values.

80 evolving resource-efficient software

R
elative

PR
N

G
Functional
Perform

ance

Program
Expression

Pow
er

C
onsu

m
p

tion
(W

attch
U

nits)

χ
2

Fitness

Best
(Experim

ent
2)

(2307363674
⊕

(a2
∗

a6))
+

((¬
((((((a2

∗
a6)
⊕

(a7
⊕

a1))∗
(a0
⊕

a3))⊕
(a2
∗

a6))+
(a5
∗

a4))
>

>
2307363674)

⊕
(a0

⊕
a3))

+
¬

((a5
∗

a4)
∗

((2307363674⊕
(a7⊕

a1))+
(a0⊕

a3))))

3.3658∗
10

8
0.00195

W
orst

(Experim
ent

1)
¬

(¬
(1997453768))

2.9639∗
10

8
1.07∗

10
9

M
edian

(Experim
ent

1)
a2∨
¬

(((a2
+

a0)∗
((a4⊕

((a6
+

a5)⊕
a7))+

(a1⊕
a3)))∧

¬
(¬

(1997453768)))
3.2892∗

10
8

1.46∗
10

5

Table
3:Three

exam
ple

PR
N

G
s

of
varying

functionalquality.

6.8 results 81

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

Number of Bit Flips

F
re

qu
en

cy

Ideal
Best Program

Figure 21: Distribution of bit flips of the best individual from Experiment 2.

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

F
re

qu
en

cy

Number of Bit Flips

Ideal
Median Individual

Figure 22: Distribution of bit flips of the median (by χ2 Fitness) individual from
Experiment 2.

82 evolving resource-efficient software

Test Best Individual

Entropy 7.999999 bits/byte

Compression Rate 0%

χ2 Statistic 264.98 (32%)

Arithmetic Mean 127.5011

Monte Carlo π Estimation 3.141828142 (0.01%)

Serial Correlation Coefficient 0.000010

Table 4: ENT results for the best individual.

The distribution of the bit flips from test cases for the best individual
from Experiment 2 (extended to 300 runs) is given in Figure 21. Com-
paring this to the median individual of Experiment 1, which is given
in Figure 22, these diagrams illustrate the dependence of quality on
power, or “bang for your buck” as far as random number generation is
concerned.

It is interesting to note that the best individual in Table 3 contains
repeated components, and also that the use of the MULT function
is distributed across different parts of the program tree. This would
appear to be a sensible way of managing the “energy budget” of an
individual through placement of the most expensive function.

The best individual was then used to generated a 250MB file of
random bytes, by initialising a0, a1, . . . , a7 with random numbers and
from then onwards feeding the previous output into the next input at
position 7, as described by Lamenca-Martinez et al. [2006]:

an+1 = an
i+1 ∀i = 0, 1, . . . , 6 (6.3)

an+1
7 = pn(a0, a1, . . . , a7) (6.4)

The file was then run through the ENT test suite [ENT, 2009], a
standard battery test used to evaluate PRNGs. The results are given
in Table 4. These results indicate that with this feedback method the
individual performs well as a PRNG. However, it performs poorly given
a low entropy input such as feeding sequential numbers, particularly
on the ENT χ2 test (not to be confused with the avalanche criterion
test used in this chapter!). It is not surprising that this is the case,
because fitness evaluation was based on tests using random rather than
sequential inputs. More surprisingly, the best individual “Lamar” as
reported by Lamenca-Martinez et al. [2006] performs well under a low
entropy input. It is possible that a comparable number of experiments
would have to be completed to achieve comparable results, in particular
to achieve a similarly low value for the ENT χ2 objective. An alternative
method may be to incorporate low entropy tests into fitness evaluation.

6.8.4 Impact of the MULT Function

In previous work [Hernandez et al., 2004, Lamenca-Martinez et al.,
2006], there was some discussion as to whether the MULT function
should be included in the function set, as whilst it is likely to aid greatly
in achieving the functional goals of pseudorandom number generation,
it is an expensive operation. Using a systematic approach based on

6.9 summary 83

x
xx

xxxxxx

x

x
x

x

x
xxx

x
xxxx
xx

x

x
xx
xxx

xxxxx

x xxxx

x

x
xx

x

x xxx

x

xx

xx

xxxxx

x x

x

x

x

x x

x

x

x
x

x

xx

x

x

x

x

xxxxx

xx

x

xxx

2.9e+08 3.0e+08 3.1e+08 3.2e+08 3.3e+08 3.4e+08 3.5e+08

0
2

4
6

8
1
0

Power Consumption (Sim-Wattch Units)

lo
g
1
0
 (

Χ
2
 F
itn

e
ss

)

ooo oooooo
oo o

o
o
o
oo

ooooooo
oooo
oooo
o

o ooo
o ooo

ooo
oooo
o oo

ooooo
o
o

ooo

o

ooo

o

o

o
o
o
o

o

o
o

o
o

o

o

o
o

o

oo

o
o

o

oo

o

oo
ooo

Multiply Included
Multiply Omitted

Figure 23: Pareto front from Experiment 1 compared to Pareto front without
multiply function.

multi-objective optimisation, we can address this issue more directly,
by comparing the Pareto fronts that result under experiments using (a)
the function set described above and (b) the same function set with the
MULT function removed.

Figure 23 displays representative examples of both Pareto fronts, and
the difference is quite striking. Without the MULT function, the Pareto
front is stretched to the right, in that the same level of functionality
requires an increased amount of power. Furthermore, certain levels
of functionality do not seem achievable without it, at least given the
computational resources provided to the search.

6.9 summary

This work demonstrates that GP can be used in combination with MOO
as an effective method for exploring the trade-offs between power
consumption and functionality when creating a pseudorandom number
generator. It also demonstrates that continuous trade-offs are possible
for the PISA-based SimpleScalar architecture for this problem. The
idea that such a granularity of trade-off might exist was previously
non-obvious, but it is evidently so and we may expect to find such
trade-offs across a variety of domains. This could enable the dynamic
management of a system where an entire set of software components
could operate at different levels of efficiency and functionality, much
like dynamic power management (see Section 3.3.5). A designer may
alternatively choose a satisfactory compromise in a static design from
the set provided.

84 evolving resource-efficient software

Given the general nature of the PISA architecture, and that only
relative measurements were required, it is likely that solutions produced
in this experimentation will also work well on other platforms, and that
the approach in general should transfer well.

To achieve the same level of functionality as results obtained in
previous work, when using MOO, requires increased computation
power. I extended the search from 250 generations to 300, i.e. an increase
of 20% in terms of evaluations, genetic operators etc.

My approach gives a systematic way of answering questions about
the importance of individual operations in achieving a non-functional
requirement. For this specific problem, the MULT operator is a useful
function to include in the function set. Whilst the power consumption
of any instruction varies depending on the architecture, it is likely that
this conclusion will generalise to other architectures. The decision over
whether MULT is necessary is reminiscent of the problem of instruc-
tion subset selection discussed in Section 3.3.1. We could potentially
carry out similar analysis to select instructions we require and subse-
quently specify those functions for implementation on a programmable
hardware platform.

This work acts as a proof-of-concept for similar applications in cre-
ating hash functions or other embedded system software components.
Equally, a great number and variety of non-functional requirements
can be considered.

In this chapter, I have created resource-efficient software from scratch,
producing a software artefact that could be deployed immediately, for
non-cryptographic applications at least. The next step in my investi-
gation is to see whether this success can be repeated in the task of
improving existing software: can GP be used to increase efficiency as
well as to create it?

7I M P R O V I N G R E S O U R C E E F F I C I E N C Y

7.1 introduction

The previous chapter demonstrated the application of Genetic Program-
ming, multi-objective optimisation and simulation in order to produce
entirely new software (pseudorandom number generators) with low-
power consumption. In this chapter, I demonstrate a way in which
existing programs can be improved to have desirable non-functional
properties. Execution time is the property of interest here, but the
method generalises to other requirements.

In this chapter, it is assumed that a manually written solution to a
problem exists, and this code is then taken as input to a system that
attempts to improve it with respect to its execution time (estimated
by the number of instructions executed). As discussed in Chapter
3, compilers already attempt to perform a limited amount of such
optimisation. However, in general they cannot restructure a program’s
implementation without restriction, and even when using a limited
set of semantics-preserving transformations they cannot always find
the most effective sequence to apply. Compilers focus on localised
optimisations and we cannot expect a compiler to eliminate unnecessary
loop iterations, or shortcut base cases in a recursive function.

In optimising software, this chapter considers its operational profile
[Beizer, 1990], i.e. its expected input distribution, allowing the Genetic
Programming search to exploit the anticipated usage of software. The
original manually-written code is exploited both to seed the initial
population and as an oracle for testing purposes.

Please note that this work was carried out in collaboration with
Andrea Arcuri from the University of Birmingham, some material has
been published [Arcuri et al., 2008] and a journal extension submitted
for review. Most of the design work was done together, and effort for
implementing the code of the actual framework was evenly divided.
The bulk of the analysis reported here was carried out by myself.

7.2 problem formulation

The problem to be solved may be formulated as follows: given an
existing program function as input, p0, and an expected distribution
over input values, find an improved function p∗ such that:

fe(p∗) = 0 for the functional objective e

fl(p∗) is minimised for each non-functional

objective l (7.1)

where achieving fe(p∗) = 0 approximates semantic equivalence be-
tween p∗ and p0 with respect to a test set T. In this chapter, only
two objectives are considered: the functional objective fe and the non-
functional objective finst, the number of instructions executed over
a set of test cases. This work could be extended to satisfy multiple
non-functional objectives.

85

86 improving resource efficiency

Original Program

Test Distribution

Population

Fitness Evaluation
Interpret / Simulate

Selection
From Pop/Archive

Breeding Pipeline
Crossover / Mutation

Populate Archive
(MOO Only)

Candidate
Semantic Tests

Co-evolved
 Subset

Inputs

Create New Pop
From Pop/Archive

Output

Improved Program

Seeding White-Box
Analysis

Termination
Criteria met

Termination
Criteria
not met

Expected Input
Distribution

Figure 24: Evolutionary framework.

7.3 target platform

The execution time of a program is dependent on the host hardware
environment, and I have again used simulation to estimate the execution
time of individuals. Specifically, the M5 [Binkert et al., 2006] simulator
was used, targeted for an Alpha RISC ISA based on a DEC Tsunami
system. The simulator was used at a course-grained level of detail, such
that cache activity and pipelining details were ignored. This enabled
faster evaluation suitable for large-scale experimentation, and also is
likely to improve the generality of any optimisation. The limitation is
that optimisations cannot be made by manipulating very fine-grained
timing details (more on this in Chapter 8).

7.4 proposed framework

The prototypical framework used to solve the problem outlined above
is given in Figure 24. The framework is a development of that given in
Figure 16 used in Chapter 7. It has been extended as follows:

• An original program and expected distribution of inputs are now
given to the framework.

• Two separate sets of test cases are used, and coevolution of test
cases is employed.

• The non-functional property (instruction count) is evaluated through
modelling in addition to simulation.

• Strongly Typed GP is used.

The framework takes as input the code of a function, expressed in the
C programming language, along with an expected input distribution. It
attempts to reduce the program’s instruction count on the Alpha-based

7.4 proposed framework 87

target platform. The general nature of the approach means it can easily
be applied to other target languages and platforms. It applies GP to
optimise one or more non-functional criteria, whilst ultimately attempt-
ing to maintain semantic equivalence with the original program. This
framework is a prototype, and part of the purpose of the experimenta-
tion in this chapter is to assess whether the proposed use of MOO and
coevolution in particular are beneficial, in terms of their impact on the
ability of the framework to optimise non-functional properties of the
software.

Strongly Typed GP is used here to construct a search space expressive
enough to encompass the original solution for each of the case studies
considered. See Section 4.9.1 for more on Strongly Typed GP. The return
and argument types of all functions are given in Table 5, omitting
problem-specific variables. From this table, the complexity of the type
system becomes apparent. Note that a node may have more than one
return type: I am using both atomic and set-based typing. For example,
an increment operator ++ may be a standalone statement or it may be
part of a for loop. An example symbolic tree, equivalent to the case
study Sort1, is given in Figure 25. “RA” stands for “Read Array” and
“WV” for “Write Variable”. The code for Sort1 is given in Figure 32.

The framework is quite unique amongst GP experimentation in the
way that the first generation is initialised (seeded), how the test sets are
created, and the particular use of MOO.

7.4.1 Seeding

Rather than attempt to create equivalent software from scratch [Refor-
mat et al., 2007] seeding can be used to exploit the original solution p0.
GP systems predominantly create an initial population using Koza’s
established ramped half-and-half method [Koza, 1992] as described in
Section 4.4, but here three alternatives based on the concept of using
the input program as a starting point are tested. The intention is that
the genetic material of the input program can be used as building blocks
in evolving an improved solution. In terms of GP schema theory, it
is intended that good solutions may be found by exploring schemata
containing or somehow “close to” to the original solution.

In designing seeding strategies we face a classic exploration versus
exploitation trade-off that is so often an issue in heuristic search, and
in particular evolutionary computation. On one hand, over-exploitation
of the original program might constrain the search to a particular sub-
optimal area of the search space, i.e. the resulting programs will be
very similar to the input one. On the other hand, ignoring the input
genetic material would potentially make the search too difficult.

There are further dangers, as discussed in Poli et al. [2008]: includ-
ing many highly fit individuals along with those generated by other
means may lead to a lack of diversity in the following generations, and
including too few fit individuals may result in the loss of this initial
guidance. Therefore the seeding strategy is the subject of experimental
investigation, and the following types of seeding are tested:

• Standard: Koza’s ramped half-and-half initialisation method. See
Section 4.4.

88 improving resource efficiency

R
A

for

W
V

i
C

0
R

Vi

R
V

length

i

<
+

+
for

W
V

j
C

0

<<<R
Vj

-R
V

leng
th

C
1

j

+
+

if>

a

j

R
V

a
+R
Vj

C
1

seq

C
0

W
V

k

a

j

R
A

seq

W
A

R
Vj

a

a

R
A

+

C
1

W
A

R
Vj

a
R

Vk

+

C
1

[if statem
ent belo

w
]

R
A

R
V

j

R
V

Figure
2

5:Tree
representation

of
Sort

1.

7.4 proposed framework 89

Function Return Type Children

0, 1, . . . , 10 int n/a

+,−, ∗, /, % int int, int

−−, ++ increment, statement variable

==, >,≥, <,≤ Boolean int, int

&&, || Boolean Boolean, Boolean

! Boolean Boolean

true, false Boolean n/a

V_tmp Variable n/a

ReadVariable int Variable

WriteVariable Statement,
Assignment

Variable, int

VariableWrapper Variable Variable

ReadArray int ArrayVariable, int

WriteArray Statement ArrayVariable, int, int

ArrayWrapper ArrayVariable ArrayVariable

skip Statement, Increment,
Assignment

n/a

return Statement int

while Statement Boolean, Statement

if Statement Boolean, Statement,
Statement

Sequence Statement Statement, Statement

for Statement Assignment, Boolean,
Increment, Statement

switch Statement int, case, statement

case Statement int, Statement

case_sequence Case Case, Case

inline if int Boolean, int, int

fac Statement int

Table 5: Function types for all experiments.

90 improving resource efficiency

• Cloning: a fraction of the initial population will be replaced by a
copy of the input function. The remaining individuals are then
generated using the standard method.

• Delta: a fraction of the initial population will be created by making
a copy of the input program and by applying a random mutation
to each individual using one of the mutation methods employed
during the rest of the evolutionary run. A mutation can be con-
strued as a “step” away from the original program in the search
space and creation of an individual that belongs to some of the
same schemata as the original. The remaining individuals are
generated using the standard initialisation method.

• Sub-tree: a fraction of the initial population will be composed
of copies of randomly selected subtrees taken from the origi-
nal program. The selected subtrees must have a root node type-
compatible with the root node of the input program, such that
they return the correct type. The remaining individuals are gener-
ated using the standard initialisation method. This method would
be most effective if the building block hypothesis applies to GP:
it would then facilitate the recombination of these subtrees to
improve efficiency (see Section 4.8.1).

Since the first paper on this work was published, Schmidt and Lipson
[2009] have also investigated similar seeding methods as a way to
incorporate expert knowledge into a search process.

7.4.2 Preserving Semantic Equivalence

Maintaining semantic equivalence is the biggest challenge facing any
attempt to solve the problem outlined in Section 7.2. In this work,
semantic equivalence of the output program cannot be guaranteed.
The proposed technique is probably of more use as a method of gain-
ing insight into potential optimisations rather than a fully automated
approach at this stage. For example, the output from the framework
could be verified by manual inspection or using data-mining methods.
However, the raw optimised output function may be immediately use-
ful in applications that do not have a Boolean measure of acceptable
functionality – such as the application discussed in Chapter 6.

In this chapter, I recast the problem of software optimisation. Rather
than limiting optimisation to semantics-preserving operations only, and
then attempting to find the best such operations in order to achieve
maximum improvement of a quality metric, a dramatically different
approach is followed. The framework will try to optimise the software
for the quality metric with arbitrary transformations, which is easily
done (e.g., if it is execution time then we can simply remove an instruc-
tion), and turn the problem into one of mutation testing [Andrews et al.,
2006]. Can we tell the difference between the original and the improved
program? If we fail to find test cases that can discern between the
original program and the optimised one, despite a great deal of effort,
we have a good degree of confidence that we have found a semanti-
cally equivalent yet optimised version. The latter may be described as
“Search and Filter” optimisation. This is illustrated in Figure 26.

Within the framework, the “filter” employed is the use of coevolved
test cases, as well as a static set that guarantees branch coverage over the

7.4 proposed framework 91

p
0 p*

p
0

p
1

p
n

Testing
as a filter

p*

Semantics-Preserving Transformations

Evolutionary
Search

Figure 26: Optimising software by search and filter, rather than semantics-
preserving transformations.

original code. The use of coevolution prevents overfitting, whereby the
search could potentially exploit a fixed set of test cases to improve per-
formance at the expense of removing semantic equivalence on untested
areas of the input domain. The method employed is in principle similar
to that used in seminal work by Hillis [1990].

Before the evolutionary algorithm begins, a large set of test cases is
generated using a white box testing criterion [Myers, 1979], specifically
branch coverage. This set is partitioned into subsets, one for each branch
of an input program, which ensures a degree of behavioural diversity
amongst test cases. This initial set of test cases could be generated using
any existing automated testing method [McMinn, 2004, King, 1976].

The test set is then coevolved as a separate population (the “training
set”), a changing subset of the larger pool produced prior to evolution.
This training set is also partitioned, such that it ensures branch coverage
of the original program and therefore that the test set at any given
generation encapsulates the semantic notions encoded in those branches.
Figure 27 illustrates the relationships between a program and the
corresponding test set populations.

Note that only test cases with valid inputs are generated. Inputs for
which the pre-condition of the program is not satisfied are not gener-
ated, because any corresponding output would be valid. For example,
for functions with arguments including a pointer to an array and a
variable representing its length, only valid values for the length variable
are generated.

At each generation, the GP individuals are tested with the test cases
in the training set. The sum of the errors from the expected results is
referred to as the semantic score and is one component of the fitness of a
GP individual. These semantic scores are also used to define the fitness value
of the test cases. Each program tries to minimise the semantic score on
each test case, whereas each test case tries to maximise this score on
each program.

For each subset of test cases only the best half (based on their fitness
values) is retained at each generation. The other half is randomly re-
placed by test cases in the large pool produced prior to evolution. These

92 improving resource efficiency

If a > b then

z := 1;

else

if (b > c) then

z := 2;

else

z := 3;

end if;

end if;

return z; Test Case PopulationPool of Test Cases

Branch 1

Branch 2

Branch 3

9,2,0 6,3,8

1,0,4 3,1,0

1,2,0 8,9,8

1,5,2 3,4,2

1,3,4 4,6,8

7,8,9 2,3,7

Subpop 1

Subpop 2

Subpop 3

6,3,8

3,1,0

1,5,2

8,9,8

2,3,7

1,3,4

Figure 27: The relationship between an input program and the semantic test
set population.

replacements are performed such that each test case in the training set
is unique. The best individual from each subset is stored in a Hall of
Fame archive [Rosin and Belew, 1997]. The fitness of individuals is also
based on their execution on test cases from this archive.

When coevolution is not employed, the test cases are chosen stochas-
tically at each generation. In this situation, they are chosen based on the
operational profile, in the same manner as test cases used to evaluate
non-functional properties.

7.4.3 Evaluating Non-functional Criteria

In evaluating non-functional criteria, a separate training set from that
used to evaluate the semantic score is employed. The set is drawn
from the expected input distribution provided to the framework, which
could (for example) be based on probe measurement of software.

The set of non-functional tests is resampled from the expected input
distribution at each generation, to prevent overfitting of non-functional
fitness for a particular set of inputs. The final fitness of a potential
solution (a GP individual) will be composed of both its semantic score
and this measurement of its non-functional property.

We must be able to reliably (in a repeatable and relatively accurate
manner) estimate or measure the non-functional property concerned,
and in this case the total number of instructions executed is the chosen
metric. This is preferred over the cycle count as a reliable high-level
estimate of execution time. It is computationally less expensive to
compute than more detailed timing information.

