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Abstract

The Normal Gamma prior, a Bayesian adaptive shrinkage method
which is implemented using MCMC, is compared to other statistical
methods as an eQTL approach to identifying causal or associated
genetic mutations. The methods are compared on simulated data,
where the results show the Normal Gamma prior to be a far superior
method. On human data it is more difficult to assess the results for
accuracy, but we can conclude that the Normal Gamma prior high-
lights SNPs in concordance with other methods. We also note that
the Normal Gamma prior, although enforcing very harsh shrinkage,
reports many less false positive SNPs than other methods.

We develop the Normal Gamma prior to include functional infor-
mation which we use to differentially penalise synonymous and non-
synonymous SNPs, as well as intronic, intergenic, splicing, UTR3
and other SNPs where necessary. In initial simulation studies, the
prior distribution penalises synonymous SNPs on average more than
non-synonymous SNPs. Further developments increase the penali-
sation on intronic, intergenic, UTR3, synonymous and other SNPs
more than splicing and non-synonymous SNPs due to larger func-
tional significance scores for the latter. The effect of this on the
differential shrinkage between the two sets of SNPs can be seen in
the posterior rankings and effect size estimates. We believe that this
differential shrinkage form of the Normal Gamma prior is a powerful
tool for detecting causal or associated SNPs, and has been shown
to increase the posterior mean effect size estimates for causal SNPs
with respect to the standard Normal Gamma, as well as increasing
the ranking of validated causal SNPs (with respect to the standard
Normal Gamma).
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Thesis summary

This thesis can be split into five sections. The first section covers Chapters 1
and 2, and is an introduction to the field, area and data used within the the-
sis. Chapters 3 and 4 investigate statistical methods that could be applied
to the eQTL data. Chapters 5 and 6 present the calculations and application
of the standard Normal Gamma, while the remaining Chapters 7 - 10 present
the inclusion of functional information in the Normal Gamma prior hierarchy.
Chapter 11 concludes the thesis.

Chapter 1 introduces the basics from the field of genetics and aims to
contextualise the need for the model developed in this thesis.

Chapter 2 introduces the datasets used throughout the thesis. It aims to
give a very brief background to the data production techniques.

Chapter 3 compares a selection of Bayesian shrinkage methods, highlight-
ing those that we will use throughout this thesis.

Chapter 4 compares the results of running six statistical methods on sim-
ulated eQTL datasets. The aim of the chapter is to assess which statistical
method will be used throughout the remainder of the thesis.

Chapter 5 contains all the calculations required to fully implement the
Normal Gamma prior hierarchy.

Chapter 6 presents the results from the application of the Normal Gamma
to the Yeast dataset, as well as to two human datasets, Hulse and Fairfax.

Chapter 7 develops the Normal Gamma prior to include functional in-
formation relating to synonymous and non-synonymous SNPs and reports the
simulation results based on the initial development. A different transformation
of the FS score which encodes the function information for synonymous and
non-synonymous SNPs for inclusion in the Normal Gamma prior hierarchy is
also explored here, along with the associated results on simulated data.

Chapter 8 extends the Normal Gamma with functional information to
include seven groups of functional information priors, compared to the two
groups (synonymous and non-synonymous) used previously. It contains all the
required calculations for implementing this development to the Normal Gamma.

Chapter 9 reports the simulation results for the Normal Gamma with the
seven functional information groups described in Chapter 8.

Chapter 10 compares results from the Normal Gamma with and without
functional information on subsets of the two human datasets, Hulse and Fairfax.

Chapter 11 concludes the thesis, discussing the results that have been
obtained throughout the thesis and their application, as well as ideas for further
development to the Normal Gamma prior.

ix



x



Contents

1 Introduction 1
1.1 Genetics Background . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background Biology . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Mutations. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Gene Expression. . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 The Human Genome and Exome. . . . . . . . . . . . . . 6

1.3 Current statistical analysis techniques for genetics data . . . . . 7
1.4 eQTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Software and Computing tools . . . . . . . . . . . . . . . . . . . 10
1.6 Introduction to Original Research . . . . . . . . . . . . . . . . . 11

2 An overview of data generation and preprocessing 13
2.1 Introduction to the Datasets . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Yeast data . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Hulse Data . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Fairfax Data . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Genotyping and Sequencing methods . . . . . . . . . . . . . . . 18
2.3 Gene Expression Quantification . . . . . . . . . . . . . . . . . . 20
2.4 Processing Raw Genotyping/Sequence data . . . . . . . . . . . . 21
2.5 Analysis of gene expression data . . . . . . . . . . . . . . . . . . 21
2.6 Computation, Data Processing, Data manipulation. . . . . . . . 22
2.7 The Functional Significance Score . . . . . . . . . . . . . . . . . 24
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Review of shrinkage inducing statistical methods for eQTL map-
ping 27
3.1 Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Statistical approaches to modelling eQTL data without including

functional information . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Fully Bayesian approaches . . . . . . . . . . . . . . . . . 29
3.2.2 MAP estimation approaches . . . . . . . . . . . . . . . . 35

3.3 Statistical approaches to modelling eQTL data including func-
tional information . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Statistical Models to test on eQTL data . . . . . . . . . . . . . 45
3.4.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Univariate Likelihood Ratio Test . . . . . . . . . . . . . 48

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xi



xii CONTENTS

4 Comparing the performance of statistical methods for eQTL
detection via simulation 51

4.1 HapGen Simulated dataset 1 - larger effect sizes . . . . . . . . . 51

4.1.1 Simulating the data . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 MCMC Plots . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.4 Discussion of results . . . . . . . . . . . . . . . . . . . . 57

4.2 HapGen simulated dataset 2 - smaller effect sizes . . . . . . . . 57

4.2.1 Simulating the data . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Discussion of results . . . . . . . . . . . . . . . . . . . . 62

4.3 Convergence, Computational Time and Effect of the prior . . . 62

4.3.1 Checking convergence using R-hat . . . . . . . . . . . . . 62

4.3.2 Computational time . . . . . . . . . . . . . . . . . . . . 64

4.4 Information in the likelihood as a function of sample size . . . . 65

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Implementing MCMC using the Normal Gamma Prior 69

5.1 Prior Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Full conditional distributions . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Full Conditional Distribution for σ−2. . . . . . . . . . . . 72

5.2.2 Full Conditional Distribution for ψi. . . . . . . . . . . . . 73

5.2.3 Full Conditional Distribution for γ−2. . . . . . . . . . . . 74

5.2.4 Full Conditional Distribution for φ = (α,β)T . . . . . . . 74

5.2.5 Full Conditional Distribution for λ. . . . . . . . . . . . . 75

5.3 Proving the posterior is proper . . . . . . . . . . . . . . . . . . . 77

5.4 Summary of Full Conditional Distributions for Normal Gamma. 82

5.5 Implementation of the Normal Gamma Prior. . . . . . . . . . . 82

5.5.1 Improving the accuracy when sampling from the Full Con-
ditional for φ. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.2 Updating φ = (α,β)T in two stages. . . . . . . . . . . . 83

5.5.3 Increasing the accuracy when sampling from the Full Con-
ditional for ψ. . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Comparing the performance of eQTL methods on non-simulated
data 89

6.1 Yeast data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Hulse data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Fairfax data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Which statistical method is most appropriate? . . . . . . . . . . 102

6.5 Convergence and Computational Time for the Normal Gamma . 102

6.5.1 Checking convergence . . . . . . . . . . . . . . . . . . . . 103

6.5.2 Computational time . . . . . . . . . . . . . . . . . . . . 103

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



CONTENTS xiii

7 Including Functional Information in the Normal Gamma prior107

7.1 Which functional information should we include? . . . . . . . . 107

7.2 How to incorporate the functional information . . . . . . . . . . 109

7.3 Prior distributions for the Functional Significance (FS) Scores of
Synonymous and Non-synonymous SNPs . . . . . . . . . . . . . 110

7.3.1 Obtaining the prior distributions . . . . . . . . . . . . . 110

7.3.2 Transforming the FS score . . . . . . . . . . . . . . . . . 113

7.4 Computational changes to the Normal Gamma . . . . . . . . . . 113

7.4.1 Full conditional distribution for FSnon . . . . . . . . . . 113

7.4.2 Full conditional distribution for FSsyn . . . . . . . . . . 115

7.5 Simulation Results, HapGen dataset 2 . . . . . . . . . . . . . . 116

7.5.1 Investigating the differential shrinkage from the NG split-
ting function . . . . . . . . . . . . . . . . . . . . . . . . 118

7.6 An alternative transformation from FS to B . . . . . . . . . . . 121

7.7 Simulation Results, HapGen dataset 2 . . . . . . . . . . . . . . 123

7.7.1 Reducing n . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.7.2 Re-grouping the SNPs . . . . . . . . . . . . . . . . . . . 131

7.7.3 Splitting the causal SNPs between groups . . . . . . . . 133

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Extending the Normal Gamma prior with functional informa-
tion 137

8.1 Prior distributions . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Transformation F to B . . . . . . . . . . . . . . . . . . . . . . . 142

8.3 Full conditional distributions . . . . . . . . . . . . . . . . . . . . 142

8.3.1 Proposal value for F . . . . . . . . . . . . . . . . . . . . 143

8.3.2 Updating the single continuous priors . . . . . . . . . . . 144

8.3.3 Updating one continuous and one point mass prior . . . 144

8.3.4 Updating two point mass priors . . . . . . . . . . . . . . 148

8.3.5 Parameter choice . . . . . . . . . . . . . . . . . . . . . . 149

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9 Simulation results of the Normal Gamma prior with seven func-
tional information groups 151

9.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.1.1 Comparing the NG super function across methods with
the same n . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.1.2 Comparing the NG super function as sample size varies . 153

9.1.3 Assessing the gradient of the likelihood function . . . . . 155

9.1.4 Formal Statistical Association testing . . . . . . . . . . . 157

9.1.5 Comparing posterior mean effect sizes . . . . . . . . . . . 158

9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10 Application of the Normal Gamma super function 163

10.1 Hulse data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.2 Fairfax data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



xiv CONTENTS

11 Discussion 169
11.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.2 Further developments to the Normal Gamma . . . . . . . . . . . 169

A Standard Distributions 173
A.1 The Gamma distribution. . . . . . . . . . . . . . . . . . . . . . 173
A.2 The Generalised Inverse Gaussian distribution. . . . . . . . . . . 173

B Simple dataset simulation results 175
B.1 Basic simulated data . . . . . . . . . . . . . . . . . . . . . . . . 175

B.1.1 Simulating the data . . . . . . . . . . . . . . . . . . . . . 175
B.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C Future developments to the Normal Gamma model 181
C.1 Including Gene Expression Uncertainty . . . . . . . . . . . . . . 181

C.1.1 Discussion of inclusion of gene expression uncertainty . . 182

D Pseudocode 183
D.1 Pseudocode for the standard NG function . . . . . . . . . . . . 183
D.2 Pseudocode for NG splitting function . . . . . . . . . . . . . . . 185
D.3 Pseudocode for NG super function . . . . . . . . . . . . . . . . 189

Bibliography 193





xvi CONTENTS



List of Tables

2.1 Table showing the genes, number of individuals n, number of
SNPs p and the target SNPs and the frequency of the minor
allele within the sample for the Yeast genes from Lee et al. [2009]. 16

2.2 Table showing the number of SNPs p and individuals n for each
gene in the Hulse dataset [Hulse and Cai, 2013]. . . . . . . . . . 17

2.3 Table showing the genes and gene expression type (monocytes
(mono) or B-cell (bcell)), number of individuals n, number of
SNPs p and the causal SNP and the sample frequency of the
minor allele (MAF) for the Fairfax genes from Fairfax et al. [2012]. 19

3.1 A summary of the two eQTL methods, Lirnet and SBFA, that
include functional information. . . . . . . . . . . . . . . . . . . 46

4.1 This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing
on the Hapgen simulated dataset 1A. This dataset has 54 causal
SNPs simulated according to the CASPASE8 region with a MAF
approximately equal to 0.2. . . . . . . . . . . . . . . . . . . . . 55

4.2 This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing
on the Hapgen simulated dataset 1B. This dataset has 54 causal
SNPs simulated according to the CASPASE8 region with a MAF
approximately equal to 0.02. . . . . . . . . . . . . . . . . . . . 57

4.3 This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing
on the Hapgen simulated dataset 2A. This dataset has 54 causal
SNPs simulated according to the CASPASE8 region with a MAF
approximately equal to 0.2. . . . . . . . . . . . . . . . . . . . . 60

4.4 This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing
on the Hapgen simulated dataset 2B. This dataset has 54 causal
SNPs simulated according to the CASPASE8 region with a MAF
approximately equal to 0.02. . . . . . . . . . . . . . . . . . . . 60

4.5 Table showing the maximum R-hat values for all the Normal
Gamma parameters for the simulated dataset run with different
numbers of iterations. The burn-in was kept constant at 5,000
iteration. The R-hat statistic was calculated using 10 datasets. 64

xvii



xviii LIST OF TABLES

4.6 The computational time taken for each of the simulated datasets
with different numbers of iterations used to calculate the R-hat
convergence statistic. There are 300 individuals and 631 SNPs
in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Table showing the genes, hotspot locations and SNPs in the
hotspot regions that are also in our dataset. Results will be
judged against these target SNPs to see how effectively each
method is ranking these hotspots. The numbers in the brack-
ets of the genes in the hotspot regions tells you the number of
SNPs, if greater than 1, in the gene. These SNPs may or may
not have been biologically validated as causal. We define then
based on proximity to the hotspot location. . . . . . . . . . . . 90

6.2 SNP identification numbers (1-1802) for the top 10 ranked SNPs
based on posterior mean effect size for each method for yeast
gene YOL084W (PHM7). SNPs 1600 and 1601 are in the hotspot
region, according to Lee et al. [2009], and are highlighted in red.
We notice strong concordance between the different methods and
the SNPs in the top 10. . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Table showing the ranking of the SNPs in the hotspot regions ac-
cording to the different methodologies for yeast gene YOL084W.
It also includes the minor allele frequency (MAF) for each of
the causal SNPs. The MAF affected performance in simulation
studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 The standard deviation of the gene expression values for each
gene used in the yeast dataset. . . . . . . . . . . . . . . . . . . . 92

6.5 Table showing the ranking of the SNPs in the hotspot regions
according to the different methodologies for Yeast data. It also
includes the minor allele frequency (MAF) for each of the causal
SNPs. The MAF affected performance in simulation studies. We
note that for YCR040W M is approximated from the data, and
also defined as 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Table showing the SNP with maximum effect size for each Yeast
gene across each method. We take absolute effect size based on
the posterior mean for piMASS, the Normal Gamma and Spike
and slab, the MAP estimate for HyperLasso, the LS estimate for
the LR test single SNP model compared to the null model, and
the MLLS estimate. We report the ratio of the likelihoods in
brackets for the LR test. . . . . . . . . . . . . . . . . . . . . . 94

6.7 A list of the top 5 SNPs from the different methods run on the 7
selected genes from the Hulse dataset. SNP rs12700386 in IL6 is
highlighted as it appears in the NG as the top ranked SNP, and
is in the top 10 ranked SNPs for all other methods. . . . . . . . 98



LIST OF TABLES xix

6.8 Table showing the results from the analysis of the Fairfax data.
Each gene has one causal SNP reported in the literature, we state
the rank of this causal SNP. The maximum posterior effect size
is also reported, with the maximum effect size for the LR test
calculated using the LS estimate of the single SNP model. We
report the ratio of the likelihoods in brackets for the likelihood
ratio test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.9 Table showing the maximum R-hat values [Brooks and Gelman,
1998] for all the Normal Gamma parameters for Yeast and Hulse
datasets run with 50,000 iterations and a 5,000 iteration burn-
in. The Fairfax data achieved convergence with 30,000 iterations
and a 5,000 iteration burn-in. The R-hat statistic was calculated
using 10 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.10 The computational time taken for each of the datasets used to
calculate the R-hat convergence statistic. We include n, the num-
ber of individuals and p the number of SNPs included in each
dataset. Note that Yeast and Hulse datasets are for 50,000 iter-
ations with a 5,000 iteration burn-in, and the Fairfax data is for
30,000 iterations with a 5,00 iteration burn-in. . . . . . . . . . 104

7.1 The range of posterior means across all 9 datasets within datasets
2A and 2B for Bsyn and Bnon for both NG true causal (causal
SNPs defined as non-synonymous, non-causal SNPs defined as
synonymous) and NG false causal (non-causal SNPs defined as
non-synonymous, causal SNPs defined as synonymous). The val-
ues that relate to the group where the causal SNPs are found
is highlighted in red. The values in brackets represent the prior
means for Bsyn and Bnon. . . . . . . . . . . . . . . . . . . . . . 119

7.2 A summary of the difference between the amount of shrinkage
enforced by the NG splitting through B and the standard NG
through fixed M = 0.2724. These results are for one sub-dataset,
sub-dataset 2 from dataset 2A, where the MAF of causal SNPs
is approximately 0.02. This is representative of all other sub-
datasets. We highlight in red the row of the true causal and false
causal results to indicate the group in which the 6 causal SNPs
are located. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 The AUC for the ROC curves in Figure 7.12. . . . . . . . . . . . 131



xx LIST OF TABLES

9.1 The percentages of each type of SNP found in the Fairfax data
and in the SNPs used in the FS score database. These have been
assessed and used to inform the estimates of the percentages
of each type of SNP used in the NG super function. In many
cases we increase the percentage for groups with small numbers
of SNPs in and decrease the percentage for intronic and intergenic
SNPs to ensure there are sufficient SNPs in each group to apply
the NG splitting model successfully. The number in brackets is
the number of each of the 631 SNPs that will be allocated to
each category of SNPs. The numbers in red represent the causal
SNPs within the two NG splitting scenarios (splicing causal and
UTR causal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.2 The AUC of the ROC curves in Figures 9.1 and 9.2. The ROC
curves compare the posterior mean rank of the effect size for 30
causal from the NG causal splicing, NG and NG causal UTR
scenarios with n = 300, n = 100 and n = 50. The data is
simulated using HapGen2 [Su et al., 2011] to include causal SNPs
with a MAF (minor allele frequency) of approximately 0.2 in the
population (dataset 2A). The NG causal splicing case is where
all 6 causal SNPs are defined as splicing and all 625 non-causal
SNPs are defined to be from the other 6 functional information
groups that we have defined in proportions that resemble the
population proportion of each type of SNP. The NG causal UTR
case is similar to the NG causal splicing case but with all 6 causal
and 25 non-causal SNPs defined as UTR rather than splicing.
Splicing SNPs are a priori not shrunk as much as UTR SNPs.
We use 5 sub-datasets of dataset 2A for these results. . . . . . 155

9.3 The number of SNPs (total 631, of which 6 are causal) whose 90%
posterior credible interval does not contain 0. The sub-datasets
that are omitted have 0 SNPs whose posterior credible interval
does not contain 0. The data is simulated using HapGen2 [Su
et al., 2011] to include causal SNPs with a MAF (minor allele
frequency) of approximately 0.2 in the population (dataset 2A).
The NG causal splicing case is where all 6 causal SNPs are defined
as splicing and all 625 non-causal SNPs are defined to be from
the other 6 functional information groups that we have defined
in proportions that resemble the population proportion of each
type of SNP. The NG causal UTR case is similar to the NG causal
splicing case but with all 6 causal and 25 non-causal SNPs defined
as UTR rather than splicing. Splicing SNPs are a priori not
shrunk as much as UTR SNPs. We use 5 sub-datasets (numbered
2-6) of dataset 2A for these results. . . . . . . . . . . . . . . . 158



LIST OF TABLES xxi

9.4 The AUC of the ROC curves for the NG super function, com-
paring the posterior mean summary statistic to three other per-
centiles, the 5th, 50th and 95th percentiles, of the posterior dis-
tribution as the summary statistic. The data is simulated using
HapGen2 [Su et al., 2011] to include causal SNPs with a MAF
(minor allele frequency) of approximately 0.2 in the population
(dataset 2A). The NG causal splicing case is where all 6 causal
SNPs are defined as splicing and all 625 non-causal SNPs are de-
fined to be from the other 6 functional information groups that
we have defined in proportions that resemble the population pro-
portion of each type of SNP. The NG causal UTR case is similar
to the NG causal splicing case but with all 6 causal and 25 non-
causal SNPs defined as UTR rather than splicing. . . . . . . . 159

10.1 A comparison of the top 5 ranked from the NG and NG super
function on the selected genes from the Hulse dataset. The max-
imum posterior effect size is stated for the NG and the NG super
function. We state in brackets, for the top 5 ranked SNPs in
the NG, their rank in the NG super function and for the NG
super function, we state the rank of the SNPs in the NG. For the
NG super function, we state in brackets the functional group to
which the top 5 ranked SNPs belongs. . . . . . . . . . . . . . . 164

10.2 Mean rank and the mean of the posterior mean effect sizes for the
three Hulse genes run on the NG super function. Splicing and
‘other’ functional information groups are omitted as no SNPs
were in these groups for these three Hulse genes. . . . . . . . . 165

10.3 Table showing the results of the Fairfax data on the selected
genes for the NG and the NG super function. Each gene has one
causal SNP identified in the literature, which we state the rank
of for the NG and the NG super function. For the NG super
function, we state in brackets the functional group to which the
causal SNP belongs, with its ranking. . . . . . . . . . . . . . . 166

B.1 The percentages of SNPs and causal SNPs retained when report-
ing only those SNPs whose credible interval does not contain 0
in the Normal Gamma. . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 The AUCs of the ROC curves in Figure B.2 based on only main-
taining SNPs whose posterior credible does not contain 0. Where
this is the case, the ranks are based on the posterior mean for
the SNP. We vary the posterior credible interval from 99%−50%
for the Normal Gamma on the basic simulated data. . . . . . . . 179

B.3 The AUCs for the ROC curves in Figure B.3, where we test
different posterior summary statistics for the Normal Gamma on
the basic simulated data. . . . . . . . . . . . . . . . . . . . . . . 179



xxii LIST OF TABLES



List of Figures

1.1 In the nucleus of every cell all our DNA is stored. There are
only certain parts of the DNA code, specific genes, that are re-
quired in any cell. This diagram shows a simplification of the
process of transcription which selects the relevant gene for that
cell and makes mRNA, full details can be found in Alberts et al.
[2008]. This mRNA then moves from the nucleus of the cell to
the cytoplasm of the cell, where it is translated by a ribosome
which analyses codons and creates an amino acid chain. Once a
stop codon is reached by the ribosome, it stops translation and a
protein is formed. It is this protein that allows the cell to carry
out its function. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 DNA replication is the process of DNA copying itself exactly.
This diagram explains, for one of the two strands, how this hap-
pens. The process happens simultaneously for the second strand,
and so at the end, there are two exact copies of the DNA. This
process is only possible as the DNA binds in specific pairs, A
(red) and T (green), and C (blue) and G (yellow). . . . . . . . . 4

1.3 During replication, the process of copying DNA, mutations can
occur. If a single nucleotide is mis-copied then the result is
a SNP (Single Nucleotide Polymorphism) or SNV (Single Nu-
cleotide Variant). This figure demonstrates pictorially a single
strand of DNA pre- and post-replication, highlighting the single
nucleotide change. . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 During replication, the process of copying DNA, mutations can
occur. If one or more nucleotides are inserted into the DNA se-
quence, this is known as an insertion. Depending on the number
of nucleotides inserted, the effect can be very different. This
figure demonstrates pictorially a single strand of DNA pre- and
post-replication, highlighting a 3 nucleotide insertion. . . . . . 7

1.5 During replication, the process of copying DNA, mutations can
occur. If one or more nucleotides are deleted from the DNA
sequence, this is known as a deletion. Depending on the number
of nucleotides deleted, the effect can be very different. This figure
demonstrates pictorially a single strand of DNA pre- and post-
replication, highlighting a 4 nucleotide deletion. . . . . . . . . . 8

xxiii



xxiv LIST OF FIGURES

1.6 During replication, the process of copying DNA, mutations can
occur. If a repetitive sequence of DNA is being copied and a
mistake is made in the number of times the repetitive sequence
is copied, we have a CNV (copy number variant). This figure
demonstrates pictorially a single strand of DNA pre- and post-
replication, highlighting two possible CNVs of the AG repeated
sequence. The subscript number indicates the number of the
repeats. In our example, AG4 indicates the AG pair is repeated
4 times, while AG1 indicates the AG pair is repeated only once. 9

3.1 Flowchart showing the Lirnet algorithm. . . . . . . . . . . . . . 39

3.2 The relationship between the probability of a regulator r being
causal and the regularisation parameters. . . . . . . . . . . . . . 42

3.3 A comparison, with respect to the double exponential (DE) prior
of the LASSO, for the Normal Gamma and the Normal Exponen-
tial Gamma with different parameters. Left: The NEG (Normal
Exponential Gamma) prior distribution for HyperLasso. The γ
parameter has been chosen such that the density of the NEG and
DE priors are the same at 0. Right: The NG (Normal Gamma)
prior distribution. The γ parameter has been chosen such that
the marginal prior variance of βi, which is defined as 2λγ2 is fixed
to be 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 ROC curve comparing different statistical methods (HL, LS (MLLS),
LR test, NG, piMASS and Spike and slab (S&S)) for detecting
simulated causal SNPs. The data includes 5679 SNPs of which
54 are simulated to be causal SNPs, 6 of which have effect size
1.5 with the remaining causal SNPs having effect size simulated
from a N(0.5, 0.12) distribution. The causal SNPs, simulated us-
ing data from a subset of the CASPASE8 region, have a MAF of
approximately 0.2 in the population (HapGen dataset 1A). . . 56

4.2 ROC curve comparing different statistical methods (HL, LS (MLLS),
LR test, NG, piMASS and Spike and slab (S&S)) for detecting
simulated causal SNPs. The data includes 5679 SNPs of which
54 are simulated to be causal SNPs, 6 of which have effect size
1.5 with the remaining causal SNPs having effect size simulated
from a N(0.5, 0.12) distribution. The causal SNPs, simulated us-
ing data from a subset of the CASPASE8 region, have a MAF of
approximately 0.2 in the population (HapGen dataset 1B). . . . 56

4.3 An example of the posterior distributions in the form of a his-
togram for 6 SNPs from the Normal Gamma prior for dataset
1B, with 15,000 iterations (after the burn-in has been removed).
The top right corner plot is for a causal SNP with effect size
approximately 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 An example of the MCMC trace plots for 6 SNPs from the Nor-
mal Gamma prior for dataset 1B, with 15,000 iterations and the
burn-in excluded. The top right corner trace plot is for a causal
SNP with effect size approximately 0.6. . . . . . . . . . . . . . 59



LIST OF FIGURES xxv

4.5 ROC curve comparing the different statistical methods for de-
tecting causal SNPs on our simulated data with all 54 causal
SNPs having effect size 0.4. The data was simulated using Hap-
Gen2 Su et al. [2011], targetting SNPs in the CASPASE8 region.
Causal SNPs with a MAF of approximately 0.2 in the population
(HapGen simulated data 2A). . . . . . . . . . . . . . . . . . . . 61

4.6 ROC curve comparing the different statistical methods for de-
tecting causal SNPs on our simulated data with all 54 causal
SNPs having effect size 0.4. The data was simulated using Hap-
Gen2 Su et al. [2011], targetting SNPs in the CASPASE8 region.
Causal SNPs with a MAF of approximately 0.02 in the popula-
tion (HapGen simulated data 2B). . . . . . . . . . . . . . . . . 61

4.7 ROC curve comparing the different statistical methods for de-
tecting causal SNPs on our simulated data with all 54 causal
SNPs having effect size 0.4. The data was simulated using Hap-
Gen2 Su et al. [2011], targetting SNPs in the CASPASE8 region.
Causal SNPs with a MAF of approximately 0.02 in the popula-
tion (HapGen simulated data 2B). . . . . . . . . . . . . . . . . 66

5.1 DAG representing the relationships between the variables in the
NG model. The grey shaded nodes represent observed variables,
the plates represent the loops and the arrows represent the rela-
tionships between the parameters. . . . . . . . . . . . . . . . . 70

7.1 DAG representing the hierarchical relationships between the vari-
ables in the NG model with functional information, F (synony-
mous (syn) and non-synonymous (non) SNPs). Details of the
parameters and the basic NG prior structure can be found in
Chapter 5. A DAG represents the relationships between the pa-
rameters in a model using the arrows between nodes. The nodes
are shaded grey when the variable is observed and nodes within a
plate are iterated over by the feature stated on the bottom right
corner of the plate. . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 The effect on the variance of the marginal prior distribution of
β, when changing B, where var(β|λ, γ, B) ∼ IG(2,MB). In this
case we fix M = 5 and vary B. . . . . . . . . . . . . . . . . . . 110

7.3 The distribution of functional significance (FS) scores [Lee and
Shatkay, 2009]. (a) FS scores for non-synonymous SNPs (top)
(b) FS score for synonymous SNPs (bottom). . . . . . . . . . . 111

7.4 The distribution of functional significance (FS) scores [Lee and
Shatkay, 2009] for synonymous SNPs. The histogram represents
the actual FS score values, while the red line is the fitted mixture
distribution π(FSsyn) ∼ 1FSsyn∈[0,1]

{
0.946Ga

(
2.929, 1

0.113

)
+ 0.054Ga

(
640.5, 1

0.0015

)}
.

There is small mass beyond 1, but we truncate this using the in-
dicator variable. . . . . . . . . . . . . . . . . . . . . . . . . . . 112



xxvi LIST OF FIGURES

7.5 ROC curve assessing the difference between the Normal Gamma
with the same shrinkage across all SNPs, to the NG with different
shrinkage across SNPs. True causal represents the ‘best case’
scenario where all simulated causal SNPs are treated as non-
synonymous and false causal represents the ‘worst case’ scenario
where all simulated causal SNPs are treated as synonymous. The
data is simulated using HapGen2 [Su et al., 2011] to include 6
causal SNPs with effect size 0.4 and 625 non-causal SNPs for
each of 9 sub-datasets. Top: Dataset 2A with a population
MAF (minor allele frequency) of approximately 0.2. Bottom:
Dataset 2B with a population MAF (minor allele frequency) of
approximately 0.02. . . . . . . . . . . . . . . . . . . . . . . . . 117

7.6 Histograms showing the posterior distribution of B for synony-
mous and non-synonymous SNPs. The results are based on one
sub-dataset of HapGen simulated dataset 2B with causal SNPs
effect size 0.4 and MAF (minor allele frequency) of approximately
0.02 in the population. These distributions are based on 100,000
iterations with a 5,000 iteration burn-in. The B that represents
the group containing only the causal SNPs are coloured red in
these histograms. Top: The false causal case where causal SNPs
are all denoted as synonymous (worst case of NG splitting). Bot-
tom: The true causal case, where causal SNPs are all denoted
as non-synonymous (best case of NG splitting). . . . . . . . . . 120

7.7 The posterior effect size estimates for all 54 causal SNPs in the
HapGen datasets 2A and 2B for the NG, NG true causal and
NG false causal. The false causal case is the case where only the
causal SNPs are defined as synonymous (worst case of NG split-
ting). The true causal case is the case where only the causal SNPs
are all defined as non-synonymous (best case of NG splitting).
The non-causal SNPs are all defined to be in the other group,
non-synonymous in the false causal case, and synonymous in the
true causal case. Top: The results are based on HapGen sim-
ulated dataset 2A which has causal SNPs effect size 0.4 (shown
on the plot) and MAF (minor allele frequency) of approximately
0.2 in the population. Bottom: The results are based on Hap-
Gen simulated dataset 2B which has causal SNPs effect size 0.4
(shown on the plot) and MAF (minor allele frequency) of approx-
imately 0.02 in the population. . . . . . . . . . . . . . . . . . . 122



LIST OF FIGURES xxvii

7.8 ROC curve comparing the difference between the standard Nor-
mal Gamma with the same shrinkage across all SNPs, to the
NG with different shrinkage across the two SNP groups. True
causal represents the ‘best case’ scenario where all simulated
causal SNPs are treated as non-synonymous and false causal rep-
resents the ‘worst case’ scenario where all simulated causal SNPs
are treated as synonymous. The data is simulated using Hap-
Gen2 [Su et al., 2011] to include causal SNPs with a specified
minor allele frequency (MAF). Top: The ROC is for dataset 2A
with causal SNP MAF of approximately 0.2 in the population.
Bottom: The ROC is for dataset 2B with causal SNP MAF of
approximately 0.02 in the population. . . . . . . . . . . . . . . 124

7.9 The posterior effect size estimates for all 54 causal SNPs in the
HapGen datasets 2A and 2B for the NG, NG true causal and NG
false causal with the larger range transformation from F → B.
The false causal case is the case where only the causal SNPs are
defined as synonymous (worst case of NG splitting). The true
causal case, is the case where only the causal SNPs are defined
as non-synonymous (best case of NG splitting). The non-causal
SNPs are all defined to be in the other group, non-synonymous
in the false causal case, and synonymous in the true causal case.
Top: The results are based on HapGen simulated dataset 2A
which has causal SNPs effect size 0.4 (shown on the plot) and
MAF (minor allele frequency) of approximately 0.2 in the pop-
ulation. Bottom: The results are based on HapGen simulated
dataset 2B which has causal SNPs effect size 0.4 (shown on the
plot) and MAF (minor allele frequency) of approximately 0.02 in
the population. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.10 Histograms comparing the posterior mean effect size for all SNPs
in dataset 2A. The 54 causal SNPs from the NG, NG splitting
true and NG splitting false causal scenarios are marked with ‘×’
on the histograms. The data is simulated using HapGen2 [Su
et al., 2011] to include causal SNPs with a MAF (minor allele
frequency) in the population of approximately 0.2 (dataset 2A).
The NG splitting false causal case is where all 54 causal SNPs
are defined as synonymous and all 625 non-causal SNPs are de-
fined as non-synonymous. The NG splitting true causal case is
where all 54 causal SNPs are defined as non-synonymous and the
remaining 625 non-causal SNPs are defined as non-synonymous. 128



xxviii LIST OF FIGURES

7.11 Histograms comparing the posterior mean effect size for all SNPs
in dataset 2B. The 54 causal SNPs from the NG, NG splitting
true and NG splitting false causal scenarios are marked with ‘×’
on the histograms. The data is simulated using HapGen2 [Su
et al., 2011] to include causal SNPs with a MAF (minor allele
frequency) in the population of approximately 0.02 (dataset 2B).
The NG splitting false causal case is where all 54 causal SNPs
are defined as synonymous and all 625 non-causal SNPs are de-
fined as non-synonymous. The NG splitting true causal case is
where all 54 causal SNPs are defined as non-synonymous and the
remaining 625 non-causal SNPs are defined as non-synonymous. 129

7.12 ROC curve comparing the difference between the standard Nor-
mal Gamma with the same shrinkage across all SNPs to the NG
with different shrinkage across the two SNP groups for different
values of n. True causal represents the ‘best case’ scenario where
all simulated causal SNPs are treated as non-synonymous and
false causal the ‘worst case’ scenario where all simulated causal
SNPs are treated as synonymous. The data is simulated using
HapGen2 [Su et al., 2011] to include causal SNPs with a specified
minor allele frequency (MAF). The ROC is for MAF of approxi-
mately 0.2 in the population (dataset 2A) with reduced numbers
of individuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.13 Plots comparing the posterior mean effect size for the 30 causal
SNPs from the NG, NG splitting true and NG splitting false
causal scenarios. The data is simulated using HapGen2 [Su et al.,
2011] to include causal SNPs with a MAF (minor allele fre-
quency) in the population of approximately 0.2 (dataset 2A).
The NG splitting false causal case is where all 6 causal SNPs are
defined as synonymous and all 625 non-causal SNPs are defined
as non-synonymous. The NG splitting true causal case is where
all 6 causal SNPs are defined as non-synonymous and the re-
maining 625 non-causal SNPs are defined as non-synonymous for
each of the 5 sub-datasets used. Top: Dataset contains n = 50
individuals. Bottom: Dataset contain n = 100 individuals. . . 132

7.14 ROC curve comparing the difference between the standard Nor-
mal Gamma with the same shrinkage across all SNPs to the NG
with different shrinkage across the two SNP groups. For the
‘causal plus non’ group, the 6 causal SNPs plus 218 non-causal
SNPs are defined as non-synonymous and the remaining 407
SNPs are defined as synonymous. The ‘causal plus syn’ group has
the 6 causal SNPs plus 218 non-causal SNPs defined as synony-
mous and the remaining 407 SNPs defined as non-synonymous.
The data is simulated using HapGen2 [Su et al., 2011] to include
causal SNPs with a specified minor allele frequency (MAF). The
ROC is for data with MAF of approximately 0.2 in the popula-
tion (dataset 2A). . . . . . . . . . . . . . . . . . . . . . . . . . 133



LIST OF FIGURES xxix

7.15 Plots comparing the posterior mean effect size for the 30 causal
SNPs from the NG, NG causal plus non and NG causal plus syn
scenarios. The data is simulated using HapGen2 [Su et al., 2011]
to include causal SNPs with a MAF (minor allele frequency) in
the population of approximately 0.2 (dataset 2A). For the ‘causal
plus non’ group, the 6 causal SNPs plus 218 non-causal SNPs
are defined as non-synonymous and the remaining 407 SNPs are
defined as synonymous. The ‘causal plus syn’ group has the
6 causal SNPs plus 218 non-causal SNPs defined as synonymous
and the remaining 407 SNPs defined as non-synonymous for each
of the 5 sub-datasets used. . . . . . . . . . . . . . . . . . . . . 134

7.16 Plots comparing the posterior mean effect size for the 30 causal
SNPs from the NG and the NG causal split scenarios. The causal
split scenario is when the 6 causal SNPs have been split between
the two groups, 3 causal SNPs plus 307 non-causal SNPs in the
synonymous (with a priori more shrinkage) group and 3 causal
SNPs plus 324 non-causal SNPs in the non-synonymous (a priori
less shrinkage) group. The data is simulated using HapGen2 [Su
et al., 2011] to include causal SNPs with a MAF (minor allele
frequency) in the population of approximately 0.2 (dataset 2A). 135

8.1 DAG representing the relationships between the variables in the
NG super function; the standard NG with seven groups of func-
tional information model. A DAG represents the relationships
between parameters in a model. The plates represents the pa-
rameters that are specific to groups e.g. individuals, genes etc.
The grey nodes represent the observed variables while the arrows
show the dependences between parameters. . . . . . . . . . . . 138

8.2 Histograms for the 7 functional information groups we are us-
ing. The histograms plot the raw FS score values from Lee and
Shatkay [2009] excluding 0.5 as this value represents no knowl-
edge of the deleterious effect or functional role of the SNP. . . . 139

8.3 An array showing the histograms for the 7 functional information
groups we are using with the red lines representing the prior
distributions we are placing on each group. The histograms plot
the raw FS score values from Lee and Shatkay [2009] excluding
0.5 as this value represents no knowledge. . . . . . . . . . . . . 141



xxx LIST OF FIGURES

9.1 ROCs comparing the posterior mean rank of the effect size for
30 causal SNPs for the NG causal splicing, NG and NG causal
UTR scenarios with n = 300, n = 100 and n = 50. The data is
simulated using HapGen2 [Su et al., 2011] to include causal SNPs
with a MAF (minor allele frequency) of approximately 0.2 in the
population (dataset 2A). The NG causal splicing case is where
all 6 causal SNPs are defined as splicing and all 625 non-causal
SNPs are defined to be from the other 6 functional information
groups that we have defined in proportions that resemble the
population proportion of each type of SNP. The NG causal UTR
case is similar to the NG causal splicing case but with all 6 causal
and 25 non-causal SNPs defined as UTR rather than splicing.
Splicing SNPs are a priori not shrunk as much as UTR SNPs.
We use 5 sub-datasets of dataset 2A for these results. . . . . . 154

9.2 ROCs comparing the posterior mean rank of the effect size for
30 causal SNPs for the NG causal splicing, NG and NG causal
UTR scenarios with n = 300, n = 100 and n = 50. The data is
simulated using HapGen2 [Su et al., 2011] to include causal SNPs
with a MAF (minor allele frequency) of approximately 0.2 in the
population (dataset 2A). The NG causal splicing case is where
all 6 causal SNPs are defined as splicing and all 625 non-causal
SNPs are defined to be from the other 6 functional information
groups that we have defined in proportions that resemble the
population proportion of each type of SNP. The NG causal UTR
case is similar to the NG causal splicing case but with all 6 causal
and 25 non-causal SNPs defined as UTR rather than splicing.
Splicing SNPs are a priori not shrunk as much as UTR SNPs.
We use 5 sub-datasets of dataset 2A for these results. . . . . . 156

9.3 Histograms comparing the posterior mean effect sizes for 30 causal
SNPs (marked with a ×) and the 3125 non-causal SNPs for the
NG causal splicing (dark green) and the NG causal UTR (blue)
scenarios with n = 300, n = 100 and n = 50. The data is sim-
ulated using HapGen2 [Su et al., 2011] to include causal SNPs
with a MAF (minor allele frequency) of approximately 0.2 in the
population (dataset 2A). The NG causal splicing case is where all
6 causal SNPs are defined as splicing and all 625 non-causal SNPs
are defined to be from the other 6 functional information groups
that we have defined in proportions that resemble the population
proportion of each type of SNP. The NG causal UTR case is sim-
ilar to the NG causal splicing case but with all 6 causal and 25
non-causal SNPs defined as UTR rather than splicing. Splicing
SNPs are a priori not shrunk as much as UTR SNPs. We use 5
sub-datasets of dataset 2A for these results. . . . . . . . . . . . 160



LIST OF FIGURES xxxi

9.4 Histograms comparing the posterior mean effect sizes for 30 causal
SNPs (marked with a ×) and the 3125 non-causal SNPs for the
NG causal splicing (dark green), the NG causal UTR (blue) and
the standard NG (red) scenarios with n = 300 and n = 100.
The data is simulated using HapGen2 [Su et al., 2011] to include
causal SNPs with a MAF (minor allele frequency) of approxi-
mately 0.2 in the population (dataset 2A). The NG causal splic-
ing case is where all 6 causal SNPs are defined as splicing and all
625 non-causal SNPs are defined to be from the other 6 functional
information groups that we have defined in proportions that re-
semble the population proportion of each type of SNP. The NG
causal UTR case is similar to the NG causal splicing case but
with all 6 causal and 25 non-causal SNPs defined as UTR rather
than splicing. Splicing SNPs are a priori not shrunk as much as
UTR SNPs. We use 5 sub-datasets of dataset 2A for these results. 161

10.1 Comparison of the posterior mean estimates for the NG and the
NG super function for the 4 genes in the Fairfax dataset. The
causal SNPs are marked on both plots for the NG and the NG
super function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.1 ROC curve comparing the different methods for detecting causal
SNPs. The data is simulated to have 8 causal SNPs with effect
sizes ranging from 2-0.4 (basic simulated data). We compare the
difference here between the posterior mean and median for the
Normal Gamma. . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2 ROC curve comparing the different credible intervals containing
0 as a method for detecting causal SNPs. The data is simulated
with 8 causal SNPs with effect sizes ranging from 2-0.4 (basic
simulated data). We compare the difference here between the
posterior mean for the Normal Gamma and the credible intervals
for each posterior β. . . . . . . . . . . . . . . . . . . . . . . . . 178

B.3 ROC curve comparing the different summary statistics for the
Normal Gamma for detecting causal SNPs. The data is simulated
with 8 causal SNPs with effect sizes ranging from 2-0.4 (basic
simulated data). . . . . . . . . . . . . . . . . . . . . . . . . . . 178



xxxii LIST OF FIGURES



Chapter 1

Introduction

In this thesis, we combine sophisticated statistical methodology and complex

eQTL datasets (expression of quantitative trait loci,data which consists of gene

expression and genotype data) with the aim of reducing the search space for

causal/associated genetic sequence variants.

This chapter will cover basic biology and genetics needed to understand the

project, as well as a brief overview of current techniques used to analyse genetics

data. The remaining chapters in this thesis investigate and compare statistical

methods on eQTL data. We choose to develop the statistical method based on

applying the Normal Gamma prior hierarchy to a standard linear model. We

develop this structure to include functional information. We then test both the

standard Normal Gamma model, and the developed Normal Gamma model on

both simulated and real datasets.

1.1 Genetics Background

Genetics is the study of genes, the inheritance and the variations and muta-

tions within living organisms. Genetic epidemiology is the study of the role of

genetic factors such as mutations in determining health and disease within fam-

ilies and populations. Genetic epidemiology includes the interaction between

both genetic and environmental factors. Genetic epidemiology has evolved with

new data and further insight into the human genome. Historically genetic epi-

demiologists identified monogenic diseases, now they are working, as we are,

on more complex, polygenic diseases. The data used by genetic epidemiologists

has progressed from familial data used for linkage studies, through to GWA

(genome wide association) data using tagSNPs and case-control disease status,

to sequencing data where every DNA base is read. These data are combined

with either case-control/disease status or a corresponding gene expression value

1
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in current GWA/fine mapping studies or eQTL (expression of quantitative trait

locus) studies respectively.

1.2 Background Biology

The structure of DNA

The information in the human genome is stored in the four chemical bases that

make up DNA; adenine (A), thymine (T), cytosine (C), and guanine (G). These

always bind in specific pairs, A and T, and C and G. This pairing is the key

to DNA replication or copying. DNA is arranged in a double helix form, where

each strand consists of a sequence of nucleotides. A nucleotide is any one of the

four bases of DNA (A, T, C or G) chemically bound to a sugar molecule and

a phosphate molecule. Only one strand of the DNA needs to be known as the

other is predefined by the specific pairwise binding of DNA.

DNA is not just one long string of bases A, T, C and G, it is split into 22 pairs

of chromosomes or autosomes and 1 pair of sex chromosomes. Chromosomes

are numbered according to their size, with the exception of chromosomes 21 and

22 where chromosome 21 has now been found to be smaller than chromosome

22. The present estimation, from Ensembl [Flicek et al., 2012], for the size

of chromosome 1, the largest chromosome, is that it has approximately 249

million bases (also referred to as nucleotides) and chromosome 21, the smallest

chromosome, has 48 million bases.

Chromosomes are subdivided into genes and intergenic regions. The genes

contain many introns and exons. Each gene codes for a particular protein.

Introns are the non-coding part of DNA. They separate the exons and are found

inside and outside genes, but they are not transcribed. Exons are the coding

parts of the DNA. They are only found within genes and are transcribed and

translated to make proteins.

We have two copies of each chromosome that can be different. One is inher-

ited from each parent. If the two alleles at each location match the reference

allele then the individual is homozygous wildtype at that allele. If both alleles

match the alternative or minor allele (the least common allele in the population)

the individual is homozygous SNP, if the two alleles do not match each other,

the individual is heterozygous.

From DNA to Proteins

In order to make proteins, DNA is transcribed into mRNA, which is smaller

than DNA. Proteins are created from DNA via the two processes known as
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transcription and translation, see Figure 1.1. Transcription takes place in the

nucleus of the cell which is where all our DNA is stored. During transcription

the relevant gene(s) are transcribed into single-stranded mRNA. The mRNA is

small enough to leave the nucleus of the cell and travel to the cell’s cytoplasm

where translation takes place. A ribosome, the protein synthesising part of the

cell, reads the mRNA sequence from the start codon AUG until it reaches one

of the stop codons (UAA, UGA or UAG). A codon is a set of three bases of

mRNA that specify a particular amino acid. It is the sequence of amino acid

that makes the protein, allowing the cell to carry out its function.

Figure 1.1: In the nucleus of every cell all our DNA is stored. There are
only certain parts of the DNA code, specific genes, that are required in any
cell. This diagram shows a simplification of the process of transcription which
selects the relevant gene for that cell and makes mRNA, full details can be found
in Alberts et al. [2008]. This mRNA then moves from the nucleus of the cell to
the cytoplasm of the cell, where it is translated by a ribosome which analyses
codons and creates an amino acid chain. Once a stop codon is reached by the
ribosome, it stops translation and a protein is formed. It is this protein that
allows the cell to carry out its function.

There are four different bases in RNA (A, U, C and G), hence there are

4 × 4 × 4 = 64 possible different codons, given that each codon comprises of

three bases. However, as there are only 20 amino acids, and of these we know

that three of these are stop codons (UAA, UGA and UAG) and one is a start
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codon (AUG), this means that many codons code for the same amino acid.

DNA Replication

Not all healthy cells live forever, and so they must pass on their genetic infor-

mation to the new cells. The process of duplicating a cell is called replication.

Replication aims to create an identical copy of the cell and the DNA within it.

This process is very efficient due to the pairwise binding of DNA. To replicate,

the DNA double helix unwinds itself and splits into two separate strands. Free

nucleotide molecules then attach themselves to their partner base on the single

strand DNA to create two identical copies of the DNA, see Figure 1.2. While

the DNA is unwinding, the cell nucleus divides, each nucleus containing a single

strand of the DNA. Once the DNA has been replicated in the new nuclei, the

cell divides completely.

Figure 1.2: DNA replication is the process of DNA copying itself exactly. This
diagram explains, for one of the two strands, how this happens. The process
happens simultaneously for the second strand, and so at the end, there are two
exact copies of the DNA. This process is only possible as the DNA binds in
specific pairs, A (red) and T (green), and C (blue) and G (yellow).

1.2.1 Mutations.

During replication, mistakes or mutations occur, some of which are not cor-

rected. It is stated in Alberts et al. [2008] that uncorrected mutations occur at

a frequency of approximately one mutation per 109 bases, or, on average, three
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times during the replication of the entire string of DNA (3.2× 109 bases long).

DNA has a very sophisticated repair method that checks all newly made DNA

for errors after replication. However this is not infallible and so mutations do

occur. The effects of mutations differ based on where the mutation is located,

and on what the mutation is. Cells have the ability to kill themselves if they

are too badly mutated to function correctly, this is known as apoptosis. This

prevents some serious mutations from replicating. However, it again is not in-

fallible and as such somatic mutations, mutations that are not hereditary, do

occur.

A mutation that leads to a single base change is called a single nucleotide

polymorphism/variant, SNP/SNV (pronounced snip/sniv), see Figure 1.3. Mu-

tations that occur in the coding regions of the DNA, the exons, are labelled

according to the change that occurred at DNA base level, and their effect on

the protein or amino acid. Synonymous mutations do not directly change the

protein as the amino acids remain unchanged; this occurs quite regularly due

to the number of of codons that code for the same amino acid. However, if

a mutation causes a change in an amino acid and therefore in a protein, it is

known as a non-synonymous mutation, some of which have a serious effect on

the individual.

Other main types of mutations are indels and CNVs. Indels are insertions

and deletions of various numbers of bases in the DNA sequence, see Figures 1.4

and 1.5 respectively. CNVs, or copy number variants are changes in the number

of a repeated nucleotide or sequence of nucleotides of any size, see Figure 1.6.

Mutations that do not occur in the coding region of the DNA are labelled

according to their location, for example mutations found in the intergenic re-

gions are known as intergenic mutations. Similarly for intronic, splicing, UTR3′,

UTR5′, upstream, downstream and all other types of mutation.

1.2.2 Gene Expression.

The genes that are expressed in a certain cell are those that are transcribed and

translated into proteins in that cell. It is the expression of genes that enables

the human body to function. Genes that are transcribed can have two types

of effects; cis-acting and trans-acting. A cis-acting gene affects the immediate

vicinity of the gene only, whereas a trans-acting gene can have an effect in

many other locations at varying distances from the gene. Genes send signals to

other genes via the proteins that they encode. We measure these signals when

measuring gene expression. It captures the amount of mRNA which is used to

create the proteins for message carrying.
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Figure 1.3: During replication, the process of copying DNA, mutations can
occur. If a single nucleotide is mis-copied then the result is a SNP (Single Nu-
cleotide Polymorphism) or SNV (Single Nucleotide Variant). This figure demon-
strates pictorially a single strand of DNA pre- and post-replication, highlighting
the single nucleotide change.

1.2.3 The Human Genome and Exome.

The human genome is reported as a 2m long string of DNA contained in each

cell, made up of 3.2×109 nucleotides. The human exome, the set of all exons, is

the coding part of the DNA. It comprises 1.5% of the human genome [Alberts

et al., 2008].

In the last decade, understanding of the role of the exome has developed

such that any non-exonic regions of the DNA are no longer thought of as just

‘junk DNA’. It is now known that intergenic and intronic regions contain splice

sites, transcription factors, and other regulatory regions of the genome which

are important for the functionality of the genome. Palazzo and Gregory [2014]

present a review summarising the extent to which ‘junk DNA’ has been shown

to exist/not exist over the past decade or more. Projects such as ENCODE [The

ENCODE Project Consortium, 2012] are trying to capture this information in

publicly available databases.

Not only has our understanding of the genome improved, but also our un-

derstanding of epigenetic or environmental factors and they way they interact

with the interpretation of our DNA. These epigenetic effects are not only linked

to the exome, but are more frequently linked to non-exonic regions.
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Figure 1.4: During replication, the process of copying DNA, mutations can
occur. If one or more nucleotides are inserted into the DNA sequence, this is
known as an insertion. Depending on the number of nucleotides inserted, the
effect can be very different. This figure demonstrates pictorially a single strand
of DNA pre- and post-replication, highlighting a 3 nucleotide insertion.

1.3 Current statistical analysis techniques for

genetics data

Current statistical techniques focus on identifying associated sequence variants

rather than causal sequence variants, although the ultimate aim is to identify

truly causal variants. An associated variant is often one that appears to be

having an effect that is linked to a disease, but that has not been biologically

shown to lead to the disease. Any mutation (SNP) that has been biologically

validated will be referred to as causal. Any SNP that has not been biologically

validated but that has been identified by statistical methods as playing a role

in disease will be referred to as associated. These associated SNPs may sub-

sequently be found through biological testing to only be in high LD (linkage

disequilibrium (correlation)) with the truly causal SNP, and to have no actual

effect themselves.

Genome Wide Association Studies (GWAS), unlike sequencing studies, typ-

ically use tagSNPs followed by imputation to infer information about disease

associated SNPs in the whole genome. TagSNPs are SNPs which are represen-

tative of a region of the genome and can be used to infer information about the

entire genome, or a particular region of interest. In general, GWAS typically

involve around 1 million genotyped SNPs which increases to tens of millions

of SNPs post imputation [Bush and Moore, 2012], [Cantor et al., 2010]. The

numbers of individuals can also reach tens of thousands of cases and controls
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Figure 1.5: During replication, the process of copying DNA, mutations can
occur. If one or more nucleotides are deleted from the DNA sequence, this
is known as a deletion. Depending on the number of nucleotides deleted, the
effect can be very different. This figure demonstrates pictorially a single strand
of DNA pre- and post-replication, highlighting a 4 nucleotide deletion.

for large consortia, although smaller GWAS tend to include thousands of indi-

viduals [Lourdusamy et al., 2012].

The main difference between the eQTL (expression of quantitative trait

locus) study that we perform throughout this thesis and a GWAS is that GWAS

tend to use a combination of disease status (case/control) paired with SNP

information, whereas eQTL studies use gene expression paired with SNP data.

This leads to modelling differences as GWAS use a binary outcome variable and

eQTL studies use a continuous outcome variable.

1.4 eQTL

An eQTL is a QTL (quantitative trail locus) that is associated with gene ex-

pression. This means that we use gene expression as our quantitative trait

for the particular locus. eQTLs, as with most genomic regions, can have cis-

and/or trans- acting effects. Cis-acting effects are those that have an effect in

the vicinity of where they are located. Trans-acting effects are those that act

at a distance, i.e. affect a different gene to they reside in.

eQTL studies are increasing in number at present as the cost of sequencing

and gene expression quantification decrease. They are being used to study

polygenic or multifactorial diseases which cannot be well understood using single

SNP methods. eQTL analyses require paired data consisting of gene expression
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Figure 1.6: During replication, the process of copying DNA, mutations can
occur. If a repetitive sequence of DNA is being copied and a mistake is made
in the number of times the repetitive sequence is copied, we have a CNV (copy
number variant). This figure demonstrates pictorially a single strand of DNA
pre- and post-replication, highlighting two possible CNVs of the AG repeated
sequence. The subscript number indicates the number of the repeats. In our
example, AG4 indicates the AG pair is repeated 4 times, while AG1 indicates
the AG pair is repeated only once.

and sequence level data [Franke and Jansen, 2009], [Suthram et al., 2008]. eQTL

studies tend to have small n (number of individuals), large p (number of SNPs)

due to the large number of SNPs in the human genome. This means that eQTL

studies, as with GWAS, are computationally intensive and require the use of

non-standard statistical techniques.

Many simple diseases are genetically quite well understood, given linkage

analysis and familial studies that have previously been carried out. It is now the

complex, polygenic diseases we aim to understand for diagnostic and treatment

purposes.

This thesis reviews possible multivariate statistical methods that can be
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applied to eQTL data (see Chapter 3) and focuses on developing the Normal

Gamma prior to include functional information which can be used to prioritise

SNPs a priori (see Chapters 7 - 10).

1.5 Software and Computing tools

Hapgen2

Hapgen2 is the latest version of the Hapgen software [Su et al., 2011]. It simu-

lates case-control datasets at different SNP markers. It uses either HapMap [The

International HapMap Consortium, 2005] or the 1000 Genomes [Altshuler et al.,

2010] database to obtain data with a realistic LD (linkage disequilibrium or

correlation) structure between the SNPs at the location chosen. The software

requires inputs on the specific region to simulate data for, the number of cases

and controls, and any specific details on the causal SNPs required, such as the

location of the causal SNP(s) and their corresponding effect size(s). The output

contains details on this information.

Impute2

Impute2 [Howie et al., 2009] is a sister program to Hapgen2. It is used

to impute missing genotype data. For any dataset with given subjects and

SNPs a genotype can be imputed with varying degree of certainty. Impute2

uses either HapMap [The International HapMap Consortium, 2005] or the 1000

Genomes [Altshuler et al., 2010] database as well as the LD structure and geno-

types in the sample that are not missing to provide a best estimate for the

missing data. SNPs for the whole cohort or simply missing SNPs for particular

individuals can also be imputed. The SNPs that are imputed are only those that

are stated in the set of input files specified. The output contains information on

the probability of the imputed SNPs being not homozygous wildtype. It also

contains a measure relating to the information with which the imputation of the

missing genotype has been made (the info score). This is used by researchers

as a quality control metric.

R

R [R Development Core Team, 2008] was used for some data processing and

statistical analyses.
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MATLAB

Much of the data processing and analysis was performed off-line using the com-

mercial software package MATLAB [The MathWorks Inc.].

Iceberg

Much of the work carried out was very computationally expensive and so was

carried out on Iceberg, the Unix based High Performance Computing Cluster

provided by The University of Sheffield. This includes the simulation and im-

putation carried out using Hapgen2 and Impute2, as well as some of the

analyses in R and all analysis in MATLAB.

1.6 Introduction to Original Research

In this thesis we compare and contrast a spectrum of statistical methods with

the aim of selecting one that is better than the others at detecting causal or

associated sequence variants. The first section of this thesis, Chapter 3, in-

vestigates possible methods we could use, before assessing via simulation their

effectiveness. Having decided the Normal Gamma method performs best based

on results in Chapter 4, Chapter 5 goes on to replicate the calculations required

to implement the Normal Gamma, before assessing it on real Yeast and Human

data in Chapter 6.

The Normal Gamma prior is then extended in Chapters 7, 8 and 9 to include

functional information with the aim of prioritising groups of SNPs with a priori

more chance of being causal. Simulations are then used to assess this inclusion.

Finally, the extended model is applied to the same Human datasets as the basic

model with the results compared to one another in Chapter 10.

The application of the six statistical models to the eQTL data is a new

approach, both for the models and for the analysis of the data. The inclusion

of functional information to improve a model is not new, but the SNP specific

nature of the inclusion we propose is very different to the current methods

proposed.

The developments and extension to the Normal Gamma prior hierarchy show

that the model prioritises SNPs that are known to be causal/associated with

higher rank than the standard model. This is important for the field of genetics

and mathematical biology as it shows that the introduction of a complex statis-

tical model does help to reduce the search space for causal/associated sequence

variants.
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If the results from the model can be combined with expert knowledge, a much

more effective search space can be targeted when attempting to understand

complex diseases.



Chapter 2

An overview of data generation

and preprocessing

In this chapter we will describe the data that is used to test and evaluate the

models used in this thesis. There will be details on how the data was produced

and a brief overview of the analysis carried out to obtain the input values that

we use.

2.1 Introduction to the Datasets

There are three origins of the data used in this thesis - synthetic data that we

simulate ourselves, yeast data produced for Zhu et al. [2008], and human data

from Hulse and Cai [2013] and Fairfax et al. [2012]. The data will be used

to compare the effectiveness at detecting causal SNPs, SNPs which have been

biologically validated in the literature, and the flexibility of many statistical

models to different eQTL datasets. Here we investigate sample sizes, data

production techniques and over arching methods for preprocessing the data.

Datasets with respect to the Normal Gamma implementation

Our implementation of the NG (Normal Gamma prior hierarchy) is a gene-by-

gene approach. Because of computational constraints, we cannot practically

test every gene, hence we select a subset of genes to test. We cannot test every

SNP in the genome, hence we also select a subset of SNPs to test for associations

to disease.

We remove SNPs where all individuals have identical genotypes. Not re-

moving these SNPs would lead to identifiability problems between the SNPs

and the intercept or background gene expression level α. In some cases, the

yeast data for example, there is a different baseline set up for the data and so

13



14 CHAPTER 2. DATA GENERATION AND PREPROCESSING

we introduce an indicator variable to represent the change. This could be an

environmental effect or some other such confounding factor that is known to

effect gene expression for one set of individuals but not another.

As we cannot assess differential expression with data for only one group of

individuals, we select the genes to test our data on based on what has been

published in the literature. Some genes are reported in the literature as having

an associated/causal SNP within them. We initially include only the exonic

SNPs from each chromosome that the gene is located on. Where this leads

to small numbers of SNPs, we also include all SNPs with an annotation that

includes our required gene name. The latter is also used when the published

SNPs are not exonic.

2.1.1 Simulated data

The two pairs of simulated datasets are generated using HapGen2 [Su et al.,

2011] to generate the SNPs and R [R Development Core Team, 2008] to cal-

culate the corresponding gene expression. We label these datasets 1A, 1B, 2A

and 2B. When simulating the two HapGen simulated datasets, the correlation

structure in our region of interest is taken into account. More details are given

in Section 4.1.1, page 51 and Section 4.2.1, page 57 for datasets 1 and 2 respec-

tively. HapGen2 uses sequence data from HapMap [The International HapMap

Consortium, 2005] and the 1000 Genomes project [Altshuler et al., 2010] to

understand the structure of the genomic mutations and their frequency in the

population. This genomic structure is reflected in the data produced.

2.1.2 Yeast data

The Yeast dataset [Zhu et al., 2008] comprises of 218 yeast grown in two different

conditions, ethanol (109 samples) and glucose (109 samples) which we need to

take into account when doing the eQTL modelling. The yeast genome is far

simpler than the human genome. It is both smaller and has more clearly defined

functions. The data was generated to investigate gene-environment interactions,

hence is assessing the effect of the two growth conditions for the yeast.

The yeast genotyping data is produced using Oligonucleotide Microarrays,

using a method described in Winzeler et al. [1998]. In this dataset, the resulting

genetic map of 3312 markers covered > 99% of the genome. The gene expression

is measured using Expression Profiling by Agilent Microarrays.

We select genes in our dataset that were reported in two or three of the

published articles referenced in Figure 4B of Lee et al. [2009]. We state these

genes in Table 2.1. The gene/hotspot location pairings are taken from three
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sources; Lee et al. [2009], which uses a Bayesian method that includes func-

tional information, Yvert et al. [2003] which uses clustering and linkage analysis

and Zhu et al. [2008] which uses yeast regulatory networks. Two or all three

of these methods agree on 11 genes that we choose to compare our statistical

methods on, see Table 2.1. Lee et al. [2009] report an eQTL hotspot location

corresponding to each gene listed, for example the hotspot for YCR040W is de-

fined to be Chr3:230,000. For analysis purposes, we define the target SNPs to

be any Yeast SNP that is within the hotspot region. We define this hotspot re-

gion to include all SNPs within ±10kb of the given hotspot location, which does

not define the location of one particular SNP. We chose a narrow region for the

hotspot SNPs to restrict the number of SNPs we define as target SNPs, given

that only the hotspot location is reported, and not the location of a particular

causal SNP. We only know that the location has been shown to be associated

to the gene via eQTL analysis in two or three of the studies.

The design of the experiment which produced the yeast data requires the

inclusion of a binary blocking variable, αenviron to represent the different en-

vironments, glucose or ethanol. We therefore use the following gene-by-gene

model yj = α + αenviron +
∑p

i=1 βiXi,j + εj, where yi is the gene expression

for individual j, α is the background gene expression level, p is total number

of SNPs, βi is the effect size of SNP i and Xi,j is the genotype for SNP i for

individual j in all the statistical methods where possible.

We summarise the Yeast data as follows in Table 2.1.

2.1.3 Hulse Data

The Hulse dataset [Hulse and Cai, 2013] comprises of gene expression data from

GSE6536 [Stranger et al., 2007] and GSE11582 [Choy et al., 2008] matched

by individual to sequence data from HapMap release 28 [The International

HapMap Consortium, 2005]. The data in GSE6536 is Illumina Sentrix Human-6

Expression BeadChip on RNA extracted from lymphoblastoid cell lines (LCLs).

The data in GSE11582 is Affymetrix Human Genome U133A Array on RNA

from 269 cell lines which have been densely genotyped by the International

HapMap Project [The International HapMap Consortium, 2005]. We choose

to use only GSE6536 to prevent introducing confounding effects by combining

data from two different platforms.

The Hulse study [Hulse and Cai, 2013] explores the genome wide association

between genetic variants and gene expression variability in humans, which they

denote expression variability QTL (evQTL). The study finds 218 genes which

are involved in cis-acting evQTLs, 8 of which are validated using genotype data
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Gene name n p Target SNPs (freq of the minor allele within the sample)

YBR158W 218 1802
148 (0.404), 149 (0.385), 153 (0.413),
154 (0.422),155(0.413), 156 (0.404)

YBR162C 218 1802
148 (0.404), 149 (0.385), 153 (0.413),
154 (0.422),155(0.413), 156 (0.404)

YCL009C 218 1802
205 (0.459), 206 (0.45), 207 (0.45),

208 (0.45), 209 (0.468)
YCR040W 218 1802 217 (0.477)
YHR005C 218 1802 750 (0.385), 751 (0.367), 752 (0.376)

YHR005C-A 218 1802 750 (0.385), 751 (0.367), 752 (0.376)

YLR256W 218 1802
1232 (0.422), 1233 (0.394), 1235 (0.413),

1236 (0.44), 1237 (0.45)

YLR442C 218 1802
1316 (0.413), 1317 (0.477), 1318 (0.486),
1319 (0.477), 1320 (0.229), 1321 (0.239),

1322 (0.248)
YNL088W 218 1802 1513 (0.394)
YOL084W 218 1802 1600 (0.44), 1601 (0.45)

YOR125C 218 1802
1678 (0.459), 1679 (0.44), 1680 (0.45),

1682 (0.45)

Table 2.1: Table showing the genes, number of individuals n, number of SNPs
p and the target SNPs and the frequency of the minor allele within the sample
for the Yeast genes from Lee et al. [2009].

from the 1000 Genomes Project [Altshuler et al., 2010]. These 8 validated genes

and SNPs denoted in Table 1 of Hulse and Cai [2013] are those that we will

select from to compare statistical models, see Table 2.2 for the final list of seven

genes we use. There are many other genes in which one or more SNPs associated

to an evQTL have been located (166 in GSE6536 and 60 in GSE11582). We

omit to use these genes as they have not be validated.

There have been SNPs associated to an evQTL detected in intronic re-

gions in multiple genes, including IL6, ADCY1, PLOD2 and SNX7. The latter,

SNX7 also has both synonymous and non-synonymous SNPs (rs2019213 and

rs35296149 respectively) deemed to be associated to the evQTL.

This dataset is also used to compare associated SNPs found using evQTLs

and eQTLs. evQTL models treat the variability in gene expression as the

response y, whereas eQTL models use the gene expression value. The reported

loci we use for the Hulse dataset focus on genes and SNPs associated to evQTLs.

In Hulse and Cai [2013] a direct comparison of results from evQTL and eQTL

studies has been highlighted. This shows differing levels of concordance between

eQTL and evQTL results in difference scenarios.

When recoding the HapMap genotype data for this dataset from haplotype

to {0, 1} representing homozygous wildtype and either heterozygous or homozy-
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gous SNP respectively, we find there are unread/undefined bases that have no

defined genotype. In these cases we use imputation to obtain an estimate of

genotype. We use Impute2 [Howie et al., 2009] to estimate the expected number

of minor alleles. We then use this expected number to calculate the probability

of the genotype not being homozygous wildtype. We use this probability as the

genotype for our SNP. We keep imputed SNPs with an info score greater than

0.3, the lowest value suggested in the Impute2 documentation. This excludes

approximately, on average 9% of the SNPs. If we had chosen to include SNPs

with an info score greater than 0.5, the upper value suggested in the Impute2

documentation, we would have excluded an extra approximately 2% of SNPs.

The genes to analyse were chosen based on the 8 validated genes in Table 1

of Hulse and Cai [2013]. Only 7 of the genes were identified using the data

from GSE6536. The gene we omit is FERMT2, as it did not have any recorded

gene expression value. Hulse and Cai [2013] state that SNX7 has causal SNPs

that are both synonymous and non-synonymous (rs2019213 and rs35296149

respectively). Neither SNP was included in our analysis; the former rs2019213

being excluded as all individuals in the analysis were homozygous wildtype at

this location and the latter rs35296149 does not appear in the HapMap dataset

used.

To use the genes and SNPs defined in Table 2.2, we annotate the SNPs

using ANNOVAR and retain any SNPs with annotations containing the gene in

question, irrespective of its location in the genome. For this reason we include

intronic, intergenic and other types of SNP. We chose to do this for this dataset

due to the small number of exonic SNPs that were found in the targeted genes.

We summarise the Hulse data as follows in Table 2.2.

Gene name n p

ADCY1 39 351
CTNNA2 38 2919
DAAM2 39 149

IL6 39 189
PLOD2 39 1488
SNX7 39 389

TNFRSF11B 39 379

Table 2.2: Table showing the number of SNPs p and individuals n for each gene
in the Hulse dataset [Hulse and Cai, 2013].
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2.1.4 Fairfax Data

The Fairfax dataset [Fairfax et al., 2012] was produced to allow the study of

paired purified primary monocytes and B-cells with the aim of identifying cis-

and trans-acting eQTLs. Results aim to identify effects unique to monocytes

or B-cells via cell specific eQTLs. Monocytes and B-cells were chosen to help

identify relevance to immunity and inflammation.

The data were obtained using Illumina Human HT-12 v4 BeadChip for

the genome-wide expression profiling and Illumina HumanOmniExpress-12v1.0

BeadChips for the genotyping.

In the published study, after quality control, the eQTL analysis was per-

formed at 651210 markers for 283 individuals. As a gene-by-gene analysis was

not carried out here, the number of genes is not stated.

We use the genes that are reported in Figure 6b of Fairfax et al. [2012] to

assess the statistical methods. This gives 8 scenarios of gene expression and

SNPs to assess, see Table 2.3. In each gene there is only one validated causal

SNP. As with the Hulse dataset, there are missing genotype data. To obtain

complete data, we use Impute2 to estimate the genotype of any missing value.

We use only those imputed genotypes where the info score is greater than 0.3.

Following our processing of the data we retain a different number of SNPs

and individuals for each gene, see Table 2.3 for the details on the final numbers

of SNPs and individuals for each gene. The numbers of SNPs are dependent

on the proportion of missing data and subsequent imputation results. In this

case, we keep all exonic SNPs on the chromosome where the gene of interest is

located. We also include the SNPs that are reported as causal regardless of the

location (exonic, intronic, or otherwise).

The results in Figure 6b of Fairfax et al. [2012] show that the number of

copies of the rare/minor/alternative allele has a clear effect on gene expression,

therefore we recode the SNPs as {0, 1, 2} to reflect the additive effect of the

number of minor alleles.

We summarise the Fairfax data as follows in Table 2.3.

2.2 Genotyping and Sequencing methods

Genotyping refers to determining which genetic variants an individual has. This

is often done using chips or arrays that contain known, specific genomic se-

quences aimed at identifying the presence or absence of particular mutations.

Sequencing refers to determining every base in a given length strand of DNA.

There are many different processes used for both genotyping and sequencing.
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Gene name n p Causal SNP (sample frequency)

ERAP2 bcell 244 792 rs10044354 (0.689)
ERAP2 mono 244 792 rs10044354 (0.689)
CARD9 mono 243 511 rs4266763 (0.650)
FADS1 bcell 243 1076 rs174548 (0.514)
RBM6 bcell 243 932 rs1061474 (0.675)
RBM6 mono 243 932 rs1061474 (0.675)
CD40 mono 243 468 rs4810485 (0.428)

FAM167A bcell 244 551 rs13277113 (0.934)

Table 2.3: Table showing the genes and gene expression type (monocytes (mono)
or B-cell (bcell)), number of individuals n, number of SNPs p and the causal
SNP and the sample frequency of the minor allele (MAF) for the Fairfax genes
from Fairfax et al. [2012].

Sequencing is carried out on many short sequences of DNA, rather than

the whole length. Hundreds or thousands of copies of the DNA are produced

using PCR prior to sequencing. The shorter the reads that are sequenced, the

more accurate the sequence. However, accurately mapping the short sequences

is more difficult than with longer reads due to multiple matches. Sequencing is

often measured using fluorescence released when a base binds to the reference

sequence. Nucleotides are washed through the sample one base at a time, and

fluorescence measured.

Oligonucleotide microarrays are where short single strand DNA molecules

(oligonucleotides) are spotted onto a microarray containing synthetic oligonu-

cleotide probes. Genes are usually represented by a probeset, a set of multiple

probes. The probeset is designed to map to either a specific region of the tran-

script targeted or to any non-specific coding region of the genome. Only a

single sample can be measured per chip. Gene expression is quantified as the

strength of the hybridisation between the reference and sample which is given

by the fluorescence emitted by the sample when illuminated with a laser post

hybridisation.

Illumina Genotyping BeadChip Arrays use the same bead array concept

as for gene expression arrays. BeadChip technology relies on the attachment

of oligonucleotides (short, single strand DNA molecules) to silica beads. The

beads are then deposited into wells. The proportion of binding of the samples

is measured by the released colour. This is used to define the genotype.
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2.3 Gene Expression Quantification

Gene expression technologies do not read base-by-base, they estimate the quan-

tities of expressed genes present, via quantification of light emission, on a log2

scale. Expression profiling is used as a broad title to cover all methods of mea-

suring gene expression, excluding RNA-seq which is a relatively new technique

applied to the sequencing of RNA.

Microarrays use an array containing many DNA samples with attached flu-

orescent probes. The expression levels of hundreds or thousands of genes within

a cell can be measured using the amount of fluorescence released as the mRNA

binds in each spot on the array. Using computer packages designed for analysing

the output intensities of microarrays, a gene expression profile for each sample

can be produced using the annotation file for each probe.

Illumina gene expression BeadChips use 79-base oligonucleotides targeting

particular genes. Other arrays and platforms use different length sequences.

The gene specific probes are attached to the beads on the arrays. As the required

gene sequence binds with these specific probes, fluorescence is released. The

intensity of this is measured by a scanner and recorded and decoded to provide

abundance or gene expression level.

Affymetrix produce three main types of arrays. The main differences be-

tween the 3′ IVT (in vitro transcription) arrays, the HTA (human transcriptome

arrays) and the Exon arrays are their preparation and targets.

All Affymetrix Arrays measure the fluorescence intensity output from scan-

ning the binding intensities of the probes within the array. There are 11 probes

in each probeset, and these work in pairs; one Mismatch (MM) and one Perfect

match (PM) probe per probeset. The MM probe has the complementary base

at the 13th position (the middle of the 25 base long probes) and so is expected to

bind less well than the PM probe, giving a quantification of background binding

and spurious hybridisation. When the probes bind to the RNA they release a

fluorescence that is attached to the RNA being screened. It is the intensity of

this fluorescence that is used to quantify the gene expression level.

RNA-seq is also known as whole transcriptome shotgun sequencing. It uses

the capabilities of the Next Generation Sequencing (NGS) technologies to pro-

vide a snapshot of RNA presence and quantity at a given time in a given loca-

tion on the genome. The quantity and presence of RNA is constantly evolving

dependent on the process the cell is undergoing at that time.

RNA-seq is flexible in that it can use mRNA transcripts, total RNA and

many types of small RNA including miRNA and tRNA. This allows different

snapshots of an individual to be taken. RNA-seq cannot provide a single value
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to represent the gene expression level as microarrays do. RNA-seq provides a

count of each transcript and isoform present. This represents a problem in the

type of analysis we will perform as we require the data to be summarised by

a single gene expression value. Tools are currently in development for this but

are yet to be widely used.

2.4 Processing Raw Genotyping/Sequence data

Post sequencing, we have reads of particular lengths based on the sequencing

platform used. These need to be mapped and aligned to the reference genome.

The latest human reference genome at the start of this project was hg19 and

was released in February 2009. The version of the reference genome used is

important as mutations get renamed and added between versions.

Shorter reads are more accurate but are harder to map uniquely due to

repetition in the genome. Errors during mapping and alignment can lead to

false findings that cannot be replicated.

The amount of sequencing is measured by the coverage. ‘X’ (pronounced

times) coverage tells you the number of reads that cover each base and ‘%’

coverage tells you the overall proportion of the genome that has been sequenced.

2.5 Analysis of gene expression data

Initial analysis of gene expression data consists of simple analysis methods de-

signed to help understand and describe the data. After initial analysis has been

carried out, techniques can be applied to investigate features of the data that

have been highlighted.

Differential expression is the first stage of analysis to explore gene expression

data when comparing case-control or two groups (e.g. two extreme phenotypes)

of gene expression values. It is the difference between the log2 gene expression

values. This quantity is also known as the fold change. Differentially expressed

genes can help to understand the mechanisms of disease, assuming that SNPs

affect gene expression which affects phenotype.

The significance of differential expression can be calculated using statistical

tests such a t-tests or equivalent and analysing the p-value or q-value. The

q-value is the false discovery rate (FDR) equivalent of the p-value. For an

individual hypothesis test, the q-value is the minimum FDR at which the test

is defined to be significant.

Clustering analysis is a mathematical tool for grouping objects with others

that are more closely related to one another. Eisen et al. [1998] were the first
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to apply clustering techniques to gene expression data. The use of hierarchical

clustering techniques allows grouping of genes with similar expression patterns.

A dendogram is used to represent the correlation between fold changes of genes

and individuals, showing at which point the genes were clustered. To visualise

the results of clustering, heatmaps are used. Heatmaps are a tiled array of

genes and individuals, the colour in the blocks is scaled to represent differential

expression (positive and negative). Analysis of clustering and of correlation of

genes and fold changes helps with understanding the mechanism of disease.

Pathway analysis is a mapping of genes onto a signalling network map that

defines how gene expression signals are modulated and/or regulated. PAN-

THER [Thomas et al., 2003] and DAVID [Huang et al., 2008] are two popular

tools for this. Understanding the signalling pathway that genes are involved in

can help to identify causes of disease.

A pathway can be either genetic or biological. A genetic pathway marks the

interactions between groups of genes that depend on each others functions in

order to function themselves. A biological pathway, as used by PANTHER, is

a set of actions between molecules that can lead a cell to reproduce or change

in a certain way. Pathways can lead to the construction of new molecules, the

switching on and/or off of genes or by encouraging a cell to move to another

part of the body by interfering with the signals sent from cell to cell via the

biological pathways. An example of published work using pathway analysis can

be found in Emmert-Streib and Glazko [2011].

2.6 Computation, Data Processing, Data ma-

nipulation.

When using any genetic data it is often very computationally and time intensive

to reformat the data from its original format to a usable format. In the case of

the eQTL data, we have to maintain a match between the SNP and expression

data as well as reformatting the data.

Before beginning the process of matching the gene expression and SNP data

both need to be annotated. For gene expression, we need to annotate the probe

names so that each gene is referred to by name. It is also helpful if the location

of the gene can also be obtained. Annotating gene expression data from arrays

is relatively simple. With each gene expression tool there is an annotation

file. This is a file that contains information for each probe, i.e. each row has

information on the probe name, the associated gene name, the location of the

gene, any other names, current known function as well as many other pieces of
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information. Annotating SNPs is much less simple. We are often only provided

with an rs number and the two alleles obtained after sequencing. In order to

carry out any analysis we need to know the reference alleles, and it is often

helpful to know the location (position and gene) for each SNP. There are online

tools that carry out this analysis but these are very restricted in the number

of SNPs (rs numbers) that can be included at any one time. When analysing

SNPs across the whole genome this will take a considerable amount of time. I

found the most efficient way to do this was to download the HapMap data and

use UNIX to match the two files.

Once the data has been processed, as above, we reformat the data for analy-

sis. To begin with we match the pairs of expression and SNPs to an individual.

Where there are multiple gene expression values from varying probes or repeats,

we take the maximum of the values. This is an area where there is no defini-

tive answer [MAQC Consortium, 2006], [Miller et al., 2011]. For us, we chose

to take the maximum of multiple values as all probes are designed to bind to

a specific tissue, hence we select the ‘best’ binding which should occur in the

‘correct’ tissue. Hence, where choosing the mean can be misleading, choosing

the maximum value represents the signal in the tissue we want to measure, ac-

cording to the binding strength. Different probes can be measuring expression

levels for different tissues which can lead to very different expression values due

to suitability of the data to the chip. To overcome the uncertainty associated

with the mean and non specific binding, we take the maximum expression over

all values.

We next recode the SNPs as {0, 1} or {0, 1, 2}. For ease of interpretation we

use the {0, 1} coding. This allows simple comparisons between the effect sizes

of each SNP for both the Hulse and the Yeast dataset. In the Fairfax dataset

where there is clear evidence that the allele count affects gene expression, we

use the additive mode of inheritance {0, 1, 2} rather than the dominant {0, 1}
coding.

In most datasets there will be missing SNPs for some individuals. In order

to use the data most effectively the missing SNPs need to be imputed. To

impute missing data using Impute2 [Howie et al., 2009], we initially remove any

individuals or SNPs with > 5% missing data. A limit of 5% was chosen as it

reduces the amount of missing data to impute, hence increasing the accuracy of

the imputed data. The info scores of the imputed SNPs increased and became

more usable once the poor quality individuals and SNPs were removed.

To use Impute2 [Howie et al., 2009] we have to reformat the data we have

and also generate other reference files for the software, a legend and a strand file.

Post imputation, we keep only the imputed SNPs with an info score greater than
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0.3. This is the lower end of the range of info scores used in publication according

to the Impute2 documentation. Any SNPs which have not been fully imputed

due to poor quality scores are then discarded. We treat the genotype of our

imputed SNPs as the probability of the SNP being not homozygous wildtype,

i.e. coded as 1 in {0, 1} coding. We scale and centre the newly imputed SNP

matrix prior to running the Normal Gamma.

Data processing and manipulation plays a key role in any analysis. With

genetics data, the quantity and complexity of the data makes this a much more

onerous process than in other fields. Here we have tried to convey a small

amount of the processing that has taken place to obtain the results in this

thesis.

2.7 The Functional Significance Score

We use the Functional Significance (FS) score to represent the functional in-

formation that we will include in the Normal Gamma framework in Chapter 7

onwards. We use this score as a robust summary of the deleterious effects of

different SNPs. In this section we give the details on how the score is calculated.

The FS score [Lee and Shatkay, 2009] is a score which combines information

on the deleterious effects of SNPs from 16 publicly available web services and

databases. The deleterious effect of a SNP is recorded in δi,j for each element

in F, where

F = {protein coding, splicing regulation,transcriptional regulation, post-transcriptional regulation}.

and i = 1, . . . , p is the SNP number, j = 1, . . . , q is the tool number. As not

every tool examines all four features in the set F, we define Fj,k = 1 if tool j

examines the deleterious effect of feature k (k ∈ {1, 2, 3, 4}).

Each tool is given a reliability score (TR), which is calculated from

TRj = Pr(Yi = 1|δi,j = 1),

where Yi = 1 if SNP i is deleterious and 0 otherwise, and δi,j = 1 when tool j

predicts SNP i to be deleterious.

The confidence score given by the tool for each δi,j is recorded as Si,j. Si,j are

not measured on the same scale by the different tools and can therefore be dif-

ficult to interpret. Lee and Shatkay [2009] propose normalising this confidence
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score to [0, 1] using

S̄i,j =
1

2

(
δi,j + (1− Ci,j)

(Si,j −miniSi,j)

(maxiSi,j −miniSi,j)

)
,

where

Ci,j =

{
1 if Xi resides on a non-conserved regulatory site

0 otherwise.

Ci,j is included here to take into account whether the region is conserved or

not. A highly conserved region will often contain important functional genetic

information. Its function is also often better understood as it is easier to char-

acterise. The normalised confidence score, denoted S̄i,j, ensures all confidence

scores are within the [0, 1] range. If a SNP is predicted to be deleterious, the

score is normalised to (0.5, 1], and if it is not predicted as deleterious the score

is normalised to [0, 0.5). A score of 0.5 represents uncertainty about the dele-

terious nature of the SNP.

The FS score combines all of this information regarding the confidence of

the deleterious effect, or otherwise, into one FS score for each SNP i which is

calculated from

FSi = maxk∈F

∑q
j=1(Fj,k)(TRj)(δi,j)(S̄i,j)∑q

j=1(Fj,k)(TRj)
. (2.1)

Lee and Shatkay [2009] have produced an online resource containing FS

scores for 112,949 SNPs, of which 1,399 are known to be disease related. It is

this complete set of FS scores for all SNPs that we obtain from the authors,

that we use to define our functional information.

2.8 Conclusion

In this chapter we have described the datasets that are going to be used through-

out this thesis, as well as briefly commenting on the different types of data

production that have been used to produce the data. Using published data, we

could not influence the data production techniques used, and so we have to as-

sume the best techniques were used when all factors, including cost, were taken

into account. Having a brief understanding of the different techniques used to

produce the data is essential for understanding the best ways to model and

analyse the data. It also allows the user to obtain the maximum information

from the datasets.
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Chapter 3 searches the literature for statistical methods that, taking into

account the information in this Chapter, may perform well when trying to detect

causal sequence variants from eQTL datasets.



Chapter 3

Review of shrinkage inducing

statistical methods for eQTL

mapping

In this chapter we describe statistical methods that can be used to shrink pa-

rameter estimates towards 0 (partially or completely) in a linear model frame-

work, and review methods that allow functional information to be incorpo-

rated. Shrinkage is essential for eQTL analyses as biologically, we know that

many SNPs have little to no effect on gene expression. We consider linear

models that relate gene expression of a particular gene to the genotypes of a

set of SNPs, often in a given genomic region of different types, for example

exonic/intronic/intergenic SNPs. Crucially, these models will readily allow for

inclusion of functional information into the model.

To characterise functional information, we use the FS score [Lee and Shatkay,

2009] described in Section 2.7, page 24. This combines functional information,

such as protein coding, splicing regulation, transcriptional regulation and post-

transcriptional regulation, focusing on the deleterious effect of individual SNPs

from multiple on-line resources. The functional effects of each SNP are then

combined using weights which reflect the importance of the feature and relia-

bility of the on-line resource. The resultant score is constrained to [0, 1] where

0 represents no deleterious effect, 1 represents a highly deleterious effect and

0.5 represents no knowledge.

We use a standard linear model to represent gene expression for simplicity of

modelling, even though gene expression regulation is non-linear in the tails due

to saturation, particularly when measuring gene expression using arrays. Other

models could be used to better represent the true distribution of gene expres-

sion values, however for modelling purposes, a linear model framework provides

27
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adequate results in relation to the simplification of the modelling process.

In this chapter we assess different techniques for estimating the regression

coefficients in the following gene-by-gene linear model:

yj = α + β1X1,j + . . .+ βiXi,j + . . .+ βpXp,j + εj, (3.1)

where yj is the gene expression value for individual j, α represents the back-

ground gene expression (which is gene specific), βi is the effect size for SNP i

and Xi,j represents SNP i for individual j and ε represents the noise term. This

model forms the foundation for all the following techniques.

3.1 Shrinkage

Shrinkage occurs naturally within a Bayesian context because the posterior

distribution combines information from the likelihood and the prior distribution.

Careful choice of the prior distribution, with a lot of mass near to zero, can

induce sparse statistical models. In the context of eQTL data, we know many

SNPs have no, or negligible effects on gene expression, so shrinkage of some

parameter estimates towards 0 is desirable.

Penalisation of the model parameters is used to reduce the model complex-

ity, often by shrinking parameter estimates towards 0. Outside of the Bayesian

framework, penalisation is used to induce shrinkage in parameter estimates.