In this chapter I use both simulation, in a similar manner to Chapter
6, and also modelling of instruction count. The latter is motivated by
the computational expense of simulation.

simulation The instruction count of an individual can be estimated
using a processor simulator and the M5 Simulator [Binkert et al., 2006]

7.4 proposed framework 93

is used, targeted for an Alpha Microprocessor. The parameters of the
simulator describing the processor and surrounding architecture were
left unchanged from their default values, although a few small code
changes for convenience and efficiency were applied. The choice of
this particular target ISA was motivated by the goals of replicability,
efficiency and accuracy. The free availability of the simulator allows
others to replicate this work, and its source code and implicit processor
model are available for anyone to review. M5 is a modern platform
with great flexibility and is well-supported. The Alpha ISA is the most
mature target platform of the simulator.

When employing simulation, individuals are written out by the
framework as C code and compiled with an Alpha-targeted GCC cross-
compiler. A single function is linked with test code that executes the
given test cases, and a total instruction usage estimate provided by
parsing a trace file.

Whilst simulation does not perfectly reflect a physical system, it is
worth noting that we are again only concerned with relative accuracy
between individuals, i.e. we wish to improve efficiency rather than pre-
cisely determine it [Jacome and Ramachandran, 2006]. Incorrect relative
evaluation of two individuals will add noise to the fitness function.
The difficulties and intricacies accurately simulating complex hard-
ware platforms is an issue beyond the scope of this work: alternatives
or improvements in both the simulator and compiler can easily be
incorporated into the framework.

model construction In order to carry out large scale experi-
mentation efficiently, modelling was considered as an alternative to
simulation of instruction usage. The instruction count of a program was
estimated as a linear model of the frequencies of high-level primitive
execution:

Y = β0 + β1x1 + β2x2 + . . . βnxn + ε (7.2)

where Y is the estimated instruction count of a program, x1, x2, . . . , xn
are the frequencies with which each of the n functions in the function
set are evaluated within a program, and the coefficients β1, β2, . . . , βn
are an estimate of the cost of each function. The intercept is given by
β0 and ε is the noise term, introduced by factors not considered by the
other components of the model.

This model is a large simplification, because compiler optimisations
will be dependent on the program structure and there is not a simple
mapping between high level source code and low level instruction
execution. Simulation provides dynamic information that cannot be
captured in such a simple model. The ordering of instructions, for
example, is not taken into account. Simulation can be carried out at
variable levels of fidelity, where improved accuracy can be provided at
the expense of greater computation time.

To use such a model, the coefficients must be estimated. This is
achieved by executing one large evolutionary run of the framework for
each case study. Each program evaluated during the run is both inter-
preted in Java and executed through the simulator. From the interpreter,
the frequencies with which each high-level primitive (if, while, array
access etc.) is evaluated are recorded, and the corresponding instruction

94 improving resource efficiency

count of an individual as measured by the simulator is logged. Least
Squares Linear Regression is then used to fit this model.

It is possible to verify the relative accuracy of this model for the
data points used in constructing it, as detailed in the results in Section
7.8.3. We can effectively estimate the impact the model has on decision
making in the algorithm as opposed to using simulation.

7.4.4 Multi-objective Optimisation

The problem contains two objectives and I use both weighted sum and
Pareto-based MOO. The two objectives are:

1. Minimise error across test cases.

2. Minimise the number of instructions executed.

We are concerned primarily with minimisation of error, and secondly
with reducing instruction count. Ultimately, we are not concerned with
individuals that do not meet their functional specification as estimated
by the test set, and so it is sensible to combine our objectives with a
weighted sum method, as described in Section 5.4.1. Note that this is
a feature of the functions chosen as case studies, which have Boolean
values of functional acceptability. By normalising the fitness values and
setting the weighting of the functional fitness to be greater than the
weighting given to the instruction count, we can create an arbitrarily
sized bias towards favouring improvement in functional performance
over the instruction count of a solution.

Here, I also attempt to use Pareto-based MOO methods in an unusual
application. The difference between the goal of this work against a
traditional Pareto-based method is illustrated by Figure 28. Given the
input program at the bottom-right of the figure, we are ultimately
interested only in locating the desired output program that lies on the
x axis as close to the origin as possible.

However, I still employ Pareto-based MOO within this work: this
is because I am interested in the balance between exploration and
exploitation. A Pareto-based MOO approach explicitly forces the search
to discover and retain solutions in Figure 28 that are not on the x axis,
that is those solutions we may actually regard as inferior. The aim is to
identify if employing Pareto-based MOO allows the search to locate
smaller, instruction-efficient subtrees of a program able to satisfy a
subset of test cases. It is hope that these may be reassembled by the
search algorithm into improved solutions later in the evolutionary run.
This proposal and its effectiveness are linked to the building block
hypothesis and GP Schema theory: see Section 4.8.1 and Langdon and
Poli [2002].

In summary, two approaches combining objectives in fitness evalu-
ation were used. The first therefore is a simple linear combination of
the functional and non-functional fitness measures. The second is the
Strength Pareto Evolutionary Algorithm Two (SPEA2) as outlined in
Section 5.6.2 and used in Chapter 6. The choice between the two is the
subject of experimental evaluation in Section 7.7.1.

Any advantage found by using a Pareto-based method has interesting
implications for understanding how GP achieves its goal: can building
blocks be recombined in different ways to improve performance?

7.4 proposed framework 95

Non-functional Property
E

rr
o
r

Correct Program
Input to Framework

Desired Output P'

Figure 28: A Pareto front composed of five programs in objective space.

7.4.5 Fitness Function

Given a population of programs P, two sets of test cases T0 and T1
are used. The fitness function of the programs in P is based on their
execution on these test case sets. The set T0 is used to evaluate the
semantic score of the programs and undergoes coevolution. The set
T1 is used to assess the non-functional value of the programs, i.e. the
instruction count, and is a sample drawn from the expected input
distribution.

Given fe(p, t0) a function to calculate the semantic score (error) of
a program p ∈ P run on a test t0 ∈ T0, and finst(p, t1) its instruction
count on a test t1 ∈ T1, the fitness function F(p, T0, T1) to be minimised
is as follows:

F(p, T0, T1) = α · norm
(

∑
t0∈T0

fe(p, t0)
)

+ β · norm
(

∑
t1∈T1

finst(p, t1)
)

(7.3)

where norm is any normalising function to the range [0, 1]; here Koza’s
adjusted fitness (as in Equation 4.2) was used. The priority between
objectives is determined by the weightings α and β. The values α = 128
and β = 1 were chosen, giving more emphasis on the semantic score
as used in Luke and Panait [2006]. In the cases in which a program is
either not compilable or it has runtime errors (see Section 7.6), then
a death penalty is applied, i.e. its fitness value is α + β. When Pareto-
based MOO is used, these two objectives (normalised semantic score
and instruction score) are treated separately.

When employing coevolution, each individual test case in T0 must
be assigned a fitness, ftc, the sum of all program fitnesses measured on
that test case:

ftc(t0, P) = ∑
p∈P

fe(p, t0) (7.4)

In the case of array outputs, the fitness of an individual depends on
the state of the memory after the computation. After evaluation each
value in the modified array A′ is compared against the value in the

96 improving resource efficiency

Name LOC GP Nodes Input LV

Triangle1 35 107 int , int , int 1

Triangle2 38 175 int , int , int 1

Sort1 11 63 int[] , int 3

Sort2 18 69 int[] , int 4

Factorial 7 16 int 0

Remainder 40 208 int , int 3

Swi10 22 68 int 1

Select 94 392 int[] , int , int 9

Table 6: Summary of the programs used in the case study, giving the number of
lines of code (LOC), nodes within the corresponding GP symbolic tree
expression, their input data types and the number of local variables.

same location in the input array A. The fitness is then the sum of errors
at individual array positions:

fe(p, t0) =
len(A)

∑
i=1
|A′[i]− A[i]| (7.5)

7.5 case studies

To test its effectiveness, eight different C functions are input to the
framework. Table 6 summarises their properties: their source code
listings are given in Section 7.8.1.

These functions were chosen because they had previously been stud-
ied for their execution time and they represent a variety of program
structures. They also use simple data types in order to simplify the
coevolutionary testing component, and are from freely available and
well-documented sources.

Two different implementations of the Triangle Classification program
published in McMinn [2004], Miller et al. [2006], and two different
implementations of a Bubble-Sort algorithm [Cormen et al., 2001] are
used. A recursive implementation of the factorial function [Cormen
et al., 2001] is given. The Remainder routine is taken from Sagarna
and Lozano [2006]. Finally, from a library of worst-case execution
benchmarks [Mälardalen WCET Research Group], the Swi10 and Select
(returning the kth order statistic) functions are taken.

The programs include a variety of structures: branching and nesting,
loops over arrays, internal state altered multiple times within a function,
switch and case statements, use of both temporary variables and arrays,
and recursive calls. Two pairs of functions also solve the same problem,
which provides for an interesting comparison of their optimisation.

These functions are fairly small and the largest consists of only
around 90 lines of code, which is advantageous in performing large-
scale experimentation efficiently. A study of the scalability of this ap-
proach is important, a matter of future investigation and likely to reflect
the scalability of Genetic Programming.

7.6 implementation issues 97

7.6 implementation issues

7.6.1 Evolutionary Algorithm

The framework was implemented in Java using ECJ 18 [ECJ, 2009]. The
primitives used within the GP algorithm are listed in Table 7. Note that
the wrapper types are used to simplify the tree growth mechanisms
in Strongly Typed GP (see Section 4.9.1). The table comprises the su-
perset of all primitives required to represent each of the chosen case
studies. Using the superset creates a more generally-applicable method.
Consequently, we must search a large space of possible trees, and the
extensive (necessary) use of Strongly Typed GP results in a represen-
tation that does not easily lead to valid programs when carrying out
crossover or mutation.

ECJ parameters not detailed here or specified in Section 7.7 were left
to the defaults as inherited from koza.params, provided with the ECJ
distribution. The default method of initialising the population is to use
Koza’s ramped half-and-half method, with a minimum depth of 2 and
a maximum depth of 6 for the half method, minimum and maximum 5

for the grow method.
Three methods are used to populate the next generation: mutation,

crossover and reproduction. The probability of reproduction is fixed
at 0.1, whereas the balance between the remaining operators is the
subject of experimentation. All six methods of mutation ECJ provides
are used with equal probability. Each of the three ways of generating
the next population selects individuals from the current population
using standard tournament selection. When performing crossover or
mutation, a terminal or non-terminal is selected with probability 0.1
and 0.9 respectively.

For each problem, an initial set of potential tests containing 2000
individual test cases was generated. The set fulfils the branch coverage
criterion for the input function and as such could be generated with
any automated software testing technique prior to the execution of the
framework, although manually written scripts were used to generate
the test cases here. The test case population size is 200, with a further
archive of 50 elements. The test case population is partitioned into
a number of subsets that depends on the number of branches in the
original input program given the expected operational profile.

The instruction count is evaluated on 100 test cases that are randomly
sampled at each generation. Integer variables are chosen according to
a uniform distribution of values in {−127, . . . , 128}. The length of the
arrays is uniformly chosen in {1, . . . , 16}. Only valid data is used as
test cases. For example, where a length is supplied to a particular case
study function, the correct length value corresponding to the current
input array is given.

With the inclusion of loops and recursion in the primitive set, a limit
must be placed on the number of iterations that may occur: a limit
of 1000 iterations or recursive calls is used, which is large enough for
the case study functions to produce the correct output on all possible
inputs.

98 improving resource efficiency

C
ategory

N
am

e
N

um
ber

D
escription

A
rithm

etic
+

,−
,∗

,/
,%

5
A

rithm
etic

op
erators.

%
is

the
m

od
u

lo
operator.

U
nary

M
odifica-

tion
+

+
,−
−

2
Increm

ent
and

decrem
ent.

Boolean
&

&
,||,!,

>
,≥

,=
=

,
<

,≤
8

O
perators

to
handle

Boolean
predicates.

C
onstant

t
r
u
e
,

f
a
l
s
e

,0
,1

,...,9
1

2
Boolean

and
integer

constants.

Statem
ent

f
o
r
,
w
h
i
l
e
,
i
f
,
s
w
i
t
c
h
,
c
a
s
e
,

r
e
t
u
r
n
,
s
k
i
p
,
s
t
a
t
e
m
e
n
t
_
s
e
q
u
e
n
c
e
,

c
a
s
e
_
s
e
q
u
e
n
c
e

9
s
k
i
p

is
the

em
p

ty
statem

ent.
s
t
a
t
e
m
e
n
t
_
s
e
q
u
e
n
c
e

and
c
a
s
e
_
s
e
q
u
e
n
c
e

create
sequences

of
statem

ents.

V
ariable

R
e
a
d
V
a
r
i
a
b
l
e
,

W
r
i
t
e
V
a
r
i
a
b
l
e
,

V
a
r
i
a
b
l
e
W
r
a
p
p
e
r
,
V
_
t
m
p

≥
4

P
rim

itives
to

read
and

w
rite

inp
u

ts
and

localvariables.

A
rray

R
e
a
d
A
r
r
a
y
,

W
r
i
t
e
A
r
r
a
y
,

A
r
r
a
y
W
r
a
p
p
e
r

3
P

rim
itives

to
read

and
w

rite
array

vari-
ables.

O
ther

inline
if,f

a
c

1
M

iscellaneou
s

p
rim

itives.
fac

is
a

recu
r-

sive
callused

in
the

Factorialproblem
.

Table
7:Prim

itives
grouped

by
category.

7.6 implementation issues 99

7.6.2 Non-Compilable GP Individuals

When evaluating programs in a language such as C pitfalls are en-
countered that are often neglected in published GP applications, which
tend to prefer interpretation rather than direct execution to evaluate
a program. For example, consider a protected-division primitive com-
monly used in the GP literature: implementing this in C would require
a macro to check for a division-by-zero, which can be inefficient. One
advantage of using a simulator is that when results are successfully
achieved, the evolved programs are demonstrably compilable and free
of run-time errors for those test cases it has been executed over.

The type constraints on the GP primitives are of a local nature,
specifying the return type of each node and the type of parent and
children they can have. This is sufficient for most GP applications,
but it is not sufficient when modelling a higher level language such
as C. In order to evaluate individuals through simulation, we must
first translate them to C, and valid GP trees can generate compilation
errors once translated. For example, two such problems with the switch

statement were encountered:

• The indexes of a case within a switch statement are not constant,
i.e. they cannot be calculated at compile time.

• The indexes of the cases within a switch statement are not all
unique, i.e. at least one index is used more than once.

Instead of complicating the constraint system to forbid the generation
of non-compilable individuals, individuals are punished by setting their
fitness to the worst possible value. Compilation and simulation of such
an individual are subsequently suppressed.

7.6.3 Run-time Errors

Using such a rich subset of the C language in the representation can
lead to program errors discovered at run-time. For example, an array
may be accessed out of bounds, corrupting memory. This can lead
to unpredictable behaviour and the framework must be robust with
respect to such eventualities. A similar policy to that of uncompilable
programs is followed: the individual is flagged as not having completed
every test case and punished via their fitness value.

7.6.4 Exceeding the Iteration Limit

Long or infinite iteration is inefficient, costly or impossible to evaluate.
The M5 simulator provides support for an upper limit on simulated
cycles, and this is used to enforce an execution “timeout” on each
individual. The timeout is set to a value twice that of the original input
program’s instruction count on a representative sample of fitness cases.
Individuals exceeding this limit are punished by assigning them the
worst possible fitness value.

100 improving resource efficiency

7.7 experimental method

7.7.1 Overview

Given the proposed framework, there were several issues to investigate:
firstly, is it possible to optimise the case studies using the framework?
What kinds of optimisation is it capable of producing? These questions
are potentially answerable with a single execution of the framework
for each case study, with a set of repetitions to ensure robustness. The
remaining questions required extensive experimentation. These were:

1. How well can the instruction count of an individual be estimated
without executing the simulator?

2. Which of the components and parameters of the framework are
important in determining the level of improvement that can be
achieved?

3. What is the impact of using a model rather than the simulator to
estimate instruction count?

4. How does the use of MOO affect the exploration of the objective
space carried out by the algorithm?

7.7.2 Method

The experimentation reported consists of the following steps, each one
designed to answer the corresponding questions above:

1. Produce a model estimating instruction usage for each problem
and evaluate those models using resampling to simulate tourna-
ment selection.

2. Carry out a factorial experiment and further comparisons to
evaluate the importance of components of the framework.

3. Select parameter settings that performed well in the factorial
experiments, and use them to compare the results achieved when
employing simulation versus using a model of instruction usage.

4. Collect and analyse data on the impact of using MOO on the
exploration of the objective space.

7.7.3 Factorial Experimentation

In order to determine which components were important in affecting
the performance of the framework, full factorial experimentation was
employed [Montgomery, 2006]. This is a robust approach that I have
previously demonstrated to be effective when using GP [White and
Poulding, 2009], and has previously been applied to investigate the
importance of parameters [Feldt and Nordin, 2000]. After initial experi-
mentation the parameters chosen for experimentation and their levels
are given in Table 8. As well as the framework components, general GP
parameters are included to allow for their impact on the behaviour of
other parameter settings.

With 7 parameters at 2 levels and one at 3 levels, there were 27 · 3 =
384 design points per case study. At each design point 30 repetitions

7.8 results 101

Parameter Description Low High

x1 Probability of crossover 0.1 0.8

x2 Population Size 50 1000

x3 Tournament Size 2 7

x4 Seeding proportion 0.1 0.9

x5 Coevolution Enabled? FALSE TRUE

x6 SPEA2 Enabled FALSE TRUE

x7 SPEA2 Archive Size 0.1x2 0.9x2

x8 Seeding Method Clone, Mutation or Subtree

Dependent Parameters

x9 Probability of Mutation 0.9 - x1

x10 Generations 50 000 / x2

Table 8: Experimental parameters.

were executed to allow for variation in the response caused by the ran-
dom seed. Thus a total of 11520 design points per problem were defined,
requiring 92160 experimental runs in total for this experimentation.

7.7.4 Response Measure

At the end of an evolutionary run, the best individual is selected
from the final population as defined by the weighted sum given in
Section 7.4.4. This individual is then tested on new data to evaluate
its functional correctness, and is run through the simulator again to
measure its non-functional fitness. These are measured using a separate
set of 1000 test cases to validate the final output. This does not guarantee
that a program is truly semantically equivalent, but it does test the
individual against tests independently of the coevolved test set.

The response measure for a single experiment then consists of the
semantic and non-functional fitness components of this individual.

7.8 results

7.8.1 Example Optimisations

It is of immediate interest as to how optimisations were successfully
made by the framework, and here I detail a selection of interesting
optimisations taken from the factorial experiments. Note that there are
thousands of unique output programs, and those given here are only
a small selection. In future work, some form of data mining could be
used to extract commonly produced optimisations.

Boxplots of the instruction counts across design points that generated
solutions passing the final test set for each problem are given in Figure
29. The variance of the instruction count of optimised programs is quite
low for each problem, which demonstrates how robust the technique
is to parameter changes. In some cases it is necessary to examine the
outliers to see major improvements in instruction count.

102 improving resource efficiency

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

Triangle 1

In
st

ru
ct

io
n
s

5
0

0
0

1
5

0
0

0
2

5
0

0
0

Triangle 2

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

Remainder

6
0
0

0
0

0
9

0
0

0
0

0
1
2

0
0

0
0

0

Sort 1

5
0

0
0

0
0

1
5

0
0

0
0

0
2

5
0
0

0
0

0

Sort 2

In
st

ru
ct

io
n
s

1
e

+
0

5
3

e
+

0
5

5
e

+
0

5
7

e
+

0
5

Factorial

0
4

0
0

0
0

8
0

0
0

0
1

2
0

0
0

0

Switch 10

7
0

0
0

0
9

0
0

0
0

1
1

0
0

0
0

Select

Figure 29: Boxplots illustrating the distribution of instruction counts for valid
program outputs. The dashed lines indicates the performance of the
original programs.

triangle1 The triangle classification takes the length of three sides
of a triangle as input and returns 1 if the triangle is invalid, 2 if it is
scalene, 3 if it is isosceles and 4 if it is equilateral. In the implementation
of Triangle1 (see Figure 30), the three inputs are reordered in the three
variables (a, b, c). There are three if statements controlling three swap
operations to achieve this ordering. However, for the algorithm to work,
we only require that a ≤ c and b ≤ c, such that a full ordering a ≤ b ≤ c
is not necessary, hence we can discard the first if statement. In most of
the outputs examined, GP has exploited this by removing the first if
statement of this swapping process. This does not change the semantics
of the program.

GP also found a simple optimisation of swap operations that compil-
ers such as GCC are not able to make. In a swap operation, a temporary
variable is employed. After the three if statements at the beginning of
the code, the temporary variable is not subsequently used. GP optimises
the code by using only two assignments for the last swap and then
replaces subsequent references to the second variable with references
to this temporary variable. In other words, in the last swap operation
the command c = tmp; is removed, and each successive occurrence of
the variable c is replaced by tmp.