Historically the mean squared error, (y − ŷ)2, i.e. the squared difference be-

tween the observed and the estimated values, was used to penalise parameters.

This approach does not lead to sparse models. More recently, with the advent

of increasingly large datasets, L1 and L2 penalised regularisation methods have

been used as they shrink the estimates of the regression coefficients towards

zero relative to the maximum likelihood estimates. See Wu et al. [2009], Yi and

Xu [2008] and Ma et al. [2007] for examples of using L1 penalised regularisation

methods in a genetics context, and Malo et al. [2008], Piepho [2009] and Whit-

taker et al. [2000] for examples of using L2 penalised regularisation methods in

a genetics context.

The two key penalisation terms, L1 and L2, are defined as follows.

L1 = ||β1|| =
n∑
i=1

|βi| (3.2)

L2 = ||β2||2 =
n∑
i=1

β2
i . (3.3)

Penalisation based on the L1 norm drives many parameters to zero, however



3.2. STATISTICAL APPROACHES TOMODELLING EQTL DATAWITHOUT INCLUDING FUNCTIONAL INFORMATION29

L2 norm penalisation is not specifically designed to achieve sparsity. The L1

norm has a rotated hyper-cube (diamond in 2D) shaped penalty with vertices

on the axes. This means that the likelihood contours often first intersect the

penalty contours at the axes. This geometrical property forces many parameter

estimates to be 0. The hyper-sphere (circular in 2D) penalty of the L2 norm

does not have the same geometric properties as the L1 norm, meaning that the

likelihood contours and the penalty contours are less likely to intersect on the

axes. As a result, the L2 norm does not frequently force parameter estimates to

0. Details of the regularisation can be found in Ng [2004] with a clear graphical

representation in Shi et al. [2013] and Fu [1998].

3.2 Statistical approaches to modelling eQTL

data without including functional informa-

tion

We can divide the statistical approaches that can be used to model eQTL data

without functional information into two categories; models that use a fully

Bayesian approach (MCMC) and methods that use a MAP estimation approach,

reporting only the posterior mode. Within the fully Bayesian approach, there

are two categories of priors; variable selection priors which use priors with point

masses at 0 (which can induce strict sparsity), and other continuous shrinkage

priors with a lot of mass near to 0. The latter shrink many parameter estimates

close to, but not equal to zero.

Bayesian continuous shrinkage prior distributions tend to have a sharp mode

at 0, with the mass in the tails influencing the amount of shrinkage applied to

large estimates. Variable selection methods use an indicator variable for each

parameter to select variables to include in the model.

3.2.1 Fully Bayesian approaches

There are four fully Bayesian approaches that we describe here; piMASS [Guan

and Stephens, 2011], Spike and slab [Ishwaran and Rao, 2005], the Normal

Gamma [Griffin and Brown, 2010] and the Bayesian Lasso [Leng et al., 2014].

Having described these methods we compare and contrast them.

piMASS

piMASS [Guan and Stephens, 2011] is a form of Bayesian Variable Selection

Regression that reports the posterior probability of inclusion (having a non-
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zero regression coefficient) as its measure of association as well as estimating the

regression coefficients/effect sizes conditional on being in the model. piMASS

uses a standard linear regression set-up

y|γ,µ, τ,β,X ∼ Nn(µ+ Xγβγ, τ
−1In), (3.4)

with y an n×1 vector of gene expression values, X an n×p matrix of genotypes,

β the vector of effect sizes (the regression coefficients), µ the background gene

expression, γ is the binary indicator variable defining inclusion in the model and

τ the precision parameter. The hierarchical structure of the prior distributions,

as defined in Guan and Stephens [2011] are:

τ ∼ Ga

(
λ

2
,
κ

2

)
, (3.5)

µ|τ ∼ N

(
0,
σ2
µ

τ

)
, (3.6)

γj ∼ Bernoulli(π), (3.7)

βγ|τ,γ ∼ N|γ|

(
0,
σ2
a

τ
I|γ|

)
, (3.8)

β−γ|γ ∼ δβ=0, (3.9)

where |γ| :=
∑

j γj, δβ=0 represents the point mass at 0, and β−γ denotes the

β coefficients for which γj = 0. Hyperparameters are defined in Guan and

Stephens [2011] to induce sparsity

log(π) ∼ U

(
log

(
1

p

)
, log

(
M

p

))
(3.10)

and the typical size of non-zero coefficients (σ2
a) is defined as

σ2
a(h, γ) =

h

1− h
1∑

j:γj=1 sj
, (3.11)

where sj is the variance of covariate/SNP j and h is an approximation to the

proportion of variance explained.

Equation 3.10 is chosen such that the upper and lower limits of π correspond

to an expectation of 1 and M SNPs being included in the model. M is defined

as 400 in Guan and Stephens [2011] due to computational restrictions. Note

that M ≤ p as p is the total number of SNPs, and M represents the number of

SNPs we expect to be included in the model.

piMASS uses Metropolis-Hastings updating to explore the parameter space

when estimating the posterior mean effect sizes. At each iteration of the MCMC,
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addition, deletion or switching (of nearby SNPs only) is applied to a single

SNP in the dataset. This updates the set of SNPs included in the model at

each iteration. Proposing local moves with occasional large steps improves

convergence, while focusing on SNPs with strong marginal associations helps

select which SNPs to include into the model. The estimates of β conditional

on inclusion and the posterior inclusion probability (PIP) are calculated where

possible using the Rao-Blackwellisation technique to reduce the Monte Carlo

variation. The Rao-Blackwellisation technique calculates the expectation of

an estimator (P (γj = 1|y) in this case) conditional on other parameters (γ,

β, τ , h and π, excluding the parameter values that correspond to j in this

case). The Rao-Blackwell theorem states that the conditional expectation is

typically a better estimator and is never a worse estimator as it is optimal by

the mean-squared-error or other similar criteria, which leads to a reduction in

the sampling variance in comparison to counting the proportion of γj = 1 in the

MCMC chain. Full details of the general application can be found in Casella

and Robert [1996] and McKeague and Wefelmeyer [2000] with details specific

to piMASS found in section 3.1 of Guan and Stephens [2011].

The default priors for piMASS are believed to be suitable for general use in

most GWAS applications. We therefore use the default parameters of piMASS

for comparison. It is noted that piMASS performs poorly when there are mul-

tiple correlated SNPs that are far apart on a chromosome. This is because

piMASS favours the inclusions and exclusions of SNPs that are close together

on the chromosome due to the general LD structure of chromosomes.

Given that we believe many SNPs have little to no effect, a selection method

seems appropriate for this type of dataset.

Spike and slab

The Spike and slab prior was initially proposed by Mitchell and Beauchamp

[1988] and involves designing a hierarchy of priors over the parameter and model

space that selectively shrink only those effects that are near to zero. It has been

suggested by Ishwaran and Rao [2005] that, in order to prevent the likelihood

from swamping the prior information, the responses should be scaled by a factor

of
√
n to ensure that the effect of the prior is visible in the posterior estimates.

The standard hierarchical set-up for the Spike and slab prior can be seen in

Equations 3.12 and 3.13.

yi|xi,β, σ2 ∼ N(xTi β, σ
2) for i = 1, . . . , n (3.12)

β|γ ∼ Np(0,Γ) where Γ = diag(γ1, . . . , γp). (3.13)
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There are also prior distributions on γ and σ2. The shrinkage is determined by

the hypervariances γi; small hypervariances shrink coefficients towards zero.

There are many different adaptations of the Spike and slab prior that use

different prior distributions. Ishwaran and Rao [2005] adapt the standard set-

up above to use continuous bimodal priors as well as rescaling the Spike and

slab prior to make it sample size invariant, see Equations 3.14-3.17. In this set

up, y∗i = yi√
n
.

y∗i |xi,β, σ2 ∼ N(xTi β, σ
2n) for i = 1, . . . , n (3.14)

βj|Jj, τ 2
j ∼ N(0, Jjτ

2
j ) for j = 1, . . . , p (3.15)

Jj|v0, w ∼ (1− w)δJj=v0 + wδJj=1 (3.16)

τ−2
j |a1, a2 ∼ Ga(a1, a2) (3.17)

w ∼ U(0, 1) (3.18)

σ2 ∼ Ga(b1, b2), (3.19)

where b1 = b2 = 0.0001, and a1, a2 are chosen such that the bimodal prior has

peak at v0, a small value close to 0, with a right continuous tail. In order to

find the posterior estimates of this, Ishwaran and Rao [2005] advise exploiting

conjugacy of the prior distributions and the likelihood to use the Gibbs updating

algorithm.

We use the traditional Spike and slab selection method that use a mixture

prior distribution consisting of the Normal distribution and point mass at 0, as

described in Equations 3.12 and 3.13. We use the Spike and slab method in

our analysis as it is possible, with the implementation we are using, to specify

the prior inclusion probability of each SNP. We also select this method due

to the flexibility regarding changing which of the SNPs are included at each

iteration of the algorithm. We assess the number of SNPs we expect within a

given dataset to have non-zero coefficient and set the prior inclusion probability

accordingly. For our simulation results, we use the prior inclusion probability

of 0.05 for all SNPs unless otherwise stated.

The Normal Gamma prior

The Normal Gamma (NG) prior [Griffin and Brown, 2010] uses the principles

of the Spike and slab [Mitchell and Beauchamp, 1988] to shrink parameter esti-

mates in a similar method to the Bayesian Lasso [Park and Casella, 2008]. The

double exponential prior formation of the Bayesian Lasso is a special case of the

Normal Gamma prior. Griffin and Brown [2010] propose a hierarchical structure

for the parameters βi which, conditional on ψi are assumed to originate from
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a Normal distribution with variance parameter ψi. This variance is assumed

to follow a Gamma distribution with hyperparameters λ and γ. The parame-

ters are updated over time using a Metropolis-Hastings within Gibbs Sampler

approach. All details of this method are explained in detail in Chapter 5.

The parameters of the Normal Gamma are all heavily inter-related; there

is not one single parameter that directly controls the shrinkage. The marginal

prior variance of β, 2λγ2 has expectation, defined by Griffin and Brown [2010],

to be M . M represents an empirical estimate of the variance of the least squares

estimates. This is used to determine the variability of the β’s, hence this value

controls the majority of the shrinkage in the NG.

We state the prior hierarchy as follows, in Equations 3.20-3.23, with unin-

formative priors on α and σ2.

π(λ) ∼ Ex

(
1

2

)
(3.20)

π(γ−2|λ) ∼ Ga

(
2,
M

2λ

)
(3.21)

π(ψi|λ, γ−2) ∼ Ga

(
λ,

1

2γ2

)
(3.22)

π(βi|ψi) ∼ N(0, ψi) (3.23)

where π(a) represents the prior distribution on a and M is a fixed scalar defined

as M = 1
p

∑p
i=1 β̂

2
i where β̂ is the least squares (LS) estimate of β when X is

non-singular. When X is singular, or when p > n − 1, M is redefined as
1
n

∑p
i=1 β̂

2
i , where β̂ is the minimum length least squares (MLLS) estimate, see

Section 3.4.1.

With the response variable defined as y = (y1, . . . , yn), the likelihood is

defined as follows in Equation 3.24.

f(y|λ, γ−2,ψ, α,β, σ−2) ∼ Nn(y − α1n −Xβ, σ2In), (3.24)

where β = (β1, β2, . . . , βp)
T is the parameter vector representing the effects of

genetic variants, and Nn represents the multivariate normal (MVN) of dimen-

sion n.

The key property of the Normal Gamma is that the prior structure is adap-

tive in the sense that it has fatter tails than the Lasso/Bayesian Lasso priors,

and so it shrinks larger parameter values less than smaller ones. This makes is

highly suited to eQTL data, even though it is reportedly computationally and

time expensive.



34 CHAPTER 3. SHRINKAGE INDUCING STATISTICAL METHODS

The Bayesian Lasso

The Bayesian Lasso [Park and Casella, 2008] uses a conditional Laplace prior

and a non-informative, scale invariant marginal prior on the variance parameter.

The full Bayesian Lasso uses MCMC and can be represented by the following

hierarchical form:

y|µ,X, β, σ2 ∼ Nn(µ+ Xβ, σ2In),

β|σ2, τ 2
1 , . . . , τ

2
p ∼ Np(0p, σ

2Dτ ),

Dτ = diag(τ 2
1 , . . . , τ

2
p ),

τ 2
1 , . . . , τ

2
p ∼

p∏
j=1

λ2

2
exp

(−λ2τ 2
j

2

)
,

τ 2
1 , . . . , τ

2
p > 0,

where X represents the genotype matrix, and y the gene expression vector as

previously defined for piMASS. µ is given an independent, uniform prior and

σ2 a non-informative, scale invariant prior.

One challenge with the Bayesian method is the choice of λ. Park and Casella

[2008] suggest using one of two methods, an empirical Bayes method, or selecting

an appropriate hyper prior for λ.

Park and Casella [2008] find that for the diabetes dataset they use, there is

good comparability between the results of the Lasso and the Bayesian Lasso,

although the Bayesian Lasso is more computationally expensive.

Comparison of the fully Bayesian methods

piMASS and Spike and slab both use variable selection through indicator vari-

ables. This gives truly sparse models. In eQTL datasets, sparsity is key to truly

reflecting the knowledge that only a few SNPs affect gene expression. piMASS

applies selection methods to the data. Using proximity of the SNPs and their

marginal associations with respect to gene expression, piMASS selects a differ-

ent SNP set in every iteration. Spike and slab uses no such assumptions for SNP

inclusion. The variables/covariates are included based on random sampling and

previous inclusion results.

The Bayesian Lasso is a special case of the Normal Gamma. The Normal

Gamma prior with λ = 1 is equivalent to the Bayesian Lasso. This means that

the Normal Gamma is a generalisation of the Bayesian Lasso.

Comparing across the selection methods, piMASS and Spike and slab, and

the shrinkage methods, the Normal Gamma and Bayesian Lasso, we notice

strong similarities of the prior hierarchies, with the only noticeable difference
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being the inclusion or omission of an indicator variable. This highlights the

fundamental Bayesian prior structure for variable selection/shrinkage in a linear

model framework.

In this eQTL setting, we highlight in particular that piMASS takes into

account features of genetics data such as proximity of SNPs to one another - a

feature that is highly likely to affect association given the strong LD found in

the human genome. This should give piMASS an advantage over other methods

for detecting causal SNPs when they are in high LD blocks, but might limit its

success with identifying trans-acting SNPs.

3.2.2 MAP estimation approaches

We describe two closely related MAP estimation techniques; HyperLasso [Hog-

gart et al., 2008] and the Lasso [Tibshirani, 1996]. We then investigate these

methods for similarities and differences.

HyperLasso

HyperLasso [Hoggart et al., 2008] is a Bayesian approach that determines MAP

(maximum-a-posteriori) estimates of the parameters rather than sampling from

the full posterior distribution. It uses variable selection in a logistic regression

model with each covariate representing a SNP. The prior distribution of the Hy-

perLasso, the NEG (Normal Exponential Gamma), is a continuous distribution

with a sharp mode at zero and can have heavy tails. It is a generalisation of the

double exponential (DE) distribution prior. The marginal prior for β is given

by

NEG(β|λ, γ) =

∫ ∞
0

∫ ∞
0

N(β|0, σ2)Ga(σ2|1, ψ)Ga(ψ|λγ2)dσ2dψ (3.25)

= κexp

(
β2

4γ2

)
D−2λ−1

(
|β|
γ

)
, (3.26)

where D is the parabolic cylindrical function and κ is the integrating constant.

The MAP estimation using the posterior mode sets some of the regression coef-

ficients to 0. The prior distribution leads to increased shrinkage on parameters

close to 0 with minimal shrinkage on those variables that are selected by the

model. This effect is caused by the heavy tails of the NEG prior distribution,

similarly to the NG prior. The MAP estimates depend on the initial values of

the two prior hyperparameters.

The posterior of the HyperLasso is not always unimodal, especially in the

n < p case, and the order in which the coefficients are updated also affects the
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MAP estimate, particularly in the case of highly correlated SNPs. Multiple

runs of the algorithm are used to explore the possibility of multiple posterior

modes.

HyperLasso is widely used on and has the default parameters set to maximise

performance on GWAS data. eQTL data has a continuous normal response vari-

able, gene expression, whereas GWAS data has a binary response representing

phenotype/disease status.

HyperLasso is a sparsity-inducing selection method which makes it a good

method for this type of data. The computational efficiency and tailoring of this

model for genetics data make it invaluable. We note that the program cannot

be used with genotype values that are different to 0, 1, or 2.

The difficulty in using the HyperLasso (HL) is in the choice of hyperparame-

ters. The results are highly sensitive to the chosen hyperparameter values. The

authors provide some guidance about the choice of parameter values, but this

is limited to the case-control setting. We experiment with different values of

the parameters, but to maximise the AUC of the ROC curve we use the default

parameters and specify the shape parameter to be 0.1. We tested a range of

values for the shape parameter from 100 to 0.001 and we found the results to be

similar. Using these parameter values does not make the most of the selection

property of the HL.

Lasso

The Lasso [Tibshirani, 1996] estimates linear regression coefficients through an

L1 constrained least squares penalisation to achieve the following minimisation:

β̂L = argminβ

{
(y −Xβ)T (y −Xβ) + λ

∑
|βj|
}
. (3.27)

for some λ ≥ 0 and where the columns of X are standardised.

The Lasso uses the double exponential prior on the p regression coefficients,

defined as

π(β|τ) =
(τ

2

)2

exp(−τ
∑
|β|), (3.28)

and the likelihood is defined as

f(y|β, σ2) ∼ Nn(y|Xβ, σ2In). (3.29)
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The posterior for β is

P (β|X, y, τ, σ2) =
(τ

2

)2

exp(−τ
∑
|βi|)

× 1

2π
(σIn)−1exp

(
−1

2
(y −Xβ)T (σ2In)−1(y −Xβ)

)
=
(τ

2

)2 1

2πσ
exp

(
−τ
∑
|βi| −

1

2σ2
(y −Xβ)T (y −Xβ)

)
∝ exp

(
−τ
∑
|βi| −

1

2σ2
(y −Xβ)T (y −Xβ)

)
= exp

(
− 1

2σ2

{
2τσ2

∑
|βi|+ (y −Xβ)T (y −Xβ)

})
Take the logarithm

log
{
P (β|X, y, τ, σ2)

}
=− 1

2σ2

{
2τσ2

∑
|βi|+ (y −Xβ)T (y −Xβ)

}
∝λ
∑
|βi|+ (y −Xβ)T (y −Xβ). (3.30)

So the LASSO estimates can be interpreted as the posterior mode estimate

when the regression parameters all have independent, identically distributed

Laplace (double-exponential) priors.

Comparison of MAP estimation approaches

The Lasso is a special case of the HyperLasso. The HyperLasso has the more

flexible NEG prior compared to the constrained Laplacian (or double exponen-

tial) prior of the Lasso. This means the HyperLasso is a generalisation of the

Lasso, and so we only use the HyperLasso to compare this approach.

3.3 Statistical approaches to modelling eQTL

data including functional information

In this section we focus on two statistical methods (Lirnet [Lee et al., 2009]

and SBFA [Parts et al., 2011]) that include functional information to inform

the parameter estimates; we describe them in detail and then compare and

contrast them. We choose to assess only these two methods as they cover two

very different methods of incorporating functional information but both within

the regression framework.

Lirnet

When carrying out an eQTL study, the key challenge is that the number of

candidate regulators, often highly correlated, is enormous relative to the amount
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of available data. This makes robustly identifying the correct regulator very

difficult. For this reason, Lee et al. [2009] split the data into two categories,

g-regulators and e-regulators. These are defined as follows.

• The value of a g-regulator or genotype regulator represents genetic muta-

tions (SNPs) on a chromosomal region. This is used to denote homozygous

wildtype, heterozygous or homozygous SNP at the genetic location. We

denote this fn,k for SNP n and feature k.

• The value of an e-regulator or expression regulator is the expression level

of genes that are known to have regulatory roles; the values represent

the activity levels or the size of the effect of genes that might regulate

a module. An e-regulator is denoted gr,k for regulator r and feature k.

A module is a cluster of genes where it is assumed that the expression

of the genes within the module are all governed by the same regulatory

program. The e-regulator takes into account that the expression of one

gene can have a regulatory effect on the expression of a subsequent gene.

Lirnet is a complex algorithm that can be summarised as follows. The

following stages are repeated iteratively until convergence, as demonstrated in

the pictorial representation in Figure 3.1. Throughout this section explaining

Lirnet, it may be helpful to refer back to Figure 3.1 to clarify the order of the

stages of the algorithm.

1. Use the current estimates of the regulatory priors for features k, αk and

βk, to calculate CR from CR = C1×P (regulator r is causal) + C0× (1−
P (regulator r is causal)), where P (regulator r is causal) is a non-linear

function of αk and βk, and C1 and C0 are defined by cross-validation.

2. Use the minimisation term, Equation 3.32, to estimate the parameters

wm,r, with αk and βk fixed. This means that the residual sum of squares

term, as well as the L1 and L2 terms are all penalising the choice of

parameters wm,r (for module m and regulator r).

3. Fix the parameters wm,r and use the minimisation term, Equation 3.32,

to create new estimates for αk and βk. Here CR is written as a non-linear

function of αk and βk and so is minimised, as well as the θ term. As the

wm,r are fixed, the L1 and θ terms are the only terms involved in this

minimisation.

The weighted sum of the parameters,
∑

k αkgr,k for e-regulators and
∑

k βkfn,k

for g-regulators is used to calculate P (regulator r is causal), which is in turn
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Define C0 and C1

by cross-validation
Update regulatory
priors αk and βk

Define the regulatory
features fn,k and gn,k
(indicator variables)

Calculate P(regulator
r is causal)

Calculate CR

Use LARS to min-
imise Equation 3.32
to obtain new es-
timates for wm,r

Fix wm,r

Use optimisation
to minimise Equa-
tion 3.32 to obtain

new estimates
for αk and βk

Figure 3.1: Flowchart showing the Lirnet algorithm.

used to calculate CR which is a non-linear function of αk and βk. CR is fixed in

the minimisation of wm,r, but is optimised when minimising for α and β. The

model that is being fitted to the data by Lirnet for predicting the gene expres-

sion value y is a simple linear combination of potential regulators, xi, defined

as

ym,g = wm,1x1 + wm,2x2 + wm,3x3 + . . .+ wm,nxn + εm,g (3.31)

for gene g in module m, where εg ∼ N(0, σ2). Lee et al. [2009] include penali-

sation terms to prevent overfitting of the model, such that the parameters are

iteratively estimated according to 3.1 using Equation 3.32.

minimse
∑

module m

(∑
gene g(ym,g −

∑
regulator r wm,rxr)

2
)

+
∑

module m

(∑
regulator r CR|wm,r|

)
+
∑

module m

(
D
∑

regulator r w
2
m,r

)
+E

∑
k θ

2
k,

(3.32)

where θ = {α} ∪ {β} and D and E are scalars predefined using 10-fold cross

validation.

The minimisation expression, Equation 3.32, contains the standard residual

sum of squares and an L1 and an L2 penalisation term, as well as a term for

the combined L2 penalisation of the α’s and β’s. This encourages the model

not to overfit and take into account the correlated variables but also to consider

carefully which features to “switch on”.
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We note that D does not need to depend on the regulators r in the same

way as CR, this is due to the L2 regularisation being used for correlated data,

and the functionality of the L2 regularisation compared to the L1 regularisa-

tion. As the SNPs are highly unlikely to be excluded from the model using

the L2 regularisation, it is not important to force the values as far from zero

as possible, and so the weighting of the sum can be outside the sum over the

regulators. However, it needs to be inside the sum over the modules as a module

is dependant on the number of SNPs inside it. For the CR weighting inside the

sum over the regulators, this is necessary as any SNPs with small parameters

are likely to be excluded, and so by multiplying by CR, which is large when

a SNP has a high probability of being causal, we force the value further from

zero, therefore reducing the chances of the SNP being excluded from the model.

The final coefficient E is simply weighting the amount of penalisation given to

the sum of the squares of the elements in the union of the parameters α and β.

The parameters α and β, defined by Lee et al. [2009] as regulatory priors, are

used to include prior knowledge to the model in order to improve the prediction

ability of the eQTL model. The regulatory priors state the importance given to

each of the regulatory features. For simplicity the regulatory features, gr,k and

fn,k, are taken to be indicator variables.

In order to reduce the computational power required modules are created.

The modules used in Lirnet refer to groups of genes where the expression of

the target gene in each module is regulated by the same regulatory program.

This means that the genes within a module are highly correlated as they exhibit

the same expression and regulatory responses to other regulators, i.e. they are

co-expressed and co-regulated. Some of these modules contain multiple genes,

while others contain only 1 or 2 genes.

It is possible for a SNP to have many regulatory features that are deemed

to be important, this means that there may be many significant parameters βk.

Lirnet uses LASSO to introduce sparsity into the regulatory programs to satisfy

the biological requirement that only a small number of regulators r should have

non-zero weight. The sigmoid function is introduced to put an upper bound

on the
∑

k αkgr,k for e-regulators and
∑

k βkfn,k for g-regulators. This prevents

the saturation effect of regulatory features. The sigmoid or logistic function is

defined as sigmoid(x) = 1
1+exp(−x)

.

The probability of a SNP being causal is defined as follows for a g-regulator

and e-regulator respectively. It includes the sigmoid function to prevent satu-



3.3. STATISTICAL MODELLING WITH FUNCTIONAL INFO. 41

ration.

P (SNP n causes variation in gene expression levels) = sigmoid

(∑
k

βkfn,k

)
.

(3.33)

P (e-regulator r is causal) = sigmoid

(∑
k

αkgn,k

)
. (3.34)

If tagSNPs, a SNP representing a region of the genome with high linkage

disequilibrium, are used in the model then each SNP is representative of a region

rather than a specific base, and so we calculate the probability that a region is

causal as in Equation 3.35. Lee et al. [2009] states this is not the only method

for aggregating the contributions of all SNPs in a region, but the double sigmoid

function prevents an unbounded increase in the regulatory potential, while the

multiplication and subtraction scale the output to [0, 1].

P (Region r is causal) = sigmoid

 ∑
n∈{SNPs in region r}

(
2× sigmoid

(∑
k

βkfn,k

)
− 1

) .

(3.35)

Once the probabilities have been calculated, CR is then estimated. The

estimation of CR uses C0 and C1 which are predefined by cross-validation, with

C1 > C0. CR is defined as

CR = C1 × P (regulator r is causal) + C0 × (1− P (regulator r is causal)),

where C1 is the maximum regularisation parameter and C0 is the minimum

regularisation parameter. Notice here that as the probability that a regulator

r is causal increases, the value for CR increases linearly, see Figure 3.2. The

reason for using the parameter CR is that it allows a method for increasing the

weight given to SNPs that have a high probability of being causal even if the

parameter wm,r is estimated as being small. This is essential to prevent causal

SNPs being excluded from the model by the L1 regularisation term. This may

arise in the situation where there are multiple SNPs that are highly correlated

because of linkage disequilibrium, and the SNP we are looking at is the causal

SNP. We would know this based on the regulatory features of the SNPs.

Once we have calculated CR, we use Equation 3.32 to estimate the parame-

ters wm,r based on the fixed values of αk and βk from the previous iteration. This

will ensure that the parameter estimates are sparse due to the L1 regularisation

term. However, multiplying the wm,r by CR in the L1 term will ensure that

SNPs with a high probability of being causal should not be excluded from the

model. This step of the application of the minimisation includes minimisation
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Figure 3.2: The relationship between the probability of a regulator r being
causal and the regularisation parameters.

with respect to the residual sum of squares, the L1 and the L2 terms.

Having minimised Equation 3.32 with respect to wm,r, we begin the second

use of the penalised regression with the following minimisation in order to re-

estimate the values for our parameters α and β, fixing wm,r from the previous

iteration. In Equation 3.32, we minimise with respect to parameters α and β

only. These are in the CR and θ terms only, where CR is a non-linear function

of α and β.

Lirnet outputs the regulatory programs for modules used in the analysis,

those where wm,r 6= 0; the ranking of causal sequence variants based on the reg-

ulatory potential CR; and regulatory priors β, the information about mutations

that induce downstream effects.

Overall, Lirnet aims to learn the regulatory potential of each genetic vari-

ant using as much information from the literature and the data as possible.

It incorporates functional information in the form of indicator variables called

regulatory features. These are included in the modelling of the regulatory poten-

tial to reflect the biological knowledge in the effect size estimates or regulatory

potential of each feature.

SBFA

Sparse Bayesian Factor Analysis (SBFA) [Parts et al., 2011] incorporates func-

tional information into the prior distribution in the sparse factor analysis model

used to infer intermediate, or unobserved phenotypes that routinely influence

transcript levels of multiple genes based on the gene expression levels. This

information is then used to enhance the ability of the eQTL model to detect

causal SNPs by informing interaction effects between the genotypes, unobserved

phenotypes and factor effects such as environmental conditions.

SBFA is based on the assumption that gene expression levels are influenced
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by the effects of the locus genotype, intermediate unobserved factors and the

interaction between the two. The model, see Equation 3.36, assumes that the

effects are additive.

yg,j = µg +
N∑
n=1

θg,nsn,j +
K∑
k=1

wg,kxk,j +
K∑
k=1

N∑
n=1

φg,k,n(sn,jxk,j) + ψg,j, (3.36)

where yg,j is the gene expression level for individual j for gene g, µg represents

the mean gene expression level,
∑N

n=1 θg,nsn,j represents the SNP or genotype

effect for the N SNPs with weights θg,n and genotype sn,j,
∑K

k=1wg,kxk,j rep-

resents the factor effect of the latent factors xk,j which are calculated based

on the SNPs sn,j for the K factors with weights wg,k,
∑K

k=1

∑N
n=1 φg,k,n(sn,jxk,j)

represents the interaction between the SNPs and the factors with weights φg,k,n,

and ψg,j ∼ N(0, σ2) represents noise.

The latent factor activations X activate the intermediate or unobserved

factors; these can be associated to SNPs via the relationship

xk,j = µk +
N∑
n=1

βk,nsn,j + εk,j, (3.37)

where µk is the background effect, βk,n are the association weights, sn,j are the

SNPs and εk,j is the observation noise.

To estimate the parameters, a two step approach is used:

Step1: Factor inference: infer latent factors X = (x1, . . . , xk) and weights W =

{wg,k} from expression levels alone, ignoring the effects of the SNP via the

association and interaction effects. This can only be approximated using

SBFA.

Step2: Association and interaction testing: conditional on the state of the in-

ferred factors, significance of the associations of factors to SNPs (see

Equation 3.37) and SNP-gene-factor interactions (see Equation 3.36) are

tested.

In Step 1, factors are inferred using an SBFA model, where the factor model

is

yg,j =
K∑
k=1

wg,kxk,j + ψg,j, (3.38)

which is simply Equation 3.36 with the direct genetic associations and the in-

teractions removed. This explains the observed gene expression yg,j using latent
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factors/random variables.

A binary indicator variable zg,k is introduced to encode whether factor k

regulates gene g, such that

zg,k =

{
1 if factor k regulates gene g

0 otherwise

The prior distributions on the weights are defined using this indicator variable

as follows:

P (wg,k|zg,k = 0) =N(wg,k|0, σ2
0) (3.39)

P (wg,k|zg,k = 1) =N(wg,k|0, 1), (3.40)

where σ2
0 is chosen to be small, hence driving the weights to 0 and inducing

sparsity. Parts et al. [2011] used σ2
0 = 10−4 in their simulations.

Functional information from two online databases containing information

about functional characteristics of Yeast data, KEGG [Kanehisa and Goto,

2000] and Yeastract [Teixeira et al., 2006] is encoded as a Bernoulli prior on

zg,k. This is defined as:

πg,k = P (zg,k = 1) =

{
ν0 if there is a link

1− ν1 if there is no link

where ν0 is the false negative rate and ν1 is the false positive rate of the observed

prior information. Parts et al. [2011] use ν0 = 0.06 and ν1 = 0.001 for Yeastract

prior information, and ν0 = 0.0001 and ν1 = 0.001 for KEGG data. This

information is used to generate the prior on the weights wg,k which is defined

as:

P (wg,k|πg,k) = πg,kN(wg,k|0, 1) + (1− πg,k)N(wg,k|0, σ2
0). (3.41)

The remaining prior distributions for the latent factors X, the per gene noise

ψg and the precision τg are defined as follows:

xk,j ∼ N(0, 1) (3.42)

ψg ∼ N(0,
1

τg
) (3.43)

τg ∼ Ga(τg|aτ , bτ ). (3.44)

Parts et al. [2011] use aτ = bτ = 0.001 to give an uninformative prior on the

precision.
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In part two, standard marker regression is used to calculate the test statistics

for association and interaction effects involving the inferred factor activations.

A LOD score distribution for significance of association and interaction weights

was calculated by permuting the data. The local FDRs (false discovery rates)

or Q-values for the association and interaction states were also calculated. Un-

certainty is incorporated by recalculating Q-values, adjusted p-values found by

optimising the false discovery rate approach, for multiple random restarts of the

model and then combining this information into a statistic to assess the overall

significance of one particular effect.

Comparison of statistical methods including functional information

We aim to include functional information that is SNP specific, and that can

be used to prioritise SNPs which are, a priori, more likely to be causal. SBFA

is currently specific to Yeast data but could be applied to human data, given

the availability of online functional information databases. Many of those that

are available at present, such as ENCODE, contain a lot of missing data and

many variables are highly correlated. This makes adapting SBFA very chal-

lenging. SBFA infers many latent factors as the authors believe these to be

important when assessing causal sequence variants. We are only interested in

using the observed data we have, and prioritising this based on SNP specific

functional information. This makes SBFA unsuitable for our aim. Similarly,

Lirnet incorporates a lot of functional information but not on a SNP specific

level. Grouping SNPs and genes is computationally more efficient but we aim

to find a model that performs specific selection of causal SNPs. Lirnet does not

provide a framework for this. We summarise these two methods in Table 3.1,

showing the advantages, disadvantages and outputs from these two methods.

We believe that these methods give ideas for including functional informa-

tion, but within the specific requirements we are aiming to meet, using one of the

previously mentioned statistical methods and adapting it to include functional

information will provide better results than adapting either of these methods.

3.4 Statistical Models to test on eQTL data

The statistical models assessed here all provide a suitable framework for analysing

eQTL data. However, for including functional information in the form of the

FS score, Lirnet and SBFA already include functional information in a different

way. Neither use functional information that is entirely SNP specific. We think

this is important for enhancing detection of associated SNPs. The HyperLasso
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Lirnet

Output

A set of regulatory programs for each module. These are
the weights on each regulator in a module that regulate gene
expression.
A ranking of causal/associated SNPs based on the
regulatory potential of SNPs and genes.
Information on the regulatory prior which can provide insight
into which SNPs lead to downstream, phenotypic effects.

Advantages
Includes multiple SNPs and other genes as regulators
therefore can account for interactions.
Includes information on the functionality of the genome.

Disadvantages
Requires a lot of information on the functionality of the
genome as input.
Complex method with no clear areas for development.

SBFA

Output
Genotype-factor interactions based on gene expression.
Effect of strain and environment based on changes in
gene expression.

Advantages
Includes functional information.
Accounts for interactions between genotype and
environmental and other unobserved factors.

Disadvantages
Model tailored to yeast data.
The model doesn’t transfer easily to humans.
The model relies on too many inferences from
generic yeast functional data.

Table 3.1: A summary of the two eQTL methods, Lirnet and SBFA, that include
functional information.

is a generalisation of the Lasso, which has the NEG prior rather than the dou-

ble exponential (DE) prior. As such we will use only HyperLasso to represent

Bayesian MAP estimation techniques on eQTL data. The Bayesian Lasso is a

special case of the Normal Gamma prior and so we have no need to test both

of these. Hence we will use only the Normal Gamma prior to assess Bayesian

shrinkage methods. We compare the prior distributions of the NG and the NEG

with respect to the DE prior in Figure 3.3. As in Hoggart et al. [2008], we de-

fine the γ parameter of the NEG such that the density of the DE prior and the

NEG prior is the same at 0. We cannot do this for the NG, and so we define

the marginal prior variance of βi = 2λγ2 = 2 as Griffin and Brown [2010] have

done, and vary λ such that this relationship (γ =
√

1
λ
) remains constant. We

include the DE prior with ξ = 10 on both plots for comparison.

Figure 3.3 shows how the tails of the NEG and NG are similar but that the

central point of the NG appears much narrower. This means that the NG will

induce more shrinkage close to 0 compared to the NEG. Both will enforce less



3.4. STATISTICAL MODELS TO TEST ON EQTL DATA 47

−0.4 0.0 0.2 0.4

−
4

−
3

−
2

−
1

0
1

2

x

g(
x)

DE: ξ=10
NEG: λ=10
NEG: λ=1
NEG: λ=0.5

−0.4 0.0 0.2 0.4

−
4

−
3

−
2

−
1

0
1

2

x

g(
x)

DE: ξ=10
NG: λ=1
NG: λ=0.5
NG: λ=0.1

Figure 3.3: A comparison, with respect to the double exponential (DE) prior
of the LASSO, for the Normal Gamma and the Normal Exponential Gamma
with different parameters. Left: The NEG (Normal Exponential Gamma) prior
distribution for HyperLasso. The γ parameter has been chosen such that the
density of the NEG and DE priors are the same at 0. Right: The NG (Normal
Gamma) prior distribution. The γ parameter has been chosen such that the
marginal prior variance of βi, which is defined as 2λγ2 is fixed to be 2.

shrinkage in the tails.

piMASS and the Spike and slab both use fully Bayesian selection approaches,

however they are quite different and therefore we include both when testing

models on eQTL data. Dependent on the simulation results in Chapter 4, we

will decide which of these methods to develop further and to adapt to include

functional information.

We feel that it is important to assess commonly used statistical methods

for their ability to detect associated sequence variants. As a results we will

also include the univariate likelihood ratio test and the least squares (LS) or

minimum length least squares (MLLS) estimates to provide a full comparison

between univariate, multivariate, frequentist and Bayesian approaches.

3.4.1 Least Squares

The standard least squares (LS) estimates are widely used in frequentist statis-

tics for estimation of parameters β̂ in a standard linear model. The LS estimates
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for the standard linear model y = α + βX + ε are

β̂ = (XTX)−1XTy. (3.45)

However, the LS estimates can only be calculated when n > p. In the case of

eQTL data, we have p > n. As a result we have to use the minimum length

least squares (MLLS) estimates of β.

The MLLS estimates are, according to Choi [2006], the unique solutions of

minimising β ∈ argmin||Xβ − y||2 with respect to β. This is equivalent to

minimising the residual sum of squares, (y − Xβ)T (y − Xβ). The minimum

length solution of this, or of Xβ = y, is unique and is also referred to as the

pseudo-inverse solution. The formal definition of this is equivalent to the LS

estimate and is defined as:

β̂ = (XTX)†XTy,

where A† is the pseudo-inverse of A.

The pseudo-inverse is one of many generalised inverses that are discussed

in detail by Ben-Israel and Greville [2003]. Generalised inverses do not always

have a unique solution, although the pseudo-inverse we are calculating here is

unique [Choi, 2006].

3.4.2 Univariate Likelihood Ratio Test

A likelihood ratio (LR) test is a univariate method to compare two nested

models. In our case we compare the null model y = α + ε to the single SNP

model y = α + βAXA, where βA is a scalar and XA is the column vector of the

distribution of SNP A across all individuals. We use this set-up unless other

factors need to be added to reduce confounding as in the yeast data. We use

the LR test statistic values when plotting the ROC curves.

3.5 Conclusion

In this chapter we have assessed different statistical methods that may be suit-

able for detecting causal or associated sequence variants in eQTL. We have con-

cluded that there are four Bayesian multivariate statistical methods piMASS,

SS, HL and the NG that we will compare the results from on simulated and

real Yeast and Human eQTL datasets. For completeness of possible statistical

approaches, including methods that are currently used, we will also compare
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the LR test and the LS/MLLS estimates on simulated and real eQTL datasets.

The results from the simulation study are presented in Chapter 4.
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Chapter 4

Comparing the performance of

statistical methods for eQTL

detection via simulation

Using two simulated datasets, we show differences between the performance of

six statistical methods, piMASS, HyperLasso, Normal Gamma, Spike and slab,

minimum length least squares (MLLS) and the LR test on eQTL data with

the number of SNPs p greater than the number of individuals n. The results of

these simulation studies will inform our decision about which statistical method

to adapt to include functional information. The performance of some of these

statistical methods depends on the minor allele frequencies (MAF) of the causal

SNP.

4.1 HapGen Simulated dataset 1 - larger effect

sizes

4.1.1 Simulating the data

We use HapGen2 [Su et al., 2011] to simulate data using the actual SNP corre-

lation structure from human haplotypes. HapGen2 generates DNA sequences

based on the minor allele frequency (MAF) and linkage disequilibrium (LD)

structure of the reference dataset. Here we use only the control samples gen-

erated from the European haplotypes of the August 2010 release of the 1000

genomes data [Altshuler et al., 2010]. In this dataset we simulate 6 causal SNPs

per dataset to have a range of effect sizes; the large causal SNP has effect size

1.5, the others have effect size simulated from a N(0.5, 0.12) distribution. In the

case of {0, 1} coding, the effect size estimates the additional increase in gene

51
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expression due to having a mutation at that location. These values for effect

sizes were chosen to be large in terms of realistic values such that we could

initially assess the statistical models where the results were clear. An effect

size of 0.5 means that someone who has the SNP has gene expression value

that is approximately 0.5 higher than someone who does not have the SNP. We

simulate 9 datasets with these identical causal SNPs and effect sizes giving 54

causal SNPs out of 631× 9 = 5679 SNPs based on 631 total SNPs per dataset.

The 9 datasets are simulated from the region around the CASPASE8 gene

on chromosome 2 - a region widely believed to be associated to breast cancer

and melanoma (Barrett et al. [2011], Camp et al. [2012]). A 200kbase region

(from 201566128 to 201766128 in the human genome 19 build of chromosome

2) surrounding the CASPASE8 gene was used for simulations. This region

has mixed LD block sizes and strengths of LD allowing us to evaluate the

effectiveness of the different methods at detecting causal SNPs in different size

and strength LD blocks.

The causal SNPs were chosen such that there were 3 causal SNPs in high LD,

one with a large effect size (1.5) and two with small effect sizes (simulated from

N(0.5, 0.12); 2 causal SNPs in low LD, both with small effect sizes (simulated

from N(0.5, 0.12)); and 1 causal SNP in a low LD block with a small effect size

(simulated from N(0.5, 0.12)). SNPs in low LD have r2 < 0.1, and SNPs in high

LD have r2 > 0.6. There are two datasets simulated - one with all causal SNPs

having population MAF approximately 0.2 (HapGen dataset 1A) and the other

with population MAF approximately 0.02 (HapGen dataset 1B). Both have the

same SNP set up, but with different causal SNPs due to the different MAF we

require for each SNP.

We simulate the ith gene expression (yi) as yi =
∑p=631

j=1 Xijβj + εi where

εi ∼ N(0, 1), Xij represents the jth genotype for person i, and βj represents the

effect size of the jth SNP. We control the effect sizes for HapGen dataset 1 such

that a large effect size is βi = 1.5 and a small effect size is βi ∼ N(0.5, 0.12).

We treat yi as having been centred in our simulations, such that there is no

background expression (α = 0). We use the dominant modelling of SNPs, where

0 represents the homozygous wildtype genotype and 1 represents the other two

genotypes. The variability modelled into the gene expression represents the

noise in real data. The effect sizes and number of SNPs in the region are chosen

to be consistent with other simulated datasets, see Kang et al. [2012], Wu et al.

[2011], Petersen et al. [2013].
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4.1.2 Results

The data simulated using HapGen2 [Su et al., 2011] has been analysed with all

the methods we are comparing (piMASS, HyperLasso, Normal Gamma, MLLS,

LR test, Spike and slab). We use ROC curves to compare the performance of

the methods.

Possible estimators for piMASS

We assessed three possible estimators for piMASS - the posterior mean of β, the

posterior inclusion probability and the posterior inclusion probabilities based on

Rao-Blackwellisation. See the subsection describing piMASS in Section 3.2.1,

page 29 for details. The posterior mean of β performs best in terms of the AUC

and so we choose to use this to summarise piMASS.

Possible summary statistics for Spike and slab

We also compare two posterior estimates for the Spike and slab - the posterior

mean of all iterations post burn-in and the percentage of non-zero coefficient

estimates post burn-in. The posterior mean of all iterations gives the largest

AUC based on the ROC curve and so we use this as the summary statistic for

the Spike and slab.

Possible summary statistics for the Normal Gamma

In Appendix B, we compare summary statistics for the Normal Gamma prior

on a basic simulated dataset that omits the correlation structure between SNPs.

We compare many different statistics using the mean, median, 95th percentile,

interquartile range, credible interval containing 0 and variance and several com-

binations thereof. The summary statistic giving the greatest AUC of the ROC

curve was the posterior mean. We therefore use this as our summary statistic

for summarising the Normal Gamma as optimally as possibly with respect to

the ranks in the AUC of a ROC curve.

When assessing the credible intervals that do not contain 0, we notice that

the SNPs with the highest posterior mean effect sizes are those whose credible

interval does not contain 0. We therefore assess the posterior mean effect sizes

when defining which SNPs to suggest for biological validation.

A summary of the summary statistics used

For the likelihood ratio test we use the likelihood ratio value to plot the ROC

curves but report the effect size based on the least squares estimate from the
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single SNP model. There is a direct relationship between the effect size estimate

from the LS estimate on the single SNP model and the LR test value, hence the

ROC curves are identical with either statistic. For HyperLasso we use the MAP

estimate output from the model, and for the LS or MLLS we use the coefficient

estimate that is calculated.

As discussed in Chapter 4 and Appendix B, there are different posterior

summary statistics that we could use for piMASS, NG and Spike and slab. We

choose the statistic that maximises the area under a ROC curve. We find that

the statistics that maximises the AUC is the most simple statistic, such that

the posterior mean of all sampled values post burn-in is the statistic we use to

summarise these methods.

Formal association testing versus ranking

Throughout this thesis based on the results found in Appendix B, we choose

to rank the SNPs based on posterior mean effect size, or equivalent for the

other non fully Bayesian approaches, and propose the top 5 to be those SNPs

of interest.

If we had decided to do formal association testing, this would have been very

difficult using all 6 methods. For the NG we could use the posterior credible

interval as shown in Appendix B, page 175. The LR test already performs a

statistical test so we can use the results to define formal association. HyperLasso

is a selection method, so to define formal association we could select only those

βi 6= 0. This would require very careful and detailed parameter choices. For

piMASS and Spike and slab we could also use the posterior credible interval.

For the LS we could perform a nested test comparing the full model and the

reduced model with only one SNP removed, similar to the LR test. But for the

MLLS we could not perform such a test as only the point estimate is produced.

In the frequentist tests the critical values would need to be adjusted to

account for multiple testing and then the SNPs that are selected will depend

on the adjustment used such as the family-wise error rate (FWER) or false

discovery rate (FDR). The MLLS does not allow for any formal testing, and

would have to be omitted.

We choose to rank the estimates from each method based on a given sum-

mary statistic. We then propose a certain number or percentage of the top

SNPs for further testing. We believe that this is more flexible and robust to

the changes in effect size based on different genes. Defining a threshold that

can be used across all genes for all numbers of individuals and SNPs would be

challenging. By ranking the SNPs, this makes the output more approachable
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for non-statisticians. It gives scope for disease experts to adjust the results from

the model to better fit the biological knowledge which is omitted by the model.

Many other techniques could be applied to summarising the MCMC. We

look at these in more detail in the Discussion (Chapter 11), but other ideas

to identify associated SNPs could include calculating a t-statistic to compare

the posterior distribution to the prior distribution using both the mean and

the variance. Comparing the prior and posterior distributions for statistically

significant differences may lead to better results, especially if we create an ar-

tificial interval to define 0. One of the difficulties with many of the summary

statistics tested was that there were a lot of posterior values that were 0 (to 4

d.p.). This is mainly caused by the harsh shrinkage from the prior distribution

and the lack of overwhelming evidence in the likelihood.

Assessing the results

Using ROC curves, for dataset 1A (MAF 0.2), all methods perform well with

the minimum AUC of 0.6236 being for the LR test, see Figure 4.1. Similarly for

dataset 1B (MAF 0.02) all methods perform well, with the minimum AUC being

0.6915 for Least Squares, see Figure 4.2. We perform DeLong’s test [DeLong

et al., 1988] to test for significant differences between the AUCs. The p-values

from DeLong’s test, and the AUC of the ROCs can be found in Tables 4.1

and 4.2 respectively.

We notice that the univariate LR test performs worst for dataset 1A (MAF

0.2) (AUC 0.6236) but performs well for dataset 1B (MAF 0.02) (AUC 0.8608).

NG and Spike and slab perform better for dataset 1A than 1B (AUCs 0.9841

and 0.96, and 0.9853 and 0.9236 respectively).

For dataset 1A, there is no statistical difference between the AUC for the

Normal Gamma and Spike and slab, and the LR test and MLLS estimates. All

other pairwise tests reveal high levels of statistical significance. For dataset

1B, there is no statistical difference between the AUC for Spike and slab and

piMASS, piMASS and the NG, and HL and LS (MLLS).

AUC HL LS LR NG piMASS S&S

HL 0.7806 . 0.07199 0.00233 7.356× 10−7 0.004027 6.543× 10−7

LS 0.684 . 0.3294 1.131× 10−11 1.365× 10−5 2.682× 10−12

LR 0.6236 . 4.398× 10−15 5.13× 10−9 1.797× 10−14

NG 0.9841 . 9.704× 10−8 0.824
piMASS 0.9016 . 6.031× 10−8

S&S 0.9853 .

Table 4.1: This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing on the Hapgen
simulated dataset 1A. This dataset has 54 causal SNPs simulated according to
the CASPASE8 region with a MAF approximately equal to 0.2.
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Figure 4.1: ROC curve comparing different statistical methods (HL, LS
(MLLS), LR test, NG, piMASS and Spike and slab (S&S)) for detecting simu-
lated causal SNPs. The data includes 5679 SNPs of which 54 are simulated to
be causal SNPs, 6 of which have effect size 1.5 with the remaining causal SNPs
having effect size simulated from a N(0.5, 0.12) distribution. The causal SNPs,
simulated using data from a subset of the CASPASE8 region, have a MAF of
approximately 0.2 in the population (HapGen dataset 1A).
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Figure 4.2: ROC curve comparing different statistical methods (HL, LS
(MLLS), LR test, NG, piMASS and Spike and slab (S&S)) for detecting simu-
lated causal SNPs. The data includes 5679 SNPs of which 54 are simulated to
be causal SNPs, 6 of which have effect size 1.5 with the remaining causal SNPs
having effect size simulated from a N(0.5, 0.12) distribution. The causal SNPs,
simulated using data from a subset of the CASPASE8 region, have a MAF of
approximately 0.2 in the population (HapGen dataset 1B).

4.1.3 MCMC Plots

When assessing the Normal Gamma for convergence we investigate the posterior

density and trace plots. Due to the irregular prior density on our SNP effect
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AUC HL LS LR NG piMASS S&S

HL 0.7089 . 0.6314 1.732× 10−6 < 2.2× 10−16 3.191× 10−15 8.076× 10−13

LS 0.6915 . 4.393× 10−8 < 2.2× 10−16 < 2.2× 10−16 2.34× 10−15

LR 0.8608 . 2.717× 10−7 3.569× 10−6 5.717× 10−5

NG 0.96 . 0.139 0.0009261
piMASS 0.9496 . 0.06099

S&S 0.9236 .

Table 4.2: This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing on the Hapgen
simulated dataset 1B. This dataset has 54 causal SNPs simulated according to
the CASPASE8 region with a MAF approximately equal to 0.02.

sizes βi, we expect to see many posterior estimates very close to 0. This means

our posterior histograms will have a large spike at 0, and also the trace plots may

appear quite sporadic as the estimates move between approximately 0, and other

values. Using only dataset 1B (MAF 0.02) we show plots of 15,000 iterations in

the form of histograms and corresponding trace plots, both excluding burn-in for

six SNPs. In Figure 4.3, we see the examples of 6 typical posterior histograms

from the Normal Gamma prior, and in Figure 4.4, we see the corresponding

trace plots. Those SNPs we have selected give trace plots and histograms that

are representative of the shapes of the posterior distributions that we see for

all histograms and trace plots. The top right plot in Figure 4.3 and Figure 4.4

shows the posterior distribution and corresponding trace plot for a causal SNP

with moderate effect size (approximately 0.6).

4.1.4 Discussion of results

In this set of results the Normal Gamma is performing very well, as are the Spike

and slab and piMASS. In the MAF 0.02 case (dataset 1B), the LR test also

performs very well. These results show that the Normal Gamma in particular

performs well, in terms of SNP ranking, for the simulated eQTL data with both

large and small MAFs in the presence of moderate to large effect sizes.

4.2 HapGen simulated dataset 2 - smaller ef-

fect sizes

4.2.1 Simulating the data

This dataset is simulated as in Section 4.1.1. We use SNP data simulated

using HapGen2 [Su et al., 2011] and change only the causal effect sizes. In this

dataset we simulate all 6 causal SNPs per sub-dataset to have an effect size of

0.4. We calculate the gene expression y as in Section 4.1.1. For the results of
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Figure 4.3: An example of the posterior distributions in the form of a histogram
for 6 SNPs from the Normal Gamma prior for dataset 1B, with 15,000 iterations
(after the burn-in has been removed). The top right corner plot is for a causal
SNP with effect size approximately 0.6.
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Figure 4.4: An example of the MCMC trace plots for 6 SNPs from the Normal
Gamma prior for dataset 1B, with 15,000 iterations and the burn-in excluded.
The top right corner trace plot is for a causal SNP with effect size approximately
0.6.
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this dataset, we use 9 datasets giving 54 causal SNPs out of 631 × 9 = 5679

SNPs.

The aim of using these two datasets is to make the causal SNPs more difficult

to detect. This should split the performance of the methods more clearly. We

label the dataset for MAF 0.2 dataset 2A and the dataset for MAF 0.02 dataset

2B.

4.2.2 Results

Again we use the ROC cuves to assess the comparison of methods. For dataset

2A (MAF 0.2), Figure 4.5, the NG and Spike and slab perform very well. Ta-

ble 4.3 reports the AUC for each statistical method, and reports the p-value

from DeLong’s test [DeLong et al., 1988] with the null hypothesis that the AUC

of ROC1 is the same as the AUC of ROC2, where ROC1 is taken as the reference

ROC curve. We notice that the AUCs for LS and LR are statistically similar,

with poor AUCs; 0.6917 and 0.6040 respectively. These methods have AUCs

that are statistically significantly different to all other methods. We also notice

that piMASS is statistically significantly different to all methods with maxi-

mum p-value 0.01068, except the HL where there is no statistical difference

with p-value (0.52).

AUC HL LS LR NG piMASS S&S
HL 0.7809 . 0.05224 9.99× 10−5 2.769× 10−8 0.5152 1.865× 10−5

LS 0.6917 . 0.0615 3.691× 10−11 0.01068 2.549× 10−9

LR 0.604 . < 2.2× 10−16 3.510× 10−8 < 2.2× 10−16

NG 0.9702 . 6.151× 10−8 0.02775
piMASS 0.8093 . 0.0001813

S&S 0.9418 .

Table 4.3: This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing on the Hapgen
simulated dataset 2A. This dataset has 54 causal SNPs simulated according to
the CASPASE8 region with a MAF approximately equal to 0.2.

AUC HL LS LR NG piMASS S&S
HL 0.6667 . 0.3932 0.08166 1.508× 10−13 6.676× 10−10 7.431× 10−12

LS 0.6343 . 0.004153 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

LR 0.7365 . 7.49× 10−10 9.98× 10−6 1.487× 10−8

NG 0.9322 . 0.01395 0.05946
piMASS 0.8999 . 0.5063

S&S 0.9119 .

Table 4.4: This table reports the AUCs and the p-values from DeLong’s test
for ROC curves for the 6 statistical methods we are comparing on the Hapgen
simulated dataset 2B. This dataset has 54 causal SNPs simulated according to
the CASPASE8 region with a MAF approximately equal to 0.02.

For dataset 2B (MAF 0.02), Figure 4.6, we notice that piMASS performs

much better than in dataset 2A and has results comparable to the NG and
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Figure 4.5: ROC curve comparing the different statistical methods for detecting
causal SNPs on our simulated data with all 54 causal SNPs having effect size
0.4. The data was simulated using HapGen2 Su et al. [2011], targetting SNPs
in the CASPASE8 region. Causal SNPs with a MAF of approximately 0.2 in
the population (HapGen simulated data 2A).

Spike and slab. HL, LS and LR are poor in comparison to the NG. In dataset

2B where the causal SNPs have MAF 0.02 (rarer variants), LS and LR appear

better than in dataset 2A where the causal SNPs have MAF 0.2 (more common

variants). HL has the reverse performance, it performs better in the case of a

rarer variant.
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Figure 4.6: ROC curve comparing the different statistical methods for detecting
causal SNPs on our simulated data with all 54 causal SNPs having effect size
0.4. The data was simulated using HapGen2 Su et al. [2011], targetting SNPs
in the CASPASE8 region. Causal SNPs with a MAF of approximately 0.02 in
the population (HapGen simulated data 2B).
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4.2.3 Discussion of results

In both cases, for datasets 2A and 2B (MAF 0.2 and MAF 0.02 respectively),

the Normal Gamma prior is performing very well, as does the Spike and slab.

HyperLasso has performance that is comparable to the non-Bayesian methods.

As expected, from datasets 1A and 1B, the fully Bayesian methods of the NG,

Spike and slab, and piMASS are consistently outperforming the LS and LR test.

We notice, from these results, that piMASS, LR and LS seem to improve as

the frequency of the causal/associated mutation increases, whereas the NG, HL

and Spike and slab seem to become slightly worse, although the NG and Spike

and slab still perform very well.

Given the results in this section, it is clear that the Normal Gamma and

Spike and slab perform consistently well on datasets 1A, 1B, 2A and 2B. An

MCMC approach using the Normal Gamma prior has the advantage that prior

functional genomic information can easily be incorporated into its prior struc-

ture. For this reason we choose the Normal Gamma to adapt to include func-

tional information. We begin by assessing the computational requirements of

this method and verifying the convergence.

4.3 Convergence, Computational Time and Ef-

fect of the prior

To check convergence of the Normal Gamma we use the R-hat statistic of Brooks

and Gelman [1998]. We check that the rankings of the Normal Gamma posterior

estimates remain the same using the AUCs of ROC curves. We use DeLong’s

test to test that there is no statistically significant difference between AUCs of

these ROC curves. We include details of computational time as a comparator to

the other statistical methods (HyperLasso, piMASS, LS/MLLS, LR, Spike and

slab), some of which perform a trade-off between statistical model accuracy and

computational time. For example, HyperLasso uses the MAP estimate based

on the local maximum rather than verifying it is a global maximum. It also

provides no estimate of the uncertainty in the posterior distribution. We also

assess the effect of the prior on the posterior results of the Normal Gamma.

4.3.1 Checking convergence using R-hat

We check convergence of the Markov chains using the R-hat statistic, see Brooks

and Gelman [1998]. This diagnostic is not as stringent as other diagnostics. We

choose not to thin the Markov chain as there is debate as to the effectiveness
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of it, see Link and Eaton [2012], in comparison to increasing the chain length.

Given we choose not to thin the Markov chain, we prefer to run the chain for

longer and retain all iterations.

The Gelman and Brooks R-hat convergence statistic

The R-hat convergence diagnostic investigates the scaled, weighted difference

between the within and between chain variances. It is also known as the poten-

tial scale reduction factor. It is defined in Brooks and Gelman [1998] as

R̂ =

√
V

W
, (4.1)

where θi,j is the ith element of the jth chain, n is the number of iterations for

each of the m chains, θ̄j is the mean of all i elements of chain j (the within

chain mean).

s2
j =

1

n− 1

n∑
i=1

(
θij − θ̄j

)2
(4.2)

W =
1

m

m∑
j=1

s2
j Mean chain variance (4.3)

¯̄θ =
1

m

m∑
j=1

θ̄j (4.4)

B =
n

m− 1

m∑
j=1

(θ̄j − ¯̄θ)2 Between chain variance (4.5)

V =

(
1− 1

n

)
W +

1

n
B. (4.6)

The minimum number of runs of a chain for meaningful interpretation of this

diagnostic is stated as 10. Brooks and Gelman [1998] suggests an R-hat value

of < 1.1 is advisable for convergence.

Application

We test this once for each dataset, using 10 runs of the NG. We tabulate the

maximum R-hat values for all parameters in the Normal Gamma for one sim-

ulated dataset in Table 4.5. The simulated data requires more than 20,000

iterations for convergence. At 20,000 iterations, most parameters have con-

verged. The only parameters not converged are γ2 and λ with R-hat values of

1.147808 and 1.235675 respectively. By 30,000 iterations, with a 5,000 iteration

burn-in these have converged. The convergence diagnostic shows that the be-
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tween chain variance is very small which implies that the within chain variances

must be similar across chains. This suggests that the stationary distribution

has been reached at each run of the chain.

R hat for simulated data (MAF 0.02, dataset 2B)
100,000 iterations 30,000 iterations 20,000 iterations

Maximum 1.018263 1.021728 1.235675

Table 4.5: Table showing the maximum R-hat values for all the Normal Gamma
parameters for the simulated dataset run with different numbers of iterations.
The burn-in was kept constant at 5,000 iteration. The R-hat statistic was
calculated using 10 datasets.

Replicability of the Normal Gamma Prior.

We check the replicability of the Normal Gamma by reporting summary statis-

tics for the AUCs.

The mean AUCs for the 10 plots are 0.7847, 0.7909 and 0.78148 respectively

for 20,000, 30,000 and 100,000 iterations, with the minimum AUCs 0.7693,

0.7643 and 0.7795, the maximum AUCs 0.8091, 0.7909 and 0.7837 and the

standard deviations 0.0147, 0.0127 and 0.00122 respectively. Clearly the AUCs

for different numbers of iterations and within each number of iterations are all

very similar. We omit the ROC curves as the 6 causal SNPs out of 631 total

SNPs do not provide us with a good visual representation. Using the AUCs, we

conclude that the Normal Gamma is replicable in as much as the SNP rankings

are similar between chains.

We check, using DeLong’s test for comparing AUCs, that there is no sta-

tistically significant difference between the ROC curves for 100,000 iterations,

30,000 iterations or 20,000 iterations. We find that there is no statistically sig-

nificant difference between any pairwise combination of the 10 ROC curves for

100,000 iterations or 30,000 iterations with the minimum pairwise p-value being

0.6785 and 0.2205 respectively. At 20,000 iterations, a number of pairwise com-

parisons return a minimum p-value of 0.04835 which is bordering on statistical

significance.

The R-hat statistic is reported for all real data analyses in later chapters.

Visual checks are also carried out for these analyses in later chapters but details

are omitted where no issues are identified.

4.3.2 Computational time

At present, computational requirements are an important feature of any soft-

ware/algorithm. For comparison of the Normal Gamma to other statistical
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methods we assess computational time. HyperLasso uses the MAP estimate

which doesn’t sample from the joint posterior distribution, but is quicker to

compute. The Normal Gamma and Spike and slab do sample from the joint

posterior distribution and so are computationally intensive. Here we assess

whether the NG is prohibitively time consuming.

When checking the convergence we also monitor the time taken for the

Normal Gamma to run. The mean and range of times taken for n = 300 and

p = 631, and different chain lengths are tabulated in Table 4.6.

Computational time for simulated data (MAF 0.02, dataset 2B)
100,000 iterations 30,000 iterations 20,000 iterations

Time 15 hrs (7 hrs-22 hrs) 5.5 hrs (3 hrs-7 hrs) 4.2 hrs (2 hrs - 6 hrs)

Table 4.6: The computational time taken for each of the simulated datasets
with different numbers of iterations used to calculate the R-hat convergence
statistic. There are 300 individuals and 631 SNPs in the dataset.

We notice an almost linear increase in time taken with the number of itera-

tions when the number of individuals (n) and the number of SNPs (p) remain

constant as is expected. For the Normal Gamma prior on simulated data for the

same number of iterations, there is a large range in computational time. This

may be due to different values being sampled from the full conditional distri-

butions which can lead to different parts of the code being run, see Section 5.5

for details of implementation of the NG; or it may be due to memory demands

when storing the MCMC iterations. The difference in time to process the Nor-

mal Gamma may also be due to using Iceberg, the University of Sheffield high

performance computing (HPC) facility [The University of Sheffield]. This pro-

cesses many jobs at a time and so demands from other processes on the nodes

of the system can also lead to increased computational time.

Compared to other methods, the Normal Gamma is much slower. In certain

cases the Spike and slab can be similarly slow but HL, LS, piMASS and LR test

all run in less than 1 hour for all datasets. However for datasets of this size,

the time taken is not prohibitively long.

4.4 Information in the likelihood as a function

of sample size

We assess, using a ROC curve, see Figure 4.7, how the Normal Gamma prior

changes its performance with a change in the number of individuals on HapGen

simulated dataset 2B from n = 300 to n = 100 and n = 50 individuals while
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maintaining the same number of total and causal SNPs. This allows us to under-

stand how much information is in the likelihood as the sample size changes. We

expect to see a decrease in the AUC when the number of individuals decreases.
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Figure 4.7: ROC curve comparing the different statistical methods for detecting
causal SNPs on our simulated data with all 54 causal SNPs having effect size
0.4. The data was simulated using HapGen2 Su et al. [2011], targetting SNPs
in the CASPASE8 region. Causal SNPs with a MAF of approximately 0.02 in
the population (HapGen simulated data 2B).

The AUC for the Normal Gamma with n = 300 is 0.9322. This decreases

to 0.8704 when there are 100 individuals, and decreases further to 0.8263 with

only 50 individuals. All these AUCs show a respectable performance from the

Normal Gamma, even compared to other methods with n = 300.

4.5 Conclusion

In this chapter, we have seen how the Normal Gamma performs very well on

our simulated data. We notice that its performance is similar to other methods

when the MAF of the causal SNPs is 0.02. In the case where the MAF is 0.2,

the Normal Gamma and the Spike and slab prior are both superior to other

methods. In the worst cases for the Normal Gamma, it is still comparable to

the next best method.

We assessed convergence of the Normal Gamma visually in the form of a

ROC curve and formally in terms of the R hat convergence diagnostic.

We do not vary the MAF (minor allele frequency) of the causal SNPs within

a dataset. This could affect the ability to detect causal /associated SNPs but

we cannot draw conclusions on this using our simulated datasets. Further un-



4.5. CONCLUSION 67

derstanding of these methods when run on eQTL data would require the inves-

tigation of these extra features.

Due to the performance and the ease of incorporating functional information,

we choose the Normal Gamma as our method to develop, and continue to use

the same comparison methods where possible.



68 CHAPTER 4. COMPARING METHODS VIA SIMULATION



Chapter 5

Implementing MCMC using the

Normal Gamma Prior

We use the Normal Gamma prior as the basis for our eQTL study based on the

results in Chapter 4 and the adaptive shrinkage framework of the model. In

this chapter we describe, in detail, the prior structure of the Normal Gamma

prior [Griffin and Brown, 2010], and how it can be implemented as computa-

tionally efficiently as possible.

We verify, and correct where necessary, the calculations stated in Griffin and

Brown [2010] without derivation.

Throughout this chapter, and the thesis, we adopt the convention that vari-

ables in bold represent vectors, and variables that are capitalised represent

matrices.

We can represent the relationship between the variables in the Normal

Gamma using a DAG (directed acyclic graph). This can be found in Figure 5.1.

The pseudo-code that we use to implement the Normal Gamma can be found

in Appendix D.3.

5.1 Prior Structure.

The Normal Gamma prior, defined by Griffin and Brown [2010] and in Equa-

tions 5.1-5.6, is applied to a standard linear model of the form y = α1n+Xβ+ε,

where ε ∼ N(0, σ2In), α represents background gene expression, y the response

vector of gene expression, X the matrix of genotypes and β the vector of effect

sizes.

Note that, in this chapter, n denotes the number of individuals, p denotes

the number of SNPs, Xj,i denotes genotype of the ith SNP for individual j,

βi represents the effect size of SNP i, β = (β1, . . . , βp)
T represents a p × 1

69
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λγ

ψ

β

y Xσ2

SNPs i = 1, . . . , p

Individuals j = 1, . . . , n

Genes g = 1, . . . , ng

Figure 5.1: DAG representing the relationships between the variables in the NG
model. The grey shaded nodes represent observed variables, the plates represent
the loops and the arrows represent the relationships between the parameters.

vector of SNP effect sizes, yj represents gene expression for individual j, with

y = (y1, . . . , yn)T an n × 1 vector of gene expressions, ψi represent the prior

variance associated with βi, where ψ = (ψ1, . . . , ψp)
T .

π(α) ∝ 1 (5.1)

π(σ−2) ∝ 1 (5.2)

π(λ) ∼ Ex

(
1

2

)
(5.3)

π(γ−2|λ) ∼ Ga

(
2,
M

2λ

)
(5.4)

π(ψi|λ, γ−2) ∼ Ga

(
λ,

1

2γ2

)
(5.5)

π(βi|ψi) ∼ N(0, ψi) (5.6)

where π(a) represents the prior distribution on a and M is a fixed scalar defined

as M = 1
p

∑p
i=1 β̂

2
i where β̂ is the least squares (LS) estimate of β when X is

non-singular. When X is singular, or when p > n − 1, M is redefined as
1
n

∑p
i=1 β̂

2
i , where β̂ is the minimum length least squares (MLLS) estimate, see

Section 3.4.1. The parametrisation of the Gamma distribution using shape and

rate parameters is defined in Appendix A.

Griffin and Brown [2010] choose the constant M which represents the expec-



5.2. FULL CONDITIONAL DISTRIBUTIONS 71

tation of the marginal prior variance of β (E[π(var(βi|λ, γ2))] = E[2λγ2] = M).

M represents an empirical estimate of the variance of the least squares esti-

mates of βi. It is used to control the amount of shrinkage enforced by the

Normal Gamma by controlling the range of values for ψ. When including func-

tional information within the Normal Gamma framework, we use this ability to

control the amount of shrinkage enforced by the prior to prioritise SNPs with

more evidence of a deleterious effect.

With the response variable defined as y = (y1, . . . , yn), the likelihood is

defined as follows in Equation 5.7.

f(y|λ, γ−2,ψ, α,β, σ−2) ∼ Nn(y − α1n −Xβ, σ2In), (5.7)

where β = (β1, β2, . . . , βp)
T is the parameter vector representing the effects

of genetic variants, and Nn represents the multivariate normal (MVN) in n

dimensions.

In the Normal Gamma prior hierarchy, we calculate the marginal prior vari-

ance of βi using the law of total variance giving:

var(βi|λ, γ) = Eψi
[var(βi|λ, γ, ψi)] + varψi

(E[βi|λ, γ, ψi])

= Eψi
[ψi|λ, γ] + 0

= 2λγ2.

Hence we state var(π(βi|λ, γ)) = 2λγ2. This is given an IG(2,M) distribution so

that E[π(var(βi|λ, γ))] = M . M , defined as 1
p

∑p
i=1 β̂

2
i , provides an approximate

estimate of the variance of the LS/MLLS estimates. Note that by the proper-

ties of the Gamma and Inverse-Gamma distributions 2λγ2 ∼ IG(2,M) =⇒
γ−2|λ ∼ Ga

(
2, M

2λ

)
.

In Griffin and Brown [2010] π(λ) is stated as taking an Ex(1) distribution

but tuned to have an E
(

1
2

)
distribution. For flexibility we leave it as π(λ) when

calculating the full conditional distributions.

5.2 Calculating the Full Conditional Distribu-

tions.

In this section we check and correct, where necessary, the calculations for the

full conditional distributions stated without derivation in Griffin and Brown

[2010].

In order to calculate the full conditional distribution for each parameter, we
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write down the joint posterior distribution and select all the terms involving

our given parameter. To use Gibbs Sampling we need the full conditional dis-

tributions to have the form of a standard distribution, otherwise we calculate

the acceptance probability for Metropolis-Hastings updating.

The joint posterior distribution is calculated using Bayes’ Theorem as fol-

lows.

f(λ, γ−2,ψ, α,β, σ−2|y)

∝ f(λ, γ−2,ψ, α,β, σ−2,y)

∝ π(λ, γ−2,ψ, α,β, σ−2)f(y|λ, γ−2,ψ, α,β, σ−2)

∝ π(α)π(σ−2)π(λ)π(γ−2|λ)π(ψ|γ−2, λ)π(β|ψ)f(y|λ, γ−2,ψ, α,β, σ−2),

where f(y|λ, γ−2,ψ, α,β, σ−2) is the likelihood and π(.) represents the prior

distribution of the parameter.

Using the prior distributions, Equations 5.1-5.6, with the parametrisation of

the Gamma distribution given in Appendix A, the joint posterior distribution

is defined as:

π(λ)×

(
M

2λ

)2

Γ(2)

(
γ−2
)2−1

exp

(
−M
2λ

γ−2

)
× 1

Γ(λ)

(
1

2γ2

)λ
(ψi)

λ−1 exp

(
−ψi

1

2γ2

)
×

p∏
i=1

ψ
− 1

2
i exp

(
−1

2
βT
(

diag

(
1

ψ i

))
β

)
×
(
σ−2
)n

2 exp

(
−1

2
σ−2(y − α1n −Xβ)T (y − α1n −Xβ)

)
. (5.8)

5.2.1 Full Conditional Distribution for σ−2.

Selecting the terms of Equation 5.8 involving σ−2, we calculate the full condi-

tional distribution up to proportionality as follows.

f(σ−2|λ, γ−2,ψ, α,β,y)

∝ (σ2In)−
1
2 exp

(
−1

2
(y − α−Xβ)T (σ2In)−1(y − α−Xβ)

)
∝ σ−n exp

(
−1

2
(y − α−Xβ)T

1

σ2
In(y − α−Xβ)

)
∝ (σ−2)

n
2 exp

(
−1

2
σ−2(y − α−Xβ)T (y − α−Xβ)

)
. (5.9)



5.2. FULL CONDITIONAL DISTRIBUTIONS 73

This is proportional to a Gamma distribution of the form:

σ−2|λ, γ−2,ψ, α,β,y ∼ Ga

(
n

2
+ 1,

(y − α−Xβ)T (y − α−Xβ)

2

)
. (5.10)

There is a discrepancy between the shape parameters of the Gamma distribu-

tions in our calculations
(
n
2

+ 1
)

and those in [Griffin and Brown, 2010]
(
n
2

)
.

We use our version for the full conditional distribution.

5.2.2 Full Conditional Distribution for ψi.

Selecting the terms of Equation 5.8 involving ψi, we calculate the full conditional

distribution up to proportionality as follows.

f(ψi|σ−2λ, γ−2, α, βi,y)

∝
p∏
i=1

(
1

Γ(λ)

(
1

2γ2

)λ
(ψi)

λ−1 exp

(
−ψi

1

2γ2

)
1√
ψi

exp

(
− 1

2ψi
β2
i

))

∝
p∏
i=1

(
(ψi)

λ−1ψ
− 1

2
i

)
exp

(
− 1

2γ2

p∑
i=1

ψi −
1

2

p∑
i=1

β2
i

ψi

)

∝
p∏
i=1

(
(ψi)

λ−1− 1
2

)
exp

(
−1

2

(
1

γ2

p∑
i=1

ψi +

p∑
i=1

β2
i

ψi

))
. (5.11)

This is proportional to a Generalised Inverse Gaussian distribution of the form:

ψi|σ−2λ, γ−2, α, βi,y ∼ GIG

(
λ− 1

2
,

1

γ2
, β2

i

)
. (5.12)

To avoid confusion, we specify the parametrisation of the Generalised Inverse

Gaussian density we use in Appendix A.
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5.2.3 Full Conditional Distribution for γ−2.

Selecting the terms of Equation 5.8 involving γ, we calculate the full conditional

distribution up to proportionality as follows.

f(γ−2|σ−2, λ, ψi, α, βi,y)

∝
(
M

2λ

)2
1

γ2
exp

(
−M

2λ

1

γ2

)
×

p∏
i=1

(
1

Γ(λ)

(
1

2γ2

)λ
(ψi)

λ−1 exp

(
−ψi

1

2γ2

))

∝ 1

γ2
exp

(
− M

2λγ2

)(
1

γ2

)pλ
exp

(
−1

2

p∑
i=1

ψi
γ2

)

∝ (γ−2)pλ+1 exp

(
−γ−2

(
M

2λ
+

1

2

p∑
i=1

ψi

))
. (5.13)

This is proportional to a Gamma distribution of the form:

γ−2|σ−2, λ, ψi, α, βi,y ∼ Ga

(
pλ+ 2,

M

2λ
+

1

2

p∑
i=1

ψi

)
. (5.14)

5.2.4 Full Conditional Distribution for φ = (α,β)T .

We update α and β simultaneously by updating φ = (α,β)T . We therefore

select the terms of Equation 5.8 involving α and β and use these terms to

calculate the full conditional distribution.

As in Griffin and Brown [2010], we begin by defining X∗ = [1 : X]. This

is our full design matrix for φ and takes into account both α and β. We also

define

Λ = diag

(
0,

1

ψ1

,
1

ψ2

, . . . ,
1

ψp

)
. (5.15)

f(φ|γ−2, σ−2, λ, ψi,y)

∝
p∏
i=1

ψ
− 1

2
i exp

(
−1

2
βT
(
diag

(
1

ψ i

))
β

)
×
(
σ−2

)n
2 exp

(
−1

2
σ−2(y − α1n −Xβ)T (y − α1n −Xβ)

)
∝ exp

(
−1

2
βT
(
diag

(
1

ψ i

))
β

)
exp

(
−1

2
σ−2(y − α1n −Xβ)T (y − α1n −Xβ)

)
= exp

(
−1

2

[
βT diag

(
1

ψ i

)
β + σ−2(y − α1n −Xβ)T (y − α1n −Xβ)

])
= exp

(
−1

2

[
φTΛφ+ σ−2(y −X∗φ)T (y −X∗φ)

])
∝ exp

(
− 1

2σ2

(
σ2φTΛφ+ φTX∗TX∗φ− 2φTX∗Ty

))
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since φTX∗Ty = yTX∗φ is a scalar

∝ exp

(
− 1

2σ2

(
φT
(
σ2Λ +X∗TX∗

)
φ− 2φTX∗Ty

))
Let

(
σ2Λ +X∗TX∗

)
= A

∝ exp

(
− 1

2σ2

(
Aφ− 2φTX∗Ty

))
By completing the square, we obtain

∝ exp

(
− 1

2σ2

((
φ−A−1X∗Ty

)T
A
(
φ−A−1X∗Ty

)))
. (5.16)

This takes the form of a Multivariate Normal distribution with mean

(
σ2Λ +X∗TX∗

)−1
X∗Ty

and variance

(σ−2A)−1 =
(
σ−2

(
σ2Λ +X∗TX∗

))−1
= σ2

(
σ2Λ +X∗TX∗

)−1
.

Hence the full conditional distribution for φ is:

φ|γ−2, σ−2, λ,ψ,y ∼ Np+1

((
X∗TX∗ + σ2Λ

)−1
X∗Ty, σ2

(
σ2Λ +X∗TX∗

)−1
)
.

(5.17)

5.2.5 Full Conditional Distribution for λ.

Selecting the terms of Equation 5.8 involving λ, we calculate the full conditional

distribution up to proportionality as follows.

f(λ|γ−2,ψ, α,β, σ−2,y)

∝ π(λ)×
p∏
i=1

1

Γ(λ)

(
1

2γ2

)λ
(ψi)

λ−1 exp

(
−ψi

1

2γ2

)
×(

M

2λ

)2

Γ(2)

(
γ−2
)2−1

exp

(
−M
2λ

γ−2

)
∝ π(λ)

(
M

2λ

)2

exp

(
−M
2λ

γ−2

)(
1

Γ(λ)

)p(
1

2γ2

)pλ p∏
i=1

(ψi)
λ−1

∝ π(λ)
1

(Γ(λ))p (2γ2)pλ

(
M

2λ

)2

exp

(
−M
2λ

γ−2

) p∏
i=1

(ψi)
λ−1 (5.18)

This is not a standard distribution up to proportionality and so it is not possible

to update λ using Gibbs Sampler, we therefore have to use the Metropolis-

Hastings algorithm.
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Having calculated the full conditional distribution, this allows us to calculate

the acceptance probability for our proposed λ, which we call λ′. The acceptance

probability is defined as:

min

(
1,
f(λ′|γ−2,ψ, α,β, σ−2,y)

f(λ|γ−2,ψ, α,β, σ−2,y)

q(λ|λ′)
q(λ′|λ)

)
(5.19)

In order to calculate this, we take the minimum of 1 and the ratio between the

full conditional distribution for λ evaluated at λ = λ′ and the full conditional of

λ evaluated at λ = λ as well as the proposal distributions for λ|λ′ and vice-versa.

We know that the prior for γ−2|λ is derived from E[π(ψ|λ, γ)] = 2λγ2 ∼
IG(2,M). We therefore need to take this into account when we update λ.

Hence we define γ′
2

= 2λγ2

2λ′
based on the newly updated value for γ2, and

update as if we were updating λ and γ−2 jointly.

This gives an updated joint full conditional distribution for λ and γ2 to be:

f(λ, γ−2|ψ, α,β, σ−2,y)

∝ π(λ)×
p∏
i=1

1

Γ(λ)

(
1

2γ2

)λ
(ψi)

λ−1 exp

(
−ψi

1

2γ2

)
×
(
M

2λ

)2 (
γ−2

)
exp

(
−M
2λγ2

)

∝ π(λ)

(
1

Γ(λ)

)p(
1

2γ2

)pλ
exp

(
−

p∑
i=1

ψi
1

2γ2

)
p∏
i=1

(ψi)
λ−1 ×

(
1

2λ

)(
M2

2λγ2

)
exp

(
−M
2λγ2

)

∝ π(λ)
1

(Γ(λ))
p

(2γ2)
pλ

exp

(
−

p∑
i=1

ψi
1

2γ2

)
p∏
i=1

(ψi)
λ−1 ×

(
1

2λ

)(
M2

2λγ2

)
exp

(
−M
2λγ2

)
.

(5.20)

We can then use the ratio of this updated full conditional distributed eval-

uated at λ′ and γ′ divided by the ratio evaluated at λ and γ to derive the first

part of the acceptance probability for λ in the Metropolis-Hasting updating.

The first part of the acceptance probability, the ratio of the full conditional
distributions given in Equation 5.20 is:

f(λ′, γ′
2 |ψ, α,β, σ−2,y)

f(λ, γ2|ψ, α,β, σ−2,y)

=

π(λ′)
1

(Γ(λ′))
p

(2γ′2)
pλ′ exp

(
−

∑p
i=1 ψi

2γ′2

)∏p
i=1(ψi)

λ′−1

(
1

2λ′

)(
M2

2λ′γ′2

)
exp

(
−M

2λ′γ′2

)
π(λ)

1

(Γ(λ))
p

(2γ2)
pλ

exp
(
−

∑p
i=1 ψi

2γ2

)∏p
i=1(ψi)λ−1

(
1

2λ

)(
M2

2λγ2

)
exp

(
−M
2λγ2

)
Substituting 2λγ2 = 2λ′γ′2

=

λπ(λ′)
1

(Γ(λ′))
p

(2γ′2)
pλ′ exp

(
−

∑p
i=1 ψi

2γ′2

)∏p
i=1(ψi)

λ′−1

(
M2

2λ′γ′2

)
exp

(
−M

2λ′γ′2

)
λ′π(λ)

1

(Γ(λ))
p

(2γ2)
pλ

exp
(
−

∑p
i=1 ψi

2γ2

)∏p
i=1(ψi)λ−1

(
M2

2λ′γ′2

)
exp

(
−M

2λ′γ′2

)

=
λ

λ′
π(λ′)

π(λ)

(
Γ(λ)

Γ(λ′)

)p
(2γ2)pλ

(2γ′2)pλ′ exp

(
−
∑p
i=1 ψi
2γ′2

+

∑p
i=1 ψi
2γ2

)( p∏
i=1

(ψi)

)λ′−λ

. (5.21)
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The proposal value λ′ is defined in Griffin and Brown [2010] as λ′ = exp(σ2
λz)λ,

where λ > 0 and z is a value sampled from the standard normal distribution.

This is symmetric so is not needed to be included in the acceptance probability.

σ2
λ is chosen to ensure that the Markov Chain explores the space effectively

without proposing too many jumps that are rejected. Specifically, σ2
λ is, ac-

cording to Griffin and Brown [2010], chosen such that the acceptance rate is

approximately 20%-30%. Simulations led us to use σ2
λ = 0.05 in all our MCMC

routines.

We now define the acceptance probability of λ to be:

min

{
1,
f(λ′, γ′

2 |ψ, α,β, σ−2,y)

f(λ, γ2|ψ, α,β, σ−2,y)

q(λ|λ′)
q(λ′|λ)

}

= min

1,
λ′

λ

π(λ′)

π(λ)

(
Γ(λ)

Γ(λ′)

)p
(2γ2)pλ

(2γ′2)pλ′ exp

(
−
∑p
i=1 ψi
2γ′2

+

∑p
i=1 ψi
2γ2

)( p∏
i=1

(ψi)

)λ′−λ


(5.22)

For the purposes of coding the Normal Gamma, we use the prior distribution

for λ suggested by Griffin and Brown [2010], π(λ) ∼ Ex(1
2
). Based on our results

in Chapter 4, this prior distribution works well for our simulated datasets. The

acceptance probability stated here is different to the published version in Griffin

and Brown [2010].

5.3 Proving the posterior is proper

As we have two improper priors on σ−2 and α we need to ensure that the

posterior is proper before continuing. Initially we can define requirements such

that all the full conditional distributions are valid. This means that for the

posterior to be proper, we require the following:

1. n
2

+ 1 > 0

2. (y−α1n−Xβ)T (y−α1n−Xβ)
2

> 0

3. pλ+ 2 > 0

4. M
2λ

+ 1
2

∑p
i=1 ψi > 0

5. σ2
(
σ2Λ +X∗TX∗

)−1
> 0.

These constrains ensure that none of the full conditionals are improper. This

does not ensure the posterior is proper, but if these conditions are not met then

the posterior is improper.
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We now take the joint posterior distribution defined in Equation 5.8 and

integrate this with respect to all parameters to show that the posterior is proper.

We begin by rearranging the joint posterior and stating it up to proportion-

ality.

π(λ)×

(
M

2λ

)2

Γ(2)

(
γ−2
)2−1

exp

(
−M
2λ

γ−2

)
× 1

Γ(λ)

(
1

2γ2

)λ
(ψi)

λ−1 exp

(
−ψi

1

2γ2

)
×

p∏
i=1

ψ
− 1

2
i exp

(
−1

2
βT
(

diag

(
1

ψ i

))
β

)
×
(
σ−2
)n

2 exp

(
−1

2
σ−2(y − α1n −Xβ)T (y − α1n −Xβ)

)
∝ π(λ)

(
1

λγ

)2

exp

(
− M

2λγ2

)(
1

Γ(λ)

)p(
1

2γ2

)pλ
exp

(
−

p∑
i=1

ψi
1

2γ2

)

×
p∏
i=1

ψ
λ−1− 1

2
i exp

(
−1

2
βT
(

diag

(
1

ψ i

))
β

)
×
(
σ−2
)n

2 exp

(
−1

2
σ−2(y − α1n −Xβ)T (y − α1n −Xβ)

)
∝ π(λ)

(
1

λγ

)2

exp

(
− M

2λγ2

)(
1

Γ(λ)

)p(
1

2γ2

)pλ
exp

(
−

p∑
i=1

ψi
1

2γ2

)

×
p∏
i=1

ψ
λ−1− 1

2
i exp

(
−1

2
βT
(

diag

(
1

ψ i

))
β

)
×
(
σ−2
)n

2 exp

(
−1

2
σ−2(y − α1n −Xβ)T (y − α1n −Xβ)

)
.

If we use the rearranging and simplification of combining φ = (α,β)T from

Equation 5.16, we define the joint posterior as follows, defining
(
σ2Λ +X∗TX∗

)
=

A.

∝ π(λ)

(
1

λγ

)2

exp

(
− M

2λγ2

)(
1

Γ(λ)

)p(
1

2γ2

)pλ
exp

(
−

p∑
i=1

ψi
1

2γ2

)(
σ−2
)n

2

×

(
p∏
i=1

ψ
λ−1− 1

2
i

)
exp

(
− 1

2σ2

((
φ− A−1X∗Ty

)T
A
(
φ− A−1X∗Ty

)))
.