The final optimisation found by GP is quite surprising. The following
code structure was produced:

if(a > c) {

/* swap a and c */

}

if(b > c) {

/* swap of b and c, use tmp instead of c */

} else {

/* classify triangle as original code and return */

7.8 results 103

int Triangle1(int a, int b, int c)

{

int tmp;

if (a > b)

{

tmp = a;

a = b;

b = tmp;

}

if (a > c)

{

tmp = a;

a = c;

c = tmp;

}

if (b > c)

{

tmp = b;

b = c;

c = tmp;

}

if(a+b <= c)

return 1;

else

{

if(a == b && b == c)

return 4;

else if(a == b || b == c)

return 3;

else

return 2;

}

} �
Figure 30: Source code of Triangle1.

104 improving resource efficiency

}

if(a+b <= tmp) {

return 1;

} else if (a == b) {

return 3;

} else {

return 2;

}

If the last swap in the original code is executed, then we know that
b > c. Hence, the triangle cannot be equilateral. GP learns to move
the code that checks for the equilateral case into the else branch of
that swap. Then it replicates the code after that if statement to handle
the case b > c. In this latter case, the triangle cannot be equilateral,
and to confirm whether it is isosceles we only need evaluate a == b.
The execution time is significantly reduced. This is very much a non-
trivial optimisation that exploits the information gained in a previous
comparison to improve the efficiency of subsequent computation.

triangle2 GP was able to evolve faster versions for the program
Triangle2, given in Figure 31. Analysis of the resulting GP trees did not
find any interesting optimisation. This is because GP learnt an undesired
pattern in the test script used to generate the test cases. This pattern is
easy to exploit at the beginning of the code. This optimisation eclipsed
other improvements and often led GP to a local (and semantically incor-
rect) optimum. This underlines the importance of an effective testing
system in ensuring semantic equivalence, particularly on boundary
conditions.

sort1 Sort1 implements a naive bubblesort.
The original code is given in Figure 32. The optimised output was:

void sort(int[] a, int length) {

for (; 0 < (length - 1); length --) {

for (int j = 0; j < (length - 1); j++) {

if (a[j] > a[1 + j]) {

k = a[j];

a[j] = a[j + 1];

a[1 + j] = k;

}

}

}

}

The best solutions found by the framework improved on the original
by omitting a single iteration, and using an input variable as a loop
counter, rather than using a new variable.

These are sensible optimisations, but perhaps it is a little disappoint-
ing that further optimisations were not discovered, such as the use of a
sorted flag to halt the algorithm once a pass has been completed with a
swap. Such an optimisation was given as input to the next problem.

sort2 Some of the optimisations of this function were similar to
those found in Sort1, such as removing the initialisation of a loop
counter and using input variables as counters rather than separate
individual variables.

7.8 results 105

int Triangle2(int a, int b, int c)

{

if(a<=0 || b<=0 || c<=0)

return 1;

int tmp = 0;

if(a==b)

tmp += 1;

if(a==c)

tmp += 2;

if(b==c)

tmp += 3;

if(tmp == 0)

{

if((a+b<=c) || (b+c <=a) || (a+c<=b))

tmp = 1;

else

tmp = 2;

return tmp;

}

if(tmp > 3)

tmp = 4;

else if(tmp==1 && (a+b>c))

tmp = 3;

else if(tmp==2 && (a+c>b))

tmp = 3;

else if(tmp==3 && (b+c>a))

tmp = 3;

else

tmp = 1;

return tmp;

} �
Figure 31: Source code of Triangle2.

void Sort1(int[] a, int length)

{

for(int i = 0; i < length; i++)

for(int j=0; j < length - 1; j++)

if(a[j] > a[j+1])

{

int k = a[j];

a[j] = a[j+1];

a[j+1] = k;

}

} �
Figure 32: Source code of Sort1.

106 improving resource efficiency

void Sort2(int[] a, int length)

{

int flag = 0;

int tmp;

while(flag == 0)

{

flag = 1;

for(int j=0; j< length - 1; j++)

{

if(a[j] > a[j+1])

{

tmp = a[j];

a[j] = a[j+1];

a[j+1] = tmp;

flag = 0;

}

}

}

} �
Figure 33: Source code of Sort2.

The original input is given in Figure 33. One simple optimisation the
system found was to “inline” the first pass of the sort algorithm, giving:

for (int j = 0; j < (length - 1); j++) {

<main body >

}

while (flag == 0) {

for (j = 0; j < (length - 1); j++) {

<main body >

}

}

This saves on a single comparison-and-branch, which over 1000 test
cases is certainly worthwhile. The system also discovered multiple
variants of:

void sort(int[] a, int length) {

int flag = 0;

while (0 == flag) {

flag = 1;

for (j = 0; j < (length - 1); j++) {

if (a[j] > a[j + 1]) {

int tmp = a[j];

a[j] = a[j + 1];

a[j + 1] = tmp;

flag = 0;

}

length --;

}

}

Note the decrement of length. Experienced human programmers may
also make this optimisation, another impressive improvement.

7.8 results 107

int Factorial(int a)

{

if (a <= 0)

return 1;

else

return (a * Factorial(a-1));

} �
Figure 34: Source code of Factorial.

fac Fac is a small function (see Figure 34), but one optimisation
made by the GP system is to change:

if (a <= 0) {

to

if (a <= 1) {

This saves one recursive call for test cases containing positive inputs.
A more interesting optimisation is the exploitation of overflow be-

haviour in Java. Individuals were evaluated in Java for the most part,
as the large-scale experimentation involved favoured the more efficient
interpretation rather than simulation of individuals. Thus the system
ensured semantic equivalence with the Java version, whilst targeting a
model of execution time on an embedded processor. This can lead to
unforeseen issues if the Java interpreter does not match the semantics
of compiled C. Nearly all such cases were eliminated, and continuous
validation of results highlighted the exception of one such behaviour
when optimising the factorial function.

Inspecting some of the most efficient individuals, it quickly became
apparent that evolution had “decided” it was beneficial to add condi-
tional statements such as the following three examples:

if (!((2 * (9 + 8)) <= V_a))

while (V_a < (7 * (1 + 4))) {

if (V_a <= (8 + (8 + (8 + 9)))) {

Following this statement would be the usual factorial function. Each
constant being compared to the input is 33, 34 or 35. Clearly, not
calculating fac(33) or fac(34) was an optimisation in terms of timing –
but surely this would break the semantics of the program?

However, fac(34)=0 according to the original program. An overflow
within Java resulted in a zero return value. Therefore, for any value
n ≥ 34, fac(n)=0 because a multiplication by fac(34)=0 will occur during
the computation of fac(n). The GP system correctly discovered that
cycles were being wasted in these cases, and by adding this if statement,
it enabled the code to fall through to the default “return 0” at the end
of the test harness.

remainder The source of the Remainder function is given in Figure
35. Most of the optimisations of this (somewhat inefficient) code simply
use the % modulo operator, as expected. One interesting optimisation
is the removal of the first if statement, which checks for a zero value of
a, and directly returns −1 for that value. Removing this check does not

108 improving resource efficiency

int Remainder(int a, int b)

{

int r = -1;

int cy = 0;

int ny = 0;

if (a==0);

else if (b==0);

else if(a>0)

if(b>0)

while((a-ny)>=b)

{

ny=ny+b;

r=a-ny;

cy=cy+1;

}

else // b<0

while((a+ny)>= ((b>=0) ? b : -b))

{

ny=ny+b;

r=a+ny;

cy=cy -1;

}

else // a<0

if(b>0)

while(((a+ny) >=0 ? (a+ny) : -(a+ny))

>= b)

{

ny=ny+b;

r=a+ny;

cy=cy -1;

}

else

while(b>=(a-ny))

{

ny=ny+b;

r= ((a-ny) >=0 ? (a-ny) : -(a-ny));

cy=cy+1;

}

return r;

} �
Figure 35: Source code of Remainder.

7.8 results 109

int Swi10(int a)

{

for (int i=0; i<10; i++)

{

switch (i)

{

case 0: a++; break;

case 1: a++; break;

case 2: a++; break;

case 3: a++; break;

case 4: a++; break;

case 5: a++; break;

case 6: a++; break;

case 7: a++; break;

case 8: a++; break;

case 9: a++; break;

default: a--; break;

};

}

return a;

} �
Figure 36: Source code of Swi10.

change the semantics (i.e., the return value will still be −1, returning
later in the function). This is an interesting optimisation, because it
exploits the expected input distribution, the operational profile of the
code. The original code is only useful when the input a is zero, which
is not a common occurrence as its input domain is [-127,128]. Had the
input domain been (for example) [-1,2], then the optimisation would not
have been worthwhile. It is probably the case that this simple method
of optimisation might be applied to many other programs.

switch 10 Switch 10 (see Figure 36) was chosen deliberately to see
if our system could optimise it in the obvious way. Indeed, I found that
the system was able to find the following:

return 10 + a;

A minimal solution, containing just this code, was found many times
by the system. This is a non-trivial optimisation that GCC -O2 was
unable to achieve, a satisfying result.

select Select, given in Figure 37 is the longest and arguably the
most complicated function. Many of the output optimised programs
were large, and this made it time-consuming to analyse them. Perhaps
the introduction of a sophisticated parsimony method such as that
proposed by Poli and McPhee [2008] may improve the readability of
the outputs.

Nevertheless, there are some common trends to the optimisations.
The first optimisation is a check for negative values:

if (a >= k) {

flag = 1;

}

110 improving resource efficiency

int Select(int[] arr , int k, int n)

{

int i=0,j=0,mid=0,a=0,temp =0;

int flag = 0, flag2 = 0;

int l=1;

int ir=n;

while (flag == 0)

{

if (ir <= l+1)

{

if (ir == l+1)

if (arr[ir] < arr[l])

{

temp=(arr[l]);

(arr[l])=(arr[ir]);

(arr[ir])=temp;

}

flag = 1;

}

else if (flag == 0)

{

mid=(l+ir) / 2;

temp=(arr[mid]);

(arr[mid])=(arr[l+1]);

(arr[l+1])=temp;

if (arr[l+1] > arr[ir])

{

temp=(arr[l+1]);

(arr[l+1])=(arr[ir]);

(arr[ir])=temp;

}

if (arr[l] > arr[ir])

{

temp=(arr[l]);

(arr[l])=(arr[ir]);

(arr[ir])=temp;

}

if (arr[l+1]> arr[l])

{

temp=(arr[l+1]);

(arr[l+1])=(arr[l]);

(arr[l])=temp;

}

i=l+1;

j=ir;

a=arr[l]; �
Figure 37: Source code of Select (continued overleaf).

7.8 results 111

while (flag2 == 0)

{

i++;

while (arr[i] < a)

i++;

j--;

while (arr[j] > a)

j--;

if (j < i)

flag2 = 1;

if (flag2 == 0)

{

temp=(arr[i]);

(arr[i])=(arr[j]);

(arr[j])=temp;

}

arr[l]=arr[j]; arr[j]=a;

if (j >= k)

ir=j-1;

if (j <= k)

l=i;

}

}

return arr[k];

} �
Figure 37: continued.

112 improving resource efficiency

By placing this at the start of the program, no iterations are made
and the function quickly returns.

The second optimisation is that the conditional statement in the else

part of the main if statement can be removed:

else if (flag == 0) {

This is replaced with:

else {

This can be done because flag is tested in the while statement previ-
ously.

The original solution is also slightly inefficient in one of its exchanges,
the framework found this issue and removed the inefficiency. Observe:

temp=(arr[mid]);(arr[mid])=(arr[l+1]);(arr[l+1])=temp;

if (arr[l+1] > arr[ir]) {

temp=(arr[l+1]);(arr[l+1])=(arr[ir]);(arr[ir])=temp;

}

The first assignment of the second exchange is unnecessary, as temp

already contains the value in arr[l+1]. This was exploited by many
output programs.

7.8.2 Overview of Improvements

It is interesting to consider the range of improvements the framework
made. Table 9 gives an overview of the results that were achieved
during the factorial experimentation described in Section 7.8.4.

The original programs were compiled using GCC’s -O2 optimisation
level (as it was the most sophisticated level I am able to profile using
the simulator), and run through the 1000 validation tests used by the
factorial runs to test output individuals. The number of instructions
consumed by each of the original programs is given in Table 9. This is
the baseline by which improvements must be measured.

The table shows the number of best individuals successfully complet-
ing with zero errors in their final fitness evaluation. It then lists those
classified as “valid” after checking them on a validation set (this does
not necessarily guarantee semantic correctness), and those passing the
tests that also constituted an improvement on the original program’s
performance.

Note that these figures simply summarise the experimentation, over
a range of parameter values and I would not expect good performance
at each of the 384 design points (parameter settings). As an indicator of
the diversity of solutions produced for each problem, the number of
unique instruction counts are given.

7.8.3 Modelling Instruction Count

In order to construct a model, it was necessary to gather data from
an evolutionary run, and so one evolutionary run for each case study
was performed, with simulation enabled. The number of instructions
an individual used within the simulator and the count of the high
level primitives evaluated when running through the ECJ interpreter
were logged. Parameter settings were based on ECJ defaults for the
run, and manually selected settings were used where defaults were

7.8 results 113

O
ut

pu
t

Pr
og

ra
m

s
In

st
ru

ct
io

n
C

ou
nt

s

Pr
ob

le
m

Su
cc

es
sf

ul
V

al
id

Im
pr

ov
em

en
t

U
ni

qu
e

O
ri

gi
na

l
M

in
im

um
%

Im
pr

ov
em

en
t

M
ed

ia
n

Tr
ia

ng
le

1
1

1
5

0
7

2
2

0
3

2
1

1
2

1
4

4
4

2
2

4
0

2
1

0
9

9
6

5
0
.9

1
7

2
1

4
.5

Tr
ia

ng
le

2
1

1
4

3
3

1
9

8
1

5
2

4
1

8
7

8
3

8
0

4
0

0
0

5
2
.3

8
0

0
0

R
em

ai
nd

er
1

1
0

7
0

4
8

0
5

3
1

8
4

5
2

6
2

7
0

2
5

1
2

3
1

8
5

4
.4

2
3

3
1

8

So
rt

1
1

1
5

0
2

3
1

3
1

2
7

0
8

1
2

8
8

8
4

8
4

2
5

4
5

8
7

8
3

8
.3

5
6

9
5

1
7

So
rt

2
1

1
4

9
6

5
2

7
1

1
8

3
1

3
4

8
8

1
5

8
8

2
4

9
2

2
1

7
3

9
.7

7
9

0
0

6
2

Fa
ct

or
ia

l
1

1
5

1
4

3
3

7
4

1
4

2
5

1
3

9
5

1
8

9
4

9
6

6
4

8
7
.4

2
7

8
7

0
0

Sw
it

ch
1

0
1

1
5

2
0

4
7

6
3

4
7

6
3

3
4

1
4

3
0

0
0

2
0

0
0

9
8
.6

3
6

0
0

0

Se
le

ct
1

1
5

0
6

3
6

5
3

1
2

0
6

5
0

7
9

7
0

7
7

7
0

0
8

5
2

7
.8

9
0

2
0

1
.5

Ta
bl

e
9
:S

um
m

ar
y

of
fa

ct
or

ia
le

xp
er

im
en

ts
.

114 improving resource efficiency

Problem Total Unique No Run-time
Errors

Completed
Successfully

Triangle1 62500 13847 13835 13833

Triangle2 62500 12960 12959 12959

Remainder 62500 14065 14061 14030

Sort1 62500 8220 8220 8220

Sort2 62500 7972 7972 7972

Factorial 62500 9465 9463 9455

Switch 62500 3047 3037 3034

Select 62500 20521 20520 20519

Table 10: Individuals sampled when constructing models.

not available or appropriate – the parameter settings themselves being
of less importance in model-building than when actually optimising
software.

These experiments used a population size and generation limit both
set to 250, effectively sampling 62500 points in the search space. In-
creasing the sample size any further would have taken individual
evolutionary runs beyond the scope of weeks of compute time, which
quickly became impractical. An evolutionary run was preferred as
opposed to systematically sampling the space in order to ensure the
sample was representative of the individuals likely to be encountered
during a run.

The sample is restricted in its generality by two factors: firstly du-
plicate data where the same program is sampled more than once (a
disadvantage of using data from an actual run) and secondly programs
where full evaluation was not possible. The former is to be expected,
particularly with seeding methods that heavily favoured the introduc-
tion of programs identical or similar to the original input function. The
latter was caused by problems such as run-time errors in individual
programs and iteration limit timeouts. A summary of data at the larger
sample size illustrate the extent of this issue, as given by Table 10.

Applying standard least squares linear regression to construct the
model, it was observed that negative coefficients resulted. It is intuitive
that this may cause problems: the evolutionary framework might exploit
this by adding extra instructions with negative coefficients and this
would improve the fitness of an individual provided that it did not
interfere with its functional behaviour. In other words, there was a
danger of actually encouraging the emergence of bloat! Exploratory
runs confirmed that negative coefficients quickly lead to a great deal of
program bloat. Therefore, the regression was repeated with coefficients
constrained to positive values only, using the R nnls library [R, 2009].

Some of the coefficients were zero, usually because the instructions
concerned had not been sampled sufficiently to accurately estimate
their cost. This is a limitation of the modelling approach, given a limited
availability of compute power, and I accept these inaccuracies here as
part of the expense of approximation.

It is now possible to evaluate the accuracy of modelling. By sampling
a selection of individuals of tournament size n, then carrying out
tournament selection on that group using firstly the instruction count

7.8 results 115

Problem Tournament Size 2 Size 5 Size 7

Triangle1 66.1% 43.4% 41.4%

Triangle2 55.3% 29.0% 23.9%

Remainder 75.6% 64.6% 62.1%

Sort1 75.7% 73.8% 74.5%

Sort2 79.0% 73.4% 74.4%

Factorial 80.8% 69.3% 63.0%

Switch 74.1% 61.8% 57.1%

Select 72.0% 53.4% 49.8%

Table 11: Accuracy of modelling.

from the simulator, and secondly the estimate from the model, the
accuracy of a model can be measured by comparing how many times
the two choose the same individual. The results are in Table 11, based
on a sampling of 10, 000 simulated tournament selections in each case.
This modelling in effect adds noise to the fitness function.

The model proved to be sufficient to achieve the optimisations previ-
ously described, and a full comparison to simulation is given in Section
7.8.5. The algorithm was sufficiently robust to accept this level of noise
in the selection mechanism.

7.8.4 Important Components and Parameters

The results of the factorial experimentation can be used to analyse the
behaviour of the framework.

The priority of a practitioner must be to produce error-free soft-
ware first, and solutions that are time-efficient as a secondary objective.
Therefore, for each problem the ten treatments with the greatest proba-
bility of producing error-free solutions were selected, as measured by
the proportion of zero error outputs. A new set of 30 runs for each of
these ten treatments for each problem was then recorded by repeatedly
running the framework with each treatment and recording the outcome
of successful runs (nearly all runs were successful). The performance of
these settings in our repeated results had similarly low error rates and
produced completely valid programs in all but six cases.

A boxplot of the 30 repetitions for the ten best treatments chosen for
Triangle1 is given in Figure 38. There is little variety in the ability of the
treatments to find good optimisations. These boxplots are representative
of other problems: the top ten treatments generally give similar results
(with a few treatments having much higher variance). This is promising,
as it adds weight to the argument that the framework is robust to its
parameter settings.

The best parameter settings are chosen based on their medians, for
use in Section 7.8.5. These settings cannot be regarded as optimal
settings in a general sense, only that they performed well in the full
factorial on the case studies. These settings are listed in Table 12. Taking
these top ten treatments, we may examine them to assess the impact of
specific parameter settings.

116 improving resource efficiency

Param
eters

Triangle
1

Triangle
2

R
em

ainder
Sort

1
Sort

2
Factorial

Sw
itch

1
0

Select

Probability
of

crossover
0.

8
0.

1
0.

8
0.

1
0.

1
0.

1
0.

1
0.

8

Population
Size

1
0

0
0

1
0

0
0

5
0

5
0

5
0

5
0

5
0

1
0

0
0

Tournam
ent

Size
2

2
7

7
7

7
7

7

Seeding
proportion

0.
9

0.
9

0.
1

0.
1

0.
1

0.
1

0.
1

0.
9

C
oevolution

Enabled?
Yes

Yes
Yes

N
o

N
o

N
o

N
o

Yes

SPEA
2

Enabled?
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o

SPEA
2

A
rchive

Size
1

0
0

9
0

0
5

5
5

5
5

1
0

0

Seeding
M

ethod
M

utation
C

lone
C

lone
C

lone
C

lone
C

lone
C

lone
C

lone

Table
1

2:Best
param

eter
settings

for
each

problem
.

7.8 results 117

Table 13 lists the number of times the components were set to the
high value in the best treatments for each problem. Note that the
seeding method had three levels, hence in that case the frequency of the
low/medium/high values are given. The main patterns we can observe
from this table are:

• Most parameters are heavily problem-dependent, that is some-
times the features of the framework are helpful and sometimes
they are not. The problem-specific nature of the parameters is
underlined by the similarity between the settings for the two
problems optimising sort functions.

• Apart from Select (the largest of the problems), the best settings
did not use SPEA2. I conjecture that this is because SPEA2 encour-
ages exploration that is unnecessary to achieve good improve-
ments in execution time for functions of this size. This behaviour
is investigated in more detail in Section 7.8.6.

• The third type of seeding method, subtree seeding, is rarely used.
Thus it does not appear that “building block reassembly” is one
of the mechanisms our framework uses to find optimisations.

• Generally a high value of seeding proportion is preferred. This
confirms the expectation that seeding would be important: that
GP is not creating solutions from scratch.