We are now ready to integrate the joint posterior density.
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We begin by integrating with respect to φ using the full conditional distri-

bution for φ to calculate the value of the integral, giving the following. We

maintain this up to proportionality, removing only the constants.

π(λ)

(
1

λγ

)2

exp

(
− M

2λγ2

)(
1

Γ(λ)

)p(
1

2γ2

)pλ
exp

(
−

p∑
i=1

ψi
1

2γ2

)(
σ−2
)n

2

×

(
p∏
i=1

ψ
λ−1− 1

2
i

)
det
(
σ−2A

)− 1
2 exp

(
− 1

2σ2
yTy

)
.

Replacing A and simplifying, we have:

π(λ)

(
1

λγ

)2

exp

(
− M

2λγ2

)(
1

Γ(λ)

)p(
1

2γ2

)pλ
exp

(
−

p∑
i=1

ψi
1

2γ2

)(
σ−2
)n

2

×

(
p∏
i=1

ψ
λ−1− 1

2
i

)
det
(
σ2
(
σ2Λ +X∗TX∗

)−1
)− 1

2
exp

(
− 1

2σ2
yTy

)
.

We now choose to integrate with respect to γ−2. Again we use the full condi-

tional distribution to enable us to calculate the value of the integral which helps

us to obtain the following.

= π(λ)

(
1

λ

)2(
1

Γ(λ)

)p (
σ−2
)n

2
+ p+1

2

(
p∏
i=1

ψ
λ−1− 1

2
i

)
det
(
σ2
(
σ2Λ +X∗TX∗

)−1
)− 1

2

× Γ(pλ+ 2)

(
M

2λ
+

1

2

p∑
i=1

ψi

)−(pλ+2)

exp

(
− 1

2σ2
yTy

)
.

At this point there are no more standard distributions we can use to help us to

integrate out the remaining parameters (λ, σ−2 and ψi). We therefore bound as

many parts of the function as possible to enable us to integrate the remaining

parts of the posterior.

We aim to bound the following parts of the joint posterior for the reasons

explained.

1. det
(
σ2
(
σ2Λ +X∗TX∗

)−1
)− 1

2
has to be bounded to remove the depen-

dence on σ2 and ψi (the diagonal elements of Λ).

2.
Γ(pλ+ 2)

(Γ(λ))p
needs to be bounded so that we can integrate with respect to λ.

Firstly we can bound the determinant as follows:

det
(
σ2
(
σ2Λ +X∗TX∗

)−1
)− 1

2 ≤
(
σ−2
) p+1

2 det
((
σ2Λ +X∗TX∗

)−1
)− 1

2
.
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Next we bound det
(
σ2Λ +X∗TX∗

)−1
. We know that the maximum entry of

X∗TX∗ is (p+ 1) when using the {0, 1} coding for SNPs or 2(p+ 1) when using

the {0, 1, 2} coding. We also know that σ2Λ ≥ 0 as Λ is a diagonal matrix with

diagonal elements of {0, 1
ψ1
, 1
ψ2
, . . . , 1

ψp
} where ψi > 0 and σ2 > 0 by definition.

We can therefore bound the matrix using this information and Hadamard’s

inequality such that

det
((
σ2Λ +X∗TX∗

)−1
)
≤ (2(p+ 1))p+1 (p+ 1)

p+1
2 .

This removes the dependence on ψi and σ2 from our posterior distribution.

Using the upper bounding, we can now integrate the following with respect

to σ−2.

π(λ)

(
1

λ

)2(
1

Γ(λ)

)p (
σ−2
)n

2
+ p+1

2

(
p∏
i=1

ψ
λ−1− 1

2
i

)
Γ(pλ+ 2)

× exp

(
− 1

2σ2
yTy

)(
M

2λ
+

1

2

p∑
i=1

ψi

)−(pλ+2)

.

We obtain the following up to proportionality (having removed anything that is

constant with respect to ψi or λ) using the similarity to the Gamma distribution

to enable us to integrate out σ−2. We note that n+p+3
2

> 0 and 1
2
yTy is positive

definite by definition meaning that the integral is well defined.

π(λ)

(
1

λ

)2(
1

Γ(λ)

)p( p∏
i=1

ψ
λ−1− 1

2
i

)
Γ(pλ+ 2)

(
M

2λ
+

1

2

p∑
i=1

ψi

)−(pλ+2)

.

We now need to bound the following to enable us to integrate with respect

to λ and ψi.

1.
(
M
2λ

+ 1
2

∑p
i=1 ψi

)−(pλ+2)
needs to be bounded so we can integrate with

respect to ψi.

2.
Γ(pλ+ 2)

(Γ(λ))p
needs to be bounded so that we can integrate with respect to λ.

To bound the Gamma function, we use the Stirling formula, which states:

Γ(x+ 1) ≈ xx exp{−x}√
2πx

.
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This gives:

Γ(pλ+ 2)

(Γ(λ))p
≈

(pλ+ 2− 1)(pλ+2−1) exp{−(pλ+ 2− 1)}√
2π(pλ+ 2− 1)(

(λ− 1)(λ−1) exp{−(λ− 1)}√
2π(λ− 1)

)p

∝

(pλ+ 1)(pλ+1) exp{−(pλ+ 1)}√
pλ+ 1(

(λ− 1)(λ−1) exp{−(λ− 1)}√
λ− 1

)p
=

(pλ+ 1)(pλ+1)

(λ− 1)(λ−1)

√
λ− 1√
pλ+ 1

exp{−(pλ+ 1)}
(exp{−(λ− 1)})p

=
(pλ+ 1)(pλ+1)

(λ− 1)(λ−1)

√
λ− 1√
pλ+ 1

exp{−(pλ+ 1)}
exp{−p(λ− 1)}

=
(pλ+ 1)(pλ+1)

(λ− 1)(λ−1)

√
λ− 1√
pλ+ 1

exp{−(pλ+ 1)− p(λ− 1)}

=
(pλ+ 1)(pλ+1)

(λ− 1)(λ−1)

√
λ− 1√
pλ+ 1

exp{−2pλ}

=
(pλ+ 1)(pλ+1)

(λ− 1)(λ−1)

(
λ− 1

pλ+ 1

) 1
2

exp{−2pλ}

=
(pλ+ 1)(pλ+ 1

2
)

(λ− 1)(λ− 1
2

)
exp{−2pλ}.

We still need to bound this to enable us to integrate with respect to λ. However,

at this stage we have the following to integrate with respect to λ and ψi.

π(λ)

(
1

λ

)2
(

p∏
i=1

ψ
λ−1− 1

2
i

)(
M

2λ
+

1

2

p∑
i=1

ψi

)−(pλ+2)
(pλ+ 1)(pλ+ 1

2
)

(λ− 1)(λ− 1
2

)
exp{−2pλ}.

We also know that π(λ) ∼ Ex
(

1
2

)
, hence we can include this to give:

exp

(
−1

2
λ

)(
1

λ

)2
(

p∏
i=1

ψ
λ−1− 1

2
i

)(
M

2λ
+

1

2

p∑
i=1

ψi

)−(pλ+2)
(pλ+ 1)(pλ+ 1

2
)

(λ− 1)(λ− 1
2

)
exp (−2pλ)

=

(
p∏
i=1

ψ
λ−1− 1

2
i

)(
M

2λ
+

1

2

p∑
i=1

ψi

)−(pλ+2)
(pλ+ 1)(pλ+ 1

2
)

λ2(λ− 1)(λ− 1
2

)
exp

(
−2pλ− 1

2
λ

)

=

(
p∏
i=1

ψ
λ−1− 1

2
i

)(
M

2λ
+

1

2

p∑
i=1

ψi

)−(pλ+2)
(pλ+ 1)(pλ+ 1

2
)

λ2(λ− 1)(λ− 1
2

)
exp

(
−λ
(

2p+
1

2

))
.

When integrating with respect to λ, the integral diverges due to the terms of the

form λλ. The integral with respect to ψi is more difficult to calculate as there
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is a term involving
∏p

i=1 ψi and in the exponent there is the
∑p

i=1 ψi. However,

as the form of the terms involving ψi do not follow the form of any standard

distribution, when we bound the integral and substitute in the limits of 0 and

∞, the value of the integral will be of the form ∞− 0. Hence this integral is

infinite when we integrate with respect to both λ and ψi, in either order.

However, we note that, due to bounding, this is the upper limit of the

integral of the joint posterior density, and hence we know that the value of the

integral of the join density is strictly less than infinity. Therefore the posterior

is proper.

5.4 Summary of Full Conditional Distributions

for Normal Gamma.

The full conditional distributions for σ−2, ψi, γ
−2, and φ are as follows:

σ−2|λ, γ−2,ψ, α,β,y ∼ Ga

(
n

2
+ 1,

(y − α1n −Xβ)T (y − α1n −Xβ)

2

)
.

ψi|σ−2λ, γ−2, α,β,y ∼ GIG

(
λ− 1

2
,

1

γ2
, β2

i

)
.

γ−2|σ−2, λ,ψ, α,β,y ∼ Ga

(
pλ+ 2,

M

2λ
+

1

2

p∑
i=1

ψi

)
.

φ|γ−2, σ−2, λ,ψ,y ∼ Np+1

((
X∗TX∗ + σ2Λ

)−1
X∗Ty, σ2

(
σ2Λ +X∗TX∗

)−1
)
.

The full conditional for λ cannot be updated using Gibbs sampling as the distri-

butions are not conjugate. We therefore update using the Metropolis-Hastings

acceptance probability

= min

1,
λ′

λ

π(λ′)

π(λ)

(
Γ(λ)

Γ(λ′)

)p
(2γ2)pλ

(2γ′2)pλ′ exp

(
−
∑p
i=1 ψi
2γ′2

+

∑p
i=1 ψi
2γ2

)( p∏
i=1

(ψi)

)λ′−λ


(5.23)

where λ′ = exp(σ2
λz)λ is the proposal value for λ and γ′

2
= 2λγ2

2λ′
is the corre-

sponding value of γ2 given the proposed value λ′.

5.5 Implementation of the Normal Gamma Prior.

When implementing the Normal Gamma, we can improve the computational

burden using mathematical reformulation of the full conditional distributions.

We need to consider the numerical accuracy of the software and reformulate
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the full conditionals to take this into account. At times we have to use mod-

ified methods that mitigate these computational limitations. Many of these

reformulations are stated, without derivation, in Griffin and Brown [2010].

5.5.1 Improving the accuracy when sampling from the

Full Conditional for φ.

To increase sampling efficiency when sampling from the full conditional distri-

bution for φ, Equation 5.17, page 75, we standardise the multivariate normal

using a Cholesky decomposition. This allows us to sample from the standardised

MVN. We standardise the MVN using the linear transformation property.

The Linear Transformation Property states that if x ∼ Np(µ,Σ), then Ax+

b ∼ Nq(Aµ+ b,AΣAT ), where A is a q × p matrix, and b is a q × 1 vector.

To standardise X ∼ Np(µ,Σ), we first centre X so that X−µ ∼ Np(0,Σ).

We then use the Cholesky decomposition of the positive definite matrix Σ into

Σ = CTC =⇒ (CT )−1ΣC−1 = Ip. (5.24)

Since C is invertible, we have

CC−1 = I =⇒ (C−1)TCT = I =⇒ (C−1)T = (CT )−1 =⇒ ((CT )−1)T = C−1

(5.25)

Using the linear transformation property on X− µ ∼ Np(0,Σ) yields

(CT )−1(X− µ) ∼ Np(0, (C
T )−1Σ((CT )−1)T )

∼ Np(0, (C
T )−1ΣC−1) using Equation 5.25

∼ Np(0, Ip) using Equation 5.24

The Cholesky decomposition or factorisation reduces a positive definite ma-

trix B into the product of two upper, or lower, triangular matrices, R such that

RTR = B.

We sample a vector y from this standardised MVN, and transform it such

that the vector we want to sample X is given by X = µ+ CTy.

We use this approach when sampling from the full conditional distribution

for φ as given in Equation 5.17.

5.5.2 Updating φ = (α,β)T in two stages.

When sampling from the multivariate normal (MVN) distribution representing

the full conditional distribution for φ, Equation 5.17, large differences in the
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variance parameters ψi can lead to the sampled values being inaccurate. We

have defined Λ =
(

0, 1
ψ1
, . . . , 1

ψp

)
, hence ψi is involved in the full conditional

distribution of φ.

When we calculate the updated values for φ = (α,β)T computational prob-

lems arise when there are large differences between the maximum and mini-

mum ψi values. One way to overcome these problems is to update φ in two

stages. The two groups of ψi to be updated depend on whether the ψi are large,

i.e. above a certain threshold T1, or small, i.e. below a different threshold T2. In

the case used in Griffin and Brown [2010], T1 < T2 therefore some ψi fall into

both categories and actually get updated twice in each MCMC iteration.

The threshold we use here depends on x̂, which is defined by Griffin and

Brown [2010] to be 108. This is this limit for the ratio of the maximum ψi value

to the minimum ψi value. If the ratio is greater than this then the updating is

done in stages, i.e. if
max(ψi)

min(ψi)
> x̂ then we update in stages. The thresholds

for the stages of updating are ψi > min(ψi)
x̂
10

for larger values of ψi, and

ψi < min(ψi)× 10x̂ for smaller values of ψi, giving overlapping groups.

We split the full conditional distribution into two stages and then we apply

the Cholesky decomposition (see Section 5.5.1). We use the two stage updating

to overcome problems with efficiency of sampling both large and small values

and any corresponding accuracy issues with respect to rounding and storing of

values. The Cholesky decomposition is used as it allows us to sample from an

uncorrelated MVN distribution and then transform using the decomposition so

that we have sampled from the desired MVN in a computationally more efficient

and accurate way.

When we update in stages, this changes the full conditional distribution

for φi which is stated in Equation 5.17. We assume that we are updating α

and the first (q − 1) βi values, the column vector of which we call φF . The

corresponding data matrix will be referred to as X∗F = X∗i,1, . . . , X
∗
i,q. The

elements of φ that are not updated will be referred to as φS, similarly we will

also refer to X∗S = X∗i,q+1, . . . , X
∗
i,p. We define the full conditional distribution

as follows:

f(φF |γ−2, σ−2, λ, ψi,y)

∝ exp

(
−1

2
φTF

(
diag

(
1

ψF

))
φF

)
× exp

(
−1

2
σ−2

(
(y −X∗SφS)−X∗FφF

)T (
(y −X∗SφS)−X∗FφF

))
,

(5.26)
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where y−X∗SφS is the response adjusted for the variables not currently being

updated. We now define y∗ = y −X∗SφS, such that

(
(y −X∗SφS)−X∗FφF

)T (
(y −X∗SφS)−X∗FφF

)
=
(
y∗ −X∗FφF

)T (
y∗ −X∗FφF

)
= φTF (X∗F )T (X∗F )φF − 2φTF (X∗F )Ty∗ + (y∗)Ty∗. (5.27)

Letting A =

(
σ2diag

(
1

ψF

)
+ (X∗F )T (X∗F )

)
and substituting Equation 5.27

into Equation 5.26 gives the full conditional distribution for φF as:

∝ exp

(
−1

2
φTF diag

(
1

ψF

)
φF −

1

2σ2

[
φTF (X∗F )T (X∗F )φF − 2φTF (X∗F )T y∗

])
= exp

(
−1

2

[
φTF diag

(
1

ψF

)
φF + σ−2

(
φTF (X∗F )T (X∗F )φF − 2φTF (X∗F )T y∗

)])
= exp

(
− 1

2σ2

[
σ2φTF diag

(
1

ψF

)
φF + φTF (X∗F )T (X∗F )φF − 2φTF (X∗F )T y∗

])
= exp

(
− 1

2σ2

[
φTF

(
σ2diag

(
1

ψF

)
+ (X∗F )T (X∗F )

)
φF − 2φTF (X∗F )T y∗

])
= exp

(
− 1

2σ2

[
φTFAφF − 2φTF (X∗F )T y∗

])
∝ exp

(
− 1

2σ2

(
φF −A−1(X∗F )T y∗

)T
A
(
φF −A−1(X∗F )T y∗

))
. (5.28)

Equation 5.28 above gives the form of a multivariate normal distribution

with:

E[φF |σ2, ψi,y] = A−1(X∗F )Ty∗

=

(
σ2

(
diag

(
1

ψF

))
+ (X∗F )T (X∗F )

)−1

(X∗F )Ty∗.

V ar(φF |σ2, ψi, data) =

(
1

σ2
A

)−1

= σ2

(
σ2

(
diag

(
1

ψF

))
+ (X∗F )T (X∗F )

)−1

.

We use this to update the values for φ in two stages.

5.5.3 Increasing the accuracy when sampling from the

Full Conditional for ψ.

When sampling directly from the Generalised Inverse Gaussian (GIG) distribu-

tion computational problems arise when the parameter estimates for βi become

very small. For computational efficiency, we use the special cases of the GIG.
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If ψi|σ−2λ, γ−2, βi ∼ GIG
(
λ− 1

2
, 1
γ2
, β2

i

)
then the probability density func-

tion is written as

f(ψi|σ−2λ, γ−2, βi) = ψ
λ− 3

2
i exp

(
− β2

i

2ψi

)
exp

(
− ψi

2γ2

)
=

(
1

ψi

)( 1
2
−λ)+1

exp

(
−β

2
i

2

1

ψi

)
exp

(
− ψi

2γ2

)
. (5.29)

This is the density function of the inverse gamma distribution, IG(1
2
− λ, β

2
i

2
),

multiplied by exp
(
− ψi

2γ2

)
. Hence if λ < 1

2
(to ensure 1

2
− λ > 0) and γ2 → ∞

we sample from an IG(1
2
− λ, β

2
i

2
) distribution instead of the GIG.

Equation 5.29 is also in the form of a gamma distribution, Ga(λ − 1
2
, 1
γ2

)

multiplied by exp
(
− β2

i

2ψi

)
. Hence if λ > 1

2
and as βi → 0 we sample from a

Ga(λ− 1
2
, 1
γ2

) distribution instead of the GIG.

Hence we can summarise the special cases used and stated in Johnson et al.

[1994] as follows:

1. As β2
i → 0 and λ > 1

2
, we sample from a Ga

(
λ− 1

2
, 1
γ2

)
.

2. As γ2 →∞ (and λ < 1
2
) we sample from an IG

(
λ− 1

2
,
β2
i

2

)
.

Special Cases of the GIG

We begin with the case where γ2 → ∞. The Inverse Gamma (IG) and the

Generalised Inverse Gaussian (GIG) distributions are very similar for most val-

ues of ψi as exp
(
− ψi

2γ2

)
≈ 1 as γ2 → ∞. But, if ψi is large, say γ2 = ψi,

then exp
(
− ψi

2γ2

)
= exp

(
−1

2

)
< 1. This gives a larger tail density for this IG

compared to the GIG. Due to this we will sample a very large value for ψi

from the IG too often (because of the larger density at high ψi compared to

the GIG). The ratio of the densities of the GIG and IG is exp
(
− ψi

2γ2

)
, and so

to sample with the correct probability from the GIG we have to check whether

U[0,1] < exp
(
− ψi

2γ2

)
. This gives us exactly the correct sampling probability.

The second case is where βi → 0. The Gamma (Ga) and GIG are very similar

for most values of βi because exp
(
− β2

i

2ψi

)
→ 1 as βi → 0. If ψi is also small, say

ψi = βi, then exp
(
− β2

i

2ψi

)
→ exp

(
−1

2

)
< 1. This means that we will sample a

very small value for ψi from the Gamma distribution too often (as it has a larger

density at small values of ψi compared to the GIG). The ratio of the densities

of the GIG and Gamma distribution is exp
(
− β2

i

2ψi

)
, and so to sample with

the correct probability from the GIG, we check whether U[0,1] < exp
(
− β2

i

2ψi

)
.
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This gives the correct sampling probability from the Gamma distribution with

respect to the GIG.

5.6 Conclusion

In this chapter we have recalculated all the full conditional distributions and

have replicated the calculations for increasing the computational efficiency of the

Normal Gamma. Where necessary we have corrected the calculations from Grif-

fin and Brown [2010]. In all cases, we use the stated distributions here in our

Normal Gamma code rather than those published in Griffin and Brown [2010].



88 CHAPTER 5. IMPLEMENTING MCMC USING THE NG PRIOR



Chapter 6

Comparing the performance of

eQTL methods on non-simulated

data

In this chapter we apply the statistical methods we are comparing - Spike and

slab, HyperLasso, LR test, LS/MLLS, piMASS and the Normal Gamma - to

the three real datasets described in Section 2.1; a yeast dataset and two human

datasets, Fairfax and Hulse. We compare and contrast the statistical methods

with the Normal Gamma prior to investigate whether its superior performance

on simulated data, shown in Sections 4.1 and 4.2, is replicated on real data.

In this chapter we do not include any functional information in the Normal

Gamma; we use the basic model as specified by Griffin and Brown [2010] and

described in Chapter 5.

For the NG, piMASS and Spike and slab, we use the posterior mean to

rank the estimates. For the LS/MLLS we use the estimate of the regression

coefficient, and we use the MAP estimate for HyperLasso. When plotting ROCs,

we use the LR test statistic, but when reporting the effect size, we report the

LS estimate based on the single SNP model for the SNP with the greatest LR

test statistic.

6.1 Yeast data

We know yeast SNPs are identified by the gene they reside in. We have a total

of 1802 SNPs that fall into 1307 unique genes/regions. We assess the success

of the NG and other methods at identifying the target SNPs, which we have

defined based on the hotspot location given in two or three of Lee et al. [2009],

Yvert et al. [2003] and Zhu et al. [2008] and defined in Section 2.1.2, by assessing

89
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how each method ranks these target SNPs. Initially we number the SNPs 1 to

1802 rather than maintaining the gene names (as there is often more than one

SNP in a gene and the gene name is given to all the SNPs in that gene).

We have removed SNPs where all of the subjects have the same genotype

(when coded as 0 and 1). As such not all SNPs in the hotspot regions are in

our dataset. We tabulate, in Table 6.1, the possible SNPs from the regions that

we hope to be identified in each gene. We have identified the genes and SNPs

using the Saccharomyces Genome Database [Cherry et al., 2012].

Gene name Hotspot location Genes in hotspot region SNP numbers

TOS1 (YBR162C),
AMN1(YBR158W)

Chr2: 560,000
YBR161W, YBR162W,
YBR163W, YBR165W,
YBR154C, YBR156C

SNP153, SNP154,
SNP155, SNP156,
SNP148, SNP149

ILV6 (YCL009C) Chr3: 100,000
YCL018W (3), YCL014W,
YCL009C

SNP205, SNP206,
SNP207, SNP208,
SNP209

MATALPHA1
(YCR040W)

Chr3: 230,000 YCR064C SNP217

GPA1 (YHR005C),
GPA1 (YHR005C-A)

Chr8: 130,000
YHR011W, YHR012W,
YHR016C

SNP750, SNP751,
SNP752

HAP1 (YLR256W) Chr12: 680, 000
YLR263W, YLR265C,
YLR267W, YLR269C,
YLR273C

SNP1232, SNP1233,
SNP1235, SNP1236,
SNP1237

SIR3 (YLR442C) Chr12: 1,070,000 YLR460C (4), YLR465C (3)

SNP1316, SNP1317,
SNP1318, SNP1319,
SNP1320, SNP1321,
SNP1322

TOP2 (YNL088W) Chr14: 503,000 YNL066W SNP1513
PHM7 (YOL084W) Chr15: 180,000 YOL081W (2) SNP1600, SNP1601

CAT5 (YOR125C) Chr15: 590,000
YOR135C, YOR139C (2),
YOR140W (2)

SNP1678, SNP1679,
SNP1680, SNP1681,
SNP1682

Table 6.1: Table showing the genes, hotspot locations and SNPs in the hotspot
regions that are also in our dataset. Results will be judged against these target
SNPs to see how effectively each method is ranking these hotspots. The numbers
in the brackets of the genes in the hotspot regions tells you the number of SNPs,
if greater than 1, in the gene. These SNPs may or may not have been biologically
validated as causal. We define then based on proximity to the hotspot location.

We look at multiple ways of presenting the results for this data. Initially we

select only gene YOL084W/PHM7 to investigate. For these results, the Normal

Gamma and Spike and slab are run with 100,000 iterations, discarding the first

5,000 as burn-in; we use the MLLS estimate instead of the LS estimate as we

have more SNPs than yeast (individuals); HyperLasso is run defining ‘shape’ as

0.1 with all other parameters left to default; and piMASS is run with 100,000

iterations, a 10,000 iteration burn-in and thinning based on maintaining every

10th iteration, as suggested in the documentation.

Table 6.2 shows the top 10 ranked SNPs by SNP number, across each

method. We see that at least one of the two SNPs in the hotspot region

(SNP1600 and SNP1601) is selected in the top 10 ranked SNPs for all methods

except HyperLasso (HL). We notice strong concordance across methods with
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the top 2 ranked SNPs (SNPs 1592 and 1591). These two SNPs are close to

the hotspot location, so given a wider hotspot region, could be included in our

target SNP set.

Rank NG piMASS MLLS HL LR SS

1 1592 1592 1592 1591 1592 1597
2 1591 1591 1591 1596 1591 1592
3 1597 1601 1595 3 1595 1591
4 1600 1600 1600 1770 1601 1770
5 1601 1597 1593 1668 1593 1771
6 1596 1595 1601 180 1597 1596
7 1771 1593 1596 94 1600 3
8 1770 1596 1597 1731 1589 9
9 1593 1589 1594 1316 1586 10
10 20 1586 1589 506 1596 1601

Table 6.2: SNP identification numbers (1-1802) for the top 10 ranked SNPs
based on posterior mean effect size for each method for yeast gene YOL084W
(PHM7). SNPs 1600 and 1601 are in the hotspot region, according to Lee et al.
[2009], and are highlighted in red. We notice strong concordance between the
different methods and the SNPs in the top 10.

Table 6.3 shows the rankings of the causal SNPs for each method compared.

There are no results for the HyperLasso in this table because the hotspot SNPs

are not selected by HL. We notice that the combined ranks of the two causal

SNPs is lowest for piMASS and the Normal Gamma. The highest combined rank

is for Spike and slab. This indicates that piMASS and the Normal Gamma are

performing best in terms of the combined rank of the posterior estimate of the

hotspot SNPs.

NG piMASS MLLS HL LR SS MAF
SNP1600 4 4 4 . 7 11 0.440
SNP1601 5 3 6 . 4 10 0.450

Table 6.3: Table showing the ranking of the SNPs in the hotspot regions accord-
ing to the different methodologies for yeast gene YOL084W. It also includes the
minor allele frequency (MAF) for each of the causal SNPs. The MAF affected
performance in simulation studies.

When applying the NG method to the yeast data we found there was very

little variation in the raw gene expression values for some genes, leading to

computational problems, see Table 6.4. We believe these problems have arisen

due to the very small values for M . Recall that M is defined as M = 1
p

∑p
i=1 β̂

2
i

where β̂ is the least squares (LS) or minimum length least squares (MLLS)

estimate, see Section 3.4.1. Small variability in the gene expression could lead
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to small variability in the MLLS estimates and therefore small values of M .

The only genes that have not been problematic are YCR040W and YOL084W.

To overcome the computational problems we increased M to be either 5 or 0.5

in further analyses.

YBR158W 0.6693 YCR040W 1.5631 YLR256W 0.5274 YOL084W 2.026
YBR162C 0.2723 YHR005C 0.4757 YLR442C 0.2144 YOR125C 0.3489
YCL009C 0.2670 YHR005C-A 0.3092 YNL088W 0.4725

Table 6.4: The standard deviation of the gene expression values for each gene
used in the yeast dataset.

Table 6.5 shows the rankings of the SNPs that are in the hotspot regions

for all comparison methods. Note that for genes YHR005C-A and YCR040W,

the indicator variable representing the difference in growth conditions for the

two Yeast (glucose and ethanol) was not included as one of the posterior SNP

set for HL. As such we omit the HL results for these two genes. This is one

drawback of the HL. For the Yeast data, HL selects between 0.5% and 2% of

the SNPs as having a non-zero effect. This is a low percentage of SNPs, but

the raw numbers of SNPs (between 6 and 37) are similar to would be expected

for biological validation. Note also that Yeast gene YCR040W reports the NG

with M defined from the data (M data) and M = 5 to assess the effect of M

on the posterior mean effect sizes from the NG.

NG (M=5) NG (M=0.5) piMASS MLLS HL LR SS MAF

YOR125C

SNP1678 1145 1548 4 9 . 4 861 0.459

SNP1679 1638 1191 23 88 . 23 1393 0.440

SNP1680 224 226 21 52 . 19 478 0.450

SNP1682 642 81 14 21 . 12 965 0.450

YBR158W

SNP148 3 3 2 4 1 2 5 0.404

SNP149 114 993 6 5 . 7 742 0.385

SNP153 1 2 5 3 2 4 2 0.413

SNP154 17 1270 7 7 . 6 6 0.422

SNP155 21 148 9 10 . 9 11 0.413

SNP156 5 892 10 18 . 11 15 0.404

YCL009C

SNP205 528 1129 98 86 . 67 45 0.459

SNP206 1462 635 107 68 . 81 56 0.450

SNP207 503 1297 117 204 . 98 76 0.450

SNP208 379 992 70 28 . 45 37 0.450

SNP209 1793 1329 12 11 1 5 5 0.468

YHR005C-A

SNP750 1006 1778 533 1717 NA 543 741 0.385

SNP751 96 18 933 1066 NA 993 655 0.367

SNP752 285 939 351 1500 NA 345 337 0.376

YLR256W

Continued on next page
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Table 6.5 – continued from previous page

NG (M=5) NG (M=0.5) piMASS MLLS HL LR SS MAF

SNP1232 107 1538 3 11 . 3 6 0.422

SNP1233 17 1542 11 10 . 11 273 0.394

SNP1235 553 579 16 18 . 16 372 0.413

SNP1236 518 1361 9 14 . 9 90 0.440

SNP1237 46 1083 13 16 . 13 73 0.450

YLR442C

SNP1316 1185 1472 16 16 . 16 290 0.413

SNP1317 286 595 9 6 . 9 62 0.477

SNP1318 1245 532 11 7 . 11 79 0.486

SNP1319 190 37 10 13 . 10 31 0.477

SNP1320 1067 1703 101 141 . 122 1511 0.229

SNP1321 1163 963 93 180 . 110 1757 0.239

SNP1322 1760 574 135 341 . 157 1194 0.248

YNL088W

SNP1513 16 100 3 3 . 3 27 0.394

YBR162C

SNP148 180 868 66 737 . 74 182 0.404

SNP149 977 1531 86 391 . 102 311 0.385

SNP153 20 1681 338 1674 . 411 657 0.413

SNP154 266 179 305 1009 . 356 642 0.422

SNP155 1784 435 388 1255 . 452 977 0.413

SNP156 1796 1345 738 723 . 853 901 0.404

YHR005C

SNP750 479 1375 7 7 . 7 430 0.385

SNP751 136 257 9 5 . 8 260 0.367

SNP752 1499 1734 12 9 . 10 552 0.376

YCR040W

NG (data M) NG (M=5) piMASS MLLS HL LR SS MAF

SNP217 30 10 18 8 NA 18 166 0.477

Table 6.5: Table showing the ranking of the SNPs in the hotspot regions ac-
cording to the different methodologies for Yeast data. It also includes the minor
allele frequency (MAF) for each of the causal SNPs. The MAF affected perfor-
mance in simulation studies. We note that for YCR040W M is approximated
from the data, and also defined as 5.

We notice that in many cases the SNPs in the hotspot regions have rank far

away from 1 (the top rank) in the NG, meaning that it is not detecting these

target SNPs. This could be for a number of reasons. Firstly the maximum

posterior effect size (mean) is very small, see Table 6.6. When the maximum

posterior effect size (mean) of the SNPs is very small, the ranking of the cor-

responding SNP and any other lower ranked SNPs is meaningless due to the

biologically negligible effect sizes. Secondly the effect sizes of the associated

SNPs may be very small. The NG will not detect these due to the amount of

shrinkage enforced since the prior puts a lot of mass close to 0. Thirdly, the

MAF (minor allele frequency) may be affecting detection. This is unlikely given

the high MAF for all SNPs - the simulation scenario where the Normal Gamma
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and Spike and slab significantly outperformed all other methods. Finally the

ranking of SNPs becomes irrelevant at a certain point when effect sizes become

too small (less than 10−5 say). This is something we see with the NG as it

appears to be applying heavy shrinkage to the Yeast SNPs compared to the

other methods.

NG (M=5) NG (M=0.5) piMASS MLLS LR HL SS

YBR158W
SNP153
-0.04412

SNP150
-0.12023

SNP150
-1.05549

SNP150
-0.0362

SNP150
1.1753

(303.0085)

SNP148
-0.60792

SNP150
-0.76106

YBR162C
SNP558
0.022749

SNP1263
-0.041955

SNP1624
0.334559

SNP1716
0.011254

SNP1624
0.1369

(13.8509)

SNP1624
-0.160326

SNP1624
0.0336

YCL009C
SNP986
0.025559

SNP1081
-0.048408

SNP1273
0.339765

SNP1446
0.011681

SNP1273
0.1283

(12.89339)

SNP209
0.118669

SNP1281
-0.023065

YCR040W
SNP213
0.75828

NG M from data
SNP213
1.2056

SNP213
1.07656

SNP213
0.2225

SNP213
2.9960

(556.09117)
NA

SNP213
3.060564

YHR005C
SNP1

-0.02735
SNP509
0.51195

SNP749
-0.33882

SNP746
-0.01943

SNP749
0.2285

(12.6842)

SNP749
-0.2450

SNP1716
0.1458

YHR005C-A
SNP1723
-0.01747

SNP90
0.04685

SNP1217
0.30188

SNP619
0.01474

SNP1217
0.1373

(11.0025)
NA

SNP1031
-0.001189

YLR256W
SNP1228
0.037925

SNP1229
0.11088

SNP1229
0.54866

SNP1230
0.03975

SNP1229
0.8040

(186.71)

SNP1229
0.5710

SNP1229
0.8409

YLR442C
SNP424

-0.043521
SNP6

-0.038729
SNP1309
0.11348

SNP1305
-0.010192

SNP1309
0.1658

(35.2878)

SNP1305
-0.1327

SNP1309
-0.05555

YNL088W
SNP1512
0.03611

SNP1512
0.1080

SNP1511
0.9024

SNP1511
0.06157

SNP1511
0.6829

(141.1604)

SNP1511
0.4453

SNP1511
0.4288

YOL084W
NG (M data)

SNP1592
-0.4185

SNP1592
-0.8960

SNP1592
-0.1138

SNP1592
2.7363

(131.6976)

SNP1591
-1.7971

SNP1597
-1.0759

YOR125C
SNP967
-0.03128

SNP1513
-0.05735

SNP1673
-0.7381

SNP1512
-0.0223

SNP1673
0.3768

(74.9411)

SNP50
0.3288

SNP1673
-0.3600

Table 6.6: Table showing the SNP with maximum effect size for each Yeast
gene across each method. We take absolute effect size based on the posterior
mean for piMASS, the Normal Gamma and Spike and slab, the MAP estimate
for HyperLasso, the LS estimate for the LR test single SNP model compared to
the null model, and the MLLS estimate. We report the ratio of the likelihoods
in brackets for the LR test.

When using the Yeast data with the extra parameter for environmental

confounding, the Normal Gamma was easy to adapt to this. For the Spike and

slab we had to increase the prior inclusion probability of the indicator to as

close to 1 as possible. Even so the indicator was not always included at each

iteration in the estimates. This may make the estimates unreliable. In the

HyperLasso model, covariates can be included but they are treated similarly to

the SNPs. Hence we discard the results when the indicator is not included in

the final set of SNPs. In piMASS there is also no way to control for the inclusion

of the indicator. We used the posterior β estimate as a summary which takes
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into account the inclusion probability of the indicator. We adapted the LR

test to compare the single SNP plus indicator model to the background plus

indicator model. In this case, we can fit our required model including αenviron

to the MLLS, LR test and the Normal Gamma. The other methods ‘select’ this

confounder with probability less than one. This means that we do not always

take the confounder into account when estimating the βi parameters from the

other methods. This flexibility to include counfounders is an advantage of the

Normal Gamma compared to the other Bayesian methods.

To conclude, the lack of variation in the gene expression values and the small

value for M means that we have struggled to ensure the NG is performing as

well as in simulations. In terms of detecting the target SNPs, piMASS appears

to be giving the most appropriate responses within the Bayesian framework. We

expected the NG not to detect small effect sizes, and with such small overall

effects, we are not surprised that other methods appear to be outperforming

the NG with respect to the rank of the posterior means.

6.2 Hulse data

Using the genes in Table 2.2, page 17, we analyse the results of applying all

methods to the Hulse dataset. There are no causal SNPs, or any biologically

validated SNPs for this dataset, hence we can only compare SNPs between

methods. For this reason we will report the top 5 ranked SNPs across all

methods in Table 6.7, and compare these for similarities.

For the Hulse data results, the Normal Gamma and Spike and slab are run

with 100,000 iterations, discarding the first 5,000 as burn-in; we use the MLLS

estimate instead of the LS estimate as we have more SNPs than individuals;

HyperLasso is not run as it cannot handle imputed data which we have here; and

piMASS is run with 100,000 iterations, a 10,000 iteration burn-in and thinning

based on maintaining every 10th iteration, as suggested in the documentation.

We report the top 5 ranked SNPs for all methods in Table 6.7. The SNPs

are listed in order of their effect sizes (largest to smallest).

Method Top 5 ranked SNPs

ADCY1

NG
rs6959709, rs17172584, rs6949064,

rs1294903, rs11771815

piMASS
rs12532570, rs36115872, rs6939924,

rs13222078, rs1294898

Continued on next page
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Table 6.7 – continued from previous page

Method Top 5 ranked SNPs

LR
rs36115872, rs1315919, rs17172499,

rs1294892, rs1294903

MLLS
rs4142878, rs11761143, rs950971,

rs12702161, rs1294911

Spike and slab
rs4142878, rs6975239, rs1294914,

rs1294892, rs36115872

CTNNA2

NG
rs10779960, rs13416246, rs13409348,

rs7592817, rs732260

piMASS
rs17653642, rs2566554, rs11889086,

rs10178923, rs10170833

LR
rs12104529, rs7570774, rs11675845,

rs6741085, rs2196152

MLLS
rs1368900, rs10178923, rs1368952,

rs11126702, rs11902274

Spike and slab
rs1868925, rs7605358, rs12997174,

rs11679118, rs10185018

DAAM2

NG
rs2504090, rs9394630, rs9380895,

rs2504100, rs7750130

piMASS
rs3003947, rs3004070, rs3004060,

rs3004071, rs882559

LR
rs3003947, rs3004060, rs3004070,

rs3003931, rs3004062

MLLS
rs9380890, rs7776096, rs303649,

rs11759168, rs3008804

Spike and slab
rs2504803, rs9380892, rs6458124,

rs6917582, rs2504805

IL6

NG
rs12700386, rs17302823, rs1476483,

rs2961310, rs2905324

piMASS
rs12700386, rs2067074, rs2905316,

rs2961310, rs17302823

Continued on next page
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Table 6.7 – continued from previous page

Method Top 5 ranked SNPs

LR
rs12700386, rs17302823, rs1476483,

rs2067074, rs2961310

MLLS
rs2905345, rs12535797, rs6969927,

rs12536091, rs17778126

Spike and slab
rs10499563, rs4310110, rs10251555,

rs11981074, rs1524098

PLOD2

NG
rs6440269, rs11926970, rs9289711,

rs1731398, rs11707136

piMASS
rs4561830, rs6779715, rs6770862,

rs4611822, rs10513260

LR
rs36025939, rs16857603, rs1967207,

rs1398776, rs2055989

MLLS
rs9846710, rs11926420, rs12491824,

rs7611641, rs12487322

Spike and slab
rs11719883, rs13088646, rs1880902,

rs962823, r7432214

SNX7

NG
rs11166113, rs12756402, rs4908110,

rs7416451, rs571344

piMASS
rs4402170, rs4469760, rs17386441,

rs11166011, rs10875151

LR
rs1482139, rs11811184, rs9725840,

rs12738955, rs12757095

MLLS
rs766204, rs1384167, rs1434362,

rs1328310, rs7548566

Spike and slab
rs1384167, rs1482163, rs12401685,

rs1482139, rs12757095

TNFRSF11B

NG
rs4319131, rs3103991, rs4532625,

rs10107202, rs4372031

piMASS
rs2875845, rs13279492, rs1564860,

rs4532619, rs3103989

Continued on next page
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Table 6.7 – continued from previous page

Method Top 5 ranked SNPs

LR
rs17830456, rs3103992, rs3103991,

rs11985044, rs6996974

MLLS
rs17683937, rs7007167, rs11989516,

rs1385511, rs3103982

Spike and slab
rs1485302, rs1485303, rs7464496,

rs4319131, rs2073618

Table 6.7: A list of the top 5 SNPs from the different methods run on the 7
selected genes from the Hulse dataset. SNP rs12700386 in IL6 is highlighted as
it appears in the NG as the top ranked SNP, and is in the top 10 ranked SNPs
for all other methods.

In Table 6.7, we notice that SNP rs12700386 in IL6 (highlighted) is the top

ranked SNP for the NG and appears in the top 5 ranked SNPs for piMASS and

the LR test, and is rank 6 for MLLS and 9 in Spike and slab. This SNP is re-

ported as a Caucasian maternal and African-American fetal SNP by Velez et al.

[2008], which looks into the haplotypes in IL6 and IL6-R that are associated

with amniotic fluid protein concentrations in pre-term birth. Also, in Wang

et al. [2013] which discusses rheumatoid arthritis, rs12700386 was found to be

statistically significant at the 5% level but had a small estimated effect size

(estimated in the two studies within the paper as 0.22 and 0.16). The paper

studies associations between the number of DNA, RNA and protein biomarkers

that are directly related to IL6 signalling. The authors use gene expression

and genotyping data in their statistical analysis which consists of correlations

and standard linear regression for defining associations. The small effect size

of rs12700386 means that it is not investigated further in the paper. IL6 is

an interleukin gene which is involved in immunity and inflammation. Given

the annotation of the SNP, it seems plausible for it to be truly associated to a

change in gene expression in IL6 given the reported function of the SNP and

gene. SNP rs2961310 also in IL6, ranks in the top 5 SNPs for the NG, piMASS

and the LR test but has no reported annotations. There is very little other

concordance across the top 5 reported SNPs in these genes across the methods

used. It is interesting to note that the lack of concordance between the methods

suggests that there is no clearly causal SNP(s) with a moderate to large effect

size within these genes. Given that we have no validated SNPs for this dataset,

there is limited extra information that can be obtained from these results.
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6.3 Fairfax data

We choose the genes and SNPs to analyse here based on Figure 6(b) in Fairfax

et al. [2012]. These 6 genes and their respective gene expression source (bcells

or monocytes) lead to 8 scenarios, see Table 2.3, page 19 for details of the

number of individuals, SNPs, causal (validated) SNPs and their minor allele

frequencies (MAFs). These are examples of genes containing eQTLs involving

SNPs associated with multiple traits in GWAS for particular diseases.

For the results in this section, the Normal Gamma and Spike and slab are

run with 100,000 iterations, discarding the first 5,000 as burn-in; we use the

MLLS estimate instead of the LS estimate as we have more SNPs than individ-

uals; HyperLasso is omitted as it cannot be run using imputed genotypes; and

piMASS is run with 100,000 iterations, a 10,000 iteration burn-in and thinning

based on maintaining every 10th iteration, as suggested in the documentation.

We tabulate the results for the Fairfax data in Table 6.8. The rank of the

causal SNPs from the literature is given.

Method Maximum Effect Size Causal SNP rank

ERAP2 bcell (792 SNPs)

NG 0.11424 1

LS 0.166 63

LR 0.4521 (31.7396) 1

SS 0.172275 1

piMASS 0.48618 1

ERAP2 mono (792 SNPs)

NG 0.67332 1

LS 1.1155 (0.28443) 1

LR 183.36 1

SS 1.102613 1

piMASS 1.29736 1

CARD9 mono (511 SNPs)

NG 0.0393 3

LS 0.0875 119

LR 0.1435 (60.219) 2

SS 0.065754 2

piMASS 0.86126 5

FADS1 bcell (1076 SNPs)

Continued on next page
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Table 6.8 – continued from previous page

Method Maximum Effect Size Causal SNP rank

NG 0.09312 639

LS 0.10731 123

LR 1.0445 (13.03626) 102

SS 0.235892 272

piMASS 0.10593 128

RBM6 bcell (932 SNPs)

NG 0.047661 39

LS 0.054905 450

LR 0.08120 (14.20943) 5

SS 0.054853 27

piMASS 1.08936 30

RBM6 mono (932 SNPs)

NG 0.05562 191

LS 0.039585 186

LR 0.1625 (56.87475) 4

SS 0.076683 240

piMASS 1.15543 147

CD40 mono (468 SNPs)

NG 0.07733 1

LS 0.22978 18

LR 0.1594 (16.01593) 1

SS 0.0943 2

piMASS 0.40448 2

FAM167A bcell (551 SNPs)

NG 0.01552 528

LS 0.10914 226

LR 0.06782 (8.741665) 469

SS 0.017145 523

piMASS 1.01494 488

Table 6.8: Table showing the results from the analysis of the Fairfax data.
Each gene has one causal SNP reported in the literature, we state the rank of
this causal SNP. The maximum posterior effect size is also reported, with the
maximum effect size for the LR test calculated using the LS estimate of the
single SNP model. We report the ratio of the likelihoods in brackets for the
likelihood ratio test.
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We notice that the LR test, the only univariate methods we compare, always

has the (joint) lowest rank (rank closest to the top rank of 1) even when other

methods are performing poorly such as in RBM6 bcell. The LR test does not

have (joint) lowest rank in FAM167A bcell where all methods perform very

badly.

The good performance of the univariate method could be explained by the

fact that the associated SNPs were identified using univariate analysis. Tech-

niques such as correlation analysis, using Z-scores to compare the difference in

gradient of lines representing the effect of the number of minor alleles on the

monocyte and bcell expression (ANCOVA) were used. Linear and Spearman

rank models were also used in some of the analysis. It is not clear if these

are used for multiple SNPs or simply to compare across bcell and monocyte

expression - the latter is more likely given the results and aims of the work.

Given that the SNPs were initially selected using a univariate method, it is not

surprising that the univariate method performs well here.

The NG assigns the causal SNP a rank of 1 for 3 of the cases, rank 3 for 1

case, rank 39 for 1 case, and with rank worse than 100 in the remaining cases.

This means that out of the 8 scenarios for the Fairfax data, the NG puts the

causal SNP in the top 5 ranked SNPs 50% of the time. This is the same as

the number of times the causal SNP is ranked in the top 5 for Spike and slab

and piMASS. Only the LR test outperforms this with the causal SNP being

identified in the top 5 SNPs for 75% of the genes. The LS performs worst, only

identifying the causal SNP in the top 5 ranked SNPs in 1 of the 8 scenarios.

We conclude here that there are genes where the causal SNPs within them,

such as ERAP2 mono, are very obvious and may have a large effect size relative

to all other SNP as all methods detect the causal SNP with rank 1. Other genes

such as FAM167A have a causal SNP which we hypothesise has a smaller effect

size that is similar to other SNPs as all methods fail to detect the causal SNP

with rank greater than 226 (out of a total of 551 SNPs, hence it is ranked in

the bottom 60% of the SNPs by all methods). Genes such as RBM6 bcell have

a causal SNP that is more easily detected by the LR test than other methods,

but that has an effect size that means the NG, piMASS and Spike and slab

detect it with rank between 27− 39 (out of 932 SNPs, meaning it is ranked in

the top 4.5% of SNPs).



102CHAPTER 6. COMPARING METHODS ON NON-SIMULATED DATA

6.4 Which statistical method is most appropri-

ate?

Even though we cannot conclude based only on the results from the Hulse

dataset and conclusions from Fairfax and Yeast data are limited to comparisons

from the literature, we can try to infer more about these results using the results

from applying these methods to simulated data. We know the LR test detects

SNPs with high marginal effects. It is therefore good at detecting SNPs with

large effect sizes.

Due to the heavy shrinkage enforced by the NG, any SNPs with very small

effect sizes are often missed as they have posterior mean estimates shrunk to 0.

Simulations imply that rarer SNPs need larger effect sizes for detection by the

NG.

From our simulations, we conclude that piMASS performs better for de-

tecting rarer SNPs than for more common SNPs. The definition of piMASS

to prioritise SNPs in close proximity also means that if we are assessing SNPs

where the causal/associated SNPs are in close proximity/high LD, piMASS will

perform better. In the Hulse dataset, we take all exonic SNPs on the same

chromosome as the gene. From this we hypothesize that there may be groups

of SNPs in high LD, and hence piMASS will detect these.

Spike and slab performs section of SNPs. As with the Normal Gamma,

Spike and slab performs better on more common SNPs, therefore rarer SNPs

with small effect sizes maybe missed.

In conclusion, none of the statistical methods compared are certain to iden-

tify the true causal SNP in every dataset. Having studied these methods care-

fully, the method for retaining the causal SNP in the majority of cases involves

using the likelihood ratio test to initially filter the SNPs before using this filtered

set of SNPs in the NG framework. Ensuring a relaxed threshold for the LR test

will mean that we do not discard too many potentially causal SNPs. Using

the NG framework means we can investigate the full posterior distribution for

possible smaller, causal/associated effect sizes in some SNPs, while controlling

for the effect sizes of other SNPs.

6.5 Convergence and Computational Time for

the Normal Gamma

When comparing methods that use MCMC on new datasets, it is important to

assess the convergence, as well as the computational time. Methods that have
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been published contain information to enable these factors to be assessed. These

are not readily available for the Normal Gamma. To check the convergence, we

use the same procedure as we defined in Section 4.3.

6.5.1 Checking convergence

We check convergence of the Markov chains using the R-hat statistic, see Brooks

and Gelman [1998]. This investigates the scaled, weighted difference between

the within and between chain variances, see Section 4.3 for more details. We test

this once for each dataset, using 10 runs of the NG, the minimum suggested

number of runs for the test. Brooks and Gelman [1998] suggests an R-hat

value of < 1.1 is advisable for convergence. We tabulate the maximum R-hat

values for all parameters in the Normal Gamma for each dataset in Table 6.9.

This shows that for all datasets, 50,000 iterations is sufficient for convergence,

although 30,000 is sufficient for the Fairfax dataset.

Dataset Maximum R-hat value

Yeast data (YOL084W) 1.003331
Hulse data (DAAM2) 1.001987
Fairfax data (CD40 mono) 1.067799

Table 6.9: Table showing the maximum R-hat values [Brooks and Gelman,
1998] for all the Normal Gamma parameters for Yeast and Hulse datasets run
with 50,000 iterations and a 5,000 iteration burn-in. The Fairfax data achieved
convergence with 30,000 iterations and a 5,000 iteration burn-in. The R-hat
statistic was calculated using 10 datasets.

For the Hulse and Yeast datasets, convergence has been achieved with 50,000

iterations of the Normal Gamma and a 5,000 iteration burn-in. For the Fair-

fax dataset, convergence has been achieved with 30,000 iterations and a 5,000

iteration burn-in. The convergence diagnostic shows that the between chain

variance is very small which implies that the within chain variances must be

similar across chains. This leads us to believe that the stationary distribution

has been reached at each run of the chain. For the Yeast, Hulse and Fairfax

results in this chapter, the Normal Gamma was run with 100,000 iterations and

a 5,000 iteration burn-in.

6.5.2 Computational time

When checking the convergence we also monitor the time taken for the Normal

Gamma to run. The time taken, and the dimension of the problem in terms of

number of individuals (n) and number of SNPs (p) are tabulated in Table 6.10.
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Dataset n p Computational time (mean (range))

Yeast data (YOL084W) 218 1803 30 hours (14 hours - 54 hours)
Hulse data (DAAM2) 39 149 3.2 hours (1 hour - 5 hours)
Fairfax data (CD40 mono) 243 467 3.6 hours (3 hours - 4 hours)

Table 6.10: The computational time taken for each of the datasets used to cal-
culate the R-hat convergence statistic. We include n, the number of individuals
and p the number of SNPs included in each dataset. Note that Yeast and Hulse
datasets are for 50,000 iterations with a 5,000 iteration burn-in, and the Fairfax
data is for 30,000 iterations with a 5,00 iteration burn-in.

The 3 datasets tabulated here cover a wide range of dimensions of the data

used in the Normal Gamma. The large range in computational time for the

same dataset can be explained for the same reasons as in Section 4.3.2, page 64,

based on sampling from different distributions within the MCMC algorithm and

other processes running on the same nodes of the HPC facility.

Similarly with simulated data, the Normal Gamma is computationally much

slower than other methods. In the case of CTNNA2 for the Hulse data, the Spike

and slab is similarly slow to the NG but HL, LS, piMASS and LR test all run

in less than 1 hour for all datasets, including CTNNA2. Importantly, on the

real data, the time taken does not appear to be prohibitive to using the NG.

6.6 Conclusion

When comparing all methods on real data it is very difficult to define how well

each method detects causal/associated SNPs. The ranking works well when

the effect sizes are sufficiently different to one another but once the effect sizes

become small then ranking is no longer meaningful.

The Normal Gamma enforces very harsh shrinkage on SNPs with small esti-

mated effect sizes. As such, the Normal Gamma does not find many associated

SNPs. This is good in the sense that it reduces the number of false positives,

but it could also reduce the number of true positives.

The ability of the Normal Gamma to perform equally well as any other

method is noted here. We have used SNPs coded as {0, 1} and as {0, 1, 2}, and

SNP data with and without imputation. We have also used SNP and expression

data from many different platforms. This shows the versatility of the Normal

Gamma which is not reflected in all other methods.

The ability to adapt the Normal Gamma to include confounding factors such

as an environment confounding effect as with the Yeast data is essential. The

LS, LR test and NG are the only methods to be able to do this accurately. The
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prior inclusion probability of a SNP in the Spike and slab cannot be defined

as exactly 1. Hence we cannot enforce the inclusion of the SNP in the model

with complete certainty. This is better than other methods but does not reflect

the inclusion of the confounder with certainty. The Normal Gamma and all

methods except HyperLasso, are able to handle imputed data. The ability to

include imputed data is essential when using real data, as we often have missing

data. HyperLasso can handle missing data, but not imputed data. We choose

not to run these datasets through HyperLasso with missing values instead of

imputed values because we maintained only SNPs and individuals whose data

was complete post imputation. This meant removing individuals and SNPs

where the imputed values did not have a high enough info score. We could have

used only these SNPs and individuals with the imputed values removed but we

did not believe that this could lead to a direct comparison of effect sizes across

methods, especially if the handling of the missing values in HyperLasso led to

a very different representation of the imputed values to we used.

We believe this to be the first time that the Normal Gamma has been applied

to eQTL data and its performance compared on competing methods. Testing

these models on real data available allows us to see the versatility the Normal

Gamma and its ability to handle imputed data as well as other forms of SNP

coding. The harsh shrinkage enforced by the Normal Gamma is limiting its

success at detecting any true or false positive results.

The Normal Gamma is still well placed to identify causal SNPs in these

datasets. By adapting the amount of shrinkage it enforces according to prior

information about SNPs, we may be able to improve the ranking of SNPs vali-

dated in the literature. This is the focus of Chapter 7.
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Chapter 7

Including Functional

Information in the Normal

Gamma prior

In this chapter we adapt the Normal Gamma prior structure to include func-

tional information with the aim of making it more effective at detecting causal

sequence variants. A directed acyclic graph (DAG) representing this can be

found in Figure 7.1. We are making the assumption a priori that synonymous

SNPs are less likely to be causal, based on the functional significance score,

described in Section 2.7. Here we assess which functional information to use

and how best to incorporate it. We test our method on the simulated data from

HapGen2 described in Sections 4.1.1 and 4.2.1, and suggest improvements to

the method based on these results.

We begin with a simple linear transformation of the FS score which we

assess via simulation. This simple approach has the computational advantage

of yielding Gibbs updates. We also consider a more complex transformation

of the FS score which gives much clearer differential shrinkage between the

synonymous and non-synonymous SNPs, but requires more computationally

intensive Metropolis Hastings updates.

7.1 Which functional information should we in-

clude?

Even with an extensive biological knowledge, it is difficult to fully understand

which functional information should be included. Lirnet [Lee et al., 2009] uses

regulatory features, or general functional information that is available for spe-

cific organisms. For a given disease, we could use an expert in the field to

107
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Genes g = 1, . . . , ng

Figure 7.1: DAG representing the hierarchical relationships between the vari-
ables in the NG model with functional information, F (synonymous (syn) and
non-synonymous (non) SNPs). Details of the parameters and the basic NG
prior structure can be found in Chapter 5. A DAG represents the relationships
between the parameters in a model using the arrows between nodes. The nodes
are shaded grey when the variable is observed and nodes within a plate are
iterated over by the feature stated on the bottom right corner of the plate.
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identify and/or group the key features for that particular disease from a list of

functional information categories. This would tailor the functional information

and hence the model to the disease. Unfortunately most functional informa-

tion data contains a lot of missing or highly correlated values, for example the

ENCODE database, which makes it difficult to use.

For consistency across human data and disease neutrality, we will use the

Functional Significance (FS) score [Lee and Shatkay, 2009] which combines func-

tional information features into one score per SNP. It combines the functional

features, protein coding, splicing regulation, transcriptional regulation and post-

transcriptional regulation into a score. The score focuses on the deleterious

effect of individual SNPs from multiple on-line resources. The functional effects

of each SNP are then combined using weights which reflect the importance of

the feature and reliability of the on-line resource. The resultant score is con-

strained to [0, 1] where 0 represents no deleterious effect, 1 represents a highly

deleterious effect and 0.5 represents no knowledge. More details of this can be

found in Section 2.7, page 24.

7.2 How to incorporate the functional informa-

tion

To enhance the ability of the NG to detect causal SNPs, we allow the variance

of β|λ, γ to depend on the FS score through a parameter B. In the standard

Normal Gamma, π(var(β|λ, γ)) = 2λγ2 is given an IG(2,M) prior distribution

with expectation M , where M is defined as M = 1
p

∑p
i=1 β̂i

2
for n > p and

M = 1
n

∑p
i=1 β̂i

2
for p > n− 1 and β̂i represents the least squares (LS) estimate

of β if n > p and the minimum length least squares (MLLS) estimate otherwise.

M provides an approximate estimate of the variance of the LS/MLLS estimates.

We modify this prior to become IG(2,MB) so that E[π(var(β|λ, γ, B))] = MB

and π(γ−2|λ,B) ∼ Ga
(
2, MB

2λ

)
. Larger values of B support, a priori, larger

values of β. By relating B to the FS score and allowing different priors for the

FS score for synonymous and non-synonymous SNPs, we allow non-synonymous

SNPs to a priori have larger effect sizes. Figure 7.2 shows how changing B affects

the marginal prior variance of β|λ, γ, B.
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Figure 7.2: The effect on the variance of the marginal prior distribution of β,
when changing B, where var(β|λ, γ, B) ∼ IG(2,MB). In this case we fix M = 5
and vary B.

7.3 Prior distributions for the Functional Sig-

nificance (FS) Scores of Synonymous and

Non-synonymous SNPs

Using approximately 6500 FS scores for non-synonymous SNPs and 4500 FS

scores for synonymous SNPs from the FS score database [Lee and Shatkay,

2009] we create the distribution of FS scores. The histograms of the FS scores

for synonymous and non-synonymous SNPs are shown in Figure 7.3.

7.3.1 Obtaining the prior distributions

We fitted a truncated mixture of Gamma distributions to the FS scores for syn-

onymous SNPs and used a Uniform distribution on [0, 1], (U[0,1]), for the prior

distribution of FS scores for non-synonymous SNPs. When considering which

distributions would be appropriate to fit, we considered the biological effect

of the SNPs. We also noted that the mean of the FS scores for synonymous

SNPs was very different from non-synonymous SNPs, 0.36 and 0.48 respectively,

showing that the non-synonymous SNPs have a more deleterious effect on av-

erage. Figure 7.3a (top) shows the histogram for non-synonymous SNPs. Due

to the biological factors associated with non-synonymous SNPs we chose the
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Figure 7.3: The distribution of functional significance (FS) scores [Lee and
Shatkay, 2009]. (a) FS scores for non-synonymous SNPs (top) (b) FS score for
synonymous SNPs (bottom).

Uniform distribution to represent this. Non-synonymous SNPs, by definition,

change the amino acid and therefore the protein they encode. Depending on

the particular type of codon the mutation effects, the effect can be very large or

sometimes very small. For example, if the mutation leads to a premature stop

codon, the protein will be truncated. This may prevent it from functioning cor-

rectly. However, if the mutation leads to a small chemical change in an amino

acid in the centre of the protein the effect might be negligible due to the rest of

the protein being correct. The synonymous SNPs have two distinct groups of

effects - the less common being highly deleterious (FS score close to 1) and the

most common having a small deleterious effect (FS score close to 0). Biologi-

cally, Hunt et al. [2009] explain that synonymous SNPs, also referred to as silent

mutations due to their lack of change of the amino acid, can affect messenger
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Figure 7.4: The distribution of functional significance (FS) scores [Lee and
Shatkay, 2009] for synonymous SNPs. The histogram represents the actual FS
score values, while the red line is the fitted mixture distribution π(FSsyn) ∼
1FSsyn∈[0,1]

{
0.946Ga

(
2.929, 1

0.113

)
+ 0.054Ga

(
640.5, 1

0.0015

)}
. There is small

mass beyond 1, but we truncate this using the indicator variable.

RNA, as well as stability and structure of proteins and protein folding. These

can adversely affect the function of a protein. The two groups of FS scores

for synonymous SNPs fit well with a mixture distribution, see Figure 7.4. The

Gamma distribution provides the skewness and heavy-tails required to create a

well fitting mixture distribution. The prior we use is defined as

π(FSsyn) ∼ 1FSsyn∈[0,1]

{
0.946Ga

(
2.929,

1

0.113

)
+ 0.054Ga

(
640.5,

1

0.0015

)}
.

(7.1)

This prior distribution for FSsyn, without the indicator function, is not con-

strained to be within [0, 1]. During the updating of FSsyn, we discard any

values that are sampled outside of [0, 1]. This is an inefficient method, but we

only discard around 8% of sampled values and so we believe, given the good

fit of the mixture distribution to the FS score data, that this is sufficient. We

tried to fit distributions that are naturally constrained to [0, 1] such as the Beta

distribution but we couldn’t find any that provided a good fit.
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7.3.2 Transforming the FS score

To use the FS score, constrained to [0, 1], to enforce a change in the mean of

the prior variance of β using B we require the interval of values for B to include

1 (the “standard” shrinkage of the Normal Gamma). This can be achieved by

many transformations. We choose simply to translate the FS score region by

0.5, such that B = FS + 0.5 and B ∈ [0.5, 1.5]. Figure 7.2 shows the effect of

B in this range on the prior variance of β.

7.4 Computational changes to the Normal Gamma

When including functional information we update the parameters of the Normal

Gamma in two stages for the synonymous and non-synonymous SNPs, meaning

that we have group specific parameters for λ, γ−2 and FS/B. The full condi-

tional distributions and acceptance probability for λ that are used can be found

in Section 5.5.2. In this case, the two stages of updating correspond to updating

synonymous SNPs and then non-synonymous SNPs.

To show the changes to the standard Normal Gamma code, which we call

the NG splitting function, we include pseudocode in Appendix D.2, page 185.

This is useful for understanding the extra computational effect of the inclusion

of functional information.

When calculating the full conditional distributions for FSsyn and FSnon

we only need to include the prior distributions that contain either an F or B

term. This means we only include the prior distribution for FS and the prior

distribution for π(γ−2|λ). The probability density function (pdf) for π(γ−2|λ,B)

is given by

π(γ−2|λ,B) ∼ Ga

(
2,
MB

2λ

)

=

(
MB

2λ

)2

Γ(2)

(
γ−2
)2−1

exp

(
−MB

2λ
γ−2

)
=

1

4λ2γ2
(MB)2exp

(
−MB

2λγ2

)
(7.2)

7.4.1 Full conditional distribution for FSnon

The full conditional distributions for B or FS change dependent on whether

the SNP is synonymous or non-synonymous. For non-synonymous SNPs the
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full conditional distribution is

f(FSnon|λ, γ) ∝π(FSnon)f
(
γ−2|B = FSnon + 0.5, λ

)
∝(FSnon + 0.5)2exp

(
− M

2λγ2
(FSnon + 0.5)

)
1FSnon∈[0,1]

∝(FS2
non + FSnon +

1

4
)exp

(
− M

2λγ2
FSnon

)
1FSnon∈[0,1]

=

[
FS2

nonexp

(
− M

2λγ2
FSnon

)
+ FSnonexp

(
− M

2λγ2
FSnon

)
+

1

4
exp

(
− M

2λγ2
FSnon

)]
1FSnon∈[0,1] (7.3)

We recognise this as a mixture of three Gamma distributions on a restricted

support with the following parameters.

f(FSnon|λ, γ)

∝
[
w1Ga

(
3,

M

2λγ2

)
+ w2Ga

(
2,

M

2λγ2

)
+ w3Ga

(
1,

M

2λγ2

)]
1FSnon∈[0,1],

(7.4)

where the weights are defined as follows:

w1A =
16λ3γ6

M3
× γf

(
1, 3,

M

2λγ2

)
w2A =

4λ2γ4

M2
× γf

(
1, 2,

M

2λγ2

)
w3A =

λγ2

2M
× γf

(
1, 1,

M

2λγ2

)
,

where γf (a, b, c) represents the lower incomplete CDF (cumulative distribution

function) of the gamma distribution between (0, a] with parameters b and c

respectively, and w1 =
w1A

w1A + w2A + w3A

, w2 =
w2A

w1A + w2A + w3A

and w3 =

w3A

w1A + w2A + w3A

.

When applying the MCMC updating, we simulate the value for FSnon by

sampling a uniform value, u, which determines which of the three Gamma

distributions we sample from. This normalisation and scaling ensures that the

relative weights of the three Gamma distributions are sampled with the correct

weights.
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7.4.2 Full conditional distribution for FSsyn

The full conditional distribution for synonymous SNPs, FSsyn is defined as

follows. For brevity, we omit the indicator function but the following is only

non-zero when FSsyn ∈ [0, 1] or B ∈
[

1
2
, 3

2

]
, we also write FS for FSsyn.

f(FS|λ, γ) =π(FS)f
(
γ−2|λ,B = FS + 0.5

)
=

(
M(FS + 0.5)

2λ

)2

γ−2exp

{
− M

2λγ2
(FS + 0.5)

}
×

{
0.946

(
1

0.113

)2.929

Γ(2.929)
FS1.929exp

(
− 1

0.113
FS

)}

+

(
M(FS + 0.5)

2λ

)2

γ−2exp

{
− M

2λγ2
(FS + 0.5)

}
×

{
0.054

(
1

0.0015

)640.5

Γ(640.5)
FS639.5exp

(
− 1

0.0015
FS

)}
(7.5)

After some algebra, we notice this is a mixture of 6 Gamma distributions with

shape and rate parameters as follows:

f(FSsyn|λ, γ) ∝
3∑
i=1

{
wiGa

(
1.929 + i,

M

2λγ2
+

1

0.113

)}

+
6∑
i=4

{
wiGa

(
636.5 + i,

M

2λγ2
+

1

0.0015

)}
(7.6)

The relative weights w1, . . . , w6 are defined as follows.

w1B =
0.946

4

(
( 1

0.113
)2.929

Γ(2.929)

)(
Γ(2.929)

( M
2λγ2

+ 1
0.113

)2.929

)
G

(
1, 2.929,

M

2λγ2
+

1

0.113

)

w2B =0.946

(
( 1

0.113
)2.929

Γ(2.929)

)(
Γ(3.929)

( M
2λγ2

+ 1
0.113

)3.929

)
G

(
1, 3.929,

M

2λγ2
+

1

0.113

)

w3B =0.946

(
( 1

0.113
)2.929

Γ(2.929)

)(
Γ(4.929)

( M
2λγ2

+ 1
0.113

)4.929

)
G

(
1, 4.929,

M

2λγ2
+

1

0.113

)

w4B =
0.054

4

(
( 1

0.0015
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Γ(640.5)

)(
Γ(640.5)

( M
2λγ2

+ 1
0.0015

)640.5

)
G

(
1, 640.5,

M

2λγ2
+

1

0.0015

)

w5B =0.054

(
( 1

0.0015
)640.5

Γ(640.5)

)(
Γ(641.5)

( M
2λγ2

+ 1
0.0015

)641.5
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G

(
1, 641.5,

M

2λγ2
+

1

0.0015

)

w6B =0.054

(
( 1

0.0015
)640.5

Γ(640.5)

)(
Γ(642.5)

( M
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+ 1
0.0015

)642.5
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G

(
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M
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1

0.0015

)
,
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with wi =
wiB∑6
j=1wjB

, and where G(a, b, c) represents the lower incomplete

Gamma function up to a for shape parameter b and rate parameter c.

When applying the MCMC updating, we simulate the value for FSsyn by

sampling a uniform value, u, which determines which of the six Gamma distribu-

tions we sample from. This normalisation and scaling ensures that the relative

weights of the Gamma distributions are sampled with the correct weights.

7.5 Simulation Results, HapGen dataset 2

The NG splitting function is the name we give to the NG function with func-

tional information for synonymous and non-synonymous SNPs included. The

pseudocode can be found in Appendix D.2. The NG splitting function was first

tested on HapGen datasets 1A and 1B but the results were similar to those

that we present for HapGen datasets 2A and 2B, and so are omitted. Hap-

Gen dataset 2A and 2B are both simulated using HapGen2 [Su et al., 2011]

with 6 causal SNPs in each of the 9 sub-datasets of dataset 2A and 2B. The

effect sizes are simulated to be 0.4. The causal SNPs in dataset 2A have ap-

proximate population MAF 0.2 while in dataset 2B they have approximate

population MAF 0.02. We simulate 9 sub-datasets of dataset 2A and another 9

sub-datasets of dataset 2B, each with a total of 631 SNPs and 300 individuals.

This means that in our analysis via ROC curves, we have 9 × 6 = 54 causal

SNPs and 9× (631− 6) = 5625 non-causal SNPs. More details can be found in

Section 4.2.1.

We test the NG splitting function on the HapGen simulated dataset 2A

and 2B using two scenarios. Firstly the ‘best case’ where all simulated causal

SNPs are treated as non-synonymous and all non-causal SNPs are treated as

synonymous. We denote this case ‘true causal’. The second case is the ‘worst

case’ where all simulated causal SNPs are treated as synonymous and all non-

causal SNPs are treated as non-synonymous. We denote this case ‘false causal’.

This is the worst case as the causal SNPs are all in the group where, a priori,

there will be more shrinkage on this set of SNPs. The results for datasets 2A

and 2B can be seen in Figure 7.5 top and bottom respectively.

Looking at the ROC curve for dataset 2A (MAF 0.2), Figure 7.5 (top), the

AUCs for NG, NG true causal and NG false causal are 0.968, 0.975 and 0.971

respectively. Using DeLong’s test the NG is not statistically different to either

NG true causal or false causal (p-values 0.735 and 0.997 respectively), neither is

the AUC for NG true causal and false causal, p-value 0.366. We notice that at a

false positive rate (FPR) < 0.1, the splitting function is superior to the standard
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Figure 7.5: ROC curve assessing the difference between the Normal Gamma
with the same shrinkage across all SNPs, to the NG with different shrinkage
across SNPs. True causal represents the ‘best case’ scenario where all simu-
lated causal SNPs are treated as non-synonymous and false causal represents
the ‘worst case’ scenario where all simulated causal SNPs are treated as syn-
onymous. The data is simulated using HapGen2 [Su et al., 2011] to include 6
causal SNPs with effect size 0.4 and 625 non-causal SNPs for each of 9 sub-
datasets. Top: Dataset 2A with a population MAF (minor allele frequency) of
approximately 0.2. Bottom: Dataset 2B with a population MAF (minor allele
frequency) of approximately 0.02.
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Normal Gamma, even when the causal SNPs are allocated to the synonymous

group. This shows that the NG splitting is outperforming the standard Normal

Gamma with respect to ranking of the causal SNPs in the most relevant FPR

range.

For the ROC curve for dataset 2B (MAF 0.02), Figure 7.5 (bottom), the

AUCs for NG, NG true causal and NG false causal are 0.932, 0.931 and 0.929

respectively. Using DeLong’s test the NG is not statistically different to either

NG true causal or false causal (p-values 0.894 and 0.666 respectively). The NG

true causal and false causal scenarios are not statistically different at the 5%

level, but are at the 10% level, p-value 0.089. We notice that the standard

Normal Gamma is performing better with respect to the ranking of the causal

SNPs up to a false positive rate (FPR) of approximately 0.05 in comparison

to the NG splitting, even when the causal SNPs are allocated to the non-

synonymous SNP group. This is the opposite effect to we see in the case of

MAF 0.2. We believe that the prior is having less of an effect in the MAF 0.2

case (dataset 2A) because of the relative information in the likelihood.

7.5.1 Investigating the differential shrinkage from the

NG splitting function

Given the similarity of the ROC curves and hence the posterior ranks of the

SNPs, we need to investigate the posterior distribution of B for synonymous

and non-synonymous SNPs, to ensure that different levels of shrinkage are being

enforced in each group. Figure 7.6 shows an example of the prior and posterior

distributions for Bsyn and Bnon for one of the sub-datasets of dataset 2B. These

histograms are representative of all posterior distributions in dataset 2A and

2B. We show the histograms for the NG false causal (causal SNPs are identified

as synonymous) in Figure 7.6 (top) and for the NG true causal (causal SNPs

defined as non-synonymous) in Figure 7.6 (bottom).

For the false causal case (top histogram in Figure 7.6), the prior and the

posterior for Bsyn (causal SNPs) are similar, although the posterior appears to

have a higher mean. There is clearly more information in the likelihood, hence

increasing the posterior mean in comparison to the prior. This is in contrast to

the true causal case, where the prior mean is higher than the posterior mean.

This is what we would expect in this case as the 6 causal SNPs are in the syn-

onymous group. Hence, reducing the shrinkage (increasing B) on their posterior

effect sizes is our aim. We need to be aware that there are only 6 SNPs (the

causal SNPs) in this group, and so there is not much difference between the

prior and the posterior.
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In the true causal case (bottom histogram in Figure 7.6) we notice there is

a large difference between the prior and the posterior for Bsyn. Bsyn represents

the non-causal SNPs, of which there are 625, and so the likelihood is very

informative for this group.

For Bnon there does not appear to be much difference between the true and

false causal cases. This may be because the prior is uninformative and therefore

the posterior is based only on the likelihood. It may also be due to the upper

bound of 1.5 on B. This may not be sufficient for enforcing a reduction in the

shrinkage. We also note that in the false causal case, the SNPs in the non-

synonymous group (the non-causal SNPs) may be being given large effect sizes

because those in the synonymous group (the causal SNPs) are not, due to a

lack of information in the likelihood.

Table 7.1 shows the range of posterior means for B over all 9 datasets within

each of datasets 2A and 2B. We notice that the posterior means for Bnon are sim-

ilar across both MAFs and across both scenarios (true causal and false causal).

In both scenarios it is noticeable higher than the prior mean of 0.98.

The posterior means for Bsyn are very different to Bnon, and to each other for

the true causal and false causal scenario. As expected, the posterior means for

Bsyn are higher in the false causal case, where the causal SNPs are defined to be

synonymous. This is as we would have expected. In the true causal case where

the non-causal SNPs are synonymous, the posterior mean range is smaller than

the prior mean of 0.86. The prior mean is included in the posterior mean range

for the false causal case, where the causal SNPs are defined as synonymous.

Bsyn (0.86) Bnon (0.98)

NG false causal MAF 0.02 (dataset 2B) 0.8-0.95 1.22-1.24
NG false causal MAF 0.2 (dataset 2A) 0.8-0.89 1.22-1.24
NG true causal MAF 0.02 (dataset 2B) 0.57-0.63 1.17-1.23
NG true causal MAF 0.2 (dataset 2A) 0.57-0.59 1.21-1.23

Table 7.1: The range of posterior means across all 9 datasets within datasets
2A and 2B for Bsyn and Bnon for both NG true causal (causal SNPs defined
as non-synonymous, non-causal SNPs defined as synonymous) and NG false
causal (non-causal SNPs defined as non-synonymous, causal SNPs defined as
synonymous). The values that relate to the group where the causal SNPs are
found is highlighted in red. The values in brackets represent the prior means
for Bsyn and Bnon.

We investigate the magnitude of the posterior effect sizes in the NG, NG

splitting true causal and NG splitting false causal cases. Figure 7.7 shows the

effect sizes for the 54 causal SNPs after a single run of the NG, NG splitting

false causal and NG splitting true causal for dataset 2B. All causal SNPs in
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Figure 7.6: Histograms showing the posterior distribution of B for synonymous
and non-synonymous SNPs. The results are based on one sub-dataset of Hap-
Gen simulated dataset 2B with causal SNPs effect size 0.4 and MAF (minor
allele frequency) of approximately 0.02 in the population. These distributions
are based on 100,000 iterations with a 5,000 iteration burn-in. The B that
represents the group containing only the causal SNPs are coloured red in these
histograms. Top: The false causal case where causal SNPs are all denoted as
synonymous (worst case of NG splitting). Bottom: The true causal case, where
causal SNPs are all denoted as non-synonymous (best case of NG splitting).
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dataset 2B and in Figure 7.7 are simulated to have effect size 0.4. We notice

that the posterior magnitudes of the effect sizes are different.

The top plot in Figure 7.7, for dataset 2A, MAF 0.2, shows that the causal

SNP posterior mean estimates are highest for the NG true causal, next the

NG false causal and finally for the NG in most cases. We expect the NG true

causal to enforce less shrinkage on the causal SNPs as they are in the non-

synonymous functional group. We see this reflected in the posterior mean effect

sizes (simulated to be 0.4) in comparison to the NG false causal where the causal

SNPs are in the synonymous functional group, and have a priori more shrinkage.

We believe that the extra flexibility in the shrinkage is allowing larger posterior

effect sizes compared to the standard NG.

The bottom plot in Figure 7.7, for MAF 0.02, dataset 2B, does not show

the clear separation of posterior effect sizes between the NG, NG true causal

and NG false causal cases. We notice that there are two causal SNPs which

have large effect sizes in the NG but not as large effect sizes in either of the NG

splitting cases. Remember that all causal SNPs have a simulated effect size of

0.4. Even though the effect sizes are not as large, these are still the top two

ranked SNPs according to all three scenarios (standard NG, NG true causal and

NG false causal).

The investigative results imply that the change in shrinkage based on the FS

score is performing as expected and changing the amount of shrinkage on the

SNPs in the synonymous and non-synonymous groups. However, the results

are not being reflected in the posterior estimates for β. We conclude that

the range of B ∈ [0.5, 1.5] enforced by our simple transformation B = FS +
1
2

is insufficient. We could consider other linear transformations to increase

the support of B which would allow Gibbs updates, but to avoid data-specific

supports, we consider non-linear transformations.

7.6 An alternative transformation from FS to

B

To overcome the restriction on the values for B enforced by our previous trans-

formation from FS to B, we propose an alternative non-linear transformation.

We define our new monotonic transformation of the FS score as

B = tan

(
FSπ

2
ε

)
, (7.7)

where ε = 0.99, and prevents B → ∞ as FS → 1. This transformation was
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Figure 7.7: The posterior effect size estimates for all 54 causal SNPs in the
HapGen datasets 2A and 2B for the NG, NG true causal and NG false causal.
The false causal case is the case where only the causal SNPs are defined as
synonymous (worst case of NG splitting). The true causal case is the case
where only the causal SNPs are all defined as non-synonymous (best case of
NG splitting). The non-causal SNPs are all defined to be in the other group,
non-synonymous in the false causal case, and synonymous in the true causal
case. Top: The results are based on HapGen simulated dataset 2A which
has causal SNPs effect size 0.4 (shown on the plot) and MAF (minor allele
frequency) of approximately 0.2 in the population. Bottom: The results are
based on HapGen simulated dataset 2B which has causal SNPs effect size 0.4
(shown on the plot) and MAF (minor allele frequency) of approximately 0.02
in the population.



7.7. SIMULATION RESULTS, HAPGEN DATASET 2 123

chosen as it maps FS ∈ [0, 1] to B ∈ [0,∞). B enters the prior hierarchical

structure through var(π(β|λ, γ2)) = 2λγ2 ∼ IG(2, B). We remove M from the

scale of the Inverse Gamma distribution here, which allows direct comparison

of B across datasets.

The calculations for the full conditional distributions for Fnon and Fsyn using

the new FS toB transformation, see Equation 7.7, can be found in Section 8.3.2.

The Normal Gamma function that we have written to include the new

transformation of B to FS for the two groups of SNPs, synonymous and non-

synonymous, is the NG splitting function. We will refer to this throughout the

remainder of this chapter as NG splitting. When comparing to the standard

NG function, we will refer to the standard NG function as the NG.

7.7 Simulation Results, HapGen dataset 2

We will now investigate the results of applying the NG splitting function with

the new transformation to HapGen datasets 2A and 2B. To recap, these datasets

have 9 sub-datasets each with 300 individuals and 631 SNPs, of which 6 are

simulated to be causal with effect size 0.4. When analysing dataset 2A or 2B,

we have 54 causal SNPs in total and 5625 non-causal SNPs.

We begin by investigating the ROC curves for dataset 2A (MAF 0.2) and

2B (MAF 0.02), Figure 7.8, top and bottom respectively. These ROC curves

show little separation. Precision-Recall (PR) curves can be used when there

are different numbers of observations in each group. This is the case here, but

having plotted the PR curve, there is still little to no separation between the

NG splitting true and false causal, and so we omit the plot, preferring the ROC

curves for consistency.

The AUCs of the ROC curves for dataset 2A (top ROC in Figure 7.8) are

very similar although the shape of the ROC curves are quite different for the

NG and the NG splitting. We notice that the shape of the ROCs are similar

to Figure 7.5, although the AUCs are larger here. The AUCs for the NG,

NG splitting true causal and NG splitting false causal are 0.970, 0.970 and

0.973 respectively. For the two NG splitting cases the difference between these

two ROC curves may be due to inter chain MCMC variability. However it

is unlikely, given the large difference in shapes of the ROC curves, that the

difference between the NG and the two NG splitting cases is due to MCMC

variability. In this case, the NG splitting detects the majority of causal SNPs

at a much lower false positive rate (< 5%) than the standard NG, although the

standard NG detects the entire set of causal SNPs at a much lower false positive

rate (less than 30%) compared to the NG splitting (around 70%− 80%). This
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Figure 7.8: ROC curve comparing the difference between the standard Normal
Gamma with the same shrinkage across all SNPs, to the NG with different
shrinkage across the two SNP groups. True causal represents the ‘best case’
scenario where all simulated causal SNPs are treated as non-synonymous and
false causal represents the ‘worst case’ scenario where all simulated causal SNPs
are treated as synonymous. The data is simulated using HapGen2 [Su et al.,
2011] to include causal SNPs with a specified minor allele frequency (MAF).
Top: The ROC is for dataset 2A with causal SNP MAF of approximately 0.2
in the population. Bottom: The ROC is for dataset 2B with causal SNP MAF
of approximately 0.02 in the population.
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is very different to the case where the causal SNPs have MAF (minor allele

frequency) 0.02 in dataset 2B.

The AUC’s for dataset 2B (bottom ROC in Figure 7.8) are, as expected,

less than for dataset 2A. The AUC for the standard NG is 0.932, and for the

NG splitting true causal and NG splitting false causal are 0.914 and 0.919

respectively. Again we notice a difference in shape between the NG and the two

NG splitting ROC curves. In this case, the NG detects approximately 90% of

causal SNPs at a much lower false positive rate (approximately 10%) compared

to the two NG splitting cases which have a false positive rate of approximately

20% to achieve a 90% true positive rate. It is possible in this case that the

difference between the two NG splitting cases is based on MCMC variation

alone and not due to differential shrinkage.

The ROC curves in Figure 7.8 appear to show that the difference in ranking

of the posterior mean effect sizes for the SNPs in the NG splitting true cause

and false causal cases are similar, regardless of whether the SNPs are in a group

with a priori more or less shrinkage. The ROC curves are taking into account

relative effect sizes of the posterior mean estimates through the rankings, but

they do not assess the actual effect sizes.

To assess whether there is a difference between the two groups, synonymous

and non-synonymous, and whether differential shrinkage is being enforced, we

begin by assessing the shrinkage parameters Bsyn and Bnon for the two NG

splitting cases.

In the sub-dataset assessed here, M=0.2724. The sub-dataset used is sub-

dataset 2 from dataset 2A, where the MAF of the causal SNPs are approximately

0.02. Table 7.2 shows the comparison between the posterior B and M used in

the standard NG. Where B > M , there is less shrinkage being enforced in the

NG splitting compared to the standard NG.

Investigating only the posterior summary statistics for this sub-dataset,

which is representative of the other sub-datasets, has shown that the differ-

ential shrinkage using B is performing well, and as we would expect for the two

different groups of SNPs. We note that in the NG false causal, a few large values

for Bnon are skewing the posterior mean and 95% posterior credible interval.

Given that we are certain that the shrinkage being applied to each group

is different, and is tailored to the data, we now investigate the posterior mean

effect sizes for the β estimates. We maintain the estimates from the standard

Normal Gamma that have previously been used for comparison.

Figure 7.9 shows the comparison between the posterior mean effect sizes of

the causal SNPs for the standard NG, NG splitting true causal and NG splitting

false causal. The top plot shows the comparison for dataset 2A, MAF 0.2. As
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Posterior
B > M

Posterior
mean

Posterior
median

95% posterior
credible interval

NG splitting false causal
Bsyn 29% 0.2996 0.1801 (0.0379,0.8030)
Bnon 8% 24.72 0.003 (0.000112,146.54)
NG splitting true causal

Bsyn
0%

max is 0.047
0.00768 0.0064 (0.00159,0.0206)

Bnon 12% 0.786 0.659 (0.00383,2.659)

Table 7.2: A summary of the difference between the amount of shrinkage en-
forced by the NG splitting through B and the standard NG through fixed
M = 0.2724. These results are for one sub-dataset, sub-dataset 2 from dataset
2A, where the MAF of causal SNPs is approximately 0.02. This is representa-
tive of all other sub-datasets. We highlight in red the row of the true causal
and false causal results to indicate the group in which the 6 causal SNPs are
located.

expected, the NG true causal SNPs have higher posterior mean effect sizes than

the false causal and the standard NG. For dataset 2B, MAF 0.02, the bottom

plot of Figure 7.9, shows that in comparison to the bottom plot in Figure 7.7,

the increased range of B appears to be increasing the shrinkage on the posterior

mean effect size estimates for the NG splitting true causal and false causal cases,

although it is differentiating more between the effect size estimates for the NG

false causal and NG true causal cases.

Figures 7.10 and 7.11 show the posterior mean effect sizes of all SNPs for

MAF 0.2 and 0.02 respectively for the standard NG, the NG true causal and

the NG false causal cases. The posterior means are much smaller for the NG

splitting in the case of dataset 2B (MAF 0.02) compared to the standard NG.

However, for dataset 2A (MAF 0.2), the posterior mean effect sizes for the NG

splitting are in general larger than for the NG, in particular for the causal SNPs.

In most cases the posterior effect sizes for the NG splitting true causal (where

the causal SNPs are defined to be non-synonymous) are higher than the NG

splitting false causal (where the causal SNPs are defined to be synonymous),

which is consistent with our prior distributions. We note that there are only 6

SNPs in the group containing the causal SNPs, for each of the 9 sub-datasets.

We have seen that there is clearly differential shrinkage being enforced on the

posterior mean estimates of effect size β through changes in B. The differences

in the effect size estimates between the NG false causal and true causal are

quite small. We hypothesize this may be due to amount of information in the

likelihood and that we are maintaining all causal SNPs together in one of the

two groups at all times. We will, for dataset 2A only (population MAF 0.2 for



7.7. SIMULATION RESULTS, HAPGEN DATASET 2 127

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Causal SNP number (1−54)

P
os

te
rio

r 
m

ea
n 

es
tim

at
ed

 e
ffe

ct
 s

iz
e

NG
NG true causal
NG false causal
True causal effect size

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

Causal SNP number (1−54)

P
os

te
rio

r 
m

ea
n 

es
tim

at
ed

 e
ffe

ct
 s

iz
e

NG
NG true causal
NG false causal
True causal effect size

Figure 7.9: The posterior effect size estimates for all 54 causal SNPs in the
HapGen datasets 2A and 2B for the NG, NG true causal and NG false causal
with the larger range transformation from F → B. The false causal case is
the case where only the causal SNPs are defined as synonymous (worst case of
NG splitting). The true causal case, is the case where only the causal SNPs
are defined as non-synonymous (best case of NG splitting). The non-causal
SNPs are all defined to be in the other group, non-synonymous in the false
causal case, and synonymous in the true causal case. Top: The results are
based on HapGen simulated dataset 2A which has causal SNPs effect size 0.4
(shown on the plot) and MAF (minor allele frequency) of approximately 0.2 in
the population. Bottom: The results are based on HapGen simulated dataset
2B which has causal SNPs effect size 0.4 (shown on the plot) and MAF (minor
allele frequency) of approximately 0.02 in the population.
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Figure 7.10: Histograms comparing the posterior mean effect size for all SNPs
in dataset 2A. The 54 causal SNPs from the NG, NG splitting true and NG
splitting false causal scenarios are marked with ‘×’ on the histograms. The
data is simulated using HapGen2 [Su et al., 2011] to include causal SNPs with
a MAF (minor allele frequency) in the population of approximately 0.2 (dataset
2A). The NG splitting false causal case is where all 54 causal SNPs are defined
as synonymous and all 625 non-causal SNPs are defined as non-synonymous.
The NG splitting true causal case is where all 54 causal SNPs are defined as
non-synonymous and the remaining 625 non-causal SNPs are defined as non-
synonymous.