• Coevolution is favoured, particularly in those problems that have
boundary conditions. It is likely that coevolution is able to find
key discriminating test cases more efficiently than random testing.

It may be possible to separate problems into those most suitable for
optimisation using mutation, and those more susceptible to crossover.
The former involve smaller, localised optimisations that may be applied
stepwise, i.e. their beneficial effect is additive. The latter require more
radical restructuring. This may explain the modal pattern of best set-
tings seen between Triangle, Remainder, Select as one group and the
Sort, Factorial and Switch problems as another.

7.8.5 Comparing Modelling to Simulation

To analyse the impact of using full simulation rather than modelling of
a program’s instruction usage, I used the parameter settings given in
Table 12 and ran 20 repetitions of each, firstly retaining the model as
the method of evaluation, and secondly using the full simulator. The
latter runs took days or weeks, as full simulation is computationally
expensive.

Boxplots comparing the resulting distributions of instruction count
are shown in Figure 39. I then performed a nonparameteric Mann-
Whitney rank-sum test for significance between the distributions for
each problem. In cases where a significant difference was found at the
0.05% level, I carried out a further test of effect size to determine the
scientific significance or importance of the difference, and all figures for
these tests are given in Table 14.

Surprisingly, there are only four problems where there exists a statis-
tically significant difference at the 0.05% level. Taking significant effect
size for the Vargha-Delaney A statistic [Vargha and Delaney, 2000] at

118 improving resource efficiency

Param
eters

Triangle
1

Triangle
2

R
em

ainder
Sort

1
Sort

2
Factorial

Sw
itch

1
0

Select

Probability
of

crossover
1

0
7

1
0

0
0

0
0

4

Population
Size

4
1

0
4

0
0

0
0

4

Tournam
ent

Size
7

4
5

1
0

1
0

1
0

1
0

4

Seeding
proportion

6
8

7
6

6
6

6
8

C
oevolution

Enabled?
1

0
1

0
8

4
3

4
4

4

SPEA
2

Enabled?
0

0
2

0
0

0
0

6

SPEA
2

A
rchive

Size
4

5
5

5
5

5
5

5

Seeding
M

ethod
4/

6/
0

5/
5/

0
5/

5/
0

7/
3/

0
6/

2/
1

7/
3/

0
7/

3/
0

5/
2/

3

Table
1

3:N
um

ber
of

top
ten

treatm
ents

containing
high

values.

7.8 results 119

Figure 38: Instruction counts for the ten best treatments of Triangle1.

1
2
0
0
0

1
6
0
0
0

2
0
0
0
0

2
4
0
0
0

4
0
0
0

8
0
0
0

1
2
0
0
0

1
6
0
0
0

2
4
0
0
0

2
8
0
0
0

3
2
0
0
0

5
5
0
0
0
0

5
6
0
0
0
0

5
7
0
0
0
0

5
5
0
0
0
0

7
0
0
0
0
0

8
5
0
0
0
0

2
5
0
0
0
0

3
5
0
0
0
0

4
5
0
0
0
0

1
0
0
0
0

3
0
0
0
0

7
5
0
0
0

8
5
0
0
0

9
5
0
0
0

M S M S M S M S

M S M S M S M S

Figure 39: Comparing instruction counts using modelling versus simulation.

120 improving resource efficiency

Problem Rank-Sum P-Value Vargha-Delaney A Statistic

Triangle1 0.892 n/a

Triangle2 0.006 0.245

Remainder 0.299 n/a

Sort1 0.0203 0.295

Sort2 0.423 n/a

Factorial 6.89e-08 0.0375

Switch 10 0.350 n/a

Select 0.0206 0.285

Table 14: Comparing instruction count distributions using modelling versus
simulation.

less than 0.36 or greater than 0.64, I can state that these four differences
are also scientifically significant, i.e. of a magnitude that we should be
interested in. As expected, those significant differences all represented
cases where the use of a simulator improved performance.

Whether or not to employ simulation therefore depends on the goal
of the practitioner. For further research along the lines of this thesis,
modelling is an efficient alternative to simulation that still provides
the opportunity to achieve large optimisations. Similarly, incorporating
large-scale search into software design in the medium term would ap-
pear to favour the option of modelling over simulation due to the com-
putational requirements of the simulator. Certainly, manually designed
or more sophisticated automated modelling methods may improve on
the simple linear model used in this work.

When optimising more complex programs, or taking into account
detailed machine-level behaviour such as cache access and misses, it is
recommended that a simulator is employed. Whilst a simple approach
to modelling can achieve impressive results, it is unlikely to be able
to do so as the relationship between high-level source code and run-
time behaviour becomes more complex. Modelling is not an option, for
instance, in Chapter 8.

7.8.6 Exploration using MOO

It was previously speculated that taking a Pareto-based approach using
the SPEA2 algorithm would increase the exploration of the search space,
such that small highly fit subtrees may be recombined efficiently to
create improved solutions. To assess the impact of using SPEA2, the
best parameter settings from the factorial experiments (all of which
did not use MOO) were compared to the same settings with MOO
enabled, over 30 repetitions. During the runs, the pair of values (error,
instruction count) for each individual evaluated were logged.

Figure 40 compares the exploration of the objective space between
the two pairs of settings, for a single repetition of Triangle1. Other
repetitions produced very similar results. Surprisingly, the difference is
not great. The SPEA2 method explores more points closer to the y axis,
but the difference is limited and the error values on those extra points
explored are quite large. Thus it appears that SPEA2 is not exploring
small, highly-fit programs.

7.8 results 121

1000 2000 3000 4000 5000 6000 7000 8000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Instructions

E
rr

o
r

(a) Weighted Fitness

1000 2000 3000 4000 5000 6000 7000 8000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Instructions

E
rr

o
r

(b) Pareto-based Fitness

Figure 40: Exploration of the objective space for Triangle1.

122 improving resource efficiency

Problem Sampled Unique Weighted Unique SPEA2

Triangle1 1500000 692170 720198

Triangle2 1500000 755688 580429

Remainder 1500000 166782 912945

Sort1 1500000 241206 521717

Sort2 1500000 194215 626644

Factorial 1500000 155401 637414

Switch 10 1500000 37150 256402

Select 1500000 435618 682031

Table 15: Unique objective values sampled by weighted and SPEA2 methods.

To summarise the data, Table 15 lists the number of unique points
in the objective space sampled across the thirty repetitions for each
problem, both for the weighted approach (SPEA2 disabled) and with
SPEA2 enabled. SPEA2 samples far more unique points in general,
although Triangle2 is an exception.

I conclude that SPEA2 or other Pareto-based methods are most likely
to be useful in optimising larger programs, or at least that diversity-
maintaining functions should be used when trying to achieve a scalable
optimisation method. For smaller programs, of the size examined here,
it is unlikely to be of use.

7.9 limitations

The framework has the following limitations:

• Software testing cannot prove that a program is free of errors [My-
ers, 1979]. The transformations applied to the programs are not
semantics-preserving, and thus cannot guarantee that the output
of the framework is semantically equivalent to the input pro-
gram. Therefore, output must be manually verified in problems
of Boolean acceptability.

• The space of all test cases used to validate the program’s seman-
tics is constructed before the search. Potential test cases are chosen
based on structural criteria (e.g., branch coverage) of the input
program. However, evolved programs can have different control
flow and different boundary conditions, and thus a test set de-
signed for the input program may not be appropriate later in the
evolutionary search. An alternative would be to generate new test
cases at each generation. This could be achieved by creating new
test cases based on structural coverage of the best individual in
the population.

7.10 future work

The framework presented is still prototypical, and there are many
directions future research could take:

• Scalability is an important factor that needs to be studied in
more detail. Will this approach be effective only on relatively

7.11 conclusion 123

small functions, or can it scale up to larger systems? Even if its
scalability is limited, it may still be useful because it can obtain
types of optimisations that current techniques cannot.

• Seeding strategies are important to help the search process to fo-
cus on promising regions of the search space by exploiting useful
information from the input program. However, seeding strategies
can have a drastic impact on the diversity of the program pop-
ulation. Search operators that have been designed for randomly
initialised populations (e.g., Koza’s single point crossover) may
not be the most effective for greedy seeding strategies. Tailoring
the search to the problem by using alternative mutation operators
might be more effective.

• Analysing the outputs of the framework was a daunting task:
there were literally thousands of different optimised programs produced,
and each of these outputs contain potentially useful information.
By applying data-mining methods, common optimisations could
be isolated and examples presented to an engineer. Furthermore,
mining results from a variety of problems could lead to generic
templates of optimisation methods that could be easily incorpo-
rated into a conventional compiler.

7.11 conclusion

I have presented a novel framework to improve non-functional criteria
of software. In particular, I concentrated on instruction count, although
other criteria could be considered.

Transformations of the programs that do not guarantee the preser-
vation of the original semantics were used. This enables the creation
of new versions of the programs that could not be obtained with
semantics-preserving operators. To address the problem of maintaining
semantic equivalence, the evolving programs were subjected to inten-
sive testing. As the original input program can be used as an oracle, it
is possible to generate an arbitrary number of test cases limited only by
computational resources and time constraints.

For a set of case studies, interesting useful and non-trivial optimi-
sations were found, in a robust manner with respect to the parameter
settings of the algorithm. This original approach to automated gener-
ation of suggested optimisations has great potential. It could be used
to aid developers in fine-tuning optimisation, as well as providing a
method of discovering generalisable optimisations that could be incor-
porated into a compiler.

124 improving resource efficiency

8F I N E - G R A I N E D C O N T R O L O V E R T I M I N G

8.1 introduction

In the preceding chapters I have focused on resource efficiency by
minimising the resources that a program consumes. I have attempted to
locate efficient trade-offs such that the minimal amount of functionality
is sacrificed in decreasing resource consumption where a trade-off must
be made.

In this chapter, I investigate just how finely a non-functional property
(timing) of code can be controlled using Genetic Programming. There
are several reasons for investigating this. Firstly, if we are to make use
of the smallest amounts of energy, then we must be able to budget
carefully. Secondly, the ability to fine-tune exactly how much of a re-
source is consumed by software enables GP to manipulate the resource
consumption as a side-channel. The latter has immediate application in
the realm of embedded systems security, where side-channel analysis
is a genuine threat to the integrity of a system.

There are other potential applications for fine-grained control, some
more ambitious than others. This chapter explores the manipulation of
code’s run-time in a general sense, illustrating how it could be applied
alongside proof-of-concept examples. It is worth emphasising that what
I present here concerns the timing properties of software, but could be
applied to any other measurable property such as power consumption
or memory usage.

8.2 resource-consumption as a function

Can we control the execution time of a program p on input x, T(p, x),
such that T can be an arbitrary function of x? Such control might allow
us to produce more efficient solutions to some problems than possible
with functional computation alone, and also create software with useful
security properties.

In the following sections, I demonstrate the difficulty of trying to man-
ually control the low-level timing properties of software, by attempting
to create code that has a specific time complexity relationship. This
demonstrates the potential superiority of GP against manual design
alone as a tool for such tasks.

8.3 evaluating low-level timing

In order to evaluate individuals, I evolve them in the ECJ 19 Toolkit
[ECJ, 2009] before writing them out as C code, and compile them
together with a test harness using a GCC cross-compiler. The resulting
executable is then run within the M5 Simulator [Binkert et al., 2006].

The M5 simulator is targeted for an Alpha architecture, using the
default parameters of the simulator. There is a crucial difference in this
work, however, because the absolute values of resource consumption are
of interest, rather than relative differences between individuals.

125

126 fine-grained control over timing

ECJ
GP & SPEA2

Individual
(C Macro)

Test Data

Test Harness

GCC
Alpha

Object Code

M5 SimulatorTrace file

Figure 41: Evaluation of fine-grained timing.

The absolute values are required because I wish to use GP to control
the fine-grained properties of software’s interactions with hardware. As
such, it is necessary to simulate all details of the system, including cache
operation and instruction pipelining using full out-of-order simulation.
This is consequently an expensive fitness function (up to 20 minutes per
individual in this chapter!) with the given experimental arrangement,
and limits the size of the examples I may investigate.

The processor is again an Alpha-ISA model of a DEC Tsunami system,
at a default speed of 2GHz and 512MB main memory with two sets
of cache: 32KB data and 64KB instruction level 1 and 2MB level 2. The
speed of the processor, and size of the main memory are not important
in our evaluation and are left at their defaults for convenience. Changing
cache values would yield different results to those reported here, which
is part of the reason for investigating GP in controlling the interactions
of such subsystems.

An individual’s cycle consumption is measured by surrounding it
with NOPs and parsing M5’s output tracefile to extracted the simulated
ticks. A test harness for each problem is handwritten, and the current
test data for that individual at a specific generation is output from ECJ
as hardcoded data in a C source file to be linked to the harness. A
diagram of evaluation is given in Figure 41.

An example test harness is given in Figure 42, and an example
individual in Figure 43. Each individual code segment to be tested is
written out as a macro using the C #define statement. This allows the
evaluation of small code fragments in the context provided by the test
harness and eliminates the effects of direct function calls.

Where handwritten solutions are examined in the following sections,
the C macro has been manually written, and the rest of the evaluation
method remains unchanged to ensure a fair comparison with evolved
solutions.

8.4 designing specific complexity

It is second nature to think about a program in terms of its resource
consumption complexity: quadratic is good, linear is better, exponential
is undesirable. For a moment, let us focus only on the complexity of a
program rather than its purpose. Consider a program that has linear
complexity with respect to quantity n. Quantity n may be a representa-
tion of problem size, in which case we assume the conventional notion
of the complexity of the program, i.e. the commonly assumed interpre-

8.4 designing specific complexity 127

#include <stdio.h>

#include <stdlib.h>

#include " t e s t d a t a . c "

int main(int argc , char** argv) {

cut();

// sim. modified to only trace this function

return 0;

}

cut() {

int i;

float tmp , c;

printf(" T e s t R e s u l t s \n ");
fflush(stdout);

for (i=0;i<sampleSize;i++) {

tmp = 0;

asm(" nop ");
cut_inline(input[i]);

asm(" nop ");
}

printf(" T e s t s S u c c e s s f u l \n ");
fflush(stdout);

} �
Figure 42: Example test harness.

#define cut_inline(k) \

if (tmp) { \

for (c=0;c<k*tmp;c++) { \

; \

}; \

} else { \

; \

tmp = k - 1; \

}

#include " s i m p l e _ t e s t _ r a n d o m i s e d . c "
// test harness �

Figure 43: Example individual written out to C.

128 fine-grained control over timing

0 20 40 60 80 100

0
2

0
0

4
0

0
6

0
0

8
0

0

k

C
yc

le
s

(a) Ordered test data

0 20 40 60 80 100

0
2

0
0

4
0

0
6

0
0

8
0

0

k

C
yc

le
s

(b) Randomised test data

Figure 44: Test results for handwritten linear solution.

tation of big “O” notation etc. If we replace the concept of problem
size with “input value”, we now have a program that has a linear
relationship between the value of its input and its resource consumption.
This is related to the theory of pseudo-polynomial time algorithms.

If I wish to construct code that may have this behaviour, such that
T(p, k) = mk + c, I could suggest such a program without regard to its
functionality as thus:

float tmp = 0;

while (tmp < k) {

tmp ++;

}

The functional behaviour of this code is irrelevant at this stage: I
only wish to repeatedly carry out some quantity of work in a linear
relationship to the numeric input value. I have used float rather that
int here to maintain generality throughout the following sections, and
because floating point operations have interesting timing properties.

As an example, I now test this program on the inputs k = 0, 1, . . . 99.
Figure 44a gives a graph of the results. Note that we do not experience
a perfect relationship, due to the interaction between the test program
and machine state. The test cases are executed within a loop, and the
previous test case will affect the instruction count of the current test
case due to its effect on machine state. The primary cause of the outliers
is data cache misses for the input values, such that the comparison
operation causes a delay prior to the next instruction. As such, the
context of the machine state is determined by the test harness: more on
this Section 8.5.1. If we randomise the order of the inputs, it is possible
to measure the relationship in a more robust manner. The result is given
in Figure 44b. Here we have even larger outliers, but they are spread
throughout the input range rather than concentrated at the beginning.

We can quantify the relationship by estimating Pearson’s correlation
coefficient for this sample:

r(k, T) = ∑n
i=1(ki − k̄)(Ti − T̄)√

∑n
i=1(ki − k̄)2

√
∑n

i=1(Ti − T̄)2
(8.1)

where ki is the ith test case and the time Ti is the time taken to execute a
code fragment p on this input. A perfect positive correlation would be 1,

8.4 designing specific complexity 129

Objective Find a program p∗(k) such that Θ(f) =
mk + c

Terminal set k, tmp

Function set FixedLoop, ≤, increment tmp, +, ∗, −,
/, if, sequence, skip, update tmp

Fitness cases k = 0, 1, . . . , 99

Fitness function r(k, T)

Parameters Initial tree depth = 3, generations = 10,
population size = 20, prob(xo) = 0.9,
prob(mutation) = 0.1

Initialisation Koza’s ramped half-and-half method

Table 16: Experiment A: Settings to evolve linear time behaviour.

Function Returns Arguments

k, tmp float -

FixedLoop statement float, statement

+, ∗, −, /, ≤ float, float -

if statement float, statement, statement

Increment tmp, skip statement -

Update tmp statement float

seq statement statement, statement

Table 17: Function return and argument types.

a negative correlation -1 and 0 no correlation. The correlation coefficient
for this manual attempt at linearity is 0.978, and by no means a perfect
correlation due to the subtle interaction with the program’s context. An
interesting question, therefore, is: can evolution find a better solution?

8.4.1 Experiment A: Linear Behaviour

We must decide on a function set, and a description of the experiment
is given in Table 16. Note that the maximum number of cycles is limited
to a similar value to that used by the handwritten solution, in order
to prevent GP from finding much larger solutions to simply mask the
“noise” of the program context. Also, the randomised order of tests is
varied at each generation, to prevent overfitting. Note that FixedLoop(n)
will loop for n iterations, using a C for loop. The function Update tmp

will set tmp to the value of its argument.
I employ Strongly Typed Genetic Programming with this function

set, and the types of each function and its arguments are given in
Table 17. Note that I did not introduce a specialised Boolean type. This
reduces the constraints on the search process by simplifying the type
system. Also, the simple FixedLoop avoids both introducing a high-
arity function (see Section 4.3.3 as to the impact of high arity functions
on the search space size) and the problem of infinite loops in evaluation,
which leads to expensive timeouts.

130 fine-grained control over timing

if (k) {

for (c=0;c<k;c++)

{

};

} else {

tmp ++;

tmp ++;

tmp ++;

}

(a) Source code 0 20 40 60 80 100

2
0

0
4

0
0

6
0

0
8

0
0

k

C
yc

le
s

(b) Time against input

Figure 45: Evolved linear solution.

Genetic Programming is indeed able to locate a better solution in
10 generations with a population of 20, and this individual has a
correlation coefficient of 0.993. A graph of this relationship and the
code of the individual evolved is given in Figure 45.

The key differences between the evolved and handwritten solutions
are:

• When k = 0, work will still be performed in the evolved ver-
sion, namely testing for this case, and moving through further
branches.

• When k > 0, an additional if statement evaluation and branch
will be performed.

If we examine the trace output for this evolved solution, it includes
exactly the same instructions executed in the manual solution, and adds
some to either side of the loop. This effectively “smooths” the response
(time taken) by suitably padding the instruction pipeline during cache
access, as well as increasing the time taken for k = 0, i.e. setting a larger
value for the intercept.

Note that we can now (approximately) calculate f (k) by running the
program and observing the time taken to execute, where in this case
f (k) = mk + c.

8.4.2 Experiment B: Quadratic Behaviour

What if we wish instead to create a nonlinear relationship such as a
quadratic curve with no linear term? We may try a manually written
solution as given in Figure 46.

This solution takes the general approach of calculating f (k) prior to
repeating the strategy of looping to perform a multiple of a minimal
unit of work (increasing c). This relationship appears to be a great
improvement on the manual attempt at a linear solution, but we must

8.5 time as a functional output 131

tmp = k * k;

for (c=0;c<tmp;c++);

(a) Source code

0 20 40 60 80 100

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

k

C
y
cl

e
s

(b) Time against input

Figure 46: Test results for handwritten quadratic solution.

quantify the relationship to be sure. We can estimate the derivative of
the evolved function as:

f (k + 1)− f (k) = m(2k + 1) (8.2)

Thus we can measure the correlation between the differences of
successive timings and k in order to evaluate the fit of the quadratic
relationship. For the handwritten solution above, the correlation is 0.962.
Can we improve on this using evolution? I first used the correlation
measure as a fitness function, but after some manual experimentation
and analysis it became apparent that rewarding a certain amount of
first-order correlation is also desirable in order to guide the search, and
hence a weighted fitness function was used:

F(p) = w0 · r(k, T(p, k)) + w1 · r(k, T(p, k + 1)− T(p, k)) (8.3)

A simple selection of 0.2 and 0.8 for w0 and w1 respectively was
sufficient to guide the search to a successful solution, found using the
same parameter settings as given in in Table 16. The best individual
evolved had a correlation of 0.967 between the input and the estimate
of the derivative and is given below:

for (c=0;c<(k * k);c++) {

tmp = tmp;

};

This is a very modest improvement over the manually written version.