7.7. SIMULATION RESULTS, HAPGEN DATASET 2 129

NG posterior mean

D
en

si
ty

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0
10

25

NG false causal posterior mean

D
en

si
ty

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0
10

25

NG true causal posterior mean

D
en

si
ty

−0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0
10

25 Causal SNP effect size

Figure 7.11: Histograms comparing the posterior mean effect size for all SNPs
in dataset 2B. The 54 causal SNPs from the NG, NG splitting true and NG
splitting false causal scenarios are marked with ‘×’ on the histograms. The
data is simulated using HapGen2 [Su et al., 2011] to include causal SNPs with
a MAF (minor allele frequency) in the population of approximately 0.02 (dataset
2B). The NG splitting false causal case is where all 54 causal SNPs are defined
as synonymous and all 625 non-causal SNPs are defined as non-synonymous.
The NG splitting true causal case is where all 54 causal SNPs are defined as
non-synonymous and the remaining 625 non-causal SNPs are defined as non-
synonymous.
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the causal SNPs), reduce n to increase the influence of the prior distribution and

create two groups of SNPs; one containing all causal SNPs plus extra non-causal

SNPs, and the other containing only non-causal SNPs. We will also split the 6

causal SNPs equally between the two groups, synonymous and non-synonymous

as this is a more realistic scenario.

7.7.1 Reducing n

In this section we reduce the number of individuals in dataset 2A to 50 and 100

with the aim of assessing the relative influence of the prior distribution on the

posterior. The individuals to keep were chosen randomly, and checks have been

made to ensure the MAF remains similar to the full datasets with n = 300.

We assess, using a ROC curve, the difference between n = 50 and n = 100

and the true and false causal cases. We compare this to the standard NG case.
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Figure 7.12: ROC curve comparing the difference between the standard Nor-
mal Gamma with the same shrinkage across all SNPs to the NG with different
shrinkage across the two SNP groups for different values of n. True causal
represents the ‘best case’ scenario where all simulated causal SNPs are treated
as non-synonymous and false causal the ‘worst case’ scenario where all sim-
ulated causal SNPs are treated as synonymous. The data is simulated using
HapGen2 [Su et al., 2011] to include causal SNPs with a specified minor allele
frequency (MAF). The ROC is for MAF of approximately 0.2 in the population
(dataset 2A) with reduced numbers of individuals.

Figure 7.12 shows clear differences between the NG splitting results for n =

50 and n = 100. As expected, when n = 100 the AUC is larger, see Table 7.3.

We note that the NG splitting true and false causal with n = 50 both perform

better with respect to the AUC than the NG with n = 100. This reinforces the
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hypothesis that the extra flexibility on the model by not stating a fixed M for

the prior on 2λγ2 enhances the model performance. The differences between

the ROCs for NG splitting true and false causal appear most likely to be due to

MCMC variation. However, when assessing the posterior effect size estimates

for the causal SNPs only, we notice those for the false causal are in general closer

to 0 than for the true causal, see Figure 7.13 top and bottom for n = 50 and

n = 100 respectively. This reflects what we expect given our prior distributions.

NG (n = 50) 0.8263
NG splitting true causal (n = 50) 0.9124
NG splitting false causal (n = 50) 0.9121
NG(n = 100) 0.8704
NG splitting true causal (n = 100) 0.9896
NG splitting false causal (n = 100) 0.9904

Table 7.3: The AUC for the ROC curves in Figure 7.12.

Having reduced n to 50 and 100 we clearly see a difference in the poste-

rior mean effect size estimates for the causal SNPs. The comparison with the

standard NG reinforces the advantage of the extra level of complexity we have

introduced into the model in the form of a prior on B based on functional

information.

7.7.2 Re-grouping the SNPs

To assess the NG splitting model in a more realistic setting, we regroup the

SNPs such that there are the 6 causal SNPs plus 218 randomly selected non-

causal SNPs in one group, and the remaining 407 non-causal SNPs in the second

group. For the ‘causal plus non’ scenario, the 6 causal SNPs plus 218 non-causal

SNPs are defined as non-synonymous and the remaining 407 SNPs are defined

as synonymous. This is equivalent to the true causal case with extra, non-

causal SNPs also defined as non-synonymous. The ‘causal plus syn’ scenario

has the 6 causal SNPs plus 218 non-causal SNPs defined as synonymous and

the remaining 407 SNPs defined as non-synonymous. This is equivalent to the

false causal case with extra non-causal SNPs also defined as synonymous.

We begin by assessing the AUC of the ROC curves, see Figure 7.14. Note

that there are 30 causal SNPs and 3155 total SNPs as we are only using 5

sub-datasets. We do this as the results from 5 or 9 sub-datasets remain invari-

ant. The AUC for the NG is 0.932, for the NG causal plus non is 0.989 and

the NG causal plus syn is 0.987. Again, assessing only the ROC curves, we

would hypothesize that the difference between the NG causal plus non and NG

causal plus syn are only differing due to MCMC variation. When we assess the
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Figure 7.13: Plots comparing the posterior mean effect size for the 30 causal
SNPs from the NG, NG splitting true and NG splitting false causal scenarios.
The data is simulated using HapGen2 [Su et al., 2011] to include causal SNPs
with a MAF (minor allele frequency) in the population of approximately 0.2
(dataset 2A). The NG splitting false causal case is where all 6 causal SNPs
are defined as synonymous and all 625 non-causal SNPs are defined as non-
synonymous. The NG splitting true causal case is where all 6 causal SNPs are
defined as non-synonymous and the remaining 625 non-causal SNPs are defined
as non-synonymous for each of the 5 sub-datasets used. Top: Dataset contains
n = 50 individuals. Bottom: Dataset contain n = 100 individuals.
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posterior mean effect sizes for the causal SNPs, see Figure 7.15, we notice that

the NG causal plus non, which has a priori larger effect sizes, also has larger

posterior effect sizes in most cases.
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Figure 7.14: ROC curve comparing the difference between the standard Normal
Gamma with the same shrinkage across all SNPs to the NG with different
shrinkage across the two SNP groups. For the ‘causal plus non’ group, the 6
causal SNPs plus 218 non-causal SNPs are defined as non-synonymous and the
remaining 407 SNPs are defined as synonymous. The ‘causal plus syn’ group
has the 6 causal SNPs plus 218 non-causal SNPs defined as synonymous and
the remaining 407 SNPs defined as non-synonymous. The data is simulated
using HapGen2 [Su et al., 2011] to include causal SNPs with a specified minor
allele frequency (MAF). The ROC is for data with MAF of approximately 0.2
in the population (dataset 2A).

We conclude that even when disguising the causal SNPs in a group with

other, non-causal SNPs the NG splitting still out-performs the standard NG.

Within the NG splitting, we still see from the ROC curves that the causal SNPs

are being selected amongst those SNPs with the highest posterior mean effect

sizes even when categorised as synonymous (having a priori smaller effect sizes)

with many other non-causal SNPs.

7.7.3 Splitting the causal SNPs between groups

In this section we split the causal SNPs such that there are 307 SNPs in the

synonymous group, of which 3 are causal, and 324 SNPs in the non-synonymous

group, 3 of which are also causal. This is a more realistic setting for the distri-

bution of causal SNPs across the synonymous and non-synonymous functional

information groups.

We assess, using a ROC curve, the AUC and compare this to the AUC for

the NG, NG true causal and NG false causal when n is reduced, see Table 7.3.
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Figure 7.15: Plots comparing the posterior mean effect size for the 30 causal
SNPs from the NG, NG causal plus non and NG causal plus syn scenarios. The
data is simulated using HapGen2 [Su et al., 2011] to include causal SNPs with a
MAF (minor allele frequency) in the population of approximately 0.2 (dataset
2A). For the ‘causal plus non’ group, the 6 causal SNPs plus 218 non-causal
SNPs are defined as non-synonymous and the remaining 407 SNPs are defined
as synonymous. The ‘causal plus syn’ group has the 6 causal SNPs plus 218
non-causal SNPs defined as synonymous and the remaining 407 SNPs defined
as non-synonymous for each of the 5 sub-datasets used.

We expect that, given n is greater in this case, the AUC will be comparable

to the NG splitting cases for n = 100 in this table. We find that the AUC for

the NG with causal SNPs split across synonymous and non-synonymous SNPs

is 0.985. This is almost as high as for the NG splitting true causal and false

causal cases. With such a high AUC we conclude that even when splitting the

causal SNPs across the two groups, we do not decrease the detection of causal

SNPs with respect to the rank.

We also assess the posterior mean effect sizes for the causal SNPs in com-

parison with the standard NG, see Figure 7.16. We have coloured the SNPs to

represent which were in the synonymous and which were in the non-synonymous

group. We notice that there are causal SNPs with larger posterior effect sizes

than the true causal effect size of 0.4. There are more of these causal SNPs

with large effect sizes from the synonymous group than the non-synonymous

group. This may be due to which non-causal SNPs are allocated to which

group, and the LD between causal and non-causal SNPs within a shrinkage
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group. We notice also that there is less shrinkage of the largest causal effect

sizes in comparison to the standard NG.
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Figure 7.16: Plots comparing the posterior mean effect size for the 30 causal
SNPs from the NG and the NG causal split scenarios. The causal split scenario
is when the 6 causal SNPs have been split between the two groups, 3 causal
SNPs plus 307 non-causal SNPs in the synonymous (with a priori more shrink-
age) group and 3 causal SNPs plus 324 non-causal SNPs in the non-synonymous
(a priori less shrinkage) group. The data is simulated using HapGen2 [Su et al.,
2011] to include causal SNPs with a MAF (minor allele frequency) in the pop-
ulation of approximately 0.2 (dataset 2A).

We can conclude here that even when the causal SNPs are split across

groups, the ranking of the causal SNPs still leads to a very high AUC of the

ROC, therefore the causal SNPs are ranked highly compared to the non-causal

SNPs. We can also see that the causal SNPs are still detected regardless of the

functional group they are in.
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7.8 Conclusion

In this chapter we have assessed two different methods for including functional

information into the NG framework. Using the more complex transformation,

we have shown that, given the type of SNP, synonymous or non-synonymous,

we can enforce differential shrinkage on the posterior mean estimates of effect

size β through changes in B. Although we can change the posterior effect

size estimates, the posterior ranking remains similar based on the AUC of the

ROC curves. By assessing the effect sizes when the number of individuals is

reduced, and by combining causal and non-causal SNPs into the same groups we

have shown that in a realistic setting, the NG splitting performs very well. By

splitting the causal SNPs across groups we have also shown that it is possible

to detect causal SNPs even if they are in a group with a priori greater shrinkage

and when there are causal SNPs in another group with a priori less shrinkage.

In Chapter 8 we extend the inclusion of synonymous and non-synonymous

SNP categories in the Normal Gamma to include more categories for the SNPs

beyond exonic mutations. For the Fairfax and Hulse datasets we have used

throughout this thesis, SNPs can be found in intronic, intergenic, upstream,

downstream, exonic (synonymous and non-synonymous), UTR3, UTR5, splic-

ing, non-coding regions etc. Therefore now we have a model that appears to

be successfully enforcing differential shrinkage on the simulated data, we are

going to adapt the model to include the extra functional information groups

that we/our expert believes are necessary in this type of analysis.



Chapter 8

Extending the Normal Gamma

prior with functional information

Having chosen to target only exome sequence data initially, we only required

synonymous and non-synonymous SNPs in our NG function with functional in-

formation, see Chapter 7. The data we are using to test the Normal Gamma on

includes causal SNPs that reside in many different regions of the genome. For

this reason, we have decided to extend our NG function with functional infor-

mation in Chapter 7 to include other SNP groups in our “NG super function”.

To decide which extra groups to include, we discussed the possible anno-

tations from ANNOVAR with an expert who understands the biological fea-

tures affecting gene expression. Using our experts knowledge, we compiled

a list of 6 important groups of SNPs including the synonymous and non-

synonymous SNPs from before. The 6 groups we now include are synonymous,

non-synonymous, UTR3 (also referred to as 3′ UTR (un-translated region)),

splicing, intronic and intergenic. For completeness, we include a 7th group rep-

resenting the ‘other’ category to take into account SNPs with no known location

in ANNOVAR or SNPs from other ANNOVAR annotations that we are not in-

cluding. Note that at this stage we group SNPs with upstream, downstream

and intergenic labels together as upstream and downstream regions are outside

the genes, often between genes. Hence we treat these all as intergenic regions.

A DAG (directed acyclic graph) representing the inclusion of these extra

functional information groups can be seen in Figure 8.1, and the corresponding

pseudo-code can be found in Appendix D.3.

137
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λγF

ψ

β

y Xσ2

FS groups h = 0, . . . , 6

SNPs i = 1, . . . , p

Individuals j = 1, . . . , n
Genes g = 1, . . . , ng

Figure 8.1: DAG representing the relationships between the variables in the NG
super function; the standard NG with seven groups of functional information
model. A DAG represents the relationships between parameters in a model. The
plates represents the parameters that are specific to groups e.g. individuals,
genes etc. The grey nodes represent the observed variables while the arrows
show the dependences between parameters.
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8.1 Prior distributions

Using the complete FS score database from Lee and Shatkay [2009], omitting

all FS score values of 0.5 as these represent no knowledge of the deleterious

effect of the SNP, we plot histograms for all functional information groups, see

Figure 8.2.
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Figure 8.2: Histograms for the 7 functional information groups we are using.
The histograms plot the raw FS score values from Lee and Shatkay [2009] ex-
cluding 0.5 as this value represents no knowledge of the deleterious effect or
functional role of the SNP.

Using the histograms and the raw FS score values, we explore the data to

decide which prior distributions to fit to the data. Discussing the biological

effect of our mutation types with our expert, mutations in the splicing region

either have an effect (which is highly deleterious) or they do not. Due to the

shape of the histogram for splicing SNPs, see Figure 8.2 we see a noisier version
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of this binary effect. We therefore choose to fit a Bernoulli distribution in

the proportions seen in the data for FS < 0.5 and FS > 0.5. This gives a

Bernoulli( 53
105

) prior distribution for splicing SNPs, such that P (Fsplicing = 1) =
53
105

. All other distributions are fitted using continuous mixture distributions

where appropriate, including point masses where these are consistent with the

functional data.

The best fit distributions, selected for their ability to replicate the shape

of the histograms, for our extended set of functional information priors can be

seen below in Equations 8.1-8.7. The fitted densities have been plotted on top

of the histograms in Figure 8.3.

π(FIntergenic) ∼ 1F∈[0,1]

{
0.789δ[0.101866] + 0.211Ga(1.296, 6.365)

}
(8.1)

π(FIntronic) ∼ 1F∈[0,1]

{
0.121δ[0] + 0.879Ga

(
7.359,

1

0.0235

)}
(8.2)

π(FUTR3) ∼ 1F∈[0,1] {Ga(1.45, 8.08)} (8.3)

π(FSplicing) ∼ Bernoulli

(
53

105

)
(8.4)

π(FOther) ∼ 1F∈[0,1]

{
0.085δ[0] + 0.915Ga

(
4.349,

1

0.0340

)}
(8.5)

π(FSyn) ∼ 1F∈[0,1]

{
0.946Ga

(
2.929,

1

0.113

)
+ 0.054Ga

(
640.5,

1

0.0015

)}
(8.6)

π(FNon-syn) ∼ Uniform[0, 1]. (8.7)

There is small mass of approximately 8% outside the [0, 1] range for Fsyn

which we truncate using the indicator function. This means that the prior, in its

current form, is not a proper prior as it does not integrate to 1, and the value of

the density based on the non-truncated Gamma will be too small. To make this

integrate to 1, we rescale the prior for Fsyn by multiplying it by 1
0.92

= 1.09 so

that it integrates to 1 over [0, 1]. Hence the prior for Fsyn is defined as follows:

1.09× 1F∈[0,1]

{
0.946Ga

(
2.929,

1

0.113

)
+ 0.054Ga

(
640.5,

1

0.0015

)}
. (8.8)

For all other densities, the mass outside [0, 1] which we truncate with the indi-

cator function is negligible.

Using the prior distributions in Equations 8.1-8.8 and the following trans-

formation for B,

B = tan
(
F
π

2
ε
)
, (8.9)
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Figure 8.3: An array showing the histograms for the 7 functional information
groups we are using with the red lines representing the prior distributions we are
placing on each group. The histograms plot the raw FS score values from Lee
and Shatkay [2009] excluding 0.5 as this value represents no knowledge.
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with ε = 0.99 to avoid B → ∞ as F → 1, we calculate the full conditional

distributions for updating F for the new SNP groups. Given that many of the

prior distributions are mixture distributions consisting of one continuous density

and one point mass, we use the technique described in Gottardo and Raftery

[2004] to update our F parameters. In all cases we have to use Metropolis

Hastings updating as the B → F transformation prevents us from obtaining

the form of a standard distribution for the full conditional distribution for F .

8.2 Transformation F to B

Our transformation from Chapter 7 defined in Equation 7.7 as

B = tan

(
FSπ

2
ε

)
, (8.10)

needs to be edited slightly to prevent B = 0 which causes some computational

issues based on the point masses in certain prior distributions. As such, we edit

the transformation as follows:

B = tan

(
FSπ

2
ε

)
+ (1− ε), (8.11)

where ε = 0.99 as before.

We do not need to include the Jacobian of the transformation when we

calculate the full conditional distribution as both ur prior distribution and our

full conditional distribution are calculated in terms of F . We use B as shorthand

notation for the transformation applied to a single value from the distribution

of F in the prior distribution (and subsequent full conditional distributions) for

γ−2.

8.3 Full conditional distributions

When calculating the full conditional distributions for F |λ, γ2 we only need to

include the prior distributions that contain either an F or B term. This means

we only include the prior distribution for F for the SNP group we are updating,

and the prior distribution for π(γ−2|λ,B). The probability density function
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(pdf) for π(γ−2|λ,B) is given by

π(γ−2|λ,B) ∼ Ga

(
2,
B

2λ

)

=

(
B

2λ

)2

Γ(2)

(
γ−2
)2−1

exp

(
−B
2λ

γ−2

)
=

1

4λ2γ2
B2exp

(
−B
2λγ2

)
Substituting B = tan

(
F π

2
ε
)

+ (1− ε), Equation 8.9, gives:

π(γ−2|λ, F ) =
1

4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)
.

(8.12)

All full conditional distributions are calculated using:

f(F |λ, γ−2) ∝ π(F )π(γ−2|λ, F ) (8.13)

and acceptance probabilities are calculated from:

min

{
1,
f(F ′|λ, γ−2)π(F ′)

f(F |λ, γ−2)π(F )

q(F ′, F )

q(F, F ′)

}
, (8.14)

where f(F ′|λ, γ−2) is the full conditional distribution for F ′, π(F ′) is the prior

distribution on F ′ and q(F ′, F ) is the density transition kernal from the current

value F to the proposed value F ′.

8.3.1 Proposal value for F

In all cases where a proposal value is required, we either propose the value of

the point mass, F ∗, or we propose a value of F ∈ [0, 1]\{F ∗} as detailed below:

• Simulate β as β = σ2z where z ∼ N(0, 1) and σ2 is calibrated to allow us to

move around the sample space efficiently, preventing too many rejections

of proposed moves, but with enough large jumps to explore the sample

space (we initially use σ2 = 1 and tune it).

• Given the current value of F , propose F ′ = F + (1 − F )Φ(β) if z > 0

and F ′ = F − F (1 − Φ(β)) if z < 0 where Φ is the standardized normal

distribution function.
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8.3.2 Updating the single continuous priors

In this section we state the updating for Fsyn, Fnon and FUTR. These are grouped

as they are updated using the standard Metropolis Hastings updating.

We propose F ′ = F + (1 − F )Φ(β) if z > 0 and F ′ = F − F (1 − Φ(β)) if

z < 0 as defined in Section 8.3.1. As the proposal values are not symmetric, we

define the density transition kernel as follows:

q(F, F ′) = φ

(
F ′ − F
1− F

)
. (8.15)

This is the same for Fsyn, Fnon and FUTR.

We state the acceptance probabilities for Fsyn, Fnon and FUTR3 as follows.

Let tan
(
F ′ π

2
ε
)

+ (1− ε) = T ′, tan
(
F π

2
ε
)

+ (1− ε) = T and Q =
φ
(

F ′−F
1−F

)
φ(F−F ′

1−F ′ )
,.

APFsyn
=

min

1, Q
AF ′1.929 (T ′)

2
exp

(
− F ′

0.113 −
1

2λγ2 (T ′)
)

+ CF ′639.5 (T ′)
2

exp
(
− F

0.0015 −
1

2λγ2 (T ′)
)

AF 1.929 (T )
2

exp
(
− F

0.113 −
1

2λγ2 (T )
)

+ CF 639.5 (T )
2

exp
(
− F

0.0015 −
1

2λγ2 (T )
)
 ,

(8.16)

where A = 0.946×
1

0.113

2.929

Γ(2.929)
and C = 0.054×

1
0.0015

640.5

Γ(640.5)
.

APFnon =min

{
1, Q

(
T ′

T

)2

exp

(
− 1

2λγ2
[T ′ − T ]

)}
. (8.17)

APFUTR3
=min

{
1, Q

(
F ′

F

)0.45(
T ′

T

)2

exp (−8.08 (F ′ − F )) exp

(
− 1

2λγ2
[T ′ − T ]

)}
.

(8.18)

8.3.3 Updating one continuous and one point mass prior

In this section we state the acceptance probabilities for the three prior distri-

butions Fintronic, Fintergenic and Fother whose prior distributions are a mixture of

one point mass and one continuous prior distribution.

To calculate the the full conditional distributions in these cases, we use the

technique described in Gottardo and Raftery [2004]. This requires that, for the

two measures ν1 and ν2, there exists a measurable set A such that ν1(A) = 0

and ν2(AC) = 0, where AC defines the complement of the set A, i.e. the two

supports do not overlap.

The Gottardo and Raftery [2004] technique can be summarised as follows
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for cases where there is a mixture of one continuous distribution and one point

mass, i.e. of the form π(D) ∼ (1−w)δD∗+wg(D), where D∗ is the value of D for

which there exists a point mass and w is the mixture proportion. Formally, we

have to exclude the value of the point mass from the support of the continuous

distribution to ensure that ν1(A) = 0 and ν2(AC) = 0. Hence the prior must be

of the form π(D) ∼ (1− w)δD∗ + wg(D)1R\{D∗}(D).

1. Let part 1 represent the point mass ((1−w)δD∗) and part 2 represent the

continuous density (wg(D)).

2. Calculate the component-wise full conditional distributions for F |λ, γ for

part 1 and part 2, which depend on the mixing proportion (w for part 2,

1 − w for part 1). We cannot calculate the normalising constant in this

case.

3. As we cannot calculate the normalising constant due to our F → B trans-

formation, we sample a random uniform value u to define which part we

sample our proposal value from. If u > p1 we propose the value of the

point mass, if u ≤ p1 we sample a proposal value from our proposal dis-

tribution defined in Section 8.3.1.

4. Calculate the values of the proposal density transition kernel for the four

possible scenarios of q(F |F ′).

5. Calculate the acceptance probabilities for each scenario of starting and

ending in either part 1 or part 2 of the mixture prior.

The proposal distribution can be summarised for Fintronic, Fintergenic and

Fother in terms of moving in and out of the point mass and the continuous parts

of the mixture prior. We propose the value of the point mass with probability

p1. We propose F ′ = F + (1 − F )Φ(β) if z > 0 and F ′ = F − F (1 − Φ(β)) if

z < 0 as defined in Section 8.3.1 with probability 1− p1.

The proposal density transition kernel is defined as follows, where F ∗ is the

value of the point mass:

q(F, F ′ = F ∗) = p1

q(F, F ′ ∈ 1[0,1]\{F ∗}) = (1− p1)φ

(
F ′ − F
1− F

)
(8.19)
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Updating Fintronic

We calculate part 1 of the full conditional distribution for the point mass as

follows:

f(Fpart 1|λ, γ) =
0.121

4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

=
0.121

4λ2γ2
T 2exp

(
−T
2λγ2

)
, (8.20)

where T = tan
(
F π

2
ε
)

+ (1− ε).

We now calculate part 2 of the component-wise full conditional distribution

for the Gamma part of the mixture distribution prior.

f(Fpart 2|λ, γ) =
0.879

4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

× 1

Γ(7.359)× 0.02357.359
F 7.359−1exp

(
− F

0.0235

)
=

0.879

0.02357.3594λ2γ2Γ(7.359)
T 2F 7.359−1exp

(
−T
2λγ2

− F

0.0235

)
.

(8.21)

We now state the acceptance probabilities. Let tan
(
F ′ π

2
ε
)

+ (1 − ε) = T ′,

tan
(
F π

2
ε
)

+ (1− ε) = T and

φ

(
F ′ − F
1− F

)
φ

(
F − F ′

1− F ′

) = Q.

AP =



1 if F = F ′ = 0

min

1,

p1 × 0.879F ′6.359 (T ′)
2

exp

(
−T ′

2λγ2

)
exp

(
− F ′

0.0235

)
(1− p1)φ

(
F ′ − F
1− F

)
× 0.121T 2exp

(
−T

2λγ2

)
 if F = 0 and F ′ 6= 0

min

1,

(1− p1)φ

(
F ′ − F
1− F

)
× 0.121 (T ′)

2
exp

(
−T ′

2λγ2

)
p1 × 0.879F 6.359T 2exp

(
−T

2λγ2

)
exp

(
− F

0.0235

)
 if F 6= 0 and F ′ = 0

min

1, Q

F ′6.359 (T ′)
2

exp

(
−T ′

2λγ2

)
exp

(
− F ′

0.0235

)
F 6.359T 2exp

(
−T

2λγ2

)
exp

(
− F

0.0235

)
 if F 6= 0 and F ′ 6= 0.

(8.22)
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Updating Fintergenic

We calculate part 1 of the component-wise full conditional distribution for the

point mass as follows, where F = F ∗:

f(Fpart 1|λ, γ) =
0.789

4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

=
0.789

4λ2γ2
T 2exp

(
−T
2λγ2

)
. (8.23)

We now calculate part 2 of the component-wise full conditional distribution for

the Gamma part of the mixture distribution prior.

f(Fpart 2|λ, γ) =
0.211

4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

× 6.3651.296

Γ(1.296)
F 1.296−1exp(−6.365F )

=
0.211× 6.3651.296

4λ2γ2Γ(1.296)

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

F 0.296

× exp

(
−6.365F − 1

2λγ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
))

=
0.211× 6.3651.296

4λ2γ2Γ(1.296)
T 2F 0.296exp

(
−6.365F − T

2λγ2

)
. (8.24)

We now state the acceptance probabilities, where the point mass is F ∗ =

0.101866.

AP =



1 if F = F ′ = F ∗

min

1,
p1

0.211×6.3651.296

Γ(1.296) (T ′)
2
F ′0.296exp

(
−6.365F ′ − 1

2λγ2T
′
)

(1− p1)φ

(
F ′ − F
1− F

)
0.789T 2exp

(
−T

2λγ2

)
 if F = F ∗ and F ′ 6= F ∗

min

1,

(1− p1)φ
(
F ′−F
1−F

)
0.789 (T ′)

2
exp

(
−T ′

2λγ2

)
p1

0.211×6.3651.296

Γ(1.296) T 2F 0.296exp
(
−6.365F − T

2λγ2

)
 if F 6= F ∗ and F ′ = F ∗

min

1, Q
(T ′)

2
F ′0.296exp

(
−6.365F ′ − 1

2λγ2 (T ′)
)

(T )
2
F 0.296exp

(
−6.365F − T

2λγ2

)
 if F 6= F ∗ and F ′ 6= F ∗.

(8.25)



148 CHAPTER 8. EXTENDING THE NG WITH FUNCTIONAL INFO.

Updating Fother

We calculate part 1 of the full conditional distribution for the point mass as

follows:

f(Fpart 1|λ, γ) =
0.085

4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

=
0.085

4λ2γ2
T 2exp

(
−T
2λγ2

)
. (8.26)

We now calculate part 2 of the component-wise full conditional distribution for

the Gamma part of the mixture distribution prior.

f(Fpart 2|λ, γ, B) =
0.915

4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

× 1

Γ(4.349)× 0.03404.349
F 4.349−1exp

(
− F

0.0340

)
=

0.915

0.03404.349 × 4λ2γ2Γ(4.349)
T 2F 3.349exp

(
−T
2λγ2

− F

0.0340

)
.

(8.27)

We now state the acceptance probabilities.

AP =



1 if F = F ′ = 0

min

1,

0.915p1

0.03404.349Γ(4.349)
F ′3.349 (T ′)

2
exp

(
−T ′

2λγ2
− F ′

0.0340

)
(1− p1)φ

(
F − F ′

1− F ′

)
× 0.085 (T )

2
exp

(
−T

2λγ2

)
 if F = 0 and F ′ 6= 0

min

1,

(1− p1)φ

(
F ′ − F
1− F

)
× 0.085 (T ′)

2
exp

(
−T ′

2λγ2

)
0.915p1

0.03404.349Γ(4.349)
F 3.349T 2exp

(
−T

2λγ2
− F

0.0340

)
 if F 6= 0 and F ′ = 0

min

1, Q

F ′3.349 (T ′)
2

exp

(
−T ′

2λγ2
− F ′

0.0340

)
F 3.349T 2exp

(
−T

2λγ2
− F

0.0340

)
 if F 6= 0 and F ′ 6= 0.

(8.28)

8.3.4 Updating two point mass priors

In this section we assess the updating for Fsplicing. This is a Bernoulli prior

which we treat as point masses at 0 and 1. In this case we use the technique

described in Gottardo and Raftery [2004] but treat our sample space to be only

{0, 1}.
We calculate part 1 of the component-wise full conditional distribution as
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the component relating to δ[0].

f(FF=0|λ, γ) =
52

105× 4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

=
52

105× 4λ2γ2
(T )2 exp

(
−T
2λγ2

)
. (8.29)

We now calculate part 2 of the component-wise full conditional distribution

as the component relating to δ[1].

f(FF=1|λ, γ) =
53

105× 4λ2γ2

(
tan
(
F
π

2
ε
)

+ (1− ε)
)2

exp

(
−tan

(
F π

2
ε
)
− (1− ε)

2λγ2

)

=
53

105× 4λ2γ2
T 2exp

(
−T
2λγ2

)
. (8.30)

We now state the acceptance probabilities.

AP =



1 if F = F ′ = 0

min

1,

53 (T ′)2 exp

(
−T ′

2λγ2

)
52T 2exp

(
−T
2λγ2

) × p1

(1− p1)

 if F = 0 and F ′ = 1

min

1,

52 (T ′)2 exp

(
−T ′

2λγ2

)
53T 2exp

(
−T
2λγ2

) × 1− p1

p1

 if F = 1 and F ′ = 0

1 if F = F ′ = 1.

(8.31)

8.3.5 Parameter choice

We initially specified σ2 = 1 in our proposal value. This value works well in

our simulations and so we fix it to be 1 in all further work. We also initially

specified p1 = 0.5. Again this works well in the simulations so we remain using

this value. We maintain these values as they provide an acceptance rate similar

to the acceptance rate of 20%− 30% for λ′.

8.4 Conclusion

In this chapter we have created extra groups within the Normal Gamma to

cover SNPs in all the different regions of the genome that our expert believes are
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important for our type of model (SNPs affecting gene expression). Calculating

the full conditional distributions and the acceptance probabilities has allowed

us to create a function that we can test. In the next chapter we will carry out

simulation studies to show that the function is performing as expected, and we

will show how this affects the posterior results. We will then test the function

on a subset of the Hulse and Fairfax datasets in Chapter 10.



Chapter 9

Simulation results of the Normal

Gamma prior with seven

functional information groups

In this chapter we use HapGen simulated dataset 2A to test the NG super

function described in Chapter 8. Recall that HapGen dataset 2A is simulated

using HapGen2 [Su et al., 2011] with 6 causal SNPs in each of the 9 sub-datasets

within dataset 2A. In this case we only use 5 of the 9 sub-datasets. The causal

effect size is 0.4 for all 6 causal SNPs with a population MAF 0.2. Each of the

5 datasets has a total of 631 SNPs and 300 individuals. This means that in our

analysis via ROC curves, we have 5×6 = 30 causal SNPs and 5×(631−6) = 3125

non-causal SNPs. We maintain the same error structure of the model. More

details of the dataset can be found in Section 4.2.1.

To test the Normal Gamma super function from Chapter 8, we split the

631 SNPs into the 7 different functional information groups. We define the

proportion of SNPs in each category based on up-weighting and down-weighting

the percentages from the FS score data and the Fairfax data. We define the

minimim percentage in a group to be 1% to ensure that there are enough SNPs

in each group when running the NG super function. We do not use the Hulse

data as we selected only exonic SNPs (excluding the causal SNPs which are not

exonic in all cases). We split the data such that the percentages are as stated

in Table 9.1.

We test the NG super function in two cases. The best case scenario is when

all 6 causal SNPs are together with no other SNPs in a group where the FS

score is a priori high, therefore enforcing less shrinkage. For this case, which

we call splicing causal, we allocated all 6 causal SNPs in the splicing category

alone. All other SNPs are allocated to the remaining SNP groups as shown

151
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Fairfax FS Score NG super function Splicing causal UTR causal

Synonymous 0.82% 2.5% 7% (44) 44 44
Non-synonymous 0.327% 3.44% 3% (19) 19 19

Splicing 0.003% 0.06% 1% (7) 6 7
Intergenic 55.7% 7.5% 40% (252) 253 252
Intronic 40.7% 81.6% 40% (252) 252 252
UTR3 0.99% 4.2% 5% (32) 32 6 + 25
Other 1.46% 0.7% 4% (25) 25 25

Table 9.1: The percentages of each type of SNP found in the Fairfax data and
in the SNPs used in the FS score database. These have been assessed and
used to inform the estimates of the percentages of each type of SNP used in
the NG super function. In many cases we increase the percentage for groups
with small numbers of SNPs in and decrease the percentage for intronic and
intergenic SNPs to ensure there are sufficient SNPs in each group to apply the
NG splitting model successfully. The number in brackets is the number of each
of the 631 SNPs that will be allocated to each category of SNPs. The numbers
in red represent the causal SNPs within the two NG splitting scenarios (splicing
causal and UTR causal).

in Table 9.1. We define this as the best case because the FS score prior mean

for splicing is 0.545 which is the highest prior mean (the second highest is for

non-synonymous SNPs at 0.48) and we believe that having only causal SNPs in

one group will increase detection as the group will receive less shrinkage overall

than if the SNPs were in a group with other, non-causal SNPs.

The second scenario is the worst case scenario when the causal SNPs are

in a group with many other non-causal SNPs, and with a priori much larger

shrinkage. We call this case utr causal. We allocate the SNPs as in Table 9.1

with the 6 causal SNPs (highlighted in red) in the UTR3 group. We define

this as the worst case scenario for detecting causal SNPs because UTR3 has

prior mean 0.1797 which enforces extra shrinkage on these SNPs, and there is

a mixture of causal and non-causal SNPs. As the shrinkage on all SNPs in the

group is the same, extra shrinkage will be enforced equally on both causal and

non-causal SNPs. When only the causal SNPs are in a functional information

group, we believe that the shrinkage will be less due to the information in the

likelihood regarding the causality of the SNPs.

Given there are many other scenarios we could have chosen, we choose to

only investigate these two as the best and worst case, but to vary n, the number

of individuals. We will begin by comparing the standard NG, the NG splicing

causal and the NG utr causal; we will then reduce n to 100 and 50 by choosing

100 and 50 individuals at random from the 300 in dataset 2A. We will compare

the three scenarios for each n to assess the weight given to the prior in the

best and worst case scenarios. We will then compare the NG splicing causal
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and NG utr causal across the three n to assess the effect of n. Will will also

assess which, if any SNPs have a 90% credible interval that does not contain 0.

We can use this for formal statistical association testing. We have not reported

this previously because the results with respect to the ranking and detection of

causal SNPs were poor.

9.1 Results

9.1.1 Comparing the NG super function across methods

with the same n

As before, we compare the results from the NG super function when we change

the group that the causal SNPs are allocated to, using a ROC curve. The

results of comparing the NG and NG super function across different n are given

in Figure 9.1. We notice that the NG causal splicing is detecting the most causal

SNPs at the lowest false positive rate (FPR), until a FPR of approximately 0.5.

The NG causal UTR is worse than NG causal splicing except in the case where

the FPR > 0.6 in the n = 50 case. These results are as expected in that when

the causal SNPs are alone in a group with a priori less shrinkage, the posterior

mean effect size estimates rank the causal SNPs higher than when the causal

SNPs are in a group with non-causal SNPs (26 non-causal and 6 causal in the

UTR group) which has a priori more shrinkage on the effect size estimates.

To assess the comparison of methods we use the AUC of the ROC. These

are shown in Table 9.2. The NG causal splicing has the largest AUC within

each n (row). For n = 100 the NG has the lowest AUC, but for the other two

n, the AUC of NG causal UTR is lowest.

9.1.2 Comparing the NG super function as sample size

varies

Here we assess the effect of n on the posterior effect size ranks from the NG

causal splicing, NG and NG causal UTR, see Figure 9.2 and Table 9.2. We

expect that as the number of individuals n decreases, the AUC will also decrease

as there is less information in the likelihood. This is reflected in the NG and NG

causal UTR but not in the NG causal splicing. In this case the n = 100 ROC

curve has greater AUC than the n = 300 ROC curve. The difference between

n = 300 and n = 100 for NG causal splicing may simply be due to MCMC

variation.
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False positive rate (n=300)
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Figure 9.1: ROCs comparing the posterior mean rank of the effect size for 30
causal SNPs for the NG causal splicing, NG and NG causal UTR scenarios
with n = 300, n = 100 and n = 50. The data is simulated using HapGen2 [Su
et al., 2011] to include causal SNPs with a MAF (minor allele frequency) of
approximately 0.2 in the population (dataset 2A). The NG causal splicing case
is where all 6 causal SNPs are defined as splicing and all 625 non-causal SNPs
are defined to be from the other 6 functional information groups that we have
defined in proportions that resemble the population proportion of each type of
SNP. The NG causal UTR case is similar to the NG causal splicing case but
with all 6 causal and 25 non-causal SNPs defined as UTR rather than splicing.
Splicing SNPs are a priori not shrunk as much as UTR SNPs. We use 5 sub-
datasets of dataset 2A for these results.

The results in Figure 9.2 show that when the causal SNPs and other non-

causal SNPs are allocated to a functional information group with a priori much

greater shrinkage, the detection of these causal SNPs is poor. We may conclude

that for the NG super function, the difference between n = 100 and n = 300
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NG NG causal splicing NG causal UTR

n = 300 0.9103 0.9848 0.8945
n = 100 0.8544 0.9931 0.8873
n = 50 0.8526 0.8985 0.7825

Table 9.2: The AUC of the ROC curves in Figures 9.1 and 9.2. The ROC
curves compare the posterior mean rank of the effect size for 30 causal from the
NG causal splicing, NG and NG causal UTR scenarios with n = 300, n = 100
and n = 50. The data is simulated using HapGen2 [Su et al., 2011] to include
causal SNPs with a MAF (minor allele frequency) of approximately 0.2 in the
population (dataset 2A). The NG causal splicing case is where all 6 causal SNPs
are defined as splicing and all 625 non-causal SNPs are defined to be from the
other 6 functional information groups that we have defined in proportions that
resemble the population proportion of each type of SNP. The NG causal UTR
case is similar to the NG causal splicing case but with all 6 causal and 25 non-
causal SNPs defined as UTR rather than splicing. Splicing SNPs are a priori
not shrunk as much as UTR SNPs. We use 5 sub-datasets of dataset 2A for
these results.

is insignificant given the prior distributions and the proportion of causal SNPs

based on these ROC curves. This effect is not see in the standard NG, an

increase in n from 300 to 100 increases the AUC of the ROC curve.

In both the NG causal splicing and NG causal UTR cases for the n = 50

case, the AUC of the ROC is approximately 0.1 lower than the AUC for the

ROC curves with n = 100 and n = 300. We hypothesize that with n = 50 it may

be more difficult in the case of the NG super function to accurately estimate

the posterior effect sizes with such small numbers of individuals and SNPs in

each functional information group. The variance of the likelihood is affected

by the minor allele frequency (MAF), and also by the number of individuals.

Hence we need to ensure a balance between n and MAF to ensure causal SNPs

are detected. It may be the case here that n = 50 is not large enough when the

causal SNPs are given a priori less shrinkage, and are in functional information

groups with many other, non-causal SNPs.

9.1.3 Assessing the gradient of the likelihood function

To understand the difference between the gradient of the likelihood with the

change in minor allele frequency (MAF) from 0.2 to 0.02, we investigate the

case where there is only one SNP. This situation is unrealistic but it allows a

simple comparison between the likelihood in the case of both MAFs.

To calculate the variance of the least squares estimate we use var(β̂) =

(XTX)−1σ2. For simplicity we treat σ2 = 1.

In the case where MAF = 0.2 with the design matrix X having two



156 CHAPTER 9. SIMULATION RESULTS WITH FUNCTIONAL INFO.
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Figure 9.2: ROCs comparing the posterior mean rank of the effect size for 30
causal SNPs for the NG causal splicing, NG and NG causal UTR scenarios
with n = 300, n = 100 and n = 50. The data is simulated using HapGen2 [Su
et al., 2011] to include causal SNPs with a MAF (minor allele frequency) of
approximately 0.2 in the population (dataset 2A). The NG causal splicing case
is where all 6 causal SNPs are defined as splicing and all 625 non-causal SNPs
are defined to be from the other 6 functional information groups that we have
defined in proportions that resemble the population proportion of each type of
SNP. The NG causal UTR case is similar to the NG causal splicing case but
with all 6 causal and 25 non-causal SNPs defined as UTR rather than splicing.
Splicing SNPs are a priori not shrunk as much as UTR SNPs. We use 5 sub-
datasets of dataset 2A for these results.

columns, the first contains all 1’s, the second contains 60 1’s and the rest 0

- this represents MAF 0.2. Hence XTX =

(
300 60

60 60

)
= 60

(
5 1

1 1

)
, and

(XTX)−1 =
1

60× (5− 1)

(
1 −1

−1 5

)
=⇒ var(β̂) =

5

60× 4
=

1

48
.
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In the case where MAF = 0.02, the design matrix X has two columns,

the first column contains all 1’s, the second column contains 6 1’s and the rest

0’s - this represents MAF 0.02. Hence XTX =

(
300 6

6 6

)
= 6

(
50 1

1 1

)
, and

(XTX)−1 =
1

6× (50− 1)

(
1 −1

−1 50

)
=⇒ var(β̂) =

50

6× 49
=

50

294
. We notice

that var(β̂MAF=0.02) > var(β̂MAF=0.2). Hence we conclude that the gradient of

the likelihood is much larger for rarer variants, meaning that the likelihood plane

is steeper for more common variants. From this, we can understand why the

Bayesian methods such as the Spike and slab and the Normal Gamma struggle

to detect rare variants compared with more common variants.

9.1.4 Formal Statistical Association testing

In this section we state the SNPs whose 90% posterior credible interval does

not contain 0. We have omitted this in previous chapters as many of the 90%

posterior credible intervals for the causal SNPs contain 0. This makes this a

poor method for detecting those causal SNPs. In Table 9.3 we state the number

of SNPs whose 90% posterior credible interval does not contain 0, according to

whether these SNPs are truly causal or not.