8.5 time as a functional output

In the preceding section, I demonstrated that it is possible to search for
programs that have simple relationships between their numerical input
and the number of clock cycles they consume, and that exhibit those
relationships more accurately than “obvious” handwritten alternatives.

Consider now a more complex relationship such as a Boolean func-
tion. If we provide two Boolean inputs a and b, can we evolve a

132 fine-grained control over timing

functional
inputs
a and b

potential
feedback

p(a,b)
T(p,a,b)

Summised output S(p,a,b)

program
p timing

measurement

Interpretation function
I(p(a,b),T(p,a,b))

Figure 47: Visualising the use of timing in calculation.

program such that the cycle count of program p on those inputs
T(p, a, b) = f (a, b), where f could be (for example) a Boolean OR?
For this to be literally true, the program’s execution would have to
take either 0 or 1 cycles, which is unrealistic as even a simple if will
usually take more than a single cycle. Hence, we must find a suitable
interpretation of the timing output, which I denote I(T(p, a, b)). This is
an idea with much generality, and is illustrated in Figure 47.

A simple interpretation that can be employed here is to measure the
number of cycles the machine has executed and then take modulo 2

of this number. Thus the lowest “bit” of the execution time is used as
output, and there are two output states: an even and odd number of
cycles consumed. An interpretation such as this is arbitrary, and the
idea can be generalised: perhaps interpretations can be cooperatively
coevolved. The most interesting question here is: do such code frag-
ments even exist, given the context of the test program within which
they will be used?

It is not obvious how to go about manually constructing a solution,
but we can imagine two ways in which it may be achieved: through
something we could describe as either implicit or explicit time variation.
In the former, we hope to rely purely on the low-level mechanics of the
processor and memory subsystem to provide variation, such as floating
point operations that consume a variable number of cycles. In the latter,
we rely on some logical test to choose a path through the code. In
practice, the latter cannot succeed without the former in order to “iron
out” variation as in the handwritten linear solution from Section 8.4.1.

8.5.1 Experiment C: Timing OR Function

In this experiment, I give as input the four possible combinations of a
pair of Boolean-valued floats and try to evolve a program that outputs

8.5 time as a functional output 133

Objective Find a program p∗(a, b) such that
T(p, a, b) mod 2 = OR(a, b)

Terminal set a, b, tmp, 1, Float_MAX

Function set FixedLoop, ≤, increment tmp, +, ∗,
−, /, if, sequence, skip, update tmp

Fitness cases a, b ∈ {{0, 0}, {0, 1}, {1, 0}, {1, 1}}
(repeated four times, order ran-
domised at each generation)

Fitness function f (p) = w1 · c(p, a) + w2 · c(p, b) +
w3 · (n−∑n

1 |T(p, a, b)− (a ∨ b)|)
Parameters Initial tree depth = 3, generations =

20, population size = 100, prob(xo)
= 0.9, prob(mutation) = 0.1

Initialisation Koza’s ramped half-and-half
method

Table 18: Experiment C: Settings to evolve a Boolean OR function using time as
an output channel.

their OR on the lowest bit of the cycle count. Initial experimentation
revealed the following:

• The test cases could be passed by code that did not even evaluate
the inputs.

• Degenerate behaviours taking a single cycle (“always 1”) were
common.

• The ordering of test cases affected the performance of the search.

The code was therefore subsequently tested with the four possible
inputs over four repetitions, and a randomised ordering of these 16 test
cases used. In order to ensure that both inputs were evaluated at least
once in any solution, the fitness function was specified as follows:

f (p) = w1 · c(p, a) + w2 · c(p, b)

+ w3 · (n−
n

∑
1
|I(T(p, an, bn))− (an ∨ bn)|) (8.4)

where c(p, a) is 1 if program p reads variable a and 0 otherwise, and
I(x) = x mod 2. The parameters to the experiment are given in Table
18. Note the addition of the constants 1 and Float_MAX (3.40282e38) to
the terminal set.

GP was indeed able to provide such a solution:

if ((3.40282e+038f - b)) {

for (c=0;c<(b + a);c++) {

tmp ++;

};

} else {

tmp = 3.40282e+038f;

}

134 fine-grained control over timing

This code passed all 16 test cases correctly, given the randomised
order of tests at that generation. It is quite straightforward to see how
this might work. However, running the code again with a different
order of test cases resulted in the code failing two test cases. This
alludes to the fact that T is a function not only of p, a and b, but also of
the machine context φ at the time, so we are actually trying to evolve
code such that T(p, a, b, φ) mod 2 is equivalent to a ∨ b. The context is
the machine state: the content of the stack, the instruction pipeline,
cache and so on. This reliance on context is both a difficulty, in the
case where we wish to eliminate its effects entirely, and also a useful
resource, in the case where we want to exploit the machine state to
achieve certain timing properties. This context caused problems for the
manual solution in Section 8.4, and is found to be useful in Section 8.6.

If we wish to implement this OR gate robustly, we must test on all
4! = 24 possible input sequences. Even then, however, we cannot be
sure that the context of the surrounding test program is not being
exploited, such that if we wish to place the code in another program we
would have to again evolve a solution and exhaustively test the possible
outcomes. This context-sensitivity mean that any such “absolute time
manipulation” must be done in situ.

I did indeed attempt to evolve a program that is robust to all input
orderings, but failed to successfully do so even when exhaustively
testing each bit of the timing output as a potential interpretation. Every
run provided an individual with a few failed test cases out of the total
96. It may be that to achieve such control over absolute cycle usage it is
necessary to carefully construct a function set that enables a variety of
variations in timing.

8.6 timing avalanche criterion

In Chapter 6, I demonstrated that it is possible to evolve light-weight,
low-power pseudorandom number generators (PRNGs) using GP and
simulation for evaluation. As a measure of the effectiveness of the
PRNG, I used the Strict Avalanche Criterion (SAC) [Webster and Tavares,
1986], a method from cryptography that measures the nonlinearity of a
given function. SAC analyses the expected distance between outputs
given a single bit flip in the input. Please note that in this experiment
I have used a single 32-bit input rather than 8 as in Chapter 6, for the
sake of simplicity.

Each output bit should have a probability of 0.5 of being flipped
when a single input bit is changed in order to maximise the nonlinear-
ity of the PRNG. Hence the Hamming distance between the two outputs
should follow the binomial distribution B(n, 1

2). By recording the Ham-
ming distance between p(a) and p(a′) for each test case, a χ2 squared
goodness-of-fit measure can be calculated against the ideal binomial
distribution of bit flips. The performance measure of an individual
program p is given by:

SAC(p) =
n

∑
i=0

(Ci − Ei)2

Ei
(8.5)

Ci is the counted frequency of i bit flip events, and Ei the expected
frequency. In this experiment, I apply the avalanche criterion not to the
functional output of the program but to its timing, T(a, p, φ), a very differ-

8.6 timing avalanche criterion 135

ent application of the SAC. This measure is henceforth referred to as
the Timing Avalanche Criterion (TAC). This is a fascinating concept,
which may never have been considered before simply due to the lack
of any manual method capable of implementing it. It may enable us to
evolve programs designed to be resistant to side-channel cryptanalysis.

8.6.1 Side-Channels

Embedded systems are particularly vulnerable to side-channel analysis,
whereby an attacker exploits a non-computational channel of infor-
mation to break the security of a system. Covert channels are also a
generalisable concept [McHugh, 1995] that offer a mechanism not only
for deriving information but also deliberately transmitting information
about a system.

Timing channels constitute one specific class of covert channel. Phys-
ical timing properties can be used to transmit and derive information
about an executing system. The leaking of information via side-channels
is noted to be a major problem in designing secure algorithms and
viewed somewhat pessimistically by security researchers:

“It is probably not possible to protect against side-channel
attacks in the design of algorithms.” Kelsey et al. [1999]

Kocher [1996] was amongst the first to demonstrate that crypto-
graphic primitives provably secure in the mathematical domain can
become exposed to unseen vulnerabilities when implemented in a phys-
ical system. By monitoring the timing properties or power consumption
[Kocher et al., 1999] of a system, it is possible to deduce information
about the state of executing software and compromise its security.
A wide variety of attacks exist, from simple timing of operations to
statistical analysis of power traces.

Counteracting such attacks is difficult: one method is to design code
to consume the same number of cycles regardless of both the data
input or output and the state of the system. For example, this can
be achieved through the insertion of NOP instructions through the
implementation. The difficulty with this, as we saw previously, is that
the complex interactions between software and machine state are not
easily anticipated and may leak information regardless of our attempts
to homogenise resource consumption. This defence is also usually
vulnerable to other forms of attack, such as detecting NOPs through
other means, and a more robust method of defence is desirable.

8.6.2 Experiment D: Evolving TAC

In this section, I attempt to evolve an expression that has a good TAC
measure across the lowest 10 bits of its cycle count, which allows for up
to 1023 cycles, sufficient for the evaluation of small expressions. Does
such an expression even exist, given the context of a simple test loop
that repeatedly uses the code with inputs separated by a single bit flip?
It is not clear how we would proceed in designing such an expression,
but can GP design one for us?

I use a sample size of 4000, which is generous according to previous
analysis, and the same function set as in Chapter 6, with the addition of
an “inline if” statement. This is added because it would seem intuitively

136 fine-grained control over timing

Objective Find a program p∗(a) such that
HD(T(p, a, φ), T(p, a′, φ)) ≈ B(n, 1

2) where
HD(a, a′) = 1.

Terminal set a, Integer ERCs

Function set Inline if, <, LogicalShiftLeft (LSL), LSR,
MULT, SUM, AND, NOT, OR, XOR

Fitness cases a, a′ where HD(a, a′) = 1, sample size 4000

Fitness function ∑n
i=0

(Ci−Ei)2

Ei
over n = 10 bits of timing mea-

surement, where Ci is the resulting frequency
of i bits flipping and Ei is the expected fre-
quency.

Parameters Initial tree depth = 3, generations = 25,
population size = 100, prob(xo) = 0.9,
prob(mutation) = 0.1

Initialisation Koza’s ramped half-and-half method

Table 19: Experiment F: Settings to evolve an expression with a good Timing
Avalanche Criterion measurement.

likely to be a useful function in achieving TAC. The experiment is
summarised in Table 19. The best individual was subsequently tested
over a sample size of 10000, which gave a good TAC measure of 0.0228.
The p value of this result, effectively giving the probability that this
sample is drawn from the ideal Binomial distribution, is 1.00 (to 3 s.f).
The distribution of bit flips for this individual is illustrated in Figure 48.
The individual is given below and is reasonably small. Note that I have
not simplified this individual: I cannot even attempt to do so without
potentially changing its timing behaviour!

tmp = (((a > (3594493887u)) ^ ((a * (1408948682u)) >

((a > (3594493887u)) ^ (a * (609711807u))))) ?

(((a * (1408948682u)) > ((2302909662u) ^ a)) <<

(((a > (a * (609711807u))) ^ (a * (609711807u)))

% 32u)) : ((((2390510013u) * (((a > (3594493887u)

) ^ ((((a * (1408948682u)) > (((a * (1408948682u)

) > ((2302909662u) ^ a)) << (((a > (a * (609711807

u))) ^ (a * (609711807u))) % 32u))) *

(2540811676u)) * (((a * (1408948682u)) & ((a >

(3594493887u)) ^ (a * (609711807u)))) + a))) &

(2490185230u))) ^ (a * (609711807u))) &

(1135240832u)))

8.6.3 Experiment E: TAC and SAC

Building on the preceding result, I now ask: is it possible to produce
programs that perform two tasks at once? That is, with both desirable
functional and timing outputs? I attempt to produce code that has both
good functional SAC (that is, it is a good random number generator
by that criterion) and also good TAC (it is resistant to side-channel
analysis). Such a solution provides a proof-of-concept for the ability of
GP to evolve primitives resistant to side-channel analysis. It also opens
up the interesting possibility of combining the timing and functional

8.6 timing avalanche criterion 137

Expected
Actual

Bits

F
re

q
u

e
n

cy

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Figure 48: Bit flip distributions for simple TAC.

properties of the software to improve the output of the random num-
ber generator, or even to feedback the timing measure as input. This
could be used to improve the nonlinearity of the code over a series of
evaluations, assuming the capability to measure time from the code.

In order to evaluate both SAC and TAC, it is necessary to run the
simulator twice. This is because outputting the functional results of
the code requires the addition of a printf statement to the test harness,
which changes the machine state and therefore the context of the code.
Two test harnesses are used, and the individual is compiled and run
through the simulator a second time to measure its functional behaviour.
This is illustrated in Figure 49.

The fitness function used was an even weighted combination of
functional avalanche criterion measure (SAC) and timing measure
(TAC):

f (p) = w0 ·
tmax

∑
t=0

(Ct − Et)2

Et
+ w1 ·

smax

∑
s=0

(Cs − Es)2

Es
(8.6)

where Ct and Et are the actual versus expected bit flip frequencies for
the timing channel output, and Cs and Es those for the functional output.
The frequencies were measured over tmax = 10 and smax = 32 bits. The
weightings w0 = w1 = 0.5 were chosen for this experiment. With a
larger run of 25 generations, one of the best individuals produced was:

tmp = ((((a * (1408948682u)) ^ ((((((((1 1 0 6 7 8 5 8 0 5 u) * a) >>
(((((1 1 6 7 8 1 2 4 5 8 u) + (2754164240u)) & (~ a)) + ((2240102872u
) > a)) % 32u)) * ((((((1 1 0 6 7 8 5 8 0 5 u) * a) >> ((a ^ a) %
32u)) >> ((a ^ a) % 32u)) * ((((((2 3 9 0 5 1 0 0 1 3 u) * a) >>
(((1 1 0 6 7 8 5 8 0 5 u) * a) % 32u)) * (((1 1 0 6 7 8 5 8 0 5 u) * a) >
(2390510013u))) ^ (~ a)) * a)) ^ (~ ((((1 1 0 6 7 8 5 8 0 5 u) * a

) > (3594493887u)) ^ a)))) ^ ((1106785805u) * (~
((((1 1 0 6 7 8 5 8 0 5 u) * a) > (3594493887u)) ^ a)))) >> (a %
32u)) * (1408948682u)) ^ ((((((2 3 9 0 5 1 0 0 1 3 u) * a) >> ((a ^

(((1 8 7 6 0 5 6 5 5 9 u) + (3922502476u)) < ((1106785805u) * a))

138 fine-grained control over timing

ECJ
GP & SPEA2

Individual
(C Macro)Test Data

Function
Test Harness

GCC

Alpha
Object Code

M5 Simulator Stdout

Timing
Test Harness

GCC

Alpha
Object Code

M5 SimulatorTrace file

Figure 49: Evaluation of both timing and functional properties.

) % 32u)) * (((2 3 9 0 5 1 0 0 1 3 u) * a) >> ((a ^ ((1106785805u) *
a)) % 32u))) ^ (~ a)) * a))) * (1408948682u)) ^

(((((2 3 9 0 5 1 0 0 1 3 u) * a) >> (((((((((a ^ (((2 6 4 1 7 3 6 1 5 2 u) *
(1408948682u)) ^ ((3594493887u) * a))) >> ((a ^ a) % 32

u)) * ((((((2 3 9 0 5 1 0 0 1 3 u) * a) >> (((1 1 0 6 7 8 5 8 0 5 u) * a) %
32u)) * (((1 1 0 6 7 8 5 8 0 5 u) * a) > (2390510013u))) * a) >>
((a ^ ((1106785805u) * a)) % 32u))) ^ (~ a)) >> ((a *
(609711807u)) % 32u)) * (((((1 6 7 0 2 7 3 0 5 3 u) | a) &
((3825661740u) + (3105575741u))) * ((((((2 3 9 0 5 1 0 0 1 3 u) * a)
>> (((1 1 0 6 7 8 5 8 0 5 u) * a) % 32u)) * (((1 1 0 6 7 8 5 8 0 5 u) * a) >
(2390510013u))) ^ (~ a)) * a)) ^ (~ ((((1 1 0 6 7 8 5 8 0 5 u) *

a) > (3594493887u)) ^ a)))) ^ ((1106785805u) * a)) >>
(a % 32u)) % 32u)) * (((2 3 9 0 5 1 0 0 1 3 u) * a) >> ((a ^
((1106785805u) * a)) % 32u))) ^ (~ a)))

Comparing this to results in Chapter 6, there is a great deal more
use of constants. Constants require memory access, which introduces
variation into the timing properties of the individual. The TAC and
SAC distributions for this individual over a larger sample of 10 000

are given in Figure 50. Over that sample, this individual had a SAC of
0.0189 and a TAC of 0.0399. Both are equivalent to a p value of 1.00

(to 3 s.f.). These are excellent values, achieved surprisingly easily by
GP despite having to satisfy two requirements simultaneously. Table 20

gives a breakdown of the usage of each function in the function set for
the best individual from Chapter 6, the TAC individual from Section
8.6.2 and the best individual with both TAC and SAC.

Note that the first figures are for an individual taking 8 inputs,
whereas the following two are only operating on a single input. The
TAC individual is quite similar to the original individual, except that
it employs more comparisons, which certainly adds timing variation.
In summary, it appears that achieving TAC alone is not much more
difficult than achieving SAC. The reason this might seem surprising to

8.6 timing avalanche criterion 139

us is that we have an intuition for the behaviour of functional operators,
but not for the timing of those operations and their interactions with
state at a machine level. In contrast, GP measures the utility of an
individual purely on “black box” feedback, and the origin of such
information is of no concern to the search algorithm. As if to underline
the weakness of our intuition, GP has used only a single if statement
across the two individuals.

When evolving an individual with both TAC and SAC, the frequen-
cies of functions used become much greater and a larger individual
is produced. This does not appear to be the emergence of bloat (as a
steady increase in fitness is observed), rather the size of the individual
is a required property to achieve the goal. We must pay in size for the
security that TAC may provide. Most operations increase in approxi-
mately linear proportion. The most striking differences are the use of
shift operations, and subsequent requirement for modulo operators to
prevent program errors. These appear to add much variation to the
timing of the individual.

Overall, Table 20 summarises well the observations made in Chapter 3

regarding the different and competing goals in embedded systems pro-
gramming. Firstly, we have three problems with different requirements
that make them distinct from each other. Secondly, good solutions to
each problem require different compositions of their solutions. Thirdly,
Genetic Programming is able to easily adapt to the problem at hand:
given different problems with the same function set and similar param-
eters, it is able to identify those operations that are most effective at
achieving the desired functional and non-functional behaviour.

8.6.4 Robustness

The TAC of the individual found above is impressive, but was measured
when tested only from a test harness, where the function was repeatedly
called with hardcoded data from an array. What about its use in a
deployed program? We could repeat the evolutionary search in the
context of the system it is to be deployed in, which would require the
construction of a suitable test harness that mimics the behaviour of
the system to be deployed. It would be more convenient though if the
search did not have to be repeated. Given the results in Section 8.5.1,
we might be pessimistic about the ability of a code fragment to be
robust enough to have similar properties when called in a very different
context.

To test the robustness of the individual, I used it in the context
of a randomised quicksort algorithm [Motwani and Raghavan, 1995].
Randomised quicksort selects the next pivot stochastically, which im-
proves the expected time for the sort. A new test harness was created,
which populates a large data array with random integers and then calls
randomised quicksort to sort the array. At each pivot selection point,
the individual was called to function as a random number generator
and the input to the individual was taken as before from a hardcoded
array of test data. The quicksort implementation used extensive recur-
sion, such that the cache and stack contents are continuously changing
through the different calls to the individual. A large enough array was
used to ensure a sample size of 10000 calls to the individual, and the
TAC calculated.

140 fine-grained control over timing

Function Best from Chapter 6 TAC Only TAC and SAC

Input values 20 21 56

Constants 3 24 61

SUM 4 1 4

MULT 7 15 44

NOT 2 0 9

XOR 10 9 24

AND 0 3 2

OR 0 0 1

Modulo 0 2 15

Less Than 0 0 1

Greater Than 0 10 7

Shift Right 1 0 15

Shift Left 0 2 0

If 0 1 0

Total 47 88 239

Table 20: Comparing the composition of best individuals from Chapter 6, TAC
only problem and TAC-SAC problem, by the frequencies of each
operation in the individual.

Surprisingly, despite the varying machine state that the function
was called in, the TAC measure over 10000 samples was 0.180. This
still gives a p value of 1.00 (to 3.s.f). The corresponding plot is given
in Figure 51. Thus, the individual’s resistance to side-channel analysis is
a little degraded, but still an exceptionally good fit to the binomial
distribution. This is a very important result, as it demonstrates the fea-
sibility of evolving individuals that having statistical timing properties
generalising between contexts.

8.7 summary

In this chapter I have introduced several ideas regarding the application
of Genetic Programming in manipulating the fine-grained resource
consumption of code. GP was shown to be most useful in controlling
the behaviour of code over a series of evaluations, rather than the
absolute value of a single evaluation. Not only was GP successful at
producing desired statistical timing behaviour whilst simultaneously
carrying out functional computation, but the individual also generalised
over different calling contexts.

Such control opens up a whole avenue of further exploration in
the concept of “doing two things at once”, that is to liberate software
from its role as an object of abstract calculation into a process that
interacts with the host hardware platform and its execution context as
part of its functional calculation. At such a complex level of interaction,
methods such as Genetic Programming may be essential to achieve
desired behaviour.

Example applications of these methods can be found in cryptography,
both in defending against side-channel attacks and exploiting side-
channel properties. By exploiting covert timing channels [Kemmerer,

8.7 summary 141

Expected
Actual

Bits

F
re

q
u

e
n

c
y

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

(a) TAC

Expected
Actual

Bits

F
re

q
u

e
n

cy

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0
0

1
2

0
0

(b) SAC

Figure 50: Bit flip distributions for best TAC-SAC individual.

142 fine-grained control over timing

0 1 2 3 4 5 6 7 8 9 10

Expected
Actual

Bits

F
re

q
u

e
n

c
y

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Figure 51: Bit flip distributions for best TAC-SAC individual when used in
randomised quicksort.

2002], programs such as that evolved in Section 8.6.3 can be used
to transfer information such that a program is a key, and the timing
output of that program on a given input reveals the message. Only a
party with the same code and an equivalent platform can decode it.
Another scenario is using such a program as a keystream generator,
incorporating the timing properties of the software by (for example)
XORing the functional output with the time taken to generate the
previous output.

This open-ended research concludes the empirical chapters. What
follows is an evaluative discussion of how the empirical work presented
supports the hypotheses set out at the start of the thesis, as well as the
opportunities for further application and development that some of
these experimental results present.

Part IV

C O N C L U S I O N

9E VA L U AT I O N & F U T U R E W O R K

9.1 introduction

In this thesis, I set out three hypotheses regarding the application of Ge-
netic Programming to produce software for low-resource systems, and
in the preceding three chapters I have detailed empirical experimen-
tation that serves to support these hypotheses. I have presented three
different applications of GP to developing software for low-resource
systems: to create entirely new software taking into account trade-offs
between functionality and resource consumption, to improve existing
software in terms of a non-functional quality of that software, and
finally to create software with specific side-channel behaviour that goes
beyond a single measurement of its non-functional properties.

In this chapter, I first return to the individual hypotheses and demon-
strate how the work completed and described in this thesis supports
them. After discussing the hypotheses, I emphasise the original contri-
butions of the thesis, and also the results that exceeded or contradicted
my expectations.

The strands of work completed form a wide front of research that
could be pushed forward both in terms of its sophistication and also its
application. I therefore outline some of both in this chapter, as a potential
research agenda to carry this work forward to full maturity. I conclude
with a summary of the insights this work has provided.

9.2 h1: capability of gp to make trade-offs

Hypothesis 1: Genetic Programming will be able to provide
graceful degradation in the trade-off between resource consump-
tion and functionality.

In Chapter 6, Genetic Programming found a wide-range of trade-offs
in objective space, where the objectives were power consumption and
the functional quality of pseudorandom number generators (PRNGs).
Graphs such as Figure 18 demonstrate how continuous this trade-off
is: a fine level of granularity exists in the balance between the two
objectives. The range of power consumption in this figure stretches
from that required to simply return a constant, up to a program that
provides an almost perfect functional fitness that uses much more
energy.

Results in Chapter 7 also confirm the ability of the search algorithm
to discover continuous surfaces in these types of objective spaces. In
that work, the objectives were discrete-valued in contrast to the (theoret-
ically) continuously valued objectives in the PRNG work. The ultimate
goal in optimising the case studies in that chapter was to produce im-
proved programs free of error, but nevertheless a continuous trade-off
was found in all cases.

A practitioner can use GP to provide degradation as available re-
sources decrease. Such degradation is useful in situations where sub-
optimal functionality is better than none at all. A trade-off may be

145

146 evaluation & future work

Problem GCC GP

Inst. Count Median Inst. Count

Triangle1 22402 17214.5

Triangle2 8380 8000

Remainder 27025 23318

Sort1 884842 569517

Sort2 815882 790062

Factorial 395189 278700

Switch 10 143000 36000

Select 97077 90201.5

Table 21: GCC-optimised code performance versus best individuals found using
GP.

chosen statically at design-time or degradation provided at run-time by
switching between different versions of a set of software provided by
GP. I have already discussed mode switching in the context of power
management in embedded systems in Section 3.3.5. Using the results of
a GP search, power management could be applied to the whole software
ecosystem as well as hardware modes. A system library may provide
a set of implementations that vary in their power consumption, and
switch to low-power implementations when the operating system de-
tects low battery power. Thus the level of system service may gracefully
degrade in the face of falling power supply.

9.3 h2: improving existing software using gp

Hypothesis 2: Genetic Programming will be able to optimise
non-functional properties of software to a level not achievable
by a compiler: in particular, solutions found by GP will Pareto-
dominate hand-written solutions optimised by a compiler such as
GCC.

The investigation of this hypothesis lies solely in Chapter 7. This
hypothesis is directly quantifiable, and Table 21 gives a convenient
summary of results from that work. The table lists the median instruc-
tion counts across a range of parameter settings for best individuals
produced by GP. These are compared to those produced by a GCC
cross-compiler using the “-O2” optimisation level, the most efficient
level that can be similarly traced using the simulator. Median counts
are given to underscore the robustness of the method with respect to
its parameters. The framework successfully optimised the programs
thousands of times with different parameter settings.

A note of caution must be added here. The evolutionary optimisation
used ran in time periods orders of magnitude longer than a compiler.
Indeed, during evaluation the compiler itself was repeatedly executed.

How well a compiler author may do with a remit of finding optimi-
sations that outperform GP in a similar timespan is not of immediate
practical importance. It is actually the case that Genetic Programming
and the compiler are working together to optimise the software. GP is in
effect a sophisticated preprocessor that presents code in a form that

9.4 h3: fine-grained control of resource consumption 147

enables the compiler to produce a more efficient implementation than
otherwise possible. The two are in cahoots. Thus, any improvement
in compiler technology may be incorporated within the evolutionary
search. The flexibility of search algorithms in incorporating existing do-
main knowledge and toolsets in this way is one of their most appealing
features.

9.4 h3: fine-grained control of resource consumption

Hypothesis 3: Genetic Programming can act as a mechanism
to improve fine-grained control over emergent properties aris-
ing from the interaction between compiled source code and the
host hardware platform by treating this system as a “black box”,
and discovering complex relationships through exploration of the
search landscape.

This hypothesis is the subject of Chapter 8. In that chapter, I demon-
strated that GP could find software with timing properties that were
non-trivial to design by hand. Furthermore, I was able to create software
with desirable timing behaviour, where previously it was unknown if
such software even existed.

Firstly, I illustrated the difficulty of producing code that has specific
timing behaviour. Writing software to precisely exhibit simple linear
and quadratic relationships between input and time consumption was
difficult given a non-trivial machine and corresponding state. I then
outlined an even more difficult task: producing software that consumes
a quantity of time T, where T may be regarded as a random variable
and its behaviour as such is quantified by a statistical test.

In contrast to the difficulty such a task may provide for a human
programmer, the computational effort (number of fitness evaluations)
that Genetic Programming required was surprisingly small. GP was
able to evolve code with a good Timing Avalanche Criterion (TAC)
measure. This may represent a new solution method to the problem
of protecting against side-channel attack in cryptography. Not only
that, but I was also able to demonstrate that this property could be
maintained whilst also performing useful functional behaviour.

Further investigation demonstrated that software created using GP to
exhibit this complex timing behaviour was robust to its execution envi-
ronment. An individual evolved in a given test context maintained those
properties when embedded in a randomised quicksort implementation.

These experiments provide evidence that GP can be used to control
timing properties to an extent conventionally viewed to be infeasible.

9.5 thesis hypothesis

The fundamental hypothesis of this research was:

Thesis Hypothesis: Program search is a versatile and effective
method that can be used to satisfy the conflicting requirements of
low-resource systems.

The subhypotheses lend weight to this overarching one. Certainly,
GP can explore trade-offs between requirements and provide superior
solutions to those found in past research or using a modern compiler.
Some of these results could be used immediately in an embedded

148 evaluation & future work

system. The work in Chapter 8 is more explorative, yet promising.
Developing these methods into a usable tool appears feasible, and
it should also be possible to create reusable knowledge from results
produced by these methods.

9.6 original contributions

The original contributions of this thesis are as follows:

• The combination of multi-objective optimisation, hardware sim-
ulation and evolutionary search to systematically optimise non-
functional properties of software.

Previously, multi-objective Genetic Programming has been used
to a limited extent in order to optimise non-functional properties
such as program size and robustness. However, these methods
have not used hardware simulation to estimate and optimise
dynamic properties such as execution time or power consumption.
The methods presented here are both systematic and generalisable,
in that they may be applied in the same way to other problems,
properties or target platforms.

• Introducing GP as a decision-making tool where trade-offs be-
tween functional and non-functional objectives exist.

The Pareto fronts in Chapter 6 give the engineer an insight into
the nature of the trade-offs involved, and present a set of solutions
to be chosen from. The same chapter also demonstrates the impact
of including or omitting an operator (multiply) in terms of its
impact on the trade-offs that can be achieved.

• The use of Genetic Programming along with other evolutionary
methods to describe and approach in a systematic and generalis-
able manner the improvement of existing software.

The combination of coevolution, seeding and multi-objective opti-
misation to improve non-functional properties rather than create
efficient software using GP is unique to the best of my knowledge.

This work suggests a broad frontier of problems that could be
solved with such an approach. For example, a subject of recent
development is bug-fixing existing software using Genetic Pro-
gramming [Forrest et al., 2009]. This work focuses on functional
repair alone, but here I have already demonstrated that exist-
ing software can be improved in a non-functional sense whilst
retaining its functionality.

The results obtained using this method are considerably better
than using an optimising compiler alone. Some of the optimisa-
tions of Chapter 7 were very much unforeseen. The elegant use
of an input variable as a loop counter to reduce execution time
is a good example. Also, the ruthless nature of GP in removing
unnecessary instructions and in particular exploiting the expected
input distribution in order to do so, was quite impressive.

• Proposing, and demonstrating the feasibility of, search as a tool
to enable fine-grained control of resource consumption.

I have shown that GP can be used to control the relationship
between a program’s numerical input and its execution time

9.7 refining the approach 149

in a superior way to “obvious” handwritten solutions. GP was
able to control individual cycle consumption to the extent of
calculating a Boolean function in terms of its timing, although not
in a completely robust manner.

• The use of GP to successfully produce software with a novel
timing property that has not been previously developed.

My work shows that it is possible to evolve software that robustly
exhibits a sophisticated statistical behaviour in its timing charac-
teristics. This idea and the results produced are likely to be useful
in security applications defending against side-channel attacks,
by reducing information leakage. It wasn’t clear whether such
software would indeed exist per se. However, I have shown that
it does, and the fact that it was found so quickly and consistently
by Genetic Programming was both surprising and encouraging
in the promise it holds for other applications.

9.7 refining the approach

Having discussed some of the achievements of the thesis, I now outline
a way forward for future research in terms of developing further the
methods devised and tested.

9.7.1 Creating Scalable Solutions

In the work presented, the output of the evolutionary run was often a
set of solutions to be chosen from by a practitioner. The choice of trade-
off is then statically determined, and a deployed system is limited in its
capability to dynamically respond to resource availability. An alterna-
tive approach would be to create a single program that can adaptively
trade-off between functionality and resource consumption. Hence a
variable quality-of-service could be provided. This is similar to the con-
cept of evolving anytime algorithms [Zilberstein, 1996]. Hand-crafting
anytime algorithms with relatively simple and intuitive requirements
has proved to be a difficult challenge for human programmers. Finding
solutions that trade-off complex qualities such as power consumption
in an anytime manner is likely to be a very difficult problem. However,
once found, such artefacts would be reusable across different systems.

9.7.2 Handling Expensive Fitness Functions

The most immediate barrier to deployment is the length of time taken
to execute an evolutionary run. Available simulators remain slow, for
example evaluations from Chapter 8 took as long as 10 minutes to
evaluate functional and non-functional behaviour for a single individual.
In Chapter 7 I demonstrated the use of modelling as an alternative to
full simulation, and more sophisticated methods from embedded and
real-time systems research could be adopted in a similar vein.

Figure 52 summarises the different levels of fidelity that can be used
to evaluate a solution during the development of an embedded system.
In this thesis I have applied modelling, interpretation and variable
levels of detailed simulation. Note that whilst external hardware may
be faster than simulation for a single run, in fact it is to be expected that
evaluation using external hardware will take longer than simulation.

150 evaluation & future work

Figure 52: Variable fidelity in measuring the behaviour of embedded software.

This is because of the difficulties of accurate general measurement of
non-functional properties, a problem which must be compensated for
with multiple executions of a single test case to eliminate the impact of
noise.

Observing that (a) often evaluation need only give relative measures
of individuals’ fitnesses and that (b) modelling has shown to be a
useful approximation of simulation, it makes sense to propose that a
hybrid evaluation method is employed. There is much to answer here, for
example:

• When should we employ hardware-based evaluation and when
should we use lower fidelity measures?

• How can we efficiently allocate evaluations across different meth-
ods? For example, can we use external hardware to validate
previous estimations of behaviour whilst continuing in parallel to
use software estimation to continue the search?

• After obtaining the results of evaluation at a given level of fi-
delity, how best to use that information to automatically improve
the quality of higher-level methods? Can we feed information
obtained upwards through this hierarchy?

9.8 semantic correctness

A drawback of using Genetic Programming to search for programs
is that fitness evaluation is usually measured by a set of test cases.
Any behaviour that is not explicitly verified by the test set cannot be
guaranteed, i.e. we cannot be sure that a solution will generalise to
other inputs. In the case where there is a non-Boolean acceptability of
functionality, this does not pose a problem. The PRNGs produced in
Chapter 6 are an example of such a situation. If, however, a solution
has a Boolean measure of acceptability, as in Chapter 7, then we face a
dilemma. We may accept a result based on further examination using
a validation set, in the hope that this will prove sufficient. This is not

9.9 further applications 151

always unreasonable – we rely on hand-written software that has been
subjected to similar testing, although some argue that a human author
may write more reliable code due to their experience and understanding
of a problem. An alternative approach is to manually verify the results
produced by GP, as I did with some examples in Chapter 7.

If we wish to automate as much of the optimisation process as possi-
ble, it would be preferable to use a technique such as model-checking
to validate our output, as suggested by Johnson [2007]. Model-checking
has the additional benefit of being able to reason over concurrent sys-
tems, and in some cases resource usage can be modelled [Norman et al.,
2005].

9.9 further applications

In this section, I outline a number of applications for the methods
proposed in this thesis. These include applications that could be imple-
mented without further refinement, and more speculative ideas that
require investigative experimentation.

9.9.1 Operating System Applications

Operating System components are suitable targets for evolutionary
methods, as they provide self-contained functions that are small in
size (with a correspondingly small search space) and are frequently
used. Small improvements in power efficiency, for example, make a
significant contribution to the overall efficiency of the system.

Interrupt handlers are one such example. What they must achieve
is usually very well-defined and of limited complexity, and it is of
utmost importance that handlers exit quickly to avoid interrupting
other processes more than necessary. Methods such as those outlined in
Chapter 7 could, in combination with search algorithms like Linear GP,
be applied to this domain. Such components have a Boolean measure
of acceptability, but they are also small enough to verify manually and
are a good candidate for deriving optimisations from GP output.

Another example is the problem of context-switching and other
kernel-based housekeeping, which constitute a large timing and power
consumption overhead [Tan et al., 2005]. These are small operations
with a precisely defined result that may benefit from fine-tuning using
evolutionary search to locate novel optimisations. These applications
are most likely to find success in systems employing CISC architec-
tures, where subtle interactions within the target platform may provide
opportunities for fine-grained improvement.

9.9.2 Improving Compilers

Chapter 7 demonstrates the capability of GP-based search to find optimi-
sations that modern compilers cannot. In that application, the benefits
of GP were additive to those of the compiler. However, there are also
many tasks that a compiler must perform that are candidates for effi-
ciency improvement using GP. For example, embedded systems may
employ 8-bit or 16-bit processors rather than the 32-bit or 64-bit archi-
tectures used in desktop PCs. Code that assumes 32-bit capabilities may
be compiled for a target platform without 32-bit instructions, requiring

152 evaluation & future work

conversion to simpler sequences that can be executed on that platform.
Discovering the most efficient sequences for individual platforms is a
potential application of GP.

Similarly, compilers incorporate standard patterns of transformations
known to improve efficiency (loop-unrolling, inlining etc.). In my work,
GP has found some optimisations that appear to fit into such a standard
repertoire. Perhaps by exploring large amounts of optimisation data
found by Genetic Programming using data mining methods, common
patterns could be abstracted from that data and incorporated stati-
cally into compilers. A similar application of searching for the optimal
sequence of peephole optimisations was investigated by Wild [2002].

9.9.3 Exploiting Side-Channel Information

In Chapter 8 I demonstrated that it is possible to achieve very fine-
grained control over properties that are an emergent phenomenon of the
software design, compilation and hardware implementation process.

In one particular application, the aim was to provide resistance to
security attacks, but the idea has much wider potential. Given GP as a
tool to exercise such control, we can consider non-functional behaviour
as a secondary output channel. Can we use the physical properties of
software-hardware interaction to improve our computation? We may
effectively “do two things at once”, leading to smaller, faster or more
power-efficient solutions than possible without using these channels.

Consider a program that generates a sequence. What if we could find
a solution that outputs the nth element of the sequence functionally,
and the n + 1th on a non-functional channel simultaneously? Or, by
feeding back timing measurement into a PRNG, could we produce a
more compact solution? Similarly, we could consider steganographic
applications. Reverse engineering using GP to clone a system could
incorporate non-functional properties as channels of information to aid
the search.

9.10 final words

The empirical experimentation presented in this thesis provides ev-
idence in support of the hypotheses set out in Chapter 2. This ex-
perimentation may serve as a foundation for exploitation and further
exploration of these methods, which lie on a broad front across evolu-
tionary computation, simulation-based evaluation and compiler and
embedded systems design. The methods developed may enable us to
greatly improve our control over the non-functional properties of soft-
ware, an essential capability as we develop new systems that push the
boundaries of physical resources and blur the lines between hardware,
software and the physicality of computation.

B I B L I O G R A P H Y

Alien technology. URL http://www.alientechnology.com. (Cited on
pages xiv and 3.)

Crossbow Technology. URL http://www.xbow.com. (Cited on pages xiv
and 3.)

Xilinx, inc. URL http://www.xilinx.com. (Cited on pages xiv and 3.)

A. Acquaviva, T. Simunic, V. Deolalikar, and S. Roy. Remote power
control of wireless network interfaces. Journal of Embedded Computing,
1(3):381–389, 2005. (Cited on page 17.)

W. Afzal, R. Torkar, and R. Feldt. A systematic review of search-based
testing for non-functional system properties. Inf. Softw. Technol., 51

(6):957–976, 2009. (Cited on page 5.)

A. Agapitos and S. M. Lucas. Evolving efficient recursive sorting
algorithms. In Proceedings of the 2006 IEEE Congress on Evolutionary
Computation, pages 9227–9234. IEEE Press, 2006. (Cited on page 30.)

A. H. Aguirre, R. S. Zebulum, and C. Coello Coello. Evolvable hardware.
In 6th NASA / DoD Workshop on Evolvable Hardware, pages 199–205.
IEEE Computer Society, 2004. (Cited on page 56.)

A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-
Wesley, 1977. ISBN 0201000229. (Cited on pages 21 and 23.)

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38:393–422, 2002.
(Cited on pages 21 and 69.)

W.G. Alexander and D.B. Wortman. Static and dynamic characteristics
of xpl programs. Computer, 8(11):41–46, 1975. (Cited on page 14.)

J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin. Using muta-
tion analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering, 32(8):608–624, 2006. (Cited
on page 90.)

P. J. Angeline. Genetic programming and emergent intelligence. In
Advances in Genetic Programming, chapter 4, pages 75–98. MIT Press,
1994. (Cited on page 49.)

P. J. Angeline. Comparing subtree crossover with macromutation. In EP
’97: Proceedings of the 6th International Conference on Evolutionary Pro-
gramming, pages 101–112. Springer-Verlag, 1997. (Cited on page 52.)

P. J. Angeline. Competitive fitness evaluation. In Evolutionary Compu-
tation 2: Advanced Algorithms and Operators, chapter 3, pages 12–14.
Institute of Physics Publishing, Bristol, 2000. (Cited on page 65.)

P. J. Angeline and Jordan Pollack. Evolutionary module acquisition. In
Proceedings of the Second Annual Conference on Evolutionary Program-
ming, pages 154–163, 1993. (Cited on page 47.)

153

http://www.alientechnology.com
http://www.xbow.com
http://www.xilinx.com

154 bibliography

A. Arcuri, D. R. White, J. A. Clark, and X. Yao. Multi-objective im-
provement of software using co-evolution and smart seeding. In
International Conference on Simulated Evolution And Learning (SEAL),
pages 61–70, 2008. (Cited on pages vii and 85.)

R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: A design alternative for cache on-chip memory
in embedded systems. In Proceedings of the 10th International Sym-
posium on Hardware/Software Codesign, pages 73–78, 2002. (Cited on
page 16.)

W. Banzhaf, P. Nordin, R. E. Keller, and F. Francone. Genetic Program-
ming – An Introduction; On the Automatic Evolution of Computer Pro-
grams and its Applications. Morgan Kaufmann, 1998. ISBN 155860510X.
(Cited on pages 29, 37, and 39.)