As with the standard Normal Gamma, the number of causal SNPs whose

90% posterior credible interval does not contain 0 is very poor, however the

number of false positives is also low. In only 7 of the 30 sub-datasets do we

detect one or more non-causal SNP with a 90% posterior credible interval that

does not contain 0 (FPR = 0.064%). The TPR is 3.6%. If we were to define

only these SNPs as associated, the true positive rate (TPR) is not high enough,

although the FPR is sufficiently low. Increasing the width of the credible inter-

val increases both the TPR and the FPR. Using only this method (based on the

90% credible interval) for summarising the NG super function results prevents

detection of too many truly causal SNPs.

We consider alternative summary statistics to the mean for the NG super

function, based on the credible intervals assessed above. We assess whether the

AUC of the ROC curve increases when using either the median, the 5th or 95th

percentiles compared to the mean.

Having assessed the ROC curves, we omit these from the thesis as the plots,

in most cases, show the difference between using the mean, median and 95th

percentile as a summary statistic to be very similar. Instead of including the

ROC curves, we state the AUC of each ROC in Table 9.4.

The results in Table 9.4 show that the only case where the AUC for the
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n Sub-dataset
Number of causal

SNPs detected
Number of non-causal

SNPs detected

Splicing causal
300 4 1 2

5 2 1
6 2 2

100 5 1 1
6 1 0

50 3 1 0

UTR causal

300 4 0 1
5 3 3
6 2 2

Table 9.3: The number of SNPs (total 631, of which 6 are causal) whose 90%
posterior credible interval does not contain 0. The sub-datasets that are omit-
ted have 0 SNPs whose posterior credible interval does not contain 0. The data
is simulated using HapGen2 [Su et al., 2011] to include causal SNPs with a
MAF (minor allele frequency) of approximately 0.2 in the population (dataset
2A). The NG causal splicing case is where all 6 causal SNPs are defined as
splicing and all 625 non-causal SNPs are defined to be from the other 6 func-
tional information groups that we have defined in proportions that resemble the
population proportion of each type of SNP. The NG causal UTR case is similar
to the NG causal splicing case but with all 6 causal and 25 non-causal SNPs
defined as UTR rather than splicing. Splicing SNPs are a priori not shrunk as
much as UTR SNPs. We use 5 sub-datasets (numbered 2-6) of dataset 2A for
these results.

posterior mean is not maximum (or within 0.01 of the maximum) is in the

NG splicing causal n = 50 case. In the case of the NG UTR causal, the 95th

percentile performs poorly as a summary statistic, with AUC lower than for the

posterior mean and 50th percentile which are very similar. In the NG splicing

causal case, there is very little difference between the AUC for the 50th and

95th percentiles and the posterior mean (except in the n = 50 case as stated).

Given these results and previous results that led to using the posterior mean,

there is no strong evidence here that another summary statistic would be more

appropriate, therefore as the posterior mean gives large AUC of the ROC curves,

see Table 9.2 and 9.4, we continue to use the posterior mean as our summary

statistic.

9.1.5 Comparing posterior mean effect sizes

We now assess the values of the posterior mean effect sizes for all SNPs for NG

splicing causal and NG UTR causal. We plot histograms, identifying the causal
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n = 300 n = 100 n = 50
NG splicing causal
5th percentile 0.6856 0.8234 0.9078
50th percentile 0.986 0.9958 0.9045
95th percentile 0.99 0.9926 0.9875
Posterior mean 0.9848 0.9931 0.8985
NG UTR causal
5th percentile 0.6701 0.5678 0.5902
50th percentile 0.8927 0.8714 0.7336
95th percentile 0.7971 0.7991 0.6109
Posterior mean 0.8945 0.8873 0.7825

Table 9.4: The AUC of the ROC curves for the NG super function, comparing
the posterior mean summary statistic to three other percentiles, the 5th, 50th

and 95th percentiles, of the posterior distribution as the summary statistic.
The data is simulated using HapGen2 [Su et al., 2011] to include causal SNPs
with a MAF (minor allele frequency) of approximately 0.2 in the population
(dataset 2A). The NG causal splicing case is where all 6 causal SNPs are defined
as splicing and all 625 non-causal SNPs are defined to be from the other 6
functional information groups that we have defined in proportions that resemble
the population proportion of each type of SNP. The NG causal UTR case is
similar to the NG causal splicing case but with all 6 causal and 25 non-causal
SNPs defined as UTR rather than splicing.

SNPs with ×’s on the axis in Figure 9.3.

We notice that the causal SNPs in the NG splicing causal case (dark green

histograms in Figure 9.3) take larger values than for the NG UTR causal case

(blue histograms). We also notice that the maximum posterior effect size for

a causal SNP in the NG splicing causal case is much higher for n = 300 than

either n = 100 or n = 50.

We now compare the cases where n = 100 and n = 300 for the NG UTR

causal and NG splicing causal to the standard NG. The results can be seen in

Figure 9.4.

Figure 9.4 shows how the causal SNPs and all SNPs in general, have a much

smaller posterior mean effect size for the standard NG (red) compared to either

of the NG splicing causal or NG UTR causal cases. In particular we notice that

in the NG UTR causal case, there appears to be less shrinkage on the posterior

mean effect size estimates compares to the standard NG. This, as hypothesized

earlier, may be due to the more flexible prior structure we are placing on the

prior variance of β, see Chapter 7 for details and examples. We also clearly

see that there is less shrinkage applied to the causal SNPs in the NG splicing

causal case compared to the NG UTR causal case. This implies that not only

is the NG super function improving the detection of causal SNPs by increasing
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Figure 9.3: Histograms comparing the posterior mean effect sizes for 30 causal
SNPs (marked with a ×) and the 3125 non-causal SNPs for the NG causal
splicing (dark green) and the NG causal UTR (blue) scenarios with n = 300,
n = 100 and n = 50. The data is simulated using HapGen2 [Su et al., 2011]
to include causal SNPs with a MAF (minor allele frequency) of approximately
0.2 in the population (dataset 2A). The NG causal splicing case is where all
6 causal SNPs are defined as splicing and all 625 non-causal SNPs are defined
to be from the other 6 functional information groups that we have defined in
proportions that resemble the population proportion of each type of SNP. The
NG causal UTR case is similar to the NG causal splicing case but with all 6
causal and 25 non-causal SNPs defined as UTR rather than splicing. Splicing
SNPs are a priori not shrunk as much as UTR SNPs. We use 5 sub-datasets of
dataset 2A for these results.

the flexibility of the prior, it is also differentially reducing shrinkage on SNPs

with an a priori higher chance of being causal.
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Figure 9.4: Histograms comparing the posterior mean effect sizes for 30 causal
SNPs (marked with a ×) and the 3125 non-causal SNPs for the NG causal
splicing (dark green), the NG causal UTR (blue) and the standard NG (red)
scenarios with n = 300 and n = 100. The data is simulated using HapGen2 [Su
et al., 2011] to include causal SNPs with a MAF (minor allele frequency) of
approximately 0.2 in the population (dataset 2A). The NG causal splicing case
is where all 6 causal SNPs are defined as splicing and all 625 non-causal SNPs
are defined to be from the other 6 functional information groups that we have
defined in proportions that resemble the population proportion of each type of
SNP. The NG causal UTR case is similar to the NG causal splicing case but
with all 6 causal and 25 non-causal SNPs defined as UTR rather than splicing.
Splicing SNPs are a priori not shrunk as much as UTR SNPs. We use 5 sub-
datasets of dataset 2A for these results.

9.2 Conclusion

In this chapter, we have assessed two cases of the NG super function - the first

or best case is where the causal SNPs are in a group on their own with a priori
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less shrinkage (NG splicing causal), compared to the worst case scenario where

the causal SNPs are in a group with other SNPs and have a priori greater

shrinkage (NG UTR causal). As would be expected, the NG super function

performs much better in the first case. In the worst case, the Normal Gamma

still performs well when n > 100, based on an AUC of 0.8873 for the ROC

curve.

The plots of the posterior mean effect sizes for both the NG splicing causal

and the NG UTR causal cases shows that there is a difference in the shrinkage

of the causal SNPs based on the prior distribution applied to the SNPs. This

is what we expected from using the NG super function. Comparing to the

standard Normal Gamma, we see that the flexibility of the NG super function

hierarchy is improving the causal SNP detection as well.

Given the results in this chapter, which show that the NG super function

clearly outperforms the standard NG when the SNPs are allocated to the splic-

ing group, and gives larger posterior mean estimates for the causal SNPs in

both the UTR causal and splicing causal cases, we will now assess the results

of the NG super function on a subset of Fairfax and Hulse datasets.



Chapter 10

Application of the Normal

Gamma super function

In this chapter we apply the NG super function to a subset of the Hulse and

Fairfax data. Details on the NG super function can be found in Chapter 8 and

details of the Hulse and Fairfax data can be found in Sections 2.1.3, page 15

and 2.1.4, page 18 respectively. We compare the results in this chapter with

the results using the standard Normal Gamma function which can be found in

Chapter 6. We do not use the Yeast data for the NG super function as the

functional information groups and their prior distributions are based on human

data/SNPs. We check for convergence using the R-hat statistic of Brooks and

Gelman [1998] discussed in Section 4.3. Convergence is achieved with 50,000

iterations and a 5,000 iteration burn-in.

10.1 Hulse data

The Hulse data contains no validated causal or any associated SNPs, therefore

it is very difficult to assess the ability of the NG to detect causal or associated

SNPs. As such we will select only a subset of genes to run through the NG super

function. We select CTNNA2, DAAM2 and IL6 to test the NG super function

on as these represent a spread of maximum posterior effect size for the standard

NG and a spread in the number of SNPs within each gene. IL6 contained the

top ranked SNP for the NG that was also in the top 10 ranked SNPs for all

other methods. We include this to assess where this SNP will be ranked using

the NG super function. We will then compare the maximum posterior mean

effect sizes for each gene in the standard NG and the NG super function. We

will also assess how the ranks of the top 5 SNPs compare across the NG and the

NG super function. These results are tabulated in Table 10.1. The SNPs are

163



164 CHAPTER 10. APPLYING THE NG SUPER FUNCTION

listed in order of their effect sizes (largest to smallest). We report the maximum

effect size for the NG and NG super function to show how small the effect sizes

are in the standard Normal Gamma compared to the NG super function.

Method Max Effect Size Top 5 ranked SNPs

CTNNA2 (2919 SNPs, 38 individuals)

NG 1.0064

rs10779960 (1204), rs13416246 (2664),

rs13409348 (205), rs7592817 (812),

rs732260 (1570)

NG super

function
6.665

rs1437353 (intergenic,1157), rs1427638 (intergenic,1531),

rs960601 (intergenic,2800), rs993607 (intergenic,1513),

rs6728409 (intergenic,349)

DAAM2 (149 SNPs, 39 individuals)

NG 0.00007956

rs2504090 (24), rs9394630 (105),

rs9380895 (101), rs2504100 (56),

rs7750130 (84)

NG super

function
0.4632

rs3004070 (UTR3,36), rs3004071 (UTR3,117),

rs3793137 (UTR3,70), rs3003929 (syn,93),

rs3004067 (syn,133)

IL6 (189 SNPs, 39 individuals)

NG 0.007528

rs12700386 (88), rs17302823 (31),

rs1476483 (128), rs2961310 (63),

rs2905324 (137)

NG super

function
0.03037

rs2069833 (intronic,45), rs2069832 (intronic,43),

rs2066992 (intronic,69), rs1524107 (intronic,48),

rs1474347 (intronic,66)

Table 10.1: A comparison of the top 5 ranked from the NG and NG super
function on the selected genes from the Hulse dataset. The maximum posterior
effect size is stated for the NG and the NG super function. We state in brackets,
for the top 5 ranked SNPs in the NG, their rank in the NG super function and
for the NG super function, we state the rank of the SNPs in the NG. For the
NG super function, we state in brackets the functional group to which the top
5 ranked SNPs belongs.

In Table 10.1, we notice that the maximum effect sizes are all larger in the

NG super function case compared to the standard NG case. This reflects the

decrease on the shrinkage of at least some of the SNP groups with respect to the

standard Normal Gamma. For CTNNA2, the effect sizes are much larger than

in any other gene, and are much larger in the NG super function compared to

the standard NG. We hypothesize that this is due to the much larger number

of SNPs than in any other gene, giving greater uncertainty in the posterior
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estimates. None of the top 5 ranked NG SNPs are in the top 5 ranked SNPs

for the NG super function for any of these three genes. The top 5 causal

SNPs are not all from the same functional information group for DAAM2, and

although the top 5 ranked SNPs for CTNNA2 and IL6 are all from intergenic

or intronic functional groups respectively, these are not the groups with a priori

less shrinkage. The one SNP, rs12700386 in IL6 that was top ranked by the NG

and top 10 ranked by other methods in Table 6.7 is not highly ranked by the

NG super function. In this case it has rank 88 with a tiny posterior mean effect

size (1.6× 10−8).

We compare the mean rank of the SNPs in each the functional information

groups across the three genes, CTNNA2, DAAM2 and IL6, in Table 10.2.

Non-syn Syn Intronic Intergenic UTR3
Mean rank

CTNNA2
(2919 SNPs)

NA 1499 2261.9 936.1 NA

DAAM2
(149 SNPs)

NA 14 55.9 121.2 2

IL6
(189 SNPs)

187 10 5 99.5 NA

Mean posterior mean effect size
CTNNA2 NA 0.33 0.094 1.36 NA
DAAM2 NA 0.0066 0.0019 0.00015 0.29

IL6 6.7× 10−11 0.0059 0.021 1.3× 10−8 NA

Table 10.2: Mean rank and the mean of the posterior mean effect sizes for the
three Hulse genes run on the NG super function. Splicing and ‘other’ functional
information groups are omitted as no SNPs were in these groups for these three
Hulse genes.

It is difficult to conclude based on the results in Table 10.2, how much of an

effect the prior shrinkage is having on the posterior estimates of the SNPs as

the two groups with a priori less shrinkage, splicing and non-synonymous, are

not well used by the three selected Hulse genes. We observe that for CTNNA2

and DAAM2, the intergenic and intronic SNPs are reversed in which has the

higher posterior mean rank and mean posterior mean effect size. This shows

that the information in the likelihood is affecting the posterior ranking of these

SNPs.

Again we conclude that it is difficult to draw any conclusions using this

dataset as there are no validated causal SNPs. Comparing the results from the

NG and the NG super function has highlighted clear differences between the

top 5 ranked SNPs by posterior mean effect size, and assessing the mean rank

of the SNPs in each functional information group has shown that the likelihood

is affecting the mean ranks across the functional information groups.
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10.2 Fairfax data

The Fairfax data was selected to only include SNPs in exonic regions on the same

chromosome as the gene. This did not include all validated causal SNPs, and so

for 5 of the 8 gene/gene expression source (bcell or monocytes) combinations,

the causal SNP is not exonic, and is the only SNP in its category. Therefore we

will only run the NG super function on one of these genes. We choose FADS1

bcell to represent the 5 genes where the causal SNP is not located in an exonic

region. The three genes where the causal SNP is exonic are CARD9 mono,

RBM6 mono and RBM6 bcell. We will run all three through the NG super

function based on using only the synonymous, non-synonymous and ‘other’

categories of the function as the SNPs should all be either synonymous or non-

synonymous if they are known, or ‘other’ if there is only an exonic functional

annotation available.

We tabulate the results for the Fairfax data in Table 10.3, showing the rank

of the causal SNP and the maximum posterior effect size for both the NG and

the NG super function. We state the functional information group that the

causal SNP belongs to in brackets with its rank in the NG super function.

Method Max Effect Size Causal SNP rank

CARD9 mono (511 SNPs, 243 individuals)

NG 0.0393 3

NG super function 0.06911 2 (non)

FADS1 bcell (1076 SNPs, 243 individuals)

NG 0.09312 639

NG super function 0.06997 2 (intronic)

RBM6 bcell (932 SNPs, 243 individuals)

NG 0.047661 39

NG super function 0.02698 16 (syn)

RBM6 mono (932 SNPs, 243 individuals)

NG 0.05562 191

NG super function 0.0602 8 (syn)

Table 10.3: Table showing the results of the Fairfax data on the selected genes
for the NG and the NG super function. Each gene has one causal SNP identified
in the literature, which we state the rank of for the NG and the NG super
function. For the NG super function, we state in brackets the functional group
to which the causal SNP belongs, with its ranking.
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Figure 10.1: Comparison of the posterior mean estimates for the NG and the
NG super function for the 4 genes in the Fairfax dataset. The causal SNPs are
marked on both plots for the NG and the NG super function.

The results in Table 10.3 show that in all cases, including for FADS1 where

the causal SNP is on its own in the intronic group, the rank of the causal SNP

has improved, even though the causal SNPs are, in general, not in the groups

with a priori less shrinkage (splicing and non-synonymous (non)). This shows

that the differential shrinkage based on the location of the SNP is improving

the causal SNP detection for these Fairfax genes.

We plot the posterior mean estimates for the standard NG and the NG

super function, highlighting the magnitude of the causal SNP for the NG and

the NG super function in both cases in Figure 10.1. This allows us to compare

the posterior means relative to the causal SNP effect size.

Figure 10.1 shows that the absolute posterior mean effect size of the causal

SNP is always larger in the NG super function than in the standard NG. The
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non-causal SNP effect sizes are, as expected, very close to 0. There are only a

few non-causal SNPs which have absolute posterior mean effect size larger than

the causal SNP. For FADS1, where the rank of the causal SNP is increasing

from 632 to 2 when using the NG super function, we notice there is a large

difference in the absolute value of the posterior mean effect size. This can only

be due to the differential shrinkage of the NG super function.

The maximum posterior mean is not always larger for the NG super function

compared to the standard NG as we saw in the Hulse data. The maximum

posterior effect sizes remain fairly constant across both methods. This shows

that, even with a priori more or less shrinkage, the posterior mean estimates

can increase or decrease based on a combination of the likelihood and the prior.

10.3 Conclusion

We recall that for the Fairfax data we had 243 individuals and for the Hulse

data we had either 38 or 39 individuals. This difference in the numbers of

individuals (n) may be affecting the posterior estimates as the likelihood may

not contain as much information in the Hulse dataset as in the Fairfax dataset.

Hence the prior will be more influential and therefore the change in prior would

lead to different posterior results. As we have no validated causal SNPs we

cannot verify this using the Hulse dataset.

In conclusion, it is very difficult to assess the differences in the Hulse dataset

as we have no reportedly causal SNPs to compare directly. Comparing across

the top 5 ranked SNPs by the NG and the NG super function, we see very little

agreement. With the Fairfax data, we see an increase in the rank of the causal

SNP in all cases. This shows that the prioritisation of the SNPs by employing

different function information groups is successfully increasing identification of

causal SNPs. Even in the case when the causal SNP is put in a group with a

priori lower mean FS score, the rank of the causal SNP still increases (often

dramatically).



Chapter 11

Discussion

11.1 Conclusion

In Chapter 3 we investigated several statistical methods that could be applied

to eQTL data. In Chapter 4 we applied these methods to simulated eQTL data.

The results from the Normal Gamma prior were such that we choose to develop

this model to include functional information with the aim of prioritising the

most likely causal SNPs. The inclusion of seven functional information groups in

Chapter 8 and the application of this NG super function in Chapter 10 increased

the rank of the causal SNP in all four Fairfax genes tested, and increased the

effect sizes of all simulated causal SNPs with respect to the standard Normal

Gamma.

Within the field of genetics, the ability of this NG super function to take

in human data with any genotype coding ({0, 1}, {0, 1, 2}, imputed genotypes)

and a vast range of n and p, and then to prioritise SNPs represents a great

advancement in selecting SNPs to biologically test for disease association.

No statistical model is perfect, to maximise the information from a statisti-

cal model, a combination of model results and biological knowledge are needed.

If this combination can be achieved, the NG model has the scope to aid under-

standing of complex biological diseases.

11.2 Further developments to the Normal Gamma

Initial work to understand gene expression data highlighted that the amount

of background gene expression (α) present in most samples was not constant.

In the NG we centre y to remove the majority of the background expression

and then give α an uniformative prior distribution. To develop the NG model

further, a proper prior on α, and updating it separately to β could produce a
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more realistic model.

At present, the NG model is coded in Matlab. If this model is to become

more widely used, a quicker and more memory efficient processing tool would

need to be used such as C++ within R.

The computational requirements of the NG model mean that there are lim-

itations on the numbers of individuals and SNPs that can be included in the

model if it is to be run in a reasonable time frame (less than a week) and

without enormous memory requirements. The maximum number of SNPs we

have included in the NG and NG super function is approximately 3000, and

the largest number of individuals is 300. This cannot be run on a standard PC

due to the increased memory requirements. This limitation on the size of the

data that can be processed means that many GWAS could not benefit from the

model without prior reduction in the SNPs and/or individuals to include.

We summarise the MCMC output using the posterior mean. As a result,

MAP estimation or variational Bayes may be a computationally quicker ap-

proach. We could also consider using a similar prioritisation approach based on

the FS scores applied to a MAP estimation approach such as HyperLasso which

would lead to summarising the posterior using the mode rather than the mean.

When summarising the Normal Gamma posterior distribution, we currently

use only the posterior mean. As discussed in Section 4.1.2, we could have used

formal statistical testing. Using the histograms in Figure 4.3, page 58, we notice

one bimodal posterior distribution. This is for a truly causal SNP (simulated to

be so). The maximum mode represents the prior distribution which surrounds

0. Using a statistical test such as the t-statistic that compares for a statistically

significant difference between the prior and the posterior distributions, having

taken into account the prior. This may allow us to detect causal/associated

SNPs more robustly than using the posterior mean as we have done throughout

this thesis.

Throughout this thesis we use four simulated datasets, HapGen datasets

1A, 1B, 2A and 2B. In these datasets we keep the MAF of the causal SNPs

constant. This does not allow us to investigate the effect of different MAFs on

the posterior mean effect size estimates. Further simulation studies on datasets

where different causal SNPs have different MAFs would allow us to investigate

more about the interaction between the ability to detect a causal/associated

SNP and the MAF of the SNP. This is beyond the aims of this thesis but the

results of such a study would increase understanding of the cases in which the

NG performs optimally.

For the NG super function, we use a tan() transformation from the FS

score to B. We could consider a linear transformation that would allow Gibbs
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updating and would also provide a wide range of values for B. This would

be computationally much simpler, and may therefore increase computational

speed.

If the computational speed of the NG could be increased and the compu-

tational demands could be reduced, there would be scope to model the gene

expression jointly across genes rather than applying a gene-by-gene approach.

This would allow the complex regulatory interactions between genes that are

caused by genetic mutations to be taken into account.

The error structure of the Normal Gamma is very simple, using only a

scalar σ2. We suggest that the inclusion of a covariance matrix Σ with an

Inverse Wishart prior might better represent the complex error structure of ge-

netics data more effectively. Using this type of error structure could also enable

incorporation of gene expression technical variability from PUMA [Liu, 2006].

Details of preliminary work on this can be found in Appendix C, page 181.

The minor allele frequency of the causal SNPs on the simulated data had a

large effect on the ability of the NG to detect causal SNPs. This means that

on rare SNPs the prior seemed to be dominating the posterior and enforcing

large amounts of shrinkage. Developing the model to take into account the

minor allele frequency as well as the functional information group may increase

detection of rare SNPs that are found in functionally important groups such

as splicing SNPs, or even in groups that have lower functional effect based on

the FS score, such as intronic or intergenic SNPs. We could also develop the

grouping of SNPs to include other functional information that is not related to

the FS scores. The ENCODE database is being increasingly populated with

functional information that we could use for this purpose.

The functional information is specific to humans, and therefore the NG super

function cannot be directly applied to data from other organisms. We have seen

within this thesis, that the NG is improved by increasing the flexibility of the

model by placing a prior distribution on E[π(var(β|λ, γ))]. This expectation is

fixed in Griffin and Brown [2010] to be M , but we adapt this when including

functional information to be either MB or B in the NG super function. We

could therefore develop a general, non-specific version of the NG super function

that could be used with any organism.

We rely on the functional information score being accurate to inform our

prior distributions. The database of FS scores that we used was produced

in 2008, and contains only a small proportion of the total number of SNPs

with annotations in the different databases. The information that is in the

database we believe to have been correct at the time of calculating the FS

score. This information may have been updated, and there may be more SNPs
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that could be used, hence leading to possible changes the prior distributions that

we have fitted. To maintain the complete accuracy of the prior distributions,

we would need to re-implement the FS score calculations such that the priors

were automatically updated with any adjustments to the set of all FS scores.

This would be computationally very demanding.

We initially focused the model on eQTL data consisting of information on

genotypes and gene expression. There is no reason that the model could not

be extended to GWAS data where the response variable is binary based on a

disease phenotype. In its current form, the NG super function would be readily

able to handle any type of sequence and gene expression data where there were

two groups of individuals such as two extreme phenotype groups, or case-control

data. The NG can easily be adapted to include indicator variables to identify

the case/control status or extreme phenotype group.

The NG currently only includes SNPs in the model. If we could define a code

to represent other genetic mutations then there is scope for easy incorporation

of other genetic mutations. The NG super function would also need to be

developed to include categories for representing the deleterious effect of other

mutations such as indels and CNVs. This would be possible with more time,

and the data to support the definition of the prior distributions.

The NG super function in its current form has much scope for development.

However, compared to the standard NG model it is much improved in terms

of the ranking of causal SNPs. Using the top number or percentage of SNPs

defined by the NG super function for biological validation would lead to a higher

chance of detecting the truly causal SNP than using any other statistical method

compared in this thesis.



Appendix A

Standard Distributions

There are some standard distributions that are used when stating the prior

distributions and deriving the full conditional distributions from the Normal

Gamma prior. For clarity, the probability density functions and the shorthand

notation for these distributions are defined below.

A.1 The Gamma distribution.

Throughout this work we will denote the Gamma distribution by Ga(α, β), for

shape parameter α and rate parameter β = 1
θ
, where θ is the scale parameter.

This has mean α
β

and variance α
β2 . The probability density function of the

Ga(α, β) density is

f(x) =
βα

Γ(α)
xα−1exp(−βx).

A.2 The Generalised Inverse Gaussian distri-

bution.

The Generalised Inverse Gaussian distribution is denoted GIG(a,b,c) and has

the probability density function as below:

f(x) =
( c
b
)
a
2xa−1exp

(
−1

2

(
b
x

+ cx
))

2Ka(
√
bc)

,

where Ka(.) represents the modified Bessel function of the third kind.

We use the special cases of the GIG stated by Johnson et al. [1994] when

calculating the full conditional distributions. The special cases are as follows:

1. Gamma distribution occurs when b = 0 and a > 0.

2. Inverse Gamma occurs when c = 0 and a < 0.
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Appendix B

Simple dataset simulation results

B.1 Basic simulated data

We begin testing the statistical methods by using a simple dataset that contains

no information on correlation of variables, and has a wide range of effect sizes,

some of which may not be realistic. We use this to initially assess the methods

and their implementation.

B.1.1 Simulating the data

We simulate the SNP data by generating standard Normal random vairables.

We use the threshold of 0 to define SNPs (1) or not SNPs (0) for each individual.

We simulated data with 50 individuals and 100 SNPs. We simulate effect sizes

for 8 causal SNPs to be 2, 2, 2, 0.6, 0.6, 0.5, 0.4 and 0.4. The non-causal

SNPs have effect sizes generated from N(0, 0.012). We then calculate the gene

expression value yj =
∑p

i=1Xj,i + ε, for individual j with SNPs i = 1, . . . , p and

ε ∼ N(0, 1).

B.1.2 Results

We use this dataset to initially assess different methods of summarising the

Normal Gamma prior, posterior mean and median, as well as comparing the

methods suggested in Chapter 3; piMASS (posterior beta estimate), HyperLasso

(HL), Minimum Length Least Squares (MLLS/LS) and likelihood ratio (LR)

test. The results of the initial comparison are shown in the ROC curve, see

Figure B.1.

All methods are performing very well with the smallest AUC of 0.8246 for

the LR test. The maximum is HyperLasso with an AUC of 0.9901. The NG

posterior mean performs better than the posterior median with AUCs 0.9779
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Figure B.1: ROC curve comparing the different methods for detecting causal
SNPs. The data is simulated to have 8 causal SNPs with effect sizes ranging
from 2-0.4 (basic simulated data). We compare the difference here between the
posterior mean and median for the Normal Gamma.

and 0.9390 respectively. The LS has an AUC of 0.8943 and piMASS has an

AUC of 0.9659. These are very high, but we expect this as there are 8 causal

SNPs in each of the 20 datasets (160 causal SNPs out of 2000) of which 3 in

each dataset (60 in total) have effect size of 2. This is a very large effect, much

larger than we would expect in real gene expression data. We included such a

large effect initially to ensure the methods were able to perform efficiently with

data of the format n < p.

The Normal Gamma is an MCMC method which provides the full updating

steps as output. We use this output to investigate possible summary statistics

for the posterior distributions and assess their effectiveness. Initially, from

Figure B.1 we notice that the posterior mean is superior to the posterior median

with respect to the AUC.

We assess the posterior means of the SNPs whose credible intervals do not

include 0. We vary the percentage credible interval. Those credible intervals

that include 0 have βi := 0 for the ROC, those that do not include 0 have the

posterior mean as the estimate of βi. We compare the 99%, 95%, 90%, 80%,

70%, 60% and 50% credible intervals in Figure B.2. The widest credible interval

leads to the largest AUC, as we maintain the largest proportion of SNPs. Even

in the case of the 50% credible interval, we still only obtain around 80% of the
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true causal SNPs. This is not as good as we hoped for this method and so we

will not use any of the credible intervals to define causal or associated SNPs.

We could have used formal association testing to define whether SNPs are

associated for the NG. To show why we didn’t do this, we initially decided to

define only those SNPs whose 90% credible interval did not contain 0. Upon

investigation of simulated data, we find that although the proportion of SNPs

retained decreases, there are still a large number of SNPs retained. More im-

portantly, the proportion of causal SNPs retained is quite low, see Table B.1.

% credible interval
% SNPs with credible

interval not containing 0
% causal SNPs with credible

interval not containing 0

99 5.5 54.5
95 7 59
90 8 60.5
80 10.5 69
70 13.5 72
60 17 75.5
50 22 82

Table B.1: The percentages of SNPs and causal SNPs retained when report-
ing only those SNPs whose credible interval does not contain 0 in the Normal
Gamma.

The proportions of SNPs retained are small, however when there are more

than approximately 500 SNPs say, the 90% credible interval not containing 0

will still retain around 40 SNPs. This is a large number to propose for biological

validation, especially when we expect only around 60% of these (approximately

24 SNPs) to be truly causal.

We also assess difference scalings of the posterior βi estimates. We use mean
SD

;
mean

(width of 90% credible interval)
; and mean√

(width of 90% credible interval)
. The results, compared

with the posterior mean and median can be seen in Figure B.3.

Tables B.2 and B.3 shows the AUC for each method in Figures B.2 and B.3

respectively. Of all these methods for summarising the posterior distribution of

the Normal Gamma, the posterior mean appears to be the best method with

an AUC of 0.9487, compared to the next best method of the mean
SD

with AUC

0.9456, which also includes the posterior mean. The posterior median has AUC

0.9390, considerably smaller than for the posterior mean.

B.1.3 Conclusion

Comparing all summary methods for the Normal Gamma we see that the AUC

for the posterior mean is the largest. Using the mean relies on the posterior
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Figure B.2: ROC curve comparing the different credible intervals containing 0
as a method for detecting causal SNPs. The data is simulated with 8 causal
SNPs with effect sizes ranging from 2-0.4 (basic simulated data). We compare
the difference here between the posterior mean for the Normal Gamma and the
credible intervals for each posterior β.
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Figure B.3: ROC curve comparing the different summary statistics for the
Normal Gamma for detecting causal SNPs. The data is simulated with 8 causal
SNPs with effect sizes ranging from 2-0.4 (basic simulated data).
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99% CI 95% CI 90% CI 80% CI 70 % CI 60 % CI 50 % CI

0.7716 0.7926 0.8015 0.8411 0.8544 0.8724 0.9006

Table B.2: The AUCs of the ROC curves in Figure B.2 based on only maintain-
ing SNPs whose posterior credible does not contain 0. Where this is the case,
the ranks are based on the posterior mean for the SNP. We vary the posterior
credible interval from 99%−50% for the Normal Gamma on the basic simulated
data.

Mean Median mean
SD

mean
(width of 90% credible interval)

mean√
(width of 90% credible interval)

0.9487 0.9390 0.9456 0.9374 0.9385

Table B.3: The AUCs for the ROC curves in Figure B.3, where we test different
posterior summary statistics for the Normal Gamma on the basic simulated
data.

distribution not having too many outlying values. We think this is unlikely and

therefore that the mean the best summary statistic for the Normal Gamma,

hence we will use this in all future work.

The Normal Gamma is not the best method on this dataset, Hyper Lasso

performs exceptionally well, although piMASS and the Normal Gamma are

very good. All methods, even the univariate LR test and the MLLS estimates,

provide good results. To be able to appropriately compare these methods,

we feel it would be better to compare on a more realistic dataset with more

appropriate effect sizes and a correlation structure that reflects human data.
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Appendix C

Future developments to the

Normal Gamma model

C.1 Including Gene Expression Uncertainty

Our initial method for including this extra uncertainty in the Normal Gamma

prior framework is to scale the variance of the likelihood to be σ2Σ. σ2, the

uncertainty parameter, remains the same as in the standard NG. Σ is now a

weight matrix with the diagonal elements corresponding to the squared standard

error estimates for each gene, for each subject in the model. This allows us to

take into account the gene expression technical variability from PUMA [Liu,

2006] when modelling the parameter estimates.

The effect of this change on the full conditional distributions is minor. The

only full conditional distributions to change are the full conditional distributions

for σ2 and φ = (α,β)T . This is due to the change in the likelihood, which

becomes:

f(data|λ, γ−2, ψi, α, βi, σ
−2) = Nn(y − α−Xβ, σ2Σ)

∝ |σ2Σ|
1
2 exp

(
−1

2
(y − α−Xβ)T (σ2Σ)−1(y − α−Xβ)

)
∝
(
σ−2
)n

2 |Σ|
1
2 exp

(
−1

2
σ−2(y − α−Xβ)TΣ−1y − α−Xβ)

)
.

The new full conditional distribution for σ2 is as follows.

f(σ−2|Σ,y, α,β) ∝
(
σ−2
)n

2 |Σ|
1
2 exp

(
−1

2
σ−2(y − α−Xβ)TΣ−1(y − α−Xβ)

)
∝
(
σ−2
)n

2 exp

(
−1

2
σ−2(y − α−Xβ)TΣ−1(y − α−Xβ)

)
.
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Comparing this to the standard distributions, we notice that this is proportional

to a Gamma distribution of the form:

Ga

(
n

2
+ 1,

(y − α−Xβ)TΣ−1(y − α−Xβ)

2

)
.

Hence, from the updated likelihood, the new full conditional distribution for

φ = (α,β)T is:

N
((
X∗TΣ−1X∗ + σ2Λ

)−1
X∗Ty, σ2

(
X∗TΣ−1X∗ + σ2Λ

)−1
)
.

C.1.1 Discussion of inclusion of gene expression uncer-

tainty

Considering this, it appears that this may not be the most appropriate way to

include this extra variability. Including the variability in this way overcomes

any identifiability problems, but it does not necessarily make sense that the

overall variance of each gene will be weighted by the technical variance in the

gene expression values. The gene expression variability may contain biological as

well as technical variability. This variability is not scaled based on the technical

variability. Other methods that allow us to take into account the extra sources

of variability may encounter problems based on identifiability of the error.

It is important to develop a method for incorporating this extra knowledge

of the uncertainty in gene expression calls. We have considered modelling the

error in the form σ2 + ρΣ, where Σ is the diagonal matrix of standard errors.

We fear this will lead to identifiability problems with ρ and σ.

Another suggestion was to define a covariance matrix K where the diagonal

elements are defined as the scaled technical variability estimates. Again, we

believe this would lead to the problems discussed above.



Appendix D

Pseudocode

Pseudo-code is used to give the flow of code without giving all the commands.

It can be though of as almost just the annotations/comments that accompany

any well written code. We use it here to convey the stages of the updating of

the NG prior parameters to achieve convergence.

D.1 Pseudocode for the standard NG function

function [outputs] = NG_function(Inputs: SNPs, gene expr and nbrIters)

% Define the nbr of obs, n

% Define the nbr of parameters p

% Define sigmaSqLambda

% Calculate M

if ( p > n )

% Use the MLLS estimate

else

% Use the LS estimates

end

% Define the initial parameter values

% Create the locations to store the values from the MCMC

for i=1:nbrIterations

%%% Updating alpha and beta %%%

% Define xhat

xhat = 10^8
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% Calculating the updating of alpha and beta in stages

% based on the size of the associated psi values

if ( max(psi) / min(psi) > xhat )

% Define an indicator vector to show which elements are to be

% included at which stage

indicator = psi > min(psi)*(xhat/10);

% Calculate the residuals, mean and var of excluded elements

residual = y - X(:, indicator==0) * beta(indicator==0);

% Use the Cholesky decomposition and propose values from Normal dist

% Redefine the indicator vector to show which psi are smaller than

% the min psi multiplied by xhat*10

indicatorVector = psi < min(psi)*(xhat*10);

% Calculate the new residuals, mean and var of excluded elements

residual = y - alpha - X(:, indicator=0) * beta(indicator=0);

% Use the Cholesky decomposition and propose values from Normal dist.

else

% Calculate the expectation and variance

% Use the Cholesky decomposition and propose values from Normal dist.

end

%%%% Updating psi %%%

for j=1:p

if (beta approx 0)

if (first parameter is negative) % Case where the first

% parameter is less than zero

% Use the inverse gamma distribution to update

else % Case where parameter 2 is approx 0 and parameter one

% is non-negative

% Use the gamma distribution to update

end

else % No special case

% Use the GIG distribution for updating

end

end
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%%% Updating sigmaSq %%%

% Update using the Inverse Gamma distribution

%%% Updating lambda %%%

% Define the proposed lambda value and the

% corresponding proposed gamma value

% Calculate the acceptance probability

% Update sigmaSqLambda

% Accept if the acceptance prob is greater than a uniform

% random value

%%% Updating gamma %%%

% Update using the inverse gamma distribution

end

% Generate summary statistics

D.2 Pseudocode for NG splitting function

function [outputs] = NG_splitting_function(Inputs:

SNPs, gene expression, nbrIterations, vector of syn/non status)

% Ensure the function looks in the correct folder for the GIG code,

% randraw script

% Define the number of observations, n and number of parameters p

% Define sigmaSqLambda

% Calculate M

if ( p > n )

% Use the MLLS estimate

else

% Use the LS estimates

end
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% Define the initial values and the syn/non elements

% Create the initial locations for the values to be stored in

for i=1:nbrIterations

%%% Updating alpha and beta SYNONYMOUS %%%

% Define xhat

xhat = 10^8

% Calculating the updating of alpha and beta_syn in stages

% based on the size of the associated psi_syn values

if ( max(psi) / min(psi) > xhat )

% Define an indicator vector to show which elements are to be

% included at which stage

indicator_syn = psi > min(psi)*(xhat/10);

% Calculate the residual, partial variance and partial expectation

% based on those elements not included

residual = y - X(:, indicator_syn=0) * beta(indicator_syn=0);

% Use Cholesky decomposition to check the values are appropriate

% Redefine the indicator vector to show which psi are smaller than

% the min psi multipled by xhat*10

indicator = psi < min(psi)*(xhat*10);

% Calculate the residual, partial variance and partial expectation

% based on those elements not included

residual = y - alpha - X(:, indicator_syn=0) * beta(indicator_syn=0);

% Use the Cholesky decomposition to check the values are appropriate

else

% Calculate the expectation and variance

% Use the Cholesky decomposition to check the values are appropriate

end

%%% Updating psi SYNONYMOUS %%%

for j=1:p_syn

if (beta approx 0)
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if (first parameter is negative) % Case where the first

% parameter is less than zero

% Use the inverse gamma distribution to update

else % Case where parameter 2 is 0 and parameter one is

% non-negative

% Use the gamma distribution to update

end

else % No special case

% Use the GIG distribution for updating

end

end

%%% Updating sigmaSq %%%

% Update using the Inverse Gamma distribution

%%% Updating lambda SYMONYMOUS %%%

% Define the proposed lambda value and the

% corresponding proposed gamma value

% Calculate the acceptance probability

% Update sigmaSqLambda

% Accept if the acceptance prob is greater than a uniform random

% value

%%% Updating gamma SYNONYMOUS %%%

% Update using the inverse gamma distribution

%%% Updating B/FS SYNONYMOUS %%%

% Update using sum of gamma distributions

% Define B-syn from FS

B_syn = FS_syn + 0.5;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Updating alpha and beta NON-SYNONYMOUS %%%

% Define xhat

xhat = 10^8

% Calculating the updating of alpha and beta_non in stages
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% based on the size of the associated psi_non values

if ( max(psi) / min(psi) > xhat )

% Define an indicator vector to show which elements are to be

% included at which stage

indicator_syn = psi > min(psi)*(xhat/10);

% Calculate the residual, partial variance and partial expectation

% based on those elements not included

residual = y - X(:, indicator_non=0)*beta(indicator_non=0);

% Use the Cholesky decomposition to check the values are appropriate

% Redefine the indicator vector to show which psi are smaller than

% the min psi multipled by xhat*10

indicator = psi < min(psi)*(xhat*10);

% Calculate the residual, partial variance and partial expectation

% based on those elements not included

residual=y-alpha-X(:, indicator_non=0)*beta(indicator_non=0);

% Use the Cholesky decomposition to check the values are appropriate

else

% Calculate the expectation and variance

% Use the Cholesky decomposition to check the values are appropriate

end

%%% Updating psi NON-SYNONYMOUS %%%

for j=1:p_syn

if (beta approx 0)

if (first parameter is negative) % Case where the first

% parameter is less than zero

% Use the inverse gamma distribution to update

else % Case where parameter 2 is 0 and parameter one

%is non-negative

% Use the gamma distribution to update

end

else % No special case

% Use the GIG distribution for updating
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end

end

%%% Updating sigmaSq %%%

% Update using the Inverse Gamma distribution

%%% Updating lambda NON-SYMONYMOUS %%%

% Define the mean of psi, the proposed lambda value and the

% corresponding proposed gamma value

% Calculate the acceptance probability

% Update sigmaSqLambda

% Accept if the acceptance prob is greater than a uniform random

% value

%%% Updating gamma SYNONYMOUS %%%

% Update using the inverse gamma distribution

%%% Updating B/FS NON-SYNONYMOUS %%%

% Update using the gamma distributions

% Define B-non from FS

B_non = FS_non + 0.5;

end

% Generate summary statistics

D.3 Pseudocode for NG super function

We use functions based on the standard Normal Gamma updating for the sub-

sets generated by each of the functional information group.

Firstly we provide the pseudocode for the Master function which calls each

individual function. The individual functions have pseudocode similar to the

pseudocode in Section D.2, excluding σ2 which we only update once per itera-

tion.

function [outputs] = NG_master_function(Inputs:

SNPs (X), gene expression (y), nbrIterations, groupingVector)

% Note: groupingVector has 0 for non-syn, 1 for syn,
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% 2 for intronic, 3 for intergenic, 4 for splicing, 5 for utr3,

% and 6 for other

% Define the number of observations, n and number of parameters p

% Define

sigmaSqLambda = 0.01;

sigmaSqFS = 1;

burnin = 5000;

% Defining the initial values for all parameters

% Determine which functional groups are represented in the data

% Create the initial locations for the values to be stored in

% Create the functional group specific initial values

for iter=1:nbrIterations

%%% Non-synonymous updating

if (number_of_non_SNPs > 0)

% Update all non_syn SNP parameters

end

%%% Synonymous updating

if (number_of_syn_SNPs > 0)

% Update all syn SNP parameters

end

%%% Intronic updating

if (number_of_intronic_SNPs > 0)

% Update all intronic SNP parameters

end

%%% Intergenic updating

if (number_of_intergenic_SNPs > 0)

% Update all intergenic SNP parameters

end



D.3. PSEUDOCODE FOR NG SUPER FUNCTION 191

%%% Splicing updating

if (number_of_splicing_SNPs > 0)

% Update all splicing SNP parameters

end

%%% UTR3 updating

if (number_of_utr_SNPs > 0)

% Update all UTR3 SNP parameters

end

%%% Other updating

if (number_of_other_SNPs > 0)

% Update all other SNP parameters

end

% Updating sigmaSq

% Save the updated values of the parameters

end

% Generate summary statistics
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