B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold,
1990. ISBN 0442206720. (Cited on page 85.)

L. Benini, A. Bogliolo, and G. Micheli. A survey of design techniques
for system-level dynamic power management. IEEE Transactions on
VLSI Systems, 8(3):299–316, 2000. (Cited on page 17.)

L. Benini, A. Macii, and M. Poncino. Energy-aware design of embedded
memories: A survey of technologies, architectures, and optimization
techniques. ACM Transactions on Embedded Computing Systems, 2(1):
5–32, 2003. (Cited on page 15.)

R. Berntsson Svensson, T. Gorschek, and B. Regnell. Quality require-
ments in practice: An interview study in requirements engineering
for embedded systems. In REFSQ ’09: Proceedings of the 15th Interna-
tional Working Conference on Requirements Engineering: Foundation for
Software Quality, pages 218–232. Springer-Verlag, 2009. (Cited on
pages 4 and 57.)

M. Berthold and D. J. Hand. Intelligent Data Analysis: An Introduction.
Springer-Verlag, 1999. ISBN 3540658084. (Cited on page 75.)

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt. The M5 Simulator: Modeling Networked Systems.
IEEE Micro, 26(4):52–60, 2006. (Cited on pages 86, 92, and 125.)

S. Bleuler, M. Brack, L. Thiele, and E. Zitzler. Multiobjective genetic
programming: Reducing bloat using spea2. In Proceedings of the
2001 Congress on Evolutionary Computation (CEC 2001), pages 536–543.
IEEE Press, 2001. (Cited on pages 50 and 66.)

B. Bouyssounouse and J. Sifakis, editors. Embedded Systems Design: The
ARTIST Roadmap for Research and Development, 2005. Springer. ISBN
3540251073. (Cited on page 18.)

M. Brameier and W. Banzhaf. Linear Genetic Programming. Springer,
2007. ISBN 0387310290. (Cited on page 47.)

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA, pages
83–94, 2000. (Cited on page 71.)

bibliography 155

D. Burger, T. M. Austin, and S. Bennett. Evaluating Future Microproces-
sors: The SimpleScalar Tool Set. Technical Report CS-TR-1996-1308,
Computer Sciences Department. University of Wisconsin-Madison,
1996. (Cited on page 71.)

E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg.
Hyper-heuristics: an emerging direction in modern search technology.
In Handbook of metaheuristics, pages pp. 457–474. Kluwer Academic
Publishers, 2003. (Cited on page 30.)

D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In
ASPLOS, pages 40–52, 1991. (Cited on page 16.)

L. Carro, M. Kreutz, F. R. Wagner, and M. Oyamada. System synthesis
for multiprocessor embedded applications. In DATE ’00: Proceedings
of the conference on Design, automation and test in Europe, pages 697–702.
ACM Press, 2000. (Cited on page 23.)

A. Charnes, W. W. Cooper, and R.O. Ferguson. Optimal estimation of
executive compensation by linear programming. Management Science,
1(2):138–151, 1955. (Cited on page 58.)

H. Chen, J. A. Clark, and J. Jacob. Automated design of security
protocols. Computational Intelligence, 20(3):503–516, 2004. (Cited on
page 50.)

J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, K. Rees, and M. Roper. Reformulating software engineer-
ing as a search problem. IEE Proceedings – Software, 150, 2003. (Cited
on page 5.)

L. R. Clausen, U. P. Schultz, C. Consel, and G. Muller. Java byte-
code compression for low-end embedded systems. ACM Transactions
on Programming Languages and Systems, 22:471–489, 2000. (Cited on
page 13.)

C. Coello Coello. An updated survey of GA-based multiobjective
optimization techniques. ACM Computing Surveys, 32(2):109–143,
2000. (Cited on page 55.)

C. Coello Coello, D. Van Veldhuizen, and G. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic
Publishers, 2002. ISBN 978-0-387-33254-3. (Cited on page 55.)

W. Comisky, J. Yu, and J. R. Koza. Automatic synthesis of a wire
antenna using genetic programming. In Late Breaking Papers at the
2000 Genetic and Evolutionary Computation Conference, pages 179–186,
2000. (Cited on page 31.)

K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for
reduced code space using genetic algorithms. In Proceedings of the
workshop on languages, compilers, and tools for embedded systems, pages
1–9, 1999. (Cited on page 26.)

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press and McGraw-Hill, 2001. (Cited on page 96.)

S. L. Coumeri and D. E. Thomas. Memory modeling for system synthe-
sis. IEEE Transactions on VLSI Systems, 8(3):327–334, 2000. (Cited on
page 15.)

156 bibliography

N. L. Cramer. A representation for the adaptive generation of simple
sequential programs. In Proceedings of the 1st International Conference
on Genetic Algorithms, pages 183–187. Lawrence Erlbaum Associates,
Inc., 1985. (Cited on page 29.)

I. Das and J. Dennis. A closer look at drawbacks of minimizing weighted
sums of objectives for pareto set generation in multicriteria optimiza-
tion problems. Structural and Multidisciplinary Optimisation, 14(1):
63–69, 1996. (Cited on page 58.)

K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, 2001. ISBN 047187339X. (Cited on pages 5,
55, and 62.)

R. P. Dick and N. K. Jha. Mogac: a multiobjective genetic algorithm
for the co-synthesis of hardware-software embedded systems. In
ICCAD ’97: Proceedings of the 1997 IEEE/ACM international conference
on Computer-aided design, pages 522–529. IEEE Computer Society, 1997.
(Cited on page 56.)

S. Dignum and R. Poli. Generalisation of the limiting distribution of
program sizes in tree-based genetic programming and analysis of its
effects on bloat. In GECCO ’07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, volume 2, pages 1588–1595.
ACM Press, 2007. (Cited on page 50.)

W. E. Dougherty, D. J. Pursley, and D. E. Thomas. Instruction sub-
setting: Trading power for programmability. In Proceedings of the
Computer Society Workshop on VLSI System-Level Design, 1998. (Cited
on page 15.)

M. Ebner. On the search space of genetic programming and its relation
to nature’s search space. In Proceedings of the Congress on Evolutionary
Computation, volume 2, pages –1361, 1999. (Cited on page 32.)

ECJ. Evolutionary Computation in Java, 2009. URL http://www.cs.

gmu.edu/~eclab/projects/ecj/. (Cited on pages 72, 97, and 125.)

A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer, 2003. ISBN 3540401849. (Cited on page 38.)

ENT. A Pseudorandom Number Sequence Test Program, 2009. URL
http://www.fourmilab.ch/random/. (Cited on page 82.)

R. Feldt and P. Nordin. Using factorial experiments to evaluate the effect
of genetic programming parameters. In Proceedings of the European
Conference on Genetic Programming, pages 271–282. Springer-Verlag,
2000. (Cited on page 100.)

C. Ferreira. Gene expression programming: a new adaptive algorithm
for solving problems. ArXiv Computer Science e-prints, 13:87–129, 2001.
(Cited on page 47.)

D. B. Fogel and J. W. Atmar. Comparing genetic operators with gaussian
mutations in simulated evolutionary processes using linear systems.
Biological Cybernetics, 63(2):111–114, 1990. (Cited on pages 32 and 52.)

C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization. In Pro-
ceedings of the 5th International Conference on Genetic Algorithms, pages
416–423. Morgan Kaufmann, 1993. (Cited on page 62.)

http://www.cs.gmu.edu/~eclab/projects/ecj/
http://www.cs.gmu.edu/~eclab/projects/ecj/
http://www.fourmilab.ch/random/

bibliography 157

R. Forré. The strict avalanche criterion: spectral properties of boolean
functions and an extended definition. In CRYPTO ’88: Proceedings on
Advances in cryptology, pages 450–468. Springer-Verlag, 1990. (Cited
on page 73.)

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues. A genetic pro-
gramming approach to automated software repair. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 947–954. ACM, 2009. (Cited on page 148.)

B. Franke, M. O’Boyle, J. Thomson, and G. Fursin. Probabilistic source-
level optimisation of embedded programs. SIGPLAN Not., 40(7):
78–86, 2005. (Cited on page 25.)

A. A. Freitas. A critical review of multi-objective optimization in data
mining: a position paper. SIGKDD Explor. Newsl., 6(2):77–86, 2004.
(Cited on page 55.)

G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla,
J. Thomson, H. Leather, C. Williams, and M. O’Boyle. MILEPOST
GCC: machine learning based research compiler. In Proceedings of the
GCC Developers’ Summit, pages 1–13, 2008. (Cited on page 26.)

J. G. Ganssle. Art of Designing Embedded Systems. Butterworth-
Heinemann, 1999. ISBN 0750698691. (Cited on pages 13 and 25.)

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989. ISBN 0201157675. (Cited on pages 38

and 42.)

C. P. Gomes and B. Selman. Practical aspects of algorithm portfolio
design. In Proceedings of the Third ILOG International Users Meeting,
1997. (Cited on page 23.)

D. Goodwin and D. Petkov. Automatic generation of application spe-
cific processors. In CASES ’03: Proceedings of the 2003 international
conference on Compilers, architecture and synthesis for embedded systems,
pages 137–147. ACM, 2003. (Cited on page 15.)

B. Gorjiara, M. Reshadi, and D. Gajski. Designing a custom architecture
for dct using nisc technology. In Design Automation, 2006. Asia and
South Pacific Conference on, 2006. (Cited on page 26.)

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a bicriterion formula-
tion of the problems of integrated system identification and system
optimization. Systems, Man and Cybernetics, IEEE Transactions on, 1

(3):296–297, July 1971. (Cited on page 59.)

Mark Harman. The current state and future of search based software
engineering. In FOSE ’07: 2007 Future of Software Engineering, pages
342–357. IEEE Computer Society, 2007. (Cited on page 5.)

M. L. Harrison and J. A. Foster. Evolvable hardware. In 6th NASA /
DoD Workshop on Evolvable Hardware (EH 2004), pages 123–129. IEEE
Computer Society, 2004. (Cited on page 26.)

N. Hatta, N. D. Barli, C. Iwama, L. D. Hung, D. Tashiro, S. Sakai, and
H. Tanaka. Bus serialization for reducing power consumption. IPSJ
Digital Courier, 2:165–173, 2006. (Cited on page 16.)

158 bibliography

T. Haynes, R. L. Wainwright, S. Sen, and D. A. Schoenefeld. Strongly
typed genetic programming in evolving cooperation strategies. In
Proceedings of the 6th International Conference on Genetic Algorithms,
pages 271–278. Morgan Kaufmann, 1995. (Cited on page 51.)

S. Heath. Embedded Systems Design. Butterworth-Heinemann, 1997.
ISBN 0750632372. (Cited on pages 3, 13, 15, 18, 24, and 25.)

Thomas A. Henzinger and Joseph Sifakis. The discipline of embedded
systems design. Computer, 40(10):32–40, 2007. (Cited on page 4.)

J. C. Hernandez, P. Isasi, and A. Seznec. On the design of state-of-the-art
pseudorandom number generators by means of genetic programming.
In Proceedings of the 2004 IEEE Congress on Evolutionary Computation,
pages 1510–1516, 2004. (Cited on pages 70, 71, and 82.)

W. D. Hillis. Co-evolving parasites improve simulated evolution as an
optimization procedure. Physica D, 42(1-3):228–234, 1990. (Cited on
pages 65 and 91.)

K. Holladay, K. Robbins, and J. Ronne. Eurogp. In Proceedings of
the 10th European Conference on Genetic Programming, EuroGP 2007,
volume 4445, pages 102–113. Springer, 2007. (Cited on page 48.)

J. H. Holland. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelli-
gence. University of Michigan Press, 1975. (Cited on pages 29, 32,
and 42.)

K. Hoste and L. Eeckhout. Cole: compiler optimization level exploration.
In Proceedings of the international symposium on Code generation and
optimization, pages 165–174, 2008. (Cited on page 26.)

W-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.
Thermal-aware task allocation and scheduling for embedded systems.
In DATE ’05: Proceedings of the conference on Design, Automation and
Test in Europe, pages 898–899. IEEE Computer Society, 2005. (Cited
on page 19.)

Huygens Search and Optimisation Benchmarking Suite, 2007. URL
http://gungurru.csse.uwa.edu.au/cara/huygens/. (Cited on
pages xiii and 37.)

Intel Atom Processor, 2009. URL http://www.intel.com/technology/

atom/. (Cited on page 14.)

C. Isen, L. K. John, and E. John. A tale of two processors: Revisiting the
risc-cisc debate. In Proceedings of the 2009 SPEC Benchmark Workshop
on Computer Performance Evaluation and Benchmarking, pages 57–76.
Springer-Verlag, 2009. (Cited on page 14.)

M. F. Jacome and A. Ramachandran. Embedded Systems Handbook, chap-
ter 16 (Power-Aware Embedded Computing). Taylor and Francis,
2006. ISBN 0849328241. (Cited on pages 4, 13, 19, and 93.)

J. Jannink. Cracking and co-evolving randomizers. Advances in Genetic
Programming, pages 425–443, 1994. (Cited on page 70.)

A. A. Jerraya and W. Wolf. Multiprocessor Systems-on-Chips. Morgan
Kaufmann, 2005. ISBN 012385251X. (Cited on page 23.)

http://gungurru.csse.uwa.edu.au/cara/huygens/
http://www.intel.com/technology/atom/
http://www.intel.com/technology/atom/

bibliography 159

N. K. Jha. Low power system scheduling and synthesis. In ICCAD ’01:
Proceedings of the 2001 IEEE/ACM international conference on Computer-
aided design, pages 259–263. IEEE Press, 2001. ISBN 0-7803-7249-2.
(Cited on page 19.)

C. Johnson. Genetic programming with fitness based on model checking.
In Proceedings of the 10th European Conference on Genetic Programming,
pages 114–124. Springer, 2007. (Cited on pages 50 and 151.)

E. De Jong and J. B. Pollack. Multi-objective methods for tree size
control. Genetic Programming and Evolvable Machines, 4(3):211–233,
2003. (Cited on pages 50, 51, and 66.)

A. Kansal and F. Zhao. Fine-grained energy profiling for power-aware
application design. SIGMETRICS Perform. Eval. Rev., 36(2):26–31,
2008. (Cited on page 24.)

J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-160: Notes on the
design and analysis of the yarrow cryptographic pseudorandom
number generator. In In Sixth Annual Workshop on Selected Areas in
Cryptography, pages 13–33. Springer, 1999. (Cited on page 135.)

R. A. Kemmerer. A practical approach to identifying storage and
timing channels: Twenty years later. Computer Security Applications
Conference, 0:109, 2002. ISSN 1063-9527. (Cited on page 140.)

J. C. King. Symbolic execution and program testing. Communications of
the ACM, pages 385–394, 1976. (Cited on page 91.)

D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (3rd Edition). Addison-Wesley, 1997. ISBN 0-201-89684-2.
(Cited on page 70.)

D. E. Knuth. The Art of computer programming, Volume 3: sorting and
searching (2nd Edition). Addison Wesley, 1998. ISBN 0-201-89685-0.
(Cited on page 7.)

P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology - CRYPTO ’99: Proceedings, pages 388–397. Springer-Verlag,
1999. (Cited on page 135.)

P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO ’96: Proceedings of the 16th
Annual International Cryptology Conference on Advances in Cryptology,
pages 104–113. Springer-Verlag, 1996. (Cited on page 135.)

J. R. Koza. Hierarchical Genetic Algorithms Operating on Popula-
tions of Computer Programs. In IJCAI-89: Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, pages 768–774.
Morgan Kaufmann, 1989. (Cited on page 5.)

J. R. Koza. Evolving a computer program to generate random numbers
using the genetic programming paradigm. In Proceedings of the Fourth
International Conference on Genetic Algorithms, pages 37–44. Morgan
Kaufmann, 1991. (Cited on page 70.)

J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992. ISBN 0-262-11170-5.
(Cited on pages 5, 29, 32, 33, 36, 42, 46, 50, and 87.)

160 bibliography

J. R. Koza. Gene duplication to enable genetic programming to con-
currently evolve both the. In IJCAI-95: Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, pages 734–740.
Morgan Kaufmann, 1995a. (Cited on page 47.)

J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, 1995b. ISBN 0262111896. (Cited on page 29.)

J. R. Koza, D. Andre, F. H. Bennett, and M. A. Keane. Genetic Program-
ming 3: Darwinian Invention and Problem Solving. Morgan Kaufman,
1999. ISBN 1-55860-543-6. (Cited on page 29.)

J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV: Routine Human-Competitive Machine Intelli-
gence. Kluwer Academic Publishers, 2003. ISBN 1-4020-7446-8. (Cited
on pages 5, 29, 51, and 52.)

J. R. Koza, L. W. Jones, M. A. Keane, M. J. Streeter, and S. H. Al-sakran.
Toward automated design of industrial-strength analog circuits by
means of genetic programming. In Genetic Programming Theory and
Practice II. Kluwer Academic Publishers, 2004a. (Cited on pages 35

and 66.)

J. R. Koza, M. A. Keane, and M. J. Streeter. Evolvable hardware. In 6th
NASA / DoD Workshop on Evolvable Hardware (EH 2004), pages 3–17.
IEEE Computer Society, 2004b. (Cited on page 26.)

J. R. Koza, S. H. Al-Sakran, and L. W. Jones. Cross-domain features of
runs of genetic programming used to evolve designs for analog cir-
cuits, optical lens systems, controllers, antennas, mechanical systems,
and quantum computing circuits. In EH ’05: Proceedings of the 2005
NASA/DoD Conference on Evolvable Hardware, pages 205–214. IEEE
Computer Society, 2005. (Cited on pages 5, 26, and 30.)

F. Kri and M. Feeley. Genetic instruction scheduling and register al-
location. In Proceedings of the The Quantitative Evaluation of Systems
Conference, pages 76–83, 2004. (Cited on page 26.)

P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones. Fast
searches for effective optimization phase sequences. In Proceedings
of the conference on Programming language design and implementation,
pages 171–182, 2004. (Cited on page 26.)

S. Kumar, A. Jantsch, M. Millberg, J. Öberg, J.-P. Soininen, M. Forsell,
K. Tiensyrjä, and A. Hemani. A network on chip architecture and
design methodology. VLSI, IEEE Computer Society Annual Symposium
on, 2002. (Cited on page 17.)

C. Lamenca-Martinez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador,
and A. Ribagorda. Lamar: A new pseudorandom number generator
evolved by means of genetic programming. In Parallel Problem Solving
from Nature IX, volume 4193, pages 850–859. Springer-Verlag, 2006.
(Cited on pages 70, 71, 72, 75, 78, 79, and 82.)

W. B. Langdon. Data structures and genetic programming. In Advances
in Genetic Programming 2, pages 395–414. MIT Press, 1996a. ISBN
0-262-01158-1. (Cited on page 35.)

bibliography 161

W. B. Langdon. Scheduling maintenance of electrical power transmis-
sion networks using genetic programming. In The 1st Online Workshop
on Soft Computing (WSC1). Nagoya University, Japan, 1996b. (Cited
on page 35.)

W. B. Langdon. Fitness causes bloat: Mutation. In Proceedings of the
IEEE International Conference on Evolutionary Computation, pages 633–
638. IEEE Press, 1998. (Cited on page 49.)

W. B. Langdon. Quadratic bloat in genetic programming. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2000),
pages 451–458. Morgan Kaufmann, 2000a. (Cited on pages 5 and 48.)

W. B. Langdon. Size fair and homologous tree crossovers for tree
genetic programming. Genetic Programming and Evolvable Machines, 1

(1-2):95–119, 2000b. (Cited on page 35.)

W. B. Langdon. How many good programs are there?: How long are
they? In Foundations of Genetic Algorithms VII, pages 183–202. Morgan
Kaufmann, 2002. (Cited on page 40.)

W. B. Langdon and P. Nordin. Seeding genetic programming popula-
tions. In Proceedings of the European Conference on Genetic Programming,
pages 304–315, 2000. (Cited on pages 35 and 66.)

W. B. Langdon and R. Poli. Fitness causes bloat. In Second On-line World
Conference on Soft Computing in Engineering Design and Manufacturing,
pages 13–22. Springer-Verlag London, 1997. ISBN 3-540-76214-0.
(Cited on page 50.)

W. B. Langdon and R. Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002. ISBN 3-540-42451-2. (Cited on pages 33, 42,
44, and 94.)

W. B. Langdon and R. Poli. On Turing complete T7 and MISC F-4
program fitness landscapes. Technical Report CSM-445, 2005. (Cited
on page 40.)

W. B. Langdon, S. Gustafson, and J. R. Koza. The Genetic Program-
ming Bibliography, 2009. URL http://www.cs.bham.ac.uk/~wbl/

biblio/. (Cited on page 5.)

Pepijn J. De Langen and Ben H. H. Juurlink. Trade-offs between voltage
scaling and processor shutdown for low-energy embedded multipro-
cessors. In SAMOS, pages 75–85. Springer, 2007. (Cited on pages 18

and 19.)

J. Y. Lee, S. I.K. Choa, and I. C. Park. Performance enhancement of
embedded software based on new register allocation technique. Mi-
croprocessors and Microsystems, 29(4):177–187, 2005. (Cited on page 20.)

S. Leventhal, L. Yuan, N. K. Bambha, S. S. Bhattacharyya, and G. Qu.
DSP address optimization using evolutionary algorithms. In Pro-
ceedings of the workshop on Software and compilers for embedded systems,
pages 91–98, 2005. (Cited on page 25.)

X. Li, M. J. Garzaran, and D. Padua. Optimizing sorting with ge-
netic algorithms. In Proceedings of the international symposium on Code
generation and optimization, pages 99–110, 2005. (Cited on page 25.)

http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.cs.bham.ac.uk/~wbl/biblio/

162 bibliography

S. Luke and L. Panait. A comparison of bloat control methods for
genetic programming. Evolutionary Computation, 14(3):309–344, 2006.
(Cited on page 95.)

S. Luke and L. Spector. A comparison of crossover and mutation in
genetic programming. In Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 240–248. Morgan Kaufmann, 1997.
(Cited on page 52.)

S. Luke and L. Spector. A revised comparison of crossover and mutation
in genetic programming. In Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 208–213. Morgan Kaufmann, 1998.
(Cited on page 52.)

Mälardalen WCET Research Group. Wcet project benchmarks.
URL http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.
(Cited on page 96.)

A. Marek, W. D. Smart, and M. C. Martin. Learning visual feature
detectors for obstacle avoidance using genetic programming. Com-
puter Vision and Pattern Recognition Workshop, 6:61, 2003. (Cited on
page 35.)

R. Mathew, M. Younis, and S. M. Elsharkawy. Energy-efficient boot-
strapping for wireless sensor networks. Innovations in Systems and
Software Engineering, 1(2):205–220, 2005. (Cited on page 21.)

J. McHugh. Handbook for the Computer Security Certification of Trusted
Systems, chapter Covert Channel Analysis. 1995. (Cited on page 135.)

P. McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14(2):105–156, June 2004.
(Cited on pages 91 and 96.)

Mersenne Twister PRNG. University of Hiroshima, 2009. URL http:

//www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html. (Cited
on page 73.)

B. Mesman, L. Spaanenburg, H. Brinksma, E. F. Deprettere, E. Verhulst,
F. Timmer, H. van Gageldonk, L. D. J. Eggermont, R. van Leuken,
T. Krol, and W. Hendriksen. Embedded Systems Roadmap – Vision on
technology for the future of PROGRESS. STW Technology Foundation,
2002. ISBN 0521474655. (Cited on page 3.)

Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics.
Springer, 2000. ISBN 3540224947. (Cited on page 29.)

G. De Micheli, R. K. Gupta, and K. Gupta. Hardware/software co-
design. IEEE Micro, 85:349–365, 1997. (Cited on page 13.)

T. Miconi. Why coevolution doesn’t "work": superiority and progress in
coevolution. In Proceedings of the 12th European Conference on Genetic
Programming, EuroGP 2009, volume 5481, pages 49–60. Springer, 2009.
(Cited on page 65.)

J. Miller and P. Thomson. Cartesian genetic programming. In Pro-
ceedings of the 3rd European Conference on Genetic Programming, pages
121–132. Springer-Verlag, 2000. (Cited on pages 47 and 48.)

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

bibliography 163

J. Miller, M. Reformat, and H. Zhang. Automatic test data generation
using genetic algorithm and program dependence graphs. Information
and Software Technology, 48(7):586–605, 2006. (Cited on page 96.)

B. Mitavskiy and J. Rowe. Some results about the markov chains
associated to GPs and to general EAs. Theoretical Computer Science,
361(1):72–110, 28 August 2006. (Cited on page 45.)

D. J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199–230, 1995. (Cited on page 46.)

Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley
& Sons, 2006. ISBN 0471316490. (Cited on page 100.)

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cam-
bridge University Press, 1995. (Cited on page 139.)

G. Myers. The Art of Software Testing. Wiley, 1979. ISBN 0471043281.
(Cited on pages 91 and 122.)

J. Noble and C. Weir. Small memory software: patterns for systems with
limited memory. Addison-Wesley, 2001. ISBN 0-201-59607-5. (Cited
on page 22.)

P. Nordin. AIMGP: A Formal Description. In J. R. Koza, editor, Late
Breaking Papers at the Genetic Programming 1998 Conference. Stanford
University Bookstore, 1998. (Cited on page 49.)

G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Using
probabilistic model checking for dynamic power management. Formal
Aspects of Computing, 17(2):160–176, 2005. (Cited on page 151.)

M. O’Neill and C. Ryan. Automatic generation of caching algorithms.
In Evolutionary Algorithms in Engineering and Computer Science, pages
127–134. John Wiley, 1999. (Cited on page 25.)

M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Springer, 2003. ISBN
1402074441. (Cited on pages 46, 47, and 48.)

U. O’Reilly and F. Oppacher. The troubling aspects of a building block
hypothesis for genetic programming. In Foundations of Genetic Algo-
rithms 3, pages 73–88. Morgan Kaufmann, 1994. (Cited on pages 42

and 43.)

P. R. Panda, N. D. Dutt, and A. Nicolau. Local memory exploration and
optimization in embedded systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(1):3–13, 1999. (Cited
on page 16.)

J. A. Paradiso and T. Starner. Energy scavenging for mobile and wireless
electronics. Pervasive Computing, IEEE, 4(1):18–27, March 2005. (Cited
on page 69.)

S. Park and H. Shin. Performance evaluation of memory management
configurations in linux for an os-level design space exploration. In
Embedded Computer Systems: Architectures, Modeling, and Simulation,
7th International Workshop, SAMOS 2007., pages 24–33. Springer, 2007.
(Cited on page 18.)

164 bibliography

D. A. Patterson and D. R. Ditzel. The case for the reduced instruction set
computer. SIGARCH Comput. Archit. News, 8(6):25–33, 1980. (Cited
on page 14.)

A. Peleg and U. Weiser. MMX technology extension to the intel archi-
tecture. IEEE Micro, 16(4):42–50, 1996. (Cited on page 14.)

R. Poli and M. Graff. There is a free lunch for hyper-heuristics, genetic
programming and computer scientists. In Proceedings of the 12th
European Conference on Genetic Programming, EuroGP 2009, pages 195–
207. Springer, 2009. (Cited on page 51.)

R. Poli and W. B. Langdon. A new schema theorem for genetic pro-
gramming with one-point crossover and point mutation. Technical
Report CSRP-97-03, University of Birmingham, UK, 1997. (Cited on
pages 42 and 44.)

R. Poli and W. B. Langdon. Genetic Programming Theory I & II. GECCO
Conference Tutorial, 2009. (Cited on page 32.)

R. Poli and N. McPhee. General schema theory for genetic programming
with subtree-swapping crossover: part i. Evol. Comput., 11(1):53–66,
2003. (Cited on page 44.)

R. Poli and N. McPhee. Parsimony pressure made easy. In GECCO
’08: Proceedings of the 10th annual conference on Genetic and evolutionary
computation, pages 1267–1274, 2008. (Cited on pages 50 and 109.)

R. Poli, N. McPhee, and J. E. Rowe. Exact schema theory and markov
chain models for genetic programming and variable-length genetic
algorithms with homologous crossover. Genetic Programming and
Evolvable Machines, 5(1):31–70, March 2004. (Cited on page 45.)

R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic pro-
gramming. 2008. URL http://www.gp-field-guide.org.uk. (Cited
on pages 29 and 87.)

C. Price. MIPS IV Instruction Set, revision 3.1. MIPS Technologies, Inc,
1995. (Cited on page 71.)

R. The R Project for Statistical Computing, 2009. URL http://www.

r-project.org/. (Cited on page 114.)

M. Reformat, X. Chai, and J. Miller. On the possibilities of (pseudo-)
software cloning from external interactions. Soft Comput., 12(1):29–49,
2007. (Cited on page 87.)

J. L. Risco-Martín, D. Atienza, R. Gonzalo, and J. I. Hidalgo. Optimiza-
tion of dynamic memory managers for embedded systems using
grammatical evolution. In GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 1609–1616.
ACM, 2009. (Cited on page 25.)

K. Rodriguez-Vazquez, C. M. Fonseca, and P. J. Fleming. Multiobjective
genetic programming: A nonlinear system identification application.
In Late Breaking Papers at the 1997 Genetic Programming Conference,
pages 207–212. Stanford Bookstore, 1997. ISBN 0-18-206995-8. (Cited
on page 63.)

http://www.gp-field-guide.org.uk
http://www.r-project.org/
http://www.r-project.org/

bibliography 165

J. P. Rosca. Analysis of complexity drift in genetic programming. In
Genetic Programming 1997: Proceedings of the Second Annual Conference,
pages 286–294. Morgan Kaufmann, 1997. (Cited on pages 42 and 44.)

C. D. Rosin and R. K. Belew. New methods for competitive coevolution.
Evolutionary Computation, 5(1):1–29, 1997. (Cited on page 92.)

C. Rusu, R. Melhem, and D. Mossé. Maximizing rewards for real-
time applications with energy constraints. Transactions on Embedded
Computing Systems, 2(4):537–559, 2003. (Cited on page 19.)

R. Sagarna and J.A. Lozano. Scatter search in software testing, com-
parison and collaboration with estimation of distribution algorithms.
European Journal of Operational Research, 169(2):392–412, 2006. (Cited
on page 96.)

B. Sareni and L. Krahenbuhl. Fitness sharing and niching methods
revisited. IEEE Transactions on Evolutionary Computation, 2(3):97–106,
Sep 1998. (Cited on page 61.)

M. Sarrafzadeh, F. Dabiri, R. Jafari, T. Massey, and A. Nahapetian. Low
power light-weight embedded systems. In ISLPED ’06: Proceedings
of the 2006 international symposium on Low power electronics and design,
pages 207–212. ACM, 2006. (Cited on page 3.)

M. D. Schmidt and H. Lipson. Incorporating expert knowledge in
evolutionary search: a study of seeding methods. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 1091–1098. ACM, 2009. (Cited on pages 35 and 90.)

D. Seal. ARM Architecture Reference Manual. Addison-Wesley Longman
Publishing, 2000. ISBN 0201737191. (Cited on page 15.)

L. Shang, L. Peh, A. Kumar, and N. K. Jha. Temperature-aware on-chip
networks. IEEE Micro, 26(1):130–139, 2006. (Cited on page 17.)

D. Sheldon and F. Vahid. Making good points: application-specific
pareto-point generation for design space exploration using statistical
methods. In FPGA ’09: Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays, pages 123–132. ACM,
2009. (Cited on page 25.)

S. Silva and J. Almeida. Dynamic maximum tree depth. In Genetic and
Evolutionary Computation – GECCO-2003, pages 1776–1787. Springer-
Verlag, 2003. (Cited on page 50.)

A. Sinha, A. Wang, and A. P. Chandrakasan. Algorithmic transforms
for efficient energy scalable computation. In ISLPED ’00: Proceedings
of the 2000 international symposium on Low power electronics and design,
pages 31–36. ACM Press, 2000. (Cited on page 22.)

M. Sipper and M. Tomassini. Co-evolving parallel random number
generators. In Parallel Problem Solving from Nature – PPSN IV, pages
950–959. Springer, 1996. (Cited on page 70.)

M. Smith and L. Bull. Improving the human readability of features
constructed by genetic programming. In GECCO ’07: Proceedings of
the 9th annual conference on Genetic and evolutionary computation, pages
1694–1701. ACM Press, 2007. (Cited on page 51.)

166 bibliography

S. F. Smith. A learning system based on genetic adaptive algorithms. PhD
thesis, University of Pittsburgh, 1980. (Cited on page 29.)

T. Soule and J. A. Foster. Effects of code growth and parsimony pressure
on populations in genetic programming. In Proceedings of the IEEE
International Conference on Evolutionary Computation, pages 781–186.
IEEE Press, 1998. (Cited on page 49.)

L. Spector and A. Robinson. Genetic programming and autoconstructive
evolution with the push programming language. Genetic Programming
and Evolvable Machines, 3(1):7–40, 2002. (Cited on page 47.)

M. Stephenson, S. Amarasinghe, M. Martin, and U. M. O’Reilly. Meta
optimization: improving compiler heuristics with machine learning.
SIGPLAN Notices, 38(5):77–90, 2003. (Cited on page 25.)

T. K. Tan, A. Raghunathan, and N. K. Jha. Energy macromodeling of
embedded operating systems. ACM Trans. Embed. Comput. Syst., 4(1):
231–254, 2005. (Cited on page 151.)

R. J. Terrile, H. Aghazarian, D. Keymeulen, G. Klimeck, M. A. Kordon,
and P. Allmen. Evolutionary computation technologies for the au-
tomated design of space systems. In EH ’05: Proceedings of the 2005
NASA/DoD Conference on Evolvable Hardware, pages 131–138. IEEE
Computer Society, 2005. (Cited on page 23.)

A. Thompson, P. Layzell, and R. S. Zebulum. Explorations in de-
sign space: unconventional electronics design through artificial evo-
lution. IEEE Transactions on Evolutionary Computation, 3(3):167–196,
1999. (Cited on page 26.)

A. Turing. Intelligent machinery. Technical report, 1948. URL http://

www.alanturing.net/intelligent_machinery/. (Cited on page 29.)

O. S. Unsal, R. Ashok, I. Koren, C. M. Krishna, and C. A. Moritz. Cool-
cache: A compiler-enabled energy efficient data caching framework
for embedded / multimedia processors. Transactions on Embedded
Computing Systems, 2(3):373–392, 2003. (Cited on page 20.)

F. Vahid and T. Givargis. Highly-cited ideas in system codesign and
synthesis. In CODES/ISSS ’08: Proceedings of the 6th IEEE/ACM/IFIP
international conference on Hardware/Software codesign and system syn-
thesis, pages 191–196. ACM, 2008. (Cited on page 13.)

A. Vargha and H. Delaney. A critique and improvement of the CL
common language effect size statistics of McGraw and Wong. J.
Educational and Behavioral Statistics, 25(2):101–132, 2000. (Cited on
page 117.)

K. Villela, J. Doerr, and A. Gross. Proactively managing the evolu-
tion of embedded system requirements. In International Requirements
Engineering, 2008. RE ’08. 16th IEEE, pages 13–22, 2008. (Cited on
page 4.)

A.G. Voyiatzis, A.G. Fragopoulos, and D.N. Serpanos. Embedded Systems
Handbook, chapter 17 (Design Issues in Secure Embedded Systems).
Taylor and Francis, 2006. ISBN 0849328241. (Cited on page 13.)

http://www.alanturing.net/intelligent_machinery/
http://www.alanturing.net/intelligent_machinery/

bibliography 167

B. Warneke, M. Last, B. Liebowitz, and K. S.J. Pister. Smart dust:
Communicating with a cubic-millimeter computer. Computer, 34(1):
44–51, 2001. (Cited on page 69.)

A. F. Webster and S. E. Tavares. On the design of S-boxes. In Advances in
Cryptology –- Crypto ’85, pages 523–534. Springer-Verlag, 1986. (Cited
on pages 73 and 134.)

T. Weise and K. Geihs. Genetic programming techniques for sensor
networks. In Proceedings of 5. GI/ITG KuVS Fachgespräch Drahtlose
Sensornetze, pages 21–25, 2006. (Cited on pages 62 and 66.)

C. H. Westerberg and J. Levine. Investigation of different seeding
strategies in a genetic planner. In Proc. EvoWorkshops2001: EvoCOP,
EvoFlight, EvoIASP, EvoLearn, and EvoSTIM, pages 505–514. Springer,
2001. (Cited on page 35.)

P. A. Whigham. A schema theorem for context-free grammars. In 1995
IEEE Conference on Evolutionary Computation, pages 178–181. IEEE
Press, 1995. (Cited on pages 42 and 44.)

P. A. Whigham and J. P. Rosca. Grammatically-based genetic program-
ming. In Proceedings of the Workshop on Genetic Programming: From
Theory to Real-World Applications (TR95.2), pages 33–41, 1995. (Cited
on page 46.)

D. R. White and S. Poulding. A rigorous evaluation of crossover
and mutation in genetic programming. In Proceedings of the 12th
European Conference on Genetic Programming, EuroGP 2009, pages 220–
231. Springer, 2009. (Cited on pages vii, 39, 52, and 100.)

D. R. White, J. A. Clark, J. Jacob, and S. Poulding. Searching for
Resource-Efficient Programs: Low-Power Pseudorandom Number
Generators. In GECCO 2008: Proceedings of the 10th Annual Confer-
ence on Genetic and Evolutionary Computation, pages 1775–1782, 2008.
(Cited on pages vii, 70, and 78.)

D. Wild. Code optimisation using genetic algorithms. Master’s thesis,
University of York, 2002. (Cited on pages 26 and 152.)

D. H. Wolpert and W. G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,
1997. (Cited on page 51.)

XScale Series, 2007. URL http://www.intel.com/design/

intelxscale/. (Cited on page 18.)

R. Yavatkar and K. Lakshman. A CPU Scheduling Algorithm for
Continuous Media Applications. In NOSSDAV ’95: Proceedings of the
5th International Workshop on Network and Operating System Support for
Digital Audio and Video, pages 210–213. Springer-Verlag, 1995. (Cited
on page 19.)

Y. Yoshida, B. Song, H. Okuhata, T. Onoye, and I. Shirakawa. An object
code compression approach to embedded processors. In ISLPED ’97:
Proceedings of the 1997 international symposium on Low power electronics
and design, pages 265–268. ACM Press, 1997. (Cited on page 16.)

http://www.intel.com/design/intelxscale/
http://www.intel.com/design/intelxscale/

168 bibliography

C. Zhang and F. Vahid. A Power-Configurable Bus for Embedded
Systems. In Proceedings of the IEEE International Symposium on Circuits
and Systems, pages 809–812. Piscataway, 2002. (Cited on page 18.)

F. Zhao and L. Guibas. Wireless Sensor Networks: an Information Process-
ing Approach. Morgan Kaufmann, 2004. (Cited on page 21.)

S. Zilberstein. Using anytime algorithms in intelligent systems. AI
magazine, 17(3):73, 1996. (Cited on pages 22 and 149.)

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report 103, 2001. (Cited
on pages 60, 63, and 74.)

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino
and Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL
were used). The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)

Final Version as of March 26, 2010 at 11:59.

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Motivation
	1.1 Low-Resource Systems
	1.2 Low-Resource Software
	1.3 Traditional Low-Resource Software Development
	1.4 Opportunities for Improvement
	1.5 Genetic Programming
	1.6 Research Goals
	1.7 Structure of this Document

	2 Hypotheses
	2.1 Introduction
	2.2 Thesis Hypothesis
	2.3 Summary

	Literature Review
	3 Traditional Resource Optimisation
	3.1 Introduction
	3.2 Traditional Methods
	3.3 Hardware Design
	3.4 Operating System Optimisation
	3.5 Compiler Optimisation
	3.6 Software Design
	3.7 Full System Synthesis
	3.8 Limitations of Traditional Methods
	3.9 Design Evaluation
	3.10 Optimisation using Search
	3.11 Summary

	4 Genetic Programming
	4.1 Introduction
	4.2 An Overview of GP
	4.3 Representation
	4.4 Initialisation
	4.5 Evaluation
	4.6 Variation
	4.7 GP Algorithm Summary
	4.8 Theoretical Basis
	4.9 Extensions to GP
	4.10 Alternative Representations
	4.11 The Problem of Bloat
	4.12 Confidence in Results
	4.13 Comprehending GP Output
	4.14 No Free Lunch
	4.15 Achievements of GP
	4.16 Comparing GP to Random Search
	4.17 Open Issues
	4.18 Summary

	5 Multi-objective Optimisation
	5.1 Introduction
	5.2 Problem Definition
	5.3 Types of Multi-objective Optimisation
	5.4 Aggregation of Objectives
	5.5 Pareto-based Optimisation
	5.6 Pareto-Based Algorithms
	5.7 Coevolution
	5.8 Multi-objective Genetic Programming
	5.9 Summary

	Experimentation
	6 Evolving Resource-Efficient Software
	6.1 Introduction
	6.2 Pseudorandom Number Generators
	6.3 Power Simulation
	6.4 GP Parameters
	6.5 Fitness Measurement
	6.6 Problem Summary
	6.7 Implementation
	6.8 Results
	6.9 Summary

	7 Improving Resource Efficiency
	7.1 Introduction
	7.2 Problem Formulation
	7.3 Target Platform
	7.4 Proposed Framework
	7.5 Case Studies
	7.6 Implementation Issues
	7.7 Experimental Method
	7.8 Results
	7.9 Limitations
	7.10 Future Work
	7.11 Conclusion

	8 Fine-grained Control over Timing
	8.1 Introduction
	8.2 Resource-Consumption as a Function
	8.3 Evaluating Low-level Timing
	8.4 Designing Specific Complexity
	8.5 Time as a Functional Output
	8.6 Timing Avalanche Criterion
	8.7 Summary

	Conclusion
	9 Evaluation & Future Work
	9.1 Introduction
	9.2 H1: Capability of GP to make Trade-offs
	9.3 H2: Improving Existing Software using GP
	9.4 H3: Fine-Grained Control of Resource Consumption
	9.5 Thesis Hypothesis
	9.6 Original Contributions
	9.7 Refining the Approach
	9.8 Semantic Correctness
	9.9 Further Applications
	9.10 Final Words

	Bibliography
	Colophon

